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Abstract

We prove, that for n 6= 2 the maximum possible b2n/2nc edges
can be chosen simultaneously from each parallel class of the n-cube in
such a way, that no two edges have a common vertex.

1 Introduction

We consider the following problem for the n dimensional hypercube. Select
as many edges as possible from each parallel class simultaneously in such a
way, that the set of edges form a matching of the hypercube. Here, matching
is a subset of the edges, such that no two edges have a common vertex. More
precisely, among all matchings of the hypercube maximize the minimum
number of edges of the n parallel classes of the edges. Obviously, no more
than b2n/2nc is possible, since each n edges of a matching, one from each
parallel class, need 2n of the 2n vertices of the hypercube. A matching is
called a maximum balanced matching if it contains b2n/2nc edges from each
parallel class. Our main result is the following.
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Theorem 1.1. There exists a maximum balanced matching of the n-cube for
n 6= 2.

The problem emerged as a possible solution for a question of the authors
([2]) in combinatorial search theory.

There is a similar, well examined problem. List all words of length n
over the binary alphabet Σ = {0, 1} in such a way, that for each word the
succeeding word differs only by a single bit, that is for each consecutive pair
of words their Hamming distance is 1. (The Hamming distance of words
u = t1 · · · tn and v = t′1 · · · t′n over the alphabet Σ is defined by H(u, v) =
|{i ∈ {1, . . . , n} | ti 6= t′i}|.) In other formulation, construct a Hamiltonian
path (or cycle) in the n dimensional hypercube.

One such Hamiltonian cycle for the n-cube is generated recursively from
the Hamiltonian cycle for the (n−1)-cube. Take the same Hamiltonian path
(eliminate an edge from the Hamiltonian cycle for n − 1) in two parallel
hyperplanes and add two edges, that connect their first and last vertices.
This results in a Hamiltonian cycle for the n-cube. For the list of words this
construction corresponds to the following recursive recipe: take two copies of
the list for the words of length n− 1, add a 0 prefix to each word in the first
copy, reflect the order of the words in the second copy of the list and add a
1 prefix to each word, concatenate the two modified lists to get the list for
word length n.

This list of words is called the binary-reflected Gray code. The name
“Gray” refers to F. Gray, who patented this list of words as a solution to a
communication problem involving digitization of analogue data ([3]).

More generally, any Hamiltonian path (cycle) in the n-cube is called a
(cyclic) Gray code. There are many papers on Grey codes satisfying certain
properties, for a survey see [1].

A long standing open problem on Gray codes was to construct a (cyclic)
balanced one, i.e., one that contains a balanced number of edges from each
of the n parallel classes of edges. Since the number of edges in each parallel
class must be even for a cyclic Gray code, the smallest possible positive
difference is two. So for word lengths of non-2-powers, a balanced Grey code
must have either the smallest even integer larger, or the largest even integer
smaller than 2n/n edges in each parallel class. Finally, G. S. Bhat and C. D.
Savage ([4]) constructed a balanced Gray code for all n using a proposed
construction of J. Robinson and M. Cohn ([5]).

Note, that despite the similarity neither a balanced Grey code, nor a
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maximum balanced matching imply the existence of the other.
In section 2 we introduce some notations and prove our main lemma in

proving Theorem 1.1. We complete its proof in section 3. In section 4 we
introduce a generalization of the problem and prove some initial results in
section 5. However, the problem remains open in general.

2 Balanced cycle cover of the hypercube

First, let us introduce some notations. Let [n] = {1, . . . , n} and
(
[n]
r

)
= {S ⊆

[n] | |S| = r}. Furthermore let JxKr = rbx/rc. If r = 2 we write shortly JxK
instead of JxK2. If Σ is an alphabet let Σn denote the set of words of length
n over Σ.

LetBn be the n dimensional hypercube, Bn=〈V (Bn), E(Bn)〉, where V (Bn) =
{0, 1}n is the set of binary words of length n and E(Bn) = {{u, v} |H(u, v) =
1}.
E = E(Bn) has a natural decomposition E = ∪ni=1Ei according to the

directions, formally

{b1 · · · bn, b′1 · · · b′n} ∈ Ei if and only if bj = b′j, j 6= i and bi 6= b′i.

For E ′ ⊆ E and i ∈ [n] let

λi = λi(E ′) = |E ′ ∩ Ei|

furthermore let
χ(E ′) = (λ1, . . . , λn)

be the profile vector of E ′.
For a subgraph G = 〈V, E〉 of Bn and b ∈ {0, 1} let

Gb = 〈{vb | v ∈ V }, {{v1b, v2b} | {v1, v2} ∈ E}〉.

If G = {G1, . . . , Gk}, then let Gb = {Gb
1, . . . , G

b
k} and E(G) =

⋃k
i=1 E(Gi).

For v = b1 · · · bn ∈ V (Bn) let

σi(v) = b1 · · · bi−1b̄ibi+1 · · · bn (b̄ = 1− b).

If E ∈ E(Bn) let

σi(E) =

{
{σi(u), σi(v)} if {u, v} 6∈ Ei
{u, v} if {u, v} ∈ Ei

.
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Let us introduce the notations σi(V
′) = {σi(v) | v ∈ V ′} for V ′ ⊆ V (Bn) and

σi(E ′) = {σi(E) |E ∈ E ′} for E ′ ⊆ E(Bn). Given a subgraph G = 〈V, E〉 of
Bn let σi(G) = 〈σi(V ), σi(E)〉. So σi gives nothing else, but the mirror image
w.r.t. direction i.

We know ([4]) that, there exists a balanced Grey code. On one hand, the
following lemma states less, the existence of a balanced cover of cycles instead
of a single balanced Hamiltonian cycle. On the other hand, the lemma gives
us a small, specific cycle, containing edges in all direction, that will be used
for correcting a later specified almost balanced matching.

Lemma 2.1. For n ≥ 3 there exist a set of cycles Cn = {C0, C1, . . . , Ct} of
Bn for some t = t(n) having the following properties.

(i)
⋃t
i=0 V (Ci) = V (Bn),

(ii) V (Ci) ∩ V (Cj) = ∅ (i 6= j; 0 ≤ i, j ≤ t),

(iii) C0 = (v1, E1, . . . , v2n, E2n), Ei = {vi, vi(mod 2n)+1} (i ∈ [2n]),
Ei, E2n−i ∈ Ei, (i ∈ [n− 1]), En, E2n ∈ En,

(iv) let λi = λi(E(Cn)), then |λi − λj| ≤ 2 (1 ≤ i, j ≤ n).

A set of cycles satisfying (i)− (iv) is called a balanced cycle cover (bcc).
Note, that since Bn is a bipartite graph, it has only even cycles so the

value of λj is even as well (1 ≤ j ≤ n). Furthermore, λj(E(Ci)) is even, too,
for 0 ≤ i ≤ t, 1 ≤ j ≤ n.

Circuits of the form (v1, E, v2, E), v1, v2 ∈ V (Bn), E = {v1, v2}, E ∈
E(Bn) are considered to be cycles, as well.

Proof of Lemma 2.1. The proof is by induction. It is easy to construct a bcc
for n = 3 or n = 4. Suppose that we have a bcc for Bn and let us construct
one for Bn+1.

The edges of En+1 connect two disjoint copies of Bn in Bn+1 since En+1 =
{{u0, u1} |u ∈ {0, 1}n}. By the induction hypothesis there exist a bcc Cn =
{C0, . . . , Ct} in Bn, so that it has a profile

χ(E(Cn)) = (λ1, . . . , λn),

where λ1 = · · · = λs, λs+1 = · · ·λn, λs+1 = λs + 2, for some s ∈ [n] and all
λi’s are even.
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Then let C be the following cover of V (Bn+1) by vertex disjoint cycles
C = C0n ∪ C1n = {C0

0 , . . . , C
0
t , C

1
0 . . . , C

1
t }. So Cb

0 = {v1b, Eb
1, . . . , v2nb, E

b
2n},

where Eb
i = {vib, vi(mod 2n)+1b} (b ∈ {0, 1}). By the induction hypothesis

Eb
i , E

b
2n−i ∈ Ei, Eb

n, E
b
2n ∈ En (i ∈ [n− 1], b ∈ {0, 1}).

Observe, that C has the property

C ∈ C ⇔ σn+1(C) ∈ C, (1)

so
E ∈ E(C)⇔ σn+1(E) ∈ E(C) (2)

holds as well.
C has properties (i)-(ii), but does not satisfy properties (iii)-(iv). We have

χ(E(C)) = (2λ1, . . . , 2λn, 0).

Replace C0
0 and C1

0 by two other cycles. Let the set of their edges be{
E0

1 , . . . , E
0
n, {vn+10, vn+11}, E1

n, . . . , E
1
1 , {v10, v11}

}
(3)

and {
E0
n+2, . . . , E

0
2n−1, {v2n0, v2n1}, E1

2n−1, . . . , E
1
n+2, {vn+20, vn+21}

}
.

By renaming the cycles we get a set of vertex disjoint cycles {C0, . . . , C2t+1}
covering V (Bn+1), where E(C0) equals (3). We use the same notation C for
the new cycle system. Note, that C satisfies (i)-(iii) and (1). Furthermore,

χ(E(C)) = (2λ1, . . . , 2λn−2, 2λn−1 − 2, 2λn − 2, 4).

The first n components of the profile vector differ by maximum 2 and are
at least 4 for n ≥ 4. Take an edge E ∈ E(C \ {C0}) of Ei (i ∈ [n]), where
λi(E(C)) is at least as large as any other component. W.l.o.g. suppose, that
E = {u0, v0} (u, v ∈ {0, 1}n). Then E ′ = σn+1(E) = {u1, v1} ∈ E(C) holds
as well by (2). Replace E and E ′ by E ′′ = {u0, u1} and E ′′′ = {v0, v1}
(see Figure 1). This transformation decreases λi(E(C)) by 2 and increases
λn+1(E(C)) by 2, while properties (i)-(iii) still hold.

Observe, that if E and E ′ belong to different cycles

C1 = (w0, E0, . . . , wk, Ek) and C2 = σn+1(C1) = (w′0, E
′
0, . . . , w

′
k, E

′
k)
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Figure 1: The following basic transformation is used many times. Suppose,
that {x, y}, {z, w} ∈ E and both have color (direction) i, suppose further-
more, that {x, z}, {y, w} 6∈ E and both have color (direction) j, then flipping
the pairs of edges decreases λi by 2 and increases λj by 2.

where k ≥ 1, w0 = u0, w1 = v0, E0 = E,E ′0 = E ′, w′i = σn+1(wi) (0 ≤ i ≤ k),
then C1 and C2 is replaced by a single, larger cycle

C = (w1, E1, . . . , wk, Ek, w0, E
′′, w′0, E

′
k, w

′
k, . . . , E

′
1, w

′
1, E

′′′).

On the other hand if E and E ′ are edges of the same cycle

C = (w0, E0, . . . , wk, Ek)

satisfying σn+1(C) = C, where k ≥ 3, E0 = E,Et = E ′ (for some 2 ≤ t ≤
k − 1), w0 = u0, w1 = v0, wt = v1, wt+1 = u1, than C is replaced by two
smaller cycles

C1 = (w1, E1, . . . , wt−1, Et−1, wt, E
′′′) and C2 = (wt+1, Et+1, . . . , wk, Ek, w0, E

′′).

Easy to check, that in both cases also (1) holds for the modified family
of cycles. We use the same notation C for for the new cycle system.

Repeat the previous step until the cycle cover becomes balanced. We can
do this, since the preconditions of the transformation (properties (i)-(iii) and
(1)) still hold after each execution.

We also need, that there is at least one pair of edges not belonging to C0

to flip. But this is true, since

|E(C0)|+ λn+1(E(C)) ≤ 2n+ 2 +
2n+1

n+ 1
< 2n+1 = |E(C)| (n ≥ 4).

For that actual C let Cn+1 = C. Properties (i)-(iv) hold for Cn+1.
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3 Maximum balanced matching in the hyper-

cube

3.1 Case of n ≤ 7

For n = 1 and n = 2 the statement is obvious. For n = 3 a possible solution
is to take the even edges of the following Grey code (Hamiltonian path)
G(3) = v0, v1, . . . , v7.

v0=000 v2=011 v4=101 v6=110
v1=010 v3=001 v5=100 v7=111

v0 v1 v2 v3 v4 v5 v6 v7
2 3 2 1 3 2 1

For n = 4 consider the following cyclic Grey code (Hamiltonian cycle)
G(4) = v0, v1, . . . , v15.

v0=0000 v4=0110 v8=1111 v12=1001
v1=1000 v5=0100 v9=0111 v13=1011
v2=1010 v6=1100 v10=0101 v14=0011
v3=1110 v7=1101 v11=0001 v15=0010

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15
1 3 2 1 3 1 4 3 1 3 2 1 3 1 4 3

G(4) have some interesting properties, we shall need the following later:

{v2s, v2s+1} ∈ Es(mod 4)+1 (s = 0, . . . , 7). (4)

So the odd edges give a maximum balanced matching, M4 for n = 4.
For n = 5, 6, 7 we consider Bn as B2 × B3, B3 × B3 and B3 × B4, re-

spectively. We use only the edges of the above Grey codes G(3) and G(4)
in the corresponding subcubes to construct maximum balanced matchings
M5,M6,M7. One possible solution for each n ∈ {5, 6, 7} can be seen on
Figure 2.

3.2 Case of n ≥ 4, n is a power of 2

For n ≥ 4, n is a power of 2, we can construct a complete matching with equal
number of edges in each parallel class. We construct recursively a cyclic Grey
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n = 6

2 3 2 1 3 2 3
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6

4

5

6
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n = 7

Figure 2: Maximum balanced matchings for n = 5, 6, 7. The parallel classes
Ei(1 ≤ i ≤ 7) are denoted shortly by 1, 2, 3, 4, 5, 6, 7.

code G(2t) of B2t , (t ≥ 2), such that its odd edges form the desired complete
matching. Furthermore, the Grey code will have the following property:

the ith and the (i+ 22t−1)th element belong

to the same parallel class (1 ≤ i ≤ 22t−1). (5)

For n = 4 we have already constructed a cyclic Grey code. By (4) it has
property (5). Suppose, that we have already constructed a Grey code G(2t) =
v1, . . . , v22t satisfying (5). We construct a Grey code satisfying (5) for B2t+1 =
B2t × B2t . By the induction hypothesis, the following Hamiltonian cycle is
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Figure 3: Construction of a cyclic Grey code for the power of 2 (n = 8).
Taking every second edge from the marked one yields a maximum balanced
matching.

appropriate (for n = 8, see Figure 3).

G(2t+1) = (v1, v1), (v1, v2), . . . , (v1, v22t−1), (v2, v22t−1), . . . , (v2, v1), (v3, v1),

. . . , (v3, v22t−1), (v4, v22t−1), . . . , . . . , (v22t−1 , v1), (v22t−1+1, v1), (v22t−1+2, v1),

. . . , (v22t , v1), (v22t , v2), . . . , (v22t−1+1, v2), (v22t−1+1, v3), . . . ,

. . . , (v22t−1+1, v22t−1), (v22t−1+1, v22t−1+1), (v22t−1+1, v22t−1+2), . . . ,

(v22t−1+1, v22t ), (v22t−1+2, v22t ), . . . , (v22t−1+2, v22t−1+1), (v22t−1+3, v22t−1+1),

. . . , . . . , (v22t , v22t−1+1), (v1, v22t−1+1), . . . , (v22t−1 , v22t−1+1), (v22t−1 , v22t−1+2),

. . . , (v1, v22t−1+2), (v1, v22t−1+3), . . . , . . . , (v1, v22t ).
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3.3 Case of n ≥ 9, n is not a power of 2

For n ≥ 9, n is not a power of 2, we construct a maximum balanced matching
using a balanced cycle cover of Lemma 2.1 for Bn−4. Note, that in this case
2n − 2nb2n/2nc ≥ 2 holds, so we can afford not to cover at least 2 vertices.

Bn = Bn−4 × B4, so we can assume that the vertices of Bn are of the
form (ui, vj), 1 ≤ i ≤ 2n−4, 0 ≤ j ≤ 15, where G(4) = v0, . . . , v15. Let
Cn−4 = {C0, C1, . . . , Ct} be a balanced cycle cover of Bn−4, such that

t⋃
i=0

V (Ci) = {u1, . . . , u2n−4}

and

E(C0) = {{u1, u2}, {u2, u3}, . . . , {u2n−9, u2n−8}, {u2n−8, u1}},
{ui, ui+1}, {u2n−8−i, u2n−7−i} ∈ Ei (1 ≤ i ≤ n− 5), (6)

{un−4, un−3}, {u2n−8, u1} ∈ En−4.

By (4) we have

{(ui, v2j), (ui, v2j+1)}, {(ui, v2j+8), (ui, v2j+9)} ∈ En−3+j,
j = 0, 1, 2, 3, 1 ≤ i ≤ 2n−4.

LetM be the following matching. If E = {ui, uj} is an odd edge of Ci(i ≥ 1),
then let

{(ui, v0), (uj, v0)}, . . . , {(ui, v7), (uj, v7)} ∈ M, (7)

otherwise let

{(ui, v8), (uj, v8)}, . . . , {(ui, v15), (uj, v15)} ∈ M. (8)

If E is an odd edge of C0, then let

{(ui, v1), (uj, v1)}, {(ui, v3), (uj, v3)}, . . . , {(ui, v15), (uj, v15)} ∈ M,

otherwise let

{(ui, v0), (uj, v0)}, {(ui, v2), (uj, v2)}, . . . , {(ui, v14), (uj, v14)} ∈ M.

These edges are called C0-edges.
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If Cn−4 has a profile (λ′1, . . . , λ
′
n−4), λ

′
1 = · · · = λ′s, λ

′
s+1 = · · · = λ′n−4, λ

′
s+1 =

λ′s + 2, for some 1 ≤ s < n− 4, then we have

χ(M) = (8λ′1, . . . , 8λ
′
n−4, 0, 0, 0, 0).

Take 2 edges E = {(ui, vj), (ui′ , vj)} and E ′ = {(ui, vj+1), (ui′ , vj+1)}, such
that j is even and {ui, ui′} ∈ E(Cn−4 \{C0}). Remove E and E ′ fromM and
add {(ui, vj), (ui, vj+1)} and {(ui′ , vj), (ui′ , vj+1)}. So if E,E ′ ∈M∩Ek, then
we are decreased λk(M) by 2, while increased one of the last 4 components
of χ(M) by 2 (by (4)).

Repeating the above transformation in an approriate order, we can reach,
that all components of χ(M) differ by either 0 or 2 if there are enough edges
initially in E(Cn−4 \ {C0}) ∩ Ek (1 ≤ k ≤ n− 4).

In the initial matching there are at least 8J2n−4/(n − 4)K − 16 edges in
E(Cn−4 \ {C0}) in each parallel class, while at most J2n/2nK needed. Substi-
tuting n = 9 the first quantity is larger than the second one. For n ≥ 10 we
have

8

s
2n−4

n− 4

{
− 16 ≥ 8

(
2n−4

n− 4
− 2

)
− 16 ≥ 2n

2n
≥

s
2n

2n

{

The middle inequality is equivalent to the inequality 2n−4 ≥ n(n− 4), which
holds for n ≥ 10.

So we have a matching M, such that

χ(M) = (λ1, . . . , λn),

where λi1 = · · · = λis , λis+1 = · · · = λin , λis+1 = λis + 2 with 2(n − s) =
2n − 2nb2n/2nc and all λij ’s are even.

Note, that we can set {i1, . . . , is} to be any specific s-subset of [n] and
M still contains all C0-edges. λi1 equals either b2n/2nc − 1 or b2n/2nc.
If λi1 = b2n/2nc − 1 then the C0-edges will be used for correction. We
distinguish 5 cases (Figure 4).

Case 1. If s ≥ n/2, then we are either ready, since λi1 = b2n/2nc (if
s > n/2) or n is a power of 2 (if s = n/2), since 2n/2n = b2n/2nc can not
hold otherwise. The case of n is a power of 2 is already discussed.

Case 2. Let s < (n− 4)/2. Assume, that b2n/2nc − 1 = λ1 = λ3 = · · · =

11



Case 2

Case 3

n−3

n−2

n−1

n

Cases 4 and 5

Figure 4: Balanceness correction using the C0-edges. (The original edges are
replaced by the dotted ones.)

λ2s−1. Let us introduce the notation

Dk,s = {{(uk, v0), (uk(mod (2n−8))+1, v0)},
{(uk+1(mod (2n−8))+1, v0), (uk+2(mod (2n−8))+1, v0)},
. . . , {(uk+2s−3(mod (2n−8))+1, v0), (uk+2s−2(mod (2n−8))+1, v0)}}.

By (6), (7) and (8) M\D2n−8,s+1 ∪ D1,s is a maximum balanced matching,
since the λ2i’s are decreased for i = n − 4 and i ∈ [s], while the λ2i−1’s are
increased by 1, for i ∈ [s].

Case 3. If s = (n − 4)/2 and b2n/2nc − 1 = λ1 = λ3 = · · · = λn−5 then
M\D2,(n−4)/2 ∪ D1,(n−4)/2 is a maximum balanced matching.

Case 4. s = b(n − 4)/2c + 1. We can assume, that b2n/2nc − 1 = λ3 =
· · · = λ2b(n−4)/2c−5 = λn−3 = λn−2 = λn−1 = λn, while all other components
of χ(M) equal to b2n/2nc+ 1. Let

D−4 = {{(u2b(n−4)/2c−3, v1), (u2b(n−4)/2c−2, v1)},
{(u2b(n−4)/2c−2, v2), (u2b(n−4)/2c−1, v2)}, {(u2b(n−4)/2c−1, v3), (u2b(n−4)/2c, v3)},

{(u2b(n−4)/2c, v8), (u2b(n−4)/2c+1, v8)}}

and

D+
4 = {{(u2b(n−4)/2c−3, v0), (u2b(n−4)/2c−3, v1)},

{(u2b(n−4)/2c−2, v1), (u2b(n−4)/2c−2, v2)}, {(u2b(n−4)/2c−1, v2), (u2b(n−4)/2c−1, v3)},
{(u2b(n−4)/2c, v3), (u2b(n−4)/2c, v8)}}.
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Note, that in G(4) {v0, v1}, {v1, v2}, {v2, v3}, {v3, v8} belong to 4 differ-
ent classes of edges. M \ (D2,s−3 ∪ D−4 ) ∪ D3,s−4 ∪ D+

4 is a maximum bal-
anced matching, since the λ2i’s for 1 ≤ i ≤ b(n−4)/2c − 2 and the λi’s
for 2b(n−4)/2c − 3 ≤ i ≤ 2b(n−4)/2c are decreased, while the λ2i−1’s for
2 ≤ i ≤ b(n−4)/2c − 2 and the λi’s for n− 3 ≤ i ≤ n are increased by 1.

Case 5. s = b(n − 4)/2c + 2 and n is odd. (Note, that the case of even
n was already considered in Case 1.) We can assume, that b2n/2nc − 1 =
λ1 = λ3 = · · · = λ2b(n−4)/2c−5 = λn−3 = λn−2 = λn−1 = λn, while all other
components of χ(M) equal to b2n/2nc+ 1.
M\(D2n−8,s−3∪D−4 )∪D1,s−4∪D+

4 is a maximum balanced matching, since
λn−4, the λ2i’s for 1 ≤ i ≤ b(n−4)/2c − 2 and the λi’s for 2b(n−4)/2c − 3 ≤
i ≤ 2b(n−4)/2c are decreased, while the λ2i−1’s for 1 ≤ i ≤ b(n−4)/2c − 2
and the λi’s for n − 3 ≤ i ≤ n are increased by 1. (Note, that we have
n− 4 6= 2b(n−4)/2c in this case.)

We could achieve in all the 5 cases, that each of the parallel classes contain
at least b2n/2nc elements.

4 Balanceness of hypergraphs

Let us consider the following generalization of our problem. Let H = 〈V, E〉
be a hypergraph (i.e., E ⊆ 2V ) and κ : E → [n] be a (total) coloring of the
edges. For i ∈ [n] let

Ei = {E ∈ E |κ(E) = i}

be the set of those edges that have color i, we call Ei the ith color class.
If E ′ ⊆ E and i ∈ [n] let

λi = λi(E ′) = |E ′ ∩ Ei|,

furthermore let
χ(E ′) = (λ1, . . . , λn)

be the profile of E ′. The balanceness of an edge set E ′ ⊆ E w.r.t. the coloring
κ is defined by

bal(E ′) = balκ(E ′) = min
i∈[n]

λi(E ′).

M⊆ E is called a matching, if E1, E2 ∈M implies E1 ∩E2 = ∅ (in other
formulation M is a set of independent edges). The matching balanceness of
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the hypergraph H w.r.t. the coloring κ is defined by

bal(H) = balκ(H) = max
M is a matching in H

bal(M).

Let Bn,k,d denote the following kd-uniform hypergraph (k ≥ 2, d ∈ [n]).
The vertices of Bn,k,d are words of length n over the alphabet Σ = {0, . . . , k−
1}. The edges are those kd-sets E, called d-spaces, that have an index set
I ⊆ [n], |I| = d, such that for each u = t1 · · · tn ∈ E and v = t′1 · · · t′n ∈ E the
property tj = t′j holds whenever j 6∈ I. For k = 2 and d = 1, Bn,k,d is nothing
else, but the n-cube, Bn (the edges are those pair of n-bit strings that have
Hamming distance 1).

There is a natural coloring κnat of Bn,k,d with
(
n
d

)
colors, those edges are

colored with the same color that have the same I in the definition of the
edges of Bn,k,d. Each color class contains kn−d edges. As a special case, the
edges of Bn are colored by n colors according to the n parallel classes, each
color class has 2n−1 edges.

Let us introduce the short notation

b(n, k, d) = balκnat(Bn,k,d).

Given an r-uniform hypergraph H = 〈V, E〉 and coloring κ : E → [n] we
call a matching M a maximum balanced matching if

bal(M) = min

{
min
i∈[n]
|Ei|,

⌊
|V |
rn

⌋}
(9)

holds. The balanceness of a matching obviously can not be larger than the
RHS of (9). For the case of Bn, this RHS is equal to b2n/2nc. So, our main
result, Theorem 1.1, can be formulated in the following way.

b(n, 2, 1) = b2n/2nc (n 6= 2).

5 Balanced d-spaces

In this section we prove a general lower bound on b(n.k, d). Note, that this
lower bound is an initial result, determining the exact value remains open in
most of the cases.
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Lemma 5.1. Let S be the multiset, that contain exactly s copies of each
element of

(
[n]
d

)
, where s = d/ gcd(d, n− d + 1). Then for the multiset T of

(n− d+ 1)s/d copies of
(

[n]
d−1

)
, there exists a bijection ϕ : S → T , such that

S ⊃ ϕ(S) holds for all S ∈ S.

Proof. The bipartite graph 〈S, T , E〉, where {S, T} ∈ E ⇔ T ⊂ S is
(n− d+ 1)s-regular, therefore it has a matching.

Corollary 5.1. Given s
(
n
d

)
edges (d-spaces) of Bn,k,d, where s = d/ gcd(d, n−

d + 1) and exactly s of the edges have the same color in κnat for each color
class. Then we can replace each d-space by k (d−1)-spaces of the same color
class of Bn,k,d−1 in such a way, that there will be exactly k(n−d+1)s/d edges
in each of the

(
n
d−1

)
color classes of Bn,k,d−1 w.r.t κnat.

Proof. Let S correspond to the color classes of Bn,k,d, while T to the color
classes of Bn,k,d−1. Replace a d-space of color class S ∈ S by k (d− 1)-spaces
of the color class ϕ(S).

The following theorem gives a recursive method to count a general lower
bound for b(n, k, d).

Theorem 5.1.

b(n+ 1, k, d) ≥ kb(n, k, d)− ks
⌈
db(n, k, d)

(n+ 1)s

⌉
, (10)

where s = d/ gcd(d, n− d+ 1).

Proof. Suppose, that we have a matching Mn having b(n, k, d) d-spaces of
each color. V (Bn+1,k,d) = X0 ∪ · · · ∪ Xk−1, where Xi = {ui |u ∈ V (Bn,k,d)}
(0 ≤ i ≤ k− 1). Let the edge set D consist of k isomorphic copies ofMn on
the vertex sets Xi (0 ≤ i ≤ k − 1). D have a profile vector

χ(D) = (kb(n, k, d), . . . , kb(n, k, d), 0, . . . , 0),

where we have 0 for those d-sets of [n + 1], that contain n + 1 (let these be
the last

(
n
d−1

)
components).

Replace s d-spaces of each color by (d − 1)-spaces over X0 according to
Corollary 5.1. Each type of (d−1)-space will occur k(n−d+1)s/d times. Do
exactly the same forX1, . . . Xk−1. Replace each k corresponding (d−1)-spaces
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in X0, . . . , Xk−1 by a single d-space. So the first
(
n
d

)
components of χ(D) are

decreased by ks, while the last
(
n
d−1

)
one are increased by k(n− d+ 1)s/d.

Repeating this transformation ` times, we have the following profile for
the actual edge set D.

χ(D)=
(
kb(n,k,d)−`ks, . . . , kb(n,k,d)−`ks, `k (n−d+1)s

d
, . . . , `k

(n−d+1)s

d

)
.

Let `0 be the least integer satisfying

kb(n, k, d)− `0ks ≤ `0k
(n− d+ 1)s

d
,

i.e., `0 = ddb(n, k, d)/(n+ 1)se. Then all components of χ(D) is at least the
RHS of (10).

We omit the elementary, but space and paper consuming counting of the
following.

Corollary 5.2. Let n0 ≥ kd/(k − 1). Then we have⌊
kn−d(
n
d

) ⌋ ≥ b(n, k, d) ≥ kn−d(
n
d

) (
n0

d

)
kn0−d

(
b(n0, k, d)−d n0+1

n0−d+1

(n0+2−d)k

(n0+2−d)k−n0−2

)
.

We can see, that there is a big room to improve. For d = 1 the same
inductive argument gives somewhat better.

Theorem 5.2. For n ≥ 4⌊
kn−1

n

⌋
≥ b(n, k, 1) ≥

s
kn−1

n

{

k

.

Proof. There is a maximum balanced matching for n = 4. Suppose, that we
have a matchingMn (n ≥ 4) having Jkn−1/nKk 1-spaces in each direction. Let
V (Bn+1,k,1) = X0∪· · ·∪Xk−1, where Xi = {ui |u ∈ V (Bn,k,1)} (0 ≤ i ≤ k−1).

Take isomorphic copies M(i)
n of Mn in each Xi and add the 1-spaces that

consist of the corresponding vertices of V (M(i)
n )−Xi (0 ≤ i ≤ k − 1).

A set of k 1-spaces of direction r, Ei = {t1 · · · tr−1xtr+1 · · · tni | 0 ≤ x ≤
k − 1} (0 ≤ i ≤ k − 1) can be replaced by another k 1-spaces of direction
n+ 1, E ′i = {t1 · · · tr−1itr+1 · · · tnx | 0 ≤ x ≤ k− 1} (0 ≤ i ≤ k− 1). Consider
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again the following transformation: replace kn edges, k from each direction
and of the above type, by kn edges of direction n+ 1.

Repeat the transformation while the number of edges of direction i (i ∈
[n]) is bigger than bkn/(n + 1)c. Note, that the initial number of edges of
direction i (i ∈ [n]) in Bn+1,k,1 is divisible by k. The transformations do not
change this property, so the statement follows.
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