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Abstract. Suppose that the agents of a matching market contact each
other randomly and form new pairs if is in their interest. Does such a
process always converge to a stable matching if one exists? If so, how
quickly? Are some stable matchings more likely to be obtained by this
process than others? In this paper we are going to provide answers to
these and similar questions, posed by economists and computer scientists.
In the first part of the paper we give an alternative proof for the theorems
by Diamantoudi et al. and Inarra et al. which imply that the correspond-
ing stochastic processes are absorbing Markov chains. The second part
of the paper proposes new techniques to analyse the behaviour of match-
ing markets. We introduce the Stable Marriage and Stable Roommates
Automaton and show how the probabilistic model checking tool PRISM
may be used to predict the outcomes of stochastic interactions between
myopic agents. In particular, we demonstrate how one can calculate the
probabilities of reaching different matchings in a decentralised market
and determine the expected convergence time of the stochastic process
concerned. We illustrate the usage of this technique by studying some
well-known marriage and roommates instances and randomly generated
instances.

1 Introduction

The Stable Roommates problem (sr) is a classical combinatorial problem that
has been studied extensively in the literature, see e.g. [21]. An instance I of sr
contains an undirected graph G(V,E), where V={v1, . . . , vn} and m=|E(G)|.
We refer to G as the underlying graph of I, and we interchangeably refer to the
vertices of G as the agents. If (vi, vj) is an edge in E(G), then we say that vi
and vj find each other acceptable. A matching is a set of independent edges in
the graph.3 Each agent vi has a linear order >vi over her acceptable partners,
where vk >vi vj means that vi prefers vk to vj . Let M(vi) denote the partner
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of vi in a given matching M . An edge (vi, vj) is said to be blocking with respect
to M if (i) either vi is unmatched in M or prefers vj to M(vi), and (ii) either
vj is unmatched in M or prefers vi to M(vj). A matching is called stable if it
admits no blocking edge. If G is bipartite, then the problem of finding a stable
matching is called the Stable Marriage problem (sm). In this case, if the graph
is G(U,W,E), then we refer to U={m1, . . . ,mn1

} and W={w1, . . . , wn2
} as the

sets of men and women, respectively.
Note that both the Stable Roommates and the Stable Marriage problems can

be seen as NTU-games (hedonic coalition formation games, in particular), since
for any sr or sm instance the set of stable matchings coincide with the core of
the corresponding game. Fur further details, see for example the celebrated book
by Roth and Sotomayor [42].

Gale and Shapley [20] give a linear time algorithm that finds a stable match-
ing for any instance of sm, while also illustrating an instance of sr that does
not admit a stable matching (i.e., which is not solvable). Irving [25] gives a
linear time algorithm that, for any instance of sr, finds a stable matching or
reports that none exists. Both algorithms assume that the preference lists are
complete (i.e., the graph G is complete), although it is straightforward to extend
the algorithms to incomplete lists [21].

Suppose that we are given a sr instance I with underlying graph G. For
a matching M , if a pair (vi, vj) is blocking, then we may satisfy this blocking
pair and get a new matching M (vi,vj), where (vi, vj) ∈ M (vi,vj) and for each
w ∈ {vi, vj}, if w is matched in M , then M(w) is unmatched in M (vi,vj). Roth
and Vande Vate [43] prove that, given an instance of sm, starting from any
unstable matching we can always obtain a stable matching by successively satis-
fying blocking pairs.4 Diamantoudi et al. [18] show that a similar result holds for
the roommates problem, namely, for a given instance of sr that admits a sta-
ble matching and starting from any unstable matching, one can obtain a stable
matching by successively satisfying blocking pairs. This essentially means that
the corresponding stochastic processes (to be defined in Section 3) are absorbing
Markov chains (for more details of these stochastic processes see, e.g. Chapter 3
of [27]). Since there are only finitely many matchings in any instance, the result
of Roth and Vande Vate implies that, starting from an arbitrary matching, the
process of allowing randomly chosen blocking pairs to match will converge to a
stable matching with probability one.

The proof of Roth and Vande Vate is based on the following idea. Suppose
that we have a stable matching for an instance of sm and we add a new agent

4 Note that this question was originally proposed by Knuth [31] (Problem 8 from his
twelve famous research problems) in a slightly different setting. In his case, the set
of possible matchings was restricted to the complete matchings (as all the preference
lists were supposed to be complete), and whenever a blocking pair was satisfied the
left-alone agents formed a new pair immediately. The above described transition from
a complete matching to another one was called aninterchange. Knuth asked whether,
given an instance of sm and a starting matching M , there always exist a sequence
of interchanges from M to some stable matching? Tamura [45], and independently
Tan and Su [49], answered this question negatively by giving counterexamples.
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to the market, then there is a natural proposal-rejection sequence (described in
Section 3) that leads to a stable matching for the extended instance. If, we start
with the empty matching and run this incremental algorithm, then the resulting
stable matching will depend on the order in which the agents arrive. This is called
the random order mechanism. By assuming that each order is equally likely, we
may calculate the probability of each stable matching being obtained. Ma [37]
carried out this calculation for an instance, originally suggested by Knuth [31],
and observed that not all stable matchings can be reached by this mechanism
and there is a higher probability of reaching some stable matchings over others
(although his calculation was not entirely correct as [29] pointed out).5 In this
paper we will also study this instance (Example 2 in Section 3) with respect to
a different stochastic process.

We may suppose that all agents are present in the market and, starting with
the empty matching, the blocking pairs to be satisfied are chosen randomly
(with equal probability in each step). In this case, every stable matching can
be reached with positive probability (since we may satisfy all pairs involved in
this matching at the beginning of the process), but still, as we will illustrate in
Section 3, some stable matchings can be more likely to occur than others.

There is also a growing literature concerning stable roommates problems
that may not admit stable solutions. Tan [47] shows that a stable half-matching
always exists for any given instance of sr. A half-matching is a weight function h :
E(G) → {0, 12 , 1} such that

∑
vi∈e h(e) ≤ 1 for each vertex vi. A half-matching

is said to be stable if, for each edge (vi, vj) ∈ E(G), one of its vertices, say vi
satisfies

∑
(vi,vk)vk≥vi

vj
h((vi, vk)) = 1, (otherwise the edge (vi, vj) is said to be

blocking).6 Note that if h : E(G)→ {0, 1} is stable, then h corresponds to a stable
matching.7 Tan [47] showed that a stable half-matching must consist of half-
weighted cycles and one-weighted independent edges. Moreover, the set of half-
weighted cycles of odd length (that we sometime just refer to as half-weighted

5 An explanation for the first observation is the result of Blum and Rothblum [12]
which demonstrates that, when using the Roth-Vande Vate algorithm, the last agent
to arrive always gets their best stable partner. (This observation directly follows from
the results of Blum et al. [11]. An alternative proof and an extension of that result
for roommates problems was given by Biró et al. [6].) Hence, a stable matching in
which nobody gets their best partner cannot be obtained by this mechanism.

6 The weight of an edge in a half-matching can be seen as the intensity of a cooperation
between the two corresponding agents. The notion of half-matching means that each
agent can be involved in at most one cooperation with full intensity or in at most
two cooperations with half intensities. Stability means that for each pair whose
members are not cooperating with full intensity, either of the agents is not interested
in increasing the intensity of this cooperation, as she must have filled her capacity
with better partners.

7 The existence of a half-matching may be proved by the Lemma of Scarf [44], as
Aharoni and Fleiner [2] demonstrate. The notion of stable fractional matching (or
fractional core) is an extension of stable half-matching that may be defined for more
general matching problems (or NTU-games) as well, see more on this theory in a
recent paper by Biró and Fleiner [7].
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odd cycles) and the set of unmatched agents are the same in every stable half-
matching for a given instance of sr. Tan and Hsueh [48] give a polynomial time
algorithm to find a stable half-matching. This algorithm is, in fact, a generalised
version of the algorithm of Roth and Vande Vate (a detailed description of this
is given in Section 3). Further descriptions on stable half-matchings and the
Tan-Hsueh algorithm can be found in [6].

Inarra et al. [23] define an h-stable matching M relative to a stable half-
matching h as follows8. Let M contain every edge that has weight 1 in h, every
second edge from each even half-weighted cycle of h (if there were any half-
weighted cycle of even length), and k (disjoint) edges from each half-weighted
odd cycle of length 2k + 1 in h.9 They show that, starting from an arbitrary
matching, one can get an h-stable matching by successively satisfying blocking
pairs for a given instance of sr. Note that for every solvable instance of sr the
set of h-stable matchings is equivalent to the set of stable matchings, thus the
above result generalises the theorem of Diamantoudi et al. [18]. In Section 2, we
give an alternative short proof for the theorem of Inarra et al. [23] by using the
Tan-Hsueh algorithm.

In another paper, Inarra et al. [24] define the absorbing sets for an instance of
sr as follows. Each absorbing set consists of matchings that are reachable from
one another by successively satisfying blocking edges, but no other matching
can be reached from this set by satisfying a blocking edge. These are in fact the
ergodic sets of the corresponding Markov chain (see e.g. [27]), and a matching
M is in an ergodic set if and only if the limit probability of M , starting from the
empty matching, is positive. Moreover, Klaus et al. [30] prove that the absorbing
sets consist of exactly those matchings that have positive probabilities in the
limit distribution of a stochastic process where, starting from any matching, the
agents make mistakes with small probabilities in their myopic blocking decisions.
They called this process perturbed blocking dynamics. Similar stochastic systems
have been studied for the Stable Marriage problem in the context of network
formations by Jackson and Watts [26].

Ackermann et al. [1] study the convergence time of the stochastic processes
occurring from stable marriage problems. They refer to the stochastic process,
where in each step a blocking pair is chosen uniformly at random and satisfied,
as the random better response dynamics. They demonstrate that, although the
process converges to a stable matching, the expected convergence time is expo-
nential for a family of sm instances. Our experiments conducted for the above
family of instances confirm this finding, as we describe in Section 3. However,
we also demonstrate that this behaviour is unexpected in an average market,

8 As Tan [46,47] referred to stable half-matchings as stable partitions, Inarra et al. [23]
also used this terminology, and so instead of h-stable matchings they called the same
notion P -stable matchings, relative to a stable partition P . We decided to change
the original terminology because we believe that the concept of half-matchings is
well-known in graph theory, see more explanation about this issue in [6].

9 This concept was originally proposed by Tan [46] as a method to find a matching as
large as possible that is stable for the matched agents in an unsolvable instance.



Analysis of Stochastic Matching Markets 5

since for the randomly generated instances the expected convergence time is
significantly smaller.

The dynamics of matching markets have also been in focus in some recent
engineering papers on P2P systems, see, e.g, [38] for an overview. In particular,
Lebedev et al. [36] show that the convergence is fast for systems, modelled with
sr instances, where the preferences are acyclic, i.e., the preferences are derived
from some global rank function on the pairs. This is a realistic assumption in
the case of some real P2P networks. Finally, Arcaute and Vassilvitskii [3] and
Hoefer [22] studied similar stochastic market processes with the extra feature of
an underlying social network that dynamically determine the accessible partners
and the so-called locally stable matchings.

In our analysis we also suppose that the stochastic process follows the ran-
dom better response dynamics. Does this model give a good description of de-
centralised matching markets? There are two very recent experimental studies
that provide some positive evidence for that. Echenique and Yariv [19] conducted
experimental tests with students who were allowed to make and accept propos-
als in a decentralised manner. Most of the outcomes in these games were stable
matchings and when several stable matchings were possible then they recorded
their distribution as outcomes. In particular, they found that, when the market
had three stable matchings, then the median one emerged as the modal empirical
outcome. They showed with simulations ([19, Section 7.1]) that this distribution
of stable matchings was relatively close to those that the stochastic model with
random better responses would predict. Pais et al. [40] received similar results
regarding the likeliness of obtaining the median stable matching in their exper-
iments.

Boudreau has also studied the random better response dynamics (referred to
as randomized tâtonnement process) in several recent papers [14,15,16]. In [15] he
showed that the median stable matching is not necessarily the most likely one for
every market, which is in contrast with the above mentioned experimental results
([19,40]). While, in [14] Boudreau studied the effect of intercorrelated preferences
on the expected convergence time. His simulations show that if preferences are
negatively intercorrelated (i.e., agents prefer those on other side of the market
who do not prefer them) then the path to stability tend to be (exponentially)
long. This finding back the theoretical results of Ackermann et al. [1] on the
exponential expected convergence time of ‘uncoordinated’ instances, that we
also confirmed with simulations (described in Section 3). Boudreau [15] also
demonstrate that the most likely outcome of such a decentralised market might
not be the most efficient stable matching, which is defined as the minimum-
choice-count matching (i.e., a matching, where the sum of the rankings that
agents give their partners is minimal). In a very recent work [16] he identifies two
measurable factors that do have significant, non-linear impacts on the likelihood
that a market’s most likely outcome will be (in)efficient: the number of stable
matchings that the market possesses and the level of correlation among the
preferences of each side of the market.
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To summarise, the contribution of this paper is the following. In Section 2 we
give an alternative proof for the theorems of Diamantoudi et al. [18] and Inarra
et al. [23]. This new proof, which is based on the Tan-Hsueh algorithm, is not
only shorter and simpler than the originals, but also provides upper bounds on
the number of steps needed to reach a stable (or h-stable) matching. In Section 3
we define the Stable Marriage and Stable Roommates Automata and then we
demonstrate how the probabilistic model checker PRISM [35,51] can be used to
analyse and compare the performance of different instances. In particular, we
study two well-known sm instances, a sr instance and then present a case study
involving structured and random sm instances. We believe that this approach will
also have applications in the study the interaction of agents in real markets and
networks for more complex settings. We describe some future research directions
in Section 4.

2 Convergence to stability, an alternative proof

In this section we describe the Roth-Vande Vate and the Tan-Hsueh algorithms.
We use the latter to give an alternative proof for the theorems of Diamantoudi
et al. [18] and Inarra et al. [23]. That is, we show that starting from an arbi-
trary matching of a solvable sr instance one can always find a stable matching
by successively satisfying blocking pairs; and that starting from an arbitrary
matching of an instance of sr (solvable or unsolvable) one can always find an
h-stable matching by successively satisfying blocking pairs. Note that these the-
orems were the main results of the above papers. Our proof is much shorter and
it gives upper bounds for the number of blocking pairs that need to be satisfied
to obtain a stable (or h-stable) matching. Also, it shows that the argument of
Roth and Vande Vate for the marriage case can be extended for the roommates
case in a natural way.

The Roth-Vande Vate algorithm. Suppose that we are given an instance I
of sm together with a matching M0 = {(m1, w1), . . . , (mk, wk)}. We shall show
that we can reach a stable matching by successively satisfying blocking pairs. A
variant of the Roth-Vande Vate algorithm works as follows.

During the procedure we gradually extend a set S ⊆ (U ∪W ) and a matching
MS that is stable in S. Initially let S=∅ and MS=∅. For each index i (i=1, . . . , k),
if MS ∪ {(mi, wi)} is stable in S ∪ {mi, wi}, then let MS′ = MS ∪ {(mi, wi)}
and S′ = S ∪ {mi, wi} (i.e. we simply enlarge both S and MS with a new pair).
Otherwise we add mi and wi to S one by one as follows.

Without loss of generality suppose that mi is involved in a blocking pair
with an agent of S with respect to matching MS ∪ {(mi, wi)}, let wi1 be the
woman who is the best blocking partner of mi and let S′ = S ∪ {mi}. If wi1

is unmatched in MS , then MS′ = MS ∪ {(mi, wi1)} is a stable matching in S′.
Otherwise, let mi1=MS(wi1) and MS′\{mi1

} = (MS \ {(mi1 , wi1)} ∪ {(mi, wi1)}
is stable for S′\{mi1}. Now we let mi1 re-enter the market. If mi1 is not involved
in any blocking pair, then MS′\{mi1

} is stable for S′. Otherwise we satisfy the
best blocking pair mi1 is involved in according to his preferences, and so on.
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This process must terminate after satisfying at most m blocking pairs, since no
woman ever receives a worse partner. We can also add wi in a similar manner,
reversing the role of men and women. (Note that if mi was not involved in a
blocking pair with an agent of S with respect to matching MS ∪{(mi, wi)} then
wi must have been involved in a blocking pair, so we start by adding wi to S
first, followed by mi.)

After processing all pairs of M0, we add the remaining agents one by one in
the same way. Therefore, we obtain the sequence of blocking pairs that we need
to satisfy to reach a stable matching starting from M0. Since we never satisfy a
pair twice when adding a new agent to S, it follows that the number of steps in
the path to stability is at most mn.10

The Tan-Hsueh algorithm. The Tan-Hsueh algorithm deals with sr instances
(rather than sm instances) and stable half-matchings (rather than stable match-
ings), and there is no starting matchingM0. But otherwise it is based on the same
idea as the Roth-Vande Vate algorithm: we gradually extend a set S ⊆ V (G)
and we restore the stability of a half-matching hS in S.11

Suppose that we are given an instance I of sr with an underlying graph
G(V,E). Let S denote a set of agents and let hS denote a half-matching of the
(entire) graph. Initially let S=∅ and let hS(e)=0 for each e ∈ E(G). Suppose that
after adding k agents we have S={v1, v2, . . . , vk} with a corresponding stable
half-matching hS on the subgraph induced by S, where each half-weighted cycle
has odd length. Let S′ = S ∪{vk+1}. Now we describe how we can construct the
new stable half-matching hS′ in S′.

If vk+1 is not involved in any blocking pair in S′, then hS remains sta-
ble in S′, obviously. Otherwise let vj be the best blocking partner of vk+1 in
S′. If vj is unmatched (i.e., not matched and not covered by a half-weighted
cycle either), then by setting hS′((vk+1, vj))=1 and hS′(e)=hS(e) for every
other edge we obtain a new stable half-matching in S′. If vj is covered by a
half-weighted odd cycle, say by (vc1 , vc2 , . . . , vc2l+1

) where vj=vc1 , then by set-
ting hS′((vk+1, vj)) = 1, hS′((vc2i , vc2i+1))=1 for i=1, . . . , l, hS′((vc2i−1 , vc2i))=0
for i=1, . . . , l and hS′((vc2l+1

, vc1))=0 we obtain a new stable half-matching.
The last case is when vj is matched in hS to an agent, say va1

. By setting
hS′\{va1

}((vk+1, vj))=1 and hS′\{va1
}((vj , va1

))=0 we obtain a half-matching
that is stable in S′ \ {va1}. (Note that each of the half-weighted cycles in the
new stable half-matching has odd length.) Now, we restart the process with va1 .

In contrast with the sm context, it is possible that the latter case happens ev-
ery time and the above process never ends, since in a sequence va1

, vb1 , . . . , val
, vbl ,

vbl may be the same as va1
. Tan and Hsueh [48] showed that, if such a repe-

10 This version of the Roth-Vande Vate algorithm has been described by Ma [37]. Note
that it slightly differs from the original method described in [43], but the difference
is not substantial. In the original version, if no blocking pair involves an agent from
S and another from outside S then a blocking pair involving two agents from outside
S is satisfied and both agents are added to S.

11 For any bipartite graph the Tan-Hsueh algorithm is identical to the Roth-Vande
Vate algorithm if the starting matching of the latter algorithm is ∅.
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tition occurs, then a subset of these agents (always the same agents after the
repetition) will be involved in a never ending cycling and we can form a new
half-weighted odd cycle on the corresponding edges resulting in a new stable
half-matching hS′ in S′.

In each phase of this incremental algorithm (when an agent is added to the
market) we obtain a new stable half-matching in O(m) steps, so the algorithm
terminates in O(mn) steps in total, where each step means that one blocking
pair is satisfied.

Alternative proofs of [23] and [18]. Modifying the Tan-Hsueh algorithm
slightly (with h-stable matchings rather than with stable half-matchings), we can
obtain an alternative proof for the following theorem of Inarra et al. [23], with
an upper bound on the number of steps needed to reach an h-stable matching.

Theorem 1. Suppose that we are given an instance of sr and a matching M0,
then one can always reach an h-stable matching starting from M0 by successively
satisfying at most mn blocking pairs.

Proof. Let M0={(v1, v2), (v3, v4), . . . , (v2k−1, v2k)}. Just as in the proof of Roth
and Vande Vate, we gradually extend a set S ⊆ V (G) and a matching MS in S,
where initially S = ∅ and MS=∅.

Suppose that S={v1, v2, . . . , v2i} and MS is a hS-stable matching relative to
a stable half-matching hS in the sub-instance induced by S. Recall that each
edge e of weight 1 in hS is represented in MS and each half-weighted odd cycle
C=(vc1 , vc2 , . . . , vc2l+1

) is represented by l disjoint edges of C in MS . Consider a
half-matching h∗ in S ∪ {v2i+1, v2i+2} where h∗((v2i+1, v2i+2))=1 and the other
weights are the same as in hS . If h∗ is stable in S ∪ {v2i+1, v2i+2}, then it
follows that MS′ = MS ∪ {(v2i+1, v2i+2)} is an h∗-stable matching in S′ =
S ∪ {v2i+1, v2i+2}. Otherwise, if h∗ is not stable in S ∪ {v2i+1, v2i+2}, then we
add v2i+1 and v2i+2 one by one to S as follows.

Without loss of generality suppose that v2i+1 is involved in a blocking pair
with an agent of S with respect to matching MS ∪{(v2i+1, v2i+2)}, let vj be the
best blocking partner of v2i+1 and let S′ = S ∪ {v2i+1}. If vj is unmatched in
hS (and so also in MS), then MS′ = M ∪{(v2i+1, vj)} is an hS′ -stable matching
in S′ where hS′((v2i+1, vj))=1 and otherwise it is the same as hS . Note that
(v2i+1, vj) must be a blocking pair for MS too, so we may obtain MS′ from MS

by satisfying (v2i+1, vj).
If vj is covered by a half-weighted odd cycle in hS , say by C=(vc1 , . . . , vc2l+1

)
where vc1=vj , then we proceed as follows. Note vj mcan be matched to her pre-
ferred partner among her two neighbours in C, say to vc2 . In this case it may be
possible that (v2i+1, vj) is blocking for hS but it is not blocking for MS . However,
in this case, we can always rotate the edges of MS in C by successively satisfying
blocking pairs so that vj becomes unmatched. Then we can satisfy (v2i+1, vj)
and obtain an hS′ -stable matching MS′ where hS′ is the stable half-matching
that we get from hS according to the corresponding Tan-Hsueh algorithm.

Finally, if vj is matched in hS (and also in MS) to an agent vj1 , then we satisfy
(v2i+1, vj) obtaining a matching MS′\{vj1} = (MS \ {(vj , vj1)}) ∪ {(v2i+1, vj)}
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which is an hS′\{vj1}-stable matching in S′\{vj1}, where hS′\{vj1} is a stable half-
matching in S′\{vj1} that we obtain in the corresponding Tan-Hsueh algorithm.
Again, we continue the same process with vj1 .

If a repetition occurs for the first time, namely, when an agent who became
unmatched at a point of this process later gets involved in a blocking pair sat-
isfied in the process, then in the corresponding Tan-Hsueh algorithm we form a
new half-weighted odd cycle from the agents involved in the cycling, resulting
in a new stable half-matching hS′ . The half-weighted edges of this new odd cy-
cle correspond to those pairs that we would satisfy if we were to continue the
proposal-rejection sequence. But regarding the matching MS′ , we can just stop
after seeing the first repetition, and MS′ will be an hS′ -stable matching.

Note that if a repetition occurs, then we have to satisfy at most m blocking
pairs (since each left-alone agent keeps getting worse partners, so no pair occurs
twice as a blocking pair). Otherwise, if we have no repetition, then we also reach
a new h-stable matching within m steps, since even if we have to rotate edges
along a half-weighted odd cycle, the agents of this cycle could not be involved
in any blocking pair satisfied before we rotated the edges along this cycle. Thus
we can obtain the final h-stable matching in mn steps. ut

This result implies the theorem of Diamantoudi et al. [18] with an upper bound
on the number of steps needed to reach a stable matching.

Corollary 1. Suppose that we are given a solvable instance of sr and a match-
ing M0, then one can always reach a stable matching starting from M0 by suc-
cessively satisfying at most mn blocking pairs.

Finally in this section, we consider the differences between our proof tech-
nique and those of Diamantoudi et al. [18] and Inarra et al. [23]. Their proofs are
based on the following idea. They suppose that a stable (or h-stable) matching
is given together with the starting matching and then show that after satisfying
a number of blocking pairs the initial matching can be transformed into another
matching which shares more pairs with the given stable (or h-stable) matching
than the intital one. This is not actually explicitly stated in the proof of Diaman-
toudi et al., but it is not hard to see that in the above transformation no pair
is satisfied twice, so we can obtain the same mn upper bound for the number of
steps needed to reach a stable matching. In our proof, which is the extension of
the Roth-Vande Vate technique for the roommates problem, we do not need to
know a stable (or h-matching) in advance. The process works in an incremental
way: successively enlarge a set of agents for which the corresponding matching is
stable (or h-stable). Our proof also implies that if a new agent enters (or leaves)
the market then the stability (or h-stability) of the matching can be restored
after satisfying at most m blocking pairs. For more motivation with regard to
the advantages of our alternative proof technique, please see the first paragraph
of Section 4.
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3 Analysing the market behavior with automata

If the input is random, then it is possible to simulate the dynamics of a matching
market where two agents meet with each other randomly and behave in a myopic
way (i.e. they form a new pair if they both would be better off). This is called
the better response dynamics by Ackermann et al. [1]; whilst, Klaus et al. [30]
refer to it as unperturbed blocking dynamics. What is the expected outcome of
a matching market with myopic agents? To answer this question first we define
the stable marriage and roommates automata as follows.

Definition 1. Let I be a sr (sm) instance with underlying graph G. The sta-
ble roommates automaton (stable marriage automaton) of I, denoted SRA(I)
(SMA(I)) is the automaton (M(G), E(G), δ,M0, SI) where:

– the set of states is the set of all matchings M(G) of G;

– the set of symbols is the set of edges E(G) of G;

– the transition function δ :M(G)×E(G)→M(G) is given by:

δ(M, (vi, vj)) =

{
M (vi,vj) if (vi, vj) blocks M
M otherwise

– the initial state M0 is any matching (e.g. the empty matching ∅);

– the set of accepting states equals the set SI of stable matchings of I.

Recall, for a matching M and blocking pair (vi, vj), M
(vi,vj) is the matching

such that (vi, vj) ∈ M (vi,vj) and for each w ∈ {vi, vj}, if w is matched in M ,
then M(w) is unmatched in M (vi,vj). The set of symbols in the input of this au-
tomaton represents the pairs that are picked randomly in the stochastic process.
The automaton accepts an input if the final state of the automaton is a stable
matching.

Suppose that in each step of the process each blocking edge is chosen with
equal probability, then starting from an arbitrary matching (e.g. the empty
matching ∅) we can calculate the exact probabilities of particular matchings
occurring after certain rounds. To be more precise, we will calculate these prob-
abilities in the following absorbing Markov chain.

Definition 2. Let I be a sr instance with corresponding automaton SRA(I) =
(M(G), E(G), δ,M0, SI). The Markov chain of I is given by (M(G),M0,P)
where the set of states and initial state are taken from SRA(I) and the probability
transition matrix P :M(G)×M(G)→ [0, 1] is such that for M,M ′ ∈M(G) :

– if M is stable, then P(M,M ′) equals 1 if M=M ′ and 0 otherwise;

– if M is not stable, then

P(M,M ′) =
|{(v, v′) ∈ E(G) | (v, v′) blocks M and δ(M,σ) = M ′}|

|{(v, v′) ∈ E(G) | (v, v′) blocks M}| .
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For any sm instance or solvable sr instance, the stochastic process is an absorbing
Markov chain where the absorbing states are the stable matchings.

We now report on our experiments to construct and analyse the Markov
chain of a number of different instances with the probabilistic model checking
tool PRISM [35,51]. PRISM is a tool for the formal modelling and analysis of
systems that exhibit random or probabilistic behaviour. It supports a wide range
of probabilistic models and has been used to analyse systems from many differ-
ent application domains, including communication and multimedia protocols,
randomised distributed algorithms, security protocols and biological systems.

Models are described using the PRISM language, a simple, state-based lan-
guage based on guarded commands. The basic components of the modelling
language are modules and variables. A system model is defined by specifying a
set of modules, with the state of each module represented by a finite number of
variables. The behaviour of each module is given by a set of guarded commands
of the form:

[<action>] <guard> → <prob> : <update> + · · · + <prob> : <update>;

The action label is used to force modules to synchronise (i.e. execute their com-
mands simultaneously) and the guard is a predicate over all the variables of the
model, indicating when the command is enabled. The updates describe the prob-
abilistic transitions that the module can make when the command is executed,
i.e. the changes made to its own variables; primed variables indicate the next
values of variables.

PRISM provides support for automated analysis of a wide range of quantita-
tive properties such as “what is the probability of a failure within 4 hours?”,“what
is the worst-case probability of the protocol terminating in error, over all pos-
sible initial configurations?”, “what is the expected size of the buffer after 30
minutes?”, or “what is the worst-case expected time taken for the program to
terminate?”. The property specification language incorporates the temporal log-
ics PCTL, CSL and LTL, as well as extensions for quantitative specifications
and rewards. PRISM incorporates state-of-the art symbolic data structures and
algorithms, based on BDDs (Binary Decision Diagrams) and MTBDDs (Multi-
Terminal Binary Decision Diagrams) [34,41]. It also includes a discrete-event
simulation engine, providing support for approximate and statistical verification,
and implementations of various different analysis techniques, such as quantita-
tive abstraction refinement and symmetry reduction.

Below we give a overview of the PRISM model for an sm instance with three
men and three women. To represent the preference lists of the men and the
women the model includes constants mi,j , wi,j ∈ {1, 2, 3} for i, j=1, . . . , 3, where
mi,j equals the jth preference of man i and wj,i equals the ith preference of
woman j. There is a module Mi (i ∈ {1, . . . , 3}) for each man and a module Wj

(j ∈ {1, . . . , 3}) for each woman. Each module has an integer variable (denoted
mi and wj respectively) in the range {0, 1, 2, 3} representing the current match-
ing of the man or woman (where 0 corresponds to the case when the man or
woman is unmatched).
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The commands of the modules correspond to the men and women trying
to improve their current matching by synchronising on actions, more precisely,
when man i and woman j form a blocking pair, the action bi,j can be performed
and performing the action updates the matching so that i and j become matched.
For example, the commands of man 1 (in module M1) take the form:

[b1,1] m1=0 ∨ (m1=2 ∧m1,1>m1,2) ∨ (m1=3 ∧m1,1>m1,3)→ (m′1=1);
[b1,2] m1=0 ∨ (m1=1 ∧m1,2>m1,1) ∨ (m1=3 ∧m1,2>m1,3)→ (m′1=2);
[b1,3] m1=0 ∨ (m1=1 ∧m1,3>m1,1) ∨ (m1=2 ∧m1,3>m1,2)→ (m′1=3);

where the second command states: if either man 1 is unmatched or would prefer
to be matched to woman 2 than his current matching (i.e. either matched to
woman 1 and woman 2 is higher than woman 1 in his preference list, or is
matched to woman 3 and woman 2 is higher than woman 3 in his preference
list), then the module for man 1 is able to perform the action b1,2 and update
its matched partner to woman 2. The commands of the women are similar with
the indexing of action names reversed. For example, the commands of woman 2
(in module W2) are given by:

[b1,2] w2=0 ∨ (w2=2 ∧ w2,1>w2,2) ∨ (w2=3 ∧ w2,1>w2,3)→ (w′2=1);
[b2,2] w2=0 ∨ (w2=1 ∧ w2,2>w2,1) ∨ (w2=3 ∧ w2,2>w2,3)→ (w′2=2);
[b3,2] w2=0 ∨ (w2=1 ∧ w2,3>w2,1) ∨ (w2=2 ∧ w2,3>w2,2)→ (w′2=3);

in this case, the first command states: if either woman 2 is unmatched or would
prefer to be matched to man 1 than her current matching (i.e. either matched
to man 2 and man 1 is higher than man 2 in her preference list, or is matched to
man 3 and man 1 is higher than man 3 in her preference list), then the module
for woman 2 is able to perform the action b1,2 and update its matched partner to
man 1. Notice that for both man 1 and woman 2 are able to perform the action
b1,2 they must both prefer each other to their current matching, i.e. the action
can only be performed when they form a blocking pair.

When a matching is updated to remove a blocking pair i and j, then the
people previously matched to i and j much also update their preference lists,
and therefore additional commands (synchronising on bi,j) are included in each
module to perform these updates. Further details of the models and experiments
are available from the PRISM website [52]. For small instances, we also exported
the PRISM models to the symbolic solver Maple [39] and computed the exact
rational values. Note that in Examples 1-3 the absorption probabilities are cal-
culated with the empty matching as starting state.

Example 1. We start with a classical instance by Gale and Shapley [20] with
three men and three women and the following preferences:

m1 : w1, w2, w3 m2 : w2, w3, w1 m1 : w1, w2, w3

w1 : m2,m3,m1 w2 : m3,m1,m2 w3 : m1,m2,m3
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Here, the Markov chain has 34 states and 123 transitions, and the following three
absorbing states (stable matchings):

Mm = {(m1, w1), (m2, w2), (m3, w3)} (man-optimal)
Mw = {(m1, w3), (m2, w1), (m3, w2)} (woman-optimal)
Me = {(m1, w2), (m2, w3), (m3, w1)} (egalitarian)

Calculating the absorption probabilities we find:

x∗(Mm) = x∗(Mw) = 299
1362 ∼ 0.2195301028 and x∗(Me) = 382

681 ∼ 0.5609397944 .

The egalitarian stable matching is therefore more likely than both the extreme
solutions together. This differs from using the random order mechanism, since in
this case the egalitarian stable matching is not achievable (as nobody gets their
best stable partner) and the remaining stable matchings have probability 1

2 .

Example 2. The following classical instance was proposed by Knuth [31] with
four men and four women and the following preferences:

m1:w1, w2, w3, w4 m2:w2, w1, w4, w3 m3:w3, w4, w1, w2 m4:w4, w3, w2, w1

w1:m4,m3,m2,m1w2:m3,m4,m1,m2w3:m2,m1,m4,m3w4:m1,m2,m3,m4

In this case, the Markov chain has 209 states, 1280 transitions, and the following
10 absorbing states (stable matchings):

M1 = {(m1, w1), (m2, w2), (m3, w3), (m4, w4)}
M2 = {(m2, w1), (m1, w2), (m3, w3), (m4, w4)}
M3 = {(m1, w1), (m2, w2), (m4, w3), (m3, w4)}
M4 = {(m2, w1), (m1, w2), (m4, w3), (m3, w4)}
M5 = {(m3, w1), (m1, w2), (m4, w3), (m2, w4)}
M6 = {(m2, w1), (m4, w2), (m1, w3), (m3, w4)}
M7 = {(m3, w1), (m4, w2), (m1, w3), (m2, w4)}
M8 = {(m4, w1), (m3, w2), (m1, w3), (m2, w4)}
M9 = {(m3, w1), (m4, w2), (m2, w3), (m1, w4)}
M10 = {(m4, w1), (m3, w2), (m2, w3), (m1, w4)}

and calculating the absorption probabilities we find:

x∗(M1) = x∗(M10) = 549582018404187049
9518428268802561564 ∼ 0.0577387362

x∗(M2) = x∗(M3) = x∗(M8) = x∗(M9) = 1582747100504304809
19036856537605123128 ∼ 0.0831412002

x∗(M4) = x∗(M7) = 61576717268573787
528801570489031198 ∼ 0.1164457912

x∗(M5) = x∗(M6) = 253084017443076793
1586404711467093594 ∼ 0.1595330722 .

Using the random order mechanism we find M4, . . . ,M7 are not achievable,
whilst in our case it is more likely one of these matchings will be reached.12

12 The probabilities of getting these six matchings by the random order mechanism are
as follows [29]: p(M1)=p(M10)= 9600

40320
and p(M2)=p(M3)=p(M8)=p(M9)= 5280

40320
.
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Example 3. In this example we consider the roommates instance from [30, Ex-
ample 3, page 25], provided by Elena Molis. This instance concerns eight agents
with the following preferences:

a1 : a2, a3, a4, a6, a5, a7, a8
a2 : a3, a1, a4, a5, a6, a8, a7
a3 : a1, a2, a4, a5, a6, a7, a8
a4 : a6, a3, a5, a1, a2, a7, a8
a5 : a4, a7, a1, a2, a3, a6, a8
a6 : a7, a4, a2, a3, a1, a5, a8
a7 : a5, a6, a1, a2, a3, a4, a8
a8 : a3

It is an unsolvable instance, it admits two stable half-matchings (with no even
cycles), namely h1 and h2, where

h1((4, 5)) = h1((6, 7)) = 1 and h1((1, 2)) = h1((2, 3)) = h1((3, 1)) = 1
2

h2((4, 6)) = h2((5, 7)) = 1 and h2((1, 2)) = h2((2, 3)) = h2((3, 1)) = 1
2

The h1-stable matchings are:

M1 = {(2, 3), (4, 5), (6, 7)}
M2 = {(1, 2), (4, 5), (6, 7)}
M3 = {(1, 3), (4, 5), (6, 7)}

while the h2-stable matchings are:

M4 = {(2, 3), (4, 6), (5, 7)}
M5 = {(1, 2), (4, 6), (5, 7)}
M6 = {(1, 3), (4, 6), (5, 7)}

Theorem 1 states that, starting from any matching, we can always reach one
of these matchings by successively satisfying blocking pairs. This implies that
any ergodic set (which is called absorbing set in [24] and [30]) of the corre-
sponding Markov chain must contain some of the above matchings. Construct-
ing this instance in PRISM, we find there are 308 matchings and a single
ergodic set which consists of the matchings {M4,M5,M6,M7}, where M7 =
{(1, 2), (3, 8), (4, 6), (5, 7)}. This corresponds to the results presented in [30].
Computing the long-term likelihood of being in any one of the matching (i.e.
the steady state probabilities of the Markov chain) we find:

x∗(M4) = x∗(M5) = x∗(M6) = 2
7 ∼ 0.285714 and x∗(M7) = 1

7 ∼ 0.142857 .

Case study. We now compare the performance characteristics of a number of
different instances of the sm problem, as the number of men and women k(=n/2)
varies between 4 and 8.
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Model k states transitions
expected time
av. max.

Symmetric

4 208 1,433 3.595 5.713
5 1,545 15,901 5.456 7.919
6 13,326 189,691 7.692 11.05
7 130,921 2,450,001 10.30 14.09
8 1,441,728 34,194,273 13.27 17.97

Uncoord

4 208 1,268 18.97 25.22
5 1,545 14,205 84.23 93.74
6 13,326 170,886 399.2 413.5
7 130,921 2,222,745 2,197 2,216
8 1,441,728 31,209,032 14,361 14,385

Uniform

4 87 369 6.822 9.160
5 665 4,746 12.04 14.92
6 5,972 64,341 19.08 22.73
7 61,215 926,095 28.18 32.42
8 702,311 14,175,310 39.61 44.56

1000
random
samples
(min)

4 102 461 4.735 6.932
5 993 8,524 8.082 11.21
6 9,272 119,035 11.61 15.59
7 130,884 2,378,889 15.93 20.89

1000
random
samples
(average)

4 193 1,247 8.032 10.65
5 1,562 15,618 13.83 17.34
6 13,317 192,465 22.84 27.28
7 130,918 2,524,157 37.34 42.74

1000
random
samples
(max)

4 208 1,460 17.25 20.30
5 1,545 16,660 46.28 50.68
6 13,326 202,560 115.8 121.1
7 130,921 2,657,024 164.9 170.7

Table 1. Expected time to reach a stable matching from a complete intial matching

– Symmetric: in this instance the preferences of the men and women are of
the form mj : wj , . . . , wk, w1, . . . , wj−1 and wj : mj , . . . ,mk,m1, . . . ,mj−1.

– Uncoord: this instance is used in [1] to show an exponential lower bound
for the convergence time. The preference lists in this instance are given by
mj : wj+1, . . . , wk, w1, . . . , wj and wj : mj ,mj+1, . . . ,mk,m1, ..,mj−1.

– Uniform: in this case the preference lists of all men and all women are the
same and equal w1, w2, . . . , wk and m1,m2, . . . ,mk respectively.

In our experiments we consider both the case when we start with a random
(complete) matching and the empty matching. Tables 1 and 2 report on the
model statistics (states and transitions) of the Markov chains generated with
PRISM. Table 1 includes both the average and the maximum expected time to
reach a stable matching when starting from a complete matching, while Table 2
the expected time when starting from the empty matching and number of stable
matchings. For comparison, the tables also includes the minimum, average and
maximum values obtained from a sample of 1,000 random instances.13

The number of states reported in Tables 1 and 2 demonstrate that, when
starting from a randomly chosen complete matching, the number of reachable
matchings is dependent on the particular instance. We also see that for the Sym-
metric and Uncoord instances all matchings (except the empty matching) are

13 Since for k=8 each instance takes over 20 minutes to analyse, it was not feasible to
study 1,000 different instances.
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Model k states transitions
expected no. of stable

time matchings

Symmetric

4 209 1,449 7.469 1
5 1,546 15,926 10.51 1
6 13,327 189,727 13.95 1
7 130,922 2,450,050 17.78 1
8 1,441,729 34,194,337 21.99 1

Uncoord

4 209 1,284 28.04 4
5 1,546 14,230 97.16 5
6 13,327 170,922 416.5 6
7 130,922 2,222,794 2,220 7
8 1,441,729 31,209,096 14,388 8

Uniform

4 209 1,421 11.31 1
5 1,546 15,926 17.66 1
6 13,327 192,862 25.82 1
7 130,922 2,525,804 36.03 1
8 1,441,729 35,686,961 48.56 1

1000
random
samples
(min)

4 209 1,421 7.851 1
5 1,546 15,926 11.53 1
6 13,327 192,862 15.77 1
7 130,922 2,525,804 21.04 1

1000
random
samples
(average)

4 209 1,421 11.02 1.506
5 1,546 15,926 17.54 1.657
6 13,327 192,862 27.39 1.961
7 130,922 2,525,804 42.80 2.187

1000
random
samples
(max)

4 209 1,421 20.35 5
5 1,546 15,926 50.61 5
6 13,327 192,862 121.2 7
7 130,922 2,525,804 170.8 9

Table 2. Expected time to reach a stable matching from the empty initial matching

reachable. The results for the Uncoord instances are far slower than for the other
instances, corresponding to the fact that [1] uses this instance to demonstrate
a exponential lower bound on the convergence time. Considering the random
sample results, we see that the performance of the Uncoord instance is unlikely
to be seen in practice. These results also indicate that the number of stable
matches does not seem to be cause of the slow convergence time demonstrated
by the Uncoord instance, since the number of stable matchings for some ran-
dom matchings were even greater than for the Uncoord instances of the same
size, but the expected convergence times were significantly smaller. To further
demonstrate how PRISM can be used to analyse instances, Figure 1 plots the
probability of reaching a stable matching within R rounds when starting from
the empty configuration.

4 Further remarks

First, we would like to propose an aspect of our alternative proof (described in
Section 2) for further consideration, that may deepen our understanding of the
behaviour of decentralised matching markets. There is a slight contradiction in
the theoretical results with regard to the convergence time of stochastic processes
in matching market. Our theorem (and implicitly also the proof of Diamantoudi
et al. [18]) says that a stable matching can be always reached after satisfying at
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(a) Symmetric (b) Uncoord (c) Uniform

Fig. 1. Probability of reaching a stable matching within R rounds.

most mn blocking pairs, whilst the theoretical results by Ackermann et al. [1] and
the simulations by Boudreau [14] show that the expected convergence time can
be exponential for ‘uncoordinated’ markets under the better response dynamics.
How do real markets work? Recent experimental papers ([19,40]) show that
in laboratory environment the frequency of getting different stable matchings
are close to the absorption probabilities, even if only one side of the market
make proposals [19]. However, there are some other papers ([11,12]) where the
authors argue that real two-sided job markets (especially with regard to senior
positions) work differently, and instead of the better response dynamics, they
rather follow the proposal-rejection sequences of Roth and Vande Vate.14 If the
latter conjecture is true then this can clarify why some decentralised job markets
are able to reach a stable state relatively quickly. Our proof technique, which is
an extension of the Roth-Vande Vate argument for the roommates problem, can
also have similar policy implications. If we request the agents of a roommates
market to enter (or leave) the market one by one and encourage them to make
offers to the best available mate according to their preferences, then these kind
of stochastic markets would be likely to reach a stable (or close to stable) state
more quickly than the ones with no coordination.15 These conjectures would be
interesting to investigate using both laboratory experiments and by inspecting
real decentralised matching markets. In fact, the above best response policy could
also be used as a protocol in P2P systems, as Lebedev et al. [36] suggested for

14 We might think about a new opening in the senior academic market. If this position
is linked to a well-specified research topic, then it is a realistic assumption that
the potential candidates will be reached by the advertisements and the selection
process ensures that the best applying candidate will be selected. Therefore, we can
perhaps assume that in a real (sub-)market only one new position makes the market
instable, and also the stochastic process might be better described with the best
response dynamics rather than better responses.

15 Note that path to stability constructed in the proof of Diamantoudi et al. [18] cannot
be translated into a policy for agents to follow, as the construction is based on
the knowledge of a stable matching, which could be obtained only by a central
coordinator.
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special roommates settings, which can make a decentralised system to converge
to a stable state rapidly.

Calculations of the absorption probabilities have been conducted in several
recent papers ([14,16,19]) by extensive simulations. Doing these simulations is
not an easy task16. As we demonstrate in Section 3, PRISM is a very useful tool
for analysing stochastic processes of this kind. The reader is welcome to download
this open-source model checker tool and repeat our experiments or try different
ones with the code we have made available from the PRISM website [52].

As an extension of the approach presented in this paper, it would be interest-
ing to study stochastic processes occurring in more general settings, for example,
in hedonic coalition formation games, where the size of possible coalitions can
be larger than two, see e.g. [4] and [13]. However, in this case the existence of a
stable solution (i.e., a nonempty core) does not guarantee that there is a conver-
gence to a stable solution when starting from any unstable state, as illustrated
by Diamantoudi et al. [18]. So in this case absorbing states and ergodic sets may
appear together in the Markov chain. Yet, one could investigate the structure of
absorbing and ergodic states for special classes of coalition formation games, and
analyse particular games in a similar framework as we did here, using PRISM.

Furthermore, more general network formation games and matching problems
could also be analysed with this technique. Kojima and Ünver [33] extended the
results of Roth and Vande Vate to many-to-many markets. Another example
for such problems is the resident allocation problem with couples, where the
existence of a stable matching is not guaranteed in general (for a survey on this
problem, see [8]). However, for particular preference structures Klaus and Klijn
[28] show that not only that the existence of a stable solution can be guaranteed,
but also that the path to stability from any starting matching.

Finally, the same questions can be asked for cooperative games with trans-
ferable utilities, such as the matching game [9], or the slightly different stable
matching problem with payments [10], where the agents who are matched to-
gether may share the value of their cooperation between each other. In a very
recent paper Biró et al. [10] showed that starting from any solution in a room-
mates market with payments we can reach a stable solution by satisfying at
most 2m blocking pairs, if a stable solution exists. Similar result has been shown
for two-sided markets by Chen et al. [17]. Regarding general TU-games, there

16 For example, Boudreau [15] wrote the following in a recent paper: “Calculating
the probability of each stable outcome for a given market under the randomized
tâtonnement process is extremely difficult due to the tremendous number of paths
that can be involved (see [14] for an idea of just how long random paths to stability
are likely to be). Loops in the process mean that a closed form solution is virtually
impossible to obtain. Fortunately, the process can easily be programmed into soft-
ware such as Matlab (copyright The Mathworks). Trials of the process can thereby
be repeated over and over again by starting from the empty matching, assigning uni-
form probability to all blocking pairs existing at each step, and keeping track of which
particular stable outcome prevails each time. After one million such trials, it is then
possible to obtain a probability distribution for a given markets set of stable outcomes
based on the simulated experimental data.”
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are also results on the accessibility of the core and the number of blocks needed
to access the core (or some other desired set of imputations), see e.g. [32], [5]
and [50]. There can be seen as counterpart of the path to stability results for
matching markets.
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20 Péter Biró, and Gethin Norman

15. J. Boudreau. A note on the efficiency and fairness of decentralized matching.
Operations Research Letters, 39:231-233, 2011.

16. J. Boudreau. An exploration into why some matchings are more likely than oth-
ers. To appear in the proceedings of MATCH-UP 2012: The Second International
Workshop on Matching Under Preferences, 2012.

17. B. Chen, S. Fujishige and Z. Yang. Decentralized Market Processes to Stable Job
Matchings with Competitive Salaries. Working paper, Kyoto University, RIMS-
1715, 2011.

18. E. Diamantoudi, E. Miyagawa and L. Xue. Random paths to stability in the
roommates problem. Games and Economic Behavior, 48:18–28, 2004.

19. F. Echenique and L. Yariv. An Experimental Study of Decentralized Matching.
working paper, 2011.

20. D. Gale and L.S. Shapley. College admissions and the stability of marriage. Amer-
ican Mathematical Monthly, 69:9–15, 1962.

21. D. Gusfield and R.W. Irving. The Stable Marriage Problem: Structure and Algo-
rithms. MIT Press, 1989.

22. M. Hoefer. Local matching dynamics in social networks. Proc. 38th Intl. Coll.
Automata, Languages and Programming (ICALP 2011), LNCS 6756, pages 113–
124, 2011.

23. E. Inarra, C. Larrea and E. Molis. Random paths to P -stability in the roommate
problem. Int. Journal of Game Theory, 36:461–471, 2008.

24. E. Inarra, C. Larrea and E. Molis. The stability of the roommate problem revisited.
Proceedings of Matching Under Preferences (MATCH-UP) Satellite workshop of
ICALP 2008, 114–125, 2008.

25. R.W. Irving. An efficient algorithm for the “stable roommates” problem. Journal
of Algorithms, 6:577–595, 1985.

26. M.O. Jackson and A. Watts. The evolution of social and economic networks.
Journal of Economic Theory, 106(2):265–295, 2002.

27. J.G. Kemeny and J.L. Snell. Finite Markov chains. D. Van Nostrand Company,
Inc., 1960.

28. B. Klaus and F. Klijn. Path to stability for matching markets with couples. Games
and Economic Behavior, 58:154–171, 2007.

29. B. Klaus and F. Klijn. Corrigendum to “On randomized matching mechanisms”
[Economic Theory 8(1996)377–381]. Economic Theory, 32:411–416, 2007.

30. B. Klaus, F. Klijn and M. Walzl. Stochastic stability for roommate markets.
Journal of Economic Theory, 145:2218-2240, 2010.

31. D.E. Knuth Mariages stable et leurs relations avec d’autres problèmes combina-
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