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Abstract  

Mo-doped carbon aerogels were obtained in the polycondensation reaction of aqueous 

resorcinol and formaldehyde by adding Mo-salt at two different stages of the synthesis: i) to 

the initial sol; ii) by incipient wetting impregnation of the supercritically dried polymer gel. 

Molybdenum added during the polymerization yielded a more compact gel structure with 
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practically no mesoporosity. With post-impregnation, by contrast, mesopores of diameter 3-15 

nm were generated. Carbonization appreciably enhanced the microporous character of both 

samples, but in the mesopore range their pore size distribution was conserved. The Mo-

content of the samples was also different: Mo was lost during the solvent exchange before the 

supercritical drying (i.e., the Mo failed to bind chemically to the polymer matrix). The 

residual Mo congregated into 25-60 nm bulk clusters of α-Mo2C. In the other carbon aerogel, 

finely dispersed α-Mo2C and η-Mo3C2 crystals formed, of size 8-20 nm. On the surface of 

both carbons the Mo formed oxides. In the model test reaction (acetic acid hydroconversion) 

the catalytic activity of both carbon aerogels was enhanced by molybdenum.  The more open 

pore structure, higher concentration and finer Mo distribution, as well as its chemical form, 

may all be responsible for the greater conversion and higher value products obtained with the 

post-impregnated sample. 

 

1. Introduction 

Carbon aerogels that are simultaneously macro- and mesoporous offer advantages over other 

forms of carbons. The textural and chemical characteristics of these materials predispose them 

as thermal and phonic insulators, electric double layer and super capacitors, chromatography 

packing, adsorbents, catalyst support, etc. [1-8]. Mesoporous carbon gels can be prepared 

from resorcinol (R) and formaldehyde (F) under controlled conditions (solvent, concentration, 

stoichiometry, choice of catalyst in the precursor solution, pH, etc.) [9-11]. Most of these 

parameters act by influencing the mechanism and kinetics of the polycondensation process.  

The tailored structure of the resorcinol-formaldehyde (RF) hydrogels can be preserved by 

careful removal of the solvent [12].  

The selectivity and/or efficiency of these materials in catalysis or separation may be enhanced 

by introducing transition metals. The metal salt can, for instance, be added to the initial 



resorcinol-formaldehyde solution. However, the amount of metal introduced this way is 

limited (typically < 1 w/w%). The synthesis of gels containing Pt [13] Ag, Mn [14] Ti [15] Cu 

[16] Fe, Co, Ni [17] Cr, Mo, W [18] has already been performed by this method. Enhanced 

incorporation of molybdate anions into RF hydrogels has recently been achieved (4-20 w/w% 

depending on surfactant) by adding a surfactant to the monomer solution [19]. 

Another method is based on the improved ion-exchange potential of the hydrogel. In this case 

resorcinol is substituted with 2,4-dihydroxybenzoic acid in the reaction mixture. After solvent 

exchange and supercritical drying the metal content in the polymer gel may reach 17 w/w%. 

The pore structure of the gels is conserved during the process. Fe, Ni, Co and Cu doped 

aerogels were prepared successfully by this method [20-23]. 

A third strategy is to deposit (by incipient wetness impregnation, adsorption, sublimation or 

supercritical deposition) the metal precursor on the dry organic, carbon or activated carbon 

aerogel, followed by pyrolysis or an additional heat treatment. The gels also retain their pore 

structure during this procedure. Pt [24], Pd [25], Ru [26] Co, Cu, Fe, Mn, Zn [27], Ni [28] and 

Ti [15] doped gels were prepared in this way. 

During the carbonization process metal-loaded samples became partially graphitized already 

at around 1000 °C in the case of doping with Fe, Co, Ni, Cr [17, 29]. Reduction or even 

carburization of the metallic species occurs in this step to an extent that depends on the metal 

and the carbonization conditions [13, 18, 28, 30, 31]. The size of the metal or metal-carbide 

particles formed is also influenced by the carbonization conditions [13]. 

In this investigation resorcinol-formaldehyde (RF) aerogels and their carbonized derivatives 

were doped with molybdenum at different stages of the preparation. The effect of the metal on 

the pore size distribution and on the apparent surface area is investigated by low temperature 

nitrogen adsorption and high resolution transmission electron microscopy (HRTEM). Small 

and wide angle X-ray scattering (SAXS/WAXS), X-ray diffraction (XRD), X-ray 



photoelectron spectroscopy (XPS) and selected area electron diffraction (SAED) were used to 

study the morphology, composition and oxidation state of the Mo-containing deposits. The 

catalytic potential of the molybdenum doped carbon aerogels was tested in a reductive 

hydrogenation reaction.  

 

2. Experimental 

2.1 Synthesis 

RF polymer gels were prepared by the method of Pekala [9] modified by Lin and Ritter [10]. 

Resorcinol (Merck), formaldehyde (37% aq. solution, Merck) and the catalyst (C) sodium 

carbonate (Reanal) were dissolved in distilled water. The R/C and R/F molar ratios were 50 

and 0.5, respectively, and the overall concentration of the initial solution was 5 w/w%. The 

pH of the system was set to 6.0. Further details are described elsewhere [12]. After water – 

acetone solvent exchange the wet gel was dried by supercritical carbon dioxide (scCO2) 

extraction [32]. 

Molybdenum-containing samples were prepared in two ways. i) Ammonium heptamolybdate 

tetrahydrate (NH4)6Mo7O24.4H2O (AM, Merck) was added directly to the starting reaction 

mixture at 0 °C. The total R/AM molar ratio and the concentration of the initial reaction 

mixture were 100% and 5 w/v%, respectively. The pH of the system was set again to 6.0. ii) 

The dry polymer aerogels were impregnated by incipient wetting (4 mL aqueous 100 g/L AM 

solution/ g RF aerogel).  The samples were dried at 110 °C overnight. The molybdenum 

added to the system was identical in the two cases. 

To obtain the carbon gel (CG) the dry polymer gels were carbonized in a rotary quartz reactor 

at 900 °C for 1 h in in a flow of high purity nitrogen (99.996%, Linde, 25 mL/min). The 

prehistory and the nomenclature of the samples are listed in Table 1. 

 



 

 

Table 1. Prehistory of the samples and their symbols 

 

Sample 

Prehistory 

RF RF aerogel sample without molybdenum 

MoRF  Mo-containing RF aerogel; AM salt was added to the reaction mixture 

RFMo  Mo-containing RF aerogel; aqueous AM was added by incipient wetting 

RF-carb carbonized RF 

MoRF-carb carbonized MoRF 

RFMo-carb carbonized RFMo  

 

2.2 Methods 

Nitrogen adsorption/desorption isotherms were measured at -196 °C with a Nova200e 

(Quantachrome) computer controlled apparatus. The apparent surface area SBET was 

calculated using the Brunauer–Emmett–Teller (BET) model [33]. The total pore volume (Vtot) 

was derived from the amount of vapour adsorbed at relative pressure 0.95, assuming that the 

pores are then filled with liquid adsorbate. The micropore volume (W0) was derived from the 

Dubinin–Radushkevich (DR) plot [34]. The pore size distribution was calculated with the 

Quenched Solid State Functional Theory (QSDFT) model, assuming slit/cylindrical geometry 

[35]. Transformation of the primary adsorption data was performed by the Quantachrome 

software ASiQwin version 3.0. 

The submicroscopic fine structure of the aerogels was observed by SAXS/WAXS on the BM2 

small angle camera at the European Synchrotron Radiation Facility (ESRF), Grenoble, 

France, at 19.8 keV (0.626 Å), and also at 19.994 keV, just below the absorption edge of Mo 



(19.9995 keV). The powdered samples were placed in glass capillary tubes of diameter 1.5 

mm. Samples were measured in the transfer wave vector range 0.06 < q < 100 nm-1. 

Intensities were normalised with respect to a standard sample (lupolen). 

The total molybdenum content was estimated by scanning electron microscope supported 

energy-dispersive X-ray spectroscopy (SEM/EDX). The investigation was carried out on a 

JEOL 5500 electron microscope in high vacuum mode. The samples were fastened to copper 

sample holders. The chemical composition of the surfaces was determined by XPS using an 

XR3E2 (VG Microtech) twin anode X-ray source and a Clam2 hemispherical electron energy 

analyzer. The base pressure of the analysis chamber was about 5·10–9 mbar. The MgKα 

radiation employed (1253.6 eV) was not monochromated. A set of mixed Gaussian-

Lorentzian functions was fitted to the peaks on each spectrum after subtracting Shirley-type 

backgrounds using CasaXPS. Components were identified on the basis of data from reference 

[36]. The conventional (TEM) and high resolution transmission electron microscopy 

(HRTEM) investigations were carried out with Philips CM20 (200 kV) and JEOL 3010 (300 

kV) electron microscopes, respectively. The morphology and structure of the samples were 

examined in imaging and selected area electron diffraction (SAED) modes and by fast Fourier 

transforms (FFT) of the HRTEM micrographs. The distribution of the elements was studied 

by EELS elemental mapping by means of a GATAN TRIDIEM electron energy filter. The 

crystallinity of the samples was examined with the same instrument in SAED (GATAN 

TRIDIEM) mode. XRD-ray diffraction was performed on an X’Pert Pro MPD X’Pert Pro 

MPD (PANalytical Bv) diffractometer in the angular range 2Θ = 4–84°, using CuKα 

radiation. 

 

2.3 Catalytic activity 



The catalytic activity of the carbon aerogels was compared in the hydrogenation reaction of 

acetic acid (AA), a model compound for biomass [37] in a high-pressure fixed bed flow-

through reactor (hydrogen pressure of 19 bar, AA pressure 2 bar) at 380 °C. The liquid 

fraction of the product was analyzed by a gas chromatograph (Shimadzu 2010, HP-Plot/U 

capillary column, flame ionization detector). The gaseous effluent was analyzed by an on-line 

gas chromatograph (HP 5890, Carboxen 1006 Plot capillary column, thermal conductivity 

detector). For all three carbon aerogels identical conditions were applied. 

 

3. Results and discussion 

3.1 Characterization of the aerogel samples 

The pore structure of the aerogels was investigated by low temperature nitrogen adsorption 

measurements. The nitrogen adsorption/desorption isotherms and the pore size distribution 

(PSD) curves are shown in Figures 1 and 2, respectively. The porosity data deduced from the 

isotherms are listed in Table 2.  

 



Figure 1 Low temperature nitrogen isotherms of polymer (a) and carbon (b) aerogels.  

● RF (a) and RF-carb (b), □ MoRF (a) and MoRF-carb (b),  

▲ RFMo (a) and RFMo-carb (b) 

Table 2. Data reduced from low temperature nitrogen adsorption and SAXS measurements* 

SBET W0 Vtot V0.95 Vmeso Vmacro R 

m2/g cm3/g cm3/g cm3/g cm3/g cm3/g nm 

RF 483 0.179 1.743 0.668 0.489 1.075   7.3a 

MoRF 40 0.014 0.092 0.058 0.044 0.034 24.6 b 

RFMo 124 0.046 0.239 0.236 0.190 0.003   8.0 a 

RF-carb 1015 0.420 1.530 0.860 0.440 0.670   6.0 a  

MoRF-carb 521 0.210 0.310 0.272 0.062 0.038 13.8 b 

RFMo-carb 544 0.210 0.445 0.440 0.230 0.005 6.1 a 

* SBET: specific surface area from BET model, W0: micropore volume from DR method, VTOT: 

pore volume at p/p0→1, V0.95: pore volume at p/p0 = 0.95, Vmeso: V0.95-Vmicro;  Vmacro: VTOT-V0.95. 

R: radius of the spherical elementary beads from SAXS measurements: afrom I(q)q4 vs q; 

bfrom extrapolation using eq 3 

 

The shape of the isotherms indicates that the pore structure of the gels is strongly influenced 

by the synthesis route. The adsorption isotherms of both Mo-free aerogels show that these 

samples have the highest nitrogen adsorption capacity in the whole relative pressure range. 

Significant macroporosity with a size just beyond the detection range of the nitrogen 

adsorption technique develops in these samples. The molybdenum salt present during the 

gelation process substantially obstructs the porosity [38]. The apparent surface area of the 

MoRF sample is very low and no mesoporosity is detected. Incipient impregnation results in a 

modest reduction both in the size and volume of the mesopores of the polymer aerogel. In the 



carbonized samples the dramatic change in the apparent surface area is the sign that 

microporosity has developed. The heat treatment also leads to an enhancement of the nitrogen 

adsorption in the initial section of the isotherms. Otherwise the PSD of all the three samples is 

conserved during the heat treatment [12]. 

 

Figure 2 Mesopore size distribution (QSDFT, slit/cylindrical geometry) of the dry polymer 

(a) and carbon (b) aerogels. ● RF (a) and RF-carb (b),  

□ MoRF (a) and MoRF-carb (b), ▲ RFMo (a) and RFMo-carb (b) 

 

3.2 SAXS results 

Figure 3a shows the SAXS responses of samples RF, RFMo and RFMo-carb. Figure 3b 

shows those of MoRF and MoRF-carb. In Figure 3a the responses all have a similar 

appearance in the SAXS region. Significant differences become visible only in the WAXS 

region q≥10 nm1, revealing the crystallinity of the molybdenum compounds. The inset in this 

figure is an example of the oscillations that appear at low q in a plot of I(q)q4 vs q, which are 

the signature of the basic bead-like structure of these aerogels. The outer radius R of the beads 

is found by assimilating the beads to solid spheres. In the I(q)q4 representation the first 

maximum of the scattering intensity  occurs when  

R=2.74/qmax ,       (1) 

where qmax  is the position of the maximum. 



For the gels synthesized with Mo (Figure 3b), the structure differs substantially from those 

without: in the observed low q range, only power law behaviour is visible, of the form 

I(q) =Aq-m      (2) 

 

Figure 3 SAXS response of the different aerogels at 19.8 keV, a) aerogels prepared without 

Mo in the precursor mixture. Inset: the maximum in the plot of I(q)q4 at qmax is characteristic 

of a bead-like structure with radius R=2.74/qmax=7.3 nm; b) aerogels prepared with Mo in the 

precursor mixture. The dashed extrapolations are fits to eq 3. 

 

where the slopes m are slightly less than 4.  This is surface scattering. Since no evidence of a 

shoulder is apparent, the elementary clusters are significantly larger than those in Figure 3a. 

The slope of the power law, however, enables an extrapolation to be made to lower q by using 

the Debye-Bueche expression [39]  

I(q) = a/[1+(Rq)2]2        (3) 

The resulting extrapolations are shown as dashed lines in Figure 3b. The corresponding values 

of R (Table 2) suggest that carbonization of MoRF to MoRF-carb shrinks the radius of the 

clusters appreciably (from 24.6 to 13.8 nm).  

Inspection of Table 2 shows that similar shrinkage in the bead size also occurs when the gels 

synthesized without Mo are carbonized. It can also be seen that the incipient impregnation has 



little influence on the bead size. When Mo is present during the polymerisation, however, the 

low q feature moves to lower q (Figure 3b), i.e., the Mo catalyst favours much larger clusters 

in the aerogel.  

When the incident energy of the X-ray beam is raised to 19.994 keV, just below the atomic 

absorption threshold of Mo (19.9995 keV), the effective number of electrons in the Mo atom 

decreases, and anomalous scattering effects appear. The difference in intensity between the 

measurements at high (E2) and low energy (E1) is then 

 ∆I(q)=I19.8 keV(q)-I19.994keV(q) 

= r0
2[ρMo(E1)- ρMo(E2)]{2 ρp SMop(q) + [ρMo(E1)+ρMo(E2)] SMoMo(q)}  (4) 

where r0 is the classical radius of the electron, ρp and ρMo are respectively the electron 

densities of the RF polymer and of the molybdenum, and SMop(q) and SMoMo(q) are 

respectively the cross and direct partial structure factors of the polymer and molybdenum. 

∆I(q) is thus essentially proportional to the difference  in electron density of the molybdenum 

at the two energies, and to the amount of Mo present. As the electron density of Mo is 

significantly higher than that of the polymer, ρp, the second (direct) term in the curly brackets 

dominates. 

Figure 4 shows the scattering intensity of sample RFMo at the two energies 19.8 and 19.994 

keV, and their difference. The shape of ∆I(q) closely resembles that of I19.8 keV(q), and in the 

representation ∆I(q)q4 vs q it displays a peak at q=0.375 nm-1(inset). The intensity of ∆I(q) is 

one order of magnitude smaller than I(q), which is consistent with the difference in the 

number of electrons in the Mo atom participating in the scattering at these two energies, 

n19.800keV - n19.994keV = 3.67 e [40], i.e. about 10% of the available electrons in the Mo atom. 

These results indicate that the principal contribution to the SAXS intensity from this sample 

comes from molybdenum-rich beads of approximate radius 7.3 nm.  The power law slope of -

4 in the region q>0.3 nm-1 testifies that the surface of the beads is smooth. 



  

Figure 4. SAXS response from the polymer RFMo at 19.8 keV (blue symbols) and 19.994 

keV (red symbols), and the difference signal ∆I(q) (green). Inset shows the maximum of 

∆I(q)q4 at 0.375 nm-1, corresponding to R=7.3 nm. (On the scale of this figure the responses at 

the two energies are so close that their symbols almost appear as a single colour. Only their 

difference ∆I(q) is distinguishable.)  

 

  

Figure 5. ∆I(q) in MoRF carb and RFMo-carb. 

The behaviour of the difference signal ∆I(q) in the carbonised sample MoRF-carb  is very 

different from that of RFMo-carb (Figure 5). While the elementary beads in MoRF-carb have 



the power law slope -4 that is characteristic of smooth surfaces, in MoRF-carb the slope is 

approximately -3.1, indicative of scattering from extremely rough surfaces (surface fractal 

dimension 2.9). The intensity of MoRF-carb is also more than an order of magnitude smaller 

than that of RFMo-carb, in confirmation of its much lower Mo content. Nevertheless, the ratio 

of the anomalous intensity to the total signal in this sample, ∆I(q)/I19.8keV(q) = 0.117,  remains 

large, and implies that the Mo, owing to its high electron density, still dominates the 

scattering intensity. Since, however, the SAXS intensity is determined not only by differences 

in the electron density but also by the size of the scattering particles, these observations are 

insufficient to determine the molybdenum concentration of the samples. 

 

3.2 Chemical state of molybdenum 

According to TEM images the distribution of the molybdenum is strikingly different in the 

two carbon aerogels (Figure 6). 90 % of the Mo-particles are in the 25-60 nm and 8-20 nm 

range in the MoRF-carb and RFMo-carb samples, respectively. Surprisingly, the wet 

impregnation method results in a smaller particle size and a better dispersion of the metal.  

  

Figure 6 TEM images of MoRF-carb (a) and RFMo-carb (b) samples representing the 

distribution of Mo 



The surface composition of the MoRF-carb and RFMo-carb samples, as well as the chemical 

states of the atoms on their surface were determined by XPS. The Mo 3d peaks can be 

resolved into three doublets (Figure 7). The less oxidised state of molybdenum appears only 

on the surface of the RFMo-carb sample. Its Mo 3d5/2 peak was found at binding energy 228.4 

eV. This is almost 1 eV higher than the binding energy of both the metallic molybdenum and 

the molybdenum carbide. Since no other elements but carbon, oxygen and molybdenum were 

detected on the surface, and organic compounds would not survive the temperatures to which 

the sample was subjected, the peak must belong to a type of molybdenum oxide. It must be 

noted, however, that according to reference works both MoO3 and MoO2 appear at higher 

binding energies [36]. The peak therefore belongs to a suboxide of molybdenum that cannot 

be precisely identified due to lack of literature data on the XPS peak positions of such 

compounds.  

 

Figure 7 Deconvolution of the Mo 3d5/2 response in the XPS spectra.  

Initial AM (a), MoRF-carb (b), RFMo-carb (c).  

 

The Mo 3d5/2 peak of the more oxidised state appears at binding energy 232.4 eV in both 

samples. This matches the position of both the native oxide of molybdenum and the 

ammonium heptamolybdate used to dope the samples with molybdenum. Due to the thermal 

behaviour of ammonium heptamolybdate this second, more oxidised state probably belongs to 

MoO3 [41]. (It must be noted however that pure, perfectly stoichiometric MoO3 gives rise to 
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peaks at a slightly higher binding energy than native molybdenum oxide, or the compound 

detected on the surface of these samples. This means, that even this second state is slightly 

less oxidised than true MoO3.) Besides these states, a third doublet peak was detected on both 

samples. The Mo 3d5/2 peak of these doublets appeared at 236.7 and 237.8 eV, respectively. 

Since no molybdenum compound exhibits such high chemical shifts, this third component 

must be the result of localised charging: both samples contain a small amount of insulating 

particles that are charged to a relatively high positive potential. Since this potential is 

unknown, the chemical state of molybdenum in these particles cannot be established. The 

concentration of molybdenum in this state is below 0.1 at% on the surface of both samples.  

 

Table 3 Elemental composition (at%) of the doped carbon aerogels 

Sample 
carbon oxygen 

molybdenum 

all reduced oxidized 
from EDX 

C1s O1s Mo 3d5/2 

MoRF-carb 80.8 19.0 0.1 -* 0.1 0.29±0.04 

RFMo-carb 82.0 16.5 1.5 0.4 1.1 2.24±1.28 

* below the detection limit 

 

The molybdenum content from EDX and XPS responses is compared in Table 3. The 

difference between the EDX and XPS data stems from the fact that EDX and XPS measures 

the bulk (several µm in our case) and the surface composition, respectively. The low Mo 

content of the MoRF-carb sample, also confirmed by the WAXS and XRD analyses, is due to 

poor retention of the Mo during the solvent exchange (the colour of the washing acetone 

turned blue) and shows that the Mo is not chemically bound [38]. 



XRD and SAED analyses were performed to determine the chemical form of the molybdenum 

in the bulk. No crystalline phase was found in the polymer aerogels. In MoRF-carb a very 

limited amount of crystalline α-Mo2C phase was detected by XRD (Figure 8). In RFMo-carb 

the crystallinity is more pronounced and, as also revealed by wide angle X-ray scattering 

(WAXS) responses [42], an additional wide molybdenum carbide peak appears, reflecting the 

microcrystalline character of this phase (Figure 8). Figure 9 shows a HRTEM image of the 

MoRF-carb sample including both amorphous and crystalline areas. The insets represent a 

magnified section of an embedded crystal (upper right) and the corresponding FFT pattern 

(lower right). At the given imaging conditions, the FFT can be indexed on the basis of either 

η-Mo3C2 or α-Mo2C phases as marked in Roman and italic characters, respectively.   

 

 

Figure 8 XRD patterns of the molybdenum doped carbon aerogels.  

α and η denote peaks assigned to α-Mo2C and η-Mo3C2, respectively.   The weak intensity of 

the α peaks compared to that of the amorphous peak from the carbon substrate at 2θ≈44º 

(q=30 nm-1) confirms the low Mo content of MoRF-carb.   



 

Figure 9 HRTEM image of the sample RFMo-carb. The upper right inset is the magnification 

of a crystalline area marked by a rectangle. The lower right inset is the corresponding FFT 

pattern that can be indexed as η-Mo3C2 and α-Mo2C phases, indicated with Roman and italic 

characters, respectively.  

 

It can be concluded that the chemical form of molybdenum is significantly different on the 

surface (oxides) and in the bulk (carbides). In molybdenum doped micro- and macroporous 

carbon aerogels surface and bulk carbides were detected only after post-treatment in H2/Ar at 

800 °C [43].  However, formation of molybdenum carbide was reported when a commercial 

micro- and mesoporous activated carbon was treated at 1000 °C in Ar or He [44]. The water 

that forms during the heat treatment may react with the carbon surface or with the CO from 

the degradation products: 

H2O+C = H2 + CO    (5) 

and/or 

CO + H2O = H2+CO2    (6) 

 Both reactions lead to the in situ formation of H2. In the narrow pores where the gas transport 

is limited and the residence time of the H2 is long it may act as a reducing agent, resulting in 



the formation of carbides in the bulk. On the open surface, however, the hydrogen is easily 

eliminated by the inert gas stream, thus preventing the formation of carbide.  

 

3.3 Catalytic test reaction 

The catalytic performance of Mo-doped carbon aerogels has already been reported in the 

isomerization of 1-butene and the aromatization of alkanes [18, 31]. In our experiments the 

molybdenum doped carbon gels were tested in the catalytic hydroconversion of AA. Three 

well separable pathways can be distinguished in this reaction: (I) hydrogenolysis, yielding 

carbon monoxide and methane; (II) ketonization producing carbon dioxide and acetone; (III) 

reduction of acetic acid, which may result in acetaldehyde, ethanol and ethyl acetate [37]. The 

change in the distribution of the compounds with time on stream is represented in Figure 10. 

In these stacked area graphs the concentration of a particular product is represented by the 

distance between two neighbouring lines [37]. Thus, the uppermost curve also shows the total 

conversion of the AA. Although the reaction conditions were not optimized, the comparison 

of these graphs clearly demonstrates enhanced catalytic activity with both Mo-doped samples. 

The overall concentration of acetaldehyde, ethanol and ethyl acetate after 6 hrs can be used to 

evaluate the performance of the three aerogels.  

The low conversion rate (<15 %) and the distribution of the products are practically constant 

in time when the Mo-free carbon gel is used as catalyst. Nevertheless, the high yield of the 

gaseous products shows that route I is the determining pathway. The three liquids from route 

III amount to less than 21 %. The molybdenum doping significantly increases the catalytic 

activity. Although the conversion decreases slightly as the reaction progresses, it is much 

higher than without molybdenum, even after 6 hrs in both systems. The amount of gaseous 

products (e.g., carbon monoxide and methane) is very low.  The best results are obtained over 

the RFMo-carb sample.  Not only is the conversion highest but the distribution of the products 



is the most favourable. No carbon monoxide or methane (typical of route I) were detected. 

The concentration of the high value solvents is 66 %, compared to the 52 % with the MoRF-

carb sample. This improved performance can be partly explained by the higher molybdenum 

content of this carbon aerogel and the finer distribution of the metal, but the improvement is 

clearly not proportional to the molybdenum content. The distribution of the products clearly 

shows that the mechanism is influenced by the molybdenum present. Also, the time 

dependence of the product distribution reveals that the surface properties, particularly of the 

Mo-containing catalysts, undergo changes during the hydroconversion reactions. 

A systematic investigation of the AA hydrogenation process with post-impregnated Mo-

doped carbon aerogels including the influence of the Mo content on the reaction mechanism is 

reported elsewhere [45]. 

   

Figure 10 Evolution of the product distribution with the time on stream of the RF-carb (a), 

MoRF-carb (b) and RFMo-carb (c). The uppermost curve gives the total conversion of the 

AA. The concentration of a particular product is represented by the distance between two 

neighbouring lines. 1:  ethanol, 2: acetaldehyde, 3: ethyl acetate, 4: acetone, 5: water, 6: 

carbon monoxide, 7: methane and 8: other products.  

 

 

 



4. Conclusions 

Molybdenum doped carbon aerogels were prepared by two different synthesis routes. 

Molybdenum was added either to the initial mixture or to the supercritically dried polymer 

matrix by the IWI method.  It was found that both the morphology of the Mo doped RF 

matrices and the chemical state of Mo depend strongly on the synthesis route. The presence of 

molybdenum during the polymerization stage (MoRF) resulted in the development of much 

larger elementary spheres and a reduced porosity and surface area. The IWI treatment, in 

addition to suppressing the microporosity in the polymer aerogel, led to the formation of 

mesopores of width 3-15 nm. The carbonisation post-treatment substantially enhanced the 

surface area and the microporous character but the PSD in the mesopore range was conserved. 

Carbon aerogels with significantly different Mo-content and distribution were obtained. The 

IWI method gave a smaller particle size and a better dispersion of the metal. The Mo(VI) of 

the impregnating salt reduced to molybdenum carbide(s). In the bulk of RFMo-carb 

crystalline forms of α-Mo2C and η-Mo3C2 were identified, while in the low Mo content 

MoRF-carb sample only a limited amount of α-Mo2C was detected. 

The presence of molybdenum improved the catalytic activity of the carbon aerogel in the 

hydrogenation reaction of acetic acid, a model compound for biomass, although the increase 

is not proportional to the metal content. The highest conversion and most valuable product 

distribution were obtained with the RFMo-carb sample. The relative enhancement in MoRF-

carb compared to the Mo-free sample is, however, more dramatic given its low metal content. 

The combination of the more advantageous pore structure, the fine Mo-distribution and the 

probably more suitable chemical form altogether may also be responsible for the better 

performance of the RFMo-carb sample.  
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