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Abstract
The thesis presents a novel numerical method based on the high order Discontinuous Galerkin
(DG) method for three dimensional electrostatic and electro-quasistatic field problems where
materials are of very complex shape and may move over time. A well-known example is wa-
ter droplets oscillating on the surface of high voltage power transmission line insulators. The
electric field at the surface of the insulator causes the oscillation of the water droplets. The
oscillation, in turn, triggers partial discharges which have damaging effects on the polymer
insulation layers of high voltage insulators.
The simulation of such phenomena is highly complex from an electromagnetic point of view.
Most numerical methods which are applied to such field problems use conforming meshes where
the elements are fitted exactly to the material geometry. This implies that the element interfaces
conform to the material boundaries or material interfaces. In general, the generation of con-
forming meshes is computationally expensive. Furthermore, when dealing with materials that
move over time, conforming meshes need to be adapted to the changing material geometry at
each point in time.
To avoid the often computationally costly generation and adaption step of conforming meshes,
the numerical method proposed in this thesis operates on a single fixed structured Cartesian
mesh. First, field problems with non-moving materials are considered. To obtain accurate simu-
lation results on field problems with complex-shaped materials, an additional approach, namely
the cut-cell discretization approach, is applied. The cut-cell discretization approach subdivides the
elements at material boundaries or interfaces into smaller sub-elements which are referred to
as cut-cells. The approach is embedded into the Discontinuous Galerkin (DG) method for stan-
dard Cartesian meshes since the DG method allows for high order approximations and offers a
great flexibility for additional approaches. Since the mesh is not fitted to the material geome-
try, geometrically small cut-cells might emerge. Therefore, two supplementary approaches, the
adaptive approximation order method and the cell merging method are proposed which enable
an accurate approximation even on geometrically small cut-cells. Furthermore, a DG hybridiza-
tion is presented which lowers the number of degrees of freedom in domains where the high
number of DG degrees of freedom is not necessary to obtain accurate results. The numeri-
cal method comprising all above mentioned approaches is labelled as boundary conformal DG
(BCDG) method.
In a second step, the BCDG method is extended to field problems where materials move over
time. We refer to this approach as extension of the BCDG (EBCDG) method. The EBCDG method
adapts to the moving materials by recalculating only the cut-cells at each point in time while the
underlying Cartesian grid is kept fixed. Therefore, no computationally expensive mesh adaption
or mesh generation steps are needed.
The BCDG and the EBCDG method are applied to numerical examples of electrostatic (ES) and
electro-quasistatic (EQS) field problems. First, numerical results of the BCDG method on a
verification example of a cylindrical capacitor filled with two dielectric layers are shown. A
convergence study and a comparison study illustrate the high accuracy of the BCDG method
with respect to the number of degrees of freedom. Finally, the EBCDG method is applied to



an example of a water droplet oscillating artificially on the insulation layer of a high voltage
insulator. A convergence study demonstrates that even on a coarse mesh a high resolution of
the potential and electric field solution can be achieved.



Kurzfassung
In dieser Arbeit wird eine neue numerische Methode vorgestellt, die auf der Discontinu-
ous Galerkin (DG) Methode basiert und für dreidimensionale elektrostatische und elektro-
quasistatische Feldprobleme mit komplex geformten Materialgeometrien entwickelt wurde.
Insbesondere können mit dieser Methode bewegte Materialränder behandelt werden. Ein be-
kanntes Anwendungsbeispiel ist die Simulation singulärer Wassertropfen auf Hochspannungs-
isolatoren, die sich durch Niederschlag oder Kondensation auf den polymeren Isolierstoffober-
flächen der Hochspannungsisolatoren sammeln. Diese singulären Tropfen werden aufgrund
des anliegenden elektrischen Feldes zu Oszillationen angeregt. Die oszillierende Wirkung des
elektrischen Feldes auf die Wassertropfen bewirkt wiederum, dass Teil- bzw. Mikroentladungen
auftreten, die die Isolierstoffoberfläche schädigen. Die numerische Simulation der Tropfenbe-
wegung auf Hochspannungsisolatoren ist sehr komplex. Die meisten Simulationsverfahren für
diese Art von Feldproblemen verwenden Rechengitter, deren Elementränder exakt mit den Mate-
rialrändern übereinstimmen. Allerdings sind diese Gitter im Vergleich zu strukturierten Gittern
oft nur mit einem erheblich höheren Zeitaufwand zu generieren. Zudem müssen diese Gitter
bei Simulationen mit bewegten Materialrändern in jedem Zeitschritt an die bewegte Material-
geometrie angepasst werden.
Die numerische Methode, die in dieser Arbeit vorgestellt wird, vermeidet den zeitaufwendi-
gen Gittergenerierungs- bzw. Gitteranpassungsschritt, indem ein vorgegebenes strukturiertes
kartesisches Gitter verwendet wird. Um auf kartesischen Gittern eine ausreichende Genauigkeit
für Feldprobleme mit komplex geformten Materialgeometrien erhalten zu können, wird eine
Methode eingeführt, die die Materialränder in der Diskretisierung exakt berücksichtigt. Diese
sogenannte Cut-Cell Diskretisierungsmethode schneidet die Elemente an den Materialrändern in
Unterelemente, die sogenannten Cut-Cells. Die Cut-Cell Diskretisierungsmethode wird in die DG
Methode eingebettet, weil diese eine Verwendung hoher Approximationsordnungen ermöglicht.
Da die DG Methode aufgrund ihrer methodischen Struktur eine große Flexibilität für zusätzliche
Methoden bietet, ist die Einbettung auf natürliche Weise möglich.
Da das kartesische Gitter nicht mit den Materialrändern übereinstimmt, können beim Schneiden
der Elemente geometrisch sehr kleine Cut-Cells entstehen, die die Konditionszahl der Problem-
stellung verschlechtern. Aus diesem Grund werden in dieser Arbeit zwei weitere Methoden
vorgestellt, die Adaptive Approximation Order Methode und die Cell Merging Methode, die es
ermöglichen, selbst bei sehr kleinen Cut-Cells genaue Simulationsergebnisse zu erzielen. Zu-
dem wird eine DG Hybridisierungsmethode eingeführt, die die Freiheitsgrade des Verfahrens in
bestimmten Gebieten herabsetzt, ohne zu einem Genauigkeitsverlust zu führen. Die Methode,
bestehend aus allen oben aufgelisteten Verfahren, wird als Boundary Conformal DG Methode
bzw. BCDG Methode bezeichnet.
Eine Erweiterung der BCDG Methode auf bewegte Materialien, die EBCDG Methode, wird im
zweiten Teil der Arbeit vorgestellt. Die bewegten Materialränder werden in dieser Methode
durch eine wiederholte Neuberechnung der Cut-Cells zu jedem Zeitschritt berücksichtigt. Eine
zeitaufwendige erneute Gittergenerierung oder eine Gitteradaption ist daher bei dieser Methode
nicht notwendig.



Im letzen Abschnitt dieser Arbeit werden die numerischen Simulationergebnisse der BCDG und
der EBCDG Methode für verschiedene elektrostatische und elektroquasistatische Feldprobleme
vorgestellt. Eine Konvergenzanalyse und eine Vergleichsanalyse für das Verifikationsbeispiel
eines Zylinderkondensators mit zwei dielektrischen Materialen zeigen die hohe Genauigkeit
der BCDG Methode auf. Abschließend werden die Simulationsergebnisse für das Anwendungs-
beispiel eines Wassertropfens auf einer Isolierstoffoberfläche vorgestellt, bei der eine künstliche
Tropfenbewegung betrachtet wird. Die Simulationsergebnisse belegen, dass mit der EBCDG
Methode selbst auf Gittern mit wenig Elementen eine sehr hohe Auflösung des elektrischen
Feldes und des Potentials erzielt werden kann.
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1 Introduction

1.1 Motivation

Numerical simulations in the field of electromagnetics are becoming ever more important in
academia and industry alike. On the one hand, this is made possible by the growing computing
power of modern computers. On the other hand, more efficient and more accurate numerical
methods have been developed in the last decades. Both developments enable the simulation of
increasingly complex electromagnetic phenomena. This includes field problems where materi-
als are either of complex shape or move over time. Such problems are the focus of this thesis. A
well-known example is water droplets oscillating on the surface of high voltage power transmis-
sion line insulators. The electric field on the insulation layer causes an oscillation of the water
droplets. This oscillation, in turn, triggers partial discharges which damage the insulation layer
material [49]. Other examples with materials of complex shape motivating this work include
biomedical applications where organs or blood vessels have to be simulated. When solving
such problems, most often standard numerical discretization methods such as the Finite Differ-
ence Time Domain (FDTD) method [92], the Finite Integration Technique (FIT) [91], the Finite
Element (FE) method [60] and the Discontinuous Galerkin (DG) [38] method are applied.
In most cases, these methods use meshes where the elements are fitted exactly to the material
geometry in the sense that the element interfaces conform to the material boundaries or material
interfaces. Such meshes are referred to as conforming meshes. However, the generation of
conforming meshes is computationally expensive, especially if very complex-shaped objects are
meshed. In the case of moving materials, where either a mesh adaption technique or a complete
remeshing has to be performed at each point in time, the use of conforming meshes is even more
computationally expensive.
In this work we propose a novel numerical method for field problems with either non-moving
or moving complex-shaped materials. To avoid the computationally costly steps of generating
conforming meshes and adapting these conforming meshes to moving materials, the proposed
numerical method uses a structured fixed Cartesian mesh. To obtain accurate simulation results
on such a static Cartesian mesh, an additional approach that accurately treats the material
boundaries or interfaces is applied to the elements at the material boundaries or interfaces.
Our numerical method is embedded in a standard DG framework, since this framework allows
for high order approximations and offers a huge flexibility when, as in our case, additional ap-
proaches need to be integrated into the standard framework. The numerical method is inspired
by other numerical methods such as the Partially Filled Cell (PFC) approach for FIT introduced in
[80], the locally conformal boundary FDTD algorithm in [23] or the fictitious domain methods
for the Nitsche’s method and the DG method presented in [16], [48] and [29]. These methods
also accurately approximate field problems with complex-shaped materials on simple grids by
using additional approaches that yield accurate approximations at the material boundaries or
interfaces. A more detailed literature review is presented in Chapter 3.
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The method presented in this work can potentially be applied to most electromagnetic (EM)
field problems. However, in this work we restricted ourselves to electro-quasistatic (EQS)
field problems and electrostatic (ES) field problems alike where either non-moving or mov-
ing complex-shaped materials are present. We first present the method in the context of EQS
or ES field problems with non-moving materials. We label this approach as boundary confor-
mal DG (BCDG) method. In a second step, we extend the BCDG method to electro-quasistatic
field problems with moving materials. This extension of the BCDG method is called EBCDG
method. The basic idea of our approach is illustrated in Figure 1.1 showing a water droplet

insulation
layer

water
droplet

air

cut-cell

Figure 1.1.: Cartesian grid and droplet model at two different time levels. The grey shaded cells
represent cut-cells intersected by the droplet boundary.

oscillating on the insulation layer of a high voltage insulator. The computational domain con-
sists of the water droplet, the insulation layer and air surrounding the droplet. The black lines
represent an exemplary Cartesian mesh that covers the computational domain. As illustrated
in Figure 1.1, the water droplet surface subdivides several elements into smaller sub-elements.
These sub-elements are denoted as cut-cells in the following and are considered as indepen-
dent elements in the mesh. If we assume a non-moving water droplet, the computational mesh
with the additional cut-cells will remain constant during the simulation. However, if the water
droplet oscillates over time, the water droplet takes different shapes at each point in time. Such
a deformation of the water droplet is illustrated in Figure 1.1 where the water droplet is shown
at two different points in time. Since the oscillation of the water droplet only affects a small
number of cut-cells, it is not necessary to generate a whole new mesh. Instead, the discretiza-
tion is modified locally by recalculating only the new cut-cells at each point in time while the
underlying Cartesian grid is kept fixed. Hence, this method combines the accuracy of high-order
approximations with the simple implementation and numerical efficiency of Cartesian grids.

1.2 Contributions

The main contribution of this thesis is the development of the BCDG method and its extension,
the EBCDG method. Both methods are based on a cut-cell approach to account for complex-
shaped material boundaries on structured Cartesian meshes. As the numerical examples pre-
sented in this work show, both methods enable a accurate simulation of field problems with
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complex-shaped materials that may even move over time. Similar ideas for the approximation
of such field problems have already been presented in several papers. Among the best-known
methods in this respect are the Partially Filled Cell (PFC) approach for FIT in [80], the lo-
cally conformal FDTD algorithm in [23] or the Finite Volume approach using cut-cells in [66].
Furthermore, for the DG method and the Nitsche’s method several approaches exist which op-
erate on a simple mesh and use additional approaches at the vicinity of material interfaces or
boundaries (see, e.g. [48], [29], [9], [57], [45]).
The BCDG method presented in this work is similar to the just mentioned methods in the sense
that we also consider a discretization where elements at the material boundaries or interfaces
are split into sub-elements. However, our method differs in many ways with respect to other
methods: First the BCDG method is applied to the electro-quasistatic and the electrostatic
approximation of the Maxwell’s equations in a three-dimensionsional setting. Second, a DG
method with the Local Discontinuous Galerkin (LDG) flux formulation is used. Third, specific
hierarchical higher order approximation functions up to order three are used. Fourth, the BCDG
method employs a different geometry representation and a different numerical integration com-
pared to other methods. Moreover, several supplementary methods to the BCDG method and
the EBCDG method are introduced in this work. The adaptive approximation order method
and the cell merging method enable to deal with geometrically small cut-cells, whereas the DG
hybridization has been developed to lower the number of degrees of freedom (DOF). All three
methods can be applied on top of the cut-cell discretization approach. Up to our knowledge they
are, with one exception, new in the literature on electromagnetic field problems with complex-
shaped materials. Only very recently, an approach similar to the cell merging method has been
proposed in [48]. However, at the time when [48] was published, our cell merging method had
already been developed and a paper describing this method had been accepted for publication
(see, e.g. [32]).
Finally, the extension of the BCDG method, the EBCDG method, represents a novel contribution
to the literature on electromagnetic field problems with moving materials. Up to our knowledge,
it is the first contribution in the field of electromagnetic which presents a cut-cell approach for
moving material distributions. The reader is referred to Chapter 3 for a more detailed literature
review. Furthermore, the reader is referred to [30], [32] and [31] were parts of this work were
published.

1.3 Outline

This section presents a short outline of this work. In Chapter 2, we introduce the theory of
electromagnetic fields. We show the full system of Maxwell’s equations and the constitutive
laws which completely describe the physical relations and interactions of electromagnetic fields.
Since the focus in this work is on the ES and EQS approximations of the Maxwell’s equations,
we introduce both approximations in greater detail and describe the respective conditions which
have to be satisfied to justify the application of these approximations. Furthermore, we show
that the field problem of a water droplet oscillating on a high voltage insulator satisfies the
classification conditions for EQS field problems. Finally, the definition of the energy and power
dissipation for both the EQS and ES approximation of the Maxwell’s equations are introduced.
In Chapter 3, the numerical framework of the BCDG and the extension of the BCDG (EBCDG)
method is presented in greater detail. Since the BCDG and the EBCDG method are embedded
in a DG method for standard grids, we begin by introducing the DG method in Section 3.2. We

3



derive the weak DG formulation for EQS and ES field problems and discuss the properties as
well as the advantages and disadvantages of the DG method.
In Section 3.3, we present the details of the BCDG approach. The BCDG method comprises
several supplementary approaches which are successively discussed. We start with the cut-cell
discretization approach, followed by the adaptive approximation order method, the cell merg-
ing method and the DG hybridization. Since the BCDG method is only applied to the spatial
derivatives of the EQS approximation of the Maxwell’s equation, the weak DG formulation still
contains the time derivative. The numerical methods that are used to discretize the time deriva-
tive of the weak DG formulation are discussed in Section 3.4. In Section 3.6, the extension
of the BCDG (EBCDG) method to field problems consisting of materials that move over time
is introduced. We show in detail how the changing material geometries are treated within the
EBCDG framework. In Chapter 4, various numerical simulation results of the BCDG method and
the EBCDG method are presented. In Section 4.1, the simulation results of the BCDG method
on a verification example of a cylindrical capacitor filled with two dielectric material layers are
shown. Several convergence studies and a comparison study with simulation results obtained
from the commercial software CST STUDIO SUITE®2012 [1] demonstrate the high accuracy
of the BCDG method when applied to the verification example. Moreover, the influence of the
adaptive approximation order method, the cell merging method and the DG hybridization on the
numerical results of the verification example are discussed. In Section 4.2, the numerical re-
sults of the EBCDG method are presented. The EBCDG method is applied to the example of an
oscillating water droplet. In Section 4.2.2, we show the potential and electric field distribution
of the EBCDG method for this example. In Section 4.2.3, we present a convergence study of
the EBCDG method with respect to the energy and power dissipation obtained with the EBCDG
method on the example. Chapter 5 summarizes the main features of the BCDG and the EBCDG
method and briefly comments on possible extensions.
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2 Electromagnetics
This chapter gives an overview on the theory of electromagnetic fields. We first introduce the
Maxwell’s equations and the associated constitutive laws which completely describe the physical
relation and interactions of the electric and magnetic fields. Then, two approximations of the
Maxwell’s equations are presented, namely the electrostatic (ES) and the electro-quasistatic (EQS)
approximation. We introduce both approximations because the numerical method developed in this
work is applied to ES as well as EQS field problems. In addition, the conditions which classify a
field problem as being ES or EQS are discussed. Finally, the energy and dissipation of ES and EQS
approximations are specified.

2.1 Maxwell’s equations and Constitutive equations

The famous Maxwell’s equations built the foundation of the theory of electromagnetics. They
completely describe electromagnetic interactions and are named after the famous Scottish physi-
cist and mathematician James Clerk Maxwell (1831-1879)[82]. The equations partly result
from the contributions of many famous scientists in the 18th and 19th century. However, it was
James Clerk Maxwell who first published the full form of the Maxwell’s equations in [58] in
1873. The modern form of the Maxwell’s equations goes back to Oliver Heaviside who simpli-
fied the original set of 20 equations of James Clerk Maxwell to four equations in 1884 by using
the mathematical discipline of vector calculus (see, e.g. [82] and [61]).
The Maxwell’s equations in differential form are given by [44]:

∇× E(x, t) = −
∂ B

∂ t
(x, t), (2.1)

∇×H(x, t) =
∂D(x, t)
∂ t

+ J(x, t), (2.2)

∇ ·D(x, t) = ρ(x, t), (2.3)

∇ ·B(x, t) = 0, (2.4)

where the vector x ∈ R3 represents the spatial parameter and the scalar t ∈ R represents the
time dependency. Furthermore, the electromagnetic quantities with the associated SI units are
denoted as:

E(x, t) electric field strength SI unit: V m−1

H(x, t) magnetic field strength SI unit: Am−1

D(x, t) electric displacement flux density SI unit: Cm−2 = Asm−2

B(x, t) magnetic flux density SI unit: T = Vsm−2

J(x, t) current density SI unit: Cm−2s−1 = Am−2

ρ(x, t) charge density SI unit: Cm−3 = Asm−3
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For the sake of simplicity, the spatial parameter x ∈ R3 and the time parameter t ∈ R are
generally omitted in the following chapters. Whenever the parameters are required, x and t are
explicitly stated.
Equation (2.1), (2.2), (2.3) and (2.4) are called Faraday’s law, Ampere’s law, Gauss’s law and
Gauss’s law of magnetic flux density, respectively. Faraday’s law and Ampere’s law of the Maxwell’s
equation indicate that the electric and the magnetic field are coupled. This is because Faraday’s
law includes the magnetic induction term and Ampere’s law includes the displacement current
term. Therefore, the curl of the electric field in Faraday’s law influences the magnetic field and,
vice versa, the curl of the magnetic field in Ampere’s law affects the electric field through the
magnetic induction and the displacement current terms [37].
The differential form of the Maxwell’s equation can be transformed to the integral form by
integrating (2.1) and (2.2) over a particular surface A in R3 and (2.3) and (2.4) over a particular
volume V in R3. The integral theorem of Stokes, given by

∫

A

∇× E · dA=

∫

∂ A

E · ds, (2.5)

and the integral theorem of Gauss, given by
∫

V

∇ ·D dV =

∫

∂ V

D · dA, (2.6)

are then applied to (2.1)-(2.4) (see, e.g. [37] ). The Maxwell’s equations in integral form read
[90]:

∫

∂ A

E · ds = −
∫

A

∂ B

∂ t
· dA, (2.7)

∫

∂ A

H · ds =

∫

A

�

∂D

∂ t
+ J(x, t)

�

· dA, (2.8)

∫

∂ V

D · dA =

∫

V

%dV , (2.9)

∫

∂ V

B · dA = 0. (2.10)

Note that the differential form and the integral form of the Maxwell’s equations are equiva-
lent. As mentioned before, both systems of equations (2.1)-(2.4) and (2.7)-(2.10) completely
describe all known electromagnetic field phenomena (see, e.g. [37]). The main differences
between the two forms emerge when they are applied to real-world examples (see, e.g. [37]).
For examples with materials of complex shape, the application of the differential form of the
Maxwell’s equations is often easier, because the differential form applies to each point in space
x ∈ R, whereas the integral form applies to certain volumes, surfaces and contours [37].
In this work, we focus on field problems with complex-shaped materials which cannot be solved
analytically. Therefore, we apply a particular grid-based numerical method which is solely de-
veloped for the differential form of the Maxwell’s equations.
Next, we would like to introduce another relation between the current and the charge density
which is used several times in this work. This relation is denoted as the charge conservation and
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is obtained by entering Gauss’s law into the divergence of Ampere’s law. The charge conservation
in integral and differential form1 is given by

∮

∂ V

J · dA+
d

d t

∫

∂ V

ρdV, ∇ ·J+
∂ ρ

∂ t
= 0, (2.11)

respectively. Next, the constitutive equations are introduced which specify the relation between
the just introduced field quantities D, E, B and H. The constitutive equations are defined by

D = ε0E+ P, (2.12)

B = µ0H+M, (2.13)

where the material constants ε0 = 8.854187 · 10−12As/V m and µ0 = 1.256 · 10−6Vs/Am repre-
sent the permittivity and permeability of vacuum, respectively [53]. The vectors P and M denote
the polarization density and the magnetization density of the given materials, respectively. The
permittivity and permeability of vacuum satisfy the following relation:

c = 1/
p
ε0µ0, (2.14)

where c = 2.997924 · 108ms−1 is the speed of light. The polarization and the magnetization
densities, P and M, are in general frequency, time, space and field dependent vector fields which
illustrate the macroscopic behaviour of the material [53].
The materials used in this work are isotropic, paramagnetic or diamagnetic materials which can
be considered as electrically and magnetically linear [37]. Furthermore, we assume a relaxation
time which is much smaller than the period of interest. In this specific case, the polarization
density P and the magnetization density M are linear functions of E and H, respectively. The
polarization density P is defined as P = ε0χeE, where χe is the dielectric susceptibility. A similar
relation holds for the magnetization density. Similarly, the magnetization density is given by
M = µ0χmH, where χm represents the magnetic susceptibility [53]. Since we restrict ourselves
to electrically and magnetically linear material, the constitutive equations (2.12)-(2.13) can be
written as

D = εE= ε0(1+χe)E= ε0εrE, (2.15)

B = µH= µ0(1+χm)H= µ0µrH, (2.16)

where ε and µ represent the permittivity and permeability of the material, respectively. The
relative permittivity and relative permeability of the material are given by εr = (1 + χe) and
µr = (1+χm), respectively.
Furthermore, we introduce the conduction constitutive equation which is also known as Ohm’s
law. Ohm’s law establishes the link between the conduction current density Jl and the electric
field E and is defined by

Jl = κE, (2.17)

where κ denotes the electric conductivity of the material (SI unit: Siemens/m=S/m) . The
current density is given by

J= Jl + Js + Jc, (2.18)
1 The differential form of the charge conservation is also referred to as continuity equation.

7



where Js and Jc are the source current density and the convection current density, respectively.
The conduction current density is induced by the electric field in materials which have electric
conductivities as shown in (2.17). The convection current density Jc = ρv is caused by free
charges which have the charge density ρ and move with a velocity v in a neutral background
such as vacuum [90]. The source current density is field independent and induced by current
sources [37].
Finally, we introduce the continuity conditions of the field quantities E, H, D and B at material
interfaces. If the field problem contains certain piecewise uniform materials, e.g. material a and
b, the continuity conditions at an exemplary material interface of a and b in R3 read:

n× (Ea − Eb) = 0, (2.19)

n · (Da −Db) = σ, (2.20)

n× (Ha −Hb) = JF , (2.21)

n · (Ba −Bb) = 0. (2.22)

The vector n represents the interface normal, JF a surface current density and σ a surface charge
density at the material interface. These conditions can be derived by applying the Maxwell’s
equations in (2.7)-(2.10) to a small domain very close to an interface of the materials a and b
[90].

2.2 Classification of Electromagnetic Field Problems

For many field problems, approximations of the full system of Maxwell’s equations in (2.1)-(2.4)
are sufficient to accurately describe particular field problems. Several different approximations
of the full system of Maxwell’s equations (2.1)-(2.4) have been developed, namely the elec-
trostatic, electro-quasistatic, magnetostatic, magneto-quasistatic, hybrid-quasistatic and stationary
current field approximation [50]. It can be shown that all of these approximations are justified
for certain application examples. In this work, we are concerned with examples which can be
sufficiently described using the electro-quasistatic (EQS) or the electrostatic (ES) approximation
of the Maxwell’s equations. Hence, only these two approximations of the Maxwell’s equations
are presented below. The reader is referred to literature for further information about the other
field approximations (see, e.g. [44], [90], [37], [50], [70] and [85]).

2.2.1 Electrostatic approximation of the Maxwell’s equations

The electrostatic (ES) approximation of the Maxwell’s equations is applied to real-word applica-
tions which are mainly characterized by stationary charge distributions [90]. The field quantities
of these application examples are considered as time invariant, implying that the time deriva-
tives of the Maxwell’s equations can be omitted. Furthermore, the current densities in ES field
application are assumed to be zero, i.e. Jc = 0, Js = 0 and Jl = κE= 0 [90].
In this case, the Maxwell’s equations decouple, i.e. the electric and magnetic field quantities
do not interact. As a result, the Maxwell’s equations split in two parts, the ES approximation
and the magnetostatic (MS) approximation. Therefore, they can be considered independently of
each other.
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The ES approximation of the Maxwell’s equations reads

∇× E = 0, (2.23)

∇ ·D = ρ. (2.24)

Since the right-hand side of (2.23) is set to zero, the approximation is regarded as irrotational2

and a scalar function can be introduced which simplifies the ES formulation [37]. In this case,
a scalar potential function φ(x) can be specified that satisfies

φ(x)−φ(xre f ) =

∫ xre f

x

−E · ds. (2.25)

To uniquely determine the potential function φ(x) - often referred to as potential of x - for all
points x ∈ R3, a reference point needs to be specified. In general, this specification depends on
the particular field problem. However, in many cases the reference point is set to infinity.
Note that the potential φ satisfies

E=−∇φ. (2.26)

Entering (2.26) in (2.24) simplifies the ES approximation in (2.23)-(2.24). The ES approxima-
tion is reduced to a single equation which is given by

∇ ·ε∇φ =−ρ. (2.27)

Equation (2.27) belongs to the class of linear second order partial differential equations (PDE).
It can be shown that a solution of (2.27) exists and is uniquely defined if the boundary conditions
are well-defined [37]. For this reason, equation (2.27) can also be considered as a boundary
value problem.
If field problems containing a single isotropic linear material are considered, the ES approxima-
tion can be written in the form

∇ ·∇φ =∆φ =−ρ/ε. (2.28)

Equation (2.28) is also referred to as Poisson’s equation. In the special case of ρ = 0, (2.28) is
denoted as Laplace’s equation.

2.2.2 Electro-quasistatic approximations of the Maxwell’s equations

As mentioned before, the full system of Maxwell’s equations completely describe all possible
relations and interactions of electric and magnetic fields [82]. This also holds true for the
most complex wave phenomena at high frequencies and on short time scales [37]. However,
if electromagnetic waves propagate through the field domain in a period of time that is much
shorter than the time of interest, the electromagnetic wave effects become irrelevant and can
be neglected [37]. In this case, quasistatic approximations of the Maxwell’s equations can be
applied to describe the electromagnetic behaviour of the field problem. Several quasistatic
2 Such an approximation is often also called eddy-current free.
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approximations exist. The most well-known approximations are the electro-quasistatic (EQS)
and the magneto-quasistatic (MQS) approximations. Furthermore, hybrid-quasistatic approxi-
mations34 exist, which consider both the capacitive and inductive effects of the EQS and MQS
approximations, respectively [50].
In this work, we are only concerned with the EQS approximation of the Maxwell’s equations.
Therefore, only the EQS approximation is presented in the following. Furthermore, we explain
why the EQS approximation is more suitable in some cases than the full system of Maxwell’s
equation and introduce the conditions field problems have to satisfy to justify the EQS approxi-
mation. Further information on the MQS and the hybrid-quasistatic approximation can be found
in [37], [24], [50] and [70].
The EQS approximation is obtained by neglecting the magnetic induction term ∂ B/∂ t = 0 in
Faraday’s law (2.1). Hence, the EQS approximation of the Maxwell’s equations in the differential
form is given by:

∇× E(x, t) = 0, (2.29)

∇×H(x, t) =
∂D(x, t)
∂ t

+ J(x, t), (2.30)

∇ ·D(x, t) = %(x, t), (2.31)

∇ ·B(x, t) = 0. (2.32)

By setting the term ∂ /∂ tB to zero, the electromagnetic wave effects of the Maxwell’s equations
are neglected. As a result, Faraday’s law implies that the electric field becomes irrotational.
Furthermore, equation (2.29) and (2.31) uniquely determine the electric field, if the charge
density is given [37]. However, this is not the case in general. If the charge density is not
known, it can be eliminated by applying the divergence to equation (2.31) which yields

∇ ·
∂

∂ t
D+∇ ·J= 0. (2.33)

In this case, (2.29) and (2.33) completely specify the electric field [37]. Having determined the
electric field, the magnetic field can be obtained from (2.30) and (2.32).
Note that EQS fields are sometimes described as fields that proceed from one point in time to
the next as if they are static [37]. This behaviour might result from the fact that the source
distribution in (2.29) and (2.31) at each point in time uniquely determines the whole electric
field distribution at the same point in time [37].
As in the ES case, the electric field is irrotational, which implies that a scalar potential function
φ(x) can be used to simplify the formulation. Hence, equation (2.29) can be written in the form

E=−∇φ. (2.34)

As shown in Section 2.2.1, to uniquely determine the potential function an additional reference
point has to be specified [37].

3 In [70], the hybrid-quasistatic approximation is referred to as Lorenz-Quasi-Static Formulation. It is also known
as Quasi-Static or Electro-Magneto-Quasi-Static regime (see, e.g.[4]) and [94]).

4 For interacting charged particles in free space, these approximations are also known as Darwin formulation
[70].
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In the following, we refer to (2.33)-(2.34) as mixed EQS formulation of the Maxwell’s equations.
Nonetheless, using equation (2.34) in (2.33), the mixed EQS mixed formulation can be reduced
to a single equation:

∇ ·
�

κ∇φ +
∂

∂ t
ε∇φ

�

= 0. (2.35)

For any given well-defined combination of initial and boundary conditions, equation (2.35)
uniquely determines the electric field [37]. Since in addition initial conditions are necessary to
uniquely determine the solution, the EQS approximation is regarded as a initial and boundary
value problem. Finally, note that equation (2.35) belongs to the class of linear parabolic second
order PDE [84].

2.2.2.1 Classification of electro-quasistatic field conditions

Slowly oscillating field problems raise the question whether to use an EQS approximation, a
MQS approximation, a hybrid-quasistatic approximation or the full system of Maxwell’s equa-
tions to describe the field problem. In this work we mainly focus on the EQS approximation of
the Maxwell’s equations. Therefore, we only introduce the conditions which have to be satisfied
to justify the EQS approximation of the Maxwell’s equations. However, before we derive the
conditions for the EQS approximations, we first introduce two well-known examples of charac-
teristic EQS and MQS field problems. In the first example, a pair of metal spheres which are
insulated from each other and excited by a voltage source are considered. This example is often
described as a typical EQS example [37]. The second, exemplary quasistatic example represents
a perfectly conducting metal loop which is driven by a current source. This example represents
a typical MQS field problem. However, most field problems are more complex than the just
mentioned characteristic EQS and MQS field problems. Nevertheless, field problems which are
classified as EQS and MQS generally appear to be similar to the just mentioned EQS or MQS
examples [37]. When dealing with a field problem which is very similar to the presented charac-
teristic field problems, it often helps to just lower the frequency of the driving source and check
the fields to determine whether it is EQS or MQS [37]. This procedure is sometimes referred
to as a rule of thumb [37]. If the frequency is lowered to almost zero and the magnetic field
vanishes, the field problem is very likely to be EQS. By contrast, if the electric field vanishes at
a very low frequency, the problem is very likely to be MQS.
However, to thoroughly classify field problems as being EQS or MQS, more detailed classification
conditions need to be considered. To derive these classification conditions, we have to consider
the error fields of the EQS approximation. In general, an EQS approximation is justified, if the
error caused by neglecting the magnetic induction term ∂ /∂ tB is small compared to the fields
of the field problem. Note that this error depends on the problem size length l of the field
problem. In this work, the length l of a field problem domain is defined by l =max li, where li
are the size lengths in each axis direction. Furthermore, the error fields also depend on several
characteristic times which we introduce next.
First, we present the electro-quasistatic charge relaxation time τe. It describes the relaxation
behaviour of free charges and is defined by (see, e.g. [37])

τe =
ε

κ
. (2.36)
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Second, the magneto-quasistatic diffusion time τm describes the time dependence of the current
density J and the magnetic field H and is given as

τm = µκl2. (2.37)

In contrast to the charge relaxation time τe, the magnetic diffusion time τm depends on the size
length l of the system. Further details can be found in [37].
The electromagnetic wave transit time τem is defined by

τem =
l

c
= l
p
µε=

p
τeτm. (2.38)

This characteristic time represents the time which an electromagnetic wave requires to prop-
agate at velocity c = 1/

p
εµ through a material domain with problem size length l [37] (see

Section 2.1). Note that the definition of the electromagnetic wave transit time implies that the
electromagnetic wave transit time τem always lies between the two characteristic times τe and
τm [37]. For that reason, either τe < τem < τm or τm < τem < τe is satisfied.
Finally, we introduce the characteristic time of the excitation τ which is the driving source of the
system. In this work we assume a sinusoidal excitation. The characteristic time of the sinusoidal
excitation is given by

τ=
1

ω
, (2.39)

where ω = 2π f is the angular frequency (SI unit: rad/s) and f the frequency (SI unit: Hz) of
the sinusoidal excitation.
The characteristic times and the angular frequency ω can now be used to transform the
Maxwell’s equations to a normalized formulation. This normalized formulation requires that
the spatial coordinates and the time are also transformed to a normalized form. The normalized
spatial coordinates and the normalized time are defined as follows:

x= (x , y, z)T = ( x̄ l, ȳ l, z̄ l)T , t = t̄/ω, (2.40)

where the bar denotes the normalized variables. Furthermore, the electric field E, the magnetic
field H and the charge density ρ are normalized using the following expressions:

E= Ere f Ē, H= Ere f

r

ε

µ
H̄, ρ =

εEre f

l
ρ̄, (2.41)

where Ere f represents a typical field intensity [37]. Entering the normalized entities and the
characteristic times into (2.36)- (2.39) yields the following normalized formulation of the full
system of the Maxwell’s equation [37]:

∇̄ × Ē = −ωτem
∂ H̄

∂ t̄
, (2.42)

∇̄ × H̄ = ωτem

�

1

ωτe
Ē+

∂ εĒ

∂ t̄

�

, (2.43)

∇̄ ·εĒ = ρ̄, (2.44)

∇̄ ·µH̄ = 0. (2.45)
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Note that the parametersωτm,ωτe andωτem in (2.42)-(2.45) are dimensionless and determine
the fields of the system [37]. Therefore, they are used to justify the EQS approximation of the
Maxwell’s equations. In the following we assume a field problem with specified uniform material
parameters and size length l. This implies that the field problem has the three dimensionless
parameters ωτem,ωτe and ωτem.
To demonstrate how the dimensionless parameters determine the field distributions, we present
the two possible orderings of the characteristic times. As mentioned previously, from the defini-
tion of the electromagnetic wave transit time τem it follows that we have either τe < τem < τm or
τm < τem < τe. Figure 2.1 illustrates these possible ordering of the reciprocal of the characteris-
tic times with respect to the angular frequency of the applied excitation. The case τm < τem < τe
is represented on the left-hand side of Figure 2.1, whereas the case τe < τem < τm is shown
on the right-hand side of Figure 2.1. The red and blue shaded domain on the left-hand and

1
τe

1
τem

1
τm

ωEQS

1
τm

1
τem

1
τe

ωMQS

Figure 2.1.: Ordering of reciprocal of characteristic times with respect to the angular frequency.
Source: [37]

right-hand side of Figure 2.1 illustrate the domains where a EQS and MQS approximation is jus-
tified [37]. Next, we explain how the dimensionless parameters ωτem,ωτe and ωτem are used
to justify the EQS approximation. For this purpose, we assume that the ordering of the char-
acteristic times of our field problem is equivalent to the ordering presented on left-hand side
of Figure 2.1, i.e. τm < τem < τe. If the dimensionless parameters ωτe and ωτem of our field
problem satisfy ωτe > 1 and ωτem < 1, equation (2.43) implies that the term ωτem∂ εĒ/∂ t̄
is the dominant term on the right-hand side of (2.43). This, in turn, implies that the magnetic
field H̄ is approximately of order ωτemĒ. Entering this approximation in Faraday’s law in (2.42)
yields a magnetic induction term which is approximately of order (ωτem)2Ē. Hence, we con-
clude that whenever (ωτem)2 << 1, the magnetic induction term on the right-hand side term
of (2.42) is very small compared to the field terms. Therefore, the error caused by neglecting
the magnetic induction term on the right-hand side term of (2.42) is also very small compared
to the field terms. Thus, the use of the EQS approximation is justified in this case.
Next, we consider the case where we have τm < τem < τe and ωτe < 1 and ωτem < 1.
Again, equation (2.43) implies that the dominant term on the right-hand side of (2.43) is the
term τem/τeĒ. Therefore, the magnetic field H̄ is of order τem/τeĒ and the magnetic induction
term on the right-hand side term of (2.42) is of order (ωτ2

em/τe)Ē. We conclude that the error
caused by neglecting magnetic induction term on the right-hand side term of (2.42) is very small
compared to the field terms, if (ωτ2

em/τe)<< 1. In this case, the use of the EQS approximation
is also justified.
The red shaded domain on the left-hand side of Figure 2.1 illustrates both above described
cases: either we have ωτe > 1 and ωτem < 1 with (ωτem)2 << 1 or ωτe < 1 and ωτem < 1
with (ωτ2

em/τ) << 1. Figure 2.1 furthermore shows that if the angular frequency is increased,
the EQS approximation is not longer justified. Increasing the angular frequency implies that
electromagnetic wave effects come into play. The terms (ωτem)2, (ωτ2

em/τ) and, therefore, the
right-hand side term in (2.42) can no longer be considered as negligible. In this case, the field
problem needs to be described by the full system of Maxwell’s equations [37].
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A similar argumentation holds for the MQS approximation which is illustrated on the right-
hand side of Figure 2.1. The blue shaded domain illustrates the angular frequency domain
which justifies the MQS approximation. Since we focus on the EQS approximation in this work,
the reader is referred to the literature for more information on the MQS classification conditions
(see, e.g. [37]).
So far, we have shown how the EQS approximation is justified for a fixed field problem size
length l. In the following, we discuss the influence of the size l on the EQS and MQS justi-
fication. As shown in (2.37) and (2.38), the electromagnetic wave transit time τem and the
magnetic diffusion time τm depend on the size length l. For that reason, the size length l also
plays a role whether an EQS or MQS approximation is justified. The influence of the length l on
the characteristic times is shown in Figure 2.2. In this figure the conditions of the dimensionless

ωτm = 1

ωτem = 1

log(ωτe)

log( l
l∗
)

ωτe = 1

EQS

MQS

Figure 2.2.: Ordering of the dimensionless parameters ωτem = 1, ωτe = 1, ωτm = 1 with
respect toωτe and the size length (l/l∗). Source: [37]

parameters, given by ωτem = 1, ωτe = 1 and ωτm = 1, are illustrated with respect to the size
length (l/l∗) and the dimensionless parameter ωτe. In Figure 2.2 the parameter l∗ denotes the
characteristic length which is defined by

l∗ = 1/κ
p

ε/µ. (2.46)

Furthermore, the conditions of the dimensionless parameters, ωτem = 1 and ωτm = 1 are
presented with respect to the length (l/l∗) and ωτe using a normalization to ωτe. Therefore,
ωτem = 1 and ωτm = 1 are written with respect to (l/l∗) and ωτe as follows (see, e.g. [37]):

ωτe = 1, (2.47)

ωτm = 1⇒ωτe = (l/l
∗)−2, (2.48)

ωτem⇒ωτe = (l/l
∗)−1. (2.49)

Note that Figure 2.2 shows the parameters with respect to (l/l∗) and ωτe using a log-log scale,
because it allows to plot the conditions ωτem = 1, ωτe = 1, ωτm = 1 as straight lines. As
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mentioned previously, the values of the dimensionless parameters determine if a EQS and MQS
approximation is justified. Recall that we have illustrated the two possible ordering of the recip-
rocal of the characteristic times in Figure 2.1. Both possible orderings presented in Figure 2.1
are also shown in Figure 2.2. For instance, the reciprocal ordering of the characteristic times
with respect to the angular frequencyω shown on the right-hand side of Figure 2.1 is equivalent
to the reciprocal ordering presented in Figure 2.2, if the parameter l satisfies log(l/l∗) > 1. By
contrast, the ordering of the reciprocals of the characteristic times shown on the left-hand side
of Figure 2.1 corresponds to the ordering illustrated in Figure 2.2, if log(l/l∗)< 1.
The red shaded and the blue shaded domains present the domains for which the EQS and
MQS approximation is justified. These domains correspond to the EQS and MQS approximation
domains presented in Figure 2.1. As mentioned previously, the EQS approximation is justified
if the characteristic times satisfy τm < τem < τe with either ωτe > 1 and ωτem < 1 or ωτe < 1
and ωτem < 1 and if the magnetic induction term on the right-hand side of (2.42) is of order
(ωτem)2 << 1 or (ωτ2

em)/τe << 1, respectively.
So far, we have restricted ourselves to field problems with uniform material parameters. How-
ever, most examples - including our water droplet example - consist of several materials do-
mains. Each material domain is characterized by its own set of characteristic times. This implies
that all characteristic times of the material domains have to be analysed. The EQS approxi-
mation is only justified, if the error caused by neglecting the magnetic induction term on the
right-hand side term of (2.42) is small for all characteristic times of the material domains [37].
Another issue arises when dealing with field problems consisting of several material domains.
Some field problems are dynamic in their behaviour, but can be split into subsystem which are
similar to characteristic EQS or MQS field problems. This implies that dominant subsystems
which mainly affect the electromagnetic behaviour have to be specified. Then, the classification
can be performed as shown above using the characteristic times and the size length of the
dominant subsystem.
Finally, we would like to emphasize that we could also check whether an EQS and MQS approx-
imation is justified by evaluating the electric and magnetic energy densities of the field problem.
This is due to the fact that the magnetic and electric energy densities take very low values or
vanish in EQS and MQS systems, respectively [37]. The energy densities are introduced in Sec-
tion 2.2.2.3. The reader is referred to Section 2.2.2.3 for more detailed information. However,
in this work we only consider the classification conditions with respect to the characteristic times
and the size length l.
In the next section, we will use the just introduced classification conditions to check whether
the example of the water droplet on the high voltage insulators justifies the use of the EQS
approximation of the Maxwell’s equations.

2.2.2.2 Justification of the EQS approximation for the water droplet application example

In Chapter 1 we have claimed that the example of water droplets oscillating on the insulation
layer of high voltage insulators can be described by the EQS approximation of the Maxwell’s
equations. In this section, we check whether the use of the EQS approximation of the Maxwell’s
equations is indeed justified for this example. For this purpose, we need to consider the char-
acteristic times τe, τm, τem and τ and determine the size length l of the field problem. Note
that we make use of experimental setup data obtained from experimental studies of the wa-
ter droplet phenomena on high voltage insulators [49]. The experimental setup proposed in
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[49] consists of a polymer insulation layer which contains two electrodes. A water droplet is
placed on the polymer insulation layer and a voltage excitation of 1kV is applied to the elec-
trodes at a working frequency of 50Hz. This implies that the angular frequency is given by
ω= 2π · 50= 314.16. The maximum size length of the setup is l = 0.1m.
In [49] distilled water droplets are placed on a polymer insulation layer which contains two
electrodes. In Table 2.1 the material parameters, the characteristic size length l∗ and the dimen-
sionless parameters ωτe, ωτem and ωτm are listed for each material. Table 2.1 shows that the

materials εr µr κ l∗ ωτe ωτem ωτm

distilled water 80.18 1.0 6.4E-6 3.7E+3 3.5E-2 9,4E-7 2.5E-11
air 1.0 1.0 3.0E-15 8.9E+11 9.3E+5 1.1E-7 1.2E-20
polymer 2.8 1.0 1.0E-14 4.4E+11 7.8E+5 1.7E-7 4.0E-20

Table 2.1.: Material parameters, characteristic times and sizes of an experimental setup proposed
in [49] for experimental studies of the water droplet phenomena on high voltage insulators

dimensionless parameters of the distilled water droplet, ωτe and ωτem, are both smaller than
one. Furthermore, the length log(l/l∗) is much smaller than one. This implies that the magnetic
induction term on the right-hand side of (2.42) is approximately of order (ωτ2

em)/τeĒ. Since
(ωτ2

em)/τe = ωτm and since the parameter of the distilled water satisfies τm ≈ 2.5E-11<< 1,
the magnetic induction term (ωτ2

em)/τeĒ is approximately of order 2.5E-11Ē. In contrast to
distilled water, the dimensionless parameters of both the polymer insulation layer and the air
satisfy ωτe > 1 and ωτem < 1. Therefore, the magnetic induction term on the right-hand
side of (2.42) is approximately of order (ωτem)2Ē. For the polymer insulation layer we have
(ωτem)2 ≈ 3.1E-14 and for the air we have (ωτem)2 ≈ 1.1E-14. Since the order of magnitude
of the magnetic induction term is very small for all materials, the error caused by neglect-
ing the magnetic induction term is negligible. To summarize, the necessary conditions for the
application of the EQS approximation are satisfied for our water droplet example.

2.2.2.3 Energy and power dissipation density for the EQS and ES approximation of the
Maxwell’s equations

In this section, we present the energy conservation, energy density and power dissipation den-
sity of the EQS and the ES approximation of the Maxwell’s equation. These quantities are
introduced since they are used in a verification study of the BCDG method and the EBCDG
method in Chapter 4. As we have mentioned in Section 2.1, we restrict ourselves in this work
to isotropic, paramagnetic or diamagnetic materials which are considered as electrically and
magnetically linear. Therefore, the energy conservation, energy and power dissipation density
are introduced with respect to electrically and magnetically linear materials.
The energy conservation provides the link between the storage of energy and the energy which
is transformed into other forms of energies such as heat or mechanical energy. The energy
conservation in integral and differential form is defined by

−
∮

∂ V

S · dA=
d

d t

∫

V

W dV +

∫

V

Pd dV, ∇ ·S+
∂

∂ t
W + Pd = 0, (2.50)

where W represents the energy density (SI unit: Joule/m3 = J/m3), Pd the power dissipation
density (SI unit: Wat t/m3 = W/m3) and V an arbitrary volume in R3 [37]. The vector S is
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denoted as Poynting vector and represents the energy flux density (SI unit: W/m2)(see, e.g. [85]
or [37]). The energy conservation can be derived from the Maxwell’s equations if (2.1) and
(2.4) are dot multiplied by E and H, respectively. Adding up the two resulting equations yields
equation (2.50). Generally speaking, equation (2.50) implies that the power that flows with
energy flux density S into a volume is equal to the rate of increase of the total energy and the
power dissipation density [37].
The Poynting vector S is defined by (see, e.g. [53])

S= E×H. (2.51)

Furthermore, for the EQS approximation the Poynting vector S can also be expressed as (see,
e.g. [37])

S= φ
�

J+
∂D

∂ t

�

. (2.52)

The energy density reads

W = we +wm, (2.53)

where we = 1/2 E ·D is the electric energy density and wm = 1/2 B ·H the magnetic energy density
for isotropic, electrically and magnetically linear materials. Furthermore, the power dissipation
density is given by

Pd = κE · E. (2.54)

For EQS field problems the electric energy density we can be considered as the dominant den-
sity. Moreover, the magnetic energy density wm is negligible in many cases. Note that for field
problems having uniform material parameters and size length l the magnetic and electric energy
density satisfy the following equation:

wm

we
= K

�

l

l∗

�2

, (2.55)

where l∗ is the characteristic length introduced in Section 2.2.2.1 and K is a parameter which is
of the order of unity [37]. As we have shown in Section 2.2.2.1, the EQS approximation is only
justified for

�

l
l∗

�

< 1. This implies that the magnetic energy density wm of EQS field problems is
smaller than the electric field density we. Furthermore, the magnetic energy density is negligible
if
�

l
l∗

�

<< 1.
For the ES field problems, the power dissipation density term vanishes, i.e. Pd = 0, since the
current density J is assumed to be equal to zero (see Section 2.2.1). Furthermore, since the
potential and electric field distributions are assumed to be static, the energy conservation is
obviously not applicable. However, for ES field problems and isotropic, electrically and magnet-
ically linear materials the energy density is defined by

W =
1

2
E ·D (2.56)

and the total energy of ES field problem is given as

Wt =
1

2

∫

V

E ·DdV, (2.57)

where V represents the ES field domain [90]. In Chapter 4 we use the energy and power dissi-
pation densities to assess the accuracy of the BCDG method with respect to the energy. Further-
more, the convergence study of the EBCDG method is presented with respect to the energy and
power dissipation densities.
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3 Numerical Methods for
Electro-quasistatic Field Problems

This chapter presents the numerical framework of this work. The first section of this chapter gives
a brief overview of known numerical methods which are related to the numerical method devel-
oped in this thesis. Then, Section 3.2 introduces the DG method in greater detail. We focus on
the Local DG (LDG) method which was first proposed in [20]. This DG method is applied only to
the spatial derivatives of the EQS approximation of the Maxwell’s equations. We will present the
variational formulation, the semi-discrete weak formulation, and the numerical flux formulation
of the DG method. Furthermore, important numerical properties and features such as stability,
consistency and convergence of the DG method are discussed. In Section 3.3 the boundary confor-
mal DG (BCDG) method is presented. The BCDG method is based on the standard DG framework
and enables an accurate approximation of complex-shaped materials on structured Cartesian grids.
Since the DG method is only applied to the spatial derivatives, the remaining time derivative in the
semi-discrete weak DG formulation has to be discretized separately1. In Section 3.4 the numeri-
cal methods that are applied to the time derivative of the resulting semi-discrete electro-quasistatic
Maxwell’s equations are shown. The last section of this chapter introduces an extension of the
boundary conformal DG (EBCDG) method to field problems including materials that move over
time.

3.1 Introduction and literature overview

Over the last decades, many methods have been introduced to solve the Maxwell’s equations
and their approximations such as the electro-quasistatic Maxwell’s equations. The most estab-
lished numerical methods are the so-called grid-based discretization methods which operate on
a partition of the computational domain into simpler elements2. The best-known grid-based
numerical discretization methods to solve the Maxwell’s equations are the Finite Difference Time
Domain (FDTD) methods, the Finite Integration Technique (FIT), the Finite Element (FE) method
and the Discontinuous Galerkin (DG) method.
The Finite Difference Time Domain (FDTD) method has first been published in [92] in 1966. As
the name indicates, the method is based on the finite difference (FD) scheme for the Maxwell’s
equations in time domain where the electric and the magnetic field component are solved using
a "leap-frog" scheme [85].
The Finite Integration Technique (FIT) was first introduced in 1977 in [91] and is a general
method to solve the full set of Maxwell’s equation in time and frequency domain. It can be
applied to all kind of electrodynamic problems as well as to other application problems, for
instance, in the field of accoustics or elastodynamics (see, e.g [89], [85]).

1 This separation of the spatial discretization and time discretization is referred to as method of lines [86].
2 For example, hexahedral or tetrahedral elements may be used.
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The FDTD method classically operates on structured Cartesian grids [23]. In general, the FIT
can be applied to a greater variety of grids. However, in many cases grids are used which
easily allow the generation of dual-orthogonal grids such as structured Cartesian grids [85].
To approximate complex-shaped materials on structured Cartesian grids several additional ap-
proaches for the FIT and the FDTD method have been developed. The oldest and simplest
additional approach that considers complex shaped materials on Cartesian meshes is the stair-
casing approximation. This approach considers grid elements intersected by a material interface
or material boundary as elements which are completely filled with one particular material. Due
to the inaccurate approximation of the material interfaces or material boundaries, it performs
poorly with regard to accuracy. Therefore, further methods have been developed to overcome
the accuracy shortcomings. Two of the most prominent examples are the Partially Filled Cell
(PFC) approach introduced in [80] for FIT and the locally conformal boundary FDTD algorithm
in [23]. Both techniques show a remarkable decrease in the approximation error on problems
with complex shaped materials.
The advantage of the FIT and the FDTD-type methods is their simplicity [85] which leads to
very efficient schemes in terms of computational time. However, both techniques are mainly
used with lowest order approximations. High order FDTD or FIT methods usually rely on a large
spatial stencil which makes the treatment of curved material boundaries extremely cumbersome
and numerically inefficient (see, e.g. [76]).
The Finite Element (FE) method has been first introduced in 1943 in [22]. In the 1950s the
method was further developed by [5] and [83] in the field of civil engineering where it was
used to solve mechanical applications. Since then, the method has become well established and
has been used successfully in many fields of engineering. In the field of electrical engineering
the first papers on this method were published in 1970 (see e.g. [72]). In contrast to the FIT and
the FDTD method, the FE method is based on a variational or weak formulation of the Maxwell’s
equations [60]. Furthermore, the solution quantities are approximated using polynomial shape
functions with a local support spanning the so-called local finite element spaces [12].
In contrast to the FIT and the FDTD methods, the FE method can be easily implemented with
high order approximations. Furthermore, curved conforming meshes can be applied to problems
including arbitrarily shaped materials which fit the material interface or boundary exactly. These
meshes substantially reduce the FE approximation error on arbitrarily shaped materials (see, e.g.
[13], [12]).
However, when considering moving material distributions, the FE method needs a remeshing
or mesh adaption scheme to adapt the conforming mesh to the material geometry in the sub-
sequent point in time. For certain applications the meshing can become a very challenging and
cumbersome task. For instance, certain geometries that are obtained from measurements or
complex Computer-Aided Design (CAD) models are difficult to mesh [57]. Another example are
biomedical applications which require the meshing of very complex objects such as organs or
blood vessels [57]. We refer to [75], [15] and [57] for further information on this topic.
To avoid the often computational costly meshing or mesh adaption techniques, we follow an al-
ternative approach. The main idea is to use higher order approximations on simple and efficient
hexahedral meshes and perform an additional approach to consider complex curved material
domains. This approach is inspired both by the above mentioned PFC approach for FIT [80]
and the locally conformal FDTD algorithm [23].
To implement this idea, it turns out that the DG method is well suited for the following reasons:
First, it is based on a variational or weak formulation of the Maxwell’s equations. Second, high
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order approximations can be easily implemented. Third, in contrast to the FE method, the DG
method offers a greater flexibility for additional approaches since no continuity constraints have
to be satisfied at the element interfaces. In the next section, we will present the DG method in
greater detail. For further information on the FDTD-type method, FIT and FE method, the
reader is referred to literature (see, e.g. [92], [89] [88], [13], [12], [85])

3.2 Discontinuous Galerkin Method

The Discontinuous Galerkin (DG) method has been introduced in [67] in 1973 where it was
applied to steady-state neutron transport equations. Since then it has been further developed
for various applications. Well-known DG methods are, among others, the DG method of Bassi
and Rebay in [8], the Local DG (LDG) method in [20] or the discontinuous hp method of
Baumann and Oden in [10]. In the field of electromagnetics, several DG methods have been
proposed for the full system of the Maxwell’s equations. A review of DG methods can be found
in [38], [21], [39] and [33].
Note that the DG methods have been presented in various ways. Several DG methods apply the
DG discretization only in time and a continuous finite element dicretization in space such as the
DG methods in [27], [46] and [56]. Therefore, we would like to point out that we present the
DG method the way it was introduced in [20]. In [20], the DG method is applied to the spatial
derivatives only and not to the time derivative of the equations.
The DG method which is presented below is characterized by the following features: First,
the method is based on a variation or weak formulation of the Maxwell’s equations. Second,
the solution quantities can be approximated using high order shape functions which span local
finite element spaces. Furthermore, the elements in the mesh are connected to each other
using numerical flux terms which act at the element interfaces as described in Section 3.2.3.
In contrast to the FE method, this implies that no continuity conditions have to be satisfied at
element interfaces [20]. The non-existing continuity constraints provide a greater flexibility
[18]. In our case, it naturally enables the implementation of additional approaches which are
embedded in the DG method such as the boundary conformal approach which is presented in
Section 3.3. However, the advantage of a greater flexibility comes at the cost of slightly higher
amount of degrees of freedom (DOF). A more detailed description of the properties, advantages
and drawbacks of the DG method is given in Section 3.2.6. Furthermore, a method to lower the
high number of DOF is presented in Section 3.3.5.
Finally, we would like to state that the DG method is best described as a combination of both
the well-known Finite Volume (FV) method and the FE method, because the DG method uses a
variational formulation similar to the FE method and, furthermore, numerical flux terms which
show remarkable similarities to the FV method [18].

3.2.1 Computational domain and approximation spaces

In the following we are given a computational domain Ω⊂ R3 with Lipschitz continuous bound-
aries Γ = ∂Ω. Furthermore, we assume to have a regular partition of the computational domain
into smaller domains which are usually referred to as elements. The partition of the computa-
tional domain into elements is called mesh and defined by

Ωh = {Ki}i=1,...,N , (3.1)
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where Ki represents an element and N the number of elements of the mesh. Furthermore, the
mesh has to satisfy the following properties (see e.g. [13], [93]):

• all elements are non-overlapping, i.e. int(Ki)∩ int(K j) = ; for i 6= j

• the elements completely cover the computational domain, i.e. Ω = ∪Ki∈Ωh
Ki

• the intersection of two elements, i.e. Ki ∩ K j for i 6= j, are either faces, edges or vertices of
both elements or the empty set.

The full definition of a Lipschitz continuous boundary can be found in [60]. The cone property
which is strongly linked to the Lipschitz boundary condition is introduced in [41]. We refer to
[40] for examples of very simple shaped domains with boundaries that are not considered as
Lipschitz boundaries.
Computational domains with Lipschitz continuous boundaries are advantageous for several rea-
sons: First, such domains can always be covered by a mesh [60]. Second, they allow for an
easier mathematical representation of the DG method [60]. Furthermore, the unit outward
normal vector n is well-defined at almost every point on Γ [60].
In most applications the elements of a mesh are geometrically simple shaped objects. The most
commonly used geometrical objects are quadrilateral, triangular, tetrahedral and hexahedral
elements [42]. The DG method presented in Section 3.3 is tailor-made for a partition of the
computational domain into hexahedral non-overlapping elements. Therefore, we restrict our-
selves to hexahedral elements. Nevertheless, the method can be modified easily so that it can
be applied to other types of element.
The boundary Γ of the computational domain Ω is furthermore partitioned into a boundary with
Neumann boundary conditions ΓN and into a boundary with Dirichlet boundary conditions ΓD.
Moreover, the following notations are used:

N = {ni} set of nodes, E = {ei} set of edges,
F = { fi} set of faces, Ωh= {Ki} mesh or computational domain.

Furthermore, let FN and FD denote the set of boundary faces with Neumann and Dirichlet
boundary conditions, respectively, and F0 the set of interior faces. The parameter h refers to
the minimum element length of the hexahedral elements and is referred to as grid length in the
following.

3.2.2 Semi-discrete weak formulation

In this section, we derive the semi-discrete weak DG formulation of the Maxwell’s equations.
We follow the standard Local Discontinuous Galerkin (LDG) approach for second order partial
differential equations (see e.g. [38] and [20]). Therefore, the DG method is applied to the
first-order formulation - also known as mixed formulation - of the Maxwell’s equations which
reads

1

ε
D(x, t) = −∇φ(x, t), (3.2)

∇ ·
�

∂

∂ t
D(x, t) +

κ(x)
ε(x)

D(x, t)
�

= 0, (3.3)
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∀t ∈ (0, T ) and ∀x ∈ Ω with the initial and boundary conditions

φ(x, t = 0) = φ0 ∀x in Ω, (3.4)

φ(x, t) = φD ∀x on ΓD, (3.5)

D(x, t) = 0 ∀x on ΓN . (3.6)

Note that we restrict ourselves to homogeneous Neumann boundary conditions in the following.
Next, we have to define the approximate solutions of the electric potential and the flux density,
denoted by φh(x, t) and Dh(x, t), which we need for the introduction of the semi-discrete weak
formulation. The approximate solutions, φh(x, t) and Dh(x, t), belong to the finite element
spaces

Vh = {υ ∈ L2(Ω) : υ|Ki
∈ S(Ki)∀Ki ∈ Ωh}, (3.7)

Σh = {τ ∈
�

L2(Ω)
�3

: τ|Ki
∈ U(Ki)∀Ki ∈ Ωh}, (3.8)

respectively, where S(Ki) := Pp(Ki) and U(Ki) := [Pp(Ki)]3 represent the local finite element
spaces. Both spaces are polynomial spaces defined on each Cartesian element Ki and at most of
order p ∈ N . Furthermore, the approximate solutions φh(x, t) and Dh(x, t) can be defined as the
direct sum over all piecewise p-th order polynomial approximations φh(x, t)|Ki∈Ωh

= φKi
h (x, t)

and Dh(x, t)|Ki∈Ωh
= DKi

h (x, t):

φh(x, t) =
N
⊕

i=1

φ
Ki
h (x, t), (3.9)

Dh(x, t) =
N
⊕

i=1

DKi
h (x, t), (3.10)

where the piecewise polynomial approximations on each Cartesian element Ki can be expressed
in terms of basis functions:

φ
Ki
h (x, t) =

N p
∑

i=1

φ i
h(t)υi(x), (3.11)

DKi
h (x, t) =

N p
∑

i=1

Di
h(t)τi(x). (3.12)

After having defined the approximate solutions φh and Dh, we can derive the weak DG formu-
lation of (3.2)-(3.3) to completely specify the DG method. Following [20] and [7], we multiply
(3.2)-(3.3) by the scalar and vector test functions denoted as υ and τ, respectively, and integrate
both equations over the computational domain Ωh. The DG method as introduced in [20] and
[7] is based on the Galerkin scheme. This implies that the space spanned by the test functions
and the space spanned by the basis functions are identical, i.e. υ ∈ Vh and τ ∈ Σh.
Next, the Gauss’ theorem is applied to (3.2)-(3.3). Furthermore, introducing the numerical flux
terms, φ̃h and D̃h, which uniquely define the values at the element interface, leads to the semi-
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discrete weak DG flux formulation:
Find Dh(x, t), φh(x, t) such that ∀Ki ∈ Ωh

∫

Ki

τ ·
1

ε
DhdV =

∫

Ki

∇ ·τφhdV −
∫

∂ Ki

φ̃hτ ·nds ∀τ ∈ Σh, (3.13)

∫

Ki

∇υ ·
�

∂

∂ t
Dh+

κ

ε
Dh

�

dV =

∫

∂ Ki

υ

�

∂

∂ t
D̃h+

κ

ε
D̃h

�

·nds ∀υ ∈ Vh, (3.14)

where n denotes the outward pointing interface normal. The numerical flux terms, φ̃h and D̃h,
are suitable approximations for the discontinuous solutions φh and Dh at the element interfaces
∂ Ki. The definition of the numerical flux terms D̃h and φ̃h is presented in the next section.

3.2.3 Numerical flux formulation

The numerical fluxes are discrete approximations to the traces at the element boundaries. They
are crucial as they connect the elements to each other and, therefore, directly affect consistency,
stability and accuracy of the method [38]. Clearly, they also have an impact on the sparsity and
symmetry of the resulting matrices [18]. In this work, the numerical flux formulation of the
Local Discontinuous Galerkin (LDG) method as introduced in [20] is considered. For the sake
of simplicity, we define the fluxes using the average and jump notation of [7] at the element
interfaces: Let fi ∈ F0 be a particular interior face which is shared by two adjacent elements,
here denoted as K+ and K−. The average and jump of a scalar function u with u± := u|∂ K± is
defined by

{u} =
1

2

�

u++ u−
�

on fi ∈ F0, (3.15)

¹uº = u+n++ u−n− on fi ∈ F0, (3.16)

For a vector function q with q± := q|∂ K± the average {q} and jump ¹qº are defined as

{q} =
1

2

�

q++ q−
�

on fi ∈ F0, (3.17)

¹qº = q+ ·n++ q− ·n− on fi ∈ F0, (3.18)

respectively, where n+ and n− refer to the associated outward pointing unit normals of K+ and
K−, respectively.
Using this notation, the numerical flux terms in (3.7)-(3.8) for all interior faces are defined as

φ̃h = {φh}+C12 ·¹φhº on fi ∈ F0, (3.19)

D̃h = {Dh} −C12¹Dhº− C11¹φhº on fi ∈ F0, (3.20)

where C11 ∈ R and C12 ∈ R3×3 are stabilization parameters which are set to a constant value on
each face. The stabilization parameters can be either interpreted as penalization terms of the
jumps or as damping terms that stabilize the DG method [18].
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Since the boundary conditions are weakly imposed by the numerical fluxes, the numerical flux
formulation on boundary faces with Dirichlet boundary conditions reads

φ̃h = φD on fi ∈ FD, (3.21)

D̃h = D+h − C11

�

φ+h −φD

�

n on fi ∈ FD. (3.22)

On the boundary faces with Neumann boundary conditions we have

φ̃h = φ+h on fi ∈ FN , (3.23)

D̃h = DN on fi ∈ FN . (3.24)

In the next section, we will introduce the weak DG formulation for the EQS and the ES approx-
imation in bilinear form as well as in matrix formulation. We introduce both the bilinear form
and the matrix formulation, since they enable us to write the weak DG formulation in a more
compact form.

3.2.4 The mixed EQS setting - Bilinear form and matrix formulation

Summing (3.13)-(3.14) up over all elements and using the numerical fluxes as introduced
above, the weak DG formulation can be written as (see [17]):
Find Dh(x, t), φh(x, t) such that

a
�

1

ε
Dh,τ

�

= b
�

φh,τ
�

+ f (τ) ∀τ ∈ Σh, (3.25)

−b
�

υ, (
∂

∂ t
Dh+

κ

ε
Dh)
�

+ s
�

υ, (
∂

∂ t
φh+

κ

ε
φh)
�

= g(υ) ∀υ ∈ Vh, (3.26)

with

a(D,τ) :=

∫

Ωh

τ ·DdV , (3.27)

b(φ,τ) :=
∑

Ki∈Ωh

∫

Ki

∇ ·τφdV −
∫

F0

�

{φ}+C12 ·¹φº
�

¹τºdA, (3.28)

s(υ,φ) :=

∫

F0

C11¹φº ·¹υºdA+

∫

FD

C11υφdA, (3.29)

f (τ) :=

∫

FD

φDτ ·ndA, (3.30)

g(υ) :=

∫

FD

C11

�

∂

∂ t
φD +

κ

ε
φD

�

υdA, (3.31)

Using the Gauss theorem the term b(φ,τ) can also be written as (see e.g. [7])

b(φ,τ) =−
∑

Ki∈Ωh

∫

Ki

∇φ ·τdV +

∫

F0

�

{τ} −C12 ·¹τº
�

¹φºdA+

∫

FD

φτ ·ndA. (3.32)
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Moreover, expressing the approximate solutions φh and Dh by means of the basis functions υ
and τ yields the following matrix representation:

MI1/εd = Gφ + f, (3.33)

−
�

GT d

d t
d+GT Iκ/εd

�

+
�

S
d

d t
φ + SIκ/εφ

�

= g, (3.34)

where d and φ denote the vectors of the potential and the flux density degrees of freedom,
respectively. The terms M, G and S represent the mass, gradient and stability term matrices,
respectively, and are given by

Mi j :=

∫

Ωh

τi ·τ jdV , (3.35)

Gi j :=
∑

Ki∈Ωh

∫

Ki

∇ ·τiυ jdV −
∫

F0

�

{υ j}+C12 ·¹υ jº
�

¹τiºdA, (3.36)

Si j :=

∫

F0

C11¹υ jº¹υiºdA+

∫

FD

C11υ jτi ·ndA, (3.37)

Finally, we introduce the vectors f and g which contain all boundary condition terms. These
vectors are defined as follows:

fi :=

∫

FD

φDτi ·ndA, (3.38)

gi :=

∫

FD

C11

�

∂

∂ t
φD +

κ

ε
φD

�

υidA. (3.39)

The terms I1/ε and Iκ/ε are diagonal matrices with the cell-wise constant material parameters
on the diagonal.
The LDG flux formulation has the advantage that the numerical flux term of the electric po-
tential is free of terms which depend on the electric flux density. This implies that the mass
operator M in the DG formulation is block-diagonal and can easily be inverted. Therefore, it
is straightforward to apply the Schur complement reduction in (3.33)-(3.34) which yields the
semi-discrete system of equations

�

−GT IεM
−1G+ S

� d

d t
φ =

�

GT IκM
−1G− SIκ/ε

�

φ + gB. (3.40)

where gB =M−1Iεf+ g denotes the vector of boundary conditions. Note that instead of solving
(3.33)-(3.34), we solve (3.40) for the potential solution φ. Furthermore, note that the flux
density solution d is eliminated from (3.40). However, it can be easily obtained by plugging the
potential solution φ into (3.33).

3.2.5 The mixed ES setting - Bilinear form and matrix formulation

In Section 3.2.4, we have introduced the bilinear form and matrix formulation of the discrete
weak DG formulation for the EQS approximation of the Maxwell’s equation. Note that the
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discrete weak DG formulation of the ES approximation of the Maxwell’s equation can be derived
in exactly the same way. For this reason, we only present the bilinear form and the matrix
formulation of the ES approximation without deriving them explicitly. The reader is referred
to Section 3.2.2, 3.2.3 and 3.2.4 or [17] for details on the derivation of the discrete weak DG
formulation of the ES approximation.
The bilinear form of discrete weak DG formulation for the ES approximation of the Maxwell’s
equations reads (see, e.g. [17]):
Find Dh(x, t), φh(x, t) such that

a
�

1

ε
Dh,τ

�

= b
�

φh,τ
�

+ f (τ) ∀τ ∈ Σh, (3.41)

−b
�

υ,Dh
�

+ s
�

υ,φh
�

= g(υ) ∀υ ∈ Vh, (3.42)

with a(D,τ), b(φ,τ), s(υ,φ) and f (τ) defined as shown in (3.27), (3.28), (3.29) and (3.30),
respectively. Note that the linear form g(υ) is defined differently for the ES approximation. It is
given by

g(υ) := −
∫

ΩH

ρυdV +

∫

FD

C11φDυ ·ndA. (3.43)

The matrix formulation of the ES approximation is written as follows:

MI1/εd = Gφ + f, (3.44)

−GT d+ Sφ = g, (3.45)

where the matrices M, G and S and the vector f are defined as presented in (3.35), (3.36),
(3.37) and (3.38), respectively. However, the vector g is given as

gi := −
∫

Ωh

υiρdV +

∫

FD

C11φDυidA. (3.46)

As for the EQS approximation, a Schur complement reduction can be applied to (3.44)-(3.45).
Therefore, the matrix formulation in (3.44)-(3.45) reduces to

�

−GT IεM
−1G+ S

�

φ = gB. (3.47)

where gB is given by gB =M−1Iεf+g. The potential solution φ is obtained by solving (3.47) for
φ. Note that the solvers which are applied to the matrix formulation in (3.47) will be presented
in Section 3.5. The flux density solution d can be evaluated by entering the potential solution
φ in (3.44).

3.2.6 Numerical properties of the Discontinuous Galerkin method

This section focuses on the main properties of the Discontinuous Galerkin method. The most
important properties of numerical methods such as the DG method are stability, consistency,
conservativeness and convergence [38]. We will show that all four properties are satisfied for
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the EQS approximation of the Maxwell’s equations. Note that the properties are also satisfied
for the ES approximations. However, since this was shown in many papers of other authors,
we’ve decided to focus on the EQS approximation of the Maxwell’s equations in this section. The
reader is referred to the literature for further details on the properties for the EQS approximation
of the Maxwell’s equations (see, e.g. [18], [17], [7]).
As presented in [18] the consistency of the DG method applied to the EQS approximation of the
Maxwell’s equations can be shown by replacing the approximate solutions φh and Dh in (3.13)-
(3.14) by the exact solutions φ and D of (3.2)-(3.3). The method is consistent if the numerical
fluxes satisfy φ̃ = φ and D̃ = D, which is the case for the LDG numerical flux formulation as
{φ}= φ, {D}= D, ¹φº= 0 and ¹Dº= 0.
Furthermore, it can be shown that the method is local conservative if the vector flux D̃h is
single-valued. And indeed, this is the case for the chosen LDG flux formulation (see, e.g. [7]).
Therefore, if the scalar test function υ in (3.14) is set to 1, the charge conservation law for any
given union of elements S = ∪i=1,..., jKi in (2.11) holds

∫

∂ S

�

∂

∂ t
D̃h+

κ

ε
D̃h

�

·ndA= 0. (3.48)

Next, we will present the stability proof for the DG method where we follow [18] and restrict
ourselves to homogeneous Dirichlet boundary conditions. The stability proof for inhomoge-
neous Dirichlet boundary conditions is an extension of the proof shown below (see, e.g. [20] or
[17]).
Before we can show stability of the numerical scheme, the stability result of the mixed formu-
lation in (3.2)-(3.3) has to be derived. Therefore, we first multiply (3.2)-(3.3) by the exact
solution D and φ and integrate over the computational domain. This yields

∫

Ω

1

ε
D ·DdV =−

∫

Ω

∇φ ·DdV , (3.49)

and

−
∫

Ω

(
∂

∂ t
D+

κ

ε
D) ·∇φdV = 0. (3.50)

Multiplying (3.50) by ε

κ
and adding (3.49) to (3.50) yields

−
∫

Ω

ε

κ

∂

∂ t
D ·∇φdV +

∫

Ω

1

ε
D ·DdV = 0, (3.51)

what can be expressed as

−
∫

Ω

ε
∂

∂ t
D ·∇φdV +

∫

Ω

κ

ε
D ·DdV = 0. (3.52)

Since we have −∇φ = 1
ε
D, the stability result of the mixed formulation in (3.2)-(3.3) is given

by

d

d t

∫

Ω

1

2
|D|2dV +

∫

Ω

κ

ε
|D|2dV = 0. (3.53)
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To show stability of the DG approach we follow a similar procedure applied to the weak DG
formulation in (3.13)-(3.14). Summing (3.13) and (3.14) up over all elements and entering
τ = Dh into (3.13) results in

∫

Ωh

Dh ·
1

ε
DhdV =

∑

Ki∈Ωh

 

∫

Ki

∇ ·DhφhdV −
∫

∂ Ki

φ̃hDh ·ndA

!

. (3.54)

Furthermore, using υ= φh in (3.14) yields

∑

Ki∈Ωh

 

−
∫

Ki

�

∇φh ·
∂

∂ t
Dh+∇φh ·

κ

ε
Dh

�

dV +

∫

∂ Ki

�

φh
∂

∂ t
D̃h ·n+φh

κ

ε
D̃h ·n

�

dA

!

= 0.(3.55)

Multiplying (3.55) by ε

κ
and summing (3.54) and (3.55), we obtain

∑

Ki∈Ωh

 

−
∫

Ki

∇φh ·
ε

κ

∂

∂ t
DhdV +

∫

∂ Ki

φh
ε

κ

∂

∂ t
D̃h ·ndA

!

+

∫

Ωh

Dh ·
1

ε
DhdV +Θh = 0, (3.56)

where

Θh =
∑

Ki∈Ωh

 

−
∫

Ki

�

∇ ·Dhφh+∇φh ·Dh
�

dV +

∫

∂ Ki

�

φ̃hDh ·n+φhD̃h ·n
�

dA

!

(3.57)

=
∑

Ki∈Ωh

 

∫

Ki

−∇ ·
�

Dhφh
�

dV +

∫

∂ Ki

�

φ̃hDh+φhD̃h

�

·ndA

!

=
∑

Ki∈Ωh

∫

∂ Ki

�

−Dhφh+ φ̃hDh+φhD̃h

�

·ndA.

Remember that the approximate solution Dh is defined as Dh =
∑

Ki

∑

i Di
h(t)τi. Since the

approximation functions τ do not depend on the time variable, equation (3.54) is also satisfied
for the time derivative ∂

∂ t
Dh. Therefore, we have

∫

Ωh

Dh ·
1

ε

∂

∂ t
DhdV =

∑

Ki∈Ωh

 

∫

Ki

∇ ·
∂

∂ t
DhφhdV −

∫

∂ Ki

φ̃h
∂

∂ t
Dh ·ndA

!

(3.58)

=
∑

Ki∈Ωh

 

−
∫

Ki

∇φh ·
∂

∂ t
DhdV +

∫

∂ Ki

φh
∂

∂ t
D̃h ·ndA

!

−Ξh

with

Ξh =
∑

Ki∈Ωh

∫

∂ Ki

�

−φh
∂

∂ t
Dh+φh

∂

∂ t
D̃h+ φ̃h

∂

∂ t
Dh

�

·ndA. (3.59)

Using (3.58) and the relation
∫

Ωh
Dh · 1

ε

∂

∂ t
DhdV = d

d t

∫

Ωh

1
2ε
|Dh|2dV , equation (3.56) can be writ-

ten as

d

d t

∫

Ωh

1

2
|Dh|2dV +

∫

Ωh

Dh ·
κ

ε
DhdV +κΘh+ εΞh = 0. (3.60)
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To show stability of the method, it essentially remains to show that the terms ΘH and ΞH are
non-negative.
Using the jump and average notation of Section 3.2.3, the terms Θh and ΞH can be written as

Θh =
∑

Ki

∫

∂ Ki

�

−Dhφh+ φ̃hDh+φhD̃h

�

·ndA (3.61)

=

∫

F

¹−Dhφh+ φ̃hDh+φhD̃hºdA

=

∫

F0

¹−Dhφhº+ φ̃h¹Dhº+¹φhº · D̃hdA+

∫

∂Ωh

�

−Dhφh+ φ̃hDh+φhD̃h

�

·ndA

=

∫

F0

��

φ̃h− {φh}
�

¹Dhº+¹φhº ·
�

D̃h− {Dh}
��

dA+

∫

∂Ωh

�

φh

�

D̃h−Dh

�

+ φ̃hDh

�

·ndA,

Ξh =
∑

Ki∈Ωh

∫

∂ Ki

�

−φh
∂

∂ t
Dh+φh

∂

∂ t
D̃h+ φ̃h

∂

∂ t
Dh

�

·ndA (3.62)

=

∫

F

¹−φh
∂

∂ t
Dh+φh

∂

∂ t
D̃h+ φ̃h

∂

∂ t
DhºdA

=

∫

F0

¹−
∂

∂ t
Dhφhº+ φ̃h¹

∂

∂ t
Dhº+¹φhº ·

∂

∂ t
D̃hdA+

∫

∂Ωh

�

−
∂

∂ t
Dhφh+ φ̃h

∂

∂ t
Dh+φh

∂

∂ t
D̃h

�

·ndA

=

∫

F0

�

�

φ̃h− {φh}
�

¹

∂

∂ t
Dhº+¹φhº ·

�

∂

∂ t
D̃h− {

∂

∂ t
Dh}
��

dA+

∫

∂Ωh

�

φh

�

∂

∂ t
D̃h−

∂

∂ t
Dh

�

+ φ̃h
∂

∂ t
Dh

�

·ndA.

If the numerical fluxes of the LDG flux formulation introduced in Section 3.2.3,

φ̃h = {φh}+C12 ·¹φhº, (3.63)

D̃h = {Dh} −C12¹Dhº− C11¹φhº, (3.64)

are entered in (3.61) and (3.62), we finally obtain the desired expression for Θh and Ξh:

Θh =
∑

f ∈F0

∫

f

−C11¹φhº
2dA≥ 0+

∫

FD

−C11φ
2
h dA≥ 0, (3.65)

Ξh =
∑

f ∈F0

∫

f

−C11¹
∂

∂ t
φhº ·¹φhºdA+

∫

FD

−C11φh
∂

∂ t
φhdA≥ 0. (3.66)

This inequality holds if the parameter C11 is set to a negative value (see [18]). Therefore, in
the following we assume that C11 < 0 is always satisfied. Finally, entering (3.65) and (3.66) in
(3.60) shows stability of the DG method.
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The existence and uniqueness of the DG method is directly linked to the compatibility condition
which reads (see, e.g. [18] and [17]):

φh ∈ Vh :

∫

Ki

∇φhτdV = 0 ∀τ ∈ Σh then ∇φh = 0. (3.67)

In [17] it was shown that (3.67) holds if the local finite element spaces S(Ki) and U(Ki) for each
element Ki ∈ Ωh satisfy

∇S(Ki)⊂ U(Ki), (3.68)

which is obviously true in our case since the local finite element spaces are spanned by polyno-
mial functions (see Section 3.2.7).
To ensure existence and uniqueness of the approximate solutions in (3.13)-(3.14), it is sufficient
to show that the solution of (3.13)-(3.14) for homogeneous initial and boundary conditions is
the trivial solution. Using equation (3.60), (3.65) and (3.66) we get

d

d t

∫

Ωh

1

2
|Dh|2dV +

∫

Ωh

Dh ·
κ

ε
DhdV +κΘh+ εΞh = 0. (3.69)

Since we have C11 < 0, we can directly infer that (3.69) is satisfied if Dh = 0, ¹φhº = 0 and
φh = 0 on FD (see, e.g. [18]). Hence, using (3.69), equation (3.25) can be written as

∑

Ki∈Ωh

∫

Ki

∇φ ·τdV = 0, ∀τ ∈ Σh. (3.70)

Therefore, the existence and uniqueness of the approximate solution φh follows directly from
the compatibility condition (3.67) which is satisfied for our choice of local finite element spaces.
The convergence property of the DG method directly follows from the LAX equivalence theorem
[51].

We have just shown that the four most important properties for numerical methods are satisfied
for the DG method with a LDG flux formulation. We also have that the mass matrix M is
block diagonal, which makes possible the application of the Schur complement in (3.33)-(3.34).
Based on these observations, we decided to use the DG method with the LDG formulation as
introduced in [20].
Moreover, in [17] and [20] the L2-error estimate of the LDG method for the electrostatic ap-
proximation is derived and given by:

 

∫

Ωh

|φ −φh|2dV

!1/2

≤ Chp+1 and

 

∫

Ωh

|D−Dh|2dV +Θ2
h

!1/2

≤ Chp, (3.71)

if parameter C11 is set to C11 = −c/h with c ∈ R+ and if the order which is required to fit the
smoothness of the exact solutions D and φ is greater or equal than the approximation order p
[17]. Note that the parameter C ∈ R depends on the regularity of φ and Ω. Our numerical
results presented in Section 4.1 show the optimal convergence rates p and p+ 1. This is in line
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with the results other authors have reported regarding the optimal convergence rates (see, e.g
[34]).

The fact that the DG method doesn’t have to satisfy continuity conditions at the element inter-
faces has several key advantages. First, it makes the method highly parallelizable since the mass
matrix is block diagonal and, therefore, easily invertible [38]. Second, the absence of conti-
nuity constraints implies that mesh refinement, mesh unrefinement and also irregular meshes
with hanging nodes can be handled very easily [38]. In addition, the approximation order of
the polynomials may differ across elements which makes the method highly attractive for hp-
adaptivity [38]. Finally, the possibility to design problem depending fluxes allows for more
flexibility and is a huge advantage compared to the standard finite element method.

The most notable drawback of the DG method is the larger number of DOF compared to the
FEM method. In general, the higher number of DOF implies higher computational costs [38].
For this reason, the FE method might be more efficient for problems where the advantages of
the DG method do not play a crucial role. This might be the case for EQS field problems with
simple shaped non-moving material boundaries where the meshing of the geometry is not of
major importance. In such cases, the use of the DG method might be less appealing. However,
the matrices of the DG method are generally more sparse than the matrices of the FE method
(see, e.g. [38]). In some cases, this might be advantageous.

3.2.7 Shape functions

To complete the definition of the DG method used in this work, we have to introduce the shape
functions which span the local finite element spaces S(Ki) and U(Ki) of the finite element spaces
Vh and Σh, respectively, introduced in (3.7)-(3.12). As already mentioned, the local finite ele-
ment spaces S(Ki) and U(Ki) are polynomial spaces of order at most p. By definition, these
spaces satisfy condition (3.68) which ensures existence and uniqueness of the solution. How-
ever, this implies that the shape functions need to be polynomial functions of order p at most.
Since the framework of the DG method is based on numerical fluxes, the shape functions span-
ning the finite element spaces Vh and Σh do not have to satisfy further conditions. In particular,
they do not even have to satisfy continuity conditions at the element interface, in contrast to
shape functions for the FE method. In the following, we present our choice of shape functions
and show that these shape functions span polynomial spaces.

In this work, the high-order hierarchical shape functions introduced in [93] are used to span the
local finite element spaces S(Ki) and U(Ki). In [93] these shape functions are denoted as H1-
conforming and H(div )-conforming shape functions for hexahedral elements. Since these shape
functions were originally built as shape functions for the FE method, the name indicates the H1

and H(div )-conforming properties of the shape functions within a standard FE framework. As
we use the shape function within our DG method, these conforming properties are not satisfied.
Although these properties are not required for the DG method, they play a role if the DG hy-
bridization introduced in Section 3.3.5 is applied to the DG method. Therefore, we will briefly
introduce these properties at the end of this section.

Next, we introduce both the H1-conforming and H(div )-conforming shape functions for hexahe-
dral elements. The shape functions which are referred to as H1-conforming shape functions span
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the local finite element spaces S(Ki) of Vh for each element Ki ∈ Ωh. The local finite element
space S(Ki) on Ki ∈ Ωh can be written as follows:

S(Ki) = Sn⊕

 

12
⊕

i=1

S
pei
ei

!

⊕

 

6
⊕

i=1

S
p fi
fi

!

⊕ Spc
c , (3.72)

where Sn := span(φv
i : i = 1, ..., 8) denotes the span of the vertex-based functions, S

pei
ei the

span of the edge-based functions associated to edge ei, S
p fi
fi

the span of the face-based functions
associated to face fi and Spc

c the span of cell based functions [93]. Of course, this implies that
the space S(Ki) contains vertex-based shape functions, edge-based shape functions, face-based
shape functions and cell-based shape functions. These shape functions are associated to each
node, edge and face of the hexahedral element Ki as well as to the whole element. The whole
element is denoted as cell in the following. Furthermore, all shape functions spanning S(Ki) are
linearly independent [93]. Furthermore, within a standard FE method they can be applied using
arbitrary polynomial approximation orders for each shape function associated to the edges pei

,
faces p fi or cells pc (see [93]).
Moreover, in [93] it is shown that the shape functions of S(Ki) form a basis of the tensor-
product polynomial space if uniform approximation orders p = pei

= p fi = pc are used. The
tensor product polynomial space Qp,p,p is given by

Qp,p,p(Ki) = {q1 · q2 · q3|q j ∈ Pp(Ki), j = 1, 2,3}. (3.73)

The H(div)-conforming shape functions span the local finite element spaces U(Ki) of Σh for each
element Ki ∈ Ωh. The local finite element space U(Ki) of Σh on Ki ∈ Ωh is defined by

Up(Ki) :=

 

6
⊕

i=1

U
p fi
fi

!

⊕Upc
c , (3.74)

where U
p fi
fi

and Upc
c denote the span of the face- and cell-based shape functions, respectively. In

contrast to S(Ki), the local finite element space U(Ki) contains only shape functions which are
associated to each face and the cell. The shape functions are also linearly independent and can
also be applied within a standard FE framework using arbitrary polynomial orders, p fi and pc,
on each face and cell. Moreover, the H(div)-conforming shape functions span the space

Qp+1,p,p ×Qp,p+1,p ×Qp,p,p+1 =







Qp+1,p,p

Qp,p+1,p

Qp,p,p+1






(3.75)

for uniform polynomial approximation orders p = p fi = pc [93]. Entering (3.73) and (3.75) into
(3.68) shows that condition (3.68) is satisfied and, therefore, the existence and uniqueness of
the solution guaranteed. We refer to [93] for more detailed information on the shape functions.
The complete definition of the shape functions can also be found in Appendix 5.2.
Note that the shape functions introduced above are defined on a hexahedral reference element
given as K̂ := H[0,1]3. To obtain the shape functions which are defined on each element
Ki ∈ Ωh, the reference element shape functions need to be mapped to each element Ki ∈ Ωh.
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The affine map which is used to map the shape functions to each element Ki is defined as
follows:
For every Ki ∈ Ωh a map FKi

: K̂ −→ Ki exists with

FKi
(x̂) = BKi

x̂+ bKi
, (3.76)

where BKi
is a non-singular diagonal 3×3 matrix and bKi

is a vector and x̂ satisfies x̂ ∈ K̂ , [60].
The Jacobian matrix of the mapping FKi

is given as

JKi
:= det(dFKi

) with dFKi
= (
∂ (FKi

)l
∂ x̂m

)1≤l,m≤3. (3.77)

Furthermore, the unit outward normal n to Ki is defined using the unit outward normal n̂ to K̂
for x̂ ∈ ∂ K̂ [60]:

n(FKi
(x̂)) =

dF−T
Ki
(n̂)

|dF−T
Ki
(n̂)|
(x̂). (3.78)

Using the affine map, a transformation of a scalar shape function p ∈ U(Ki) can be expressed as

p(FKi
(x̂)) = p̂(x̂), (3.79)

where p̂ ∈ U(K̂) is the corresponding shape function on the reference element K̂ [60]. Similarly,
a vector shape function u ∈ S(Ki) is related to a corresponding vector shape function û on K̂ by

u(FKi
(x̂)) =

1

det(dFKi
)
dFKi

û(x̂). (3.80)

Note that the map in (3.80) is divergence conserving. This implies that the properties are
conserved by mapping the vector function from the reference element K̂ to the physical element
Ki [60]. The presented mapping of the shape function to the physical element Ki using the affine
map has the advantage that many terms can be calculated a priori on the reference element
which saves computational costs with respect to time.
Next, we discuss the H1- and H(div)-conforming properties of the shape function for the stan-
dard FE method since they play a major role in the DG hybridization method presented in
Section 3.3.5.
The H1- and H(div)- conforming properties of the shape functions reflect the physical properties
of the electric potential and the flux density solution. The H1-conforming shape functions satisfy
the continuity conditions at the element interfaces when used within a standard FE method.
This holds because only the shape functions which are associated to a certain face, edge or
vertex have values unequal to zero on this specific face, edge or vertex, respectively [93]. All
other shape functions vanish. Similarly, the H(div )-conforming shape functions ensure normal
flux continuity at interfaces for the standard FE method. In this case, only the shape functions
associated to a particular face have non-zero normal components on this face and all other shape
functions which are not associated to that face vanish. Therefore, the degrees of freedoms of
the associated shape functions solely determine the normal flux at this interfaces. Note that the
use of shape functions which reflect the physical properties of the field quantities is important.

33



For instance, for the eigenvalue problem, the use of shape functions which doesn’t conform to
the field properties may lead to spurious modes [93].
The DG hybridization method exploits the H1- and H(div)-conforming properties to reduce
the overall high number of DG DOF. More precisely, it transforms some DG DOF to to FE-type
DOF. These FE-type DOF have to satisfy the H1 and H(div)-conforming continuity properties at
the element interface. As our choice of shape functions satisfy the H1 and H(div)-conforming
properties, the transformation of DG DOF to FE DOF can be performed easily. For that reason,
we decided to use the shape functions in [93] with the H1 and H(div)-conforming properties.
We refer to Section 3.3.5 for more details on the DG hybridization.
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3.3 Boundary Conformal Discontinuous Galerkin method

In this section we introduce the boundary conformal Discontinuous Galerkin (BCDG) method which
is based on the DG framework presented in Section 3.2. The BCDG method comprises several ap-
proaches, namely the cut-cell discretization approach, the adaptive approximation order method,
the cell merging method and the optional DG hybridization method. In Section 3.3.1, we give a brief
introduction to the BCDG method and a general literature overview. Section 3.3.2 shows the math-
ematical framework of the cut-cell discretization approach. The cut-cell discretization approach is
applied to elements at material boundaries or interfaces to accurately approximate curved materi-
als. More precisely, the elements at curved material boundaries or interfaces are split at the interface
or boundary into sub-elements, denoted as cut-cells, which are treated as independent elements. In
Section 3.3.3 we introduce the underlying geometry representation on which the cut-cell discretiza-
tion is based. Furthermore, the numerical integration scheme and the implementation with regard
to the geometry representation is described in greater detail. In the presence of geometrically small
cut-cells, it turns out that the cut-cell discretization destroys the condition number of the system. To
prevent ill-conditioning two additional approaches - the adaptive approximation order method and
the cell merging method - are introduced in Section 3.3.4. Either of these two approaches can be
applied to the cut-cell discretization approach. Finally, in Section 3.3.5 a DG hybridization method
is presented which can be applied to the cut-cell discretization approach to reduce the overall high
number of DG DOF in normal elements.

3.3.1 Introduction and literature review

The BCDG method presented in this work is based on three-dimensional structured hexahedral
meshes that are not fitted to the material geometry and do not change during the simulation.
Such meshes provide for greater efficiency since certain tasks such as node numbering or the
assembly of the matrices are much easier to perform on structured hexahedral meshes than on
other types of meshes [60]. In order to obtain sufficiently accurate results at curved material
boundaries, an additional approach is applied to elements which are intersected by a material
boundary or interface. In the following, we will refer to this approach as cut-cell discretization
approach. The general idea is illustrated in Figure 3.1. It shows the computational domain of
a quarter part of a cylindrical capacitor. The computational domain is given by two dielectric
material layers represented by the green and blue coloured material domains, respectively. An
exemplary structured hexahedral mesh represented by the black lines covers the computational
domain. The material domains subdivide several elements into smaller sub-elements. These
sub-elements are referred to as cut-cells in the following. They are treated as independent
elements with its own set of approximation functions. Note that this procedure is only applied
to elements at the material boundary or interface of the computational domain. The cut-cells are
illustrated in Figure 3.1 using the chequer pattern. All other hexahedral elements are treated
as described in Section 3.2. We have decided to choose the DG method as the underlying
framework of the cut-cell discretization approach for the following two reasons: First, a DG
approach allows for high order approximation. Second, it enables a flexible construction of the
approximation spaces in which our cut-cell discretization approach can be naturally embedded.
However, when geometrically small cut-cells appear in the simulation, the cut-cell discretization
approach faces the problem of ill-conditioning. The appearance of small cut-cells is a com-
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cut-cell

normal
element

Figure 3.1.: Computational domain of the cylindrical capacitor verification example.

mon phenomenon in our approach, since the mesh is not fitted to the material and, therefore,
material boundaries or interfaces intersect the element arbitrarily. To prevent ill-conditioning,
we introduce two additional approaches, the adaptive approximation order method and the cell
merging method, which are supplementary to the cut-cell discretization. The first approach is
based on an adaptive approximation order scheme. This scheme lowers the approximation or-
der in geometrically small cut-cells. The assigned approximation order in geometrically small
cut-cells depends on the volume of the cut-cell. Specific thresholds for the volume of cut-cells
are introduced which determine the approximation order in these cells. This approach turns
out to be very simple from the implementation point of view and efficient in terms of condition
number reduction The second approach - the cell merging method - merges geometrically small
cut-cells with neighbouring elements. A threshold is introduced which specifies geometrically
small cut-cells. For each small cut-cell, the neighbouring cell with the largest shared face is
determined and merged to the geometrically small cut-cell. The merged cut-cell is considered
as an independent cut-cell with its own set of approximation functions. The approximation or-
der in the merged cut-cell remains the same. Note that either the adaptive approximation order
method or the cell merging method are applied to the cut-cell discretization approach. Finally,
a DG hybridization method is presented that couples the DG method with the finite element
method (FEM). This is performed by an element-wise transformation of the DG degrees of free-
dom to FEM degrees of freedom in normal elements with local topological operators. Using the
boundary conformal DG method with the additional hybridization scheme reduces the number
of degrees of freedom of our system substantially.

The idea of cut-cell discretization approach builds on methods such as the partially filled cell
(PFC) approach for FIT in [80], the locally conformal FDTD algorithm in [23] or the Finite Vol-
ume approach using cut cells in [66]. To approximate curved material boundaries on Cartesian
grids, these methods also use additional approaches at the vicinity of the material boundaries
or interfaces within their numerical scheme. In addition, in recent years several similar ap-
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proaches for complex-shaped geometries have been developed. In the following, we discuss
related approaches which are based on either the DG method or the Nitsche’s method [62].
The DG-type methods closest to our BCDG method are the following: In [29] a cut-cell ap-
proach is introduced based on the DG method for the two-dimensional compressible Navier-
Stokes equations on triangular meshes. The method uses meshes that do not conform to the
underlying geometry boundary and, therefore, are cut at the boundary. The cut-cells are nat-
urally embedded in the DG method and the boundary conditions are imposed weakly. A very
similar approach on elliptic problems is proposed in [9] using a Baumann-Oden flux formulation
on unfitted meshes.
Moreover, there have been a number of related contributions using the Nitsche’s method. The
Nitsche’s method has first been introduced in [62] in 1971. Since then, it has been further devel-
oped to a general scheme for elliptic and parabolic equations [7] (see, e.g. [6]). The Nitsche’s
method is mentioned in this context, since it is similar to the DG method in many respects. For
instance, it is also based on a variational or weak formulation and the approximation functions
are allowed to be discontinuous across the element interfaces. Furthermore, some particular
Nitsche-type methods can be formally regarded as special cases of the DG method (see, e.g.
[48]). For the Nitsche’s method several similar approaches using cut-elements to approximate
complex-shaped geometries have been introduced. Note that these approaches are often re-
ferred to as fictitious domain finite element methods. For instance, [16] presents such a method
for the two-dimensional Poisson equation using first-order approximations, [35] for the sta-
tionary heat conduction problem in two-dimensions for first-order approximations, [48] for the
two- and three-dimensional Poisson equation for high order approximations and [57] for the
Stokes problem in two and three dimensions for first-order approximations. Moreover, a simi-
lar approach based on an extended finite element method combined with a Nitsche’s technique
for ellitic equations in two dimensions has been proposed in [95]. In addition, several closely
related methods for composite grid applications based on the Nitsche’s method have been de-
veloped. These methods connect composite grids by an artificial interface which is specified by
the edges of one mesh. The other mesh is then cut at the mesh interface, resulting in the emer-
gence of cut-elements. Examples include the Nitsche-type methods proposed in [36] for the
Poisson problem in two and free dimensions and in [57] for the Stokes problem in two or three
dimensions. However, both methods use first-order approximations. In the field of computa-
tional electromagnetics, the approach closest to ours is a finite element method approach to the
Finite-Difference Time-Domain scheme with cut-cells for the Maxwell’s equations in two dimen-
sions. This approach was published in [45] for first-order approximations. In this approach, the
continuity at the element interfaces is enforced in the weak sense using the Nitsche’s method.
The BCDG method we present in this section is similar to the above mentioned methods in the
sense that we also consider elements which are cut at the material boundary or interface. How-
ever, having a closer look at the methods reveals that the methods differ from each other in
many respects. Most obviously, they differ with respect to the equations they are applied to, the
numerical schemes, the geometry representation and the numerical integration methods. The
BCDG method we present is applied to the electro-quasistatic approximation of the Maxwell’s
equations. It is developed for a three-dimensional setting, whereas most other methods are pre-
sented for one or two-dimensional examples. It can also be applied to the electrostatic Maxwell’s
equations which are elliptic equations. Furthermore, we use a DG method with the LDG flux
formulation and higher order approximation functions up to order three. Also the geometry
representation and the numerical integration in our BCDG method differ from the methods in-
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troduced in the above mentioned papers. In [57] a numerical integration technique is presented
which is slightly similar to the numerical integration scheme presented below. However, the nu-
merical integration technique in [57] is so far restricted to first-order approximations, whereas
in our case higher order approximations are used.

As mentioned previously, our cut-cell discretization approach faces the problem of ill condition-
ing when geometrically small cut-cells appear. This has also been reported for most of the
above mentioned methods. Very recently, a few approaches have been introduced to prevent ill-
conditioning. For instance, the fictitious domain method based on the Nitsche’s method which
introduced in [16] for two-dimensional elliptic interface problems uses additional ghost penalty
terms. These ghost penalty terms are added to the gradient jumps in the boundary zone and
yield a upper limit for the condition numbers [16]. A similar approach based on the Nitsche’s
method is presented in [57] for the Stokes problem in two and three dimensions. This approach
also applies ghost penalties to gradient jumps. However, both methods are restricted to first
order approximations. Furthermore, the ghost penalty terms have to be chosen carefully, since
too high values have a negative effects on the accuracy and a too small values result in high
condition numbers [16]. Another approach based on a combination of the XFEM method and
the Nitsche’s method for elliptic problems is presented in [95]. In this work, a suitable choice of
penalty parameters and an additional diagonal preconditioner sufficiently stabilize the scheme.
This method is also restricted to one- and two dimensional problems.

In September 2012, a very similar approach to our cell merging method has been presented in
[48]. In this work, a method is introduced which is based on a so called Nitsche dG method
for elliptic problems on structured quadrilateral or hexahedral meshes. Since geometrically
small cut-elements are merged with neighbouring elements, this approach is very similar to
the cell merging method. Furthermore, the authors prove an upper bound on the condition
numbers using the additional merging technique. The results reported in this paper essentially
correspond to the numerical results we obtain using the cell merging method. The evaluated
condition numbers obtained from the BCDG method using the cell merging method are presented
in Section 4.1.5. However, note that at the time when [48] was published, our cell merging
method had already been developed and a paper describing this method had been accepted for
publication (see, e.g. [32]).

Finally, we would like to present methods which are related to the optional DG hybridization
method of the BCDG method. Of course, several methods coupling the DG method with the FE
method exist (see, e.g. [28], [19]). The method closest to our method is proposed in [65]. In
this work, a finite element formulation for the Poisson equation is presented which couples the
LDG method with a standard conforming finite element method. In contrast to our optional DG
hybridization, the domains to which the LDG method and the conforming FE method are applied
to have to be specified a priori. The weak formulation and the coupling of the weak formulations
is then built in accordance with the specified FE and LDG domains. Numerical examples in [65]
show that, although the number of DOF is much smaller for the coupled method, the error of the
coupled method is of the same order of magnitude as the error for the standard LDG method.

Note that this section is concerned with the presentation of the BCDG method which is applied to
EQS and ES field problems with non-moving materials. However, the BCDG method presented
in this section is also a key ingredient of the extension of the BCDG (EBCDG) method developed
for field problems with materials that move over time. The EBCDG method is introduced in
Section 3.6.
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The advantages of the BCDG method are most obvious if the BCDG method is applied to field
problems with moving materials. This is because most approaches which are applied to field
problems with moving materials use standard FE methods on curved boundary conforming
meshes where either the mesh is adapted to the moving material interface or a remesh is per-
formed at each instant of time (see, e.g. [75]). By using the EBCDG method the usually costly
mesh adaption and remeshing steps can be avoided. Up to our knowledge, the EBCDG method
is the first contribution in the field of electromagnetic which presents a cut-cell approach for
moving material distributions.
Nevertheless, the BCDG method applied to field problems with non-moving material distribu-
tions may, in some cases, also be superior to, for instance, FE methods on curved conforming
meshes. Some real-world examples require the meshing of very complex shaped materials such
as organs or blood vessels for biomedical applications. For such problems the BCDG method
might benefit from that fact that no fitting of meshes to the material geometry is needed.

3.3.2 Cut-cell discretization approach

This section introduces the mathematical framework of the cut-cell discretization approach. Let
Ω be a computational domain which contains N different material domains Ωi, i = 1, ..., N . The
boundary of the computational domain is denoted as Γ = ΓD ∪ ΓN where ΓD and ΓN represent
the boundary parts with Dirichlet and Neumann boundary conditions, respectively. In addition,
the interfaces of the materials within the computational domain are represented by ΓInt . Since
a non-matching grid is used, some of the hexahedral elements of Ωh contain parts of the interior
material interfaces ΓInt or of the boundary Γ. These interfaces or boundary parts of an exem-
plary element Ki are denoted as ΓKi

to indicate the affiliation to element Ki and are defined as
ΓKi
= Ki ∩ (Γ∪ΓInt).

To consider curved material boundaries or interfaces, we partition hexahedral elements which
contain a part of the interface or boundary into one or more sub-elements. In the following
these sub-elements are denoted as cut-cells. More precisely, each element Ki containing a part
of the interface or boundary part ΓKi

is split into one or more cut-cells KC
i in the following way:

First, the cut-cell domains KC
i completely cover the hexahedral element domain:

Ki ∩Ωh = ∪
NKi
i=1KC

i , (3.81)

where NKi
is the number of cut-cells resulting form the partition of element Ki. This number

corresponds to the number of different material domains located in element Ki. Second, the
cut-cells are always non-overlapping, i.e. the intersection of cut-cells satisfies

ΓKi
= ∩

NKi
i=1KC

i . (3.82)

Figure 3.2 illustrates a possible partitioning of an exemplary hexahedral element Ki. The left-
hand side of Figure 3.2 shows a computational domain of a water droplet ΩW (blue material
domain) on a insulation layer plate ΩI (green material domain) surrounded by air ΩA. The red
shaded hexahedral element represents the exemplary element Ki which is split into cut-cells.
The right-hand side of Figure 3.2 illustrates the cut-cell domains KC

1 and KC
2 in greater detail.
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1

Figure 3.2.: Computational domain of a water droplet on a insulation layer plate surrounded by
air ΩA. The red shaded element presents an exemplary cut-cell domain.

Each cut-cell KC
i is considered as an independent element with its own local finite element space

and, therefore, it’s own set of degrees of freedom. The element Ki is replaced by the cut-cells
and is no longer considered. The new computational mesh including the cut-cells is given by

ΩC
h = {Ki ∈ Ωh : Ki ∩Ω1 6= ;} ∪ ...∪ {Ki ∈ Ωh : Ki ∩ΩN 6= ;}. (3.83)

The set of normal elements ΩN
h is the set of elements that are not intersected by a material

interface

ΩN
h = {Ki ∈ Ωh : ΓKi

= ;, Ki ∩Ω1 6= ;} ∪ ...∪ {Ki ∈ Ωh : ΓKi
= ;, Ki ∩ΩN 6= ;}. (3.84)

Having defined the set of elements of the new computational mesh including the cut-cells ΩC
h

and the set of normal elements ΩN
h , the set of cut-cells can be written as

ΩCC
h = Ω

C
h \Ω

N
h . (3.85)

Of course, by including the additional cut-cell elements the number of elements in our new
computational mesh ΩC

h increases. The new number of elements in ΩC
h is denoted by NC and

satisfies

NC = NN + NCC , (3.86)

where NN is the number of normal elements and NCC the number of cut-cells. Therefore, the
new mesh can be written in the form:

ΩC
h = {Ki}i=1,...,NC

. (3.87)

Moreover, the set of interior faces in ΩC
h is given by

FC
0 = { f ∩Ω1 : f ∈ F0, f ∩Ω1 6= ;} ∪ ...∪ { f ∩ΩN : f ∈ F0, f ∩ΩN 6= ;} (3.88)

∪{Ki ∩ΓInt : Ki ∈ Ωh, Ki ∩ΓInt 6= ;}
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and the sets of boundary faces with Dirichlet and Neumann boundary conditions by

FC
D = {Ki ∩ΓD : Ki ∈ ΩC

h , Ki ∩ΓD 6= ;}, (3.89)

FC
N = {Ki ∩ΓN : Ki ∈ ΩC

h , Ki ∩ΓN 6= ;}, (3.90)

respectively. Finally, the set of faces associated with cut-cell elements is denoted by FCC .
Next, we introduce the approximate solutions φh and Dh on ΩC

h . The approximate solutions φh
and Dh are searched for in the finite element spaces

Vh = {υ ∈ L2(Ω) : υ|Ki
∈ S(Ki)∀Ki ∈ ΩC

h }, (3.91)

Σh = {τ ∈
�

L2(Ω)
�3

: τ|Ki
∈ U(Ki)∀Ki ∈ ΩC

h }, (3.92)

where S(Ki) and U(Ki) represent the local finite element spaces. In normal elements, the lo-
cal finite elements spaces are identical to the local finite element spaces of the DG method
introduced in (3.7)-(3.8).
By contrast, the local finite element spaces S(KC

i ) and U(KC
i ) of a cut-cell KC

i ∈ Ω
CC
h are defined

differently. These local finite element spaces are spanned by the shape functions υC ∈ S(KC
i )

and τC ∈ U(KC
i ), which are defined as

υC = υ ∀x ∈ KC
i , (3.93)

υC = 0 ∀x ∈ K \ KC
i , (3.94)

and

τC = τ ∀x ∈ KC
i , (3.95)

τC = 0 ∀x ∈ K \ KC
i , (3.96)

where K represents the hexahedral domain of the element which was split into cut-cells. In
(3.93) and (3.95) the functions υ and τ represent shape functions which are defined on the
hexahedron H := [0, 1]3 and are mapped to the hexahedral element K ∈ Ωh as shown in
Section 3.2.7. This implies that inside the cut-cell domain the shape functions of cut-cell KC

i are
identical to standard shape functions defined on the hexahedral element K ∈ Ωh with K /∈ ΩC

h
containing the cut-cell KC

i .
The approximate solutions of the BCDG method are given as the direct sum over all piecewise
p-th order polynomial approximations φKi

h (x, t) and DKi
h (x, t) as introduced in (3.9)-(3.10):

φh(x, t) =⊕NC
i=1φ

Ki
h (x, t), (3.97)

Dh(x, t) =⊕NC
i=1DKi

h (x, t). (3.98)

where for each cell Ki ∈ ΩC
h the piecewise polynomial approximations φKi

h (x, t) and DKi
h (x, t)

can be expressed in terms of basis functions:

φ
Ki
h (x, t) =

N
∑

i=1

φ i
h(t)υi(x), (3.99)

DKi
h (x, t) =

N
∑

i=1

Di
h(t)τi(x). (3.100)
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Next, we present the semi-discrete weak formulation, the numerical flux formulation, the bilin-
ear form and the matrix formulation for the cut-cell discretization approach. The semi-discrete
weak DG formulation for the cut-cell discretization is obtained similarly as the semi-discrete
weak DG formulation of the DG method (see Section 3.2.2). However, as we will see below, the
weak formulation differs with respect to the test and approximation functions which belong to
the finite element spaces V C

h and ΣC
h .

The weak DG flux formulation for the boundary conformal approach is defined as follows:
Find φh(x, t) ∈ Vh and Dh(x, t) ∈ ΣC

h such that ∀Ki ∈ ΩC
h

∫

K

τ ·
1

ε
DhdV =

∫

K

∇ ·τφhdx−
∫

∂ K

φ̃hτ ·ndA ∀τ ∈ ΣC
h , (3.101)

∫

K

∇υ ·
�

∂

∂ t
Dh+

κ

ε
Dh

�

dV =

∫

∂ K

υ

�

∂

∂ t
D̃h+

κ

ε
D̃h

�

·ndA ∀υ ∈ V C
h . (3.102)

As already introduced in (3.19)-(3.20), the numerical fluxes φ̃h and D̃h ∀Ki ∈ ΩC
h are defined by

φ̃h = {φh}+C12 ·¹φhº on fi ∈ FC
0 , (3.103)

D̃h = {Dh} −C12¹Dhº− C11¹φhº on fi ∈ FC
0 , (3.104)

The flux formulation on boundary faces with Dirichlet and Neumann boundary conditions is
identical to the flux formulation in (3.21)-(3.24) for all f ∈ FC

D and for all f ∈ FC
N , respectively.

The main difference to the standard DG method in normal elements is that the cut-cell approach
incorporates, in addition to the usual numerical fluxes at normal cell interfaces, fluxes at the
interior interface ΓInt . Figure 3.3 illustrates the numerical fluxes, φ̃h and D̃h, as vectors at
the interior face ΓKi

of the cut-cells KC
1 and KC

2 . Furthermore, cut-cells are only connected by
numerical fluxes to elements with which they share a common face. Note that such a natural
embedding of cut-cells is not feasible for the standard FE method, since the FE method requires
certain continuity conditions at the element faces. The DG method, however, provides the
flexibility for such a natural embedding of cut-cells.

φ̃h, D̃h

ΓKi

Figure 3.3.: Numerical fluxes at the interior face ΓKi
of the cut-cells KC

1 and KC
2 .
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Finally, the bilinear form of the BCDG method for the EQS approximation of the Maxwell’s
equations reads:
Find Dh(x, t) ∈ ΣC

h , φh(x, t) ∈ V C
h such that

a
�

1

ε
Dh,τ

�

= b
�

φh,τ
�

+ f (τ) ∀τ ∈ ΣC
h , (3.105)

−b
�

υ, (
∂

∂ t
Dh+

κ

ε
Dh)
�

+ s
�

υ, (
∂

∂ t
φh+

κ

ε
φh)
�

= g(υ) ∀υ ∈ V C
h , (3.106)

where a, b, s, g and f are defined as introduced in (3.27)-(3.31), respectively. Note that the
finite element spaces V C

h and ΣC
h differ from the finite elements spaces Vh and Σh used for the DG

method. However, the weak DG formulation in matrix formulation for the boundary conformal
DG method can be written as presented in (3.33)-(3.39):

MI1/εd = Gφ + f, (3.107)

−
�

GT d

d t
d+GT Iκ/εd

�

+
�

S
d

d t
φ + SIκ/εφ

�

= g, (3.108)

where d and φ denote the potential and the flux density degrees of freedom, respectively. The
terms G, M and S represent the mass, gradient and stability term matrices which are defined as
presented in (3.37)-(3.39) for all υ ∈ V C

h and τ ∈ ΣC
h .

Applying the Schur-complement to (3.107)-(3.108) yields the reduced semi-discrete weak DG
formulation:

�

−GT IεM
−1G+ S

� d

d t
φ =

�

GT IκM
−1G− SIκ/ε

�

φ + gB. (3.109)

Note that the bilinear form and the matrix formulation of the ES approximation can be derived
in exactly the same way as the bilinear form and matrix formulation of the EQS approximation.
Therefore, we only present these formulations without deriving them explicitly. The bilinear
form of the BCDG method for the ES approximation satisfies:
Find Dh(x, t) ∈ ΣC

h , φh(x, t) ∈ V C
h such that

a
�

1

ε
Dh,τ

�

= b
�

φh,τ
�

+ f (τ) ∀τ ∈ ΣC
h , (3.110)

−b
�

υ,Dh
�

+ s
�

υ,φh
�

= g(υ) ∀υ ∈ V C
h , (3.111)

where a, b, s, g and f are defined as introduced in (3.27)-(3.30) and (3.43), respectively.
Furthermore, the discrete weak DG formulation for the ES approximation in matrix formulation
using the finite element spaces V C

h and ΣC
h is given as follows:

MI1/εd = Gφ + f, (3.112)

−GT d+ Sφ = g, (3.113)

where the matrices M, G and S and the vector f are defined as shown in (3.35)- (3.38) and
(3.46), respectively.
Applying the Schur complement, reduces (3.112)-(3.113) to

�

−GT IεM
−1G+ S

�

φ = gB. (3.114)

where gB is given by gB =M−1Iεf+ g.
When it comes to the evaluation of the integral terms in cut-cells presented above, a detailed
specification of the cut-cell geometry and, moreover, a numerical integration scheme is needed.
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3.3.3 Geometry representation and numerical integration techniques in cut-cells

In this section, the geometry representation and numerical integration techniques in cut-cells
are introduced and discussed. We give an overview on established geometry representations in
the field of computational engineering. Then, we present the geometry representation and the
numerical integration techniques used in this work in greater detail.

3.3.3.1 Introduction and literature review

In most engineering fields CAD (Computer Aided Design) programs are used to model material
geometry data. Modern CAD programs have become very successful, because they enable to
draw very complex objects and assemblies easily and fast [43]. Furthermore, most CAD pro-
grams offer a huge variety of other geometric functions operating on the geometry models. It
has become standard practice that designs are made with modern CAD programs and meshes
are then built from these CAD design models [43]. Many of these CAD programs rely on explicit,
parameterized geometry representations. Therefore, standard adaptive integration schemes can
be used on these explicit geometry representations which ensure that the numerical integration
error is small compared to the error of the conformal DG method.
As an alternative to CAD based geometry representations, a geometry representation which is
based on the level set method [64] is also often used. The level set method has become popular
in the field of computational fluid dynamics (CFD), especially for two-phase or multiphase flow
applications. Some of the above mentioned papers on the Nitsche’s method use such a level set
method within their scheme (see, e.g. [16], [48]). The geometry is given by a smooth level set
function φ. Within a specified region Ω, e.g. the liquid region, the level set function φ satisfies
φ > 0, whereas outside of this region it satisfies φ < 0. The geometry interface Γ = ∂Ω is
implicitly represented by the zero level set of the smooth functionφ, i.e. Γ(t) = {x : φ(x, t) = 0}
[64]. The main advantage of the level set method is its simplicity. Furthermore, topology
changes that typically occur if, for instance, water droplets merge or break, can be handled very
easily [64]. On the other hand, the method is prone to larger numerical errors if the interface is
stretched or torn heavily [79]. Nevertheless, accurate integration schemes for level set methods
are still being developed. For instance, in [87] an efficient numerical integration scheme for
piecewise linear interfaces has been introduced. In addition, numerical integration methods
for curved interfaces exist. They are based on smoothed or discretized Heaviside functions and
Dirac delta distributions (see, e.g. [81] and [26]). However, these methods may smear out the
interface over a certain regularization zone [59]. This has a negative effect on the accuracy of
the numerical integration scheme as it leads to approximated integrals which are not equivalent
to the original integral at the interface [59]. In many applications examples these methods show
to be first-order accurate in terms of computational costs (see, e.g. [26] and [59]).
In this work, we have decided to use the geometry representation of the open source CAD pro-
gram Open CASCADE Technology (OCCT) [2] for the following reasons: First, the integration
schemes of level set methods are still being developed and the integration schemes known to us
do not guarantee more than first-order accuracy. Second, the level set method is mainly used in
the field of computational fluid dynamics, whereas in the field of computational electromagnet-
ics material models are usually available as CAD models. So far, there is no CFD solver available
which uses a cut-cell discretization on the level set method for the water droplet example.
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Therefore, we were not able to couple our code with a CFD solver using a similar cut-cell dis-
cretization based on the level set representation. Furthermore, no standard geometry libraries
for level set representations exist which offer such a huge variety of geometric applications as
standard CAD programs.
However, we have developed our code in such a way that it is completely open to any other kind
of geometry representation and numerical integration scheme. Once a CFD code using a similar
cut-cell approach is available, it can be easily implemented in our code in reasonable time. In
addition, since the BCDG method uses a geometry representation based on CAD models, it can
be applied to various other field problems in the field of computational electromagnetics and is,
therefore, not restricted to the water droplet example.

3.3.3.2 Geometry representation of cut-cells

Next, we present the features of the CAD program Open CASCADE Technology (OCCT) [2]
which is used for the geometry representation of cut-cells. In this section we closely follow
the presentation of OCCT in [2]. OCCT is an open source C++ class library which provides
components for two or three-dimensional geometric modelling, visualization, geometric analysis
application and data exchange. The geometry objects of OCCT are complying with the STEP
format specification. Furthermore, OCCT is open to standard format CAD design models since it
includes import and export functions to and from standard formats such as IGES, STL and STEP.
The geometry representation used in this work is based on the boundary representation (B-
Rep). It is composed of geometry and topology data structures. The geometry data of OCCT
provides a great variety of parametrized 2D and 3D geometric objects which are naturally ori-
ented and handled by reference. The provided geometric objects range from very simple curves
and surfaces to Bezier, BSplines as well as offset curves and surfaces. The topology data struc-
ture specifies the relationship between the geometric objects and how the geometric objects
are connected. The geometric models described by the topology data structure are denoted as
shapes. These shapes can be further decomposed into the following topology components (see
[2]):

• vertices: refers to points in geometry.

• edges: refers to curves which are bounded by vertices.

• wires: sequences of edges.

• faces: refers to surfaces which are bounded by wires.

• shells: assembly of faces which are linked together by edges of their wire boundary.

• solids: 3D geometry object which is defined by an enclosed shell.

• compound solids: collection of solids.

For instance, a solid is defined by an enclosed shell which is an assembly of faces. The faces are
represented by surfaces bounded by wires which in turn refer to curves bounded by vertices.
Furthermore, OCCT provides an extensive selection of operations and functions which operate
on B-Rep data structures (shapes). For instance, the operations and functions available in OCCT
include Boolean Operations. These operations are used to model complex shapes using simpler
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given shapes. In this work, the Common and Cut Boolean Operations are used. They create a new
shape from two existing shape by subtracting one shape from the other (Cut Boolean Operation)
or adding two shapes together (Common Boolean Operation). The resulting shapes of the Cut
and Common Boolean Operation are also B-Rep shapes.

Moreover, OCCT provides functions to compute the derivative vectors up to second degree as
well as the normal vector for each parameter point on a curve or surface. These vectors can then
be used in the numerical integration schemes to evaluate the integrals over the B-Rep shapes
of cut-cells. For more information on the geometry kernel and the embedded geometric data
structures we refer to [2].

3.3.3.3 Geometry implementation

In this section, we describe in detail how the geometry representation and the related geometric
functions are embedded in the BCDG method. We begin with the read-in process at the begin-
ning of a simulation. In our implementation the mesh and the material geometry are treated
separately. The BCDG method uses the functions of OCCT to import CAD models of the materials
which are available in the standard CAD model formats such as STEP, STL, IGES or B-Rep.

Then, OCCT is used to detect the material affiliation of each node in the mesh. This is neces-
sary to find all hexahedral elements at the material boundary or interface. More precisely, the
information about the node material affiliation is used to detect the hexahedral elements at the
material interfaces Ki ∈ Ωh \ ΩN

h . This search is conducted in an element-wise manner. If an
element contains different material parameters, it is considered as an element at the boundary
that needs to be split into cut-cells.

The detection of the node material affiliation is performed using a technique which is often
referred to as ray-shooting or ray-casting (see, e.g. [55]). More precisely, the curve-solid inter-
section functions of OCCT are applied for this procedure. Since structured Cartesian grids are
used, the edge which is linked to a certain node in one particular coordinate axis direction can
be used to define the orientation of a straight curve or ray. The length of this curve is chosen to
be greater than the cross section of the computational domain so that the curve runs through the
whole computational domain in one direction. Because of the structured layout of the nodes in
the mesh, several nodes are located on this curve. After having defined the curve, the curve-solid
intersection function is applied to the curve and the computational domain. Note that this curve-
solid intersection function has to be performed only once for all nodes on this curve. Next, the
intersection points of the curve with the existing material domains are evaluated and counted.
As the curve is a straight line and oriented, the number of intersection points and the signed
distance of the nodes to the intersection points jointly reveal whether a node is inside or outside
of a specific material domain. If a node is inside of a specific material domain, it has an odd
number of positive and negative distance values to the intersections points associated with the
material domain. By contrast, if a node is outside of a specific material domain, it has an even
number of positive and negative distance values to the intersections points associated with the
material domain.

Next, we explain how hexahedral elements Ki ∈ Ωh \ΩN
h are split into cut-cells by the material

interface or boundary interface. The splitting procedure is conducted using the Boolean Oper-
ations of OCCT. First, the node coordinates of an hexahedral element Ki ∈ Ωh \ ΩN

h are used
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to model the hexahedral element and its faces as B-Rep shapes. Then the Boolean Operations3

are applied to both the B-Rep shapes of the hexahedral element Ki and the B-Rep shapes of
the material geometry. The B-Rep shapes obtained from this Boolean Operation represent the
cut-cell domains.

Note that we extract and save the faces of cut-cell domains fi ∈ FCC instead of the B-Rep solids.
Since B-Rep solids are represented as enclosed assemblies of faces, it is sufficient to save only
the faces of cut-cell elements fi ∈ FCC . From an implementation point of view, this proves to be
more efficient since the assembly routine can be applied over all faces fi ∈ FC = FC

D ∪F
C
0 ∪F

C
N

instead of over all elements. Such a routine is commonly denoted as a face-wise assembly
routine, whereas the assembly over all elements is called cell-wise routine. However, because a
face is shared by two elements (unless it is a boundary face) the numerical integration scheme
on a particular face is performed only once for the face-wise assembly routine. If the assembly
routine had been applied in a cell-wise manner, the numerical integration on a face of a cut-cell
were to be conducted at least twice. Therefore, by using an face-wise assembly routine, the
computational cost are reduced in a natural way (for more details, see Section 3.3.3.4).

To distinguish between the original computational mesh Ωh and the cut-cell mesh ΩC
h , the infor-

mation of the new mesh is treated internally as an additional mesh with its own independent
numbering. Additional functions are introduced which connect the original computational mesh
Ωh with the cut-cell mesh ΩC

h . The information of the cut-cell mesh ΩC
h is restricted to the mini-

mum required information to increase the efficiency of the approach.

3.3.3.4 Adaptive Gaussian quadrature on geometric cut-cell representation

In Section 3.3.2, we have introduced the bilinear form and the matrix formulation of the BCDG
method in (3.25)-(3.31) and (3.33)-(3.40), respectively. These formulations require the eval-
uation of integrals over the cut-cell domains and the cut-cell faces. However, the cut-cell do-
mains which result from the Boolean Operations are often arbitrarily and complex shaped. Since
standard quadratures of the DG or FE method are tailor-made for the application to certain geo-
metric element objects such as tetrahedra or hexahedra, they can not be applied to the cut-cells
domains without major modifications. A widely used approach to approximate the integrals
in (3.33)-(3.39) is to construct the cut-cell domain or faces by meshes of smaller and simpler
elements that conform with the cut-cell boundary. For instance, in [48] and [9] triangular and
tetrahedral meshes with curved boundaries are used to model the cut-cell. These meshes are fit-
ted to the cut-cell boundary. The numerical integration of the integrals over the cut-cell domain
and faces are then performed by using quadratures on the mesh elements covering the cut-cell.
However, since each of the cut-cells has to be meshed separately, these approaches turn out to
be computationally costly.

For this reason, we decided to implement an alternative method in our code. Since we use a
geometry representation based on B-Rep shapes, the integrals over the cut-cell faces in (3.105)-

3 Note that the Common Boolean Operation is applied to the material geometry of the material with the highest
internal number. The other cut-cell could be extracted using the Cut Boolean Operation. However, this is not
necessary, as we can calculate the integrals of the cut-cell with the lower material number by subtracting the
integrals of the cut-cell with the higher material number from the integral of the hexahedral element.
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(3.109) can be evaluated using an adaptive Gauss-Legendre quadrature which is provided by
OCCT. The surfaces ∂ KC

i of a cut-cell KC
i ∈ Ω

CC
h can be decomposed into faces fi which satisfy

∂ KC
i = ∪

n
i fi(ui, v i), (3.115)

where ui and v i denote the parametric direction of the face. Since the faces fi(ui, v i) are oriented
and parametrized, the adaptive Gauss-Legendre quadrature can be directly applied to these
faces. For instance, the flux integral term in (3.36) restricted to cut-cell KC

i ∈ Ω
CC
h can be

calculated by transforming the integral term to a integral term over the parametrization. This
transformation is given by

∫

∂ KC
i

�

{υ j}+C12 ·¹υ jº
�

¹τiºds =
∑

i

∫

fi

�

{υ j}+C12 ·¹υ jº
�

¹τiºds (3.116)

=
∑

i

∫

ui

∫

vi

�

{υ̂ j}+C12 ·¹υ̂ jº
�

¹τ̂iºJduidv i

where J is the Jacobian matrix of the transformation and (ui, v i) the parameters of face fi
(see, e.g. Section 3.2.7 or [52]). As OCCT provides functions computing the normal and the
derivative vectors on each parameter point (ui, v i) of the face fi, the application of the adaptive
Gaussian quadrature to the term in (3.110) is straightforward.
The adaptive Gauss-Legendre quadrature provided by OCCT internally decomposes each face
fi into smaller parametrized patches p j satisfying fi = ∪ j p j. The decomposition into patches
depends on the embedded geometric object data structure. Furthermore, for each of the patches
p j a function determines the number of Gauss points NGP needed to achieve a good accuracy in
each of its parametric directions u j and v j [2]. In addition, an a priori specified global tolerance
value Iε is defined to determine whether an approximation of (3.116) is acceptable or not.
This process is conducted using the bisection procedure: First, the Gauss-Legendre quadrature
is performed recursively on each patch with NGP and with 2/3NGP Gauss points. Then, the
relative difference dI of the two approximations I1 and I2 of (3.110) on NGP and 2/3NGP Gauss
points is evaluated. The relative difference dI is given by

dI = abs(I1− I2)/abs(I1). (3.117)

If the relative difference dI is smaller than the specified tolerance Iε, then the more accurate
approximation I1 of the patch integral is accepted. If this is not the case, the patch is further
decomposed. Let [u j1, u j2] be the parameter interval of patch p j not satisfying the tolerance
criterion. The parameter interval is then divided into two parts, [u j1, c] and [c, u j2], with c =
(u j1 + u j2)/2. This decomposition procedure can only be performed until a certain minimum
patch size is reached. Hence, the algorithm terminates with an approximation of the integral
in (3.116) if either the relative difference dI on all patches p j is smaller than the specified
tolerance value [2] or if the minimum patch size is reached.
However, the integral terms over the cut-cell volumes in (3.35)-(3.37) require a separate treat-
ment. As the geometry kernel [2] doesn’t provide a parametrized volume representation of the
cut-cells, the volume integrals are evaluated over the parametrized boundary representation.
Therefore, the cut-cell volume integrals in (3.35)-(3.37) are transformed using the divergence
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theorem (see, e.g. [52]). This method is widely used in the field of computer graphics to eval-
uate integral properties of solids which are given as B-Rep data structures [52]. These integral
properties include the volume and the moment of inertia of B-Rep data structures. The diver-
gence theorem states that for any given compact bounded three-dimensional submanifold the
following equation holds (see, e.g. [47]):

∫

KC
i

∇ ·FdV =

∮

∂ KC
i

F ·nds =
∑

i

∫

fi

F ·nids, (3.118)

where F is a well-defined vector field on KC
i and n the unit outward normal of ∂ KC

i . Note that
in our case the cut-cell volumes KC

i ∈ Ω
C
h which are enclosed by its boundary faces ∂ KC

i are
the compact bounded three-dimensional submanifolds. In the following, we assume that we are
given hexahedral meshes and material geometries which ensure that the divergence theorem
can be applied. If this is not the case, the hexahedral mesh or the material geometry has to be
changed to satisfy the necessary conditions.
Next, the transformations of the matrix formulation in (3.33)-(3.39) are presented. Using the
divergence theorem, the matrix components of M and G corresponding to cut-cell KC

i are trans-
formed to the following form:

Mi, j|KC
i
=

∫

KC
i

τi ·τ jd x =

∫

∂ KC
i

Fi, j ·nd x , (3.119)

Gi, j|KC
i
=

∫

KC
i

∇ ·τiυ jdx−
∫

∂ KC
i

�

{υ j}+C12 ·¹υ jº
�

¹τiºdA (3.120)

=

∫

∂ KC
i

�

Pi, j ·n+
�

{υ j}+C12 ·¹υ jº
�

¹τiº
�

dA, (3.121)

where Fi,j and Pi, j are vector functions satisfying

∇ ·Fi, j = τi ·τ j, (3.122)

∇ ·Pi, j = ∇ ·τiυ j, (3.123)

Since the shape functions are polynomials spanning the polynomial finite element spaces S(KC
i )

and U(KC
i ), it is always possible to determine vector functions Fi, j and Pi, j. However, they

are not uniquely defined. Using the vector functions Fi, j and Pi, j, the semi-discrete weak DG
formulation in (3.105)-(3.109) corresponding to cut-cells can be fully transformed to surface
integrals over the cut-cell faces. These surface integrals are then evaluated using the adaptive
Gauss-Legendre quadrature as presented above.
Note that the adaptive Gauss-Legendre quadrature is performed adaptively once on each cut-
cell face fi for a single component of one matrix in (3.35)-(3.39). When a sufficient accurate
approximation of this matrix component is found, the Gauss points are saved and used to eval-
uate the remaining components of the matrices in (3.35)-(3.39) in a standard Gauss-Legendre
quadrature fashion. This procedure saves computational costs and leads to equivalent results
with respect to accuracy.
From an implementation point of view, when calculating the product of the shape functions in
Section 3.2.7, i.e. τi(x) ·τ j(x) with x = (x1, x2, x3)T ∈ KC

i , we are able to write this product as
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τi ·τ j = f (x1)g(x2)l(x3), where f , g and l are polynomial functions depending only on x1, x2
and x3, respectively. In this case the primitive functions S f (x), Sg(x2) and Sl(x3) of f , g and
l, respectively, can be easily determined. Using these primitive functions, a vector function Fi, j
satisfying (3.122)-(3.123) can be written as

Fi, j =
1

3







S f (x1)g(x2)l(x3)
f (x1)Sg(x2)l(x3)
f (x1)g(x2)Sl(x3)






. (3.124)

Note the vector functions Fi, j and Pi, j are calculated only once at the beginning of a simulation.
The resulting vector functions are then saved. To calculate these vector functions fast and
efficiently, the implementation of the shape functions in [68] is used (see, e.g. [93] or Section
3.2.7).

3.3.4 Numerical treatment of geometrically small cut-cells

Since the cut-cell discretization approach divides hexahedral elements at the boundary or inter-
face of arbitrarily shaped materials, geometrically small cut-cells may arise within the compu-
tational mesh ΩC

h . As mentioned above, the existence of geometrically small material domains
deteriorates the problem condition and may lead to simulation breakdowns or numerical insta-
bilities. This comes as no surprise since the support of the basis functions in cut-cells can be
arbitrarily small. This issue of ill-conditioning does not concern our cut-cell discretization ap-
proach only. In fact, all of the above discussed DG or Nitsche’s methods which use a discretiza-
tion where elements are cut at the interface or boundary face the problem of ill-conditioning
(see, e.g the immersed or fictitious domain methods in [48], [57] or the finite cell method in
[25]). In Section 3.3.1, we have presented several approaches of other authors which prevent
ill-conditioning. The reader is referred to Section 3.3.1 for more details on that issue.
In the following we present two additional approaches for the cut-cell discretization approach
to overcome ill-conditioning in the presence of small cut-cells. We start with the adaptive ap-
proximation order method which is based on an adaptivity scheme. Afterwards the cell merging
approach is presented which is based on a merging technique. Both additional approaches are
supplementary to the cut-cell discretization approach. We would like to point out that the addi-
tional approaches cannot be applied together. Either the adaptive approximation order or the
cell merging approach are used to reduce the condition number. Numerical results of both ap-
proaches can be found in Section 4.1. We also refer to Section 4.1 for a detailed discussion on
the numerical results and the condition numbers.
To track geometrically small cut-cells, we use a function provided by OCCT [2] which evaluates
the approximate volume of B-Rep data structures (see, e.g. Section 3.3.3 or [2], for further
information on the geometry representation). This function is called at the beginning of a
simulation, just after the classification of elements into cut-cells or normal elements.

3.3.4.1 Adaptive Approximation Order method

The adaptive approximation order method has certain similarities to well-known adaptive strate-
gies such as the h, p and the hp-adaptivity where on the basis of a given error estimate either
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the size of the grid (h-adaptivity), the polynomial order (p-adaptivity) or both the size of the
grid and the polynomial order (hp-adaptivity) are adapted to decrease the overall error of the
computation. An overview on that issue and recent error estimation schemes for the DG method
can be found in [38]. Our approach is less related to the h-adaptivity. Obviously, we are not
interested in reducing the computation grid size since we operate on a fixed grid. Our approach
is rather related to the p-adaptivity. However, in contrast to standard p-adaptive strategies, we
do not use an error estimate. In our case a lower approximation order is assigned to the cut-
cells which are considered as geometrically small compared with the normal element size. The
overall approximation order in all other cells is kept fixed.
More precisely, the classification of geometrically small cut-cells is determined using thresholds
Ti ∈ R, i = 0, .., Npn = pN − 1 for the volume of cut-cells. A particular threshold Ti is used for
each possible approximation order pi smaller than the overall normal approximation order pN .
The thresholds Ti are determined using the volume information of cut-cells which is provided
by OCCT [2] (see Section 3.3.4). This choice is quite efficient, as the volume is anyway calcu-
lated to check whether an element contains an interface or is just touching an interface. Since
the threshold depends on the shape functions and their approximation order, it is difficult to
determine general threshold values. We decided to use threshold values which are independent
of the hexahedral grid size. The thresholds are given as Ti = t iVn where Vn denotes the volume
of a normal hexahedral element and t i ∈ R. In our case, the threshold values t i are determined
by performing calibration tests on a verification example (see Section 4.1). Of course, other
threshold values or other ways to determine the threshold values would be feasible.
Given the threshold values Ti, the overall set of cut-cells which are considered as small is given
by

ΩCCSmall
h = ΩCC p0

h ∪ΩCC p1
h ∪ ...∪Ω

CC pNpn
h , (3.125)

where the sets of small cut-cells for the individual threshold values are given as

ΩCC p0
h = {KC

i ∈ Ω
CC
h :

∫

KC
i

1dV < T0}, (3.126)

ΩCC pi
h = {KC

i ∈ Ω
CC
h : Ti−1 <

∫

KC
i

1dx < Ti} ∀i = 1, ..., Npn. (3.127)

As a result, the set of cut-cells is split into Npn+1 sets of small cut-cells and into a set of normal
cut-cells denoted as ΩCCN

h satisfying

ΩCCN
h = ΩCC

h \Ω
CCSmall
h . (3.128)

We assign shape functions of approximation order pi < pN for i = 1, ..., N − 1 to the set of small
cut-cells ΩCC pi

h . Furthermore, the general staircasing approximation is applied to the set of cut-
cells KC

i ∈ Ω
CC p0
h . Note that the threshold T0 is set to a very small value close to zero. Therefore,

the influence of the staircasing approximation in these cut-cells is negligible.
The adaptive approximation order method clearly exploits the flexibility of the DG scheme. Since
no continuity conditions are needed, the approximation order can be lowered in any element
without any restrictions. We would like to point out that the adaptive approximation order
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method can also be applied in combination with the DG hybridization method which is introduced
in Section 3.3.5. The DG hybridization method reduces DG degrees of freedom to FE degrees
of freedom in elements away from the interface or boundary. Since we use hierarchical high
order shape functions, which can be applied using arbitrary polynomial orders on each edge,
face and cell within a standard FE framework [93], the adaptive approximation order method
doesn’t cause any problems in such a setting.
Furthermore, note that the adaptive approximation order method only lowers the approximation
order p in small cut-cells KC

i ∈ Ω
CCSmall
h . Since the shape functions span the local finite element

spaces, only the local finite element spaces in these small cells change. Therefore, the bilinear
form and the matrix formulation of the boundary conformal DG method with the additional
adaptive scheme are defined as presented in Section 3.3.2 and 3.2.4. The system of equations
is solved as shown in Section 3.2.4. This also implies that the implementation of the adaptive
approximation order method is straightforward and doesn’t impose any significant additional
computational costs.

3.3.4.2 Cell Merging method

In this section, we present the cell merging method which is based on merging geometrically
small cut-cells with larger neighbouring elements. The numerical framework of this method is
presented in the following.
As for the adaptive approximation order method, geometrically small cut-cells need to be de-
termined. However, in this case only a single threshold is used to classify geometrically small
cut-cells. This threshold is denoted by TM ∈ R and is given as

TM = tM Vn, (3.129)

where Vn denotes the volume of a normal hexahedral element. The threshold value tM ∈ R is
specified by performing a calibration on specific test examples as described above. Note that
there are many other ways to classify geometrically small cut-cells or to determine threshold
values. However, numerical examples using this approach show that the threshold based on the
volume yields good results.
The set of geometrically small cut-cells is given by

ΩCCSmall
h = {KC

i ∈ Ω
CC
h :

∫

KC
i

1dV < TM}. (3.130)

Having determined the set of geometrically small cut-cells, each of these cut-cells in the set is
merged to a neighbouring element according to the following rule: Among the neighbouring
elements having the same material, a geometrically small cut-cell KC

i ∈ Ω
CCSmall
h is merged to

the element the small cut-cell KC
i shares its largest face with. This implies that the relevant

neighbouring element KN
i of KC

i satisfies

KN
i = max

K∈(ΩC
h \Ω

CCSmall
h )

∫

∂ (K∩KC
i )

1dV (3.131)
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with ε|KN
i
= ε|KC

i
and κ|KN

i
= κ|KC

i
. Therefore, the set of neighbouring elements of small cut-cells

KC
i is defined by

ΩCCNeigh
h = {KN

i ∈ Ω
C
h \Ω

CCSmall
h : KN

i = max
K∈(ΩC

h \Ω
CCSmall
h )

∫

∂ (K∩KC
i )

1dV ,ε|KN
i
= ε|KC

i
,κ|KN

i
= κ|KC

i
}.

(3.132)

Figure 3.4 illustrates such an exemplary geometrically small cut-cell KC
i ∈ Ω

CCSmall which is
merged to element KN

i . The two cut-cells, KC
i and KN

i , are then replaced by the merged cut-
cell K M

i = KC
i ∪ KN

i , which is considered as an independent cut-cell with its own set of basis
functions.

KN
i

KC
i

Figure 3.4.: Merging of an exemplary geometrically small cut-cell KC
i ∈ Ω

CCSmall to the neigh-
bouring element KN

i .

The resulting computational mesh including the merged cells is given by

ΩC M
h =N∪ {K M

i ∈ Ω
C
h \N : K M

i = KC
i ∪ KN

i ∀KC
i ∈ Ω

CCSmall
h , ∀KN

i ∈ Ω
CCNeigh
h }, (3.133)

where

N = ΩC
h \ (Ω

CCSmall
h ∪ΩCCNeigh

h ). (3.134)

is the set of elements which were not involved in the merging process.
Next, the cut-cell discretization approach as presented in Section 3.3.2 is applied to ΩC M

h . The
finite element spaces of the boundary conformal DG method with the additional cell merging
method can be written as

V C M
h = {υ ∈ L2(Ω) : υ|Ki

∈ S(Ki)∀Ki ∈ ΩC M
h }, (3.135)

ΣC M
h = {τ ∈

�

L2(Ω)
�3

: τ|Ki
∈ U(Ki)∀Ki ∈ ΩC M

h }. (3.136)
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where S(Ki) and U(Ki) represent the local finite element spaces. The shape functions υM and
τM of the merged cut-cell K M

i which span the local finite element space S(K M
i ) and U(K M

i ),
respectively, are defined by

υM = υ ∀x ∈ K M
i and υM = 0 ∀x /∈ K M

i , (3.137)

τM = τ ∀x ∈ K M
i and τM = 0 ∀x /∈ K M

i . (3.138)

The shape functions υ and τ are defined on the hexahedral element that contained the for-
mer neighbouring element KN

i . Figure 3.5 shows an exemplary merged cut-cell K M
i where the

checkerboard pattern marks the hexahedral element on which the shape functions υ and τ are
defined. Figure 3.5 also shows that the support of the shape functions υM and τM of K M

i ex-
ceeds the hexahedral element on which they are defined. However, since the shape functions
are polynomial functions, they are also well-defined outside of the red checkerboard pattern.

K M
i

Figure 3.5.: Shape function support of the merged cut-cell K M
i .

For the newly defined computational mesh ΩC M
h and the finite element spaces V C M

h and ΣC M
h

the bilinear form and the matrix formulation of the BCDG method with the additional cell merg-
ing method can be written as introduced in Section 3.3.2 and 3.2.4. Moreover, the system of
equations is solved as shown in Section 3.2.4.
Figure 3.6 shows the numerical fluxes of an exemplary newly merged element K M

i . The element
K M

i is connected by fluxes with all neighbouring elements that share a face with K M
i . Note that

some faces of the newly merged cell K M
i are linked to two elements. For instance, face f of K M

i
is linked with K j and Kl . Therefore, face f has two pairs of numerical fluxes, φ̃h| f j

, D̃h| f j
and

φ̃h| fl , D̃h| fl , since numerical flux terms are defined as integrals over the real faces f j and fl of the
shared face f = f j ∪ fl . The only flux that is dropped by the merging approach is the numerical
flux term between KC

i and KN
i .

The geometry representation of the merged cells is obtained from OCCT and the numerical
integration over these cells is performed using OCCT as shown in Section 3.3.3. Since we per-
form a face-wise matrix assembly, the evaluation of the integrals on merged cells can be easily
conducted by changing the affiliation of the faces. More precisely, faces which are assigned
to elements that are being merged are then assigned to the newly merged cell. This proce-
dure saves computational costs. Numerical results for the cell merging method and the adaptive
approximation order method are presented in Section 4.1.
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K M
i

φ̃h| f j

φ̃h| fl

K j

Kl

Figure 3.6.: Examplary numerical fluxes of the merged cut-cell K M
i .

3.3.5 Discontinuous Galerkin (DG) Hybridization method

In this section we introduce the DG hybridization method for the cut-cell discretization approach.
This hybridization approach combines the DG method with the FE method. As mentioned pre-
viously, one advantage of the DG method is its flexibility. For instance, it enables the natural
embedding of the cut-cells near material interfaces or boundaries. However, compared to stan-
dard FE methods applied to meshes with curved elements, DG methods have a larger total
number of DOF. The DG hybridization method is based on the observation that the potential and
the electric field of the EQS field problems are continuously distributed in elements away form
the interface or boundary. These elements are in general filled with a single material. Therefore,
a continuous standard FE approximation would be more appropriate in these normal elements
since similar results in terms of accuracy can be obtained combined with a substantially lower
number of DOF.
One feature of the BCDG method makes the implementation of an hybridization method
straightforward. The BCDG method uses shape functions which are chosen to be cell-wise
identical with those of the FE method. This implies that the solution space of the FE method can
be considered as a particular solution space of the DG method [33]. Thus, for a mesh with only
normal hexahedral element it is possible to define two topological operators, L and W, which
satisfy the following relations:

φDG = LφF E and φF E =WφDG, (3.139)

where φDG ∈ RN DG
and φF E ∈ RN F E

denote vectors which contain the coefficients φ i
h(t) of the

approximate DG and FE solution of the potential φh (see Section 3.2.2). The operator matrices
L ∈ RN DG×N F E

and W ∈ RN F E×N DG
are purely topological, with W being the pseudo-inverse of L

[33]. Note that the DG DOF are associated to each node, edge and face of each cell in the mesh
whereas the FE DOF are associated to each node, edge and face of the mesh. Furthermore, the
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normal element

cut-cell

Figure 3.7.: Exemplary computational mesh ΩC
h with normal elements and cut-cells.

numerical flux formulation in 3.2.3 allows that a particular potential solution of the DG method
can be obtained by multiplying the FE DOF of each node, edge and face. Note that the FE DOF
of each node, edge and face are multiplied by the number of elements the node, edge or face is
associated to. Therefore, the operator matrix L contains components which are equal to 0 and
1 only. More precisely, for each FE node DOF the matrix components which refer to this node
in the DG method framework are set to 1. The same can be done with all edge and face DOF.
Since the operator matrix W is the pseudo-inverse of L, the matrix components of a particular
node DG DOF in the operator matrix W which refers to the node DOF of the FE method is set to
1/Nn where Nn denotes the number of element which are associated to this node. In a similar
manner the matrix components of edge and face DOF are determined.
Next, relation (3.139) creating the link between FE and DG DOF in normal elements is used
within the cut-cell discretization in order to reduce DOFs in normal elements. More precisely,
relation (3.139) is applied only to the normal elements of our mesh ΩC

h . The cut-cells KC
i ∈

ΩCC
h are excluded from this procedure. The new vector containing the coefficients of a hybrid

potential solution φHY
h ∈ RN HY

is defined by:

φHY =
�

(φ i
h(t))

DG in cut-cells,
(φ i

h(t))
F E in normal elements,

(3.140)

which has to satisfy

φDG = L′φHY and φHY =W′φDG, (3.141)

where L′ ∈ RN DG×N HY
and W′ ∈ RN HY×N DG

are the cut-cell discretization operator matrices. The
components of the operator matrices L′ and W′ corresponding to normal element DOFs are
determined as presented above. However, the matrix components of L′ and W′ associated to
the cut-cell DOFs are set to 1 on the diagonal and to 0 elsewhere. Therefore, relation (3.141) is
always satisfied.
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The matrix formulation of the hybrid scheme is obtained by entering (3.141) in (3.40) and
multiplying with W′. Thus, the matrix formulation of the hybrid scheme is given by

W′
�

−GT IεM
−1G+ S

�

L′
d

d t
φHY =W′

�

GT IκM
−1G− SIκ/ε

�

L′φHY +W′gB. (3.142)

The hybrid matrix formulation is treated in the same way as the matrix formulation presented
in (3.40).
The numerical results of the BCDG method combined with the DG hybridization method are
presented in Section 4.1.6. It is shown that the number of DOF can be reduced substantially
while the approximation errors are of the same order of magnitude as the approximation errors
obtained without the additional DG hybridization.
Note that our method differs to the approach presented in [65] in the way the coupling of the
FE and the DG method is performed. As already mentioned in Section 3.3.1, in [65] the do-
mains where the LDG method and the conforming FE method is applied to have to be specified
a priori. Then, the domains are discretized separately. In our case, the boundary conformal DG
discretization is applied to the whole computational domain. Then, after the assembly routine,
we conduct the DOF reduction using (3.140)-(3.141). Since we do not not know a priori how
many cut-cells and how many normal elements a mesh contains, the coupled LDG-FE method
introduced in [65] can not be used for the present implementation. Nevertheless, it may be
possible to change the implementation in such a way that the number and location of the cut-
cells is known a priori. If such a modification is performed, the coupled LDG-FE method in
[65] could also be applied to the BCDG method. Finally, we would like to emphasize that the
additional computational costs of the DG hybridization are caused by setting up the topological
operator matrices and by multiplying the system of equation with the topological operator ma-
trices. Since these operations can be performed efficiently, the additional computational costs of
the DG hybridizations are limited and are clearly outweighed by the benefit of having less DOF.

3.3.6 Numerical properties of the BCDG method

In Section 3.2.6, we have shown that the DG method satisfies the four most important properties
for numerical methods, namely stability, consistency, conservativeness and convergence. In this
section, we briefly state that the BCDG method also satisfies all four properties for the following
reasons: First, the cut-cells are considered as independent elements in the BCDG method which
are connected by the numerical LDG fluxes just like normal elements in the mesh. Second, the
local finite element spaces S(KC

i ) and U(KC
i ) of cut-cells are also polynomial spaces. Therefore,

these spaces satisfy condition (3.68) which is given by

∇S(KC
i )⊂ U(KC

i ).

This implies that the BCDG method meets all required conditions for the property proofs pre-
sented in Section 3.2.6. Since the properties can be derived in exactly the same way as presented
in Section 3.2.6, we refer to Section 3.2.6 for the derivation of the properties.
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3.4 Discretization of time

The spatial and the time discretization of the electro-quasistatic Maxwell’s equations is performed
separately in this work. As mentioned previously, this kind of separation is referred to as method
of lines [86]. In the previous sections, we have introduced the DG method and the BCDG method
which are applied to the spatial derivatives of the EQS Maxwell’s equations. Both the DG and
the BCDG method transform the EQS Maxwell’s equations to a semi-discrete weak DG formulation
which still contains the time derivative. In this section, the discretization of the time derivative in
the semi-discrete weak DG formulation is described. First, the semi-discrete weak DG formulation is
introduced in a form typically used to present numerical methods for systems of ODEs. Second, the
Θ-method used to discretize the time derivative is presented. Finally, the properties of the Θ-method
are discussed.

Since the semi-discrete weak DG formulation of the EQS Maxwell’s equations in (3.33)-(3.39)
contains a time derivative, it belongs to the class of first order ordinary differential equations
(ODEs). Note that systems of first order ODEs are usually presented in the explicit form. To
derive the explicit form of the system of ODEs we use the matrix formulation4 of the semi-
discrete weak DG formulation. This matrix formulation can be written as follows:

M′
d

d t
φ(t) = K′φ(t) + gB, (3.143)

with

M′ =
�

−GT IεM
−1G+ S

�

, (3.144)

K′ =
�

GT IκM
−1G− SIκ/ε

�

. (3.145)

where the vector φ(t) contains the coefficients φ i
h(t) of the potential solution φh(x , t) in (3.9).

The matrices M′ and K′ are square matrices with M′ ∈ RN×N and K′ ∈ RN×N . Note that the
matrix M′ is regular since we always use permittivity values ε 6= 0 in our EQS approximation.
Moreover, the system of equations in (3.144) is a system of linear ordinary differential equations
[11]. Since the matrix M is invertible, the system of first order ODEs can be written in the
explicit form [78]:

d

d t
φ(t) = f(φ(t), t), with φ(t0) = φ0, (3.146)

where f = M′−1K′φ(t) +M′−1gB and φ(t0) is the initial condition of the ordinary differential
equation. Note that the solution of (3.146) is only uniquely defined if we are given well-defined
initial condition values φ0. Hence, the system of ordinary differential equations in (3.146) is
also called initial value problem. Furthermore, it was shown that for the system of equations in
(3.146) a uniquely defined solution exists if the vector function f is Lipschitz-continuous (see,
e.g. [78]). Therefore, we assume that the Lipschitz-continuity conditions are always satisfied.
4 Note that the bilinear form and the matrix formulation are equivalent. However, applying the standard numer-

ical methods for ODEs to the bilinear form of the weak DG formulation is much more complicated. Therefore,
we prefer to present the matrix formulation of the semi-discrete weak DG formulation.
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The classical numerical methods for ODEs operate on a particular time grid. Therefore, the time
domain [t0, tN] is split into n equidistant time intervals ∆t = (tN − t0)/n [77]. The solution of
(3.146) is evaluated at the following points in time:

tn = t0+ n∆t, n= 0,1, . . . , N . (3.147)

These points are also called grid points and the time interval ∆t is often denoted as grid size
[77].
In most applications either one-step methods or multistep methods are used to solve initial value
problems as presented in (3.146). One-step methods calculate the solution φn+1 at tn+1 based on
the solution φn = φ(tn) calculated at time tn, whereas multistep methods use several previously
computed solutions [78].
In this work, we use the Θ-method which belongs to the class of one-step methods. In general,
one-step methods are written as follows:

φn+1 = φn+∆tΦ(φn+1,φn, h), (3.148)

where Φ(φn+1,φn, h) is the increment function [78].
Note that one-step methods can be further divided into two classes:

• Explicit methods: The calculation of the new solution φn+1 includes only solution informa-
tion available at time tn. In other words, the increment function is given as Φ(φn, h).

• Implicit methods: The right side of (3.148) contains also the (unknown) new solutionφn+1.
Therefore, the increment functions depends also on φn+1, i.e. Φ(φn+1,φn, h).

3.4.1 The Θ-method

In our implementation, we use the simplest type of one-step methods, the so-called Θ-method
which is given by the following equation (see, e.g. [69]):

φn+1 = φn+ (1−Θ)∆t f(φn, tn) +Θ∆t f(φn+1, tn+1), (3.149)

with the parameter Θ ∈ [0, 1]. The increment function of the Θ-method reads

Φ(φn+1,φn, h) = (1−Θ) f(φn, tn) +Θ f(φn+1, tn+1). (3.150)

Note that the parameterΘ governs whether theΘ-method is considered as an explicit or implicit
method. For Θ = 0 the method belongs to the class of explicit methods, whereas for Θ > 0 it
belongs to the class of implicit methods. Furthermore, for particular Θ parameter values, the
method is equivalent to the following well-known methods:

• Backward Euler or implicit Euler method for Θ= 1

• Crank-Nicolson method or trapezoidal rule for Θ= 1/2

• Forward Euler or explicit Euler method for Θ= 0
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3.4.1.1 Properties of the Θ-method for the parameter values Θ= {0, 1/2, 1}

In the following we show the consistency, stability and convergence of the Θ-method.
The consistency of the Θ-method can be shown using the local discretization error τ(∆t) which
is defined by

τ(∆t) =
z(t0+∆t)− z0

∆t
−Φ(φ1,z0, h), (3.151)

where Φ is the increment function specified in (3.148) and φ1 the approximate solution of theΘ-
method at t1 [73]. Furthermore, z denotes the exact solution of the system of ODEs in (3.146)
for the given initial conditions z0 = z(t0). In [73] it is shown that the Θ-method is consistent
since it satisfies

||τ(∆t)|| ≤ γ(∆t) with lim
∆t→0

γ(∆t) = 0. (3.152)

This holds true for all parameter values Θ ∈ [0,1].
Furthermore, the local discretization error defines the consistency order of the system which, in
turn, specifies the approximation quality of each approximation step. The consistency order p
is given by

||τ(∆t)||= O((∆t)p), (3.153)

where O( · ) is the Landau symbol [73].
Next, we introduce the global discretization error which is needed to show the convergence of
the Θ-method. The global discretization error en(T ) of the method is defined by

en(T ) = z(T )−φn with T = tn, n= 1, ..., N . (3.154)

In [73] it is shown that the Θ-method converges if en(T ) satisfies

lim
n→∞
||en(T )||= 0. (3.155)

This condition is fulfilled for all parameter values Θ ∈ [0,1] if the grid size is chosen suffi-
ciently small [73]. Furthermore, the convergence definition shows that the consistency of the
Θ-method implies the convergence of the Θ-method.
The global order of the Θ-method is defined by

||en(T )||= O((∆t)p), (3.156)

when the function f is Lipschitz-continuous [73]. The convergence order p depends on the Θ
value: For Θ ∈ [0, 1] \ {1/2} the Θ-method is of global order p = 1. For Θ = 1/2 the method
is of order p = 2 [78]. Furthermore, it can be shown that the consistency order and the global
order of the method are identical for all Θ ∈ [0,1] [78].
Next, we would like to discuss the stability property of the Θ-method. The stability of the Θ-
method is closely linked with the stiffness phenomena of systems of ODEs. A system of ODEs
is called stiff if the following two conditions hold: First, explicit numerical methods converge
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only for very small grid sizes ∆t. Second, implicit methods converge although much higher
grid sizes are used. In other words, stiff ODEs are ODEs where implicit methods perform much
better than explicit methods [73]. For linear systems of ODEs the stiffness behaviour may be
detected by evaluating the eigenvalues: A system of ODEs is usually considered as stiff if the
system contain some very high negative as well as some very low negative eigenvalues, i.e. the
ratio between the highest and the lowest negative eigenvalue is very high.
Since the semi-discrete weak DG formulation of one of our numerical examples can be consid-
ered as a stiff system of ODEs, we introduce in the following a term which captures the stability
of numerical schemes on stiff ODEs. This stability term is called A-stability (absolute stability)
and is based on the following test equation5[78]:

d

d t
y = λy with λ ∈ C, Reλ≤ 0. (3.157)

The exact solution of the test equation converges to 0 for t → ∞. In addition, the detailed
definition of the A-stability requires that the Θ-method is written in the following form [73]:

y i+1 = y i +∆t Φ(t) = R(z)y i with R(z) =
1+ (1−Θ)z

1−Θz
, z = λ∆t. (3.158)

The function R determines the stability behaviour of the Θ-method. Considering (3.157) and
(3.158), a numerical method is denoted as A-stable if

|R(z)| ≤ 1∀z ∈ C− := {z ∈ C : Re z ≤ 0}. (3.159)

Using definition (3.159), it can be shown that the Θ-method is A-stable for Θ = 1/2 (Crank-
Nicolson method) and for Θ = 1. However, the Θ-method for Θ = 0 (explicit Euler method) is
not A-stable [78].
Furthermore, definition (3.159) and (3.159) indicate which time step sizes ∆t result in stable
results. If the Θ-method is applied to our system of linear equations d/d ty = Ay as given
in (3.146), we have to ensure that we choose a time step ∆t for which the highest absolute
eigenvalue λm =maxi λi of A satisfies the following relation:

|R(∆tλm)| ≤ 1. (3.160)

If this condition is fulfilled for the chosen ∆t value, the Θ-method yields stable results.
In addition to A-stability, a further stability condition, the L-Stability condition, provides further
information about the behaviour of the numerical method on stiff differential equations. A
method is denoted as L-stable, if the method is A-stable and if R(z) satisfies

lim
z→∞

R(z) = 0. (3.161)

In [73] it is shown that the implicit Euler method is L-stable, whereas the Crank-Nicolson is not
L-stable. In general, L-stable methods have some damping effects on the oscillations for higher
∆t values. This effect is called numerical damping [73]. In some cases this is desirable. For
instance, if a L-stable method is applied to the test equation in (3.157) having the eigenvalues
5 The test equation goes back to Dahlquist (1963).
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λi < 0 for all i = 1, ..., n. In this case, the damping effect of the L-stable methods correspond to
the asymptotic behaviour of the solution of the test equation. By contrast, if a L-stable method
is applied to a system of linear ODEs having some eigenvalues λi with Reλi = 0, the L-stable
method might have damping effects on the resulting free oscillations of the system. In this case,
numerical methods that are not L-stable are preferred, since they do not show damping effects.
Finally, we would like to point out that implicit methods involve higher computational costs
since a system of equation has to be solved at each point in time. However, these additional
costs are justified if the system of equations shows certain stiffness behaviour. In this case the
time step ∆t can be set to a significantly higher value for implicit methods which compensates
the additional costs [78].
The numerical results of the BCDG method for EQS field problems on the application example
with non-moving material distributions are obtained using the Crank-Nicolson method (Θ =
1/2). We used the Crank-Nicolson method since it is a second-order method. However, the
EBCDG method is applied using always the implicit Euler method (Θ = 1). As we will explain
in Section 3.6, the EBCDG method employs a projection scheme which requires the use of the
implicit Euler method. Moreover, as we will show in Section 4, the EBCDG method is applied
to a application example which shows a stiffness behaviour, further justifying the use of the
implicit Euler method.

3.4.2 Application of the Θ-method to the semi-discrete weak DG formulation

In this section, we briefly introduce the system of linear equations we obtain from applying the
Θ-method to the semi-discrete weak DG formulation of the DG and the BCDG method. We show
the resulting system of linear equations for both the matrix formulation and the bilinear form
of the semi-discrete weak DG formulation, since both formulations are used in the following.
Applying the Θ-method to the matrix formulation of the semi-discrete weak DG formulation in
(3.109) or in (3.40) yields the following system of linear equations:

�

−GT I(ε+Θ∆t κ)M
−1G+ SI(1+Θ∆t κ/ε)

�

φn+1 = (3.162)
�

−GT I(ε−(1−Θ)∆t κ)M
−1G + SI(1−(1−Θ)∆t κ/ε)

�

φn+ gB,

where the matrices M,G,S and the vector gB are defined as in (3.35)-(3.39). At each point in
time tn+1, equation (3.162) is solved for the potential solution φn+1, using either a direct or a
iterative solver for systems of linear equations. The reader is referred to Section 3.5 for more
details on the solvers used.
The flux density solution vector dn+1 containing the flux density coefficients Di

h(t
n+1) is obtained

by entering φn+1 in (3.33) for each point in time:

dn+1 =M−1IεGφ
n+1+M−1Iεf. (3.163)

Next, we introduce the formulation of the system of linear equations which is obtained by
applying the Θ-method to the bilinear form of the semi-discrete weak DG formulation. As
mentioned previously, the bilinear form and the matrix formulation of the weak DG formulation
are equivalent. However, we also present the bilinear formulation, as it is used to introduce the
EBCDG method in Section 3.6. The Θ-method applied to the bilinear form presented in (3.105)-
(3.106) for the BCDG method and in (3.25)-(3.31) for the DG method yields the following
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discrete weak DG formulation:
Find φh and Dh such that the following equations are satisfied at time tn+1 with n= 1, ..., N :

a
�

1

ε
Dn+1

h ,τ
�

= b
�

φn+1
h ,τ

�

+ f (τ) (3.164)

−b
�

υ, (1+Θ∆t κ/ε)Dn+1
h

�

+ s
�

υn+1, (1+Θ∆t κ/ε)φn+1
h

�

= (3.165)

−b
�

υ, (1− (1−Θ)∆t κ/ε)Dn
h

�

+ s
�

υ, (1− (1−Θ)∆t κ/ε)φh
�

+ g (υ) ,

∀υ ∈ Vh,∀τ ∈ Σh, where a, b, s, f , g are defined as shown in (3.27)-(3.31). The resulting
system of linear equations is solved either with the direct or with the iterative solver presented
in the next section.

3.5 Numerical treatment of the system of linear equations

The numerical solutions of the DG and the BCDG method are obtained by solving the discrete weak
DG formulations for the solution coefficients. In this section we briefly present both the direct and
the iterative solver used to solve the discrete weak DG formulations.

As shown in Section 3.4.2, applying the Θ-method to the semi-discrete weak DG formulation
results in systems of linear equations which have to be solved at each point in time. Furthermore,
as we have shown in Section 3.3.2 and 3.2.5, applying the DG or the BCDG method to the ES
approximation of the Maxwell’s equations yields a system of linear equations which also has to
be solved for the solution coefficients.
Obviously, such a system of linear equations can be written in the form

Aφ = b, (3.166)

where A denotes the system matrix and b the right-hand side vector. The vector φ contains the
coefficients of the potential solution φh. We refer to Section 3.4.2, Section 3.3.2 and Section
3.2.5 for detailed information on the system of linear equations of the DG and the BCDG method
for EQS and ES field problems.
In this work, the systems of linear equations are solved using either the direct solver
SuperLU_DIST or the iterative conjugate gradient (CG) method, both provided by PETSc [3].
The SuperLU_DIST solver is a scalable distributed-memory sparse solver for large systems of
linear equations. It is based on a Gaussian elimination. However, it uses a innovative static
pivoting strategy which enables a fast parallelization of the solver [54].
The CG method belongs to the class of Krylov Subspace methods and iteratively solves the system
of linear equations until a approximate solution is found which satisfies a pre-specified residuum
accuracy. We use the CG method in combination with the incomplete LU (ILU) preconditioner [3].
The CG method has the advantage that it can be applied to very large sparse systems of linear
equations that cannot be handled by direct solvers. The reader is referred to the literature for
further detail on both solvers (see, e.g. [3], [85], [74]).
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3.6 Boundary conformal Discontinuous Galerkin method on moving material
distributions

In Section 3.3, we introduced the DG method with the additional boundary conformal approach to
solve electro-quasistatic applications with non-moving material distributions. However, in certain
real world applications materials move over time. A well-known example is water droplets oscillat-
ing on the insulation layer of high voltage insulators. To apply the BCDG method to field problems
consisting of materials that move over time, we need to take into account the time variable within
the cut-cell discretization approach. In this section, we therefore present an extension of the BCDG
method which can be applied to field problems with moving materials. This extension of the BCDG
method is referred to as EBCDG method in the following.

Most approaches developed for field problems with moving material distributions are based on
meshes that are fitted to the boundary and, furthermore, use a remeshing or mesh adaption
technique to fit the mesh to the material boundary at any point in time. For instance, in [75]
a method based on a finite element scheme on curved conforming meshes is presented for
the water droplet insulator application example (see, e.g. Chapter 1). In contrast to methods
using a remeshing or mesh adaption strategies, the EBCDG method is applied to a single, time
constant hexahedral mesh. Instead of adapting the mesh to the moving material boundaries,
the EBCDG method adapts the cut-cell discretization approach to the moving material boundaries
to obtain sufficiently accurate results. The cut-cell discretization approach of the BCDG method
is designed to accurately treat arbitrarily shaped material interfaces on hexahedral meshes.
Therefore, the adaption of the cut-cell discretization approach to moving material interfaces can
be easily performed by applying the cut-cell discretization to the material interfaces at each
point in time. This implies that only the cut-cells have to be re-evaluated at each point in time.
As the number of cut-cells in a mesh is generally much smaller than the number of normal
elements, the application of the cut-cell discretization has the potential to be more efficient
than a remeshing or mesh adaption strategy.

Applying the cut-cell discretization to materials that move over time on a fixed mesh results in
cut-cell domains which change their volume from one point in time to the next point in time.
Furthermore, the cut-cells are treated at each point in time as independent elements within
the framework as presented in Section 3.3. This implies that each cut-cell has its own set of
approximation functions and DOF. However, in contrast to the BCDG method in Section 3.3,
the approximation and test functions of the EBCDG method become time dependent. In the
following, we use the notation n and n+1 as introduced in Section 3.4 to indicate the variables
at time tn and tn+1. For instance, the material domain of an exemplary cut-cell is denoted as
KC ,n

i at time tn and as KC ,n+1
i at time tn+1. Furthermore, the computational mesh including

normal elements and cut-cells at time tn is defined by ΩC ,n
h = ΩCC ,n

h ∪ ΩN ,n
h where ΩCC ,n

h and
ΩN ,n

h represent the set of cut-cells and the set of normal elements at time tn, respectively. After
the cut-cell discretization is again applied to the material domain at the next point in time, tn+1,
the computational mesh is given by ΩC ,n+1

h = ΩCC ,n+1
h ∪ ΩN ,n+1

h , where ΩCC ,n+1
h and ΩN ,n+1

h are
the set of cut-cells and normal elements at time tn+1, respectively. As the material interface or
boundary moves over time, the number of cut-cells or normal elements in the computational
mesh might change during the simulation. For example, from time tn to time tn+1 the material
distribution may change in such a way that material interfaces or boundaries enter elements
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which have been considered as normal elements at time tn. Such an element is then split into
two independent cut-cells. Obviously, the opposite may happen as well. Elements considered as
cut-cells at time tn may become normal elements at time tn+1.
Next, we introduce the finite element spaces of the approximate solutions of the EBCDG method
for a given point in time. The approximate solutions φh and Dh at time tn+1 are denoted as
φn+1

h = φh(tn+1,x) and Dn+1
h = D(tn+1,x). Since the approximation and test functions change

with time, the global finite element spaces Vh and Σh become time dependent as well. Therefore,
the approximate solutions φn+1

h and Dn+1
h which we need to determine at time tn+1 belong to

the finite element spaces V n+1
h and Σn+1

h given by

V n+1
h = {υn+1 ∈ L2(Ω) : υn+1|Kn+1

i
∈ Sn+1(Kn+1

i )∀Kn+1
i ∈ ΩC ,n+1

h }, (3.167)

Σn+1
h = {τn+1 ∈ [L2(Ω)]3 : τn+1|Kn+1

i
∈ Un+1(Kn+1

i )∀Kn+1
i ∈ ΩC ,n+1

h }, (3.168)

where Sn+1(Kn+1
i ) and Un+1(Kn+1

i ) are the local finite element spaces of element Kn+1
i at time

tn+1. These local finite element spaces are spanned by the shape functions υn+1 ∈ Sn+1(Kn+1
i )

and τn+1 ∈ Un+1(Kn+1
i ).

As shown in Section 3.3, the local finite element spaces of cut-cells KC ,n+1
i ∈ ΩCC ,n+1

h differ
from the local finite element spaces of normal hexahedral elements Kn+1

i ∈ ΩN ,n+1
h . In cut-cells

KC ,n+1
i ∈ ΩCC ,n+1

h , the shape functions υn+1 ∈ Sn+1(KC ,n+1
i ) and τn+1 ∈ Un+1(KC ,n+1

i ) are defined
as

υn+1 = υ ∀x ∈ KC ,n+1
i , (3.169)

υn+1 = 0 ∀x ∈ K \ KC ,n+1
i , (3.170)

and

τn+1 = τ ∀x ∈ KC ,n+1
i , (3.171)

τn+1 = 0 ∀x ∈ K \ KC ,n+1
i , (3.172)

respectively. The functions υ and τ represent shape functions which are defined on the hexa-
hedral element K containing the cut-cell domain KC ,n+1

i . This implies that the shape functions
υn+1 and τn+1 change from time tn to tn+1 because the cut-cell domain changes. However, the
shape functions υ and τ defined on the hexahedral element remain unchanged.
Since normal elements are not intersected by a moving material interfaces or boundaries, the
shape functions υn+1 ∈ Sn+1(Kn+1

i ) and τn+1 ∈ Un+1(Kn+1
i ) of normal elements Kn+1

i ∈ ΩN ,n+1
h

are defined as shown in Section 3.2.7.
As discussed in Section 3.3, the approximate solutions φn+1

h ∈ V n+1
h and Dn+1

h ∈ Σn+1
h for an

exemplary element Kn+1
i ∈ ΩC ,n+1

h can be expressed in terms of shape functions:

φn+1
h,Kn+1

i
=

N
∑

i= j

φn+1
h, j υ

n+1
j (x), (3.173)

Dn+1
h,Kn+1

i
=

N
∑

i= j

Dn+1
h, j τ

n+1
j (x). (3.174)
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The direct sum over all cells yields

φn+1
h (x) =

N C ,n+1
⊕

i=1

φn+1
h,Kn+1

i
(x), (3.175)

Dn+1
h (x) =

N C ,n+1
⊕

i=1

Dn+1
h,Kn+1

i
(x). (3.176)

We have just introduced the approximate solution φn+1
h and Dn+1

h . Next, we introduce the
semi-discrete weak DG formulation for EQS field problems with moving material distributions.

3.6.1 Bilinear form of the EBCDG method

When deriving the bilinear form of the EBCDG method, we follow closely the derivation of
the weak DG formulation shown in Section 3.2 and 3.3. Note that with moving material dis-
tributions the test functions, υn+1 ∈ V n+1

h and τn+1 ∈ Σn+1
h , and the approximate solutions,

φn+1
h ∈ V n+1

h and Dn+1
h ∈ Σn+1

h are time dependent. As in the case of the BCDG method, the
bilinear form of the EBCDG method can be derived by multiplying the mixed formulation of the
EQS Maxwell’s equations by the test functions υn+1 ∈ V n+1

h and τn+1 ∈ Σn+1
h , integrating over

the computational domain Ωh, specifying the numerical fluxes and summing over all elements.
Thus, the bilinear form of the EBCDG method reads:
Find Dh(x, t), φh(x, t) such that

a
�

1

ε
Dh,τn+1

�

= b
�

φh,τn+1
�

+ f
�

τn+1
�

,(3.177)

−b
�

υn+1, (
∂

∂ t
Dh+

κ

ε
Dh)
�

+ s
�

υn+1, (
∂

∂ t
φh+

κ

ε
φh)
�

= g(υn+1), (3.178)

∀υn+1 ∈ V n+1
h ,∀τn+1 ∈ Σn+1

h , where a, b, s, f , g are defined as shown in (3.27)-(3.31).
Next, the Θ-method with Θ = 1 is applied to (3.177)-(3.178). The resulting discrete weak DG
formulation reads:
Find φn+1

h ∈ V n+1
h and Dn+1

h ∈ Σn+1
h such that the following equations are satisfied at each point

in time tn+1:

a
�

1

ε
Dn+1

h ,τn+1
�

= b
�

φn+1
h ,τn+1

�

+ f
�

τn+1
�

, (3.179)

−b
�

υn+1, (1+∆t κ/ε)Dn+1
h

�

+ s
�

υn+1, (1+∆t κ/ε)φn+1
h

�

= (3.180)

− b
�

υn+1,Dn
h

�

+ s
�

υn+1,φn
h

�

+ g
�

υn+1
�

,

∀υn+1 ∈ V n+1
h and ∀τn+1 ∈ Σn+1

h . The approximate solutions Dn+1
h and φn+1

h for each point in
time tn+1 are obtained by solving (3.179)-(3.180) for Dn+1

h and φn+1
h . In this case, we use the

direct solver introduced in Section 3.3.4.1 to solve the system of linear equations in (3.179)-
(3.180). Furthermore, the adaptive approximation order method is used with the EBCDG method
to avoid ill-conditioning. Since the adaptive approximation order method only lowers the approx-
imation order in geometrically small cut-cells, it is easy to implement it in the EBCDG method
and doesn’t change the framework of the EBCDG method.
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However, solving (3.179)-(3.180) is not straightforward, as the right-hand side term of (3.180)
contains approximation and test functions which are defined on different computational meshes.
The right-hand side term6 of (3.180) is given by

− b
�

υn+1,Dn
h

�

+ s
�

υn+1,φn
h

�

+ g
�

υn+1
�

, (3.181)

where b(υn+1,Dn
h) and s(υn+1,φn

h) are defined by

b(υn+1,Dn
h) =

∑

K∈Ωh

∫

K

∇ ·Dn
hυ

n+1dV −
∫

F0

{υn+1}¹Dn
hºdA, (3.182)

s(υn+1,φn
h) =

∫

F0

C11¹φ
n
hº ·¹υn+1

ºdA+

∫

FD

C11υ
n+1φn

h dA, (3.183)

respectively (see Section 3.3.2). Note that the test functions υn+1 in (3.181) belong to the finite
element space V n+1

h and the approximate solutions φn
h and Dn

h belong to V n
h and Σn

h. Since the
cut-cell domains change from tn to tn+1, the finite element spaces , V n

h , Σn
h and V n+1

h , Σn+1
h ,

differ with respect to the support of the approximation functions in the cut-cells. Moreover, the
number of mesh elements might also change from tn to tn+1. This implies that the direct evalu-
ation of (3.181) is not feasible. In the next section we present in detail how an approximation
of (3.181) can be derived.

3.6.2 Evaluation of bilinear forms containing test and approximation functions which
belong to different finite element spaces

In this section, we discuss the evaluation of the integral terms of b(υn+1,Dn
h) and s(υn+1,φn

h)
in (3.181). As mentioned previously, the shape functions of normal elements are defined as
shown in 3.3 and do not change from tn to tn+1, provided that no material interface enters
the normal element. Therefore, the integral terms of b(υn+1,Dn

h) and s(υn+1,φn
h) in (3.181) on

normal elements can be evaluated as shown in Section 3.3. Note that we assume computational
domains with moving material interfaces such as oscillating water droplets surrounded by air.
This implies that the boundary faces are always faces of normal hexahedral elements. Since
the shape functions of normal elements do not change from tn to tn+1, the integral term over
the set of boundary faces with Dirichlet boundary conditions,

∫

FD
C11υ

n+1φn
h dA, can always be

evaluated as presented in Section 3.3.
This implies that we only have to show how the cut-cell integral terms of b(υn+1,Dn

h) and
s(υn+1,φn

h) in (3.181) are evaluated. As shown in (3.169)-(3.172) the shape functions in cut-
cells within the cut-cell domain are equivalent to the shape functions υ and τ which are defined
on the hexahedral element that contains the cut-cell. Furthermore, the shape functions vanish
outside of the cut-cell domain. Since the cut-cell domains change from tn to tn+1, the support of
the shape functions also changes. This implies that the evaluation of the surface integral terms
b(υn+1,Dn

h) and s(υn+1,φn
h) on cut-cells faces in (3.181), which are given by

∫

F0

{υn+1}¹Dn
hºdA+

∫

F0

C11¹φ
n
hº ·¹υn+1

ºdA, (3.184)

6 The parameter C12 is set to C12 = 0 in the bilinear form of the EBCDG method. As shown in Section 3.2.6, this
parameter value also satisfies all of the desired properties.
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becomes extremely difficult. Furthermore, accounting for changes of cut-cell domains, the
change in shape functions on each face results in high additional computational costs.
By contrast, the volume term of b(υn+1,Dn

h) in (3.181) which is given by

−
∑

K∈Ωn+1
h

∫

K

∇ ·Dn
hυ

n+1dx, (3.185)

can be evaluated without huge additional costs, although the test functions and the approximate
solutions belong to different finite element spaces. For this reason, the idea is to transform sur-
face integral terms b(υn+1,Dn

h) and s(υn+1,φn
h) on cut-cells faces in (3.181) to volume integrals.

In the next section, we present this transformation in detail.

3.6.2.1 Transformation of face integral terms to volume integral terms

In this section, we show that the surface integral terms b(υn+1,Dn
h) and s(υn+1,φn

h) in (3.181)
can be expressed by volume integral terms. The surface integral terms b(υn+1,Dn

h) and
s(υn+1,φn

h) can be transformed to volume integrals by using the lifting operators M : L2(F)→ Vh
and L : [L2(F)]3→ Vh as shown in [71] and [7]. These lifting operators are given by

∫

Ωh

M(¹qº)φdV =

∫

F

¹qº{φ}dA and

∫

Ωh

L(¹vº)φdx=

∫

F

¹vº ·¹φºdA. (3.186)

Applying these lifting operators to the integral terms in (3.181) yields

−
∑

Kn+1
i ∈ΩC ,n+1

h

∫

Kn+1
i

∇ ·Dn
hυ

n+1dx+

∫

F0

{υn+1}¹Dn
hºdA+

∫

F0

C11¹φ
n
hº ·¹υn+1

ºdA

+

∫

FD

C11υ
n+1φn

h dA+ g(υn+1) (3.187)

=
∑

Kn+1
i ∈ΩC ,n+1

h

∫

Kn+1
i

�

−∇ ·Dn
h +M(¹Dn

hº) + C11L(¹φ
n
hº)
�

υn+1dV .

In the following, the integrand term of the volume integral in (3.188) is denoted as

ρn
h :=−∇ ·Dn

h +M(¹Dn
hº) + C11L(¹φ

n
hº), (3.188)

since it can be interpreted as an approximation of the charge density ρ which is defined as
ρ = ∇ ·D. Furthermore, the term ρn

h equates to the analytical charge density ρ, if the exact
potential and electric field solution φ and D of the field problem are inserted in 3.188. This is
because the jump and the average of the exact solutions vanish at the interface, i.e. ¹Dn

º = 0
and ¹φn

hº= 0.
Therefore, the integral terms in (3.187) are written in the form

∑

Kn+1
i ∈ΩC ,n+1

h

∫

Kn+1
i

ρn
hυ

n+1dV =−b
�

υn+1,Dn
h

�

+ s
�

υn+1,φn
h

�

+ g
�

υn+1
�

. (3.189)

However, the lifting operators are not evaluated in this work. We just use this theoretical result
to justify the approximation of the integral terms in (3.181) in cut-cells which is presented in
the next section.
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3.6.2.2 Approximation of the volume integral terms

In this section, we show how the volume integral term in (3.189) can be used to obtain an
approximation of (3.181). The idea is to evaluate an approximation of the above introduced
charge density ρn

h . Then, the charge density ρn
h is entered into the volume integral term on the

left hand side of (3.189) to obtain an approximation of (3.181). The evaluation of the left hand
side term of (3.189) is discussed in section 3.6.2.3.
Note that the transformation presented in Section 3.6.2.1 can also be applied to the following
term:

− b
�

υn,Dn
h

�

+ s
�

υn,φn
h

�

+ g (υn) . (3.190)

The charge density ρn
h satisfies

∑

Kn
i ∈Ω

C ,n
h

∫

Kn
i

ρn
hυ

ndV =−b
�

υn,Dn
h

�

+ s
�

υn,φn
h

�

+ g (υn) . (3.191)

The right-hand side of (3.191) can be evaluated as shown in Section 3.3 since the test and
approximation functions in 3.191 are defined at the same point in time tn and, therefore, belong
to the same finite element spaces V n

h and Σn
h. Therefore, equation (3.191) can be used to

evaluate an approximation of ρn
h .

As mentioned before, the finite element spaces of the approximate solutions, Dh and φh, consist
of the local finite element spaces S and U, respectively, which are polynomial spaces. Therefore,
the charge density ρn

h can also be approximated by polynomial local finite element spaces.
Hence, ρn

h is approximated using an expansion of ρn
h in V n

h which is given by7

ρn
h(x) =

⊕

Kn
i ∈Ω

C ,n
h

ρn
h |Kn

i
(x), (3.192)

ρn
h |Kn

i
(x)≈

N p
∑

j=1

ρ
Kn

i ,n
h, j υ

n
j (x), (3.193)

where υn
j ∈ V n

h . Inserting (3.192) in (3.191) yields

∑

Kn
i ∈Ω

C ,n
h

N p
∑

j=1

∫

Kn
i

ρ
Kn

i ,n
h, j υ

n
j (x)υ

ndV ≈−b
�

υn,Dn
h

�

+ s
�

υn,φn
h

�

+ g (υn) . (3.194)

7 Note that for our choice of H1 and H(div )-conforming shape functions the local finite element spaces S and
U span the polynomial spaces Qp,p,p and Qp+1,p,p × Qp,p+1,p × Qp,p,p+1 (see, e.g Section 3.2.7). Therefore,
the expansion of ρn

h in terms of basis functions υn ∈ Sn is an approximation, since M(¹Dn
hº) ∈ Σh and the

local finite element spaces of Σh span the space Qp+1,p,p ×Qp+1,p,p ×Qp+1,p,p. For a finite element space U(K)
which spans the polynomial space [Qp,p,p]3, the term ρh could be exactly expanded in terms of shape functions
υn ∈ Vh, i.e. ρn

h =
∑N p

i=1ρ
n
h,kυ

n. Nonetheless, the numerical results presented in Section 3.6 demonstrate
that the approximation in this case yields accurate results. Furthermore, the convergence study in 4.2 shows
convergence of the method with respect to the energy and the dissipation of the system (see Section 4.2).
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Since the right-hand side term of (3.194) can be evaluated as shown in Section 3.3, an approxi-

mation of ρn
h is obtained by solving (3.194) for the coefficients ρ

Kn
i ,n

h, j . Note that the direct solver

introduced in Section 3.5 is used to solve (3.194) for the coefficients ρ
Kn

i ,n
h, j .

Then, the approximation of ρn
h is entered in (3.189) to evaluate an approximation of (3.181).

Entering ρn
h in (3.189) yields

∑

Kn+1
i ∈ΩC ,n+1

h

∫

Kn+1
i

(
N p
∑

j=1

ρ
Kn

i ,n
h, j υ

n
j )υ

n+1dV ≈
∑

Kn+1
i ∈ΩC ,n+1

h

∫

Kn+1
i

ρn
hυ

n+1dV = (3.195)

−b
�

υn+1,Dn
h

�

+ s
�

υn+1,φn
h

�

+ g
�

υn+1
�

. (3.196)

Note that the integral term

∑

Kn+1
i ∈ΩC ,n+1

h

∫

Kn+1
i

(
N p
∑

j=1

ρ
Kn

i ,n
h, j υ

n
j )υ

n+1dV (3.197)

in (3.195) still contains shape functions which are defined at tn and tn+1 and, therefore, belong
to the different finite element spaces (V n

h , Σn
h) and (V n+1

h , Σn+1
h ). As a next step, we will show

how the term (3.197) is evaluated with respect to the shape functions υn and υn+1. For the sake
of simplicity, we use the matrix formulation of the term (3.197) which is given by

Pn,n+1ρ with
�

Pn,n+1
�

i j
=

∑

Kn+1
i ∈ΩC ,n+1

h

∫

Kn+1
i

υn
jυ

n+1
i dV , (3.198)

where ρ denotes the vector of the coefficients ρ
Kn

i ,n
h, j .

3.6.2.3 Evaluation of the components of matrix Pn,n+1

In this section, we present how the matrix components of Pn,n+1 are evaluated. The matrix
components of Pn,n+1 on cut-cells are evaluated by exploiting the fact that the cut-cell shape
functions, υn and υn+1, are equivalent to the shape function υ within the cut-cell domain. As
shown in (3.169), this shape function is defined on the hexahedral element in which the cut-cell
is located. Figure 3.8 illustrates two exemplary cut-cells, KC and KD, which change their volume
from time tn to tn+1. The cut-cell domain of KC grows from tn to tn+1, whereas the cut-cell
domain of KD shrinks form from tn to tn+1. By definition, the shape functions υC ,n and υC ,n+1 of
Kn

C and Kn+1
C , respectively, are equivalent on the cut-cell volume of Kn

C . However, υC ,n vanishes
outside of Kn

C . This implies that the matrix coefficients of Pn,n+1 for cut-cell Kn+1
C satisfy

�

Pn,n+1|Kn+1
C

�

i j
=

∫

Kn+1
C

υC ,n
j υ

C ,n+1
i dV =

∫

Kn
C

υC ,n
j υ

C ,n
i dV , (3.199)

since υC ,n vanishes ∀x ∈ Kn+1
C \Kn

C and υC ,n+1 = υC ,n ∀x ∈ Kn
C . Therefore, the matrix coefficients

of Pn,n+1 of cut-cell KC are evaluated using the right-hand side term of (3.199). The matrix
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Kn
C

Kn+1
CKn+1

D

Figure 3.8.: Figure of a hexahedral cell containing two cut-cells which change their material do-
main from time tn to tn+1.

coefficients of Pn,n+1 of cut-cell KD are evaluated in a similar fashion since υD,n+1 vanishes for
all x ∈ Kn

D \ Kn+1
D and it further holds υD,n = υD,n+1 ∀x ∈ Kn+1

D . This implies that the matrix
coefficients of Pn,n+1 of cut-cell Kn+1

D satisfy

�

Pn,n+1|Kn+1
D

�

i j
=

∫

Kn+1
D

υD,n
j υ

D,n+1
i dV =

∫

Kn+1
D

υD,n+1
j υD,n+1

i dV . (3.200)

As before, the matrix coefficients of Pn,n+1 of cut-cell Kn+1
D are evaluated using the right-hand

side term of (3.200).
Furthermore, we obtain additional non-zero matrix entries in Pn,n+1 for cut-cell Kn+1

C since the
shape functions υD,n of cut-cell Kn

D are not equal to zero on the domain Kn+1
C ∩ Kn

D = Kn+1
C \ Kn

C .
In this case, the matrix components are given by:

�

Pn,n+1|(Kn+1
C ∩Kn

D)

�

i j
=

∫

Kn+1
C ∩Kn

D

υD,n
j υ

C ,n+1
i dV =

∫

Kn+1
C \Kn

C

υC ,n+1
j υC ,n+1

i dV . (3.201)

The shape functions υD,n of cut-cell Kn
D on the domain Kn+1

C ∩ Kn
D = Kn+1

C \ Kn
C are equivalent

to the shape functions υC ,n+1 on Kn+1
C ∩ Kn

D = Kn+1
C \ Kn

C . Therefore, the matrix components
of (3.201) are evaluated using the right-hand side term of (3.201). Note that the calculation
of the matrix coefficients in (3.199), (3.200) and (3.201) must take into account the correct
approximation orders p of the shape functions.
In the case of a shrinking cut-cell domain KC and a growing cut-cell domain KD from time tn

to tn+1, the evaluation of the matrix coefficients of Pn,n+1 is performed in a similar fashion. We
only have to interchange the cut-cell domains in the (3.199), (3.200) and (3.201).
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Moreover, when a normal element Ki at time tn splits into two cut-cells KC and KD at tn+1, the
matrix coefficients are calculated in the following way:

�

Pn,n+1|Kn+1
C

�

i j
=

∫

Kn+1
C

υn
jυ

C ,n+1
i dV =

∫

Kn+1
C

υC ,n+1
j υC ,n+1

i dV , (3.202)

�

Pn,n+1|Kn+1
D

�

i j
=

∫

Kn+1
D

υn
jυ

D,n+1
i dV =

∫

Kn+1
D

υD,n+1
j υD,n+1

i dV . (3.203)

In the reverse case, when cut-cells Kn
C and Kn

D become a normal element Ki at time tn+1, the
calculation is performed in a similar fashion.
Note that we have now presented the evaluation of the matrix components of Pn,n+1. In a final
step, we show how we treat normal elements which stay normal elements from tn to tn+1 in
matrix Pn,n+1. As already mentioned, the shape functions in normal elements do not change
at each point in time which means that υn+1 = υn = υ. This implies that the right-hand side
term in (3.191) and (3.180) are equivalent. The right-hand side term in (3.191) and (3.180)
on normal elements can be written in the form:

− b
�

υ,Dn
h

�

+ s
�

υ,φn
h

�

+ g (υ) . (3.204)

Note that we consider the normal elements in the approximation of the charge density. However,
we set the matrix entries of normal elements in Pn,n+1 and Pn,n, given by

Pn,n+1 = Pn,n with (Pn,n)i j =
∑

Kn
i ∈Ω

C ,n
h

∫

Kn
i

υiυ jdV , (3.205)

to the identity matrix. This procedure doesn’t change the right-hand side term in (3.206).
Having evaluated the matrix components of Pn,n+1, the matrix is multiplied by the vector ρ of
the coefficients. This yields the desired approximation term in (3.180).

3.6.3 Alternative approaches for the evaluation of the bilinear forms

In this section, we present two alternative approaches to evaluate the integral terms of
b(υn+1,Dn

h) and s(υn+1,φn
h) in (3.181) which we have implemented and tested.

The first approach evaluates the integral terms of (3.181) by using the approximate solutions
D̄n

h and φ̄n
h of Dn

h and φn
h which are projected to the cut-cell discretization at time tn+1 using a

standard L2-projection. More precisely, the L2-projection of the approximate potential solution
φn

h reads

∑

Kn+1
i ∈ΩC ,n+1

h

∫

Kn+1
i

(
N p
∑

j=1

φ̄
Kn

i ,n
h, j υ

n+1
j )υ

n+1
i dV =

∑

Kn+1
i ∈ΩC ,n+1

h

∫

Kn+1
i

φn
hυ

n+1
i dV , (3.206)

where φ̄n
h =

∑N p

j=1 φ̄
k,n
h, j υ

n+1
j represent the approximate potential solution φn

h projected to the

cut-cell discretization ΩC ,n+1
h at time tn+1. The L2-projection of the flux density term is con-

ducted similarly. The approximation of the integral terms of (3.181) is then obtained by enter-
ing both projections of the approximate solutions in (3.181). Solving (3.179)-(3.180) for Dn+1

h
and φn+1

h yields the approximate solutions at each point in time.
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The second alternative approach is based on an approximation of the integral terms of
b(υn+1,Dn

h) and s(υn+1,φn
h) in (3.181) which is given by:

−
∑

K∈Ωn+1
h

∫

K

∇ ·Dn
hυ

n+1dx+

∫

FD

C11υ
n+1φn

h dA+ g
�

υn+1
�

≈ (3.207)

−b
�

υn+1,Dn
h

�

+ s
�

υn+1,φn
h

�

+ g
�

υn+1
�

.

This approximation is motivated by the fact that the first integral term can be interpreted as an
approximation of the charge density term since ρ =∇ ·D. Furthermore, the two interface terms
vanish for the exact solutions φ and D, i.e. ¹Dn

º = 0 and ¹φn
hº = 0. Both surface integral

terms of b(υn+1,Dn
h) and s(υn+1,φn

h) in (3.181) are considered as residual terms and, therefore,
neglected in (3.207).
However, for both alternative approaches we didn’t obtain numerically stable results. Only the
approach presented in Section 3.6.2 yields numerically stable results. Furthermore, the EBCDG
method combined with the approach presented in Section 3.6.2 shows convergence with respect
to the energy and power dissipation for the chosen application example. The reader is referred
to Chapter 4 for further details on the numerical results of the EBCDG method.
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4 Numerical Examples
This chapter presents various numerical simulation results of the BCDG method introduced in Chap-
ter 3. The outline of this chapter is as follows: First, we present the simulation results of the BCDG
method on a verification example. We use a standard cylindrical capacitor field problem with two
dielectric layers to assess the accuracy of the BCDG method. Several convergence studies and a com-
parison study using the commercial software CST STUDIO SUITE®2012 [1] demonstrate the high
accuracy of the BCDG method for this example. Furthermore, we use this example to show that
both the adaptive approximation order method and the cell merging method reduce the condition
number of the linear system of equations substantially. Next, the simulation results of the BCDG
method with and without the additional DG hybridization on the cylindrical capacitor example
illustrate that this hybridization reduces the DG DOF significantly without affecting the high accu-
racy of the BCDG method. In Section 4.2, we present the numerical results of the EBCDG method
for the application example of an oscillating water droplet lying on the insulation layer of a high
voltage insulator. In contrast to the cylindrical capacitor example, this application example com-
prises a material domain that moves over time. The potential and electric field simulation results
of the EBCDG method are shown at different points in time. Furthermore, a convergence study is
presented which demonstrates the convergence of the EBCDG method with respect to the energy and
power dissipation of the field problem.

4.1 Verification of the BCDG method using a cylindrical capacitor example

The BCDG method presented in Chapter 3 can be applied to both the EQS and the ES approx-
imation of the Maxwell’s equations which are introduced in Chapter 2. To assess the accuracy
of the BCDG method on ES and EQS field problems with non-moving material domains, we
apply the method to a verification example [63]. In this work, we choose the field problem of a
cylindrical capacitor example filled with two dielectric layers (see Figure 4.1). Note that in this
section we focus on field problems with non-moving material domains. Field problems which
comprise moving materials are considered in Section 4.2.2. The cylindrical capacitor example
represents an EQS field problem if time varying voltage excitations at low frequencies are ap-
plied to the cylindrical electrodes [90]. For constant voltage excitations the field distribution
can be described by the ES approximation of the Maxwell’s equations. In both cases the an-
alytical solution is well-known. In various convergence studies in Section 4.1.3 the analytical
solution is used to assess the accuracy of the numerical solutions of the BCDG method. Fur-
thermore, in Section 4.1.4 the verification example is used to compare the simulation results of
the BCDG method to the simulation results obtained with the commercial software CST STU-
DIO SUITE®2012 [1]. In Section 4.1.1, the modelling details of the verification example are
presented.
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4.1.1 Modelling of the cylindrical capacitor

The geometric outline of the numerical model of the cylindrical capacitor is shown in Figure 4.1.
Since cylindrical capacitors are axially symmetric, it is sufficient to model only a quarter part of
the cylindrical capacitor. For this reason, Figure 4.1 only shows a quarter part of the cylindrical
capacitor. The blue and green material domains represent the dielectric materials layers which

Ω2,
κ2, ε2

Ω1,
κ1, ε1

l

r1

r2

z

y

x

Figure 4.1.: Computational domain of the cylindrical capacitor verification example.

fill the space between the cylindrical electrodes. The green material layer is indicated by Ω1.
It is assumed to have length l = 10mm, radius r1 = 4mm and the material parameters ε1 and
κ1. The blue material domain denoted as Ω2 has the same length and radius, i.e. l = 10mm,
r2 = 4mm, but different material parameters ε2 and κ2. The values of the material parameters
are specified below. Note that the real length L of the cylindrical capacitor example is assumed
to be much longer than both length l and radius r = r1 + r2, i.e. L >> (r1 + r2). We make this
assumption so that the electric field in x-direction can be neglected. However, the computational
domain doesn’t need to be of length L. As the capacitor is axially symmetric, it is sufficient to
model only a part of the cylindrical capacitor with length l and enforce the negligible electric
field in x-direction by homogeneous Neumann boundary conditions.
In Figure 4.1, the cylindrical electrodes are represented by the grey cylindrical sheets at the
inner and outer cylindrical face of the blue and green material domains. Since the electrodes
consist of perfectly conducting materials, we model the voltage excitation applied to the cylin-
drical electrodes as boundary conditions. This implies that the computational domain Ω of the
cylindrical capacitor is given by Ω = Ω1 ∪ Ω2. The boundary Γ = ∂Ω of the computational
domain is partitioned into boundaries with Dirichlet and Neumann boundary conditions. The
Dirichlet boundary conditions enforce the voltage excitation which is applied to the cylindrical
electrodes. In the EQS case we apply a sine voltage at a frequency of 50 Hz. Therefore, the
values of the potential at the inner and outer cylindrical face are set to φD1(t) = sin(2Π f t)V
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with f = 50Hz and φD2(t) = 0V . The initial value is φh(t0 = 0) = 0. In the ES case a constant
voltage is enforced withφD1 = 1V andφD2(t) = 0V . Furthermore, we apply homogeneous Neu-
mann boundary conditions to the remaining plane boundary faces, since the analytical electric
fields on these faces vanish in normal direction.
Figure 4.1 furthermore shows an exemplary mesh with hexahedral elements illustrated by the
black lines. This mesh completely covers the computational domain. In this example, we restrict
ourselves to hexahedral elements with an equidistant element length h with h ∈ [l/3, l/30].
Next, the LDG flux parameters and the Θ parameter need to be specified. The LDG flux parame-
ters C12 and C11 are set to C12 = 0 and C11 = O(c/h) where c ∈ [0,−1]. Note that the simulation
results of the BCDG method on the cylindrical capacitor example show that the same order of
magnitude is obtained for all c ∈ [0,−1]. Furthermore, the semi-discrete weak DG formulation
in the EQS case is solved using the Θ-method with Θ = 1/2 (Crank-Nicolson method), since it
is a second-order method for this value (see Section 3.4 for more information).
As mentioned before, the analytical potential and electric field solutions for the above specified
cylindrical capacitor example are well-known (see, e.g. [90] for further information). Using the
parameter values r =

p

(y − l)2+ (z− l)2, rA = 2, rI = 6, rE = 10, r1 = rI − rA, r2 = rE − rI ,
ε1 = 6ε0, ε2 = ε0, κ1 = 10−8 and κ2 = 10−12, the analytical potential solution of the EQS
cylindrical capacitor example is given by:

φan(r) = cos(2 f Πt)(0.0614293− 0.0886238 log(r)) + (4.1)

sin(2 f Πt)(1.13938− 0.20108 log(r)) ∀r with rA < r < rI ,

φan(r) = cos(2 f Πt)(−0.438872+ 0.1905996 log(r)) + (4.2)

sin(2 f Πt)(3.51181− 1.525158 log(r)) ∀r with rI < r < rE.

In the ES case, the analytical potential solution for the same set of parameter values reads

φan(r) = 1.16648− 0.240179 log(r) ∀r with rA < r < rI , (4.3)

φan(r) = 3.31819− 1.44107 log(r) ∀r with rI < r < rB. (4.4)

The analytical electric field solution can be derived by entering (4.1) and (4.2) in equation
(3.33). This step is omitted for the sake of brevity.
Note that all parameter values used to model the cylindrical capacitor are chosen randomly.
Since we consider this cylindrical capacitor example as an artificial verification example for the
BCDG method, we have tested many different sets of parameters. As we obtained similar results
with respect to the rates of convergence with all tested sets of parameters, we decided to chose
randomly the particular set of parameters which we just presented.
Having completely described the modelling of the cylindrical capacitor example, we now present
the simulation results obtained with the BCDG method.

4.1.2 Simulation results of the BCDG method

In this section, we show the potential distribution of the numerical solution on the ES cylindrical
capacitor example. Figure 4.2 illustrates the potential distribution when the BCDG method using
the cell merging method and the DG hybridization is applied to this example. The above presented
parameter values, grid parameter h = l/4 and approximation order p = 3 were used in this
case. Furthermore, Figure 4.2 demonstrates that the BCDG method provides a high resolution
potential distribution, even when we use a coarse mesh with four hexahedral elements in each
spatial direction and approximation order p = 3.
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Figure 4.2.: Potential simulation results of the BCDG method with the cell merging method and
the DG hybridization for the ES cylindrical capacitor example

4.1.3 Convergence study of the BCDG method using the analytical solution

In this section, we compare the numerical results of the BCDG method on the cylindrical capac-
itor example with the known analytical solution introduced in (4.1)-(4.4). Note that we present
the convergence study for both the ES and the EQS cylindrical capacitor field problem. Since
the BCDG method can be applied to the cylindrical capacitor example with either the cell merg-
ing method or the adaptive approximation order method, we show convergence studies for both
supplementary methods. We first present the convergence study of the BCDG method combined
with the cell merging method, before we show the convergence study of the BCDG method com-
bined with the adaptive approximation order method. Note that both convergence studies are
performed using the BCDG method with the additional DG hybridization.
To assess the accuracy of the simulation results, we require an appropriate accuracy measure.
This accuracy measure is introduced in the next section.

4.1.3.1 Error criterion

In both convergence studies the accuracy of the BCDG method is presented with respect to the
relative error εrel

L2 measured in the broken L2-norm, a commonly used accuracy measure for DG
methods [38]. We need to distinguish between the relative error in the ES and EQS case. In
the ES case, the relative error εrel

L2 for a scalar function u ∈ V C
h and a vector function v ∈ ΣC

h is
defined by

εrel
L2,φ
=



φh−φan





L2


φan





L2

and εrel
L2,E
=



Eh− Ean





L2


Ean





L2

, (4.5)
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where the L2-norm of the scalar and vector functions are given by:

‖u‖2
L2 =

∑

Ki∈ΩC
h

∫

Ki

u2dV and ‖v‖2
L2 =

∑

Ki∈ΩC
h

∫

Ki

v ·vdV , (4.6)

respectively. In the EQS case, the relative error εrel
L2 on a time interval [ta, te] with ta, te ∈ R is

defined as follows:

εrel
L2,φ
=

maxt∈[ta,te]



φh−φan





L2

maxt∈[ta,te]



φan





L2

and εrel
L2,E
=

maxt∈[ta,te]



Eh− Ean





L2

maxt∈[ta,te]



Ean





L2

, (4.7)

where te = ta + 1/ f and T = te − ta. The time value T represents one period of the sinusoidal
voltage excitation.

4.1.3.2 BCDG method with the cell merging method and the DG hybridization

The presentation of the convergence studies for the BCDG method with the cell merging method
and the DG hybridization is organized as follows: First, the used time step, time interval and
threshold parameter values of the method are discussed. Then, the relative error results for the
EQS and the ES cylindrical capacitor field problem are shown.
As stated in Section 3.3.4.2, the cell merging method uses a threshold TM = tM Vn, which depends
on the volume Vn of the normal hexahedral elements in the mesh. The threshold value tM is a
dimensionless parameter which differs across approximation order p. We obtain the threshold
values by performing calibration tests on the cylindrical capacitor example. The simulation
results presented in Figure 4.3 are based on the following threshold values: tM = 0.001 for
p = 1, tM = 0.05 for p = 2 and tM = 0.16 for p = 3. A threshold value of tM = 0.16 for
p = 3 implies that all cut-cells with a volume smaller than 16% of the volume Vn of normal
mesh elements are merged to neighbouring elements. Note that the threshold value increases
with the approximation order. Since the increase in threshold value tM from p = 2 to p = 3 is
significant and, furthermore, the threshold value tM = 0.16 for p = 3 is already high, we expect
the threshold value tM for p = 4 to be greater than 0.25. From the implementation point of
view, a threshold value tM > 0.25 is not feasible, since too many cut-cells would have to be
merged. Therefore, we refrain from considering approximation orders with p ≥ 4.
The convergence study presented below shows convergence with respect to the grid parameter
h. For this convergence study we apply the Θ-method with the time step ∆t = 3.125E-6. This
time step is obtained from a further convergence study of the BCDG method with respect to the
time step ∆t. For this time step, the study shows that the error caused by the Θ-method can be
neglected.
Note that the relative error of the EQS approximation is measured in the interval [ta =
0.08s, te = 0.1s]. For the EQS cylindrical capacitor example, the initial conditions φh(t0) = 0
are used as they are straightforward to implement. However, these initial conditions differ to the
assumed initial conditions of the homogeneous analytical solution presented in Section 4.1.1.
This implies that we enter an additional error term in the calculation of the relative error if the
analytical solution in (4.1)-(4.2) is used. To check at which time the additional error of the rela-
tive error term caused by the different initial conditions can be neglected, we use the relaxation
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time τe (see, e.g. [37]). It indicates how fast the additional error with respect to the different
initial conditions decays to zero. For our example, we find that at ta = 0.08s the potential solu-
tion of the non-homogeneous potential initial conditions is of order e−ta/τe = e−ta/(ε/κ) ≈ 0 and,
therefore, negligible.
Figure 4.3 shows the relative errors of the EQS potential and electric field solution, φh and Eh, of
the BCDG method combined with the additional cell merging method and the DG hybridization
for different grid parameters h and approximation orders p. Note that the grid parameter h ∈
[1/30, 1/4] is the reciprocal of the number of elements along each axis. Since we use equidistant
hexahedral mesh elements, the number of elements are equal for each axis. The relative error
is evaluated for the approximation orders p = 1,2, 3 of the shape functions (see Section 3.2.7
for more details). In Figure 4.3, the square symbols represent the relative errors of the potential
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Figure 4.3.: L2-convergence plot of the EQS potential and the electric field solutions of the BCDG
method combined with the cell merging method.

φh and electric field Eh obtained for various grid parameters h and for each approximation
order p = 1, 2,3. The coloured lines represent fitted lines through the relative errors. Since
we use a log-log scale the slope (gradient) of the lines indicates the rate of convergence of
the relative error for the applied approximation order. The convergence of the relative error
is approximately of order O(hR) where R denotes the slope of the line and, therefore, the rate
of convergence. The obtained rates of convergence R are listed in the legend of Figure 4.3.
The black lines in Figure 4.3 represent the reference rates of convergence O(hp+1) of the L2

error estimate for the standard LDG method. The relative error of the BCDG method using the
cell merging method converges approximately at the rate of convergence, p+ 1, for the electric
potential and at rate, p, for the electric field for the approximation orders p = 1,2 and p = 3.
These results are in line with the L2 error estimate for the standard LDG method on hexahedral
elements presented in Section 3.2.6. This implies that the cut-cell discretization with the cell-
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merging method and the DG hybridization doesn’t influence the acccuracy of the standard DG
framework. Furthermore, our results are in accordance with the convergence rates reported by
other authors using the standard LDG method on hexahedral elements (see, e.g. [20], [17] or
[65]).
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Figure 4.4.: L2-convergence plot of the ES potential and the electric field solutions of the BCDG
method combined with the cell merging method.

For the ES cylindrical capacitor field problem similar relative error results are obtained. Fig-
ure 4.4 shows the relative ES errors with respect to the grid parameter h for each approximation
order p = 1, 2,3. As before, the square symbols represent the relative errors obtained. The
coloured lines are fitted lines through the relative ES errors of the BCDG method. The BCDG
method using the cell merging method and the DG hybridization converges approximately with
the rate of convergence p + 1 for the electric potential and p for the electric field for p = 1,2
and p = 3 (see Section 3.2.6). Hence, in the ES case we obtain optimal convergence rates for
the BCDG method, too. Finally, we would like to state that the rates of convergence we obtain
are similar to the convergence results which have been reported by other authors using similar
cut-cell discretization approaches on the Nitsche’s method (see, e.g. [48], [57], [9]).

4.1.3.3 BCDG method with the adaptive approximation order method and the DG
hybridization

In this section, we assess the accuracy of the BCDG method combined with the adaptive ap-
proximation order method and the DG hybridization. We apply the method again to the EQS
and ES cylindrical capacitor field problem. The adaptive approximation order method divides the
set of small cut-cells into different sets of small cut-cells according to their volume. Therefore,
several thresholds are applied to the cut-cells in the mesh. As presented in Section 3.3.4.1 the
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thresholds of the adaptive approximation order method are denoted as Ti = t iVn, ∀pi < pp with
i = 1, ..., p−1. The parameter t i represents the threshold value which differs across approxima-
tion orders p. However, in our implementation for p = 3 we set t1 equal to t2. The quantity Vn
represents the volume of the normal hexahedral elements of the mesh. The simulation of the
cylindrical capacitor example is conducted using the following combination of threshold values
for t i: t0 = 0.001 for p ≥ 1; t1 = 0.05 for p = 2 and t1 = t2 = 0.16 for p = 3. These values are
determined by calibration tests on the cylindrical capacitor examples. As described in Section
3.3.4.1 the staircasing approximation is applied to cut-cells which have a volume smaller than
the threshold T0 = t0Vn for p ≥ 1. Furthermore, the approximation order p = 1 is assigned to
cut-cell KC

i which belong to the set of cut-cells with volumes smaller than T1 = t1Vn for p = 2, 3
(i.e. KC

i ∈ Ω
CC p1
h , see Section 3.3.4.1 for more details). As before, we restrict ourselves to the

approximation orders p = 1, 2,3. Figure 4.5 shows the relative errors of the BCDG method for
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Figure 4.5.: L2-convergence plot of the EQS potential and the electric field solutions of the BCDG
method combined with the adaptive approximation order method.

the EQS cylindrical capacitor field problem. Both the relative electric potential errors and the
electric field errors for the different grid parameters h and approximation orders p are shown.
The square symbols represent the relative errors. The coloured fitted lines and the reference
lines are specified in the same way as in Figure 4.3 and Figure 4.4. Figure 4.5 illustrates that
the rates of convergence of the BCDG method using the adaptive approximation order method
and the DG hybridization are approximately of order p+1 for the approximate potential solution
and of order p for the approximate electric field solution for p = 1,2.
The relative errors obtained for the ES cylindrical capacitor example are presented in Figure 4.6.
We approximately obtain the optimal rates of convergence p + 1 for the ES potential solution
and p for the ES electric field solution for p = 1,2. However, for approximation order p = 3 the
rate of convergence of the potential and the electric field solution of the ES and EQS cylindrical
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Figure 4.6.: L2-convergence plot of the ES potential and the electric field solutions of the BCDG
method combined with the adaptive approximation order method.

capacitor example is slightly lower than p + 1 and p, respectively. This might be caused by
assigning the approximation order p = 1 to all cut-cells with a volume smaller than T1 = 0.16Vn.
We believe that the rates of convergence for approximation order p = 3 become optimal if
another threshold value T2 > T1 is introduced. With two threshold values, we could first lower
the approximation order to p = 2, before we use p = 1 for very small cut-cells1. However, the
trimming of the convergence rate to optimal orders by changing the threshold values is left for
future work.

The relative error results shown in Figure 4.3-4.6 demonstrate that the BCDG method combined
with either the cell merging method or the adaptive approximation order method yields optimal
convergence rates for p = 1, 2. This implies that the accuracy of the DG framework in the
EQS and ES case in not affected for p = 1, 2. For p = 3 the BCDG method combined with
the cell merging method yields slightly better results than the BCDG method combined with the
adaptive approximation order method. However, for p = 3 the slightly lower accuracy of the
BCDG method combined with the adaptive approximation order method is outweighed by the
method’s simplicity which results in slightly lower computational costs. Since the differences
in accuracy and computational costs are rather small, we conclude that both methods are well
suited for ES and EQS field applications.

1 For instance, the lower order p2 = 2 could be assigned to cut-cell domains KC
i which satisfy 0.05Vn ≤

Volume(KC
i )≤ 0.16Vn
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4.1.4 Comparison study with the commercial software CST STUDIO SUITE®2012

In this section we compare the simulation results of the BCDG method with simulation results
obtained with the commercial software CST STUDIO SUITE®2012[1]. The simulation results
which we present below are obtained by conducting simulations on the ES cylindrical capacitor
field problem presented in Section 4.1.1. As CST EM STUDIO®2012 doesn’t include a transient
solver for EQS field problems, we restrict ourselves to the ES case [1]. Since the relative errors
of the BCDG method for the EQS and ES cylindrical capacitor example presented in Section
4.1.3 approximately converge at the same rates of convergence, we consider it to be sufficient
to only compare the simulation results obtained on the ES cylindrical capacitor example.
To simulate the ES cylindrical capacitor example with CST EM STUDIO®2012 we use the Elec-
trostatics Field Solver. This solver is based on a finite element method. In order to exactly
model the cylindrical capacitor, the simulations in CST EM STUDIO®2012 are performed using
a tetrahedral mesh with curved elements up to order three [1]. Note that we use the same
CAD model of the cylindrical capacitor for the simulation with CST EM STUDIO®2012 as well
as with the BCDG method. The boundary conditions are identically enforced in both methods.
Furthermore, the following material parameter values are assumed: ε1 = ε0 and ε2 = 6ε0. All
other parameter values2 are set to the values introduced in Section 4.1.1. Furthermore, the
simulations of the BCDG method on the cylindrical capacitor are performed with the threshold
values introduced in Section 4.1.3.
In this section, the accuracy of the numerical solutions obtained with CST EM STUDIO®2012
and the BCDG method is presented using a relative error measure for the ES energy. This error
measure is chosen because the ES energy can easily be evaluated in and exported from CST EM
STUDIO®2012.
This relative error measure is calculated for the simulation results obtained with CST EM
STUDIO®2012 and the BCDG method combined with both the cell merging method and the
adaptive approximation order method with respect to the analytical solution. The relative error
is defined as follows:

εrel
E =

We,h−We,an

We,an
, (4.8)

with

We,h =
1

2

∫

Ω

Eh ·DhdV and We,an =
1

2

∫

Ω

Ean ·DandV, (4.9)

where We,h denotes the ES energy of the simulation results and Wan,h the analytical ES energy
(see Section 2.2.2.3 for more information). Note that approximate electric field and flux density
solution results of the cylindrical capacitor example obtained from CST EM STUDIO®2012 or
the BCDG method are denoted as Eh and Dh in (4.9) . The quantities Ean and Dan in (4.9) repre-
sent the analytical electric field and flux density solutions of the cylindrical capacitor example.
2 The permittivity values are changed because we obtain errors with respect to the energy of the BCDG method

which are of order 3E-6 for p = 3 and the largest grid size h = 10/4. As presented in Section 3.3.3, we use
the geometry kernel OCCT in our BCDG method to evaluate the integrals of the DG formulation. Since the
precision value in OCCT is set to 1E-7, we are not able to show simulation results of the BCDG method which
are lower than 1E-7. Therefore, we changed the permittivity values to obtain larger error values for p = 3
which enable us to show convergence rates also for p = 3.
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The relative error results of the simulations on the ES cylindrical capacitor example are shown in
Figure 4.7. Note that we show the relative errors with respect to the ES energy of the simulation
results obtained with CST EM STUDIO®2012 and the BCDG method either with the cell merging
method or the adaptive approximation order method and the additional DG hybridization. The
square symbols in Figure 4.7 represent the relative errors and the lines are obtained by a least
square fit through the relative errors for the applied approximation orders p = 1,2, 3. In contrast
to the convergence plots presented in Figure 4.3-4.6, the relative error is plotted with respect
to the number of DOF. Plotting the relative error with respect to the grid parameter h is not
feasible in this case, since the simulations in CST EM STUDIO®2012 are based on tetrahedral
meshes with curved elements, whereas the BCDG method is based on structured hexahedral
meshes. The relative errors in Figure 4.7 are illustrated using a log-log scale. It enables us to
represent the rate of convergence with respect to the DOF as straight lines. The gradient or
slope of the lines R represents the rate of convergence. Therefore, the convergence with respect
to the relative error is approximately of order O(DOF−R).

The coloured solid lines represent the line fit through the relative errors of the simulation results
obtained with CST EM STUDIO®2012 for p = 1,2, 3. Note that the applied curved element
order pce corresponds to the applied approximation order, i.e. p = pce. The dashed lines in
Figure 4.7 are fitted lines through the relative errors of the BCDG method for the adaptive
approximation order method and the cell merging method for p = 1, 2,3.

As Figure 4.7 shows, the relative errors of the BCDG method for approximation order p = 2
and p = 3 are lower than the errors of the CST EM STUDIO®2012 simulations. For p = 1
the relative errors of CST EM STUDIO®2012 are lower than the relative errors of the BCDG
method. More importantly, the rates of convergence of the BCDG method are higher than
the rates of convergence of the simulations with CST EM STUDIO®2012 for p = 1, 2,3. This
result demonstrates that the BCDG method is more accurate and, therefore, more effective with
respect to the number of DOF.

Next, we would like to present the results of a comparison study with respect to the computa-
tional costs. To make the results comparable across methods, we performed all simulations on
the same computer. The computational costs are measured in seconds s. Note that the compu-
tational time is split into two times, the assembly time and the solver time. The solver time is
plotted in Figure 4.8, whereas the assembly time is shown in Figure 4.9. In both figures, the
square symbols represent the measured time and the lines are fitted through the measured data
using a log-log scale. The slope rates R are listed in the legend of the figures. Figure 4.8 and
4.9 show that the solver times as well as the assembly times of the BCDG method are higher
than the corresponding solver and assembly times of the CST EM STUDIO®2012 simulations,
respectively. Furthermore, the slope rates of the BCDG method are higher than the slope rate of
the CST EM STUDIO®2012 simulations results. This implies that the simulation with CST EM
STUDIO®2012 is more efficient in terms of computational costs.

Since we mainly focussed on the accuracy of the BCDG method, this result is not surprising. The
computational costs were of minor importance in the development process of BCDG method.
In other words, the BCDG method is not optimally implemented with respect to computational
time. However, the BCDG method could be improved in various dimensions to lower the com-
putational costs. In particular, the computational costs of the quadrature can be reduced sub-
stantially. In the current implementation we use a quadrature from the open source geometry
kernel OCCT which is computationally costly. In future work, more emphasis should be put on
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Figure 4.7.: ES energy comparison study - Relative errors obtained from CST EM STUDIO®2012
and the BCDG method combined with either the cell merging method or the adaptive ap-
proximation order method and the additional DG hybridization.

the development of a fast quadrature rule, especially if the method is coupled with a CFD solver.
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Figure 4.8.: Solver time results obtained with CST EM STUDIO®2012 and the BCDG method com-
bined with the adaptive approximation order method.
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Figure 4.9.: Assembly time results obtained with CST EM STUDIO®2012 and the BCDG method
combined with the adaptive approximation order method.

To conclude, the comparison studies of the simulation results obtained with CST EM
STUDIO®2012 and the BCDG method show that the BCDG method performs slightly better
with respect to the DOF than the ES solver of CST EM STUDIO®2012. The overall relative
errors are lower for the approximation order p = 2,3 and the convergence rates are higher for
p = 1, 2,3. Nonetheless, the BCDG method performs less well with respect to the computational
costs, which implies that the BCDG method is not as efficient in terms of computational time as
the ES solver of CST EM STUDIO®2012.

4.1.5 Impact of the adaptive approximation order and the cell merging method on the
condition number

In Section 3.3.4, we introduced two supplementary methods for the BCDG method, the adaptive
approximation order method and the cell merging method. These methods were developed to
reduce the condition number of the system of linear equations of the DG formulation. In this
section, we check whether these methods are indeed capable of reducing the condition numbers
of the system of equations. Since the condition number indicates the sensitivity of the system to
small disturbances [77] it is important to keep the condition number of our system of equations
low.

In the following we present the condition numbers of the BCDG method with and without
the additional adaptive approximation order method and the cell merging method. We thereby
focus on the condition numbers for the ES cylindrical capacitor example. We use the same
computational domain, material parameters and threshold values as presented in Section 4.1.1
and 4.1.3. The condition numbers are evaluated for the system matrix A of the system of linear
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equations in (3.114) which we presented in Section 3.2.5. The condition number of the matrix
A is defined by (see, e.g. [77])

κ(A) = ‖A‖


A−1


 (4.10)

with

‖A‖= sup
x∈RN

Ax

x
, (4.11)

where A is given by

A=
�

−GT IεM
−1G+ S

�

. (4.12)

The norm ‖ ·‖ denotes the standard Euclidean norm.
Figure 4.10 illustrates the condition numbers of the system matrix A for different grid param-
eters h and approximation order p = 2. The condition number of A is calculated before any
preconditioner is applied to the matrix. The red square symbols mark the condition numbers of
A without the adaptive approximation order method and cell merging method. The blue and green
square symbols illustrate the condition number of the BCDG method combined with either the
adaptive approximation order method or the cell merging method, respectively.
Figure 4.10 indicates that the condition numbers for the BCDG method without the additional
methods are significantly higher than the values for the BCDG method with the additional meth-
ods. This implies that the condition number is reduced substantially if the BCDG method is used
with either the cell merging method or the adaptive approximation order method. Furthermore,
note that the condition numbers remain at the same order of magnitude with increasing grid
parameter h.
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Figure 4.10.: Impact of the adaptive approximation order method and the cell merging method
on the condition numbers.

To complete the discussion of the additional methods, we assess their impact on the convergence
behaviour of the iterative solver. As it turns out, either the adaptive approximation order method
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or the cell merging method are necessary to obtain convergence of the iterative solver for the
BCDG method. If the BCDG method is used without the adaptive approximation order method
or the cell merging method, the iterative solver doesn’t converge to the solution of the system of
linear equations. By contrast, it converges for all grid parameters if the BCDG method is applied
with either the adaptive approximation order method or the cell merging method. This demon-
strates that the BCDG method has to be applied with either the adaptive approximation order
method or the cell merging method both to obtain accurate results and to avoid ill-conditioning.

4.1.6 Impact of the DG hybridization method on the number of DOF

In Section 3.3.5 we proposed a DG hybridization method which transforms DG DOF in normal
elements to FE DOF to reduce the overall high number of DG DOF. The application of this DG
hybridization can only be justified if the number of DOF can be reduced significantly without
lowering the accuracy of the BCDG method. For this reason, we check whether these two ob-
jectives can be achieved in this section. We apply the BCDG method combined with the cell
merging method with and without the DG hybridization to the ES cylindrial capacitor field prob-
lem and compare the resulting number of DOF in both cases. The material and computational
domain parameters are set to the values presented in Section 4.1.1 and 4.1.3. Furthermore,
we evaluate the relative error to examine the accuracy difference with respect to the number of
DOF. The resulting numbers of DOF of the BCDG method with and without the DG hybridization
are shown in Figure 4.11. The symbols represent the exact numbers of DOF with respect to
the grid parameter h. The lines are fitted through the DOF numbers. Note that the blue lines
represent the numbers of DOF for approximation order p = 1, whereas the red lines denote
approximation order p = 2. The number of DOF of the dashed lines are obtained by applying
the BCDG method without the DG hybridization, whereas the number of DOF of the solid line
are obtained with the DG hybridization. As demonstrated in Figure 4.11, the reduced number of
DOF grows with decreasing grid parameters. Since the geometry model doesn’t change in the
computational setup, a smaller grid parameter implies a higher proportion of normal elements.
This, in turn, results in a higher number of reduced DOF.
As a next step, we show that the relative errors of the BCDG method with and without the DG
hybridization are approximately of the same order of magnitude. Figure 4.12 illustrates the
relative error of the ES cylindrical capacitor field problem. The relative error is calculated as
proposed in (4.3) for different grid parameters h and the approximation orders p = 1,2. The
symbols represent the resulting relative errors of the BCDG method with and without the DG
hybridization. The lines are fitted lines through the relative errors. The red and blue coloured
symbols and lines denote the relative error of the BCDG method with and without the DG
hybridization for p = 1, whereas the green and pink coloured symbols and lines illustrate the
results for p = 2, respectively. Figure 4.11 illustrates that the difference between the relative
errors with and without the DG hybridization is very small. The convergence rate with and
without the DG hybridization is exactly the same. This result demonstrates that the application
of the DG hybridization is justified since the number of DOF can be reduced substantially without
influencing the accuracy of the method. Moreover, since the DOF reduction only involves a
few matrix-matrix and matrix vector multiplications, the additional computational costs are
relatively small.
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Figure 4.11.: Number of degrees of freedom of the BCDG method combined with the cell merg-
ing method with and without the DG hybridization method.
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Figure 4.12.: Relative error measured in the L2-norm of the BCDG method combined with the
cell merging method with and without the DG hybridization method.

4.2 Simulation example of a water droplet on a high voltage insulator

In this section, we present the simulation results for the EBCDG method introduced in Sec-
tion 3.6. As we have stated in Section 3.6 the EBCDG method is an extension of the BCDG
method to field problems which comprise materials that move over time. Therefore, we apply
the EBCDG method to an example of a water droplet oscillating on the insulation layer of a high
voltage insulator. As shown in Section 2.2.2.2, this example represents an EQS field problem.
This section is organized as follows: First, the modelling details of the water droplet example are
introduced. Then, the simulation results of the EBCDG method for the water droplet example
are shown for several grid parameters h at various points in time. Finally, a convergence study
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of the EBCDG method is presented. Since there is no analytical solution known for the water
droplet example, we cannot show convergence with respect to an analytical solution. However,
we are able to conduct a convergence study with respect to the energy and power dissipation of
the EBCDG method for the application example.

4.2.1 Modelling of the EQS field problem of an oscillating water droplet lying on the
insulation layer of a high voltage insulator

The example of a water droplet oscillating on a planar insulation layer is shown in Figure 4.13.
The blue material domain ΩW represents the oscillating water droplet and the green material
domain ΩI a part of the plane insulation layer. The grey coloured sheets represent the parallel
plate electrodes which are placed below and above the water droplet and the insulation layer.
The third material considered in the simulation is the air between the insulation layer, the water
droplet and the upper plate electrode. This domain is denoted as ΩA.
A sinusoidal voltage excitation with an amplitude of 1kV and an operating frequency of 50HZ
is applied to the electrodes. This voltage excitation is used to create an exemplary vertical po-
tential and electric field distribution which might occur on the insulation layers of high voltage
insulators.
Since the EBCDG method is not yet coupled with a fluid dynamic solver, we are not able to
evaluate the motion of the water droplet during the simulation. Therefore, we use a given
water droplet motion and apply our EBCDG method to this given motion of the water droplet.
The use of a given artificial water droplet motion has the advantage that the results of the
EBCDG method can be presented without accounting for additional external influences of CFD
solvers or coupling effects on the simulation result.

ΩI

ΩW

ΩA

lA
wA

hA

hI

lI

wI

x

z

y

Figure 4.13.: Cartesian grid containing an arbitrarily shaped water droplet on an insulation layer
surrounded by air. The grey coloured sheets represent the parallel plate electrodes.
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The computational domain of the application example is given as Ω = ΩI ∪ΩA∪ΩW and has the
size length l = lx = l y = lz = 10.0mm in each axis direction. The material domains, ΩI , ΩA and
ΩW are all modelled as B-Rep shapes using OCCT [2]. The insulation layer ΩI is represented
by a hexahedral B-Rep shape having the side length lI = 10.0mm, width wI = 10.0mm and
height hI = 2.5mm. The oscillation of the water droplet ΩW is modelled by different B-Rep
shapes at pre-specified points in time. These points in time are defined by tn = t0+ n∆t, where
n= 0,1, . . . , N and ∆t denotes the time interval ∆t = (tN − t0)/N . The water droplet shapes at
the pre-specified points are ellipsoids which are divided by the plane of symmetry in z-direction.
Figure 4.14 shows two exemplary water droplet shapes at two different points in time.
The water droplet ellipsoids are described using the standard equation of ellipsoids,

(x − 5)2

a2 +
(y − 5)2

b2 +
(z− 2.5)2

c2 = 1, (4.13)

where a, b and c are the semi-principal axes[14]. The semi-principal axes at each pre-specified
points in time tn are defined as follows:

a = 2.0mm, (4.14)

b = 2.0mm, (4.15)

c(tn) = (2.25− 0.0125 sin(2π f tn)k)mm, (4.16)

where f = 50Hz. Furthermore, the water droplet oscillation is represented by N = 80 water
droplet shapes. These shapes replicate a possible vertical motion of water droplet on high
voltage insulators.
The computational domain of the air ΩA is characterized by length lA = 10.0mm, width wA =
10.0mm and height ha = 7.5mm. Since the domain of the air surrounds the water droplet, it
is obtained by applying the Cut Boolean operation provided by OCCT [2] to a hexahedral B-rep
shape with the physical dimensions lA, wA and hA and the water droplet B-rep shapes at the
pre-specified points in time. Therefore, the computational domain of the air is also modelled by
different B-rep shapes at the pre-specified points in time.

c(tn)

bb

c(tm)

a
x

y

z

Figure 4.14.: Two different water droplet shapes.

Next, we introduce the material parameters of the computational domains. The permittivity
and conductivity parameters of the water droplet are set to εW = 80.0F/m and κW = 5.5E-
8 S/m, respectively. The material parameters of the insulation layer and the air are set to
εI = 2.8F/m,κI = 3.3E-15 S/m and εA = 1.0F/m,κA = 3.3E-15 S/m, respectively.
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The boundary Γ = ∂Ω of the computational domain Ω is partitioned into boundaries with
Dirichlet and Neumann boundary conditions. Dirichlet boundary conditions are applied to the
boundary faces which are normal to the z-direction. These faces represent the parallel plate elec-
trodes. The voltage excitation at the electrodes is enforced by the Dirichlet boundary conditions.
More precisely, the potential value φD1(t) = 1000 sin(2Π f t)V with f = 50Hz is applied to the
upper face, whereas φD2(t) = 0V is applied to the lower face. Furthermore, we assume that the
length L of parallel plate electrodes is long compared to the distance between the electrodes lz.
This implies that the electric field in x- and y-direction vanishes on the boundary faces which
are normal to the x- and y-direction. Therefore, the vanishing electric field in normal direction
on these boundary faces are modelled by homogeneous Neumann boundary conditions.
Furthermore, we apply the EBCDG method with the adaptive approximation order method. The
threshold values of the adaptive approximation order method are chosen as presented in Sec-
tion 4.1.3.3. We decided to implement the adaptive approximation order method instead of the
cell merging method, because it yields similar results with respect to accuracy and is easier to
implement.
The initial conditions of the EBCDG method are set to φ(t0 = 0) = 0 and the time interval of the
simulation is given as [t0 = 0s, te = 0.1s]. This time interval is equivalent to five periods. Since
the initial conditions are set to zero, they induce an additional potential solution term which
is approximately of order e−t/τe . At t = 0.08s the influence of the initial conditions is small
enough and can be neglected. For this reason, we only consider simulation results obtained in
the time interval [ta = 0.08s, te = 0.1s].
The Θ-method with Θ = 1 (Backward Euler method) is applied to the resulting semi-discrete
weak DG formulation in (3.177)-(3.177). As mentioned before, we decided to use the Backward
Euler method since it simplifies the EBCDG method introduced in Section 3.6. There are two
further reasons for applying the Backward Euler method to the semi-discrete weak DG formu-
lation. First, the semi-discrete weak DG formulation of the EBCDG method on the presented
application example is considered as a stiff ODE. This is because the ratio of the maximum
and minimum eigenvalues of our system of ODEs is given by 5.83E+05. If the water droplet
conductivity is lowered, the ratio of the maximum and minimum eigenvalue of our system is
even higher. If we assumed a conductivity value of rain water droplets (κW = 5.5E-1 S/m) the
ratio would be of order 5.83E+13. Since the Backward Euler method is an implicit method, it
performs in general better on stiff ODE than the explicit Euler method (Θ = 0). Furthermore,
all eigenvalues of our system are negative. This implies that the implicit and L-stable Backward
Euler method (Θ = 1) is better suited than the Crank-Nicolson method (Θ = 1/2). Finally, the
resulting system of linear equations is solved using the direct solver SuperLU_Dist provided by
PETSc [3] (see Section 3.5 for more details).

4.2.2 EQS simulation results of the EBCDG method for the water droplet example

In this section, we present the simulation results for the potential and electric field solutions of
the water droplet example for the water droplet oscillation defined in Section 4.2.1. We show
the potential and electric field distribution of the EBCDG method for 512 elements combined
with approximation order p = 3 and for 4096 elements combined with approximation order
p = 2 at two points in time, t = 0.085s and t = 0.095s. At these points in time the sinusoidal
excitation and the oscillation reach the maximum and minimum amplitude values, respectively.
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Figure 4.15 shows the potential simulation results of the EBCDG method at time t = 0.085s and
t = 0.095s on a cut-plane at x = 5mm. Note that the cut-plane shows the potential distribution
at the water droplet’s x-axis of symmetry.
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Figure 4.15.: Potential distribution of the EBCDG method for 512 elements and approximation
order p = 3 at time t = 0.085s and t = 0.095s.

Furthermore, the electric field distribution on the cut-plane at x = 5mm are presented in Fig-
ure 4.16. Both figures demonstrate that we obtain potential and electric field distributions with
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Figure 4.16.: Electric field distribution of the EBCDG method for 512 elements and approxima-
tion order p = 3 at time t = 0.085s and t = 0.095s.
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a high resolution even on a coarse mesh with 512 hexahedral elements. This is due to the
application of the cut-cell method and the high order accuracy of EBCDG method.

0

250

500

750

1000 0

−250

−500

−750

−1000

potential [V ]potential [V ]
t = 0.095st = 0.085s

Figure 4.17.: Potential distribution of the EBCDG method for 4096 elements and approximation
order p = 2 at time t = 0.085s and t = 0.095s.
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Figure 4.18.: Electric field distribution of the EBCDG method for 4096 elements and approxima-
tion order p = 2 at time t = 0.085s and t = 0.095s.
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Figure 4.17 and 4.18 present the potential and electric field distribution of the EBCDG method
for 4096 elements and approximation order p = 2. As before, the potential and electric field
distributions at t = 0.085s and t = 0.095s are shown on a cut-plane at x = 5mm.
Both figures illustrate that also in this case a high resolution potential and electric field distri-
bution is obtained using the EBCDG method.
Next, we demonstrate that the electric field distribution of the simulations for 512 elements and
p = 3 as well as for 4096 elements and p = 2 are of the same order of magnitude at t = 0.085s
and t = 0.095s. To illustrate this, we present two line plots of the electric field through the
z-axis of the water droplet at x = 5mm and y = 5mm.
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Figure 4.19.: Electric field plot over a vertical line through the droplet center at x = 5mm and
y = 5mm in z-direction at time t = 0.085s.
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Figure 4.20.: Electric field plot over a vertical line through the droplet center at x = 5mm and
y = 5mm in z-direction at time t = 0.095s

95



Figure 4.19 shows the electic field simulation results of the EBCDG method over a line at x =
5mm and y = 5mm. The blue coloured solid line represents the electric field for 512 elements
and p = 3, whereas the red coloured dashed line represents the electric field for 4096 elements
and p = 2 at time t = 0.085s.
In Figure 4.20 the electric field simulation results of the EBCDG method at time t = 0.095s over
the same line are shown. As before, the blue coloured solid line presents the electric field for
512 elements and p = 3, whereas the red coloured dashed line presents the electric field for
4096 elements and p = 2 at time t = 0.095s.
Both figures demonstrate that the electric fields are comparable across the two simulations with
different meshes and approximation orders. These results represent an important first step
towards the verification of the EBCDG method. To further validate the method, we show in the
next section that the simulations converge to a specific energy level for increasing approximation
orders p and decreasing grid parameters h.

4.2.3 Energy and dissipation convergence study

This section presents a convergence study of the EBCDG method for the water droplet example.
Since no analytical solution for the water droplet example is known, we are not able to present
the convergence study with respect to the analytical solution. However, we are able to show
convergence with respect to the energy and power dissipation of the field problem for decreasing
grid parameter h and increasing approximation order p. This is possible since we use a given
artificial water droplet oscillation, which implies that the oscillation is the same for any grid
parameter and any approximation order. Hence, the energy and power dissipation results of
the EBCDG method on the water droplet example should converge to a particular energy and
dissipation level for increasing grid parameters h and approximation orders p. Obviously, the
convergence study with respect to the energy is not as convincing as a convergence study with
respect to the analytic solution. Nevertheless, it verifies to some extent that the EBCDG method
solves the field problem correctly and accurately.
The energy and power dissipation of the simulation results are evaluated as follows:

We =
1

2

∫ te

ta

∫

Ωh

wedV d t =
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Eh ·DhdV d t, (4.17)
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∫

Ωh

Eh ·JhdV d t, (4.18)

where we and Pd denote the electric energy and power dissipation density which we introduced
in Section 2.2.2.3. To better illustrate the convergence to a specific energy and dissipation level,
we have decided to integrate the energy and power dissipation results over the time interval
[ta = 0.08s, te = 0.1s].
Figure 4.21 shows the EQS energy simulation results which are obtained for different grid pa-
rameter h and approximation orders p. The blue symbols represent approximation order p = 1,
the red symbols p = 2 and the green symbols p = 3. Figure 4.21 demonstrates that the energy
simulation results converge to the energy level limit which is represented by the black dashed
line for decreasing grid parameter h and increasing approximation orders p.
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Figure 4.21.: Energy simulation results of EBCDG method with the adaptive approximation order
method for the water droplet example.
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Figure 4.22.: Dissipation simulation results of EBCDG method with the adaptive approximation
order method for the water droplet example.

The simulation results for the power dissipation are plotted in Figure 4.22. As before the
coloured symbols indicate the different approximation orders and the black dashed line de-
notes the dissipation level limit. As shown in Figure 4.22 the simulation results for the power
dissipation converge to the power dissipation limit for decreasing grid parameters h and increas-
ing approximation orders p.

Next, we present the convergence study with respect to the time step∆t. Figure 4.23 shows the
energy obtained for different time steps for grid parameter h = 10/8 and approximation order
p = 2 and p = 3. The simulation results converge to a particular energy for decreasing time
steps ∆t. Note that the energy values for small time steps ∆t correspond to the energy results
shown in Figure 4.21 for grid parameter h= 10/8 and approximation order p = 2 and p = 3.
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Figure 4.23.: Energy simulation results of the oscillating water droplet example with respect to
the time step∆t.

To conclude, all presented convergence studies demonstrate that the energy and dissipation
converge to a specific energy and dissipation level limit. These results are very promising and
indicate that the EBCDG method can indeed be applied to field problems where materials move
over time. As a next step, the EBCDG method could be coupled with a CFD solver to further
examine the water droplet field problem.

However, a coupling with a CFD solver requires the application of meshes with more elements.
So far, we are just able to present simulation results with the presented grid parameters h ∈
[10/3, 10/16] and approximation orders p = 1,2, 3. This has several reasons which are related
to the implementation of the EBCDG method: First, the implementation needs a lot of memory.
Second, the quadrature used in the EBCDG method is computationally costly. Third, our EBCDG
method is not yet parallelized. However, all of the mentioned issues could easily be changed in
future work.

Furthermore, we would like to mention that we use a conductivity value for the water droplet
which is set to κW = 5.5E-8. We use this value since we wanted to show convergence with
respect to the energy and power dissipation of the field problem. With a lower conductivity
value it is not possible to show convergence to the energy and power dissipation level limit with
the presented grid parameters and approximation orders. In this case, we have noticed that
the difference in energy and power dissipation across the grid parameters h and approximation
orders p becomes larger. This implies that the potential and electric field solution becomes
more difficult to approximate. Therefore, meshes with more elements and higher approximation
orders are needed for lower conductivity values.

Furthermore, note that the water droplet example becomes more stiff for lower conductivity
values of the water droplet κW . As mentioned before, if we assume a conductivity value of rain
water droplets (κW = 5.5E-1 S/m) the ratio between the minimum and the maximum eigen-
value of our system is of order 5.83E+13. However, with the conductivity value κW = 5.5E-8
S/m the ratio it is of order 5.83E+05. Therefore, we suggest to apply higher-order numerical
methods for stiff ODEs to the semi-disrete weak DG formulation of the EBCDG method. Fur-
thermore, the condition number of the resulting system of linear equations in (3.179)-(3.180)
is very high. This implies that EBCDG method should be applied with higher threshold values
for the adaptive approximation order method in future work.
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Another research objective could be to embed the cell merging method into the EBCDG method.
With the cell merging method it would be possible to use larger threshold values without having
to assign lower approximation orders to too many geometrically small cut-cells.
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5 Summary and Outlook

5.1 Summary

In this work we have presented the BCDG method and its extension, the EBCDG method. The
BCDG method can be applied to ES and EQS field problems with non-moving materials, whereas
the EBCDG method was developed for EQS field problems where materials move over time.
We first gave an overview on the theory of electromagnetics in Chapter 2. The Maxwell’s equa-
tions and the ES and EQS approximations of the Maxwell’s equations were discussed, which
describe the physical behaviour of the field problems presented in this work. Furthermore, the
conditions that justify an ES and EQS approximation of the Maxwell’s equations were presented.
In Chapter 3, the fundamentals of the BCDG and the EBCDG method were introduced. Since
the BCDG and the EBCDG method are based on the DG method, we presented the DG method in
more detail and discussed its important properties as well as its advantages and disadvantages
in Section 3.2. In Section 3.3, the general framework of the BCDG method was presented. The
BCDG method comprises distinct approaches, namely the cut-cell discretization approach, the
adaptive approximation order method, the cell merging method and the DG hybridization.
In Section 3.4, we presented the Θ-method, which is used to discretize the time derivatives in
the semi-discrete weak formulation of the DG and the BCDG method. Furthermore, important
features and properties of the Θ-method in the context of the DG and the BCDG method were
discussed. In Section 3.6, the extension of the BCDG method to problems with moving materials
was introduced. We described in greater detail how the EBCDG method is applied to moving
material domains on a single fixed mesh.
In Section 4, various numerical simulation results of the BCDG and the EBCDG method were
presented. In Section 4.1, we showed the numerical results of the BCDG method applied to
the verification example of a cylindrical capacitor filled with two dielectric materials. The sim-
ulation results of the ES and EQS field problem of the cylindrical capacitor example show that
optimal convergence rates are obtained for the BCDG method in combination with either the
cell merging method or the adaptive approximation order method. However, for p = 3 the
BCDG method in combination with the adaptive approximation order method yields slightly
lower convergence rates. Furthermore, a comparison study of the BCDG method and the com-
mercial software CST STUDIO SUITE®2012 [1] was presented in Section 4.1. The results of the
BCDG method for the ES cylindrical capacitor example were benchmarked with results obtained
from CST EM STUDIO®2012 [1]. This comparison study demonstrated that the BCDG method
is slightly more accurate with respect to the number of DOF. However, the simulations with CST
EM STUDIO®2012 are more efficient in terms of computational costs. Furthermore, the impact
of the two additional methods - the cell merging and the adaptive approximation order method
- on the condition number of the system matrices was assessed. As shown in Section 4.1, ei-
ther of the two additional methods reduces substantially the condition number of the system
for the ES cylindrical capacitor field example. At the end of Section 4.1 we illustrated that the
DG hybridization significantly reduces the number of DOF without affecting the accuracy of the
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simulation results. In section 4.2, we presented the simulation results of the EBCDG method
on the example of a water droplet oscillating on the insulation layer of a high voltage insulator.
Since the EBCDG method is not yet coupled with a CFD solver, the water droplet motion had to
be enforced artificially. However, the given artificial oscillation of the water droplet enabled us
to present a convergence study with respect to the energy and power dissipation for the applica-
tion example. The convergence study showed that the simulation results converge to a specific
energy and power dissipation level both for increasing approximation orders p and decreasing
grid parameters h. Furthermore, the potential and electric field distributions of the application
example demonstrated that even on a coarse mesh a high resolution of the potential and electric
field solution can be achieved.

5.2 Outlook

In Section 4.1, the comparison study illustrated that the simulations with CST EM
STUDIO®2012 are more efficient in terms of computational costs. Especially the assembly
time of the BCDG method is much higher than the assembly time obtained with CST STU-
DIO SUITE®2012. One reason for the lower performance with respect to computational time is
the computationally costly quadrature used in this work. We believe that the assembly time can
be reduced substantially if the present quadrature is modified or a more efficient quadrature is
implemented. Since the BCDG method is implemented in a way that allows to easily change
the geometry representation as well as the quadrature on the geometry representation, certain
modifications with respect to the geometry and the quadrature could be performed easily and
efficiently.
Another future research topic could be the coupling of the EBCDG method with a CFD solver
for the Navier-Stokes equations. We are convinced that the boundary conformal approach could
make further use of its inherent advantages if it is linked with a CFD solver using a similar
cut-cell implementation. However, such a CFD solver is not yet available. Nevertheless, this
coupling approach would enable the simulation of oscillating water droplets without having to
use artificial oscillations of water droplets. This would further improve our understanding of
the electromagnetic phenomenon.
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A Shape functions for hexahedral elements
In this section, we present the detailed definition of the shape functions used in this work. These
shape functions are proposed in [93] and span the local finite element spaces S(Ki) and U(Ki)
(see Section 3.2.7). As mentioned in Section 3.2.7, the shape functions are defined on a hexahe-
dral reference element given as K̂ :=H[0,1]3. To obtain the shape functions for each element
Ki ∈ Ωh, the reference element shape functions need to be mapped to each element. The affine
map which is used to map the shape functions can be found in Section 3.2.7.

Note that the H1-conforming and H(div )-conforming shape functions are defined using two tri-
linear functions λi and σi. These functions are given by (see, e.g. [93]):

λ1 = (1− x)(1− y)(1− z), σ1 = (1− x) + (1− y) + (1− z),
λ2 = x(1− y)(1− z), σ2 = x + (1− y) + (1− z),
λ3 = x y(1− z), σ3 = x + y + (1− z),
λ4 = (1− x)y(1− z), σ4 = (1− x) + y + (1− z),
λ5 = (1− x)(1− y)z, σ5 = (1− x) + (1− y) + z,
λ6 = x(1− y)z, σ6 = x + (1− y) + z,
λ7 = x yz, σ7 = x + y + z,
λ8 = (1− x)yz, σ8 = (1− x) + y + z,

Furthermore, the H1-conforming and H(div )-conforming shape functions are based on the Leg-
endre and the Integrated Legendre polynomials [93]. The Legendre polynomials are defined in
the three-term recurrence relation by

l0(x) = 1, (A.1)

l1(x) = x , (A.2)

(n+ 1)ln+1 = (2n+ 1)ln(x)x − nln−1(x), n≥ 1 (A.3)

or as ln(x) =
�

d
d x

ln+1(x)−
d

d x
ln−1(x)

�

(see, e.g. [93]).
The Integrated Legendre polynomials (Ln)2≤i≤p are given as (see, e.g. [93])

Ln(x) :=

∫ x

−1

ln−1(ξ)dξ for x ∈ [−1,1] and n≥ 2. (A.4)

Furthermore, note that the edge and face orientation is based on the global vertex indices. For
edges E the edge orientation is specified by the vertex with the higher index number α which
points to the vertex with the lower one. Therefore, edges are written as E = [e1, e2] with

e1 = arg maxα∈{α1,α2}vα, (A.5)

e2 = arg minα∈{α1,α2}vα, (A.6)
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where αi states the index of vertex vαi
[93].

The face orientation is given in a similar way. The faces are defined by F = [ f1, f2, f3, f4]. The
starting vertex f1 is the vertex with the highest index number f1 := arg maxα∈{α1,α2,α3,α4}vα,
vertex f3 is the opposite of f1 and f2 is the vertex of the two remaining vertices with the higher
index number, v f2 > v f4.

Using the just introduced definition, the H1-conforming shape functions are written as (see [93]):

Vertex-based functions:

for i = 1, ..., 8 : φV
i = λi (A.7)

Edge-based functions:
For m= 1, ...., 12: For edge Em = [e1, e2], for 0≤ i ≤ pEm

− 2

φ
Em
i = Li+2

�

σe1
−σe2

��

λe1
+λe2

�

, (A.8)

Face-based functions:
For m= 1, ..., 6: For face Fm = [ f1, f2, f3, f4] and for 0≤ i, j ≤ pFm

− 2

φ
Fm
(i, j) = Li+2(ξF)L j+2(ξF)λF , (A.9)

with λ :=
∑4
α=0λ fα and (σ f1 −σ f2,σ f1 −σ f4)

Cell-based functions:
For 0≤ i, j, k ≤ pC − 2

φC
(i, j,k) = Li+2(2x − 1)L j+2(2y − 1)Lk+2(2z− 1). (A.10)

Moreover, the H(div )-conforming shape functions for variable polynomial order p = ({pFm
}, pc)

on the reference hexahedral element are defined by (see, e.g. [93]):
Face-based functions:
For faces Fm, m = 1, ..., 6 with local face-vertex ordering Fm = [ f1, f2, f3, f4], λF :=

∑4
α=0λ fα

and (ζF ,ηF) := (σ f1 −σ f2,σ f1 −σ f4).
Lowest-order Raviart-Thomas function:

ψ=−∇λFλF (A.11)

Higher-order face-based functions (divergence-free):
For 0≤ i, j ≤ pFm

− 1

ψ
Fm
(i, j) = curl((∇Li+2(ξF)L j+2(ηF)− Li+2(ξF)∇L j+2(ηF))λF), (A.12)

ψ
Fm
(0, j) = curl(L j+2(ηF)λF∇ξF), (A.13)

ψ
Fm
(i,0) = curl(Li+2(ξF)λFξF), (A.14)
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Cell-based functions:
For 0≤ i, j, k ≤ pC − 1 with (ξ,η,ζ) := (2x − 1,2y − 1,2z− 1)
Type 1: (divergence-free)

ψ(i, j, k)C ,1 = 4Li+1(ξ)lk(η)lk(ζ)ex − 4li(ξ)l j(η)Lk+2(ζ)ez, (A.15)

ψ(i, j, k)C ,1 = 4li(ξ)L j+2(η)lk(ζ)ey − 4li(ξ)l j(η)Lk+2(ζ)ez, (A.16)

ψ(0, j, k)C ,1 = 2L j+2(η)lk+1(ζ)ey − 4l j+1(η)Lk+2(ζ)ez, (A.17)

ψ(i, 0, k)C ,1 = 2li+1(ξ)Lk+2(ζ)ez − 2Li+2(ξ)lk+1(ζ)ex , (A.18)

ψ(i, j, k)C ,1 = 2Li+2(ξ)l j+1(η)ex − 2li+1(ξ)L j+2(η)ey , (A.19)

Type 2:

ψC ,2
(i, j,k) = Li+2(ξ)l j(η)lk(ζ)ex + li(ξ)L j+2(η)lk(ζ)ey , (A.20)

ψC ,2
(0, j,k) = L j+2(η)lk(ζ)ey + l j+1(η)Lk+2(ζ)ez, (A.21)

ψC ,2
(i,0,k) = li+1(ξ)Lk+2(ζ)ez + Li+2(ξ)lk+1(ζ)ex , (A.22)

ψC ,2
(i, j,0) = Li+2(ξ)l j+1(η)ex + li+1(ξ)L j+2(η)ey , (A.23)

Type 3:

ψC ,3
(i,0,0) = Li+2(ξ)ex , (A.24)

ψC ,3
(0, j,0) = L j+2(η)ey , (A.25)

ψC ,3
(0,0,k) = Lk+2(ζ)ez. (A.26)

A more detailed description of the shape functions can be found in [93].
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Acronyms and symbols

Acronyms

3D Three dimensional
BCDG Boundary conformal Discontinuous Galerkin method
CAD Computer-aided design
DG Discontinuous Galerkin method
DOF Degrees of freedom
EBCDG Extension of the boundary conformal Discontinuous Galerkin method
ES Electrostatic approximation of the Maxwell’s equations
EQS Electro-quasistatic approximation of the Maxwell’s equations
LDG Local Discontinuous Galerkin method
FD Finite Difference scheme
FDTD Finite Difference Time Domain method
FE Finite Element method
FIT Finite Integration Technique
FV Finite Volume method
MQS Magneto-quasistatic approximation of the Maxwell’s equations
MS Magnetostatic approximation of the Maxwell’s equations
PFC Partially Filled Cell approach

General Symbols and Conventions

Notation Description
R Real numbers
N Natural numbers
x,xT Column vector and row vector
x ·y Dot product
x× y Cross product
A Matrix
∇ ·F Divergence of a vector field F
∇× F Rotation of a vector field F
{u} Jump of a scalar function u
¹uº Average of a scalar function u
{q} Jump of a vector function q
¹qº Average of a vector function q

Greek letters
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Notation Description
κ Electric conductivity (SI unit: S/m)
σ Surface charge density (SI unit: C/m2)
ρ Electric charge density (SI unit: C/m3 = As/m3)
ε0 Permittivity of vacuum (SI unit: As/V m= F/m)
µ0 Permeability of vacuum (SI unit: Vs/Am)
χe Dielectric susceptibility
χm Magnetic susceptibility
ε Permittivity of a material
µ Permeability of a material
εr Relative permittivity of a material
µr Relative permeability of a material
τe Electro-quasistatic charge relaxation time
τm Magneto-quasistatic diffusion time
τem Electromagnetic wave transit time
τ Characteristic time of an excitation
φ Electric potential function
φh Approximate solution of the electric potential
φ̃h Numerical flux term of the electric potential
φ Vector containing potential DOF
ω Angular frequency
Ω Computational domain
Ωh,ΩC

h Mesh or set of elements
ΩN

h Set of normal elements
ΩCC

h Set of cut-cells
Γ = ∂Ω Boundary of the computational domain
ΓD Boundary with Dirichlet boundary conditions
ΓN Boundary with Neumann boundary conditions
ΓInt Interior material interfaces
υi Scalar test function
τi Vector test function
Σh Finite element space
εrel

L2 Relative error measured in the L2 norm

Roman letters

Notation Description
E Electric field strength (SI unit: V/m)
H Magnetic field strength (SI unit: A/m)
D Electric displacement flux density (SI unit: C/m2 = As/m2)
B Magnetic flux density (SI unit: T = Vs/m2)
J Electric current density (SI unit: A/m2)
P Polarization density
M Magnetization density
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Jl Conduction current density (SI unit: A/m2)
Js Source current density (SI unit: A/m2)
Jc Convection current density (SI unit: A/m2)
v Velocity (SI unit: m/s)
JF Surface current density (SI unit: A/m2)
x Spatial parameter
t Time
A Particular surface in R3

V Particular volume in R3

c Speed of light (SI unit: m/S)
l Size length
Ki, KC

i Element of the mesh
K̂ Reference element
N Number of elements
N Set of nodes
F Set of faces
E Set of edges
FN Set of boundary faces with Neumann boundary conditions
FD Set of boundary faces with Dirichlet boundary conditions
F0 Set of interior faces
ni A particular node of the mesh
fi A particular face of the mesh
ei A particular edge of the mesh
h Minimum element length
Vh Finite element space
S Local finite element space
U Local finite element space
Pp Polynomial space of order at most p ∈ N
n Unit outward normal vector
D̃h Numerical flux term of the flux density D
L Operator matrix
W Operator matrix
M Mass matrix
G Gradient matrix
S Stability term matrix
f,g Vector containing boundary conditions
d Vector containing flux density DOF
C12,C11 Parameters of the LDG flux formulation
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