SQUARES AND DIFFERENCE SETS IN FINITE FIELDS

C. BACHOC, M. MATOLCSI, AND I. Z. RUZSA

Abstract

For infinitely many primes $p=4 k+1$ we give a slightly improved upper bound for the maximal cardinality of a set $B \subset \mathbb{Z}_{p}$ such that the difference set $B-B$ contains only quadratic residues. Namely, instead of the "trivial" bound $|B| \leq \sqrt{p}$ we prove $|B| \leq$ $\sqrt{p}-1$, under suitable conditions on p. The new bound is valid for approximately three quarters of the primes $p=4 k+1$.

Keywords: quadratic residues, Paley graph, maximal cliques.

MSC2010 classification: 05C69, 11T06.

1. INTRODUCTION

Let q be a prime-power, say $q=p^{k}$. We will be interested in estimating the maximal cardinality $s(q)$ of a set $B \subset \mathbb{F}_{q}$ such that the difference set $B-B$ contains only squares. While our main interest is in the case $k=1$, we find it instructive to compare the situation for different values of k.

This problem makes sense only if -1 is a square; to ensure this we assume $q \equiv 1(\bmod 4)$. The universal upper bound $s(q) \leq \sqrt{q}$ can be proved by a pigeonhole argument or by simple Fourier anlysis, and it has been re-discovered several times (see [7, Theorem 3.9], [11, Problem 13.13], [3, Proposition 4.7], [2, Chapter XIII, Theorem 14], [10, Theorem 31.3], [9, Proposition 4.5], [6, Section 2.8] for various proofs). For even k we have equality, since $\mathbb{F}_{p^{k}}$ can be constructed as a quadratic extension of $\mathbb{F}_{p^{k / 2}}$, and then every element of the embedded field $\mathbb{F}_{p^{k / 2}}$ will be a square. It is known that every case of equality can be obtained by a linear transformation from this one, [1].

Such problems and results are often formulated in terms of the Paley graph P_{q}, which is the graph with vertex set \mathbb{F}_{q} and an edge between x and y if and only if $x-y=a^{2}$ for some non-zero $a \in \mathbb{F}_{q}$.

[^0]Paley graphs are self-complementary, vertex and edge transitive, and $(q,(q-1) / 2,(q-5) / 4,(q-1) / 4)$-strongly regular (see [2] for these and other basic properties of $\left.P_{q}\right)$. Paley graphs have received considerable attention over the past decades because they exhibit many properties of random graphs $G(q, 1 / 2)$ where each edge is present with probability $1 / 2$. Indeed, P_{q} form a family of quasi-random graphs, as shown in (4].

With this terminology $s(q)$ is the clique number of P_{q}. The general lower bound $s(q) \geq\left(\frac{1}{2}+o(1)\right) \log _{2} q$ is established in [5], while it is proved in [8] that $s(p) \geq c \log p \log \log \log p$ for infinitely many primes p. The "trivial" upper bound $s(p) \leq \sqrt{p}$ is notoriously difficult to improve, and it is mentioned explicitly in the selected list of problems [6]. The only improvement we are aware of concerns the special case $p=n^{2}+1$ for which it is proved in [12] that $s(p) \leq n-1$ (the same result was proved independently by T. Sanders - unpublished, personal communication). It is more likely, heuristically, that the lower bound is closer to the truth than the upper bound. Numerical data [15, 14] up to $p<10000$ suggest (very tentatively) that the correct order of magnitude for the clique number of P_{p} is $c \log ^{2} p$ (see the discussion and the plot of the function $s(p)$ at [16]).

In this note we prove the slightly improved upper bound $s(p) \leq$ $\sqrt{p}-1$ for the majority of the primes $p=4 k+1$ (we will often suppress the dependence on p, and just write s instead of $s(p)$).

We will denote the set of nonzero quadratic residues by Q, and that of nonzero non-residues by $N Q$. Note that $0 \notin Q$ and $0 \notin N Q$.

2. The improved upper bound

Theorem 2.1. Let q be a prime-power, $q=p^{k}$, and assume that k is odd and $q \equiv 1(\bmod 4)$. Let $s=s(q)$ be the maximal cardinality of a set $B \subset \mathbb{F}_{q}$ such that the difference set $B-B$ contains only squares.
(i) If $[\sqrt{q}]$ is even then $s^{2}+s-1 \leq q$,
(ii) if $[\sqrt{q}]$ is odd then $s^{2}+2 s-2 \leq q$.

Proof. The claims hold if $s<[\sqrt{q}]$. Hence we may assume that $s \geq$ $[\sqrt{q}]$.
Lemma 2.2. Let $D \subset \mathbb{F}_{q}$ be a set such that

$$
D \subset N Q, D-D \subset Q \cup\{0\}
$$

With $r=|D|$ we have

$$
\begin{equation*}
s(q) \leq 1+\frac{q-1}{2 r} . \tag{1}
\end{equation*}
$$

Proof. Let B be a maximal set such that $B-B \subset Q \cup\{0\},|B|=$ $s(q)=s$. Consider the equation

$$
b_{1}-b_{2}=z d, b_{1}, b_{2} \in B, d \in D, z \in N Q
$$

This equation has exactly $s(s-1) r$ solutions; indeed, every pair of distinct $b_{1}, b_{2} \in B$ and a $d \in D$ determines z uniquely. On the other hand, given b_{1} and z, there can be at most one pair b_{2} and d to form a solution. Indeed, if there were another pair $b_{2}^{\prime}, d^{\prime}$, then by substracting the equations

$$
b_{1}-b_{2}=z d, b_{1}-b_{2}^{\prime}=z d^{\prime}
$$

we get $\left(b_{2}^{\prime}-b_{2}\right)=z\left(d-d^{\prime}\right)$, a contradiction, as the left hand side is a square and the right hand side is not. This gives $s(s-1) r \leq s(q-1) / 2$ as wanted.

We try to construct such a set D in the form $D=(B-t) \cap N Q$ with a suitable t. The required property then follows from $D-D \subset B-B$.

Let χ denote the quadratic multiplicative character, i.e. $\chi(t)= \pm 1$ according to whether $t \in Q$ or $t \in N Q$ (and $\chi(0)=0$). Let

$$
\begin{equation*}
\varphi(t)=\sum_{b \in B} \chi(b-t) \tag{2}
\end{equation*}
$$

Clearly

$$
\varphi(t)=|(B-t) \cap Q|-|(B-t) \cap N Q|
$$

and hence for $t \notin B$ we have

$$
|(B-t) \cap N Q|=\frac{s-\varphi(t)}{2}
$$

To find a large set in this form we need to find a negative value of φ.
We list some properties of this function. For $t \in B$ we have $\varphi(t)=$ $s-1$, and otherwise

$$
\varphi(t) \leq s-2, \varphi(t) \equiv s \quad(\bmod 2)
$$

(the inequality expresses the maximality of B). Furthermore,

$$
\sum_{t} \varphi(t)=0
$$

and, since translations of the quadratic character have the quasi-orthogonality property

$$
\sum_{t} \chi(t+a) \chi(t+b)=-1
$$

for $a \neq b$, we conclude

$$
\sum_{t} \varphi(t)^{2}=s(q-1)-s(s-1)=s(q-s)
$$

By substracting the contribution of $t \in B$ we obtain

$$
\begin{gathered}
\sum_{t \notin B} \varphi(t)=-s(s-1) \\
\sum_{t \notin B} \varphi(t)^{2}=s(q-s)-s(s-1)^{2}=s\left(q-s^{2}+s-1\right) .
\end{gathered}
$$

These formulas assume an even nicer form by introducing the function $\varphi_{1}(t)=\varphi(t)+1$:

$$
\begin{gather*}
\sum_{t \notin B} \varphi_{1}(t)=q-s^{2} \tag{3}\\
\sum_{t \notin B} \varphi_{1}(t)^{2}=(s+1)\left(q-s^{2}\right) . \tag{4}
\end{gather*}
$$

As a byproduct, the second equation shows the familiar estimate $s \leq$ \sqrt{q}, so we have $s=[\sqrt{q}]<\sqrt{q}$ (recall that we assume that $s \geq[\sqrt{q}]$, the theorem being trivial otherwise).

Now we consider separately the cases of odd and even s. If s is even, then, since $\sum_{t \notin B} \varphi(t)<0$ and each summand is even, we can find a t with $\varphi(t) \leq-2$. This gives us an r with $r \geq(s+2) / 2$, and on substituting this into (1) we obtain the first case of the theorem.

If s is odd, we claim that there is a t with $\varphi(t) \leq-3$. Otherwise we have $\varphi(t) \geq-1$, that is, $\varphi_{1}(t) \geq 0$ for all $t \notin B$. We also know $\varphi(t) \leq s-2, \varphi_{1}(t) \leq s-1$ for $t \notin B$. Consequently

$$
\sum_{t \notin B} \varphi_{1}(t)^{2} \leq(s-1) \sum_{t \notin B} \varphi_{1}(t)=(s-1)\left(q-s^{2}\right)
$$

a contradiction to (4). (Observe that to reach a contradiction we need that $q-s^{2}$ is strictly positive. In case of an even k it can happen that $q=s^{2}$ and the function φ_{1} vanishes outside B.)

This t provides us with a set D with $r \geq(s+3) / 2$, and on substituting this into (1) we obtain the second case of the theorem.

Remark 2.3. An alternative proof for the case $q=p$ and s being odd is as follows. Assume by contradiction that φ_{1} is even-valued and nonnegative. Then by (3) it must be 0 for at least

$$
q-|B|-\frac{q-s^{2}}{2}=\frac{q+s^{2}-2 s}{2}
$$

values of t. Let $\tilde{\chi}, \tilde{\varphi}, \tilde{\varphi}_{1}$ denote the images of $\chi, \varphi, \varphi_{1}$ in \mathbb{F}_{q} (i.e. the functions are evaluated $\bmod p$). By the previous observation $\tilde{\varphi}_{1}$ has at least $\left(q+s^{2}-2 s\right) / 2$ zeroes. On the other hand, we have $\tilde{\chi}(x)=x^{\frac{q-1}{2}}$, and hence $\tilde{\varphi}_{1}$ is a polynomial of degree $(q-1) / 2$; its leading coefficient
is $s=[\sqrt{q}] \neq 0 \bmod p$ (This last fact may fail if $q=p^{k}$, even if k is odd. Therefore this proof is restricted in its generality. Nevertheless we include it here, because we believe that it has the potential to lead to stronger results if $q=p$.) Consequently $\tilde{\varphi}_{1}$ can have at most $(q-1) / 2$ zeros, a contradiction. In the case of even k we can have $s=\sqrt{q} \equiv 0$ $(\bmod p)$ and so the polynomial $\tilde{\varphi}_{1}$ can vanish, as it indeed does when B is a subfield.

Remark 2.4. It is clear from (1) that any improved lower bound on r will lead to an improved upper bound on s. If one thinks of elements of \mathbb{Z}_{p} as being quadratic residues randomly with probability $1 / 2$, then we expect that $r \geq \frac{s}{2}+c \sqrt{s}$. This would lead to an estimate $s \leq \sqrt{p}-c p^{1 / 4}$. This seems to be the limit of this method. In order to get an improved lower bound on r one can try to prove non-trivial upper bounds on the third moment $\sum_{t \in \mathbb{Z}_{p}} \varphi^{3}(t)$. To do this, we would need that the distribution of numbers $\frac{b_{1}-b_{2}}{b_{1}-b_{3}}$ is approximately uniform on Q as b_{1}, b_{2}, b_{3} ranges over B. This is plausible because if $s \approx \sqrt{p}$ then the distribution of $B-B$ must be close to uniform on $N Q$. However, we could not prove anything rigorous in this direction.

Remark 2.5. Theorem 2.1]gives the bound $s \leq[\sqrt{p}]-1$ for about three quarters of the primes $p=4 k+1$. Indeed, part (ii) gives this bound for almost all p such that $n=[\sqrt{p}]$ is odd, with the only exception when $p=(n+1)^{2}-3$. Part (i) gives the improved bound $s \leq n-1$ if $n^{2}+n-1>p$. This happens for about half of the primes p such that n is even.

Acknowledgment

The authors are grateful to Péter Csikvári for insightful comments regarding the prime-power case.

References

[1] A. Blokhuis, On subsets of $G F\left(q^{2}\right)$ with square differences, Indagationes Mathematicae, vol. 87, no. 4, pp. 369-372, (1984).
[2] B. Bollobás, Random Graphs, (second ed.), Cambridge University Press, Cambridge, 2001.
[3] P. J. Cameron, Automorphism groups in graphs, in: R. J. Wilson, L. W. Beineke (Eds.), Selected Topics in Graph Theory, vol. 2, Academic Press, NewYork, (1983), pp. 89-127.
[4] F. R. K. Chung, R. L. Graham, R. M. Wilson, Quasi-random graphs, Combinatorica, Volume 9, Issue 4, (1989), pp 345-362.
[5] S. D. Cohen, Clique numbers of Paley graphs, Quaestiones Math. 11, (2) (1988), 225-231.
[6] E. Croot, V. Lev, Open problems in additive combinatorics, Additive combinatorics CRM Proc. Lecture Notes Amer. Math. Soc., Providence, RI, 43, (2007), 207-233.
[7] P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. 10 (1973).
[8] S. Graham, C. Ringrose, Lower bounds for least quadratic non-residues, Analytic Number Theory (Allterton Park, IL, 1989), 269-309.
[9] M. Krivelevich, B. Sudakov, Pseudo-random graphs, in: More Sets, Graphs and Numbers, Bolyai Society Mathematical Studies 15, Springer, (2006), 199-262.
[10] J. H. van Lint, R. M. Wilson, A Course in Combinatorics, Cambridge University Press, Cambridge, 1992 (2nd edition in 2001).
[11] L. LovÁsz, Combinatorial Problems and Exercises, North-Holland, Amsterdam, 1979 (2nd edition in 1993).
[12] E. Maistrelli, D. B. Penman, Some colouring problems for Paley graphs, Discrete Mathematics 306 (2006) 99-106.
[13] M. Matolcsi, I. Z. Ruzsa, Difference sets and positive exponential sums I. General properties, preprint submitted for publication, http://arxiv.org/abs/1207.1781
[14] Web-page of Geoffrey Exoo with clique numbers of Paley graphs for $7000<$ $p<10000$, http://ginger.indstate.edu/ge/PALEY/
[15] Web-page of J. B. Shearer with clique numbers of Paley graphs for $p<7000$, http://www.research.ibm.com/people/s/shearer/indpal.html
[16] Discussion of clique numbers and plot of the function $s(p)$ for $p<10000$, http://mathoverflow.net/questions/48591/cliques-paley-graphs-and-quadratic-residues
C. B.: Univ Bordeaux, Institut de Mathématiques de Bordeaux, 351, cours de la Libération 33405, Talence cedex, France, Tel: (+33) 05 400021 61, FAX: $(+33) 0540002123$

E-mail address: bachoc@math.u-bordeaux1.fr
M. M.: Alféd Rényi Institute of Mathematics, Hungarian Academy of Sciences POB 127 H-1364 Budapest, Hungary Tel: (+361) 483-8307, FAX: $(+361) 483-8333$

E-mail address: matomate@renyi.hu
I. Z. R.: Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences POB $127 \mathrm{H}-1364$ Budapest, Hungary Tel: (+361) 4838328, FAX: $(+361) 483-8333$

E-mail address: ruzsa@renyi.hu

[^0]: M.M. and I.Z.R. were supported by the ERC-AdG 228005, and OTKA Grants No. K81658, and M.M. also by the Bolyai Scholarship.

