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Abstract

The aim of this brief is to present a finite-step algorithm for the positive realization of a rational

transfer function H(z). In comparision with previously described algorithms we emphasize that we do

not make an a priori assumption on (but, instead, include a finite step procedure for checking) the non-

negativity of the impulse response sequence of H(z). For primitive transfer functions a new method for

reducing the pole order of the dominant pole is also proposed.
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I. Introduction

The positive realization problem of a given rational transfer function H(z) of a discrete

time-invariant linear system is to find a triple A ∈ R
N×N
+ , b ∈ R

N
+ , c ∈ R

N
+ (with non-

negative entries) such that H(z) = cT (zI −A)−1b holds. The nonnegativity restriction on

the entries of A, b, c reflect physical constraints in applications. Such positive systems ap-

pear for example in modelling bio-systems, chemical reaction systems, and socio-economic

systems, as described in detail in the monograph by Farina and Rinaldi [5]. A recent

application of positive systems in the construction of CRN’s (Charge Routing Networks)

was given by Benvenuti, Farina and Anderson [2].

In [9] Ohta, Maeda and Kodama reduced the problem of positive realizability of H(z) to

finding an appropriate convex polyhedral cone in the room sandwiched by the reachability

and observability cones in the state space of an arbitrary minimal realization of H(z).

However, the problem of constructing such a polyhedral cone turned out to be highly

nontrivial (a characterization of all such cones is still lacking). In [1] Anderson, Deistler,

Farina and Benvenuti proved that such a cone is always possible to construct if H(z) is a

primitive transfer function with nonnegative impulse response. Finally, the case of non-

primitive transfer functions H(z) with nonegative impulse response was settled by Farina

in [4] by the method of downsampling the impulse response of H(z) (see also Kitano and

Maeda [8], and Förster and Nagy [6]). A common feature of the results mentioned above is

that the impulse response of H(z) is assumed to be nonnegative. However, it has not been

shown so far how one can check, in finite steps, the nonnegativity of the (clearly infinite)

impulse response sequence corresponding to H(z) (this open problem was raised in [1]).
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In the course of this brief we aim to supplement the theory of positive realizability by

tackling this problem in Section 2. In Section 3 we propose a new method of constructing

a positive realization of a primitive transfer function with multiple dominant pole. In

Section 4 we illustrate our results by an example.

II. The nonnegativity of the impulse response sequence

Let

H(z) =
p1z

n−1 + ... + pn

zn + q1zn−1 + ... + qn
=

r
∑

j=1

nj
∑

i=1

c
(i)
j

(z − λj)i
(1)

be a strictly proper rational transfer function, where λ1 denotes the nonnegative pole of

H(z) with greatest modulus. Note that the coefficients pj and qj are assumed to be real,

but the poles λj (j 6= 1) can be complex. We will use the notation hk (k = 1, 2, 3...) for

the impulse response sequence of H(z), i.e. H(z) =
∑∞

k=1 hkz
−k. A minimal realization

of H(z) will be denoted by (g, F, h). We will describe the structure of our algorithm in

several steps. The first two steps are standard in the theory of positive realizations (cf.

[1] and [4]), but we include them for completeness and convenience.

Step 1. It is well-known (cf. [1]) that a necessary condition for the existence of a positive

realization of H(z) is that λ1 be a dominant pole of H(z), i.e. the modulus of no pole

exceed λ1. Therefore, if there is no nonnegative pole of H(z), or λ1 is not dominant, we

can conclude that H(z) does not have positive realizations. Assume that λ1 is dominant.

If λ1 = 0, then the realization problem is trivial, and if λ1 > 0, then it is also well-known

that we may (and will) assume without loss of generality that λ1 = 1 (cf. [1]).

Step 2. If H(z) is not primitive (i.e. H(z) has dominant poles other than λ1 = 1),

then a necessary condition for the existence of a positive realization is that the dominant

poles of H(z) be cyclic (see [1]), i.e. there exist p ∈ N such that all the dominant poles of

H(z) satisfy the equation zp = 1. If the dominant poles are not cyclic, then we conclude

that there is no positive realization of H(z). If the dominant poles are cyclic with index

p (the smallest of the p’s above), then the necessary and sufficient condition for positive

realizability of H(z) is that all the “downsampled” transfer functions H(j)(z) := g(zI −
F p)−1F jh (for j = 0, 1, ..., p − 1) be positively realizable (see [4] and [8]). Notice that

H(z) =
∑p−1

j=0 zp−1−jH(j)(z
p).
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If some of the functions H(j)(z) are not primitive, then we apply the downsampling step

again to these functions (provided that they are cyclic), and, following the algorithm of

[4] (cf. also [8]), we arrive (after a finite number of steps) at a decomposition of the form

H(z) =
∑

s

zβsH(s)(z
αs) (2)

where 0 ≤ βs < αs, and all the functions H(s)(z) are either primitive or not cyclic. If for

any s the function H(s)(z) is not cyclic, then we conclude that H(z) does not have positive

realizations (cf. [4]). Assume therefore that all H(s)(z) are primitive. In this case, H(z) is

positive realizable if and only if the impulse response of H(z) is nonnegative (cf. [4]).

Step 3. In this step we give an upper estimate on the finite number of the terms of the

impulse response sequence hk of H(z) whose nonnegativity we need to check in order to

conclude that the whole impulse response sequence is nonnegative.

Instead of checking the impulse response of H(z) directly, we take the decomposition

H(z) =
∑

s zβsH(s)(z
αs) of Step 2, and check the impulse response of each H(s)(z). If the

impulse response of each H(s)(z) is non-negative, then clearly so is the impulse response

of H(z). The advantage of this method is that all the functions H(s)(z) are primitive.

For the sake of simplicity we will still use the notation H(z) instead of H(s)(z), but we

will assume that H(z) is primitive.

We shall use several times the following observation: if a transfer function H(z) has the

form H(z) =
∑n

k=1
ek

(z−s)k , then the impulse response sequence is

hm =
n

∑

k=1

(

m − 1

k − 1

)

sm−kek m = 1, 2, 3, . . . , (3)

(with the convention that for α < β we define
(

α
β

)

:= 0, and
(

0
0

)

:= 1 and 00 := 1).

This can be proved by using for each k = 1, 2, . . . n and |z| > |s| the formula 1
(z−s)k =

(1
z
)k[1+ s

z
+( s

z
)2 +( s

z
)3 + . . . ]k. Since we have

∑n
k=1

ek

(z−s)k = H(z) =
∑∞

m=1
hm

zm , comparing

coefficients yields the stated formula.

Recall now that for our transfer function H(z) the only dominant pole is λ1 = 1.

If c
(n1)
1 < 0, then it is clear (see the explicit formula for hk,1 and the estimates on hk

below) that for large k we have hk < 0, hence there exists no positive realization of H(z).

Therefore we can assume that c
(n1)
1 > 0, and, without loss of generality, that c

(n1)
1 = 1.
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We use the notation h
(i)
k,j for the impulse response sequence corresponding to the function

c
(i)
j

(z−λj)i , and we let hk,j :=
∑nj

i=1 h
(i)
k,j. Hence we shall have hk =

∑r
j=1 hk,j. The idea behind

the forthcoming calculations is that hk,1 turns out to be ’dominant’ in the long term

behaviour of hk, and h
(n1)
k,1 will be ’dominant’ in the long term behaviour of hk,1.

First we find an index N0 such that hk,1 ≥ 1 for all k ≥ N0. If n1 = 1, then hk,1 = 1

for all k ≥ 1, therefore we can take N0 = 1. Assume n1 > 1. Since we have λ1 = 1 and

c
(n1)
1 = 1, it follows from (3) that

hk,1 =
(

k−1
n1−1

)

+ c
(n1−1)
1

(

k−1
n1−2

)

+ ... + c
(2)
1

(

k−1
1

)

+ c
(1)
1 =

1 + [
(

k−1
n1−1

)

+ c
(n1−1)
1

(

k−1
n1−2

)

+ ... + c
(2)
1

(

k−1
1

)

+ c
(1)
1 − 1].

Let C := max{|c(n1−1)
1 |, . . . , |c(2)

1 |, |c(1)
1 |+1}, and assume that k ≥ (n1C +1)(n1−1) =: N0.

(Note that N0 ≥ 3n1 − 3 ≥ 2n1 − 1, so the finite sequence of the binomial coefficients
(

k−1
n1−1

)

,
(

k−1
n1−2

)

, ...,
(

k−1
0

)

is strictly monotonically decreasing.) For k this large we have

k−n1+1
n1−1

≥ n1C and this means that
(

k−1
n1−1

)

/
(

k−1
n1−2

)

≥ n1C. Hence for any 2 ≤ j ≤ n1 we

have
(

k−1
n1−1

)

/
(

k−1
n1−j

)

≥ n1C. This means that

hk,1 = 1 + [
(

k−1
n1−1

)

+ c
(n1−1)
1

(

k−1
n1−2

)

+ ... + c
(2)
1

(

k−1
1

)

+ c
(1)
1 − 1] ≥

1 +
(

k−1
n1−1

)

− C
∑n1−1

i=1

(

k−1
i−1

)

≥ 1,

as desired.

Next we find an index M0 such that
∑r

j=2 |hk,j| ≤ 1 for all k > M0. It follows from (3)

that hk,j =
∑nj

i=1 h
(i)
k,j =

∑nj

i=1 c
(i)
j λk−i

j

(

k−1
i−1

)

. Therefore

|hk,j| ≤
∑nj

i=1 |h
(i)
k,j| ≤

∑nj

i=1 |c
(i)
j ||λj|k−i

(

k−1
i−1

)

.

Now, there are altogether N1 :=
∑r

j=2 nj coefficients of type h
(i)
k,j so it is enough to

ensure that the modulus of each of them is not greater than 1/N1. That is, we want

|c(i)
j ||λj|k−i

(

k−1
i−1

)

≤ 1
N1

to hold. If λj = 0, then this is obviously true for k ≥ i + 1. Assume

λj 6= 0. To simplify forthcoming calculations we use the notation ρ := max{|λj| : j =

2, 3, . . . , r}, γ := max{|c(i)
j | : j = 2, 3, . . . , r; i = 1, 2, . . . , nj} and η := max{nj : j =

2, 3, . . . , r}. The desired inequality |c(i)
j ||λj|k−i

(

k−1
i−1

)

≤ 1
N1

is implied by γρk−i
(

k−1
i−1

)

≤ 1
N1

,

which is equivalent to ρk/2ρk/2
(

k−1
i−1

)

≤ ρi

N1γ
. It is easy to check that for fixed i the value of

ρk/2
(

k−1
i−1

)

is monotonically decreasing (in k) for k ≥ i−1
1−ρ1/2 + 1 =: N (i).
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We use the notation C(i) := ρ(N(i)/2)
(

N(i)−1
i−1

)

. If k ≥ N (i), then it is sufficient that

(ρ1/2)k ≤ ρi

N1γC(i) =: K(i),

therefore we can take

M0 := max{η, N (i), logρ1/2K(i), i = 1, 2, . . . η}

(Note that we include η because we must not forget about the possible pole at 0.)

This means that if k > max{N0, M0}, then hk ≥ hk,1 −
∑r

j=2 |hk,j| ≥ 0, therefore it

is definitely enough to check the nonnegativity of the first K0 := max{N0, M0} terms of

the impulse response sequence. We remark that the calculations above show that it is

sufficient to know an upper bound on the values of ρ and γ instead of the exact values.

This means that it is enough to determine the approximate locations of the poles, and the

approximate values of the partial fraction coefficients, and Step 3 can already be applied.

III. A nonnegative realization

Step 4. In order to construct a positive realization of H(z) it is sufficient to find a

positive realization for each H(s)(z) in the decomposition (2), and then apply the method

of [4] or [8]. As all H(s)(z) are primitive, we could find a positive realization of H(s)(z)

by applying the results of [1] directly. However, in this Step we propose a method for

reducing the pole order of the dominant pole, and apply the construction of [1] only when

the dominant pole is simple. This step seems to simplify the construction of [1] in the case

when H(s)(z) has a multiple dominant pole.

Again, for the sake of simplicity we will use the notation H(z) instead of H(s)(z), and

we will assume that H(z) is primitive with nonnegative impulse response.

Denote in this Step the transfer function corresponding to the “shifted” impulse response

sequence (hk, hk+1, ...) by Hk(z), i.e.

Hk(z) :=
∑∞

j=1 hj+k−1z
−j .

(Note that H(z) = H1(z).) First we make the following observation:

If Hk(z) has a nonnegative realization in N dimensions (for some k > 1), then so does

Hk−1(z) in N + 1 dimensions. (For an easy proof see [7].)

In order to construct a nonnegative realization of H(z) we take the following guidelines:
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We find a positive integer k1 so that we can construct a nonnegative realization of Hk1(z)

in some dimensions N , and then use the obsevation above to construct a nonnegative

realization of H(z) in dimensions N + k1 − 1. The index k1 will be chosen so that

Hk1(z) = [
∑n1

m=1
em

(z−1)m ] + [ d1

z−1
+

∑r
j=2

∑nj

i=1

e
(i)
j

(z−λj)i ] =: f (3)(z) + f (4)(z)

holds, where em ≥ 0 for all 1 ≤ m ≤ n1 and the whole impulse response sequence of f (4)(z)

is nonnegative. Here f (3)(z) has a trivial positive realization in n1 dimensions, and f (4)(z)

is primitive with a simple dominant pole and nonnegative impulse response, so that the

construction of [1], Theorem 4.1 can be applied. We remark that the index k1 is not

uniquely determined. In order to minimize the dimension of the realization it is important

to determine the optimal value of k1. This may be easy to do for a particular transfer

function H(z), but a general formula for the optimal value of k1 does not seem possible

to find. The proof below shows only that such an index k1 always exists.

Assume that n1 > 1. Notice that

Hk(z) =
∑∞

j=1 hk+j−1z
−j = zk−1H(z) −

∑k−1
r=1 hrz

k−r−1.

In particular, the formula H2(z) = zH(z) − h1 = (z − 1)H(z) + H(z) − h1 shows that in

the partial fraction decomposition of H2(z) the part corresponding to λ1 = 1 is given by

1
(z−1)n1

+
∑n1−1

j=1
c
(j)
1 +c

(j+1)
1

(z−1)j

From this it follows by mathematical induction with respect to k that the partial fraction

part corresponding to λ1 = 1 in Hk(z) is given by

1

(z − 1)n1
+

n1−1
∑

j=1

∑n1

i=j

(

k−1
i−j

)

c
(i)
1

(z − 1)j
. (4)

If k ≥ N0 (as in Step 3), then
(

k−1
j

)

/
(

k−1
j−1

)

≥ n1C for all j = 1, 2, ..., n1 − 1. Therefore,

we see as in Step 3 that for k ≥ N0 all the numerators in (4) are not less than 1. Therefore,

HN0(z) = [
∑n1

m=2
dm

(z−1)m ] + [ d1

z−1
+

∑r
j=2

∑nj

i=1

d
(i)
j

(z−λj)i ] =: f (1)(z) + f (2)(z).

where dm ≥ 1 for all 1 ≤ m ≤ n1 (but the first few terms of the impulse response

sequence of f (2)(z) may be negative!). We can now apply the estimates of Step 3 to the

function f (2)(z) and obtain a number K̃0 such that the impulse response of the function
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f (2)(z) becomes nonnegative if k ≥ K̃0. This means that we can take k1 = N0 + K̃0, and

the desired decomposition Hk1(z) = f (3)(z) + f (4)(z) holds. Now, the construction of [1]

Theorem 4.1 applies to f (4)(z), and we can combine the positive realizations of f (3)(z) and

f (4)(z) to get a positive realization of Hk1(z). Then we obtain a positive realization of

H(z) by applying the observation above.

We remark that an upper bound on the dimension of the positive realization constructed

in [1], Theorem 4.1 has not yet been presented. Such dimension estimate is possible to

prove, but the proof is fairly long and mathematically involved. It will be presented in a

forthcoming publication.

IV. Example

We illustrate the steps of the algorithm by the following example. Let

H(z) =
1+z− 1

4
z2

z3−1
+ 1/3

(z−1)2
+ 2/3

z−1/2
+ 2/3

z+1/2
− 1

z+0.9
.

Then p = 3, and the downsampled functions are

H(0)(z) = −1/4
z−1

+ 1
(z−1)2

+ 2/3
z−1/8

+ 2/3
z+1/8

− 1
z+0.729

H(1)(z) = 4/3
z−1

+ 1
(z−1)2

+ 1/3
z−1/8

− 1/3
z+1/8

+ 0.9
z+0.729

H(2)(z) = 5/3
z−1

+ 1
(z−1)2

+ 1/6
z−1/8

+ 1/6
z+1/8

− 0.81
z+0.729

.

Next we check the nonnegativity of the impulse response of H(z) by checking each

H(s)(z) (s = 0, 1, 2). For s = 0 we have n1 = 2, C = 5/4 and N0 = 4. Further, following

the definitions, we have N1 = 3, ρ = 0.729, γ = 1, η = 1, N (1) = 1, C(1) =
√

0.729,

K(1) =
√

0.729
3

, and logρ1/2K(1) = 7.95. Therefore it is sufficient to check the first K0 = 8

terms of the impulse response sequence of H(0)(z). Following similar calculations we deduce

that it is enough to check the nonnegativity of the first 8 terms of the impulse response

sequence of H(1)(z), and the first 7 terms in the case of H(2)(z).

Next, we construct a positive realization for each H(s)(z) (s = 0, 1, 2). In the case

of H(0)(z) we apply Step 4 with k1 = 1. The ’shifted’ transfer function is given by

H2(z) = [ 1
(z−1)2

] + [ 3/4
z−1

+ 1/12
z−1/8

− 1/12
z+1/8

+ 0.729
z+0.729

] = f (3)(z) + f (4)(z)

Now, a positive realization for f (3)(z) and f (4)(z) is given by the triplets (c3, A3, b3) and

(c4, A4, b4), respectively, where
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c3 =
(

1 0
)

, A3 =





1 1

0 1



 , b3 =





0

1



,

c4 =
(

1 0 1.972 0.291412
)

, A4 =















0 1 0 0

1/64 0 0 0

0 0 0 0.729

0 0 1 0.271















, b4 =















0

1/48

0.75

0















.

Now we apply the observation of Step 4 (cf. [7]), and give a positive realization of

H(0)(z) by

c0 =
(

1/12, c3, c4

)

, A0 =











0 0 0

b3 A3 0

b4 0 A4











, b0 =











1

0

0











The cases of H(1)(z) and H(2)(z) are ’trivial’ because we can take k1 = 0 in Step 4, and

write

H(1)(z) = [ 1
(z−1)2

] + [ 4/3
z−1

+ 1/3
z−1/8

− 1/3
z+1/8

+ 0.9
z+0.729

]

H(2)(z) = [ 1
(z−1)2

] + [ 5/3
z−1

+ 1/6
z−1/8

+ 1/6
z+1/8

− 0.81
z+0.729

].

In both cases positive realizations of dimension 6 can be given as follows:

c1 =
(

1 0 1 0 1.675 0.507925
)

, A1 =



























1 1 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 1/64 0 0 0

0 0 0 0 0 0.729

0 0 0 0 1 0.271



























, b1 =



























0

1

0

1/12

4/3

0



























c2 =
(

1 0 1 0 0.514 1.354294
)

, A2 =



























1 1 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 1/64 0 0 0

0 0 0 0 0 0.729

0 0 0 0 1 0.271



























, b2 =



























0

1

1/3

0

5/3

0



























A positive realization of the original H(z) is then possible to construct as in [4] or [8].
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V. Conclusions

In this brief we provided a general finite step procedure for checking the nonnegativity of

the impulse response sequence of H(z), which answers an open problem raised in [1]. For

primitive transfer functions a new method of positive realization was proposed by reducing

the pole order of the dominant pole.
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