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Abstract

Digital signatures are one of the most important cryptographic primitives in practice.

They are an enabling technology for eCommerce and eGovernment applications and

they are used to distribute software updates over the Internet in a secure way. In

this work we introduce two new digital signature schemes: XMSS and its extension

XMSSMT . We present security proofs for both schemes in the standard model,

analyze their performance, and discuss parameter selection. Both our schemes have

certain properties that make them favorable compared to today’s signature schemes.

Our schemes are forward secure, meaning even in case of a key compromise, previ-

ously generated signatures can be trusted. This is an important property whenever

a signature has to be verifiable in the mid- or long-term. Moreover, our signature

schemes are generic constructions that can be instantiated using any hash function.

Thereby, if a used hash function becomes insecure for some reason, we can simply

replace it by a secure one to obtain a new secure instantiation. The properties we

require the hash function to provide are minimal. This implies that as long as there

exists any complexity-based cryptography, there exists a secure instantiation for

our schemes. In addition, our schemes are secure against quantum computer aided

attacks, as long as the used hash functions are.

We analyze the performance of our schemes from a theoretical and a practical

point of view. On the one hand, we show that given an efficient hash function,

we can obtain an efficient instantiation for our schemes. On the other hand, we

provide experimental data that show that the performance of our schemes is compa-

rable to that of today’s signature schemes. Besides, we show how to select optimal

parameters for a given use case that provably reach a given level of security.

On the way of constructing XMSS and XMSSMT , we introduce two new one-time

signature schemes (OTS): W-OTS+ and W-OTS$. One-time signature schemes

are signature schemes where a key pair may only be used once. W-OTS+ is cur-

rently the most efficient hash-based OTS and W-OTS$ the most efficient hash-based

OTS with minimal security assumptions. One-time signature schemes have many

more applications besides constructing full fledged signature schemes, including au-
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thentication in sensor networks and the construction of chosen-ciphertext secure

encryption schemes. Hence, W-OTS+ and W-OTS$ are contributions on their own.

Altogether, this work shows the practicality and usability of forward secure sig-

natures on the one hand and hash-based signatures on the other hand.



Zusammenfassung

Digitale Signaturen sind eines der meist genutzten kryptographischen Primitive in

der Praxis. Sie stellen eine notwendige Technologie für eCommerce und eGovern-

ment Anwendungen dar und werden benötigt, um Softwareupdates auf eine sichere

Weise über das Internet zu verteilen. In dieser Arbeit werden zwei neue Verfahren

zur digitalen Signatur vorgestellt: XMSS und dessen Erweiterung XMSSMT . Für

beide Verfahren werden Sicherheitsbeweise im Standardmodell gegeben, die Perfor-

manz analysiert und die Wahl sicherer Parameter diskutiert. Beide Verfahren haben

bestimmte Eigenschaften auf Grund derer sie den heute verwendeten Verfahren zur

Digitalen Signatur vorzuziehen sind.

Die vorgestellten Verfahren sind vorwärtssicher. Dies bedeutet, dass selbst im

Falle einer Kompromittierung des geheimen Schlüssels, zuvor erzeugten Signaturen

weiterhin vertraut werden kann. Dies ist eine wichtige Eigenschaft, die benötigt wird

wenn eine Signatur über einen längeren Zeitraum verifizierbar sein muss. Darüber

hinaus handelt es sich bei den vorgestellten Verfahren um generische Konstruktio-

nen, die mit einer beliebigen kryptographischen Hashfunktion instanziiert werden

können. Sollte die verwendete Hashfunktion aus irgendeinem Grund unsicher wer-

den, reicht es aus die Hashfunktion durch eine neue, sichere Hashfunktion zu erset-

zen, um eine sichere Instanziierung der Verfahren zu erhalten. Die Eigenschaften,

welche wir von der verwendeten Hashfunktion fordern sind minimal. Daraus folgt,

dass es eine sichere Instanziierung der vorgestellten Verfahren gibt, solange es über-

haupt Komplexitäts-basierte Kryptographie gibt. Darüber hinaus bieten beide Ver-

fahren Schutz vor Quantencomputer-basierten Angriffen, solange die verwendete

Hashfunktion nicht anfällig für solche Angriffe ist.

In der vorliegenden Arbeit wird die Performanz der vorgestellten Verfahren sowohl

theoretisch, als auch praktisch evaluiert. Einerseits wird gezeigt, dass eine beliebige

effiziente kryptographische Hashfunktion eine effiziente Instanziierung der Verfahren

ermöglicht. Andererseits werden experimentelle Ergebnisse geliefert. Diese belegen,

dass die Performanz der vorgestellten Verfahren vergleichbar zu jener heute in der

Praxis genutzter Verfahren ist. Weiterhin wird eine Methode vorgestellt, die es für
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beide Verfahren erlaubt, optimale Parameter für einen vorgegebenen Anwendungs-

fall zu wählen. Die erzeugten Parameter erreichen dabei beweisbar ein gegebenes

Sicherheitsniveau.

Als Teil der Konstruktion von XMSS und XMSSMT , werden zwei neue Ein-

malsignaturverfahren (One-Time Signature Schemes, OTS) vorgestellt: W-OTS+

und W-OTS$. Einmalsignaturverfahren sind Signaturverfahren, die es erlauben pro

Schlüsselpaar genau eine Nachricht zu signieren. W-OTS+ ist aktuell das effizien-

teste Hash-basierte OTS. W-OTS$ ist das effizienteste OTS mit minimalen Sicher-

heitsannahmen. Neben der Konstruktion vollwertiger Signaturverfahren, finden

OTS Verwendung in Anwendungsfällen wie der Authentifizierung in Sensornetzen

oder der Konstruktion chosen-ciphertext sicherer Public-Key Verschlüsselungsver-

fahren. Daher stellt die Konstruktion von W-OTS+ und W-OTS$ einen selbständi-

gen Beitrag dar.

Zusammenfassend belegt diese Arbeit die Praktikabilität und Nutzbarkeit vor-

wärtssicherer Signaturen einerseits und Hash-basierter Signaturen andererseits.
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1 Introduction

Digital signature schemes are among the most used cryptographic primitives in

practice. They are means to guarantee for authenticity and non-repudiation of any

kind of data like messages, documents, or software. Digital signature schemes are

used to secure communication protocols, including SSL / TLS and SSH, to protect

software updates, and in many countries they have become legally binding like a

handwritten signature. Thereby, digital signatures enable applications like online

banking, e-Commerce and e-Government as well as online distribution of software

updates, secure communication, and counting. Today, there exist three signature

schemes used in practice: RSA, DSA and EC-DSA. There are some issues these

schemes have in common and we want to highlight them:

• When it comes to non-repudiation, additional measures from the field of public

key infrastructures, like time stamping, have to be applied to guarantee that

a validly generated signature remains valid for more than a short time period.

• The security of all three schemes is based on the hardness of certain problems

from number theory. These problems become easy if large enough quantum

computers can be built [Sho94].

• Only certain variants of these schemes can be proven secure and these proofs

are only heuristic, i.e. the proofs are either in the random oracle or the generic

group model. This means that there is no guarantee that it is really necessary

to solve the underlying hard problem to break the signature scheme.

• The schemes either rely on a specific hardness assumption or they make use

of a so called trapdoor one-way function. The latter is a notion that is hard

to achieve and unnecessarily strong from a complexity theoretic point of view.

In this work we introduce XMSS and its extension XMSSMT , two forward secure

signature schemes based on minimal security assumptions. We show that these

schemes solve all of the above issues without significant performance losses and

thereby constitute an interesting alternative to today’s signature schemes.
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Our schemes fulfill the notion of forward secure signature schemes (FSS). The idea

behind FSS is the following: Even in the case of a key compromise, all signatures

issued before the compromise should remain valid. This is an important property

for all use cases where signatures have to stay valid for more than a short time

period, including use cases like document signing or certificates. If for example a

contract is signed, it is important that the signature stays valid for at least as long

as the contract has some relevance. The solutions used today require the use of time

stamps [ETS10, ETS12]. This introduces the requirement for a trusted third party

and the overhead of requesting a time stamp for each signature. FSS in turn already

provide this property and thereby abandon the need for time stamps. Moreover, we

show in [BHW+13] that FSS can also be used to strengthen the security of actual

public key infrastructures.

Our schemes are hash-based signature schemes. Thereby, they can be instanti-

ated using any cryptographic hash function (as it turns out, we can also use most

block ciphers to build the required function families). This means, we simply have

to replace the used hash function and get a new signature scheme in case one in-

stantiation based on a certain computational problem turns out to be insecure. This

is in contrast to today’s signature schemes that can not be repaired if the under-

lying computational problem becomes easy. Moreover, quantum computers do not

threaten the security of hash functions in general [Gro96, AS04]. As there exist

many hash functions relying on problems that are assumed to be quantum secure,

XMSS and XMSSMT will still have secure instantiations in the presence of quantum

computers.

We give security proofs for XMSS and XMSSMT in the standard model. Thus, in

contrast to today’s signature schemes, we show that attacking one of these schemes

is as hard as solving the underlying problem. In our case this means we prove

that breaking the forward or standard security of our schemes is almost as hard as

breaking certain properties of the used hash function. In our proofs we make no use

of any heuristic argument like the random oracle model. Furthermore, all our proofs

are formulated as tight, exact reductions. This means, we exactly compute the

relation between the hardness of breaking the security of our schemes and breaking

the security properties of the used hash function and this relation is tight. This

allows us to make strong statements about the security of parameters.

Our proofs show that XMSS and XMSSMT are forward secure – which implies

standard security – if the schemes are instantiated using a second preimage resistant

hash function and a pseudorandom function family. Rompel [Rom90] - building upon

results by Naor and Yung [NY89] - showed that the necessary and sufficient condition

for the existence of a standard secure digital signature scheme is the existence of
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a one-way function. This in turn is the minimal condition for the existence of

complexity-based cryptography. As pseudorandom function families and second-

preimage resistant hash functions can be constructed from any one-way function

[Rom90, HILL99, GGM86] our assumptions are minimal. This means, there exists

a secure instantiation of our schemes, as long as there exists any secure digital

signature scheme. RSA requires the existence of trapdoor one-way function families,

which is a strictly stronger assumption than the existence of a one-way function.

Moreover, all of today’s schemes use specific properties of the underlying hardness

assumption and can therefore not be constructed from any one-way function.

Rompel’s result combined with that of Naor and Yung already gives a construction

of a digital signature scheme from any one-way function. However, their construc-

tion is only of theoretical interest as the performance of this scheme is completely

impractical. In contrast, we show that XMSS and XMSSMT are indeed practical.

On the one hand, we present a theoretical analysis that shows that both schemes are

almost as efficient as the used hash function. Hence, given a practical hash function

both schemes are practical. On the other hand, we provide experimental results.

We present two implementations, one for regular CPUs and one for smart cards.

Experiments show that using today’s hash functions, both schemes can beat some

of today’s schemes in terms of runtimes. Key and signature sizes, while slightly

larger, are also practical — even on resource constrained devices like smart cards.

1.1 Contribution and Organization

The main contribution of this work is the development and comprehensive analysis of

XMSS and its extension XMSSMT . This contribution can be separated into several

technical contributions we detail now.

Background (Chapter 2) We begin with some background in Chapter 2. There

we present definitions of the basic security notions for hash functions and digital

signature schemes that we use in more than one chapter. Notions that are only used

in a single chapter are introduced in the respective chapter. We also introduce the

basic concepts of hash-based signature schemes that we use later.

New One-Time Signatures (Chapter 3) The basic building block of a hash-based

signature scheme is a one-time signature scheme (OTS). This is a signature scheme

where a key pair can be used to sign only one arbitrary message. In Chapter 3

we introduce two new one-time signature schemes called W-OTS+ and W-OTS$.
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Both schemes are based on the general idea of the Winternitz OTS (W-OTS) first

mentioned in [Mer90a]. W-OTS turned out to be the best choice of an OTS for hash-

based signature schemes for several reasons (see Chapter 3). Our constructions

outperform all previous variants of W-OTS in the sense that we require weaker

security assumptions to proof the schemes secure. This allows to reduce the signature

size while obtaining the same level of security as previous constructions.

More detailed, the only provably secure W-OTS construction known before re-

quired a collision resistant hash function family [HM02, DSS05]. We require either a

second-preimage resistant, undetectable one-way function family or a pseudorandom

function family for W-OTS+ and W-OTS$, respectively. These security assumptions

are strictly weaker than collision resistance. Moreover, the assumption that a pseu-

dorandom function family exists is minimal. Thereby W-OTS$ has minimal security

assumptions. We also assume that this is the case for W-OTS+, but we can not prove

it (see the discussion in Section 3.3). However, for W-OTS+ we achieve stronger

security and a tighter security proof. The latter allows for more efficient parameter

choices.

XMSS (Chapter 4) Given our OTS constructions, we develop our first forward

secure signature scheme XMSS in Chapter 4. It is the first efficient forward secure

signature scheme (FSS) with minimal security assumptions. Previous efficient FSS

are based on specific number theoretic assumptions, i.e. [AMN01, AR00, BM99,

CK06, IR01, KR03, Son01]. In addition, there are two generic constructions by

Krawczyk [Kra00] and Malkin et al. [MMM02]. They allow building forward secure

signature schemes from any secure digital signature scheme. However, their security

assumptions are not minimal and the schemes do not appear to be practical because

of their key size. We note that some of the techniques used for XMSS can be applied

to the construction from [MMM02] to solve these issues.

On the other hand, there are three other signature schemes with minimal security

assumptions in the above sense: [Gol09, Rom90, DOTV08]. They are not forward

secure. Moreover, the schemes in [Gol09] and [Rom90] are not practical and the

security proof of MSS-SPR [DOTV08] does not cover the pseudorandom key gen-

eration which is necessary for the scheme being efficient. In addition, compared to

MSS-SPR, XMSS reduces the signature size by more than 25 % at the same level

of security. This is an important improvement as the signature size is considered

the main drawback of hash-based signatures. However, XMSS uses the new tree

construction introduced in [DOTV08].
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XMSSMT (Chapter 5) Using XMSS the number of signatures that can be gen-

erated using one key pair is limited. The reason is that the runtime of the key

generation algorithm is linear in the number of signatures p. Hence, the key gen-

eration time constitutes a bound on p in practice. Multi-Tree XMSS (XMSSMT )

is an extension of XMSS, presented in Chapter 5. In contrast to XMSS it allows

for a virtually unlimited number of signatures. Therefor, XMSSMT allows a trade-

off between key generation time and signature size. The key generation time is

reduced from O(p) to O(p/d) for any integer parameter 0 < d < p while the signa-

ture size grows linearly in d. Towards this end, we apply the tree chaining concept

introduced in [BGD+06] and improve the idea of distributed signature generation

[BDK+07]. Besides virtually unlimited signatures, XMSSMT also enables implemen-

tations on resource constrained devices like smart cards with practical key generation

times. Previous smart card implementations of hash-based signature schemes did

not achieve on-card key generation at all [RED+08].

Optimal Parameters (Chapter 6) The performance of XMSS and XMSSMT are

controlled by many parameters, defining various trade-offs. We show how linear

optimization can be used to select optimal parameters for both schemes in Chapter 6.

This was done before in [BDK+07]. Unfortunately, the results given there do not

carry over to XMSS and XMSSMT as fewer parameters were taken into account and

the authors of [BDK+07] do not provide details about how to model the problem. In

this context we also show how to use the exact security reductions to compute the

security level of parameter sets in the sense of [Len04]. Our optimization chooses

optimal parameters for a given level of security.

Experimental Evaluation (Chapter 7) We evaluate the practical performance of

our schemes in Chapter 7. We present two implementations. A XMSS implemen-

tation for traditional CPUs and a XMSSMT implementation for smart cards. In

this context, we show how to implement the used function families for XMSS and

XMSSMT in practice using a hash-function or a block cipher. Our experimental re-

sults show that the performance of both schemes is comparable to that of RSA, DSA

and ECDSA. So far, there exists no other smart card implementation of a forward

secure signature scheme. We are only aware of a study on the performance of FSS

on traditional CPUs [CJMM03]. For hash-based signature schemes, there already

exist a lot of implementations. However, the only known smart card implementation

did not achieve on-card key generation [RED+08].
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Conclusion (Chapter 8) Finally, we draw a conclusion in Chapter 8 and discuss

possible future work.



2 Background

In this chapter we present some background for the work at hand. First, we fix

notation and give some formal definitions used through out the whole paper. We

only present the most important formal definitions for hash functions and signature

schemes. Definitions that are only used in one chapter are given there. Afterwards

we present some background on hash based signature schemes.

2.1 Notation & Formal Definitions

In this section we first fix some notation. Afterwards we present the formal defini-

tions of the most important hash function properties and digital signature schemes.

Through out this thesis, we write x
$←− X if x is randomly chosen from the set

X using the uniform distribution. We further write log for log2. We denote the

uniform distribution over bit strings of length n by Un. We write m = poly(n) to

denote that m is a function, polynomial in n. We call a function ε(n) : N → [0, 1]

negligible and write ε(n) = negl(n) if for any c ∈ N, c > 0 there exists a nc ∈ N
s.th. ε(n) < n−c for all n > nc. In all our proofs, we count runtimes in terms of

evaluations of a function family.

2.1.1 (Hash) Function Families

We now give formal definitions for the four most important properties of a (hash)

function family, namely one-wayness, second-preimage resistance, collision resis-

tance, and pseudorandomness. For the definitions we follow Rogaway and Shrimpton

[RS04]. We will also shortly discuss some relations between these notions. We re-

strict ourselves to function families that operate on bit strings and have a fixed input

size, as this is the case in our constructions. However, the definitions are the same

for the more general case. In the following let n ∈ N be the security parameter,

m, k = poly(n) , Hn = {HK : {0, 1}m → {0, 1}n |K ∈ {0, 1}k} a family of functions.

We say a function family Hn is efficient if there exists a probabilistic polynomial
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time (PPT) algorithm that evaluates HK(M) for any M ∈ {0, 1}m and K ∈ {0, 1}k.
We require all used function families to be efficient, unless we state otherwise. We

call Hn a hash function family if Hn is efficient and m > n, i.e. Hn is compressing.

We start defining the success probability of an adversary A against the one-

wayness (ow) of a function family Hn. Informally, A receives a random output of

a function from the family and has to find a valid preimage under this function, i.e.

invert the function. Formally this reads as

SuccowHn (A) = Pr [ K
$←− {0, 1}k;M $←− {0, 1}m, Y ←− HK(M),

M ′ $←− A(K,Y ) : Y = HK(M ′)] . (2.1)

We next define the success probability of an adversary A against second-preimage

resistance (spr). Informally, the adversary receives a random element of the function

family and a random element of its domain. The goal of A is to come up with a

collision for the given domain value and function. More formally:

SuccsprHn (A) =Pr [ K
$←− {0, 1}k;M $←− {0, 1}m,M ′ ←− A(K,M) :

(M 6= M ′) ∧ (HK(M) = HK(M ′))] . (2.2)

The last classical property of a hash function is collision resistance (coll). Here

the adversary has to come up with two elements of the domain that collide under a

given element of the function family:

SucccollHn (A) =Pr [ K
$←− {0, 1}k; (M,M ′)←− A(K) :

(M 6= M ′) ∧ (HK(M) = HK(M ′))] . (2.3)

We say that a function family has one of these properties if it is efficient and

there exists no PPT adversary that has a non-negligible success probability. As an

example we give the full definition for a one-way function family. The definitions

for second-preimage resistance and collision resistance are obtained accordingly and

hence we omit them.

Definition 2.1 (ow). Let Hn be defined as above. We call Hn a one-way function

family if Hn is efficient and if for any t = poly(n) the maximum success probability

InSecow (Hn; t) of all possibly probabilistic adversaries A running in time ≤ t is

negligible in n:

InSecow (Hn; t)
def
= max

A
{SuccowHn (A)} = negl(n) .
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The fourth notion we use is pseudorandomness of a function family (prf). In the

definition of the success probability of an adversary against pseudorandomness the

adversary gets black-box access to an oracle Box. Box is either initialized with a

function from Hn or a function from the set AF(m,n) of all functions with domain

{0, 1}m and range {0, 1}n. The goal of the adversary is to distinguish both cases:

SuccprfHn (A) =
∣∣∣Pr[Box $←− Hn : ABox(·) = 1]

−Pr[Box $←− AF(m,n) : ABox(·) = 1]
∣∣∣ . (2.4)

Using this success probability, we define a pseudorandom function family the fol-

lowing way.

Definition 2.2 (prf). Let Hn be defined as above. We call Hn a pseudorandom

function family, if it is efficient and for all q, t = poly(n) the maximum success

probability InSecprf (Hn; t, q) of all possibly probabilistic adversaries A, running in

time ≤ t, making at most q queries to Box, is negligible in n:

InSecprf (Hn; t, q)
def
= max

A
{SuccprfHn (A)} = negl(n) .

These notions are related. On the one hand there exist direct implications. It is

known that coll implies spr but the inverse does not hold. If for a non-negligible

set of elements H of Hn at least a non-negligible set of elements from the domain

collide with at least one other element under H, then Hn being spr implies Hn is

also ow. This is the case because if we evaluate a random H on a random element

x of the domain and hand the result to a successful inverter A, A will return x

with probability at most 1/2 if x collides with at least one other value. Thus, with

probability ≥ 1/2 A will return a different preimage. For a more detailed discussion

of hash function notions and their relations see [RS04].

On the other hand, there exist complexity theoretic relations. It is known that a

second-preimage resistant hash-function family can be constructed given any one-

way function [Rom90]. As the existence of a one-way function is the minimal as-

sumption needed for the existence of complexity theoretic cryptography, assuming

the existence of a second-preimage resistant hash function family means making

minimal security assumptions. It is also known that the existence of a one-way

function implies the existence of a pseudorandom function family. This follows from

the result of H̊astad et al. [HILL99] who show how to construct a pseudorandom

generator from any one-way function and the GGM construction [GGM86] of a pseu-

dorandom function family from any pseudorandom generator. It is noteworthy that

current research suggests that it is not possible to construct a collision resistant hash
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function family from any one-way function. Hence, the existence of a collision re-

sistant hash function family is a strictly stronger assumption than those mentioned

before.

2.1.2 Digital Signature Schemes

In the following we present the definitions for digital signature schemes that we

use. Regarding security we recall the standard notion of existential unforgeability

under adaptive chosen message attacks (EU-CMA) introduced in [GMR88]. While

this notion suffices for most applications, sometimes a stronger notion is needed

called strong unforgeability under adaptive chosen message attacks (SU-CMA).

SU-CMA secure signature schemes have a number of applications, including the

construction of chosen-ciphertext secure encryption schemes [CHK04] and group sig-

natures [ACJT00, BBS04]. We start with the definition of digital signature schemes.

Digital Signature Scheme

Let M be the message space. A digital signature scheme Dss = (Kg, Sign,Vf) is a

triple of probabilistic polynomial time algorithms:

• Kg(1n) on input of a security parameter 1n outputs a private signing key sk

and a public verification key pk;

• Sign(sk,M) outputs a signature σ under sk for message M , if M ∈M;

• Vf(pk, σ,M) outputs 1 iff σ is a valid signature on M under pk;

such that the following correctness condition is fulfilled:

∀(pk, sk)←− Kg(1n),∀(M ∈M) : Vf(pk, Sign(sk,M),M) = 1.

Throughout this work signature scheme always refers to a digital signature scheme.

Existential Unforgeability under Adaptive Chosen Message Attacks

The standard security notion for digital signature schemes is existential unforge-

ability under adaptive chosen message attacks (EU-CMA) which is defined using

the following experiment. By Dss(1n) we denote a signature scheme with security

parameter n.
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Experiment ExpEU-CMA
Dss(1n) (A)

(sk, pk)←− Kg(1n)

(M?, σ?)←− ASign(sk,·)(pk)

Let {(Mi, σi)}q1 be the query-answer pairs of Sign(sk, ·).
Return 1 iff Vf(pk,M?, σ?) = 1 and M? 6∈ {Mi}q1.

For the success probability of an adversary A in the above experiment we write

Succeu-cmaDss(1n) (A) = Pr
[
ExpEU-CMA

Dss(1n) (A) = 1
]
.

A signature scheme is called EU-CMA-secure if any PPT adversary has only neg-

ligible success probability:

Definition 2.3 (EU-CMA). Let n ∈ N, Dss a digital signature scheme as defined

above. We call Dss EU-CMA-secure if for all q, t = poly(n) the maximum suc-

cess probability InSeceu-cma (Dss(1n); t, q) of all possibly probabilistic adversaries A
running in time ≤ t, making at most q queries to Sign in the above experiment, is

negligible in n:

InSeceu-cma (Dss(1n); t, q)
def
= max

A
{Succeu-cmaDss(1n) (A)} = negl(n) .

An EU-CMA secure one-time signature scheme (OTS) is a Dss that is EU-CMA

secure as long as the number of oracle queries of the adversary is limited to one, i.e.

q = 1. In the case of SU-CMA security the adversary also succeeds if it returns a

new signature on a message sent to Sign before. Hence, we obtain a definition for

SU-CMA security replacing the last line in ExpEU-CMA
Dss(1n) (A) by

Return 1 iff Vf(pk,M?, σ?) = 1 and (M?, σ?) 6∈ {(Mi, σi)}q1 .

2.2 Hash-based Signature Schemes

The signature schemes that we present in this work are hash-based signature schemes.

The idea of hash-based signatures was introduced by Merkle [Mer90a] and the results

in [BM96, BDE+11, BDK+07, BDS08, BDS09, BGD+06, DOTV08, DSS05, Gar05,

HM02, JLMS03, Szy04] improve the Merkle idea in many respects by providing new

algorithmic ideas and security proofs. In this section we present the basic ideas of

hash based signature schemes. Moreover, we discuss so called tree traversal algo-

rithms. These algorithms play a central role regarding the efficiency of hash based

signature schemes and we will refer to this subsection several times. We begin this

section with a hash-based one-time signature scheme.
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2.2.1 The Lamport-Diffie One-Time Signature Scheme

At the heart of a hash-based signature scheme is a hash-based OTS. The first and

most intuitive proposal for such an OTS is Lamport’s scheme (sometimes called

Lamport-Diffie OTS) [Lam79]. With this scheme the basic ideas for hash-based

OTS were introduced. The OTS we present later in this work are based on the

same general idea. The scheme uses any one-way function H, i.e. H = HK ∈ Hn

as defined above, and signs l bit messages. The secret key consists of 2l random bit

strings

sk = (sk1,0, sk1,1, . . . , skl,0, skl,1)

of length m. The public key consists of the 2l outputs of the one-way function

pk = (pk1,0, pk1,1, . . . , pkl,0, pkl,1) = (H(sk1,0),H(sk1,1), . . . ,H(skl,0),H(skl,1))

when evaluated on the elements of the secret key. Signing a message M ∈ {0, 1}l
corresponds to publishing the corresponding elements of the secret key:

σ = (σ1, . . . , σl) = (sk1,M1 , . . . , skl,Ml
).

To verify a signature the verifier checks whether the elements of the signature are

mapped to the right elements of the public key using H:

(H(σ1), . . . ,H(σl))
?
= (pk1,M1

, . . . , pkl,Ml
)

The reason for the scheme being one-time is that a signature contains half of the

secret key. Hence, an adversary would simply ask for two signatures – namely the

signatures on 0l and 1l – to be able to sign any message of her choice. However, if

an adversary only knows the signature on one message, an existential forgery would

contain a preimage for at least one element of the public key that was not contained

in the signature before. The scheme can be proven EU-CMA-secure if the function

used is one-way [BDS09]. It is also straightforward to prove that the scheme is

SU-CMA-secure if the used function is second-preimage resistant.

2.2.2 The Merkle Signature Scheme

Given an OTS like the one from above we now show how to construct a many-time

signature scheme. The method was introduced by Merkle in [Mer90a]. For this

reason hash-based signature schemes are sometimes also called Merkle Signature

Schemes (MSS). The many-time signature schemes presented in this work are based

on this method but we use and introduce some improvements for the basic method

presented here.



2.2 Hash-based Signature Schemes 13

Figure 2.1: The Merkle Tree construction
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The idea is to use many OTS key pairs and authenticate the public keys using a

binary authentication tree, called Merkle Tree. The root of the tree becomes the new

public key and the OTS secret keys become the overall secret key. More specifically,

given a tree height h and a collision-resistant hash function H = HK ∈ Hn the

key generation works as follows. First 2h OTS key pairs (pki, ski), 0 ≤ i < 2h are

generated. The secret key SK = (sk0, . . . , sk2h−1) consists of the 2h OTS secret keys.

The 2h leaves of the tree are the hash values of the 2h OTS public keys using H:

Li = H(pki). The nodes Ni,j in the tree are computed as the hash value of the

concatenation of their child nodes:

Ni,j = H(N2i,j−1||N2i+1,j−1)

for 0 < j ≤ h. The single hash value that represents the root of the tree is the

overall public key PK. The construction of the public key is shown in Figure 2.1.

To sign the ith message the ith OTS secret key is used. The signature Σ =

(i, σi, pki,Authi) contains the index i, the obtained OTS signature σi, the corre-

sponding OTS public key pki and the authentication path for pki. The authentica-

tion path for pki is the set of all siblings of the nodes on the path from Li to the

root. Figure 2.2 shows the authentication path for some pki. To verify a signature,

first the OTS signature is verified. Then a root value is computed using the OTS

public key from the signature and the authentication path. If the obtained root

value equals the one contained in PK, the signature is accepted. Otherwise it is

rejected.

It can be shown that this construction is EU-CMA-secure if the used OTS is

EU-CMA-secure and the used hash function is taken from a collision resistant hash

function family [BDS09]. The intuition for the proof is that an adversary, that

successfully forges a signature, either generated a forgery for one of the OTS key

pairs or that it replaced one of the OTS key pairs by one for which it knows the
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secret key. In the second case, it follows from the pigeonhole principle that the

authentication path for the original OTS public key and that for the OTS public

key contained in the forgery must collide at some point. This gives us a collision for

H.

To understand the next subsection, one improvement of this basic scheme is

needed. The construction described here results in a secret key that grows lin-

early in the number of signatures a key pair can be used for. For this reason, all

practical MSS constructions use a pseudorandom generator to generate the OTS

key pairs. In this case, the OTS key pairs are deleted after key generation and

recomputed when needed.

2.2.3 Tree Traversal Algorithms

The most costly part in the signature generation algorithm is the computation of the

authentication path described above. For this task so called tree traversal algorithms

are used. An authentication path for a tree of height h consists of h nodes, one node

on each level 0 ≤ j < h of the tree. The computation of a node on level j requires

the computation of 2j leaves and 2j − 1 computations of inner nodes of the tree.

In many cases the authentication paths of two sequential signatures differ only in a

few nodes. Therefore, it is possible to reduce the number of nodes that have to be

computed by storing the last authentication path in a state. However, in the worst

case a new node on each level is required. Hence, 2h − 1 leaves and 2h − h inner

nodes have to be computed if the nodes are computed when needed.

There exist several proposals for tree traversal algorithms [BKN07, BDS08, Szy04,

JLMS03] that are much more efficient than the straightforward approach above. A

detailed overview can be found in [BDS09]. In this work we use the BDS algorithm

by Buchmann et al. [BDS08] because it is the only algorithm that takes into account

that leaf computation requires more effort than the computation of an inner node.

Figure 2.2: The authentication path for leaf i

j = h

j = 0

i
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This difference in computational costs grows if the OTS public keys are not stored,

which is the case for all our MSS proposals. The basic building block of BDS is the

TreeHash algorithm proposed by Merkle [Mer90a] that can be used to compute a

node of the tree. Algorithm 2.1 shows TreeHash as used by BDS. The algorithm

works on a stack Stack that is updated each time the algorithm is called. As input

the algorithm takes Stack and the index of the next leaf to process. It outputs an

updated Stack. The required node is the only remaining node on Stack after 2j calls

to TreeHash for a node on level j. It uses the method LeafCalc as a subroutine.

Given an index, LeafCalc computes the corresponding leaf node of the tree. The

implementation of LeafCalc depends on the MSS for which BDS is used.

Algorithm 2.1: TreeHash

Input: Stack, leaf index φ

Output: Updated Stack

1 N= LeafCalc (φ);

2 while top node on Stack has same height as N do

3 N ←− H ((Stack.pop()||N));

4 end

5 Stack.push(N);

6 return Stack

The BDS algorithm is parameterized by the BDS parameter k defining a time-

memory trade-off. It reduces the worst case runtime per signature generation from

2h− 1 to (h− k)/2 evaluations of TreeHash and hence only (h− k)/2 leaf compu-

tations. More specifically, the BDS algorithm does three things. First, it uses the

fact that a node which is a left child can be computed from values that occurred in

an authentication path before, spending only one evaluation of H. Second, it stores

the right nodes from the top k levels of the tree during key generation. Third, it dis-

tributes the computations for right child nodes among previous authentication path

computations. BDS computes one node on every tree level 0 ≤ j < h−k in parallel

using Treehash. The main part of BDS is the scheduling of these h − k computa-

tions. During every authentication path computation, BDS distributes (h − k)/2

updates among the running computations. This is done such that the computation

of all nodes required for authentication path i + 1 is finished during the ith signa-

ture generation. The computation of the next right node on a level starts when the

last computed right node becomes part of the authentication path. To achieve this,

BDS uses a state StateBDS of no more than
(
3h+

⌊
h
2

⌋
− 3k − 2 + 2k

)
tree nodes

that is initialized during key generation. To compute the authentication paths the
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BDS algorithm spends (h− k)/2 leaf computations and evaluations of TreeHash

per signature. For more details see [BDS08].



3 New Variants of the Winternitz One
Time Signature Scheme

In this chapter we present the idea of the Winternitz One-Time Signature Scheme

(W-OTS) first proposed in [Mer90a] and introduce two new variants of W-OTS. We

prove the first variant strongly unforgeable under adaptive chosen message attacks

in the standard model if a second-preimage resistant, undetectable one-way func-

tion family is used. For the second variant we prove existential unforgeability under

adaptive chosen message attacks if it is instantiated using a pseudorandom function

family. Towards this end, we introduce the notion of a function chain and give a

generic description of W-OTS using this new notion. We introduce two security no-

tions for function chains and use them to prove W-OTS EU-CMA and SU-CMA

secure, respectively. Finally, we present two constructions of function chains that ful-

fill these security properties and lead to the two instantiations mentioned above. We

start with the generic description of W-OTS, including the definition of a function

chain. Afterwards, we present the security proofs and different chain constructions.

The contributions of this chapter were published as parts of [1, 6, 7].

3.1 The Winternitz One-Time Signature Scheme

In this section we present a generic description of W-OTS using function chains,

which we also introduce here. Intuitively, a function chain generates an ordered set

– i.e. a chain – of values using a function (family) given a start value. The core

idea of W-OTS is to use a certain number of such function chains starting from

random values. These random values are the secret key. The public key consists of

the final outputs of the chains, i.e. the end of each chain. A signature is computed

by mapping the message to one intermediate value of each function chain. We start

with the definition of function chains. Afterwards we present W-OTS.
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3.1.1 Function Chains

In the following we formally introduce the notion of a function chain and two security

properties for function chains. A function chain might be seen as some mode of

operation for a function (family). More specifically, a function chain consists of

two probabilistic polynomial time algorithms: An initialization algorithm I that

generates a public chain key ck and an evaluation algorithm E that allows to compute

the function chain. Actually, the evaluation algorithm does not simply compute the

last value of the chain, but given a value of the chain it allows to perform one

or more iterations of the function chain to obtain a succeeding value of the chain.

There are two important details in our definition. First, the initialization algorithm

takes the chain length as input. For this reason the length of a chain is fixed

during initialization and the chain key can depend on the length. Furthermore, the

evaluation algorithm takes as input which iteration of the chain the given input value

belongs to and the output for which iteration of the chain should be computed, with

the restriction that only the values of subsequent iterations can be computed. These

two details make it possible, that iterations might differ, i.e. they might depend on

their position in the chain. The notion of function chains might be interesting on its

own, i.e. to formalize methods that make the computation of password digests more

expensive to prevent brute-force attacks. Now, we first present the formal notion.

For a better understanding, we give a little example afterwards. Then we define the

security properties.

Definition 3.1 (Function Chain). Let n ∈ N be the security parameter, domain D
and key space K be sets whose elements have a description length polynomial in n.

A function chain C = (I,E) is a pair of probabilistic polynomial time algorithms

• I(1n, λ), the initialization algorithm, on input of the security parameter n in

unary and a chain length parameter λ ∈ N returns a public chain key ck ∈ K.

• E i,jck (X), the evaluation algorithm, on input of a value X ∈ D, an interval

i, j ∈ N, 0 ≤ i ≤ j ≤ λ and a chain key ck ∈ K returns Y ∈ D, the jth value

of the chain assuming X is the ith value of the chain.

such that

(∀n, λ ∈ N), (∀ck←− I(1n, λ)), (∀i, j,m ∈ N, 0 ≤ i ≤ j ≤ m ≤ λ), (∀X ∈ D) :

E j,mck (E i,jck (X)) = E i,mck (X).
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The correctness condition above simply says that it is possible to continue the

evaluation of C from any intermediate value without changing the final result, as

long as the same chain key is used. Please note that the above definition implies

E i,jck (X) = X if i = j. To simplify notation, we omit the chain key whenever its

value is clear from the context. We also omit the first index i for E if it is zero, i.e.

E jck(X) = E0,jck (X). We assume that the security parameter n, the chain length λ

and the domain D can either be derived from ck or are publicly known.

To get a better idea of this notion, take the following example:

Construction 3.2 (Example). For a given n ∈ N, let

Fn = {FK : {0, 1}n → {0, 1}n|K ∈ {0, 1}n}

be a function family. Then we can construct a function chain with the following two

algorithms operating on K = D = {0, 1}n:

• I(1n, λ) chooses a function key K
$←− {0, 1}n and returns ck = (K,λ).

• E i,jck (X) given X ∈ {0, 1}n applies FK j − i times on X, i.e. it returns Y =

Fj−i
K (X) ∈ {0, 1}n.

We leave it to the reader to check the correctness condition for this function chain.

We require a function chain to provide some security property when we use it for

W-OTS. Informally, to achieve EU-CMA security we require the function chain to

fulfill some kind of one-wayness. For the stronger notion of SU-CMA security, we

need something like second-preimage resistance. We now define these two properties.

We start with the one-wayness property. In previous works [GKL88, EGM96, DSS05]

it was already analyzed what it means for the iteration of a function to be one-way.

We define our notion for function chains similar to Dods et al. [DSS05] and reuse

their name one-deeper preimage resistance (odp).

The reasoning behind odp is as follows. In most applications, including W-OTS,

the final output Z of the function chain is used as some kind of verification value,

similar to a message digest. Now, the adversary learns some intermediate value Y

of the function chain that is the output of the ith iteration. A first idea would be

to ask that it is impossible for the adversary to come up with a value X that is

the output of a preceding iteration j < i and maps to Y after i− j iterations. But

this misses the needs of the above application. The reason is that there might exist

many more values that are possible outcomes of an iteration j < i, which lead to

Z as final output of the chain, but do not lead to Y as the ith intermediate value.

For this reason, we say that the adversary quasi inverts the function chain and
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thereby breaks the odp property if it comes up with such a X. This is formalized

in the following success probability of an adversary A against the odp resistance of

a function chain C(1n, λ):

SuccodpC(1n,λ) (A) =Pr [ ck←− I(1n, λ);U
$←− D, i $←− [1, λ];Y ←− E ick(U),

(X, j)
$←− A(ck, i, Y ) : 0 ≤ j < i; E i,λck (Y ) = E j,λck (X)

]
Using this, we define odp for function chains as follows

Definition 3.3 (odp for function chains). Let n, λ, t ∈ N, t = poly(n), C =(I,E) a

function chain as described in Definition 3.1. We call C(1n, λ) odp resistant if the

success probability SuccodpC(1n,λ) (A) of any adversary A running in time less or equal

t is negligible in n:

InSecodp (C(1n, λ); t)
def
= max

A
{SuccodpC(1n,λ) (A)} = negl(n) .

To achieve SU-CMA security we will also need some kind of second-preimage

resistance that we call second-origin resistance (so). In this case, the intuition is

that it should also be impossible for the adversary to come up with a new Y ′ which

is a possible output of the ith iteration and maps to the same final output Z ′ = Z

as Y . Obviously, it makes no sense to allow i = λ in this case as this would mean

that we have two contradicting requirements, i.e. Y 6= Y ′ and Y = Z = Z ′ = Y ′.

We formalize this using the following success property of an adversary A against

the so resistance of a function chain C(1n, λ):

SuccsoC(1n,λ) (A) =Pr [ ck←− I(1n, λ);U
$←− D, i $←− [0, λ− 1];Y ←− E ick(U),

(Y ′)
$←− A(ck, i, Y ) : Y 6= Y ′; E i,λck (Y ) = E i,λck (Y ′)

]
Using this, we define so for function chains as follows

Definition 3.4 (so for function chains). Let n, λ, t ∈ N, t = poly(n), C =(I,E) a

function chain as described in Definition 3.1. We call C(1n, λ) so resistant if the

success probability SuccsoC(1n,λ) (A) of any adversary A running in time less or equal

t is negligible in n:

InSecso (C(1n, λ); t)
def
= max

A
{SuccsoC(1n,λ) (A)} = negl(n) .

3.1.2 W-OTS

Now, we give a generic description of W-OTS using function chains as defined above.

We start describing the parameters of the scheme. Afterwards, we present the three

algorithms of the signature scheme.
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Parameters: W-OTS is parameterized by security parameter n, the binary mes-

sage length m, and the Winternitz parameter w ∈ N, w > 1 that determines the

time-memory trade-off. The last two parameters are used to compute

`1 =

⌈
m

log(w)

⌉
, `2 =

⌊
log(`1(w − 1))

log(w)

⌋
+ 1, ` = `1 + `2.

Moreover, it uses a function chain C. These parameters are publicly known. We

can now describe the three algorithms of the scheme.

Key Generation Algorithm (Kg(1n)): On input of security parameter n in unary

the key generation algorithm choses ` values sk = (sk1, . . . , sk`)
$←− D` uniformly

at random that form the secret key. Next, Kg initializes the function chain ck ←−
I(1n, w − 1) and obtains a chain public key. The public verification key pk is com-

puted as

pk = (pk0, pk1, . . . , pk`) = (ck, Ew−1ck (sk1), . . . , Ew−1ck (sk`)) .

Signature Algorithm (Sign(M, sk)): On input of a message M ∈ {0, 1}m and the

secret signing key sk, the signature algorithm first computes a base w representation

of M : M = (b1 . . . b`1), bi ∈ {0, . . . , w − 1}. Next it computes the checksum

C =

`1∑
i=1

(w − 1− bi)

and represents it as `2 base w numbers C = (b`1+1, . . . , b`). The length of the base-w

representation of C is at most `2 since C ≤ `1(w − 1). We set B = (b1, . . . , b`) =

M ‖ C, the concatenation of the base w representations of M and C. The signature

is computed as

σ = (σ1, . . . , σ`) = (Eb1ck (sk1), . . . , Eb`ck(sk`).

Please note that the checksum guarantees that given the B corresponding to one

message M , for any other message M ′ 6= M the corresponding B′ includes at least

one b′i < bi for 0 < i ≤ `.

Verification Algorithm (Vf(M,σ, pk)): On input of message M of binary length

m, a signature σ and a public verification key pk, the verification algorithm first

computes the bi, 1 ≤ i ≤ ` as described above. Then it does the following compari-

son:

(pk1, . . . , pk`)
?
= (Eb1,w−1ck (σ1), . . . , Eb`,w−1ck (σ`))

If the comparison holds, it returns true and false otherwise.
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3.2 The Security of Generic W-OTS

In this section we analyze the security of the generic W-OTS description from the

last section. We show that W-OTS is existentially unforgeable under adaptive cho-

sen message attacks if the used function chain is one-deeper preimage resistant.

Furthermore, we show that W-OTS is strongly unforgeable under adaptive chosen

message attacks if the function chain is second-origin resistant. More precisely, we

prove the following lemma:

Lemma 3.5. Let n,w,m ∈ N, w,m = poly(n), C a function chain. Denote by

tKg (tSign, tVf) the runtime of the W-OTS key generation (signature, verification)

algorithm, respectively. Then the insecurity of W-OTS against an EU-CMA attack,

InSeceu-cma (W-OTS(1n, w,m); t, 1), is bounded by

InSeceu-cma (W-OTS(1n, w,m); t, 1)

≤ `w · InSecodp (C(1n, w − 1); t′)

with t′ = t+ tKg + tSign + tVf .

Moreover, we can bound InSecsu-cma (W-OTS(1n, w,m); t, 1), the insecurity of

W-OTS against an SU-CMA attack, by

InSecsu-cma (W-OTS(1n, w,m); t, 1)

≤ `w · (InSecodp (C(1n, w − 1); t′) + InSecso (C(1n, w − 1); t′))

with t′ = t+ tKg + tSign + tVf .

The proof of this lemma is rather straight forward. The intuition is that in the

case of EU-CMA security, a forgery must contain a one-deeper preimage for one

of the ` chains. This is guaranteed by the construction of the checksum. In the

reduction we simply guess this chain. In case of SU-CMA security, the forgery

contains either a one-deeper preimage or a second-origin. Again we guess the chain.

Proof. Part 1 - EU-CMA: We begin with the EU-CMA case. For the sake of

contradiction assume there exists an adversary A that can produce existential forg-

eries for W-OTS(1n, w,m) running an adaptive chosen message attack in time t and

with success probability ε greater the claimed bound `w · InSecodp (C(1n, w − 1); t′).

We show how to construct an oracle machine MA that breaks the one-deeper

preimage resistance of C(1n, w − 1) in time t′ ≈ t with success probability greater

InSecodp (C(1n, w); t), leading to the required contradiction. A pseudo-code version

of MA is given as Algorithm 3.1.
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Algorithm 3.1:MA

Input: Chain key ck, iteration count i and odp challenge Yc
Output: A one-deeper preimage X ∈ D

1 Run Kg(1n) with w = λ+ 1, using ck as chain key to generate a W-OTS key

pair (sk, pk);

2 Choose α
$←− {1, ..., `};

3 Replace pkα by pk′α ←− E
i,w−1
ck (Yc);

4 Run ASign(sk,·)(pk);

5 if ASign(sk,·)(pk) queries Sign with message M then

6 Compute B = (b1, ..., b`);

7 if bα < i then

8 return fail;

9 else

// Generate signature σ of M

10 Run σ = (σ1, . . . , σ`)←− Sign(M, sk);

11 Set σα = E i,bαck (Yc);

12 Reply to query with σ;

13 end

14 end

15 if ASign(sk,·)(pk) returns valid (σ′,M ′) then

16 compute B′ = (b′1, ..., b
′
`);

17 if b′α ≥ i then

18 return fail;

19 else

20 return Eb
′
α,bα−1

ck (σα);

21 end

22 else

23 return fail;

24 end
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On input of a chain key ck, iteration count i and odp challenge YcMA generates a

W-OTS public key for w = λ+ 1 using ck as chain key. Next,MA selects a random

chain α and places the challenge there. This is done computing the remaining

w − 1 − i iterations to obtain the output of the chain and using it to replace the

value in the public key that corresponds to chain α (Line 3). Please note that the

resulting public key is distributed in the same way as a public key generated by Kg.

The reason is that Yc is the ith intermediate value of a chain. The difference to a

normal key pair is that MA now only knows the intermediate values of chain α for

iterations ≥ i. For the remaining chains, all values are known. For this reason, if A
makes a query to the signing oracle, MA can answer the query correctly if bα ≥ i

(Line 7). In this case,MA computes the signature using the secret key values and Yc
(Lines 10&11). Otherwise it returns fail. Now, if A returns a valid forgery,MA only

learns something new if b′α < i (Line 17). In this case, MA extracts the one-deeper

preimage and returns it (Line 20). Otherwise it returns fail.

Now we computeMA’s success probability. MA succeeds, if the break conditions

on lines 7 and 17 are not fulfilled and A returns a valid forgery. We do the analysis

in the reverse order. By assumption, A succeeds with probability ε. Because of the

checksum construction, there must exist at least one 1 ≤ j ≤ w−1 with b′j < bj. To

simplify the analysis, we compute the probability that α = j and bα = i, i.e. that

we placed Yc in the perfect position. In this case bα ≥ i and b′α < i and both break

conditions are not fulfilled. This happens with probability ≥ w−1`−1, because we

chose α uniformly at random and bα > 0 must hold. Putting things together we get:

SuccodpC(1n,w−1)
(
MA) ≥ 1

w`
· ε.

The runtime t′ of MA is the runtime t of A plus the time needed to run Kg, Sign

and Vf (t′ = t + tKg + tSign + tVf). Using that ε is greater than the claimed bound

leads to the required contradiction.

Part 2 - SU-CMA: Now we turn to the SU-CMA case. For the sake of con-

tradiction assume there exists an adversary A that can produce strong forgeries for

W-OTS(1n, w,m) running an adaptive chosen message attack in time t and with

success probability ε greater than the claimed bound `w · (InSecodp (C(1n, w − 1); t′)

+InSecso (C(1n, w − 1); t′)). Then there are two mutually exclusive cases. First, A
might still return a forgery for a new message. In this case we can useMA to break

the odp resistance of C(1n, w− 1). Second, A might return a new signature for the

message sent to Sign before. For this case we can build an oracle machineM′A that

breaks the so resistance of C(1n, w − 1). M′A takes the same inputs (ck, i, Yc) as

MA, except that i now is in the range [0, λ− 1]. It also behaves likeMA up to the
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point when A returns the forgery. At this point M′A returns a second origin σ′α if

Yc 6= σ′α and it returns fail otherwise.

We first analyze the success probability for the two cases. As they are mutually

exclusive, they occur with inverse probabilities. Assume A returns a signature on

a new message under the condition that it succeeds with probability p, then the

success probability of MA is the same as above:

SuccodpC(1n,w−1)
(
MA) ≥ p

w`
· ε.

Now under the condition that A succeeds, it returns a new signature on M with

probability 1 − p. Then bj = b′j for all 1 ≤ j ≤ ` and there must exist at least one

σj 6= σ′j. With probability ≥ w−1`−1 it holds that α = j and bα = i as both values

are uniformly random. In this caseM′A can answer the signature query and extract

a second origin. By assumption, A succeeds with probability ε and so we get

SuccsoC(1n,w−1)
(
M′A) ≥ 1− p

w`
· ε.

The runtime t′ of M′A is equal to the runtime of MA which is the runtime t of A
plus the time needed to run Kg, Sign and Vf (t′ = t+ tKg + tSign + tVf). Now we can

put the two bounds together and use that MA’s success probability in both cases

is limited by the corresponding insecurity functions. Then we get

ε ≤ w` · (InSecodp (C(1n, w − 1); t′) + InSecso (C(1n, w − 1); t′))

which contradicts our initial assumption.

3.3 A Function Chain using Second-Preimage

Resistance

In this section we present the construction of a function chain C+. The presented

function chain C+ is odp and so resistant if the internally used function is second-

preimage resistant, one-way and undetectable, i.e. the output of the function is

pseudorandom. This function chain C+ then directly leads to a W-OTS construction

W-OTS+ that is SU-CMA secure under these conditions. We now first present the

construction for C+. Afterwards we formally define undetectability and prove that

C+ is odp and so resistant.
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3.3.1 The C+ Function Chain

We now describe the function chain C+. For a given security parameter n it uses a

family of functions

Fn : {FK : {0, 1}n → {0, 1}n|K ∈ {0, 1}k} (3.1)

where k = poly(n). The function chain C+ works over domain D = {0, 1}n and has

key space K = {0, 1}k × {0, 1}n×λ. The algorithms are instantiated as follows:

I(1n, λ): On input of the security parameter n in unary and the chain length λ the

initialization algorithm choses a function FK from Fn by choosing a K
$←− {0, 1}k

uniformly at random. Next it chooses a vector R = (R1, . . . , Rλ)
$←− {0, 1}n×λ of

λ bit strings, each of length n uniformly at random. We call R the randomization

elements. The algorithm returns ck = (K,R).

E i,jck (X): On input of value X ∈ D, interval 0 ≤ i ≤ j ≤ λ and chain key ck

the evaluation function works the following way. According to the definition of a

function chain, E returns X if i = j (E i,ick (X) = X). For i < j we define E recursively

by

E i,jck (X) = FK(E i,j−1ck (X)⊕Rj),

i.e. in every round, the function first takes the bitwise xor of the intermediate value

and the corresponding randomization element Rj and evaluates FK on the result

afterwards.

Correctness of C+ directly follows from the construction of E above.

3.3.2 Preliminaries

We now provide two definitions used in this section. In the following we use the

(distinguishing) advantage of an adversary which we now define.

Definition 3.6 (Advantage). Given two distributions X and Y, we define the ad-

vantage AdvX ,Y (A) of an adversary A in distinguishing between these two distribu-

tions as

AdvX ,Y (A) = |Pr [1←− A(X )]− Pr [1←− A(Y)]| .

We now define undetectability. In what follows, we only consider the families Fn
defined in the last section (Equation 3.1). Intuitively, a function family is unde-

tectable if its output can not be distinguished from uniformly random values. This
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is what we require from a pseudorandom generator, which in contrast to Fn has to

be length expanding. Here we define it for length preserving function families.

To define undetectability, assume the following two distributions over {0, 1}n ×
{0, 1}k. A sample (U,K) from the first distribution Dud,U is obtained by sampling

U
$←− {0, 1}n and K

$←− {0, 1}k uniformly at random from the respective domain.

A sample (U,K) from the second distribution Dud,F is obtained by sampling K
$←−

{0, 1}k and then evaluating FK on a uniformly random bit string, i.e. U ←− FK(Un).

The advantage of an adversary A against the undetectability of Fn is then defined

as the distinguishing advantage for these two distributions:

Advud
Fn (A) = AdvDud,U ,Dud,F (A)

Using this we define undetectability as:

Definition 3.7 (Undetectability (UD)). Let n ∈ N, t = poly(n), Fn a family of

functions as described above. We call Fn undetectable, if InSecud (Fn; t) the advan-

tage of any adversary A against the undetectability of Fn running in time less or

equal t is negligible in n:

InSecud (Fn; t)
def
= max

A
{Advud

Fn (A)} = negl(n) .

Undetectability was already used by Dods et al. [DSS05] in security proofs for

W-OTS.

3.3.3 Security Proof

We now show that C+ is an odp and so resistant function chain if Fn is a second-

preimage resistant, undetectable one-way function family. More formally we prove

the following lemma:

Lemma 3.8. Let n, λ, t ∈ N, Fn as defined above be a second-preimage resistant,

undetectable one-way function family. Then InSecodp (C+(1n, λ); t), the odp resis-

tance of C+ is bounded by

InSecodp
(
C+(1n, λ); t

)
≤ λ · InSecud (Fn; t?) + InSecow (Fn; t′) + λ · InSecspr (Fn; t′′)

with t′ = t+λ, t′′ = t+2λ and t? = t+2λ−1. Moreover, if Fn is a second-preimage

resistant function family, InSecso (C+(1n, λ); t), the so resistance of C+ is bounded

by

InSecso
(
C+(1n, λ); t

)
≤ λ · InSecspr (Fn; t′)

with t′ = t+ 2λ.
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This leads to our first main result. We call W-OTS using C+ as the function chain

W-OTS+. Combining the above result with Lemma 3.5 we obtain the following

theorem on the security of W-OTS+:

Theorem 3.9. Let n,w,m ∈ N, w,m = poly(n), Fn as defined above a second-

preimage resistant, undetectable one-way function family. Then, the insecurity

of W-OTS+ against an EU-CMA attack, InSeceu-cma
(
W-OTS+(1n, w,m); t, 1

)
, is

bounded by

InSeceu-cma
(
W-OTS+(1n, w,m); t, 1

)
≤ `w2 · InSecud (Fn; t?) + `w · InSecow (Fn; t′) + `w2 · InSecspr (Fn; t′′)

with t′ = t+ tKg + tSign+ tVf +w, t′′ = t+ tKg + tSign+ tVf +2w and t? = t+ tKg + tSign+

tVf + 2w − 1. Moreover, the insecurity of W-OTS+ against an SU-CMA attack is

bounded by

InSecsu-cma
(
W-OTS+(1n, w,m); t, 1

)
≤ `w2 · InSecud (Fn; t?) + `w · InSecow (Fn; t′) + (`w2 + w) · InSecspr (Fn; t′′)

with t′ = t + tKg + tSign + tVf + w, t′′ = t + tKg + tSign + tVf + 2w and t? = t + tKg +

tSign + tVf + 2w − 1.

It seems natural to assume that the existence of a function that combines one-

wayness, undetectability and second-preimage resistance is equivalent to the exis-

tence of a one-way function. As the function has to be one-way itself, the one

direction is trivial. On the other hand, we know that second-preimage resistant

functions exist if a one-way function exists [Rom90] and we know the same for un-

detectable functions, i.e. pseudorandom generators [HILL99]. We leave the question

if this also implies the existence of a function family that combines all three proper-

ties for future work. If this was the case, it would mean that W-OTS+ has minimal

security requirements.

Before we present the proof, we now give some intuition. We begin with the odp

resistance. Recall, the adversary is given a chain key, an index i and the output of

the ith iteration Y . Then it has to return a one-deeper preimage X of Y . Intuitively,

if X leads to Y as the output of the ith iteration, it also leads to a real preimage of

Y under FK that we try to extract using the preimage challenge as Y . If X leads

a different value than Y as output for the ith iteration, the values in the chains

starting from Y and X must collide at some point, as they lead the same final

output. This also means a collision for FK . By manipulating the randomization

elements in the chain key, we can use this second case to extract a second-preimage
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with high probability. The undetectability is used to show that the adversary still

succeeds with sufficiently high probability although the Y is not an output of the

ith iteration of the chain but a uniformly random value.

For the case of so resistance, we proceed similar to the above, but we know in

advance that only the second case can appear. For this reason, we do not have to

place a preimage challenge in the chain and can use a Y that is really the output

of the ith iteration of the chain. Hence, we also do not need the undetectability in

this case.

Proof of Lemma 3.8.

Part 1 - SO resistance: We first prove the so case, as we can reuse the re-

duction for the odp case. For the sake of contradiction assume there exists an

adversary A that can break the so resistance of C+(1n, λ) running in time ≤ t and

with success probability εA = SuccsoC+(1n,λ) (A) greater than the claimed bound on

InSecso (C+(1n, λ); t). We first show how to construct an oracle machine MA
spr that

breaks the second-preimage resistance of Fn using A. A pseudo-code description of

MA
spr is given as Algorithm 3.2.

Algorithm 3.2:MA
spr

Input: Security parameter n, function key K, second-preimage resistance

challenge Xc.

Output: A value X that is a second-preimage for Xc under FK or fail.

1 Sample R
$←− {0, 1}n×λ to obtain a chain key ck = (K,R) for length λ;

2 Choose index α
$←− {0, . . . , λ− 1} uniformly at random;

3 Sample U
$←− {0, 1}n and compute Y ←− Eαck(U);

4 Choose index β
$←− {α + 1, . . . , λ} uniformly at random;

5 Obtain R′ from R, replacing Rβ by Eα,β−1ck (Y )⊕Xc ;

6 Set ck′ = (K,R′);

7 Run Y ′ ←− A(ck′, α, Y ) ;

8 if Y ′ 6= Y and Eα,λck (Y ′) = Eα,λck (Y ) then

9 if X ′ = Eα,β−1ck (Y ′)⊕Rβ 6= Xc and FK(X ′) = Eα,βck (Y ) = FK(Xc) then

10 return second-preimage X ′ ;

11 end

12 end

13 return fail;

The oracle machine MA
spr first imitates the initialization algorithm to obtain a
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valid chain key ck = (K,R) for length λ using the given function key K. Then,

MA
spr selects an iteration index α uniformly at random to construct the so challenge.

Next,MA
spr samples a uniformly random element U

$←− {0, 1}n from the domain of

the function chain and computes the output Y of the αth iteration. Then, another

intermediate value β between α and the end of the chain is selected uniformly at

random. MA
spr places the second-preimage challenge at the input to FK during

the βth iteration of the chain, replacing the randomization element Rβ (Line 5).

A manipulated chain key ck′ is constructed using the new set of randomization

elements. Then MA
spr runs A on input (ck′, α, Y ).

If A returns a second origin Y ′, MA
spr tries to extract a second-preimage. Oth-

erwise, MA
spr returns fail. Assume A returned a second origin. In this case the

chains continued from Y and Y ′ must collide at some position between α + 1 and

λ according to the pigeonhole principle as they have the same final output. If they

collide at position β for the first time, a second-preimage for Xc can be extracted

(Line 10). Otherwise MA
spr aborts.

Now, we compute the success probability of MA
spr. As A’s input distribution is

correct, it will return a second-origin with probability εA. MA
spr returns a second-

preimage for Xc if the two chains collide for the first time at position β. This

happens with probability greater λ−1 as β was chosen uniformly at random from

within the interval [α + 1, λ].

Using that MA
spr’s success probability is limited by the corresponding insecurity

function for the second-preimage resistance of Fn, we can bound the success prob-

ability of A if called by MA
spr:

εA ≤ λ · InSecspr (Fn; t′) . (3.2)

The time t′ = t + 2λ is an upper bound for the runtime of A plus the time needed

to compute all values for two chains of length ≤ λ. This leads the required contra-

diction.

Part 2 - ODP resistance: We now prove the odp case. For the sake of con-

tradiction assume there exists an adversary A that can break the odp resistance

of C+(1n, λ) running in time ≤ t and with success probability εA = SuccodpC+(1n,λ) (A)

greater than the claimed bound on InSecodp (C+(1n, λ); t). If A returns a one-deeper

preimage (j,X) on input (ck, i, Y ) there are two mutually exclusive cases that ap-

pear with complementary probability. Either E j,ick (X) = Y holds, i.e. Y is the ith

intermediate value of the chain continued from X, or it does not hold. Denote the

two cases by c1, i.e. the condition holds, and c2 otherwise. In the following we show

how to construct an oracle machineMA
ow, that breaks the one-wayness of Fn usingA
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in case c1. A pseudo-code description ofMA
ow is given as Algorithm 3.3. Otherwise,

in case c2, we can useMA
spr from the so proof above to extract a second-preimage.

For this to work, we only have to replace Line 7 of MA
spr by

(j,X)←− A(ck′, α, Y );Y ′ ←− E j,αck (X);

i.e. transfer the one-deeper preimage into a second-origin.

Algorithm 3.3:MA
ow

Input: Security parameter n, function key K, one-way challenge Yc.

Output: A value X that is a preimage of Yc under FK or fail.

1 Sample R
$←− {0, 1}n×λ to obtain a chain key ck = (K,R) for length λ ;

2 Choose index α
$←− {1, . . . , λ} uniformly at random ;

3 Run (X, j)←− A(ck, α, Yc) ;

4 if j < α and Eα,λck (Yc) = E j,λck (X) then

// MA
ow is used for the case E j,αck (X) = Yc, so the following

always works

5 return preimage E j,α−1ck (X)⊕Rα ;

6 end

7 return fail;

The oracle machine MA
ow first imitates the initialization algorithm to obtain a

valid chain key ck = (K,R) for length λ using the given function key K. Then,

MA
ow selects the position to place its challenge in the chain key. Therefor, it samples

an index α uniformly at random to select an intermediate value of this chain. Then

MA
ow runs A on input (ck, α, Yc), i.e. giving Yc to the adversary as the output of

the αth iteration of the chain. If A returns a one-deeper preimage (j,X),MA
ow can

always extract a preimage. This holds as MA
ow is used for the case that A returns

one-deeper preimages that fulfill E j,αck (X) = Yc. In any other case,MA
ow returns fail.

Now we compute the success probability of MA
ow conditioned on case c1, i.e. we

assume wheneverA succeeds, it returns a one-deeper preimage that fulfills E j,αck (X) =

Yc. Hence, if A succeeds,MA
ow returns a preimage of Yc under FK with probability

1. As our modifications might have changed the input distribution of A, it does not

necessarily succeed with probability εA. For the moment we denote the probability

that A returns a one-deeper preimage when run by MA
ow as ε′A. Using that MA

ow’s

success probability against the one-wayness of Fn is bound by the corresponding

insecurity function, we can bound the success probability of A in case c1 if called



32 3 New Variants of the Winternitz One Time Signature Scheme

by MA
ow:

ε′A ≤ InSecow (Fn; t′) (3.3)

where the time t′ = t + λ is an upper bound for the runtime of A plus the time

needed to compute all values for one chain of length ≤ λ.

As a second step, we bound the difference between the success probability ε′A of

A when called byMA
ow and its success probability εA in the original experiment. If

the first is greater than the latter this would already lead a contradiction. Hence,

we assume ε′A ≤ εA in what follows. Please note, that among A’s inputs only the

distribution of Yc might differ from the distribution in the real game. We define

two distributions DM and Dodp over {0, . . . , λ} × {0, 1}n × {0, 1}(n×λ) × {0, 1}k. A

sample (α, U,R, K) followsDM if the entries α
$←− {0, . . . , λ}, U $←− {0, 1}n, R

$←−
{0, 1}n×λ and K

$←− {0, 1}k are chosen uniformly at random. A sample (α, U,R, K)

follows Dodp if α, R and K are chosen uniformly at random but U = Eαck(Un) with

ck = (K,R). Thus, the two distributions only differ in the way U is chosen. We

now construct an oracle machine M′A that uses the possibly different behavior of

A when given differently distributed inputs to distinguish between Dodp and DM.

UsingM′A we can then upper bound εA by a function of the distinguishing advantage

of M′A and ε′A. Afterwards we use a hybrid argument to bound the distinguishing

advantage of M′A using the undetectability of Fn.

The oracle machineM′A works the following way. On input of a sample (α, U,R,

K) that is either chosen from DM or from Dodp, M′A runs A on input (ck, α, U)

with ck = (K,R). Whenever A returns a valid one-deeper preimage,M′A returns 1

and 0 otherwise. The runtime ofM′A is bounded by the runtime of A plus no more

than λ evaluations of E . So we get t′′ = t+ λ as an upper bound.

Now, we compute the distinguishing advantage AdvDM,Dodp

(
M′A) ofM′A. If the

sample is taken from DM, the distribution of A’s inputs generated by M′A is the

same as the distribution of the inputs generated by MA
ow. Hence, M′A outputs 1

with probability

Pr
[
(α, U,R, K)←− DM : 1←−M′A(α, U,R, K)

]
= ε′A.

If the sample was taken from Dodp, A’s inputs generated byM′A follow the same

distribution as those in the odp game and so M′A outputs 1 with probability

Pr
[
(α, U,R, K)←− Dodp : 1←−M′A(α, U,R, K)

]
= εA.

Hence, the distinguishing advantage of M′A is

AdvDodp,DM
(
M′A) = |εA − ε′A| .
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As mentioned above, we only have to consider the case εA ≥ ε′A. Therefore, we

obtain the following bound on εA:

εA = AdvDodp,DM
(
M′A)+ ε′A (3.4)

In our last step, we limit the distinguishing advantage of M′A. We use a hybrid

argument to show that this advantage is bound by the undetectability of Fn. For a

given α ∈ {0, . . . , λ}, we define the hybrids

Hj = (α, E j,αck (Un),R, K),

with R
$←− {0, 1}n×λ, K $←− {0, 1}k for 0 ≤ j ≤ α. Given an adversary B that

can distinguish between H0 and Hα with advantage εB, a hybrid argument yields

that there must exist two consecutive hybrids that B distinguishes with advantage

≥ εB/α. Assume these two hybrids are Hγ and Hγ+1. Then we can construct

an oracle machine MB
ud that uses B to distinguish between Dud,U and Dud,F as

defined in the preliminaries and thereby attacking the undetectability of Fn. Given

a distinguishing challenge (U,K), MB
ud selects R

$←− {0, 1}n×λ, sets ck = (K,R),

computes X = Eγ+1,α
ck (U), runs b←− B(α,X,R, K) and outputs b.

Let’s analyze the advantage Advud
Fn

(
MB

ud

)
of MB

ud. If the sample is taken from

Dud,U , U is uniformly random and X = Eγ+1,α
ck (U) is distributed exactly like the

second element of Hγ+1. Otherwise, if the sample is taken from Dud,F , then U ←−
FK(Un) is an output of FK and we get

X = Eγ+1,α
ck (FK(Un)) = Eγ,αck (Un ⊕Rγ+1)

= Eγ,αck (Un) = Hγ(2)

where Hγ(2) denotes the second element of Hγ. Here we used the fact, that the

xor of a uniformly distributed variable and a fixed value leads again to a uniformly

distributed variable. Summing up, the input of B, produced by MB
ud is either dis-

tributed like Hγ or like Hγ+1, depending onMB
ud’s distinguishing challenge. Hence,

the advantage ofMB
ud is exactly that of B distinguishing between these two hybrids.

Thus, we get

Advud
Fn

(
MB

ud

)
≥ εB/α.

As the advantage of MB
ud is bounded by the undetectability of Fn per assumption,

M′A does exactly what we assume B to do and the runtime of MB
ud is that of B

plus at most λ evaluations of E , we get

InSecud (Fn; t?) ≥ Advud
Fn

(
MB

ud

)
≥ εB

α
=

AdvDodp,DM
(
M′A)

α
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where t? = t′′ + λ − 1 = t + 2λ − 1 is the runtime of MB
ud. As α ∈ {0, . . . , λ}, we

obtain the following bound on the advantage of M′A:

AdvDodp,DM
(
M′A) ≤ λ · InSecud (Fn; t?) . (3.5)

Putting equations (3.3), (3.4) and (3.5) together we obtain a final bound on εA
for case c1:

εA ≤ λ · InSecud (Fn; t?) + InSecow (Fn; t′)

with t′ = t+ λ and t? = t+ 2λ− 1.

The success probability of MA
spr conditioned on case c2 is exactly the bound

from the so resistance proof, because case c2 implies that the returned one-deeper

preimage leads directly to a second origin. So, we get for case c2

εA ≤ λ · InSecspr (Fn; t′′)

where the time t′′ = t + 2λ is an upper bound for the runtime of A plus the time

needed to compute all values for two chains of length ≤ λ.

As the two cases are mutually exclusive and the probabilities that they occur add

up to 1, we can apply a union bound and get

εA ≤ λ · InSecud (Fn; t?) + InSecow (Fn; t′) + λ · InSecspr (Fn; t′′)

with t′ = t + λ, t′′ = t + 2λ and t? = t + 2λ − 1. This contradicts the initial

assumption

3.4 A Function Chain using Pseudorandom Function

Families

In this section we present C$, a function chain that is odp resistant if the used func-

tion family is pseudorandom. Using this function chain we obtain a W-OTS variant

W-OTS$ that is EU-CMA secure if the used function family is pseudorandom. As

the existence of pseudorandom function families is known to be equivalent to the

existence of a one-way function [HILL99, GGM86], this means that W-OTS$ has

minimal security assumptions. We first present the function chain C$. Afterwards

we state some preliminaries to finally prove C$ to be odp resistant.



3.4 A Function Chain using Pseudorandom Function Families 35

3.4.1 The C$ Function Chain

We now describe the function chain C$. For a given security parameter n it uses a

family of functions

Fn = {FK : {0, 1}n → {0, 1}n|K ∈ {0, 1}n} (3.6)

parameterized by a key K ∈ {0, 1}n and a security parameter n. The function

chain C$ works over domain and key space D = K = {0, 1}n. The algorithms are

instantiated as follows:

I(1n, λ): On input of the security parameter n in unary and the chain length λ

the initialization algorithm choses a value R
$←− {0, 1}n uniformly at random and

returns ck = R. We assume that λ is publicly known.

E i,jck (X): On input of value X ∈ D, interval 0 ≤ i ≤ j ≤ λ and chain key ck

the evaluation function works the following way. According to the definition of a

function chain, E returns X if i = j (E i,ick (X) = X). For i < j we define E recursively

by

E i,jck (X) = FEi,j−1
ck (X)(R),

i.e. in every round, the output of the previous round is used to select a function

from Fn which then is evaluated on input R. One might think of it as a random

walk through the function family starting from X.

Correctness follows immediately from the iterative nature of the evaluation algo-

rithm.

3.4.2 Preliminaries

In the following we define a new security notion for function families required for

our reduction. We call the notion key one-wayness (kow) which states that it is

hard to find a key K such that the function FK maps a given input X to a given

output Y . We also state two lemmas about the relation between this notion and

the pseudorandomness property, which will be useful for the security proof.

Towards defining kow, we define the success probability of an adversaryA against

the key one-wayness of a function family Fn as

SucckowFn (A) = Pr
[
(X,K)

$←− {0, 1}n × {0, 1}n, Y ← FK(X),

K ′ ←− A(X, Y ) : Y = FK′(X)
]
.

Based on this we can define kow:
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Definition 3.10 (Key One-Wayness (kow)). Let n, t ∈ N, t = poly(n), Fn be a

family of functions as in (3.6). We call Fn kow, if InSeckow (Fn; t), the success

probability of any adversary A that runs in time at most t, is negligible in n:

InSeckow (Fn; t)
def
= max

A

{
SucckowFn (A)

}
= negl(n) .

A key collision of a function family Fn is defined as a pair of distinct keys (K,K ′)

such that FK(X) = FK′(X) holds for some X ∈ {0, 1}n. In our proofs we make use

of an upper (κ) and a lower (κ′) bound on the number of key collisions that occur

in the family Fn. We define these bounds as follows:

Definition 3.11. Let Fn be a family of functions as in (3.6). We define the upper

bound on the number of key collisions in Fn as the maximum number of keys that

map the same input value to the same output value:

κ(Fn)
def
= max

S⊆{0,1}n

{
|S| | (∃X, Y ∈ {0, 1}n), (∀K ∈ S) : FK(X) = Y

}
.

We define the lower bound on the number of key collisions in Fn accordingly as

κ′(Fn)
def
= min

K′∈{0,1}n
max

S⊆{0,1}n,K′∈S

{
|S| | (∃X, Y ∈ {0, 1}n), (∀K ∈ S) : FK(X) = Y

}
.

Please note that κ, κ′ ≥ 1 per definition. We write κ (κ′) instead of κ(Fn) (κ′(Fn))

where Fn is clear from the context. The values κ and κ′ restrict the number of

different images Y some preimage X can be mapped to by functions in Fn, i.e.

2n

κ
≤
∣∣ {FK(X) : K ∈ {0, 1}n}

∣∣ ≤ 2n

κ′
(3.7)

for all X ∈ {0, 1}n. Also, given Y
$←− {0, 1}n the probability that there exists a key

K and preimage X such that FK(X) = Y holds is at least 1/κ.

To make our security proof meaningful we will need a bound on κ. The following

lemma states a relation between κ and the insecurity of a pseudorandom function

family. Please recall, that the time t is counted in terms of evaluations of F. We

assume, that a call to the oracle Box in the prf game takes the same time as an

evaluation of F.

Lemma 3.12. Let b, n ∈ N, b ≤ n, Fn as in (3.6) be a prf with insecurity function

InSecprf (Fn; t) ≤ t

2b

and κ(Fn) as in Definition 3.11. Then

κ(Fn) ≤ 2n−b + 1.
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Proof. Assume κ > 2n−b+1 and let (X, Y ) be a pair where there exist κ keys mapping

X to Y . We show how to build an adversary A against the pseudorandomness of

Fn. First, A queries Box with X. If Box(X) = Y then A returns 1 and 0 otherwise.

Clearly A runs in time t = 1. Furthermore, we have Pr[Box
$←− Fn : ABox(·) =

1] = κ/2n > 2−b + 2−n and Pr[Box
$←− AF : ABox(·) = 1] = 2−n and therefore

SuccprfFn (A) > 2−b which contradicts the assumption on the insecurity of Fn.

Following the definition of κ and κ′, κ′ ≥ 1 always holds. The above lemma implies

that for a good pseudorandom function family, i.e. a pseudorandom function family

with b = n bit security, κ = 2.

The following lemma states that the kow property is implied by the prf property.

In other words, an efficient attacker against the kow property leads to an efficient

attacker against the pseudorandomness.

Proposition 3.13 (prf⇒ kow). Let Fn be a function family as in Equation 3.6.

Then the pseudorandomness and the key one-wayness of Fn are related as follows:

InSeckow (Fn; t) ≤ 1
1
κ
− 1

2n

· InSecprf (Fn; t+ 2, 2) .

Proof. Assume there exists an adversary A against the key one-wayness of Fn, i.e.

that given a pair (X, Y ) ∈ {0, 1}n × {0, 1}n finds a key K satisfying Y = FK(X)

in time t with probability ε = InSeckow (Fn; t). Then we can construct an oracle

machine MA against the pseudorandomness of Fn using A the following way: MA

queries Box(·) with a random value X
$←− {0, 1}n. After receiving the answer Y ,

MA runs K ←− A(X, Y ) to obtain a key K. Then MA queries Box with a second

random value X ′
$←− {0, 1}n. MA returns 1 if Box(X ′) = Y ′ = FK(X ′) and 0

otherwise.

We now analyze the success probability of MA. In case Box
$←− Fn, the proba-

bility that A outputs a key K such that FK(X) = Y holds is ε per assumption. The

probability that Box(X ′) = Y ′ = FK(X ′) holds is at least 1/κ, because at least one of

the κ functions in Fn mappingX to Y also mapsX ′ to Y ′. In case Box
$←− AF(n, n),

the probability that A outputs a key K such that FK(X) = Y holds is at most ε.

The probability that Box(X ′) = Y ′ = FK(X ′) holds is 1/2n, because from the

2n(2
n−1) functions in AF(n, n) mapping X to Y , only 2n(2

n−2) also map X ′ to Y ′. In

summary we get InSecprf (Fn; t+ 2, 2) ≥ SuccprfFn
(
MA) ≥ ε (1/κ− 1/2n) .

3.4.3 Security Proof

We now proof that C$ is an odp resistant function chain, if Fn is a pseudorandom

function family. More specifically, we prove the following lemma:
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Lemma 3.14. Let n, λ, t ∈ N, Fn as in Equation (3.6) a pseudorandom function

family. Then, InSecodp
(
C$(1n, λ); t

)
, the odp resistance of C$ is bounded by

InSecodp
(
C$(1n, λ); t

)
≤ κ(Fn)λ(

1
κ(Fn) −

1
2n

) · InSecprf (Fn; t′, 2)

with t′ = t+ λ+ 2.

This leads to our second main result. We call W-OTS using C$ as function chain

W-OTS$. Combining the above result with Lemma 3.5 we obtain the following

theorem on the security of W-OTS$:

Theorem 3.15. Let n,w,m, t ∈ N, w,m = poly(n), Fn as in Equation (3.6) a pseu-

dorandom function family. Then, the insecurity of W-OTS$ against an EU-CMA

attack, InSeceu-cma
(

W-OTS$(1n, w,m); t, 1
)

, is bounded by

InSeceu-cma
(

W-OTS$(1n, w,m); t, 1
)

≤ `wκ(Fn)w−1
1(

1
κ(Fn) −

1
2n

) · InSecprf (Fn; t′, 2)

with t′ = t+ tKg + tSign + tVf + w + 1.

The intuition behind the proof is that a one-deeper preimage for challenge (ck, i, Y )

will lead a function key for Fn used in iteration i − 1. Using a combinatorial ar-

gument, this key maps R to Y with high enough probability. Thus, we can use

an adversary against the odp resistance of C$ to construct a kow adversary. Us-

ing Proposition 3.13 we can limit the maximum success probability of this kow

adversary by the insecurity of the pseudorandomness of Fn.

Proof. For the sake of contradiction assume there exists an adversary A that can

break the odp resistance of C$(1n, λ) running in time ≤ t and with success probabil-

ity εA = SuccodpC+(1n,λ) (A) greater than the claimed bound on InSecodp
(
C$(1n, λ); t

)
.

We first show how to construct an oracle machine MA that breaks the key one-

wayness of Fn using A. A pseudo-code description ofMA is given as Algorithm 3.4.

The goal ofMA is to produce a key K such that FK(Xc) = Yc for Xc, Yc provided

as input. First, MA sets Xc to be the chain key. Then MA chooses a random

index α within the range [1, . . . , λ] using the uniform distribution. Next, MA calls

A(ck, α, Yc) claiming that Yc is an αth intermediate value of the chain (Line 3).

If A returns a one-deeper preimage (j,X ′), MA computes a candidate key K ←
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Algorithm 3.4:MA

Input: Security parameter n, kow challenge (Xc, Yc) as in Definition 3.10

Output: K, such that FK(Xc) = Yc or fail

1 Set ck = Xc;

2 Choose index α ∈ [1, . . . , λ] uniformly at random;

3 Run (j,X ′)←− A(ck, α, Yc);

4 if j < α and Eα,λck (Yc) = E j,λck (X ′) then

5 Compute K ← E j,α−1ck (X ′);

6 if FK(X) 6= Y then

7 return fail;

8 end

9 return K;

10 end

11 return fail;

E j,α−1ck (X ′) as the output of iteration α − 1, continuing the chain from X ′. Then,

MA checks whether FK(X) = Yc holds (Line 6). If the condition holds,MA returns

the key K. Otherwise MA returns fail.

We now compute the success probability ofMA. The probability that A succeeds

in Line 3 is at least εA by definition. This probability holds under the condition that

Yc resembles a regular output of the αth iteration of the chain under ck. This is the

case if there exists a value W such that Eαck(W ) = Yc. This happens with probability

at least 1/κα according to Definition 3.11. The probability that Yc = FK(X) holds

in Line 6 is at least 1/κλ−α. This is because there exist at most κλ−α different values

that are mapped to Eα,λck (Yc) after λ − α iterations of the chain and at least one of

them is Yc.

In summary we have SucckowFn
(
MA) ≥ εA/(κ

ακλ−α) = εA/(κ
λ) and MA runs in

time t′ ≤ t+ λ as MA has to compute λ intermediate values of the chain, at most.

We can use Proposition 3.13 and the pseudorandomness of Fn to limitMA’s success

probability:

InSecprf (Fn; t′′, 2) ≥ εA(1/κ− 1/2n)/(κλ)

with t′′ = t+ λ+ 2 which states the required contradiction.
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In this chapter we present our main construction: An efficient forward secure sig-

nature scheme using minimal security assumptions. We call the scheme eXtended

Merkle Signature Scheme (XMSS). The section is structured as follows. First, we

give a description of an EU-CMA secure construction in Section 4.1 and prove its

security in Section 4.2. In Section 4.3 we show how to change the construction to

achieve forward security and give a proof that this property is indeed achieved. We

finally analyze the theoretical performance of the scheme in Section 4.4, presenting

theoretical runtimes and sizes. The contributions of this chapter were published as

parts of [2].

4.1 The eXtended Merkle Signature Scheme XMSS

In this section we describe the basic construction of XMSS. This construction

achieves standard security. The forward secure version differs only in few details.

The construction is based on the concept of a Merkle signature scheme, as described

in Section 2.2.2. To minimize storage requirements, pseudorandom key generation is

used to generate the OTS secret keys on the fly. As OTS we use one of our W-OTS

constructions. In the following we describe the scheme for the case of W-OTS$. We

explicitly comment on differences that occur using W-OTS+ in the end. However,

whenever a description holds for W-OTS in general, we write W-OTS. Only if some-

thing is specific for using W-OTS$ we explicitly write W-OTS$. As tree traversal

algorithm we use the BDS algorithm from Section 2.2.3. We start the description

with the parameters used by XMSS, afterwards we give a description of the building

blocks, namely the XMSS Tree, the leaf construction, and the pseudorandom key

generation. Then we describe the algorithms for key generation, signature genera-

tion and verification.

Parameters. For security parameter n ∈ N, XMSS uses a function family Fn =

{FK : {0, 1}n → {0, 1}n|K ∈ {0, 1}n}, and a hash function H, chosen uniformly
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Ni,j

H

XORQj

N2i,j-1 N2i+1,j-1

j = H

j = 0

Figure 4.1: The XMSS tree construction

at random from the family Hn = {HK : {0, 1}2n → {0, 1}n|K ∈ {0, 1}n}. It is

parameterized by the binary message length m ∈ N, the tree height h ∈ N, the BDS

parameter k ∈ N, k < h, k− h is even, and the Winternitz parameter w ∈ N, w > 1.

XMSS can be used to sign 2h messages of m bits. Those parameters are publicly

known.

XMSS Tree. The XMSS tree is a modification of the classical Merkle Hash Tree

proposed in [DOTV08]. Figure 4.1 shows the construction. The XMSS tree is a

binary tree of height h that makes use of the hash function H. It has h + 1 levels.

The leaves are on level 0. The root is on level h. The nodes on level j, 0 ≤ j ≤ h,

are denoted by Ni,j, 0 ≤ i < 2h−j. To construct the tree, h bit masks Qj ∈ {0, 1}2n,

0 < j ≤ h, are used. Ni,j, for 0 < j ≤ h, is computed as

Ni,j = H((N2i,j−1||N2i+1,j−1)⊕Qj).

The usage of the bitmasks is the main difference to the other Merkle tree construc-

tions. It is borrowed from [BR97] and allows to replace the collision resistant hash

function family by a second-preimage resistant one.

Leaf Construction. The leaves of the XMSS tree are the hash values of the W-OTS

public keys. More specifically, they are the hash values of (pk1, . . . , pk`). The chain

key ck = pk0 becomes part of the XMSS public key. To avoid the need of a collision

resistant hash function, another XMSS tree is used to construct the leaves. It is

called L-tree. The ` leaves of an L-tree are the ` bit strings (pk1, . . . , pk`) from the

corresponding verification key. As ` is not necessarily a power of 2, there might not

be sufficiently many leaves to get a complete binary tree. Therefore the construction

is modified. A left node that has no right sibling is lifted to a higher level of the

L-tree until it becomes the right sibling of another node. In this construction, the
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same hash function H as above but new bitmasks are used. The bitmasks are the

same for all L-trees. As L-trees have height dlog `e, additional dlog `e bitmasks are

required.

Pseudorandom Key Generation. To reduce the secret key size, the W-OTS key

pairs are generated using pseudorandom generators (PRG). The way this is done is

the difference between the EU-CMA and the forward-secure XMSS construction.

For the EU-CMA secure construction, the pseudorandom key generation allows to

reduce the secret key size from 2h W-OTS secret keys of `n bits each to a single n

bit seed value (ignoring the BDS state).

The W-OTS secret keys are computed using a seed Seed ∈ {0, 1}n, the pseu-

dorandom function family Fn, and the pseudorandom generator GEN which for

λ ∈ N, µ ∈ {0, 1}n yields

GENλ(µ) = Fµ(1)|| . . . ||Fµ(λ).

For i ∈ {1, . . . , 2h} the i-th W-OTS secret key is computed as

ski ←− GEN`(FSeed(i)).

Key Generation Algorithm. The key generation algorithm takes as input all of

the above parameters. Then the whole XMSS Tree has to be constructed to obtain

the value of the root node. We now detail this procedure. First, the bitmasks

(Q1, . . . , Qh+dlog `e) and the value R for the W-OTS$ chain key are chosen uniformly

at random. Then, Seed is chosen uniformly at random and it is stored as part

of the secret key SK. The tree is constructed using the TreeHash algorithm,

described in Section 2.2.3. The method LeafCalc to compute the leafs of the

tree is implemented the following way. Given index φ, the W-OTS secret key skφ is

generated as skφ ←− GEN`(FSeed(φ)). Next, the W-OTS key generation is used to

compute the W-OTS public key, which in turn is used to compute the corresponding

leaf using an L-tree. In the end, the W-OTS key pair is deleted. After all 2h leaves

were processed by TreeHash, the only value on Stack is the root of the tree, which

is stored in the public key PK.

During root computation, the BDS state StateBDS is initialized. The initial XMSS

secret key is SK = (Seed, StateBDS). The XMSS public key consists of the bitmasks

(Q1, . . . , Qh+dlog `e), the value X, and the root of the tree.

Signature Generation Algorithm. The signature generation algorithm takes as

input a message M of binary length m, the secret key SK and the index i. It
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outputs an updated secret key SK′ and a signature Σ on the message M . To sign

the ith message (we start counting from 0), the ith W-OTS key pair is used. The

signature Σ = (i, σ,Auth) contains the index i, the W-OTS signature σ, and the

authentication path for the leaf N0,i. We now explain how a signature is generated.

On input of the ith message, the ith W-OTS secret key ski is pseudorandomly

generated as described above. Next, ski is used to generate the one-time signature

σ on M . Then the authentication path is computed using BDS, which results in a

changed State′BDS. The updated secret key SK′ contains Seed and State′BDS.

Signature Verification Algorithm. The signature verification algorithm takes as

input a signature Σ = (i, σ,Auth), a message M ∈ {0, 1}m and the XMSS public key

PK. To verify the signature, the values B = (b1, . . . , b`) are computed as described

in the W-OTS signature generation, using M . Then the ith verification key is

computed as in W-OTS signature verification:

(pk1, . . . , pk`) = (Eb1,w−1(σ1), . . . , Eb`,w−1(σ`)).

The corresponding leaf N0,i of the XMSS tree is constructed using an L-tree. This

leaf and the authentication path are used to compute the path (P0, . . . , Ph) to the

root of the XMSS tree, where P0 = N0,i and

Pj =

{
H((Pj−1||Authj−1)⊕Bj), if bi/2jc ≡ 0 mod 2

H((Authj−1||Pj−1)⊕Bj), if bi/2jc ≡ 1 mod 2

for 0 ≤ j ≤ h. If Ph is equal to the root of the XMSS tree given in the public key,

the signature is accepted. Otherwise, it is rejected.

Using W-OTS+. As mentioned above, things slightly change when we use W-OTS+

instead of W-OTS$. However, there are only three differences. First, we need an-

other function F′ randomly chosen from a family F ′n : {FK : {0, 1}n → {0, 1}n|K ∈
{0, 1}k} as described in Section 3.3 using the uniform distribution. Second, the

W-OTS algorithms use the C+ algorithms instead of the C$ algorithms. Third, the

public key changes. As we assume F′ to be publicly known, we do not have to

store the corresponding key but we need the w − 1 randomization elements R. We

can reuse the bitmasks that are already part of the secret key. As the bitmasks

are bit strings of length 2n, this works fine if w − 1 ≤ 2(h + dlog `e). Otherwise,

we reuse the bit masks for the first 2(h + dlog `e) randomization elements and add

w − 1− 2(h+ dlog `e) uniformly random bit strings to the public key.
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4.2 Standard Security

In this section we prove that XMSS as described in the last section achieves EU-CMA

security in the standard model and discuss the minimality of the assumptions we

use. We first provide the needed preliminaries.

4.2.1 Preliminaries

We now present some security notions that we need for our proofs. We defined

signature schemes and EU-CMA security in Section 2.1.2. Here we extend this

definitions to the case of key evolving signature schemes. This is required to formally

cover MSS type signature schemes. We also recall the notion of a pseudorandom

generator. Please note that in our proofs we measure algorithmic runtimes as the

number of evaluations of functions from Fn and Hn.

Key Evolving Signature Schemes XMSS is a stateful signature scheme. This is

not covered by the standard definition of digital signature schemes. To capture this

formally we follow the definition from [BM99] of key evolving signature schemes.

In a key evolving signature scheme, the lifetime of a keypair is divided into several

time periods, say p. While the public key pk is fixed, the scheme operates on p

different secret keys sk0, . . . , skp−1, one per time period. A key evolving signature

scheme contains a key update algorithm that is called at the end of each time period

and updates the secret key. The end of a time period might be determined by time,

i.e. a period is one day or something else, like the maximum number of signatures

a secret key can be used for. The latter is the case for XMSS, where a period

ends after signing one message and the key update algorithm is automatically called

after each signature generation. In contrast to an ordinary signature scheme, the

key generation algorithm of a key evolving signature scheme takes as an additional

input the maximal number of periods p and outputs the public key pk and the

first secret key sk0. Using a key evolving signature scheme, a signature (σ, i) on a

message contains the index i of the period of the used secret key. The validation of

a signature (σ, i) only succeeds, if the signature is a valid signature for time period

i under public key pk. We summarize this in the following more formal definition.

Definition 4.1 (Key Evolving Signature Scheme). A key evolving signature scheme

is a quadruple of probabilistic polynomial time algorithms Kes = (Kg, KUpd, Sign,

Vf). It is parameterized by a security parameter n ∈ N and the number of time

periods p ∈ N, p = poly(n) and operates on the following finite sets with description

length polynomial in n: The secret key space KS = KS0× . . .×KSp−1 consisting of
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p sets, the public key space KP, the message space M, and the signature space Σ.

The runtime of the algorithms is polynomial in n and the algorithms are defined as

follows:

Kg(1n, p): The key generation algorithm on input of the security parameter

n ∈ N in unary and the number of time periods p ∈ N outputs an initial

private signing key sk0 ∈ KS0 and a public verification key pk ∈ KP.

KUpd(sk, i): The key update algorithm on input of an index i ∈ N and a secret

signing key sk ∈ KS outputs the private signing key sk′ ∈ KS i+1 for the next

time period if i < p− 1 and sk ∈ KS i. If i ≥ p− 1 it outputs the empty string.

In all other cases it returns fail.

Sign(sk,M, i): The signature algorithm on input of a signature key sk ∈ KS,

a message M ∈M, and an index i ∈ N outputs the signature (σ, i) ∈ Σ of the

message M if i < T and sk ∈ KS i. It returns fail, otherwise.

Vf(pk,M, (σ, i)): The verification algorithm on input of a public key pk ∈ KP,

a message M ∈ M, and a signature (σ, i) ∈ Σ outputs 1 iff (σ, i) is a valid

signature on M under public key pk for time period i and 0 otherwise.

Now, let KUpd(sk0)
i = KUpd(. . .KUpd(sk0, 0) . . . , i − 1) denote the computation of

the key for time period i starting from sk0. The following condition must hold: For all

M ∈ M, (pk, sk0) ←− Kg(1n, p), and i < p: Vf(M, (Sign(M,KUpd(sk0)
i), i), pk) =

1.

A digital signature scheme (Dss) is a key evolving signature scheme with only one

period and a key update algorithm that always returns the empty string. XMSS

is a key evolving signature scheme with p = 2h for h ∈ N. The XMSS key up-

date algorithm consists of increasing the index i in the secret key and running the

BDS algorithm to prepare the next authentication path. This is done after every

signature.

The standard security model for digital signature schemes is existential unforge-

ability under adaptive chosen message attacks (EU-CMA) as described in Section

2.1.2. We translate it to the setting of key evolving signature schemes, using the

following experiment. Let Kes(1n, p) denote a key evolving signature scheme with

security parameter n and number of periods p. The experiment has two phases.

During the chosen message attack phase (cma), the adversary is allowed to collect

signatures on messages of her choice like in the EU-CMA model. In contrast to

the EU-CMA model, the adversary might do this up to p times, once for each time



4.2 Standard Security 47

period. The adversary algorithm A is given oracle access to an instance of a signa-

ture oracle Sign initialized with secret key ski and index i, denoted by ASign(ski,·,i).

Afterwards, in the forgery phase (forge), the adversary has to come up with an

existential forgery like in the EU-CMA model. The state variable allows the ad-

versary to keep a state and the out variable allows the adversary to switch from the

cma to the forge phase.

Experiment ExpEU-CMA
Kes(1n,p)(A)

i←− 0, state←− null, out←− null, (sk0, pk)←− Kg(1n, p)

While i < p And out 6= halt

(out, state)←− ASign(ski,·,i)(1n, cma, pk, state)

i++; ski ←− KUpd(ski−1, i)

(M?, σ?, i?)←− A(1n, forge, state)

Return 1 iff Vf(pk,M?, (σ?, i?)) = 1

And Sign was not queried for a signature on M?

For the success probability of an adversary A in the above experiment we write

Succeu-cmaKes(1n,p) (A) = Pr
[
ExpEU-CMA

Kes(1n,p)(A) = 1
]
.

When we talk about the runtime of an adversary A in the above experiment, it

refers to the sum of runtimes over all executions of A in the experiment. Now we

can define EU-CMA security for key evolving signature schemes.

Definition 4.2 (EU-CMA for Kes). Let n, q ∈ N, t, q = poly(n), Kes a key evolv-

ing signature scheme. Fix p ∈ N. We call Kes EU-CMA-secure, if the maximum

success probability InSeceu-cma (Kes(1n, T ); t, q) of all possibly probabilistic adver-

saries A, running in time ≤ t, making at most q queries to each instance of Sign in

the above experiment, is negligible in n:

InSeceu-cma (Kes(1n, T ); t, q)
def
= max

A
{Succeu-cmaKes(1n,T ) (A)} = negl(n) .

Please note that for a Dss this translates to the initial notion again.

Pseudorandom Generators Pseudorandom generators (PRG) are functions that

stretch a random input to a longer pseudorandom output. We follow the notion of

[BY03]: Let n ∈ N, b = poly(n), b > n, Gn : {0, 1}n → {0, 1}b and A an adversary

that given a b-bit string returns a bit. The notion is defined using the two following

experiments, one where A gets a random string as input and another one where the

input of A is an output of the PRG:
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Experiment Expprg−1Gn
(A)

X
$←− {0, 1}n;C ←− Gn(X)

g ←− A(C)

Return g

Experiment Expprg−0Gn
(A)

C
$←− {0, 1}b

g ←− A(C)

Return g

The success probability of an adversary A against the security of PRG Gn is defined

as the ability of the adversary to distinguish both experiments:

SuccprgGn (A) =
∣∣Pr [Expprg−1Gn

(A) = 1
]
− Pr

[
Expprg−0Gn

(A) = 1
]∣∣ .

Now we define secure pseudorandom generators.

Definition 4.3 (prg). Let n, t ∈ N, t = poly(n), Gn as above. We call Gn a secure

pseudorandom generator, if InSecprg (Gn; t), the maximum success probability of all

possibly probabilistic adversaries A, running in time ≤ t, is negligible in n:

InSecprg (Gn; t)
def
= max

A
{SuccprgGn (A)} = negl(n) .

4.2.2 XMSS is Existentially Unforgeable under Chosen Message

Attacks

In the following, we prove XMSS EU-CMA secure in the standard model and

discuss some implications of this result. We prove the following theorem for XMSS

when using W-OTS$:

Theorem 4.4. If Hn is a second-preimage resistant hash function family and Fn a

pseudorandom function family, then XMSS is existentially unforgeable under adap-

tive chosen message attacks.

Before we give the proof of Theorem 4.4, we want to highlight one implication

of this result: The security assumptions of XMSS are minimal. From [Rom90] it

is known that the minimal security assumption for complexity based cryptography,

namely the existence of a one-way function, is the necessary condition for the exis-

tence of a secure digital signature scheme. As already mentioned in Section 2.1.1, in

[Rom90] the construction of a target-collision resistant hash function family from a

one-way function is presented. Since target-collision resistant hash function families

are second-preimage resistant (see [RS04]), this implies that second-preimage resis-

tant hash function families can be constructed from secure digital signature schemes.

In [HILL99] the construction of a pseudorandom generator from a one-way function

is presented. In [GGM86] pseudorandom function families are obtained from pseu-

dorandom generators. It follows that secure signature schemes yield pseudorandom
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Second preimage resistant 

hash function family
One-way function

Digital signature 

scheme

[Rom90]

Target-collision resistant 

hash function family
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generator

[HILL99]

Pseudorandom function 
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[Rom90]

XMSSThis work

Figure 4.2: Existential relations between primitives. An arrow with a solid line from A

to B says, that B can be constructed from A. A dashed line from A to B says, that a

primitive that fulfills A also fulfills B.

function families. Those constructions imply that there exists a secure instance of

XMSS if there exists any secure digital signature scheme and therefore complexity

based cryptography at all. This implies that the security requirements for XMSS

are minimal. The relations between the primitives are also displayed in Figure 4.2.

Next, we give the proof of Theorem 4.4. The proof uses another view on the

construction of XMSS. Look at XMSS the following way: XMSS uses W-OTS with

pseudorandom key generation. The `n-bit W-OTS secret keys are generated using

GEN and an n-bit (pseudo-)random input. This variant of W-OTS is used with

the XMSS-Tree construction to obtain a many-time signature scheme. The 2h n-bit

inputs for the key generation are again generated using GEN and a random n-bit

string. In our proof we iteratively show that each of these constructions is secure

with the last construction being XMSS.

Proof of Theorem 4.4. First we look at the key generation algorithm Kg in more

detail. Kg uses the PRG GENλ(µ) = Fµ(0)|| . . . ||Fµ(λ − 1) from the last section.

The W-OTS secret key is generated using GEN`(µ) where µ in turn is the ith n-bit

string of the output of GEN2h(Seed). We show that GENλ is a secure PRG if the

used function family is pseudorandom.

Claim 4.5. Let n, λ ∈ N, µ ∈ {0, 1}n, Fn = {FK : {0, 1}n → {0, 1}n|K ∈ {0, 1}n}
be a pseudorandom function family with insecurity function InSecprf (Fn; t, q). Then

GENλ : {0, 1}n → {0, 1}λn,

GENλ(µ) = Fµ(0)|| . . . ||Fµ(λ− 1)

is a PRG with insecurity function

InSecprg (GENλ; t) = InSecprf (Fn; (t+ λ), λ) .
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Proof of Claim 4.5. For the sake of contradiction assume there exists an adversary

A distinguishing the output of GENλ from a uniformly random λn bit string. Then

we can build an oracle machine MA that given access to A distinguishes Fn from

AF(n, n). MA queries Box with 0, . . . , λ − 1 and hands the concatenation of the

results to A. Then MA simply forwards A’s output. MA succeeds with the same

probability as A.

Now, we show that one can replace the random input of the key generation algo-

rithm by a pseudorandom one. So if we look at W-OTS using GEN`(µ) to generate

the secret key from one n-bit string and assume that µ is chosen uniformly at ran-

dom for the moment, then the following claim tells us, that this is almost as secure

as using `n random bits. Furthermore it tells us, that we can use n random bits

and GEN2h to generate the 2h bit strings of length n that are used to generate the

2h W-OTS key pairs of XMSS.

Claim 4.6. Let n, n′, q, t, p ∈ N, Gn : {0, 1}n → {0, 1}λn be a PRG with insecurity

function InSecprg (Gn; t) that stretches n bit random input to λn bit pseudorandom

output and let Kes = (Kg, KUpd, Sign, Vf) be a key evolving signature scheme

with insecurity function InSecEU-CMA
(
Kes(1n

′
, p); t, q

)
that needs no more than λn

bits of random input for key generation and key update. Further, let Kes? = (Kg?,

KUpd?, Sign, Vf) be the variant of Kes that uses Gn to generate the λn bits required

for key generation. Then Kes? is a key evolving signature scheme with insecurity

function

InSecEU-CMA
(
Kes?(1n

′
, p); t, q

)
= InSecprg (Gn; t′)+InSecEU-CMA

(
Kes(1n

′
, p); t, q

)
,

where t′ = t+ tKg + p(qtSign + tKUpd?) + tVf .

The intuition behind the proof for the above claim is the following. If the success

probability of an adversary against the scheme with pseudorandom key generation

differs from its success probability against the original scheme, this difference can

only be caused by the pseudorandom key generation. In the proof we show how to

use this difference to distinguish between outputs of the PRG and random strings.

Proof of Claim 4.6. We want to bound the success probability of any adversary A
that runs within time t, making at most q queries to each instance of Sign, i.e. we

want to limit the insecurity function InSecEU-CMA
(
Kes?(1n

′
, p); t, q

)
. Given such

an adversary, we can build an oracle machine MA distinguishing the output of Gn

from random λn bit strings as described in algorithm 4.1.
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We construct MA in the following way. On input of a challenge C ∈ {0, 1}λn,

MA computes a key pair (pk, sk0) for Kes? using C instead of the output of Gn.

Next MA calls ASign=M(1n, cma, pk, state) for each time period i < p or until A
indicates to switch to the forge phase. At the end of each period the key update

algorithm is called using C instead of the output of Gn. If A queries the oracle Sign

for a signature during time period i, MA computes the signature using ski. MA

answers up to q queries per time period. If A returns a valid forgery,MA returns 1

and 0 otherwise. MA runs in time t+ tKg + p(qtSign + tKUpd?) + tVf .

Algorithm 4.1:MA

Input: Security parameter n′ and challenge C ∈ {0, 1}λn′

Output: g ∈ {0, 1}

1 compute (pk, sk)←− Kg(1n
′
, p) using C as the randomness of Kg?;

2 out←− null, state←− null, i←− 0;

3 while i < p and out 6= halt do

4 run (out, state)←− ASign=M(1n, cma, pk, state);

5 if A queries Sign in time period i then

6 answer up to q queries using ski
7 end

8 run ski ←− KUpd?(ski, i);

9 i++;

10 end

11 if (M?, σ?, i?)←− A(1n, forge, state) is a valid forgery then

12 return g = 1

13 else

14 return g = 0

15 end

Now we calculate the success probability of MA. If MA is in Expprg−1Gn
, C is

pseudorandom output of Gn. Hence, A succeeds with probability SuccEU-CMA
Kes?(1n

′ ,p)
(A)

by definition and we get

Pr
[
Expprg−1Gn

(MA) = 1
]

= SuccEU-CMA
Kes?(1n′ ,p)

(A) .

If MA is in Expprg−0Gn
, C is chosen uniformly at random. In this case A suc-

ceeds with probability ≤ InSecEU-CMA
(
Kes(1n

′
, p); t, q

)
. Otherwise A would be

a forger for Kes that running in time t succeeds with probability greater than
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InSecEU-CMA
(
Kes(1n

′
, p); t, q

)
, which would contradict the assumption on the secu-

rity of Kes. So we get

Pr
[
Expprg−0Gn

(MA) = 1
]
≤ InSecEU-CMA

(
Kes(1n

′
, p); t, q

)
.

Altogether this leads to

InSecprg (Gn; t′) ≥ SuccprgGn

(
MA)

=
∣∣Pr [Expprg−1Gn

(MA) = 1
]
− Pr

[
Expprg−0Gn

(MA) = 1
]∣∣

≥ SuccEU-CMA
Kes?(1n′ ,p)

(A)− InSecEU-CMA
(
Kes(1n

′
, p); t, q

)
and therefore

SuccEU-CMA
Kes?(1n′ ,p)

(A) ≤ InSecprg (Gn; t′) + InSecEU-CMA
(
Kes(1n

′
, p); t, q

)
with t′ = t+ tKg + p(qtSign + tKUpd?) + tVf . As this holds for any adversary A running

in time ≤ t, making at most q queries to each instance of Sign we get

InSecEU-CMA
(
Kes?(1n

′
, p); t, q

)
≤ InSecprg (Gn; t′) + InSecEU-CMA

(
Kes(1n

′
, p); t, q

)

In [DOTV08] the authors give an exact security proof for an MSS where the

Merkle tree is replaced by the XMSS-Tree construction. Using W-OTS as OTS, we

obtain the following insecurity function for the EU-CMA-security of this XMSS-

Tree construction:

InSecEU-CMA
(
XMSS-Tree(1n, 2h); t, q = 1

)
≤ 2 ·max

{
(2h+log ` − 1)InSecspr (Hn; t′) , 2h · InSecEU-CMA (W-OTS(1n); t′, 1)

}
with t′ = t+ 2h · tSign + tVf + tKg.

Now we can combine all this to conclude the proof. We use Claim 4.6 with the

insecurity functions of W-OTS$ and GEN`. This gives us the insecurity function

for W-OTS$ with pseudorandom key generation. We insert this in the insecurity

function for XMSS-Tree. Finally we apply Claim 4.6 again, this time using the

obtained insecurity function for XMSS-Tree with W-OTS with pseudorandom key
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generation and GEN2h . Altogether this leads to

InSeceu-cma
(
XMSS(1n, 2h); t, 1

)
≤ InSecprf

(
Fn; (t′ + 2h), 2h

)
+ 2 ·max


(2h+log ` − 1) · InSecspr (Hn; t′) ,

2h
(

InSecprf (Fn; (t′ + `), `)

+ `wκw−1

( 1
κ
− 1

2n )
· InSecprf (Fn; t′ + w + 1, 2)

)
 (4.1)

where t′ = t+ 2h · tSign + tVf + tKg. This concludes the proof.

4.3 Forward Security

In this section we show that XMSS is forward secure if we slightly modify the key

generation process. Namely, we now use a forward secure PRG to generate the

seeds for the W-OTS keys. This was also used by Krawczyk [Kra00] to reduce the

key size of his generic forward secure signature scheme based on a certification tree.

However, it turns out that the proof becomes much more complicated in our case

as we have to deal with the rather static structure of a hash tree instead of the

dynamic structure of a certification tree. Before we describe the modification and

state our main theorem, we provide the used definitions.

4.3.1 Preliminaries

In the following we define stateful pseudorandom generators and the notion of for-

ward security for these generators, but first we formally define forward secure sig-

nature schemes.

Forward Secure Signature Schemes The notion of forward security is a security

notion for key evolving signature schemes as defined in the last section. We follow

the definition of [BM99]. Again, we define the notion using an experiment which

is given below. This experiment differs only slightly from the one used to define

EU-CMA-security for key evolving signature schemes. The difference is that the

adversary now gets the ability to break in. This means that during the cma phase,

the adversary is allowed to indicate to the experiment that it wants to break in,

setting the out variable to breakin. In this case, the experiment switches from the

cma phase to the forge phase and the adversary is given the secret key ski−1 of the

current time period (Please note that the last two statements in the while loop are
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increasing the index i and updating the secret key. Hence the last key used during

the cma phase has now index i − 1). As an existential forgery for the current or

an upcoming time period would be trivial, the adversary has to come up with an

existential forgery for a past time period.

Experiment ExpFSSIGKes(1n,p)(A)

i←− 0, state←− null, (sk0, pk)←− Kg(1n, p)

While i < p And out 6= breakin

(out, state)←− ASign(ski,·,i)(1n, cma, pk, state)

i++, ski ←− KUpd(ski−1, i)

(M?, σ?, i?)←− A(1n, forge, state, ski−1)

If Vf(pk,M?, (σ?, i?)) = 1, Sign(ski? , ·, i?) was not queried for a signature on M?

And i? < i− 1 Return 1

Return 0

For the success probability of an adversary A in the above experiment we write

SuccfssigKes(1n,p) (A) = Pr
[
ExpFSSIGKes(1n,p)(A) = 1

]
.

When we talk about the runtime of an adversary A in the above experiment, it

refers to the sum of runtimes over all executions of A in the experiment. Now we

can define FSSIG for key evolving signature schemes.

Definition 4.7 (FSSIG). Let n, q ∈ N, t = poly(n), Kes a key evolving signature

scheme. Fix p ∈ N. We call Kes(1n, p) FSSIG-secure, if InSecfssig (Kes(1n, p); t, q),

the maximum success probability of all possibly probabilistic adversaries A, running

in time ≤ t, making at most q queries to each instance of Sign in the above experi-

ment, is negligible in n:

InSecfssig (Kes(1n, p); t, q)
def
= max

A
{SuccfssigKes(1n,p) (A)} = negl(n) .

Note, that forward security defined as above implies EU-CMA-security.

Forward Secure Pseudorandom Bit Generators Informally, a forward secure

PRG is a stateful PRG that starts from a random initial state. Given a state,

it outputs a new state and some output bits. Even if an adversary manages to

learn the secret state of a forward secure PRG, it is unable to distinguish the for-

mer outputs from random bit strings. More formally, a stateful PRG is a function

Gn : {0, 1}n → {0, 1}n × {0, 1}b, for n, b ∈ N, b = poly(n), that on input of a state

Statei of length n outputs a new state Statei+1 and b output bits Outi+1. Forward
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security for a stateful PRG that is used to produce no more than ñ outputs is de-

fined using the two following experiments Expfsprg−1Gn
(A) and Expfsprg−0Gn

(A) which

are based on the ones from [BY03]. In both experiments the adversary A is allowed

to collect up to ñ bit strings during the find phase. In the first experiment these

bit strings are outputs of Gn, in the second experiment these bit strings are chosen

uniformly at random. The adversary can keep a history using the variable h. The

adversary can switch to the guess phase setting d = guess. In the guess phase, the

adversary gets the current state of Gn and has to output one bit, indicating wether

the bit strings were uniformly random or generated by Gn:

Experiment Expfsprg−1Gn
(A)

State0
$←− {0, 1}n

i←− 0;h, d←− null

Repeat

i←− i+ 1

(Outi, Statei)←− Gn(Statei−1)

(d, h)
$←− A(1n,find,Outi, h)

Until (d = guess) Or (i = ñ)

g
$←− A(1n,guess, Statei, h)

Return g

Experiment Expfsprg−0Gn
(A)

State0
$←− {0, 1}n

i←− 0;h, d←− null

Repeat

i←− i+ 1

(Outi, Statei)←− Gn(Statei−1)

Outi
$←− {0, 1}b

(d, h)
$←− A(1n,find,Outi, h)

Until (d = guess) Or (i = ñ)

g
$←− A(1n,guess, Statei, h)

Return g

The success probability of an adversary A is denoted by

SuccfsprgGEN (A) =
∣∣Pr [Expfsprg−1Gn

(Dis) = 1
]
− Pr

[
Expfsprg−0Gn

(Dis) = 1
]∣∣ .

When we talk about the runtime of an adversary A in the above experiment, it

refers to the sum of runtimes over all executions of A in the experiment as in the

case of forward secure signature schemes. Now we can define forward security for a

stateful PRG.

Definition 4.8 (FSSIG). Let n, ñ ∈ N, t = poly(n), Gn a stateful PRG as de-

fined above. We call Gn fsprg-secure, if InSecfsprg (Gn; t), the maximum success

probability of all possibly probabilistic adversaries A, running in time ≤ t, in the

experiment above, is negligible in n:

InSecfsprg (Gn; t)
def
= max

A
{SuccfsprgGn (A)} = negl(n) .
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4.3.2 XMSS is Forward Secure

In the following we describe the modifications needed to make XMSS forward secure.

Then we state our main theorem and prove it. To make XMSS forward secure we

use a forward secure PRG FsGen when generating the seeds for the W-OTS secret

keys. Starting from a random input Seed = State0 of length n, FsGen uses Fn and

the previous state Statei−1 to generate n bits of pseudorandom output Outi and a

new state Statei of length n:

FsGen(Statei−1) = (Statei||Outi) = (fStatei−1
(0)||fStatei−1

(1)).

The generation of the W-OTS secret keys from the seeds still utilizes GEN`. The

secret key of the resulting forward secure XMSS contains the current state Statei
instead of Seed. In contrast to the construction from Section 4.1, the seeds for

the W-OTS signature keys are not easily accessible from Statei using one evaluation

of Fn. To compute the authentication path, the tree traversal algorithm needs to

compute several W-OTS keys before they are needed. This is very expensive using

FsGen. Luckily this problem is already addressed in [BDS08]. We use their solution

that requires to store 2h states of FsGen in the secret key.

For XMSS with the modified key generation from above using W-OTS$, we proof

the following security theorem.

Theorem 4.9. If Hn is a second-preimage resistant hash function family and Fn
a pseudorandom function family, then XMSS with the modified key generation de-

scribed above is a forward secure digital signature scheme.

Informally the proof works the following way. First, we state that FsGen is a

forward secure PRG using a result from [BY03]. In a second step, we show that for

arbitrary but fixed h, XMSS is forward secure if the seeds for the W-OTS secret

keys are generated using FsGen. The idea behind the proof is very close to the

one of Claim 4.6. But this time it is more complicated to upper bound the success

probability in the case of random bit strings.

Proof of Theorem 4.9. First, we revisit a result from [BY03] about the security

of FsGen. There the authors show that if Fn is a pseudorandom function family

with insecurity function InSecprf (Fn; t, q), then FsGen is a forward secure PRG

with insecurity function

InSecfsprg (FsGen; t) = 2ñ · InSecprf (Fn; (t+ 2ñ), 2) .

Now we show that XMSS is forward secure, if the seeds for the W-OTS secret keys

are generated using FsGen.
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Claim 4.10. Let n, n′, h ∈ N, FsGen as described above. Let XMSS ′ be the

version of XMSS where the 2h n′-bit seeds for the W-OTS key generation are chosen

uniformly at random with insecurity function InSecEU-CMA
(
XMSS ′1n

′
, 2h); t, q = 1

)
.

Further, let XMSS? be the modified version of XMSS that uses FsGen to generate

the 2h n-bit seeds required for W-OTS key generation. Then XMSS? is a forward

secure signature scheme with insecurity function

InSecFSSIG
(

XMSS?(1n
′
, 2h); t, 1

)
≤ 2h · InSecfsprg (FsGen; t′)

+InSecEU-CMA
(

XMSS ′(1n
′
, 2h); t, 1

)
t′ = t+ tKg? + 2htSign + tVf .

Proof of claim. We want to limit the success probability of any adversary A that

tries to break the forward security of XMSS?. More specifically, we want to find an

upper bound for the insecurity function InSecFSSIG
(
XMSS?(1n

′
, 2h); t, 1

)
. Therefore

we assume A runs within time t, making at most 1 query to each instance of Sign.

Given such an adversary, we can build an oracle machine MA distinguishing the

output of FsGen from truly random outputs, given black box access to A.

We construct MA the following way. MA chooses a value α
$←− {1, . . . , 2h}

uniformly at random. During the find phase of the fsprg experiment,MA collects

α outputs Out1, . . . ,Outα before switching to the guess phase. In the guess phase

MA is given Stateα. Now, MA uses FsGen and Stateα to compute another 2h − α
outputs Outα+1, . . . ,Out2h . ThenMA uses Out1, . . . ,Out2h instead of the output

of FsGen to generate a XMSS public key pk. Note, that to generate the W-OTS key

pair for time period i, Outi+1 is used. Next MA calls ASign=M(1n, cma, pk, state)

for each time period i < α until A indicates to break in. If A queries MA as the

oracle Sign during period i, MA computes the queried signature using Outi+1 to

generate the corresponding W-OTS secret key. If A indicates to break in during a

time period i 6= α − 1 or does not indicate to break in in time period i = α − 1,

MA returns 0. If A indicates that it wants to break in at time period i = α − 1,

MA runs A in the forge phase with input ski = (Stateα,Outα). This is all secret

information that exists in time period i = α − 1. If A returns a valid forgery for

a time period j < i, then MA returns 1 and 0 otherwise. Altogether MA runs in

time ≤ t′ = t+ tKg? + 2htSign + tVf .

Now we calculate the success probability of MA in distinguishing the output of

FsGen from uniformly random outputs. The probability that A wants to break in

in time period i = α − 1 is at least 2−h as α is chosen uniformly at random. Now,

if MA is run in Expfsprg−1FsGen (MA), the Outi, 1 ≤ i ≤ 2h are pseudorandom outputs
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of FsGen. Hence, A succeeds with probability SuccFSSIG
XMSS?(1n′ ,2h)

(A) per definition.

As MA returns 1 if A is successful we get

Pr
[
Expfsprg−1FsGen (MA) = 1

]
= 2−h · SuccFSSIG

XMSS?(1n′ ,2h)
(A) .

IfMA is in Expfsprg−0FsGen (MA), the Outi, 1 ≤ i ≤ α are chosen uniformly at random.

The remaining Outi, α+ 1 ≤ i ≤ 2h are pseudorandom outputs of FsGen. Again,

the probability thatA wants to break in in time period i = α−1 is at least 2−h as α is

chosen uniformly at random. And againMA returns 1 ifA succeeds. We will need an

upper bound for the probability thatMA returns 1. Hence we have to limit A’s suc-

cess probability for the case that A breaks in in time period i = α−1. We will show

that in this case, A succeeds with probability ≤ InSecEU-CMA
(
XMSS′(1n

′
, 2h); t, 1

)
.

For the moment assume this is true. Then we get

Pr
[
Expfsprg−0FsGen (MA) = 1

]
≤ 2−h · InSecEU-CMA

(
XMSS′(1n

′
, 2h); t, 1

)
.

Putting all of this together, we get

InSecfsprg (FsGen; t′)

≥ SuccfsprgFsGen

(
MA)

=
∣∣Pr [Expfsprg−1FsGen (MA) = 1

]
− Pr

[
Expfsprg−0FsGen (MA) = 1

]∣∣
≥ 2−h · SuccFSSIG

XMSS?(1n
′
,2h)

(A)− 2−h · InSecEU-CMA
(

XMSS′(1n
′
, 2h); t, 1

)
and therefore

InSecFSSIG
(

XMSS?(1n
′
, 2h); t, 1

)
≤ SuccFSSIG

XMSS?(1n′ ,2h)
(A)

≤ 2h · InSecfsprg (FsGen; t′) + InSecEU-CMA
(

XMSS′(1n
′
, 2h); t, 1

)
.

This is the claimed result. Nevertheless, we still have to show that if MA is in

Expfsprg−0FsGen (MA), εA, the success probability of A conditioned on the event thatMA

correctly guesses the time period A wants to break in, is limited by

εA ≤ InSecEU-CMA
(

XMSS′(1n
′
, 2h); t, 1

)
.

We do this, showing how to build an oracle machine M̂A that behaves exactly like

MA, from A’s point of view. In contrast to MA, M̂A uses A either to forge a

signature for W-OTS with pseudorandom key generation (W-OTS?) or to find a

second-preimage for a random function h from Hn. Next, we describe M̂A.
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M̂A receives as input a second-preimage challenge, consisting of a preimage Xc

and a function key K identifying a function H from Hn as well as a W-OTS? public

key pkc. Furthermore, M̂A gets access to the corresponding signing oracle for pkc.

Like MA, M̂A chooses α
$←− {1, . . . , 2h} uniformly at random. Additionally, M̂A

chooses β
$←− {0, α − 1} uniformly at random. Next, M̂A generates 2h W-OTS?

key pairs. This is done in a way simulating the Expfsprg−0FsGen (MA) case: For the first α

key pairs M̂A uses a random seed. Then, M̂A uses FsGen to compute Stateα using

a random seed and uses FsGen starting from Stateα to generate the seeds for the

remaining key pairs. Afterwards, M̂A replaces the key pair on position β by pkc.

As β ≤ α and pkc corresponds to a W-OTS? key pair where the seed is chosen at

random, the first α W-OTS? key pairs are now generated using random seeds and

the remaining W-OTS? key pairs are generated using FsGen, exactly as in the case

of MA.

Next, M̂A computes the XMSS-Tree starting from the bit strings of the W-OTS?

public keys, using H. During the XMSS-Tree computation, M̂A chooses a random

node from the set of all ancestor nodes of the bit strings of the first α W-OTS?

public keys. Then, M̂A chooses the bit masks for the level of this node such that

for this node the input to H is Xc. Then, M̂A uses the resulting XMSS public key

and starts to interact with A exactly the same way as MA does. Especially M̂A

aborts if A does not break in in time period i = α−1. M̂A can answer all signature

queries using the generated secret keys or the signing oracle for pkc in time period

i = β.

If A returns a valid forgery (M ′, (j, σ′,Auth′)) for time period j < α − 1, M̂A

computes the W-OTS? public key pk′j using the signature σ′. Now, there are two

mutual exclusive cases:

(Case 1) If pk′j = pkj, σ
′ is an existential forgery for W-OTS?. So, if j = β M̂A

returns (M,σ′), otherwise M̂A aborts.

(Case 2) If pk′j 6= pkj, by the pigeon hole principle, there must be one node on the

paths from pk′j and pkj to the root, where the paths collide the first time. As this

node is an output of H and the inputs are different, M̂A found a collision. If one

of the inputs is Xc, M̂A returns the second-preimage. Otherwise M̂A aborts. M̂A

runs in time t′ = t+ 2h · tSign + tVf + tKg.

Now we compute the success probability of M̂A. Per assumption A breaks in

in time period i = α − 1. From A’s point of view, M̂A behaves exactly as MA.

Hence, A returns a valid forgery with probability εA. In case 1, M̂A succeeds

with probability Pr[j = β] = 1
α

. But the success probability of M̂A for this case

is also upper bounded by its success probability against the EU-CMA-security of

W-OTS?, which is bound by InSecEU-CMA (W-OTS(1n, 1); t′, 1). Now we analyze
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case 2. We write Ancestorsα for the set of all ancestor nodes of the bit strings of the

first α W-OTS? public keys. Then M̂A succeeds with probability 1
|Ancestorsα| . But the

success probability of M̂A in case 2 is also upper bounded by the second-preimage

resistance of Hn, InSecspr (Hn; t′). One of these cases appears with probability at

least 1
2
. Summing up we get

εA ≤ 2 ·max

{
(α + 1) · InSecEU-CMA (W-OTS(1n, T = 1); t′, q = 1) ,

|Ancestorsα| · InSecspr (Hn; t′)

}
.

The right part of the equation takes its maximum value for α = 2h. Comparing this

with the result from [DOTV08] given in the proof of Theorem 4.4 we see that the

right part of the equation for α = 2h is exactly InSecEU-CMA
(
XMSS′(1n

′
, 2h); t, 1

)
.

This concludes the claim.

Combining this with the above result for FsGen yields that the maximum success

probability over all adversaries running in time ≤ t, making at most 1 query to each

instance of Sign, in attacking the forward security of XMSS? , InSecfssig (XMSS?; t, 1),

is bounded by

InSecfssig (XMSS?; t, 1)

≤ 22h+1 · InSecprf (Fn; (t′ + 2), 2)

+ 2 ·max


(2h+log ` − 1) · InSecspr (Hn; t′) ,

2h
(

InSecprf (Fn; (t′ + `), `)

+ `wκw−1

( 1
κ
− 1

2n )
· InSecprf (Fn; (t′ + w + 1), 2)

)
 , (4.2)

with t′ = t+ 2h · tSign + tVf + tKg. This concludes the proof.

4.4 Theoretical Performance

In this section we discuss the theoretical performance of XMSS. We show that the

performance of XMSS is closely related to that of the used function families. Hence,

XMSS and its forward secure variant are efficient ifHn is an efficient second-preimage

resistant hash function family and Fn an efficient pseudorandom function family.

Efficient here refers to the runtimes and space requirements for sufficiently secure

parameters. As the forward secure variant of XMSS is slightly less performant and

requires more space, we do the analysis for the forward secure variant. For practical

parameters and runtimes see Chapters 6 and 7.
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The tree traversal algorithm used to compute the nodes of the authentication

path has a huge influence on the runtime of the signature algorithm as well as on

the storage requirements for the state. For the BDS algorithm it has been shown in

[BDS09] that for h, k ≥ 2, h−k is even, it requires
(
5h+

⌊
h
2

⌋
− 5k − 2 + 2k

)
·n bits

for its state, including the secret key. Further it requires no more than (h−k)/2 + 1

leaf computations in the XMSS tree, 3(h−k−1)/2 + 1 evaluations of Hn, and h−k
calls to FsGen per signature. A leaf computation consists of evaluating FsGen

once, evaluating GEN` once, computing the W-OTS public key, and computing the

L-tree. The h − k extra calls to FsGen are used to compute upcoming states of

FsGen. There is no need to compute the output bits, because only the next state

is required. Therefore this requires only h− k evaluations of functions from Fn.

The runtime of all three algorithms of XMSS is dominated by the time required to

evaluate elements of Fn and Hn. We ignore the computational overhead for adding

the bitmasks, control flow, and computing the base w representation of the message

as it is negligible for every practical choice of Fn and Hn. We write tH (tF) for the

runtime of functions from Hn (Fn, respectively). Using a simple counting argument

we obtain the following result:

For one call to the XMSS signature algorithm, the runtime is bounded by

tSign ≤ tH

(
`+ 3

2
· (h− k) + `− 1

2

)
+ tF

(
`w + 4

2
· (h− k) + `w + 2

)
.

For one call to the XMSS signature verification algorithm, the runtime is bounded

by

tVf ≤ tH(h+ `) + tF(`w).

For one call to the XMSS key generation algorithm, the runtime is bounded by

tKg ≤ tH
(
2h(`+ 1)

)
+ tF

(
2h(2 + `(w + 1))

)
.

The space requirements for the internal state of Sign and Kg (including the secret

key) are determined by the space requirements of the tree traversal algorithm plus

the space requirements for the current state of FsGen and the index. Vf needs no

internal state. Hence, the space used by XMSS, using the BDS algorithm, is at most

|SK| ≤
(

5h+

⌊
h

2

⌋
− 5k − 2 + 2k + 1

)
· n+ |i| bits,

where |i| denotes the maximal binary length of the index. 2(h − k)n + n of these

bits have to be kept secret. For the remaining bits there is no secrecy requirement.

The public key has a size of

|PK| = 2n(h+ dlog `e+ 1) bits.





5 XMSSMT– XMSS with Virtually Un-
limited Signature Capacity

In this section we show how to extend XMSS in a way that one key pair can be used

to sign a virtually unlimited number of messages. We call the scheme Multi Tree

XMSS (XMSSMT ). Another important benefit of XMSSMT is that key generation

time is reduced from O(2h) to O(2h/d) for some integer parameter d that can be

chosen almost freely within [1, h− 1]. The construction is based on the idea of tree

chaining introduced in [BGD+06]. We also apply and improve the distributed signa-

ture generation technique proposed in [BDK+07] to further decrease the worst case

signing time. Again, we use W-OTS$ in our description. A variant using W-OTS+

is obtained, applying the same changes as for XMSS. We start with a descrip-

tion of the construction in Section 5.1. Then we discuss its security in Section 5.2

and finally analyze its correctness and theoretical performance in Section 5.3. The

contributions of this chapter were published as parts of [4, 12].

5.1 Multi Tree XMSS - XMSSMT

In this section we introduce XMSSMT . For a better understanding, we first give a

brief description of the scheme. For XMSSMT we extend the general concept of a

hash based signature scheme as used for XMSS using many layers of trees (here and

in the following we use tree synonym for a XMSS key pair, as it better depicts the

concept). Roughly speaking, we build a certification tree of XMSS key pairs. The

trees on the lowest layer are used to sign the messages whereas the trees on higher

layers are used to sign the roots of the trees on the layer below. The public key

contains only the root of the tree on the top layer. A signature consists of all the

signatures on the way to the highest tree. A graphical representation of the scheme

is shown in Figure 5.1. In the following we describe the construction in detail,

starting with the used parameters. Afterwards we describe the algorithms of the



64 5 XMSSMT– XMSS with Virtually Unlimited Signature Capacity

Figure 5.1: A schematic representation of a XMSSMT instance with four layers
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scheme. The building blocks are the same as for XMSS described in the previous

chapter.

Parameters. For security parameter n ∈ N, XMSSMT uses a pseudorandom func-

tion family Fn = {FK : {0, 1}n → {0, 1}n|K ∈ {0, 1}n} and a second-preimage

resistant hash function H, chosen uniformly at random from the family Hn = {HK :

{0, 1}2n → {0, 1}n|K ∈ {0, 1}n}, like XMSS. Further parameters are the number

of layers d ∈ N, the binary message length m and one parameter set per layer.

For a layer 0 ≤ δ ≤ d − 1 a parameter set contains the tree height hδ ∈ N, the

BDS parameter kδ ∈ N with the restrictions kδ < hδ and hδ − kδ is even and the

Winternitz parameter wδ ∈ N, wδ ≥ 2. To enable improved distributed signature

generation we require (hδ+1 − kδ+1)/2 + 3 ≤ 2hδ−kδ+1 − 2 for 0 ≤ δ < d− 1, as well

as (h0 − k0)/2 ≥ d− 1. Let h =
∑d−1

δ=0 hδ, a XMSSMT key pair can be used to sign

2h messages of m bits. These parameters are publicly known.

Key Generation. The XMSSMT key generation algorithm takes as input all of the

above parameters. First, the max0≤δ≤d−1{hδ + dlog `δe} bitmasks and the value X

used by W-OTS$ are chosen uniformly at random where `δ denotes the parameter `

for W-OTS on layer δ. The same bitmasks and X are used for all layers. Then, the

root of the first XMSS tree on each layer is computed. This is done in an ordered

way, starting from layer 0. For the tree Treeδ on layer δ the initial state of FsGen,

S0,δ is chosen uniformly at random and a copy of it is stored as part of the secret key

SK. The tree is constructed the same way as in the XMSS key generation algorithm

to compute Rootδ. When Rootδ, 0 ≤ δ < d−1, is computed, it is signed using the

first W-OTS key pair of Treeδ+1, which is computed next. This signature σδ+1 can

be extracted while Treeδ+1 is generated and hence does not need any additional

computation. Then σδ+1 is stored as part of SK. If the highest layer d−1 is reached,

Rootd−1 is stored in the public key PK. During the computation of Rootδ, the

state of the BDS algorithm StateBDS,δ is initialized as for XMSS.

Finally, the data structures for the next trees are initialized: For the next tree

Nextδ on each layer 0 ≤ δ < d−1 a FsGen state Sn,δ is chosen uniformly at random

and a new TreeHash stack Stacknext,δ is initialized. Also storage for a BDS state

StateBDS,n,δ is reserved. Summing up, SK consists of the states (S0,δ, StateBDS,δ), 0 ≤
δ ≤ d − 1 and the d − 1 signatures σδ, 0 < δ ≤ d − 1. Additionally, it contains

d− 1 FsGen states Sn,δ, d− 1 TreeHash stacks Stacknext,δ and d− 1 BDS states

StateBDS,n,δ for the next trees Nextδ on layer 0 ≤ δ < d − 1. The public key PK

consists of the max0≤δ≤d−1{hδ + dlog `δe} bitmasks, the value X and Rootd−1.
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Signature generation. The signature generation algorithm takes as input an m

bit message M , the secret key SK, and the index i, indicating that this is the ith

message signed with this keypair. The signature generation algorithm consists of two

phases. First, M is signed. A XMSSMT signature Σ = (i, σ0,Auth0, σ1,Auth1, . . . ,

σd−1,Authd−1) contains the index i, the W-OTS signature σ0 on the message M ,

the corresponding authentication path for Tree0 and the W-OTS signatures on

the roots of the currently used trees together with the corresponding authentication

paths. The only thing that has to be computed is σ0 — the W-OTS signature on

message M using the ith W-OTS key pair on the lowest layer. All authentication

paths and the W-OTS signatures on higher layers are already part of the current

secret key.

The second phase is used to update the secret key. Therefore BDS is initialized

with StateBDS,0 and receives (h0 − k0)/2 updates. If not all of these updates are

needed to update StateBDS,0, i.e. all scheduled node computations are finished and

there are still updates left, the remaining updates are used for the upper trees. On

the upper layers, not only the BDS state has to be updated. While one leaf is

used, one leaf in the next tree must be computed, i.e. the root computation has to

receive one update. Moreover, hδ − kδ FsGen states must be updated. This means

that remaining updates from layer zero are first used to update StateBDS,1. If all

scheduled node computations in StateBDS,1 are finished, one update is used for the

root computation of Next1. The next update is used for the FsGen states. If layer

1 does not need any more updates, the remaining updates are forwarded to layer 2

and so on, until either all updates are used or all tasks are done. Finally, one leaf

of the next tree is computed, i.e. the root computation for the next tree on layer 0

receives one update.

A special case occurs if i mod 2h0 = 2h0 − 1. In this case, the last W-OTS

key pair of the current Tree0 was used. This means that for the next signature

a new tree is needed on every layer δ with i mod 2hδ = 2hδ − 1. For all these

layers, Stacknext,δ already contains the root of Nextδ. So, Treeδ+1 is used to sign

Rootδ. Each signature is counted as one update. In case not all updates are needed,

remaining updates are forwarded to the first layer that did not get a new tree. In

SK, StateBDS,δ, Sδ, and Σδ are replaced by the newly computed data. Afterwards,

new data structures for the next tree on layer δ are initialized and used to replace

the ones in SK. Finally, the signature SIG, the updated secret key SK and i+ 1 are

returned.

Signature verification. The signature verification algorithm takes as input a sig-

nature Σ = (i, σ0,Auth0, σ1,Auth1, . . . , σd−1,Authd−1), the message M and the public
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key PK. To verify the signature, roughly speaking the XMSS verification algorithm

is first used for the signature of the lowest layer. The root value obtained in the last

step of the XMSS signature verification is then used as message for the next layer

and so on, until a root node for layer d− 1 is obtained. This value is then compared

to the value in the public key.

More specifically, σ0 and M are used to compute the corresponding W-OTS public

key. The corresponding leaf N0,j of Tree0 is constructed and used together with

Auth0 to compute the path (P0, . . . , Ph0) to the root of Tree0, where P0 = N0,j,

j = i mod 2h0 and

Pc =

{
H((Pc−1||Authc−1,0)⊕Bc), if bj/2cc ≡ 0 mod 2

H((Authc−1,0||Pc−1)⊕Bc), if bj/2cc ≡ 1 mod 2

for 0 ≤ c ≤ h0. This process is then iterated for 1 ≤ δ ≤ d− 1, using the output of

the last iteration Phδ−1
= Rootδ−1 as message and σδ, Authδ and j =

⌊
i/2

∑δ−1
b=0 hb

⌋
mod 2hδ . If the output of the last iteration Phd−1

equals the root value contained in

PK, Rootd−1, the signature is assumed to be valid and the algorithm returns 1. In

any other case it returns 0.

5.2 Security

In this section we show that XMSSMT is secure. More specifically, we prove the

following theorem:

Theorem 5.1. If Hn is a second-preimage resistant hash function family and Fn a

pseudorandom function family, then XMSSMT is a forward secure signature scheme.

The reasoning is as follows. From a theoretical point of view, XMSSMT can be

seen as a certification tree using XMSS. The proof is a straightforward combination

of the result from the last section about the forward security of XMSS and a result

from [MMM02]. For this reason we only sketch the proof for the special case of

XMSSMT .

Proof Sketch. Let’s look at XMSSMT the following way. Ignoring all algorithmic

improvements, XMSSMT uses d differently parameterized versions of XMSS. Denote

them as XMSS0, . . . ,XMSSd−1. Now one instance of XMSSd−1 is used to sign the

roots of 2hd−1 instances of XMSSd−2, one per leaf, and so on. The leaves of the

XMSS0 instances are used to sign the messages.

Now assume there exists an adversary A that breaks the forward security of

XMSSMT with probability SuccfssigXMSSMT (1n,2h) (A) running in time t. Then we can



68 5 XMSSMT– XMSS with Virtually Unlimited Signature Capacity

construct an oracle machineMA that breaks the forward security of one out of the

d XMSS versions used. As input MA receives one public key for every used XMSS

version XMSSδ and access to a corresponding signature oracle Signδ, for 0 ≤ δ ≤ d

that automatically performs a key update after every signature query. MA places

the challenge instance for a layer at a random position on this layer. If a challenge

instance is required to sign a message or a root, the corresponding signing oracle is

used. For the remaining XMSS instancesMA generates the key pairs and uses them

to sign. When A indicates to breakin, MA hands over all the secret key informa-

tion. If necessary,MA itself indicates a breakin for some of the challenge instances.

If A returns a valid forgery (M,Σ = (i, σ0,Auth0, σ1,Auth1, . . . , σd−1,Authd−1)),MA

starts a verification. Assume,MA stored the Root of all trees used before breakin

was indicated. According to the forward security notion, M is a new message. Now

during verificationMA compares the Root on every layer with the one it generated

itself or the Root in the public key of the challenge instance, respectively. If the

two Root nodes match on layer δ, MA found a forgery for the XMSS instance on

this layer. With probability 2−
∑
j=δ+1 d−1hj the current instance on layer δ is the

challenge instance and MA succeeds. Otherwise MA aborts.

Analyzing MA, we get that MA runs in time t′ ≤ t + tKg + 2htSign + tVf . With

probability SuccfssigXMSSMT (1n,2h) (A) A outputs a forgery. Then we got d mutually

exclusive cases caseδ, for 0 ≤ δ < d, i.e. the Root nodes match for the first time on

layer δ. As stated above, if the Root nodes match for the first time on layer δ, with

probability 2−
∑d−1
j=δ+1 hj the current instance on layer δ is the challenge instance. So

for each caseδ we get a bound

Succfssig
XMSS(1n,2hδ )

(
MA) ≥ 2−

∑d−1
j=δ+1 hjSuccfssigXMSSMT (1n,2h) (A)

and hence

InSecfssig
(
XMSSMT (1n, 2h); t, 1

)
≤

d−1∑
0=δ

2
∑d−1
j=δ+1 hj · InSecfssig

(
XMSS(1n, 2hδ); t, 1

)
.

Replacing InSecfssig
(
XMSS(1n, 2hδ); t, 1

)
by the results from the last section leads

the claimed result.

5.3 Analysis

In the following we provide an analysis of XMSSMT . We first discuss its algorithmic

correctness, i.e. we show that all node computations, root computations, root signa-
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tures and FsGen updates finish in time. Afterwards, we discuss key and signature

sizes as well as theoretical runtimes of the algorithms.

5.3.1 Correctness

In the following we show that the (h0− k0)/2 updates per signature suffice to finish

all computations in time. A tree on layer δ needs (hδ − kδ)/2 updates to continue

the node computations for upcoming authentication paths and one update for the

computation of the root of the next tree Nextδ, to sign the root of Nextδ−1 and to

update the FsGen states, respectively. This makes 3 + (hδ − kδ)/2 updates. Please

recall that we require (hδ+1 − kδ+1)/2 + 3 ≤ 2hδ−kδ+1 − 2 for 0 ≤ δ < d − 1 as well

as (h0 − k0)/2 ≥ d− 1. The proof works by induction over layer δ.

Base case (δ = 0): Per construction a tree on layer 0 receives (h0 − k0)/2

updates for the node computations per signature. The remaining tasks (computation

of Next0, FsGen updates and generating one signature) are executed without

explicitly using updates and instead of a root node a message is signed. This is the

same as if it would receive the three additional updates and use them to fulfill these

tasks.

Inductive step (δ− 1⇒ δ): While one OTS signature on layer δ is used as part

of the XMSSMT signature, the OTS key pairs of a whole tree Treeδ−1 on layer δ−1

are used. Now, per assumption Treeδ−1 receives 3 + (hδ−1 − kδ−1)/2 updates per

signature. Three of these updates are directly used to update the computation of

the root of Nextδ−1, to update the FsGen states and to sign the next root node

on layer δ − 2 (or the message, if δ = 1). So there remain (hδ−1 − kδ−1)/2 updates

for BDS per signature. This makes a total of 2hδ−1(hδ−1 − kδ−1)/2 updates for the

whole tree.

For all authentication paths of Treeδ−1, the BDS algorithm has to compute

all right nodes of Treeδ−1 that are on a height < hδ−1 − kδ−1 once. The only

exceptions are the two first right nodes on every level as these nodes are stored

during initialization. The number of required updates for 2 ≤ kδ−1 ≤ hδ−1 is

hδ−1−kδ−1−1∑
j=0

(2hδ−1−j−1 − 2)2j = (hδ−1 − kδ−1)2hδ−1−1 − 2hδ−1−kδ−1+1 + 2.

Hence, there are

(hδ−1 − kδ−1)2hδ−1−1 − (hδ−1 − kδ−1)2hδ−1−1 + 2hδ−1−kδ−1+1 − 2 = 2hδ−1−kδ−1+1 − 2

unused updates, which are forwarded to Treeδ. As we require (hδ − δ)/2 + 3 ≤
2hδ−1−kδ−1+1 − 2, Treeδ receives the necessary number of updates per signature.
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There would still occur a problem, if the number of updates per signature were

smaller than d − 1. The reason is that this would mean that the roots of the new

trees on different layers could not always be signed using the updates of the last

signature before the change. In this case the private storage would grow, as we

would need some intermediate storage for the new signatures. This is the reason

why the second condition ((h0 − k0)/2 ≥ d− 1) is needed.

Please note that the condition (hδ − δ)/2 + 3 ≤ 2hδ−1−kδ−1+1 − 2 implies that we

do not allow kδ−1 = hδ−1. The reason is that even if all nodes in the current tree

are stored, we need at least two updates per signature to update the computation of

the root of Nextδ and to sign the next root node on layer δ− 1. As we do not need

to run BDS, there is no need to update the FsGen states. If now kδ−1 = hδ−1, we

cannot guarantee that layer δ − 1 leaves enough unused updates to execute these

necessary tasks. For parameters with kδ−1 = hδ−1 a more detailed analysis over all

layers of a key pair would be required.

5.3.2 Theoretical Performance

First we look at the sizes. A signature contains the index and d pairs of W-OTS

signature and authentication path. Hence a signature takes 24+n·
∑d−1

δ=0(`δ+hδ) bits,

assuming we reserve three bytes for the index. The public key contains the bitmasks,

X and Rootd−1. Thus, the public key size is n ·(max0≤δ≤d−1{hδ+dlog `δe}+2) bits.

The secret key contains a single FsGen state as well as one BDS state which in turn

consists of 2(hδ − kδ) FsGen states and no more than (3hδ + bhδ
2
c − 3kδ − 2 + 2kδ)

tree nodes per currently used tree Treeδ [BDS08]. In addition, it contains the

d − 1 W-OTS signatures σ1, . . . , σd−1 which have a total size of n ·
∑d−1

δ=1 `δ bits

and the data structures for upcoming trees. These data structures do not require

a full BDS state, as only those arrays in StateBDS,n,δ are needed that are filled

during initialization. Moreover, the space to store the k top levels of nodes can be

shared with the corresponding space in StateBDS,δ. Thus, these structures require

only (hδ − kδ + 1) FsGen states (one for building the tree and the remaining as

storage for the BDS state) and no more than 3hδ − kδ + 1 tree nodes per Nextδ,

0 ≤ δ < d− 1. The total secret key size is

n ·

(
d−1∑
δ=0

[(
5hδ +

⌊
hδ
2

⌋
− 5kδ − 2 + 2kδ

)
+ 1

]
+

d−2∑
δ=0

(`δ+1 + 4hδ − 2kδ + 2)

)
bits.

For the runtimes we only look at the worst case times and get the following. During

key generation, the first tree on each layer has to be computed. This means, that

each of the 2hδ W-OTS key pairs has to be generated, including the execution of the
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PRGs. Furthermore, to obtain the root, the leaves of the trees have to be computed

as well as all internal nodes of the tree. If key generation generates the trees in order,

starting from the first one, the W-OTS signatures on the roots of lower trees need no

additional computation as the signature can be extracted while the corresponding

W-OTS key pair is generated. The key generation time is

tKg ≤ tH

(
d−1∑
δ=0

(
2hδ(`δ + 1)

))
+ tF

(
d−1∑
δ=1

(
2hδ(2 + `δ(wδ + 1))

))
,

where tH and tF denote the runtimes of one evaluation of H and F, respectively.

During one call to Sign, a W-OTS signature on the message must be generated,

including generation of the key (tF(2 + `0(w0 + 1))), the BDS algorithm receives

(h0 − k0)/2 updates, one leaf of the next tree on layer 0 must be computed and

the BDS algorithm updates h0 − k0 upcoming seeds (tF(h0 − k0)). The worst case

signing time is bounded by

tSign ≤ max
δ∈[0,d−1]

{
tH
(
h0−k0+2

2
· (hδ − kδ + `δ) + h0

)
+tF

(
h0−k0+4

2
· (`δ(wi + 1)) + h0 − k0

) } .
Signature verification consists of computing d W-OTS public keys and the corre-

sponding leafs plus hashing to the root. Summing up verification takes

tVf ≤
d−1∑
δ=0

(tH (`δ + hδ) + tF (`δwδ))

in the worst case.





6 Choosing Optimal Parameters for
XMSS∗

In this chapter we show how to choose parameters for XMSS∗, i.e. XMSS and

XMSSMT . More specifically we show how to select parameters that yield a provably

secure instantiation on the one hand and result in provably optimal performance

for a given use case on the other hand. Towards this end, we first show how to

compute the security level of XMSS∗ for a given parameter set. Afterwards we show

how to model parameter selection as a linear optimization problem. Here, we only

discuss the more complicated case of XMSSMT . The model for XMSS is obtained

using the same techniques but the equations from Section 4.4. Finally, we provide

optimal parameters for two exemplary use cases. The contributions of this chapter

were published as parts of [2, 4, 12].

6.1 Security Level of XMSS∗

In the following we show how to compute the security level of XMSS and XMSSMT

for given parameters. Security level here is used in the sense of [Len04]1. This allows

a comparison of the security of XMSS∗ with the security of a symmetric primitive

like a block cipher for given security parameters. For example a security level of 128

bit is comparable to the security of AES with 128 bit keys. More specifically, we say

that XMSS∗ has security level b if a successful attack on the scheme can be expected

to require approximately 2b−1 evaluations of a hash function or block cipher on the

average, following [Len04]. We detail the computation of the security level for the

forward secure XMSS construction.

1The website http://www.keylength.org allows one to compute the security level for today’s

signature schemes. It also shows an estimation of how long a given security level is assumed to

be secure according to [Len04].

http://www.keylength.org
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6.1.1 Security Level of XMSS using W-OTS$

We now compute the security level of XMSS. Therefore we use the exact insecurity

function given in equation 4.2. We can compute the security level, finding a lower

bound for t such that 1/2 ≤ InSecFSSIG (XMSS; t, 1). According to the proof of The-

orem 4.4, XMSS can only be attacked by attacking the second preimage resistance

of Hn or the pseudorandomness of Fn. Following the reasoning in [Len04], we only

take into account generic attacks on Hn and Fn.

For the insecurity ofH(n) under generic attacks we assume InSecspr (H(n); t) = t
2n

which corresponds to a brute force search for second preimages. For the insecurity

of Fn under generic attacks we assume that the best attack is a brute force key

retrieval attack. Lemma 3.13 shows that if we assume Fn to be a PRF with security

level n we get InSecprf (Fn; t, q) = t
2n−logκ

·
(
1
κ
− 1

2n

)
for the insecurity function and

from Lemma 3.12 it follows that the number of key collisions κ ≤ 2. Now, let

t′ = t+ t′′+ max{`, w+ 1, 2} where t′′ = 2h · tSign + tVf + tKg. We compute the lower

bound on t. The following bound holds for t′′ < min{2n−2h−5, 2n−h−w−log `w−4}) −
max{`, w+ 1, 2}. We comment on the reasonableness of this bound after presenting

the bit security.

1

2
≤ InSecFSSIG (XMSS; t, q = 1)

≤ 22h+1 t′

2n−log κ

(
1

κ
− 1

2n

)

+ 2 ·max

 (2h+log ` − 1) · t′
2n
,

2h
(

t′

2n−log κ

(
1
κ
− 1

2n

)
+ (`wκw−1 1

( 1
κ
− 1

2n )
) · t′

2n−log κ

(
1
κ
− 1

2n

))


< 22h+1 t′

2n−1

(
1

2

)
+ 2h+1

(
t′

2n−1

(
1

2

)
+ (`w2w−1) · t′

2n−1

)
=

t′

2n−2h−1
+

t′

2n−h−1
+

t′

2n−h−w−log `w−1

t′ >
2n−h−2

2h + 1 + 2w+log `w

t′ >
2n−h−2

2 max{2h+1, 2w+log `w}
t′ > min{2n−2h−4, 2n−h−w−log `w−3}

Now, using t′ = t+ t′′ + max{`, w + 1, 2} and the above condition on t′′ we obtain

t > min{2n−2h−5, 2n−h−w−log `w−4}.
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Therefore, the security level for XMSS is

b > n− h− 3−max {h+ 1, w + log `w} .

The used bound on t′′ is reasonable whenever a parameter set leads to a reasonable

security level. This is the case as t′′ is the time required to generate a key pair,

use it to sign the maximum number of possible messages, and verify each of these

signatures. Almost half of this time is required for key generation, a task that must

be computable in reasonable time. Now, the bound says that this time must be

smaller than the average runtime of a successful attack on the scheme, a task that

should be impossible to do in reasonable time, minus max{`, w + 1, 2}. The result

of the maximum must be much smaller than the gap between the runtimes as any

possible outcome appears as a multiplicative factor in the theoretical formulas of all

XMSS runtimes.

6.1.2 Security Level of XMSS using W-OTS+

Now, we compute the security level of XMSS using W-OTS+. The computa-

tion is almost the same as above. We have to replace the insecurity function

for W-OTS by that for W-OTS+ in the proofs to obtain the insecurity function

for XMSS using W-OTS+. Denote the function family used by W-OTS+ by Gn.

Besides the generic attacks described above, we also need generic attacks against

one-wayness and undetectability. We assume InSecow (Gn; t) = t
2n

which corre-

sponds to a brute force search for preimages. For the insecurity regarding unde-

tectability we assume InSecud (Gn; t) = t
2n

following [DSS05]. We again use an

upper bound on t′′. This time we have t′ = t + t′′ + max{`, 2w, 2} and we require

t′′ < min{2n−2h−5, 2n−h−log `(w2+w)−4})−max{`, 2w, 2}, which holds for all reasonable

parameters using the same argumentation as above. The resulting security level for

XMSS is

b > n− h− 1−max
{
h+ 3, log(`2w2 + w)

}
.

6.1.3 Security Level of XMSSMT

Using the same reasoning as above, we can compute the security level of XMSSMT .

We present two lower bounds on the security level for XMSSMT , one for the case of

W-OTS$ and one for W-OTS+. For similar bounds on the runtime of the algorithms

as above, we can lower bound the security level b of XMSSMT , using W-OTS$ by

b > min
0≤δ≤d−1

{
n− hδ − log d− (

d−1∑
j=δ+1

hj)− 3−max {hδ − 1, wδ − log(`δwδ)}

}
.
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Similarly, for the case of W-OTS+ we obtain

b > min
0≤δ≤d−1

{
n− hδ − log d− (

d−1∑
j=δ+1

hj)− 1−max
{
hδ + 3, log(`δ2w

2
δ + w)

}}
.

6.2 Optimization

Given the theoretical formulas for runtimes and sizes from Section 5.3.2, we now

show how to use them to model the parameter selection problem as linear opti-

mization problem. There are parameters which control different trade-offs. The

BDS parameters kδ ∈ N control a trade-off between signature time and secret key

size. The Winternitz parameters wδ ∈ N control a trade-off between runtimes and

signature size. Finally, the number of layers d determines a trade-off between key

generation and signature time on the one hand and signature size on the other hand.

Moreover, there are the different tree heights δ that do not define any obvious trade-

off, but influence the security as well as the performance of the scheme. The goal

of the optimization is to choose these parameters. The function families Fn and Hn

can be instantiated, either using a cryptographic hash function or a block cipher.

Hence, the security parameter n is restricted to the output size of such functions.

We choose 128 and 256 bit corresponding to AES and SHA-2 for our optimization,

respectively.

Optimization Model. To find good parameter choices, we use linear optimization.

In the following we discuss how we model the problem of optimal parameter choices

as a linear optimization problem. As objective function of our problem we chose

a weighted sum of all runtimes and sizes that should be minimized. Using the

weights, it is possible to control the importance of minimizing a certain parameter

and thereby using the model for different scenarios. We further allow to apply

absolute bounds on the runtimes and sizes. The formulas for runtimes and sizes

are modeled as constraints as well as the parameter restrictions and the formula for

bit security from above. The input to the model are the runtimes of F and H for

n = 128 and n = 256, the overall height h, the message length m and a value b as

lower bound on the bit security.

As many of our initial constraints are not linear, we have to linearize all functions

and restrictions. This is done using the generalized lambda method [Mor07]. In

addition, we split the problem into sub problems each having some decision variables

fixed. The optimization problem contains the parameters of the scheme (d, n, the

hδ, kδ, wδ for all layers) as decision variables which are determined by solving the
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optimization problem. Furthermore, the message length mδ on each layer has to be

modelled as a decision variable. Since solving the optimization problem takes much

time and memory, we split the problem into sub problems by fixing the decision

variables n and d. Therefore, we receive one sub problem for each combination of

possible values of n and d. The resulting sub problems are solved independently and

the best of their solutions is chosen as global solution of the original optimization

problem.

The next step is to linearize the remaining sub problems by using the generalized

lambda method. Therefore, we introduce a grid point for each possible combination

of the remaining variables h, k, w and m on each layer δ. For each grid point we

have a binary variable λh,k,w,m,δ which takes value 1 if the combination of h, k, w,m is

chosen on layer δ. Otherwise, it takes value 0. Since we need one choice of h, k, w,m

for each δ ∈ [0, d− 1], d λ’s must be chosen.

We use those lambdas to calculate the functions describing the problem. Thus,

before optimizing we determine the values of the functions for each possible values of

their variables. To make this feasible, we have to introduce bounds on the decision

variables. We bound the tree height per layer by 24. As k ≤ h this bound also

applies to k. For w we chose 255. These bounds are reasonable for the scenarios of

the next section. For different scenarios they might have to be changed. Then, to

model the needed space of signatures
∑d−1

δ=0 (`δ + hδ) · n, we formulate the constraint

SpaceSig ==
d−1∑
δ=0

24∑
h=1

24∑
k=1

512∑
w=2

∑
m∈{128,256}

λh,k,w,m,i · fSpaceSig(w, h,m)︸ ︷︷ ︸
pre−calculated

in the optimization model, where fSpaceSig(w, h,m) = (`+h)n. Thus, SpaceSig gives

the exact value of the needed space of signatures for the choice of lambda’s and can

be used in constraints and objective function.

To linearize a condition containing the maximum of some terms, such as the public

key size n · (max0≤δ≤d−1{hδ + dlog `δe}+ 2), we write the following constraint:

∀δ ∈ {1, ..., d}

SpacePK ≥
24∑
h=1

24∑
k=1

512∑
w=2

∑
m∈{128,256}

λh,k,w,m,δ · (fdlog `e(w,m)︸ ︷︷ ︸
pre−calculated

+h+ 2)n.

Hence, SpacePK gives the public key size for the choice of lambda’s. This constraint

pushes the value of SpacePK up high and due to the objective function the value

will be pushed down as low as possible, so that in the end it takes the exact value.
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6.3 Results

In this section we present optimal parameters for two exemplary use cases. To solve

the optimization problem, we used the IBM Cplex solver [IBM] that implements the

Simplex algorithm [Dan63] with some improvements. The linearization described in

the last section is exact. Thus, there is no loss of information or error. Therefore, it

can be proven that the solution found by linear optimization based on the Simplex

algorithm is the best possible solution. In the following we present the results and

compare them with the results for parameter sets proposed in [BDH11] and [HBB13].

We choose a message length of 256 bits for all use cases assuming that the message

is the output of a collision resistant hash function. Moreover, we use 80 bits as

lower bound for the provable bit security. This seems reasonable, as the used bit

security represents a provable lower bound on the security of the scheme and is not

related to any known attacks. We used the instantiations for F and H proposed in

[BDH11] with AES and SHA2 for n = 128 and n = 256, respectively and measured

the resulting runtimes on a Laptop with Intel(R) Core(TM) i5-2520M CPU @2.5

GHz and 8 GB RAM. We got tF = 0.000225ms and tH = 0.00045ms for n = 128

as well as tF = 0.00169ms and tH = 0.000845ms for n = 256. As W-OTS, we used

W-OTS$. Furthermore we used less tight bounds on the bit security from [HBB13]

and [BDH11] to achieve comparability.

The first use case we look at meets the requirements of a document or code

signature. We assume that the most important parameters are signature size and

verification time. We try to minimize them, while keeping reasonable bounds on the

remaining parameters. We used the bounds tSign < 1000ms, tVf < 1000ms, tKg < 60s,

sk < 25kB, pk < 1.25kB, σ < 100kB and the weights tSign = 0.00000001, tVf =

0.00090000, tKg = 0.00000001, sk = 0.00000001, σ = 0.99909996, pk = 0.00000001

for h = 20. We chose different weights for tVf and σ, because the optimization

internally counts in bits and milliseconds. We set the weights such that 1ms costs

the same as 1000 bit. The remaining weights are not set to zero but to 1.0e − 8,

the smallest possible value that we allow. This is necessary to ensure that our

implementation of inequalities in the model works. This also ensures that within

the optimal solutions regarding tVf and σ, the best one regarding the remaining

parameters is chosen. It turns out that the optimization can be solved for d ≥ 2.

For d = 1 the bound on the key generation time cannot be achieved for the required

height. If we relax this bound to be tKg < 600s, i.e. 10 minutes, the problem can be

solved for n = 128 using AES. For d ≥ 2 this relaxation does not change the results.

The optimal parameters for this setting are n = 128, d = 2, h0 = 17, k0 = 5, w0 = 5

and h1 = 3, k1 = 3, w1 = 22. For comparison we used a parameter set from [HBB13]



6.3 Results 79

Runtimes (ms) Sizes (bit)

Use case tKg tSign tVf σ PK SK

UC1 optimal 27251 1.65 0.36 21376 6144 25472

UC1 from [HBB13] 326 1.00 0.28 28288 4608 25856

UC2 optimal 166min 25.55 9.13 83968 13824 209152

UC2 from [BDK+07] 98min 14.53 5.01 119040 13824 233472

Table 6.1: Runtimes and sizes for optimized parameters and parameters proposed in

previous works.

that matches the bound on the bit security (n = 128, d = 2, h0 = h1 = 10, k0 =

k1 = 4, w0 = w1 = 4). The resulting runtimes and sizes are shown in Table 6.1.

The results show that it is possible to reduce the signature size by almost one kilo

byte, changing the other parameters within their bounds and increasing the second

important parameter, the verification time, by 0.08 milliseconds.

As a second use case we take a total tree height of 80 and aim for a balanced

performance over all parameters. This use case corresponds to the use in a com-

munication protocol. Again, we choose the weights such that 1ms costs the same

as 1000 bit but this time we use the same weights for all runtimes and for all sizes.

For comparison we use parameters from [BDK+07] (d = 4, h0 = h1 = h2 = h3 = 20,

w0 = 5, w1 = w2 = w3 = 8, k0 = k1 = k2 = k3 = 4). As they do not use a

BDS parameter, we choose k = 4 on all layers. To make a fair comparison, we

limited our optimization also to four layers. The optimal parameters returned by

the optimization are h0 = h1 = h2 = h3 = 20, w0 = 14, w1 = w2 = w3 = 24 and

k0 = k1 = k2 = 4, k3 = 2. The results are shown in Table 6.1. It turns out that

again, by trading some runtime, the signature size can be significantly reduced.
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To finally backup our claim regarding practicality of XMSS and XMSSMT , we im-

plemented the schemes to provide practical evidence. In this chapter we present

runtimes of a C implementation of XMSS on a standard CPU as well as runtimes

of XMSSMT and XMSS on an of-the-shelf smart card and compare the results with

those of other signature schemes. We also use the runtimes to show the influence

of the different parameters on the practical performance of the schemes. We first

generally discuss different possible implementations of the used function families in

practice. Afterwards we first present the C implementation and end with the smart

card implementation. The contributions of this chapter were published as parts of

[2, 4, 7].

7.1 Implementing the Function Families

The implementation of XMSS+ is straightforward besides the implementation of the

used function families Fn and Hn as well as Gn when W-OTS+ is used. We propose

constructions based on hash functions and block ciphers for all three function families

and argue why they are secure.

Instantiations using Hash Functions. First we discuss the hash function based

constructions. We assume a hash function Hash that takes inputs of arbitrary

length2 and outputs n bit hash values. If we assume Hash is a secure cryptographic

hash function, we can use Hash as the randomly chosen function from Hn and

Gn. To assume that Hash is a randomly chosen element of a hash function family,

is common practice. This is the case because in theory we assume hash function

families but in practice cryptographic hash functions are constructed as a single

2In practice the input length is mostly bounded by 264 bits. This can be assumed to be virtually

unlimited.
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function [RS04]. Furthermore, cryptographically secure hash functions are assumed

to be second-preimage resistant, one-way and undetectable.

The more complicated part is to implement Fn. Some hash functions like SHA-3

come with a special PRF mode. If this is not the case, we propose a construction

for any secure hash function that uses the Merkle-Darmgard (M-D) construction

[Mer90b, Dam90]. The family Fn is constructed as follows. Given a hash function

Hash with block length b and output size n that uses the M-D construction, we

construct the function family Fn as

fK(M) = Hash(Pad(K)||Pad(M)),

for key K ∈ {0, 1}n, message M ∈ {0, 1}n and Pad(X) = (X||10b−|X|−1) for |X| < b.

We argue that it is reasonable to assume that this is a secure PRF if Hash is a

secure cryptographic hash function. The assumptions we use are essentially those

used for the security of HMAC using a practical hash function. In [BCK96a] it is

assumed that the compression function of a good M-D hash function is a pseudoran-

dom function family if it is keyed using the input. In [BCK96b], it is assumed, that

the compression function of a good M-D hash function is a pseudorandom function

family if keyed on the chaining input. Furthermore it is shown, that a fixed input

length M-D hash function, keyed using the initialization vector (IV), is a pseudo-

random function family for fixed length inputs. In our construction the internal

compression function of Hash is evaluated twice: First on the IV and the padded

key, second on the resulting chaining value and the padded message. Due to the

pseudorandomness of the compression function when keyed on the message input,

the first evaluation works as a pseudorandom key generation. As we have a fixed

message length, the second iteration is a pseudorandom function family keyed using

the IV input.

Instantiations using Block Ciphers. Now we present constructions using a block

cipher E(K,M) with block and key length n bit. This is of special interest in case

of AES, because many smart card crypto co-processors and also most of today’s

Intel processors provide hardware acceleration for AES. To implement Fn we use

E without modification as the theoretical standard model for a block cipher is a

pseudorandom permutation family. Therefore, we assume that for a secure block

cipher this is indeed the case. To implement H we build a compression function

using the Matyas-Meyer-Oseas (MMO) construction [MMO85] and iterate it using

the M-D construction. This is shown in Figure 7.1. More specifically we compute

HK(M) = C2 for M = M1||M2, with

Ci = ECi−1
(Mi)⊕Mi, C0 = K, 0 < i ≤ 2.
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Figure 7.1: Construction of H using AES with the Matyas-Meyer-Oseas construction in

M-D Mode.

  AES   AES

M1 M2

K HK(M)

In [BRS02] the authors give a black box proof for the security of the above com-

pression function construction. There is no need to use M-D strengthening, as our

domain has fixed size.

To construct Gn we also use the MMO construction. As Gn maps bit strings of

length n to bit strings of the same length, we do not need a domain extension method

like M-D. Hence, we only use one round of MMO and compute

GK(M) = EK(M)⊕M.

Remark 7.1. Please note that we left the area of provable security in this section.

All the proposed constructions are heuristic as the statements about the used hash

functions and block ciphers are. While we cannot prove that the implementations are

secure we argued why they are reasonable. One might look at this as our hardness

assumptions being something like the used hash function is second-preimage resis-

tant. For a hash function like SHA-2 this might be analyzed in the same detail as

the hardness of some algebraic or number theoretic problem for given parameters.

7.2 C Implementation

We now discuss our implementation of XMSS for general purpose CPUs. The imple-

mentation was done in C and it uses the OpenSSL library3 for the implementation of

hash functions and block ciphers. The implementation supports any hash function

or block cipher supported by OpenSSL and any combination of these. For our mea-

surements we used either AES or SHA2 to implement all function families. Table

7.1 shows our experimental results for XMSS with W-OTS$ on a computer with

an Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz, 8GB RAM, and Intel AES-NI4.

The displayed results are for the forward secure construction. The construction for

3http://www.openssl.org/
4http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni
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Table 7.1: XMSS performance for m = 256 on a computer with an Intel(R) Core(TM)

i5-2520M CPU @ 2.50GHz and 8GB RAM. b denotes the bit security. For the chosen

parameters, the bit security is the same for forward security and EU-CMA security.

AES-NI and AES are used with 128 bit keys. We used standard SHA2 with 256 bit

digests.

Timings (ms) Sizes (byte)

Function h k w Keygen Sign Verify Secret key Public key Signature b

SHA2 10 4 4 868 3.47 0.43 1,604 1,188 4,580 229

SHA2 10 4 16 1,522 6.38 0.75 1,604 1,124 2,468 216

SHA2 10 4 64 3,925 16.67 1.97 1,604 1,060 1,764 167

SHA2 10 4 108 5,839 24.85 2.94 1,604 1,060 1,604 122

SHA2 16 4 4 54,180 5.96 0.44 2,660 1,572 4,772 220

SHA2 16 4 16 95,876 10.70 0.75 2,660 1,508 2,660 210

SHA2 16 4 64 247,494 27.83 1.95 2,660 1,444 1,956 161

SHA2 16 4 108 369,741 41.58 2.91 2,660 1,444 1,796 116

SHA2 20 8 4 879,010 6.09 0.45 10,404 1,828 4,900 212

SHA2 20 8 16 1,531,497 10.90 0.76 10,404 1,764 2,788 206

SHA2 20 8 64 3,991,598 28.54 1.98 10,404 1,700 2,084 157

SHA2 20 8 108 5,982,298 42.43 2.93 10,404 1,700 1,924 112

SHA2 20 4 4 868,647 7.62 0.44 3,364 1,828 4,900 212

SHA2 20 4 16 1,534,748 13.71 0.76 3,364 1,764 2,788 206

SHA2 20 4 64 4,012,157 35.60 1.97 3,364 1,700 2,084 157

SHA2 20 4 108 5,941,291 53.15 2.93 3,364 1,700 1,924 112

AES-NI 10 4 4 55 0.24 0.07 804 596 2,292 101

AES-NI 10 4 16 77 0.33 0.06 804 564 1,236 88

AES-NI 16 4 4 3,505 0.41 0.07 1,332 788 2,388 92

AES-NI 16 4 16 4,915 0.56 0.06 1,332 756 1,332 82

AES-NI 20 8 4 56,526 0.42 0.07 5,204 916 2,452 84

AES-NI 20 8 16 78,728 0.57 0.06 5,204 884 1,396 78

AES-NI 20 4 4 56,066 0.52 0.07 1,684 916 2,452 84

AES-NI 20 4 16 79,196 0.71 0.06 1,684 884 1,396 78

AES 10 4 4 129 0.49 0.11 804 596 2,292 101

AES 10 4 16 168 0.72 0.11 804 564 1,236 88

AES 16 4 4 7,500 0.84 0.11 1,332 788 2,388 92

AES 16 4 16 10,832 1.21 0.11 1,332 756 1,332 82

AES 20 8 4 120,433 0.85 0.11 5,204 916 2,452 84

AES 20 8 16 171,674 1.22 0.11 5,204 884 1,396 78

AES 20 4 4 119,736 1.06 0.11 1,684 916 2,452 84

AES 20 4 16 172,851 1.53 0.11 1,684 884 1,396 78

RSA 2048 - 3.08 0.09 ≤ 512 ≤ 512 ≤ 256 95

DSA 2048 - 0.89 1.06 ≤ 512 ≤ 512 ≤ 256 95

MSS-SPR (n=128, h=20) 232 960 8,512 98
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EU-CMA security has slightly faster runtimes and the secret keys are 2(h− k) · n
bits smaller. The key pairs can be used to sign about 1,000 (h = 10), 65,000 (h = 16)

or one million messages (h = 20). To show the effect of this limitation in practice,

we give an example. If a key pair is used for one year, it can be used to sign about

3, 179, or 2872 messages a day, for h = 10, h = 16, and h = 20, respectively.

The last column of the table shows the bit security of the configuration. Following

the heuristic of Lenstra and Verheul [LV01] with the updated equations [Len04] the

configurations with bit security 84 are secure until 2024. The configurations with a

bit security of 100 and more are at least secure until 2048. Please note that these

numbers are based on the provable security and not on the runtimes of possible

attacks, which is the common practice and for example used for the security level of

RSA and DSA. This would result in better values. For this reason we included also

settings where the bit security is smaller than 80 bits. For RSA and DSA [Len04]

provides an optimistic and a conservative estimate. The optimistic estimate says

RSA and DSA with 2048 bit keys have 95 bits of security and are assumed to be

secure until 2040. The conservative estimation says 90 bits of security and secure

until 2033. The timings for RSA and DSA were taken using the OpenSSL speed

command. As this does not provide timings for key generation, we had to leave this

field blank.

The results show that XMSS is comparable to existing signature schemes. Only

the key generation takes more time. This problem is solved by XMSSMT . But even

without tree chaining, key generation takes less then 100 minutes for h = 20 and

w = 108. As key generation is an offline task that needs no user interaction, this

might not be a problem in many cases. Moreover, the results show the different

trade-offs. Using a larger w, the signature size shrinks while the runtimes increase.

Unfortunately, also the bit security decreases for bigger w. This can be avoided using

W-OTS+. Using a larger k, the runtimes of signature generation and verification

decrease while the secret key size increases. The choice of k has no influence on the

bit security.

The results also show the influence of n by comparing AES (n = 128) and SHA2

(n = 256). AES is obviously much faster than SHA2 and keys as well as signatures

using SHA2 are about twice the size of those for AES. The only drawback using AES

is the significant decrease in the bit security. This can be solved using W-OTS+

instead of W-OTS$. Last but not least, the use of AES is interesting, because many

new CPUs come with hardware acceleration for AES. Our results show that using

AES-NI results in a speed up of approximately 50 %.

The results for AES also show that most of the time is used for W-OTS. Looking

at the signature verification times, there is no recognizable change, even if the height
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is doubled. Hence, the runtimes remain the same in case of AES or get even faster

in case of SHA2 replacing W-OTS$ by W-OTS+ as the instantiations of�n need at

most the same number of evaluations of the underlying primitive. The additional

xor operations will not be recognizable measuring milliseconds. Something else that

might seem confusing is that in case of AES-NI verification for w = 16 is faster than

for w = 4. For w = 16, ` is reduced from 133 to 67 while w is quadrupeled. On

average, twice the number of evaluations of AES is needed to compute the W-OTS

verification key. On the other hand, the number of nodes in the L-tree is halved and

as hashing requires two evaluations of AES this reduces the final runtime.

The last row of table 7.1 shows the signature and key size for MSS-SPR [DOTV08].

To make the results from [DOTV08] comparable, we computed the signature and

public key size for message length m = 256 bit, using their formulas. [DOTV08] does

not provide runtimes, therefore we had to leave these fields blank. Comparing XMSS

using SHA-256 and w = 108 with MSS-SPR shows that even for a slightly higher

bit security we achieve a signature size of less than 25 % of the signature size of

MSS-SPR. Moreover, the secret key of MSS-SPR is bigger. Although the authors of

[DOTV08] mention the possibility to generate the secret key using a pseudorandom

generator, this is not covered by their security proof. For the provided values a

secret key of size 2h ·mn is assumed. Anyhow, a secret key size compareable to that

of XMSS is possible using the pseudorandom key generation described in this work.

7.3 Smart Card Implementation

In this section we present a smart card implementation of XMSS and XMSSMT with

W-OTS$. First we give a description of our implementation. Then we present our

results and compare the performance of XMSS, XMSSMT , RSA and ECDSA. At the

end of the section we discuss an issue regarding the non-volatile memory (NVM).

Implementation Details. For the implementation we use as smart card an Infineon

SLE78 CFLX4000PM offering 8 KB RAM and 404 KB NVM. Its core consists of

a 16-bit CPU running at 33 MHz. Besides other peripherals, it provides a True

Random Number Generator (TRNG), a symmetric and an asymmetric crypto co-

processor. We use the hardware accelerated AES implementation of the card to

implement the function families F and H using the block cipher based constructions

from above. All random inputs of the schemes are generated using the TRNG. We

implemented XMSS and XMSSMT with two layers (d = 2). We also restricted w to

powers of two, which speeds up and simplifies the implementation.
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Table 7.2: Results for XMSS and XMSSMT (d = 2) for message length m = 256 on an

Infineon SLE78. We use the same k and w for both trees. b denotes the security level in

bits. The value in parentheses denotes the security level using W-OTS+. The signature

times are worst case times.

Timings (ms) Sizes (byte)

Scheme h k w KeyGen Sign Verify Secret key Public key Signature b

XMSS+ 16 2 4 5,600 106 25 3,760 544 3,476 94 (97)

XMSS+ 16 2 8 5,800 105 21 3,376 512 2,436 90 (96)

XMSS+ 16 2 16 6,700 118 22 3,200 512 1,892 81 (94)

XMSS+ 16 2 32 10,500 173 28 3,056 480 1,588 65 (93)

XMSS+ 20 4 4 22,200 106 25 4,303 608 3,540 90 (93)

XMSS+ 20 4 8 22,800 105 21 3,920 576 2,500 86 (92)

XMSS+ 20 4 16 28,300 124 22 3,744 576 1,956 77 (90)

XMSS+ 20 4 32 41,500 176 28 3,600 544 1,652 61 (89)

XMSS 10 4 4 14,600 86 22 1,680 608 2,292 101

XMSS 10 4 16 18,800 100 17 1,648 576 1,236 88

XMSS 16 4 4 925,400 134 23 2,448 800 2,388 92

XMSS 16 4 16 1,199,100 159 18 2,416 768 1,332 82

Results. Tables 7.2 and 7.3 show the runtimes of our implementation with different

parameter sets. We use the same k and w for both trees. The last column shows

the security level for the given parameter sets. Following the updated heuristic

of Lenstra and Verheul [Len04] the configurations with a security level of 81 (85,

86) bits are secure until the year 2019 (2025, 2026). Again, please note that these

numbers represent a lower bound on the provable security level. A successful attack

would still require an adversary to either find a second-preimage in a 128 bit hash

function or to launch a successful key retrieval attack on AES 128. This would

result in 128 bit security for all parameter sets. In Table 7.2, the signature time is

the worst case time over all signatures of one key pair. The secret key size in the

table differs from the values we would obtain using the theoretical formulas from

chapter 5. This is because it includes all data that has to be stored on the card to

generate signatures, including the bitmasks and X.

We used parameter sets with two heights. A key pair with h = 16 allows to gener-

ate more than 65, 000, one with h = 20 to generate more than one million signatures.

Assuming a validity period of one year, this corresponds to seven signatures per day

and two signatures per minute, respectively. The runtimes show, that XMSSMT key

generation can be done on the smart card in practical time. For all but one used

parameter set, the key generation time is below 30 seconds. The times for signature

generation and verification are all below 200 ms and 30 ms, respectively. The size
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Table 7.3: Results for XMSS+ for message length m = 256 on an Infineon SLE78 for

different values of k. We use the same k and w for both trees. The table shows the worst

case signing times, as well as the average case times

Timings (ms) Size (byte)

Scheme h k w KeyGen Sign (w.c.) Sign (avg.c.) Secret key

XMSS+ 16 0 16 6,700 133 96 3,312

XMSS+ 16 2 16 6,700 118 96 3,200

XMSS+ 16 4 16 6,700 97 83 3,232

XMSS+ 16 6 16 7,000 95 67 4,352

XMSS+ 16 8 16 8,000 94 53 10,112

of the secret key is around four kilo bytes and signatures are around two kilo bytes,

while the public keys are around 500 bytes. Increasing the tree height for XMSS

almost doubles key generation time. For XMSSMT the key generation time is almost

doubled if one increases the height by two, as this means that the height of each

internal tree is increased by one.

The results show that we can reduce the signature size by increasing the Win-

ternitz parameter w. The behavior of the implementation reflects the theory. The

factor for the reduction of the W-OTS signature size is only logarithmic in w. The

increase of the runtime is negligible for small w. This can be explained by the

following. While the length of the single function chains increases, the number of

chains decreases. For w > 16 the increase of the runtime becomes almost linear.

So from this point of view, w = 16 seems to be a good choice. On the other hand,

the provable security level also decreases almost linearly in w. This problem can be

solved using W-OTS+ instead of W-OTS$. In Table 7.2 we show the security level

for W-OTS+ in parentheses. The values show that using W-OTS+ we can achieve

a security level of more then 90 bits for all presented parameter sets but one.

Table 7.3 shows two things. On the one hand, it is possible to decrease the average

signing time spending more storage for the secret key state, by increasing k. This

is what one assumes given the theory. On the other hand, the worst case signing

time can only be reduced up to a certain limit. For the given parameters this limit

is 94ms, the worst case signing time, when both trees are completely stored. These

94ms are mainly caused by the write operations, when one key pair on the lower

layer is finished. While all the computations are done in previous rounds, the data

structures for the next lower layer key pair have to be copied to the data structure

for the current lower layer key pair. Furthermore the new data structures for the

next lower layer key pair must be initialized. Choosing k = 4 seems to be the most
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reasonable choice for h = 16.

Comparison. The last rows of Table 7.2 show the results for XMSS. The results

show that XMSS key generation can be done on the smart card but is impractical

as it already takes more than 15 minutes for h = 16. Increasing the height by one

almost doubles the runtime of key generation. Generating a key with XMSSMT

is already for h = 16 almost 200 times faster than with XMSS. While XMSSMT

signature generation is slightly faster for comparable parameters, verification is faster

for XMSS. The faster key generation is paid for by slightly bigger secret keys

and signatures, while the XMSSMT public keys are smaller, because of the reused

bitmasks.

XMSSMT seems to be the better choice for a smart card implementation and thus

we compare it with RSA 2048 and ECDSA 256 on the same smart card. The key

generation performance of XMSSMT is similar to RSA 2048, which needs on average

11 seconds but slower than ECDSA 256 (95ms). Signature generation is comparable

to RSA 2048 (190ms) and ECDSA 256 (100ms). Only verification takes slightly

longer than with RSA 2048 (7ms) but it is faster than with ECDSA 256 (58ms).

The security level of RSA 2048 and ECDSA 256 is 95 and 128 bits, respectively. In

contrast to the security level shown in Table 7.2, these numbers are not based on

a security proof but on the best known attacks. As mentioned above, the security

level of XMSSMT is 128 bit, when we only assume the best known attacks.

NVM. The changing key presents a challenge for the implementation of XMSSMT

and XMSS on smart cards. NVM is organized in sectors and pages. Due to physical

limitations only complete pages can be written (erased and reprogrammed) at once.

Furthermore, they wear out and cannot be programmed anymore after a certain

number of write cycles, depending on the technology (about 500, 000 in our case).

However, as write operations are distributed over all 33 physical pages of a sector,

the complete available cycles are around 16.5 million per sector.

Generating a key takes only a few hundred write cycles but its state has to be

updated after each signature step. Overall, one million available signatures require

one million write cycles for the modification of the state. Using careful memory

management, layout and optimization, we managed to keep the number of write

cycles below five million for a key pair with h = 20, which is far below the 16.5

million available per sector. This includes key generation and all 220 signatures. It

should be noted that this affects only one NVM sector of the card. To use multiple

keys, they can be placed in different sectors in order to preserve NVM quality.





8 Conclusion

In this work, we introduced XMSS and XMSSMT , two forward secure signature

schemes with minimal security assumptions. Towards this end we introduced two

new OTS: W-OTS+ and W-OTS$. One of them has provably minimal security

assumptions, while the other comes with a tighter security reduction and security

assumptions that are conjectured to be minimal. We showed how to select opti-

mal parameters for given use cases reaching a provable security level and how to

implement the used function families. Moreover, we presented experimental data,

which show that our schemes have a performance comparable to that of today’s

signature schemes. This is especially interesting as our schemes fulfill the stronger

security notion of forward security. With this work we showed that it is possible

to construct practical (forward secure) signature schemes using minimal security

assumptions that can even be implemented on smartcards.

This work shows that our schemes are ready to be used in practice. They are

favorable in many use cases, especially when it comes to mid- or long-term security,

i.e. if the validity of a signature has to be verifiable for more than some seconds. This

includes important use cases like certification authority certificate signing, document

signatures, software updates and more. The reason is that in these cases the forward

security guarantees that signatures remain valid after a key compromise without

any additional measures. And key compromises happen, even in case of certification

authorities [Com13, ho13a, ho13b].

While we were concerned with constructing the schemes and analyzing them,

there are still open questions about how to use forward secure signature schemes in

practice. It turns out that it is not straightforward to combine FSS with today’s

public key infrastructures. In a separate paper we make a first attempt in this

direction [BHW+13] but this is out of the scope of this work.

Another issue using forward secure schemes in practice is the use of a state.

Forward secure signature schemes are necessarily stateful and so are XMSS and

XMSSMT . From a technical point of view, this should not pose a problem as we

showed that even the non volatile memory on a smartcard that wears out over time
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can handle XMSSMT key pairs. However, using a stateful signature scheme, the

common bad habit of generating backup copies of signing keys must be prevented.

But creating backups of signing keys should be prevented anyway, as it increases

the probability of a key compromise. There are other strategies to handle the case

of data loss, like keeping a different key pair with a valid certificate as backup.

Anyway, users have to be aware of this requirement when using forward secure

signature schemes.

Besides our main result, some of our smaller contributions are interesting on their

own. W-OTS+ is currently the most efficient hash-based OTS that guarantees strong

unforgeability using standard assumptions. Our approach of choosing optimal pa-

rameters using linear optimization might also be interesting for other cryptographic

schemes with a variety of parameters, e.g. lattice-based schemes. Our XMSSMT

smartcard implementation is the first implementation of a FSS on smartcards and

shows the feasibility and practical usability of forward secure signature schemes.

Future Work There still exist some challenges that are related to this work. The

first one, we already discussed above, is to use FSS in real application. Besides,

there are also more theoretical questions. So far, our schemes are the only FSS that

resist quantum computer aided attacks. All non-generic constructions are based on

problems from number theory. It is an interesting challenge to construct non-generic

FSS using security assumptions that are conjectured to resist quantum computers

like assumptions from the field of lattice- or code-based cryptography.

Moreover, we showed that our schemes can be constructed from any one-way

function, but this is only an existential relation. Regarding efficiency, we only showed

that our schemes are efficient if the used second-preimage resistant hash function

family and the pseudorandom function family are efficient. To show that our schemes

are efficient if we start from any efficient one-way function, we would need efficient

constructions of second-preimage resistant hash function families and pseudorandom

function families from any one-way function. While great improvements were made

in this field during the last decade [HHR+10, HRV10], the constructions are still far

from being efficient. It would be a great achievement to further improve the existing

constructions.
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