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Abstract

It is a standard result in linear-system theory that an nth-order rational transfer function of a SISO

system always admits a realization of order n. In some applications, however, one is restricted to realiza-

tions with nonnegative entries (i.e. a positive system), and it is known that this restriction may force the

order N of realizations to be strictly larger than n. In this brief we present a class of transfer functions

where positive realizations of order n do exist. With the help of our restult we give improvements on some

earlier results in positive-system theory.
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I. Introduction

Let the transfer function

H(z) =
p1z

n−1 + ... + pn

zn + q1zn−1 + ... + qn

of a discrete time-invariant linear SISO system of McMillan degree n be given.

It is a standard result in linear-system theory (see e.g. [7], Chapter 9) that an nth order realization

of h(z) (i.e. a triple A ∈ R
n×n, b, c ∈ R

n such that h(z) = cT (zI − A)−1b) always exists. In this note,

however, we are interested in the positive realization problem, i.e. finding A, b, c with non-negative entries.

The nonnegativity restriction on the entries of A, b, c, reflecting physical constraints in applications, may

force the dimension N of realizations to be strictly larger than n. Such positive systems appear for

example in modelling bio-systems, chemical reaction systems, and socio-economic systems, as described

in detail in the monograph [7].

Recent applications of positive-system theory include a MOS-based technology for discrete-time fil-

tering (the so-called charge routing networks, see [5]), and the design of fiber optic filters [2]. In fact,

the theoretic background in these applications is the following modification of the the positive realization

problem: decompose an arbitrary transfer function H(z) as the difference H(z) = H1(z) − H2(z) of two

transfer functions with positive realizations of dimension N1, N2, respectively, and give a priori estimates

on the values of N1 and N2. This problem will be referred to as the positive decomposition problem. For a

more detailed description of how the positive realization problem and the positive decomposition problem

are related, see the excellent paper [5] and also Section II below.

It is well-known in positive-system theory that the nonnegativity constraint may force the dimension

N of positive realizations to be strictly larger than the McMillan degree n (see [1], [3], [9] for different

reasons why this phenomenon may occur). Therefore, the minimality problem (i.e. finding the lowest

possible value of N) is far from trivial, and has been dealt with in a number of papers (see [4], [6], [8],

[5]). A general algorithm of determining the lowest possible value of N is not known.

In this note we describe a class of transfer functions where N = n is possible to achieve. The results

enable us to give improvements of some estimates in [8] and [5].
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II. Minimal realizations

In this section we provide a minimal positive realization for a class of transfer functions, and show

how our result can be used to improve dimension estimates in [8] and [5].

Theorem 1: Consider the transfer function

H(z) :=
c0

z − 1
+

n−1
∑

j=1

cj

z − λj

,

where 0 ≤ λj < 1 and cj < 0. The necessary and sufficient condition for H(z) to have a positive realization

of dimension n is that
∑n−1

j=1 (−cj) ≤ c0.

Proof. The necessity of the condition is clear, because the first Markov coefficient of H(z) is h1 =

c0 +
∑n−1

j=1 cj , which has to be nonnegative in order to allow the possibility of positive realizations.

The proof of sufficiency is a simple construction of a positive realization (c, A, b). Let c := (1, 0, ..., 0)T

and b := (c0 +
∑n−1

j=1 cj , c1(λ1 − 1), . . . , cn−1(λn−1 − 1))T and

A :=

































1 1 1 . . . 1

0 λ1 0 . . . 0

0 0 λ2 . . . 0

. . . . . . .

. . . . . . .

. . . . . λn−2 0

0 0 0 . . 0 λn−1

































It is straightforward to check that the triple (c, A, b) gives a positive realization of H(z). It is also clear

that this realization is minimal, because any realization of H(z) must be of order at least n. We remark

also, that the dominant pole of H(z) is placed at 1 as a matter of convenience, only; the same construction

(with trivial modifications) can be applied, regardless of the position of the (positive) dominant pole, as

long as the coefficient of the dominant pole majorizes the sum of the coefficients of the other poles (see

Example 1 below).

As a comparison of this theorem with existing results in positive-system theory we note the following:

a; In the case of n = 3 our result is weaker than that of [6], Theorem 3, where a necessary and

sufficient condition is presented for arbitrary signs of c1, c2 (whereas we deal with the case cj < 0 only).

It seems, however, that in the case of n ≥ 4 our result gives a new necessary and sufficient condition for

n = N to hold, for a class of transfer functions which has not yet appeared in the literature. We also

remark the important fact that our method is constructive, so that a positive realization can be explicitly

given.

b; At first glance, the condition cj < 0 appears to be very restrictive, so that the class of transfer

functions considered in Theorem 1 is small. This is not quite the case, however, as demonstrated by the

following example.
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Example 1. Consider the transfer function

H(z) =
1

z − 1
−

0.2

z − 0.8
−

0.4

z − 0.7
+

5

z − 0.5
−

0.3

z − 0.4
−

3

z − 0.25
−

2

z − 0.2

In order to apply Theorem 1 we re-group the terms as

H(z) =

(

1

z − 1
−

0.2

z − 0.8
−

0.4

z − 0.7
−

0.3

z − 0.4

)

+

(

5

z − 0.5
−

3

z − 0.25
−

2

z − 0.2

)

We see that in each bracket Theorem 1 can be applied, and therefore H(z) has a positive realization of

dimension 4+3=7.

c; In this and the next point we combine the result of Theorem 1 with existing algorithms in positive-

system theory.

As a corollary of Theorem 1 we can improve the estimates of [8], Theorem 5 (for an illustrative

example see Example 2 below).

Corollary 1: Consider the transfer function

H(z) =
1

z − 1
+

N1
∑

j=1

cj

z − λj

+

N2
∑

j=N1+1

cj

z − λj

+

N3
∑

j=N2+1

cj

z − λj

where 0 < cj, 0 ≤ λj < 1 for 1 ≤ j ≤ N1, and cj < 0, 0 ≤ λj < 1 for N1 + 1 ≤ j ≤ N2, and cj ∈ R,

−1 < λj < 0 for N2 + 1 ≤ j ≤ N3. Assume that H(z) has nonnegative impulse response (this asumption

is necessary, but can readily be checked in practice). Then H(z) has a positive realization of dimension

not greater than Ñ + N1 + (1 + N2 − N1) + 2(N3 − N2), where Ñ denotes the smallest positive integer

such that
∑N3

j=N1+1 |cj ||λj |
Ñ ≤ 1.

Proof. In principle, we follow the idea of the proofs of [8], Theorems 4-5. Let

HÑ (z) :=
1

z − 1
+

N1
∑

j=1

cjλ
Ñ
j

z − λj

+

N2
∑

j=N1+1

cjλ
Ñ
j

z − λj

+

N3
∑

j=N2+1

cjλ
Ñ
j

z − λj

We can construct a positive realization of HÑ (z) in N1 + (1 + N2 − N1) + 2(N3 − N2) dimensions in

the following way:

The first sum of N1 nonnegative poles with positive residues are trivial to realize in N1 dimensions in

canonical Jordan (diagonal) form.

The second sum containing the nonnegative poles with negative residues can be coupled with the

term
1−
∑N3

j=N2+1
|cj||λj |

Ñ

z−1 and then a positive realization of dimension 1+N2−N1 can be constructed with

the help of Theorem 1 (notice that 1 −
∑N3

j=N2+1 |cj ||λj |
Ñ ≥

∑N2

j=N1+1 |cj ||λj |
Ñ so that the conditions of

Theorem 1 hold). This is where we have an improvement compared to the method of [8].

The third sum containing negative poles can be coupled with the remainder term
∑N3

j=N2+1
|cj||λj |

Ñ

z−1

and then the whole sum can be written as

N3
∑

j=N2+1

(

|cj ||λj |Ñ

z − 1
+

cjλ
Ñ
j

z − λj

)

.
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Each term in the sum has a two-dimensional positive realization which altogether give a dimension of

2(N3 − N2).

After constructing this positive realization of HÑ (z) we can follow the simple construction of [8],

Theorem 5 to get a positive realization of H(z) of dimension Ñ + N1 + (1 + N2 − N1) + 2(N3 − N2).

We give a numerical example to illustrate the result of Corollary 1.

Example 1. Let

H(z) =
1

z − 1
+

8

z − 0.25
−

3

z − 0.4
−

2

z − 0.3
+

5

z + 0.2

It is easy to see that in this case Ñ = 2, and

H2(z) =
1

z − 1
+

0.5

z − 0.25
−

0.48

z − 0.4
−

0.18

z − 0.3
+

0.2

z + 0.2
=

(

0.5

z − 0.25

)

+

(

0.8

z − 1
−

0.48

z − 0.4
−

0.18

z − 0.3

)

+

(

0.2

z − 1
+

0.2

z + 0.2

)

We see that N1 = 1, N2 = 3 and N3 = 4.

The first bracket has a 1-dimensional positive realization:

c1 = 1, A1 = 0.25, b1 = 0.5.

We apply Theorem 1 to the second bracket, and get the realization:

c2 = (1, 0, 0)T and b2 = (0.14, 0.288, 0.126)T and

A2 =









1 1 1

0 0.4 0

0 0 0.3









Then we construct the following 2-dimensional positive realization for the third bracket:

c3 = (0.4, 0.16) and b3 = (1, 0)T , and

A3 =





0 0.2

1 0.8





The parallel connection c = (c1, c2, c3) and b = (b1, b2, b3)
T and

A =









A1 0 0

0 A2 0

0 0 A3









of these realizations then gives a positive realizaton of H2(z) of dimension 6. Finally, applying the

construction of Theorem 5 in [8] we get the following positive realization of H(z) of dimension 8:

cH = (0.2, 9, c) and bH = (0, 1, 0), and

AH =









0 1 0

0 0 0

b 0 A
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Comparing this with the algorithm described in [8], Theorems 4-5 (which gives a positive realization

of H(z) of dimension 11), we can see a considerable improvement. We remark, however, that this gen-

eral algorithm (as already pointed out in [8]) does not necessarily provide a minimal dimension positive

realization of H(z).

d; As a further application of Theorem 1 we give a slight improvement of [5], Theorem 8, concerning

the positive decomposition problem. We remark that applications of the positive decomposition problem

in the design of charge routing networks and fiber optic filters are given in [5] and [2].

Corollary 2: Let H(z) be a strictly proper asymptotically stable transfer function of order n with

simple (possibly complex) poles. Then H(z) can be realized as the difference of an N dimensional positive

system and a 1-dimensional positive system with

N = 1 + n + N2 +
∑

i≥3

(i − 2)Ni

where N2 is the number of negative real poles of H(z), N3 is the number of pairs of complex poles of H(z)

belonging to P3, and Ni is the number of pairs of complex poles belonging to

Pi \ ∪
i−1
j=3Pj ,

(where the region Pj denotes the set of points in the complex plane that lie in the interior of the regular

polygon with j edges having one vertex in point 1 and center at 0. Pj can be defined in polar coordinates

as in [5]:

Pj := {(ρ, θ) : ρcos[
(2k + 1)π

j
− θ] < cos

π

j
}

with k = 0, 1, . . . , j − 1.) The term 1 + n in the formulation of N can be reduced to n if H(z) does not

contain nonnegative poles with negative residue.

Proof. Note that the improvement compared to [5] is that in our formulation the number N2 does

not include the number of nonnegative poles with negative residues. In case the number of such poles is

0 or 1 we do not have an improvement. However, if the number of such poles is at least 2, our dimension

N is strictly less than that of [5], Theorem 8.

To prove Corollary 2 we apply the constructions of the proof of [5], Theorem 8, with approprite

modifications when dealing with nonnegative poles with negative residues.

Write H(z) = H1(z) − H2(z), where H2(z) := R
z−1 with R > 0 sufficiently large. Then H2(z) is a

one-dimensional positive system, therefore it is enough to construct a positive realization of H1(z) of the

prescribed dimension N .

Consider the real poles of H1(z) first.

A partial fraction part of H1(z) of the form c
z−λ

has a positive realization of dimension 1 if c > 0, λ > 0.

A partial fraction part of H1(z) of the form
Rj

z−1 +
cj

z−λj
(with Rj > 0 sufficiently large), has a positive

realization of dimension 2 if λj < 0. (This is the point of our improvement: we do not need to include

the case λj > 0 and cj < 0 here, but we treat them separately in the next step.)
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With the help of Theorem 1 we can handle the nonnegative poles with negative residues all together,

as opposed to the one-by-one method of the original proof. Indeed, a partial fraction part of H1(z) of the

form RK

z−1 +
∑K

j=1
cj

z−λj
(with Rj > 0 sufficiently large, λj ≥ 0 and cj < 0), has a positive realization of

dimension K + 1 by Theorem 1.

Finally, the complex poles can be treated as in [5]: a partial fraction part of H1(z) of the form
Rj

z−1 +
c1,j+c2,jz

(z−λj)(z−λj)
(with Rj > 0 sufficiently large), has a positive realization of dimension j if λ ∈ Pj .

(For the non-trivial proof of this result we refer to [5].) A parallel connection of these realizations gives a

positive realization of H1(z) of dimension N .

We also see from the construction that if the number K of nonnegative poles with negative residues

is 0, then the “+1” dimension in the formula above is not needed, and if K = 1, then we get the same

dimension as in [5], Theorem 8.

III. Conclusion

In the course of this brief we constructed a minimal positive realization for a class of transfer functions

H(z). Combining our result with existing algorithms we gave improvements of some constructions in

positive-system theory. The combination of the ideas resulted in improved dimension estimates for positive

realizations.
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