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Abstract. Consider a relation schema with a set of dependency con-
straints. A fundamental question is what is the minimum space where
the possible instances of the schema can be ”stored”. We study the fol-
lowing model. Encode the instances by giving a function which maps the
set of possible instances into the set of words of a given length over the
binary alphabet in a decodable way. The problem is to find the mini-
mum length needed. This minimum is called the information content of
the database.
We investigate several cases where the set of dependency constraints
consist of relatively simple sets of functional or multivalued dependencies.
We also consider the following natural extension. Is it possible to encode
the instances such a way that small changes in the instance cause a small
change in the code.
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1 Introduction

Let pR,Σq be a dependency schema in the relational database model ([1]) where
R is a relational schema with a single relation and Σ is a set of dependencies
on the set of attributes Ω of size |Ω| � n. Suppose that all the domains of the
attributes are finite. Then the number of possible tuples is also finite. Hence the
number of possible instances I is finite, too. A fundamental question is “what
is the minimum space where a database can be stored?”. Some of the possible
applications are efficient and error-tolerant data transmission or achiving.

Let us repeat the problem for readers not so familiar with the notations
above. A database is a table (matrix) of n columns. A row or a record contains
the data of one object or person, where the ith element of the row is the ith
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attribute, the ith type of data of the object. The number of possible values in one
place in a row is finite. There are some constraints, rules, connections among the
values in a row, given by Σ. There are only finitely many possible rows satisfying
these constraints.

An actual situation in the database is a collection of these possible tuples.
This is called an instance I of the relation. We need to store the instances in
such a way that different instances have different “stored forms”. On the other
hand the “stored forms” should be relatively small. Our goal is to give a model
of this situation.

The following model is suggested. Encode the instances by 0,1 sequences of
length `, that is, give a function c : IpR,Σq Ñ t0, 1u` which maps the set of
possible instances IpR,Σq into t0, 1u`. Of course the map should be decodable,
c should give different sequences for different instances. ` � |c| is called the code
length. The problem is to find the minimum of `. This minimum can be called the
information content of the database schema: InfpR,Σq. Of course, this is nothing
else but the log of the total number of of possible instances, rlog2 |IpR,Σq|s.

Although the definition is simple and natural, there are difficulties in its
implementation. In most cases it is impossible to give an exact number for the
total number of instances. We will show a simple-looking example of a trivial
multivalued dependency when it is not easy to determine even the asymptotical
number of instances.

Our other toy-example is when there is only one minimal key in the de-
pendency schema. In that case we were able to give an exact formula for the
number of possible instances using elementary steps. Of course there is a code
with length InfpR,Σq. But this code is useful only when it can be obtained by
a simple algorithm and can be similarly decoded, that is the instance can be
obtained from the code by another easy algorithm. We do not know if this can
be done in our case of only-one-key. However we can show a very natural code
which is only slightly longer than InfpR,Σq.

The next problem arises when the instance is subject to an elementary modi-
fication. There is a very natural requirement on these codes. If two instances are
similar then their codes should also be similar. More precisely we should write
“close” in the previous sentence rather than “similar”. If this condition is not
satisfied it might happen that making a little change in the database (instance)
the changes in the encoded version are big, we have to work too much to get the
changes.

Consider some elementary changes in I, like deleting or adding a row, re-
placing one entry in one of the rows. We would like to have a small change in
the code of an instance if it is a subject of one of such elementary changes. The
changes in the codes are measured by the Hamming distance that is the number
of different digits.

We will show that if this requirement takes place in a fairly strict manner
then the code is much longer.

Let us introduce some basic notations that are used in the paper. For an
n-tuple t � ptA1 , . . . , tAnq and X � Ω � tA1, . . . , Anu let πXptq denote the |X|-



tuple u that has the property uA � tA pA P Xq. Sometimes πXptq is also called
an X-tuple. If I is an instance let πXpIq � tπXptq | t P Iu.

For integers r, s rrs denotes the set t1, . . . , ru and rr, ss denotes the set
tr, . . . , su.

The paper is organized as follows. In section 2 we consider the case where
only one key is given in the schema. The concepts of 2-distance-preserving and
strongly 2-distance-preserving codes are introduced. We give lower bounds on
the size of these codes in section 4. In section 3 the case of joins is analyzed and
an other simple but much different set of multivalued dependencies is considered.
Investigations lead to a problem on random bipartite graphs. A partial solution
is given in section 5. In section 6 we mention some related works and finish the
study with several open problems in section 7.

2 Only one minimal key

Let the number of attributes of R be |Ω| � n � a� b where a and b are positive
integers. Suppose that all domains are t0, 1u. Let the attributes be ordered and
suppose that the set K � Ω, |K| � a is a key. It can be supposed without loss of
generality that K is the set of the first a attributes. Let this dependency schema
be denoted by pR, tK Ñ Ωuq.

If t is an n-tuple in an instance I satisfying K Ñ Ω then πKptq uniquely
determines πΩ�Kptq. For an instance I P IpR, tK Ñ Ωuq and u P πKpIq let
fpI, uq denote the function describing this dependency, that is fpI, πKptqq �
πΩ�Kptq for an n-tuple t. Of course this function depends on I.

Proposition 1.

IpR, tK Ñ Ωuq � �2b � 1
�2a

. (1)

Proof. The number of possible K-tuples (first part of the n-tuples) is 2a. Let us

denote the ith possible a-tuple by pi (0 ¤ i   2a). For any given pi � πKptq there

are 2b choices for fpI,pi q, that is each first part has 2b possible “continuations”
in the last b attributes. If s � |πKpIq| then the total number of possible choices

for fpI,pi q for all tuples in the instance is
�
2b
�s

. There are 2a possible values of

πKptq therefore one can choose s pieces of K-tuples πKptq in
�
2a

s

�
many ways,

so the number of instances of size s is�
2a

s


�
2b
�s
, (2)

and the total number of choices is

2a¸
s�0

�
2a

s


�
2b
�s � �2b � 1

�2a
. (3)

[\



Therefore InfpR, tK Ñ Ωuq � 2a logp2b � 1q what is slightly more than b2a.
Of course there is always a code c with the length ` � rlogp2b � 1q2as, since we
can list all the possible instances and the code of the jth instance can be the
binary form of j. However nothing ensures that this code is algorithmic and easy
to decode.

There is a nice way to encode the instances in the following way. The code
cpIq will be determined in the form c0pIqc1pIq . . . c2apIq where c0pIq is a 0,1

sequence of length 2a: its ith digit is 1 iff pi P πKpIq and

ci�1pIq �
"
fpI,pi q if pi P πKpIq
p0, 0, . . . , 0qp of length bq if pi R πKpIq (4)

for 0 ¤ i   2a. The length of this code is p1�bq2a, that is only a little more than
InfpRq. It is easy to see that this code is uniquely decodable, since c0pIq deter-
mines which first parts are in the instance, the second parts are all determined
by the function fpI,pi q.

Let us show by a small example why we have to define the second row of (4)
to be 0. Choose a � 2, b � 1 and consider the instance

I � 0 0 1
0 1 1

Here c0pIq is clearly p1, 1, 0, 0q since the first two of the possible four first parts
( (0,0), (0,1), (1,0), (1,1) ) occur in the instance. fpI,p0q � 1, fpI,p1q � 1 are
also well-defined. But fpI,p2q and fpI,p3q are not defined by the instance, so all
of the following sequences could be codes of the present I: p1, 1, 0, 0, 1, 1, 0, 0q,
p1, 1, 0, 0, 1, 1, 0, 1q, p1, 1, 0, 0, 1, 1, 1, 0q, p1, 1, 0, 0, 1, 1, 1, 1q. To avoid this ambigu-
ity we chose the first one.

We have actually proved the following statement.

Proposition 2. There is a code of length ` � p1 � bq2a, defined by an easy
algorithm that can be easily decoded.

Deleting the parts in the second line of (4) we obtain a variable length code
what is shorter in average, but it is inconvenient otherwise. Therefore define
c�pIq skipping the 0 sequences in the second row of (4).

Proposition 3. The average length of the code c�pIq is�
1� b

2b

2b � 1



2a. (5)

Proof. The length of c�0 pIq � c0pIq does not depend on I, it is 2a, we can consider
the average length of the rest of the code. If s � |πKpIq| then the length of the
second part of the code is bs. By (2) the sum of the lengths is

2a¸
s�0

�
2a

s


�
2b
�s
bs � 2a2bb

2a¸
s�1

�
2a � 1

s� 1


�
2b
�s�1 � 2a2bbp2b � 1q2a�1. (6)



We have to divide this by the number of instances (codewords) what was deter-
mined in Proposition 1. The ratio is really

2ab
2b

2b � 1
. (7)

[\
Let us now investigate the condition that small changes cause a small change

in the code. Of course it is hopeless to achieve this in the case of codes of variable
length. Therefore we return to the codes of fixed length.

3 elementary changes of I will be considered.

(i) Delete one tuple.
(ii) Flip one digit in the first part, πKptq.
(iii) Flip one digit in the second part, πΩ�Kptq.

Let us see what the changes are in our code described in Proposition 2. In
case (i), if the ith tuple is deleted then fpI,pi q becomes a sequence of zeros. The
number of changes is b�1 since a 1 is also replaced by a 0 in c0. (ii) This change
causes 2 changes in c0 and 2b in the rest, altogether 2pb�1q. Finally, in case (iii)

there is only one change in fpI,pi q if the original change was in the ith tuple.
But can we expect anything better? In case of (ii) we have to give a lot of

new information, because the unchanged second part becomes the continuation
of another, new first part, that is unrelated to the present one. So, only the
changes (i) and (iii) might induce a small change in the code.

(There is an embarrassing question here. Deleting one tuple from the instance
seems to be easy, we do not add too much new information. But adding a new
tuple needs that. So, one feels that the first change should induce a small change
in the code, while the second one does much more. This really happens in the
case of the code of variable length given in Proposition 3. But in the case of
codes of fixed length the situation is symmetric, the Hamming distance has no
direction. This is why we do not treat “adding a new tuple” as an elementary
change.)

Can the Hamming distance of the codes of instances obtained by both ele-
mentary changes (i) and (iii) be equal to one? Let

I1 � 0 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 1 0 0 . . . 0 0

,

I2 � 0 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 1 0 0 . . . 0 1

and
I3 � 0 0 . . . 0 0 0 0 . . . 0 0 .

Deleting the second tuple from I1 or from I2, the instance I3 is obtained.
Hence dpcpI1q, cpI3qq � 1, dpcpI2q, cpI3qq � 1 should hold. On the other hand,
I2 can be obtained from I1 by flipping one digit in the second part, therefore



dpcpI1q, cpI2qq � 1. This is a contradiction, since there are no three 0,1 sequences
with pairwise Hamming distance 1.

The conclusion is that we can only suppose that the Hamming distance is at
most 2 in the cases (i) and (iii). We say that a code cpIq is 2-distance-preserving
if the following two conditions are satisfied.

(iv) If I2 is obtained from I1 by deleting one tuple then dpcpI1q, cpI2qq ¤ 2.
(v) If I2 is obtained from I1 by flipping one digit in πΩ�Kptq (the second part)

then dpcpI1q, cpI2qq ¤ 2.

It is easy to construct a code satisfying this condition. Define the following
2a�p1�2bq matrix where the rows represent the first part of I. The 0th column

contains a 1 in the ith row if pi P πKpIq, otherwise it is 0. The ith row contains

only 0s if pi R πKpIq. Otherwise the jth entry (1 ¤ j ¤ 2b) in the ith row is 1

iff fpI,pi q is the jth element of the set of all b-tuples, t0, 1ub in a given order.
Arranging the entries of this matrix in any way a 2-distance-preserving code is
obtained. Its length is 2ap1 � 2bq what is much larger than InfpRq if b is large.
A lot is lost as a tradeoff for having the distance preserving property. Call this
code the trivial code and denote it by ctr. So we have

|ctr| � 2ap1� 2bq. (8)

The following bound is exponential in b, unlike the construction of Proposi-
tion 2.

Theorem 1. If c is a 2-distance-preserving code of pR, tK Ñ Ωuq then
|c| ¥ ?

2 � 2a{2 � 2b{2 � 1.

Observe that ctr has an additional property what cannot be naturally sup-
posed. Namely, changing the second part of any tuple in an instance, the code
changes at at most two places:

(vi) If I2 is obtained from I1 by changing πΩ�Kptq (the second part) in any
arbitrary way then dpcpI1q, cpI2qq ¤ 2.

Codes satisfying properties (iv) and (vi) are called strongly 2-distance-pre-
serving. The following theorem gives an improved bound on the length of such
codes. This bound has the right order of magnitude in b.

Theorem 2. Let b ¥ 2. If c is a strongly 2-distance-preserving code of
pR, tK Ñ Ωuq then |c| ¥ 2b.

3 A simple multivalued dependency

In this section we consider the information content of multivalued dependency
schemas. First, let us remind the reader of the definition of a multivalued de-
pendency (mvd).



Let R be a relation schema with attribute set Ω and A,B � Ω. An instance
I � IpRq satisfies the multivalued dependency AÑÑ B if for any tuples u, v P I
and πApuq � πApvq implies that there exists a tuple w P I such that πApwq �
πApuq � πApvq, πBpwq � πBpuq,πΩ�A�Bpwq � πΩ�A�Bpvq holds.

Note, that due to symmetry reasons, there is also a w1 P I, such that πApw1q �
πApuq � πApvq, πBpw1q � πBpvq,πΩ�A�Bpw1q � πΩ�A�Bpuq holds. Let Σ be a
set of mvd’s. So, according to the previous more general definition, we can say
that an instance I � IpRq satisfies the multivalued dependency schema (mvd
schema) pR,Σq if I satisfies all mvd’s of Σ. We denote the set of such I’s by
IpR,Σq.

Let us introduce the following notations for a family of sets F � tXi | 1 ¤
i ¤ ru. Let

MF �
#
H � X � Ω |X �

£
iPH

Xi for some H � rrs
+

(9)

and

apFq � tH PMF | @H 1 � H : H 1 RMFu. (10)

First, let us consider a simple case when Σ � tH ÑÑ Xi |Xi � Ω, 1 ¤ i ¤ ru.
If HÑÑ Xi holds, then HÑÑ Ω �Xi holds, too.

Example 1. Let Ω � tProfessor, Course, Booku and consider the following in-
stance I:

Professor Course Book
Taylor Ocean Studies Corals
Smith Ocean Studies Corals
Taylor Ocean Studies Whales
Smith Ocean Studies Whales
Taylor Mammals Whales
Smith Mammals Whales
Taylor Mammals Monkeys
Smith Mammals Monkeys

We have H ÑÑ tCourse, Booku, since if we have two tuples of I and we
exchange the Course-Book pair, the new tuples are in I as well. This can be also
viewed as we changed the professor, so H ÑÑ tProfessoru holds, too. On the
other hand H ÑÑ tCourseu does not hold. Consider the tuples (Taylor, Ocean
Studies, Corals) and (Smith, Mammals, Whales), but Prof. Taylor does not teach
Mammals from the books on Corals. Note, that tCourseu ÑÑ tBooku holds as
well. [\

Let FΣ � tXi | 1 ¤ i ¤ ru Y tΩ � Xi | 1 ¤ i ¤ ru. Then clearly apFΣq �
tS1, . . . , Smu is a partiton of Ω, moreover each F P F is the union of some
elements of apFΣq. Let us introduce the notation DY ��jPY Dj for any Y � Ω.



Theorem 3. Let D1, . . . , D|Ω| be the domains of the attributes of R and Σ �
tH ÑÑ Xi |Xi � Ω, 1 ¤ i ¤ ru. Then

IpR,Σq � tHu Y tT1 � � � � � Tm |H � Ti � DSi , 1 ¤ i ¤ mu . (11)

Proof. Consider a nonempty instance of the type of the right hand side of (11)
and an mvd H ÑÑ Xi P Σ. Since Xi �

�tSj | j P Hu and Ω �Xi �
�tSj | j P

rms � Hu holds for some H � rms then, according to the definition of di-
rect product, for any tuples u1 and u2 of I there exist two tuples v1 and v2
such that πXipv1q � πXipu1q, πΩ�Xipv1q � πΩ�Xipu2q, πXipv2q � πXipu2q and
πΩ�Xipv2q � πΩ�Xipu1q holds, so I satisfies the dependency H ÑÑ Xi. This
holds for each i, so I P IpR,Σq.

On the other hand consider an instance I P IpR,Σq and two tuples u and v.
We claim that there is a tuple w in I having the property

πS1pwq � πS1pvq and πΩ�S1pwq � πΩ�S1puq. (12)

Since S1 P apFΣq we know, that S1 �
�

F 1 holds for some F 1 � FΣ . Let
Gi �

�tFj | 1 ¤ j ¤ iu p0 ¤ i ¤ |F 1|q. There exists a tuple wi P I with

πGipwiq � πGipvq and πΩ�Gipwiq � πΩ�Gipuq. (13)

In fact, w0 � u P I holds and suppose that wi P I exists with property (13)
for some 0 ¤ i   |F 1|. Let us define wi�1 by

πFi�1
pwi�1q � πFi�1

pwiq and πΩ�Fi�1
pwi�1q � πΩ�Fi�1

puq. (14)

Since Gi�1 � GiXFi�1 wi�1 satisfies property (13) (for i� 1). By induction
on i we have wi P I and we know that u P I and H ÑÑ Fi�1 holds for I.
Therefore we have wi�1 P I by (14) and the definition of mvd.

Setting w to be w|F 1| proves the claim since w has property (12).
Analogously, for each 1 ¤ i ¤ m there exist a tuple wtSiu P I having the

property
πSipwtSiuq � πSipvq and πΩ�SipwtSiuq � πΩ�Sipuq. (15)

We prove by induction on |H|, that there exists a tuple wH P I for any
H � apFΣq satisfying

π�HpwHq � π�Hpvq and πΩ�
�
HpwHq � πΩ�

�
Hpuq. (16)

For |H| ¤ 1 the statement holds, so let |H| ¥ 2. Suppose, that it is true
for any H1 � apFΣq such that |H1|   |H|. There exists an F P FΣ satisfying
FX�H � H and FX�H � �H, otherwise apFΣq contains

�
H or a superset of

it, but this is not possible for |H| ¥ 2. FX�H and
�
H�F are disjoint unions of

some Si’s, fewer than |H|. By the induction hypothesis there exists wFX
�
H P I

and w�H�F P I satisfying (16) (for F X �H and
�
H � F respectively). But

then since HÑÑ F holds for I, w�H P I satisfying (16) exists.
So any I P IpR,Σq is of the type of the right hand side of (11). [\



Corollary 1.

|IpR,Σq| � 1�
¹

SiPapFΣq

�
2
±
jPSi

|Dj | � 1
	

(17)

[\

We suggest the following coding of the instances. The code consists of mp�
|apFΣq|q blocks. The ith block has length

±
jPSi

|Dj |, each bit corresponds to
an element of

�
jPSi

Dj . Note, that only those codewords that have all 0’s in a
particular block are not used, except for the all 0 codeword.

By corollary 1 the length of this code is the best possible if

2

��1�
¹

SiPapFΣq

�
2
±
jPSi

|Dj | � 1
	�¡ ¹

SiPapFΣq

�
2
±
jPSi

|Dj |
	

(18)

holds. Note that there are cases in which (18) does not hold, typically in the
case where the cardinality of the domains are small.

Coding and decoding is easily computable.
There is a natural partial ordering on IpR,Σq, namely let T1 � . . . � Tm ¤

T 1
1 � � � � � T 1

m if Ti � T 1
i holds for all 1 ¤ i ¤ m (H is smaller than anything).

Let us consider various updates on instance I. Note, that the modified in-
stance I 1 should be in IpR,Σq as well. So restoring the dependency schema
maybe neccessary. First, we define quite natural ways to restore the schema,
then we investigate the changes in the codeword of I. (Of course there is always
a natural way to restore the schema: undo. But we exclude this way.)

Tuple deletion: To restore the dependencies after deleting u let the resulting
instance be such an instance I 1, that satisfiy I 1 ¤ I, that does not contain u and
that is maximal in the partial ordering with this property. This can be done by
modifying a single bit in the codeword, unless I consists of a single tuple.

Tuple insertion: To restore the dependencies after inserting u let the resulting
instance be such an instance I 1, that satisfiy I ¤ I 1, that does contain u and
that is minimal in the partial ordering with this property. This can be done
by modifying as many bits in the codeword as ”new” πTipuq’s are among the
corresponding projections of u.

Entry modification: To restore the dependencies after a modification in the
attribute jpP Siq of u to u1 (i.e., πipuq � πipu1q ô i � j p1 ¤ i ¤ |Ω|q) we have 2
cases. Either πSipu1q P Ti (that is the modified tuple is the same as one the other
tuples of I) or not (the modifed tuple was not a tuple of I yet). In the first case,
let I 1 be such an instance, that satisfies I 1 ¤ I, that does not contain u and that
is maximal in the partial ordering with this property. For the the second case
we use I2 determined by the first case. Let I 1 be such an instance that satisfiy
I2 ¤ I 1, that does contain u1 and that is minimal in the partial ordering with
this property. In the first case this corresponds to a modification of a single bit
in the ith block (see tuple deletion), in the second case 2 bits are modified in
the same block.



This natural code is quite good in the sense that small changes in the instance
result in small changes in the code.

What can we say if the left hand sides of the mvd’s are not the empty sets,
but say X (the same for all mvd’s)? Since X ÑÑ Y implies X ÑÑ Y � X and
vica versa we can consider Σ2 � tX ÑÑ Xi �X |Xi � Ω, 1 ¤ i ¤ ru instead of
Σ1 � tX ÑÑ Xi |Xi � Ω, 1 ¤ i ¤ ru. The instances satisfying Σ2 are

tHu Y
# ¤
wPH

twu � F pwq
�����H � H � DX , F : H Ñ

m¡
i�1

�
2DSi � tHu�+ . (19)

In other words, for a given instance I satisfying pR,Σ2q and an X-tuple
w P πXpIq the continuations that complete w to an n-tuple of I are of the form
(11) (for Ω � X instead of Ω). The proof of (19) is analogous to the proof of
Theorem 3.

This similarity motivates to study the case of a simple set of mvd’s that
looks completely different. Let Σ � tA ÑÑ C,B ÑÑ Du, where B � C �
A and A � D � B. If these 2 conditions hold, Σ is equivalent to the set
tAÑÑ B,B ÑÑ Au (since AÑÑ C implies AÑÑ C �A and vica versa) or more
simply to the situation where Ω � t1, 2, 3u and Σ � tt1u ÑÑ t2u, t2u ÑÑ t1uu.
Let n � |D1|,m � |D2|, k � |D3|.

For any I � D1 � D2 � D3 let G � GI � pD1, D2, Eq be the bipartite
graph, that has tx, yu P EpGq ô Dz P D3 px, y, zq P I. Furthermore for an edge
e � tx, yu P EpGq let Se � tz P D3 | px, y, zq P Iu.

Lemma 1. Let Ω � t1, 2, 3u and Σ � tt1u ÑÑ t2u, t2u ÑÑ t1uu. H � I P
IpR,Σq if and only if for any e, f P EpGIq, that are in the same connected
component of G Se � Sf holds.

Proof. Suppose that for any e, f P EpGIq, that are in the same component of G
Se � Sf holds. Consider two tuples px, y, zq and px, y1, z1q. Since tx, yu and tx, y1u
have a common vertex they are in the same component. So Stx,yu � Stx,y1u, which
implies px, y, z1q, px, y1, zq P I, so t1u ÑÑ t2u holds. Similarly t2u ÑÑ t1u holds
as well, so I P IpR,Σq.

On the other hand if I P IpR,Σq and e, f P EpGIq are in the same edge-
connected component then there exists a path v0, e1, v1, e2, . . . v`�1, e`, v` in G
such that e1 � e and e` � f . We can suppose w.l.o.g., that v0 P D1. Let z be
an arbitrary element of Se, i.e., pv0, v1, zq P I. tv1, v2u P EpGq implies that there
exist some z1 P D3, such that pv2, v1, z1q P I. t2u ÑÑ t1u implies pv2, v1, zq P I.
By a similar arguement t1u ÑÑ t2u implies pv2, v3, zq P I. By easy induction
pv`�1, v`, zq P I, (or pv`, v`�1, zq P I,) which implies z P Sf . Conversely, z P Sf
implies z P Se, therefore we have Se � Sf . [\

Let cn,m,s (1 ¤ s ¤ mintn,mu) denote the number of bipartite graphs with
partition sizes n, m and exactly s connected components that contain at least
one edge (so isolated vertices do not count as a component).



Corollary 2. Let Ω � t1, 2, 3u, n � |D1|, m � |D2|, k � |D3| and
Σ � tt1u ÑÑ t2u, t2u ÑÑ t1uu.

|IpR,Σq| � 1�
mintn,mu¸
s�1

cn,m,s
�
2k � 1

�s
. [\ (20)

The following bounds on InfpR,Σq follow from Corollary 2.

Corollary 3. Let Ω � t1, 2, 3u, n � |D1| ¡ 0, m � |D2| ¡ 0, k � |D3| ¡ 0 and
Σ � tt1u ÑÑ t2u, t2u ÑÑ t1uu.

nm� k � 1 ¤ InfpR,Σq ¤ nm�mintn,muk (21)

Proof. We have by (20)

2nm�k�1 ¤ 1� p2nm � 1qp2k � 1q � 1�
��mintn,mu¸

s�1

cn,m,s

�p2k � 1q �

1�
mintn,mu¸
s�1

cn,m,sp2k � 1q ¤ |IpR,Σq| ¤ 1�
mintn,mu¸
s�1

cn,m,sp2k � 1qmintn,mu �

1�
��mintn,mu¸

s�1

cn,m,s

�p2k � 1qmintn,mu � 1� p2nm � 1qp2k � 1qmintn,mu ¤

2nm�mintn,muk. [\ (22)

For small s we prove some asymptotic bounds on cn,m,s in section 5. We also
discuss a conjecture on cn,m,s for all s in section 7. Note, that if Conjecture 2
is true both the lower and the upper bounds of (21) can be close for various
n,m, k. These possibilities are discussed in section 7.

Let us consider again the updates of I P IpR,Σq and the poset xIpR,Σq,�y.
Note, that restoring the mvd schema after insertion of a tuple t may result a big
change in I if πt1,2uptq is a new edge that connects components C1, C2 � D1�D2.

If S1, S2 P 2D3 are the subsets of D3 belonging to C1 and C2 respectively, then
the own set of the unified component will be S1 Y S2 P 2D3 . So, maybe there is
no positive answer for Problem 3 in section 7.

4 Bounds on the size of 2-distance-preserving codes

Define the graph G1pa, bq � pV,E1q where V is the set of all instances of
pR, tK Ñ Ωuq. Therefore, by Proposition 1 we have |V | � p2b � 1q2a . Two
vertices are joined by an edge in G1pa, bq if the corresponding instances can be
obtained by a change (i) or (iii). B` is the `-dimensional cube, more precisely it
is the graph with vertex set t0, 1u` where two vertices are joined by an edge if
their Hamming distance is one. B¤2

` is a graph with the same vertex set, but
two vertices are adjacent if their Hamming distance is 1 or 2.



Let H1 � pU1, F1q and H2 � pU2, F2q be two graphs. An injective map
m : U1 Ñ U2 is called an embedding if the edges in F1 are mapped into edges in
F2. In notation: m : H1 ãÑ H2. The following is true by the definitions,

c is a 2-distance-preserving code of length ` iff c : G1pa, bq ãÑ B¤2
` .

The smallest ` for which an embedding H � pU,F q ãÑ B¤2
` exists is called the

p¤ 2q-dimension of H. In notation: dim¤2pHq.

Lemma 2. Let m : H � pU,F q ãÑ B¤2
` be an embedding and u P U an arbitrary

vertex. Then there is another embedding m1 : H ãÑ B¤2
` which maps u to the

all-zero sequence.

Proof. Add mpuq to all the vectors mod 2, that is m1pvq � mpvq �mpuq. This
operation does not change the Hamming distance, the modified map is also
injective, maps edge to edge and m1puq � 2mpuq which is zero mod 2. [\

Lemma 3. If H2 is a subgraph of H1 then dim¤2pH2q ¤ dim¤2pH1q.

Proof. Let m : H1 ãÑ B¤2
` be an embedding where ` � dim¤2pH1q. Then m|H2

is also an embedding of H2 into the same B¤2
` . So by the definition of p¤ 2q-

dimension dim¤2pH2q ¤ ` � dim¤2pH1q holds. [\

Let Kr be the complete graph on r vertices.

Lemma 4. dim¤2pKrq � r � 1 pr �� 4q, dim¤2pK4q � 2.

Proof. First we give an embedding. The image of the map are those sequences
of length r � 1 having at most one 1. The distance of every pair is ¤ 2. Since
B¤2

2 is isomorphic to K4 the set of all 0,1 sequences of length 2 gives a better
construction for r � 4.

Conversely suppose that m : Kr ãÑ B¤2
` is an embedding. The trivial in-

equality ` ¥ rlog rs proves the correct lower bound for r � 1, 2, 3, 4. Suppose
r ¡ 4.

By Lemma 2 it can be supposed that one of the vertices, say u is mapped
to the all-zero sequence of length `. The maps of all other vertices must contain
one or two 1s. Let np1q and np2q denote the number of sequences containing one
and two 1s, respectively. Several cases will be distinguished.

np1q ¥ 3. The vertices u1, u2, u3 have a map containing exactly one 1. Sup-
pose that the map of a vertex v contains two 1s. Then the Hamming distance
of v and at least one of u1, u2, u3 is ¥ 3 what is a contradiction. Therefore
np1q � r � 1, and ` ¥ r � 1, this case is settled.

np1q � 2. Let mpu1q and mpu2q contain one 1. If the map mpvq contains two
1s then the place of the 1 in mpu1q must be one of the two places of 1s in mpvq,
otherwise their Hamming distance is 3. The same is true for mpu2q therefore the
two places are uniquely determined in mpvq. Since r ¡ 4 there must be a map
whose 1s are not at these two places, contradicting the conditions. This case is
impossible.



np1q � 1. Suppose that the map of u1 has only one 1, say in the first place
in the sequence. The maps with two 1s must have one of them in the first place,
again. Their second 1s must occupy r�2 different places. Hence we have ` ¥ r�1.

np1q � 0. All maps have two 1s. Their places in mpu1q and mpu2q cannot be
4 distinct ones: this would imply Hamming distance 4. Without loss of generality
one can suppose that mpu1q has 1s in the first and second places, while mpu2q
in the first and third places. If mpvq has 1 at the second and third places, then
we cannot choose a good map for the fourth vertex of Kr. Therefore the map of
all vertices has a 1 in the first place. The r�1 maps (different from the all-zero)
occupy r places. In this case ` ¥ r is obtained, better than our need. [\

Lemma 5. If H � pU,F q is a graph with one vertex of maximum degree |U |�1
then the smallest integer satisfying

1� x�
�
x

2



¥ |U | (23)

is a lower bound on dim¤2pHq.

Proof. Let m : H ãÑ B¤2
` be an embedding and let u be the vertex with degree

|U | � 1. By Lemma 2 one can suppose that mpuq is the all-zero sequence. The
maps of all other vertices have one or two 1s in their maps. Of course |U | �
1� np1q � np2q holds. Now np1q ¤ ` and np2q ¤ �`2� imply

1� `�
�
`

2



¥ |U |. (24)

[\

Lemma 6. G1pa, bq contains a vertex of degree 2a2b.

Proof. Consider the empty instance (no tuple) as a vertex ofG1. All the instances
with one tuple are neighbors in G1 since the deletion of the only tuple leads to
the empty instance. The number of such tuples is 2a�b. [\

Proof (of Theorem 1). Take the subgraph H of G1 spanned by the empty in-
stance and its neighbors. The number of vertices of H is 1 � 2a2b. Applying

Lemma 5 for H condition (23) becomes xpx�1q
2 ¥ 2a2b. The inequality px�1q2

2 ¥
2a2b has smaller or equal solutions. Hence we have dim¤2pHq ¥ ?

22
a
2 2

b
2 � 1.

By Lemma 3 this is true for G1, too. [\

Define now the graph G2pa, bq � pV,E1q that has the same vertex set as
G1pa, bq that is IpR, tK Ñ Ωuq. Two vertices are joined by an edge in G2pa, bq
if the corresponding instances can be obtained by a change (i) or (vi). Now we
want to give a lower bound on dim¤2pG2q.

Lemma 7. G2pa, bq contains a complete subgraph of size 1� 2b.



Proof. Take the empty instance and all the instances having one tuple with a
fixed first part (say πKptq � p1, 0, . . . , 0, 0q q and all possible second parts. The
number of these instances is really 1� 2b, and any two of them are joined by an
edge in G2. [\
Proof (of Theorem 2). Use Lemma 4 with the complete subgraph Kr obtained in
Lemma 7 where r � 1�2b. Lemma 4 gives dim¤2pKrq ¥ 2b. Lemma 3 completes
the proof. [\

5 Asymptotic bounds on cn,m,s

In this section we focus on how to calculate cn,m,s. The question is equivalent to
counting the probability pn,m,s of a random bipartite graph with partition sizes
n, m having exactly s connected components that contain at least one edge.

pn,m,s � cn,m,s
2nm

. (25)

Instead of considering the model of taking graphs with probability 1{2nm
we can consider the random graph model Gpn,m, 1{2q, where each edge of the
complete bipartite graph Kn,m with partition sizes n and m has probability 1{2
to be included in a random bipartite graph with partition sizes n and m. This
way, each random graph will be equally probable, too. In most of the following
calculations, we consider the more general Gpn,m, pq model, where each edge
of the complete bipartite graph Kn,m has probability p to be included, and
probability q � 1� p to be not included in the random graph.

We know, that most of the graphs are connected, and that the probability
of being not connected is exponentially small. But in (20) the less probable an
event is the bigger is its weight, and the weight is exponential, so we need precise
counting.

First of all, we need an estimate with error terms for the probability of a
random graph being connected. Let us denote this probability by p1n,m. Note,
that p1n,m � pn,m,1, since in the latter case isolated vertices are allowed. E. N.
Gilbert ([6]) has determined asymptotically the number of disconnected graphs
on n vertices. We adapt the ideas for bipartite graphs, but we need more precise
estimates. Throughout the counting we suppose that m,n is large enough if the
bounds do not hold for some small values.

For the lower bound on 1 � p1n,m we can say, that those graphs that have
an isolated vertex are surely disconnected. So let Ei be the event that the ith
vertex is isolated. Then by Bonferroni’s inequality ([5])

1� p1n,m ¥
n�m̧

i�1

PpEiq �
¸
i j

PpEiEjq �

nqm �mqn �
�
n

2



q2m �

�
m

2



q2n � nmqm�n�1. (26)



For the upper bound on 1� p1n,m we use the following recursion:

1� p1n,m �
¸

pi,jqPΓ

�
n

i


�
m� 1

j � 1



p1i,jq

ipm�jq�jpn�iq, (27)

where Γ � r0, ns � r0,ms � tpn,mqu � tpi, 0q | i P rnsu � tp0, jq | 2 ¤ j ¤ mu.
Let us separate the main terms of the right hand side of (27),

p10,1q
n � p11,1nq

n�m�2 � p1n,m�1pm� 1qqn � p1n�1,mnq
m�

p1n�2,m

npn� 1q
2

q2m � p1n�1,m�1npm� 1qqn�m�2�

p1n,m�2

pm� 1qpm� 2q
2

q2n � errn,m . (28)

So errn,m is defined by (28) equals to the right hand side of (27). Note, that
p10,1 � 1 and p11,1 � p.

An upper bound on errn,m is the following:

errn,m ¤
¸

pi,jqPΓ1

�
n

i


�
m� 1

j � 1



qipm�jq�jpn�iq, (29)

where Γ1 � tpi, jq P r1, ns � r1,ms | 3 ¤ i� j ¤ m� n� 3u.
For an upper estimate on errn,m we need a lower bound on the exponent of

q. Let

f1pxq � pn� 2qx�m, f2pxq � n

2

�
x� m� n

2



,

f3pxq � n

2

�
�x�m� m� n

2



, f4pxq � np�x�m� nq. (30)

We suppose for the rest of the proof, that n ¤ m holds. The proofs of the
following elementary inequalities are left to the reader.

ipm� jq � jpn� iq ¥

$'''&'''%
f1pi� jq 3 ¤ i� j ¤ m�n

2 , i � 0

f2pi� jq m�n
2 ¤ i� j ¤ m�n

2

f3pi� jq m�n
2 ¤ i� j ¤ m� n� m�n

2

f4pi� jq m� n� m�n
2 ¤ i� j ¤ m� n� 3

. (31)

So an upper bound on errn,m is the following:

4̧

t�1

¸
pi,jqPΓ1

�
n

i


�
m� 1

j � 1



qftpi�jq �

4̧

t�1

�� ¸
pi,jqPΓ2

�
n

i


�
m� 1

j � 1



qftpi�jq �

ņ

j�1

�
m� 1

j � 1



qftpjq

�, (32)



where Γ2 � rns� r1,ms� tp1, 1qu� tpi, jq |m� i� j ¤ 2u. So for each 1 ¤ t ¤ 4:

¸
pi,jqPΓ2

�
n

i


�
m� 1

j � 1



qftpi�jq �

¸
pi,jqPrns�r1,ms

�
n

i


�
m� 1

j � 1



qftpi�jq�

nqftp2q�qftpn�mq�pn�m�1qqftpn�m�1q�pn�m� 1qpn�m� 2q
2

qftpn�m�2q.

(33)

Let ftpxq � atpxq � ct (1 ¤ t ¤ 4), then

¸
pi,jqPrns�r1,ms

�
n

i


�
m� 1

j � 1



qftpi�jq �

m̧

j�1

�
m� 1

j � 1



qftpjq �

qftp1q

�
m�n�1¸
h�0

�
m� n� 1

h



qath �

m�1̧

j1�0

qatj
1

�
. (34)

Then errn,m ¤ errn,m,1� errn,m,2� errn,m,3� errn,m,4, where

errn,m,1 � qm�n�2
�p1� qn�2qn�m�1 � p1� qn�2qm�1

�� nqm�2pn�2q�

qpn�2qpm�n�2q�m

� pm� n� 1qpm� n� 2q
2

� pm� n� 1qqn�2 � q2pn�2q



,

(35)

errn,m,2 � q
n
2 p1�

m�n
2 q
�p1� q

n
2 qn�m�1 � p1� q

n
2 qm�1

�� nq
n
2 p2�

m�n
2 q�

q
n
2 pm�n�2�m�n

2 q

� pm� n� 1qpm� n� 2q
2

� pm� n� 1qq n2 � qn


, (36)

errn,m,3�q n2 pm�1�m�n
2 q
�p1�q�n

2 qn�m�1�p1�q�n
2 qm�1

�� nq
n
2 pm�2�m�n

2 q�

q
n
2 p2�

m�n
2 q

� pm� n� 1qpm� n� 2q
2

� pm� n� 1qq�n
2 � q�n



, (37)

errn,m,4 � qnpm�n�1q
�p1� q�nqn�m�1 � p1� q�nqm�1

�� nqnpm�n�2q�

1� pm� n� 1qqn � pm� n� 1qpm� n� 2q
2

q2n. (38)

This gives an upper bound of

errn,m ¤ pn�mq4
�
q3n � q

n
2 p3�

m�n
2 q � qm�2pn�2q

	
(39)

for q   p1{pm� nqq2{n (which holds for large m,n). This gives

errn,m ¤
�
n�m

q


4

q3n (40)



for m � n ¥ 6. Note, that by more careful, but similar counting one can show,
that (40) is valid in the remaining cases, too. We skip this counting, here. Note,
that this is a good bound only if we assume m   1.999n to ensure that a term
of qn�m has smaller exponent than q3n. Having too unbalanced partition sizes
would complicate counting, since there is an existing situation in this case, when
having 3 (or more) isolated vertices in the larger partition is more probable than
having a component with a single edge.

So we proved the following lemma.

Lemma 8. Let n ¤ m. Then the following holds.

nqm �mqn �
�
n

2



q2m �

�
m

2



q2n � nmqm�n�1 ¤ 1� p1n,m ¤ nqm �mqn�

npqn�m�2 � npn� 1q
2

q2m � npm� 1qqn�m�2 � pm� 1qpm� 2q
2

q2n��
n�m

q


4

q3n. (41)

Now let us turn our attention to pn,m,1. We can have an upper bound on
pn,m,1 similarly to p1n,m. A component with a single edge guarantees that we
don’t have an edge-connected bipartite graph. We use Bonferroni’s inequality
([5]) again.

pn,m,1 ¤ 1� nmpqm�n�2 � npn� 1qmpm� 1qp2q2n�2m�6 (42)

For the upper bound observe, that an edge-connected bipartite graph is such
a graph that have i isolated vertices in partition D1 and j isolated vertices in
partition D2 and the rest of the graph is connected. So

pn,m,1 �
¸
i,j

�
n

i


�
m

j



qim�jn�ijp1n�i,m�j . (43)

A lower bound is just a few terms of the left hand side of (43), so we have
by (28) and (40)

pn,m,1 ¥ 1� p1� pm� 1qp1n,m�1qqn � npqn�m�2 � p1m,n�1nq
m�

p1n�2,m

npn� 1q
2

q2m � p1n�1,m�1npm� 1qqn�m�2 � p1n,m�2

pm� 1qpm� 2q
2

q2n�

errn,m�mqnp1n,m�1 � nqmp1n�1,m �
�
m

2



q2np1n,m�2 � nmqm�n�1p1n�1,m�1��

n

2



q2mpn�2,m ¥ 1� nmpqn�m�2 � qnpp1n,m�1 � 1� pm� 1qqnp1n,m�2�

np1n�1,m�1q
m�2q ¥ 1� nmpqn�m�2 � 2

�
n�m

q


4

q3n. (44)

We obtain the following by (42) and (44).



Lemma 9. Let n ¤ m Then

nmpqm�n�2 � npn� 1qmpm� 1qp2q2n�2m�6 ¤ 1� pn,m,1 ¤

nmpqn�m�2 � 2

�
n�m

q


4

q3n. (45)

So we have

pn,m,2 ¤ nmpqn�m�2 � 2

�
n�m

q


4

q3n. (46)

For larger s the situation becomes more complicated. We can have the fol-
lowing lower bound for pn,m,¥s�1 by Bonferroni’s inequality ([5])

pn,m,¥s�1 ¥ βn,m,s �
mint2s,n,mu¸

i�s�1

βn,m,i, (47)

A lower bound on pn,m,s can be obtained by the equality pn,m,s � pn,m,¥s�
pn,m,¥s�1.

All bipartite graphs with exactly/at least s component of size at least 2 have
a cut to an edge-connected graph with at least an edge and a bipartite graph
with exactly/at least s� 1 component of size at least 2, so we have

pn,m,s ¤
¸

pi,jqPr1,n�s�1s�r1,m�s�1s

�
n

i


�
m

j



qipm�jq�jpn�iqpi,j,1pn�i,m�j,s�1.

(48)
We use induction to upper estimate pn,m,s. For s ¥ 3 the main term is when

i � j � 1 (p1,1,1 � p), so if Γ3 � r1, n� s� 1s � r1,m� s� 1s � tp1, 1qu, then

pn,m,s � nmpqn�m�2pn�1,m�1,s�1 � errn,m,s, (49)

where

errn,m,s ¤
¸

pi,jqPΓ3

�
n

i


�
m

j



qipm�jq�jpn�iqpn�i,m�j,s�1. (50)

Note, that for βn,m,s we have

βn,m,s � nmpqn�m�2βn�1,m�1,s�1, (51)

so (49) and (51) are similar recursions, but unfortunately we could not find good
bounds on the error term errn,m,s, especially for large s, to get an asymptotic
upper bound on pn,m,s.

6 Related work

The problem of space-efficient encoding of relational databases is related to some
other recent research efforts.



The information content of a relational database schema was considered in
a the papers of A. Benczúr [3], [4] but his model was entirely different, based
on Kolgomorov complexity. Grumbach and Vianu [8] used standard encodings
of complex object database instances on Turing tapes for efficient query answer-
ing and schema recovery. The size of their standard code of a database domain
divided by the cardinality of the database domain has an upper bound of a
polylogarithmic function of the cardinality of the database domain. Grumbach
and Mecca [7] considered the problem of rediscovering the schema of nested rela-
tions that have been encoded as strings for storage purposes. Arenas and Libkin
[2] has introduced a new information theoretical concept of relative information
content of a position in the database and used it to justify Boyce-Codd normal
forms. Kolahi and Libkin has successfully applied the concept for an information
theoretic study on 3NF [9], XML design [10], and worst-case redundancy anal-
ysis [11]. Köhler[12] proposed and analyzed a new normal form for relational
databases based on the idea of minimizing overall storage space and update
costs.

7 Open problems and future work

We initialized a study on the information content (smallest storage space) of
databases of a given dependency schema. Partial results were proved for some
simple sets of functional or multivalued dependencies.

Problem 1. Determine InfpR,Σq for other small sets of dependencies (fd’s,
mvd’s, etc.) and analyze the coding problem for elementary modifications of
the instance.

In section 2, we considered the case where the dependency schema consists of
a single key. This gave rise to the concept of 2-distance preserving and strongly
2-distance preserving codes which were discussed in section 2 and 4. We proved
a considerably weaker bound (Theorem 1) than (8), but it is at least exponential
in b. We believe that the trivial bound is the best possible.

Conjecture 1. Let 2 ¤ a, b. If c is a 2-distance-preserving code of pR, tK Ñ Ωuq
then |c| ¥ 2ap1� 2bq.

(Strongly) d-distance preserving codes can be defined analogously by chang-
ing Hamming distance 2 to d in the definitions.

Problem 2. Give good bounds on the length of (strongly) d-distance preserving
codes.

We also discussed the problem of determining InfpR,Σq for multivalued
dependencies. We considered the example Ω � t1, 2, 3u and Σ � tt1u ÑÑ
t2u, t2u ÑÑ t1uu in section 3 and 5. This led to the problem of counting cn,m,s,
the number of bipartite graphs with partition sizes n, m and exactly s connected
components that contain at least one edge.

The asymptotic bounds for small s’s in section 5 support that the following
may be true for all s.



Conjecture 2.

cn,m,s �
#

1� βn,m,s if s � 1

βn,m,s if s ¡ 1
, (52)

where

βn,m,s � n!

pn� sq!
m!

pm� sq!p
s�1qps�1qpm�nq�sps�1q (53)

and p � q � 1{2.

If Conjecture 2 holds, then we have by substituting (52) into (20)

|IpR,Σq| � 1� 2nmph1 � h2q, (54)

where

h1 � p1� nm

2n�m�1
q2k (55)

and

h2 �
mintn,mu¸
s�2

n!

pn� sq!
m!

pm� sq!
1

2s�1

1

2ps�1qpm�nq�sps�1q
p2k � 1qs. (56)

So we have

log2pβn,m,sp2k � 1qsq � spk � n�m� 1� log2pn� sq � log2pm� sq � sq. (57)

As an example, if n ¤ m and k   m � 3 � log2pnmq then h2 can be upper
estimated by 1, so the information content is close to the lower bound of (21). On
the other hand if k ¡ n�m, h2 becomes the significant term and the information
content is far from the lower bound. As an extreme case, if n � m and k " n,
only the last term itself gives |IpR,Σq| ¡ pn!q22npk�nq, which implies a less than
2n2 difference in InfpR,Σq to the upper bound of (21), so it can be close in
magnitude.

We also discussed the problem of updates in section 3. The problem behaves
badly for tuple insertion. An example was discussed where insertion of a single
tuple implies plenty of new tuples and breaks the structure of the instance. So
the answer for the following problem might be negative.

Problem 3. Give a coding for pR,Σq, that has the property that small changes
in the instances imply a small change in the code.
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