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Abstract

Let F be a family of subsets of an n-element set. Sperner’s theo-
rem says that if there is no inclusion among the members of F then
the largest family under this condition is the one containing all bn2 c-
element subsets. The present paper surveys certain generalizations
of this theorem. The maximum size of F is to be found under the
condition that a certain configuration is excluded. The configuration
here is always described by inclusions. More formally, let P be a a
poset. The maximum size of a family F which does not contain P
as a (not-necessarily induced) subposet is denoted by La(n, P ). The
paper is based on a lecture of the author at the Jubilee Conference on
Discrete Mathematics [Banasthali University, January 11-13, 2009],
but it was somewhat updated in December 2010.

Keywords: Sperner theory, extremal problems for subsets, ex-
cluded posets.

1 Introduction

Let [n] = {1, 2, . . . , n} be a finite set, F ⊂ 2[n] a family of its subsets. In the
present paper max |F| will be investigated under certain conditions on the
family F . The well-known Sperner theorem ([22]) was the first such result.

Theorem 1.1 If F is a family of subsets of [n] without inclusion (F,G ∈ F
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implies F 6⊂ G) then

|F| ≤
(
n

bn
2
c

)
holds, and this estimate is sharp as the family of all bn

2
c-element subsets

shows.

There is a very large number of generalizations and analogues of this
theorem. (See e.g. [9]). Here we will consider only results when the condition
on F excludes certain configurations what can be expressed by inclusion, only.
That is, no intersections, unions, etc. are involved.

The first such generalization of Sperner theorem was obtained by Erdős
[10]. The family of k distinct sets with mutual inclusions, F1 ⊂ F2 ⊂ . . . Fk
is called a chain of length k. It will be simply denoted by Pk. Let La(n, Pk)
denote the largest family F without a chain of length k.

Theorem 1.2 [10] La(n, Pk+1) is equal to the sum of the k largest bimomial
coefficients of order n.

Let Vr denote the r-fork, that is, the following family of distinct sets:
F ⊂ G1, F ⊂ G2, . . . F ⊂ Gr. The quantity La(n, Vr), that is, the largest
family on n elements containing no Vr was first (asymptotically) determined
for r = 2. We use the well-known notation Ω(n) where f(n) = Ω(n) means
that there is a constant c such that cn ≤ f(n) holds for all n.

Theorem 1.3 [17](
n

bn
2
c

)(
1 +

1

n
+ Ω

(
1

n2

))
≤ La(n, V2) ≤

(
n

bn
2
c

)(
1 +

2

n

)
.

The first result for general r is contained in the following theorem.

Theorem 1.4 [23](
n

bn
2
c

)(
1 +

r

n
+ Ω

(
1

n2

))
≤ La(n, Vr+1) ≤

(
n

bn
2
c

)(
1 + 2

r2

n
+ o

(
1

n

))
.

The constant in the second term in the upper estimate was recently im-
proved.
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Theorem 1.5 [4](
n

bn
2
c

)(
1 +

r

n
+ Ω

(
1

n2

))
≤ La(n, Vr+1) ≤

(
n

bn
2
c

)(
1 + 2

r

n
+O

(
1

n2

))
.

There is an unfortunate difference in the second terms of the lower and
upper estimates, respectively. It seems to be very difficult to bridge this
gap, since the construction in the lower estimate uses a certain construction
from coding theory which gives only half of the known upper bound and it
is unsolved since 1980 (see [12]).

The results listed above were proved by ad hoc methods. The theorems
using the method of counting chains will be shown later.

Before formulating our general problem, let us show, for comparison, an
old result what will not be included.

Theorem 1.6 (Kleitman [18]) If the family F contains no three distinct
members A,B,C satisfying A ∩B = C then

|F| ≤
(
n⌊
n
2

⌋)+
2n

n
=

(
n⌊
n
2

⌋)(1 +
c√
n

+ o

(
1√
n

))
.

The condition in this theorem is much weaker than that of Theorem 1.3,
yet its upper bound is almost the same, they differ only in the second term.
It is widely believed that the second term 2

n
of the upper bound in Theorem

1.3 is also valid here. However, the best constructions (for large n) for the
two problems are not the same. Recently M. Živković [24] found a pretty

construction giving
4
3

n
in the second term of the lower estimate for odd n

what does not satisfy the strongest condition of Theorem 1.3.

2 Notations, definitions

A partially ordered set, shortly poset P is a pair P = (X,≤) where X is a (in
our case always finite) set and ≤ is a relation on X which is reflexive (x ≤ x
holds for every x ∈ X), antisymmetric (if both x ≤ y and x ≥ y hold for
x, y ∈ X then x = y) and transitive (x ≤ y and y ≤ z always implies x ≤ z).
We say that y covers x if x < y and there is no z ∈ X such that x < z < y
holds. It is easy to see that if X = 2[n] and the ≤ is defined as ⊆, then these
conditions are satisfied, that is the family of all subsets of an n-element set
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ordered by inclusion form a poset. We will call this poset the Boolean lattice
and denote it by Bn. Covering in this poset means “inclusion with difference
1”.

The definition of a subposet is obvious: R = (Y,≤2) is a subposet of
P = (X,≤1) iff there is an injection α of Y into X is such a way that
y1, y2 ∈ Y, y1 ≤2 y2 implies α(y1) ≤1 α(y2). On the other hand R is an
induced subposet of P when α(y1) ≤1 α(y2) holds iff when y1 ≤2 y2. If
P = (X,≤) is a poset and Y ⊂ X then the poset spanned by Y in P is
defined as (Y,≤∗) where ≤∗ is the same as ≤, for all the pairs taken from Y .
Given a “small” poset R, La(n,R) denotes the maximum number of elements
of Y ⊂ 2[n] (that is, the maximum number of subsets of [n]) such that R is
not a subposet of the poset spanned by Y in Bn.

Redefine our “small” configurations in terms of posets. The chain Pk
contains k elements: a1, . . . , ak where a1 < . . . < ak. The r-fork contains
r + 1 elements: a, b1, . . . , br where a < b1, . . . , a < br. It is easy to see that
the definitions of La(n, Pk), La(n, Vr), in Sections 1 and 2 agree. In the rest
of the paper we will use the two different terminology alternately. In the
definition of La(n,R) we mean non-induced subposets, that is, if R = V2

then P3 is also excluded as a subposet.
A poset is connected if for any pair (z0, zk) of its elements there is a

sequence z1, . . . , zk−1 such that either zi < zi+1 or zi > zi+1 holds for 0 ≤ i <
k. If the poset is not connected, maximal connected subposets are called its
connected components. Given a family F of subsets of [n], it spans a poset in
Bn. We will consider its connected components Q in two different ways. First
as posets themselves, secondly as they are represented in Bn. In the latter
case the sizes of the sets are also indicated. This is called a realization of Q.
A full chain in Bn is a family of sets A0 ⊂ A1 ⊂ . . . ⊂ An where |Ai| = i. We
say that a (full) chain goes through a family (subposet) F if their intersection
is non-empty, that is if it “goes through” at least one member of the family.

3 Lubell’s proof of the Sperner theorem

The method using “counting chains” originates in the proof of Sperner the-
orem, given by Lubell.

The number of full chains in [n] is n! since the choice of a full chain is
equivalent to the choice of a permutation of the elements of [n]. On the other
hand, the number of full chains going through a given set F of f elements
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is f !(n − f)! since the chain “must grow” within F until it “hits” F and
outside after that. Suppose that the family F of subsets of [n] is without
inclusion (F,G ∈ F implies F 6⊂ G). Then a full chain cannot go through
two members of F . Therefore the set of full chains going through distinct
members of F must be disjoint. Hence we have∑

F∈F

|F |!(n− |F |)! ≤ n!.

Dividing the inequality by n! ∑
F∈F

1(
n
|F |

) ≤ 1 (3.1)

is obtained. Replace
(
n
|F |

)
by
(
n
bn
2
c

)
. Then

|F|(
n
bn
2
c

) =
∑
F∈F

1(
n
bn
2
c

) ≤ 1

follows, the theorem is proved.
Let us remark that inequality (3.1) is important on its own right and is

called the YBLM-inequality (earlier LYM, see [25], [3], [19], [20]). �

4 The method “counting chains”

Lubell’s proof easily applies for Theorem 1.2, however, surprisingly it was
not exploited for proving theorems of the present type. The reason might be
that not the “excluded” configurations should be considered when using the
idea, but the “allowed induced posets”.

Take first the upper estimate of Theorem 1.3. This theorem already has
two different proofs in [17] and [5], however each of these proofs needed an ad
hoc idea, our new method also works here. It needs some tedious calculations,
but the principal idea is easy.

The subposets V2 are excluded. The family F spans a poset in Bn. What
are its connected components? First of all, a connected component cannot
contain P3 as a subposet, since V2 is excluded in a “non-induced” way. It is
easy to see that these components can only be the “upside-down” versions
of Vr, that is, the r-brushes Λr consisting of r + 1 elements: a, b1, . . . , br
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where a > b1, . . . , a > br. Let Λ∗r denote an r-brush in Bn that is a family
of subsets A,B1, . . . , Br where A ⊂ B1, . . . , A ⊂ Br. The number of chains
going through Λ∗r is denoted by c(Λ∗r). The trivial observation that no chain
can go through two distinct components results in∑

Λ∗
r

c(Λ∗r) ≤ n! (4.1)

where the sum is taken for all connected components spanned by F . There
is a good lower estimate on

c(Λ∗r)

r + 1
,

namely

Lemma 4.1 Suppose 6 ≤ n, 0 ≤ r. Then

u∗!u∗(n− u∗ − 1)! ≤ c(Λ∗r)

|Λr|
(4.2)

where u∗ = u∗(n) = n
2
− 1 if n is even, u∗ = n−1

2
if n is odd and r − 1 ≤ n,

while u∗ = n−3
2

if n is odd and n < r − 1.

The tedious part of the whole proof is the proof of this lemma. See [13] or
[16]. (The title of [16] has a wrong word: “inclusion” should stand rather
than “Intersection”.) However, after having the lemma, (4.1) and (4.2) give

n! ≥
∑
Λ∗
r

c(Λ∗r) =
∑
Λ∗
r

(r + 1)
c(Λ∗r)

r + 1

≥
∑
Λ∗
r

(r + 1)u∗!u∗(n− u∗ − 1)! = |F|u∗!u∗(n− u∗ − 1)!.

This really leads to the upper estimate in Theorem 1.3.
Now, this idea will be formulated for the general case. Let P be the set

of forbidden subposets. Let F be a family of subsets of [n] such that the
poset induced by F in Bn contains no member of P as a subposet. La(n,P)
denotes the largest size of such a family. Consider the connected components
of the poset induced by F . The family of all possible components is denoted
by Q = Q(P).

In the example above we had P = {V2}. Then Q({V2}) = {Λr : 0 ≤ r}.
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If Q ∈ Q let Q∗n be a realization of Q in the Boolean lattice Bn, that is, Q
is embedded into Bn and a size (of a subsets) is associated with each element
q ∈ Q∗n. Here Q→ Q∗n denotes that Q∗n is a realization of Q. In our example,
for instance, Λ1 is just a poset with two comparable elements, Λ∗1 is a family
of two subsets A,B satisfying A ⊂ B, with a and b elements, respectively.

Furthermore c(Q∗n) denotes the number of chains going through Q∗n. In
our example c(Λ∗1) = a!(b− a)!(n− b)!.

Let minQ→Q∗
n
c(Q∗n) = c∗n(Q) be the smallest number of chains respect to

the realizations. In the example: c∗n(Λ0) =
⌊
n
2

⌋
!
⌈
n
2

⌉
!, c∗n(P2) = n

⌊
n−1

2

⌋
!
⌈
n−1

2

⌉
!.

The following theorem can be easily obtained by the method shown for
V2,

Theorem 4.2 [16]

La(n,P) ≤ n!

infQ∈Q(P)
c∗n(Q)
|Q|

.

Now we show how to apply this theorem for the poset N which contains
4 distinct elements a, b, c, d satisfying a < c, b < c, b < d. In the Boolean
lattice a subposet N consists of four distinct subsets satisfying A ⊂ C,B ⊂
C,B ⊂ D. It is somewhat surprising that excluding N the result is basically
the same as in the case of V2.

Let F be a family of subsets of [n] containing no four distinct members
forming an N . Consider the poset P (F) spanned by F in Bn. What can its
components be? A component might be a P3, but no component can contain
a P3 as a proper subposet, since adding one more element to P3 an N is
created no matter which element of P3 is in relation with the new element.
Let a < b be two elements of a component. We claim that a and b cannot be
both comparable within the component with some other distinct elements c, d
(say, in this order), unless they are a part of a P3. Indeed, the choices c < a
and b < d lead to a P3, therefore the only possibility is a < c, d < b. This
is an N , contradicting the assumption. But one of them can be comparable
with many others in the same direction. Therefore the following ones are the
only possible components:

Q(P) = {P3,Λ0,Λ1,Λ2, . . . ,Λr, . . . , V1, V2, . . . , Vr, . . .}.

In order to use Theorem 4.2 we have to give a good lower bound on the
ratios

c∗n(P3)

3
,

c∗n(Λr)

r + 1
,

c∗n(Vr)

r + 1
.

7



(4.2) is a good lower estimate on the middle one. By symmetry, the same
applies for the last one. The only unknown one is the first ratio. Its exact
value is determined in [13] (Lemma 3.1). We do not formulate the statement
here, what is important for our purposes is that

u∗!u∗(n− u∗ − 1)! ≤ c∗n(P3)

3

holds, therefore the denominator in Theorem 4.2 is the same as in the case
of V2. We obtained the following theorem almost “free”.

Theorem 4.3 [13](
n

bn
2
c

)(
1 +

1

n
+ Ω

(
1

n2

))
≤ La(n,N) ≤

(
n

bn
2
c

)(
1 +

2

n
+O

(
1

n2

))
holds.

It is interesting to mention that the “La” function will jump if the ex-
cluded poset contains one more relation. The butterfly on contains 4 elements:
a, b, c, d with a < c, a < d, b < c, b < d.

Theorem 4.4 [5] Let n ≥ 3. Then La(n,on) =
(

n
bn/2c

)
+
(

n
bn/2c+1

)
.

It was proved by a different method.

5 A further improvement of the method

Observe that the main part of a large family is near the middle, the total
number of sets far from the middle is small. More precisely, let 0 < α < 1

2

be a fixed real number. The total number of sets F (for a given n) of size
satisfying

|F | 6∈
[
n

(
1

2
− α

)
, n

(
1

2
+ α

)]
(5.1)

is very small. It is well-known (see e.g. [1], page 214) that for a fixed constant
0 < β < 1

2
βn∑
i=0

(
n

i

)
= 2n(h(β)+o(1))
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holds where h(x) = −x log2 x−(1−x) log2(1−x). Therefore the total number
of sets satisfying (5.1) is at most

2

bn( 1
2
−α)c∑

i=0

(
n

i

)
= 2n(h( 1

2
−α)+o(1)) =

(
n

bn
2
c

)
O

(
1

n2

)
where 0 < h

(
1
2
− α

)
< 1 is a constant.

In view of this observation we can improve our main tool, Theorem 4.2.
First we have to generalize c∗n(Q). Let c∗αn (Q) denote minQ→Q∗

n
c(Q∗n) where

only those realizations Q∗n are considered whose member subsets are of size
in the interval (5.1). It is obvious that c∗n(Q) ≤ c∗αn (Q). We actually believe
that they are equal for large n, but we cannot prove this statement.

Theorem 5.1 [16] Let 0 < α < 1
2

be a real number. Then

La(n,P) ≤ n!

infQ∈Q(P)
c∗αn (Q)
|Q|

+

(
n

bn
2
c

)
O

(
1

n2

)
.

Using this theorem, we were able to prove the following rather general
one.

Theorem 5.2 [16] Let 1 ≤ r be a fixed integer, independent on n. Suppose
that every element Q ∈ Q(P) has the following property: if a ∈ Q then a
covers at most r elements of Q. Then

La(n,P) ≤
(
n

bn
2
c

)(
1 + 2

r

n
+O

(
1

n2

))
.

If the family F contains no Vr+1 then the components cannot contain a set
which is contained in r + 1 other sets. Therefore the conditions of Theorem
5.2 are satisfied (in the dual form). This is why Theorem 5.2 implies Theorem
1.5.

6 Results determining the main term only

Some recent results determine only the main term, that is the coefficient
of
(
n
bn
2
c

)
, and there are only rough estimates of the coefficient of 1

n
. Two

elements a and b of a poset are called neighboring if a < b or a > b and there
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is no c satisfying a < c < b or a > c > b. A poset T is called a tree if the
graph obtained by joining the neighboring elements is a tree. Griggs and
Linyuan solved the problem for trees of two levels.

Theorem 6.1 [15] Let T be a tree and suppose that it has two levels, then(
n

bn
2
c

)(
1 + Ω

(
1

n

))
≤ La(n, T ) ≤

(
n

bn
2
c

)(
1 +O

(
1

n

))
.

Bukh found the first term for arbitrary trees independently, about the
same time. Let h(P ) denote the hight (maximal length of a chain) in a
poset.

Theorem 6.2 [6] Let T be a tree. Then

h(T )

(
n

bn
2
c

)(
1 + Ω

(
1

n

))
≤ La(n, T ) ≤ h(T )

(
n

bn
2
c

)(
1 +O

(
1

n

))
.

However [11] contains another, surprising result. Let G = (V,E) be a
graph. P (G) is the poset on two levels, V is the level below, v < e(v ∈ V, e ∈
E) iff v ∈ e.

Theorem 6.3 [15]

La(n, P (G)) ≤

(
1 +

√
1− 1

χ(G)− 1
+ o(1)

)(
n⌊
n
2

⌋).
Of course this is sharp if χ(G) = 2. For instance when G is cycle of length

` then P (G) is a cycle of length 2` on two levels. By this the posets on two
levels forming a cycle are settled, up to the first term.

7 Excluding induced posets, only

One can ask what happens if we exclude the posets R belonging to P only
in a strict form, that is, there is no induced copy in the poset induced in
Bn by the family. Given a “small” poset R, La](n,R) denotes the maximum
number of elements of Y ⊂ 2[n] (that is, the maximum number of subsets of
[n]) such that R is not an induced subposet of the poset spanned by Y in
Bn. This obviously generalizes for La](n,P) where P is a set of posets.
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For instance, calculating La(n, V2) the path of length 3, P3 is also ex-
cluded, while in the case of La](n, V2) this is allowed, three sets A,B,C are
excluded from the family only when A ⊂ B,A ⊂ C but B and C are in-
comparable. As we saw in the proof of Theorem 1.3, Q(V2) consists of Λrs
(0 ≤ r). The set Q](V2) of possible components when only the induced V2s
are excluded is much richer. Q](V2) contains all posets whose graph is a
“descending” tree with one maximal vertex. That is, not only the sizes of
these posets are unbounded, but their depths, as well. Yet, this case can
be also be treated, on the basis of Theorem 5.2. To be precise we have to
modify the formulations of our previous theorems. These modifications need
no proofs, since the original proofs did not really depended on P , only on
Q(P) and this is simply replaced by Q](P).

Theorem 7.1 [16]

La](n,P) ≤ n!

infQ∈Q](P)
c∗n(Q)
|Q|

.

Theorem 7.2 [16] Let 0 < α < 1
2

be a real number. Then

La](n,P) ≤ n!

infQ∈Q](P)
c∗αn (Q)
|Q|

+

(
n

bn
2
c

)
O

(
1

n2

)
.

Theorem 7.3 [16] Let 1 ≤ r be a fixed integer, independent on n. Suppose
that every element Q ∈ Q](P) has the following property: if a ∈ Q then a
covers at most r elements of Q. Then

La](n,P) ≤
(
n

bn
2
c

)(
1 + 2

r

n
+O

(
1

n2

))
.

It is quite obvious that if Q ∈ Q](Vr+1) then no element of Q is covered by
more than r other elements. Theorem 7.3 can be applied in a dual (upside-
down) form.

Theorem 7.4 [16]

La](n, Vr+1) ≤
(
n

bn
2
c

)(
1 + 2

r

n
+O

(
1

n2

))
.

This is a stronger form of Theorem 1.5. The special case r = 1 was solved
in [7].
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8 The diamond and the snakes

At the end of the first talk given by the author on this subject around 2004,
someone from the audience asked: ”What about the cycle of length 4 on 3
levels?” (I am sorry I cannot remember who he was, therefore I cannot give
credit to him.) The answer: ”This is a good question, I think the present
method will work on this problem too.”

The problem is still unsolved, but there are some papers attacking it. A
diamond is a poset of four elements a, b, c, d such that a < b, c and b, c <
d. Denote it by D2. The first published result on the diamond is due to
Axenovich, Manske and Martin.

Theorem 8.1 [2]

La(D2) ≤ (2.283 + o(1))

(
n⌊
n
2

⌋).
Griggs, Li and Lu [14] have improved the constant to 2 + 3

11
. However

their main achievement is the solution of the problem for the generalized
diamond Dk what is a poset of the elements a, b1, . . . , bk, d where a < bi < d
holds for every i. They have solved the problem for most of the k’s (but
unfortunately not for k = 2).

The k-snake Sk is the following poset consisting of k elements: a1 < a2 >
a3 < a4 > a5 < . . .. Theorems 1.3 and 4.3 give(

n

bn
2
c

)(
1 +

1

n
+ Ω

(
1

n2

))
≤ La(n, Sk) ≤

(
n

bn
2
c

)(
1 +

2

n
+O

(
1

n2

))
(8.1)

for k = 3, 4. How far can this go?
Now we give a simple general construction which shows that (8.1) cannot

hold for too big k.

Proposition 8.2 If P is not a subposet of B` (e.g. connected and |P | > 2`)
then

2`
(
n− `
bn−`

2
c

)
≤ La(P ). (8.2)

Proof. Take an `-element subset L of [n] and let

FL = {A ∪B : A ⊂ L,B ⊂ [n]− L, |B| = bn− `
2
c}.
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This family induces
(

n
bn−`

2
c

)
copies of B` therefore cannot contain a P . �

It is easy to see that the left hand side of (8.2) is(
n

bn
2
c

)(
1 +

x

n
+O

(
1

n2

))
(8.3)

where x = b `
2
c if n is even and d `

2
e if n is odd (` is fixed, n tends to infinity).

S33 is not a subposet of B5, therefore Proposition 8.2 and (8.3) give the
second term 3

n
in the lower estimate of La(S33) for odd n. Hence (8.1) cannot

hold for k = 33. But already S9 is suspicious, since the same reasoning
gives 2

n
for the second term in the lower estimate for odd n, what ”almost”

contradicts (8.1).
Open Problem. Find the best possible second terms in the lower and

upper estimate of La(Sk) for k = 5, 6, 7, . . . ..
We believe that the only way to use Proposition 8.2 for an Sk is when

k > 2`, because otherwise Sk is a subposet of B`. Actually we think that a
slightly stronger statement is also true. Let the vertices of the directed graph
G(Bn) be the subsets of [n], and (A,B) is an edge iff A ⊂ B.

Conjecture. If n > 2 then there is a Hamiltonian cycle in G(Bn) such
that the directions of its edges alternatingly agree and do not agree with the
direction of the cycle.

This problems is closely related to the famous problem if there is a Hamil-
tonian cycle between the ”two middle levels”. This was generalized for the
symmetric (kth and (n− k)th) levels. For results see [8], [11] and [21]. The
solution of this problem of every pair of symmetric levels would solve the
present problem for even n, but our problem might be easier.
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