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Abstract

The first representation theorem establishes a correspondence between

positive, self-adjoint operators and closed, positive forms on Hilbert spaces.

The aim of this paper is to show that some of the results remain true if the

underlying space is a reflexive Banach space. In particular, the construc-

tion of the Friedrichs extension and the form sum of positive operators

can be carried over to this case.

1 Introduction

Let X denote a reflexive complex Banach space, and X∗ its conjugate dual space
(i.e. the space of all continuous, conjugate linear functionals over X). We will
use the notation (v, x) := v(x) for v ∈ X∗ , x ∈ X , and (x, v) := v(x). Let A
be a densely defined linear operator from X to X∗. Notice that in this context
it makes sense to speak about positivity and self-adjointness of A. Indeed, A
defines a sesquilinear form on DomA×DomA via tA(x, y) = (Ax)(y) = (Ax, y)
and A is called positive if tA is positive, i.e. if (Ax, x) ≥ 0 for all x ∈ Dom A.
Also, the adjoint A∗ of A is defined (because A is densely defined) and is a
mapping from X∗∗ to X∗, i.e. from X to X∗. Thus, A is called self-adjoint
if A = A∗. Similarly, the operator A is called symmetric if the form tA is
symmetric.

In Section 2 we deal with closed, positive forms and associated operators, and
we establish a generalized version of the first representation theorem. In Section
3 we apply the representation theorem in two situations: first we construct the
Friedrichs extension of a positive, symmetric operartor, then we define the form
sum of two positive, self-adjoint operators. With the help of a factorization
lemma we give a definition of a partial order of positive, self-adjoint operators.
The Friedrichs extension turns out to be the largest of all self-adjoint extensions
with respect to this partial order. The factorization lemma also enables us to
prove a certain commutation property of the form sum of positive self-adjoint
operators. In the last section we give two applications of the results, one in
the theory of partial differential equations and one in probability theory. Some
results of this paper have already appeared in a not widely known paper [2].
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2 Representation theorem

Let D ⊆ X be a dense subspace, and let t : D × D → C be a sesquilinear form
on D (where t is linear in the first variable and conjugate linear in the second).
Assume that t is positive with positive lower bound, i.e. t(x, x) ≥ γ‖x‖2, γ > 0.
Assume also that t is ”closed” in the sense that (D, t(·, ·)) =: H is a Hilbert
space (i.e. it is complete). In this case, the injection i : H → X is continuous
so H can be regarded as a subspace of X . For brevity we will use the notation
[·, ·] for t(·, ·). An operator A from X to X∗ can be associated to the form t in a
natural way: let x ∈ D and take the functional [x, y], y ∈ D; if this functional
is continuous in the norm of X then there is an element z in X∗ for which
[x, y] = z(y) =: (z, y), in this case, let Ax := z.

Theorem 1 With notations as above the operator A : X → X∗ is a positive,
self-adjoint operator.

Proof. Let v ∈ X∗ be an arbitrary element. Now, (v, x) x ∈ D is a continuous,
conjugate linear functional on H . Indeed,

|(v, x)| ≤ ‖v‖ ‖x‖ ≤ 1√
γ

[x] ‖v‖ = K[x],

where [x] denotes the norm of H , i.e. [x] = [x, x]1/2. Thus, by the theorem of
Riesz we have an element f ∈ H such that (v, x) = [f, x]. Define an operator
B from X∗ to X by Bv := f . Then B is defined everywhere on X∗, and B is
positive and bounded with ‖B‖ ≤ 1

γ . Indeed, (z, Bz) = [Bz, Bz] = [Bz]2 ≥ 0,
and

‖Bz‖2 ≤ 1

γ
[Bz]2 =

1

γ
(Bz, z) ≤ 1

γ
‖Bz‖ ‖z‖.

Hence, B is a bounded, positive, self-adjoint operator. Furthermore, B is in-
jective. To see this, suppose that Bz = 0. Then 0 = [Bz, g] = (z, g) for every
g ∈ H , and H is dense in X therefore z = 0. This means that the inverse B−1

exists and is a linear mapping from X to X∗. We will show that A = B−1. Let
x ∈ DomA, then [x, y] = (t, y) for some t ∈ X∗ and Ax = t. Also, (t, y) = [Bt, y]
so Bt = x, and hence A ⊆ B−1. Conversely, if x ∈ Dom B−1 then x = Bz for
some z ∈ X∗ and [x, y] = [Bz, y] = (z, y) is continuous in y therefore x ∈ DomA
and Ax = z = B−1z, which proves that B−1 ⊆ A. To complete the proof we
have the following lemma, which is well known in Hilbert spaces.

Lemma 1 If B : X∗ → X is a bounded, injective, self-adjoint operator then
A := B−1 is also a self-adjoint operator from X to X∗.

Proof. First we show that Ran B is dense in X . Indeed, if for some v ∈ X∗ we
have (Bz, v) = 0 for every z ∈ X∗, then (Bz, v) = (z, Bv) = 0 so Bv = 0 and
v = 0. Hence A is densely defined. Also, A is symmetric, because if x ∈ Dom A
then x = Bz for some z ∈ X∗ and (Ax, x) = (z, Bz) ∈ R. Thus A ⊆ A∗. To see
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the reverse inclusion, let y ∈ Dom A∗ and let x = Bz run through the elements
of Dom A. Then (Ax, y) = (z, y) and also

(Ax, y) = (x, A∗y) = (Bz, A∗y) = (z, BA∗y)

which means that y = BA∗y, so y ∈ Dom A.

Remark. The previous arguments can be carried out whenever (X, Y ) is a dual
pair of locally convex, topological linear spaces. In this case, we replace the
condition of the lower bound by the natural assumption that the injection i
introduced above is continuous.

3 The Friedrichs extension and the form sum

In this section we apply the representation theorem in two situations. First we
construct the Friedrichs extension of a densely defined positive operator.

Theorem 2 Let a : X → X∗ be a positive, densely defined operator with posi-
tive lower bound, (ax, x) ≥ γ‖x‖2, γ > 0 for every x ∈ Dom a. Then a admits
a positve self-adjoint extension with the same lower bound.

Proof. The form ta(x, y) := (ax, y) defines a pre-Hilbert space on Doma. Denote
the completion of this space by H , and the arising inner product by [·, ·]. The
injection i : Dom a → X extends by continuity to H and the extension will be
denoted by Ia. We prove that Ia is injective. Notice first that [t, y] = (at, Iay)
for all t ∈ Dom a, y ∈ H . Indeed, take a sequence yn ∈ Dom a , yn → y in H
(which implies convergence in X as well), then

(at, Iay) = lim(at, Iayn) = lim[t, yn] = [t, y].

Now assume that Iay = 0. Then

[y]2 = lim[yn, y] = lim(ayn, Iay) = 0

therefore y = 0 which means that Ia is injective. Thus H can be regarded as
a subspace of X and Theorem 1 can be applied. It is clear that the arising
self-adjoint operator AF is an extension of a and we also see from the proof of
Theorem 1 that (AF x, x) ≥ γ‖x‖2 for all x ∈ Dom A. This operator will be
called the Friedrichs extension of a.

Next we examine a characterizing property of the Friedrichs extension. In
the Hilbert space setting the Friedrichs extension distinguishes itself by being
the largest, self-adjoint extension with respect to the usual partial ordering of
positive operators. The definition of this ordering is that for positive operators
A and B we have A ≥ B if DomA

1
2 ⊆ DomB

1
2 and (A

1
2 x, A

1
2 ) ≥ (B

1
2 x, B

1
2 ) for

all x ∈ DomA
1
2 . We will now examine how this definition can be carried over to

our situation. The following factorization lemma is well known in Hilbert spaces
(see e.g. [9], [10]). For bounded positive self-adjoint operators from X to X∗

this lemma was also proved in [11]. and it plays a key role in the characterization
of covariance operators of Banach space valued random variables.
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Lemma 2 Let A be a positive self-adjoint operator from X to X∗ (that is
(Ax, x) ≥ 0 for all x ∈ Dom A). Then there exists an auxiliary Hilbert space H
and an operator J : H → X∗ such that A = JJ∗.

Proof. Define an inner product on Ran A by [Ax, Ay] := (Ax, y). It is well
defined because if Ax1 = Ax2 and Ay1 = Ay2 then

(Ax1, y1) = (Ax2, y1) = (x2, Ay1) = (x2, Ay2) = (Ax2, y2).

Furthermore it is positive definite, because if [Ax, Ax] = (Ax, x) = 0 then by
the Cauchy inequality we have

|(Ax, y)|2 ≤ (Ax, x)(Ay, y) = 0

for all y ∈ Dom A which implies that Ax = 0. Thus (Ran A, [·, ·]) is a pre-
Hilbert space. Denote the completion of this space by HA. Define the operator
J : HA → X∗ by Dom J = Ran A and J(Ax) := Ax for all Ax ∈ Ran A. Then,
by definition Dom J∗ = {y ∈ X : |(Ax, y)|2 ≤ My(Ax, x) for all x ∈ Dom A},
in particular Dom A ⊆ Dom J∗ and J∗y = Ay for all y ∈ Dom A. Thus JJ∗

is an extension of A and JJ∗ is symmetric. It is also clear that a self-adjoint
operator is maximal symmetric just as in the context of Hilbert spaces. This
means that A = JJ∗.

Remark. Notice that in the context of Hilbert spaces Dom A
1
2 = Dom J∗ and

(A
1
2 x, A

1
2 x) = [J∗x, J∗x].

Now we are in position to give a definition of ordering without the use of square
roots.

Definition 1 For positive, self-adjoint operators A and B we say that A ≥ B
if and only if Dom J∗

A ⊆ Dom J∗
B and [J∗

Ay, J∗
Ay]A ≥ [J∗

By, J∗
By]B for all y ∈

Dom J∗
A.

In order to understand this definition better it would be desirable to give a
characterization of Dom J∗

A and [J∗
Ay, J∗

Ay]A in terms of A only.

Lemma 3 With notations as above we have

Dom J∗
A =

{

y ∈ X : sup
x∈Dom A,(Ax,x)≤1

|(Ax, y)|2 < ∞
}

and
[J∗

Ay, J∗
Ay]A = sup

x∈Dom A,(Ax,x)≤1

|(Ax, y)|2

Proof. The characterization of Dom J∗ is clear from

Dom J∗ = {y ∈ X : |(Ax, y)|2 ≤ My(Ax, x) for all x ∈ Dom A}.
To see the other equality notice that Ran A is dense in HA, therefore we have

[J∗
Ay, J∗

Ay]A = sup
(Ax,x)≤1

|[J∗y, Ax]|2A = sup
(Ax,x)≤1

|(y, Ax)|2

4



Remark. Notice that this new definition of partial ordering coincides with the
usual one when X is a Hilbert space. If we allow the value of the indicated
supremum to be +∞, then we can say in short that A ≥ B if and only if

sup
x∈Dom A,(Ax,x)≤1

|(Ax, y)|2 ≥ sup
x∈Dom B,(Bx,x)≤1

|(Bx, y)|2

for all y ∈ X . We say that the left hand side of the equation is the form of A
on X while the right hand side is that of B.

Also, notice that reflexivity and transitivity of the introduced relation is clear
from Lemma 3. To see that the relation is antisymmetric, assume that A and
B have the same forms on X . Let x ∈ Dom A and y ∈ Dom B. Then (Ax, y) =
[J∗

Ax, J∗
Ay] = [J∗

Bx, J∗
By] = (x, By) which means that B ⊆ A∗ = A and hence

A = B.
Now, we establish the maximality of the Friedrichs extension with respect

to this partial order.

Theorem 3 Assume that a is a positive operator from X to X∗ with (ax, x) ≥
γ‖x‖2, γ > 0. Then the Friedrichs extension is the largest, positive, self-adjoint
extension of a with respect to the partial order introduced above.

Proof. The completion of RanAF with inner product [AF x, AF y]F := (AF x, y)
will be denoted by HF . Notice first that Ran a is dense in HF . Indeed, take
AF x ∈ HF and let xn converge to x = BAF x ∈ H in the norm of H (recall
that H is the completion of (Dom a, [·, ·])). Then axn = AF xn is Cauchy in
HF therefore xn → y for some y ∈ HF . Now, for all z ∈ Dom AF we have
[AF z, AF x] = (AF z, x) and

[AF z, y] = lim[AF z, AF xn] = lim(AF z, xn) = (AF z, x)

hence AF x = y. (In the last equality we used the fact that xn → x in the norm
of X too, due to the positive lower bound of a.)

Next we prove that Dom a is a core for J∗
F . Take an arbitrary element

(x; J∗x) ∈ X × HF . By the argument above there exists a sequence axn such
that axn → J∗x in HF . Now, xn is Cauchy in H so there is an element z ∈ H
such that xn → z in H (and consequently xn → z in X). Also, J∗

F is a closed
operator therefore z ∈ Dom J∗

F and J∗
F z = J∗

F x. Thus, for all u ∈ Dom AF we
have (AF u, x) = [AF u, J∗

F x]F = [AF u, J∗
F z] = (AF u, z) and AF is surjective, so

this implies z = x. Therefore (xn; axn) → (x; J∗x) in X × HF .
Now, take an arbitrary extension A of a and compare it to AF . Define an

operator V from HF to HA by Dom V = Ran a and V (ax) = ax. Then V
preserves norms and extends uniquely to an isometry on the whole of HF . This
extension will still be denoted by V . Notice that J∗

Ax = ax for all x ∈ Doma so
we have the inclusion V (J∗

F |Dom a) ⊆ J∗
A. Now, Dom a is a core for J∗

F and J∗
A

is a closed operator therefore V J∗
F ⊆ J∗

A. This means that Dom J∗
F ⊆ Dom J∗

A

and [J∗
F x]F = [J∗

Ax]A so the form of AF is a restriction of that of A.
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Next we turn to the construction of the form sum of two positive self-adjoint
operators (cf. [4]).

Here we need a more general notion of closed forms. A positive form t :
D × D → C will be called closed if whenever xn ⊆ D and xn → x in X and
t(xn−xm, xn−xm) → 0 then x ∈ D and t(xn−x, xn−x) → 0 (notice that when
t has positive lower bound then this definition agrees with the previous one).
In this more general context the representation theorem is no longer available
(unless X is a Hilbert space), but the form sum construction can be carried out
if both forms are closed and at least one of them has positive lower bound.

Assume that A is a positive self-adjoint operator with positive lower bound,
and B is an operator associated to a closed form tB . Assume also that HA,B :=
Dom J∗

A ∩ Dom tB is dense in X . Then it is easy to see that (HA,B, tA + tB) is
complete, thus the representation theorem can be applied. The arising positive
self-adjoint operator will be called the form sum of A and B, and will be denoted
by A

.
+ B. Next we will examine a certain commutation property of the form

sum with the help of a factorization similar to that of Lemma 2.
First we give a factorization of the form sum of positive, self-adjoint operators

A, B which have positive lower bound. Let J : HA ⊕ HB → X∗ be the densely
defined operator, given by J(Ax ⊕ By) = Ax + By for x ∈ Dom A, y ∈ Dom B.
It is obvious that J∗ exists and is densely defined. Indeed, it is not difficult to
see that

Dom J∗ = Dom J∗
A ∩ Dom J∗

B

Let us compute J∗ on Dom A ∩ Dom B. Take z from the common domain of
A and B, and let x, y run through Dom A and Dom B respectively. For brevity
we will use the unified notation [·, ·] for the inner products of the Hilbert spaces
HA, HB and HA ⊕ HB . Now

(J(Ax ⊕ By), z) = (Ax + By, z) = [Ax, Az] + [By, Bz] = [Ax ⊕ By, Az ⊕ Bz],

consequently J∗z = Az ⊕ Bz. Now, if x ∈ Dom A ∩ Dom B, then

J∗∗J∗x = J∗∗(Ax ⊕ Bx) = J(Ax ⊕ Bx) = Ax + Bx,

which means that J∗∗J∗ is an extension of A + B.
We claim that J∗∗J∗ is nothing else than the form sum A

.
+ B. To see this

compute the form determined by the symmetric operator J∗∗J∗. Denote by JA

and JB the factorizing operators for A, B appearing in Lemma 2. Since J∗∗J∗

is symmetric, it suffices to show that A
.
+ B ⊆ J∗∗J∗. Take y ∈ Dom A

.
+ B,

then it is straightforward that y ∈ Dom J∗. We should determine [J∗y, J∗y],
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the following calculation gives an upper estimate.

[J∗y, J∗y] =

sup
{

|[Au ⊕ Bv, J∗y]|2 : u ∈ Dom A, v ∈ Dom B, (Au, u) + (Bv, v) ≤ 1
}

=

sup
{

|(Au + Bv, y)|2 : u ∈ Dom A, v ∈ Dom B, (Au, u) + (Bv, v) ≤ 1
}

≤
sup

{

|[(J∗
A ⊕ J∗

B)(u ⊕ v), (J∗
A ⊕ J∗

B)(y ⊕ y)]|2 : u ∈ Dom J∗
A, v ∈ Dom J∗

B ,

[(J∗
A ⊕ J∗

B)(u ⊕ v)]2 ≤ 1
}

=

[(J∗
A ⊕ J∗

B)(y ⊕ y)]2 = [J∗
Ay, J∗

Ay] + [J∗
By, J∗

By] = (A
.
+ By, y)

For the reverse inequality set λ = [J∗
Ay]2/([J∗

Ay]2 + [J∗
By]2) and write:

[J∗y, J∗y] =

sup
{

|[Au ⊕ Bv, J∗y]|2 : u ∈ Dom A, v ∈ Dom B, (Au, u) + (Bv, v) ≤ 1
}

≥
sup

{

|[J∗
Au, J∗

Ay] + [J∗
Bv, J∗

By]|2 : (Au, u) ≤ λ, (Bv, v) ≤ 1 − λ
}

=

sup
{

(|[J∗
Au, J∗

Ay]| + |[J∗
Bv, J∗

By]|)2 : (Au, u) ≤ λ, (Bv, v) ≤ 1 − λ
}

=

λ[J∗
Ay]2 + (1 − λ)[J∗

By]2 + 2
√

λ(1 − λ)[J∗
Ay][J∗

By] =

[J∗
Ay]2 + [J∗

By]2 = (A
.
+ By, y)

Combining these two estimates, we see that

[J∗y, J∗y] = (A
.
+ By, y)

for all y ∈ Dom A
.
+ B. This implies that [J∗x, J∗y] = (A

.
+ Bx, y) for all

x, y ∈ Dom A
.
+ B, and as consequence we have that A

.
+ B ⊆ J∗∗J∗. Thus we

have obtained the following theorem.

Theorem 4 J∗∗J∗ = A
.
+ B and it is an extension of A + B.

Now, we observe that commutation with bounded operators is preserved
when taking the form sum of two positive, self-adjoint operators. Before all, we
characterize this commutation property by means of a bounded operator on an
auxiliary Hilbert space.

Let A : X → X∗ be a positive, selfadjoint operator (in the next two lemmas
we do not require A to have positive lower bound). Suppose that E is a bounded,
linear operator on X which leaves Dom A invariant and satisfies

E∗A ⊆ AE. (1)

In this case, define Ê on Ran A ⊂ HA as Ê(Ax) := AEx. This is indeed a
definition of a linear operator, as will be seen in the following lemma.

Lemma 4 Ê is well defined and furthermore is a bounded linear operator on
Ran A.
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Proof. Fix x ∈ Dom A and consider the following:

[ÊAx, ÊAx] = [AEx, AEx] = (AEx, Ex) = (E∗Ax, Ex) = (Ax, E2x) =

[Ax, AE2x] ≤ [Ax, Ax]
1
2 [AE2x, AE2x]

1
2 =

By induction, we conclude the following:

[ÊAx, ÊAx] ≤ [Ax, Ax]1−
1

2n [AE2n

x, AE2n

x]
1

2n ≤
[Ax, Ax]1−

1
2n (Ax, E2n+1

x)
1

2n ≤ [Ax, Ax]1−
1

2n ‖Ax‖ 1
2n ‖E2n+1

x‖ 1
2n

Now, taking limit in n we obtain

[ÊAx, ÊAx] ≤ [Ax]2r(E2),

where r(E2) denotes the spectral radius of E. This implies that Ê is well-defined
and continuous on Ran A.

Extend Ê to HA, and denote this bounded operator also by Ê. We connect
the self-adjointness of Ê with the commutation property (1) of E in the following
(cf. [7]).

Lemma 5 Ê is a self-adjoint operator in HA.

Proof. It suffices to check that ÊAx = Ê∗Ax. So let x ∈ Dom A be fixed and
y ∈ Dom A arbitrary, then

[Ax, ÊAy] = [Ax, AEy] = (Ax, Ey) = (E∗Ax, y) = (AEx, y) = [ÊAx, Ay],

implying the desired equality.

With the help of the previous arguments, we obtain the theorem on the
commutation property of the form sum.

Theorem 5 Let A, B be two positive, self-adjoint operators with positive lower
bound, and assume that a bounded, linear operator E is given on X, such that
(1) is satisfied together with a similar condition concerning B. Then for the

form sum A
.
+ B, we have

E∗(A
.
+ B) ⊆ (A

.
+ B)E.

Proof. Denote the bounded, self-adjoint operators resulting from the above con-
struction on HA and HB by ÊA and ÊB respectively. Consider the bounded,
self-adjoint operator ÊA ⊕ ÊB on the Hilbert space HA ⊕ HB . Then E∗J ⊆
J(ÊA ⊕ ÊB) and (ÊA ⊕ ÊB)J∗ ⊆ J∗E, since for any x ∈ Dom A, y ∈ Dom B

J
(

ÊA ⊕ ÊB

)

(Ax ⊕ By) = J(AEx ⊕ BEy) = AEx + BEy =

E∗Ax + E∗By = E∗J(Ax ⊕ By),

8



and from this, using the continuity of E∗, it follows that

(

ÊA ⊕ ÊB

)

J∗ ⊆
[

J
(

ÊA ⊕ ÊB

)]∗

⊆ (E∗J)∗ = J∗E.

We use these two inclusions and the boundedness of the self-adjoint operator
ÊA ⊕ ÊB to conclude

E∗J∗∗ ⊆ (J∗E)
∗ ⊆

[(

ÊA ⊕ ÊB

)

J∗
]∗

= J∗∗
(

ÊA ⊕ ÊB

)

and

E∗
(

A
.
+ B

)

= E∗J∗∗J∗ ⊆ J∗∗
(

ÊA ⊕ ÊB

)

J∗ ⊆ J∗∗J∗E =
(

A
.
+ B

)

E.

Finally we observe the relation between the spectra of Ê = ÊA and that of E.
(Here again the requirement that A has psoitive lower bound is not necessary.)

Theorem 6 The spectrum σ(Ê) is contained in σ(E) ∩ R.

Proof. Since Ê is self-adjoint it is clear that σ(Ê) ⊆ R. On the other hand, take
any real λ from the resolvent set of E and x ∈ Dom A, then

A(E − λI)x = (E − λI)∗Ax, hence A(E − λI)−1x =
[

(E − λI)
−1

]∗

Ax

which means that we can define the operator [(E−λI)−1]b. A short computation
gives that

[

(E − λI)
−1

]b

=
(

Ê − λÎ
)−1

,

indeed for x ∈ Dom A

[

(E − λI)
−1

]b(

Ê − λÎ
)

Ax = A (E − λI)
−1

(E − λI)x = Ax, and

(

Ê − λÎ
) [

(E − λI)−1
]b

Ax = A (E − λI) (E − λI)−1 x = Ax.

This proves the statement.

4 Application of the results

Covariance operators.

Consider a probability measure space 〈Ω,A, µ〉, and let ξ : Ω → X a random
variable i.e. a weakly measurable function. Suppose that ξ possesses a weak
expectation, in other words

E ξ :=

∫

Ω

ξ dµ

9



exists as a Pettis integral. Note that if X is reflexive, according to Dunford and
Gelfand, this is equivalent to requiring the existence of

∫

Ω

f(ξ) dµ

for all f ∈ X∗. Further, we make assumptions on the second moments, so
suppose that the set

D =







f : f ∈ X∗,

∫

Ω

|f(ξ)|2 dµ < +∞







is dense in X∗.
As an example, take X = ℓ2, Ω = {ωn : n = 1, 2, . . .} and µ({ωn}) =

ce−(3/2)n with a suitable constant c. Setting ξ(ωn)k = nk/k!, it is easy to
compute that, in this case, D 6= X∗ is dense.

In the sequel we assume that E ξ = 0, since we could take ξ −E ξ instead of
ξ. Define the sesquilinear form

t(f, g) = E (f(ξ)ḡ(ξ))

for f, g ∈ D.

Theorem 7 t is a positive, closed, sesquilinear form on D × D.

Proof. Positivity is trivial. Suppose that fn ∈ D converges to f ∈ X∗ and
E |fn(ξ) − fm(ξ)|2 → 0, then fn(ξ) has a limit g ∈ L2(Ω, µ), and moreover g
and f(ξ) conincide almost everywhere, hence E |f(ξ)|2 < +∞, implying f ∈ D

and E |fn(ξ) − f(ξ)|2 → 0.

If t possesses a positive lower bound and X is reflexive, then the application of
Theorem 1 provides a representing, self-adjoint operator A from X∗ to X∗∗ = X ,
which is called the covariance operator of the random variable ξ (cf. [11]). Note
that if X is a Hilbert space then the original version of the representation
theorem provides the covariance operator of ξ associated to the closed form t
(even if t has lower bound 0).

One expects a characterization of the covariance operator of the sum of
independent random variables. In view of our result the following theorem is
quite straightforward.

Theorem 8 If ξ and η are independent random variables with covariance op-
erators A and B respectively. Then the covariance operator of ξ + η is A

.
+ B.

Elliptic operators.

This is a classical application of the Friedrichs extension (see e.g. [2]). Take
X = Lp(Ω), 1 ≤ p < +∞ where Ω is a bounded domain with smooth boundary

10



in Rn. Define the operator A from Lp(Ω) to Lq(Ω) by Dom A = C∞
0 (Ω) and

Af = −
n

∑

i,k=1

∂

∂xi
(aik

∂f

∂xk
) + bf

where aik ∈ C1(Ω), b ∈ L1
loc(Ω), b ≥ 0 and

n
∑

i,k=1

aik(x)βiβk ≥ γ

n
∑

i

|βi|2, γ > 0

everywhere in Ω (uniform ellipticity). In this case we have

(Af, f) =

∫

Ω



−
n

∑

i,k=1

∂

∂xi

(

aik
∂f

∂xk

)

+ bf



 f dx

=

∫

Ω





n
∑

i,k=1

aik
∂f

∂xi

∂f

∂xk
+ b|f |2



 dx ≥ γ

∫

Ω

n
∑

i=1

∣

∣

∣

∣

∂f

∂xi

∣

∣

∣

∣

2

dx.

Now, for p ≤ 2n/(n − 2) we have

∫

Ω

n
∑

i=1

∣

∣

∣

∣

∂f

∂xi

∣

∣

∣

∣

2

dx ≥ c‖f‖2
p, c > 0

by the Sobolev imbedding theorem (see e.g. [1] pp. 95-99). Thus A has positive
lower bound. The Friedrichs extension of A is surjective, and this means that
the equation

−
n

∑

i,k=1

∂

∂xi

(

aik
∂f

∂xk

)

+ bf = g

has a weak solution for every g ∈ Lq(Ω) whenever q ≥ 2n/(n + 2).
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