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Abstract

The rate of convergence of the conjugate gradient method takes place in essen-
tially three phases, with respectively a sublinear, a linear and a superlinear rate.
The paper examines when the superlinear phase is reached. To do this, two methods
are used. One is based on the K-condition number, thereby separating the eigenval-
ues in three sets: small and large outliers and intermediate eigenvalues. The other
is based on annihilating polynomials for the eigenvalues and, assuming various an-
alytical distributions of them, thereby using certain refined estimates. The results
are illustrated for some typical distributions of eigenvalues and with some numerical
tests.

1 Introduction

LetA be a symmetric positive definite (spd) matrix. The classical conjugate gradient (CG)
method is the most widespread way for the iterative solution of linear systems Ax = b, see
e.g. [2, 10, 16]. It either uses the standard Euclidean inner product, 〈x, y〉 = xTy, or in its
preconditioned form, the inner product 〈x, y〉 = xTCy, defined by an spd preconditioning
matrix C. Let ‖e‖A := 〈e, Ae〉1/2. In both its unpreconditioned and preconditioned form,
the CG method is an optimal method in the sense that the relative errors satisfy

‖ek‖A
‖e0‖A

= min
Pk∈π1

k

max
λ∈S(C−1A)

| Pk(λ) | , (1)

where ek = xk − x is the error vector at the kth iteration step and x0 is an arbitrarily
chosen initial approximation of x. Further, π1

k denotes the set of polynomials of degree k
normalized at the origin. Here the spectrum S(C−1A) is considered as a disjoint set, i.e.
multiplicities of the eigenvalues play no role, see e.g. [1, 2, 9]. The rate of convergence is

measured by the ratio in (1) or by its geometric average, (‖ek‖A/‖e0‖A)1/k. For particular
initial errors e0, which are deficient in some parts of the eigenvector space, one can get
a faster rate of convergence. In this paper we assume a general initial vector e0 with no
such deficiencies.

Assuming exact arithmetic, it is well-known that the rate of convergence of the method
takes place in the three phases: a sublinear, frequently of short duration, an intermediate,
where the rate of convergence is nearly linear, and a superlinear phase, where the iteration
error decays more rapidly for each new iteration, see e.g. [2, 4, 5]. For an operator
theoretical framework to explain the different phases, see [15]. Clearly, there is no sharp

1Institute of Geonics AS CR, IT4 Inovations, Ostrava, The Czech Republic, and King Abdulaziz
University, Jeddah, Saudi Arabia , owea@it.uu.se.

2Department of Applied Analysis & MTA-ELTE NumNet Research Group, ELTE University; Depart-
ment of Analysis, Technical University; Budapest, Hungary; karatson@cs.elte.hu.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/18405381?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.pdf-technologies.com


boundary for the different phases. We note that if the eigenvalues accumulate at a given
number (in our case on the real line) then one immediately enters the superlinear phase,
and this also holds for infinite dimensional operators which are compact perturbations of
a positive multiple of the identity operator [4, 6, 8, 19].

The above-desribed details serve as a motivation for our paper.
In the present paper we are concerned with estimating the point where the superlinear

phase is reached. Thus the main difference of our study compared to the mentioned papers
is that we are interested in the point of transition from the linear into the superlinear
phase, instead of studying one of these phases. We give bounds for the iteration number
where the linear phase more markedly goes over in the superlinear phase. This will be
based on various assumptions on the distribution of the eigenvalues. Our new results
are based on two types of methods. First we use a proper splitting of the spectrum and
estimate via the K-condition number. Then refined estimates are given, based on the
annihilating polynomial for the eigenvalues, using the superlinear bound instead of the
K-condition number. Here the dependence of the reaching point on the size of the matrix
is also studied. The results are illustrated with some numerical tests.

Note finally that the results hold for eigenvalue distributions for both unpreconditioned
and preconditioned matrices. In some examples we assume an unpreconditioned matrix,
while the case of clustering of eigenvalues occurs typically for certain preconditioners, see
[7].

2 Basic estimates and the problem

Upper bounds on the rate of convergence of the method can be obtained by choosing
suitable polynomials Pk in (1). As shown, e.g., in [2], the well-known linear and superlinear
estimates are obtained in this way.

The classical linear estimate for the rate of convergence is based on the best polynomial
approximation on an interval,

‖ek‖A
‖e0‖A

≤ min
Pk∈π1

h

max
m≤λ≤M

|Pk(λ)|

where m = minλi, M = maxλi. As is well-known, the optimal polynomial equals the
scaled Chebyshev polynomial of the first kind,

Pk(λ) = Qk(x;m,M) := Tk(
M +m− 2λ

M −m
)/Tk(

M +m

M −m
) ,

where Tk(x) = 1
2
[(x+

√
x2 − 1)k + (x−

√
x2 − 1)k] . This leads to the bound

‖ek‖A
‖e0‖A

≤ 2
(√M −√m√

M +
√
m

)k
(k = 1, 2, ..., n) (2)

for the convergence factor over k iterations, so it leads to a linear rate based on the square
root of M/m (i.e. of the spectral condition number of C−1A).
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One way to obtain a superlinear estimate is to write A using the decomposition

A = %I + E, (3)

where % > 0 is a given number, and let

µj (j = 1, 2, ..., n)

denote the eigenvalues of E in decreasing order, i.e. |µ1| ≥ |µ2| ≥ . . . . Then the polyno-

mials
k∏
j=1

(1− λ
λj

) yield the bound

‖ek‖A
‖e0‖A

≤ max
i≥k+1

k∏
j=1

|µj − µi|
λj

= max
i≥k+1

k∏
j=1

|µj − µi|
%+ µj

≤ 2k
k∏
j=1

|µj|
%+ µj

. (4)

From this, one can get further estimates related to the geometric or arithmetic means:

(
‖ek‖A
‖e0‖A

)1/k

≤ 2‖A−1‖

(
k∏
j=1

|µj|

)1/k

≤ 2‖A−1‖
k

k∑
j=1

∣∣µj∣∣ (k = 1, 2, ..., n). (5)

Since one has no exact, readily available information on the errors of the CG method,
our analytical comparison of the two phases will use the above convergence bounds. (This
is, of course, not the case for the numerical tests.) We remark, however, that one can
actually compute accurate approximations of the errors, see [18], but only with some
additional computations.

Based on (2) and (4), our problem is the following. From which index σn on will we
have

2k
k∏
j=1

|µj|
%+ µj

≤ 2
(√M −√m√

M +
√
m

)k
(k ≥ σn); (6)

or more generally, how does σn, or rather its upper bound, depend on n asymptotically
as n→∞?

3 Estimates via theK-condition number using a split-

ting of the spectrum

The aim of this section is to find an estimate of the iteration number k where the average
convergence factor starts to decrease. To this end, to improve the bound (2), we shall
choose a proper polynomial based on the splitting of the spectrum in three sets. Namely,
this choice is based on the assumption that the spectrum of the preconditioned operator
contains more or less isolated small eigenvalues, some outlier large eigenvalues and a
cluster of intermediate eigenvalues. Clearly, the two boundary points, separating the sets
are not fixed, but can be chosen for convenience.
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Assume that, at the kth iteration step, we have chosen pk smallest eigenvalues and qk
largest. The three subsets are defined by

0 < λ1 < λ2 < . . . < λpk < a, λn > λn−1 > . . . > λn−qk+1 > b , (7)

and a = λpk+1 ≤ λj ≤ λn−qk = b , where [a, b] is the interval of intermediate eigenvalues.
We note that in this section it is more convenient to write the eigenvalues in increasing
order.

Then a proper polynomial to annihilate the outlier eigenvalues is

Pk(λ) =

pk∏
j=1

(1− λ

λj
)Qk−sk(λ)

n∏
j=n−qk+1

(1− λ

λj
) ,

where sk = pk + qk . Here we use the bound

max
{λi}
| Pk(λ) |≤ max

a≤λi≤b
{
pk∏
j=1

| 1− λi
λ′j
|

sk∏
j=pk+1

(
1− λi

λ′j

)
max
a≤λ≤b

| Qk−sk(λ; a, b) |} , (8)

where we have denoted the outlier eigenvalues

λ′j =

{
λj, j = 1, . . . , pk
λn−j+pk+1, j = pk + 1, pk + 2, . . . , sk .

Here Qk is the previously mentioned Chebyshev polynomial and

| Qk−sk(λ; a, b) |≤ 21/(k−sk)

(√
b/a− 1√
b/a+ 1

)k−sk

.

Let µi = λi − a+b
2
, µ′j = λ′j − a+b

2
.

Since λ′j > λi and hence µ′j > µj > 0 , for the large outlier eigenvalues the first factor
(α) in (8) is bounded by

α : =

pk∏
j=1

µi − µ′j
λ′j

sk∏
j=pk+1

µ′j − µi
λ′j

≤ 2pk
pk∏
j=1

| µ′j |
sk∏

j=pk+1

µ′j/

sk∏
j=1

λ′j

≤ 2pk
sk∏
j=1

| µ′j | /
sk∏
j=1

λ′j ≤ 2pk

(
1

sk

sk∑
j=1

| µ′j |

)sk

/

sk∏
j=1

λ′j

= 2pkK(Sk)

(
sk∑
j=1

| µ′j | /
sk∑
j=1

λ′j

)sk

(9)

where we define the K-condition number corresponding to the set Sk = {λ′1, λ′2 . . . , λ′sk}
as the ratio

K(Sk) := (
1

sk

sk∑
j=1

λ′j)
sk/

sk∏
j=1

λ′j = (
1

sk

sk∑
j=1

λ′j/{
sk∏
j=1

λ′j}1/sk)sk .
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For further information about the K-condition number, see e.g. [2, 4, 14, 13].
For the second factor in (9) it holds

β : = (

sk∑
j=1

| µ′j | /
sk∑
j=1

λ′j)
sk =

{(
sk∑
j=1

| λ′j −
a+ b

2
| /

sk∑
j=1

λ′j

)sk

≤

(
[pk

a+ b

2
+

sk∑
j=pk+1

(λ′j −
a+ b

2
)]/

sk∑
j=1

λ′j

)sk

≤ (1− ξk)sk ,

where

ξk =
qk − pk
qk + pk

(a+ b)/
2

sk

sk∑
j=1

λ′j .

If we keep the number pk of the small outlier eigenvalues fixed and increase the number

qk = sk−pk of big outlier eigenvalues, then 1
sk

sk∑
j=1

λ′j decreases as k increases. Hence β → 0

geometrically with an increasingly smaller factor as k increases. Since the second factor
in (8) does not increase if k − sk and a and b are fixed, or rather also decreases since b
decreases when qk increases, there will occur a superlinear rate of convergence, at least
from the point where

1

1− ξk
> 2pk/skK(Sk)

1/sk = 2pk/sk
1

sk

sk∑
j=1

λ′j/(

sk∏
j=1

λ′j)
1/sk .

Therefore, the smallest number k where this occurs can be used as an estimate of the
number of iterations needed to enter the superlinear rate.

The above separation of eigenvalues illustrates the convergence behaviour of the con-
jugate gradient method, which typically occurs in there phases. The first, the sublinear
phase can be modelled by the first factor

∏pk
j=1(1 −

λ
λj

) , where the Fourier series com-

ponents corresponding to the smoother eigenfunctions are damped out. In the second
phase, where the convergence is essentially linear, mainly the intermediate components
are damped. After that, one enters the final, superlinear phase. This is first slow, when the
decrease of the average convergence factor is small because all components are damped,
but it then gradually becomes faster, when the most rapidly oscillating eigenvector com-
ponents are damped out.

As we can see, the size of the K-condition number plays a role in the above esti-
mate in determining how many iterations are required before one reaches the superlinear
convergence rate. Essentially the same analysis as above has appeared in [2, Chapter 13].

Finally, we remark here that in some important practical problems (such as in con-
strained optimization problems solved by some penalization method), where there are
two or more well separated eigenvalue intervals, the rate of convergence of the conjugate
gradient method depends essentially only on one of the intervals, see e.g. [3]. We consider
a superlinear rate of convergence for the case where the second interval contains large
eigenvalues, hence separated from the first interval. In the next section, the K-condition
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number is estimated for some typical distribution of eigenvalues, and corresponding esti-
mates of the number of iterations required to reach the superlinear rate of convergence
are shown.

4 Balancing the K-condition number

In this section we use an estimate based on the K-condition number to approximately
find the point where one enters the superlinear convergence phase. As has been shown
in [2, 14], the following alternate estimate of the rate of convergence of the conjugate
gradient method holds,

(rk)
T
C−1rk ≤ (K(B)1/k − 1)k (rk)

T
C−1r0 (k = 1, 2, . . .). (10)

Note that this estimate is based on a norm defined by the inverse of the preconditioning
matrix.

Here we have assumed that C and A are symmetric and positive definite, and B :=
C−1A. Since the CG method terminates, i.e. in exact arithmetic it needs at most n
iterations for a system of order n, this estimate is useful only if

K(B)1/n < 2 , i.e. log2K(B) < n .

To illustrate this result, following [2], we consider now some distributions of eigenvalues
which can illustrate some typical cases occurring in practice. The first shows that the K-
condition number can be very informative for the estimates, while the two others indicate
that it can be of less value in other cases. In practice, one normally has a mixture of such
eigenvalue distributions. Although these estimates have appeared in nearly the same form
in [2, Chapter 13], for completeness we include them also here.

Example 1 (A special case of a compact perturbation).
Let the eigenvalues be λj = 1 + 1/j, j = 1, 2, . . . , n . Then

n−1
n∑
l

λj ∼ 1 + n−1 lnn+ cn−1 +O(n−2) , n→∞

for some positive constant c , and

(
n∏
j=1

λj)
1/n = (n+ 1)1/n .

Hence the K-condition number for the whole set of n eigenvalues equals

K(B) =
(
1 + n−1 lnn+ cn−1 +O(n−2)

)n
/(n+ 1),

so
lnK(B) ∼ ln n+ c+O(n−1)− ln (n+ 1)

and

6

http://www.pdf-technologies.com


log2K(B) = (log2 e) lnK(B) ∼ c log2 e+O(n−1) ,

so K(B) = e2c+1 +O(n−1) ,

i.e., K(B)1/k approaches rapidly a value which is less than 2 already for small values of
k . Therefore the superlinear rate of convergence is entered from the very beginning of the
iterations.

Example 2 (Arithmetic distribution).
Let λj = a+ j b−a

n
, j = 1, 2, . . . , n .

For simplicity, assume that n/2 is even. Then

K(B) =

(
b+ a

2

)n
/

n∏
j=1

λj ,

where

n∏
j=1

λj =

n/2∏
j=1

(
b+ a

2
− b− a

2

2j

n

)(
b+ a

2
+
b− a

2

2j

n

)

=

(
b+ a

2

)n n/2∏
j=1

(
1−

(b− a
b+ a

2j

n

)2)
Here

K(B) > 1/

n/2∏
j=1

(
1− 1

4

(b− a
b+ a

)2)
and

log2K(B) >
n

4
log2

(
1− 1

4

(b− a
b+ a

)2)−1
> O(n), n→∞ .

Therefore, in this case, the estimate based on K(B) is inferior to the classical estimate,
based on the spectral condition number, K(B) = b/a.

In an approximate sense, arithmetic eigenvalue distributions occur for an operator
M + τK, which arises in time-stepping methods for an evolution equation. Here τ is a
small time-step, M and K are mass and stiffness matrices, respectively. We then assume
that the space domain is separated in vertical stripes and that the horizontal boundary
points are located equidistantly.

Using an improved superlinear estimate, the case of arithmetic distribution will be
studied further at the end of section 6.

Example 3 (Distribution proportional to a power sequence of the large outlier eigenval-
ues).

Following [2, p. 588], we estimate first the K-condition number for the case of eigen-
values in Sn distributed as λj ∼ jν (j = 1, 2, . . . , n) for some ν > 1. When ν = 2 ,
such a distribution can model the eigenvalues of an elliptic boundary value problem quite
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well. For instance, the eigenvalues of the operator −εuxx − uyy on the unit square with
homogeneous Dirichlet b.c., equal

λk,l = (εk2 + l2)π2 (k, l = 1, 2, . . . ).

Hence, for small values ε, the smooth eigenvalues (for small k) arising for l = 1, 2, . . . are
approximately distributed as constant times l2. For the corresponding difference matrix
for small k, h, l, one has

λ
(h)
k,l =

4

h2

(
ε sin2 kπh

2
+ sin2 lπh

2

)
≈ λk,l = (εk2 + l2)π2.

It then holds
1

n

n∑
j=l

jν ∼ 1

ν + 1
nν , n→∞ .

Further, using Stirling’s formula,

n∏
j=1

λj = (
n∏
j=1

j)ν ∼ (2πn)ν/2(
n

e
)nν , n→∞ .

so

K(Sn)1/n ∼ eν

ν + 1
, n→∞ . (11)

This number is less than 2 only if eν < 2(ν+1) , which holds for a number slightly less than
2. Hence, unless ν is sufficiently small, the rate of convergence based on the K-condition
number is less useful also for such an eigenvalue distribution.

Example 4 Assume now that there are p small eigenvalues and further that the large,
outlier eigenvalues are distributed as r{jν}mj=1 , where r � b , i.e. are located in a separate
interval. Then the estimate in (11) shows that there are p iterations plus the number of
iterations O

(
( b
a
)1/2
)
, corresponding to the interval [a, b]. Let k0 = p + O

(
( b
a
)1/2
)

be the
total of these.

The estimate in (11) shows that one enters a superlinear convergence phase with sk
additional iterations, when

1

1− ξk
> 2p/sk K(Sk)

1/sk (12)

where

ξk =
λm−sk + a

2
/

1

sk

m∑
j=m−sk

λj ∼

1

2
(m− sk)ν/

1

sk(ν + 1)

(
mν+1 − (m− sk)ν+1

)
∼ 1

2
(m− sk)ν/

mν+1

sk(ν + 1)

(
1− (1− sk

m
)ν+1

)
∼ 1

2
(m− sk)ν/mν ∼ 1

2

(
1− sk

m

)ν
∼ 1

2
, m→∞, sk � m.

8

http://www.pdf-technologies.com


It follows readily that since sk � m, then K(Sk) ∼ 1 .
Hence, it follows from (12) that one enters the superlinear convergence phase at least

when sk > p , that is, for a total number of iterations of p+ k0 = 2p+O((b/a)1/2) .
This estimate can be useful when a >> λ1 and p <<

√
b/λ1. We note that in practice

one normally uses a preconditioner for the above problem. If one uses an incomplete
preconditioning method without modifications (see [2]), then the above results are still
applicable.

5 Further estimates for clustering eigenvalues

In this section we give estimates for clustering eigenvalues using the superlinear bound (4)
instead of the K-condition number. We consider first a specific and then a more general
distribution, and the goal is to show that in such cases σn does not increase as n → ∞.
We note that in this section it is more convenient to write the eigenvalues in decreasing
order.

5.1 An example: eigenvalues proportional to a power sequence

In this first example, we consider eigenvalues clustering around % with a difference pro-
portional to a power sequence. This is an extension of Example 1 of section 4. For such
distributions one has a uniform superlinear estimate [2, 7], hence the iteration is expected
to enter the superlinear phase quickly. Indeed, as seen below, the index of entering is
independent of the matrix size, and for powers not smaller than 1 one can consider the
superlinear phase as almost immediate.

Proposition 5.1 Let A = %I + E, let µj (j = 1, 2, . . . ) be the eigenvalues of E and
R := ‖E‖. Let α > 0 be given,

µj :=
R

jα
(j ∈ 1, . . . , n).

Then σn ≤ 21/α · e+ 1 independently of n. In particular, if α ≥ 1 then σn ≤ 5.

Proof. Here the factor 2k can be omitted in (4) (and hence also on the l.h.s. of (6)),
since all µj are positive, hence the estimate |µj − µi| ≤ 2|µj| used there can be replaced
by |µj − µi| ≤ µj. Then for all k, using that k! ≥ (k/e)k,

k∏
j=1

µj
%+ µj

=
k∏
j=1

R

%jα +R
≤
(R
%

)k k∏
j=1

1

jα
=
(R
%

)k 1

(k!)α
≤
(Reα
%kα

)k
.

On the other hand, the quotient on the right of (6) appears on the l.h.s. of (16) (to come
below), which shows that it is not less than R/2%. Hence, replacing the quotient on the
right of (6) by R/2%, it suffices that(Reα

%kα

)k
≤ 2
(R

2%

)k
, that is

(2eα

kα

)k
≤ 2. (13)
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Let σn denote the integer part of 21/α · e + 1. Then all k ≥ σn satisfy k ≥ 21/α · e, hence
2eα

kα
≤ 1, which ensures (13). If α ≥ 1 then for all k ≥ 5 we have (2e

k
)k ≤ 2, and here

e
k
≤ 1, hence we obtain (13).

5.2 General clustering of eigenvalues

One can consider any sequence of numbers that tends to 0 and the eigenvalues of the
given matrix are the first n terms of this sequence. Then the following holds:

Proposition 5.2 Let (µj) ⊂ R be a sequence such that |µj| → 0 monotonically as
j → ∞. If the eigenvalues of the n × n matrix E are µ1, . . . , µn, then σn is bounded
independently of n.

Proof. Rewriting (6), we need

2
( k∏
j=1

|µj|
%+ µj

)1/k
≤ 21/k

√
M −

√
m√

M +
√
m

(k ≥ σn). (14)

The l.h.s. is twice the geometric mean sequence of
|µj |
%+µj

. The latter tends to 0 as j →∞,

hence so does the l.h.s. On the other hand, the r.h.s. has the limit
√
M−
√
m√

M+
√
m

, which is

positive (unless the trivial case when A is a constant times identity). Hence the l.h.s.
becomes smaller after sufficiently large k, say, for k ≥ σ where σ ∈ N+ is independent of
k and n. That is, for given n ≥ σ the l.h.s. of (14) is smaller than its r.h.s. if σ ≤ k ≤ n,
i.e. σn ≤ σ. Hence σn is bounded for n ≥ σ, and is obviously also bounded for n = 1, . . . , σ
(since the latter is a finite range).

6 Estimates for uniformly distributed eigenvalues

In this section we study uniformly distributed eigenvalues, i.e. with no clustering around
a particular point. We will find that the obtained bound on σn now grows unboundedly
as n→∞.

In the case without clustering, there is no special a priori value of %. Hence, in order
to decompose a given A as in (3), it is natural to define a symmetric choice of %:

% :=
M +m

2
, then ‖E‖ = max |µi| =

M −m
2

=: R,

i.e. R is the maximal deviation of the eigenvalues of A from %. Here

%+R = M, %−R = m and hence R < %. (15)

The corresponding reformulation of the linear convergence quotient on the right of (6)
is √

M −
√
m√

M +
√
m

=

√
%+R−

√
%−R√

%+R +
√
%−R

=
R

%+
√
%2 −R2

. (16)
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Assumption 6.1: the values of |µj| (ordered with nonincreasing moduli) follow a
common distribution for all n, i.e. there exists a ’density’ function d : [0, 1] → R+ such
that

|µj| = d
( j
n

)
(j = 1, 2, ..., n). (17)

There is no limitation in assuming that d is differentiable,

d(0) = R, d′ ≤ 0. (18)

(We note that the following results also hold if (17) is valid only asymptotically as n→∞.)

6.1 Estimates using the arithmetic mean

Here, using (5), inequality (6) is modified to(
2‖A−1‖

k

k∑
j=1

∣∣µj∣∣)k

≤ 2
(√M −√m√

M +
√
m

)k
(k ≥ σn). (19)

This leads to a rougher estimate of σn, but is easier to handle, and it will still provide the
characteristic asymptotics of σn as n→∞.

The arithmetic mean of the |µj| will be denoted by

ak :=
1

k

k∑
j=1

∣∣µj∣∣ .
Let us rewrite (19) as follows. Using ‖A−1‖ = 1

m
= 1

%−R and (16), taking the kth root of

(19) and reordering, we must have

ak ≤ 21/k %−R
2
· R

%+
√
%2 −R2

(k ≥ σn). (20)

The basic idea is as follows: since ak := 1
k

k∑
j=1

∣∣µj∣∣ = 1
k

k∑
j=1

d
(
j
n

)
= 1

k

k∑
j=1

d
(
k
n
· j
k

)
, we have

ak ≈ Ik :=

∫ 1

0

d
(k
n
x
)

dx,

and, as is easily seen, denoting δ := max
[0,1]
|d′|, one has

|ak − Ik| ≤
δ

2k
. (21)

Now let us introduce the following notations:

D(x) :=

∫ x

0

d(t) dt, δ(x) :=
D(x)

x
(0 < x ≤ 1).
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Here δ(0) := lim0 δ(x) = D′(0) = d(0). Then

Ik =

∫ 1

0

d
(k
n
x
)

dx =
n

k
·D
(k
n

)
= δ

(k
n

)
,

hence by (20) and (21) we need

δ
(k
n

)
≤ − δ

2k
+ 21/k %−R

2
· R

%+
√
%2 −R2

(k ≥ σn) (22)

to ensure that (19) holds.

Proposition 6.1 Under assumption (18) the function δ decreases.

Proof. We have

(x d(x))′ = d(x) + x d′(x) ≤ d(x) = D′(x),

hence
x d(x) ≤ D(x) (0 ≤ x ≤ 1)

since they coincide at 0. Therefore d(x) ≤ δ(x). We then have for all x

d(x) = D′(x) = (x δ(x))′ = δ(x) + x δ′(x) ≥ d(x) + x δ′(x),

hence δ′(x) ≤ 0.

Theorem 6.1 Let us assume (17)-(18), and let∫ 1

0

d(t) dt < P0 :=
%−R

2
· R

%+
√
%2 −R2

. (23)

Then there exist 0 < c0 < 1 and N0 ∈ N+ such that if n ≥ N0 then

σn ≤ c0 · n.

Proof. Proposition 6.1 implies that the minimum of δ on [0, 1] is δ(1) =
∫ 1

0
d(t) dt,

i.e. we have min δ < P0. Let us choose some β such that min δ < β < P0. First, since δ
decreases on [0, 1], there exists 0 < c0 < 1 such that δ(x) ≤ β if x ≥ c0, therefore

δ
(k
n

)
≤ β if k ≥ c0 · n.

Further, the r.h.s. of (22) tends to P0 as k →∞, hence there exists k0 ∈ N+ such that it
becomes at least β if k ≥ k0. Hence (22) is valid if k satisfies both of the above, i.e. if we
choose N0 ∈ N+ such that c0N0 ≥ k0, and let n ≥ N0 and k ≥ c0 · n be arbitrary.

Example: Power order distribution.
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(a) Let

|µj| = R
(n− j

n

)α
(j = 1, 2, ..., n), i.e. d(x) = R(1− x)α (x ∈ [0, 1]). (24)

To a certain extent such eigenvalues still cluster at 0 if α > 1, but for fixed j the value of
|µj| grows with n in contrast to the assumptions section 5.

Then
∫ 1

0
d(t) dt = R

α+1
, hence if α + 1 > R

P0
then (23) holds and hence Theorem 6.1 is

valid.

(b) In particular, if we consider a linear distribution (which is the most uniform dis-
tribution), i.e. α = 1 and d(x) := R(1 − x), then the following difficulty is met. Let us
vary R between 0 and %, and study the multiplier of R on the r.h.s. of (23). First, it
equals 1

4
if R = 0. Further, it is easy to see that it decreases as R→ % and becomes 0 for

R = %, i.e. it is at most 1
4
, whereas the l.h.s. of (23) is

∫ 1

0
d = R

2
, which is impossible.

In the sequel we return to sharper estimates than the quite rough one with arithmetic
mean, so as to see if there is still a superlinear phase for distributions close to linear.

6.2 Logarithmic estimates

Although the CG estimates in (5) yield a nice and easy bound, they contain steps which
can be rough, hence we return to estimate (4). Moreover, one can improve it by a factor
up to

√
2. Namely, let us divide the eigenvalues into two groups:

µ+
j > 0 (j = 1, . . . , n+), µ+

1 ≥ · · · ≥ µ+
n+ > 0,

µ−j < 0 (j = 1, . . . , n−), |µ−1 | ≥ · · · ≥ |µ−n−| > 0.

For given k ≤ n, we consider the first k eigenvalues with greatest moduli and denote
by k+ and k− the number of positive and negative ones, respectively, and finally k∗ :=
max{k+, k−}. Then in (4) the estimate |µj−µi| ≤ 2|µj| can be replaced by |µj−µi| ≤ µj,
respectively |µj|, for positive and negative values of µj, i.e. without factor 2, whenever µj
and µi have the same sign. Thus the r.h.s. of (4) can be replaced by modifying (4) as

‖ek‖A
‖e0‖A

≤ max
i≥k+1

k∏
j=1

|µj − µi|
%+ µj

≤ 2k
∗

k∏
j=1

|µj|
%+ µj

(25)

where k/2 ≤ k∗ ≤ k.
Now, if we use this estimate instead of the arithmetic mean, then we must replace the

term

2‖A−1‖
k

k∑
j=1

∣∣µj∣∣ =
2

%−R
ak by 2k

∗/k

(
k∏
j=1

|µj|
%+ µj

)1/k

=: 2k
∗/k bk

in (20), which then becomes

bk ≤ 2−
k∗−1
k · R

%+
√
%2 −R2

(k ≥ σn). (26)
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Here we have

bk =

(
k∏
j=1

|µj|
%+ µj

)1/k

= exp
(1

k

k∑
j=1

ln
|µj|
%+ µj

)
,

and now the exponent will be approximated by logarithmic integrals, in the vein of sub-
section 6.1.

First, let us replace (17) by two functions. We assume that there exist two ’density’
functions in the following way. Let δ+ := n+

n
and δ− := n−

n
, then 0 < δ± < 1 and

δ+ + δ− = 1. The functions d+ : [0, δ+]→ R+ and d− : [0, δ−]→ R+ must then satisfy

µ+
j = d+

( j
n

)
(j = 1, 2, ..., n+), |µ−j | = d−

( j
n

)
(j = 1, 2, ..., n−). (27)

As in (18), we assume that d± are differentiable and

(d±)′ ≤ 0. (28)

For given k ≤ n, we consider the first k eigenvalues with greatest moduli and denote
by k+ and k− the number of positive and negative ones as before. Then

1

k

k∑
j=1

ln
|µj|
%+ µj

=
1

k

k+∑
j=1

ln
µj+

%+ µj+
+

1

k

k−∑
j=1

ln
|µj−|
%+ µj−

.

Here for both terms we can repeat the arguments of subsection 6.1. For this, let us
introduce the following notations:

g±(x) := ln
d±(x)

%± d±(x)
, G±(x) :=

∫ x

0

g±(t) dt, γ±(x) :=
G±(x)

x
(0 < x ≤ δ±).

Now, first,

1

k

k+∑
j=1

ln
µj+

%+ µj+
=

1

k

k+∑
j=1

ln
d+
(
j
n

)
%+ d+

(
j
n

) ≈ ∫ k+

k

0

g+
(k
n
x
)
dx =

n

k
G+
(k+
n

)
=

k+

k
γ+
(k+
n

)
,

and similarly for the second term, hence

bk ≈ Jk := exp
(k+
k
· γ+

(k+
n

) +
k−

k
· γ−

(k−
n

)
)

(29)

where one in fact has again

|bk − Jk| ≤
δ̂

2k
. (30)

Here the functions t 7→ ln t
%±t are increasing, and by (28) d± are decreasing, hence their

compositions g± are decreasing. Then Proposition 6.1 implies that the similarly derived
functions γ± are decreasing too, and hence have their minima at δ± = n±

n
. Assume now

also that the positive and negative eigenvalues are distributed asymptotically uniformly,
i.e.

lim
k±

k
= δ±
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uniformly in n as n→∞. Then also k∗

k
→ δ∗ := max(δ+, δ−), and following the proof of

Theorem 6.1, for k ≥ k0 the r.h.s. of (29) satisfies

Jk ≤ β̂ < β̂0 := exp
(
δ+ · γ+

(
δ+) + δ− · γ−

(
δ−)
)

= exp
(
G+
(
δ+) +G−

(
δ−)
)

(31)

if k ≥ ĉ0n. Comparing with (26), and since lim 2−
k∗−1
k = 2−δ

∗
, we obtain the following

result: if

β̂0 < 2−δ
∗ · R

%+
√
%2 −R2

, (32)

then (26) holds for n ≥ N0 and k ≥ c0 · n.
One can rewrite β̂0 in a more visible form. Namely, let us define the function d̃ :

[0, 1]→ R+ as

d̃(x) :=

{
−d−(x) if x ∈ [0, δ−];

d+(x− δ+) if x ∈ [δ−, 1].
(33)

(Then by (28), d̃ is increasing on [0, 1].) Here

β̂0 = exp
(∫ δ−

0

ln
d−(t)

%− d−(t)
dt+

∫ δ+

0

ln
d+(t)

%+ d+(t)
dt
)

= exp
(∫ δ−

0

ln
|d̃(t)|
%+ d̃(t)

dt+

∫ 1

δ−
ln

d̃(x)

%+ d̃(x)
dx
)

= exp
(∫ 1

0

ln
|d̃(x)|
%+ d̃(x)

dx
)

where in the first term the transformation x = t + δ− has been used. Hence, altogether,
we have proved:

Theorem 6.2 Let us assume (27)-(28), and let

exp
(∫ 1

0

ln
|d̃(x)|
%+ d̃(x)

dx
)
< 2−δ

∗ · R

%+
√
%2 −R2

. (34)

Then there exist 0 < c0 < 1 and N0 ∈ N+ such that if n ≥ N0 then

σn ≤ c0 · n.

Remark 6.1 To apply Theorem 6.2, it suffices to order all eigenvalues monotonically
from the extreme negative to extreme positive values, i.e., using the function d̃ : [0, 1]→
R+ in (33), we write µj = d̃

(
j
n

)
(j = 1, 2, ..., n).

Remark 6.2 Let us now consider the special case when the spectrum of E is symmetric
w.r.t. zero, i.e. if n+ = n− and

µ−j = −µ+
j (j = 1, . . . , n+).
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Then the factor 2k
∗

in (25) can be further improved. Namely, if k is even then (25) can
be replaced by

max
i≥k+1

k∏
j=1

|µj − µi|
%+ µj

= max
i≥k+1

k/2∏
j=1

|(µ+
j − µi)(µ+

j + µi)|
(%+ µ+

j )(%+ µ−j )
≤

k/2∏
j=1

|µ+
j µ
−
j |

(%+ µ+
j )(%+ µ−j )

=
k∏
j=1

|µj|
%+ µj

,

where we have used the inequality

|(µ+
j + µi)(µ

+
j − µi)| = (µ+

j )2 − µ2
i ≤ (µ+

j )2 = |µ+
j µ
−
j |.

That is, the factor 2k
∗

disappears. If k is odd then the above estimate is used for j ≤ k−1
and the original estimate |µj−µi| ≤ 2|µj| is used for j = k, hence the product is multiplied
by a factor 2. Altogether, for any k we obtain

‖ek‖A
‖e0‖A

≤ max
i≥k+1

k∏
j=1

|µj − µi|
%+ µj

≤ 2
k∏
j=1

|µj|
%+ µj

, (35)

i.e. k∗ is replaced by 1 in the exponent of 2. Then the factor lim 2−
k∗−1
k = 2−δ

∗
in (32) is

replaced by 20 = 1, i.e. (32) is replaced by

β̂0 <
R

%+
√
%2 −R2

. (36)

Accordingly, Theorem 6.2 is modified as follows: if

exp
(∫ 1

0

ln
|d̃(x)|
%+ d̃(x)

dx
)
<

R

%+
√
%2 −R2

, (37)

then there exist 0 < c0 < 1 and N0 ∈ N+ such that if n ≥ N0 then σn ≤ c0 · n.

Example: Linear distribution of eigenvalues. This corresponds to the function

d̃(x) := R(2x− 1),

which is symmetric w.r.t. 1/2, and its values on [0, 1] grow from −R to R. One can show
with elementary but tedious calculations that condition (37) is then satisfied, and hence
the statement of Theorem 6.2 holds.

Indeed, using notation p := m
R

, one can then verify that∫ 1

0

ln
|d̃(x)|
%+ d̃(x)

dx =
1

2

(
p ln p− (p+ 2) ln(p+ 2)

)
and

R

%+
√
%2 −R2

= 1/
(
p+ 1 +

√
p(p+ 1)

)
,
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i.e. for (37) one must prove

−1

2

(
p ln p− (p+ 2) ln(p+ 2)

)
> ln

(
p+ 1 +

√
p(p+ 1)

)
(p > 0).

Using the transformation t :=
√

p+2
p

and with some calculation, the above inequality

becomes equivalent to the condition

ψ(t) :=
2t2

t2 − 1
ln t− 2 ln(1 + t) + ln 2 > 0 (t > 1).

One can verify that ψ′ > 0 and limt→1+ ψ(t) = 1− ln 2 ≈ 0.307, which justifies the desired
inequality.

7 Numerical illustration

To compare with the theoretical estimates, some numerical experiments have been per-
formed on the unit square.

First we consider as test problem the Poisson equation with homogeneous Dirichlet
boundary condition, discretized on a uniform grid. The eigenvalue distribution of the
arising discrete Laplacian satisfies Assumption 6.1 approximately, as shown by Figure 1.

Figure 1: Eigenvalue distribution for the discrete Laplacian
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(d) 1/h = 64

The theorems of section 6 state that the entering index σn can grow at most proportionally
to the matrix size n. The experiments show that the shape of the curves looks very
similar, but with growing number of iterations for σn to more markedly enter a superlinear
convergence phase, see Figure 2. It is seen that σn grows slower than the bound, namely
it is proportional to 1/h = O(

√
n), i.e., as is well-known and follows from [2], it grows

at the same rate as the upper bound for the number of iterations of the CG method to
reach a fixed relative accuracy.
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Figure 2: Convergence history, discrete Laplacian, εn = ‖en‖A/‖e0‖A,
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(d) 1/h = 512

Now we consider an anisotropic equation −εuxx − uyy = f instead of the Poisson
equation, and vary ε. For 1/h = 128 and tolerance 10−4, the results are shown in Figure
3.

18

http://www.pdf-technologies.com


Figure 3: Convergence history, −εuxx + uyy = f ; 1/h = 128, TOL = 10−4
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These tests show that for not very small values of the parameter ε, the iterations
stay long in the sublinear convergence phase. As was indicated in Section 3, this can
be explained by the presence of many small eigenvalues, since for each small eigenvalue
corresponding to the regular term −uyy in the operator, there corresponds several of the
larger eigenvalues for the singular perturbation term −εuxx, typically of the order ε/h2

or smaller.
However, when ε decreases further, the iteration process first sees only the small

eigenvalues corresponding to the regular term; on the other hand, when the corresponding
iteration errors are sufficiently damped out, one enters a very sharp, i.e. short-lived
superlinear convergence phase. This gets interrupted when the iteration errors get so
small that they become influenced also by the eigenvalues corresponding to the singular
perturbation term. After some further iterations one then enters a second superlinear
convergence phase.

If ε is very small, then the iteration process is not influenced at all by the perturbation
of the eigenvalues corresponding to the singular perturbation term, until one has reached
a very small relative iteration error . (The latter phase is not seen in the figure since the
tolerance was achieved before that.)

As can be seen, our analytical estimates of σn are somewhat rough, but in general give
at least some indication where the superlinear rate of convergence is reached. Except for
the anisotropic singular perturbation problem, there is no sharp point where this occurs,
but one enters the superlinear phase gradually. This was also indicated in Section 3.

In our examples the number of iterations are not very large and no reorthogonaliza-
tion has been used. We remark that for extremely large number of iterations, rounding
errors due to finite precision arithmetic may influence the results, making the theoretical
estimates less valuable.

8 Conclusions

In order to examine when the superlinear rate of convergence starts in a conjugate gradient
iteration, two types of methods have been used. One method, based on the K-condition
number, shows results of less interest in general, since this number appears to be greater
than the order n of the system for certain distributions of eigenvalues. Using refined
estimates, based on the annihilating polynomial for the eigenvalues, and assuming various
forms of the distributions of eigenvalues, it has been shown that one can get sharper and
more interesting results. The theoretical results are completed by the numerical tests.

Acknowledgements. The authors gratefully acknowledge the help of Tamás Kurics
for providing the numerical experiments. The work of the first author was supported by
the European Regional Development Fund in the IT4 Innovations Centre of Excellence
project (CZ E.1.05/1.1.00/02.0070).

20

http://www.pdf-technologies.com


References

[1] O. Axelsson, Solution of linear systems of equations: iterative methods. In ed.
V. A. Barker, Sparse Matrix Techniques, Berlin, Heidelberg, New York: Springer,
Verlag, 1976.

[2] O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cambridge,
1994.

[3] O. Axelsson, V. A. Barker, Finite Element Solution of Boundary Value Prob-
lems. Theory and Computation. SIAM Classics in Applied Mathematics 35 SIAM
Philadelphia, 2001.

[4] O. Axelsson, I. Kaporin, On the sublinear and superlinear rate of convergence
of conjugate gradient methods, Numer. Algor. 25 (2000), no. 1-4, 1–22.
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