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Abstract—In this report, the problem of interference in dense
wireless network deployments is addressed. Two example sce-
narios are: 1) overlapping basic service sets (OBSSes) in wireless
LAN deployments, and 2) interference among close-by femtocells.
The proposed approach is to exploit the interference cancellation
and spatial multiplexing capabilities of multiple-input multiple-
output (MIMO) links to mitigate interference and improve the
performance of such networks. Both semi-distributed and fully
distributed protocols for 802.11-based wireless networks standard
are presented and evaluated. The philosophy of the approach is to
minimize modifications to existing protocols, particularly within
client-side devices. Thus, modifications are primarily made at
the access points (APs). The semi-distributed protocol was fully
implemented within the 802.11 package of ns-3 to evaluate the
approach. Simulation results with two APs, and with either one
client per AP or two clients per AP, show that within 5 seconds
of network operation, our protocol increases the goodput on the
downlink by about 50%, as compared against a standard 802.11n
implementation.

Index Terms—MIMO, multiple antennas, beamforming, com-
bining, overlapping basic service set, dense wireless networks

I. INTRODUCTION

W IRELESS local area networks have exploded in pop-
ularity over the past decade. Access points (APs) are

being deployed in many stores and in many homes. In dense
areas, such as apartment complexes and shopping malls, basic
service sets (BSSes) can overlap, reducing the performance of
each network. In this paper, we tackle the problem of inter-
ference within densely deployed wireless networks. Although
this problem can be solved by using different orthogonal
channels on each access point (AP), the problem becomes
unavoidable when the number of APs exceeds the number
of available orthogonal channels. In this report, we focus
primarily on integrating our approach within 802.11-based
wireless networks. The problem of interfering 802.11 networks
is sometimes referred to as the overlapping basic service set
(OBSS) problem.

In the literature, proposed solutions to the OBSS problem
look for ways to share the medium by careful scheduling [1],
by modifications to the network allocation vector (NAV) [2],
by modifications to the contention windows [3], or by quality
of service enhancements [4]. We propose to tackle the OBSS
problem by equipping nodes with multiple antennas, which
can be used to perform interference cancellation.

When the transmitter and receiver of a link are equipped
with multiple antennas, they form a multiple-input multiple-
output (MIMO) link. Two capabilities of MIMO links that

allow for increased performance of the overall network include
[5]: spatial multiplexing, in which a link supports multiple
streams in parallel; and interference cancellation, in which
interfering transmitter-receiver pairs cancel interference be-
tween one another. With the “n” extension to the 802.11
protocol, wireless nodes are equipped with multiple antennas
and exploit the spatial-multiplexing capabilities of MIMO
links, supporting throughputs of up to 600 Mbps [6]. Although
the 802.11n protocol improves the performance of a single
link, overlapping BSSes must still take turns to coexist. In
this paper, we propose to use the interference-cancellation
capability of MIMO links so that multiple OBSSes can be
active simultaneously. To the best of our knowledge this is the
first work that exploits the interference cancellation technique
of MIMO links to tackle the OBSS problem.

In this paper, we propose both semi-distributed and dis-
tributed protocols that enable the use of MIMO interference
cancellation techniques. Our design philosophy is to make
most of the changes at the access points so as to reduce the bur-
den on the clients as much as possible. Our proposed protocols
can use any algorithm for computing the MIMO beamforming
and combining weights that cancel interference and support
multiple streams on each link. However, in our simulations,
we make use of the well-known Maximum Weighted Sum Rate
(MWSR) algorithm from [7] for weight calculation. The pro-
posed protocols contain periods for performing channel-state
information (CSI) measurements, MIMO-weight computation,
data transmission, and acknowledgement (ACK) transmission.
Because computing MIMO weights is expensive in terms of
overhead, our protocol is biased toward re-using link sets
in which MIMO weights are already available. We have
implemented the distributed version of our protocol within the
802.11 package of the ns-3 network simulator [8] for two APs.
The simulation results for this case show that our approach
improves the throughput by about 50% compared to the case
where APs have to alternate their transmissions.

This report is organized as follows. In Section II, we state
our network model and assumptions. In Section III, we present
our semi-distributed protocol. In Section IV, we briefly present
our distributed protocol. In Section V, we present simulations
results for two OBSSes. Finally, in Section VI, we provide our
conclusions and discuss our future work.

II. NETWORK MODEL AND ASSUMPTIONS

We assume that all nodes operate on the same wireless
channel. Also, we assume that a transmission interferes with
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all unintended receivers, but the amount of interference is
dependent on the MIMO channel and the distance between
the transmitter and the unintended receivers. We say that
two nodes are within communication range of each other
if one of the nodes, taking the role of a transmitter, can
send a single stream of data at the lowest data rate with no
beamforming and the other node can, with high probability,
receive and decode this data in the absence of interference.
Additionally, we assume that a unicast packet is retransmitted
by the MAC layer until it is successful (indicated by the
transmitter receiving an acknowledgement from the receiver),
and that all unicast packets will eventually succeed when the
transmitter and receiver are within communication range.

We assume that a wireless node can act as either a trans-
mitter or a receiver, but not both, at any given time. In this
report, we target scenarios where the number of OBSSes is
fairly small, say between two and five. Investigating scalability
to larger numbers of OBSSes is future work. Additionally, we
assume that the only method in which APs can communicate
with each other is through the wireless medium and that APs
can communicate with each other either directly or through
other APs, but not through other clients. We assume that the set
of APs is fixed throughout execution of our protocol; however,
we can easily handle the cases where APs join and leave the
protocol by re-initializing the protocol states.

We assume that the only method for measuring the CSI
from a given node is by receiving a packet containing training
symbols, called a sounding packet, from that node. Therefore,
the only interference that can be considered for interference
cancellation at a node is that in which the interferer is
within communication range. We assume that the channels
are symmetric so that CSI measured at a node can be used
as an estimate for the reverse channel; however, the case of
asymmetric channels can be handled by executing an extra
synchronization step that allows for the channel to be treated
as symmetric [9]. With the channels being symmetric, a given
node that receives a sounding packet can estimate the channel
to the node that transmitted the sounding packet, and can use
this information for both the case where the given node takes
the role of a transmitter and the case where it takes the role
of a receiver.

We also assume that channels do not change rapidly, so that
MIMO weights that are calculated at one time can be reused
for some period of time before they must be recalculated.
In our scenarios, the APs are in fixed locations and cover
environments like an office, a home, or a coffee house, where
users are mobile but often stay in one location for a moderate
amount of time in between movements. In these environments,
channels are much less dynamic than, for example, in the
outdoor cellular environment. Thus, our assumption should
hold within these environments. Detecting when channel states
have changed sufficiently to necessitate a new round of mea-
surements is beyond the scope of the report. Herein, we simply
assume that this is done periodically and that measurements
remain valid in between these measurement times.

In this document, we denote A with boldface uppercase
letters as an AP labeled “A” and we denote ak with boldface
lowercase letters as the kth client associated to A. Figure
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Fig. 1. A five AP example highlighting the AP topology (solid lines) and
an example link set (dashed lines) with the interference that can be cancelled
(dotted lines).

1 depicts an example topology of five OBSSes, where the
solid lines between two APs represent that these APs are
within communication range, and the dashed lines represent
an example link set. Given this example link set, we have
assumed that all links in the link set operate on the downlink
(from AP to client) or on the uplink (from client to AP) so
that the dotted lines in Figure 1 represent an example set of
the interferences that can be cancelled (from an interferer that
is within communication range).

III. THE PROPOSED SEMI-DISTRIBUTED PROTOCOL

In this section, we describe our proposed semi-distributed
protocol. The protocol has the following five phases:
AP-discovery phase; CSI-measuring and MIMO-weight-
computation phase; link-set-advertisement and synchroniza-
tion phase; data-transmission phase; and acknowledgement
phase. The only phase that is not fully distributed is the CSI-
measuring and MIMO-weight-computation phase, where CSI
is sent to a designated node to carry out weight computation.
This is done, because of the costly nature of weight compu-
tation and the large number of messages that would have to
be exchanged to perform it in a distributed fashion. Because
of our policy of favoring known link sets with previously
computed MIMO weights, this phase is not executed in steady
state operation unless new clients join the network. Hence,
the protocol operates in a fully distributed fashion most of the
time. Next, we provide a high-level overview of the semi-
distributed protocol before we describe the details of each
phase in Subsection III-B to Subsection III-F.

A. High-Level Overview of Protocol

To take advantage of the interference-cancellation and
spatial-multiplexing capabilities of MIMO links, participating
nodes must set their MIMO weights appropriately. These
MIMO weights are dependent on the CSI between every pair
of interfering nodes that are active. Because CSI is different
between every pair of nodes, different link selections produce
different MIMO weights. To prevent the overhead of having to
measure CSI and compute the MIMO weights for every link
set, our proposed protocol reuses, whenever possible, link sets
for which MIMO weights have been previously computed.
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Fig. 2. High level flowchart of proposed protocol. Phases are shown with
solid borders.

A high-level flowchart of the various phases in our proposed
protocol is illustrated in Figure 2. In our protocol, the first
phase is the AP-discovery phase and is executed only once.
During this phase, APs construct a tree structure for collecting
CSI and distributing MIMO weights, and agree on an AP
round-robin order. After the AP-discovery phase ends, the APs
begin taking turns, in choosing link sets for all APs, according
to the round-robin order. Let us define the initiator AP as the
AP whose turn it is to choose the link set in a given round.
At the beginning of the initiator’s turn, the initiator has two
choices for link sets: it can suggest a link set for which MIMO
weights have previously been computed, or it can suggest the
creation of a new link set for which MIMO weights have not
been computed. If the initiator AP chooses an existing link
set, the initiator AP skips to the link-set-advertisement and
synchronization phase.

If, however, a desired link is not within an existing link set,
the initiator AP transitions to the CSI-measuring and MIMO-
weight-computation phase. During this phase, the initiator AP
begins by advertising to other APs that a new link selection is
about to take place. Then, each AP chooses its desired client,
measures CSI from every participating client possible (those
clients that are within the communication range), and forwards
this information to its parent in the tree structure until the
CSI reaches the root node. Then, the root node computes the
MIMO weights and distributes them to its child nodes. The
MIMO weights are propagated down the tree until they reach
the corresponding APs and clients. Once nodes know their
MIMO weights for the current link set, nodes transition to the
link-set-advertisement and synchronization phase.

At the beginning of the link-set-advertisement and synchro-
nization phase, the initiator AP sends a synchronization beacon
for synchronizing the data transmissions. In the case that the
initiator AP chose an existing link set, the beacon also contains

the chosen link set. Once nodes are synchronized, the data-
transmission phase begins. During this phase the transmitting
nodes transmit several packets within a fixed duration. After
this duration, the receivers simultaneously acknowledge their
received packets through a BlockAck. Once the acknowledge-
ment phase is finished, the next AP in the round-robin order
suggests the link set to use in the new round.

During the steady state (see Figure 2), APs have MIMO
weights available for their desired clients, and so each AP
simply reuses existing link sets. In this case, the only sources
of overhead are announcing the link set and synchronizing the
data transmission.

Our semi-distributed protocol requires very few changes to
the clients. Namely, our protocol requires that the clients be
able to perform the following:

• apply a given set of MIMO weights during the
data-transmission phase and the acknowledgement-
transmission phase;

• store the MIMO weights received for future use; and
• compute MIMO weights for the reverse channel (which

are easily derived from the forward channel, explained
in Section III-F) when receiving or transmitting the
acknowledgment packets.

As we will explain in Section IV, the list of requirements on
clients increases for the distributed protocol. Next, we discuss
the details of each phase of our semi-distributed protocol.

B. AP Discovery

Initially, and only during the first round of our proposed
protocol, the APs go through the AP-discovery phase. During
this phase, APs accomplish the following three things:

• Choose a worker AP – APs choose a worker AP, which
is the AP that receives all CSI measured by the APs and
compute the MIMO weights for all nodes participating
in the link set. The worker AP can be chosen determin-
istically. For example, APs can choose the AP with the
smallest MAC address.

• Form a tree structure – APs form a tree structure, with the
worker AP at the root of the tree. This structure facilitates
the collection and distribution of the CSI and MIMO
weights during the CSI-measurement and MIMO-weight-
distribution phase.

• Create a round-robin order – The worker AP creates an
order used by the APs to take turns becoming the initiator
AP.

Selecting the worker AP is equivalent to selecting a leader
during a leader election protocol. However, leader election pro-
tocols for wireless systems typically have very high overhead,
assume that nodes have knowledge of neighboring nodes,
and/or assume that messages are received reliably [10–14].
Although any leader election protocol can be used in our
protocol, we describe a simple strategy in which reliability
is achieved by a combination of transmitting unicast packets
that require acknowledgements and by overhearing packets.

Our strategy for choosing the worker AP is to have each
AP maintain a list of AP-MAC addresses and have them
share their lists with neighboring APs. In Figure 3, we
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1: if (Received AP-MAC list packet) then
2: Merge received MAC list with local list
3: Store merged MAC list as new local list
4: if (Merged list different from received list) then
5: Queue reply with unicast
6: Stop the no-reply timer
7: else if (Merged list different from old local list) then
8: Delete all broadcast packets with MAC lists
9: Queue new broadcast packet

10: Stop the no-reply timer
11: end if
12: if (Packet destination is self) then
13: Send ACK
14: end if
15: end if
16: if (Channel is idle and have MAC list packet) then
17: if (Unicast packet is available) then
18: Dequeue unicast packet
19: else
20: Dequeue broadcast packet
21: Start the no-reply timer
22: end if
23: Send packet with most updated MAC list
24: end if
25: if (No-reply timer expires) then
26: Choose worker AP
27: end if

Fig. 3. Pseudocode for handling different events when choosing the worker
AP while in the AP-discovery phase.

provide pseudocode for handling the different events that occur
while selecting the worker AP during the AP-discovery phase.
Initially, an AP’s list only contains its own MAC address.
Suppose that an AP wishes to form a link with one of its
clients. This AP will acquire the channel to broadcast a packet
containing its MAC address list. An AP that receives a packet
with a MAC list merges its local list with the one in the
received packet. If the merged list produces a list that is
different from its local list, but is the same as the one received
(the receiving AP has no new information for the AP that
transmitted the list), then the AP acquires the channel to
broadcast this information. However, if the merged local list
and the one received are different (the receiving AP has new
information for the AP that transmitted the list), it replies back
with its new list using a unicast packet but transmitted at the
lowest data rate. If an AP has both a unicast and broadcast
packet to send in its queue, the unicast packet has priority
over the broadcast packet. Also, when queueing a broadcast
packet with an AP list, old broadcast packets are removed.
Neighboring APs overhearing a unicast packet update their
local AP list and possibly unicast or broadcast the new list. The
destination AP of a unicast packet replies with an ACK, then
updates its local list, and, if necessary, acquires the channel
to reply or to broadcast its new local list. Whenever an AP
that is itself the AP with lowest MAC address in its local list
senses that none of its neighbors have replied with a new list
for a given waiting time, it broadcasts its list one final time. If

no new response is generated, it declares itself as the worker
AP.

The worker AP must now inform all nodes that it has
elected itself. The protocol uses this opportunity to set up the
tree structure for communicating the CSI, and the round-robin
order, which APs use to take turns when selecting the link
sets. The worker AP is the root node in this tree structure. To
set up the tree structure and round-robin order, the worker AP
initializes a count to zero, and gives an order to each AP in the
list, assigning itself as the first in the order. The count is used
by each of the APs to choose the AP that becomes its parent
in the tree structure. The worker AP sends this count and the
round-robin order to each one of its neighboring APs using
unicast packets that require ACKs. Each AP that receives such
a packet increments the count and forwards the information
to each of its other neighbor APs using unicast packets. Each
AP chooses the neighboring AP with the smallest count as its
parent node in the tree structure, and notifies its parent of its
selection. APs that do not receive a parent notification label
themselves as leaf APs.

As an example, consider the network of Figure 1. Suppose
that B has the smallest of all AP MAC addresses. Also,
suppose that the first AP to acquire the channel is AP E and
that all APs wish to join the transmission. In this scenario, E
broadcasts an AP-discovery packet containing only its MAC
address. AP C receives this packet and adds its own MAC
address to the list and replies to E with its new information
using a unicast packet. APs B, D, and E update their local
MAC address list with the MAC address of C and E and
contend for channel access. Now, suppose that B acquires the
channel to reply to C with its own AP-list packet. Then APs
A and C receive the packet containing the MAC addresses
of B, C, and E. Because the information stored at C is
a subset of this new information, C does not reply to B;
however, it still contends for channel access to broadcast the
new information. Lets suppose that at this time, A and D
acquire the channel and transmit their AP list using unicast
packets to B and C, respectively. Then B learns of A, while
C learns of D. Suppose that C acquires the channel and
transmits to D (because C has knowledge of B that D is
missing) with the MAC information of B, C, D, and E.
At this point, B and E learn of D, while D learns of B.
Because the local lists stored at D and E are a subset of the
information received from C, then these nodes contend for
channel access to broadcast their new AP-list received. AP
B, however, has knowledge of A and therefore contends for
channel access to send this information to C. Suppose that
E acquires the channel and broadcasts the same information
that it overhead from C. In this case, C refrains from re-
transmitting its AP list. Suppose that B acquires the channel
to reply to C, then B sends the MAC addresses of APs A
through E in the network. Suppose that A and C broadcast
their newly acquired information. Then APs D and E learn
of A and contend for channel access to broadcast the final
AP-list packet. At this point no more updates occur and B
becomes the worker AP. AP B must then send to each of
its neighbors a count set to zero and the order of all APs.
Receiving APs choose their parents and inform their parents
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Fig. 4. Tree structure of five AP example showing an example round-robin
order as chosen by the worker AP.

that they are children nodes. Figure 4 shows the final tree
structure constructed using this procedure and an example
order chosen by the worker AP.

Because the worker AP places itself first in the round-robin
order, the worker AP becomes the initiator AP during the first
round.

C. CSI Measurement and MIMO Weight Computation

The CSI-measurement and MIMO-weight-computation
phase is executed in the case that the initiator AP wishes
to create a new link set. As we describe in the following,
the initiator AP informs other APs of its decision through a
special beacon that reduces the interference while measuring
CSI.

1) CSI Measurements: At the beginning of the CSI-
measurement phase, the initiator AP sends a special beacon
containing a contention-free period (CFP) initiation that pre-
vents nodes other than the APs participating in the protocol
from acquiring the channel. This beacon contains a flag that
informs other APs that it is creating a new link set. Upon
receiving this beacon, APs contend for channel access to send
a beacon with a CFP duration that equals the duration of the
received beacon minus any delay incurred for transmitting its
own beacon.

This procedure initiates a CFP so that APs can measure the
CSI with low or no interference. Because the MIMO channels
are different between every pair of nodes, collecting all CSI
requires large amounts of information. To reduce the number
of channels required for computing the MIMO weights, all
APs schedule the transmissions in the same direction as the
initiator’s link so that all transmissions are either on the
downlink (from APs to clients) or on the uplink (from clients
to APs). This approach removes the burden of clients having
to measure CSI from other clients to cancel interference since
all clients are scheduled as either transmitters or receivers.

The initiator AP, after determining that all nodes have
entered the CFP by sensing the channel idle for a certain time,
requests that its desired client sends a sounding packet. After
receiving the sounding packet, the initiator AP sends a token
to one of its neighboring APs and waits for the neighboring
AP to acknowledge it. The token contains information as to
whether the link selection is for the downlink, or the uplink.
Whenever an AP receives this token, it first acknowledges the

reception of the token by sending an ACK packet. If the AP
receives the token for a second time, it returns the token back
to the AP that sent it. If the AP has not already held the token,
it chooses a client to form a link with (in the correct direction),
and requests that it transmit a sounding packet. Then, the AP
transfers the token to one of its neighboring APs. Once all
neighboring APs have had a chance to hold the token, the
current AP returns the token to the AP from which the token
was initially received.

Using the network of Figure 1 again, an example of the
token-passing mechanism is as follows. If node B becomes
the initiator AP at a particular round, it initiates the CSI phase
by broadcasting a CFP beacon. Once all APs get a chance
to broadcast the CFP beacon, the initiator AP B senses the
channel idle for a short time and requests that its desired client,
say b2, transmit a sounding packet. APs A, B and C collect
CSI from b2 since they are within the communication range.
The initiator AP then sends the token to a neighbor AP, say A,
which requests that its desired client, say a1, send a sounding
packet. AP A, having no other neighbor to forward the token
to, returns it to B. AP B then forwards the token to C which
chooses a client, say c1, and requests a sounding packet from
it. Suppose C sends the token to E, and it selects e1 as its
desired client. AP E then requests that its client transmit a
sounding packet. Because E does not have other neighboring
APs, it sends the token back to C. AP C sends the token to
D which selects a client, say d2, and requests that it send
a sounding packet. AP D then sends this token back to C,
which returns the token to the initiator AP. Figure 1 shows,
using dashed lines, the link selection for this example.

After the token-passing part of this phase, APs have col-
lected all necessary CSI for the clients selected and APs must
forward all CSI to the worker AP. To initiate the forwarding
of all CSI, the initiator AP broadcasts a contention-free end
(CF-END) packet. Receiving APs contend for the channel
and broadcast their own CF-END packets. After transmitting
a CF-END packet, a leaf AP (i.e. A, D, and E in our
ongoing example) transmits all the CSI measured to its parent
in the tree structure. The transmissions use unicast packets
and require acknowledgements from the parent APs. APs that
are not leaf APs wait for all information to arrive from their
children before aggregating the information and transmitting it
to their parent. Once all information is received at the worker
AP, it begins computing the MIMO weights.

2) MIMO Weight Computation and Distribution: During
the MIMO-weight-computation phase, the worker node deter-
mines the MIMO weights to use for the current link selection.
In our simulations, we use the Maximum Weighted Sum Rate
(MWSR) algorithm from [7], although any MIMO weight
algorithm with high performance can be used (for example
[15, 16]).

To distribute the computed MIMO weights to their respec-
tive APs and clients, the worker AP transmits the MIMO
weights to its own client, then aggregates the MIMO weights
for each branch of the tree structure, and forwards them
to each corresponding children. Each packet sent during the
MIMO weight distribution contains the link set, and must be
acknowledged by the receiver. An AP receiving an aggregated
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MIMO weight packet deaggregates its MIMO link’s weights,
sends the corresponding MIMO weights to its client, and
aggregates and transmits the remaining MIMO weights to each
respective next branch in the tree.

In our example, the worker AP B computes the MIMO
weights for each node, then sends the corresponding MIMO
weights to its client. After this, the worker AP sends AP A the
MIMO weights for A and its client. Finally, the worker AP
sends C the MIMO weights of C, D, E, and their respective
clients. The receiving APs deaggregate the MIMO weights,
then share the weights with their own clients before forwarding
the remaining weights to their respective next-hop APs.

After sending the MIMO weights to its client, the initiator
AP waits for a timer to expire before beginning the next phase.
The timer value is based on an estimate of how long it takes
for the rest of the MIMO weights to propagate through the
network. In the small-scale scenarios targeted in this report,
such a value can be easily determined.

D. Link-Set Advertisement and Synchronization

To synchronize the nodes for the data-transmission and
acknowledgment phase, the initiator AP broadcasts a CFP bea-
con. In the case that MIMO weights were not computed during
the current round (because the initiator AP chose an existing
link set), then the initiator AP sets a flag to inform other APs
that a link set is being reused and includes the desired link set
within the beacon. However, if MIMO weights were computed
during the current round (because the initiator AP chose a new
link set), then the link set is redundant and it is not included
with the beacon. By default, this beacon contains the duration
of the CFP. However, to facilitate the synchronization, the
beacon also includes a beacon-propagation duration, which is
an estimate of how long the beacon takes to propagate through
the network by the participating APs in the link set. A node
receiving the beacon sets a timer for the beacon-propagation
duration that it received and then rebroadcasts the beacon.
However, before rebroadcasting the beacon, the node subtracts
the delay it has incurred between receiving the beacon and
retransmitting it from the beacon-propagation duration and
from the CFP duration fields within the beacon.

The CFP initiated by the initiator AP protects the data and
the acknowledgement transmissions during the next phases.
Therefore, this CFP must have a duration that is large enough
to account for the beacon propagation duration plus the
transmission duration plus the acknowledgement duration.

Once the timer for the beacon-propagation duration expires,
nodes listen to the channel, waiting for the channel to become
busy before transitioning to the data-transmission phase.

E. Data Transmission

During the data transmission phase, nodes use the MIMO
weights computed for the current link set to transmit and
receive their data. To begin this phase, the initiator AP or its
desired client, begins transmitting a data packet. Transmitter
nodes begin their data transmissions immediately after they
sense the channel busy.

The data-transmission phase has a fixed duration Tdata.
During this duration, transmitting nodes aggregate as many
data packets as possible so as to occupy the entire transmit
duration.

F. Acknowledgement Transmission

Once the Tdata duration ends, the receivers sense the
channel waiting for the channel to be idle for some time before
acknowledging their packets by transmitting a BlockAck. To
avoid additional overhead, all acknowledgements are sent
simultaneously. To prevent having to compute MIMO weights
for the reverse channel, nodes reuse the MIMO weights from
the data-transmission phase to send/receive a single stream.
Specifically, nodes that transmitted data use the first column
of their beamforming weights as their combining weights for
receiving the BlockAck, and nodes that received data use
the first column of their combining weights, normalized to
maximize the transmit power, as their beamforming weights
for transmitting the BloackAck. This technique of reversing
the roles but reusing the MIMO weights is commonly used
to compute the transmitter weights [17–21]. Although this
technique is suboptimal, we expect it to be sufficient since
ACK packets are sent using modulation techniques that have
lower SINR requirements than data packets.

After receiving or transmitting a BlockAck and sensing
that the channel has been idle for a short duration, each AP
transitions to the next round.

G. Fairness

Our proposed protocol does not enforce any particular
fairness criteria. Instead, each AP chooses its fairness criteria
within its BSS and tries to achieve that criteria by requesting
the appropriate link sets during its turns.

H. Possible Short Comings

Possible problems include the case where two APs can
communicate only through one or several clients. In this case,
APs are not be able to communicate to share information or to
synchronize, and the only solution is for clients to be modified
further to have a more active role in the protocol. We will study
this scenario in our future work.

IV. THE PROPOSED DISTRIBUTED PROTOCOL

The distributed version of our protocol is very similar to
the semi-distributed version except that there is no notion of a
worker AP or a tree structure since the CSI-measurement and
MIMO-weight-computation phase is completely distributed.
To achieve this, each node must measure the CSI from all
interfering nodes, compute its MIMO weights, and share them
with neighboring nodes. This requires that clients be able to
perform the following tasks:

• listen to sounding packets sent by interfering APs,
• compute their own MIMO weights, and
• participate during the MIMO-weight-computation phase

by collecting MIMO weights for neighboring interfering
APs, and transmitting their new MIMO weights.
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The other phases, such as the link-selection-advertisement and
synchronization phase, data-transmission phase, and acknowl-
edgement phase are identical to the semi-distributed protocol.

V. INITIAL SIMULATION RESULTS ON THE
STEADY-STATE OPERATION

In this section, we present initial simulation results for the
steady-state operation of our protocols. We expect that the
distributed and the semi-distributed versions of our protocol
achieve similar performances because, during the steady state,
all phases of the algorithm between the two versions are
identical. In the following subsection, we use a partial im-
plementation of the distributed version in the ns-3 simulator
[8] to evaluate the steady-state operation of our algorithms.

A. ns-3 Simulation Results

To implement our protocol into ns-3, we have modified
the Yans Physical Layer to support the matrix based MIMO
physical-layer model. We have also modified the 802.11
protocol in ns-3 to support 802.11n-like capabilities, such
as support for the 802.11n Greenfield preamble, support for
sounding packets, and support for multiple parallel streams
with independent data rates. In the simulation, packets are
decoded on a stream-by-stream basis and a packet is received
successfully only if all streams are decoded successfully. In
our simulations, data rates are assigned by the APs according
to the expected SINR of each stream using a modified version
of the IdealWifiManager class. For a given SINR, the Ideal-
WifiManager class chooses the highest data rate for which the
bit-error rate (BER) is less than 1× 10−5. Table I shows the
data rates and their corresponding SINRs as reported by ns-3.

TABLE I
DATA RATES AND THEIR SINR THRESHOLD FOR A BER OF 1× 10−5

Data Rate SINR
6Mbps 2.46851
9Mbps 4.80368

12Mbps 4.93702
18Mbps 9.60737
24Mbps 22.2137
36Mbps 45.4008
48Mbps 135.384
54Mbps 181.051

We have also implemented a mechanism for sending ag-
gregate packets and acknowledging each packet individually
using a BlockAck similar to the Aggregate MAC Protocol
Data Unit (A-MPDU) mechanism of 802.11n [6]. In our
implementation, an aggregate packet is composed of multiple
individual packets that are transmitted sequentially without
gaps. Each packet within an aggregate packet contains an
index, which is used by the receiver to construct a BlockAck.
Because each packet is independent, each packet contains
repeated header fields, and so we expect extra overhead using
our aggregate packet technique. Nevertheless, our simulations
show increased performance when using our protocol.

We assume that all radios operate using a 20 MHz band-
width at 5 GHz carrier frequency. Also, we assume flat fading
across the whole bandwidth so that a single MIMO channel
describes all OFDM subcarriers for that channel.

As mentioned earlier, we simulate the distributed version
of our protocol and so all nodes compute MIMO weights and
take turns transmitting them. In our simulations, each weight
packet is spaced using a short-interframe space (SIFS). Also,
a complex element in a MIMO weight matrix contains two
64 bit double-precision binary floating-point numbers: one for
the real part, and one for the imaginary part. A receiver with
four streams and four antenna elements needs to send a weight
packet, containing the combining weights and other covariance
matrices, that has a payload of 514 bytes. A transmitter with
four streams and four antenna elements needs to send a weight
packet, containing only the beamforming weights, that has a
payload of 258 bytes.

When iteratively computing the MIMO weights, we say
that a node reaches a convergence threshold of ε if the
maximum absolute difference between the old MIMO weights
and the new MIMO weights is below this threshold ε. In our
simulations, when the MIMO weights reach a convergence
threshold of ε1 = 0.01, we remove any stream that does not
meet the minimum SINR listed in Table I and reallocate the
power at each subsequent MIMO weight computation. We
compute new MIMO weights and remove streams with low
SINR until the weights converge within ε2 = 0.0001 at which
point the node stops updating its weights.

During the data transmission phase, an AP sends as many
packets as can fit within the Tdata = 10 ms allocated time.
We assume that APs send only User Datagram Protocol (UDP)
data packets to their clients with a payload of 1048 bytes and
that APs always have data to send to their clients.1 After the
Tdata = 10 ms data-transmission duration, nodes compute the
MIMO weights for the reverse channel, and clients wait for
an SIFS before transmitting their BlockAck packets.

Using our implementation in ns-3, we simulate two different
scenarios of the two OBSS problem. We consider the case
where each AP has a single client, and the case where each AP
has two clients. Our implementation in ns-3 lacks the round-
robin order that is created during the AP-discovery phase.
However, since we simulate only two OBSSes, the first AP
that acquires the channel automatically becomes the initiator
AP, and APs change roles after every ACK-transmission phase.
Consequently, after receiving the BlockAck, the AP that was
an initiator AP becomes a non-initiator AP and the AP that
was a non-initiator AP becomes the initiator AP.

In the following subsections, we present our results for both
the one-client-per-AP case and the two-clients-per-AP case.
In both cases, every node in the network has four antenna
elements.

1) Case One Client per AP: In the first scenario, illustrated
in Figure 5, each AP has a single associated client. In this
scenario, each AP chooses its client (forming a link set). Then
the nodes compute the MIMO weights in a distributed fashion
and store the final weights for use in all subsequent data

1Only downlinks are considered in these initial simulations.
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Fig. 5. Topology of two OBSSes where each BSS has one client.

transmissions.
We compare against a CSMA/CA strategy using a modified

version of the 802.11 protocol on ns-3 that support the spatial
multiplexing capability of MIMO links using the optimal
singular-value-decomposition (SVD) weights with power al-
located using the waterfilling algorithm [22]. Any stream that
does not meet the minimum SINR is removed by setting
its gain to zero within the waterfilling algorithm so that the
algorithm allocates zero power on those streams. Additionally,
we enable the Aggregate MAC Service Data Unit (A-MSDU)
support within ns-3, which enables aggregate packets of up to
7935 bytes [6]. This CSMA/CA strategy represents the typical
scenario in which two OBSSes must take turns to share the
medium, each transmitting data at a maximum rate.

In Figure 6, we show the sum goodput as a function of x for
y = 50 meters for the case of a single client per AP. The results
shown are averaged over 10 random Rayleigh channels. We set
the simulation time to five seconds. The results show that at
low interference (x = 100 meters) and at high interference
(x = 20 meters), our proposed protocol achieves a sum
goodput that is 36% and 54% better, respectively, than the
sum goodput achieved by the typical CSMA/CA mechanism
with spatial multiplexing only.

2) Case Two Clients per AP: In the second scenario,
illustrated in Figure 7, each AP has two associated clients. For
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Fig. 6. Sum goodput as a function of x for y = 50 meters for the topology
shown in Figure 5, where each of the two APs have a single client.
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Fig. 7. Topology of two OBSS where each BSS has two clients.

this scenario, each AP selects a client, forming the first link
set, and nodes compute the MIMO weights for this link set.
Then, whenever one AP chooses its other client (for which
MIMO weights have not yet been computed), the other AP
also chooses its other client (for which MIMO weights have
also not yet been computed). After the MIMO weights for
this second link set are computed, the initiator AP always
reuses either link set, depending on which client it selects. For
this scenario, the protocol runs the MIMO-weight-computation
phases two times, one for each link set.

Again, we compare against the CSMA/CA strategy with
spatial multiplexing only. In Figure 8, we present results for
the sum goodput as a function of x for y = 50 meters for
the case of two clients per AP. The results show that the sum
goodput of our protocol can be 40% and 49% better that of the
CSMA/CA case for the cases where the two OBSSes have high
interference (x = 20 meters) and low interference (x = 100
meters), respectively.
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Fig. 8. Sum goodput as a function of x for y = 50 meters for the topology
shown in Figure 7, where each of the two APs have two clients.



CORTÉS-PEÑA AND BLOUGH: DISTRIBUTED MIMO INTERFERENCE CANCELLATION FOR INTERFERING WIRELESS NETWORKS 9

20 30 40 50 60 70 80 90 100 110 120
0

20

40

60

80

100

120

140

160

180

Physical−Layer Data Rate Vs. x for y=50m
P

h
y
s
ic

a
l−

L
a

y
e

r 
D

a
ta

 R
a

te
 (

M
b

p
s
)

x (meters)

 

 

Interference cancellation (max)

Interference cancellation (avg)

Interference cancellation (min)

Using CSMA/CA

Ignoring interference
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B. MATLAB Simulation Results

To exclude any protocol overhead, we also compare the
achievable physical-layer data rates. We use MATLAB to
simulate a similar single client per AP scenario shown in
Figure 5. We fix y = 50 meters and vary x. We assume a
path-loss exponent of 3. In Figure 9, we show the physical-
layer data rate as a function of the distance between an AP
and its unintended receiver. The results are averaged over 1000
random Rayleigh channels. In Figure 9, we show results for the
case where both links are active in parallel (using spatial mul-
tiplexing and interference cancellation, labeled as interference
cancellation), the case where links take turns (using spatial
multiplexing only, labeled as CSMA/CA), and the case where
the links transmit simultaneously, but do not perform inter-
ference cancellation (labeled as ignoring interference). Figure
9 shows that, as compared against the CSMA/CA strategy in
terms of physical-layer data rate, the average performance im-
provement with interference cancellation at high interference
(x = 20 meters) was 48%, at medium interference (x = 60
meters) was 57%, and low interference (x = 120 meters) was
65%. The maximum improvement ranged between 100% to
116% across all the values of x tested. Also, the results in
Figure 9 confirm that the improvement observed is due to the
interference cancellation capability of MIMO links since the
performance drops significantly if interference is ignored and
both links are active simultaneously.

The results obtained with this experiment show slightly
higher improvements when performing interference cancel-
lation than those improvements obtained using our protocol
within ns-3 in Section V-A1 and Section V-A2. There are
several causes for this decrease in performance improvement
in our ns-3 simulations. One is the overhead of computing
MIMO weights, which increases as the number of link sets
increases. Another cause is the overhead of advertising the link
set and synchronizing the data transmissions. Additionally,
the aggregation mechanism used by our protocol is inefficient
since various header fields are unnecessarily repeated for every
packet.

Before we present our conclusions, we should note that
we expect larger performance gains as the number of APs is
increased beyond the two APs assumed since the total number
of possible active streams increases [5, 23].

VI. CONCLUSIONS AND FUTURE WORK

We have proposed semi-distributed and distributed proto-
cols that take advantage of the interference cancellation and
spatial multiplexing capabilities of MIMO links to improve
the performance of OBSSes. Our design philosophy was to
modify the clients as little as possible while exploiting the
MIMO capabilities. In both strategies, the APs select an
initiator AP whose job is to synchronize the transmissions.
In the semi-distributed strategy, a worker AP collects all
CSI, and computes and distributes the MIMO weights. To
avoid having to compute beamforming and combining weights
when sending acknowledgements, we reuse the weights used
for the forward channel, but use only a single stream. We
showed simulation results for a partial implementation of our
distributed protocol using ns-3 for the case of two OBSSes.
These simulations show that on average for two OBSSes, the
goodput improvements are 54% and 49%, as compared to
the goodput achieved by the typical CSMA/CA with spatial
multiplexing only, for the scenarios where the APs have
one and two clients each, respectively. MATLAB simulations
show that the average performance improvement, in terms of
physical-layer data rate with no overheads, of using spatial
multiplexing and interference cancellation ranges from 48%
up to 65% as compared to the case of spatial multiplexing
only. Hence, our achieved results are within the general range
of predicted benefits.

As part of our future work, we will simulate more than two
APs. We will fully implement both the distributed and the
semi-distributed protocols. Additionally, we will improve our
protocols so that they can handle the cases where APs can
communicate with other APs only through clients. Also, we
will determine appropriate values for several parameters of our
protocols, such as Tdata, under different network conditions.
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