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Abstract

Piezoelectric materials couple polarization P, and mechanical strain g5 [1]. The tech-
nologically most used piezoelectric material system is the ferroelectric PbZr;_,Ti,O3
(PZT) [2,3]. Due to the toxicity of lead oxide, and to obtain properties beyond the
range of PZT [2], such as a higher temperature of depolarization, larger Young's
modulus or higher cohesive stress, current research on ferroelectric materials devotes
large resources to the identification of new lead-free materials [3].

The aim of this thesis is to improve the understanding of lead-free ferroelectric
perovskite materials and eventually to guide the search for new ferroelectric ma-
terials. This is done by analyzing the structure and thermodynamic stability
of different ferroelectric perovskite materials, focusing on PZT as reference and
(Nay /»Biy /TiO3)1_,-(BaTiO3)y (BNT-BT). Ferroelectricity is an intrinsic material
property that occurs only in materials with certain crystal structures [1]. There-
fore, atomistic simulations are an appropriate tool to analyze ferroelectric materials.
In this thesis the structure and thermodynamic stability of different ferroelectric
perovskites are analyzed based on density functional theory (DFT) calculations.

As a first step chemical ordering and its influence on relaxation is analyzed.
Chapter 3 shows that although chemical ordering is preferred in thermodynamic
equilibrium for PZT, the driving force is too small to overcome diffusion barriers in
bulk materials. In Chapter 4 a combination of DFT calculation and high resolution
transmission electron microscopy (HRTEM) is used to analyze the cation distribution
in BNT-BT. Finally, the solid solution BNT-BT is modeled according to the atomic
distribution found in Chapter 4, and cation displacement is used as a measure of
ferroelectricity. It is found, that the instabilities of the cation sites are a bilinear
function of lattice parameter and composition. Also traits of the region showing
improved ferroelectric properties are identified.






CHAPTER 1

Introduction

This chapter starts with a brief introduction of ferroelectric materials and their theo-
retical description. Afterwards an overview of the literature on ferroelectric materi-
als and their simulation is given. The chapter is concluded by a section summarizing
the open questions that will be analyzed in this thesis.
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INTRODUCTION

1.1 Physical Background

1.1.1 Polarization and ferroelectricity

Dielectric materials can be polarized by an electric field. Changes in polarization
are measured by the permittivity tensor x,

Xap = a ’ (1.1)

where dP, denotes the change of the polarization vector and dEg the change of the
electric field vector [1]. In addition to the polarization induced by an electric field,
materials can also show spontaneous polarization if the structure does not have a
center of symmetry and its centers of positive and negative charge do not coin-
cide [4]. Spontaneous polarization is expressed in reference to the centrosymmetric
structure by the following equation,

1 gp
P = /0 ey (1.2)

where A is a dimensionless adiabatic time, P the polarization and P,¢s the effective
polarization [5]. The value A = 0 describes the centrosymmetric reference state while
A = 1 identifies the polarized state. If two energetically equivalent polarized states
exist, the material can be switched between these by an electric field. A material that
shows switchable spontaneous polarization is a ferroelectric material.

All ferroelectric materials are also piezoelectric in the poled state [4]. Due to
the piezoelectric effect mechanical strain results in a change of polarization. If the
application of an electric field results in mechanical strain, the behavior is called the
inverse piezoelectric-effect. In piezoelectric materials polarization P, and mechanical
strain €p; are coupled via the piezoelectric tensor 7,p5 [1]:

deﬁ(g '

Yaps = (1.3)

The ferroelectric properties of a material are directly connected to its crystal struc-
ture [1]. The appearance of ferroelectricity can be seen as a disruption of a paraelec-
tric centrosymmetric structure [6].

In Figure 1.1 a centrosymmetric structure and possible disturbances of this struc-
ture can be seen. The most left picture represents a prototypic centrosymmetric
structure. The structure is built from elements represented by A. The atoms are in
average on positions represented by circles. The structure has lattice parameters rep-

resented by the frame. In subfigure (b) some average atomic positions are displaced
(represented by arrows). In subfigure (c) the lattice parameters of the structure are

12
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Figure 1.1: Schematic representing possible distortions of a centrosymmetric prototype
structure.

changed (represented by the distorted frame). In subfigure (d) chemical distribution
disrupts the structure (represented by an inhomogeneous distribution of different
types of elements A and A’). The displacement of the average atom position seen
in subfigure (b) can lead to a spontaneous polarization [1]. Changes of the lattice
parameters are very often observed together with a ferroelectric displacement [6].
A displaced atom position can favor a change in lattice constants, as can changes
in lattice constant favor the displacement of an atom position. Chemical order on
its own can result in ferroelectricity, but also influences atomic displacement and
lattice parameters [7]. On the other hand a change in lattice parameters and atomic
displacement can result in the favoring of a specific ordering. Atomistic simulations
can be used to analyze these disturbances as a whole or individually while keeping
other disturbances fixed.

For more details please see the the book chapter by Resta and Vanderbilt [1] and
the review article by Dove [6] and references therein.

1.1.2 Distortions in the perovskite structure

The perovskite crystal structure

Ferroelectricity can be observed in non-centrosymmetric crystal structures. An
important structure is the distorted perovskite. Technically used ferroelectrics and
most new ferroelectric materials exhibit this structure type [3,8].

The perovskite structure can be adopted by oxides of the composition ABOs3,
where A and B denote different cations while O stands for oxygen. The symmetry of
the ideal prototype structure shown in Figure 1.2 is Pm3m. The A-atom of the ABO3
formula unit is positioned at the corner of the unit cell, the B-atom is positioned
at the body center of the unit cell and the oxygen atoms are situated at the face
centers of the unit cell [8]. Therefore, the B-site cation is coordinated by 6 oxide ions

13
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Figure 1.2: The ABOj3 perovskite structure. d@’

forming an octahedron. The nearest neighbors of the A-site cation are also oxide ions
but the coordination polyhedron is a cuboctahedron formed by 12 oxygen anions.
The A-site allows for the occupation with larger cations than the B-site. The ideal
prototype structure is cubic, centrosymmetric and paraelectric.

The Goldschmidt tolerance factor considers the cubic perovskite structure built
from atoms in the rigid spherical atom model. It is calculated from the atomic radii
of the perovskite structure,

__ratro
V2(rg+710)
where r 4 denotes the radius of the A-site cation, rg the radius of the B-site cation and
ro the radius of the oxygen anion [9]. A perovskite material that shows a tolerance
factor of 1 is closely packed in the rigid spherical atom model.

(1.4)

The ferroelectric phase transition

A possible distortion of a prototype centrosymmetric structure is a displacement
of the average atomic positions. In the perovskite structure the tolerance factor
shown in equation 1.4 can be used as a first assessment of atomic displacements [9].

In a pure material with a tolerance factor of 1 the cubic structure is expected to be
stable. If the tolerance factor deviates from 1, but stays in the interval between 0.88
and 1.09, non-cubic perovskite structures occur, but the cubic structure is unstable.
A tolerance factor of larger than 1 can be interpreted in the way that in the cubic
structure the B-site cation is too small for the space inside the oxygen octahedra.
Therefore, the B-site cation has the possibility to displace. A tolerance factor smaller
than 1 indicates that the A-site cation has too much space in its coordination poly-
hedron. Thus, the A-site cation can displace.

Together with a displacement of the average atomic position, a change in lattice
parameters is often observed in ferroelectric perovskites [8]. A material with a tol-
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erance factor of larger than 1 is often tetragonal. A displacement of the B-site cation
relative to the oxygen atoms along the c-axis results in a strengthening of one B-O
bond stabilizing the structure. In addition an elongation of the c-axis relative to the
other axis is often observed [8]. A material with a tolerance factor smaller than 1
is often rhombohedrally distorted. Displacement of the A-site cation is seen along
the (111) direction, while the unit cell is elongated along this direction. In addition,
tilting of the oxygen octahedra reduces the space for the A-site cation [8].

Materials of the distorted perovskite structure usually undergo a temperature de-
pendent paraelectric-ferroelectric phase transition [8]. Above the transition tempera-
ture the average structure is cubic with all atoms in average on their high symmetric
sites. Below the transition temperature the structure is distorted and some atomic
positions are in average displaced from their high symmetric sites. The displaced
atoms are located in a double well potential.

The shape of the double well potential and interaction between neighboring atoms
determines the character of the paraelectric-ferroelectric phase transition [6,10]. If
the potential barrier is much higher than the atomic interaction one speaks of the
order-disorder limit [4,6]. At high temperatures the atoms reside in one or the other
of the wells with random occupation. At lower temperatures the atoms prefer to
occupy the same side of the double well potential. This type of phase transition can
be described by the spin—% Ising model [6,11].

In the displacive limit the forces between atoms are much larger than the forces
due to the local potential [4,6]. At high temperatures the atoms show thermal vibra-
tion about the high symmetric position. Upon cooling, the average position of each
atom moves away from the high symmetric position. This type of transition can be
described by the Landau theory [6,12].

The temperature dependent paraelectric-ferroelectric phase transition in perovskite
materials is considered to be a mixture of a disorder-order and displacive phase tran-
sition [6]. An example for a mostly order-disorder phase transition is BaTiO3 [6,13],
while the transition of PbTiO3 is mostly displacive [6,14]. In atomistic simulation
the displacive character can be modeled in a small cell size. For the disorder-order
character of the phase transition different distributions are needed that have to be
modeled in larger cells.

A phase transition from a paraelectric to a ferroelectric phase can also be observed
upon volume changes in addition to changes in temperature. Average atomic dis-
placements, their amplitude and appearance, are connected to the “space” the atoms
have. Calculations of ferroelectric materials show that the potential barrier between
the wells is diminished at lower volumes [15]. Early experimental studies of ferro-
electric properties support these calculations, they suggested that ferroelectricity is
diminished under pressure [16].

15
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The morphotropic phase boundary

Ferroelectricity occurs when the average atomic position of the atoms is displaced
from their position in the centrosymmetric structure [6]. It is possible that increased
ferroelectricity is observed if more atoms contribute to ferroelectricity. Based on the
tolerance factor [9] either the A-site or the B-site cation of a perovskite material can
displace. However, in solid solutions of materials with different tolerance factors
more atoms might contribute to the ferroelectricity [8].

In the technologically most used ferroelectric material PbZr;_,Ti, O3 (PZT), PbTiOs
with a tolerance factor larger than 1 is mixed with PbZrO; with a tolerance fac-
tor smaller than 1. In the resulting solid solution a so called morphotropic phase
boundary (MPB) separates the PbZrO; rich rhombohedral phase and the PbTiO; rich
tetragonal phase. Close to this boundary the piezoelectric properties are improved,
as the piezoelectric constant shows a peak [2]. Similar boundaries are observed in
other piezoelectric materials [3,8]. Originally, the phase boundary was called mor-
photropic as a structural change occurs with a concentration change [8]. However, in
current literature the name MPB is also used to denote a general boundary between
a ferroelectric and a second (not necessarily ferroelectric) phase, if that boundary
shows improved piezoelectric properties [17].

The improved piezoelectric properties have been explained by means of possible
polarization directions in different crystal structures [8]. It has been postulated
that at the MPB tetragonal and rhombohedral structures coexist [18-20]. In the
ferroelectric phases the cations (A,B) are displaced in reference to the anions (O)
creating a polarization. In the tetragonal structure displacement occurs along the
(100) direction. In the rhombohedral structure displacement is observed along the
(111) direction. Therefore, the polarization vector can take six possible directions
in the tetragonal structure and eight possible directions in the rhombohedral struc-
ture. Thus, the polarization vector can take a total of 14 directions at the MPB [8].
Due to the increased number of directions more grains of a piezoelectric device are
able to adopt a polarization close to an overall electrical field. Thus, the effective
polarization is increased [8].

Another possible explanation of the improved properties is that at the MPB an
electric field can easily induce a phase transition between the rhombohedral and the
tetragonal phase associated to a large strain [21]. A miniaturization of ferroelectric
domains could occur close to the MPB, also allowing for more grains to contribute
to the effective polarization [20]. The most recent theory proposes that the enhanced
piezoelectric properties observed at the MPB are associated with a free-energy flat-
tening due to easy paths of polarization rotation and extension [22].

The position of the MPB is pressure dependent [16,23]. It was proposed that the
substitution of differently sized cations induces a “chemical” pressure (positive or
negative) in the material, which is comparable to a hydrostatic pressure [24].
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Chemical order on the cation sublattices

The ideal perovskite structure can be adopted by materials that can be described
by the formula unit ABO3. For materials in which one crystallographic site is occu-
pied by different cations the site occupation can result in chemical ordering. Differ-
ent ordering might be preferred, depending on the mixed crystallographic site [7,25].
In experiments and calculations, B-site order is seen most commonly in aliovalent
solid solutions [26-30]. A-site order is rarer observed than B-site order [7,25,31].

Density functional theory (DFT) calculations find huge barriers for cation site va-
cancy migration (7.73 eV for Mn in LaMnQs3, 9.84 €V for Ti in BaTiO3 and 5.82-6.00 eV
for Ba in BaTiO3) [32,33]. Based on these calculations, it is assumed that diffusion in
perovskites is kinetically hindered, and thus, can be considered negligible below the
Curie temperature. Perovskite ceramics are mostly processed at elevated tempera-
tures [34]. At these temperatures the perovskite forms in the cubic structure and
transforms to ferroelectric structures upon cooling. Cation distributions installed
above the Curie temperature in the prototypical cubic structure will thus be relevant
for material composition and structure in the ferroelectric regime.

A driving force towards chemical order can exist, if the same crystallographic
site is occupied by cations that are considerably different in charge, size or electron
configuration.

The perovskite structure (shown in Figure 1.2) can be divided into an A-site, B-site
and O-site sublattice. For the ideal cubic structure, the A-site sublattice is cubic
primitive, as is the B-site sublattice. The O-site sublattice is cubic face centered.
In mixed perovskites one or more of these sublattices can be occupied by different
atoms. The behavior of lattices is mostly influenced by long range effects, for ex-
ample differently charged atoms [35]. Charged lattices result in a Coulomb energy
favoring a homogeneous distribution of the differently charged atoms [25].

In addition to the long range effects of lattices, the local environment also in-
fluences atomic distribution. The local symmetry of an atom strongly influences
the possibilities of the atom to displace. It is determined by the position of the
surrounding atoms and their properties such as charge, size and chemical bonding.
For understanding the influence of local environments in the perovskite structure, it
is helpful to have a closer look at the oxygen environment [7,25].

In the ideal perovskite structure the oxygen anion is situated in the center of a
flattened octahedron formed by four A atoms in one plane and two B atoms on
opposite sites of that plane (see Figure 1.3). In B-site mixed solid solutions the
four A-sites are occupied by the same cation, while the B-sites can be occupied
by cations of the same or different type. If the B-sites are occupied by the same
element, the oxygen environment is centrosymmetric, and thus, without relaxation
possibilities. If the B-sites are occupied by two different elements the oxide ion might
relax towards the smaller or more positively charged ion [7,25].
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(a) 2A/2A/(trans) (b) 2A/2A’(cis)

Figure 1.3: Oxygen environment in the ABO3 perovskite structure. Two occupations in an
A-site mixture are shown.

In A-site mixed perovskites the B-site cations next to the oxygen atoms are the
same, while the occupation of the four in-plane A-sites can vary. The number of
possible oxygen environments in A-site mixed perovskites is larger than in B-site
mixed perovskites. In Figure 1.3 two possible occupations are displayed. Subfigure
(a) shows a centrosymmetric environment with no displacement possibilities for the
oxygen anion. The oxygen environment shown in subfigure (b) is not centrosym-
metric, the oxygen anion could displace toward the A’ or A rich face if either atom
type is preferred. The displacement possibilities of all atoms are influenced by their
local symmetry. This is not only valid for the anions, for which it was exemplary
shown in this paragraph, but also for the cations.

In ferroelectric materials long range and local effects might favor the same type of
order, or different types. Which type of order is preferred depends on the crystal-
lographic site that is occupied by different atom types and on the properties of the
atom types mixed [7,25].

For more details please see the book by Jaffe [8], the review article by Dove [6],
the articles by Knapp [7] and King [25] and references therein.

1.1.3 Landau theory and lattice dynamics

The Landau theory is a mathematical formalism that is used to describe phase
transitions. It can be used to describe the displacive paraelectric to ferroelectric
phase transitions as a function of temperature [6].

18



Piezoelectric materials

In this theory a phase transition is characterized by a parameter called the order
parameter. The order parameter has to contain all information about the degree of
order or extent of deformation in the low-temperature phase [6,10,12]. For ferro-
electric materials the polarization is mostly used as order parameter [6]. According
to the theory, the free energy of a system close to a phase transition can be expressed
as a low order Taylor expansion in terms of the order parameter and terms that cou-
ple the order parameter with other physical quantities. The expression is truncated
at the lowest order that is theoretical possible. Thus, the Gibbs free Energy reads as
follows:

_ 1 -, 1,4, 1 ., 1,
G(;y)—Go-l—zmy -1—4[317 —I—ZCeiy +2€, (1.5)

With G the free energy, 7 the order parameter, Gy the free energy of the system
tor = 0, € the strain, a, B, { and C constants, n equals 1 or 2 depending on the
symmetry of the strain in relation to the order parameter [6]. In this equation the
tirst three terms stem from the Taylor expansion truncated after the fourth order
term, the last two are strain variables. For a phase transition to occur the parameter
« has to change sign [6].

For investigating the displacive character of a phase transition, soft modes in the
phonon dispersion can be used [6]. The central idea of the soft mode theory is that in
the high-temperature phase there is a lattice vibration for which the frequency falls
to zero on cooling towards the transition temperature [6,10]. A vanishing frequency
implies a vanishing restoring force against the corresponding deformation. Thus,
this vibration is called a soft mode. The atomic displacements associated to the
soft mode are the same as the deformation of the structure in the low temperature
phase [6,36].

DFT calculations can be used to study the phonon dispersion of the perovskite
structure [37—41]. Such and similar lattice dynamic calculations [42,43] can be used
to obtain a Landau description for the analyzed system. The use of lattice dynamic
calculations to discern the stability of the cubic perovskite structure is further elab-
orated in the methodology chapter (Chapter 2).

For more details please see the review article by Dove [6] and references therein.

1.2 Piezoelectric materials

Piezoelectric materials used in technological applications are often solid solutions
of perovskite materials [3,8]. It is common to use acronyms as names for their chem-
ical formula like PbZr;_,Ti,O3 (PZT). In this thesis the used chemical formula are
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according to the IUPAC rules, while the used acronyms are those most commonly
used in the Sonderforschungsbereich SFB 595 “Electrical Fatigue in Functional Ma-
terials”.

The technologically most used piezoelectric material system is PZT [2,3]. It can
be found in various applications such as actuators and sensors. Examples of ferro-
electrics in applications are: atomic microscopes, ultrasound generators, piezoelec-
tric motors, ink-jet printers and fuel injectors [44].

Current research on ferroelectric materials devotes large resources to the identifi-
cation of new lead-free ferroelectric materials [3]. This is in part due to the toxicity
of lead oxide, a main component of PZT [45]. Lead-free alternatives reduce the risks
during production, while also opening up the field of bio-applications to ferroelectric
materials. Moreover, there is an interest in materials with properties beyond the
range of PZT [2], such as a higher temperature of depolarization, larger Young’s
modulus or higher cohesive stresses (see [3] and references therein).

To discover new materials with properties that are comparable to PZT or that
surpass it, a thorough understanding of why the material shows its piezoelectric
properties is needed. In the following an overview of the existing literature on PZT
is given and questions that remain open are pointed out. Afterwards the literature
on one lead-free alternative (Naj/,Bi;/,TiO3)1—,-(BaTiO3), (BNT-BT) is presented.
The last part of this Literature overview covers studies aiming to predict material
compositions with improved ferroelectric properties.

1.2.1 Lead zirconate titanate

PZT is a solid solution of A-site active PbZrOs3 [43] and A and B-site active PbTiO3
[2,43]. Figure 1.4 shows the quasi-binary phase diagram proposed by Jaffe [8]. Above
the Curie temperature the structure is a paraelectric cubic perovskite, while distorted
perovskite structures are observed below the Curie temperature. PbTiO3 and the
titanium rich phase show tetragonal ferroelectric distortion up to about 55 %PbZrO3
content. Pure PbZrOj is orthorhombic and antiferroelectric. In the solid solution
with PbTiOj3 it becomes ferroelectric and rhombohedrally distorted up to a concen-
tration of about 45 %PbTiO3 [8].

The rhombohedral and tetragonal phases are separated by the so called mor-
photropic phase boundary (MPB). Close to this boundary the piezoelectric properties
are improved, as the piezoelectric constant shows a peak [2]. Concentrations close to
the MPB have been in the focus of diffraction studies for many years. The existence
of a coexistence region [18,19], a monoclinic phase [46,47] or nanodomains [20] have
been postulated. Until now the exact structure in the morphotropic region remains
a matter of discussion [48-51].
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The position of the MPB and appearance of ferroelectricity is pressure dependent.
Studies on Zr-rich PZT showed that the phase transition from the ferroelectric phase
to the paraelectric cubic phase results in a volume decrease and can be triggered by
the application of pressure [16,23]. More recent studies proposed that compositional
changes can be thought of as applying pressure to the material [52]. It is proposed
that the substitution of differently sized cations induces a “chemical” pressure (pos-
itive or negative) in the material comparable to a hydrostatic pressure [24]. Re-
cent analysis of the high pressure behavior of PbTiO3 showed an initial decrease
of tetragonality with increasing pressure, followed by an increase of tetragonality
at even higher pressures [53]. This has led to the proposition of “electronic” high
pressure (more than 30 GPa) ferroelectricity. Theoretical studies proposed a pressure
induced “MPB” in PbTiO3 [54] that is “brought down” to ambient pressure in PZT
due to the “chemical pressure” induced by Zr [17]. However, this interpretation
was questioned, as the high pressure behavior of PbTiO3; was discovered to be more
complex [55].

The PZT solid solution is a homovalent B-site mixed perovskite. Ti and Zr atoms
are generally considered to be randomly distributed in PZT, due to the cations iden-
tical oxidation states [29]. However, experimental and theoretical studies have found
contradicting results. An experimental study on epitaxial thin films of PbZr( 2 Tip O3
observed a preference of {110} B-site planes that are solely occupied by titanium
[56]. The authors attribute this cation ordering to substrate-film-interactions. First-
principles calculations on the thermodynamics of PZT found evidence for cation
ordering together with negative mixing energies. Saghi-Szab6 and Cohen [57] cal-
culated Pb(Zr; /,Tij /)O3 with B-site cations ordered along the [100] and [111] direc-
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tions and found a positive mixing energy for [100] and a negative mixing energy
for [111] ordering. This suggests a stabilization of long-range order along the [111]
direction. Zinenko and Sofronova performed Monte-Carlo simulations within an
ionic-crystal model to study cation ordering [58]. They calculated PZT in different
permutations for two concentrations and concluded that ordering only occurs at
temperatures below 250 K.

The finding of a negative mixing energy for ordered structures questions the com-
plete solubility shown in the phase diagram by Jaffe. The validity of the phase
diagram is further questioned by an experimental study finding that the width and
concentration of the MPB is dependent on processing conditions [19]. Bellaiche and
coworkers constructed an effective Hamiltonian fitted to structural parameters from
virtual crystal approximation (VCA) calculations and identified a monoclinic phase
close to the MPB [59]. Based on the same Hamiltonian, it was found that short-range
order has an effect on the width of the MPB [60]. The MPB region is wider if cluster-
ing occurs, and smaller in rocksalt order. To resolve these discrepancies, it has been
proposed [61] to treat the diagram by Jaffe [8] as a technical phase diagram.

Rossetti et al. recently proposed an equilibrium phase diagram for PZT [61]. The
diagram was computed from a low-order Landau expansion in an approximation of
the theory of regular solutions. The authors argue that the phase diagram by Jaffe
can only be observed if atomic diffusion is fully frozen and the transformation is
diffusionless. According to the contact rule [62] the single-phase fields of the phase
diagram must be separated by two-phase regions rather than line boundaries. The
equilibrium phase diagram of Rossetti replaces the MPB and paraelectric to ferro-
electric transition lines by miscibility gaps. The gaps expand with increasing atomic
exchange interaction parameter and decreasing temperatures. From the measured
positive heats of formation [63] they derived a regular solution behavior with a
positive interaction parameter as first approximation. Using a high enough atomic
exchange interaction parameter for the modeling of the phase diagram leads to a
miscibility gap that reaches into the paraelectric cubic phase. However, the validity
of Rossetti’s measured enthalpies of mixing has been questioned by Jacob et al. who
calculated excess Gibbs energies from derived thermodynamic activities [64]. Their
excess Gibbs energies are lower by a factor of 5 than the enthalpies of mixing mea-
sured by Rossetti, a discrepancy they deem too high to be resolved by excess entropy
of mixing. In addition, they find the cubic solid solution to be intrinsically stable,
thus contradicting the immiscibility in this phase.

From the presently available literature on PZT it can be deduced, that - although
the material has been under scientific scrutiny for decades - some unexplained as-
pects and discrepancies remain. Opinions on cation order in PZT deviate. While the
B-site occupation is generally considered to be disordered [29], experimental [56] and
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theoretical [57,58] studies found indications of order. The phase diagram of PZT in
thermodynamic equilibrium is unknown. A model calculation exists that focuses
on the phases below the Curie temperature [61]. However, there are indications
that thermodynamic equilibrium cannot be reached at these temperatures [32,33]. In
addition the model is questioned by another work [64].

The appearance of ferroelectricity and the position of the MPB in PZT is pressure
dependent [16,23]. It was proposed that compositional changes can be thought of as
applying a “chemical” pressure to the material. However, the pressure behavior of
ferroelectric materials is not fully understood [17,53-55].

In this thesis these topics are addressed in Chapters 3 and 5. The PZT system is
mainly analyzed in Chapter 3. Cation order is analyzed in cubic PZT, comparing
configurations qualitatively in different supercells in Section 3.2 and quantitatively
within a specific supercell in Section 3.3. The thermodynamics of cubic PZT are
assessed from first-principles to validate the assumption of a fully miscible solid
solution with positive heat of mixing in the paraelectric regime in Section 3.4. In
Chapter 5 the dependence of ferroelectricity on pressure and its relation to the com-
position is analyzed on a different material system.

1.2.2 Bismuth sodium titanate - barium titanate

(Naj /»Bij /5 TiO3)1—x-(BaTiO3) (BNT-BT) is the solid solution of tetragonal BaTiO3
with thombohedral Na; /,Bi; /,TiO3 (BNT) [65]. In comparison to PbTiOj3 the tetra-
gonal distortion of BaTiOs3 is smaller, as is the piezoelectricity. It is still used as only
few tetragonal perovskites have been identified so far [3]. BNT is used as the thom-
bohedral material of the solid solution, as one of the elements occupying the A-site
is bismuth. Bismuth has a similar electronic structure as lead including the so called
“lone-pair” that is said to play an important role in lead based ferroelectrics [3].

The structure of the systems is not clearly resolved (see [66] and references therein).
BNT was reported to be antiferroelectric by Takenaka [65], but today the peculiar-
ities attributed to antiferroelectricity are considered signs of relaxor behavior [31].
BNT is a rhombohedral ferroelectric with high remanent polarization and high co-
ercive field at room temperature [67,68]. Single crystals showed rhombohedral or
pseudocubic symmetry depending on synthesis and stoichiometry [31]. In a recent
study on ceramics, formation of tetragonal platelets in a rhombohedral matrix was
observed [69]. BaTiOj is a well known ferroelectric that has been in the focus of
experimental and theoretical research [8,70]. At room temperature it is tetragonal
and B-site active [43]. BaTiO3 forms a homogeneous solid solution with BNT.

Depending on processing conditions, a morphotropic phase boundary (MPB) in
the BNT-BT system is known to exists at concentrations between 0.04 mol% and
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0.08 mol% [71-75]. In this composition range, anomalies in X-ray diffraction, di-
electric measurements, Raman and infrared spectroscopy were reported [65,71-75].
These anomalies could be due to chemical order. Typically, tetragonal and rhom-
bohedral phases coexist at the MPB, but the presence of a rhombohedral phase and
a cubic phase at the MPB was also reported [73]. These compositions show relaxor
behavior and they reveal different temperatures for depolarization (T;) and different
maximum dielectric constants (T;). This provides evidence for the existence of an
additional phase between the ferroelectric and paraelectric phase [65,72,75]. The
recent work by Jo [66] shows that the structure of the system differs considerably in
the unpoled and the poled state, a behavior usually found in relaxors. In addition,
the MPB evolves from a boundary in the unpoled sample into a morphotropic region
in the poled sample.

In BNT-BT aliovalent cations are located at the A-site (Na*, Bi** and Ba?*). In
B-site mixed perovskites chemical ordering is observed when a sufficient charge
difference between the elements occupying the B-site exists [76]. In A-site mixed
perovskites ordering is rarely observed. Knapp, King and Woodward presented
that {100} order is preferred in A-site mixed perovskites, but a charge difference
of two, as observed in BNT-BT, is not sufficient without additional factors favoring
order [7,25]. However, chemical ordering is reported in the BNT-BT system. In BNT
a very low degree of long-range order is observed [31]. Other work finds a similar
order in nanometer sized domains embedded in a disordered matrix [77].

In a theoretical study based on first-principles calculations and the cluster-
expansion method, various permutations of the atomic arrangements in pure BNT
[78] were analyzed and an ordered structure with “crisscross” rows of Na and Bi
cations perpendicular to [001] and of space group P4, /mmc was predicted. Another
first-principles study [79] presents density functional theory (DFT) calculations on
BaTiOs3, Bij ,Naj /,TiO3 and Bijs,3,Nag5,3Ba; /14TiO3 but only for one ordered per-
mutation of each system without allowing for structural relaxation. X-ray diffraction
studies of single crystals suggested the existence of an ordered phase based on a
Big 4463Nag 4913Bag.0625 TiO3 model [71].

It can be concluded that BNT-BT is a relaxor material that shows promising
ferroelectric properties, but its atomic structure is not yet resolved. To increase
the knowledge on the BNT-BT system it is analyzed in this thesis using atomistic
computer-simulations.

Possible chemical ordering is analyzed for BNT and morphotropic BNT-BT in
Chapter 4. The material system is used to analyze the relationship of volume and
composition to ferroelectric activity in Chapter 5. In the same chapter also a charac-
teristic of a composition region with improved ferroelectric properties is postulated.
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1.2.3 Predicting morphotropic compositions

The prediction of material systems that show a MPB and its composition is one
aim of current research. Mixing of tetragonally or rhombohedrally distorted materi-
als is one strategy to mimic the MPB of PbZr;_,Ti O3 (PZT).

The tolerance factor

To identify rhombohedrally and tetragonally distorted materials the Goldschmidt
tolerance factor (equation 1.4) is often used as a guideline. For example, Eitel et
al. analyzed various potential counterparts in solid solutions with PbTiO3 [80,81].
The materials BiMeOs, with Me standing for scandium, indium or yttrium, were
analyzed as the tolerance factor indicated a possible thombohedral distortion. A
MPB was found in the solution of PbTiO3 with BiScO3. Also a correlation between
Tc and the tolerance factor was found. Another work by Suchomel and Davies
analyzed PbTiOs-Bi(B'B”)O3; showing a MPB [82]. They observed a correlation of
the composition at the MPB with the tolerance factor of the materials.

The tolerance factor has also been used to guide calculations. For example, DFT
calculations verified that BiAlOj3 is rhombohedral and that BiGaOjs is tetragonal, as
indicated by the tolerance factor [83]. Therefore, a solid solution of these materials
might be of interest.

Solid solution calculations

The tolerance factor is successfully used as a guide to identify tetragonal and
rhombohedral structures that might show a MPB [80-83]. To predict the composition
of the MPB, DFT calculations of solid solutions could be used [52,84].

Existing calculations are based on the assumption that the rhombohedral and
tetragonal phases coexist at the MPB. Translating this information to DFT calcula-
tions means: In solid solution calculations the MPB is positioned at the composition
where rhombohedral and tetragonal phases show the same energy [52,84]. As men-
tioned before the exact structure of PZT at the MPB is unclear. Within the explained
assumption, DFT calculations would be able to locate a line boundary as well as a
composition within a coexistence region. It might also be possible to gather some
hint on the composition region of a monoclinic phase between a rhombohedral and
tetragonal phase.

fiiguez et al. performed calculations on solid solutions of BiScO3-PbTiO3; and
PZT using the virtual crystal approximation (VCA) [84]. Comparing the energies
of the structures they could identify the MPB concentration. Grinberg and Rappe
used supercells to calculate solid solutions of AgNbO3; with PbTiO3, BaTiO; and
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BaZrO; [52]. They used the comparison of different structures to predict the MPB
compositions.

In preparation of this thesis the work of fiiguez et al. [84] and Grinberg and
Rappe [52] was repeated for PZT in order to validate and benchmark the computa-
tional framework. The simulations could be reasonably well reproduced. The MPB
is predicted with an accuracy of 1-12mol% which is comparable to the accuracy
of the work by fhiguez et al. [84] who predict the MPB with an accuracy of 10 %.
During this benchmarking process it came apparent that the predicted MPB strongly
depends on the choice of parameters that influence the ferroelectricity of a material
like the volume, symmetry and relaxation.

Combination of experimental studies and DFT calculations

A major work by Grinberg et al. [85] combines experimental findings correlated
to the tolerance factor and DFT solid solution calculations. They analyzed solid
solutions of PbTiO3 with (Pb/Bi)BOj3, B standing for different B-site cations.

PbTiOs is seen as the tetragonal partner in the solid solution showing a collinear
displacement of lead atoms. Adding another perovskite introduces the element B in
addition to Ti on the crystallographic B-site. Due to different elements on the B-site,
Pb will show a tendency of favorably moving towards one element type, disrupting
the collinear displacement of Pb atoms. The driving force away from one B-site
cation type is called the Pb-B repulsion and quantified as a function of atomic radii
and B-site displacement.

The authors postulate that at the MPB the cost induced by collinear Pb displace-
ment and the Pb-B repulsion are equal. As a zeroth approximation the cost induced
by collinear Pb displacement is considered to be constant. Thus, an equation is
obtained that calculates the PbTiO3 concentration of the MPB as a function of atomic
radii and B-site displacement. The equation is fitted to experimental and DFT data
with an accuracy of 15% in the PbTiO3 concentration of the MPB. The fit can be
improved by fitting different equations to solid solutions of PbTiO3 with BiBOs or
PbBO:;.

The equation obtained by Grinberg et al. explains the previously observed qualita-
tive correlation of the MPB concentration to the tolerance factor in PbTiO3-Bi(B'B”)O3
materials [82]: The tolerance factor, which is calculated from atomic radii, approxi-
mates the dependence to the atomic radii.

However, the method shows some disadvantages. First, it is not clearly explained
how the value for the atomic B-site displacement is chosen. Second, the accuracy
of the calculated PbTiO3; concentration of the MPB is not very good. Improving
the accuracy narrows the material systems the model can be applied to, while also
increasing the necessary input data.
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This approach has not yet been transfer to lead-free systems, which might be due
to the following obstacles. For example a large amount of input data is necessary,
that is not yet accessible for lead-free materials. More importantly, the work is
strongly based on the specific behavior of the lead-containing perovskite material
PbTiOs. A direct transfer to lead-free materials would be possible if a lead-free ma-
terial is found that shows similarities to PbTiO3 in the properties used for the model.
However, the transfer would only be useful if this material would also be a material
connected to perovskite lead-free systems with good piezoelectric properties.

Predictions on lead-free materials

A promising lead-free ferroelectric material system is BNT-BT [65]. It is the solid
solution of tetragonal BaTiO; with thombohedral BNT, thus, structural traits of PZT
are present. It also shows a MPB with improved piezoelectric properties [65]. A
literature overview was presented in Section 1.2.2.

Literature that discussed design rules for ferroelectric materials is less extensive
for lead-free materials than for lead-containing materials. As for the lead based
materials a correlation to the tolerance factor was analyzed. Experimental works on
BNT based material found a correlation of the MPB composition to the tolerance
tactor [68,86]. However, the calculated relationship of the structure to the tolerance
factor of lead-free perovskites is shown to be non-monotonic [52,87]. Thus, a theo-
retical explanation of the experimentally observed behavior has not been published
yet.

SnAl; ,,Nbq,,03 is proposed as a potential lead-free ferroelectric that might be
possible to be synthesized [88]. The position of a potential MPB in a solid solution
of this materials is predicted using the PbTiO3 based correlations by Grinberg [85].
However, the validity of that transfer is questionable.

DFT solid solutions calculations to predict the composition of the MPB comparable
to the calculations on lead based materials were published for silver solid solutions
[52] and Na;_,KyNbO3; (KNN) [89]. For the silver solid solutions no comparison to
experimental data is offered, the work on KNN does not predict the MPB with the
best piezoelectric properties. The work on KNN can also be interpreted in the way
that parameters influencing the ferroelectricity of a material like chemical ordering,
volume and relaxation, severely influence the predicted compositions of the MPB.

Methods to predict the composition of MPB have been developed for lead-based
materials [52,84,85], but a transfer to lead-free materials has not yet been fully suc-
cessful [87,89]. Experimental studies on lead-based materials find a monotonic rela-
tionship of the materials structure to the tolerance factor, that is explained by theo-
retical studies [82,85]. Based on these findings predictions of the MPB for lead-based
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materials are within an accuracy of 15% of the experimentally observed composi-
tions [52,84,85]. Theoretical studies on lead-free materials on the other hand show
a non-monotonic relationship between the materials structures and the tolerance
factor [52,87]. As the tolerance factor is an indication of atomistic parameters it
follows that the relationship of the ferroelectric structure to atomistic parameters
differs for lead-based and lead-free materials. It is possible that due to this difference
a direct transfer of methods predicting the MPB developed for lead-based materials
to lead-free materials was not yet successful.

In this thesis the relationship of atomic parameters influencing the structure of
lead-based and lead-free materials are analyzed. Chemical ordering and relaxation
are analyzed in Chapters 3 and 4 for PZT and BNT-BT respectively. Volume and
atomic displacements are analyzed in Chapter 5 for BNT-BT.

1.3 Open questions

In this thesis the structure and thermodynamic stability of PbZr;_,Ti,O3 (PZT)
and (Naj/,Bi; /,TiO3);_,-(BaTiO3), (BNT-BT) are investigated. From the overview
presented in this chapter the following main questions remain open:

* Does PZT show chemical B-site order? Is PZT a fully miscible solid solution?
* Does BNT-BT show chemical A-site order?

* What is the ferroelectric instability in BNT-BT? Can stability calculations of
the BNT-BT system be used to narrow the composition region with improved
ferroelectric properties?
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CHAPTER 2

Methodology

The properties of ferroelectric materials are closely connected to their atomic struc-
ture [8]. Therefore, atomistic simulations on many levels of approximation, are
an excellent tool to analyze ferroelectric materials. Ferroelectricity occurs because
the centrosymmetric structure is unstable and distorts [6], these distortions can be
modeled and analyzed separately or as whole [90-94].

In this chapter atomistic material modeling methods used to simulate ferroelectric
perovskites are described. The chapter starts with a description of quantum me-
chanic methods, afterwards classical simulation methods are introduced.
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2.1 First-principles calculations

2.1.1 Theory

This subsection is largely based on the review article by Payne et al. [95], for more
details please see the article and references therein.

In first-principles calculations a solid is treated as a many-body system composed
of electrons and nuclei in terms of quantum mechanics, without introducing any
empirical parameters. To predict the electronic and geometric structure of a solid,
the quantum-mechanical total energy of a system is calculated, and subsequently
minimized with respect to the electronic and nuclear coordinates [95].

As the mass of the electron is much smaller than the mass of the nuclei, the
response of the electrons to movement of the nuclei can be considered instanta-
neous. Therefore, the Born-Oppenheimer approximation can be applied to separate
the electronic and nuclear coordinates in the many-body wave function [95]. This
approximation simplifies the many-body problem, however, further simplifications
are used to allow for accurately and efficiently performed total energy calculations.

In this subsection the following simplifications are presented. Firstly, density func-
tional theory (DFT) is presented, which is used to model electron-electron interac-
tions, together with an approximation needed to perform calculations. Afterwards,
the importance of periodicity to quantum mechanic calculations is introduced. Fi-
nally, interactions with ions are presented.

Density functional theory

The basic concepts of DFT were laid out and proven by Hohenberg and Kohn [96]
and Kohn and Sham [97]: The total energy of an electron gas is an unique functional
of the electron density, this is also true in the presence of a static external potential.
The minimum value of the total energy functional is the ground-state energy of the
system. The electron density that yields the minimum value is the exact single-
particle ground state density [95,96].

To determine the set of wave functions ¢; that minimize the Kohn-Sham functional
the Kohn-Sham equations are used:

—jK2

SV Vion(r) + Vialr) + Ve (1) | (1) = exi(r) , e
with ¢; the wave function of electronic state i, €; the Kohn-Sham eigenvalue and r the
electronic coordinates. The static electron-ion potential V., and the Hartree potential
Vi can be calculated exact. The exchange-correlation potential V¢ is not known
precisely, it is a measure of interaction between electrons [95,97]. The equations

30



First-principles calculations

represent a mapping of the interacting many-electron system onto a system of non-
interacting electrons moving in an effective potential due to all the other electrons
[95].

The Kohn-Sham equations are solved self-consistently. The occupied electronic
states have to generate a charge density that produces the electronic potential that
was used to construct the equations. Thus, it is formally possible to replace the
many-electron problem by an equivalent set of self-consistent one-electron equa-
tions. However, the exchange-correlation potential Vxc has to be approximated
[95,97].

The simplest approach to approximate the exchange correlation functional is the
local density approximation (LDA). It is assumed that the exchange correlation en-
ergy per electron at point r in the electron gas (exc(r)) is the same as the exchange
correlation energy per electron in a homogeneous gas with the same density as the
electron gas at point r [95,97]:

exc(r) = exZ[n(r)] . (2.2)

In the LDA the exchange correlation energy of an electronic system is constructed
based on this assumption [95,97].

The LDA assumes that the exchange correlation energy is purely local [95]. An-
other approximation is the generalized gradient approximation (GGA) [98]. It is also
local but compared to the LDA it additionally takes into account the gradient of the
electronic density at coordinate r [98].

Periodicity

With the before mentioned simplifications it is possible to separate the electronic
coordinates from the ionic coordinates, and map the many-body problem onto a set
of single-particle equations [95]. However, an infinite number of non interacting elec-
trons moving in the potential of an infinite number of ions remains to be considered.
Therefore, DFT calculations of solid state focus on periodic systems [95].

In a periodic system only a finite number of electrons have to be considered. Addi-
tionally Bloch’s theorem can be used. Bloch’s theorem states that in a periodic solid
electronic wave functions can be written as the product of a cell-periodic part and
a wavelike part [4,95]. The cell periodic part of the wave function can be expanded
by using a basis set consisting of a discrete set of plane-waves whose wave vectors
are reciprocal lattice vectors of the crystal G. Each electronic wave function can be
written as a sum of plane-waves [95]:

¢i(r) = Zci,hé exp [i(E—e— é) .r} ) (2.3)
G
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Electronic states are allowed only at a set of k-points determined by the boundary
conditions that apply to the bulk solid.

The Bloch theorem changes the problem of calculating an infinite number of wave
functions to one of calculating a finite number of electronic wave functions at an
infinite number of k-points [95]. However, it is possible to represent the electronic
wave functions over a region of k-space by the wave functions at a single k-point.
Thus, only a finite number of k-points have to be considered to calculate the elec-
tronic potential. The more k-points are considered, the more exact the calculated
total energy will be. To reduce the needed calculation time convergence studies are
performed to determine the needed number of k-points to represent a system with
adequate accuracy.

Bloch’s theorem states that the electronic wave functions at each k-point can be
expanded in terms of a discrete plane-wave basis set. The coefficients for the plane-
waves with small kinetic energy are typically more important than those with large
kinetic energy. Thus the plane-wave basis set can be truncated to include only plane-
waves that have kinetic energies less than some particular cutoff energy [95]. To
determine the required cutoff energy convergence studies are performed.

The usage of Bloch’s theorem requires the modeling of periodic systems. How-
ever, some interesting effects are non-periodic, such as a single defect of a surface.
To still use the mentioned simplifications supercells are often used [95]. A supercell
is constructed by using a simulation cell larger than the unit cell. In this supercell the
subcells can differ. For example one subcell could hold a defect. Calculating a defect
this way means that instead of one single defect an array of defects is modeled [95].
The distance between defects would be determined by the size of the supercell.
Supercells will be further discussed on the example of modeling solid solutions.

Interactions with ions

Bloch’s theorem states that the electronic wave functions can be expanded using
a discrete set of plane-waves. However, a very large number of plane-waves are
needed to expand the tightly bound core orbitals. In addition the valance electrons
show wave functions that are rapidly oscillating in the core regions. To follow the
wave functions a large basis set is needed [95].

The pseudo-potential theory approximates the collective system of nuclei and core
electrons by an effective, much smoother, potential [99]. The Kohn-Sham equations
are then solved for the valence electrons only. This method reduces the number of
wave functions to be calculated, since the pseudo-potentials only have to be calcu-
lated and tabulated once for each atom type [99].
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A different approach is the augmented-plane-wave method (APW) [99]. The ap-
proach divides space into atom-centered augmentation spheres and a bonding re-
gion outside the spheres. Inside the augmentation spheres the wave functions are
taken as some atom-like partial waves. In the bonding region envelope functions are
defined [99].

Mainly used in this thesis is the projector augmented wave (PAW) approach [100].
It is a generalization of the pseudo-potential and the APW approach [99,100].

The ion-ion interaction is calculated electrostatically. Coulomb interaction is long
ranged in real-space and in reciprocal space [4]. Thus, to calculate the Coulomb
energy of the ionic system is difficult [95]. For periodic lattices a rapidly convergent
method was developed by Ewald [4,95]. The infinite summation is replaced by two
infinite summations, one over lattice vectors and the other over reciprocal lattice
vectors. For appropriate parameters the two summations become rapidly convergent
in their respective spaces [4,95].

2.1.2 Application

DFT calculations are used to calculate the eigenenergies E; of a micro-state i. Input
parameter is an initial structure of the analyzed micro-state, given as a simulation
cell with periodic boundary conditions. The volume of the micro-state V is given
for the simulation cell. The number of particles N is infinity due to the periodic
boundary condition, different elements appear in the relation given in the simulation
cell. As DFT is a ground state calculation method the temperature of the calculated
micro-states is considered to be 0 K.

Based on the simulation cell structure, the potential of the ion cores is constructed
by superposition of potentials for different atoms. The electron density is then cal-
culated according to the ion core potential in a scheme of self-consistency until the
energetic deviance reaches a predefined limit. The atomic forces are used to calculate
new positions for the ion cores in so called ionic steps. This cycle is repeated until a
predefined criteria is reached. If either the the atomic forces are below a predefined
value, or the energy change differs less than a predefined value the structure is called
relaxed and the cycle is stopped [91,101]. The cycle can also be stopped if a preset
value of ionic steps is reached. Setting the number of ionic steps to zero means
that the energy and the atomic forces of the input structure are calculated but no
relaxation is allowed.

As shown in Section 1.1.1 ferroelectricity is connected to distortions of the cen-
trosymmetric prototype structure. Possible distortions are atomic displacement,
changes in lattice parameters and change in composition. DFT calculations can be
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used to analyze these distortions. Changes in atomic position and lattice parameters
are analyzed by either allowing the structure to relax, distorting the structure to
analyze the energy change, or distorting the structure and allowing it to relax. The
distortion of lattice parameters and atomic position can be analyzed separately or
jointly. These distortions are always analyzed in a fixed composition. A varying
composition is analyzed in solid solution calculations presented later in this subsec-
tion.

The package to perform DFT calculations used in this work is Vienna ab-initio
simulation package (vasp) [101]. The vasp code is used as it is very efficient in the
calculations of larger systems.

Exchange correlation functional

As mentioned in the theory subsection, DFT calculations rely on an approxima-
tion for the exchange correlation functional.

An analysis of different approximations for the exchange correlation functional
has been performed for the typical ferroelectric materials BaTiO3 and PbTiO3 (see
[102] and references therein). For both materials fully relaxed calculations within
the LDA result in a too small volume; the lattice parameter is underestimated by
1-2%. Relaxed calculations using the GGA [103] to approximate the exchange-
correlation functional result in larger volumes. The relaxed volumes of GGA cal-
culations are larger than calculations based on LDA, sometimes they are also larger
than the experimental volume. In the case of PbTiO3 the usage of the GGA ob-
tains a so-called “supertetragonal” high-volume phase not observed in experimental
studies [102,104].

Both approximations show parameters closer to experimental values if calcula-
tions are performed at experimental volume. LDA is usually used for ferroelectric
systems, commonly at experimental volume [102]. For this study LDA is preferred,
as its error is known and systematic. All calculations presented in this thesis are
performed within the LDA, while keeping in mind the underestimation of volume.

Modeling solid solutions

In this thesis materials in which one crystallographic site is occupied by dif-
ferent types of atoms are analyzed. Examples are the pure perovskite ma-
terials Naj /,Bi; /,TiO3 (BNT) and solid solutions like PbZr_,Ti,O3 (PZT) and
(Naj /»Biy /»TiO3)1_,-(BaTiO3), (BNT-BT). Different approaches exist to model ma-
terials where different elements occupy the same crystallographic site. In this thesis
the virtual crystal approximation (VCA) [105,106] and the supercell approach are
used.
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VIRTUAL CRYSTAL APPROXIMATION  In DFT calculations the properties of the
elements can be based on pseudo-potentials as input. VCA introduces the idea of
using instead of the pseudo-potential of an actual element a pseudo-potential that
is generated to approximate the properties of different elements. Thus, the VCA
introduces a virtual atom upon which mixing can occur [105-107].

Modeling a specific material is reflected in the input structure of the DFT cal-
culations. In the perovskite structure A, B and oxygen atoms are occurring in the
ratio 1:1:3. A simple pure phase perovskite is modeled with a five atom unit cell in
which the A-site is occupied by one element, the B-site by another and the O-sites
by oxygen. To model a solid solution either the A-site or B-site atom is replaced by
a virtual atom. For example, the replacement of the B-site cation would result in
the modeling of a B-site mixed perovskite. In such a calculation the virtual atom
would be identified by a pseudo-potential that is a mixture of the elements that are
supposed to be mixed on this lattice site. To model a solid solution different pseudo-
potentials are generated for different compositions. One of these pseudo-potentials
is then used together with the pseudo-potentials of the other cation type and the
oxygen to define the analyzed system [106]. Using the VCA, compositional changes
can be accomplished in a homogeneous atomic distribution. Thus, the VCA can be
used to change the composition without distorting the structure.

A disadvantage inherent in the method is that only average properties can be
analyzed, but not the local structure [84]. Applications mainly focus on the mixing
of homovalent atoms with little differences in atomic radii. It is expected that charge
differences and large size differences result in local changes that influence the av-
erage structure. An average analysis of the structure might neglect such structural
changes [84].

SUPERCELL APPROACH  The other method to calculate materials in which one
crystallographic site is occupied by different atoms used in this thesis makes use of
supercells [102]. In this approach the number of crystallographic sites is increased.
To do so the unit cell is multiplied along the directions of space forming a supercell
consisting of subcells. Supercell calculations can be used to assess various topics in
DFT calculations for example defects and surfaces. In this subsection only their use
for the modeling of solid solutions is explained.

Figure 2.1 shows schematically in two dimensions how a pure phase material
is modeled by one unit cell, and a mixed material by a supercell. The cell used
for calculations is marked in red, additional atoms are drawn resulting from the
periodic boundary conditions.

Transfered to the perovskite structure a supercell is built out of 5 atom subcells,
to create more crystallographic sites [102]. If all atomic sites in the supercell are
occupied by the same atoms as in the unit cell the same calculation results are
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Figure 2.1: Schematic illustrating the supercell approach. A pure phase material modeled by
a unit cell and mixed material modeled by a supercell is shown. The cell used for calculations
is marked in red.

expected. If new properties are observed, for example octahedral tilting, the unit
cell of the analyzed phase is larger than the 5 atom cell. To use the supercell to
model a perovskite solid solution the cation sites are occupied by different atom
types in different subcells. Thus, composition and occupation are variables in the
analyzed system. Naturally, the composition can only be changed in steps.

As mentioned in the previous subsection, DFT calculations of solid state rely on
the modeling of periodic systems. Supercell calculations model a periodic system.
However, the simulation cell is not necessarily the unit cell of the analyzed system.
Therefore, the problem of chemical order is introduced. All solid solutions modeled
with the supercell approach show chemical ordering. This means that supercell
calculations do not model a statistical occupation of crystallographic sites in a solid
solution. Additionally, the supercell approach has an effect on the analyzed symme-
tries. Chemical order imposes a symmetry on the calculated structure. Therefore, se-
lected symmetries can only be calculated in some occupations, different occupations
can result in different symmetries.

In first-principles methods the input structure imposes symmetry constraints on
the calculations [101,102,108]. Two factors are important: The geometry of the input
structure, and the distribution of different elements in a supercell. The geometry
of the input structure influences the relaxation possibilities of the calculation due
to periodic boundary conditions. In general, a smaller supercell results in more
restricted relaxation possibilities. The distribution of elements in the supercell in-
fluences the symmetry of the structure. The symmetry of a structure influences
its relaxation possibilities. Thus, the site occupation also imposes symmetry con-
straints. DFT calculations in different symmetry constraints might obtain different
structures [101,102,108].
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Due to the code’s efficiency vasp [101] is used to perform supercell calculations.
The supercell approach is used in all result chapters of this thesis.

Frozen phonon calculations

Ferroelectricity appears as the centrosymmetric structure becomes unstable and
deforms to ferroelectric active structures. Lattice dynamic calculations of the phonon
dispersion in materials can be used to identify a materials resistance against defor-
mation. A disappearing frequency signifies a disappearing restoration force against
the corresponding deformation. To perform full phonon dispersion calculations in-
dependent distortions are modeled that are used for DFT calculations. According
to the symmetry of the analyzed system the results are combined and form the
phonon dispersion relation of the material. Such calculations have been published,
for example, for BaTiO3 [37-39], KNbOj3 [40] and PZT [41].

To gather information about ferroelectric perovskites a simplified phonon analysis
is also useful [43]. The ferroelectric distortion is a process involving all atoms of the
unit cell. In a simplified manner it can be illustrated as a displacement of one of the
cation types from its high symmetry position. As mentioned before the tolerance fac-
tor can be used to identify which cation has space to displace in the cubic prototype
structure. Calculations displacing the cations give a more accurate picture. Ghita
et al. performed displacement calculations on (Pb,Cd)TiO3; [42], BaTiO3, BaZrOs,
PbTiO3 and PbZrO3 [43]. Based on their calculations they were able to state that
a material is ferroelectrically active, and whether it is A-site or B-site active.

2.2 Classical simulation methods

2.2.1 Interatomic potentials

In classical atomistic simulation methods the interaction of atoms in a system are
governed by rules. These rules are often expressed in terms of potential functions
[93,109]. The potential function describes how the potential energy of a system of
atoms depends on the coordinates of the atoms. An equation that does not include
any electronic degrees of freedom, where all electronic effects are incorporated in
the function, is called interatomic potential [93,109].

The potential functions are generated from theory, quantum mechanic calcula-
tions, experiments or a combination of those [93,110,111]. For perovskite ferro-
electrics a number of potential parameters have to be optimized intricately for each
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new material comparing to experimental results [112]. Interatomic potentials were
used for Molecular dynamics (MD) simulations on ferroelectric materials by Tinte
et al. [113]. Crystal structure, polarization and phase transition sequence of BaTiO3
exist that show qualitative agreement using a shell model potential [113].

Interatomic potentials can also be used within the construction of an Hamiltonian
used for Monte-Carlo (MC) calculations presented in the following subsection. It
has to be considered that interatomic potentials are always the result of simplifica-
tions, which is why for the analysis of more complex behavior, such as prediction of
material behavior or prediction of new materials, quantum mechanic methods are
preferred.

In this thesis interatomic potentials are used to calculate the Madelung energy of
a material. In Section 4.1 the General Utility Lattice Program (GuLr) [114] is used to
perform calculations using purely electrostatic atomic potentials.

2.2.2 Monte-Carlo calculations

In materials modeling Monte-Carlo (MC) simulation often refers to the generation
of a random sequence of states in a phase space. From the sampled states thermody-
namic equilibrium-properties are obtained by calculating ensemble averages of the
property of interest, according to statistical mechanics [94].

To reduce computational time, sampling can be focused on high weight points
of the phase space, called importance sampling MC. In the algorithm proposed by
Metropolis [115] a trajectory through phase space is constructed by starting from an
initial configuration and randomly generating trial states. The transition to a trial
state is accepted depending on the Metropolis probability,

1 for AE<O0

w = AE 2.4
exp (—kB—T) for AE >0, @4

where AE is the change of internal energy in the system associated with the tran-
sition. Thus, a transition to a lower energy is always accepted, while the transition
to a higher energy is accepted with a certain probability, and more readily accepted
if higher temperatures are modeled. The property of interest can be calculated by
averaging over the trial states [94].

The main ingredient in Metropolis MC calculations is the Hamiltonian used to
calculate the energy of a trial state. The Hamiltonian used to calculate the energy
of a trial state has a strong influence on the accuracy and computational time of the
MC simulations.
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In the field of ferroelectric materials MC calculations have, for example, been
used to analyze the morphotropic phase boundary (MPB) of PbZr;_,Ti, O3 (PZT).
Bellaiche and co-workers constructed an effective Hamiltonian fitted to structural
parameters from virtual crystal approximation (VCA) calculations, finding a mon-
oclinic phase [59]. Based on the same Hamiltonian, it was found that short-range
order has an effect on the width of the MPB [60]. The MPB region is wider if cluster-
ing occurs, and smaller in rocksalt order. Kornev incorporated also ferroelectric and
antiferrodistortive degrees in the effective Hamiltonian [116]. It was used to study
finite-temperature properties of PZT solid solutions near the MPB.

In this study MC calculations employing lattice based Hamiltonians are used to
assist the analysis of chemical order in Chapter 3.

2.2.3 Lattice based Hamiltonians

Lattice based Hamiltonians are model Hamiltonians that restrict the description of
atomic interactions to a rigid lattice [94]. Such models are typically used to analyze
various configurations, and the lattice based Hamiltonian defines the energy of these
arrangements [117,118]. In the case of a binary alloy one atom is assigned to every
site in the lattice [117]. It is not required that atoms lie directly on the lattice sites,
but that the assignment is unambiguous [117].

Methods that construct the lattice Hamiltonian by a series expansion over site
energies, three-body and higher order interaction energies are usually denoted as
cluster expansions [119],

Econfig(7) = Jo+J1)_Si+ Y _JijSiSi+ Y JiikSiSiSk+--- . (2.5)
i i<j i<j<k
where i, j and k are lattice sites S; is the pseudo-spin at the i-th lattice site that takes
the value 1 or -1 depending on the atom type it is occupied with, | are character-
istic energies, 0 describes a particular configuration and Econsig is the configuration
energy of the relaxed configuration (see [118] and references therein).

The cluster expansion is usually fitted to total lattice energies of certain lattice
configurations obtained by, e.g., density functional theory (DFT) calculations. To
practically use cluster expansion only a finite number of so called effective cluster
interactions (ECIs) can be included [120]. When M free parameters are included in
the cluster expansion fit, then the energy of at least M independent lattice configura-
tions has to be known. Therefore, the approach depends on a sufficiently rapid con-
vergence with respect to the number of ECIs. To generate the lattice configurations
presented in Section 3.2 the computer code Cluster-Assisted Statistical Mechanics
(casm) [121] is used. Prof. Anton van der Ven (University of Michigan) is gratefully
acknowledged for providing this code.
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If the cluster expansion is truncated after pair interactions, and only nearest (NN)
and second nearest (NNN) neighbors are included in the summation, the Ising-type
model description is obtained [94],

Eing =hY Si+11 ), SiSi+]2 Y, SiSj, (2.6)
i NN<i,j> NNN<i,j>

here 1, J; and ], denote characteristic energies of the Ising model. In the second and
third sum i runs over all atoms while j runs over all nearest neighbor atoms and
all second nearest neighbor atoms of i respectively. The Ising model was originally
proposed as a model for ferromagnetism. Nowadays, the model is also employed for
various other applications, such as the binary alloys just described and the descrip-
tion of the disorder-order ferroelectric phase transition [6,11] that was mentioned in
the previous chapter.

In Section 3.4 the configurational energy of the perovskite solid solution PZT is
analyzed. To use lattice based Hamiltonian calculations the solid solution is consid-
ered to be a primitive cubic lattice on whose lattice positions the perovskite formula
unit of either PbTiO3; or PbZrO; is positioned. An Ising type model is then used to
describe the mixing energy. The model is fitted to DFT results of the mixing energy.
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CHAPTER 3

Chemical order in lead zirconate titanate

PbZr;_,TiyO3 (PZT) is a homovalent mixed perovskite solid solution. The B-site
atoms Ti and Zr are generally considered to be disordered, due to the lacking elec-
tric driving force [29]. However, experimental and theoretical studies have found
evidence for local order. An experimental study observed the formation of {110}
titanium planes in epitaxial films [56]. First-principles calculations found evidence
for B-site cation arrangement in {111} planes together with negative mixing ener-
gies [57].

In this chapter this discrepancy, between what is generally considered and some
experimental and theoretical studies on the cation ordering and mixing energies of
PZT, is investigated. The chapter starts with a discussion of how chemical order is
modeled for PZT. In Section 3.2 cation ordering in PZT is qualitatively analyzed,
in Section 3.3 and 3.4 order is quantitatively analyzed. Preferred structural motifs
are identified and presented, the reason for the preference is analyzed, and the
thermodynamics of the PZT are system investigated. Finally, the obtained results
are summarized and a conclusion is given.
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3.1 Modeling chemical order in PZT

Chemical ordering can disrupt the symmetry of a structure. Due to the arrange-
ment of different elements on the same crystallographic site the local symmetry
of each atom is influenced. Depending on their local symmetry different atomic
displacements can occur. In atomistic simulations a statistical occupation of a crystal
site can only be approximated, all model structures are ordered [91,93,94]. In the
previous chapter chemical order was proposed as one possible parameter to influ-
ence the results in approaches predicting the composition of the morphotropic phase
boundary (MPB). Thus, chemical ordering should also be analyzed to assess how the
materials are modeled best. In this chapter chemical ordering is analyzed in PZT.

Phase equilibria installed above the Curie temperature are relevant for the ma-
terials composition and structure in the ferroelectric regime. PZT ceramics are
mostly processed at elevated temperatures [34] and then rapidly cooled down into
the ferroelectric phase. Density functional theory (DFT) calculations of vacancy mi-
gration [32,33] suggest, that diffusion in perovskites is kinetically hindered and can
be considered negligibly small below the Curie temperature. Therefore, ordering,
decomposition or phase separation achieved at high temperatures will be frozen
and the thermodynamic limit is experimentally never reached in the ferroelectric
phase. Due to this reasoning chemical ordering is analyzed in the high temperature
cubic structure.

Experimental studies of high temperature PZT showed local polar arrangements
[122,123]. However, the local environments are homogeneously distributed such that
the symmetry of the structure is cubic. To correctly model the structure, different
polarization directions need to be modeled in micro-domains, taking into account
domain wall energies. This can be done by fitting an effective Hamiltonian to DFT
calculations of one particular cation-order or by virtual crystal approximation (VCA)
calculations [116]. However, to analyze chemical order, various cation arrangements
have to be calculated in supercells. Thus, a structure of averaged cubic symmetry is
best chosen neglecting local polar arrangements.

In Section 2.1.2 it was presented, that the input structure in first-principles meth-
ods imposes symmetry constraints on the calculations, and that DFT calculations
in different symmetry constraints might obtain different structures [101,102,108].
Therefore, two different approaches are used to model the PZT system in this chap-
ter.

PZT is modeled in varying supercell sizes, built from one to six formula units
(f.u.) of the ideal perovskite structure, in Section 3.2. All possible geometries are
used, thus, a total of 161 configurations are modeled. The usage of various geome-
tries allows for the sampling of various symmetry constraints. The configurations
are used for a qualitative analysis. Preferred structural motifs are identified and pre-
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sented. A quantitative analysis is omitted, to avoid comparing structures obtained
from calculations in different symmetry constraints.

In Section 3.3 PZT is modeled in a 2x2x2 supercell, using all possible B-site
occupations. The restriction to one specific supercell leads to similarities in the
symmetry of the modeled configurations. Although the symmetry of the structure
is determined in part by the B-site occupation, the symmetry constraints due to the
supercell size and geometry are the same. In a 2x2x2 supercell modeling a B-site
mixed perovskite, each crystallographic B-site is positioned at an inversion center,
due to periodic boundary conditions independently from cation site occupation.
In the experimentally observed high temperature cubic perovskite structure the B-
site is also positioned at an inversion center. Thus, B-site occupations calculated in
a 2x2x2 supercell are considered to be pseudocubic, and similar enough for the
structures to be quantitatively comparable.

The different approaches are used for different aims. The calculations in Sec-
tion 3.2 are used to identify preferred structural motifs, while the calculations in
Section 3.3 are used to analyze the reasons why some structural motifs are preferred.
Both sections present total energy calculations that can provide a hint towards order
or disorder in the cubic phase of PZT. However, the cubic perovskite structure exists
at elevated temperatures. To assess how entropy effects influence order tendencies
at those temperatures Monte-Carlo (MC) calculations are used in Section 3.4.

3.2 Qualitative analysis

3.2.1 Computational setup

DFT calculations were performed using the Vienna ab-initio simulation package
(vasr) [101] within the local density approximation (LDA) using projector aug-
mented wave (PAW) potentials [124] including the Pb 6s? 6p?, Ti 3d? 4s? 3p°®, Zr 4s®
4p® 4d? 5% and O 2s? 2p* electrons. Integration in reciprocal space was performed
on a Gamma point centered Monkhorst Pack mesh adapted to each supercell from a
8 x 8 x 8 mesh in the unit cell. The energy cutoff used was 700 eV.

Neglecting the B-site occupation, all calculations are started from the ideal cubic
structure. Cell parameters are relaxed in steps, alternating between internal cell-
parameter relaxation and volume relaxation. The lattice parameters are held at a
pseudo-cubic ratio.

The cell consisting of one formula unit is used to calculate pure PbTiO3 and
PbZrO3. Using two formula units, three additional supercell symmetries are re-
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alized at 50 %PbTiO3. The supercells built from three formula units add six more
configurations. With increasing number of formula units an increasing number of
cell geometries and configurations are accessible. Supercells built from up to six
formula units are constructed using the computer code Cluster-Assisted Statistical
Mechanics (casm) [121] from Prof. Anton van der Ven, University of Michigan. The
providing of this code is gratefully acknowledged.

The energies of the pure phases are used as a reference for calculating the mixing
energy Enmix:

Emix = Epbzr, 11,05 — (1 = %) Epbzr0, — XEpbTios (3.1)

where Eppz;,  Ti 0, is the total energy of the mixed structure, Epy,z.0, the total energy
of lead zirconate and Epyprip, the total energy of lead titanate.

3.2.2 Results

Figure 3.1 shows the formation energies for all supercells that could be calculated
from up to 6 formula units. About one fifth of the data points show a negative for-
mation energy, while the other formation energies are positive. For easier viewing,
supercells that contain the same number of formula units are marked by points of
the same color. The lowest formation energies that can be obtained with 1 to x
numbers of formula units are connected with lines in the color of x. Three chosen
configurations are marked additionally.

For an increasing number of formula units used to construct the supercells more
negative formation energies are found. This indicates that the supercell with the
lowest energy was not yet calculated. It has to be expected, that in calculations mod-
eled from more formula units, lower formation energies will still be found. Thus,
the most stable structure cannot be identified. However, as discussed before, a direct
comparison of these structures with different symmetry constraints is questionable.

The obtained diagram is asymmetric: The structure with lowest formation energy
obtained for low Ti content is not the inverted structure with the lowest formation
energy for high Ti content. The lowest formation energy is observed for a Ti content
of 66 %PbTiO;3 (ti66L), which is marked with a circle in Figure 3.1. The most re-
markable configuration is the most favored structure at 16 %PbTiO;3 (til6L), marked
with a triangle in the figure. Its formation energy is considerably lower than the
other structures calculated at this concentration, indicating the presence of a favored
structural motif.

Figure 3.2 shows the B-site cation configurations of three preferred structures. In
addition to the already mentioned cation configurations “ti66L” and “ti16L”, the
configuration with the lowest energy at 50 %PbTiOs (ti50L), marked with a square
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Figure 3.1: PZT formation energies in varying supercells. Configurations built from the
same number of unit cells are marked in the same color.

in Figure 3.1, is shown. The boundaries of the calculated unit cell are drawn in red,
additional B-site cations resulting from the periodic boundary condition are shown
for better orientation. Structure “til6L”, which is strongly favored over the other
configurations at 16 %PbTiO3, is a layered structure. The B-site sublattice is built
out of one (110) titanium plane and five (110) zirconium planes. Structure “ti66L"
is a more complex layered structure. One (110) Ti plane is followed by two Ti/Zr
(110) planes that are ordered in a checkerboard pattern; afterwards another Ti (110)
plane follows, that is itself followed by two Zr/Ti (110) planes that are ordered in a
checkerboard pattern inverted in reference to the other mixed planes. The structure
can also be explained as forming (120) Zr planes that are arranged along zigzag
folded (111) planes. Structure “ti50L” is built from one Ti (110) plane, followed by a
Zr (110) plane and a mixed Ti/Zr (110) plane that is ordered along [110] columns;
afterwards follows another Ti (110) plane and another Zr (110) plane, followed by
a mixed Zr/Ti plane that is ordered along [110] columns inverted from the other
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mixed plane. Thus, the (110) planes observed are arranged along (111) planes that
are folded in a zigzag pattern.

As {111} and {110} motifs can be identified in the three favored structures Fig-
ure 3.3 identifies structures built from {110} or {111} planes. The figure shows
the calculated formation energies. Marked with a triangle are configurations that
are completely built from {111} planes, while calculations marked with a square
are completely built from {110} planes. Additionally, the most stable structure for
each composition calculated is marked with a circle. It can be seen from the figure,
that structures completely built from {111} planes are distributed closely to the zero
line of formation energy. The deviation from zero tends equally towards negative
and positive values and is largest at 50 %PbTiO3; with a value of about -0.03eV /f.u..
Configurations that are completely built out of {110} planes are only favored for
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Figure 3.3: PZT formation energies in varying supercells. B-site configurations built from
{110} and {111} planes are marked as well as the most stable structure for each concentra-
tion.

very low titanium contents. However, one of these structures, the “til6L” structure,
is strongly favored over the other structures at this concentration.

To identify additional preferred patterns, the B-site sublattice of the most stable
configuration was analyzed for each concentration calculated. The configurations
are marked with a circle in Figure 3.3. At 16 %PbTiO3, the structure “til6L” is
observed; it is built from {110} planes. The most stable structure at 20 %PbTiO3
shows {111} planes, while the structure at 25 %PbTiO3; shows again {110} planes.
For 33 %PbTiOs, {110} planes are observed in {111} zigzag, while at 40 %PbTiOs3
120 layers are seen. The preferred structure at 50 %PbTiOj3 is the already mentioned
structure “ti50L”, in which {110} planes are ordered along {111} zigzag folded
planes. For 60 %PbTiO3, {111} planes are seen again. At 66 %PbTiO3, the structure
“ti66L” is preferred. It can be described as Ti and mixed {110} planes, or as 120 layers
that are arranged along zigzag folded {111} planes. Summarizing, the preferred
structures show the already mentioned {110} and {111} patterns, and rarely also
120 patterns.
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The formation of {110} Ti planes is seen in many favored structures, but structures
entirely built from {110} planes are only favored for very low Ti content. From
25 %PbTiO; to 33 %PbTiO3 the formation energy of structures built from one Ti (110)
plane and three Zr (110) planes and the structure built from one Ti (110) plane
and two Zr (110) planes rises from -0.018 eV /f.u. to 0.096 eV /f.u.. The two structures
differ in their titanium content, but also in the size of the supercell they are calculated
in. To assess the influence of relaxation possibilities in differently sized supercells,
calculations of the structure built from one Ti (110) plane and two Zr (110) planes
were repeated in a larger pre-relaxed cell. The supercell symmetry in this configura-
tion is deliberately more reduced than necessary. Thus, the results calculated from
it are not used for direct comparison, but only as indication. For the pre-relaxed cell
a formation energy lower than the other structures for the same concentration and
even lower than the “til6L" structure is observed. Thus, the calculations provide
a further indication that Ti {110} planes are a preferred motif. It also serves as a
verification of the first observation that lower formation energies can be observed in
larger supercells.

3.2.3 Summary and discussion

The presented results indicate a preference of PZT to show {110} planes and {111}
patterns, and an influence of relaxation possibilities on formation energies.

The preference of {110} planes is strongest for low titanium content where {110}
B-site planes that are only occupied by either zirconium or titanium are observed.
For higher Ti contents pure {110} planes are still observed, but also mixed planes.
In addition, the tendency to built Ti-planes is stronger than Zr planes, as indicated
by the preferred structure “ti66L” where no pure Zr {110} plane is formed. This
observation of a preference of {110} Ti planes is supported by experimental work on
epitaxial films [56].

The tendency to form {111} patterns is observed in favored structures of all con-
centrations. These patterns are often associated with {110} planes.

The calculations indicated an influence of relaxation possibilities. It was observed
that for concentrations modeled with a different number of formula units, the con-
figurations modeled in larger supercells were preferred. Also, in the calculation of
a layered cation configuration in two cell sizes, the larger supercell obtained lower
energies.

Based on these results, the thermodynamic equilibrium structure of PZT could be
a mixture of {111} patterns in combination with {110} Ti planes. The reasons for the
preference of structural motifs is analyzed in the following section.
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3.3 Quantitative analysis

The calculation of PZT in various supercell geometries was used to identify fa-
vored motifs. However, a quantitative analysis why these motifs are preferred had to
be omitted as the cells were calculated in different symmetry constraints influencing
the calculation results. In this section first-principles calculations of the pure phases
and solid solutions of PZT are performed in a 2x2x2 supercell. The modeled struc-
tures are considered to be pseudocubic, and similar enough for the structures to be
quantitatively comparable. The structures are used to quantify energetic differences
of structural motifs, while keeping in mind that the analyzed phase field is restricted.

3.3.1 Computational setup

DEFT calculations were performed using the vasr [101] within the LDA using PAW
potentials [124] including the Pb 5d'° 6s? 6p?, Ti 3d? 4s? 3p®, Zr 4s? 4p® 4d? 55> and O
252 2p* electrons. All possible 22 permutations in a 2x2x2 supercell that can be built
from the ideal perovskite structure are used for calculations. Integration in reciprocal
space was performed on a Gamma point centered 4 x 4 x 4 Monkhorst Pack mesh, an
energy cutoff of 700 eV was used. Internal cell parameters were allowed to relax and
the cell volume was held fixed, calculations were performed at different volumes.
The obtained energies were fitted to the Birch-Munaghan equation of state [125],
and the obtained minimum energy was used for further analysis.

For simulating the solid solution system, a 2 x 2 x 2 ideal perovskite supercell is
constructed and all possible compositions and B-site occupancies are modeled. As

X1 = 0.25

X1 = 0.375 X1i = 0.5

Figure 3.4: B-site
configuration of PZT
in a 2x2x2 supercell;
for each composition the
least stable structure is
marked with a square,
the most stable with a
circle.
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a preparatory step, the energy of the pure phases are calculated in cubic structure,
to be used as a reference for the mixing energy according to equation 3.1. For the

compositions xg; = 0.125 and 0.875 (x1; = %) only one possible permutation
exists; for the compositions xp; = 0.25, 0.75, 0.375 and 0.625, three permutations can
be calculated. Six permutations are possible at the concentration x7; = 0.5. Figure 3.4

shows the permutations.

3.3.2 Results

Figure 3.5 shows the energies of mixing for all compositions and permutations
accessible within a 2x2x2 supercell. For all but one calculated structure the mixing
energies are positive. The positive mixing energies at composition x1; = 0.125 and
xt;i = 0.875 correspond to the formation of one anti-site in the supercell. The compo-
sitions, where multiple permutations are possible, show that the calculated energies
depend on the atomic order of the B-site atoms. In the least stable configurations
(marked with a square), the Zr and Ti atoms are inhomogeneously arranged and
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Figure 3.5: PZT mixing energies of different configurations in a 2x2x2 supercell. The
different configurations are shown in Figure 3.4.
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Order a[A] O-Ti-O[A] O-Zr-O[A] Table 3.1: Oxygen octahedra in {111}-
{111} 4.006 3.870 4.142 and  {100}-ordered  PbZro5Tio503.:

{100} 4.020 3.799/4.020 4.241/4.020  Given are the lattice constant, edge length
and tip distance of the octahedron.

form clusters. In the most stable permutations (marked with a circle), B-sites are
alternately occupied by Zr and Ti atoms along the (100) direction.

The permutation “111” for x1; = 0.5 is a special case, being the only one with a
negative mixing energy. In this case, B atoms are arranged homogeneously with
alternating occupation along the (100) direction. To understand the energetic dif-
ferences, the local structure at x7; = 0.5 is analyzed in more detail. Titanium is
smaller than zirconium and slightly more electronegative. Therefore, oxygen atoms
are pulled towards the Ti atoms and the oxygen octahedra surrounding Ti are smaller
than the ones surrounding Zr. In the {111}-ordered structure this size difference can
be compensated best, as smaller and larger octahedra form an alternating sequence
(see Figure 3.6).

From the calculated structures with {111} and {100} ordering the size of the
oxygen octahedra surrounding Ti and Zr (see Table 3.1) is extracted by measuring
the edge length of and the distance between the tips. In the {111}-ordered case,
ideal octahedra are observed, while in the {100}-ordered structure the octahedra
surrounding Ti and Zr are compressed or stretched.

Based on these structural data, it can be shown by simple model calculations that
the difference in mixing energies for both cation arrangements is essentially due to
the strained oxygen octahedra. The strain energy for pure PbTiO3 and PbZrO; is

Figure 3.6: Schematics illustrating the consequences of oxygen octahedra of different sizes
for the example of {111} and {100} ordered PbZr( 5Tiy503.
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Table 3.2: Mixing energy of the {111} and {100} ordered phases in comparison to the pure
strain contributions to the mixing energies.

Structure AE [eV/fu.] AE100-
-AE111 [eV /f.u.]

pure phases 0
PbZI‘O.5Ti0.503 {111}-Ordered -0.032
PbZr(5Tip 5035 {100}-Ordered 0.116 0.148
virtual superstructure (111) 0.027

virtual superstructure (100) 0.167 0.140

calculated at lattice constants that correspond to the octahedra sizes found for the
supercells with {111} and {100} cation ordering as depicted in Figure 3.6 by black
lines. The superposition describes the case that the structure would be composed
of lead zirconate at lattice constants obtained from the zirconium octahedra in the
{111}-ordered structure and lead titanate at lattice constants obtained from the tita-
nium octahedra in the {111}-ordered structure. Thus, the calculated mixing energies
obtained by superposing these data represent the energy of a virtual superstructure,
where only strain effects are considered. Table 3.2 shows the results of the supercell
calculations in comparison to the energies of the virtual superstructures. It can be
seen that the mixed structures are at lower energies than the superposed data. The
energy difference between {111} and {110} ordered PbZry5Tip505 (0.148 eV/f.u.)
is almost the same as the energy difference between the virtual superstructure (111)
and (100) (0.140 eV /f.u.). This indicates that the energy difference between the mixed
structures is due to size differences and related stresses in the oxygen octahedra.
Therefore, it provides a rational explanation for the energetic preference of the {111}
ordered configuration over all other cation arrangements.

3.3.3 Discussion

The quantitative calculations presented in this section reveal the permutation
“111” as the most stable. The results are in line with another comparative DFT
study [57] and calculations within a semi-empirical ionic-crystal [58] model which
find {111} ordered PbZry5Tig503 to be the most stable mixture.

In permutation “111”, B-site atoms are arranged homogeneously with alternat-
ing occupation along the (100) direction, thus, size difference of Ti and Zr can be
compensated best. The difference in mixing energies for the calculated cation ar-
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rangements is essentially due to strained oxygen octahedra. This provides evidence
that the energy difference between the mixed structures is due to size differences
and related stresses in the oxygen octahedra. It is noteworthy that DFT calculations
on aliovalent B-site mixed lead based materials (Pb(B,B")O3) show similar energy
differences between the {100} and {111} ordered structures [30]. Because the size
difference of the mixed ions is similar to the size difference of Ti and Zr, the similarity
in energy could be seen as another indication that the energy difference between
different mixed structures is due to the size mismatch.

The quantitative calculations give additional indication of the influence of relax-
ation possibilities already proposed from qualitative calculations presented in Sec-
tion 3.2. The comparison of mixed calculations in the 2x2x2 supercell to super-
posed calculations of deformed pure materials revealed a discrepancy. The mixed
structures are at lower energies than the superposed data. This is most probably
due to missing local relaxation and long-range interaction in the case of the virtual
superposed structures.

From the qualitative calculations is was assumed, that the thermodynamic equi-
librium structure of PZT is a mixture of {111} patterns in combination with {110} Ti
planes. The calculations of this section have shown that {111} planes are preferred
due to size differences of Ti and Zr. The preference of {110} Ti planes could not
be observed in this section. The qualitative calculations showed that the preference
was only observed for larger cells with less symmetry constraints. Patterns formed
by {110} Ti planes introduce a symmetry break. In this lower symmetry the B-site
positions are no longer inversion centers and further cation relaxation, allowing for
lower formation energies, is possible. The configurations modeled for this section
show an inversion center coinciding with the B-site. Thus, it can be inferred that the
calculations presented in this section were performed in a too restricted symmetry
to show the preference of {110} Ti planes.

3.4 Thermodynamic assessment

The total energy calculations presented in the previous sections indicated the pref-
erence of {111} patterns and {110} Ti planes in cubic PZT. However, one has to keep
in mind that the cubic perovskite structure exists at elevated temperatures. At such
temperatures the Gibbs free energy could be dominated by entropy rather than by
energy contributions due to ordering and phase decomposition.

Metropolis MC calculations are a viable tool to analyze order effects and phase
stability at finite temperatures. The prerequisite for Metropolis MC simulations is a

53



CHEMICAL ORDER IN LEAD ZIRCONATE TITANATE

valid, computationally efficient Hamiltonian. The qualitative calculations presented
in Section 3.2 indicate that deriving an Hamiltonian valid for the whole phase field
of PZT from Cluster expansion is an enormous challenge.

To still assess how entropy effects influence order tendencies at higher temper-
atures PZT can be modeled in a restricted phase field. It is possible to model
only cation order which is characterized by an inversion center at the B-site. The
respective data calculated in 2x2x2 supercells in Section 3.3 is in itself consistent
and can be modeled with an effective Hamiltonian. However, it should be stressed,
that the analyzed phase field is severely restricted. For example, the preference of
the structural motif of {110} Ti planes cannot be modeled in this phase field. Only
effects occurring due to size mismatch are analyzed.

3.4.1 Computational setup

To perform Metropolis MC calculations, a model Hamiltonian is fitted to the mix-
ing energies. The configuration energies presented in Section 3.3 are fairly symmet-
ric with respect to cation concentration. Therefore, a simple lattice based Ising model
including nearest and second-nearest neighbor interaction on the B-site sublattice
is used. As a simplification, the interactions between atoms of the same type are
neglected in calculating the mixing energy:

Emix = NiJ1 +Najo. (3.2)

Here, Nj is the number of different nearest neighbors, Nj is the number of different
second nearest neighbors, J; is the interaction parameter between different near-
est neighbors and |, is the interaction parameter between different second-nearest
neighbors.

Equation 3.2 is fitted to the DFT results. As expected from the results in Sec-
tion 3.3, the interaction parameter obtained for different nearest neighbors is nega-
tive (J; = —1.2241-1072) and positive for different second nearest neighbors (J, =
2.6040 - 1072). Figure 3.7 shows the accuracy of the fit by comparing the mixing
energies calculated from DFT to those calculated using the Hamiltonian for all con-
figurations the fit is based on.

In Section 3.3 the main energy difference of the varying permutations is because
of size differences between zirconium and titanium. Therefore, the usage of an
Hamiltonian fitted to these results has to assume a similar temperature expan-
sion of PbTiO3; and PbZrO;. A similar value of B’ is obtained fitting the Birch-
Munaghan [125] equation to energy calculations of cubic PbTiO3 and PbZrOs. Thus,
the indication of a similar temperature expansion coefficient validates the assump-
tion.
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3.4.2 Results and discussion

Mixing energies at finite temperature

MC-calculations are started from fully random cation distributions at 2500 K. The
systems are subsequently cooled down in steps of 100K. 600 MC steps were per-
formed at each given temperature. Due to the slow cooling, the simulations con-
verged within the first 100 MC steps. The parameters extracted from the calculations
are the energy E and an order parameter O, which is defined as

leame _ Nl

0= Nfll

(3.3)

In this expression, N2l is the number of nearest neighbors, N{3™¢ the number of
nearest neighbors that are of the same atom type and Nj is the number of nearest
neighbors that are of different atom type. The energy and order parameter for a
given temperature and composition were calculated as the mean value taken over
the last 100 MC steps.

The energy and order parameter for a given concentration are plotted in Figure 3.8
as a function of temperature. The figure shows a second-order phase-transition at
about 1950K, where an order-disorder transition occurs. For higher temperatures,
the cation distribution is random. Below the transition, an additional phase is ob-
served which is rocksalt ordered. Also, a small peak can be seen in the temperature
dependent energy. It coincides with the disappearance of the disordered phase.

Figure 3.9 shows results of the Monte Carlo calculations for various temperatures
as a function of concentration together with experimental data and the case of a
random alloy. Since the Hamiltonian (equation 3.2) is symmetric with respect to
the exchange of cations, the calculated mixing energies at finite temperature are
also symmetric. The calculation at 1000 K might serve as an example to explain
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Figure 3.8: Order parameter and energy as a function of temperature for xt; = 0.45 ob-
tained by Monte Carlo calculations

the relation between the energy-composition plots and the cation distribution. The
curve shows a global minimum at x7; = 0.5, two maxima and abrupt changes in
the gradient. Starting from x7; = 0, adding Ti leads to defects in lead zirconate
marked by an energy increase of the system and a disordered structure. At the
energy maximum, a more stable phase starts to form. The more stable phase shows
rocksalt ordering on the B-site lattice. This leads to a lowering of energy and a phase
separation into the disordered and the rocksalt ordered phase. From that point,
the energy of the system decreases while the amount of the rocksalt ordered phase
increases and the amount of the disordered phase decreases. Then the disordered
phase vanishes and the energy decrease becomes steeper, seen in an abrupt change
in the gradient. The structure is now completely rocksalt ordered {111}.

Figure 3.9 also compares selected calculated mixing energies to experimental re-
sults. The random alloy corresponds to a temperature above 2000 K, which in reality
is already beyond the stability range of the cubic perovskite. A comparison of the
data corresponding to 1000K to measurements of the mixing energy at 973K by
Rane [63] does not show agreement. The calculation for a random alloy, on the other
hand, is mostly within the errors of Rane’s measurements. This suggests that the
experimental samples were fully disordered. Excess Gibbs energies from derived
thermodynamic activities by Jacob [64] at 1373 K and MC calculations of 1400K are,
however, within the same range.

The discrepancies between calculations and experiments can be attributed to two
factors. Firstly, the calculations analyze the phase field of PZT in thermodynamic
equilibrium; secondly, the calculations are based on very restricted data. Cation
mobility is slow to reach the thermodynamic limit even in this temperature regime.
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Figure 3.9: Monte Carlo energies (Upsc) for selected temperatures in comparison to exper-
imental results ( Gﬁlc]ﬁj [64] and Hg,ssetri [63])

Therefore, not all experimental samples might be fully equilibrated. It can be as-
sumed, that most samples analyzed by Rane [63] are far away from thermodynamic
equilibrium, as their measured energy is close to the energies calculated for a ran-
dom alloy. For low and high Ti contents some samples might be better equilibrated,
as they are energetically closer to the values calculated for the same temperature.
The materials measured by Jacob [64] might not be far from thermodynamic equi-
librium, because the measured values are in the same range as the calculated values
for the same temperature. It is assumed that the experimental and calculated results
are in the same range but still differ considerably, due to the very restricted data the
MC calculations are based on.

High temperature phase diagram

The phase diagram for the cubic phase is assessed based on the MC results in
a restricted symmetry. This is achieved by analyzing the order parameter and
mixing energy as a function of temperature and composition. Figure 3.10 shows
the proposed phase diagram of a restricted phase field of PZT. The high and low
temperature parts are taken from literature [126,127], as the results presented in this
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Figure 3.10: Possible phase-diagram of PZT. Thick solid line are drawn according to the
presented results. Thick dotted lines are taken from literature [126,127]. Thin dotted lines
are a possible way to connect the presented results to the existing literature data.

chapter only apply to the cubic solid phase. In the high temperature solid solution
a homogeneous Zr-rich, a homogeneous Ti-rich, and a homogeneous {111} ordered
phase field are separated by two-phase-fields. Thick solid lines are drawn as phase
boundaries between the observed phase fields on the transition points described in
Section 3.4.2. For small concentrations, the lines coincide with the solubility limit
of the anti-site defect described in Section 3.3. Thin dotted lines are a possible way
to connect the three parts of the phase diagram according to the laws of thermody-
namics.

The presented phase diagram shows the influence of entropy on a specific cation
order. The diagram shows that order induced due to size differences is still favored
at elevated temperatures. However, the analysis in Section 3.2 indicated that sev-
eral types of ordering occur, with a smaller difference in formation energy between
them. Therefore, the driving force for one particular ordering is smaller. Due to the
slow B-site cation diffusion, the areas of order might be too small to be observed in
experimental samples.
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3.5 Summary and conclusion

In this chapter chemical order in PZT was analyzed based on DFT calculations.

Qualitative calculations show a preference to form {110} planes and {111} pat-
terns. The preference of {110} planes is strongest for low titanium content. For
higher Ti contents, pure {110} planes are still observed, but also mixed planes. In
addition, the tendency to build Ti-planes is stronger than the tendency to build Zr
planes. An experimental work also showed a preference of {110} Ti planes [56]. The
tendency to form {111} patterns is observed in favored structures of all concentra-
tions. These patterns are often associated with {110} planes.

Quantitative calculations reveal, that the tendency to form {111} patterns is due to
size differences of the B-site cations. The calculations show, that in a restricted phase
tield characterized by symmetry centers on the B-sites, the rocksalt ordered permu-
tation “111” is the most stable. In this permutation the size difference between Ti and
Zr can be compensated best. It was shown that the differences in mixing energies
for cation arrangements is essentially due to size differences and related stresses
in the oxygen octahedra. MC calculations based on the data obtained from the
quantitative calculations showed the “111” rocksalt structure to be stable at elevated
temperatures. This indicates that the entropy of mixing at elevated temperature does
not destroy local ordering.

Quantitative and qualitative DFT calculations showed an influence of relaxation
possibilities on the mixing energies. It was observed, that concentrations modeled
with a different number of formula units, obtained lower energies in the larger su-
percells.

Based on these calculations, it is assumed that the thermodynamic equilibrium
structure of PZT is a mixture of {111} patterns in combination with {110} Ti planes.
{111} planes are preferred due to size differences between Ti and Zr. Long range
patterns formed by {110} Ti planes introduce a symmetry break, as a result, further
cation relaxation is possible, allowing for lower formation energies.

Experimental observation of the expected patterns will, however, be difficult. Cal-
culations in varying supercell geometries show various configurations whose neg-
ative formation energy differ only by small amounts. Therefore, the driving force
towards a specific ordered structure will not be sufficient to allow for diffusion in
PZT where it is kinetically hindered. In addition, the assumed combination of {111}
patterns and {110} Ti planes might result in locally ordered areas, disrupting a long
range order that is easier observed experimentally. In this reasoning, the experimen-
tal study showing a preference of {110} Ti planes would be an exception [56]. As a
thin film is analyzed, diffusion might be accelerated. In addition, the constraints of
the substrate might favor the formation of {110} Ti planes additionally [56].
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In thermodynamic equilibrium, B-site cation arrangement of PZT is characterized
by {111} patterns and {110} Ti-planes. However, the driving force towards one
particular order is very small. Therefore, ordered regions will remain too small to be
observed in bulk materials. Under conditions of enhanced diffusion and additional
forces favoring a particular order, such as epitaxial films, order can be observed.

The favored order is the result of the size difference between Ti and Zr octahedra,
and cation relaxation. The size effect can be quantified by simple model calculations
and favors a rocksalt order of the B-site cations. Ti {110} planes introduce an asym-
metry that allows for energy gain due to cation relaxation. Previously published
first-principles work was performed in supercells with too restricted symmetry to
observe the favoring of {110} Ti planes. MC calculations indicated that even at
elevated temperatures the favoring of ordered structures is not overcome by entropy.
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CHAPTER 4

Chemical order in
bismuth sodium titanate - barium titanate

In Naj /,Bi; /»,TiO3 (BNT) and the solid solution (Naj /7Bi; /,TiO3)1_x-(BaTiO3), (BNT-
BT) [65] the A-site of the perovskite structure is occupied by cations that are nom-
inally charged +1 (Na), +2 (Ba) and +3 (Bi). For A-site mixed perovskites this
charge difference alone is not sufficient to cause ordering [7,25]. However, authors
reported on chemical order in BNT and BNT-BT [31,71,77-79]. Also anomalies in
X-ray diffraction, dielectric measurements, Raman and infrared spectroscopy were
reported in the composition range of the morphotropic phase boundary (MPB) of
BNT-BT [65,71-75]. These anomalies could be due to chemical ordering.

In this chapter chemical ordering in the BNT-BT system is analyzed. The influ-
ences of charge difference and local structure are analyzed on BNT in Section 4.1.
Afterwards it is investigated whether peculiarities observed in transmission electron
microscopy (TEM) images close to the morphotropic region can be explained by
atomistic effects, such as chemical ordering. In Section 4.2 chemical ordering in BN'T-
BT close to the MPB is analyzed using density functional theory (DFT) calculations.
In the following section the analysis is combined with high resolution transmission
electron microscopy (HRTEM) imaging. Finally, the results are concluded.
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4.1 Chemical order and local structure in
bismuth sodium titanate

4.1.1 Electrostatic results

In Naj /,Bi; /,TiO3 (BNT) the A-site of the perovskite structure is occupied by equal
amounts of sodium and bismuth. As bismuth and sodium are aliovalent cations, it
is a good example to analyze the influence of electrostatic effects on cation ordering.

The BNT structure is modeled as a 2 x 2 x 2 supercell of the cubic perovskite. To
assess the influence of electrostatics, the Madelung energy is calculated in a simple
ionic model. For the calculations the General Utility Lattice Program (curr) [114] is
used with purely electrostatic potentials. At the atomic positions the nominal charge
of the atoms is placed. Thus, the O site is taken as -2, the B-site +4 (Ti) and the A-site
by +1 (Na) or +3 (Bi) depending on the permutation, or by +2 as a reference. In
Figure 4.2 the energies calculated for different BNT permutations are plotted, the
electrostatic energy of the reference calculation is taken as zero. Figure 4.1 shows
the used A-site occupations. It can be seen that the most stable configuration is the
111-ordered structure while the 001-ordered structure is the least stable one. Thus,
electrostatics predict the rocksalt ordered structure to be favored.

In literature rocksalt ordering has been observed for B-site mixed perovskites
[29,76], but for A-site mixed perovskites {100} ordering is observed [7,25]. Thus,
to understand ordering tendencies in A-site mixed perovskites, electrostatic consid-
erations alone are not sufficient.

4.1.2 Density functional theory results

Density functional theory (DFT) calculations were performed using the Vienna ab-
initio simulation package (vasr) [101] within the local density approximation (LDA)
using projector augmented wave (PAW) potentials [124] including the Bi 5d1%6s26p3,
Na 2p®3s!, Ti 3s23p®4s23d% and O 2s22p* electrons. Integration in reciprocal space
was performed on a 8 x 8 x 8 Monkhorst Pack mesh, an energy cutoff of 750eV
was used. Calculations were performed with relaxation of atomic positions at the
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Figure 4.1: Possible A-site occupations in a 2 x 2 x 2 supercell of BNT.
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Figure 4.2: Madelung energies (¢, = 10), calculated for the different A site occupancy
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Figure 4.3: DFT energies of BNT, calculated for the different A site occupations pictured in
Figure 4.1. Energies in the ideal perovskite structure are green, blue and red marks energy
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Figure 4.4: Relation between Coulomb energies pictured in Figure 4.2 and DFT relaxation
energies pictured in Figure 4.3.

experimental cell volume (lattice constant 2 = 3.9137 A). All A-site configurations
possible for BNT in a 2 x 2 x 2 perovskite supercell are used for the calculations.
The calculations presented in this subsection were carried out by Melanie Gréting.
The interpretation was done in cooperation.

Figure 4.3 shows DFT energies of the different permutations (contributions from
ionic and cell shape relaxation are given separately). In the calculations of the ideal
perovskites the ranking is similar to the ranking observed in the electrostatic calcu-
lations. However, structural relaxations result in variation of the energetic hierarchy.
In Figure 4.4, the relaxation energy is plotted as a function of electrostatic energy. It
can be observed that the more unstable a structure is in the electrostatic calculations
the more energy it can gain from structural relaxation. The rocksalt ordered structure
shows no relaxation.

4.1.3 Discussion

To understand the different energy gain through relaxation it is helpful to take a
look at the oxygen environment in BNT. In the perovskite structure the oxygen anion
is situated in the center of a flattened octahedron formed by four A atoms in one
plane and two B atoms on opposite sites of that plane (see Section 1.1.2). For BNT

64



Chemical order and local structure in BNT

six oxygen environments are possible: All A-sites are occupied by Na or Bi (4Na and
4Bi); the four A-sites are occupied by three Na and one Bi or vice versa (3Na/1Bi
and 1Na/3Bi); two A-sites are occupied by Na and two by Bi (2Na/2Bi), arranged
either in a checkerboard pattern (trans) or along corners (cis). The oxygen anion can
displace, if it is not situated at an inversion center. Thus, in three of the possible
environments the oxygen ion cannot displace, namely 4Na, 4Bi and 2Na/2Bi(trans).
In the environments 3Na/1Bi, 1Na/3Bi and 2Na/2Bi(cis) oxygen displacement is
possible. The oxygen environments 2Na/2Bi(cis) and 2Na/2Bi(trans) and their re-
laxation possibilities were shown in Figure 1.3.

In the rocksalt ordered structure all oxygen anions are in the 2Bi/2Na (trans)
coordination, thus, the structure has no possibilities for local relaxation that allow
for energy gain. In the “001” structure, that shows the highest relaxation energy, the
majority of oxygen anions can be found in the 2Bi/2Na(cis) coordination. The other
structures show relaxation energies between those two cases. The less oxygen envi-
ronments are of the 2Bi/2Na(trans) the higher the energy gain through relaxation.
Comparing the environments that allow for relaxation the 2Bi/2Na(cis) is preferred.

For a more detailed analysis of the local structure of BNT see the work by M.
Groting [128].

4.1.4 Summary and conclusion

In this section chemical ordering and the local structure of BNT was analyzed in
a 2 x 2 x 2 supercell using electrostatic and DFT calculations.

It was shown that structural relaxation plays an important role, it is related to the
local symmetry of the atoms. The energetic differences calculated between ordered
structures are comparable to the differences observed in the 2 x 2 x 2 supercell cal-
culations of PbZr;_,Ti,O3 (PZT) in Section 3.3. Likewise it is assumed that local
order in BNT might occur, in small regions.
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4.2 Chemical order and structure distortions in
(Bi1/2Nay /2 TiO3)0.94-(BaTiO3)0.06

In this section, different configurations of (Naj/;Bij/»TiO3)p94-(BaTiO3)0.06
(BNT6BT) are modeled in DFT calculations. The results will be used to investigate
peculiarities observed in high resolution transmission electron microscopy (HRTEM)
images close to the morphotropic phase boundary (MPB).

The section starts with a presentation of the modeling of an approximate structure
to perform calculations close to BNT6BT. Afterwards, the different configurations are
analyzed and a preferred configuration is presented. Finally, it is summarized which
DFT calculations will be used for HRTEM image simulations, and the calculations
are concluded.

4.2.1 Modeling (Bi 1/,2Naj/,TiO3)0.94-(BaTiO3)0.06

The commonly used arrangement of atoms of a 1:1 ratio, as in BNT, is the {111}
ordered rocksalt structure. However, this structure is unfavored in A-site mixed
perovskites [7,25] like BNT (Section 4.1). X-ray diffraction studies of BNT6BT sin-
gle crystals by Chiang [71] suggested the existence of an ordered phase described
in a 2 x 2 x 2 supercell of the perovskite structure. In this supercell the A-site
atoms are ordered in a Pm3m symmetry. The A-site atoms are positioned on the
corners, the edge centers, the face centers and the body centers of a cube. These
positions are nonequivalent and have different average concentrations of Bi, Na
and Ba. Figure 4.5 shows the proposed order. It corresponds to the composition
Big 4463Nap.4913Bag 0625 TiO3.

To calculate (Nay /,Bi; /2 TiO3)1_,-(BaTiOs3), (BNT-BT) close to its MPB, it is mod-
eled in five supercells, constructed out of 2 X 2 x 4 subcells, and one supercell, con-
structed out of 2 x 4 x 4 subcells. In the smaller cell, one A-site is occupied by Ba,

. 50% Ba 50% Bi
. 100% Bi

. 48% Na 52 %Bi

° 83% Na 17% Bi

Figure 4.5:  Order proposed
from X-ray diffraction studies of
BNTG6BT single crystals [71].

66



Chemical order and structural distortions in BNT6BT

PP PP @D OP PP Peve O
0P OP PP P9 OO QPSP Ona
PO @O O OO I P00 e Ok
P P9 OO0 0O Ve P00

F1E123 F3E135 F5E156 statNal statNa2 pseudoF1E123

Figure 4.6: A-site occupations of the calculated permutations; only the A-atoms are shown.

and 15 A-sites are occupied by Bi or Na. Thus, the BaTiO3 content is close to 6 %
but BNT has the wrong stoichiometry. The small size is chosen because more calcu-
lations can be performed in reasonable timescales, which allows for the calculation
of different occupations. Additionally, in this supercell the exact concentration is
Bip 4375Nag 5Bag 0625 TiO3, close to the concentration for which order was proposed
from single crystals [71]. To balance the Bi/Na inequality, calculations with elec-
tric compensation are performed. Also, calculations using a 2 x 4 x 4 supercell are
performed, avoiding the inequality between Bi and Na. The A-site occupations of
the tested supercells are shown in Figure 4.6. In two of the supercells (statNal and
statNa2) the A-site occupation is arbitrary. Three permutations are based on the
ordering proposed by Chiang et al. [71] (F1E123, F3E135 and F5E156).

A direct application of Chiang’s order would necessitate half a barium atom, thus,
the unit cell of the proposed order is doubled along the z axis. Figure 4.7 shows one
of the permutations with enlarged A-site atoms. In this structure, two body-centered
sites called bulk (B), two corner-sites (C), six face-center sites (F) and six edge-center
sites (E) have to be occupied by one barium atom, seven bismuth atoms and eight
sodium atoms. The occupation of the bulk and corner sites is fixed. The bulk sites
are occupied by bismuth. One of the corner sites is occupied by bismuth, the other
by barium. The site occupied by the barium atom is called C1. In the occupation of
the face-center sites and edge-center sites some liberties exist. These sites are named
in reference to their position to the barium atom. Of the six face-center sites one is
occupied by bismuth and five by sodium. The site occupied by bismuth is used in
the permutations name. Half of the six edge-center sites are occupied by bismuth the
other by sodium. The sites occupied by bismuth are again used in the permutation
names. Thus the permutation name (FxExxx) identifies one specific permutation.
The 2 x 4 x 4 (pseudoF1E123) supercell is constructed based on permutation F1E123.
First, F1E123 is doubled along the y-axis, doubling all atomic sites, then a sodium
atom occupying one of the E4 sites is replaced by bismuth.
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A-site
Occupation
of FxExxx
Ordering

C : Corner
1/2 Ba 1/2 Bi

B : Bulk 2/2 Bi

F : Face center
1/6 Bi 5/6 Na

E: Edge center
3/6 Bi 3/6 Na

F1E123 Atoms

. Bi @Ti

Figure 4.7:  Model of
the relaxed FI1E123
structure including
nomenclature  of the
calculated  structures
(FxExxx).

4.2.2 Results and discussion

The described structures are used to perform DFT calculations, using the vasp
[101]. All calculations are performed within the LDA and PAW pseudo-potentials
[124] including the Ba 5s25p%6s2, Bi 6s26p%, Na 3s, Ti 3d%4s? and O 2s22p* electrons.
As the supercells were relatively large, the reciprocal space is sampled at the I' point
only.

In the 2 x 2 x 4 supercells an inequality of bismuth and sodium atoms occurs that
might influence the calculation results. To check its effect, the calculations are treated
as defect calculation of a barium atom on one A-site of BNT. The “defects” are calcu-
lated without balancing the Na/Bi inequality, and at nominal charge, i.e. balancing
the Na/Bi inequality. Cell parameters and ionic positions were allowed to relax at
different fixed volumes.

Figure 4.8 compares the calculated energies of the configurations modeled in a
2 x 2 x 4 at nominal charge. Like in BNT, the calculated energies differ depending
on the A-site occupation. The most stable calculated permutation is F1E123, which is
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Figure 4.8: Calculated energy as a function of volume for the five different permutations.

based on the ordering proposed from single crystals. It shows the lowest calculated
energy at a stable volume of about 58 A3/f.u.. It can be seen from the figure, that
the stable volume is also dependent on the calculated configuration, however, per-
mutation F1E123 and F3E135 have a similar stable volume. The calculations without
compensation of the Bi/Na inequality display the same ranking and tendencies. The
permutation pseudoF1E123 in the 2 x 4 x 4 supercell models a different concentra-
tion, which is why the energy and volume cannot be compared to 2 x 2 x 4 supercell
calculations.

Figure 4.7 showed the structure of the permutation F1E123, which is the most
stable structure calculated. Along columns of the coordinate axises the A-sites are
occupied rather homogeneously. Along the z-axis the sodium occupation of all
columns is 1/2. Along the x- and y-axis six of the eight columns are occupied
by one sodium and one bismuth. All atoms are displaced from their high symmetry
positions. The movement of the oxygen atoms results in octahedral tilting. The
octahedra tilt in such a fashion that it allows most oxygen atoms to move towards
sodium atoms while the octahedra show a minimum of deformation. The B-site
cations displace mainly in x or y direction in alternating c-layers. The A-site cations
sublattice is noticeably deformed, with no discernible regularities.
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Figure 4.9: Lattice parameters for charged 2 x 2 x 4 permutations and the 2 x 4 x 4 per-
mutation.

To compare the different structures, the structural changes are quantified by the
lattice parameters and by the radial displacement. Figure 4.9 shows the lattice pa-
rameters of the configurations calculated in the small supercells with Bi/Na compen-
sation and the configuration calculated in the large supercell. Permutation F1E123
and F3E135 show similar lattice parameters and a similar cell volume. In per-
mutation F1E123, the lattice parameter c¢ is considerably elongated compared to
the a and b lattice parameters. This might be due to the different directions not
being equivalent. In permutation F1E123 four subcells are modeled along the z
direction and two along the x and y direction. The lattice parameters of the non-
compensated supercells exhibit the same tendencies in the lattice parameters. Per-
mutation pseudoF1E123 shows a similar lattice parameter a as permutation F1E123.
On the other hand, b and ¢ are the mean value of the respective parameters in
F1E123. In this calculation the directions are also not equivalent, two subcells are
modeled along the x direction and four along the y and z direction.

Figure 4.10 shows the radial displacements of the ions from their ideal perovskite
positions for the compensated small supercells and the large supercell, taking the
overall atomic movement as zero. The non-compensated supercells exhibit the same
tendencies in the radial displacements. The largest displacement in all calculated
structures is observed for the bismuth and oxygen atoms. The radial displacements
of the pseudoF1E123 structure are similar to those of F1E123, but smaller. The
observed displacements are large compared to displacements in lead based per-
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Figure 4.10: Radial displacements of the ions from the ideal perovskite positions for charged
2 X 2 x 4 permutations and the 2 X 4 x 4 permutation.

ovskites. The calculated displacements might be too large due to finite size effects,
which might already be reflected in the observation that the displacements of the
F1E123 are similar, but larger than those in pseudoF1E123. However, large atomic
displacements also might be an intrinsic property of lead-free perovskites.

4.2.3 Summary and conclusion

BNT6BT was calculated considering different A-site occupations. Comparison of
calculations in a 2 x 2 x 4 supercell with or without balancing the Bi/Na inequality
have shown no differences in ranking, lattice parameters or radial displacements. A
2 x 4 x 4 supercell with equal amounts of Bi and Na reveals the same displacement
characteristics. The different asymmetries of the 2 x 2 x 4 and the 2 x 4 x 4 super-
cells show no discernible influence on the characteristics of atomic displacements.
Therefore, the calculated permutations in a 2 x 2 x 4 supercell, including a com-
pensation to balance the Bi/Na difference, are used to model BNT6BT for HRTEM
image simulation.

Permutation F1E123 is the preferred configuration calculated in a 2 x 2 x 4 super-
cell. It was constructed according to an ordering proposed from single crystals.
The permutation shows a homogeneous distribution of heavy (Bi/Ba) and light (Na)
atoms on the A-sites along [001] columns.
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4.3 Correlation to HRTEM imaging observations

In this section HRTEM imaging on BNT6BT is analyzed. Atomistic effects are
analyzed by comparing experimental images to images simulated from the configu-
rations presented in Section 4.2.

The section is started by the presentation of an experimental HRTEM image. After-
wards the simulation of an HRTEM image from a calculated structure is shown on
the example of the F1E123 configuration. Different contrasts found in the exper-
imental image are analyzed and, if possible, correlated to simulated images from
different structures, or of a slight structure misorientation. Finally, the results are
summarized and conclusions given.

The HRTEM images and all modeled images shown in this subsection were made
by Jens Kling, Division of Geo-Material-Science. The interpretation was done in
close cooperation.

Figure 4.11: Inverse Fourier transformed image of the taken HRTEM image. Areas of
approximately 10-20 nm with uniform contrast variation were detected. The detail in the
black rectangle is taken for comparison with the simulated structures. Picture taken from
[129].
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4.3.1 Experimental HRTEM image

Figure 4.11 depicts the inverse Fourier transformed image of the experimental
HRTEM image. For the transformation, reflections up to {110} without the primary
beam were chosen. As can be seen from Figure 4.11, areas of approximately 10 to
20 nm with uniform contrast exist, but the local intensity distribution is not homo-
geneous over the entire region. The material consists of areas of different contrast.
These nanosized regions can be due to, for example, different chemical ordering,
different crystal structures or slightly tilted regions with respect to the incident elec-
tron beam. Local variations in sample thickness can cause contrast modulations as
well.

4.3.2 Simulation of HRTEM images

Different configurations modeling BNT6BT in a 2 x 2 x 4 supercell (presented in
subsection 4.2) are used to simulate HRTEM images. The viewing direction is [001]
and the cell is doubled in a and b direction to receive a larger simulated image. The
values taken for the thickness are assumed to represent the real sample thickness
imaged by transmission electron microscopy (TEM). A thickness of about 5 to 20 nm
is realistic. The following figures are details of the whole defocus-thickness maps
calculated from the DFT models.

Atomic relaxation has a strong effect on material stability (Section 4.1). To assess
its visibility in HRTEM imaging, image simulations were performed at ideal atomic
positions and with relaxed atomic positions. Structures with ideal atomic positions
are called unrelaxed, structures obtained from DFT calculations are called relaxed.

Figure 4.12 shows an HRTEM image simulation of the F1E123 permutation com-
pared to a part of the experimental image. It can be seen that the patterns for the
unrelaxed and relaxed structures differ. Variations in intensity are a consequence
of variations in atomic position and occupancy. This proves that the unrelaxed and
relaxed state can be distinguished.

The simulated HRTEM images of the unrelaxed (a) and the relaxed (c) F1E123
model are compared with the experimental HRTEM image. The contrast peculiari-
ties observed in the figure simulated from the unrelaxed structure stem solely from
the A-site occupation of the ideal perovskite. The image simulated from the relaxed
structure reflects also information from cation displacement and octahedral tilting.
At first sight, both simulated images seem to match the experimental image. The
intensity ratio between brighter and weaker spots is better reproduced by the un-
relaxed structure, but its tendency can be observed in both. They show a brighter
spot with a weaker one in-between. Due to the off-centering of the ions and octa-
hedral tilting, some spots are elongated in the relaxed structure. In the real image
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Figure 4.12: Comparison between HRTEM measurements and image simulation from cal-
culated DFT data of F1E123. (a) Simulation of unrelaxed structure, (b) inverse Fourier
transformed experimental image (black rectangle in Figure 4.11), and (c) simulation of re-
laxed structure. Picture taken from [129].

this cannot be observed, but some weaker spots are slightly off-centered. This is
not reproduced by the simulations. It is assumed that displacements similar to the
calculated one occur with smaller values.

4.3.3 Analysis of anomalies in HRTEM images

Chemical ordering

The experimental HRTEM image does not appear homogeneous, but shows areas
of different contrast. Hence, there are areas that reveal a better fit and others that
deviate more from the before modeled structure. Moreover, there are also areas that
tit worse than the ones shown here.

To check for possible order effects, HRTEM image simulations were also per-
formed for other A-site occupancies.

The resulting patterns differ considerably, which allows one to distinguish differ-
ent structural models. Figure 4.13 shows the pattern for the unrelaxed structures
F3E135 (a), F5E156 (b), statNal (c) and statNa2 (d). All these structures show a
different pattern. Thus, it is concluded that the occupation of the atom columns in
beam direction mainly affect the calculated images. In direction [001] of F1E123 each
atomic column consists of two light A-atoms (Na) and two heavy A-atoms (Bi and/or
Ba). This A-site occupancy matches the real structure best of all calculated structures,
as depicted in Figure 4.12. The other configurations in the unrelaxed and relaxed
state show different intensity patterns, that are not observed in the experimental
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Figure 4.13: Comparison of the images simulated from unrelaxed structures. (a) F3E135,
(b) F5E156, (c) statNal, and (d) statNa2. The patterns look different for all structures and
can be distinguished. Picture taken from [129].

image. Therefore, it can be concluded that the local variations in image contrast are
due to another effect than the chemical ordering analyzed in this paragraph.

Crystal misorientation

Another possible reason for different contrast in HRTEM images might be a slightly
different structure. It is theorized, that the bulk material consists of small regions
with slightly different crystal structure or slightly different orientation of the lattice
with respect to the incident electron beam. A misorientation can be simulated by
changing the viewing direction. Figure 4.14 shows two different details of the in-
verse Fourier transformed HRTEM image of Figure 4.11 and two simulated images.
The HRTEM pattern in (a) can be reproduced by simulation of the relaxed F1E123
configuration tilted by 0.19° towards [020]. Thickness and defocus are the same as
in previous simulations. Simulation of a tilt of 0.26° towards [220] of the initial
F1E123 structure produces a pattern close to the real HRTEM image (b). Thickness
and defocus are slightly different, but realistic for the specimen.
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4.3.4 Summary

HRTEM images were simulated from calculated structures and compared to the
experimental HRTEM images. The images simulated from the structure F1E123 fit-
ted best to the experimental image. A difference between the unrelaxed and the re-
laxed structures is visible in the simulated structures. Images simulated from differ-
ent A-site occupations showed no similarities to the experimental image. However,
different misorientations of the F1E123 structures in the simulated images resulted
in images that matched different areas of the experimental image. Simulations from
unrelaxed and relaxed structures can reproduce patterns similar to the real image.
It is assumed that the calculated atomic displacements and octahedral tilting occur
with smaller values.
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4.4 Summary and conclusions

Chemical ordering in the BNT-BT system was analyzed, using electrostatic calcu-
lations, DFT calculations and HRTEM imaging.

The analysis of BNT using simulations showed that the energetic differences calcu-
lated between differently ordered structures are small. Structural relaxation plays an
important role. It is assumed that local order in BNT might occur, in small regions.

The DFT calculations of differently ordered structures for BNT6BT showed similar
energy differences as the BNT calculations. Likewise, it is assumed that the energetic
differences are too small to be responsible for long range order. The most stable
configuration in the BNT6BT calculation was constructed according to an order pro-
posed for single crystals [71]. The permutation is characterized by a homogeneous
distribution of heavy (Bi/Ba) and light (Na) atoms on the crystallographic A-site
along [001] columns. This permutation produces a simulated HRTEM image close
to the experimental image observed. As HRTEM imaging is done along the [001]
direction, it is taken as another indication that the A-site distribution in BNT6BT is
homogeneous.

HRTEM image simulation of BNT6BT configurations verified that relaxation plays
an important role. The usage of relaxed and ideal (so called unrelaxed) structures
resulted in different images. However, both fit to the experimental image. It is
possible that the atomic displacements observed in the calculations are too large
due to finite size effects. Therefore, it is assumed that the observed displacements
occur, but with smaller values.

The different areas that are observed in the experimental image of BNT6BT could
not be matched to different permutations. However, they could be matched by a
slight tilting of the simulated preferred structure.

The following is concluded from the above analysis: In BNT-BT the crystallo-
graphic A-site atoms are on average homogeneously distributed. Small regions of
BNT might show short range order. BNT6BT might obey an order proposed from
single crystals measurements, while the overall distribution of atoms is homoge-
neously. The BNT-BT structure shows relaxation. Samples consists of regions that
are orientated slightly differently, which is possibly due to slightly different struc-
tures.
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CHAPTER B

Ferroelectric instability in
bismuth sodium titanate - barium titanate

The ferroelectric properties of a material are directly connected to distortions of the
centrosymmetric prototype structure [1]. Lattice dynamic calculations can be used
to identify the resistance against deformation of a material [37—41]. A simplified
illustration of the ferroelectric distortion is a displacement of one of the cation types
from its high symmetry position [42,43]. Calculations modeling such a displacement
can be used to analyze if a material is ferroelectrically active, and whether it is A-site
or B-site active.

In this chapter the dependencies of ferroelectric cation site instabilities are inves-
tigated for (Naj/,Bi; /,TiO3);_ x-(BaTiO3), (BNT-BT).
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5.1 Analyzing cation site stabilities

In this chapter cation site stabilities are analyzed as a function of composition
and volume. The composition-pressure relation of the ferroelectric instability and
characteristics of the morphotropic phase boundary (MPB) position are assessed.

The MPB signifies a material composition at which the structural changes from a
ferroelectric structure to another structure are facilitated [22]. Calculations analyzing
the ferroelectric instability might be useful to identify such a composition.

Ferroelectricity is caused by the instability of the cubic prototype structure [130].
Variation in ferroelectric properties have been observed due to composition changes
and hydrostatic pressure. It has been proposed that these effects are comparable
[15,16,23,24,52]. An atomistic analysis of the stability of the cation site in the cubic
perovskite structure can help to understand dependencies of ferroelectric properties
[6,36,42,43].

In the perovskite structure the A- and B-sites can become ferroelectrically ac-
tive by displacing in certain directions. A displacement in (100) direction mimics
tetragonal displacement, displacement in (111) direction mimics rhombohedral dis-
placement and displacement in (110) direction mimics orthorhombic displacement.
Density functional theory (DFT) calculations of the perovskite structure including
these displacements analyze the ferroelectric activities of the cations with suppressed
inter-atomic cooperation.

Calculations are performed on (Bi; /;Naj/,TiO3)1_(BaTiO3), with x = 0, 0.0625,
0.25, 0.75 and 1. For most calculations a supercell constructed of 2 x 2 x 2 ideal per-
ovskite subcells was used. In the supercells the B-sites are occupied by Ti, the O sites
by oxygen and the A-sites by Na, Bi or Ba, depending on the desired composition.

From the work presented in Chapter 4 it is deduced that the A-site distribution
in the BNT-BT system might be characterized by local order, but is in average ho-
mogeneous. An adequate choice to model a homogeneous 1:1 occupation is the
rocksalt order, it is used for the calculations of pure Na; /;Bi; /,TiO3 (BNT). For the
composition Biz/gNaz,gBa;y sTiO3 the A-sites are occupied by Na and Bi atoms in
rocksalt ordering with one Bi and one Na atom replaced by Ba. The two possible
permutations are calculated. The composition Biys5,3Nais,3Ba; /3, TiO3 is calculated
in a 2 X 4 x 4 supercell. Na and Bi are arranged in rocksalt ordering and one Bi and
one Na atom are replaced by Ba. Two of the possible permutations are calculated. At
the composition Bi; ;gNaj /gBag,/sTiO3 all three possible A-site occupations are tested.

DFT calculations were performed using the Vienna ab-initio simulation package
(vasr) [101] within the local density approximation (LDA) using projector aug-
mented wave (PAW) potentials [124] including the Bi 5d!° 6s? 6p®, Na 2p° 3s!, Ba 5s>
5p® 6s%, Ti 3p® 3d? 4s? and O 2s? 2p* electrons. Integration in the reciprocal space
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was performed on a Gamma point centered 3 x 3 x 3 Monkhorst Pack mesh [131],
and an energy cutoff of 600 eV was used. Convergence showed an accuracy of 1 meV
for the k-point mesh and 3meV for the energy cutoff. In all calculations internal cell
parameters were not allowed to relax and the cell volume was held fixed.

5.2 Pure phases of BNT-BT

5.2.1 Concept of cation site stability - BaTiO 3

For analyzing the cation-site stability of BaTiO3, all Ba or all Ti atoms are displaced
from their ideal positions in the cubic perovskite structure and the resulting energy
is calculated. The energy difference to the ideal cubic structure is then plotted as
a function of cation displacement in units of the lattice constant used in the calcu-
lations. Only small displacements are shown. A positive energy change signifies
that a cation displacement is unfavored and that the cation site is stable. A negative
energy change shows that the material gains energy by displacing the cation. Thus,
the material is not stable in the cubic structure and will adopt a distorted structure.
Ferroelectricity can exist in the distorted perovskite structures, but not in the cubic
perovskite structures. Thus, the cation-site instability is called ferroelectric instability
and the cation showing an instability is called ferroelectric active cation. Due to
the absence of atomic relaxation in the calculations, inter-sublattice cooperation is
suppressed. Thus, the calculations can be used to discern the stability of the cation
sites, but a direct connection to ferroelectric active structures cannot be made.
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Figure 5.1 shows the energy of BaTliO; at its experimental volume as a function
of cation displacement. The obtained values are in very good agreement with those
calculated in the work by Ghita et al. [43]. The graph shows that the A-site cation
is stable in its highly symmetric position, while the B-site is unstable. Therefore, it
can be concluded that the B-site cation is ferroelectrically active at the experimen-
tal volume. The displacement along the [111]-direction is favored over the [100]-
direction for the B-site cation. No difference in direction is noticeable for the A-site
displacement in the range displayed.

5.2.2 Volume dependence of cation site stability - BNT

BNT is modeled in a 2 x 2 x 2 supercell. The A-sites are occupied by equal
amounts of bismuth and sodium in rocksalt order. Figure 5.2 shows the variation of
the total energy as a function of cation displacement at the theoretical cell volume.
Bi and Na are displaced by the same value and in the same direction to represent
A-site displacement. The figure shows that the B-site is stable in BNT, while the
A-site is unstable, and thus, ferroelectrically active. At larger displacements, the
energy difference due to the A-site cation displacement reaches a minimum and
eventually becomes positive (not depicted).

The calculations presented in Figure 5.2 are performed at the theoretical volume,
which is smaller than the experimentally observed volume. As previous DFT calcu-
lations have shown that the ferroelectric distortion is sensitive to volume changes,
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Figure 5.2: Rocksalt ordered Biy;o,Nay /2 TiO3. The energy difference to the cubic structure
is plotted as a function of cation displacement in units of the lattice constant at theoretical
cell volume a=3.825A.
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Figure 5.3: Energy of rocksalt ordered BNT plotted as a function of A-site cation displace-
ment for different volumes, in reference to the respective lattice constants.

and to test the influence of hydrostatic pressure, the cation site stabilities are calcu-
lated for various volumes.

In Figure 5.3 the energy difference to the ideal cubic structure is plotted for the
A-site stability as a function of cation displacement for different volumes in reference
to the respective lattice constants 4. It can be seen that the A-site is stabilized at
smaller volumes and no longer ferroelectrically active, while at higher volumes the
A-site is destabilized and the ferroelectric activity is increased.

5.3 Cation site stability of the BNT-BT solid solution

5.3.1 Results

BaTiOj is a B-site active, while BNT is an A-site active ferroelectric. Thus, the
possible cross-over is analyzed in the solid solution. In addition, it is investigated
whether changes in the cation site stability can be described as chemical pressure
similar to hydrostatic pressure.
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Cation site stability of the BNT-BT solid solution

Cation site stabilities were calculated at different volumes and concentrations in
the solid solution system BNT-BT. Figure 5.4 shows the cation site stabilities at two
volumes and four concentrations. The energy difference to the ideal cubic structure
is given as a function of cation displacement in reference to the respective lattice
constants. Different permutations were considered for the concentrations x = 0.25
and 0.75, and are shown in the respective plots, but no significant energy difference
can be discerned. From the graphs the following trends can be observed. The A-site
stability mainly depends on concentration and less on volume. The B-site stability
mainly depends on volume and almost not on concentration.

To quantify the results, the Landau theory is used to describe the data (see Sec-
tion 1.1.3). Strain variables are omitted, as the calculation in this section were per-
formed inhibiting structural relaxation. The Landau expansion is truncated after the
fourth order term.

1 1
G(n) = Go + Emyz + 1,3174 , (5.1)

as order parameter 77 the atomic displacement Ax is used. Therefore, the following
equation is used to describe the energy difference to the ideal cubic structure AE;:

1 1
AE; = F%i Ax? + Zlﬁi - Ax}

The second parameter f; (scaling the fourth order term) becomes important at larger
displacements. It can be considered as a geometric parameter that scales the inter-
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Figure 5.5: Volume dependence of a 4 and ag for Bag 25Big 375Nag 375TiO3.
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Figure 5.6: Concentration dependence of o and ap at theoretical volume of BaTiO3
(a=3.9524).

atomic repulsion as the cations advance towards surrounding oxygen atoms.

Figure 55 shows the dependence of a; on the lattice parameter for
Bags5Big 375Nag 375 TiO3. It can be seen that «; is a linear function of the lattice
parameter. This linear character can be observed for all compositions. Figure 5.6
shows the dependence of «; on the BaTiOs concentration at the theoretical volume
of BaTiO3 with a = 3.952 A. A linear relation can also be observed at other volumes,
for example the theoretical volume of BNT. Therefore, «; is a linear function of both
the lattice constant and the composition.

Figure 5.7 shows a4 and ap as a function of lattice parameter and BaTiO3; con-
centration. The cation site activities can be described as a linear function of lat-
tice parameter and BaTiO3 concentration, including a bilinear term coupling both
parameters:

ap =517+ 1029 - xpr — 138 - aye/ A — 223 - xp7 - a0/ A
ap = 2206 4 46.7 - xgr — 560 - ajy /A — 6.41 - xgp - a /A,

where xpr is the concentration of BaTiO3; and a,; is the lattice constant. A negative
«; represents a ferroelectric active cation site. It can be seen that the A- and B-sites
become more active for higher volumes and lower BaTiO3-content. Figure 5.9 shows
a projection of a4 and ap onto the lattice composition plane. Lines represent the
same value, only negative values are shown.

86



Cation site stability of the BNT-BT solid solution

180

120

-120 “‘:“\ ‘ \
3.85 w

39N N e e
3.95 I

Lattice constant

0 0.2 BaTiOj; concentration

Figure 5.7: Dependence of a 4 and ap on the lattice constant and concentration.

o} predictedo, ——— |
o0 O calculatecd, O
predictedog -
40 - calculatechg ©
_ 20} |
(@]

_40 1 1 1 |
3.8 3.85 3.9 3.95 4

Lattice constant [A]
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The established relation between «;, composition and volume can now be used to
predict the cation site stabilities at different compositions and volume. For example,
the cation-site instabilities of Bag e25Big 46875Nag 46875 TiO3 and their volume depen-
dence can be predicted. The composition is close to the systems MPB. Figure 5.8
compares the predicted a4 and ap to calculated results. Bag gs25Big.46875Nag 46875 TiO3
has to be calculated in a larger supercell, which makes its calculation more time
consuming. Therefore, only selected arrangements are calculated. The calculated «;
fit well to the predicted lines. This validates the method.

Figure 5.10 shows the predicted a4 and ap as a function of BaTiO3 concentration.
The lattice parameter is not held fixed, but changes with composition. Two different
scenarios for the variation of lattice parameters with BaTiO3-concentration are used
(also shown in Figure 5.9). In the first scenario the lattice parameters are based
on experimental lattice parameters of the cubic phases. Cubic lattice parameters
are used, because the cation site stabilities of the cubic perovskite phase are ana-
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Figure 5.9: Projection of the a 4 and ap dependence on the lattice concentration plane. Lines
of same w; are indicated in the color coding, positive values are omitted. Marked with aj;,e,, is
the linear interpolation between the cubic lattice parameters of the pure phases. Marked with

V}/ 3 is the cube root of experimentally obtained volumes at room temperature [66,132-134],

ag; denotes the fit of a polynomial of 4t grade to the Vfl/ 3 data.
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Figure 5.10: w; at lattice parameters changing with BaTiO3 concentration. Dependence of
the lattice parameters on the BT concentration ajjyeq, and ag are marked in Figure 5.9.

lyzed. For the pure phases experimental values of the lattice parameters of the cubic
phase can be used. For the solid solution calculations the lattice parameters are
taken from a linear interpolation according to Vegard’s law, since an experimental
lattice parameter of the cubic phase is only available for one other composition [133].
Ferroelectric activities a; corresponding to these lattice parameters are denoted with
Alinear Marked in Figure 5.10. In the second scenario lattice parameters of the polar
room temperature phases are used as an estimate for the lattice parameter of the
pseudocubic phase [66,132-134]. Ferroelectric activities «; corresponding to these
lattice parameters are marked with ag; in Figure 5.10.

5.3.2 Discussion

The most interesting region in Figure 5.7 and 5.9 is situated at low BaTiOs-content
and large volume. In this region, both cation sites are ferroelectrically active, ac-
cording to the calculations. Experimentally, a large volume and low BaTiO3z-content
cannot be realized easily in the BNT-BT solid solution, because pure BNT has a
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smaller volume than BaTiO3. However, this region might be accessible in strained
epitaxial films.

Figure 5.10 shows calculated ferroelectric instabilities that are better comparable to
experimental observations. In the figure the volume is changed with the BaTiO3 con-
centration, as both parameters cannot be separated easily in experiments. Figure 5.10
can be divided into three regions: A BNT-rich region up to about 19 %BaTiO3 in
which an A-site instability is calculated. An intermediate region between 19 %BaTiO3
and 34-43 %BaTiO3;, where the calculations show no ferroelectric instable cation. A
BaTiOz-rich region above 34-43 % BaTiO3 that is predicted to be B-site active. The
same trends are observed independent of whether a linear interpolation of the cubic
lattice parameters or a fit to lattice parameters of the ferroelectric phase is used. For
the A-site instability both approximations of the lattice parameter result in similar
ferroelectric activities, while the B-site instability is more sensitive to the choice of
the lattice parameter, especially in the BNT rich region.

In the BaTiOs-rich region (BaliOsz-content > 34-40 %) the B-site becomes more
instable with increasing BaTiOs-content, while the A-site is clearly stable. Experi-
mental work analyzing the structure of this concentration region showed a decrease
of the Ti displacement with decreasing BaTiO3; content to 85 % BaTiO3 [134], which
agrees with the presented results. Another finding of this experimental work was
an increase of tetragonality with decreasing BaTiOs-content, which is attributed to
an effect of decrease in oxygen octahedral volume. A decreased oxygen octahedral
volume is expected from the calculations. However, the tetragonality of the system
is not analyzed. It has been suggested that the tetragonal distortion is stabilized by
inter-atomic cooperation suppressed in the calculations [43].

In the compositional range between 19 %BaTiO3 and 34-43 %BaTiO3, no ferroelec-
trically active cation is found. However, the stability of the B-site cations is not as
pronounced as the A-site stability in the BaTiOz-rich region. As experimental studies
identify the material as tetragonal at 30 % BT [133], it is assumed that tetragonality
is stabilized by inter-atomic cooperation [43].

Ferroelectrically most active is the BNT-rich region (BaTiO3z-content < 19 %). Here,
the B-site is slightly stabilized, while the A-site is clearly instable. The ferroelectric
activity of the B-site is small in the entire solid solution. Thus, the site is either
slightly ferroelectric active or slightly stabilized. It is assumed that interatomic co-
operation might further activate the B-sites. Such an activation is most likely in the
BNT rich region, because the A-site is clearly active.

It has been postulated in literature that chemical substitution can be regarded
as introduction of a chemical pressure, equivalent to an external hydrostatic pres-
sure [24] (see Section 1.2.1). In the case of BNT-BT it has been proposed that the
introduction of a larger cation on the A-site, i.e. Ba?T replacing Bi** and Na™,
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can be described as negative (tensile) chemical pressure [24]. Transferring this idea
to the presented calculations, hydrostatic pressure can be obtained from volume
changes at fixed BaTiO3-concentrations, while chemical pressure can be obtained by
changing volume and composition simultaneously (at the respective experimental
volumes). Therefore, since negative hydrostatic pressure (increased volume) results
in an enhanced ferroelectric activity, one could postulate that the same is true for
negative chemical pressure (addition of BaTiO3). The presented observations of the
B-site stability support this hypothesis, as B-site cations become less stable at both
negative hydrostatic pressure (large volumes in Figure 5.5) and negative chemical
pressure (high BaTiOs-content in Figure 5.10). However, the A-site stability shows
a more complex behavior, as A-site cations are destabilized at negative hydrostatic
pressure (large volumes in Figure 5.5) but stabilized at negative chemical pressure
(high BaTiOs-content in Figure 5.10).

In this thesis the discrepancy is explained by attributing the chemical pressure
to two effects. First, there exists a misfit effect due to different ionic radii of the
substituted cations. Second, a change in the local moduli occurs due to the differ-
ent chemical bondings, resulting from different polarizabilities, electronegativities
or ionic compressibilities of the cations. The different cation sites show different
dependence on the misfit and modulus effect.

The activity of the A-site is sensitive to the misfit effect, but depends more on
the modulus effect. The force constants acting on the A-site cation mainly result
from A-O interactions. With chemical substitution, the character of the A-O bonds
changes. When the two small cations, hard ionic Na™ and soft polarizable Bit, are
replaced by the large hard ionic Ba?*-cations, A-O hybridization (mainly Bi-O) is
reduced with increasing BaTiOsz-content.

On the other hand, the activity of the B-site is strongly sensitive to the misfit
effect, but shows only a weak modulus effect. The latter can be explained by an
indirect substitution effect on Ti-O bonds. As the A—O bonds change their character
from partly covalent to purely ionic with increasing BaTiOs-content, the effective
electronegativity of oxygen changes and hence Ti-bonds can only indirectly “sense”
the chemical A-site substitution.

To summarize, the changes of ferroelectric cation site activity with chemical sub-
stitution are determined by a superposition of both effects. The misfit effect influ-
ences mainly the ferroelectric B-site activity, while the modulus effect dominates the
ferroelectric activity of the A-site.
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5.4 Summary and conclusions

Ferroelectric instabilities of both cation sites were analyzed in the lead-free per-
ovskite solid solution system BNT-BT, which is a mixture of the B-site ferroelectric
BaTiO3; and the A-site ferroelectric BNT.

The instabilities of the cation sites can be quantified as a function of volume and
composition using DFT calculations. Linear relations to both the lattice constant
and BaTiO3 concentration are found. The experimental composition of the MPB lies
within the region of BaTiOs-content of less than 20 %. In this composition region the
A-site is unstable, while the B-site is only slightly stabilized and might be activated
by inter-sublattice cooperation.

The correlation of ferroelectric activity to volume and concentration is explained
by the superposition of a misfit and a modulus effect. The misfit effect results from
different ionic radii of Na/Bi and Ba, while the modulus effect has its origin in the
different chemical properties of these cations (polarizability, electronegativity, ionic
compressibility). The ferroelectric B-site activity is dominated by the misfit effect,
leading to its increase upon BT-addition. The ferroelectric A-site activity is domi-
nated by the modulus effect suppressing the A-site displacements upon increasing
BT-content.

Efficient stability calculations of the BNT-BT solid solution could be used to iden-
tify a concentration region in which improved ferroelectricity is expected. In this
region, in which the MPB is also situated, one cation site is active, while the other is
only slightly stabilized. It remains to be seen whether this technique is transferable
to other systems, where it could be used to identify interesting composition ranges
in new solid solutions showing enhanced ferroelectric properties.
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Conclusion

In this thesis the structure and stability of different ferroelectric perovskite materials
was analyzed, using atomistic computer simulation. The aim was to improve the un-
derstanding of lead-free ferroelectrics and their differences to PbZr;_,Ti,O3 (PZT),
to help in the search for new ferroelectric materials.

Cation order and relaxation possibilities were analyzed in the cubic structure of
homovalent PZT, qualitatively comparing configurations in different supercells and
quantitatively within a specific supercell. The thermodynamics of cubic PZT were
assessed from first-principles to validate the assumption of a fully miscible solid
solution with positive heat of mixing in the paraelectric regime.

The favored chemical order is the result of the size difference between Ti and
Zr octahedra, and cation relaxation. The size effect can be quantified by simple
model calculations and was found to favor a rocksalt order of the B-site cations. The
influence of relaxation possibilities is reflected in the formation of Ti {110} planes.
These planes introduce an asymmetry, that allows for cation relaxation and subse-
quent energy gain. The formation of {110} planes can only be observed in large
supercells with less symmetry constraints. Monte-Carlo (MC) calculations indicated
that even at elevated temperatures the favoring of ordered structures is not overcome
by entropy.

According to the calculations B-site cation arrangement of PZT in thermodynamic
equilibrium is characterized by {111} patterns and {110} Ti-planes. However, the
driving force towards one particular order is very small, and cation diffusion is
kinetically hindered in perovskite materials. Thus, in PZT bulk materials ordered
regions will most likely be too small to be observed. Under enhanced diffusion
and additional forces favoring a particular ordering, e.g. in epitaxial films, chemical
order can be observed.
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CONCLUSION

The cation order in heterovalent (Naj /,Bij »,TiO3)1_-(BaTliO3), (BNT-BT) was
analyzed for Naj /,Bi; »,TiO3 (BNT) and BNT-BT close to the morphotropic region,
combining electrostatic calculations, density functional theory (DFT) calculations
and experimental transmission electron microscopy (TEM) imaging.

The results indicate, that the crystallographic A-sites in BNT-BT are homoge-
neously occupied. However, it is possible that local ordering occurs, while the overall
distribution of A-site atoms is homogeneous. Samples analyzed by high resolution
transmission electron microscopy (HRTEM) consist of regions that show different
orientation, possibly due to slightly different structures.

The ferroelectric instability of the BNT-BT system was analyzed by investigating
the stability of both cation sites. The influences of composition and volume were
analyzed modeling a homogeneous A-site occupation as seen for BNT-BT mentioned
above.

The presented DFT calculations confirmed BaTiOj3 to be a B-site active ferroelectric,
while BNT is an A-site active ferroelectric. Calculations of the mixture quantify the
instabilities of the cation sites as a bilinear function of the lattice constant and BaTiO;
concentration.

In this thesis the correlation of ferroelectric activity to volume and concentration is
explained by the superposition of a misfit and a modulus effect. The misfit effect was
found to result from different ionic radii of Na/Bi and Ba, while the modulus effect
has its origin in the different chemical properties of these cations (polarizability,
electronegativity, ionic compressibility). The ferroelectric B-site activity is domi-
nated by the misfit effect leading to an increase upon BT-addition. The ferroelectric
A-site activity is instead dominated by the modulus effect suppressing the A-site
displacements upon increasing BT-content.

The calculations show the composition of the morphotropic phase boundary (MPB)
within a concentration region which is characterized by an unstable A-site and an
only slightly stabilized B-site that might be activated by inter-sublattice coopera-
tion. This work demonstrates that efficient stability calculations of the BNT-BT
solid solution can be used to narrow the concentration region showing improved
ferroelectricity.

Ferroelectric instability calculations are a very promising tool for the prediction
of materials with strong ferroelectric behavior and should be further analyzed. The
method could be further refined on the BNT-BT system allowing for interatomic
cooperation. It could be tested, whether the B-site becomes instable when the A-site
is instable close to the morphotropic region, as proposed in this thesis. Additional
effects might also be observed.
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In addition cation site stability calculations could be used to screen material sys-
tems for ferroelectric activity. The proposed method is simple enough to be used
on a variety of material system, while gathering useful information on the whole
system analyzed. Cation site stability calculations could mainly be used to identify
the traits of the morphotropic region of a material system or an otherwise preferred
material composition. In this work the morphotropic region of BNT-BT coincides
with an area that is active in one site and possible to be activated in the other site.
As the morphotropic region of PZT also shows this behavior, it could be theorized
that this is the characteristic trait of the morphotropic region. Different ferroelectric
material systems could be analyzed to test that theory.
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Acronyms

Acronyms

ABINIT suite of programs implementing density functional theory
CASM Cluster-Assisted Statistical Mechanics
GULP General Utility Lattice Program

VASP Vienna ab-initio simulation package

BNT Nal/zBil/zTiO3
BNT-BT (Na1 /zBil /zTiO:J,)l_x-(BaTiOg)x
BNT6BT (Na1 /zBil /2T103)0.94-(BaTiO3)0.06

DFT density functional theory
f.u. formula units
GGA generalized gradient approximation

HGH Hartwigsen-Goedecker-Hutter

HRTEM high resolution transmission electron microscopy
KNN Nal_xKbeO3
LDA local density approximation

MC Monte Carlo
MD Molecular dynamics

MPB morphotropic phase boundary

PAW projector augmented wave

PZT szrl_xTix03
TEM transmission electron microscopy

VCA virtual crystal approximation
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