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Zusammenfassung

Die starke Wechselwirkung der Elementarteilchen wird erfolgreich durch die Quantenchromodynamik
(QCD) beschrieben. Die QCD ist eine nichtabelsche Theorie, die auf der SU(3)-Eichgruppe basiert. Sie
beinhaltet die Eichfelder und die Felder der Spin-%-Teilchen in Form der Gluonen beziehungsweise in
Form der Quarks. Quarks sind Fermionen in der Fundamentaldarstellung der SU(3)-Farbeichgruppe.
Gluonen sind Bosonenfelder in der adjungierten Darstellung. Ferner tragen die Quarks Flavour-
Freiheitsgrade, die unabhéngig von der Farbe sind. Eine herausragende Eigenschaft der QCD ist die
asymptotische Freiheit. Politzer, Gross, Wilczek und 't Hooft entdeckten die Eigenschaft der asymptotis-
chen Freiheit in nichtabelschen Eichfeldtheorien. Sie erlaubt es, die QCD bei hohen Energien storungs-
theoretisch zu behandeln. Demgegeniiber kann die starke Wechselwirkung bei niedrigen Energien nicht
storungstheoretisch behandelt werden, da die Kopplungskonstante der QCD dort zu grof3 ist. Da wir
uns hier fiir die extrem reichhaltige Phanomenologie der QCD bei niedrigen Energien interessieren,
stellt sich sofort die Frage nach den relevanten Freiheitsgraden mit Hilfe derer diese Phdnomenologie zu
beschreiben ist.

Einen bemerkenswert erfolgreichen Ansatz fiir die niederenergetische QCD liefert die chirale Storungs-
theorie (yPT). Die effektiven Freiheitsgrade der yPT sind hier mit Hadronen an Stelle der Quarks und
Gluonen zu identifizieren. Diese effektive Feldtheorie griindet auf der Beobachtung, dal} die QCD im
Grenzfall verschwindender Up- und Down-Stromquarkmassen, d. h. m,4 = 0, chiral symmetrisch ist.
Das hat zur Folge, dal} die Handigkeit der Quarks in diesem Grenzfall eine Erhaltungsgrof3e darstellt. Je-
doch bricht das QCD-Vakuum diese Symmetrie spontan. Die daraus hervorgehenden Goldstonebosonen
konnen mit den Pionen, den leichtesten Anregungen des QCD-Grundzustandes, identifiziert werden. Die
SU(2)-yPT beruht auf den Grundlagen der Quantenfeldtheorie und auf den Symmetrien der QCD. Eine
Verallgemeinerung des chiralen SU(2)-Schemas hin zur SU(3)-Flavourgruppe, die den Strangenesssek-
tor beinhaltet, ist mathematisch unkompliziert und wurde bereits durchgefithrt. Obwohl die Masse des
Strange-Quarks wesentlich grof3er als die Up- und Down-Quarkmasse ist, ist sie auf der typischen chi-
ralen Skala von 1 GeV weiterhin klein. Diese Verallgemeinerung fithrt zu 5 weiteren Goldstonebosonen,
den Kaonen und dem Eta-Meson.

Der Giiltigkeitsbereich der yPT ist allerdings auf sehr kleine Anregungsenergien beschrénkt. Eine
Verallgemeinerung zu hoheren Energien, bei denen die Resonanzdynamik der QCD sichtbar wird, ist
erwiinscht. In dieser Arbeit untersuchen wir die Hadrogenesis-Vermutung, in der das Anregungsspek-
trum der QCD als Folge von hadronischer Endzustandswechselwirkung beschreibbar sein sollte. Sie
beruht auf einer Auswahl von wenigen grundlegenden hadronischen Freiheitsgraden mit den Quanten-
zahlen J* =07,1" und J* = %+, §+. Die Auswahl wird durch Eigenschaften der QCD im Grenzfall einer
grofden Anzahl von Farbfreiheitsgraden (N;) bzw. groBer Quarkmassen motiviert. Eine systematische
Berechnung der Streu- und Reaktionsamplituden der grundlegenden hadronischen Freiheitsgrade ist er-
forderlich, wobei die Unitaritdatsbedingung als auch die Konsequenzen der Mikrokausalitit zu beachten
sind.

In dieser Arbeit ebnen wir den Weg hin zu einer systematischen Berechnung des Baryonspektrums
basierend auf der Hadrogenesis-Vermutung. In einem ersten Schritt untersuchen wir die analytis-
che Struktur der Streu- und Reaktionsamplituden. Diese werden zundchst in eine geeignete Basis
von Lorentz-Dirac-Tensoren entwickelt, welche zu invarianten Amplituden fithren, die den von Man-
delstam aufgesetzten Dispersionsrelationen geniigen. Fiir die Berechnung der invarianten Amplituden
wird ein Projektionsformalismus entwickelt, der in einen Mathematica-Code implementiert wurde. Die
Unitaritdtsbedingung 148t sich mit Hilfe einer Partialwellenprojektion effizient darstellen. Wiederum
untersuchen wir die analytische Struktur dieser Amplituden. Eine Transformation von den Helizitéts-




Partialwellenamplituden hin zu kovarianten Partialwellenamplituden wird vorgeschlagen. Letztere
geniigen nicht-korrelierten Dispersionrelationen, die als Ausgangspunkt unserer Anwendungen herhal-
ten werden.

In einer ersten Anwendung untersuchen wir die Formation von Baryonresonanzen mit den Quanten-
zahlen J¥ = %_. Hierfiir ziehen wir eine relativistische chirale SU(3)-Lagrangedichte heran. Neben den
Goldstonebosonen und den Baryongrundzustidnden wird das Nonett der Vektormesonen berticksichtigt.
Wir betrachten den Streuprozel$ eines Goldstonebosons an einem Baryon mit J* = %+, wobei wir uns
auf S-Wellenstreuung beschréanken. Basierend auf den fithrenden Wechselwirkungstermen der chiralen
Lagrangedichte berechnen wir die entsprechenden Partialwellenamplituden. Hierbei kommt eine neuar-
tige Methode zum Einsatz, mit der eine systematische analytische Fortsetzung der chiralen Amplituden
im Niederenergiebereich hin in den Resonanzbereich gelingt. Eine Reihe von Baryonresonanzen wird
dynamisch erzeugt, wobei der Effekt der verschiedenen Wechselwirkungsbeitrédge untersucht wird. Die
Resonanzen werden als Pole in den Partialwellenamplituden auf den verschiedenen Riemannbléttern
gefunden.
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1 Introduction

The strong interactions of matter is successfully described by Quantum ChromoDynamics (QCD). It is
a non-Abelian gauge theory, based on a SU(3) gauge group. QCD involves the gauge fields and the
fields of spin % particles as gluons and quarks, respectively. Quarks are fermions in the fundamental
representation of the color SU(3) gauge group. Gluons are boson fields in the adjoint (octet) represen-
tation. Moreover, quarks carry flavour degrees of freedom which are independent of the color. There
are six flavours, the up, charm, and top quarks having charge %e and the down, strange, and bottom
quarks having charge —%e. Together with the Glashow-Weinberg-Salam theory [1, 2, 3], QCD is a part
of the standard model of particle physics. A distinguished feature of QCD is its asymptotic freedom.
Politzer [4], Gross and Wilczek [5], and ’t Hooft [6] discovered the property of asymptotic freedom in
non-Abelian gauge field theories. It allows QCD to be treated perturbatively at high energies. On the
other hand, the strong interaction becomes nonperturbative at low energies, because the coupling con-
stant of QCD is too large there. This is unfortunate since the most interesting phenomena of QCD are at
low energies.

A remarkably successful effective Lagrangian approach to low-energy QCD is Chiral Perturbation The-
ory (yPT). The effective degrees of freedom of yPT are hadrons rather than quarks and gluons. yPT
has been applied extensively in the flavour SU(2) sector of low-energy QCD. This effective field theory
is based on the observation that QCD is chirally symmetric in the limit where the up and down current
quark masses vanish, i.e. m, 4 = 0. This implies that the handedness of quarks is a conserved property in
that limit. However, the QCD vacuum brakes that chiral symmetry spontaneously. The Goldstone bosons
of the spontaneously broken chiral symmetry [7] are identified with the pions, the lightest excitations
of the QCD ground state. yPT relies on the principles of quantum field theory and on the symmetries of
QCD. It permits systematic computations applying formal power counting rules [8, 9, 10, 11]. A gener-
alization of the chiral SU(2) scheme to the SU(3) flavour group, which includes the strangeness sector,
is mathematically straightforward and has been developed, see e.g. [12, 13, 14, 11]. Though the mass
of the strange quark is much larger than the up and down quark masses, it is still small on the typical
chiral scale of 1 GeV [15]. The required approximate Goldstone boson octet is readily found with the
pions, the kaons, and the eta-meson. Though strict yPT is a powerful and predictive tool to analyze the
interaction of Goldstone bosons with any hadron, its domain of validity is restricted to energies close to
threshold. A generalization to higher energies is desired.

The resonance physics of QCD is one of the key challenges in hadron physics. Upon the discovery
of the isobar resonance in a pion induced reaction, the first hadronic resonance discovered, Chew and
Low suggested that it could be generated dynamically by pion-nucleon interactions [16]. Later on it was
suggested by Wyld [17, 18] and also by Dalitz, Wong, and Rajasekaran [19] that a t-channel vector me-
son exchange model for the s-wave meson-baryon scattering problem has the potential to dynamically
generate an octet of s-wave baryon resonances upon solving a coupled channel Schrodinger equation.
This was before the quark-model of hadrons was suggested by Gell-Mann and Zweig [20, 21, 22]. The
remarkable vision of the quark model was its assumption of the existence of constituent quarks with
their fractional electric charges that turned out useful to describe may hadronic properties qualitatively.
However, the quark model lacks a systematic link to QCD in the sense of an effective field theory. More-
over, so far any attempt to describe hadronic reaction data quantitatively in terms of constituent-quark
degrees of freedom appears futile. In the last decade the coupled-channel approach to hadronic physics,
as pioneered by Wyld, Dalitz, Wong, and Rajasekaran, experienced a remarkable revival. Based on

the flavour SU(3) chiral Lagrangian many studies of the J* = 1~ resonances have been performed, see
e.g. [23, 24, 25, 26, 27, 28].
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In this work we follow the hadrogenesis conjecture [29, 30, 31, 32, 33, 34, 35]. Selecting a few quasi-
fundamental hadronic degrees of freedom, the zoo of resonances is conjectured to be a result of coupled-
channel interactions. The identification of the proper set of degrees of freedom is guided by properties
of QCD in the large-N, limit [36, 37, 38]. Here we would depart from Chew and Low, since in that limit
the isobar resonance is a partner of the nucleon and therefore it should not be generated dynamically
in terms of pion-nucleon interactions. The quasi-fundamental fields requested are the Goldstone bosons
with J? = 07, the lightest vector mesons with J¥ = 1~ together with the baryon octet and decuplet
fields with J? = %Jr, %Jr. Early applications of the hadrogenesis are meson and baryon resonances with
JP =0%,1" and J* = ;, 2" quantum numbers. For example, an axial-vector spectrum was dynamically
generated by the leading order chiral interaction of the Goldstone boson octet with the nonet of light
vector mesons in [32]. The existence of various baryon resonances was predicted by the chiral interaction

of the baryon octet or decuplet with the Goldstone boson octet in [31, 39, 40].

Given some effective degrees of freedom micro-causality and coupled-channel unitarity are crucial
constraints that help to establish coupled-channel reaction amplitudes based on a suitable effective chi-
ral Lagrangian. The partial-wave decomposition is useful for an analysis of scattering processes. In
particular, the unitarity condition can be easily realized in terms of partial-wave amplitudes. Though
it is straightforward to introduce partial-wave scattering amplitudes in the helicity formalism of Jacob
and Wick [41] it is much less trivial to derive partial-wave amplitudes that are consistent with the
implications of micro-causality. A problem is caused by the fact that helicity partial-wave scattering
amplitudes are kinematically constrained. It is a nontrivial task to derive transformations that lead to
amplitudes that are kinematically unconstrained. Only such amplitudes are useful in an application of
partial-wave dispersion-integral representations [42, 43, 44, 45, 46, 47, 48]. The purpose of the the-
sis is a derivation of such amplitudes by suitable transformations of the helicity partial-wave scattering
amplitudes for two-body reactions of a boson with J? = 07,1~ and a fermion with J® = %Jr, §+, the
degrees of freedom that are requested by the hadrogenesis conjecture. Recently reactions in fermion-
antifermion and boson-boson systems have been studied in [49] and [50], respectively. We shall apply
the technique used previously in studies of two-body scattering systems with photons, pions, and nucle-
ons [42, 51, 52, 53, 54, 55, 56, 57, 58].

Our goal is to pave the way for systematic coupled-channel computations as requested by the hadro-
genesis conjecture. We establish partial-wave amplitudes with convenient analytic properties that justify
the use of uncorrelated integral-dispersion relations. In a fist step, two-body reactions of a boson with
JP = 07,17 and a fermion with J* = %Jr,%Jr are considered. We parameterize an on-shell scattering
amplitude in terms of invariant functions that are free of kinematical constraints. Such amplitudes
are expected to satisfy a Mandelstam’s integral representation of dispersion relation [59, 51]. In a
second step, we construct projection algebras to calculate the invariant functions directly for a given re-
action. These allow us to illustrate the well-known fact that different helicity partial-wave amplitudes are
correlated at various kinematical conditions. The kinematical constraints in the helicity partial-wave am-
plitudes are eliminated by means of non-unitary transformation matrices that map the helicity states to

new covariant states. The mapping procedure is based on the exclusive use of on-shell matrix elements.

While the emphasis of this thesis is of formal nature we do provide a physics application. The formation
of baryon resonances with J* = %_ is reconsidered. All previous studies relied on the on-shell factoriza-
tion or the on-shell reduction scheme can be justified only in the presence of short range forces [60, 31].
Thus the effect of the u-channel baryon exchange in the formation of the J¥ = %_ resonances has not
been studied reliably so. In application of the novel unitarization scheme [45, 46, 61, 48] such a study
will be provided in this thesis for the first time.

The thesis is organized as follows. In Chapter 2, we decompose the on-shell scattering amplitudes into
sets of invariant amplitudes free of kinematical singularities. The sets of Lorentz-Dirac tensors reflect the
MacDowell symmetry. Convenient projection algebras for the derivation of invariant amplitudes are con-
structed not only for spin-one-half fermions, but also spin-three-half fermions in the following chapter.

The complicated cases are collected in Appendices A and B. Chapter 4 introduces the conventions used

2 1. Introduction



for the kinematics and the helicity wave functions. We introduce suitable partial-wave amplitudes free of
kinematical constraints in Section 4.2. Technical details can be found in Appendix C. Using the relativis-
tic chiral Lagrangian with the baryon octet and decuplet fields the formation of baryon resonances with

JP = %7 is investigated in Chapter 5. Appendix D contains detailed calculations of tree-level interactions.







2 Analytic properties of scattering amplitudes

In quantum field theory, a two-body scattering process is described by the scattering amplitude that
follows from the solution of the Bethe-Salpeter equation [62]. The scattering amplitude is given by
matrix elements of the quantum mechanical scattering operator T.

For instance, consider the on-shell pion-nucleon scattering amplitude

(n(@NG, 2)I T In(@ON(p, A)) = (27)* (B + G —p — Q) a(P, A5) Trn—en (@, W) ulp, Ap), (2.1

where the four-dimensional delta function guarantees energy-momentum conservation and u(p, A,) is the
nucleon isospin-doublet spinor with its helicity projections A,. For simplicity we do not resolve isospin
degrees of freedom here.

The scattering amplitude T,y _, .y is obtained by solving the Bethe-Salpeter matrix equation

4

_ _ d*l _
Ton—an (k, ks w)= KnN—»nN(k, k;w) + JW Kon—an(k, w) G(L; w) TnN—»nN(l, k;w),

1 1
(%W—Z)Z—mi—l—ie %W—I-Z/—MN—l—ie’

G(Lw)=—i (2.2)

where m, and My are the pion and nucleon masses respectively. Self energy corrections in the propaga-
tors are suppressed and hereby not considered in the thesis. The interaction kernel K(k, k; w) is the sum of
all two-particle irreducible diagrams deduced from a given Lagrangian. In (2.2) convenient kinematical
variables are used:

wh=q'+pt=g"+p",  K'=30"-¢"), K'=30"-7", (2.3)

where q, p, g, and p are the initial and final pion and nucleon four-momenta. Here we do not want to
specify the form of the scattering kernel K(k, k;w), since the discussion is generic and independent on
the particular form of the interaction. The Bethe-Salpeter equation (2.2) implements Lorentz invariance
and unitarity for the two-body scattering process. It involves the off-shell continuation of the on-shell
scattering amplitude introduced in (2.1). Only the on-shell limit with p? = p?> = M2 and §* = ¢*> = m?
carries direct physical information. In quantum field theory the off-shell form of the scattering amplitude
reflects the particular choice of the pion and nucleon interpolating fields chosen in the Lagrangian density
and therefore can be altered by a redefinition of the fields [63, 64]. Such a dependence can be removed
by an appropriate on-shell reduction scheme for the Bethe-Salpeter equation [29, 31, 32, 39]. However,
the on-shell reduction scheme is practical in the presence of short range forces only.

The four dimensional Bethe-Salpeter equation can be numerically solved with approximated inter-
action kernels and phenomenological form factors [65]. This method ensures that two-body unitarity
is respected. However, a direct solution of a Bethe-Salpeter equation gives rise to an almost always
impossible task of eliminating off-shell effects. In particular, when t- and u-channel exchanges of light
particles are involved. Therefore, in our work, we will perform an analytic extrapolation of partial-wave
amplitudes instead, where we insist on basic principles of micro-causality and unitarity.

The scattering operator T can be partially diagonalized by using eigenstates of the total angular mo-
mentum operator J. This leads to partial-wave scattering amplitudes. The unitarity condition below the
inelastic threshold takes a particularly simple form when expressed in terms of partial-wave amplitudes.
For a two-body scattering process, this can be achieved by using the helicity formalism of Jacob and
Wick [41]. We will discuss this issue in more detail later in Chapter 4. The key issue is a separation
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of left- and right-hand singularities of partial-wave amplitudes [66, 67]. The separation is achieved by
means of the once-subtracted dispersion relation for a partial-wave amplitude:

®dw 5 —py AT (w)

T W—uy w—+/s—ie’

TJ(«/E)ZUJ(«/EHJ 2.4)

Mthrs

where the generalized potential U’(/s) contains left-hand cuts only, by definition. The discontinuity
along the right-hand cut is given by the unitary condition

AT!(V5) = zi [T/(Vs +ie) = T'(Vs —ie)]

i

=T'(vs +ie) p’ (Vs) T' (5 —ie), (2.5)

where p”(4/5) is a phase-space matrix and the summation over all possible intermediate states is implied.
The relation (2.4) illustrates that the amplitude possesses a unitarity cut along the positive real /s axis
starting from the lowest s-channel threshold. Without specifying a particular structure of the left-hand
singularities, Eq. (2.4) defines the generalized potential U’ (y/s).

The matching point in (2.4) is determined by the condition that a scattering amplitude remains per-
turbative in the close vicinity of u,,. For instance for case of elastic pion-nucleon scattering, u,, = My
was chosen in [45]. With (2.4) and (2.5), one arrives at the following non-linear integral equation for
the partial-wave scattering amplitudes

Fdw s — uy T W) p? (W) T7*(w)
T W — Uy w— s —ie '

T/ (v/5) = UJ(«/§)+J (2.6)

Hthrs

We will solve the non-linear integral equation in Chapter 5 for a simple model interaction.

For such an analysis of partial-wave amplitudes, it is required to have a profound control of the ana-
lytic properties of invariant and partial-wave amplitudes. In a first step we study in this and the following
chapters the analytic structure of the on-shell scattering amplitudes by parameterizing them by an ap-
propriate set of invariant amplitudes with convenient analytic properties. In a second step in Chapter 4
the invariant amplitudes are used to arrive at partial-wave amplitudes with suitable analytic properties.

2.1 Invariant amplitudes

We consider two-body reactions of a boson with J® =07,1~ and a fermion with J? = %+, §+. A two-body
reaction is characterized by the three Mandelstam variables s, t, and u with
s+t+u=m?+M?*+m*+M?, 2.7

where m and M are incoming masses and m and M are outgoing masses of boson and fermion, respec-
tively. The momenta of the incoming and outgoing bosons will be denoted by q and g and those of the
incoming and outgoing fermions by p and p. Due to the conservation of the total momentum, out of
the four momenta there will be only three independent momenta which determine the kinematics of the
process. In this work we use the following notational convention:
s=w?, t=G-9*=0(-p)’, u=(@-3*=(q-p)’. (2.8)
On-shell scattering amplitudes are defined in terms of plane-wave matrix elements of the scatter-
ing operator T where we suppress internal degrees of freedom like isospin or strangeness quantum
numbers for simplicity. The scattering amplitude can be decomposed into sets of Lorentz invariant
functions G,(s,t). Invariant amplitudes free of kinematical constraints have been discussed by many

6 2. Analytic properties of scattering amplitudes



authors (see e.g. S.W. MacDowell [68], Asim O. Barut, Ivan Muzinich, and David N. Williams [69], and
Alan Douglas Martin and Thomas D Spearman [70]). Most detailed results are available for pion-nucleon
scattering, pion photoproduction, and nucleon-nucleon scattering in M.L. Goldberger, Marcus T. Grisaru,
S.W. MacDowell, and David Y. Wong [71], James Stutsman Ball [51], Yasuo Hara [52], and J. D. Jackson
and G. E. Hite [53]. More complicated systems involving higher spin systems involving spin-three-half
and spin-one states were investigated recently in [49, 50]. For the systems of interest in this work
systematic studies and practical results are not available.

The number of invariant on-shell amplitudes follows from the number of independent helicity am-
plitudes. Since we assume parity conservation, the total number of independent helicity amplitudes is
generally given by

325, +1)(28, + 1) (25; +1)(2S; + 1), (2.9)

where S;,S, and S;,S; are the spins of the initial and final particles. In order to count how many
independent amplitudes exist for a given spin configuration, one has to work out the relations among
different partial-wave amplitudes under a parity transformation [70, 72]. For boson-boson systems, it is
not always so straightforward, but it is for boson-fermion and fermion-antifermion systems [49, 50].
The merit of a decomposition of the scattering matrix into invariant functions G, (s, t) lies in their
transparent analytic properties, which are expected to satisfy Mandelstam’s dispersion integral represen-
tation [59, 68, 51]. For reactions involving non-zero spin particles it is not straightforward to identify
such amplitudes. Once we identify a suitable set of invariant functions G, (s, t) each element is an analytic
function of the Mandelstam variables with the exception of dynamical singularities. The latter have a
one-to-one correspondence to physical processes, like s-, t-, and u-channel exchange processes:

G dS pst(s t) dt ptu(t u) dS psu(s U)
(5, 0= T (s s)(t —t) n (t t)(u —u) n (s —s)(u —u)

+f 5 2 Jd—tpf(t)+fdip“(“/), 2.10)

T s —s Tt —t T u-—u

with the spectral functions p,,, p., and p,,. The locations of branch points are determined by the
thresholds of possible intermediate states. Landau and Cutkosky have derived a general criterion for
determining the positions of branch points of an arbitrary Feynman graph in [73, 74]. In the case when
|G,(s, t)| does not tend to zero as |s| — oo, the representation (2.10) will not be true as it stands, but will
require suitable subtractions.

A priori further kinematical singularities or constraints can not be ruled out in the case of higher spin
systems as considered in our work. However, such kinematical boundary conditions can be removed by
constructing a suitable set invariant functions that are associated with a set of Lorentz-Dirac tensors for
a given reaction. The construction of which will be discussed in this chapter in great detail.

We begin with the elastic scattering of a pseudoscalar boson off a spin-one-half fermion. According to
Eq. (2.9) only two invariant functions can be introduced here. The scattering amplitude may be written
as

TO%—»O%(E]: q, W) = a(p’ Ap) [GI(S: t) + GZ(S: t)w] U(P, 2'p); (211)
where u(p,A,) and @(p,A;) denote the baryon wave functions with their helicity projections 4, and
A;. Under conserved parity, Lorentz invariance, and hermiticity, the G, in (2.11) are functions of only

invariants s and ¢ [75, 76, 68, 72]. Contributions of terms like g or g to Eq. (2.11) are absorbed into
G, (s, t) in application of the Dirac equation for the baryon wave functions

a(p,2)(F-M)=0, (F—M)u(p,A,)=0. (2.12)

2.1. Invariant amplitudes 7



This leads to a set of on-shell identities

ﬂ on—=she11 M , qon—:shell _ M +w ,
ponshell g gonshell _ g 4y (2.13)

where with "l we imply the presence of the on-shell wave functions and on-shell kinematics. With
Egs. (2.13) it is then concluded that further Dirac structures in Eq. (2.11) are all on-shell redundant.

Now we move to the next case that involves a vector particle in the final state. According to Eq. (2.9)
only six independent on-shell invariant amplitudes G,, should exist. Problems in choosing an appropriate
basis come up here. Let us start from an over-complete set of Lorentz-Dirac tensors to illustrate the
problem and show how to solve it:

TO%_A%(Q, q, w)=¢e"(q,A)a(p, ;) {G1 YalYs +Gawyiys +G3quiys + Gya€u051[wllq]
+ G5 ng i Ys + G6 W;]w i Ys + G7q,1W i Ys + G8 eﬂ[q][w][q] W:| u(p, Ap), (214)

where €'%(g,2;) denotes an outgoing vector-meson wave function with its helicity projection 2,. For
notational convenience we introduce

€ulgiwlia] = Eparpdw'a” = vy, (2.15)
in terms of the Levi-Civita tensor

_4i6;wpa :trYS YuYv Yp Yo (216)

The over-complete set (2.14) is a generalization attempt of Eq. (2.11) to the presence of a further
Lorentz structure. Terms including G; do not contribute to the on-shell scattering amplitude because of
the on-shell condition of the outgoing vector meson

3z €"(q,24)=0. (2.17)

The redundancy of two out of the eight structures in Eq. (2.14) is not so immediately verified. It is
a combined consequence of the energy-momentum conservation, the on-shell condition, the Chisholm
identity [77, 78, 79]

Y P =g yP — gy + g Py i e Py, s, (2.18)
and the Schouten identity [80, 81]*
géneuwa _ géuempa + glvenupo _ ngemwcr + gCoenwp =0. (2.20)

Once a basis is chosen the redundant Lorentz-Dirac structures can be expressed in terms of the basis
structures. If the set G,_3 and Gs_; is chosen as a basis in Eq. (2.14), the structure €[4+ €an be
expressed as a linear combination of the corresponding basis tensors. We derived the following identity

o1 ) o i
€alg]wllq] on Sheu—yﬂlys [ —m?M 4+ M[M(M + M) — m?] +5(M+M)}

-2
+%Wﬂiy5[—n’12—2M(1\7I+M)+m2+t] +%qaiy5 [ﬁlz—Mz—s]
+%Y,1Wi}”s [+ MY — ¢ | —wwiys [ M+M| +quiys|[i]. (2.21)

The general form of the Schouten identity is
gHHatr (ygyH3 - yHn) — @Mty (ygyt2yH e pHn) oo glibngr (ygyH2 o yHno1) =0, (2.19)

where n is even and greater than 2.
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Similarly if the set G,_, and Gq_g is chosen, the structure y;iys can be shown to have the following
on-shell decomposition:

}fﬂiys‘m;s’he“ W:—;Zh [— m*M + m? (MZM —M(m?*+M>)+M(m? - 2M2)) +s(m? —m?)(M + M)

+t (M — NMI[M(¥ — M) + m?] +s(M — 1)) + Mm? (28 — M)V + M) +m?) ]

+ qZZZS [52(1\7[+M)+2Mts +s (=m2(M +2M) — M[(M + M)? + m?])
+(m* = M?) (M — M[M(M + M) — m*]) ]

- % [ (MM + M) — m?] — i®M) +s(M +M)]

% [t(—rﬁz - M?—m?— M?+2s) + (m* — m*)(M? - M?) + tz}
+ q“f% [ —m2(M? 4+ M?) + t(m? — M? —s)+ M?(M? 4+ 2m? — M?) +s(M? — Mz)}
_ fn[qggwlw (e - +m2], (2.22)

where the vector v, was introduced in Eq. (2.15). Note that v? becomes zero at

2 =2 72 2
m* —m*)(M*—M 1 _ t
s=( )Z(t )+§(ﬁ12+M2+m2+M2)—§

—I—%\/[t—(rh—m)zj[t—(rh—i—m)z]\/[t—(l\?[—M)2][t—(I\7I+M)2]. (2.23)

Our result (2.22) shows that the particular basis choice G,_, and G4_g leads to invariant amplitudes
that have kinematical singularities at v> = 0 (see Eq. (2.23)). This disqualifies such a choice. On the
other hand the basis choice G,_; and Gs_, does not lead to kinematical singularities as illustrated by the
result (2.21). We affirm that indeed in terms of the latter basis choice any Lorentz-Dirac tensors can be
expressed as a linear combination of the basis tensors with regular expansion coefficients. Note that a
kinematically unconstrained basis is not necessarily unique. In general several choices may be possible.

We have seen in the previous discussion that when the invariant amplitudes are free of kinematical
singularities, the complete set of suitable Lorentz-Dirac structures appears to involve the minimal number
of momenta only. The eight tensor structures in (2.14) come with different numbers of momenta as
summarized with

G, < Zero momentum

Gy35 <« one momentum

Ge7 «— two momenta . (2.24)
G, — three momenta

Gg — four momenta

Our proper basis follows from (2.24) by dropping the two tensor structures with largest number of
momenta involved, i.e. the terms involving the Levi-Civita tensor are ruled out. Though such a condition
is a useful guide to identify proper sets of basis tensors, this condition by itself is not always sufficient.
For instance, in the decomposition (2.14) we could have allowed for another redundant structure

€aulqlla) Y (2.25)

which involves two momenta only. However, if we included the latter into our basis a kinematical
singularity would arise. This illustrates that the condition of the minimal number of momenta is not
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sufficient to determine a complete set of Lorentz-Dirac structures that are free kinematical constraints.
Nevertheless the number of momenta involved in a given basis tensor is a useful quantity to be observed
in the construction of basis sets for systems with non-trivial spins.

We turn to the scattering of spin-one bosons off spin-one-half fermions. There exist eighteen indepen-
dent on-shell invariant amplitudes by virtue of Eq. (2.9). Following the condition of the minimal number
of momenta an over-complete decomposition of the scattering amplitudes may take the form

T, 11 %(C—b q,w)= fm(q,lq)ﬁ(l_’,kp) [G1 uiuT CavaYu T Gavawu+Gawp v, +Gsvaqu+Gequryu
+Gywpq,+Ggquwy, +Gowywy, + GG 4, + Gii €aurg [q]lY5+G12 €auld] w175 +Gis €aulq 1wl L7s
+ G4 8uuW + Gis YWy, +GieYaWw, +Growp Wy, +GigypWwq, + G19QQW}’H +GyowpW(,
TG qaWwy + Gy wpWwy, + Gas qp W 4y + Gog €puiqliq) W LT's + Gas €auqiw WiTs
+ G Euta i) WTs | 4D, 2,) (4, 2,), (2.26)
where g;, is the metric tensor, €#(q, 4,) denotes an incoming vector meson wave function with its helicity

projection Ay, and €p,q5) follows the convention in Eq. (2.15). In a first step we characterize the various
structures accordlng to the number of momenta involved

Gy <« zZero momentum

G3_614-15 < One  momentum 2.27)
Gy_1316-19 < two  momenta

Goo-26 < three momenta

A proper basis should be obtainable by eliminating eight out of the 26 terms in Eq. (2.26). Initially
one may be tempted to drop at least the 7 structures G,,_,¢ involving 3 momenta. However, tedious
algebraic computations reveal that this strategy fails and does not lead to any basis. The remaining
terms are linear dependent. Instead we found that it is useful to eliminate all structures involving the
Levi-Civita tensor, i.e. the terms with G;;_13 456 €ven though some of them involve only two momenta.
If a basis includes the first structure g;,, any of the terms with a Levi-Civita tensor can not be part of such
a basis. Again a linear dependence would arise. A basis that excludes G, ;, but keeps for instance Gy; 54
generates kinematical singularities at
+m?m — mm? + mM? F M*m

s= — . (2.28)
mF¥Fm

A complete and almost proper basis follows upon the elimination of the terms involving a Levi-Civita
tensor together with the two structures with G;, and G,5. If we eliminated instead G, and G, a kinemat-
ical singularity at v?> = 0 would arise. We exemplify the on-shell decompositions of the tensors, which
we consider redundant:

on—shell s(w-@)+sw-q)—2(w-q)(w-q) s(w-@)+s(w-q)—2(w-q)(w-q)
L TYaYu |~

€nulqllg] LYs" = 5 TaY S

—Ms+ Ms —2M(w - §) —Ms+2M(w -q) + Ms

+ryawy | — S +wiry S

[ s—2(w-q) s—2(w-q) 2(-MM +(G-q)+s)

o [, D)
Mw-q)+Mw-q) w-q)+Mw-q)

+g,1MW - S :|+YﬂwYu |:_ S i|
—MM+(G-q)+s —MM+(G-q)+s

[0, 300

Frawa, [_M}Jr T, [ ws-q)}wgwqu [¥]+q,ﬂowu [%} (2.29)
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and

- on—shell MMs—(q-q)s+s*—s(w-3) —s(w-q)+2(w-g)(w-q)
9y = 8ou |~ s

MMs—(q-q)s+s2—s(w~q)—s(w~q)+2(w~q)(w~q)}
S

+YQYM |:

i 1\7[s+Ms—2M(W~q)} Ms—2M(w-q)+ Ms
- Walu |~
S

+rawy }‘Hfﬂqu [-M]+qu71, [-M]

N

'_S—Z(W‘q)}+q_w [_S‘Z(W'Q)}+W-W [2(MM—@~q>+s)}
o ot

+wyq
B s s s

[ Ms — M(w-q)+Ms—M(w-q
s — M(w q)s s — M(w q)}ﬂfngu[
MM—(Sq.q)—}—s:| —— |:_MM—(Sq-q)—|—si|

Ms—M(w~q)+Ms—M(W‘Q)}

+gWW s

+YQWWH |:_

_[s=w-q) s -q _ M M
+rawq, [f} +qaWr, [f} +wpwq, [?} +qpWw, [?} s (2.30)
where in both cases the expansion coefficients are regular with the exception of the particular point s = 0.
We did not succeed in the construction of a basis that avoids a kinematical singularity at s = 0. This
implies that the invariant amplitudes G, (s, t) are correlated at that specific point s = 0. In the following
section we study the so-called MacDowell symmetry, which will provide a further powerful construction
guide for the identification of proper basis tensors and singles out the particular point s = 0. This will

turn instrumental for the more complicated cases involving spin there-half fermions.

2.2 MacDowell symmetry

Let us return to the simplest case of the O% - 0% scattering process as described already in Eq. (2.11).
There, the only Dirac structure w is involved. In order to decompose the scattering amplitude into invari-
ants we may have used alternative Dirac structure like (4 or 4) that are on-shell equivalent to our choice.
At first there is no theoretical preference which Dirac structure to use. However, the implementation of
the MacDowell symmetry will set a specific preference. In order to unravel that kinematical symmetry we
introduce the following convenient projection matrices

1

P,=—

(ﬁiw), P.P.=P,, P,P_=0, (2.31)

in terms of the Dirac matrices used in the expansion of the scattering amplitude (2.11). We find
To1-01(a, ¢, w)=1(p, 25) [Fy (V5. )P + Fy (V5,00 P_] u(p, 2,), (2.32)

where the invariant amplitudes Ff(ﬁ, t) can be expressed in terms of the previous G, (s, t) as

FF(v/5,t) = Gy(s,t) £ v/5Gys, £). (2.33)

As a consequence the amplitude F~(4/s, t) can be computed directly from the amplitude F*(y/s,t). More
specifically it holds:

F (++/s,t) =F(—+s,t). (2.34)
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Similar relations were first introduced by MacDowell [68] for partial-wave amplitudes in pion-nucleon
scattering and more recently for nucleon-Compton scattering and pion photoproduction in [45]. The
MacDowell symmetry is useful since it reduces the number of independent invariant amplitudes by half.
Furthermore it provides a useful and convenient guide how to identify proper sets of basis tensors. A
further advantage will arise later in Chapter 4 when deriving partial-wave amplitudes. Typically the use
of invariant functions subject to the MacDowell relation (2.34) leads to more concise and transparent
expressions.

We continue by returning to the O% - 1% reaction. A basis set of tensors reflecting the MacDowell
symmetry is readily identified

+

where G;l—L(\/E, t) can be expressed in terms of the G, (s, t) introduced in Eq. (2.14) as
GE(W5,t) =GF(—v/5,t) = G,(s,t) £ v/5Gpyu(s,t)  (forn=1,2,3). (2.36)

The invariant amplitudes Grf(\/E, t) are free of kinematical constraints except at s = 0. We observe that
our result (2.35) follows directly if the condition of the minimal number of momenta is combined with
the request of an explicit realization of the MacDowell relations. Note that even though this combined
condition will turn useful in the process of identifying proper basis sets for the more complicated spin
systems, it still will turn out to be an insufficient condition.

We proceed by reinvestigating the 1 % -1 % scattering process. A set of suitable basis tensors that is
reflecting the MacDowell relations is obtained with:

T30 6 w) = €@, A5, A5) Y | Gi g Pe+ G5 13 Paty + G 13 Paw, + G waPay, + GE v, P,
+
+ th quPryvut G? w;Pyq,+ G;E qpPrw,+ G9i w; Py Wu] u(p, A,) e*(q, Ag). (2.37)

Like in Eq. (2.26) tensors involving a Levi-Civita tensor are eliminated. The presence of the structure
q; Py g, or any other tensors involving more than two momenta would lead to kinematical singularities.
The invariant functions Grf(ﬁ, t) can be expressed in terms of the G, (s, t) introduced in Eq. (2.26) as

GE(V5,0) = GF(—/5,8) = Gols, ) £ v/5Gpys(s,t)  (forn=1,2,---,9). (2.38)

Before detailing our final results for the decomposition of the scattering amplitudes of interest in this
work we introduce yet a further notation, which will simplify the algebraic computation of the invariant
amplitudes significantly (see Chapter 3). We introduce vectors

_k 1¢*>-p*> (q-w)
W=l = T Wu T T T W
M 1¢*-p> (q-w)
W=k T W T T T W
1
Tu=TYu— —Wwy, 7ow=0=w-7, Fe-w=0=w-r, (2.39)
s

which are orthogonal to w,. The momenta k, and k, were already introduced in Eq. (2.3). Similarly we
will use the transverse tensor

g;w =8uw — Tv’ g;,WWV :OZW“gPW. (240)
Note that the use of the orthogonal vectors 7, r,, and 7, instead of the vectors g, q,,, and y, amounts to a
simple rearrangement of the tensors introduced in Eq. (2.35) and Eq. (2.37). The amplitudes introduced
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with respect to the orthogonal vectors we denote by F(+/s,t) as compared to our previous amplitude
Gf(\/E, t). The MacDowell relation will hold with

F, (+vs,t) =F, (=+5s,1). (2.41)
More specifically we obtain for the vector meson production
Tojon 3@ a W) = 2 F /50 [7@ 29802 T e 2 |

T =74 Peiys, T =w, Pyiys, T =ryPyiys, (2.42)

where the invariant amplitudes Fj(ﬁ, t) are free of kinematical singularities and relate to the G,ﬂf intro-
duced in Eq. (2.35) as

Gt (w-q)GZ
Ff=GF, F;=G§:I:71S+#, F¥f=Gf. (2.43)

Similarly the on-shell scattering of spin-one off spin-one-half states can be described in the same compact
manner as

Ty1q1(@ g w)= Y FE(V5 0 [ €3 29) (5, 2) T, ulp, 2,) €4(g, 2) |
+.n

1 ~ 2 - - 3 ~
T%;-W =&uu P, Tﬂic,;'m =VaPrVu, T%é-m =YaPrwy,

4 - 5 - - 6 .
T:é:iﬂ)lu :Wﬂpﬂz YPL’ T:é:él)_l«/v‘ :’)/‘api ru, T:E:g?/*)j‘“ = rﬂPi YU’ (2.44)
T =wpPety, Ty gy =raPewy, T =wpPewy,

where the kinematically unconstrained Ff(\/E, t) amplitudes can be expressed in terms of the Grf(\/E, t)
amplitudes introduced in Eq. (2.37) as

G:l: W'_ G:l: G:l: (W' )Gﬂ:
Ff=Gf, Ff=Gf, F;=G;i_2+%, Fr=gra-z4- P76
Vs s Vs s
+ Gé:
+ __ %+ + __ ~+ + __ ~+ 5 + __ %
FE=05, Fi=G;, Fi=Gx—r, Fi=Gix—r,
+ + + + - + + ~ + +
9 9 \/g S S\/g . .

The basis sets given in (2.32), (2.42), and (2.44) are all free of kinematical constraints with the
exception of the particular point s = 0. For a given reaction an arbitrary Lorentz-Dirac structure can be
expressed as a linear combination of our basis tensors, where all coefficients are regular at s # 0. For
the 0% -1 % reaction we illustrate this important property by three examples. We consider the tensor
€auap Y" contracted with two momenta and expand it into our basis tensors

VS € TP — SELEL T + s (For) TS — (M F V5) Ex T F (7 r) T &+ 5 EL TC)

1 — 1 3 1 — = 1 = 2
7 €aprwir T PO e — By Ti; + Ti; , 7 €purrmw Y Pe e — B T](F; F % (6+1) T](FL , (2.46)
where
2 2

S m*—M

Ei:£(1—5)iM, 6=—+—,
2 S

s - . m?-M?
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For the 1 % -1 % scattering process we provide one further decomposition example. A tensor consisting
of two v, vectors as introduced in Eq. (2.15) can be decomposed into our basis tensors (2.44). We find

1 i o
—shell /= 1 1
— v Paw, N (7o) EL By T —ELE E E. T

- 2 - = 2
O TS —(Fr)E By TE)

+, 04

1 - = .(3)
+ 5(5 +1)(F-r)E, Ti’[m

= 5 (8
+ 16+ DELEL TS

S = 4 = = - 6
+ LG+ E T £ F ) EL TS, £ (Fr)EL TS

F.0u
+3(6+1)EzE. TY) ~1G+DG+DE-NTY,, (2.48)

+,0u
with expansion coefficients regular with the possible exception at s = 0.

We proceed with reactions involving spin-three-half fermions. Here we refrain from detailing the in
part quite tedious derivations and restrict ourself to the presentation of the final basis sets we established.
Like before we constructed basis tensors in terms of the orthogonal vectors 7, r,, and 7, as introduced in
Eq. (2.39). As emphasized this choice will simplify the algebraic computation of the invariant amplitudes
(see Chapter 3) and lead to more concise expressions for the partial-wave amplitudes (see Chapter 4).

The simplest reaction is a spin-three-half production process. In analogy to Eq. (2.42) its on-shell
scattering amplitude can be decomposed as

To%qo%(qy q, w)= ZF:E(\/E, t) [ﬂv(p,lﬁ) Ti’} u(p, Ap)} ,
+.n
Tila =wyPyiys, Tfﬂ =ryPriys, (2.49)

with Ff(\/E, t) free of kinematical constraints at s # 0. In Eq. (2.49) the wave function of the outgoing
fermion state with its helicity projection A; is denoted by @”(p, ;). The on-shell conditions of @”(p, A;)
are given by Rarita and Schwinger [82] as

" (p,A5) B—M)=0, @' (p,A;)p; =0=0"(P, ;)75 (2.50)

In comparison to Eq. (2.42), the decomposition of the scattering amplitudes in the form of (2.49) can be
directly obtained by dropping the term 7, P, i y5 in Eq. (2.42). By virtue of the on-shell conditions (2.50)
this structure is linearly dependent on the two tensor structures kept in Eq. (2.49).

The remaining reactions of interest in this work are characterized by the number of Lorentz indices
involved. There are three different cases with two open Lorentz indices. Their scattering amplitudes
can all be decomposed by suitable adaptations of our previous result Eq. (2.44). The first two cases are
treated by an elimination of the on-shell redundant tensor structures involving 7. We find

Ti03(@ W)= D FE(VE0 [ (5, A TEN, ulp, 2,) €(a 2|
+.n

1 ~ 2 ~ 3 ~
TE), = Gou P, T 0 =Ws PeTy, TS0, = 1o Pe T (2.51)
T(4) —w.- P, F T(S) — 7. P T(G) —w.P :
tp = Wi feTu, tou = v 5 W +ou - WebxWy,
Tos_03(@ q, w):ZFni(\/E, t) [ﬂv(p,lp)Ti’fgv u”(p,lp)] ,
+.n
1 ~ 2 =
Tj(:,1)7v = &iv Py, T:E:,l)h/ =Wy Py v (2 52)
T®) =rP T =w, P '
+gv v F£ Wy, v — Wi Fx Wy

where u*(p, A,) denotes a wave function of an incoming baryon decuplet state with its helicity projection
A,. The wave function satisfies the on-shell conditions

(-M)u"(p,2,)=0,  pyu'(p,A)=0=7,u"(p,2,). (2.53)
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The third case is more subtle and requires a replacement of one of the tensor structures. We find the
decompostion

Ty112(@ ¢ w) = Y FE(V5 0 [€7(3 28 (5, 25) T up, 2,)]
+.n

1 - 2 . 3 ,
Ti;V:gﬁVPﬂ:’ Til)jw:}/ﬁvaj:: Tifw=mrvpi,

(4) (5 © (2.54)
T:l:,gv _Wﬂwipj:’ T:I:,[W =Wﬂrvpi, Ti’[“; =r,arvpi’

where the tensor r;r; P, appears rather than the tensor r;w; P, suggested by Eq. (2.44). If ryw; Py
is chosen instead the consequent set would be linear dependent. Of course, the tensor r;w; P, can be
expressed as a linear combination of our basis tensors

rawy Py on—shell _ (Ws—q) TE;)W ) (2.55)
with expansion coefficients regular at s # 0.

We are left with the three- and four-index cases. The task of finding a suitable set of amplitudes
is more complicated and quite tedious. It suffices to construct Lorentz-Dirac tensors composed out of
P, (2.31) and w,, 7,, 7, r, (2.39), and §,, (2.40). In fact we do not need to construct a suitable basis
from scratch, but rather streamline the task by starting from our results involving only two open Lorentz
indices.

The three index case involving two spin-one states requires the construction of thirty-six tensors. As a
starting point we may use the twelve independent tensors with two Lorentz indices as established in in
Eq. (2.54) properly extended to a third Lorentz index by 7, iys, w,irs, and 7, iys. That leads to 36 tensor
structures, but unfortunately not yet to a proper basis set. A second starting set of 36 tensors is obtained
from (2.51) extended by 7 iys, w; iys, and r; iys. From those 72 two tensors we succeeded in finding a
proper subset. We refrain from providing details of the tedious elimination procedure. As a result, we
can express the on-shell scattering amplitude in terms of thirty-six invariant amplitudes

Ti3(@ 4 w) = Y FE(S 0 [P0, A8 (5 2)TE s, ulp, 2,) (0, 29) |
+.n

WD s oo @ _ooa o ®  _ . -
Tj(%wu =& Pr7uivs, T%;)m =Va8&wuPrivs, T:E:é!)]f/u =& Prw,iys,
Ty oy =Wp8ouPrivs, Ty oy = 8o PrTyiys, Ty Gop =T 8ouPrivs,
7 N o 8 N o E N .
Ti,;vH=YﬂW9PiYulY5> Tj(;,;)wH=YQ Ty Pe¥ulYs, Ti,‘)]VM:YﬁWf/ Pyryiys,
do)’ o an’ . a2’ . (2.56)
Ty o =wWaws Pevyuiys, Togp, =VarsPewyiys, Togp, =warsPiy,iys,
43 _ o v pow i dn _ . s _ ~
:I:,[NH_Y[LWQ +WulYs, i’gvu_rﬁrﬁpiYulYSJ T:t,gf/u_w/lva:tw,ul}/S,
(16) _ P.7 i a7 _ P : 78 P :
tavu - WaWe ExTulYs, 1y, =WpTe FaWylYs, 1y, =TplyFewylYs,

where the amplitudes F;f(ﬁ, t) are free of kinematical constraints at s # 0.

Applying a similar strategy we managed to decompose the remaining three index amplitude. The start-
ing points are the eight Lorentz-Dirac tensors introduced in Eq. (2.52) and the twelve tensors introduced
in Eq. (2.54). We assure that the following decomposition of the on-shell reaction amplitude

Tys_13(@ @, W)= D FE(V5 0 [€(@, A8 (B, A T{ 0, w7 (b, 2) |
+.n

1 F . 2 _ . 3 N .
Ti,,)-tw =8 Vi Piiys, T:E:,Bjm‘/q/ =8 W Piivys, T:E:,;)h'w =8 Piiys,
4 . . 5 . _ . 6 N .
Tﬂ(z,;)Wv =8 Piw,iys, Tj(t,;w = 8uv P.7,i7s, Ti,,)zw =YaWs Piw,iys, (2.57)
7 - - . 8 . . 9 . .
Ti,,)-wy =Vawy PLr, 175, Ti,BWV =7Vars Prw,iys, Ti);w =wpw; PLw,iys,
A0 _ p.F i A0 _ p . 2 _ p .
vy - WaWe PxTwlYs, Ly gp, =Waly FeWylYs, 1y g5, =Tal5 P2 Wy 1Ys,
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in terms of the twenty-four invariant functions F¥(4/s,t) provides the desired representation void of
kinematical constraints at s # 0.

The final and most complicated reaction of our interest is the scattering of spin-one bosons off spin-
three-half fermions, where seventy-two independent Lorentz-Dirac tensors exist. To construct a suitable
basis, we may partly use the basis sets of the reactions considered so far. For any candidates, it has
to be assured that a set not only forms a basis, but also is free of kinematical constraints at s # 0. We
parameterize the on-shell scattering amplitude in terms of the following seventy-two F:" as

= — e P (n) v
Tyoon3(@ @ W)= D FE(V5, 0 [€(3,2) 8 (B, Ap) T 0p, 1 (0, 2) €40, 4 |

+.n
¢)) _ a4 =& (2) _ s & ©) _ s s -
Tﬂ(:jf)ww =8 &uv Pt Tﬂ(té,}gw =&uu8iv Ps, Tj(tésww =& TaPsTu,
T:é:#)wuv = &uv P, YuWy, T:é:épy“v =8uw Vp Wy Py, T:é:é'swuv = &8uv P, YuTvs
Ti,[mw =&uv Valv Py, Ti,,w,w =& TaPrwy, Ti,[ww =8 wWuPi¥y,
dao” . . - an’ . . 60 N
Ti,[w,w =8 VuPrTy, Ti,,w,w =& TaPe¥yu, Ti,ﬂwv =& Prw,w,,
13 - 14 - - 15 .
T:E:,ﬁ%;w = 8w W Wy Pﬂ: > Ti,pj?p,v =8 P:I: WyTy, T:E:,pz‘/m/ =8uwWiTly P:I: 5
ads)y  _ - - an - sy .
ﬂ(t,ﬁ)ww =8y PL Ty Ty, ﬂ(:,ﬂ);,w =&uv Talo Pr, Tj(c,ﬂ)pw =&mwwpPrw,, (2.58)
19 - - 20 - 21 . - .
sy = S W Pe Ty, Ty oy = 8w Ta Pewy, Ty oy = Taws Prvpwy,
(2) . . (33 _ . N 162 M
Ti,[w;w - Yﬂ Wy P:l: Yp, Ty, Ti,ﬂ’Vp/V - Yﬁ ry P:I: Yu Wy, Ti’[“‘/uy - Yﬁ ws P:t Wu Wy,
T35 _ P, 76 _ p - TN P
+avuy Wﬂ Wy Py Yu Wy, +avuv Yﬁ, Wi Py Wp, Ty, + avuy Wﬁ, ry Py Yu Wy,

(28) s = = (29) _ - (30) S
+.avuy }/ﬂ Wy P:l: T'“ Ty, Ti,ﬂﬁ;w - rﬂ ry P:I: Yu Wy, Ti,[W;W - Yﬂ Ty P:I: Wu Wy,

3B _ - = 32 _ (33 _ -
Ti,ﬁwv =wiw; b, Yulvs Ti,,m?pw =wyWw; b, Wy W, Ti,;lww =wyw; b, w, Ty,
T(34) =wyr; PLw,w T(BS) =waw;P.r,T (36) =rgr; PLw,w
+avpy — VRV EE YU Wy +avuy — v EaETulyo vy — v Mu Wy

We summarize the main achievement of this chapter. Two-body reaction amplitudes involving either a
spin-zero or spin-one state and either a spin-one-half or a spin-three-half state were decomposed into in-
variant amplitudes that are free of kinematical constraints at s # 0. The number of invariant amplitudes
was reduced by a factor two systematically by invoking MacDowell type relations. Even or odd combina-
tions of those amplitudes are expected to satisfy Mandelstam’s dispersion integral representation (2.10).
Our results are an indispensable prerequisite to establish convenient analytic properties of partial-wave
amplitudes. Before studying the partial-wave amplitudes in Chapter 4 we will establish in the following
Chapter 3 a convenient projection formalism in terms of which the algebraic derivation of the invariant
amplitudes from a given Lagrangian is streamlined considerably.
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3 Projection algebras

In the previous chapter we studied two-body systems of a boson with J* =07, 1~ and a fermion with J* =
%+, %Jr. Assuming conserved parity the on-shell scattering and reaction amplitudes were decomposed into
Lorentz invariant amplitudes Ff(\/E, t) that are free of kinematical constraints at s # 0 and satisfy the
MacDowell relation (2.41). Their analytic properties are governed by Mandelstam’s dispersion integral
representation (2.10).

In a practical application it is important to derive explicit expressions for the invariant amplitudes
F*(+/s, t). Though for systems with small spin such derivations can be performed by hand, this turns more
and more tedious as the total spin increases. A computer algebra code for their systematic computations
is highly desirable. For that purpose a derivation of a suitable projection scheme is useful. In a recent
work by M.EM. Lutz and I. Vidana [50] such a scheme was established for various boson-boson systems.
In the following, we shall derive a projection algebra for boson-fermion systems. It takes the universal

form

1 - . ,
Etr(T(E’”JWAQ’;’Vk A) =684 6ap, A=p+M, A=p+M, (3.1
where Ti”&v is our basis set of Lorentz-Dirac tensors introduced in the previous chapter for the various

reactions. The tensors @', denote suitable projection tensors and need to be derived in this chapter. The
indices n or k number through the set of invariant amplitudes as determined by (2.9). The Dirac matrices
A and A are naturally implied by the on-shell conditions of Dirac spinors as recalled in Eq. (2.12). The
tensors Q‘fk are subject to further constraints that reflect the particular structures of the spin-one and
spin-three-half wave functions (see Eq. (2.17) and Egs. (2.50) and (2.53)). For a given reaction, the
invariant functions Ff(ﬁ, t) can be computed directly in application of the n-th projection tensor Q’fn

3.1 Spin-one-half fermion

In this section we study boson-fermion systems with spin-one-half fermions only. The simplest case is
the scattering of a pseudoscalar boson off a spin-one-half fermion. Its on-shell scattering amplitude
is decomposed in Eq. (2.32) in terms of the two Dirac structures P, introduced in Eq. (2.31) only.
The projection tensors Q. of Eq. (3.1) are readily derived. The invariant amplitudes Ff(ﬁ, t) can be
computed in application of the following projection algebra

1 _ 1 _
Etr(PiAQiA) = 1, Etr(PiAQ:FA) =0, (3.2)
with
s _ a v B
Qi = 2 ((r'r)P:F_E:FE:FPi)’ Vy = €paypT WIT?, (3.3)

where the momenta r, and 7, were defined in Eq. (2.39). They are orthogonal to w,. Furthermore we
recall that E, and E, are given in Eq. (2.47) in terms of the Mandelstam variable s = w? and the masses
of the system. Our projection algebra yields the invariant amplitudes F:* explicitly as

(e, s[Srir] )+
—tr( A[ZF Pi] A)=F (3.4)
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We provide a simple example and consider an s-channel exchange contribution to the scattering ampli-
tude with a pseudo-vector type vertex

0 *)Ol(q q, W)_u(pikp) |:Y5q 4Y5i| u(pjkp): (35)

W — M
where we do not specify the couplings strength of the vertex. The mass M, denotes the mass of the

spin-one-half fermion exchanged in the s-channel. The scattering amplitude can be expressed in terms
of P, as

, M M
+ s

where the coefficients are calculated by using the projection algebra (3.2). It holds

_ (MF VM F V)
4 Ys] ) M, £ 5 .
In order to generalize the simple result (3.3) to the more complicated systems involving spin-one
bosons and later spin-three-half fermions it is advantageous to follow [50] and introduce the reciprocal
four-vectors r,, w;, and wi. They are suitable linear combinations of 7, r, and w so as to have the
convenient properties

%tl‘(Qi A [qu G.7)

ri-r=1, r-r=0=r-w,
wiew=1, wirr=0=w,-q,
wew=1, wer=0=w-p. (3.8)

The index | or | of the reciprocal four-vectors indicates whether it is orthogonal to the four-momentum
of outgoing boson ¢ or that of the outgoing fermion p respectively. The patched symbol | implies the
orthogonality to both four-momenta. We recall the explicit form of the reciprocal four-vectors ri, w;, and

wi from [50]. Given three four-vectors a,, b,, and c, we introduce a vector, a‘;C = acb, as follows
u
a . a-(b .
#zau_gcu_ ¥( _ﬁcu) ,
Ape " Apc c-c (b ) c-c
v u
ay.a,=1, a,.b,=0, abcc =0. (3.9)
In the notation of (3.9) the desired vectors are identified with
=, wi=Ewl, o wlt=wl,
=t VT/JH:W?q w{“:w’;p, (3.10)

where we introduced the additional vectors 7, w;, and w, that will turn out to be useful. The latter
vectors have properties analogous to their counter parts r, w;, and w| characterized in Eq. (3.8). In terms
of the introduced reciprocal vectors we succeeded in deriving concise results for the projection tensors
Q(”) introduced in Eq. (3.1).

The spin-one production amplitudes F;", F;", and F; introduced in (2.42) can be obtained by means of
the following projection algebra

1 o _

Etr(T(SgAQ‘;’kA) =640,  with  g;QL, =0, (3.11)
] N

Qi’] =:|:?Pi v'u:
y Vs

Qi,z l’)/SR:tWJ ——(5—!—1)—EjEQjE P

Y
Qi,sz_leRi”l“_ﬁE¥Q¢VM:
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where we expressed our result in terms of the reciprocal vectors introduced in Eq. (3.10). The tensor R,
in Eq. (3.11) is

s = —_
Ri=— (EJFEiPi—(IMr)P?), (3.12)

and Q. was introduced already in Eq. (3.3). The supplementary condition g ‘i’k = 0 is required by the
on-shell condition of the outgoing spin-one boson.

For the scattering of spin-one bosons off spin-one-half fermions eighteen invariant amplitudes F* were
introduced in (2.44). We derive the following compact result

1 _ _
Etr(TfL)“AQ (M) =8, with Q=0 and  q,QY, =0, (3.13)

Qi‘,ﬁ——v“Q v -y,
Qiz—ri [Pi—Z(r r)Q:F] e — (71 7"1)—1/ [Pi—z(r r)Q¢] "
+EiiY5‘U/—2§yﬂ [P:F+2(F-r)Ri] 7t Ei%fn [Pi+2(r IR, ]
QipfgzﬂngﬂiﬁPiwwi %(64—1)? [(F'r)EiQilfz_(F"—”)E:FQi‘fz] ,
Q= P iy JG+ 1) 5 [ B - () E Q).
Qilfs ::Fg UﬂiYSPi At % [(r'r)EiQi!fz_(’:'r)E:FQilfz] 5
Qi}fé :igrlupiiYS viE % [(F'F)EiQi!fz_(’:'r)E:FQilfz] >
Qi —Qi( PR — (w) Tl)iV“v“)
+ (r.r)b;ﬁ [Q¢,4—5(5+1)Qi’5] T (;.r)b}% [Qi74_§(5+1)Qi’fs],
Qi =Q4 (rl wi (n-ﬁu)%vﬂ v“)
+ (f-f)E¢% [Qi’fg - %(5+1)Qi‘f6] F (f-r)E;% [Qi’fg - %(5+1)Qi{‘6] ,
1

- _ 1 - S ; _ i
QM =Q. (wﬂw# - (wj-wj— —) — vP y“) —iGEHDE ) [(F Y, —E:FE:FQi‘fz]

S/ v

£ 16 +1) 25 [ B QY — () B Q] £ 15+ 1) [ B2 QR — (7 Bl ]

where the supplementary conditions are required by the on-shell properties of the incoming and outgoing
spin-one bosons.

3.2 Spin-three-half fermion

While the derivation of our results for the spin-one-half systems was still reasonably straightforward
a more systematic procedure is required for the more complicated remaining systems involving spin-
three-half fermions. In particular, the on-shell conditions (2.50) and (2.53) of the spin-three-half wave
functions cause additional complications.
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Let us start from the simplest case containing a spin-three-half fermion. The decomposed form of
the on-shell production amplitude of a spin-three-half fermion is given in (2.49). A suitable projection
algebra for the four invariant amplitudes F;" and F; reads

%tr(Tg;) AQ)A) =646,  with  AQL Ay;=0 and p,QL, =0, (3.14)
= % [Pl —EEo Pl ],
L= % [Gr)PL,—EEoPL, ],
where we introduced four auxiliary tensors

P} =wliysPy —v" ((F-r)Ps+ MELP.)/v?,
Py, =riysPy — v’ (VsELP:)/v. (3.15)

The derivation of (3.15) goes in two steps. First we identified the four tensors P}, that satisfy the
supplementary on-shell conditions

AP} Ay; =0, Py PL, =0, (3.16)

and form a linear independent set in terms of which the projection tensors Qin can be expanded. While
any of the auxiliary operators v” Py, w" iys Py, and r" iys P, is transverse with respect to p;, they are
not transverse to y, in the way requested in (3.16). To achieve the latter condition suitable linear
combinations are required. Moreover, the basis must be linear independent, which implies the condition
that the matrix

b 1 (@ o Pab Pab
Py = 5 tr(TC’V APy, A) with det PZ{; Png‘ #0, (3.17)
7+ —_—

is invertible. As a consequence the projectors have the following decomposition

QL= ch Pl +Y d5Pl,, (3.18)
K K
with some expansion coefficients c,fk and dffk which can be determined from the first condition in (3.14).
This amounts to the inversion of the matrix Pcadb introduced in (3.17).

We continue and work out projection algebras for the remaining invariant amplitudes introduced in
Chapter 2. Here an order according to the complexity of the results is chosen.

For the scattering of pseudoscalar boson off a spin-three-half fermion, the eight invariant amplitudes
F* introduced in (2.52) can be derived by the following projection algebra

a,vv

Etr(T(")AQbe’kA)zénkSQb with p;QY, =0=AQY Ay, and p, QY =0=y,AQ\A, (3.19)

_ i s B _ _ i
QY =Py — =5 2B E; [(r P)PY —EL By P;fl] ,

+, 2
w2 (. p™ —F_E_p ‘/EE F Wo4 B, E. QY
Qi,z_ﬁ (F-r) w3 FFbEfas| T 2 b (’””)Q:FJ‘F +EL QL |,
o= S ()P — B BT = B [(or)QY, + B QT
Qi,s_ﬁ (F-r) F2 T OFEF 2| T 2 0 (r.r)Q:':’1+ +EL QL |,
. S 1. _ _ _ _
QY= [ r)PD, = Ex B PLY | - (1/5)Q%,

< ﬁ = Vv o vV \/E v = 2% = Vv
+3(6-1)ZE. (G rQY) + B Ex QY | £ 15— 15 M [ rQY, + B B2 QT |,
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with

PW =r" 7" P+ 0" 0" (s/v?)ELEL Po/v? — 1" vY (Vs/v?)Exiys P + 0" 7Y (Vs/v?) Exriys Py,
Piz—rl w Py 4+ v' w (Vs/v? YELiys P
—r" vV iys((F )Pyt MELPL)/v*+v" v (Vs/v*)Ey ((F-r) Pz + M E;P.)/v?,
PW =w' 7 Py —w" v¥ (Vs/v?)ELiys Py
+ " in((f-r)P + ME.Py)/v*+v" v (Vs/v?)Ex ((F - r) Pz £ M E;P.)/v?,
PW =w'w" Py +v" v" [(1/s)Pz+ 2 (5—1)(5—1)(5/1/2)EiEjE
¥ 5(6—1)(¢§/v2)M((r'r)Pi—EiEi P)F 3 (6 —1)(Vs/v*)M ((F- )Py — EL Ey P1)]/v?
—w v iys((F-r)Pet MELP)/ v+ v" wiys ((F-r) Py £ MEy Py)/v?. (3.20)

where the P}E”k are designed to satisfy the on-shell conditions introduced in Eq. (3.19).

We proceed with the 17 + %+ - 0"+ %Jr reaction, which is described by the twelve invariant functions
F¥ introduced in (2.51). Our result reads

1 (n) X . = VU Vi
Etr(TawAQ W A) =8, 6ap with p17QjE =0= AQ A}/V and q,Q4, =0, (3.21)

; Vs ; )
Ql‘fl:—a[(r-r)Plﬁ—EiE¥P;'uli| = | NQM + B E. Q) ]

Qi in”‘i—Q 1 F 5 (5 )%E:I: (7- r)Q +EEQ ]

NG
Q™ :I:—f(r ) [(r PP~ E Eipif;]i%E:F [(f-r)pif;—éiEiPV“],

v S T,2 v = 7 S - o

Qi’f4:ﬁ[(r )P —E E:FPifg]:FﬁE:F (G- 1QY, + B2 E.Q] ]—-(5—1) (r-rQY,

v S /2 7 = 7 S = - = N
Qi‘g:ﬁ[(r P~ E¢Pif§]ﬂ:%(5+1)ﬁE:F[(r QY + B E. QY ]—%(5+1)ﬁ(r-r)Qinl,
v S = v 1 S = -

Qi’G:?[(r r)P E¢E¢Pi’6]i5(5+1);E:F G rQY, + B E- QL |

1,5 S o
—3(5—1)(5+1)ﬁ(r'r)Qi,1,
with

Plul =[rn'iys Py —v" (Vs/v*)ELPL] v¥/v?,

Pluz =[r" Py + 0" (Vs/v)Esiys P ],

Plus =[P+ v" (V5/v*)Esiys P ] Wi

P = [w' iys Py — v ((F- 1) Py £ M E; P)/v?] v# /02,

Pius = [w'Ps+v"iys((F-r)Py+ MELP.)/v?] 7,

P = [wi Pt v iys((F- 1) Py MELPL)/v?] i (5:22)

There remain four more cases to be considered. The final result shown here is for the 0~ + %Jr -1+ g+
reaction. For the amplitudes of Eq. (2.54), we derive the following projection algebra
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SO AQA) =606 with Q=0 and  p; QL =0=AQU Ay, (3.23)

a,pv

__ Vs __ _ __
ovo [73% uv
Qi,l - M I:P:F,S + ‘/EE:F Pﬂ:,4i| ’

s (F-r)
V2

QY =+ (1/E)PEL £ 1(5-1) (G- rQ, + B B Q1 ],

:F
__ __ s _ _ __ _ __
QUy=FVsPLL ¥ — By [(F-1)QY, + B E- QY |
. S . . . _ s _ o o _ _ s .
Q= [GRR LA I A 16 +1) 5 E, (G 1Q, + BB, | + 15+ 1) (6 - D= (r-r)Ql,
- s S - 1= s ) S - 1= s -
Fo=— [(r-r)P]’FL:VB—E:FE¢P‘i"V3] £ 36+ 5 Es [(r-r)Q’;ferEjFEi ’ig] +3G+D (el

S _ i = 0 s _ _ 0 _ . S g
Qo= [GnPE, - BB PL ] 5 ~E [+ EL E- Q| + -t

Piwl =[r"iysP.—v" (Vs/v?)ELPL] v*/v?,

P‘iw2 =[r" Po+v" (Vs/v*)EriysPe] 1,

PY = [r P+ 0" (V5/v®) Eriys Pl wi,

PE; =[w'iysP.—v"((F-r)Ps+ ME;Py)/v*] v /v?,

PI = [w¥ Po+v7iys((F-r)Py £ MELP)/v?] i,

PYY = [wi P+ v7iys((F-r) Py + MELP,)/v?] wh. (3.24)
The remaining three and most tedious projection algebras for reactions involving a spin-three-half
fermion are summarized in Appendix A. The most complicated case involves 72 projectors.

Our formal results have been implemented into a Mathematica code using the FeynCalc package [83].

With this code analytic and compact results for invariant amplitudes from any tree-level process can be
computed efficiently.
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4 Analytic properties of partial-wave
amplitudes

In this chapter we perform a partial-wave decomposition of the scattering amplitudes studied in the
previous chapter by using the sets of invariant amplitudes Fi")(ﬁ, t). The merit of partial-wave ampli-
tudes is that they provide a convenient realization of the unitarity condition. In Chapter 2 we already
introduced a framework, in terms of which the combined consequences of micro-causality and unitarity
can be systematically implemented. It requires the solution of the non-linear integral equation (2.6). We
will apply the helicity formalism of Jacob and Wick [41]. In a first step helicity partial-wave amplitudes
are expressed in terms of the invariant functions. Such a representation shows that helicity partial-wave
amplitudes suffer from various kinematical constraints, which would prohibit their efficient application
in the non-linear integral equation (2.6).

Kinematical constraints of helicity partial-wave amplitudes have been discussed by many authors;
for example, J. D. Jackson and G. E. Hite [53], T.L. Trueman [84], and Alan Douglas Martin and
Thomas D Spearman [70]. Kinematical constraints can be partially eliminated by introducing partial-
wave amplitudes with respects to angular momentum (L) states. A complete elimination requires the
introduction of covariant partial-wave amplitudes T{(y/s) [45, 49, 50]. They are associated to covari-
ant states and a covariant projector algebra which diagonalizes the Bethe-Salpeter two-body scattering
equation for local interactions [31, 85, 32]. We will derive suitable transformations that eliminate the
kinematical constraints. In this chapter we shall focus on two-body system of a boson with J* = 0~ (or
JP =17) and a fermion with J? = %Jr, for which such transformations are not available so far.

4.1 Partial-wave decomposition

Helicity partial-wave amplitudes are introduced in the center-of-mass frame in terms of matrix elements
of the scattering operator in plane-wave eigenfunctions of the helicity operator [41]. Such matrix ele-
ments take the general form

(AQ7Ap|T|Aq;)Lp>: (4-1)

where 2,14, and A4, A; specify the helicity projections of the incoming and outgoing wave functions.
The number of independent amplitudes under conserved parity is determined by Eq. (2.9). The phase

conventions assumed in this thesis imply the relations
<_A(_p _)L[_)l T | - A'q: _A'p> = (_1)SQ+SP_S(1_SP (Aq: A'[)| T |Aq’A'p> . (4-2)

In the center-of-mass frame a two-body reaction is characterized by the scattering angle 6 and the mag-
nitudes of the initial and final three-momenta

V- =mPs-M+m?] s = — )]s — (M +m)?]
pcm_ 2\/5 B pcm_ 2\/5 s

which can be expressed in terms of the Mandelstam variable s and the masses of the system. We write
the four-momenta of the incoming- and outgoing-particles using these variables

4.3)

qM =1{40,0,0,+pem} qM = {EIO; +Pem Sin 6,0, +Pp, COS 0},
pH = {pO: 0109 _pcm}: p“ = {pO’ _pcmSiHG;OJ _pcmcose}a (44)
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where the zeroth components of four-vectors in Eq. (4.4) can be written as

W=V = L0re), = /R L8,
S — S —
po= VM %, = L1 -6), b= 02+ 52 = L1 5), (4.5)

in terms of § and & introduced in Eq. (2.47).

Given this convention for the center-of-mass frame we specify the boson and fermion helicity-wave
functions such that the phase convention of Eq. (4.2) holds. The outgoing Dirac spinors are introduced
with

L —ie22
_ 2 X+ 0 1
T I el S A
ZI: 192
X+

where E, and E. are given in (2.47). The spinors of the incoming states are obtained by setting 6 = 0
and removing the bars in (4.6). The Dirac spinors (4.6) are constructed to be eigenstates of the helicity-
operator

w 1 1 1 W 1o 1
u(p,+3) =+ ulp,£3), —u(p,+5) =+ ulp,£3), 4.7

where W is the Pauli-Lubanski vector for S = % and n!' is a normalized space-like four-vector orthogonal
to p* [72, 86]. We use

u 1 (|~| P°~) (4.8)
nt=—-———> = . .
e e

The helicity projection operator n- W /M is explicitly given in (C.26). The completeness relation over
positive energy states holds in the form

_ p+M
Z u(p, ) u(p,A) = ——. (4.9
) 2M
A=+l
We continue and specify the wave functions of the outgoing spin-one states
cosf i sinf Pem G q
e(q,+1) = {O,q:f,—i,:tﬁ}, e*(g,0) = {pr;m,q—ﬁgsin&o,qﬁocose}, (4.10)

where g, is the energy of the outgoing vector meson (4.5). The wave functions of the corresponding
initial states are obtained by 6 = 0 and the removal of the bars from (4.10). The spin-one wave functions
are eigenstates of the helicity operator with

ng [Wel", ng (WK,
——€%(q,£1) =+ eH(q, £1), ——¢€"(q,0)=0, 4.11D)

with the Pauli-Lubanski vector W* for the S =1 case (see Appendix C). The 4-vector ng‘ was introduced
already in Eq. (4.8). The wave functions satisfy the on-shell condition, the space-like property, and the
completeness respectively as

q"eu(q,2)=0,  g"el(q, M) e, (g, A) =8, (4.12)
qudy
D @)@l (@) =—gu + o (4.13)
m
A=%1,0
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The helicity matrix elements of the scattering operator, T, are decomposed into partial-wave am-
plitudes characterized by the total angular momentum J. Given a specific process together with our
convention for the helicity wave functions it suffices to specify the helicity projection A4, 4, and A4, A;.
We write

(R2p|TIRgp) = D (20 +1) (Rghp| Tyl2g2) 1) (6), (4.14)
J

with A=2, -1, and A= Az — A5. Wigner’s rotation functions, dij%(e), are used in a convention with

@) — (VY224 — (Y224 — g0
a0 =) _(0)=(r"*d)01=d")_,(6). (4.15)
Further properties of the Wigner functions and helicity partial-wave amplitudes are discussed in Ap-
pendix C. The helicity partial-wave amplitudes follow from the plane-wave matrix elements of the scat-
tering operator by a suitable projection:

' dcosh

(g5l Ty A7) = J (Aqxpwqup)d;{;(e). (4.16)

-1

In line with Eq. (4.16) we introduce the angular momentum projection of the helicity state [A;,A,). We
write

AgAy);  with Tl 2,0, =TylAgA,). (4.17)

It is useful to decouple the two parity sectors by introducing parity eigenstates of good total angular
momentum J. We introduce a set, |n.,J ), of parity eigenstates with

Plng,J) =+(=1) "2 |ny,J), (4.18)

in terms of even or odd combinations of the |[+2A,,+A4,); and |-, -4, ), states introduced in Eq. (4.17).
In general for a given parity sector there are

%(2Sq+1)(zsp+1), (4.19)

distinct states to be considered. We finally can introduce the helicity partial-wave amplitudes ¢ (v/s)
that carry good angular momentum J and good parity and formulate the unitarity condition in a concise
manner

* pcm,c
[t%]a = (as,J|T|by,J), [sti]ab=2 [, SRﬁch [t1].s> (4.20)

where the indices a and b span the bases of outgoing and incoming two-particle helicity states. The
unitarity condition in Eq. (4.20) resembles the condition (2.5) already discussed in Chapter 2 with the
particular phase-space function

J Pem,a
= 2M_ 6. 21
pab(\/;) 87T\/§ aYab (4 )

For sufficiently large s the unitarity condition takes the even simpler form

pcm,a

J1-1
5 =— 2M, 6, . .22
J[ti]ab 87'5\/5 a“ab (4 )
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Let us consider a simple example. For the scattering of a spin-zero boson off a spin-one-half fermion,
the parity eigenstates are written as

112,J), )y £10,43),) - (4.23)

G

Using the decomposition (2.32), the helicity partial-wave amplitude can be written as

tL(Vs) = 4 f;\i\jf dcosGFi(f cos )P %(cose)

dcos6
F 4MMJ_1 3 FF(Ws, COSQ)PJ+1(COSQ) (4.24)

1
2

where E, and E. are given in (2.47) and P,(z) is the Legendre polynomial. In (4.24), we used the
representation of the Wigner function:

d(J) ()= [ J_f(c059)+PJ+1(c059)]

2+22

0
sin — 5 d(Jl) .(0)= [PJ_%(cos 0)— PH%(cos 9)] . (4.25)

272

From the result (4.24) together with the MacDowell relation (2.34) for the invariant amplitudes
Ff(ﬁ, t) = F(—+/s,t) it follows the MacDowell relation

t(—/5) = —tL(+V5), (4.26)

for the helicity partial-wave amplitude.
We turn to more complicated sectors. For the parity eigenstates of a two-body state composed of a
spin-one and a spin-one-half we use the following convention

1)y = f(lo LrFI0,43),),
1
221 = — (I+1,+3),F1-1,-2)),
Bardhy = o= (14 120 F - 1+)) (4.27)

As a further example we consider the reaction 0~ + %Jr -1+ %+. Using Eq. (2.42) we find

d 5 E 5
(V)] = ff X[Jl(x)( e LW 2 [ (a0 T Es Fﬂfx)D

+PJ+1(x)(iﬂ Bk R ")x‘\/—MM B A x)m
[L(V)],, = f [J_( )(\/ = *EiF*(f x)xi\/ Pl zF*(f X)FELF wz,x)D
( EiEi + :F Eg +
+PJ+1(x) \/ E F,; (\/_x)x:Fﬂ 2F (\/_x):FEiF:F(\/_x):|

2J —1 E.E 2J+3
[rimlgl—if [JJ )( 2J+3\/81T-4;[ (fx)—\/ u \/8MMEiF;wz,x)x)
2J+3 E.E
+pj+;(x)( zjfl\/SMMEipﬂF(f X)_\/ZJ—i-B 8]T7UT4E¢F;E(\/§,X)X)1|. (4.28)
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From the MacDowell relation (2.41) for the invariant amplitudes F;f(ﬁ, t) = FT(—+/s,t) there follow the
MacDowell relations

[tL(=v9)] = D [ (+V5)] 11 s (4.29)

for the helicity partial-wave amplitudes.
The derivation of analogous expressions for the remaining reactions considered in this work is straight-
forward. We refrain from providing explicit results here.

4.2 Kinematical constraints

The helicity partial-wave amplitudes ¢ (y/s) suffer from various kinematical constraints that make their
application in Eq. (2.6) cumbersome This is readily seen by expanding the invariant amplitudes
F*(4/5,cos 0) in terms of Legendre polynomials

FE(/5,c080) = > (21 + 1) (v/5) (Bom Pem)' Pi(c056), (4.30)

=0

where we factored out the term (pp, Pcm) from the expansion coefficients c 1(*/— s). This factor is required,
because otherwise a singular behavior would arise from the behavior of the Legendre polynomial as

rer
Pi(cos8) — P, (— ) .
r2r2

U (21 —2k)!
Px)= ) (-1 : =2k, 4.31
1) = Z( 2 A=l —2k) (4-31)
where r? = —p2_or 7> = —p2 . Since the invariant amplitudes are free of kinematical constraints the

expansion coefficients cil(ﬁ) are kinematically regular functions except for possible dynamical singu-
larities.

We return to the simplest application 0~ + %Jr -0+ %Jr, for which the partial-wave amplitudes were
expressed in (4.24) in terms of their invariant amplitudes. Applying (4.30) and the orthogonality of
Legendre polynomials to Eq. (4.24), we can express the helicity partial-wave amplitudes t’.(+/s) as

ELE 1 E+E 1
(VR = 2y soed | (V8) (Pampen)”F F || 2t T (VF) (BemPen) (4.32)

The result (4.32) shows that t’.(+/s) vanish not only at the thresholds, v/s = £(M +m) and /s = £(M +m),
but also at the pseudo-thresholds, /s = +|M —m| and +/s = £|M — m| (see Eq. (4.3)). While pfm =E, E_
vanishes at |/s| = |[M £ m| the energy E, at v/s=—-M xm and E_ at /s =+M = m only. As a consequence
we derive the threshold behavior of the helicity partial-wave amplitudes. We find

! (V5) & (BemPen)’ 20 (VS & (Bem Pem)”F? (4.33)

for energies close to /s = M £ m or /s = M £ m. Similarly we find

1 (V5) o (BemPem)’ 2 (V) & (BemPem)” 2 » (4.34)

for energies close to /s = —M £ m or /s = —M + m. The results (4.33) and (4.34) are kinematical
constraints that hold irrespective of the detailed form of the interaction. They can be summarized into
the condition

t1(vs) x VELE, (PemPen)” ™2 » (4.35)
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which holds at any threshold or pseudo-threshold. All kinematical constraints at |/s| = |[M £+ m| and
|v/s| = |M £ m| are removed by the following transformation

J-1 Y
‘ ) T ), (4.36)

7’ ﬁzﬁ(_
:I:,O%HO%( ) Pem Pem

where the transformation (4.36) implies a change in the phase-space distribution:

J f _ J _1_ Pem p?m I
Plot o1 (V)= 3[Tvs)] =k . (4.37)

871s S

According to Eq. (4.37) the phase-space function is asymptotically bounded at large /s. Note that the
latter condition requires the factor s’ in the transformation (4.36). The covariant partial-wave amplitudes
T/(y/s) can be computed from the invariant amplitudes as follows

J*% E_‘:F E:F Pem Pem J+%
Ti,o%eo%(ﬁ) =+ [Ai’l (Vs)— P E, (T) A_ (\/3)} , (4.38)

where the coefficients

|l

dcosf

Ali,n(\/g)z (13 Sp ) J CZS F*(+/s,co0s0) Py(cos0). (4.39)
cm Pem -1

are free of kinematical constraints with the exception at /s = 0. The regularity of the expansion coeffi-
cients is a direct consequence of standard properties of the Legendre polynomials

1 0 for n<l
J dxx”Pl(x)={ 24 , (4.40)
i —— forn=I

(21+1)!

and the regularity of the invariant amplitudes Ff(\/E, cos6). From (4.36) with the MacDowell rela-
tions (4.26) for the helicity partial-wave amplitudes it leads to the MacDowell relations

TL{(++/5) = TL(=V5), (4.41)

for the covariant partial-wave amplitudes.

We assure that not only the expression of T(y/s) in terms of F¥(y/s,cos 6), but also the inverse result
where Ff(ﬁ, cos 0) is expressed in terms of T/(+/s) are free of kinematical constraints at s # 0. In order
to reconstruct the invariant amplitudes Ff(ﬁ, cos 0) in terms of T/(+/s), an alternative representation of
the Wigner function is useful:

(J+ l)dm () = cos —9 [P’ (cos®) —P’ ,(cos 9)]
27 "+ 2 I+ J-1 ’

J+ l)d(“’) () = sin —6 [P’ (cos@)+P’ ,(cos 9)} (4.42)
27714 2 [+t -3 ’ '

which can be driven from (4.25) in application of the Appendix relations (C.14). Using (4.42) and the
orthogonality of Wigner functions (see (C.1)), we derive the explicit result

4MM

FE(s,c0s0) = =+ 4| =
! ELE. =

[ti(ﬁ) Py, (cos 0) = th(¥5)P]_, cos 9)} . (4.43)
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Eq. (4.43) shows that the regularity of the invariant amplitude Ff(ﬁ, cos 0) at the thresholds and pseudo-
thresholds is a consequence of a cancellation of the singular behaviour of the Legendre polynomials
(see Eq. (4.31)) and the vanishing of the helicity partial-wave amplitudes t}(v/s) (see Eq. (4.35)). In
turn, any violation of the kinematical constraint (4.31) would imply a behav1our of the invariant ampli-
tudes F;“(y/s, cos 0) that is necessarily at odds with its Mandelstam representation as required by micro-
causality. In contrast, if the invariant amplitudes are reconstructed in terms of the covariant partial-wave
amplitudes T(+/s) an artificial behaviour at the thresholds and pseudo-thresholds is avoided irrespective
of any details of the approximation scheme applied to the partial-wave amplitudes. We derive the result

ELE
+ J +F=F v/ J
F(vs,cos0)= + — E |:YJ’+;(\/§, cos 0) T/ (Vs) — — YJ_%(\/E, cos0) T:F(\/E)} , (4.44)
in terms of the regular combinations
1—) p n—1
Y/(V/s,cos0) = (%) P!(cosB). (4.45)

While the transformation Eq. (4.36) is well known in the literature (see e.g. [87]), corresponding
transformations for the remaining processes studied in this work are not available. We continue with a
detailed analysis of the kinematical constraints in the production process 0~ + %Jr -1+ ;. Inserting
the decomposition (4.30) into Eq. (4.28) and applying the recurrence and the orthogonality relations of
Legendre polynomials as recalled in the Appendix relations (C.14), we can find

(L] = 521[ | o B b e, (D)

- waM (PamPem)’ " (c;;wz); %b} c:”w;))

e (pcmpcm)”i(ml(f ) (22{;) X mmm)

i% [\/%E (Pem Per)’ "2 ], (V5) - i\; By (P Pen)’ 2 2J+1(f)}
[ ar = T | o B (e ¢,y (V)

Bl ) (cij_;(ﬁ) T mm)

¥2 fla—E];(pcmpcm)“%(ml(f) (4(2;) e Wm)

(/D] = “T}LT[% 1) ;”M Ei@cmpcmy-%c;;_%wa

/EiEi - Ex
+J SMM :F(pcmpcm) J 1(\/_)+(J+1) M :I:(pcmpcm) 3J+1(\/_)

Ey E:I: 7
—J SMM :F (pcmpcm) + 3J+3(\/_)i| (4.46)
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From Eq. (4.46) we conclude that the helicity partial-wave amplitudes [t (v/s)],; vanish at the thresholds
and pseudo-thresholds. A detailed analysis reveals the conditions

/E _1
:F[ti(\/g)] 31 X E-_i (pcmpcm)J z,
+

( [6.(vV5)]s n 2] -1 [ti(ﬁ)]sl) .

E _1
'_:t (pcmpcm)J 2 3
+

E:t 2J +3 E:I:
[t (W/—)]ll qO [t (\/—)]21 qo -1 [ti(ﬁ)]gl E:I: _ J—%
‘/E ( pcm VG V2 pfm \/_ 2J +3 pgm x -_:I: (pcmpcm) 5 4.47)

valid close to |v/s| = |m £+ M| or |/s| = |m + M|. The kinematical constraints can be eliminated by a
non-unitary transformation only. We make the ansatz

[02,,0m] ¢

+,01-

g (=5 (5 LB UL, (449)

J

S 4MM
ELE,

cm pcm

where the factors s’ is introduced to arrive at an asymptotically bounded phase-space matrix for the
1‘%+ state. In (4.48), the nontrivial matrices U<(+/s) and U] (y/s) characterize the transformation for the
initial and final two-body states from the helicity basis to the new kinematical-free basis. For a two-body
state, U7 (+/s) can be recovered from U4 (+/s) by removing the bars. Using the condition (4.47), we find

sm O 0
E
\qu
Ui’lé(\/g)z T 1 o |, Ui’oé(ﬁ)=1. (4.49)

2J-1 +/5qo + [27-1
2J+3 V2E; 2J+3
It follows

[Ti,o%—q%(ﬁ)] = :l:s«/_( («/_)—Ei TA? («/_))

:FE:E

T 0+ VSE (Pem Pem)’
[T D], —i«/_( (/) - i,l(ﬁ))—m( ; (v5) - Hmben 4 (f))
V2T —1V2JT¥3 s EvEr -1
[Tiﬁ%*l%(‘@}sl_ 2J(2J+2) \/E[UH)A (V- sut3 Vs
(pcmpcm)2 j: T +%
-l U+ DAL, (V5 - AL (Vs) |, (4.50)
S >

where the functions Ali’n(\/E) were introduced in (4.39). Our result (4.50) proves that the expansion
coefficients are regular at s # 0. We note that also the inverse relation analogous to Eq. (4.44) is regular
at s # 0 in this case. Each sign inside of U{(+/s) (4.49) is deliberately taken for the MacDowell relations

[Ti(—i_\/g)] nl — [T:}{(_ﬁ)] nl> (451)

for the covariant partial-wave amplitudes. It is analogous to Eq. (4.41) but different from Eq. (4.29).
An analogous analysis is performed for the scattering of a spin-one off a spin-one-half states. Here we
consider the ansatz

J-3 Y
=i (=) e [

+11
cm Fem E:tE:t 13

] L WO ULLGE, 452)

:t 1113
with the transformation matrix Ui 11 (V9) already introduced in Eq. (4.49). Explicit computations reveal
T2

that the covariant partial-wave amplitudes introduced in Eq. (4.52) are unconstrained at s # 0.
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5 SU(3) coupled-channel dynamics

In this chapter we consider the scattering of pseudoscalar mesons off spin-one-half baryons based on
the chiral Lagrangian [31, 32, 39, 40]. Besides the octet of Goldstone bosons we consider the baryon
octet and decuplet ground states with J* = %+ and %Jr respectively. The leading order counter terms are
estimated by the inclusion of vector meson fields with J* = 1~ in the tensor representation. We collect
the tree-level coupled-channel interaction terms and compute the invariant amplitudes of Chapter 2
applying the projection method developed in Chapter 3. Following [45, 46, 61, 48] we solve the non-
linear dispersion integral equation (2.6) for the partial-wave amplitudes, where an analytic continuation
of the generalized potential is performed.

The main focus of our study in this chapter is the formation of baryon resonances with J? = %_. Itis
well known that such resonances can be dynamically generated by the leading order chiral interaction,
the Weinberg-Tomozawa term [17, 19, 23, 88]. Though a qualitative reproduction of the empirical reso-
nance states is possible, a quantitative description is still an open challenge. The details of the generated
resonance spectrum depend on the particular unitarization scheme applied [89, 90, 91, 31]. Also the
effect of the long-range forces implied by the u-channel exchange processes has not been investigated
systematically so far. So far either an on-shell factorization [60] or an on-shell reduction scheme [31] has
been applied. Both schemes break down in the presence of long-range forces. Given the novel scheme
introduced in [45, 46, 61, 48] studies of the effect of the u-channel exchange processes are possible now.
Here we apply this scheme for the first time to the formation of J* = %_ resonances via coupled-channel
dynamics based on the chiral Lagrangian.

A further interesting issue is the role played by vector-meson degrees of freedom. This depends on
the way the vector mesons are introduced in the chiral Lagrangian. In the phenomenology of the hidden
local gauge approach the t-channel vector meson exchange process contains the leading order Weinberg-
Tomozawa interaction of the systematic chiral Lagrangian approach. If the vector mesons are introduced
as heavy fields they start to contribute at subleading order only, i.e. they do not affect the Weinberg-
Tomozawa theorem but may be used to estimate the counter terms at subleading order. We will scrutinize
this picture by computing the effect of the t-channel exchange process on the resonance spectrum.

5.1 Chiral SU(3) Lagrangian

We recall the interaction terms of the relativistic chiral SU(3) Lagrangian density relevant for the meson-
baryon scattering process. For details on the systematic construction principle, see, for example, [12, 13,
92, 93, 14]. The basic building blocks of the chiral Lagrangian are

1 _—i®/2 i®/ —i®/2
Uy=1e @2 (g )@ v, B, B, (5.1)
where we include the pseudoscalar meson octet field ®(J” = 07), the vector meson nonet field Vo (J P =

17), the baryon octet field B(J? = %Jr), and the baryon decuplet field B, (J* = §+). The vector mesons are
represented by anti-symmetric tensor fields V,,, = -V, , [94, 95, 96, 97]. The parameter f in Eq. (5.1) is
the chiral limit value of the pion-decay constant [98, 40].

We assume perfect isospin symmetry and decompose the fields into their isospin multiplets

® =, =T-7(140)+ a' - K(494) + K'(494) - a + n(547) g,

Vi =7+ By (770) + @' - K., (892) + K1, (892) - @+ (2 + = 2Ag)e0,,, (782) + (2 — Y2 26),,,(1020),

V2B =V2BA, = a'-N(939) + AgA(1115) + 7 - %(1195) + E7(1315)ic? - a,

V2a© = (A, +ils, Ag +il,), T=(Ay, Ay, Ag), (5.2)

31



with the isospin singlet fields 1, w,,, and ¢,,, the doublet fields, e.g. K = (K*,K°)" and £ = (2°,27)",
and the triplet fields, e.g. % = (n!, n2, n®). The matrices A, are the SU(3) generators, also known as the
Gell-Mann matrices. The numbers in brackets recall the approximate masses of the particles in units of
MeV [32, 39]. The completely symmetric baryon decuplet fields B2* are related to the physical states as

111 _ A++ 112 _ A+ 122 _ A0 222 _ A—
Bl =AFt,  BI™=AY/V3, B2=AY/V3, B*=A],
BI¥=x1/V3, B®=3x0/V6, B*»=x /3,
BI*®*=20/v3, BX=E/V3,

B =0,

(5.3)

which combine to the isospin multiplet fields A(1232), $(1385), 2(1530), and Q(1672) [40].

In QCD the chiral G = SU(3), ® SU(3)z group is spontaneously broken down to the subgroup
H = SU(3)y ¢ G. This implies a non-linear transformation for massive fields coupled to the Gold-
stone bosons [12, 13, 92, 93, 14]. The transformation depends only the SU(3) flavour structure of
the field considered. For h € H, the transformations of the fields are

u,—hu,h”',  V,—hV, k', B—hBh', B —hih?hBIC. (5.4)

p'cw

Covariant derivatives of any of the fields are constructed

D;LB = 3AB + [FA,B]_ 5 D)LVMV = GAVW + [FA: VpW]— 5
(D;B,)* = 8,B3> + T4 B> + T B +T5 B, (5.5)

in terms of the chiral connection
Fk — % (e—i¢/2f(alei<b/2f) + ei<I>/2f (8A€_iq)/2f)) , (56)

such that they again have the transformation properties depending on their SU(3) flavour structures
only (5.4). Note that we use the notations [A, B], = AB + BA for SU(3) matrices A and B throughout this
work.

The chiral Lagrangian contains all possible interaction terms, formed with the fields U,, V,,, B, B,,
and their covariant derivatives. Further terms in the chiral Lagrangian that are proportional to the light
quark-masses of QCD are not discussed here explicitly. The relative importance of the various terms is
estimated by counting the number of ’small’ derivatives in a given vertex [12, 13, 92, 93, 14]. The form

of the kinetic part of the chiral Lagrangian is

. 1 1
Lyin =trB(iP — Mg)) B — f2trU, U — a tr (D, V) (D"V, ;) + 3 mfg] trv,, v+

—trB, - ((iD — Mp10))g"" — i(y*D” + 7" D*) + y*(iD + Mp10))r" ) By, 5.7

where mg), M(g), and M, are the masses of nonet vector meson, octet baryon, and decuplet baryon in
the chiral limit, respectively. In Eq. (5.7) we apply the convenient dot-notation suggested in [31]. The
objects B; - B, B; - ®, and & - B, transform as an SU(3) octet
(B -B,): =B} B, (B"-®)}=€""B] &, (&-B,)=ey,® B, (5.8)

where B, and B, are anti-decuplet and decuplet fields, ¢ is an octet field, and e, is the completely
antisymmetric pseudo-tensor.

Expanding the chiral connection I, in powers of the Goldstone boson fields, we can extract the leading
order two-body interaction, the Weinberg-Tomozawa terms, as

. _ 3 7 _
Ly = 8;fztrB y#[[@,(3,8)]_,B] + F tr(B" - 'B,)[4,(3,8)]

1 1
“%F tr(0,V*) [[,(3"®)]_, V,s]_ + ek [3,(3,8)]_ [&,(3")]_. (5.9)
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The first term in (5.9) reproduces the low-energy theorems of meson-nucleon scattering derived first by
Weinberg and Tomazawa applying current-algebra techniques [99, 100].
We collect all interaction terms with at most one derivative involved that contribute to the scattering

of a pseudoscalar meson off a baryon octet state at tree-level. The terms are sorted according to the
number of fields involved:

@ 1 1 2 1,
£ = trB(i7 — M) B+ 7 tr(3,8)(0") = 2 tr(3,V*)(9"Vi) + g miyy trV,, V'™
—trB, - ((i2 - M[w])g‘” —i(y"3" +7"0") + v*(i? + Mpyg)y" ) B

(3)__2 B oM _& B or
L= zfterYs[( $),B]_ trBy,ys[(0"®),B],

2f
- &tr ((B -(8"®))B+B((8"®)-B ))
2f u u
- F—VtrB [(6,V*),B]_ — &trB [(6,V*),B], — itrB Btr(8,V*")
2 v Yu v H - sz Yu v H + va Yu v

Frmy bo v Bl — L v Bo, [V, B] _Grm
8 fy R 8y R 8y
vt (3,9) V¥ (3,9),

g2

V -
trBo,, Btrv*"

2@ = 8—f2m§ r*[[®,(3,%)]_,B]_, (5.10)

where the F,, D4, Cy, Fy, Dy, Gy, Fr, Dy, G, fy, and hp are dimensionless and the parameter m,, carries
dimension of mass. Here we assume exact charge conjugation symmetry and parity invariance. Note
that the chiral Lagrangian that would lead to the terms in (5.10) is easily constructed by replacing
9,® — —2ifU, (or 2if U;). Derivatives acting on baryon fields in (5.10) must be understood as covariant
derivatives 9,B — D,B and J,B, — D,B,.

We collect the tree-level interaction terms contributing to the scattering of pseudoscalar mesons off
octet baryons: the Weinberg-Tomozawa interaction, the s- and u-channel octet baryon exchanges, the s-
and u-channel decuplet baryon exchanges, and the vector meson t-channel exchange. We write

lK(IS)Ol(kkW)— /\ }—4—&4—/«;\

(IS)
= @)

+§ 4f2 Gl V5AS 51 (P + DAY

+ Z 4f_2 C(I],AA }’545[8] (p—q)dvs

_ - ~@S) A) A
Z4fz CUs W PO@SLp + TP (@)

1
=277 Sl T - sE (p — DriP(-a)
o 4

) s )
+IZ4f2C[9]PXF£,P3(q,q)Gf’9? "@-9r;@-o, (5.11)
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where the sums run first over the vector (V) and tensor (T) couplings for the vector mesons, X €
{v, T}, and then over all baryon-octet and baryon-decuplet states with [8] € {Z, N, E, A} and [10] €
{A,, 2, B,, Q,} for the s- and u-channel baryon exchanges, but [9] € {p,, K\, ©,y, ¢, } in the case of
t-channel vector meson exchange. In Eq. (5.11) we use the generic baryonic vertices
A —
r'(q) = q,,
i imy

r@= 5 (e —aur), TR@=—5"renl-,

_ T _ T

FO@ =1, [F9@] v0, T =70 [T%@] 70, (5.12)

where X € {V, T} and the mesonic vertex
uv = 1 ~U -V u=v
L) @9 =5 (3" —4"7") - (5.13)

The FS?(Q) and Fé‘PV)(q,q) are anti-symmetric under exchange of the Lorentz indices. The vertices have
different dimensions, but it is easy to see their dimensions by counting the number of momenta in the
arguments of the vertices. The propagators of the octet and decuplet baryons and the nonet of vector

meson can be directly derived from £® in (5.10) as

1

Stgilp) = —, (5.14)
(8] p _ M[S]
P+ Mpq 1 1
St P) = —5——5— | —¢" + pPp" + (r*p” —y"p") + =y"r” (5.15)
10 2 2 ’
[ ] p2 - M[lO] 3M[10] 3M[10] 3
2 2
1 1 POV O — gvpkuk()' k*— m[g]
GErP (k) = [_ ( y ) + D (g —gPg™) | . (5.16)
[9] 2 _ 2 2 _gho V1P VO WP 2
k M) Mo, ghokv kP + g kM k mly,

It remains to specify the coupled-channel structure of the diagrams. This is done in terms of the

. (1S) AUS)  AIS) AILS)  ALS) (1,S) : . .
Foefﬁc1ent§ Cwr > Crgpanr Cralaw C_:[10] w0 Criojan and Crol px that are 1HFI'Od1:1C€d in Eq. (5.11) and detgﬂed
in Appendix D. We use a convention for the coupled-channel states as implied by Tab. (5.1) and explained
in [85, 31]. In the SU(3) limit the meson-baryon scattering channels can be decomposed into flavour

invariants according to the following decomposition

8R8=198484100104 27,

3
(£,0) 20)
2 (]'J _1)
(I)S)1=(0>_1)7 (I7S)B= (1,_1), (07_1) ) (115)10: 1 _2) )
(i,-2) 2’
(0) _3)
(1,1)
o 2.0), (2,0
(I)S)l_(): 2_ > (1:5)27: (2;_1)7 (1’_1); (0’_1) . (517)
(1,-1) 3 1
3 _2) (_7 _2): (_’ _2)
2 (17 _3)

Consequently, the scattering problem decouples into eleven orthogonal channels specified by isospin (I)
and strangeness (S) quantum numbers

(1,8) € {(0,1), (1,1), (5,0), (3,0), (0,-1), (1, 1), (2,-1), (5,-2), (3,-2)(0,-3), (1,-3)}.  (5.18)

The various channels contributions in a given sector (I, S) are listed in Tab. (5.1).
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(0,1) (1,1) >,0) £,0)
%(ﬁ-&N} o
(L&Tio,N) | (LK io,6N)) EZI/\G (%YT};D
5 (%-3K)
(0,-1) (1,-1) (2,-1) > —2)
%(KN) lE(R'&N) (1(n-2-+n-2-)—15~ﬁ-f) (io,KTA)
(nA) ﬁ(nfl) 2V Jei 371J %(2.5’-1‘02[’(7")
L (kTig. = -
ﬁ(K lO'2'—') \/LE(KTI-O'ZO_,'E) (T)._‘)
(5,-2) (0,-3) (1,-3) 5 —4)
(- TE) - -
(o) | =) (479)

Table 5.1.: The coupled-channel states of 8 ® 8 characterized by isospin (I) and strangeness (S). The Pauli
matrices o; act on isospin doublet fields, e.g. N and K. The 4 x 2 matrices T; describe the
transition from isospin % to % states. We use the normalization implied by T - T" = 1, and

T — _1
Ti T]_6lj]]‘2 30'1'0']'.

5.2 Unitarity and causality

In [45, 46], the authors show how to improve the convergence of strict chiral perturbation theory by an
analytic continuation of subthreshold partial-wave scattering amplitudes. As compared to strict chiral
perturbation theory the applicability domain is extended towards higher energies beyond the threshold
region into the resonance region. The extrapolation of the amplitudes is performed insisting on the basic
principles of analyticity and unitarity. A non-linear integral equation (2.6) is imposed on the covariant
partial-wave amplitudes T7(+/s) introduced in Section 4.1,

¥ dw 5 — py T{W) pL(w) T (W)

1
T W— Uy w— /s —ie (5.19)

TI(5) = U (J5) + J

Mthrs

which separates contributions from left- and right-hand singularities. In Eq. (5.19) coupled-channel in-
dices are suppressed and a summation over all possible two-body intermediate states is implied. The
phase-space matrices p7(4/s) are given in (4.37). The generalized potential UJ(+/s) contains left-hand
cuts only. The relation (5.19) illustrates that the amplitude possesses a unitarity cut along the posi-
tive real /s axis starting from the lowest s-channel threshold. The structure of the left-hand cuts in
U(+/s) can be analyzed by assuming the Mandelstam representation [59, 51] for the invariant ampli-
tudes F¥(4/s, t) introduced in Chapter 2. The same result would follow by an examination of the structure
of Feynman diagrams in perturbation theory [101]. The form of the analyticity domain of partial-wave
amplitudes as implied by basic principles of quantum field theory is discussed in [102]. For a given ap-
proximation of the generalized potential any solution of the non-linear integral equation (5.19) satisfies
the coupled-channel unitarity constraint exactly.

The key issue of our approach is an analytic continuation of the generalized potential by means of
suitable conformal variables. The potential is split into two parts, an inside and an outside parts:

= deJ outsi e(g—l(g))
Ui(\/g) = U:{:,inside(‘/g) + Ui,outside(‘/g) > U:{:,outside(‘/g) = Z = k! ilgk I:g( \/E)] k : (520)

k=0 £=0
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Figure 5.1.: Singularities in the covariant partial-wave amplitude for TN — 7N.

The inside and outside parts are separated by a closed contour Q as exemplified in Fig. 5.1 for the
case of pion-nucleon scattering. While contributions that are characterized by cut lines lying inside the
domain Q are computed explicitly, contributions that are determined by cut lines outside the domain Q2
are expanded in terms of a conformal variable. The latter contributions can not be resolved within an
approach based on the chiral Lagrangian. They probe short-range physics that can not be predicted by
the chiral Lagrangian. Nevertheless this physics can be treated in a model-independent manner using
conformal variables. The convergence boundary of the conformal mapping £(+/s) is identified with the
closed contour C in Fig. 5.1.

It is emphasized that an analytic extrapolation of the generalized potential is an indispensable part
of the unitarization scheme applied. An attempt to compute the generalized potential in strict chiral
perturbation theory is futile, since such an expansion breaks down at too low energies and therefore is
unable to describe the generation of baryon resonance in a controlled manner.

To be specific we consider the case of pion-nucleon scattering [68, 103], for which we recall the
analytic structure of its partial-wave amplitudes. In the center-of-mass frame, the Mandelstam variables
t and u can be simply expressed in terms of the s, the scattering angle 6, and the masses as

MY —2M2 (m? +5)+(m? —s)?
t =(cos —1) X N(nz )+ (my ),
S

u:2M£+2mi—s—t. (5.21)

Apart from the s-channel unitarity cut, i.e. (My +m,)? <s < oo, there are the u-channel and t-channel
cuts in the complex s plane. The leading u-channel branch points are determined by the one nucleon
and the pion-nucleon two-body exchanges. According to the Landau condition [73] branch points may
arise through the endpoint singularities at cos @ = £1 and u = M2 or u = (My + m,)*. This leads to the
u-channel cuts on the real s axis as follows

2 2
(MN —m,

2
v ) <s<M§,+2m721, —00 <5 < (My—m,)>. (5.22)
N

The leading t-channel branch point is determined by the two-pion exchange process. Here the Landau
condition suggests cos = £1 together with t =4m?. This leads to a branch point at

s= A% = Mf, —m?. (5.23)

T
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When multi-pion exchanges are considered in the t-channel the corresponding branch points become
complex, but its modulus is unchanged. Consequently, the t-channel cuts form a circle in the complex s
plane as follows

s= AS el?, (5.24)

where ¢ € (—n,+n] is a polar angle. The singularity structure of the nN scattering amplitude is explicitly
shown in Fig. 5.1. Note that in the /s plane as used in Fig. 5.1 each cut has its mirror partner (/s — —/s),
because they originate from a Mandelstam representation written in terms of s, t, and u.

In the case of TN — N, our particular choice of the domain Q is shown in Fig. 5.1 [45]. The associated
conformal mapping is specified with

a; (A, — V5> — 1 1 1

= 2t — vl YT T oA

(5.25)

with the expansion point uy = My +m, and Ay = /M2 — m2. The parameter A plays the role of a cutoff,
it determines to which energies the conformal expansion converges on the real /s axis. On the real axis
convergence is guaranteed in the interval /s € (A, A;). The conformal mapping (5.25) was suggested
in [45] as a superposition of the function (A, — +/s)? and a Mébius transformation. The inverse mapping
is

Vv1+x

g )= A~ : (5.26)
Va +(2a;—a;)x
The boundary line Q in Fig. (5.1) is determined by the condition
VseQ o for  s=&(e!?)  with ¢ e(—m +n]. (5.27)

For energies /s > A,, we could simply cut off the integral in (5.19). However, that would lead to a
pronounced cutoff effect in the scattering amplitude at A,. Since the scattering amplitudes should not
depend on the precise value of the cutoff scale we follow [45] and eliminate such a dependence. The
outside part of generalized potential is continued by a constant for /s > A,. Since it holds £'(A,) =0
a smooth behavior of £(4/s) at /s = A, arises. Given this prescription for the generalized potential the
integral in Eq. (5.19) can be extended to infinity. Note that owing to the boundedness of the phase-space
function p7(v/s) and the presence of the matching scale u,, in Eq. (5.19) the influence of the region
A, <w < o0 is largely suppressed.

For a given channel the parameters u; and A, have to be determined. The expansion point uy is
identified to be the mean of the two threshold masses

1 _
,uEZE(M-l—m+M+rﬁ). (5.28)

The parameter A, is set by the condition that all loop contributions to the generalized potential contribute
to the outside part of the potential only. This unambiguously defines the value for A, for any considered
channel, though a detailed analysis of the singularity structure of each channel needs to be performed.
In the case of the pion-nucleon potential A, is determined by the t-channel branch point implied by the
two-pion exchange contribution in the t-channel as it arises at the one-loop level. As a consequence the
inside part of the potential is fully determined by the tree-level expressions Eq. (5.11). To this extent we
may say that left-hand cut structures implied by loop effects are integrated out systematically by being
moved into Ui’outsi 4(v/5). Note that the latter receives contributions from Eq. (5.11) as well.

The value for the matching scale u,, and cutoff scale A, should be universal in a given sector specified
by isospin and strangeness (I,S). Following previous works [31] we identify the matching scale with

,ujzw =m?+ M?, (5.29)

5.2. Unitarity and causality 37



where m and M are the meson and baryon masses of the lightest channel in the given sector. At leading
order the results may show a small residual dependence on the choice of the matching scale. Large de-
pendencies are ruled out since the scattering amplitude is expected to have a perturbative representation
in the close vicinity of the matching scale u,, [31]. The particular choice of u,, turns fully irrelevant at
a precision level where local counter terms allow to shift the strength of the generalized potential by a
small constant. A typical value for the cutoff scale A, is

Aj=m+M+2m,, (5.30)

where in this case m and M are the meson and baryon masses of the heaviest channel in the given sector.
In Eq. (5.30) the size of the Hilbert space is set to be two pion-mass units larger than the largest channel
mass considered. This is a typical value used also in previous studies [47, 104, 105, 48]. In any case the
dependence on that particular choice has shown so far to cause very minor effects [45, 46, 47, 104, 105,
48].

Given an approximated generalized potential (5.20), a solution of the non-linear integral equa-
tion (5.19) can be constructed by the N/D technique [106, 70]. We represent the covariant partial-wave
amplitude by a quotient

T{(v/s) = [DL(Vs)] ' N{(Vs), (5.31)
where analytic functions NJ(/s) and D.(+/s) contain the left-hand cut and the right-hand cut on the real

/s axis respectively. These two functions can be numerically solved by the following system of linear
integral equations

o e [T dw VE = py N{) pl(w)

Di(\/g)_]l J;thrsﬂ: W — Uy W—\/g 2
00 _ J J J 77t

Ni(\/g)=Ui(\/§)+J d_W\/g Uy Ni(W)Pi(W) [Ui(W) Ui(\/g)] ) (532)
s & W T M w— /s

Standard matrix inversion algorithms suffice to obtain stable numerical solutions to (5.32).

5.3 Parameters and results

Our main goal of this section is the study of the dynamical generation of baryon resonances with J? =
%_. The existence of the s-wave resonances N(1535), A(1405), A(1670), and 2(1690)! was predicted by
previous coupled-channel computations based on the leading order chiral interaction [39, 108]. The
leading order interaction, Weinberg-Tomozawa term, is parameter free in the sense that the value of f

may be determined by other processes not considered in this work. Following [31] we use
f ~90MeV. (5.33)

For the mass parameters which enter the computation we take the isospin averaged values from the
Particle Data Group [107].

Within our unitarization scheme various J? = %_ resonances close to their empirical masses are ob-
tained. The pole position on some higher Riemann sheet defines the mass and half-width of the corre-
sponding resonance through its real and imaginary parts, respectively [109, 39, 108, 110]. The results
for the pole masses based on the Weinberg-Tomozawa interaction only are collected in Tab. 5.2. The

1 The quantum number J¥ assignment for the Z(1690) resonance needs a confirmation [107].
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Figure 5.2.: Unitarity cut for (1,5) = (0,—1).

table provides in addition the modulus of the resonance coupling strengths g; to the various channels.
Close to the pole the scattering amplitude can be factorized into

8&iMprg;

Tl‘j(\/g):_ﬂ
R

(5.34)

Signals of the four stars N(1535) and N(1650) resonances are found in the (I,S) = (%,O) sector. Both
states couple most strongly to the closed K% channel. Their masses are within 50 MeV of the empirical
estimates. Since the masses of the resonances are not accurately reproduced at this leading order the
widths of the two states are not realistically described here. It is interesting to observe that, in contrast to
previous studies [111, 112, 109, 39, 108, 113, 114], our improved unitarization scheme does predict the
N(1650) resonance with reasonable properties at leading order already. The three star £(1690) resonance
shows up in the (I,S) = (2, —-2) sector. It provides a clean and narrow peak in the KX — K% amplitude.
We find also a pole associated with the three star ¥(1750) resonance in (I,S) = (1,—1). Its existence is
not strongly seen in the scattering amplitudes since the pole is found on the 4th Riemann sheet only. A
further pole on the 5th Riemann sheet at 1.940—i0.152 GeV, not included in Tab. 5.2, has an even smaller
influence on the physical scattering region.

Of particular interest is the (I,S) = (0, —1) sector with two resonances, the A(1405) and A(1670). Both
states are obtained with masses quite close to their empirical values. While the A(1405) pole is located
on the 2nd Riemann sheet the A(1670) pole is on the 3rd sheet. The corresponding unitarity cuts are
shown in Fig. 5.2. In Fig. 5.3 the resonance parts of all coupled-channel partial-wave amplitudes

R(Vs)=T(Vs) - U(Vs), (5.35)

are shown. The scattering amplitudes KN — KN and KZ — KE show particularly strong evidence of the
A(1405) and A(1670) resonances, respectively. In the KN — KZ and nA — KZ reaction amplitudes, both
resonances are clearly visible [25, 115]. For the A(1670) resonance the most relevant channel in a future
comparison with empirical data is the KN — nA amplitude. In contrast to previous studies [28, 116, 117,
118, 119] we do not confirm the existence of a second resonance to the A(1405) state. As already been

(1,S) || Resonance Mg [MeV] lg;l

(%,0) 18N |gnN| lgxal  18kxl
N(1535) 1485.0—-0.11 0.096 1.447 1.180 2.547
N(1650) 1707.5—143.5i 1.440 1.986 1.456 4.895
(0,-1) 18-s  |g&wl |gnA| |gx=l
A(1405) 1417.1 — 6.61 0.795 2.832 2.011 0.894
A(1670) 1638.0 —17.5i 0.488 0.809 1.661 5.004

(1,-1) I8l |grxl 8Nl 180zl 18ksl
£(1750) 1806.7—39.1i 1.018 0.993 0.995 1.945 2912
%:'2) |gﬂ:E| |gK'A| |gf<2| |g7’,E|

2(1690) 1667.3 — 3.61 0.274 0.506 2.766 2.107

Table 5.2.: Pole positions and coupling constants of J? = %_ resonances with isospin (I) and strangeness
(S). The results are based on the leading order Weinberg-Tomozawa interaction only.
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Figure 5.3.: The resonance amplitudes R(/s) with J? = %7 and (I,S) = (0,—1) as introduced in Eq. (5.35).
The solid and dotted lines show the real and imaginary parts of the amplitudes, respectively.

The results are obtained with the Weinberg-Tomozawa interaction term only.

emphasized in [120] the fate of such a second resonance depends decisively on the details of the chosen
approach.

In the following we provide a detailed analysis of subleading effects in the formation of the A(1405)
and A(1670) resonances. The s-, t-, and u-channel exchange terms lead to several parameters which
need to be estimated. They are in part well constrained by empirical data. There are ten dimensionless
parameters F,, D, C4, Fy, Dy, Gy, Fr, Dy, Gr, and hp and three parameters my, f, and f;, of dimension
of mass. The parameter hp in (5.10) is determined from the p — nn decay process (see e.g. [121, 122,
123, 124])

hp ~1.93, (5.36)

where the positivity of the coupling constant defines our phase convention for the vector fields. Given
the convention introduced in [125] the size of h, depends on the particular value used for parameter f
and f,. Since the parameter f, was introduced in [125] as the transition matrix elements of the light
vector mesons to the vector current of QCD the value of £, is determined

fv ~140MeV, (5.37)

from electromagnetic properties of the light vector mesons [125]. In our work only the particular com-
bination f; hp/f? that determines the p — n7 decay width enters.
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The parameters F, ~ 0.45 and D, ~ 0.80 are deduced from the weak decay widths of the baryon
octet states [126] and C, ~ 1.6 can be derived from the hadronic decay width of the baryon decuplet
states [127]. The choice C, > 0 defines our phase convention for the decuplet fields.

We turn to the parameters Fy, Dy, Gy, Fr, D, and G; that are least well known. Constraints can be
deduced from phenomenological estimates of the p and w meson coupling strengths to the nucleon. The
PpNN and wNN coupling constants introduced in [122, 128] can be related to our coupling constants Fy,
Dy, and G, as

vav+FV
= ——— ~3.25,
8pNN o D)
my Dy +Fy +2G
8wNN = — v =V ~117, (5.38)
fv 2

where we recall the phenomenological values obtained in [122, 128]. The three parameters
D, ~-0.18, F,~135, G, ~1.53, (5.39)

are obtained from (5.38) supplemented by the OZI rule [129, 21, 22, 130]. The latter implies the
approximated vanishing of the ¢ NN coupling constant

”lVEV IV GV
_NO. (5. 0)
E8oNN = [ /2 = 4

The positivity of the coupling constant F,, > 0 may be inferred from the phenomenological assumption
of universally coupled light vector mesons [123, 124, 131, 96].

It remains to arrive at an estimate of the tensor coupling constants D, F;, and G;. They always appear
in combination with the mass parameter m,. Following Ref. [125] we identify m, = 776 MeV with the
averaged mass of the p and w mesons. The tensor coupling strengths x,yy and x5y of [122, 132, 128]
suggest

My Dy +Fp
Koy = ——TT T ~6,
my DV +FV
My Dy +Fy +2Gy

N ~0, 5.41
my DV+FV+2GV ( )

Konn =
where M), is the mass of nucleon. Together with (5.38) and (5.40) they lead to
DT ™~ 4.83, FT ~ 1.56, GT ~ _3.27, (5.42)

where we enforced the OZI rule for the tensor coupling constants.

Given our estimate for the parameters relevant at subleading order we return to our study of the
A(1405) and A(1670) resonances. Besides the pole masses we will show results on the two reaction
amplitudes, KN — K= and nA — K= which clearly exhibit both A resonances.

We consider four parameter sets, see Tab. 5.3. While parameter Set 1 corresponds to the leading order
ansatz, where the Weinberg-Tomozawa interaction is considered only, the last Set 4 takes all processes
as described in Eq. (5.11) into account. In Set 2 the effect of the Weinberg-Tomozawa term together
with the s- and u-channel baryon octet exchanges is considered. In Set 3 all terms but the t-channel
vector meson exchange term are included. As compared to Set 2 in Set 3 the s- and u-channel exchanges
of the baryon decuplet are incorporated in addition. The implications of the four parameter sets are
collected in Tab. 5.4 and Fig. 5.4, where the resonance amplitudes for the two reactions KN — K= and
nA — KZ are shown. We discuss the consequences of the four choices. Switching on the s- and u-channel
exchange terms of the baryon octet states leads to a minor effect. As seen in Tab. 5.4 the pole positions
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set# | Fy, Dy Ci hp
set 1 0 0 0 0
set2 | 0.45 0.80 O 0
set3 | 045 0.80 1.60 O
set4 | 0.45 0.80 1.60 1.93

Table 5.3.: Parameter sets characterizing the various contributions of tree-level interactions (5.11). The
contribution of the Weinberg-Tomozawa interaction only to resonance plot is presented as
the set 1. F, # 0 # D, and C, # 0 indicate the contributions of the Weinberg-Tomozawa
term together with the octet and decuplet baryon exchanges, respectively. The set 4 takes all
tree-level interactions (5.11) including nonet vector meson exchange.

of the two A resonances move by about 5 MeV only. The coupling constants change by less than 2% as
compared to those of the Weinberg-Tomozawa scenario of the parameter set 1. In Fig. 5.4 the solid blue
and dotted red lines are barely distinguishable. We turn to the parameter set 3, for which we see sizeable
differences as compared to the sets 1 and 2. The mass and width of the A(1405) state are pulled towards
their empirical values. While the set 1 underestimates the empirical width of the A(1405) with about 50
MeV, by about a factor 4, the consideration of the baryon decuplet brings the total width to about 74 MeV.
The resonance coupling constant for the A(1405) changes most significantly when switching on the effect
of the baryon decuplet exchanges. Only minor effects are seen with the parameter set 4 where the vector
meson exchange is considered in addition. For the A(1690) all four parameter sets are consistent with
the empirical width of about 25-50 MeV, however, the resonance mass is underestimated systematically.
Again the effect of baryon decuplet exchanges is most important.

The present study is partial and requires a substantial extension. So far the effect of the symmetry
breaking counter terms has not been considered. All results are based on a leading order truncation
in Eq. (5.20). Once the residual symmetry conserving parameters that are available at the subleading
chiral order is included it is justified to consider subleading terms in the conformal expansion. A detailed
comparison with scattering data is required to arrive at an accurate determination of the parameter set.

(1S) || Resonance Mg [MeV] |8rel  [8&n|  lgyal  Igk=l set #

(0,-1) A(1405) 1417.1-6.6i 0.795 2.832 2011 0.894 setl
1423.3—-7.5i 0.841 2.578 1.924 0916 set2
1412.9-37.9i 2213 3.930 3.016 2921 set3
1412.2—-39.9i 2301 4.052 3.111 3.144 set4

A(1670) 1638.0—-17.5i 0.488 0.809 1.661 5.004 setl
1633.9—-17.1i 0.396 0.855 1.679 5.082 set2
1594.0-23.1i 0.518 0.993 1.981 5.673 set3
1595.9—-24.7i 0.566 1.002 1952 5.658 set4

Table 5.4.: Pole positions and coupling constants of the A(1405) and A(1670) resonances according to the
four sets of parameters in Tab. 5.3.
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Figure 5.4.: The resonant amplitudes for the KN — K= and nA — KE reactions with (I,S) = (0,—1). The
I.h. and r.h. panels show the real and imaginary parts of the amplitudes, respectively. The

results for the parameter sets 1, 2, 3, and 4 are indicated by solid blue, dotted red, dashed
greed, and dot-dashed gray lines.
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6 Summary

In this thesis we have paved the way for a systematic test of the hadrogenesis conjecture. Hadrogenesis
gives a systematic framework for resonances in QCD via coupled-channel dynamics. It relies on a selec-
tion of quasi-fundamental hadronic degrees of freedom in QCD with J” = 07,1~ and J? = %Jr, §+ quan-
tum numbers. The selection is guided by properties of QCD in the large-N. and the heavy quark-mass
limit. Systematic computations of scattering and reaction amplitudes involving the quasi-fundamental
hadronic degrees of freedom are asked for that are consistent with the coupled-channel unitarity condi-
tion and the consequences of micro-causality. Such computations have not been performed systematically
so far. The micro-causality condition implies specific analytic properties of scattering and reaction ampli-
tudes. Mandelstam formulated appropriate dispersion-integral representations for invariant amplitudes
that are consistent with the micro-causality condition. For two-body boson-fermion scattering and reac-
tion amplitudes involving fields with J* = 07,1~ and J* = %+, §+ quantum numbers their generic analytic
structure has not been studied systematically before. In this thesis we provided a first comprehensive
study. Suitable Lorentz-Dirac tensors were identified in terms of which the scattering and reaction am-
plitudes can be decomposed. The challenge here was the finding of bases sets that imply invariant
amplitudes free of kinematical constraints and therefore are expected to satisfy Mandelstam’s dispersion
integral representation.

In practical computations it is crucial to derive explicit results for the invariant amplitudes. As the spins
of the involved particles increase the number of invariant amplitudes increases rapidly and therefore a
computer algebra approach is indispensable. For instance, assuming parity conservation the scattering
of a spin-one boson off a spin-three-half fermion is characterized by 72 distinct invariant amplitudes
that have to be computed. For that purpose we developed a projection algebra that permits an efficient
derivation of the invariant amplitudes. A Mathematica code based on the FeynCalc package was written,
so that any tree-level Feynman diagram can be decomposed into its invariant amplitudes.

Coupled-channel unitarity is most efficiently realized in terms of partial-wave amplitudes with good
total angular momentum J. Though it is straightforward to introduce such amplitudes applying the he-
licity formalism of Jacob and Wick, it is much less trivial to respect the consequences of micro-causality
as implemented with partial-wave dispersion relations. The challenges are kinematical constraints in the
helicity partial-wave amplitudes that have to be eliminated systematically. In a non-relativistic frame-
work this is achieved using angular momentum L states rather than the helicity eigenstates. However,
for relativistic systems this turns into a more complicated task. Kinematical constraints at thresholds and
pseudo-thresholds occur and both must be eliminated. In this thesis we exemplified this problem and
resolved it for two-body states composed out of a J* = ; fermion and a J® = 0~ or J¥ = 1~ boson. A
non-unitary transformation of the helicity partial-wave amplitudes to covariant partial-wave amplitudes,
which is well suited to be used in partial-wave integral-dispersion relations, was suggested.

In the final part of the thesis we worked out a physics application. The formation of J* = %_ resonances
was reinvestigated. Our approach is based on the relativistic chiral Lagrangian with the baryon octet and
decuplet fields. In order to estimate the size of the leading order counter terms the nonent of light vector
mesons with J* = 1~ was included in the tensor field representation. Based on that chiral Lagrangian the
coupled-channel partial-wave scattering amplitudes with J? = %7 were analytically extrapolated from
the threshold region into the resonance region where the extrapolation was stabilized by the unitarity
condition. The extrapolation was performed in the following way. In a first step, the covariant partial-
wave scattering amplitudes were separated into parts with left- and right-hand cuts. The left-hand
cut part defines a generalized potential, where two types of contributions were taken into account.

Contributions from close-by left-hand cuts were derived from the chiral Lagrangian directly. In our case
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they stem from the baryon octet u-channel exchange process. The contributions from distant left-hand
cuts were extrapolated to higher energies using a conformal expansion. The expansion coefficients were
determined from the chiral Lagrangian. Finally the right-hand cut part was derived as a solution of a
set of non-linear integral equations. The latter combines the constraints of micro-causality and coupled-
channel unitarity. In the resulting partial-wave amplitudes we searched for resonance poles on higher
Riemnan sheets. In particular the role of the long-range forces implied by the u-channel exchange of the
baryon octet states was investigated.
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A Completion of projection algebras

In this appendix, we summarize the projection algebras Q%"," for the reactions of a boson with J* =0~ or

1~ and a fermion with J? = 1" or %Jr that were not given already in Chapter 3. The results are expressed

in terms of auxiliary tensors P that satisfy the same on-shell conditions as the projection tensors Q%",".
In the derivation of our results, the following kinematical relations are useful

v2=s((F-r)*—7*r?),

v (r- ) =s(F-r), vi(ri-r)=—-sr?,
swiew)=1+3(6+1)(6 - 1D)s(F1- ),
swiew)=1+3(6 - 1)(6+1)s(ri- ),

v (riow)=—3(E+1Ds(F-r),

UZ(T‘l-WL):—%(S—l)S(T_"T‘),

w-P)==306+1), W-P)=-36-1),

(wj-f)_——(5+1) (WL-F)———(S—I) (A1)

The results are sorted according to the compelxity of the expressions.

A1 0 +2" 517427

For the twenty-four invariant amplitudes FF introduced in (2.57), we find the projection algebra

- tr(T(") QY R) =684, (A.2)

a ,uvv

with a QW =0, Py Q“” =0= AQ“W Ay;, and P QW =0=7,A Q“W
;,Wv S S \/§ = avv = avv - ovy = avy
QL =—( —1)—T(r-r)EﬂE (F-r)PLs —EEs Py — VSE- (F-r)Py) —ELEyP_)

—2—£(F F)Ei([(r PP — eqp;‘”;] — 5By [(f"‘)Pi,VsV—E;EﬂFPi;VD

+%(5—1)ﬁEiEiPiW:I: Vs(F-r)PIY + ;/[Ei (sEePLY — Vs PEY + ELPEY ),
QY =2 % BB [(F-r)PLy — BB PEY | + PEY
:I:%(S—i—l)%Ei([(r N + BB QY| 7 B [y - i B QY ] ) + 216+ DAY,
QLY =-2 iz E. By [(f -r)PYY —ELE; P]’FW;] + P

F s B ([ QY + BB | £ B [(onQlY - B2 B2 QY ),

Q!:_ﬁ/l — [ H,Vv \/_E P,uvv] - (]’\'4]:;) Qiq’/; TQIWV \/_Qlwv
Vs

<1 (5_1)(5_1)_(Q“W — EEy [(r r)Q“W—FEiE Quw])

47



S o = Vv avy
F (61— B [(F-)Q) +EELQY ]

vV \/g = avy = avv 1 avy
QM = [(F'T‘)P:Ié’l _E:EE:I:P:'::LJ]:FEQZL:’],
Mvv —:I:\/_PIWV + = in;/ - TQIWV + %(5‘+1)£M [( )quv +E:|:E:|:Qlwvi|
+1(5- 1)—Ei [(r NQYY +ELE, Q‘””] +16- 1)£Ei [(r QLY —F EiQ’Wq

YRl [y +ELEL QY ],
v

Q¥ =+ 5Pl ¥ TQ’Mi (6 -1 — B [(F- Qs + BB Q| + fEi [GrQly - BB Q]
QY =+ VEPE B [+ BB Q] + Y B [~ Er Q]
Q= [(F~r)P:‘;V1V2—E¢EiPi”12] - Q“W:I: £M[(r QL + BB QY |

+1E-DE+ D QL +3(6- )L—Ei (G- rQy +Er EL QY |

i%(5+1)ﬁ(sEi [(r QY +ELE Q“W] JsM [(r NQYy +Ex EiQ“W]

_ E - -
ovy + avv

e |- naf] ‘MMa 2]

QY == |(F-r)PPY — B EL P | - ‘/_E (F-r)QYY + ELE. QY
+10 — .11 +F1 17 + |(F-1)QL, +ELEZQ,

+1 (5—1)(5+1)—(r Ny +1 (5+1) (—f QA+ [y + BB QT ]),
]_«/_

a9 s _
avv. _ 2 |- avy avy
Qn=—7 {(r r)Prio — ExEx Py g

|[(F-rQy + BB Q|

+1G+ )—([(r QY F =B E Q“W] +E, [(r QY +ELE Q“WD,

\/_
vy S P[m‘/v E E P[Wv S o . avy \/_ - = avy
Q2 = 2 (F-r)Prg —ExExPig +ﬁ(r'r)Qi,4q:ﬁ(r F)QL
S Vv H’VV \/g_ H’VV MVV
F o B [(FrQEY FE B Q| - T B [(F Q) B QR
where
PJ‘Z?ZU’1 [rY 7 Pe+ 0" 0¥ (s/v?)ELEL Po/v? — 1" vY (Vs/v*)Exiys Pr + v 7Y (Ws/v?) Eriys P2 ] /02,

sz’v_zV =P [r" w" P+ 0" W (Vs/v*)Exriys P — 1" vViys ((F-r) Py + M Ey P.)/v?
+ 0" v (Vs/v?)EL ((F-r) Pz £ M E; Py)/v?]/v?,
Pi‘gv =P [w' 7" Py —w" 0¥ (V5/v*)Exiys P+ v" 7V iys ((F- 1) Py & M Ey Py)/v?
+ 0" 0¥ (V5/v*)Ex ((F 1) P % M Eg P.)/v*] /0%,
P = v [w¥ W Pe+ " v {(1/s) Py + (6 —1)(6 — 1)(s/v*) EL EL P+
F 36 -DWs/vOM((F-r)Py — ELEL PL)F 3 (6 — 1) (Vs/v?)M((F - r) Py — EL B P)}/v?
—w v iys((F-r)PL £ MELP)/v*+v" W iys((F-r) Py + ME4 Py)/v?*]/v?,
PE? =rf [ 7 iysPe+v" 0" (s/v*)EL Eziys Po/v2 4+ 11" vV (Vs/v*)Ex Py — v 7Y (Vs/v*) EL P.],
Pf_z’v_ﬁV =r" [ wiysPr —v" W (Vs/v?)EL Pz + 1" vV ((F-1)Ps F M ELPy)/v?
+ v 0¥ (Vs/v?)Eyiys((F-r)Pr F MELPL)/v?],
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PEY = [w 71 iys P +wi v¥ (V5/v?) Ex Py — v¥ 7" ((F - 1) Py & M E¢ P.)/v?
+ 0" 0¥ (Vs/vP)Eziys((F-r)Py+ MEyPy)/v?],
PE’V_BV =rf [w'w"iysPs+0v"v" {Q/s)iys P+ % (6-1)(6 - 1)(5/1}2)EiE:Fiy5P:F

£ 26 -DWs/vHMiys((F-r)Py —EL E- P F £ (6 — 1) (Vs/v?)Miys((F-r) Py — Ey Ex PO}/ v?

+w’ 0" ((F-r)Pr F MELP.)/v>— v W ((F-r) Py + MELPy)/v?],

Piv_g“’ =wf [r" 7 iysPe+v" 0" (s/v?)ExEziys Po/v? + 1" vV (Vs/v?)Ex P — v" 7Y (Vs/v?)EL P. ],

PETY —wit [r W iy Py — 0" W (vV5/v2) By Py + 10 0" ((F- 1) Py F M By Py)/v?
+ 0" vV (Vs/vP)Esiys ((F-r) P F MELP.)/v*],

P =wf (w71 iys Pe+w’ v (V5/v2) Ex Py — " 7Y ((F- 1) Py & M E- P,)/v?
+v" v (Vs/v?)Eziys (F-r) Pz + MELP.)/v?],

P =wf [w W iys Py + 0" 0" {(1/)iys Py + 2 (6 —1)(6 — 1)(s/v*) Ex Exiys Py

£ 26 -D(5/v)Miys((F-r)Py —ELE- PL)F 3(6 — 1)(Vs/v*)Miys((7-r) Py — EL Ex PL)}/v?

+w v ((F-r)PL F MELPL) /v —v" w" ((F-1) Py £ ME-Py)/v?].

(A.3)

A2 1 +1" 517427

For the thirty-six invariant amplitudes Ff introduced in (2.56), we derive

1 —
5 tr(TéEw AQYYA) =5 8ap,

with ¢z QL'f =0, quQ4f =0, and P QLY =0=AQ ' Ayy,

- ) s 5 o ] o - ] o -
Q=36 -1) 5 = (r NEs (s ELE. [(r )PEF _FLE, Pﬁﬁ“] + V3E; [(r )P ELE, ngz“]

— VsEy [(f.r)pig“—E:FE:FPi#] + [(f'r)Piiﬂ_EiEqEPi;H])
s /s
+4—2T
v M
BN T )

N Vs i avu v 5 phvu v
+2(5-1) = E (sBp B PLY 4+ V5B PEY — 5 B PLTY + PR

(F-F)Es (s E-E, [(f )P BB, Pﬂﬁ{‘] +5Ey [(F )P BB, ij;“]

& By (=B B PIY + VSELPEY + V5B PLY 4 PITH)

1, _ _ o _
- g avu G | vy
+(r-r)ﬁ(sE:FE:FP:F’1 + V5 By PLY — VB PR + P

Vs

s .o - - - S .. - _ - - -
- = VSE, (G PEY =3B EL P - = [Gr) Pl —3E B PEY t2 =By [PiT - V5E.

— 5By () PEY - B EL PR | 4 [ (o) PR - BB PE])

S

s _ ~ . _ . B __ _ _
—2 5 T E: (s ELE [(r r) P —ELEy Pﬁ;“] + Vs E; [(r TPy —EL B, P;‘fs“]

7 = ave 5 ovu = vy & av
— 5By [(Fr) PR — B B PE | 4+ (o) PET — BB PET] )

— s _ - - _ . . 1 _ __
+16- D)= ELE [P]’F‘f;‘ - \/§E¢P:’F"V1“] + /5071 [Pi‘f;‘ - JEEiPi‘fl“] + = BaE [Pi‘fs“

- S S _ _ . _ - _ _ __
QLY =-(6-1) = % (r-r)Ey (s ELE. [(f r) P — L Ee Pgﬁ“] +/SE, [(f r) P —E B sz“]

(A.4)

v
P ¢,10] ’

v
+ 5B, PLY

_ 1+ _ 3+
A2.1 +§ -1 +5
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S _ _ i
= % By (sBp Eo PLY + VS EL PIV — VS E- P + PET ),
u_ V5
QLY == [Ph - V5B PLY
s /s s .
FLE-DE+D) o5 = 0 [ QY + B Qi | £ 16+ D B [(FoQi) + BB QLY

N T -
Q= i [(r F)PE By Eipig“] F— [(r Yol +EiEiQ‘ffZ]
s (r r)

v2

+§(5’+1)(——Q‘”“i [(r N+ ELEL QLY | £ = - B [ Qit + BB ),

_ N o _ 1 ... Ei o
=[G P - BB p;ﬂ Qi Qi
’ E:I: ’ ’ E. Ey

F B [P @F + Q5 + BB Q1+

ol - ; I TR N P (LR (LAY WL
B [(F-r@)+ W“)+EiEi(QW“+QW“]:F—QW“ Erng’i?é‘,
Qif;‘ =s [(f : r)Pﬂ“ ~ELE. Pﬂ‘]
£1(6 -1 B [(F- (@) + QN+ BB @1 + Q5] 7 T(Q‘W” &4,

Qifg‘zs[(f-r)PW”—EiE;Piﬁ“] F B [ @+ Q)+ B B () +QY ]

QL =+ V5PLF TQW +1(6- 1) B, (B Q0+ [(ro )it + ELEQEY])
_gE:t [(F'r)Q“V“:F ME QPWH:I _ZEZL I:(fwr)Q[“W“_i_Ei QNVH] ,

Aty =FPEL & = + H G DG - 1) S5 (O F § (6 - 1) B [(-r)Q + B B 0% ]

i%(5+1)—2 ([(r QY + B, EiQ’W“]:I: 7[(r N+ MEiQ‘”“]),

QL =+ V5PLY 16+ D — (- @S + QU F B [(F- ) Qit + B B2 QLY )
F B [0 + BB QR

Q‘if{‘zzzp—ﬁ(f-r) (G PR — BB PIY ] & %E (G PLY — BB P
+1 (5+1)—((r QN & (o) B QY+ B () + B B QY ]),

Qs =+ Vs P F TQ‘”“ LE- D6+ (@ + Y

£16 -1 [ Q5 + BB QLY |

SEICRE e (A [GROTARED A A B Y[t v Barft]),

. 1 1
Q=4 PLYF QT B [P @+ QU+ BB (@ + D))

(F-7)

— [ QY+ BB QY]

s E s
2 E—jF [(T 7‘)QWM +ELE, QWH] 2 E
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Q= — [(F-r)PEY — B EL LTS
F1G+0GE- 16+ () (6B [+ Eor Q]
—(Fr)Es [(F- QY + B B Q1Y ] )
+1E+DE -0 (AL -1 E-DE+D— (7 LY
—-(5+1)(5+1)— (26 QY — B B. QY |
41 (5+1) _E, [(r NQEt + B Er Q|+ L (5+1)12E (Gt + BB Q]
Q== [ r)Pi;“fé BB P | F B [ Qi + B B QLT
+1 (5+1)(5—1)—(r N (@t + SB[ @ + Q0+ BB (@) +QiD)] )
—1E -0 (- QLE - 3G+ 10— (- QY F B [(F- Qb + B B QLY ).
Q=5 [ ol ~ B B PLY
—Z(5+1)(5+1)ﬁ([2(r NQ - B E.QY |
%E [ (G QT + B B Q) + Ex B (G ) QY + B B Q5] )
+16E+D ﬁ (F-mQlt + B [ Qh + B Ex QT |)
— 16+ ) (PR F By [ Qi + BBl ),
Qly=— [(F- PR — B B P +— (P DY F — B [ QL + BB Qi
16+ (0 D@L+ F By [ QY + BB QL]
£ 5GP (@ +QE + BB @ + 7)),

14

where

PWM_ [r"iys Py —v" (Vs/v?)ELPL] v7 vH/v? /02,

PW“— [’ Py+v" (Vs/v*)Eriys P2 ] rif vk /v,

P’W“— [ Py+v" (Vs/v?)EsiysPo | wi vk /v?,
PWH:[W ivsPe—v" ((F-r) Py £ MELP)/v?] vP v*/v? /02,
PW“—[W P+ v iys((F- r)PjF:I:MEiPi)/Uzj rl ok 2,
PW“: [w” P+ v iys((F-r)Ps + MELP)/v?]wfov#/v?,
PW“— [r" P+ 0" (Vs/v?)Eriys Po] vP 7 /02,

P“u—[rl ivs Py —v" (Vs/v?)ELPL] rif R,

PWM: [r'iysPe—v' (Vs/v?)EL P wi i,

Pliwllé_[w Py +vViys((F-r)Ps + MELP,)/v?] v* i /v?,
Piwﬁ—[w ivs Py —v" ((F-r)Py+ MELP)/v*] 7,
Pliwéz [w'iysPy—v" ((F-r)Py+ MEZP)/v?]wfiH,
P = [r" P+ 0" (Vs/v?) Eyiys Pr] v wh /v?,

Pivli— [riysPe—v" (Vs/v?)EL PL] riPwi,
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Pivll; = [rﬁiyspi -’ (\/E/VZ)EiP]F] wiwH,

Piné = [w' P+ v"iys((F-r)Pz+ MELP.)/v*] vFwH/v?,

I — (w7 iys Py — v¥ ((F- 1) Py £ M Ey PL)/v?] ri i,

Pivllé = [w'iysPe —v" ((F-r)Pz+ MELP.)/v*]wiwi. (A.5)

3+
2
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Finally, we find the projection algebra for the scattering of spin-one bosons off spin-three-half fermions.
The seventy-two invariant amplitudes F introduced in (2.58) can be derived from the following projec-
tion algebra

1 I
5 (TR AQE" A) = BuiBas (A.6)
with @, Q" =0, ¢, Q" =0, p QYY" =0=AQ " Ay;, and p, QY  =0=7,AQ ™A,
07 - Vs s s _ ) i _ i
Q=83 -1)(E -1 = r 5 (R (sE:FE:F [(F-r)PEY™ — By By PRV
+VsEx [(F-r)PLy —ELEx PUS ] — Vs Eo [(F-r) PR — EL EL PL™ ]
- v uv = v uv
+ [(r'r)P:F,U —ELELP,y; ])
~6(6—1) - 5 (r ) E- B (sBoBe [(F-r)PEY™Y — B B PLY™]

+ V3B [(F-r) PR —Eo EL PUY ] = VSEL [(For) PUYY — By B PEMY ]

+ [(F-r) Pl —ELE. Pfl‘;”])
Vs s s - - 07 = 07
~6(5-1) = 1 = (P B Ey (sEiEi [(F-r)PE™ — B E_PIT™]

+ V5B [(F-r) PR — B EL PUIY] = VS EL [(F-r) PEMY — By B PEMY ]

+ [ PLY — BB PR

8L e (o8 PP BT
+ Vs Ey [(F-r)PER — ELE PR ] — S Eo [(F-r) PR — E. EL P ]
+ [(F-r)PEY — ELE- Pﬁf;‘g”])
+1(6+1)(6+1) g g (sE¥ E. [9(F-r)PYYY — 25 E, B, PEH]
— VSEL [9(F - r) P — 25 E B, PUMY ] + V5 EL [9(F-r)PLY — 25 EL B P ]
+ [9Gr 1) PE 25 B, B, PITAY])
~16+1) ‘/ﬁg %E (SEJFEqE [(9£ 3(M/Vs))(F- r)in'lw —(25F B(M/\/E))E_iEipi’V'luv]

— VBE [(F-1)(9F 3(M/3) PLW™ — (25 3(M/V5)) E Ex PLY" ]
+ V5B [(F-r) (9% 3(M/VS)PLYY — (25 F 3(M//5)) Ex By PEY]
+ [(F-r)OF 3(M/V5) Py’ — (25 3(M/ V) Ex Ex P
—8(7 - 7) (s Eq B¢ P — SEL PEW™ 4 V5B PITA ¢ pﬁf’l‘;ﬁ)

FE7
~1G+1) § § (5B Bz [(F 1) (9 3(M/ V) PLT™ = (25F 3(M/v5) Ex B PEY]
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— VSE. [(F-1)(9 £ 3(M/v5)PEF — (25F 3(M/V5)) By By PLV™]
+ V5B [(F-r)(OF 3(M/Vs) PLY — (25 + 3(M/V5)) Ey B PLYY]
+ [(F-r)(9F 3(M/V5)PLL — (254 3(M/+/5)) E E- P ]
—8(r- 1) (s By B PLYY — VSE PEY™ + 5 By P + PEY))
+ g g (—HZ":FE:F [((QMM+3M s+ 3Ms+9s)(F-r)PL
—~(2MM ¥ 3M s F 3M /s +255) E, E, PP ]
+2V5(r-r)Ey [(F-r) PR — (4 (M/V5)) Vs Ex PLY" ]
+2V5(F-F)Eg [(F-r)PEYY — (44 (M/V5) Vs Ex PLY" ]
+sErEx [(F-r)PL)" —5ELE  PLY" ]
+(Ex/Vs) [CMM £ 3M Vs F3M /s —9s)(7-r) PLS"
~(2MM F3M s+ 3M /s —255)EL E4 PY'" ]
—2(r-r) [(F- ) PLY™ = (4F (M /) Vs Ex PEY ]
+2E B [(F-r)PL)" — (4% (M/Vs)D Vs EL PYY" ] — Vs Ex [(F-r)PYy" —SEL EL PL™ ]
—(Ex/Vs) [QMM F 3M /s £ 3M /s —9s) (7 - r) P[5
—(2M M+ 3M VsF 3M /s — 255) E, E- P
— 2B By [(F-r) P — (4 (/) V3 Ex L]
+2(7-7) [(F- r)pﬁﬁ’;” — (4T (M/V5) \/EEJFPL‘AE;;V] + V5B [(Fr r)P:[Z,V_l%V _ SEiE;Pizlév]
+(1/s) [(2MM F 3M /s F 3M /s +95) (7 - r) P&}

—(2M M % 3M 5+ 3M V5 +255) EL E, PL7 ]
—2(Ex/VS) [(F- ) PLYg — (4 (W/Vs)) VS Ex PLY

—2(E4/V3) [(F-r)PL = (4F (M/VS) Vs EL P ) + [(F-r) PE)Y —SELE- pjfz‘g”])

B B PEYY — (B /VR)PLL™ + (B V) P +(1/5)PEY ),

— S _ _ _ _ - - _ i _ i _ i
QY =4 (F-Pr1) (5B B [(F- )P — B B, PP ] 4 [P ) PR — By B LYY
— VSEy [(F-r)PEY — ELE, PP ) + V5B, [(F-r)PLY —ELE; pi‘fl‘;”])

5B By [(Fr)PEY" =3B L PLYY] = VR [(Fr) PEY" 3B, Ex PLYY ]
V5B [ PE — 3B B P ] 4 [ ) PR =3B B PETY],

F - F,13 +,17 +,17
" - S -
QL =36 -DE -1 = 5 (FRrr) (sEeBe [ r) PR — By B, PP
— VSEy [(F-r) U — B EL PRI ) 4 SEL [(F-r) PR — B EL PP

+ [ PLY — BB PR
_ VS A5 s

M M v

—VSE [(F-r)PLd" — B Ex PU" | + Vs Ex [(F-r)PLY) — Ex E- PR

F,14
+ [ PE — B B PET)

(VBB (5 Ee e [(F PP — BB PE)

F,18 +,18
Vsafs s = - avuy & v uy
F(6-1) = s (PP (sEqEEjF [(7-r) PE™ — B By PRV
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— V5 Eg [(F-r)PL" = By B PUY ] 4 V5 By [(F- )P — B B PU]
+ [ PR — B B PR

F,19 19
IPRCRE
M

Sl

S v = v = av -
SR (2 M B B, [ PR — BB PR 4 [ r)PL — BB B

QWM B/ VA [(F rYPEY — B B PR ] 4 20 M (B /) [ PP — B B, P )

+2M M (1/s) [(F-r)P‘fl‘;v—EiEi j;”l‘;”]ﬂEiEi [(F- r)P’W’W—E E P‘”‘”]

— V5B [(Fer) PEYY — B B PR ] 4+ 5B [ r) PR — B B PITE'])

——(5—1)(6—1){;\//[—

B 4\/§Ei (r- r)P:lFlEHV +4‘/§Ei (r- r)Pj:“;I;V - [(F : r)P:‘;vlﬂév +4E_'i E, P:IFWII;V])

S /s _ 07 o7 - (v
~15- 1)% % (5GP B B PR — V5 (- P Es [PLYY & ME, P

(sEsEe [GFr)PEY™ — 4B, B PEY™]

+E E, [(F-r) PP & ME. PP —(f-.r)(Ei/\/')Piwl;;v)

Vs 5 . _ -

36 -5 (s BB P VR B (PR ME P
— By By [(F-r) PR & MELPEU™] = (1) (Be/vS) PLY )

+ £ v ( —2MMELE, [(F-r)PEM" —2E E. PI"M™]
+ MM (Ey/V5) [(F-r) P = 3E, B PV — MM (Eo/v5) [(F-r) PEY — 3B EL P EY]
— 20 M (1/S) [ ) PEY — 2B B PE ) W () [BEY 4+ VE B P
F M(F-r)Ee [PEY — VSE PEY™ ] + By By [5Eg B PIY — (r 1) PIV™]
+VsEy [E+Ey pg”{g” +(r- r)P“””] +E,E, [P;”;{)” + (7 - r)PjF‘”l‘;”]
+(Ex/V3) [(r-r)PI — EL By Pi”l‘;”]) +v? PP,

- 1 - _ -
2 -
v CAMC (CROLAE S

+3(6 - 1)2(5—1)—Ms(r G- @ + Q) + W B (@4 Q)]
+ 2((6-DM - (6 -1DM) Vs [(F-r)QEE + MELQYE]
= -(5—1)sEi [(F- Qi F ME- Q)

£ 1612 - D) o35 B (L + QU F 26 - 16 - 1) =5 V(7 Q58" + QL")

—3(6-1) —M [(r P + Q) £ MEL(QFY + QM)

+ 5(5_ E [(I‘ I’) HWW-l—EiEi IJWIJW] uww:F \/— iw:/glv:':( ;w;w+ igw “V“V)/f
Q“V“V_:F(5—1)2(5—1)‘_[§ (r-r)Ey (sE Er [(F-r)PYYY — E By PR

— V3B [(Fer) P — B B PEEY ] + 5B [(For) P — BB PR
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+3(6+1) (:l:E [P QEH + B B Q) £ B [ ) QY + B E Q]
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+1(5+1)

i s
avuv OV uv OV uv
Qs = 2 [(r PPy —ExEx Py, ]

+2E-DE+ D () (@~ — {0 QL F By [(F- QY + B2 B QS 1})

G DS G B ([ )@ + QI 4 BB (@ +QE1]

+ f[(r QY B, EiQ’W’”])
£ 1(5+1) 3 B ([ + B Fo QU] — B QU6 /5 £ B QS

— 2k ([(r QY +ELEL Qg T £ Vs [(F-r) QY% + Ex EL QTN ] F EL Q" + Vs s Qif{‘;) ;

av uv S = Vv vuv
e = (6P — BB PL ]
+%(5—1)(5+1)ﬁ(f'f) (Qif{*;——{(r N F B [ QLY + B - Q51 1))

64D S B ([ @ + QI 4 BB @ + Q]

+ f [(F- QA" + Ex B QL")
£ 16+ 1) 5 B ([ Qhy + BB Q] — B QY /5 + B Q)
N i _ ) _ i _
-3k (ur QL + B EL Q)& V5 [(F )l + BB QL
FE. QWW + VsEy Q‘f{‘;) ,
where
Pflw = VP [r" 7Y Pe4 0" 0" (s/vP)EL EL Po/v? — 1" v¥ (Vs/v?) Exiys Po+ 0" 7 (Vs/v?) Exiys Pr ] vH/(v?)?,
PEMY = vf [ W' Py + 0" 0" (V5/v?) Ex (F- 1) Py = M EL PL)/v?
—r" v iys((F-r)Pyt MELPL)/v?+ 0" W (Vs/v*)Exiys Px ]| v*/(v?)?,
PEY = vf [wi" 7Y Py + 0" 0" (V/5/V?) Ex (F- 1) Py = M E¢ P.)/v?
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—wi' V¥ (v5/v?)Eriys Py +v" 7Y iys ((F-r) Pr £ M ELPL)/v?] v*/(v®)?,
PEY = v [w w" Py + 0" 0" {(1/5)Ps + (6 —1)(6 — 1) (s/v?) E4 Ey Py
F 1 -DWs/vIM((F-r)P—ELELPL)F 2(6 - 1)(vs/v*)M ((7 - r) Py — Ey Ey P}/ v?
—w vViys((F )Pyt MELPL)/v?+v" W iys((F-r)Py+ MELPL)/v?] v*/(v?)?,
Pi‘i“v =rf [r" 7 iysPe+ 0" vV (s/v*)Ex Exiys Pe/v? + 1" vV (Vs/v*)Ex Py — v" 7Y (Vs/v*) EL P2 | v* /02,
Pfﬁ“” =rf [r" W iys Py + 0" 0" (v5/v?)Epivs((F-r) Py F MEL PL)/v?
+ 17 v ((F- )P F MEL PL) /v —v" w (Vs/v?) EL PL] v /v?,
PEIY = v [wi' 7Y iys P+ 0" 0" (V5/v?) Exiys ((F- 1) Py & M EL P.)/v?
+w v (Vs/v?)Ez Py — v" 7Y ((F - 1) Pz £ M E P)/v*] v#/v?,
szgm =r [w'w"iysPy+v"v" {(1/s)iysPs+ i (6-1)(6—1)(s/v*)ELEziysPs
+ 26— D) (Vs/vIMiys((F-r)Py—ELExPL)F 2(6 —1)(V5/v*)Miys((F-r)Py — EL Ex PO}/ v°
+w v ((F-r)Pr F MEL PL) /v —v" W ((F - 1) Pr = M E-Py)/v?] v*/v?,
Piv_gm =wh [r" 7 iys P+ 0" vV (s/v*)Ex Exiys Pe/v? 4+ 1" vV (Vs/v?) Bz Py — " 7Y (Vs/v?) EL P2 ] v*/v?,
Pi‘i‘év =wh [r"wiysPr+ 0" v (Vs/v*)Eriys((F-r) Py F MELPy)/v?
+ 17 v ((F- )P F MEL PL) /v —v" w" (Vs/v?) EL P2 ] v /v,
P =wi [w’ 71 iys Py + v 0" (Vs/v)) Exiys((F-r) Py & MEy Py)/v?
+w’ v (Vs/v*)Ez Py — v" 7Y ((F - 1) Pz £ M E Py)/v*] v*/v?,
P =wh [wl W iys Pe+ 0" 0" {(1/5)iys Py + 2(8 —1)(6 — 1) (s/v?) Ex EqiysPs
+ 2(6 -1 (s/vIMiys((F-r)Py— EL Ex P)F 3 (6 — 1) (Vs/v)Miys((F-r)Py — By Ex P)}/v°
+w v ((F-r)Pr F MELPL)/v*> —v" w ((F-1) Py = M ELPy)/v?] v*/v?,
Piwlzv =P [r 7V iys Pe+ 0" vV (s/v?) EL Exiys Pe/v* + 1" vV (Vs/v?) Ex Pr — v" 7 (Vs /v?) Ex P2 ] 7 /v,
szz‘f =vF [ W iys Py + 0" v (Vs/vP)Esiys((F-r) Pz F M ELPy)/v?
+r7 v ((F-r)P F MEL PL) /v —v" w (Vs/v?) EL PL] /02,
Pi”l‘;v =vF [w R iys Pr + 0" v (Vs/vP)Eziys((F-r) Pz + MELP.)/v?
+w v (Vs/v*)Ez Py — v" 7Y ((F - r) Pz £ M E P.)/v?] /02,
Pii‘év =vF [wl W iysPe+v" v {(1/s)iys Pz + ‘1‘ (6—-1)(6 —1)(s/v)ELEziys Py
+2(6 -1 (Vs/vIMiys((F-r)Pe— EL Ex P)F 5 (6 — D) (Vs/v)Miys((F-r) Py — Ey B PL)}/v°
+w v ((F-r)PL F MEL PL) /v —v" W ((F-7) Py £ M EL P.)/v?] 7/ v?,
P‘iwl‘;v = [r P P+ 0" 0 (/) EL EL P /v* — 1 0¥ (Ws/v?) Eriys Pa+ 0" 1Y (Vs/v*) Exiys Pe ] F¥,
P = [r" W P+ " 0¥ (V5/v?) B ((F - 1) Py £ M E P.)/v?
—r" v iys((F-r)Pet MELP)/v?+v" W (Vs/v*)Exiys Pr] 7Y,
P = v [wl’ 7Y P+ v7 0¥ (V5/v?) B ((F - 1) Py £ M E¢ P.)/v?
—w v (Vs/v)EriysPe+ v iV iys ((F-r) P = MELPL)/v?] 7,
P =1 [w WY P+ v 0¥ {(1/s) Py + 2(8 —1)(6 — 1) (s/v*) EL E4 P
F 36 -D(Ws/vIM((F-r)P—ELEL PL)F 5 (6 — 1) (v5/v*)M ((7 - ) Py — Ey Ey PO}/ v?
—wl v iys((F-r)PL £ MELP) /v +v" W' iys((F-r) P+ MELPy)/v?*] F¥,
P‘iwz‘iv =wh [r" 7P+ 0" v (s/v*)EL EL Po/v? — 1" v¥ (Vs/v*)Exiys P+ 0" 7Y (Vs/v?) Exiys Pe | F¥,
PR =wh [r7 Wi P+ 0" 0¥ (Vs/v?) Ex ((F- 1) Py £ M EL P.)/v?
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—r" v iys (F-r)Pe£ MEL P/ v+ v Wi (V5/v)) Exiys Pr] ¥,
Pﬂ‘éy =wf [W[V PP+ v v (Vs/vP) EL ((F- r)Py+ ME]F P.)/v?
,— wi” v (Vs/v*)Eyiys P+ v" i iys((F- )Pz £ MELP)/v*] 7,
Pi‘:v_ziv =wf [w’w"P.+v" 0" {(1/5)p¢+%(5—1)(5—1)(s/v2)EjEij¢_ ] ,
F LG -D(WE/VIM((F-r)P—ELELP)F L (6 - 1)(\/3/_1) M ((F ':)I_Jj: —ELEL P}/ v
—w' vViys((F-r)Pet MELP)/v*+v" W iys((F-r)P+ MELP.)/v ]H“,_ ) o o
P = 0P [ 7 iys Pa+ 07 0" (/0P Ex Eq iys Po/v? 4110 uvgﬁ/vz)lj;& — V'R (Vs/v) EL P ] Wl [v7,
Pﬂ’év = v [rPwiys P+ 0" v¥ (Vs/v?)Esiys ((F-r)Px F MELP)/v
0 (PP F M B P — o7 0 (JE) 0D By Pa] W o,
P!iwzlév =P [w' 7" iys P+ 0" V" (\/E/Vz)EquYs ((F-r)Pr+ ME, P,)/v?
,+ w’ v (Vs/v*)Ex Py —v" 7Y ((F- 1) P = M Ex PL)/v? ] wi'/v?,
PETY — o [ s Pa+ 07 0¥ {(1/8)ivs Py + 2 (6 — 1) (5 — 1)(s/v22)Eﬂ_E Beivshr i
+ 36 - D(5/v)Miys(F-r)Pe —EL B P F %(_5 - D(s/v 2M1Y25((r "T)Py —ELEq Py
+w/” UV((f-r)Piq:MEiP:F)/Vz—UvWLV((F'T)P;iME¢Pi)/U2] Wiy ’ 2\F ; o
PENY = [ 7Y Py + 07 0¥ (s/v?) By By Po/v? — 17 v (Vs /v?) Exiys Pe+ 0" 7Y (V5/v?) Eiys Pr ] wh,
Piﬂg’év =r [I’LV W' P+ v" v (Vs/v?)EL ((F- r)Py+ ME; Py)/v?
’— rn' vV iys((F-r)Ps£ ME_'iP:F)/VZ +v"w” (\/E/Vz)EiiYSPJF] wi,
Piﬂs’iv =r [w' 7' Pr+v" 0" (Vs/v*)Ex((F- r)Pr+ ME; Py)/v?
w0 (V) By s Py v Y i (1) Py WE, L))
Piwg‘;v =r# [w’w" Py +v" v" {(1/s)Ps + % (6-1)(6 - 1)(5/U2)E:|:2E:|:_P:F_ ) ,
F L -D(E/vIM((F r)P—ELEL P F 1 (6 - 1)(«/5/_1) M ((7 -Zr)}ji —ELEL Pr)}/v
—w v iys((F-r)PL £ MELP)/v*+ 0" W iys((F-r)Py+ MELPy)/v ]‘_’VJM’ o .
Piwslgv =wi [r" 7Y Py + 0" 0¥ (s/v?) Ex Ex Po/v? — 1" v (Vs/v®)Exiys Py + v 7Y (Vs/v?) Exiys Py | W,
Pliwsliv =wh [r" w® Py +v" v¥ (Vs/v?) Ex ((F- r)Py+ ME P.)/v?
’— i’ v iys((F-r) Py MELPL)/v? + 0" W' (Vs/v?) Epiys Py ] wi,
Pﬂlcwslév =w/ [WLV Y P40 v (Vs/vP) Ex ((F- r)Py+ ME]F P.)/v?
,— wi” v (Vs/v?)Exiys P+ 0" i iys ((F-r) Py £ M EL Py)/v?] W,
Piz’v‘;év = wit [w W P+ 07 0 {(1/s)p$+%(8—1)(5—1)(S/y2)EjEj—EP¢_ ) )
F 16 - D(/vIM((F-r)P— ELEL P F 1 (5 - Ds/HM(E ':)Iii — B By P2)} /v -
—w vV iys((F-r)Pyt MELP)/v?+v" W iys ((F-1r)Pz+ MELP.)/v?]wi. (A,
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B Amplitudes and projection algebras for
inverse reactions

So far we have discussed on-shell scattering amplitudes T;_,; and their associated projection algebras as
summarized in Tab. (B.1). The reactions not treated so far are related to already considered processes
by a hermitian conjugation and an interchange of indices between incoming and outgoing, i.e.

Ty = [T (F—1). (B.1)

A suitable set of Lorentz-Dirac tensors can be directly identified, when we write its on-shell scattering
amplitudes by applying Eq. (B.1). For a basis of a given reaction Ti”) a basis for its inverse reaction Ti”)
is introduced with

1 =10 1] 7o - .2

r «—> r
{w,vy — {n,v}

In this appendix we specify all inverse reactions where results for the projection algebras are expressed
in terms of auxiliary tensors P}~ that satisfy the same on-shell conditions as the projection tensors Q%" "

+ —

11t + 4=

1 +

=
Juy
w
w

i\f 0~
_1+
03

_1+t
1 2

0-

o

RN

AN N A

NS S [ o

Table B.1.: A summary of reactions considered so far.

B11 +1 —o0 +1"

The on-shell scattering amplitude can be obtained from (2.42) by using (B.1) as follows
Tl %—>O%(I—() k) W) = ;F:(ﬁ, t) [ﬁ(p: A‘Aﬁ) T:E:;),L u(P, A’p) EH(CI; 2’q)i| ]
n

_ﬁ(:l,,)L=Y5iPi)7u, Tﬂ(tﬁ:}’sipiww TS,)L=Y51'Pi - (B.3)
Similarly, we find its projection algebra from (3.11) as follows

1 S, . 3

3 tr(T{0A QY A) =68y with  q,Q4, =0, (B.4)

“u S u

Qi’l =+ ? P:I: v,

_ . VS

QL =—Reiysw!+3(6+1) 5 ELQuv”,

Q’i’3 =—Ryiysr’+ 2 E+Q: V",

where R, = % (E:F B P. —(F- r)P:F).
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Applying (B.1) to (2.49), the on-shell scattering amplitude can be written as

Toso1(k, K, w) = Y FE(V5,0) |46, 2,) T ' (0, 2,) ]
+.n

Tn(tla =ysiPiw,, TQ =YsiPyl,. (B.5)

For the associated projection algebra, from (3.14) we derive

1 o o 3
3 tr(TWAQY A) =646,  with  y,AQL A=0 and p,Q}, =0, (B.6)
- S _ - R

I (GIOIOSE - A
- S _ - - -

o= (Gr)PY, — B EuPL, ],

where

Py =W Pyiys+v" ((F-r)Py+ ME.P.)/v?,
ﬁjv:,z:FlvpztiYS"'VV(\/gEip;F)/l/z. (B.7)

B30 +2 —»1- 41"

For 0% — 1%, the on-shell scattering amplitude can be obtained from (2.51) by using (B.1) as follows

7 _ = (s =5 7-(n)
Tys (K, b w) = D FE(5,0) [ €83 29) 0P, 2 T, 1 (0, 2,) |

+,n
(1) _ 5 =(2) _ o =(3) _ o =
’1_1:&:4611/ - P:I: g,av > ’1::&,)11, - Yﬁ P:I: Wy, ,1—%61)” - }’,1 Pi Ty, (B8)
Ti’m=rﬁpiwv, Ti,,-w=W;1PiFv: Ti,,;V:WgPin‘
From (3.21) we derive the projection algebra :
1 . o - o o
5 (T, AQY A) =646,  with  p, QY =0=7,AQ%,A and g, Q7 =0, (B.9)

Q=4 (G Bl — BB PR | 7 i (G2, + B B Q1 ],

— _ s - . R 1 _;
av o av 1 - av av av
Q== V5P F §(6-1)—Es [(r-r)Qi’l +E¢E¥Q¢7l] £ =,

s S - R S s [

Qlly =+ — V5 (7 -1) [(r».r)p;;fl —EqEEinl] + ks [(f.r)pfz—EiEip‘;g],

. S . - _ - I _ s g
Q== [Grr) P, —EJFE:FPﬁfs] F L [(r-r)QifﬁE:FEiQifz] - i6-1— Nk,

2
o _ oz . s ) e _ s - s -
(G Pl - B B P ] & G+ E, (G- rQ + BB Q] - JE+D Ak,

- — 5 R 1, = s B - -
[(r )P E_E, P‘i{g] +£ 36+ 1) 5 Es [(r QY +Es E;Qifz]

v
1 _ S S0V
_ Z(5 — 1)(5+1)ﬁ(r'r)Q:|:,l’
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where

P = —v" [’ Pyiys+v" (V5/v?)Ex P]/v?,

P, =rf [ Py — ¥ (V5/v?) EL Privs),

Pﬁg =wh[r Py —v¥ (Vs/v?)E, P iys],

P = —vP [W Piys + v" ((F- 1) P £ M E¢ P.)/v?] /02,

pig:rlﬁ (W Py —v" ((F- 1) Py £ ME,P)iys/v],

Py =wl W Pe — 0" ((F- 1) Pr & M EL PL)iys/v?]. (B.10)

B4 1 +3 -0 417

Applying (B.1) to (2.54), the on-shell scattering amplitude can be written as

Tyso1(k b, w) = Y FE(V5,0) |6, 25) T, 0 (p, 2,) €40, 2g) |
+.n
1 ~ 2 - 3 o =
Tj(:zw_P:I:gmm T;E:;)W_P:I:Yuwv: T:(EEL’V:PZEY Ty B.11
7@ _p ©) - ©® _p =z (B.11)
sy = Prwyw,, TiW—PiWHrV, Tjtm,—PﬂE r,r,.
For the associated projection algebra, from (3.23) we derive
1 a , _ B} -
3 tr(T{0 AQyA) =68y with  ¢,Q, =0 and  p, QY =0=7,AQV}A, (B.12)

=

uwv =uv = uv
Q:I: 1 + M |iP:F,5 + \/EE:F Pi,4] >
_ 1 _ s (F-1)
uv uv 1

(G, + B B2 QY ],

- S - - =
Wy = FVEELF B [(For)Q +Er B QL]

Q =i2[(r r)PY —E. E. _ﬁg]i§(5+1)%1§¢ [(f QY+ EL B QY }+ (52—1)—(r AL,
S - uv = Suv 1 S - -

W= [(r )P — eqpi’B] 16+ Ey [(r PQY, + EL B QY }+ (5+1)—(r AL,
S - uv SUv -

Q ﬁ[(r r)P E EJFPiZ]:F [(r-r)QjE3+EjE Q ]+—(r r)Qil,

1331:“/1 =—v" [/ Priys+v" (Vs/v*)EL P2 ] /v,

lsiwz =7 [FY P — v (Vs/v*)Ey Pyiys],

Y =wi [FY Py —v" (v5/v?) Ex Priys],

Py = —v" [W Pyiys + 0" ((F-r)Pet M Bz PL)/v?] /0%,

lsiw5 =7 [w" Py — 0" ((F- r)Pz £ MEiPi)iYS/Uz] ?

Pl =wi [w" Py — v ((F-r)Pz £ MELPy)iys/v?]. ®19)
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For 1% — 1%, the on-shell scattering amplitude can be obtained from (2.56) by using (B.1) as follows

Tysoq ik, k,w)= iZnF,f(ﬁ, 0 [€7(@ 1)1, 1) T, 0 (b, 1) €4(a. 2]

=(1 .o~ ~ (2 . ~ A =(3 . ~
Y_W%’éMV =Y51Yﬂpzt gu’\/ﬂ ,I_W:E:ééj‘uv =Y51Pﬂ: YM gﬂvﬁ ,I::E:ééjl_u/ =Y51Wﬂpi gpw;
7—%%““/ =y5iPingm, T:é:él)lm’ =Y5irupﬂ:guv’ ,1—%9’131“1/ =751 Py f,ug[w;
Ti,ﬁV:YSi?ﬂPﬂ:?,u.Wv: Ti,g“V:YSi?ﬂpi?qu: T:t,gq/z')/sirﬂp:t?uwv: (B 14)
70—y iy P T = iw, Py, 7, TUY =y iy, P '
_:E:igv_YSlYﬂ ﬂ:WpLWV’ —:é:igl)“W_YSlWﬂ :I:Yurv, _:E:igy_ysl}/ﬂ :I:W,urv:
Tj(t’lg L =TsiwgPe,w,, Tj(c,ﬂ L= TsiTpPelyFy, Tj(c,ﬂgw =ysiwg Paw,w,,
=(1 . = (17 . _ - (18 . -
Ti’mwz}fslrapiw“wv, Ti,gW:YleaPiWurw Ti,gW:YlegPirurv-
For the associated projection algebra, from (A.4) we derive
L (7 NG RY =65, 6 B.15
5 (Lo A Qe A) = S Bab (B.15)

with ¢, QY =0, q,Q}Y =0, and p, QY =0=7, AKX,
‘ﬁw_g 5—1 S Vs o - = 7 v F DUy Vs E = B v r phuy
Qi’1 =3(6— )?ﬁ(r-r)EjF sEjEE:F((r“r)P%1 _E:FE:I:P:EJ)+ 5E¢((r~r)Pi’2 —EiEiP:F’Z)
— VSEL((F-r) I — E_E_PI)+ ((F-r)PI% —EL B, ﬁ;f;;)]
s s 7 7 = 7 v & phuy = = oY & phuy
t4— (s [sE:FEi((Wr)PiA ~E B P+ S Eu ((7-r) PP — ELELPI™)
— V5B (7 r)BE — By By P) + () PR — B B P |
N o o B B
+2(5 -1 E, (s B Bo PLY + VSEL B — 5B P + B4 |
- . o Sou o
B | —sEp B PIY + VSELBIY 4 S B PLY 4+ PIY |

L

(s B B P + V5B B — V5B P + B |
s Ny T = Dauy S [\ phuv 5 pauv Vs oy = Auv
— - VSEs [GRRLAAEE YN - [GRR LAY +2°- B, (B - V3B P ],

+10

e s s o - . & . _: - s
QYy =—(6 - D) — o F PE: [sE:FEi((r-r)Pj‘éﬁv — B B PP) + S EL ((F-r) P2y — EL EL PIY)

— V5B ((F- ) P — BL B BEN) + (- r) B — B EL PLY))
s /s = = o= = v 5 DUy - = v = AUV
—ZEH(r'r)Eﬂ: {SEiE#((T'r)P;A —E-E, Py, )+\/§E:F((r-r)Pi’5 —ELEiPrg)

— V3B ((F- 1) B — By B PLY) + (- 1) LY, — Bu By P2

+36 -1 EuEy [Pqﬁ‘f;” - \/EEJFPfF‘ﬁ”] + 5(Fr) [pgf;” - \/EEiPﬂV] + BB [Pifg” + \/EEqEPﬂ“;”]
Vs F DUy & phuy pOUY | pHApv
-2k |+ B By PLY + VSELBEL — VSEL BN 4+ BIY |
. N - - s s _ } - _ g
Qg == [y — V5B PI | F 16 - DG+ 1) a0 (G-t + BB Q2 |

- s _ = = Al
£ 16+ 5B [ 0@ +E Q]
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Qi‘j: = a I:(r . T‘)Pﬁfg‘/ _E:t Eip:l;ff;/il F — I:(r r)Q:F 12 +E:|:E:|:Q'ilflv2:|

36+ [+ 5 T2 0@ + Q) SR A +E “‘”)——Q‘“‘”],
Qs = 2 [eonpls - penly ]

F B [P 0@ + Q)+ BB QU + QD] F Q““”—i—iéi‘fg” :
W= 5 oy [0 P BB P 4 57 5 [0 G0y + B0

F B [ @ + Q) + B B @ + Qi‘f;)]:F—Qw ~ D,

QM = [(F : r)Pﬁfg” _E,E.PM™

. $4] \/_ [Quuv Qum]

£16-1— B [ r)(Q“’”-irQ“ D+ ELEL (@ +QM))],
Q“‘”—s[(f-r)ﬁi‘ﬁ”—EiE:FPi‘i”] F B [(For) @ + Q)+ B B (@ +Q2)],
Qs =+ VS P+ 16— 1) = B [ B QLY & (G- QY + B B Q1Y)

1 _-
_igi [(r N F ME; Q“’W] Ei [(r rQY) + Ey Ex Q“’”] F TQi’fg,”,

QL =F VSR + 16+ (6 - 1) = (- r)Qi“H 1(5—1)iE (G Q¥ + B, B QY]

+ (5+1)i2 :F[((r rQY) + E- EL QY ):i:—((r r)Q““V:I:MEiQ“W]ﬂ:—QWV

7 Nl
Q‘if‘fl—ifPﬁ_flﬁ% [(r rQYy +E EiQuuv]

— 1@+ [ @ + Q) F B (G0 + LB Q)]
= v S _ _ = Quv - = auv _ = AUV v
Qi‘fu:qiﬁ\/g(r-r) [(r-r)Pj;fg — E E¢ P ] + —2133F [(r-r)Pi‘f) —EiE:FPq’f‘;]

F1E+ D)= [ QY+ B QY & B (G QY + BB Q)]
QY = VEP LG - DG+ 1) 5 (7 )@ + Q) 26 - ) B [ QY + BB QLY |

1(5+1)—[Ei((r P 4+ B By “‘W)—T((r QM +EL By uuv};TQi‘;”,

1
Q=PI F — B, [(r r (@ + Q) + B B (@ + Q)]
+

s(r r)

V E:t

—%—*{(r rQ +E:|:E:I:QWW] [(r QY +E EiQ”“”]¥éQi'f§,
Q= = [Pl — B B L
FAEADE-DGE+D) () [ PEG A +E QY
- (- r)Ei((r QS +E- B Q)]
+ (6+1)(6—1) AGRR L l(6—1)(5+1)—(r QL

—z(5+1)(5+1)—2 2(7- 1) QY — B B QLY |
v

B.5. 1—+§+—>1—+§+ 71



+ 1(5 +1) iEi [(F r)QEY, + B Qif‘;g] + 16+ 1) [(r P QM+ EL By Qiff;o] i
v v S - _ = Guv -~ Guv
Qlium = {(r r)PiMlz E; Eipimlz] + ﬁEi [(r : ’")Qi!ﬁo +Er B Qi‘fw]
+-(5+1)(6—1)—(F-F) [Q“‘”i iEi((r P(QY + QM)+ E- B (QF + “W))]

(5—1)—(f DAL — 36+ [P F B (- Qs +E. B Q)]
QL= = [ P — B B P
(5+1)(5+1)— (@G- nQlty - B EL QY
+ ;E;((f-r)((f-r)Q“’”+EiEiQ“‘”)+EiEi((r NQy + B B0
+§(5+1)% [(F-r)Q“‘”:i:Ei((r PQM +ELE Qi“fl}
~16+ 10— [ QY F B (- r)Qﬂ“fz+EiEiQi“fz)},
Uy = = [ P — B B P | = (o QY F = B [ ) Q, + B B QY
— 1@+ [ @ + QD B (G r)Qi“fﬁEiEiQi‘f;)

i%(r-r)E:F((f'r)(Q“““rQ“ N+ BB @ +QD)].
where

B = vf o [ Priys + v (V5/v?) Ea P2 /((02)),

P = —vP 7 [ Py — v" (V5/v?) Ex Pyiys] /02,

PR = —vwl [ Py — 0" (V5/v?) Ex Priys]/v?,

P = vf ok [WY Pyiys +v" ((F-r)Pe £ ME¢ P)/v?]/(v*)P),
Pﬁ,‘? = —vF R W Py — vV ((F- 1) Pp £ MEL PL)iys/v?]/v?,
Pilfév = —vFhwh [VT/LV P, —v"((F-r)Ps £ MEiPi)iY5/V2]/U2’
Pi‘;v = —r V" [F" Py — v (Vs/v*)EL Priys] /v?,

Pi%v =rf i [ Peiys+ v (Vs/v?)ELPe],

13’1’” =Wl [FY Pyiys +v¥ (Vs/v?)EL P2],

Pﬁum —rf ot [w' Py —vY((F-r)Pr % MEiPi)iYs/Vz]/VZ’
Pwl = (WY Peiys+ 0" ((F-r) Pt MELPy)/v?],
Pimu =rfwH [VT’LV Piiys+v' ((F-r)Py+ ME; Pi)/UZJ >
Pimfvs —wf ot [7" Py — 0" (Vs5/v?) Ex Priys] /v?,

Pj:“gl =wf it [ Peiys+v" (Vs/v?)ELPL],

BM = whwf [FY Pyiys + v (v5/v})ELP;],

B = —wi vk [wY Py — v¥ ((F-r)Py £ M EL Py)iys/v?]/v?,

+,16
Pﬂ? =wfF# W Peiys+v¥ ((F-r)Py £ ME-Py)/v?],
Pﬁ“ﬁ; wlwh [wY Pyiys+vY ((F-r)Py+ ME.Py)/v?]. (B.16)
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Applying (B.1) to (2.57), the on-shell scattering amplitude can be written as

TysgCh b, w) =D FE(Y5,0) [0 (5, 2) TS0, 0 (0 2,) €4(a, 2) |
+.n

=(1 .~ ~ =(2 .~ =(3 .~ —
Tiﬂuﬁrslngim, Tiﬁuﬁrslngiww TiB/MV:YSlngiTW
4 . . 5 . . 6 . N
T:E:q)/uv_YSlWVP:I:guv7 Til),uv_YSlrf/P:l:g,uv; Til),uv_}/SlWVPﬂ:Yqu’ (B 17)
T)  =ysirgPuy 7 (Wo PPy, TO)  =ysiwgP '
+vuv — Ys v :EYMWV’ :t,pm/_}/SlW :I:Yu Vo +vuv — YstWs :I:Wuwv:
10 . =(11 (12 - =
T:E:V[)LV_YSerPiWHW'V’ TiM)W—}/SlW bPiw,r, Ti,vLV_YSIWVPi ryry.
For the associated projection algebra, from (A.2) we derive
proj g
—tr(T(E”V)W U A) =6 ap» (B.18)
with qMQ”“”—o Py Q”W—O AQ””A}/V, and pvQWW—O YVAQ”W
Q= —(5—1)—£(r PEs [ )P — By By PIR) = V3B (7o) PLY — B2 B P
S \/— Vuv Vuv = =V UV = [vUv
—ZU——(r ) By [((r )P — By B PIM) — VS B ((F-r)PI% — B E. PI" ]
1
+§(5—1) E B P)Y & V5(F-r)P]Y + - Es (s B PL — VBl + EL PN |,
S _ - _ -
Q7 =2 EE; B, [(F )P By By P;f;”] +pi
£ 16+ D) B [ QY + B B QU F B (G- 1) — B B QU | + 36+ DA,
S _ _ =
QY =2 E. L Gl p;'f;] + B
S
F o Bp [((F-r)QYY + BB Q)+ B ((F-1)QYE —E EiQ””)]
O Vs
Qﬂ:iﬁ( e — VsEx Pﬂ”); 1(5—1)(5—1)—[ 1“3”+ E+E. ((F- r)Q s +ELE- Q”’”]
F (8_1) [(r T‘)Q +E E QV/.LV:I (T_‘T') Qmw Qv,u,v:t _Qw,w
T Mys T s Vs TR
S - 1 _;
Qe = s [(f~r)P1“ —EiEiP”‘”] F QY7
Ey ’ E, ’
QM =+ /5P + (5+1)£ W[ r)QY +EL B QY |
1 vuv 1, W/E = AV U vuv
L6 -1 B [(F- QY + BB QY ]+—(5—1)?Ei (G- QL - B ELQT ]
Mf E E vuv vuv vuv
+ 5 (r r)Qi1+ + iQ + - Q :|:7Q:|:4J
. S s
QU5 =+ VP £ 26 -1 5 B [(F- QY + BB QY | + 5 B [ QY — By QW]:FTQ;“; ,

QV’W—i«/—Pl“zV:F ;e [(r N +EL B QY] + fEi [(F-1Qly B ELQYY ],

QM = [(r B Exﬁiﬁiﬁg} +%(5—1)(5+1);(f-f)Q1’:
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+1 (5—1)£Ei (G- +E- B QY5 | + 1(5+1)—[5Ei((r PR + B B QT
_E
—VENL((F- 1) QL + B B QL) — B (-1 QYY — MM == Q)]
:F
\/_ v uv v uv
e S [onQly R QY] - QT
Qo= = [P BBy ;‘ﬁ]+ (6 -1+ (F- QLY
£ 16+ D B [(F QY + B2 B QU - f ] - fEi (F-nQy +E BT |,

_ — «/'
ati= s o i E;Eip;zz]- b [0 + 5.5, 023]

e 1 = vuv vuv vuv
F364D 3 [((F QLY F B B QU+ B (- QY +EE- Q)]
Q= [ r)P”” BB F — By [(F- Qs + BB QY ]
Vs

- B [(FrQS LB QY | 4 - QW F £(r A,
where

Pi“lv =—v* [F r P+ 0" 0" (1/v?) (s/v?)EL EL P+ 7 v¥ (Vs /v?)ELPriys — vV " (Vs/v?)EL Privys ] /v?,
PINY = v [ wi' P+ 0" 0" (1/v®) (V5 /v?) Ex ((F - 1) P & M ELP,)

+ 7 v (1/v>)((F-r)Po+ ME, Pl)iys—v"¥ W[V(\/g/l/z)EiP¢iY5]/l/2,
Plfgv —vH W r" Py + 0" v (1/v?) (Vs/v*)Ex ((F 1) Py = M ELPy)

+w¥ v (Vs/v)ELPriys — vV (1/v2)((r~r)P¢:|:MEiPi)iys]/vz,
Piiv —vt WY w’ P+ Yo" ((1/s) Pz + 1+ (5 1)(6 — 1)(s/v*)ELE. P+

%(5 —D(Vs/v)M((F-r)Py —E,ELPL)F %(5 -1 (v/s/v* )M ((F-r)Py — E4 EL P))/v?
+w v" (1/v*)((F-r)Pet MELP)iys — v w’ (1/v*)((F-r)Pr £ MELPy)iys]/v?,

U = [ " Peiys+ 0¥ v (1/v2) (s/v?) (B Bz Priys) — 7Y v¥ (V5/v?) (5 Po) + vV i’ (Vs/v?) (B« PL)],
Pifg =f* [Fwl Priys+ 0" v" (1/v?)(Vs/v?)EL ((F-1)P: F ME; Py)irys

— 7" 0" (1/v*)((F-r) P F MELPL)+ v w (Vs/v*)EL Ps],
Pif;v =i (W r Priys+ Yo" (1/v?) (Vs/v?)E<((F-r)Ps+ MELPy)iys

—w" v" (Vs/v)E P+ v 1" (1/v)((F-r)Pr £ ME_P,)],
PR = [ wi” Pyiys+v" v" (1/s)Ps+ (6 —1)(6 — 1) (s/v*) Ex B Py

+ 26 = D(Ws/vIM((F-r)Pe — EL B2 PO F 5(6 = 1)(v/5/v*)M ((7 - 1) Py — Ey E P2))iys/v?
—w" v" (/v ((F-r)PeF MELP)+ v " w’ (1/v*)((F-r)Pr £ MELP.)],

ifg” =w [F " Priys+ 0" v" (1/v*)(s/v?) (Ex Bz Priys) — 71" vY (Vs/v*) (Ex Py) + v" " (Vs/v?) (E+ P1)],
Pif‘lf) =wH [FYw’ Priys+vYv" (1/v?)(Vs/v)EL((F-1)PsF MELPy)iys

— A" v (/v ((F )Py F MELPL)+ v w' (Vs/v?)ELP:],
Pl“lvl =wH [w'r " Priys+v'v" (1/v?)(Vs/v)E<((F-r)Ps+ MELPy)iys

—w" v" (Vs/v?)Ez Py + v 1" (1/v*)((F- 1) Pz = ME; Py)],
Pl“lvz =wH [ww’ Priys+v'v" ((1/s)P:+ %(5 —1)(6 —1)(s/v*)E4 E P

+ (6 = D(Vs/v )M ((F-1)Py — Ex B PL) F 5(6 = D) (Vs/v )M ((F 1) Py — Ex Bz P)) iys/v?

]l

avll
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—w v" (/v ((F-r)PeF MELP)+ v " w' (1/v*)((F-r)Pr £ MELP.)]. (B.19)
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C Theory of angular momentum

C.1 Wigner function

The Wigner function dﬁ{, ) (0) satisfies the orthogonality and the completeness relation respectively as
follows

2J+1) f dcos6 “222 A0 ©)dY(0) =65,y .1
Z(2J+1)d§;’}1(9)d,(£1(9 )=26(cos§ —cos ). (C.2)

7
It relates to the Legendre polynomial as

) _ 0] _ sin 6 /
dy(6) =P/(cosB), d; ,(0) = —————="P;(cos0), (C.3)
’ ’ I(1+1)

where P/(z) = dP,(z)/dz. Using (C.1), (C.2), and (C.3), we recover the orthogonality and the complete-
ness relations of the Legendre polynomials.
The differential equation that defines the Wigner functions is given in references [133, 134, 86] as

1 9 s1n9i ! (m2+n2—2mnc059)+J(J+1) d¥)(6)=0 (C4)
sin 96 26 sin® 0 mn ' '

Its general solution may be taken as
ntm n—m 1—cosB
dgl(@):N}{m” [cosz} [sina} F(—J+n,J+n+1,n—m+1;T), (C.5)

where F(a, b, c;z) is the hypergeometric function with some normalization factor Ny™". Alternatively the
Jacobi polynomial P*#(z) may be used':

1—
PeB(x) = (”:“) F(—n,n+a+[5+1,a+1;TX), (C.6)

in terms of which the Wigner functions take the form

rJ+n+1I'(J—n+1) g1 I
@) — s e n— mn+m
Grn6) \/F(J+m+1)r(J —m+1) [Sm 2} [COS 2} Py (c0s0). €7

The normalization factor is determined by the condition (C.1) and a property of the Jacobi polynomials?:

1
dcos® o1 07" Smn F(n+a+1)T(n+p+1
cos sin— | |cos— | P%P(cos0)P*P(cosO) = (nta+DIn+p ). (C.8)
4 2 2 m n 2n+a+pB+1T(n+DI(n+a+L+1)

See Eq. (22.5.42) in [135].
2 See Egs. (22.1.1), (22.1.2), and (22.2.1) in [135].
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We provide some specific example cases with J = %, 1, and % It holds

Itcos® _sinf 1-cos6
dr(nzr)lz(c?se —sine)’ o sin0 co£ o ’
sinf cos6 mn (V2 sin6 ﬁ
2 2 2
%cosg—l-}‘cossze —‘?sm%—fsm% ‘/Tgcosg ‘/Tgcos% }‘sin%—%sing
dr(n%,r)1: §51n§+§smi§ %c?s§6+%1co.s% %sm%—%sm?‘z %jg(:o?%g—gsc?s%i) . (C.9)
TCOSE_TCOS7 ZSIH7_ZSIHE ZCOSE+ZCOS7 —TSIHE—TSIIl?
%sin%—%sin% ?cos%—?cos% ?sm%+§sin320 %cos%—i—icos%

It is very useful to recall the addition theorem for the Wigner functions

d9,(6)d9),(0) = (~1y" " dD,()dY), ,,(6)
i+ y o
men J J N "
; ;J ‘( 1) (27+1) ( m m— m/) (_n W on—n' ) dm — (6), (C.10)

where we use Wigner three-j symbol as implemented in Mathematica 8 with ThreeJSymbol. We provide
some useful applications of Eq. (C.10). For example, if we consider

,/J+1 o 1)(9)d§i(9)—,/J—1 20)d? o (C.11)

and

1 1
S e OO J+ 20)d
2 23

N =
—

(6), (C.12)

N\»-A —~

then we obtain the following two relations

) L 1.0 e
J+ - 7 d (6) J + cos 00 (9)+ J sm d (8),
/ o) ] -3 / . V-3
J+ Ed%’%(e) =/J - E COSEd—l,OZ (O)+4/J + 5 Sln§d0,0 2(0), (C.13)

where the property of Wigner functions (4.15) is used if necessary. Applying the addition theorem for
the Wigner functions with dgj)l (G)d1 it (9) and d(” . (Q)d ! (9), we obtain Eq. (4.25).

2°2

It may be also useful to recall the recurrence relatlons of Legendre polynomials:
I+ 1D Pya(z) = QI+ 1)z P(2) - 1P4(2),

(2% - 1)P/(2)=12zP(2) = 1P _1(2) =1 +1) [P1(2) —2P(2)] ,
EF1) [P@)2P()] =0+1) [P() FRG)], (C.14)

and their integral relation:

m+1

(2n+1) 1dxp()p()— B min + ——
E R S A T

Bmei- (C.15)
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C.2 Auxiliary helicity amplitudes

We provide convenient expressions for the helicity partial-wave amplitudes ¢ introduced in Eq. (4.20).
We recall

_ 1.g_
[ti]ﬁn = (1, J|TyIng,J) = (Ag, A5|Ts|Ag, Ap) £(=1)2 5 S”(Aq, Apl Tyl = Ags —=2p)
" dcos6

' dcos6 ) 1g_g
= —dl’i(B)(Aqkl—,lTMqu)j:(—l)z a7p 2

3 1 d(j’i(e)(quﬁlﬂ—/Iq—/\p), (C.16)

where A =2, — A, and A = ; — A; are set to the values implied by the given state |n,,J). In Eq. (C.16)
we used the parity relation Eq. (4.18). We introduce auxiliary helicity amplitudes with

o T+ (DS A A —2 c.1
2¢fm_T< q [}|T| q p) T( q p|T|_ q p)’ ( . 7)
dm (6) -2

In application of the addition theorem for the Wigner functions (C.10) the ¢} can be expressed conve-
niently in terms of the ¢, Legendre polynomials, and Wigner three-j symbols [49]. It holds

nn?

' dcos@
(], = | S50 [l 00) @00 (1, - 87,) 4% 0)%,0)

J+J, . .
. J J J J
- S e (n 70510

j==Jol

1
" J_l S By(eos) [(-17 (i + 5) £ - (g~ 62) ], (€18

where J, = Max(|A|,|A|) and the lower and upper bounds of the summation are determined by the
properties of the Wigner three-j symbols.

C.3 Helicity projection operators

We recall that the representations of the Poincaré group are classified according to the values of two
Casimir operators P? = P,P* and W? = W,W". The energy-momentum operator P* is the infinitesimal
generator of translations and the Pauli-Lubanski operator W* is constructed from the angular momentum
operator J#V, the infinitesimal generator of Lorentz transformations, as

1
Wi =~ P, . (C.19)

For any given representation of the Poincaré algebra the eigenvalue of the second Casimir operator W?2
take the form

W2=-P25(S+1) (C.20)

where the spin S is integer or half integer. The general definition of the helicity projection operator
referring to [72, 86] is

n, W . 1 o Pl
\/_2 with ng = - \/_2 |p|,ﬁp , (C.21)
p p
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in terms of the Pauli-Lubanski vector and nt a normalized space-like four-vector orthogonal to p,,.
For the case S = ; we may identify

i i
S =gl = 20 T, (€.22)

in Eq. (C.19). There are different conventions used for the representations of Dirac gamma matrices in
the literature. In this work the Pauli-Dirac representation is applied for the Dirac matrices with

1 0 0 & 0 1
0 _ 2 = 5__ 2

2 03} is the set of the Pauli matrices. The y matrices satisfy the Clifford algebra

where & = {o!,0
vl ="y  +y"yH=2g", (C.24)

where g is the metric tensor with positive signature (+,—,—,—). An explicit computation confirms
that the particular representation carries spin-one-half. The second Casimir operators takes the form

3
W2 =w,wH = 3 P*1,. (C.25)

For Dirac spinors, the helicity projection operator takes the simple form

n,-W 1%-p o o
P 2P ith 2:(0 9). (C.26)

We turn to the case with S =1 where we may use
Jop =1(8%, 8% — 858", (C.27)

in Eq. (C.19). Note that the spin one realization of the Poincare algebra leads to a 4-dimensional matrix
structure. The latter can be efficiently implemented by assigning an additional pair of Lorentz indices to
it. For the case of an upper and a lower Lorentz index the original matrix structure is recovered. Given
this notation the Pauli-Lubanski vector becomes [W*]*# = —i e**flP] where p is momentum of the spin-
one state. In the center-of-mass frame with p* = {E ., pem Sin 6,0, p.y, cos 6}, we can write the helicity
projection operator as

0 0 0 0
ny Wl 10 0 i cos 0 C.98
\/? 0 —icosH 0 isind ’ (C.28)

0 0 —isinf 0

uv

where we use two lower indices on the r.h.s. of Eq. (C.28) as required by the applied convention.
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(€5 ar | IO %Tas | (€821 | [ as (S Pas
(1,3): /3
. (1,D: 4 (1,5): /2
8;3 %5 w2: I | @2
(L4, 17| @D -1 - /21 @231
(1,1): -2 (2’3): 24 (1,2): -1 (2,2): 3 2,5): -1
(2’4); 23 @2 -1 @3 2 (3,3): 1
44): 2 B4 —2 | G4 2
(4,4): 3 (4,5): \/f
(5,5): 1
[Cle Vas [(cé&éj"”la,b [CS® Tan | [Cr Pas
1,1): 2
1,2): 2
E]-,S; i (1:1) -1
(1,1): -2 (2’4): 24 (1,2): -1 (1,1): -2
(3’3): o0 | @2 -
34): 32

Table D.1.: Coefficients [C%:f)]b,a = [C\S\ﬁ:f)]a,b specifying the contribution of Weinberg-Tomozawa term to

PB — PB. Only non-zero elements are shown.

D Tree-level scattering kernel

In this appendix, we collect the expressions for the invariant amplitudes Fj* introduced in (2.32). For
the tree-level scattering kernel (5.11), each of them can be calculated by the on-shell projection alge-
bra (3.2). We shall write only F;"(v/s) because F; (v/s) = F{(—+/s) under the MacDowell symmetry as

discussed in Section 2.2.

D.1 Weinberg-Tomozawa

~o P (1,S)
~ - WT
< =Y (G+4), D.1
PSS A (.1
(1,5) Y
Co) (245 — M — M)
Ff = e , (D.2)
where the coupling coefficients [C\%’TS )]a,b = [Céé:rs)]b,a are collected in Tab. D.1.
D.2 Octet baryon exchanges
N / 1 s
,)—4—\ =, a2 Crgaa Ys4St1(p + s, (D.3)
(8]
Clajian (V5 = M) (W1 = 5)
(D.4)

F = ,
! % 4f2 (Mg + V/s5)
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[CSm Ta [Cy i as
Ly: 2
(1,2): —4,/2D4F,
(1,3): 24/2D4(Dp—Fp)
(1,4): 403 (1,1): 3(D,+F,)?
2 : 3 - —
19 20| 15 oner b+
(2,2): 8F} (1:4)3 3(Dp— Fo)(Dp+ Fy)
(2,3): —4Fy(Dy— Fy) (2,2): (Da—3Fy)?
(2,4): -4 \EDAFA (2,3): 5(Dy—3F,)(Dy+3Fy)
(2,5): —4Fy(Dy+Fy) (2,4): —(Dy—3F4)(Dy— F4)
(3,3): 2(Dy— Fy)? (3,3): 1(Da+3F,)?
(3,4): 2,/2DA(Ds—Fa) (3,4): —(Da~Fx)(Da+3Fy)
(3,5): 2(D,— F)(D4+Fy) (4,4): 3(Dy— Fy)?
(4,4): %
(4,5): 24/2DA(DA+F2)
(5,5): 2(Dy+ Fy)?
[ aw [Com Jab
(1,1): 3(D,—Fy)? (L,1): 4D
1) AT TA
(1.2): (Da—3F)Ds—F) | B2 f;[ DalDat3Fs)
(1,3): 3(Dy—F)(Ds+Fy) (1,3):
(1,4):  (Dy—Fa)(Dy+3Ey) (1,4): 2\[ DA(D,— 3F,)
(2,2): 2(Dy—3F,)? (2,2): 2(Dy+3Fy)?
(2,3): (1DA —3F,)(Ds+ Fa) (2,3): 2 2V2D,(Ds + 3F,)
(2,4): 3(DA—3F)(Da+3F,) | (2,4): —Z(DA — 3F,)(Dy 4 3F,)
(3,3): 3(Dy+Fy)>? (3.3): 4D
3,4): 8
oo e | G0 S, o
P AT (4,4): 3(Dy—3F,)*

. : (1,5)
Table D.2.: Matrix elements [C[BMA

ishing elements are not shown.

Iba= [C[(éfjA]a,b describing the s-channel octet baryon exchange. Van-

(1,S) ]
[8],441a,b

‘ \ Z E C(g],AA YSqS[S] (p— Q)@'Ys > (D.5)

Clgian (Msy[M? — /5(M + M) + MM + M? —u] + MM(M + M — /5) — 5u)

=[cLs) 1.« are collected in Tab. D.2.

where the matrix elements [C (8]

Ff= (D.6)
! 4f> (M2, —u)
where the coupling coefficients [CU :5) ]a p= [CU :5) ]p,. are collected in Tab. D.3.

[8].44

D.3 Decuplet baryon exchanges

\ /

/ (.8)
——\ 2 377 S @S0+ Ori@), (©.7)

[10]
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[C o a [Chalas
0, 1) (1,1): 3(Dy—Fy)?
1, 1) (1,1): (DA_FA)2
(1,3): 2D4(D,—F,) (1,1): —(Dy+ Fy)?
(1/2,0) (1,4): 4F,(Dy—F,) (1,2): —(Da—3Fa)(Ds+ Fy)
(2,4): 2D4(Dy—Fy) (2,2): 5(Ds—3F,)?
(3/2,0) (1,2): —2F,(D,—F,) (1,1): 2(D,+Fy)?
(1,1): —-8F?
o | v g e s e
(2,4): —3(Dy—F,)(Dy+ Fy) ) 5V 2 Pat 3F)
1Ly: 2
. 2
8;3 :;@DAFA (1,3): —/2(Da+ (D4 +3Fy)
(1,-1) (2’4): —:\/ZD F (2,3): —2(Dy— F4)(Ds + Fy)
> . AY A . 2
B8y (D Dt E) 34 —y/2(Da=3F,)(Da— Fa)
44):
@2, -1) (1,1): 4F2
(1,2): —2D4(D4+F,) (2,2): %(DA+3FA)2
(172, -2) (1,3): —4F4(Dp+Fy) (2,3): (Dy— Fa)(Dy+ 3F,)
(3,4): —2D4(Dy+ Fy) (3,3): —(DA_FA)2
(3/2, -2) (1,2): 2F,(Dy+F,) (2,2): 2(Dy— F,)?
(0, -3) (1,1): 3(D,+F,)?
(1,-3) (1,1): (Dy+Fy)?
[égjg]a,b [éiﬁ]a,b
(0, 1) (1,1): —3(Da+3F,)?
(1, 1) (1,1): 5(Ds+3Fy)?
(3,3): 3(Da—3F,)? L2
/2,0 | B4): (D4 3E)DA+E) o ZpoDa ST
(4,4): —(Dy+Fp)? T aTATA T
(3/2,0) (2,2): 2(Dy+ Fy)? (1,2):2 —2D(Da+3F,)
(14): —VB(Ds— Ep)(Da+Ey) an: %
O, -1 (3.4): —%\/E(DA—SFA)(DA+3FA) E?:; :D%(DA—BFA)(DA-FBFA)
3 5
(1,9): =20 -3E)D,—F) | (4 -2
(1,-1) (2,5): 2(Dp— FA)(Dp+ Fy) (2,2): —%Di
(4,5): —y/2(Da+ FA)(D,s + 3F,) (3,5): 1(Da—3F)(Dy+3Fy)
2,-1) 1LD: &
(1,1): _(DA_FA)2 . 2
(1/2,-2) (1,4): (Dy—Fy)(Dy+3F,) 82 25D(,L(Di : ;1;/4)
(4,4): 5(Dy+3F,)? T 3TAVTA T ORA
(3/2,-2) (1,1): 2(D4 — Fy)? (1,2): —2D,(Ds— 3F,)
(, -3) (1,1): —3(Dy—3F,)?
(1,-3) (1,1):  5(Ds—3F,)?

Table D.3.: Coefficients [C:*) Iba = [¢dS) la.p specifying the u-channel octet baryon exchange. Elements

(81,44 [8],44

that are zero are not shown.
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[ in Ja (G, ”1ab [Ce i ab | LG anas
(1,1): c;
1,2): ,/%c2
. 2
(1,3). —\/chj
(’4): _i , (1,1: c2
(1,5): V3% | a2 ¢
(2,2): %2 (1,3): —C?
. 32Cj (1,4): CZA
(1,1): 2¢2 23): -7 2.2).
(1,2): —2¢2 | 249: —/3C S (1,1): 4c?
(2,2): 2C? (2,5): % LA,
»9/- 3 2,4): -C;
(3,3): =4 (3,3): ¢
(3.4): y/2c2 (3,4): —ZCX
(3.5): _2%3 (4,4): C;
4,4): ¢
(4,5): —/3¢;
. 2CA
(5,5): =2
(,5)

Table D.4.: Matrix elements [C[m],AA]b,a = [C[(i’(f])’AA]a,b describing the s-channel decuplet baryon exchange.

Only non-zero elements are shown.

)
_ [10],44 {[
= E —3m? —3m? 43t +2(s — (M + M)vs + MM)]M?3
2 [10]
[10] 24f M[lO (M[lo] s)

+ [=(M +2Vs)m% + (M — V/s)M? + v/s(—2m? + M(v/s — M) + 3t)
+((M = 5)? = mz)M]M[lo] + [(2m2 — 2M? 4+ s + M /5)m?
— (M — Vs5)(2(m* — M*)M +s(M + M) + Vs(m* + M(M — M)))]1My,

+\/§(m2—M2+s)(ﬁ12—]\7[2+s)}, (D.8)

where the matrix elements [C(I :S) aalap = [CU :5) “anlba are collected in Tab. D.4.

S~ 1
¥ - ¢ :_chﬁf)ﬁﬂﬁf‘)( DSfi P~ DTP (-, (D.9)

[10]
é(I,S)
[10],44 )
Ff = 2vs5(M + M)+ (M — M)? —3s —u
' Z:24sz G0 (M ){ oy (2 s ) ]
+ M) [M*(M — V/5) + 2M° + M*(M — 2+/5) + M(m? + M? + 2M /s — 35 — 2u)

+ /5(3(s + 1) — m?) + 2M3 — 2M? /s — M(3s + 2u)]
+ Moy [M*(=M(M — M + v/3) + 2m* +u) — M(M? + M(M? — m*) + m*M)
+u(—+s(M +M)+2MM +m?) + M+/s(M(M + M) —m?)]

—(ﬁlz—M2+u)(1\7[2—m2—u)(M+M—\/E)}, (D.10)

(1.8) lap = = [¢US) 1.« are collected in Tab. D.5.

where the coupling coefficients [C[m] " [10].44
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[Ca s [C5 o AN AN
©, D 1) C2
(1, an: &
(1,3): —C? (3,3): ¢
(1/2, 0) a,1: % 1,4): %% (3,4): —CCTX
(2,4): c? 4,4): —=
2 2 %
(3/2,0) (1,1): 22 (1,2): —‘;;—A (2,2): 22
1,1: -2 72
] L [T . 1,4): /2¢2 o
©,-D || Q,2: -4/2¢3 833 gg/ﬁcj G4 chj (4,4): —2C2
s 1) A
(1,1): c?
(1,2): —A 2¢2
9.2). G T as: \[Cz
(1,-1) (2,3): —%C’% (22): 3 5 5 (2,5): £ (5,5): 2C?
(2,4): —4/3Cy
(3 5). Cj 3 (45) \/7(72
(4:4): Cs/f
2, -1) an: &
1,2): —C; 1,1): -4
(1/2,-2) (3,3): % (1,3): % 5. ¢
) 3): = 3): = (1,4): c2
) 3,9 cjz (4,4): cjz
(3/2,-2) (2,2): 2= (1,2): -2 (1,1): 22
(0, -3) (1,1): ¢2
(1,-3) 1,1): &

Table D.5.: Coefficients [C[(i(.)s])’AA]b,a [C[({(f’])’AA]a’b specifying the u-channel decuplet baryon exchange.

Vanishing elements are not shown.

[ng’)px]a,b [Cg S)px]a,b
0, 1) (1,1): —3hp(Dx + Fx +2Gy) (1,1): hp(Dy — Fx + Gy)
(1, 1) (1,1): —3hp(Dx + Fx +2Gx) (1,1):  hp(Dy — Fx + Gy)
(12, 0) (3,3): —3hp(Dx +3Gyx) (3,3): 3hp(4Dx +3Gy)
’ (4,4): —hp(Dy + Gy) (4,4): Gxhp
(372, 0) (2,2): —hp(Dx + Gy) (2,2): Gxhp
©.-1 | @2 Shp(Dx + Fx +2Gy) (2,2): —hp(Dx — Fy + Gy)
’ (4,4): —3hp(Dx —Fx +2Gy) | (4,4): hp(Dy + Fx + Gy)
-1 || @ she@x+Ex 4260 | (33): ~hp(Dx —Fx +Gx)
’ (5,5): —3hp(Dx —Fx +2Gy) | (5,5): hp(Dy + Fx + Gy)
2, -1
(12, -2) (2,2): 3hp(Dx +3Gy) (2,2): —3hp(4Dx +3Gy)
’ (3,3): hp(Dy +Gy) (3,3): —Gyxhp
(3/2, -2) (2,2): hp(Dy +Gy) (2,2): —Gyhp
(0, -3) (1,1): 2hp(Dx — Fx +2Gy) (1,1):  —hp(Dx + Fx + Gy)
1,-3) (1,1): 3hp(Dx — Fx +2Gy) (1,1):  —hp(Dy + Fx + Gy)

Table D.6.: Coefficients [C(I )S) lba = [C(IS) la» describing the t-channel vector meson exchange. Ele-
[9],px 1b.a [9],pxda,b 9 g

ments that are zero are not shown.
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L,S)
[C( px]a b

[Cgf X]a,b

0, 1) (1,1): Shp(Dx +Fx)
(LD || ,D: —3hp(Dx +Fy)

(1,1):  2hp(Dy + Fx)
(1/2, 0) (3,4): —Dyhp

(4,4): 2Fxhp

(1,1): —hp(Dx + Fy)
(3/2,0) (2,2): —Fxhp

(1,1):  4Fyhp
0, -1) (2,2): %hP(DX—l_FX)

(4,4): —%hp(Dx—Fx)

(1,2): —2\/§Dth
(1, 1) (2,2): 21:1th

(3,3): —21hp(Dx +Fy)

(5,5): 3hp(Dy —Fx)
2,-1) (1,1): —2Fyhp

(1,1):  —2hp(Dx — Fx)
(1/2,-2) || (2,3): —Dyhp

(3,3): 2Fxhp

(1,1): hp(Dx — Fx)
(8/2,-2) (2,2): —Fyhp
0,-3) | ,1): —3hp(Dx —Fy)
(1,-3) (1L,1): Zhp(Dx —Fx)

(1,3): —3hp(Dx +3Fx)
(1,4): _%hP(DX —Fx)
(2,3): —3hp(Dx +3Fy)
(2,4): 3hp(Dy —Fx)

(1,2):  hp(Dy — Fx)

(1L2): —y/3hp(Dx ~ Fx)
(14): = /2hp(Dx + Fy)
(2,3): %hP(DX—i-BFX)
(3,4):  J5hp(Dy —3Fy)
(1,3): —=hp(Dx +3Fy)
(1,5): _‘/LghP(DX_BFX)
(2,3): —hp(Dx — Fx)
(2,5): —hp(Dx + Fx)

B,4): - %hP(DX — Fy)
(4,5): 4/ 3hp(Dy + Fy)
(1,2): —3hp(Dx — 3Fx)
(1,3): %hP(DX + Fx)

(2,4): ihp(Dy —3Fy)
(3,4): ghp(Dx +Fy)

(1,2): —hp(Dx + Fx)

Table D.7.: Continuation of Tab. D.6.

D.4 Vector meson exchange

where X € {V, T} and the coupling coefficients [C

- -

A}“\ -

[91.x

1
= ~WLS) (P
Z 4f2 C[9] PXFPU

@ 9)G6 (@ — T @—a),

ZC(,S) (Mm% —m?)(M — M) —t(M +M —24/s)

[91,PV

[9]

8f2(m

—t)

(15) my [m? 4+ m? —f+2(M Vs)(Ws —M)]
+2.C0sir 16F2(m2, — 0) !

[9]

(1,5)

[9],pX:|a,b

[9],PX

(D.11)

(D.12)

=[S 1p,. are collected in the Tab. D.6 - D.7.
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