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Abstract. For finite sets of integers A1, . . . , An we study the cardinality of the n-fold
sumset A1 + · · · + An compared to those of (n − 1)-fold sumsets A1 + · · · + Ai−1 +
Ai+1 + · · · + An. We prove a superadditivity and a submultiplicativity property for
these quantities. We also examine the case when the addition of elements is restricted
to an addition graph between the sets.

1. Introduction

Let A1, A2, . . . , An be finite sets of integers. How does the cardinality of the n-
fold sumset A1 + A2 + · · · + An compare to the cardinalities of the (n − 1)-fold sums
A1 + · · ·+ Ai−1 + Ai+1 + · · · + An?

In the special case when all the sets are the same, Ai = A ⊂ Z, Vsevolod Lev [8]

proved that the quantity |kA|−1

k
is increasing (where we have used the standard notation

for the k-fold sum A + A + · · ·+ A = kA). The first cases of this result assert that

(1.1) |2A| ≥ 2|A| − 1

and

(1.2) |3A| ≥ 3

2
|2A| − 1

2
.

Inequality (1.1) can be extended to different summands as

(1.3) |A + B| ≥ |A| + |B| − 1,

and this inequality also holds for sets of residues modulo a prime p, the only obstruction
being that a cardinality cannot exceed p, i.e.

(1.4) |A + B| ≥ min(|A| + |B| − 1, p);

this familiar result is known as the Cauchy-Davenport inequality.
The third author asked whether inequality (1.2) can also be extended to different

summands in the following form:

(1.5) |A + B + C| ≥ |A + B| + |B + C| + |A + C| − 1

2
.

Lev noticed (personal communication) that this is true in the case when the sets have the
same diameter. (The diameter of a set is the difference of its maximum and minimum.)
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In this paper we establish this property in general, for an arbitrary number of summands,
and with the extra twist that in the n-fold sumset it is sufficient to use the smallest or
largest element of at least one of the summands.

Theorem 1.1. Let A1, . . . , Ak be finite, nonempty sets of integers. Let A′
i be the set

consisting of the smallest and the largest elements of Ai (so that 1 ≤ |A′
i| ≤ 2). Put

S = A1 + · · ·+ Ak,

Si = A1 + · · · + Ai−1 + Ai+1 + · · ·+ Ak,

S ′
i = A1 + · · ·+ Ai−1 + A′

i + Ai+1 + · · ·+ Ak,

S ′ =
k
⋃

i=1

S ′
i.

We have

(1.6) |S| ≥ |S ′| ≥ 1

k − 1

k
∑

i=1

|Si| −
1

k − 1
.

The possibility to extend inequality (1.2) to residues modulo a prime p was investi-
gated in a paper by Gyarmati, Konyagin, Ruzsa [6]. A naive attempt to extend it in
the form

|3A| ≥ min

(

3

2
|2A| − 1

2
, p

)

fails unless |A| is very small in comparison to p, and for larger values the relationship
between the sizes of 2A and 3A is complicated.

In a sense, Theorem 1.1 means that the cardinality of sumsets grows faster than
linear. On the other hand, we show that it grows slower than exponential. For identical

summands this means that |kA|1/k is decreasing. This is Theorem 7.5 in Nathanson’s
book [11]; more details will be given in Section 4.

Here we establish a more general result for different summands.

Theorem 1.2. Let A1, . . . , Ak be finite, nonempty sets in an arbitrary commutative
semigroup. Put

S = A1 + · · ·+ Ak,

Si = A1 + · · · + Ai−1 + Ai+1 + · · ·+ Ak.

We have

(1.7) |S| ≤
(

k
∏

i=1

|Si|
)

1

k−1

.

For three summands this inequality was established earlier by the third author [15,
Theorem 5.1]. The proof given in [15] is different and works also for noncommutative
groups with a proper change in the formulation. On the other hand, that argument relied
on the invertibility of the operation, so we do not have any result for noncommutative
semigroups. Neither could we extend that argument for more than three summands,
and hence the following question remains open.
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Problem 1.3. Let A1, . . . , Ak be finite, nonempty sets in an arbitrary noncommutative
group. Put

S = A1 + · · ·+ Ak,

ni = max
a∈Ai

|A1 + · · · + Ai−1 + a + Ai+1 + · · · + Ak| .

Is it always true that

(1.8) |S| ≤
(

k
∏

i=1

ni

)

1

k−1

?

The superadditivity property clearly does not hold in such a general setting (as it
fails already mod p, see [6]). However, it can easily be extended to torsion-free groups
(just as everything that holds for finite sets of integers) with the change of formulation
that “smallest” and “largest” do not make sense in such generality.

Theorem 1.4. Let A1, . . . , Ak be finite, nonempty sets in a torsion-free group G,

S = A1 + · · ·+ Ak,

Si = A1 + · · · + Ai−1 + Ai+1 + · · ·+ Ak.

There are subsets A′
i ⊂ Ai having at most two elements such that with

S ′
i = A1 + · · ·+ Ai−1 + A′

i + Ai+1 + · · ·+ Ak,

S ′ =
k
⋃

i=1

S ′
i

we have

(1.9) |S| ≥ |S ′| ≥ 1

k − 1

k
∑

i=1

|Si| −
1

k − 1
.

Another natural way of generalizing Theorem 1.2 is to restrict the summation of
elements to a prescribed addition graph. A possible meaning of this in the case k = 3
(and identical sets) could read as follows. We consider a graph G on our set A; on
the right hand side of the proposed inequality we take the number of different sums of
connected pairs; on the left hand side we take the number of different sums of those

triplets where each pair is connected. However, the resulting inequality, |A
G
+A

G
+A|2 ≤

|A
G
+ A|3, can fail spectacularly. Take A = [1, n], let S be some subset of the even

integers lying in the interval (2n/3, 4n/3), and connect two elements of A if their sum
is in S. Then for every s1, s2, s3 ∈ S we can find a1, a2, a3 ∈ A, a1 = (−s1 + s2 + s3)/2,
etc., whose pairwise sums give these si’s. Also, a1+a2+a3 = (s1+s2+s3)/2. Therefore,
if S is such that all the triple sums s1 + s2 + s3 are distinct, then the above mapping
(s1, s2, s3) 7→ (a1, a2, a3) is injective, and the left-hand side of the inequality will be at

least
(

|S|
3

)2 ≈ 1

36
|S|6, much larger than the right hand side, which is |S|3.

It would be interesting to say something when the graphs are sufficiently dense.
However, we will prove a similar statement in the case when only one pair of sum-

mands is restricted.
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Theorem 1.5. Let A, B1, B2 be finite sets in a commutative group, and S ⊂ B1 + B2.
Then

(1.10) |S + A|2 ≤ |S||A + B1||A + B2|
The analogous statement for more than three sets remains an open problem.

Problem 1.6. Let A, B1, . . . Bk be finite sets of integers, and S ⊂ B1 + · · · + Bk. Is it
true that

(1.11) |S + A|k ≤ |S|
k
∏

i=1

|A + B1 + · · · + Bi−1 + Bi+1 + · · ·+ Bk| ?

2. Proof of superadditivity

In this section we prove Theorems 1.1 and 1.4.

Proof of Theorem 1.1. Both sides of the inequality are invariant under translation, there-
fore we can assume that the smallest element of each Ai is 0. Also, let us denote the
largest element of Ai by ai. Then S is a subset of the interval I = [0, a1 + a2 + · · ·+ ak].

We will use the notation A≤a := A∩ (−∞, a], and A>a := A∩ (a, +∞). Consider the
sets

(a1 + S1)>a1
(S2)≤a1

(a2 + S2)>a1+a2
(S3)≤a1+a2

. . . . . .

(ak−2 + Sk−2)>a1+···+ak−2
(Sk−1)≤a1+···+ak−2

(ak−1 + Sk−1)>a1+···+ak−1
(Sk)≤a1+···+ak−1

We are going to calculate the total cardinality of these sets in two ways. First, each
Si, 2 ≤ i ≤ k − 1 contributes two items to this table, an initial segment to a right hand
column and a translation of the corresponding final segment to the left hand column of
the next row; these add up to |Si|. The set S1 occurs only as the very first item and it
contributes |S1| − 1; the set Sk occurs as the last item and it contributes |Sk|. Hence
the sum of cardinalities is

∑ |Si| − 1.
On the other hand, the two sets in each row are disjoint and they are subsets of S ′.

Consequently the total size of the sets is at most (k − 1) |S ′|. By comparing this upper
estimate to the previous sum we obtain

(2.1) (k − 1)|S| ≥ (k − 1)|S ′| ≥
k
∑

i=1

|Si| − 1

as claimed. �

Proof of Theorem 1.4. This is a standard reduction argument to the case of integers.
Let H denote the subgroup generated by the elements of ∪k

i=1Ai. As a finitely generated
torsion-free group H is isomorphic to Z

d for some d, therefore we can assume without
loss of generality that Ai ⊂ Z

d. Then, for a large enough integer m the homomorphism
φm : Z

d → Z defined by (z1, z2, . . . zd) 7→ mz1 + m2z2 + . . .mdzd preserves the additive
identities of all elements of sumsets involved in the desired inequality (this means that
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φm is one-to-one restricted to these elements). Finally, if Bi denotes the image of Ai

under φm then the desired two-element subsets A′
i can be chosen as A′

i = φ−1
m (B′

i). �

3. Proof of submultiplicativity

In this section we prove Theorem 1.2. We begin with a lemma on the size of projec-
tions.

Lemma 3.1. Let d ≥ 2 be an integer, X1, . . . , Xd arbitrary sets,

B ⊂ X1 × · · · × Xd

be a finite subset of their Cartesian product. Let

Bi ⊂ X1 × · · · × Xi−1 × Xi+1 × · · · × Xd

be the corresponding “projection” of B:

Bi = {(x1, . . . , xi−1, xi+1, . . . , xd) : ∃x ∈ Xi such that (x1, . . . , xi−1, x, xi+1, . . . , xd) ∈ B}.
We have

(3.1) |B|d−1 ≤
d
∏

i=1

|Bi| .

This lemma is not new. It is essentially equivalent to an entropy inequality of Han [7],
see also Cover–Thomas [5, Theorem 16.5.1]. It also follows from Shearer’s inequality [4]
or from Bollobás and Thomason’s Box Theorem [3]. We include a proof for convenience.

Proof. We prove this lemma by induction on d. For d = 2 the statement is obvious.
Assume now that the statement holds for d − 1, and consider the case d.

Make a list {b1, b2, . . . , bt} of those numbers which appear as a first coordinate of
some element in B. Partition the set B according to these first coordinates as

(3.2) B = B(b1) ∪ B(b2) ∪ · · · ∪ B(bt),

where

(3.3) B(bi) = {(bi, x2, x3, . . . , xd) = b : b ∈ B}.
By the inductive hypothesis we have |B(bi)|d−2 ≤ |B(bi)2| · · · |B(bi)d| , that is,

(3.4) |B(bi)|
d−2

d−1 ≤ (|B(bi)2| · · · |B(bi)d|)
1

d−1 .

It is also clear that |B(bi)| ≤ |B1| , and hence

(3.5) |B(bi)| ≤ (|B(bi)2| · · · |B(bi)d|)
1

d−1 |B1|
1

d−1 .

Using this and Hölder’s inequality we obtain

|B| =
t
∑

i=1

|B(bi)| ≤ |B1|
1

d−1

t
∑

i=1

(|B(bi)2| · · · |B(bi)d|)
1

d−1 ≤(3.6)

≤ |B1|
1

d−1

d
∏

j=2

(

t
∑

i=1

|B(bi)j|
)

1

d−1

=
d
∏

j=1

|Bj |
1

d−1 ,(3.7)

which proves the statement. �

We now turn to the proof of Theorem 1.2.
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Proof. Let us list the elements of the sets A1, A2, . . . , Ak in some order:

A1 = {c11, c12, . . . , c1t1},
A2 = {c21, c22, . . . , c2t2},

...

Ak = {ck1, ck2, . . . , cktk}.
For each s ∈ S let us consider the decomposition

(3.8) s = c1i1 + c2i2 + · · · + ckik,

where the finite sequence (i1, i2, . . . , ik), composed of the (second) indices of cjij , is
minimal in lexicographical order. Let us define a function f from S to the Cartesian
product A1 × A2 × · · · × Ak, by

(3.9) f(s) = (c1i1 , c2i2 , . . . , ckik) ∈ A1 × · · · × Ak.

This function is well-defined, and it maps the set S to a set B ⊂ A1 × · · · × Ak such
that |B| = |A1 + · · · + Ak| . Applying Lemma 3.1 to the set B we get

(3.10) |B|k−1 ≤ |B1| |B2| · · · |Bk| .
Therefore, it is sufficient to show that

(3.11) |Bj | ≤ |A1 + A2 + · · ·+ Aj−1 + Aj+1 + · · ·+ Ak| .
This inequality, however, follows easily from the fact that sum of the coordinates is
distinct for each element in Bj . Indeed, assume that there exist two elements z 6= z′ ∈ Bj

such that
z = (c1i1 , c2i2 , . . . , cj−1ij−1

, cj+1ij+1
, . . . ckik),

z′ = (c1i′
1
, c2i′

2
, . . . , cj−1i′j−1

, cj+1i′j+1
, . . . , cki′

k
),

and
c1i1 + c2i2 + · · · + ckik = c1i′

1
+ c2i′

2
+ · · ·+ cki′

k
.

We may assume that

(i1, i2, . . . , ij−1, ij+1, . . . , ik) < (i′1, i
′
2, . . . , i

′
j−1, i

′
j+1, . . . , i

′
k).

in lexicographical order.
Now, z′ ∈ Bj therefore there exists an element d ∈ Aj and u ∈ S, such that

u = c1i′
1
+ c2i′

2
+ · · · + cj−1i′j−1

+ d + cj+1i′j+1
+ · · ·+ cki′

k
,

and
f(u) = (c1i′

1
, c2i′

2
, . . . , cj−1i′j−1

, d, cj+1i′j+1
, . . . , cki′

k
) ∈ B.

Note that
u = c1i1 + c2i2 + · · · + cj−1ij−1

+ d + cj+1ij+1
+ · · ·+ ckik ,

also holds. However, with d = cjij we have

(i1, i2, . . . , ij−1, ij, ij+1, . . . , ik) < (i′1, i
′
2, . . . , i

′
j−1, ij , i

′
j+1, . . . , i

′
k).

in lexicographical order, therefore the definition of f implies that
f(u) 6= (c1i′

1
, c2i′

2
, . . . , cj−1i′j−1

, d, cj+1i′j+1
, . . . , cki′

k
), a contradiction. �

A similar method is used by Alon [1] for the particular case when we have sets instead
of numbers, the operation is intersection, and the sets Ai are identical. As Alon observes,
the same approach works for general semigroups where the elements are idempotent.
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4. Restricted sums and Plünnecke-type results

Plünnecke [12] developed a graph-theoretic method to estimate the density of sumsets
A + B, where A has a positive density and B is a basis. The third author published a
simplified version of his proof [13, 14]. Accounts of this method can be found in Malouf
[9], Nathanson [11], Tao and Vu [16].

The simplest instance of Plünnecke’s inequality for finite sets goes as follows.

Theorem 4.1. Let 1 ≤ i ≤ h be integers, A 6= ∅ and B finite sets in a commutative
group and write |A| = m, |A + iB| = αm. There exists an X ⊆ A, X 6= ∅ such that

(4.1) |X + hB| ≤ αh/i|X|.

This is sufficient to deduce the monotonicity of |kA|1/k. Indeed, in the above result
replace B by A and A by {0}. Then α = |iA|, the only possibility is X = {0} and (4.1)

reduces to |kA| ≤ |iA|k/i.
The application to different summands is less straightforward. We start from the

following result from [13], which extends the case i = 1 of Theorem 4.1 to the addition
of different sets.

Theorem 4.2. Let A 6= ∅, B1, . . . , Bh be finite sets in a commutative group and write
|A| = m, |A + Bi| = αim, for 1 ≤ i ≤ h. There exists an X ⊆ A, X 6= ∅ such that

(4.2) |X + B1 + · · · + Bh| ≤ α1α2 . . . αh|X|.
In the sequel we will need a ’large’ subset X ⊂ A, not just a non-empty one. This

will be achieved by the following result.

Theorem 4.3. Let A, B1, . . . , Bh be finite sets in a commutative group and write |A| =

m,
∏h

i=1
|A + Bi| = s, B1 + · · ·+ Bh = B. Let an integer k be given, 1 ≤ k ≤ m. There

exists an X ⊆ A, |X| ≥ k such that

(4.3) |X + B| ≤ s

mh
+

s

(m − 1)h
+ · · ·+ s

(m − k + 1)h
+ (|X| − k)

s

(m − k + 1)h
.

Proof. We use induction on k. The case k = 1 is Theorem 4.2.
Assume we know it for k; we prove it for k + 1. The assumption gives us a set X,

|X| ≥ k with a bound on |X + B| as given by (4.3). We want to find a set X ′ with
|X ′| ≥ k + 1 and

(4.4) |X ′ + B| ≤ s

mh
+

s

(m − 1)h
+ · · ·+ s

(m − k)h
+ (|X ′| − k − 1)

s

(m − k)h
.

If |X| ≥ k +1, we can put X ′ = X. If |X| = k, we apply Theorem 4.2 to the sets A\X,
B1, . . . , Bh. This yields a set Y ⊂ A \ X such that

|Y + B| ≤ s

(m − k)h
|Y |

and we put X ′ = X ∪ Y . �

The following version is more convenient for calculations.

Theorem 4.4. Let A, B1, . . . , Bh be finite sets in a commutative group and write
|A| = m,

∏h
i=1

|A+Bi| = s, B1+ · · ·+Bh = B. Let a real number t be given, 0 ≤ t < m.
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There is an X ⊂ A, |X| > t such that

(4.5) |X + B| ≤ s

h − 1

(

1

(m − t)h−1
− 1

mh−1

)

+ (|X| − t)
s

(m − t)h
.

Proof. We apply Theorem 4.3 with k = [t] + 1. The right side of (4.5) can be written

as s
∫ |X|

0
f(x) dx, where f(x) = (m − x)−h for 0 ≤ x ≤ t, and f(x) = (m − t)−h for

t < x ≤ |X|. Since f is increasing, the integral is ≥ f(0)+ f(1)+ · · ·+ f(|X|−1). This
exceeds the right side of (4.3) by a termwise comparison. �

Proof of Theorem 1.5. Let us use the notation |A| = m, s = |A+B1||A+B2|, as above.
Observe that if |S| ≤ s/m2 then

(4.6) |S + A| ≤ |S||A| =
√

|S|
√

|S||A| ≤
√

|S|(
√

s/m)|A| =
√

s|S|
and we are done.

If |S| > s/m2 then define

(4.7) t = m −
√

s/|S|,
and use Theorem 4.4 to find a set X ⊂ A such that |X| = r > t and (4.5) holds with
h = 2. For such an X we have

(4.8) |S + X| ≤ |B1 + B2 + X| ≤ s

m − t
− s

m
+ (|X| − t)

s

(m − t)2

and

(4.9) |S + (A \ X)| ≤ |S||A \ X|.
Recalling (4.7) we conclude that

(4.10) |S + A| ≤ |S + X| + |S + (A \ X)| ≤ s

m − t
− s

m
+ (r − t)

s

(m − t)2
+

+|S| ((m − t) − (r − t)) = 2
√

s|S| − s/m ≤ 2
√

s|S|.
This inequality is nearly the required one, except for the factor of 2. We can dispose of
this factor as follows. Consider the sets A′ = Ak, B′

1 = Bk
1 , B′

2 = Bk
2 and S ′ = Sk in the

k’th direct power of the original group. Applying estimate (4.10) to A′, etc., we obtain

(4.11) |S ′ + A′| ≤ 2
√

s′|S ′|.
Since |S ′ + A′| = |S + A|k, s′ = sk and |S ′| = |S|k, we get

(4.12) |S + A| ≤ 21/k
√

s|S|.
Taking the limit as k → ∞ we obtain the desired inequality

(4.13) |S + A| ≤
√

s|S|.
�

Added in proof. An extension of this proof to sove Problem 1.6 would require an
extension of Theorem 4.2 to the case when the assumptions are made for sumsets of the
form A + Bi1 + · · · + Bij for a certain j < h (the present form corresponds to j = 1).
After submitting this paper the authors found such an extension. Different solutions of
Problem 1.6 were found by Marcus and Tetali [10], and by Balister and Bollobás [2].
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