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Entangled polymer melts exhibit a variety of flow instabilities that limit production rates in
industrial applications. We present both experimental and computational findings, using flow of
monodisperse linear polystyrenes in a contraction–expansion geometry, which illustrate the forma-
tion and development of one such flow instability. This viscoelastic disturbance is first observed at
the slit outlet and subsequently produces large-scale fluid motions upstream. A numerical linear
stability study using the molecular structure based Rolie-Poly model confirms the instability and
identifies important parameters within the model, which gives physical insight into the underlying
mechanism. Chain stretch was found to play a critical role in the instability mechanism, which
partially explains the effectiveness of introducing a low-molecular weight tail into a polymer blend
to increase its processability.

PACS numbers: 47.15.Fe 47.20.Gv 47.50.Gj 47.57.Ng 83.50.Uv 83.60.Wc

There are numerous types of experimentally observed
instability in polymer melt flow; a recent review [1] high-
lights three forms observed in extrusion that occur at
increasing rates of flow. The first two are “sharkskin”
instabilities, which develop due to free surface effects,
and “stick-spurt” or “stick-slip” instabilities, which re-
sult from material compression and stick-slip at the wall.
While the mechanisms underlying the formation of these
first two are relatively well understood [2, 3], the third
class, termed “volume instability”, is less so [4]. This
instability in converging flows for extrusion and injec-
tion moulding has been known for many years, and an
empiricism has been developed. But as yet there is no
understanding of the underlying physics of the problem,
and the inherent connection between the viscoelastic in-
stability and the molecular polymer dynamics. Under-
standing the underlying physical process would greatly
enhance industry’s ability to define efficient processing
conditions.

This letter outlines recent work in which we created an
idealised model flow, related to the engineering flows in
that the essential elements are present, but simplified so
that the experimental variables are well-controlled and so
the whole flow field can be modelled. We have use molec-
ularly well-characterised materials (building on previous
work for monodisperse materials under tightly controlled
flow conditions [5, 6]) so that the connection between vis-
coelastic properties and molecular structure can be main-
tained without empirical fitting. Through these careful
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FIG. 1: A schematic illustration of the experimental geometry
used in this work.

experiments and multiscale modelling we have elucidated
the mechanism of instability.

These experiments were performed in a Multi-Pass
Rheometer [7] using the rounded 7:1:7 contraction-
expansion slit geometry outlined in Fig. 1. The nar-
rowed region of the slit has length X = 1.5mm and
width Z ≈ 1.4 mm, with rounded corners of radius
R = 0.375mm. The upstream and downstream regions
are 10 mm square in cross-section.

Flow-induced birefringence (FIB) was used to identify
the transient development of stress for five materials with
molecular weight (Mw) ranging from 110–523k. The flow
instability, shown in Fig. 2, was observed for the three
highest molecular weight materials, and was similar to
that previously observed in bright field [6]. It is seen to
originate at the slit outlet and propagate back upstream
over time.

Analysis of the experimental work was performed to
investigate the critical parameters for instability using
Weissenberg numbers to characterise both the material
molecular chain stretch and molecular orientation within
the flow. This dimensionless number is defined as the
apparent wall shear rate γ̇ = 6Q/Z2D, where Q is the
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FIG. 2: FIB images of the 488k Mw material at 180oC, il-
lustrating elements of the flow instability. The images are
presented at two sequential times (a) and (b), half an oscil-
lation period apart. At each time a magnified downstream
image is shown on the right. Static photographs alone do not
capture the form of the instability well; the detailed form is
much more evident from observing a video sequence. The dis-
turbance is first observed downstream of the contraction, and
manifests as an oscillation of the fringe pattern perpendicular
to the bulk flow; this is characterised by lateral movement of
the elliptical zero stress eye, seen in the images on the right. It
then propagates upstream and influences the upstream stress
pattern, producing oscillations similar to those seen down-
stream. Flow is from left to right. Apparent wall shear rate
γ̇ = 3.6 s−1; Weissenberg numbers WeR = 1.6, Wed = 73.

volumetric flow rate, multiplied by either the Rouse time
(τR) for molecular chain relaxation, WeR = γ̇τR or the
reptation time (τd) for molecular orientation relaxation,
Wed = γ̇τd. The ratio of these numbers, τd/τR, is a func-
tion of the polymer molecular weight. A Weissenberg
number above one corresponds to chain stretch (for WeR)
or molecular orientation (for Wed) within the flow. In
this study flow instabilities were only observed at flow
rates where both Weissenberg numbers were above one.
Temperature was used as a variable parameter to process
the different molecular weight materials at similar τd and
τR to determine any clear trend for instability onset in
relation to these two relaxation times. Example results
are shown in Fig. 3, which plots the parameter space of
molecular weight, represented by τd/τR, and the mate-
rial deformation defined by WeR. It illustrates the region
in which instabilities are observed, and clearly highlights
that for low ratios of τd/τR the instabilities are not ob-
served even at high rates of deformation in this flow ge-
ometry. From this and a similar plot of τd/τR against
Wed, there is no simple criterion for instability in terms
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FIG. 3: Processing stability map of the ratio of relaxation
times with respect to Rouse time Weissenberg number high-
lighting the parameter space in which instabilities were ob-
served. Solid symbols represent unstable flows.

of one critical Weissenberg number WeR or Wed.
Numerical modelling focussed on the linear stabil-

ity properties of the flowing system, in which the base
flow was assumed to be two-dimensional and stability to
three-dimensional perturbations was studied. Although
linear stability is not guaranteed to identify all instabil-
ities (some viscoelastic instabilities are inherently non-
linear [8]), experiments suggest that the melt instabil-
ity we are pursuing does have linear onset. We model
the polymer using the Rolie-Poly model [9], currently
the most advanced differential formulation of the Doi–
Edwards tube model for linear polymer melts that is also
compact enough to be computable in finite element com-
plex flow calculations. It incorporates at the level of two
modes per chain the processes of reptation, convective
constraint release (CCR) [10], chain stretch and retrac-
tion. We use a multimode version incorporating a solvent
viscosity term (without inertia):

∇ · u = 0; −∇p + η∇2u +
∑

i

Gi∇ · σi = 0 (1)

Dσi/Dt = κ · σi + σi · κ> − τ−1
d,i (σi − I)

− 2τ−1
R,i(1− S

−1/2
i )

(
σi + β∗S−1/2

i (σi − I)
)

(2)

in which u is the fluid velocity, p pressure, κ the veloc-
ity gradient, and 3Si is the trace of the polymer stress
tensor σi for each mode. The physical parameters are η
(effective solvent viscosity), Gi (modulus of each mode),
τR,i (Rouse time for each mode), τd,i (reptation time for
each mode) and β∗ (CCR parameter).

We considered three levels of numerical modelling for
each material: [A] the simplest model, a single Rolie-
Poly mode with no solvent viscosity; [B] a single Rolie-
Poly mode with solvent viscosity; and [C] solvent viscos-
ity plus two Rolie-Poly modes. In each case the values
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of the physical parameters were obtained, as in earlier
studies [5, 11], from fitting to the full Likhtman–McLeish
model [12] of the chosen molecular weight linear polymer.

The steady base flow was found using a semi-staggered
finite volume method, similar to earlier work [13] but us-
ing Newton’s method rather than time-dependent calcu-
lation. If the underlying flow is unstable, time-dependent
simulations will never find a steady state. Similar time-
dependent calculations have been carried out by Alves &
coworkers using the PTT model [14]. To calculate the
stability properties of this solution, we linearised equa-
tions (1–2) for small (lower case) perturbations about
the (upper case) base solution Φ(x, y, z, t) = Φ0(x, y) +
φ(x, y) exp [ikz + ωt]. The solution vector Φ consists of
all the flow variables {u, p, σi}. The linearisation results
in a generalized eigenvalue problem for φ(x, y) and ω:

ωφ(x, y) = L(Φ0(x, y); ∂x, ∂y, k)φ(x, y)

in which L is a linear operator acting on the perturbation
φ. This is a standard technique; Smith et al. [15] have
applied it to viscoelastic systems using a finite-element
solver for the base flow. We solve the linear system by the
shift-invert Arnoldi method, looking for the eigenvalues
with largest real part, and the system is unstable if one or
more eigenvalue has a positive real part. The numerical
method is described more fully in [16]; the results we
present here are robust to mesh refinement. The period of
oscillation of an unstable mode is given by 2π/Im(ω) and
the wavelength in the out-of-plane direction by λ = 2π/k.

Both the experimental 7:1:7 and benchmark 8:1:8
contraction-expansion geometries were modelled using a
two-dimensional mesh, and their results are essentially
equivalent. In each case the inlet and outlet regions have
length 17mm with periodic boundary conditions connect-
ing the two ends. The highest molecular weight mate-
rial (523k Mw, with [A] relaxation times τR ≈ 1 s and
τd ≈ 53 s at 170oC) was used as a case study material for
numerical modelling. Its parameters [C] are:

G1 = 1.132× 105 Pa G2 = 42250Pa
τd,1 = 27.1 s τd,2 = 2.17 s
τR,1 = 0.4907 s τR,2 = 0.1356 s

η = 9894 Pa s β∗ = 0.283

With this technique an instability was found at a repta-
tion Weissenberg number γ̇τd,1 = 120, corresponding to
an apparent wall shear rate of γ̇ ≈ 4.4 s−1. The same ex-
perimental instability was observed at an apparent wall
shear rate of γ̇ ≈ 1.9 s−1. Partial explanations for this
discrepancy are that the numerical study does not ex-
actly capture the lowest unstable flow rate γ̇c but instead
simply demonstrates instability at some flow rate γ̇ > γ̇c;
or from three-dimensional effects (as the numerical study
assumes a channel of infinite depth).

We shifted all timescales and moduli to the experi-
mental temperature of 180oC by standard WLF shift-
ing, using WLF parameters for PS taken from the liter-
ature [17, 18]; with this method the instability onset at

180oC is predicted to be at γ̇ ≈ 12 s−1 compared with
the experimental observation of γ̇ ≈ 3.6 s−1; note that
time-temperature superposition does not work perfectly
on the experimental critical flow rate (the result at 170oC
would suggest a critical apparent wall shear rate at 180oC
closer to γ̇ ≈ 9.8 s−1) so we would not expect a perfect
match between idealised numerical calculations and the
experiments. Nonetheless these results are impressive:
no artifical adjustments of parameters have been made
here, and these calculations are really ab initio predic-
tions. However, stability results can depend in subtle
ways on constitutive details [19] so it is still possible that
our computational results are specific to the Rolie-Poly
equation. Nonetheless, our prediction of critical flow rate
is relatively good, particularly at 170oC, as is the form
of the unstable flow, as we shall see later.

The wavelength of the numerically calculated unstable
perturbation in the out-of-plane direction is λ = 44 mm,
much longer than any of the characteristic lengthscales
of the problem, including the experimental slit depth.
In essence, we would expect to see exactly the same
mode of instability if we were to consider a perturba-
tion entirely in the plane of flow (equivalent to a per-
turbation having infinite λ and hence two-dimensional
flow). This makes it unlikely that the mechanism of in-
stability is related to the interaction of normal stresses
with curved streamlines [20], as that well-characterised
instability is fully three-dimensional. A recent paper by
Alves & Poole [21] uses scaling laws based on the curved
streamline mechanism to explain a steady, purely two-
dimensional “divergent flow” phenomenon in a smooth
contraction–expansion flow; we believe that the oscilla-
tory instability we observe is qualitatively different and
derives from a different physical mechanism.

Fig. 4(a) shows streamlines for the perturbation flow
just above the critical We. The shading represents the
flow in the direction of the base flow: this is asymmet-
ric across the slit, indicating a circulation region just
downstream of the contraction. It is the effect of this
circulation on the zero-birefringence point in the flow
that causes the experimentally observed “side-to-side”
motion.

The period of oscillations predicted by the numerical
study at 170oC is around 19 s, which corresponds well
with the value of ≈ 13 s seen just above the critical ex-
perimental Weissenberg number. The flow-component of
the extra stress from the first Rolie-Poly mode, which
is the dominant mode in this flow, is illustrated for the
unstable perturbation in Fig. 4(b). This, too, is anti-
symmetric across the channel, and the largest changes
in both stress and vertical velocity due to the instability
occur just downstream of the contraction, where the ex-
perimental instabilities are first observed. From this we
conclude that the instabilities observed by our numeri-
cal technique are physical, as they relate directly to the
experimental results.

In order to elucidate the mechanism of the instabil-
ity, the computational code was applied to a simpler [B]
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FIG. 4: The unstable perturbation flow for the two-modes
plus solvent Rolie-Poly model of the 523k Mw fluid at 170oC,
with γ̇τd,1 = 120 and k = 0.1. (a) Streamlines, and shading
representing the velocity in the principal flow direction; note
the strong circulation region just downstream of the contrac-
tion. (b) Plot of the perturbation to the xx component of the
first (dominant) Rolie-Poly mode. Note again the dominant
region downstream of the contraction.

version of the 523k Mw fluid:

G = 1.104× 105 Pa, η = 3.070× 104 Pa s,
τd = 27.1 s, τR = 0.678 s, β∗ = 1,

for which no instability was found. Probing the numer-
ical parameter space revealed that instability could be
provoked either by increasing τd/τR by a factor of 20
(consistent with the trends of Fig. 3, but which would
correspond to a much higher Mw than the first unsta-
ble experimental material) or (much more realistically)
by reducing the CCR parameter β∗ to its [C] value of
0.283. This observation leads us to believe firstly that,

in line with the experiments, this instability is inherent
to entangled melts — i.e. to those with stretch and ori-
entation processes on different timescales. Secondly, we
believe that the critical physical phenomenon for instabil-
ity is the amount of chain stretch (whose relaxation is en-
hanced by decreasing τR or by increasing the convective
constraint release by increasing β∗). This mechanism is
supported by the experimental observations that materi-
als with a low ratio τd/τR, in which relatively little chain
stretch occurs, are stable even at high flow rates. If the
molecular weight is too low, such that the chain stretch
relaxes on a timescale similar to orientation; or in the
presence of too much convective constraint release, then
the observed instability does not manifest itself. These
results are a step towards a physical explanation for the
effectiveness of introducing a low-molecular weight ad-
ditive into a polymer to increase its processability [6].
These molecules effectively increase convective constraint
release of longer molecular weight chains thereby reduc-
ing their chain stretch at a specific flow-rate. The use
of molecular constitutive equations of increasing sophis-
tication together with stability analysis of complex flow
geometries will enable rational process design to avoid
unstable viscoelastic flows.
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