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Abstract

The aim of this paper is to examine the convergence of Trotter’s prod-
uct formula when one of the C0-semigroups is replaced by a projection
(which can always be regarded as a constant degenerate semigroup). The
motivaton to study Trotter’s formula in this setting arises from the fact
that for ’nice’ open sets Ω ⊂ R

n the C0-semigroup on L
2(Ω) generated

by the Laplacian with Dirichlet boundary conditions can be obtained as
a limit of a formula of this type.

Mathematics subject classification (2000): 47A05, 47D06

1 Introduction

Let A be the generator of a C0-semigroup (etA)t≥0 on a Banach space E, and
let B ∈ L(E). Then A+B generates a C0 semigroup which is given by Trotter’s
product formula

et(A+B) = lim
n→∞

(e
t

n
Ae

t

n
B)n (1)

where the limit is taken in the strong operator topology. A possible direction
of generalization of this well-known result is discussed in [1] and [3]. Namely,
the convergence of Trotter’s product formula is examined in the case when the
C0-semigroup etB is replaced by the simplest of degenerate semigroups, i.e. a
projection P ∈ L(E). For convenience we include the basic notions here:

A family of operators S(t)t>0 is called a semigroup on E if
S : (0,∞) → L(E) is strongly continuous and satisfies the semigroup property
S(t + s) = S(t)S(s) for all s, t > 0. If, in addition, S(0) := limt→0 S(t) ex-
ists strongly, then we say that S(t)t>0 (or S(t)t≥0) is a continuous degenerate
semigroup. In this case S(0) is a bounded projection, its image E0 := S(0)E
is invariant under S(t) (t ≥ 0), and the restriction of S(t)t≥0 to E0 is a C0-
semigroup on E0 and S(t) equals 0 on E1 := (I − S(0))E (see [6], Theorem
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10.5.5). A trivial example of a continuous degenerate semigroup is given by
S(t) := P (t > 0), where P denotes a bounded projection.

Now, in (1) we replace the C0-semigroup etB by the continuous degenerate
semigroup S(t) = P (t > 0), and we examine the convergence of the formula

lim
n→∞

(e
t

n
AP )n (2)

under various assumptions on A and P . (If (2) converges, then the limit can be
regarded, in a sense, as the ’restriction’ of the semigroup etA to the subspace
PE. Of course, in the trivial case when etA and P commute, the formula (2)
does converge to the restriction of etA to PE.) In Section 2 we describe some
interesting conditions under which (2) converges strongly. For example, if A

is the generator of the Gaussian semigroup on L2(Rn) and Pf = 1Ωf where
Ω ⊂ Rn is a bounded open domain with Lipschitz boundary, we will see that
(2) converges strongly to the semigroup generated by the Dirichlet Laplacian
on L2(Ω). In Section 3 we provide some non-trivial examples where (2) fails to
converge.

2 Convergence results

2.1 Bounded generators

The easiest case to study is, of course, that of bounded generators.

Theorem 1 Let A ∈ L(E) be the generator of a C0-semigroup (etA)t≥0 and let
P ∈ L(E) be a projection. Then

lim
n→∞

(e
t

n
AP )nx = ePAPtPx

for all x ∈ E and uniformly for t ∈ [0, T ].

Proof. Case 1. Assume first that both etA and P are contractive. Let V (t) :=
PetAP ∈ L(PE) and apply Chernoff’s product formula (see eg. [5], Theo-
rem III.5.2) to the family V (t) on the space PE. Note that V (0) = IPE ,

‖V (t)‖ ≤ 1 (for all t ≥ 1), and limh→0
V (h)x1−x1

h = PAx1 = PAPx1 for all
x1 ∈ PE, and PAP is a bounded operator on PE. Now, by Chernoff’s prod-
uct formula limn→∞[V ( t

n )]nx1 = ePAPtx1 for all x1 ∈ PE and uniformly for
t ∈ [0, T ]. Furthermore, for any given x ∈ E we can decompose x as
x = Px + (I − P )x =: x1 + x2 and we have (e

t

n
AP )nx = (e

t

n
AP )nx1 =

e
t

n
A(Pe

t

n
AP )n−1x1. Now, for large n we have

‖ePAPtPx − (Pe
t

n
AP )nx1‖ = ‖ePAPtx1 − (Pe

t

n
AP )nx1‖ < ε

for t ∈ [0, T ], and also

‖e t

n
A(Pe

t

n
AP )n−1x1 − (Pe

t

n
AP )nx1‖ = ‖(I − P )e

t

n
A(Pe

t

n
AP )n−1x1‖ =

‖(I − P )(e
t

n
A − I)(Pe

t

n
AP )n−1x1‖ ≤ ‖I − P‖ · ‖e t

n
A − I‖ · ‖x1‖ < ε
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Case 2. In the general case we first introduce an equvivalent norm on E such
that P becomes contractive, then we use a rescaling argument to achieve that
the semigroup becomes contractive. Indeed, with the new norm ‖x‖0 := ‖Px‖+
‖(I−P )x‖ E is a Banach space, ‖·‖ and ‖·‖0 are equivalent, and P is contractive
on E‖·‖0

. Now, for λ > ‖A‖0 the rescaled semigroup e−λteAt is contractive on
E‖·‖0

, therefore the result of Case 1 can be applied, and the result follows.

Remark 1. By similar arguments one can prove the following statement: if
(etA)t≥0 is a C0-semigroup on E and P is a finite dimensional projection with

Ran P ⊂ D(A) then limn→∞(e
t

n
AP )nx = ePAPtPx where ePAPt is meant to

be the C0-semigroup on PE generated by the bounded operator PAP . See also
Remark 4 below.

2.2 Positive semigroups

The results in this subsection are taken from [1].
Let (X, Σ, µ) be σ-finite measure space and let (etA)t≥0 be a positive C0-

semigroup on E = Lp(X) where 1 ≤ p < ∞. Let Ω ⊂ X be measureable.
Then Pf := 1Ωf defines a projection on E, where 1Ω denotes the characteristic
function of Ω. In this subsection we will use the notation Lp(Ω) both in the
usual sense and and in the sense to denote the subspace of functions f in Lp(X)
such that f = 0 almost everywhere in Ωc. When a function f is in Lp(Ω) in
the usual sense, we define the extension f on X by f |Ω = f and f |Ωc = 0. The
following result holds (see [1], Theorem 5.3):

Theorem 2 Let f ∈ E and t > 0. Then

S(t)f := lim
n→∞

(e
t

n
AP )nf

exists and S(t)t>0 is a continuous degenerate semigroup of positive operators.
Furthermore, S(0) := limt→0 S(t) is a projection of the the form S(0)f = 1Y f

where Y ⊂ Ω is a measureable set.

The continuous degenerate semigroup S(t)t>0 can also be characterized by the
following maximality property (see [1], Theorem 5.1): Let T (t)t>0 be any semi-
group of positive operators on Lp(X) which maps Lp(X) to Lp(Ω) and for which
0 ≤ T (t)f ≤ etAf for t > 0 and 0 ≤ f ∈ Lp(X). Then T (t)f ≤ S(t)f .

With the notations of Theorem 2 it can occur that Y = ∅ and S(t) = 0 (see
[1], Example 5.4). However, in the following important case Y = Ω holds (for a
detailed discussion of this Example and the following Remark see [1], Section 5
and 7):

Example 1 (The Dirichlet Laplacian) Let p = 2, X = Rn (with Lebesgue
measure) and A = ∆ the Laplacian on L2(Rn). Let Ω be a bounded open
set with Lipschitz boundary. Then (with the notations of Theorem 2) we have
Y = Ω and S(t)|L2(Ω) = et∆Ω where ∆Ω is the Dirichlet Laplacian on L2(Ω),
i.e. D(∆Ω) = {f ∈ H1

0 (Ω) : ∆f ∈ L2(Ω)} and ∆Ωf = ∆f .
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Remark 2. For general open sets Ω we still have Y = Ω and S(t)|L2(Ω) =

et∆̃Ω where ∆̃Ω denotes the pseudo-Dirichlet Laplacian on L2(Ω), i.e. ∆̃Ω is
associated with the following densely-defined closed positive form a on L2(Ω):
D(a) = {f ∈ L2(Ω) : f ∈ H1(Rn)} and a(f, f) =

∫

Rn |f |2 +
∑n

j=1

∫

Rn |Djf |2 =
∫

Ω |f |2+
∑n

j=1

∫

Rn |Djf |2 (this statement is a consequence of Theorem 4 below).

This means that we have ∆̃Ω = ∆Ω whenever D(a) = H1
0 (Ω). It is not an aim

of this paper to describe sets Ω where this occurs, but in the Example above we
take boundedness and Lipschitz boundary as simple sufficient conditions.

2.3 Closed forms

In this subsection we describe another important case when Trotter’s product
formula converges. The results in this subsection are direct consequences of [8,
Theorem and Addendum]. We describe the basic notions briefly:

Let H be a Hilbert space and let

a : D(a) × D(a) → C

be a sesquilinear mapping where D(a), the domain of a, is a is a subspace of H .
We assume that a is semibounded, i.e. that there exists λ ∈ R such that

‖u‖2
a := Re a(u, u) + λ(u, u)H > 0

for all u ∈ D(a), u 6= 0. Moreover, we assume that a + λ is sectorial and closed,
i.e., that |Im a(u, u)| ≤ M(Re a(u, u)+ λ(u, u)H) and (D(a), ‖ · ‖a) is complete.
In short, we will call a a closed form. Let K = D(a) be the closure of D(a) in
H . Denote by A the operator on K associated with a, i.e.

D(A) = {u ∈ D(a) : ∃v ∈ K such that a(u, φ) = (v, φ)H for all φ ∈ D(a)}

and Au = v. Then −A generates a C0-semigroup e−tA on K. Denote by Q the
orthogonal projection on K. Now, define the operator e−ta on H by

e−tax = e−tAQx, x ∈ H, t ≥ 0

Then e−ta is a continuous degenerate semigroup on H . We call it the degenerate
semigroup generated by a on H .

Now, let b be a second closed form on H . Define a + b on H by D(a + b) =
D(a) ∩ D(b) and (a + b)(u, v) = a(u, v) + b(u, v). Then it is easy to see that
a + b is a closed form again. Now the following product formula holds (see [8,
Theorem and Addendum]):

Theorem 3 Let x ∈ H. Then

e−t(a+b)x = lim
n→∞

(e−
t

n
ae−

t

n
b)nx

for all t > 0.
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Remark 3. In [8, Addendum] this theorem is stated only for densely defined,
closed forms a and b but the proof applies to the non-densely defined case, as
well.

Now, let P be an orthogonal projection. Define the form b by D(b) = PH

and b(u, v) = 0 for all u, v ∈ PH . Then e−tb = P for all t ≥ 0. Therefore, as a
corollary of Theorem 3 we have

Theorem 4 For any orthogonal projection P and closed form a, the limit

S(t)x = lim
n→∞

(e−
t

n
aP )nx

exists for all x ∈ H and t > 0, and S(t)t>0 is the continuous degenerate semi-
group generated by the form a|PH .

There is another possible way to formulate this result. Let T (z)z∈Στ
be

a holomorphic C0-semigroup on H , defined on a sector Στ := {z ∈ C : z 6=
0, |arg z| < τ}, τ ∈ (0, π

2 ]. Assume that ‖(T (z)‖ ≤ 1 for all z ∈ Στ . Then the
generator A of T (z) is associated with a densely defined, semibounded, closed
form a (see [7], Chapters VI. and IX., and also [2], Theorem 1.2), so we have
the following corollary (see [3] Theorem 4):

Corollary 1 Let −A be the generator of a holomorphic C0-semigroup (e−zA)z∈Στ

on a Hilbert space H, where τ ∈ (0, π
2 ], and assume that ‖e−zA‖ ≤ 1 for all

z ∈ Στ . Let P be an orthogonal projection. Then

S(t)x = lim
n→∞

(e−
t

n
AP )nx

exists for all x ∈ H and t > 0, and S(t)t>0 is a continuous degenerate semigroup
on H.

3 Counterexamples

In view of the results in Section 1 one may conjecture that (2) converges in more
general settings. In particular, the following conjectures were given in [3]:

(a) Let etA be a contractive C0-semigroup on a Hilbert space H , and let P

be an orthogonal projection. Then (2) should converge.
(b) Let etA be a positive, contractive C0-semigroup on Lp(X, Σ, µ) (where

(X, Σ, µ) is a σ-finite measrure space, and 1 < p < ∞), and let P be a positive,
contractive projection. Then (2) should converge.

In this section we present two examples which disprove these conjectures.
We remark that the case p = 1 in conjecture (b) was not included, because
a positive, contractive C0-semigroup and a positive, contractive projection on
E = L1([0, 1]), such that (2) fails to converge, was already provided in [3].
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3.1 Hilbert case

Let us remark that by using the theory of unitary dilations of contractive C0-
semigroups in Hilbert spaces (see e.g. [4], Corollary 6.14) one can reduce the first
conjecture to the case of unitary C0-semigroups. Therefore, we are looking for a
counterexample among unitary C0-semigroups instead of arbitrary contractive
ones.

We carry out our construction in the space L2[0, 1]. As an example of unitary
semigroup we take the semigroup of multiplications by eith, where h is a real-
valued, measurable function on [0, 1], to be specified later. We choose P to be
the one-dimensional orthogonal projection onto the space of constant functions,

i.e. Pf = 1 ·
∫ 1

0 f(x)dx. As a test function on which (2) will fail for t = 1, we
take 1.

Denoting cn =
∫ 1

0
ei 1

n
h(x)dx, the function

[

e
1
n

AP
]n

(1) becomes cn−1
n ei 1

n
h.

However, by the Lebesgue Dominated Convergence Theorem, limn→∞ cn = 1 as

well as limn→∞ ei 1
n

h = 1 in L2[0, 1]. So, limn→∞
[

e
1
n

AP
]n

(1) exists in L2[0, 1]

if and only if the numerical limit

lim
n→∞

cn
n (3)

exists. Now we specify the function h, for which we prove that (3) diverges. Put

h =
∑∞

k=1 χ(1/2k,1/2k−1]2
kπ. Then cn =

∑∞
k=1

1
2k ei 1

n
2kπ. We show the following

two inequalities

lim inf
n→∞

|c2n |2n ≥ e−(4+ π
2

4
) (4)

lim sup
n→∞

|c2n3|2
n3 ≤ e−(6+ π

2

6
− π

4

27·24·7
). (5)

Noticing that 4 + π2

4 < 6 + π2

6 − π4

27·24·7 we get the desired result.
Let us show (4) first. Observe that

c2n =

n−1
∑

k=1

1

2k
ei 2k

2n π − 1

2n
+

∞
∑

k=n+1

1

2k
=

n−1
∑

k=1

1

2k
ei 2k

2n π.

Using the inequality cos(α) ≥ 1 − α2

2 we get

|c2n | ≥ |Re c2n | =
n−2
∑

k=1

1

2k
cos(

2k

2n
π) ≥

n−2
∑

k=1

1

2k
(1 − π2

2

4k

4n
)

= 1 − 4

2n
− π2

2

1

4n
(2n−1 − 2) = 1 − 1

2n
(4 +

π2

4
) +

π2

4n
.

Since limN→∞(1 + a
N + b

N2 )N = ea, we obtain (4).
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To prove (5) let us simplify c2n3. We have

c2n3 =
n−1
∑

k=1

1

2k
ei 2k

2n3
π +

1

2n
ei 1

3
π +

∞
∑

k=n+1

1

2k
ei 2k−n

3
π

=

n−1
∑

k=1

1

2k
ei 2k

2n3
π +

1

2n
(
1

2
+ i

√
3

2
) +

1

2n

∞
∑

k=1

1

2k
ei 2k

3
π.

Notice that ei 2k

3
π = ei(−1)k+1 2

3
π = − 1

2 + i(−1)k+1
√

3
2 . Thus,

∑∞
k=1

1
2k ei 2k

3
π =

− 1
2 + i

√
3

6 . After these computations c2n3 becomes

n−1
∑

k=1

1

2k
ei 2k

2n3
π + i

2
√

3

2n3
.

Now using the inequality cos(α) ≤ 1− α2

2 + α4

24 we obtain the following estimate

|Re c2n3| ≤
n−1
∑

k=1

1

2k

(

1 − π2

18

4k

4n
+

π4

81 · 24

16k

16n

)

= 1 − 1

2n−1
− π2

18

2n − 2

4n
+

π4

81 · 24

8n − 8

16n7

= 1 − 1

2n3

(

6 +
π2

6
− π4

27 · 24 · 7

)

+
a

(2n3)2
+

b

(2n3)4
,

for some constants a and b. Similarly, using sin(α) ≤ α, we have

|Im c2n3| ≤
n−1
∑

k=1

1

2k

2k

2n3
π +

2
√

3

2n3
≤ (n + 1)π

2n3
.

Thus,

|c2n3|2
n3 =

(

|Re c2n3|2 + |Im c2n3|2
)

2n3
2

≤ (1 − 2

2n3
(6 +

π2

6
− π4

27 · 24 · 7) + (
2

2n3
)2(n + 1)2a1

+ (
2

2n3
)2a2 + . . . + (

2

2n3
)8a8)

2n3
2 .

Passing to the upper limit as n → ∞, we finally obtain (5).

Remark 4. The function 1 is not in the domain of the generator A of our
semigroup. In fact, we see from Remark 1 above that for any function f ∈ D(A),
‖f‖ = 1 the formula (2) converges and we have

lim
n→∞

(e
t

n
APf )nf = e(Af,f) · f

where Pf denotes the orthogonal projection on the 1-dimensional subspace
spanned by f .
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3.2 L
p-case for positive semigroups

Our second example is on the Hilbert space L2[0, 2π], but now for a positive
contractive C0-semigroup and positive contractive projection.

We take etAf(x) = f(x+2πt), regarding f as a 2π-periodic function. Now let
P be the orthogonal projection onto the space spanned by the positive norm-one

function g(x) = 1√
34π

[

4 +
∑∞

k=0
1√
2k

cos 2kx
]

. Notice that, like in the previous

example, our projection is one-dimensional (see Remark 5 below). Simple sub-
stitution shows that (2) evaluated at g for t = 1 exists if and only if the numerical

limit limn→∞
[

∫ 2π

0
g(x)g(x + 1

n )dx
]n

exists. Denoting

cn =

2π
∫

0

g(x)g(x +
1

n
)dx

and using the orthogonality of cosines, we obtain

cn =
16

17
+

1

17

∞
∑

k=1

1

2k
cos

2k

n
π

Following the same calculations as for the first example, we obtain inequalities
(4) and (5) with powers doubled on the right hand sides.

This disproves the second conjecture.

Remark 5. As we have already noticed, the projections in our examples are one-
dimensional. It would be interesting to know what property of a C0-semigroup
on a Hilbert space is responsible for the existence of (2) for all one-dimensional,
or more specifically, one-dimensional orthogonal projections.

The authors are grateful to Wolfgang Arendt, András Bátkai and Bálint Farkas
for helpful conversations.
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