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ABSTRACT

The multi-robot patrolling task has practical relevance in surveillance, search and rescue, and security appli-
cations. In this task, a team of robots must repeatedly visit areas in the environment, minimizing the time
in-between visits to each. A team of robots can perform this task efficiently; however, challenges remain related
to team formation and task assignment.

This paper presents an approach for monitoring patrolling performance and dynamically adjusting the task
assignment function based on observations of teammate performance. Experimental results are presented from
realistic simulations of a cooperative patrolling scenario, using a team of UAVs.
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1. INTRODUCTION

The multi-robot patrolling problem is a surveillance task that uses multiple robots to repeatedly visit every
important location in a known environment, with the goal of minimizing the time in-between visits. This
problem is interesting from a multi-robot research perspective, because it presents challenges in optimization
and task assignment, cooperation, communication and reliability. Cooperation is important in this task, as it
is necessary for the robots to work together to improve the efficiency of the system as a whole. An effective
multi-robot patrol team should be able to visit points more efficiently and with greater reliability than a single
robot. However, reliability is also important, particularly in security applications. For instance, if robots on
the team do not perform as expected, the system should degrade gracefully. Fully autonomous robot teams will
require the ability to evaluate performance of team members for multiple reasons: human operators may not be
able to manage large teams of robots in dynamic environments, robot teams may form in an ad-hoc fashion, and
the performance metrics may not always be human observable.

Conventional strategies for performing this task assume that the UAVs will perform as expected and do
not address situations in which some team members patrol inefficiently. However, reliable performance of team
members may not always be a valid assumption. This paper presents an approach for monitoring patrolling
performance and dynamically adjusting the task assignment function based on these observations. Experimental
results demonstrate that agents that model team member performance using this approach can dynamically and
more efficiently distribute tasks in a multi-robot patrolling application.

Multiple dimensions of task performance are presented for evaluating team member performance, along with
monitoring approaches. Each team member is represented using a trust model that is updated through repeated
observations. Finally, experiments are performed in realistic simulations of a cooperative patrolling scenario on
a UAV platform.

The rest of this paper is organized as follows. In Section 2, we present the motivation and related work. In
Section 3, we discuss the use of a trust model applied to dimensions of trust in multi-UAV patrolling framework.
In Section 4, we present results of simulated experiments in which a monitor builds a trust models of team
members based on observed performance. Finally, in Section 5, we conclude and present future work.



2. MOTIVATION AND RELATED WORK

In conventional multi-robot teaming approaches, each team member explicitly operates as part of a team and it
may be assumed that a robot will perform according to an expected operational standard. Furthermore, many
research robotics platforms (and indeed even many deployed systems) are owned by a single organization and
respond to commands from a single ownership hierarchy. In the future, there will be a need for robot teams to
form dynamically, such as after a natural disaster or in a dynamic battlefield environment, with multiple levels
of ownership and concepts of operations. These types of teams are commonly referred to as ad-hoc teams or
dynamically formed teams.1

Dynamically formed robotic teams may have different quality levels and operational capabilities. Consider
an example of search and rescue robots from multiple different organizations forming a dynamic team to coop-
eratively search for survivors after a disaster. Such teams may be able to negotiate using common standards,
but would not be overseen by a single organization. Even within a group of homogeneous robots, there are dif-
ferences in performance due to power levels, odometry calibration, wear and tear, and sensor noise, for instance.
Therefore, these teams may need to learn which team members remain trustworthy and dynamically adjust their
teaming and task assignment strategies accordingly to maximize a global utility.

2.1 Related Work

The multi-robot patrolling task2 is a problem domain that is particularly sensitive to reliability and performance
of robots. For instance, a robot’s performance may deteriorate over time or a robot may not estimate tasks cor-
rectly. Robots that can identify poorly performing team members as performance deteriorates, can dynamically
adjust the task assignment strategy. Our previous work on the patrolling problem with mobile indoor robots
investigated the use of trust-based approach for determining when to decide which team members are no longer
effective and to perform task re-assignment.3 Our experimental results indicated that approaches that include
trust based performance monitoring perform better for maximizing patrolling frequency than those that do not
consider performance dimensions.

Many recent approaches to the patrolling task represent areas in the environment with a topological map (a
graph). The nodes in a graph represent areas of interest in the environment, and edges in the graph represent
traversable paths between two locations. Calculating the optimal path is known to be np-hard, and this problem
is closely related to the Traveling Salesman Problem.4 This assignment of patrol locations to multiple UAVs can
be treated as a multiple vehicle routing problem with multiple depots,5 and on UAVs with heterogeneous flight
characteristics.6

Our previous work7discusses techniques for including a Bayesian formulation of target detection likelihood
into this auction based framework for performing task allocation across multi-agent heterogeneous teams. In this
paper, we assume that the sensor models are not known in advance, and the trustworthiness of a sensor platform
is therefore unknown.

3. APPROACH

3.1 Dimensions of Trust

In a dynamically formed team, agents may encounter other agents for which they have no prior experience. The
use of a trust model would allow for a robot to reason about other robot’s trustworthiness using observation
histories and reputation information. In these settings, there are multiple dimensions that could be used to define
trust, such as whether a robot cooperates and whether a robot successfully completes tasks that are assigned
to it. These dimensions of trust can be considered separately or in combination. Each robot can build models
of other team members behaviors from observation histories and use those models to determine levels of trust.
Several examples of performance dimensions for UAVs are shown in Table 1.



Table 1: Example Performance Dimensions for UAVs
Perception

Probability of Detection Can the robot detect a target reliably, from a given range, angle, etc?
Tracking Can the robot track a target across several frames?

Deliberation
Robust Cooperation Does the vehicle follow the cooperation protocol and actively cooper-

ate?
Task Estimation Does the vehicle provide accurate cost estimates for task allocation?

Planning Does the vehicle generate executable, correct and approximately opti-
mal plans?

Communication
Communication Range Is the effective range of the communication sufficient?

Interoperability Does the vehicle implement and follow communications standards?
Action

Performance Does the vehicle execute tasks in an efficient manner (cost could be
time, distance, speed, fuel, etc.)?

Behavior Selection Does the vehicle select the correct behavior or action for a given state?
Avoiding Restricted Areas Does the vehicle respect boundaries and lethal cost areas?

Sense and Avoid Does the vehicle respect rules for navigation and flight safety?
Trajectory Following Does the vehicle execute appropriate control laws for trajectory follow-

ing and formation flight?
Sensor Trajectory Does the control algorithm place the sensors at the correct altitude,

velocity, orientation and angle?
Stealth Operation Does the vehicle alter the environment, generate signals or noise when

it should remain unobserved?

3.2 Trust Model

A trust model can be used on a multi-robot team to represent the trustworthiness or reliability of a robot team
member across one or more dimensions. The model can reside with one or more robots or be centrally located.
The trust model maintains a set of α and β vectors that represent the histories of interactions with each team
member. For a given team member, if the calculated trust value is less than the trust threshold, τ , and with
confidence greater than γ, it is not trusted. However, a succession of positive observations (direct or indirect)
can move an untrusted agent back to being trusted again. As such, this approach is tolerant of noise as it can
take multiple observations to move the value above or below the trust threshold. To better explain this model,
the equations from8 for calculating the trust value τ and confidence, γ, are included below.

When a trust authority receives new α and β updates for a dimension of trust, it can calculate the Expected
Value for trust using the trust model as follows.

Etrusti,j =
α

α+ β
(1)

The value, Etrusti,j , is the expected trust that roboti has toward robotj , given a set of observations, O, from
the start through time t. Therefore, the trust value, τ , is

τ = [Etrusti,j |O1:t] (2)

The confidence factor, γ, is calculated as the proportion of the beta distribution that is within ε of τ .

γ =

∫ τ+ε
τ−ε Xα−1(1−X)β−1 dX
∫ 1
0 Uα−1(1− U)β−1 dU

(3)

We define the set of untrusted robots, U , to include those with a trust score below the minimum trust
threshold, τ < θτ and with confidence above the minimum confidence level, γ > θγ . All other robots belong to



the trusted set, T . The Trust Authority maintains the current sets T and U , and can be queried to determine
the set membership for a robot.

Finally, the use of a trust model allows for the robot to include different dimensions into the trust calculation.
Each dimension can be incorporated into the model and weighted.

3.3 Monitoring

Approaches to monitoring depend on the environment, but may include human observation, and observation
using other robots, or sensors. In this paper, we consider an approach in which we have a dedicated robot that
serves in the monitor role by shadowing each of the robots in turn and observing their performance. In the
multi-robot patrolling task, each robot has a set of patrol locations that are visited repeatedly. The shadower
robot selects one of the team members at random, the shadowee, and follows its trajectory while performing
sensor observations. We assume that the shadower robot carries a sensor with a high probability of detection,
and is considered to be trusted . The sensor models for each of the other team members are unknown.

The shadower robot is not given the trajectories of each of the other teammates, but we assume that the
shadower can observe the pose and velocity of the shadowee. The shadower implements a control law to follow
the position of the shadowee at a small offset. We further assume that the teammates each report when they
have visited a location and the outcome of the sensor observation (detected, not detected), and that the shadower
receives these messages. When the shadower hears a sensor observation from the current shadowee, they take
their own sensor reading of the location and use that to verify the result . This process is shown in pseudocode,
in Algorithm 1.

Algorithm 1 OnSensorReport

1: if (r == shadowr) then
2: |Observationsr|+ = 1;
3: Ss ← GetSensorObservation(Ss);
4: v ← V erify(Sr, Ss);
5: if (v == true⊕) then
6: UpdateT rustModel(r,α);
7: else if (v == false⊕ or v == false$) then
8: UpdateT rustModel(r,β);
9: end if

10: end if

Periodically, the shadower will probabilistically switch to shadowing a different team member. This is shown
in Algorithm 2. It is worth noting that in this approach to monitoring, there is an explicit cost associated with
monitoring each team member. Intuitively, we wish to focus monitoring resources on those team members that
we have the most uncertainty or the least amount of trust. The trust model provides a mechanism for confidence
and we can choose to stop shadowing a team member, once a confidence threshold has been reached. In addition,
we can weight the distribution of team members, according to the amount that they are trusted or by the level
of confidence, and sample from the weighted probability distribution to get the next shadowee. This results in
the untrusted team members or those with least amount of trust information being shadowed more frequently.

Algorithm 2 DoShadow

1: loop
2: Do Every p Seconds:
3: if (|Observationsr| > k) then
4: shadowr ← NextShadowee(T );
5: end if
6: end loop



Figure 1: Multi-UAV Patrol: The four UAVs in the experiment are shown in the autopilot ground station
display. The three patrolling UAVs are assigned patrolling locations in advance. The fourth UAV, the shadower
monitors by following team members and verifying sensor observations. The experiment is performed using the
high fidelity SIL simulations of the four autopilots.

4. EXPERIMENTAL RESULTS

We performed experiments of UAVs performing a multi-robot patrolling and sensor task, using a high fidelity
simulation of the autopilot system and autonomous behaviors. The purpose of this experiment is to demonstrate
the approach to monitoring the sensor capabilities of team members while building a trust model online.

4.1 UAV Platform Simulation

The multi-UAV simulation is motivated by our UAV research platform.9 The UAV platform leverages off-the-
shelf, readily available components, and is based on a quarter-scale Piper Cub airframe with a base model
Piccolo avionics and autopilot system from Cloud Cap Technology.10 The airframe has a wingspan of 104 inches,
and carries a mission computer and sensor payloads. Over 60 field tests of this platform have been performed,
including multi-UAV cooperative autonomy and UAV-UGV teaming demonstrations. The platform’s autopilot
control laws can be simulated using software in the loop (SIL) or hardware in the loop (HIL) capabilities, and
the autonomous behaviors can be executed on the mission computer hardware or using virtual machines. The
autonomous behaviors that implement the navigation commands, shadowing control and trust monitoring are
implemented using the open-source Robot Operating System (ROS) architecture.11 The ROS libraries also
include libraries for performing inter-process messaging.

4.2 Experimental Setup

In this section, we describe the setup of an experiment that demonstrates this approach with a team of UAVs
performing a multi-UAV patrol. The tasks for each UAV are to repeatedly visit each location in their set of visit
locations, shown in Figure 1, and to report whether a target has been detected at that location. To perform this
experiment, we ran four autopilot SIL simulations. Three of the UAVs are designated as patrollers and are each
provided with a subset of locations to visit and perform a sensor reading. The fourth UAV is designated as a
shadower and follows each of the patrollers in turn.



Table 2: Probabilities of detection for example sensors
target present no target

S1
sensed target 0.80 0.10
not found 0.20 0.90

S2
sensed target 0.70 0.20
not found 0.30 0.80

S3
sensed target 0.95 0.01
not found 0.05 0.99

Each patroller UAV position is observable by the shadower, and the shadower executes a control law12 to
intercept and follow the currently selected patroller, designated as the shadowee. The control law is motivated
by the model-free controller presented by Egerstedt,12 with modifications to account for the minimum turning
radius and velocity bounds of the UAV airframe. For this experiment, the autonomous behaviors run within the
ROS framework on a virtual machine and communicate with the autopilot simulations over the local network.
The behaviors to command the patrollers and shadower are implemented in Java, while the control law is
implemented in C++. The shadower’s controller behavior receives as input the position of the current shadowee
and sends bank angle and airspeed commands to the autopilot. There is also a separate central trust authority
process that listens to trust report messages from the shadower and maintains the trust model for each team
member.

4.2.1 Sensor Modeling

In this experiment, we assume that each UAV carries a single sensor that has an unknown value for the probability
of detection (POD) of the target. There are three different sensor types, (S1, S2, S3). These sensors return a
binary detection value, (sensed target, not found). We also assume that the probability that a target will exist
at a given search location is P (Target) = 0.25. The Sensor-Target Probabilities for P(S) vary for each of the
three sensor types, and are given in Table 2. Sensor S1 is considered reasonably accurate, S2 has the least
accuracy, with a high false-positive rate, and S3 is very accurate. Given the prior probabilities, P (T ) and P (S),
Bayes’ rule can be used to find the posterior, P (T |S) as shown in Equation 4. As one might expect, using Sensor
S3 leads to a very high probability that a target exists if the sensor returns a positive detection. We model the
shadowee as having a perfect sensor.

P (T |S) = P (S|T )P (T )

P (S)

P (T |S1) =
(0.80)(0.25)

(0.80)(0.25) + (0.10)(0.75)
= 0.727

P (T |S2) =
(0.70)(0.25)

(0.70)(0.25) + (0.20)(0.75)
= 0.538

P (T |S3) =
(0.95)(0.25)

(0.95)(0.25) + (0.01)(0.75)
= 0.969

(4)

To simulate the sensing task, every n seconds, a sensing process samples using P (Target) for each visit
location to determine whether a target exists. This simulated ground truth information is shared with a sensor
simulation process that runs on each UAV. When a UAV reaches a visit location, the sensor simulation process
for that UAV draws from the rth sensor’s POD distribution, shown in table 2, based on the ground truth entry
for P (Target), and the sensor returns a value in (sensed target, not found). This value is reported to the rest
of the team as a result message.

Immediately after hearing the result message, the shadower takes a sensor reading at the same location and
verifies the shadowee’s observation and updates the trust model using an Update Trust message to the central
trust authority, as shown in Algorithm 1. Note that true negative observations are not reported to the trust



authority, but that confirmations of true positives, false positives and false negatives are reported. We ran
the experiment for approximately an hour. At the start of the experiment, each UAV begins patrolling the
visit locations that were assigned to them, as shown in the map display in Figure 1. The shadower UAV then
randomly selects a shadowee by drawing from the distribution of team members, weighted by the trust score.
The shadower selects a new shadowee after verifying ten sensor observations.

4.3 Discussion

As the shadower verifies the observations for each team member, it sends the updates to the central trust
authority. The trust scores for each UAV as the experiment continues are shown in Figure 2(b). Over time,
the trust scores converge to match the ordering of the unknown sensor models’ POD, with UAV 3 (carrying S3)
being the most trusted, UAV 2 being the least trusted, and UAV 1 having an intermediate trust score.

In this experiment, the trust model is one-dimensional and the score reflects the unknown sensor model for
each UAV. Indeed, the multiple observations over time could be thought of as a training period, in which we
gather enough observations to estimate the underlying sensor POD. However, in a more general application,
trust model could contain additional performance dimensions as dictated by mission requirements.

In this approach, the shadower draws from the weighted distribution of trust confidence scores to select the
next shadowee, with team members having unknown trust information being weighted more heavily. Depending
on the mission requirements, once the trust model is updated with a sufficient confidence level, the task assign-
ment and teaming structure could be changed and the shadow resource could assist with patrolling tasks. A
benefit of this approach is that any trusted team member could serve as the monitor. Additionally, after an
initial observation period, the shadower could return to other tasks, and allow another team member to serve
as a monitor at a later time. Finally, this monitoring approach could be combined with others to ensure robust
performance of the team.

The trust model can be used to inform the task assignment function or the team formation. In our previous
work, untrusted team members were removed from the team.13 In this case, their tasks can be reassigned to other
team members by performing the task allocation with one fewer team member. As presented in this paper, there
may be additional metrics, such as the accuracy of the observations at each location that should be included in
the task assignment approach. This is a subject of our ongoing work.
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Figure 2: Trust Based Monitoring: a) The trajectories for each UAV are shown for a sample experiment. The
shadower UAV switches between each teammate to perform observations. b) As the shadower UAV performs
multiple observations, it sends updates to the trust authority for each UAV observed.



5. CONCLUSIONS AND FUTURE WORK

The multi-UAV patrolling problem has requirements for teams that can perform the patrolling task securely
and reliably. As part of this, team members need to be trusted that they can perform the patrol objectives
correctly and sense targets in the environment effectively. On dynamically formed, or ad-hoc UAV teams,
the sensor characteristics of each team member may not be trusted in advance, and team members should
be able to observe each other to ensure that they are performing as expected. This paper presented several
dimensions of performance that can be used to define the trustworthiness of a UAV in the patrolling task, and
presented approaches to teammate monitoring. An experiment was performed using a multi-UAV simulation of
the patrolling task in which a dedicated shadower UAV verified the sensor observations of team members, to
build a model of trust for each team member. This model can be used to inform the task assignment strategy
or to revisit the formation of the team.

Future work will involve additional UAV experiments to explore how performance data can be used to affect
either the task assignment function or to perform UAV team formation. We would like to investigate how the
trust model can be applied to inform the task optimization for multiple UAVs in the patrolling task. In addition,
we plan to perform flight experiments using this approach with our autonomous, multiple UAV research platform.
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