Existence of a maximum balanced matching in the hypercube

Gyula O.H. Katona [∗] Rényi Institute Budapest, Hungary ohkatona@renyi.hu

Krisztián Tichler[†] Eötvös University Budapest, Hungary ktichler@inf.elte.hu

June 27, 2012

Abstract

We prove, that for $n \neq 2$ the maximum possible $\lfloor 2^n/2n \rfloor$ edges can be chosen simultaneously from each parallel class of the n-cube in such a way, that no two edges have a common vertex.

1 Introduction

We consider the following problem for the n dimensional hypercube. Select as many edges as possible from each parallel class simultaneously in such a way, that the set of edges form a matching of the hypercube. Here, matching is a subset of the edges, such that no two edges have a common vertex. More precisely, among all matchings of the hypercube maximize the minimum number of edges of the n parallel classes of the edges. Obviously, no more than $|2^n/2n|$ is possible, since each n edges of a matching, one from each parallel class, need $2n$ of the $2ⁿ$ vertices of the hypercube. A matching is called a maximum balanced matching if it contains $\left|2^{n}/2n\right|$ edges from each parallel class. Our main result is the following.

[∗]The first author was supported by the Hungarian National Foundation for Scientific Research, grant number NK78439.

[†]This article is supported by the European Union and co-financed by the European Social Fund (ELTE TÁMOP-4.2.2/B-10/1-2010-0030).

Theorem 1.1. There exists a maximum balanced matching of the n-cube for $n \neq 2$.

The problem emerged as a possible solution for a question of the authors ([2]) in combinatorial search theory.

There is a similar, well examined problem. List all words of length n over the binary alphabet $\Sigma = \{0, 1\}$ in such a way, that for each word the succeeding word differs only by a single bit, that is for each consecutive pair of words their Hamming distance is 1. (The Hamming distance of words $u = t_1 \cdots t_n$ and $v = t'_1 \cdots t'_n$ over the alphabet Σ is defined by $H(u, v) =$ $|\{i \in \{1, \ldots, n\} | t_i \neq t'_i\}|.$ In other formulation, construct a Hamiltonian path (or cycle) in the n dimensional hypercube.

One such Hamiltonian cycle for the n -cube is generated recursively from the Hamiltonian cycle for the $(n-1)$ -cube. Take the same Hamiltonian path (eliminate an edge from the Hamiltonian cycle for $n-1$) in two parallel hyperplanes and add two edges, that connect their first and last vertices. This results in a Hamiltonian cycle for the n-cube. For the list of words this construction corresponds to the following recursive recipe: take two copies of the list for the words of length $n-1$, add a 0 prefix to each word in the first copy, reflect the order of the words in the second copy of the list and add a 1 prefix to each word, concatenate the two modified lists to get the list for word length n.

This list of words is called the *binary-reflected Gray code*. The name "Gray" refers to F. Gray, who patented this list of words as a solution to a communication problem involving digitization of analogue data ([3]).

More generally, any Hamiltonian path (cycle) in the n -cube is called a (cyclic) Gray code. There are many papers on Grey codes satisfying certain properties, for a survey see [1].

A long standing open problem on Gray codes was to construct a (cyclic) balanced one, i.e., one that contains a balanced number of edges from each of the n parallel classes of edges. Since the number of edges in each parallel class must be even for a cyclic Gray code, the smallest possible positive difference is two. So for word lengths of non-2-powers, a balanced Grey code must have either the smallest even integer larger, or the largest even integer smaller than $2^n/n$ edges in each parallel class. Finally, G. S. Bhat and C. D. Savage $([4])$ constructed a balanced Gray code for all n using a proposed construction of J. Robinson and M. Cohn ([5]).

Note, that despite the similarity neither a balanced Grey code, nor a

maximum balanced matching imply the existence of the other.

In section 2 we introduce some notations and prove our main lemma in proving Theorem 1.1. We complete its proof in section 3. In section 4 we introduce a generalization of the problem and prove some initial results in section 5. However, the problem remains open in general.

2 Balanced cycle cover of the hypercube

First, let us introduce some notations. Let $[n] = \{1, \ldots, n\}$ and $\binom{[n]}{r}$ $_{r}^{n}$] = {S \subseteq $[n] \mid |S| = r$. Furthermore let $[\![x]\!]_r = r[x/r]$. If $r = 2$ we write shortly $[\![x]\!]$ instead of $\llbracket x \rrbracket_2$. If Σ is an alphabet let Σ^n denote the set of words of length n over Σ .

Let B_n be the n dimensional hypercube, $B_n = \langle V(B_n), \mathcal{E}(B_n) \rangle$, where $V(B_n) =$ $\{0,1\}^n$ is the set of binary words of length n and $\mathcal{E}(B_n) = \{\{u,v\} \mid H(u,v) =$ 1}.

 $\mathcal{E} = \mathcal{E}(B_n)$ has a natural decomposition $\mathcal{E} = \bigcup_{i=1}^n \mathcal{E}_i$ according to the directions, formally

$$
\{b_1 \cdots b_n, b'_1 \cdots b'_n\} \in \mathcal{E}_i \text{ if and only if } b_j = b'_j, j \neq i \text{ and } b_i \neq b'_i.
$$

For $\mathcal{E}' \subseteq \mathcal{E}$ and $i \in [n]$ let

$$
\lambda_i = \lambda_i(\mathcal{E}') = |\mathcal{E}' \cap \mathcal{E}_i|
$$

furthermore let

$$
\chi(\mathcal{E}')=(\lambda_1,\ldots,\lambda_n)
$$

be the *profile vector* of \mathcal{E}' .

For a subgraph $G = \langle V, \mathcal{E} \rangle$ of B_n and $b \in \{0, 1\}$ let

$$
G^{b} = \langle \{vb \, | \, v \in V\}, \{\{v_1b, v_2b\} \, | \, \{v_1, v_2\} \in \mathcal{E}\} \rangle.
$$

If $\mathcal{G} = \{G_1, \ldots, G_k\}$, then let $\mathcal{G}^b = \{G_1^b, \ldots, G_k^b\}$ and $\mathcal{E}(\mathcal{G}) = \bigcup_{i=1}^k \mathcal{E}(G_i)$. For $v = b_1 \cdots b_n \in V(B_n)$ let

$$
\sigma_i(v) = b_1 \cdots b_{i-1} \bar{b_i} b_{i+1} \cdots b_n \quad (\bar{b} = 1 - b).
$$

If $E \in \mathcal{E}(B_n)$ let

$$
\sigma_i(E) = \begin{cases} \{\sigma_i(u), \sigma_i(v)\} & \text{if } \{u, v\} \notin \mathcal{E}_i \\ \{u, v\} & \text{if } \{u, v\} \in \mathcal{E}_i \end{cases}.
$$

Let us introduce the notations $\sigma_i(V') = {\sigma_i(v) | v \in V'}$ for $V' \subseteq V(B_n)$ and $\sigma_i(\mathcal{E}') = {\sigma_i(E) | E \in \mathcal{E}'}$ for $\mathcal{E}' \subseteq \mathcal{E}(B_n)$. Given a subgraph $G = \langle V, \mathcal{E} \rangle$ of B_n let $\sigma_i(G) = \langle \sigma_i(V), \sigma_i(\mathcal{E}) \rangle$. So σ_i gives nothing else, but the mirror image w.r.t. direction i.

We know ([4]) that, there exists a balanced Grey code. On one hand, the following lemma states less, the existence of a balanced cover of cycles instead of a single balanced Hamiltonian cycle. On the other hand, the lemma gives us a small, specific cycle, containing edges in all direction, that will be used for correcting a later specified almost balanced matching.

Lemma 2.1. For $n \geq 3$ there exist a set of cycles $\mathcal{C}_n = \{C_0, C_1, \ldots, C_t\}$ of B_n for some $t = t(n)$ having the following properties.

- (i) $\bigcup_{i=0}^{t} V(C_i) = V(B_n),$
- (ii) $V(C_i) \cap V(C_j) = \emptyset$ (i $\neq j; 0 \leq i, j \leq t$),
- (iii) $C_0 = (v_1, E_1, \ldots, v_{2n}, E_{2n}), E_i = \{v_i, v_{i (mod 2n)+1}\}$ $(i \in [2n]),$ $E_i, E_{2n-i} \in \mathcal{E}_i, (i \in [n-1]), E_n, E_{2n} \in \mathcal{E}_n,$
- (iv) let $\lambda_i = \lambda_i(\mathcal{E}(\mathcal{C}_n))$, then $|\lambda_i \lambda_j| \leq 2$ $(1 \leq i, j \leq n)$.

A set of cycles satisfying $(i) - (iv)$ is called a *balanced cycle cover* (bcc).

Note, that since B_n is a bipartite graph, it has only even cycles so the value of λ_j is even as well $(1 \leq j \leq n)$. Furthermore, $\lambda_j(\mathcal{E}(C_i))$ is even, too, for $0 \leq i \leq t, 1 \leq j \leq n$.

Circuits of the form $(v_1, E, v_2, E), v_1, v_2 \in V(B_n), E = \{v_1, v_2\}, E \in$ $\mathcal{E}(B_n)$ are considered to be cycles, as well.

Proof of Lemma 2.1. The proof is by induction. It is easy to construct a bcc for $n = 3$ or $n = 4$. Suppose that we have a bcc for B_n and let us construct one for B_{n+1} .

The edges of \mathcal{E}_{n+1} connect two disjoint copies of B_n in B_{n+1} since \mathcal{E}_{n+1} = $\{\{u0, u1\} \mid u \in \{0, 1\}^n\}$. By the induction hypothesis there exist a bcc $\mathcal{C}_n =$ $\{C_0, \ldots, C_t\}$ in B_n , so that it has a profile

$$
\chi(\mathcal{E}(\mathcal{C}_n))=(\lambda_1,\ldots,\lambda_n),
$$

where $\lambda_1 = \cdots = \lambda_s, \lambda_{s+1} = \cdots \lambda_n, \lambda_{s+1} = \lambda_s + 2$, for some $s \in [n]$ and all λ_i 's are even.

Then let C be the following cover of $V(B_{n+1})$ by vertex disjoint cycles $\mathcal{C} = \mathcal{C}_n^0 \cup \mathcal{C}_n^1 = \{C_0^0, \ldots, C_t^0, C_0^1, \ldots, C_t^1\}.$ So $C_0^b = \{v_1b, E_1^b, \ldots, v_{2n}b, E_{2n}^b\},$ where $E_i^b = \{v_i b, v_{i \text{ (mod } 2n)+1} b\}$ $(b \in \{0,1\})$. By the induction hypothesis $E_i^b, E_{2n-i}^b \in \mathcal{E}_i, E_n^b, E_{2n}^b \in \mathcal{E}_n \ (i \in [n-1], b \in \{0, 1\}).$

Observe, that $\mathcal C$ has the property

$$
C \in \mathcal{C} \Leftrightarrow \sigma_{n+1}(C) \in \mathcal{C},\tag{1}
$$

so

$$
E \in \mathcal{E}(\mathcal{C}) \Leftrightarrow \sigma_{n+1}(E) \in \mathcal{E}(\mathcal{C})
$$
\n⁽²⁾

holds as well.

C has properties (i)-(ii), but does not satisfy properties (iii)-(iv). We have

$$
\chi(\mathcal{E}(\mathcal{C}))=(2\lambda_1,\ldots,2\lambda_n,0).
$$

Replace C_0^0 and C_0^1 by two other cycles. Let the set of their edges be

$$
\left\{E_1^0, \ldots, E_n^0, \{v_{n+1}0, v_{n+1}1\}, E_n^1, \ldots, E_1^1, \{v_10, v_11\}\right\}
$$
 (3)

and

$$
\left\{E_{n+2}^0,\ldots,E_{2n-1}^0,\left\{v_{2n}0,v_{2n}1\right\},E_{2n-1}^1,\ldots,E_{n+2}^1,\left\{v_{n+2}0,v_{n+2}1\right\}\right\}.
$$

By renaming the cycles we get a set of vertex disjoint cycles $\{C_0, \ldots, C_{2t+1}\}\$ covering $V(B_{n+1})$, where $\mathcal{E}(C_0)$ equals (3). We use the same notation C for the new cycle system. Note, that $\mathcal C$ satisfies (i)-(iii) and (1). Furthermore,

$$
\chi(\mathcal{E}(\mathcal{C}))=(2\lambda_1,\ldots,2\lambda_{n-2},2\lambda_{n-1}-2,2\lambda_n-2,4).
$$

The first *n* components of the profile vector differ by maximum 2 and are at least 4 for $n \geq 4$. Take an edge $E \in \mathcal{E}(\mathcal{C} \setminus \{C_0\})$ of \mathcal{E}_i $(i \in [n])$, where $\lambda_i(\mathcal{E}(\mathcal{C}))$ is at least as large as any other component. W.l.o.g. suppose, that $E = \{u0, v0\}$ $(u, v \in \{0, 1\}^n)$. Then $E' = \sigma_{n+1}(E) = \{u1, v1\} \in \mathcal{E}(\mathcal{C})$ holds as well by (2). Replace E and E' by $E'' = \{u0, u1\}$ and $E''' = \{v0, v1\}$ (see Figure 1). This transformation decreases $\lambda_i(\mathcal{E}(\mathcal{C}))$ by 2 and increases $\lambda_{n+1}(\mathcal{E}(\mathcal{C}))$ by 2, while properties (i)-(iii) still hold.

Observe, that if E and E' belong to different cycles

$$
C_1 = (w_0, E_0, \dots, w_k, E_k)
$$
 and $C_2 = \sigma_{n+1}(C_1) = (w'_0, E'_0, \dots, w'_k, E'_k)$

Figure 1: The following basic transformation is used many times. Suppose, that $\{x, y\}, \{z, w\} \in \mathcal{E}$ and both have color (direction) i, suppose furthermore, that $\{x, z\}$, $\{y, w\} \notin \mathcal{E}$ and both have color (direction) j, then flipping the pairs of edges decreases λ_i by 2 and increases λ_j by 2.

where $k \ge 1$, $w_0 = u_0, w_1 = v_0, E_0 = E, E'_0 = E', w'_i = \sigma_{n+1}(w_i)$ $(0 \le i \le k)$, then C_1 and C_2 is replaced by a single, larger cycle

$$
C = (w_1, E_1, \ldots, w_k, E_k, w_0, E'', w'_0, E'_k, w'_k, \ldots, E'_1, w'_1, E''').
$$

On the other hand if E and E' are edges of the same cycle

$$
C=(w_0,E_0,\ldots,w_k,E_k)
$$

satisfying $\sigma_{n+1}(C) = C$, where $k \geq 3$, $E_0 = E, E_t = E'$ (for some $2 \leq t \leq$ $k-1$, $w_0 = u0, w_1 = v0, w_t = v1, w_{t+1} = u1$, than C is replaced by two smaller cycles

$$
C_1 = (w_1, E_1, \ldots, w_{t-1}, E_{t-1}, w_t, E^{\prime\prime\prime})
$$
 and $C_2 = (w_{t+1}, E_{t+1}, \ldots, w_k, E_k, w_0, E^{\prime\prime}).$

Easy to check, that in both cases also (1) holds for the modified family of cycles. We use the same notation $\mathcal C$ for for the new cycle system.

Repeat the previous step until the cycle cover becomes balanced. We can do this, since the preconditions of the transformation (properties (i)-(iii) and (1)) still hold after each execution.

We also need, that there is at least one pair of edges not belonging to C_0 to flip. But this is true, since

$$
|\mathcal{E}(C_0)| + \lambda_{n+1}(\mathcal{E}(C)) \le 2n + 2 + \frac{2^{n+1}}{n+1} < 2^{n+1} = |\mathcal{E}(C)| \quad (n \ge 4).
$$

For that actual C let $\mathcal{C}_{n+1} = \mathcal{C}$. Properties (i)-(iv) hold for \mathcal{C}_{n+1} .

3 Maximum balanced matching in the hypercube

3.1 Case of $n \leq 7$

For $n = 1$ and $n = 2$ the statement is obvious. For $n = 3$ a possible solution is to take the even edges of the following Grey code (Hamiltonian path) $G(3) = v_0, v_1, \ldots, v_7.$

For $n = 4$ consider the following cyclic Grey code (Hamiltonian cycle) $G(4) = v_0, v_1, \ldots, v_{15}.$

 $G(4)$ have some interesting properties, we shall need the following later:

$$
\{v_{2s}, v_{2s+1}\} \in \mathcal{E}_{s \text{ (mod 4)}+1} \qquad (s = 0, \dots, 7). \tag{4}
$$

So the odd edges give a maximum balanced matching, \mathcal{M}_4 for $n = 4$.

For $n = 5, 6, 7$ we consider B_n as $B_2 \times B_3$, $B_3 \times B_3$ and $B_3 \times B_4$, respectively. We use only the edges of the above Grey codes $G(3)$ and $G(4)$ in the corresponding subcubes to construct maximum balanced matchings $\mathcal{M}_5, \mathcal{M}_6, \mathcal{M}_7$. One possible solution for each $n \in \{5,6,7\}$ can be seen on Figure 2.

3.2 Case of $n \geq 4$, n is a power of 2

For $n \geq 4$, n is a power of 2, we can construct a complete matching with equal number of edges in each parallel class. We construct recursively a cyclic Grey

Figure 2: Maximum balanced matchings for $n = 5, 6, 7$. The parallel classes $\mathcal{E}_i(1 \leq i \leq 7)$ are denoted shortly by $1, 2, 3, 4, 5, 6, 7$.

code $G(2^t)$ of $B_{2^t}, (t \geq 2)$, such that its odd edges form the desired complete matching. Furthermore, the Grey code will have the following property:

the *i*th and the
$$
(i + 2^{2^{t}-1})
$$
th element belong
to the same parallel class $(1 \le i \le 2^{2^{t}-1})$. (5)

For $n = 4$ we have already constructed a cyclic Grey code. By (4) it has property (5). Suppose, that we have already constructed a Grey code $G(2^t) =$ $v_1, \ldots, v_{2^{2^t}}$ satisfying (5). We construct a Grey code satisfying (5) for $B_{2^{t+1}} =$ $B_{2^t} \times B_{2^t}$. By the induction hypothesis, the following Hamiltonian cycle is

Figure 3: Construction of a cyclic Grey code for the power of 2 ($n = 8$). Taking every second edge from the marked one yields a maximum balanced matching.

appropriate (for $n = 8$, see Figure 3).

$$
G(2^{t+1}) = (v_1, v_1), (v_1, v_2), \ldots, (v_1, v_{2^{2t-1}}), (v_2, v_{2^{2t-1}}), \ldots, (v_2, v_1), (v_3, v_1),
$$

\n
$$
\ldots, (v_3, v_{2^{2t-1}}), (v_4, v_{2^{2t-1}}), \ldots, \ldots, (v_{2^{2t-1}}, v_1), (v_{2^{2t-1}+1}, v_1), (v_{2^{2t-1}+2}, v_1),
$$

\n
$$
\ldots, (v_{2^{2t}}, v_1), (v_{2^{2t}}, v_2), \ldots, (v_{2^{2t-1}+1}, v_2), (v_{2^{2t-1}+1}, v_3), \ldots,
$$

\n
$$
\ldots, (v_{2^{2t-1}+1}, v_{2^{2t-1}}), (v_{2^{2t-1}+1}, v_{2^{2t-1}+1}), (v_{2^{2t-1}+1}, v_{2^{2t-1}+2}), \ldots,
$$

\n
$$
(v_{2^{2t-1}+1}, v_{2^{2t}}), (v_{2^{2t-1}+2}, v_{2^{2t}}), \ldots, (v_{2^{2t-1}+2}, v_{2^{2t-1}+1}), (v_{2^{2t-1}+3}, v_{2^{2t-1}+1}),
$$

\n
$$
\ldots, \ldots, (v_{2^{2t}}, v_{2^{2t-1}+1}), (v_1, v_{2^{2t-1}+1}), \ldots, (v_{2^{2t-1}}, v_{2^{2t-1}+1}), (v_{2^{2t-1}}, v_{2^{2t-1}+2}),
$$

\n
$$
\ldots, (v_1, v_{2^{2t-1}+2}), (v_1, v_{2^{2t-1}+3}), \ldots, (v_1, v_{2^{2t}}).
$$

3.3 Case of $n \geq 9$, n is not a power of 2

For $n \geq 9$, n is not a power of 2, we construct a maximum balanced matching using a balanced cycle cover of Lemma 2.1 for B_{n-4} . Note, that in this case $2^{n} - 2n\lfloor 2^{n}/2n \rfloor \ge 2$ holds, so we can afford not to cover at least 2 vertices.

 $B_n = B_{n-4} \times B_4$, so we can assume that the vertices of B_n are of the form $(u_i, v_j), 1 \le i \le 2^{n-4}, 0 \le j \le 15$, where $G(4) = v_0, \ldots, v_{15}$. Let $\mathcal{C}_{n-4} = \{C_0, C_1, \ldots, C_t\}$ be a balanced cycle cover of B_{n-4} , such that

$$
\bigcup_{i=0}^{t} V(C_i) = \{u_1, \ldots, u_{2^{n-4}}\}
$$

and

$$
\mathcal{E}(C_0) = \{ \{u_1, u_2\}, \{u_2, u_3\}, \dots, \{u_{2n-9}, u_{2n-8}\}, \{u_{2n-8}, u_1\} \},
$$

$$
\{u_i, u_{i+1}\}, \{u_{2n-8-i}, u_{2n-7-i}\} \in \mathcal{E}_i \quad (1 \le i \le n-5),
$$

$$
\{u_{n-4}, u_{n-3}\}, \{u_{2n-8}, u_1\} \in \mathcal{E}_{n-4}.
$$
 (6)

By (4) we have

$$
\{(u_i, v_{2j}), (u_i, v_{2j+1})\}, \{(u_i, v_{2j+8}), (u_i, v_{2j+9})\} \in \mathcal{E}_{n-3+j},
$$

$$
j = 0, 1, 2, 3, 1 \le i \le 2^{n-4}.
$$

Let M be the following matching. If $E = \{u_i, u_j\}$ is an odd edge of $C_i (i \geq 1)$, then let

$$
\{(u_i, v_0), (u_j, v_0)\}, \ldots, \{(u_i, v_7), (u_j, v_7)\} \in \mathcal{M},
$$
\n(7)

otherwise let

$$
\{(u_i, v_8), (u_j, v_8)\}, \dots, \{(u_i, v_{15}), (u_j, v_{15})\} \in \mathcal{M}.
$$
 (8)

If E is an odd edge of C_0 , then let

$$
\{(u_i, v_1), (u_j, v_1)\}, \{(u_i, v_3), (u_j, v_3)\}, \ldots, \{(u_i, v_{15}), (u_j, v_{15})\} \in \mathcal{M},
$$

otherwise let

$$
\{(u_i,v_0),(u_j,v_0)\},\{(u_i,v_2),(u_j,v_2)\},\ldots,\{(u_i,v_{14}),(u_j,v_{14})\}\in\mathcal{M}.
$$

These edges are called C_0 -edges.

If \mathcal{C}_{n-4} has a profile $(\lambda'_1, \ldots, \lambda'_{n-4}), \lambda'_1 = \cdots = \lambda'_s, \lambda'_{s+1} = \cdots = \lambda'_{n-4}, \lambda'_{s+1} =$ $\lambda'_s + 2$, for some $1 \leq s < n - 4$, then we have

$$
\chi(\mathcal{M}) = (8\lambda'_1, \dots, 8\lambda'_{n-4}, 0, 0, 0, 0).
$$

Take 2 edges $E = \{(u_i, v_j), (u_{i'}, v_j)\}\$ and $E' = \{(u_i, v_{j+1}), (u_{i'}, v_{j+1})\}\$, such that j is even and $\{u_i, u_{i'}\} \in \mathcal{E}(\mathcal{C}_{n-4} \setminus {\mathcal{C}_0}\})$. Remove E and E' from M and add $\{(u_i, v_j), (u_i, v_{j+1})\}$ and $\{(u_{i'}, v_j), (u_{i'}, v_{j+1})\}$. So if $E, E' \in \mathcal{M} \cap \mathcal{E}_k$, then we are decreased $\lambda_k(\mathcal{M})$ by 2, while increased one of the last 4 components of $\chi(\mathcal{M})$ by 2 (by (4)).

Repeating the above transformation in an approriate order, we can reach, that all components of $\chi(\mathcal{M})$ differ by either 0 or 2 if there are enough edges initially in $\mathcal{E}(\mathcal{C}_{n-4} \setminus \{C_0\}) \cap \mathcal{E}_k$ (1 ≤ k ≤ n − 4).

In the initial matching there are at least $8[2^{n-4}/(n-4)] - 16$ edges in
 $\sum_{n=1}^{\infty}$ $\binom{n}{n}$ in each parallel class, while at most $\lceil 2^n/2^n \rceil$ pooded. Substitution $\mathcal{E}(\mathcal{C}_{n-4} \setminus \{\mathcal{C}_0\})$ in each parallel class, while at most $[\![2^n/2n]\!]$ needed. Substituting $n = 0$ the first quantity is larger than the second and For $n \geq 10$ we tuting $n = 9$ the first quantity is larger than the second one. For $n \geq 10$ we have

$$
8\left[\frac{2^{n-4}}{n-4}\right] - 16 \ge 8\left(\frac{2^{n-4}}{n-4} - 2\right) - 16 \ge \frac{2^n}{2n} \ge \left[\frac{2^n}{2n}\right]
$$

The middle inequality is equivalent to the inequality $2^{n-4} \ge n(n-4)$, which holds for $n \geq 10$.

So we have a matching \mathcal{M} , such that

$$
\chi(\mathcal{M})=(\lambda_1,\ldots,\lambda_n),
$$

where $\lambda_{i_1} = \cdots = \lambda_{i_s}, \lambda_{i_{s+1}} = \cdots = \lambda_{i_n}, \lambda_{i_{s+1}} = \lambda_{i_s} + 2$ with $2(n-s) =$ $2^n - 2n\lfloor 2^n/2n \rfloor$ and all λ_{ij} 's are even.

Note, that we can set $\{i_1, \ldots, i_s\}$ to be any specific s-subset of $[n]$ and M still contains all C_0 -edges. λ_{i_1} equals either $\lfloor 2^n/2n \rfloor - 1$ or $\lfloor 2^n/2n \rfloor$. If $\lambda_{i_1} = \lfloor 2^n/2n \rfloor - 1$ then the C_0 -edges will be used for correction. We distinguish 5 cases (Figure 4).

Case 1. If $s \ge n/2$, then we are either ready, since $\lambda_{i_1} = \lfloor 2^n/2n \rfloor$ (if $s > n/2$ or n is a power of 2 (if $s = n/2$), since $2ⁿ/2n = \lfloor 2ⁿ/2n \rfloor$ can not hold otherwise. The case of n is a power of 2 is already discussed.

Case 2. Let $s < (n-4)/2$. Assume, that $\lfloor 2^n/2n \rfloor - 1 = \lambda_1 = \lambda_3 = \cdots =$

Figure 4: Balanceness correction using the C_0 -edges. (The original edges are replaced by the dotted ones.)

 λ_{2s-1} . Let us introduce the notation

$$
\mathcal{D}_{k,s} = \{ \{ (u_k, v_0), (u_{k \text{ (mod } (2n-8))+1}, v_0) \},\
$$

$$
\{ (u_{k+1 \text{ (mod } (2n-8))+1}, v_0), (u_{k+2 \text{ (mod } (2n-8))+1}, v_0) \},\
$$

$$
\dots, \{ (u_{k+2s-3 \text{ (mod } (2n-8))+1}, v_0), (u_{k+2s-2 \text{ (mod } (2n-8))+1}, v_0) \} \}.
$$

By (6), (7) and (8) $\mathcal{M} \setminus \mathcal{D}_{2n-8,s+1} \cup \mathcal{D}_{1,s}$ is a maximum balanced matching, since the λ_{2i} 's are decreased for $i = n - 4$ and $i \in [s]$, while the λ_{2i-1} 's are increased by 1, for $i \in [s]$.

Case 3. If $s = (n-4)/2$ and $\lfloor 2^n/2n \rfloor - 1 = \lambda_1 = \lambda_3 = \cdots = \lambda_{n-5}$ then $\mathcal{M} \setminus \mathcal{D}_{2,(n-4)/2} \cup \mathcal{D}_{1,(n-4)/2}$ is a maximum balanced matching.

Case 4. $s = \lfloor (n-4)/2 \rfloor + 1$. We can assume, that $\lfloor 2^n/2n \rfloor - 1 = \lambda_3 =$ $\cdots = \lambda_{2|(n-4)/2|-5} = \lambda_{n-3} = \lambda_{n-2} = \lambda_{n-1} = \lambda_n$, while all other components of $\chi(\mathcal{M})$ equal to $\left|2^{n}/2n\right|+1$. Let

$$
\mathcal{D}_4^- = \{ \{ (u_{2\lfloor (n-4)/2 \rfloor - 3}, v_1), (u_{2\lfloor (n-4)/2 \rfloor - 2}, v_1) \},\
$$

$$
\{ (u_{2\lfloor (n-4)/2 \rfloor - 2}, v_2), (u_{2\lfloor (n-4)/2 \rfloor - 1}, v_2) \}, \{ (u_{2\lfloor (n-4)/2 \rfloor - 1}, v_3), (u_{2\lfloor (n-4)/2 \rfloor}, v_3) \},\
$$

$$
\{ (u_{2\lfloor (n-4)/2 \rfloor}, v_8), (u_{2\lfloor (n-4)/2 \rfloor + 1}, v_8) \} \}
$$

and

$$
\mathcal{D}_4^+ = \{ \{ (u_{2\lfloor (n-4)/2 \rfloor - 3}, v_0), (u_{2\lfloor (n-4)/2 \rfloor - 3}, v_1) \}, \\ \{ (u_{2\lfloor (n-4)/2 \rfloor - 2}, v_1), (u_{2\lfloor (n-4)/2 \rfloor - 2}, v_2) \}, \{ (u_{2\lfloor (n-4)/2 \rfloor - 1}, v_2), (u_{2\lfloor (n-4)/2 \rfloor}, v_3) \}, \\ \{ (u_{2\lfloor (n-4)/2 \rfloor}, v_3), (u_{2\lfloor (n-4)/2 \rfloor}, v_8) \} \}.
$$

Note, that in $G(4) \{v_0, v_1\}, \{v_1, v_2\}, \{v_2, v_3\}, \{v_3, v_8\}$ belong to 4 different classes of edges. $\mathcal{M} \setminus (\mathcal{D}_{2,s-3} \cup \mathcal{D}_4^-) \cup \mathcal{D}_{3,s-4} \cup \mathcal{D}_4^+$ is a maximum balanced matching, since the λ_{2i} 's for $1 \leq i \leq \lfloor (n-4)/2 \rfloor - 2$ and the λ_i 's for $2\lfloor(n-4)/2\rfloor-3 \leq i \leq 2\lfloor(n-4)/2\rfloor$ are decreased, while the λ_{2i-1} 's for $2 \leq i \leq \lfloor (n-4)/2 \rfloor - 2$ and the λ_i 's for $n-3 \leq i \leq n$ are increased by 1.

Case 5. $s = \lfloor (n-4)/2 \rfloor + 2$ and n is odd. (Note, that the case of even n was already considered in Case 1.) We can assume, that $\lfloor 2^n/2n \rfloor - 1 =$ $\lambda_1 = \lambda_3 = \cdots = \lambda_{2\lfloor (n-4)/2 \rfloor - 5} = \lambda_{n-3} = \lambda_{n-2} = \lambda_{n-1} = \lambda_n$, while all other components of $\chi(\mathcal{M})$ equal to $\lfloor 2^n/2n \rfloor + 1$.

 $\mathcal{M}\backslash(\mathcal{D}_{2n-8,s-3}\cup\mathcal{D}_4^-)\cup\mathcal{D}_{1,s-4}\cup\mathcal{D}_4^+$ is a maximum balanced matching, since λ_{n-4} , the λ_{2i} 's for $1 \leq i \leq \lfloor (n-4)/2 \rfloor - 2$ and the λ_i 's for $2\lfloor (n-4)/2 \rfloor - 3 \leq$ $i \leq 2(n-4)/2$ are decreased, while the λ_{2i-1} 's for $1 \leq i \leq \lfloor (n-4)/2 \rfloor - 2$ and the λ_i 's for $n-3 \leq i \leq n$ are increased by 1. (Note, that we have $n - 4 \neq 2|(n-4)/2|$ in this case.)

We could achieve in all the 5 cases, that each of the parallel classes contain at least $\lfloor 2^n/2n \rfloor$ elements. \Box

4 Balanceness of hypergraphs

Let us consider the following generalization of our problem. Let $\mathcal{H} = \langle V, \mathcal{E} \rangle$ be a hypergraph (i.e., $\mathcal{E} \subseteq 2^V$) and $\kappa : \mathcal{E} \to [n]$ be a (total) coloring of the edges. For $i \in [n]$ let

$$
\mathcal{E}_i = \{ E \in \mathcal{E} \mid \kappa(E) = i \}
$$

be the set of those edges that have color i, we call \mathcal{E}_i the ith color class.

If $\mathcal{E}' \subseteq \mathcal{E}$ and $i \in [n]$ let

$$
\lambda_i = \lambda_i(\mathcal{E}') = |\mathcal{E}' \cap \mathcal{E}_i|,
$$

furthermore let

$$
\chi(\mathcal{E}')=(\lambda_1,\ldots,\lambda_n)
$$

be the profile of \mathcal{E}' . The balanceness of an edge set $\mathcal{E}' \subseteq \mathcal{E}$ w.r.t. the coloring κ is defined by

$$
\mathrm{bal}(\mathcal{E}') = \mathrm{bal}_{\kappa}(\mathcal{E}') = \min_{i \in [n]} \lambda_i(\mathcal{E}').
$$

 $\mathcal{M} \subseteq \mathcal{E}$ is called a *matching*, if $E_1, E_2 \in \mathcal{M}$ implies $E_1 \cap E_2 = \emptyset$ (in other formulation M is a set of independent edges). The *matching balanceness* of the hypergraph $\mathcal H$ w.r.t. the coloring κ is defined by

$$
\mathrm{bal}(\mathcal{H}) = \mathrm{bal}_{\kappa}(\mathcal{H}) = \max_{\mathcal{M} \text{ is a matching in } \mathcal{H}} \mathrm{bal}(\mathcal{M}).
$$

Let $\mathcal{B}_{n,k,d}$ denote the following k^d -uniform hypergraph $(k \geq 2, d \in [n])$. The vertices of $\mathcal{B}_{n,k,d}$ are words of length n over the alphabet $\Sigma = \{0, \ldots, k-\}$ 1. The edges are those k^d -sets E, called d-spaces, that have an index set $I \subseteq [n], |I| = d$, such that for each $u = t_1 \cdots t_n \in E$ and $v = t'_1 \cdots t'_n \in E$ the property $t_j = t'_j$ holds whenever $j \notin I$. For $k = 2$ and $d = 1$, $\mathcal{B}_{n,k,d}$ is nothing else, but the *n*-cube, B_n (the edges are those pair of *n*-bit strings that have Hamming distance 1).

There is a natural coloring κ_{nat} of $\mathcal{B}_{n,k,d}$ with $\binom{n}{d}$ $\binom{n}{d}$ colors, those edges are colored with the same color that have the same I in the definition of the edges of $\mathcal{B}_{n,k,d}$. Each color class contains k^{n-d} edges. As a special case, the edges of B_n are colored by n colors according to the n parallel classes, each color class has 2^{n-1} edges.

Let us introduce the short notation

$$
b(n,k,d) = \mathrm{bal}_{\kappa_{\mathrm{nat}}}(\mathcal{B}_{n,k,d}).
$$

Given an r-uniform hypergraph $\mathcal{H} = \langle V, \mathcal{E} \rangle$ and coloring $\kappa : \mathcal{E} \to [n]$ we call a matching M a maximum balanced matching if

$$
\text{bal}(\mathcal{M}) = \min \left\{ \min_{i \in [n]} |\mathcal{E}_i|, \left\lfloor \frac{|V|}{rn} \right\rfloor \right\} \tag{9}
$$

holds. The balanceness of a matching obviously can not be larger than the RHS of (9). For the case of B_n , this RHS is equal to $\lfloor 2^n/2n \rfloor$. So, our main result, Theorem 1.1, can be formulated in the following way.

$$
b(n,2,1) = \lfloor 2^n/2n \rfloor \ \ (n \neq 2).
$$

5 Balanced d -spaces

In this section we prove a general lower bound on $b(n.k, d)$. Note, that this lower bound is an initial result, determining the exact value remains open in most of the cases.

Lemma 5.1. Let S be the multiset, that contain exactly s copies of each element of $\binom{[n]}{d}$ $\binom{n}{d}$, where $s = d/\gcd(d, n-d+1)$. Then for the multiset $\mathcal T$ of $(n-d+1)s/d$ copies of $\binom{[n]}{d}$ $\mathcal{L}^{[n]}_{d-1}$, there exists a bijection $\varphi : \mathcal{S} \to \mathcal{T}$, such that $S \supset \varphi(S)$ holds for all $S \in \mathcal{S}$.

Proof. The bipartite graph $\langle S, \mathcal{T}, \mathcal{E} \rangle$, where $\{S, T\} \in \mathcal{E} \Leftrightarrow T \subset S$ is $(n - d + 1)s$ -regular, therefore it has a matching. \Box

Corollary 5.1. Given $s\binom{n}{d}$ $\binom{n}{d}$ edges (d-spaces) of $\mathcal{B}_{n,k,d}$, where $s=d/\gcd(d,n-1)$ $d+1$) and exactly s of the edges have the same color in κ_{nat} for each color class. Then we can replace each d-space by k $(d-1)$ -spaces of the same color class of $\mathcal{B}_{n,k,d-1}$ in such a way, that there will be exactly $k(n-d+1)s/d$ edges in each of the $\binom{n}{d}$ $\binom{n}{d-1}$ color classes of $\mathcal{B}_{n,k,d-1}$ w.r.t κ_{nat} .

Proof. Let S correspond to the color classes of $\mathcal{B}_{n,k,d}$, while T to the color classes of $\mathcal{B}_{n,k,d-1}$. Replace a d-space of color class $S \in \mathcal{S}$ by k $(d-1)$ -spaces of the color class $\varphi(S)$. \Box

The following theorem gives a recursive method to count a general lower bound for $b(n, k, d)$.

Theorem 5.1.

$$
b(n+1, k, d) \ge kb(n, k, d) - ks \left\lceil \frac{db(n, k, d)}{(n+1)s} \right\rceil,
$$
\n(10)

where $s = d/\gcd(d, n - d + 1)$.

Proof. Suppose, that we have a matching \mathcal{M}_n having $b(n, k, d)$ d-spaces of each color. $V(\mathcal{B}_{n+1,k,d}) = X_0 \cup \cdots \cup X_{k-1}$, where $X_i = \{ui \mid u \in V(\mathcal{B}_{n,k,d})\}$ $(0 \leq i \leq k-1)$. Let the edge set $\mathcal D$ consist of k isomorphic copies of $\mathcal M_n$ on the vertex sets X_i ($0 \leq i \leq k-1$). \mathcal{D} have a profile vector

$$
\chi(\mathcal{D}) = (kb(n,k,d),\ldots,kb(n,k,d),0,\ldots,0),
$$

where we have 0 for those d-sets of $[n+1]$, that contain $n+1$ (let these be the last $\binom{n}{d}$ $\binom{n}{d-1}$ components).

Replace s d-spaces of each color by $(d-1)$ -spaces over X_0 according to Corollary 5.1. Each type of $(d-1)$ -space will occur $k(n-d+1)s/d$ times. Do exactly the same for $X_1, \ldots X_{k-1}$. Replace each k corresponding $(d-1)$ -spaces in X_0, \ldots, X_{k-1} by a single *d*-space. So the first $\binom{n}{d}$ $\binom{n}{d}$ components of $\chi(\mathcal{D})$ are decreased by ks, while the last $\binom{n}{n}$ $\binom{n}{d-1}$ one are increased by $k(n-d+1)s/d$.

Repeating this transformation ℓ times, we have the following profile for the actual edge set D.

$$
\chi(\mathcal{D}) = \left(kb(n,k,d)-\ell ks,\ldots,kb(n,k,d)-\ell ks,\ell k\frac{(n-d+1)s}{d},\ldots,\ell k\frac{(n-d+1)s}{d}\right).
$$

Let ℓ_0 be the least integer satisfying

$$
kb(n,k,d) - \ell_0 ks \le \ell_0 k \frac{(n-d+1)s}{d},
$$

i.e., $\ell_0 = \lfloor db(n, k, d)/(n + 1)s \rfloor$. Then all components of $\chi(\mathcal{D})$ is at least the RHS of (10). \Box

We omit the elementary, but space and paper consuming counting of the following.

Corollary 5.2. Let $n_0 \geq kd/(k-1)$. Then we have

$$
\left\lfloor \frac{k^{n-d}}{\binom{n}{d}} \right\rfloor \ge b(n,k,d) \ge \frac{k^{n-d}}{\binom{n}{d}} \frac{\binom{n_0}{d}}{k^{n_0-d}} \left(b(n_0,k,d) - d \frac{n_0+1}{n_0-d+1} \frac{(n_0+2-d)k}{(n_0+2-d)k-n_0-2} \right).
$$

We can see, that there is a big room to improve. For $d = 1$ the same inductive argument gives somewhat better.

Theorem 5.2. For $n \geq 4$

$$
\left\lfloor \frac{k^{n-1}}{n} \right\rfloor \ge b(n,k,1) \ge \left\lfloor \frac{k^{n-1}}{n} \right\rfloor_k.
$$

Proof. There is a maximum balanced matching for $n = 4$. Suppose, that we have a matching \mathcal{M}_n $(n \geq 4)$ having $\llbracket k^{n-1}/n \rrbracket_k$ 1-spaces in each direction. Let $V(R_{n-1}) = V + \text{length}(X_{n-1})$ where $Y = \{ui\}_{u \in V(R_{n-1})}$ $(0 \leq i \leq k-1)$ $V(\mathcal{B}_{n+1,k,1}) = X_0 \cup \cdots \cup X_{k-1}$, where $X_i = \{ui \mid u \in V(\mathcal{B}_{n,k,1})\}$ $(0 \le i \le k-1)$. Take isomorphic copies $\mathcal{M}_n^{(i)}$ of \mathcal{M}_n in each X_i and add the 1-spaces that consist of the corresponding vertices of $V(\mathcal{M}_n^{(i)}) - X_i \ (0 \leq i \leq k-1)$.

A set of k 1-spaces of direction r, $E_i = \{t_1 \cdots t_{r-1}xt_{r+1} \cdots t_n i \mid 0 \leq x \leq$ $k-1$ (0 ≤ i ≤ k − 1) can be replaced by another k 1-spaces of direction $n+1, E'_{i} = \{t_1 \cdots t_{r-1} it_{r+1} \cdots t_n x \mid 0 \leq x \leq k-1\}$ $(0 \leq i \leq k-1)$. Consider again the following transformation: replace kn edges, k from each direction and of the above type, by kn edges of direction $n + 1$.

Repeat the transformation while the number of edges of direction i ($i \in$ [n]) is bigger than $\lfloor k^n/(n + 1) \rfloor$. Note, that the initial number of edges of direction i ($i \in [n]$) in $\mathcal{B}_{n+1,k,1}$ is divisible by k. The transformations do not change this property, so the statement follows. \Box

References

- [1] C. D. Savage. A Survey of Combinatorial Gray Codes. SIAM Review 39 (4): 605-629, 1997.
- [2] G. O. H. Katona and K. Tichler. Search when the lie depends on the target, submitted.
- [3] F. Gray. Pulse Code Communication, U.S Patent No. 2632058, March 1953.
- [4] G. S. Bhat and C. D. Savage. Balanced Gray codes. Electronic Journal of Combinatorics 3 (1): R25, 1996.
- [5] J. Robinson and M. Cohn. Counting Sequences. IEEE Transactions on Computers, C-30: 17-23, 1981.