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Abstract
The laser-ion acceleration with ultra-intense and ultra-short laser pulses has opened a new

field of accelerator physics over the last decade. Fast development in laser systems are capable
of delivering short pulses of a duration of a few hundred femtoseconds at intensities between
1018− 1020 W/cm2. At these high intensities the laser-matter interaction induces strong charge
separation, which leads to electric fields exceeding the acceleration gradients of conventional
devices by 6 orders of magnitude. The particle dynamics and energy absorption of the laser
pulse can be understood by means of high-performance simulation tools.

In the framework of the LIGHT (Laser Ion Generation, Handling and Transport) project our
goal is to provide an analytical description of the 3D distribution of the protons accelerated
via TNSA (Target Normal Sheath Acceleration). In this acceleration mechanism the short pulse
impinging on a metal foil heats the electrons to relativistic energies, which triggers the strong
charge separation field on the opposite target surface (Debye-sheath). The accelerated light ions
(proton, carbon, oxygen) observed in the experiments originate from the contamination layer
deposited on the surface. The thickness of this layer in the experiments is not known exactly.
According to our study these ions can be accelerated in three different regimes depending on
layer thickness: quasi-static acceleration (QSA, for thin layers), plasma expansion (for thick
layers) and a not well understood intermediate (or combined) regime.

In a laser-plasma simulations time-dependent hot electron density and temperature are ob-
served, therefore we performed plasma simulations with a well defined and constant initial hot
electron distribution. Thus the simulation results are easier to compare with analytical models.
In our case the theoretical investigation of the TNSA involves the understanding of the charge
separation effects at the surface of a two-temperature plasma and the consequent proton ac-
celeration in one dimension. We omit the detailed dynamics of the laser-plasma interaction by
assuming a preheated electron distribution. With our 1D electrostatic simulations we investi-
gate the influence of the proton layer thickness on the TNSA energy spectrum. Additionally we
investigate the divergence of the protons using 2D simulations: In these we simulate the heating
of the electrons by the laser pulse.

Numerical studies in this work were carried out using a Particle-in-Cell (PIC) plasma simu-
lation code (VORPAL). The target is defined as a single-ionized plasma with a double-layer
structure: a bulk layer of heavy ions, which represents the metal foil itself and a much thinner
proton layer, which serves as the contamination layer. The layer is considered thin if it is thinner
compared to the skin depth of the accelerating electric field. For a thin proton layer the quasi-
static acceleration is the governing mechanism. When the proton layer is larger than skin depth
the process can be described as plasma expansion.

I found that the energy and phase-space distribution of the protons strongly depends on the
layer thickness. In the QSA regime the proton spectrum shows a nearly mono-energetic feature,
but the maximum energy is typically low compared to the plasma expansion regime, where
the protons have a broad exponential energy spectrum. For the plasma expansion we observe a
cut-off energy that logarithmically depends on the acceleration time.
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The simulation results in these two extreme cases for one- and two-temperature plasmas have
been extensively compared to analytical predictions showing an overall good agreement. In the
intermediate regime an analytical expression could be obtained for the energy conversion from
electrons to protons as a function of electron parameters and layer thickness. By changing the
layer thickness a smooth transition between the two extreme cases could be identified.

The proton layer thickness also has an impact on the transversal acceleration, which defi-
nes the divergence of a proton beam. In the two-dimensional TNSA simulations a laser pulse
is needed to generate the hot electron population in the plasma. The simulations show that
theoretically with the right laser pulse duration and layer thickness the divergence of the most
energetic protons can be reduced almost to zero. In the QSA regime the transversal distribu-
tion and temperature of the hot electrons changes too quickly compared to the time-scale of
the acceleration. The analytical treatment of the divergence is only possible for the thick layers,
where the plasma expansion model is suitable to describe the physics. The model derived in this
work can be used to reconstruct the whole velocity phase-space of the protons in 3D. Therefore
it enables us to perform particle tracking and beam optics simulations with realistic TSNA pro-
ton bunch. The envelope angle of the protons measured in experiments can be also reproduced
using our 2D model.

The beam quality during motion through magnetic focusing and energy selection systems
downstream of the laser acceleration is sensitive to the initial distribution. After benchmarking
our analytic models, simulation results and measurements with each another, we are confident
we can now provide sufficiently realistic particle distributions to be expected a few mm from the
target in TNSA. Using our particle distributions as input, the effect of co-moving electrons, the
degradation of the transverse emittance and chromatic aberration effects can be investigated.
Thereby this study hopefully contributes to the goal of the Light project: Coupling the new laser
ion acceleration techniques to conventional accelerator facilities.
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Kurzfassung

In den letzten Jahren wurde die Laserionenbeschleunigung mit hochintensiven ultrakurzen
Laserpulsen zu einer neuen Technik in der Beschleunigerphysik. Die sich zur Zeit schnell wei-
terentwickelnden Lasersysteme ermöglichen Pulslängen von wenigen hundert Femtosekunden
mit Intensitäten von 1018 − 1020 W/cm2. Solch hohe Intensitäten erzeugen bei der Interak-
tion mit Materie für eine starke Ladungstrennung. Die dadurch erzeugten elektrischen Felder
übersteigen die in konventionellen Beschleunigern genutzten um sechs Größenordnungen. Die
Teilchendynamik während der Absorption des Laserpulses kann mithilfe von leistungsfähigen
Computersimulationen untersucht werden.

Ein Ziel des LIGHT Projekts (Laser Ion Generation, Handling and Transport) ist die analytische
Beschreibung des sechsdimensionalen Phasenraumes und der dreidimensionalen Dichtevertei-
lung der von durch Target Normal Sheath Acceleration (TNSA) beschleunigten Protonen. Bei
TNSA wird ein kurzer Laserpuls auf eine Metallfolie fokussiert. Dabei erreichen die Elektro-
nen relativistische Energien. Dies wiederum erzeugt ein starkes Ladungsseparationsfeld auf
der gegenüberliegenden Targetseite (Debye-sheath). Die dabei beschleunigten leichten Ionen
stammen aus einer Kontaminationsschicht auf der Targetoberfläche. Die Dicke der Kontamina-
tionsschicht ist nicht genau bekannt. Unsere Studien zeigen, dass die Ionenbeschleunigung in
drei verschiedenen Regimes beschrieben werden kann: Quasistatische Beschleunigung (QSA)
für dünne Schichten, Plasmaexpansion für dicke Schichten und ein Zwischenzustand.

In Laser Plasma Simulationen werden zeitabhängige Dichten und Temperaturen der heißen
Elektronen beobachtet. Wir führen Plasma Simulationen mit einer anfänglich konstanten Vertei-
lung der heißen Elektronen durch, da diese sich leichter mit analytischen Modellen vergleichen
lässt. Um TNSA theoretisch behandeln zu können müssen wir die Ladungsseparationseffekte
an der Oberfläche eines Zweitemperaturplasmas und die daraus folgende Protonenbeschleu-
nigung beschreiben. Zunächst nehmen wir statt einer Simulation der vollen Laser-Plasma-
Wechselwirkung ein bereits geheiztes Plasma als Ausgangspunkt der 1D-Simulation an. Wir
untersuchen nun mithilfe elektrostatischer 1D-Simulationen den Einfluss der Protonenschicht-
dicke auf das Protonenspektrum nach der TNSA. Des Weiteren betrachten wir die Divergenz der
beschleunigten Protonen mithilfe von 2D-Simulationen.

Die numerischen Studien für diese Arbeit wurden mithilfe des Particle-in-Cell (PIC) Plasma-
simulationscodes VORPAL durchgeführt. Dabei wurde das Target als einfach ionisiertes Plasma
in zwei Schichten ausgeführt: Die Metallfolie durch eine Schicht schwerer Ionen und die Konta-
minationsschicht durch eine dünne Protonenschicht. Im Folgenden sprechen wir von einer dün-
nen Protonenschicht, wenn ihre Dicke die Skintiefe des beschleunigenden elektrischen Feldes
deutlich unterschreitet. Für eine dünne Protonenschicht ist QSA der primäre Beschleunigungs-
mechanismus. Für eine Dicke Protonenschicht kann die Beschleunigung als Plasmaexpansion
beschrieben werden.

Unsere Ergebnisse zeigen, dass die Energie- und Phasenraumverteilung der Protonen stark
von der Schichtdicke abhängt. Für QSA ist das Spektrum fast monoenergetisch, dabei ist jedoch
die Maximalenergie deutlich niedriger als für die Plasmaexpansion. Für die Plasmaexpansion
erhalten wir ein exponentiell abfallendes Energiespektrum, das bei einer logarithmisch von der
Beschleunigungszeit abhängenden Maximalenergie begrenzt ist. Die Simulationsergebnisse für
diese beiden Extremfälle von Ein- und Zweitemperaturplasmas wurden mit analytischen Vor-
hersagen verglichen und zeigen gute Übereinstimmung. Für den Zwischenzustand konnte ein
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Analytischer Ausdruck in Abhängigkeit der Schichtdicke und der Elektronenparameter für die
Energieübertragung von Elektronen zu Protonen gefunden werden. Durch die Änderung der
Schichtdicke konnte ein reibungsloser Übergang zwischen den beiden Extremfällen identifiziert
werden.

Auch die transversale Komponente der Beschleunigung und damit die Divergenz des Pro-
tonenstrahls wird von der Protonenschichtdicke bestimmt. In der zweidimensionalen TNSA
Simulation wird ein Laserpuls benötigt, um die heißen Elektronen im Plasma zu erzeugen.
Die Simulationen zeigen, dass durch Wahl der richtigen Laserpulsdauer und Schichtdicke die
Divergenz der schnellsten Protonen theoretisch auf nahezu Null reduziert werden kann. Leider
kann in der Praxis die Schichtdicke nicht präzise kontrolliert werden. Verglichen mit der Zeits-
kala der Beschleunigung, ändert sich die Verteilung und Temperatur der heißen Elektronen zu
schnell.

Die Divergenz kann für dicke Schichten auch analytisch bestimmt werden. Dafür wird der
Prozess physikalisch als Plasmaexpansion modelliert. Das hierzu entwickelte Modell kann ver-
wendet werden, um den ganzen 3D-Geschwindigkeitsphasenraum der Protonen zu beschreiben.
Es erlaubt so Partikeltracking und Strahloptiksimulationen für einen realistisches TNSA Proto-
nenpaket. Der Enveloppenwinkel von Protonen aus Messungen stimmt mit unserem 2D-Modell
überein.

Der Transfer des Strahls durch magnetische Fokussierungs- und Energieselektionssyste-
me hängt empfindlich von der Anfangsverteilung der Teilchen ab. Nachdem wir unsere
analytischen- und Simulationsmodelle miteinander und mit Messungen verglichen haben, sind
wir zuversichtlich, solche Verteilungen mit hinreichender Genauigkeit liefern zu können. Die von
uns gelieferten Teilchendichten können nun zur Untersuchung des Einflusses von mitbewegten
Elektronen, der chromatischen Abberation oder des Emittanzwachstums bei der Weiterverar-
beitung des Strahls verwendet werden. So hoffen wir, dass unsere Ergebnisse zum Ziel des
LIGHT-Projekts beitragen: Neuartige Laserionenbeschleuniger an konventionelle Anlagen anzu-
koppeln.
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1 Introduction
The laser ion acceleration in the last decade has been a very intensively studied and exciting

field of research in the domain of plasma and recently accelerator physics. Due to the new
laser amplification techniques the ultra-relativistic intensities (>1018 W/cm2) became easily
reachable, which revealed interesting physics in laser-plasma interaction. Such a technique is
the chirped pulse amplification, which was already invented in 1960, and it was successfully
improved over the decades. The technique is based on amplification of a stretched pulse, which
is compressed again. The compression is done by reflecting plates with gratings, where the
long-wavelength components of the pulse travel a larger distance than the short-wavelength
components (negative dispersion). Thus a few hundred femtoseconds (or less) short and intense
laser pulse can be produced and its energy (several tens of Joule), by interacting with material,
can be partly transferred to particles (ions and electrons).

In this work we are investigating the acceleration induced by the interaction of high density
targets (metal or plastic foils) with intense laser pulse focused on a small focal spot (≈ 10µm in
diameter) on the target surface. The first experimental observation and theoretical explanation
was presented by Wilks [1] in 2001. The ions are not directly accelerated by the laser, but by
the hot electrons, which can escape the ionized target, induce a charge separation field on the
surface, which is also called Debye-sheath. This acceleration scheme is also called the Target
Normal Sheath Acceleration (TNSA), because the electric field vector is always perpendicular to
the surface. A brief picture of the physical process is illustrated in Fig. 1.1. The strong coupling
efficiency (∼ 50%) between the laser pulse and plasma was predicted earlier by simulations
[2]. The energy conversion from electrons to the high energy ions is rather small, usually 20
%, which means that the overall conversion from laser energy into the ions is topically a few
percent or less.

Another serious disadvantage of the TNSA is the large longitudinal energy spread of the ions.
The exponential energy spectrum (with a few tens of MeV cut-off), which is always observed in
experiments, is a very undesired feature, because it means that most of the energy goes to the
unwanted low-energy ions. The desired energy range can be selected by a secondary device, but
the higher it goes in energy the lower is the extracted beam current. The great advantage of the
laser acceleration is the very small transverse emittance. The accelerated ions have almost zero
transverse temperature, which makes it very unique. Although it is a very laminar beam, it has
a large global divergence with a maximum half opening angle around 20 degrees. Therefore a
focusing element behind the target is needed to make use of the energetic ions. Another positive
property is the low operation cost and the extremely short acceleration path (few micrometers).
Because of the small scale lengths it requires careful control and very precise setup.

Despite the very poor efficiency this acceleration mechanism seems to be promising key ele-
ment in various fields of research and industry. One of the most demanded application is the
medical treatment by ion cancer-therapy. Unfortunately the requirement in energy is too high,
200 MeV protons or carbons, which has not been reached so far. The top cut-off energy of ions
in TNSA is around 60 MeV and the currently existing models do not predict higher energies with
the laser parameters available at present experiments. Therefore other acceleration regimes are
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Figure 1.1: Sketch of the TNSA process.

also considered, which we discuss briefly later, but they require higher laser intensity or special
target parameters and composition. Further possible applications: pre-accelerator or ion source
for conventional accelerators (synchrotron), fast igniter for inertial fusion, short pulsed neutron
source, etc.

Most of the applications require high repetition rate and after each shot the target has to
be replaced. The latter is a mechanical problem, but the first is an issue of the laser system.
Currently the record holders are the Berkeley Lab Laser Accelerator (BELLA) with 1 Hz and the
DRACCO laser in Dresden with 10 Hz repetition rate. The pulse durations are limited to a few
tens of fs. Several acceleration mechanisms, which theoretically provide higher ion energies and
better beam qualities, require higher laser intensity, which is also difficult to produce because
of nonlinear effects, causing filament propagation in the gain medium. By going higher in the
intensity the laser prepulse becomes stronger. The consequence is that the target surface gets
ionized and the main pulse basically interacts with an expanding plasma, which makes the
physics more complicated.

Additionally to the experimental campaign there has been a large effort devoted to under-
stand the underlying physics of the laser-plasma interaction, especially in the high intensity
regime. Different scaling laws have been proposed for the hot electron temperature and for
the laser energy absorption consisting of more highly nonlinear processes, which all depend
on parameters like: laser intensity, incident angle, plasma density, pre-plasma scale length, etc.
The next step is to describe the acceleration mechanism which can be modeled correctly only
if we know the hot electron density and temperature, which are yet not exactly predictable.
Therefore in many works we find theoretical models based on a two-temperature plasma ex-
pansion, where the electrons are not produced by the laser pulse, but they are assumed to have
Maxwell-Boltzmann distribution with a given temperature. This is our approach as well, whe-
reby we study the resulting charge separation on the plasma surface and the consequent ion
acceleration using a Particle-In-Cell (PIC) code.
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1.1 PHELIX and the LIGHT project at GSI

1.1.1 Experimental campaign worldwide

Energetic proton beams with high beam quality have been observed in many high power laser
facilities worldwide. The protons can originate from the front and rear side of the target, but
the number and energy of protons accelerated at the front side is smaller [3]. In designated ex-
periments the dependence of the maximum proton energy and laser-proton energy conversion
efficiency on the laser pulse duration and intensity and on the target thickness was investiga-
ted [4, 5]. One undesired effect accompanied to the CPA is the amplified spontaneous emission
(ASE), which results in a pedestal pulse (prepulse) with ≈ ns duration. It can also influence the
acceleration, because of the induced plasma expansion on the front surface, which results in a
long preplasma before the main pulse reaches the target. The effect of the prepulse was also stu-
died experimentally [6] and it was found that the shorter prepulse is more favorable, especially
in the case of thin targets (1-10 µm). The reason is that, when the target is thin (< 1µm), the
shock-wave induced by the prepulse (with intensity ∝1015 W/cm2) reaches the back surface of
the target, which also expands. A theoretical work shows that a finite initial ion density gradient
reduces the acceleration efficiency [7]. This effect was investigated further experimentally and
the solution was found to be the enhancement of the contrast ratio (peak intensity of the main
pulse over the intensity of the prepulse) of the laser [8]. For thick targets the effect of the pre-
pulse is negligible on the rear side. The hot electrons travel through the target with a 20 degrees
opening angle and spread out on the rear surface ,therefore by increasing the target thickness
the hot electron density reduces and the ion acceleration is weaker. Thus, we can conclude that
there is an optimal target thickness for which the ion cut-off energy is maximum.

The results of the experiments were successfully interpreted using the fluid model of Mora
[9] by imposing an effective acceleration time, which was defined as 1.3 times the laser pulse
duration, and by calculating the hot electron density based on empirical laws [4]. However,
meanwhile other analytical model has been worked out in the TNSA regime, the quasi-static
acceleration, which seemed to be in better agreement with some experiments [10]. In this case
the maximum energy of the protons was related to the total energy of the laser pulse [11], which
was supported by experimental findings. For the estimation of hot electron temperature the
scaling law introduced by Wilks [2] was widely accepted among the experimentalists. Further
experiments have been carried out with the aim of clarifying the mechanism of the acceleration
by changing the rear properties of the target surface (or layer) or by probing the electric field
and particle densities dynamically.

By monitoring the plasma on the rear surface with transversally probing proton or laser beams
the time evolution of the electric field [12] and electron density [13] and the temperature [14]
could be measured. All of these results suggest that the plasma expansion model is suitable
to describe underlying mechanism. The key of decreasing the longitudinal energy spread of
the ion beam seemed to be hidden in the properties of the CH layer. Indeed, by changing the
composition and thickness [15] or the transversal extension of the layer [16] a much better
longitudinal beam quality (but lower energy) was observed in the experiments and simulations.
The study of the layer properties and its effect on the acceleration is still an ongoing work in
many facilities, including PHELIX (Petawatt High Energy Laser for heavy Ion eXperiments) at
GSI [17].

1.1 PHELIX and the LIGHT project at GSI 10



1.1.2 The LIGHT project

In 2010 an experimental project was proposed, which makes use of protons (ions) accelerated
by means of the PHELIX laser at GSI and provides transport, focusing and bunch rotation of the
laser generated particle bunches by conventional ion optics and RF technology. The experiments
are performed at the Z6 experimental area of GSI, which provides a suitable environment for
the first systematic exploration of the interface between laser acceleration (based on TNSA)
and conventional accelerator technology. In the project the capabilities of PHELIX as world-class
high power (100 TW) laser with the accelerator available at GSI are combined with the target
and plasma physics expertise at TU Darmstadt, the expertise in lasers of the Helmholtz Institute
Jena, the high field magnet technology at the HZ (Helmholtzcenter) Dresden-Rossendorf and
the accelerator expertise of the IAP Frankfurt.

This project is named as LIGHT (Laser Ion Generation, Handling and Transport) project [18]
having the aim of integration the laser ion acceleration technique into the conventional acce-
lerator environment. The goal is the collimation and transport of the TNSA-accelerated ions to
the injection area of the synchrotron. It involves the understanding of the first stages of the ion
acceleration and the consequent cooling of the co-moving electrons. The next stage is to explo-
re several critical interfaces, which are the basis of any future application: de-neutralization of
the neutralized particle bunch in a collimation magnetic field; collimation of a narrow energy
range (10± 1 MeV) accompanied with a divergence angle (up to 25 degrees) from the spectrum
of protons/ions by a pulsed solenoid as first collimator; transport through a drift or focusing
channel; RF bunch rotation to complete the de-bunching of the originally sub-ps bunches to ns;
diagnostics of the 6D phase space by means of a sub-ns streak camera and pepper-pot emittance
devices.

The key element of the proton handling is a magnetic focusing device, which can be a pul-
sed solenoid or permanent magnetic quadrupole (PMQ). Their role is the parallelization of the
divergent beam and selecting the desired energy range from the exponential energy spectrum.
The magnetic field of the collimator suppresses propagation of the neutralizing electrons due to
their sub-millimetre gyro-radius. This phenomenon may lead to modifications of the global pro-
duction phase space distribution. First studies have been undertaken by Frank Nuernberg with
the WARP-code [19]. Due to the high electron density on the solenoid axis a part of the protons
are forced to bend towards this axis, thus modifying the transversal phase space of the beam.
The initial beam parameters in the simulation were based on experimental measurements. With
analytical curves fitted to the experiments the beam divergence and energy spectrum can be
reproduced.

Due to the large energy spread, chromatic aberrations of the collimator are the most serious
limitation to the realistically “usable” fraction of the full particle spectrum. These aberrations
cause a degradation of the transverse emittance of the “usable” fraction of protons, and the
very small production emittance becomes a relatively irrelevant quantity. The studies have been
carried out using TRACE3D and the DYNAMION code, with results presented at HIAT09 [20].

Our contribution is devoted to the numerical investigation of the ion acceleration process
and to provide a realistic final phase-space distribution of protons and of the co-moving elec-
trons. The 6D beam characterization should be done at the Z6 experimental area, where using
RCF stacks the transversal divergence can be measured, and with grooved targets the micro-
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divergence becomes also accessible. Such measurement technique and experiments can be
found in the work of Frank Nuernberg [21] and M. Schollmeier [22],[23].

1.1.3 Experimental setup at PHELIX

In the frame of the LIGHT project the new 100 TW beamline of PHELIX was build, which
provides the necessary short pulse laser at the experimental area Z6 at GSI. In Fig. 1.2 we
can see the sketch of the experiment, where the protons are produced. Instead of the laser
produced proton beam the ion beam accelerated in the UNILAC can be also used for testing.
Here we meet the full conventional accelerator infrastructure and have the perfect test bed for
combining both technologies. The aim of the LIGHT project is to demonstrate injection and
bunching in conventional accelerator structures of laser accelerated ions, starting with protons.

Figure 1.2: Layout of the Z6 experimental area at the GSI.

PHELIX provides for the high-power option at Z6 up to 50 J of laser energy in 500 fs on
target, with maximum peak laser intensity IL0 ≈ 1020 W/cm2. The beam enters the target
chamber with a diameter of 120 mm and is focused down by a parabolic off-axis mirror to 7 µm
(FWHM) into the target chamber center. There it impacts on a thin (5-10 µm) gold foil and a
bunch of protons is accelerated via the TNSA mechanism. A few centimeters behind the target,
the key element for collimation and energy selection of the proton beam is placed: a pulsed
high-field solenoid, which was developed together with the necessary pulsed power supply by
our collaborators at HZDR. It has an aperture of 40 mm and can reach a maximum magnetic field
of 8.7 T. Due to the chromatic aberrations of this ion-optical lens, protons of different energies
are focused at different distances behind the solenoid. Placing a pinhole at the right position
therefore easily provides good energy selection. As proton beam diagnostic, RCF stack detectors
were used at different positions: before the solenoid to detect the initial spectrum, directly
behind the solenoid and at a position in the Z6 beam-line behind the target chamber. A full beam
analysis is possible with these detectors via RIS (Radiochromic-film Imaging Spectroscopy) [21].

A picture of the solenoid is shown in Fig. 1.3. This solenoid was produced and tested in the
high-field laboratory of the Helmholtzzentrum Dresden. Detailed CST simulation has been car-
ried out by Peter Schmidt [24], TU Darmsadt, for mapping the magnetic field structure inside
and around the solenoid and to investigate time evolution of the electric current and magnetic
field. The time duration of the driving current is about 0.7 ms. Due to the strongly time de-
pendent current and the inductance of the solenoid a phase shift can be expected between the
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current and magnetic field. According to the CST simulations the time shift between peak cur-
rent and peak magnetic field is about 0.04 ms, which is much longer than the proton beam (100
ps). In this scenario a very precise timing, with ≈ 10µs time resolution, is required in order to
apply the maximum magnetic field on the short proton bunch.

Figure 1.3: A picture of the solenoid used in the experiment. Courtesy of Simon Busold.

The Target Laboratory at the University of Darmstadt has previously provided various types
of 3D target geometries for fundamental research experiments with laser and particle beams at
high energy densities. As for experiments which investigate the feasibility of focussing the beam
with a specially shaped target, several different designs and manufacture targets have been
proposed such as hemispherical targets made from gold with different wall thicknesses, plane
targets with a cone to promote focusing or a spherical target for ion acceleration combined with
an adjacent cone. The experiments and simulations with these concave target structures have
been performed by Oliver Deppert [25, 26] from TU Darmstadt.

The measurement of beam characteristics is done by RCF (radiochromic film) stacks which is a
very useful and common technique. These dosimetry films measure the radiation dose provided
by the protons (high stopping power). After interaction with ionizing radiation the film changes
its color from nearly transparent to blue with a spatial resolution more than 104 dots per inch.
After the proton beam goes through the stack of RCF’s with a graphical deconvolution technique
[21] the energy spectrum and transversal size of the beam can be reconstructed

For the longitudinal focusing of the proton bunch an RF buncher cavity has been proposed
which is available at the GSI.

1.1.4 Experimental results, status and goals

In Fig. 1.4 we can see the typical proton energy spectrum and energy resolved envelope
opening angle of the proton beam measured at the PHELIX facility. This laser is capable of
delivering 120 J energy in a 500 fs long pulse with the maximum intensity 1020 W/cm2 at a
wavelength of 1 µm. The maximum energy reachable is about 40 MeV and the opening half
angle of the transversally cold beam can be up to 30 degrees.

The results of the PHELIX experiments have shown a successful capturing and focusing of the
accelerated protons using a pulsed solenoid [27]. The applied magnetic field strengths were 7.2
T and 8.5 T, which was able to focus 3.7-6.7 MeV protons. For the 8.5 T magnetic field protons
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Figure 1.4: Measured energy spectrum of protons (left) and the energy-dependent half opening

angle of the proton beam (right). Courtesy of Frank Nürnberg.

were collimated around 13.4 MeV energy, being in good agreement with simulations, which
show about 20 % transport efficiency.

For the proton focusing two magnetic devices can be used in the framework of the LIGHT pro-
ject at GSI. The resulting beam profiles, measured in the 2012 experiments, show a non-uniform
transversal density distribution, which was explained by the imperfections in the magnetic field
lines of the solenoid. Accurate simulations with realistic 6D initial beam distribution is required
to support this finding.

The second device is a permanent magnetic quadrupole with 85 T/m field gradient and 80
mm in length. The resulting beam profile at a given distance behind the quadrupole seemed
to be more uniform. The chromatic aberration was clearly visible from the different beam size
for different energies. With the parameters of this experiment the best focus was obtained for 5
MeV protons.

The interesting experimental results of the last 2 years show a promising progress in the
LIGHT project. Together with the target and laser beam shaping it might be possible to generate
a few tens of MeV divergence-less proton beams. The proton acceleration via TNSA could be
an excellent ion source and pre-accelerator for many conventional accelerators, replacing the
expensive and large linear accelerators.

1.1.5 Applications and perspectives for laser-ion acceleration

Because of the challenging beam characteristics (like the ultra-low emittance [28]), discus-
sions have been started about possible applications in: energy research (Fast Ignitor in the
inertial fusion energy context), injection of high peak power ion beams for basic research
facilities, medical treatment (proton and carbon therapy, transmutation of short lived radio-
isotopes for positron emission tomography (PET) in hospitals), the modification of material
parameters (starting from applications in materials science up to warm dense matter research
and laboratory astrophysics) and short pulsed neutron sources [29]. To prosper in these exciting
applications, the fusion of laser-ion-acceleration and conventional ion accelerator technology is
of main importance. The establishment of this connection is the main goal of the LIGHT project.

Laser driven ion acceleration, has been frequently discussed to be used in particle therapy be-
cause its compactness compared to conventional acceleration. The medical quality requirements
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are very strict and will prevent a medical use of laser ion acceleration in the near future. Howe-
ver, the extreme short pulse lengths of a few picoseconds of the particle beams can be used to
study the kinetics of the cellular response to exposure of ionizing radiation in a time scale that
was not accessible up to now. Such biological test-experiments have been done in 2011 using
the PHELIX laser beam [30].

The energy loss of heavy ions in plasma is one of the fields of research in the plasma physics
group at GSI [31]. To probe more homogeneous, slower expanding and denser plasmas an
indirect heating scheme has been developed, where the plasma is heated by soft x-ray radiation.
In this scheme the x-ray radiation is generated by a laser driven hohlraum. This hohlraum
radiation is used to heat a secondary hohlraum, containing a carbon foil. The carbon foil is then
heated to plasma temperature and can be investigated by ions.

As we will see in chapter 6 the reason of the divergence is the non-uniform hot electron den-
sity in the Debye-sheath. Recently became possible to create laser pulses with annular intensity
distribution, which makes possible the generation of a uniform hot electron density in a spot
comparable with the diameter of the annular laser beam. Simulations show that with this techni-
que a laminar proton beam can be accelerated without transversal divergence. The experiments
unfortunately does not show yet any improvement, mainly because of the imperfections of this
novel laser pulse shape. Developments in this directions show a promising option instead of
using magnetic focusing elements.

Recently an other acceleration mechanism has been proposed in the framework of the LIGHT
project. The Break-out afterburner (BOA) does not require extremely high laser intensities,
which are still not available, but it predicts higher energy conversion efficiency from the la-
ser pulse to the protons and better beam properties. This mechanism will be described in more
details in section 2.4.

1.2 Multi-scale feature of the whole physical problem

The simulation works included in the LIGHT project can be divided in different stages. In
order to reach the control and understand the journey of the proton beam through the different
devices and acceleration phases a chain of simulation has to be performed by passing the data or
analytical expressions from one to the other. The schematic view of the problem is presented in
Fig. 1.5, where also the required resolution of the simulations are also indicated. The connection
between the stages has to be perfect, which makes the problem challenging.

The most critical and less understood stage is the laser-plasma interaction, where the hot
electrons are generated. The consequent proton acceleration has to be covered in the same
simulation. Because of the small cold electron Debye-length, these simulations require extremely
high resolution in space and time. The acceleration process and the resulting proton beam
properties depend on various parameters: laser pulse shape, pulse duration, target thickness,
preplasma scale length and, as we point out in this work, thickness of the contamination layer.

In the next stage, practically after the end of the laser pulse, the acceleration is weak and
the electrons cool down adiabatically. Finally a neutral proton bunch is produced with frozen
velocity phase-space, drifting and expanding in the vacuum until it meets the magnetic field
of the focusing components. At this stage the beam density is so low that a much coarser grid
resolution is sufficient in the simulations and an electrostatic field solver might be enough to
simulate the particle motion. However, due to the small gyro-radius, the electron current can be
strong if the beam was not de-neutralized before.
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Figure 1.5: Diagram of the different stages of the LIGHT project.

1.3 Overview of the theoretical approaches, status of the field

In the TNSA many different ion species are accelerated, which originate from the hydrogen-
rich contamination layer at the target surface. The common aim of most of the works is to predict
or explain the maximum proton energy [10]. The protons are the lightest ions, therefore they
are accelerated first, and their number in the contamination layer is usually dominant. Thus it is
justified to study the behavior of a purely proton plasma filled with high temperature electrons.
The physical phenomenon is called plasma expansion which can be analytically studied with the
assumption of constant temperature in time, therefore the model is called isothermal plasma
expansion.

The first analytical work was presented by J. E. Crow et al. [32] already in 1975. The model
was improved and validated by a Lagrangian code in the work of P. Mora in 2003 [9], when the
high energy protons were already observed in experiment using high intensity laser. The isother-
mal model predicted a proton energy spectrum similar to the one measured in experiments and
by fitting the analytical expression to the measured data, the hot electron temperature could be
estimated if the acceleration time was known. The weakness of the model is that the tempera-
ture is kept constant, while in the reality the hot electrons cool down during the acceleration.
Therefore an effective acceleration time (t ex p

acc
) had to be introduced, which defines the duration

of the isothermal phase of the acceleration (when everything fits with the model) and what hap-
pens after is called adiabatic phase (when the acceleration is not so strong and the maximum
proton velocity converges to a finite value). If the t ex p

acc
is assumed to be equal to 1.3 times the la-

ser pulse duration, then Mora’s model is quite usable. Several other models have been proposed
to describe in one set of equations the plasma expansion including the changing temperature
[33, 34] and [35] which is the extension of [9], but no fully analytical model could be obtained.
The most detailed numerical model [36, 37] includes electron kinetic effects, reveals very accu-
rately the time evolution of the hot electron energy distribution and shows perfect agreement
with PIC simulations.
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In order to describe the realistic situation we have to include, as a first step, the cold elec-
trons as well in the plasma, because not all of the target electrons are heated up by the laser.
Thus we have to deal with a two-temperature plasma, which is even more complicated and the
analytical treatment becomes almost impossible. However, our simulations show that there is
no big difference between the one- and two-temperature plasma expansion, the proton velocity
phase-space and density is always defined by the hot electron parameters. The effect of the cold
electrons is restricted to the plasma surface, where a singularity occures in the potential-profile
for high temperature ratios [38]: Th/Tc ≫ 10, where the c and h subscripts correspond to cold
and hot respectively. It is also called rarefaction shock which leads to a modified density and
energy distribution of ions in the low energy range. The properties of the two-temperature plas-
ma expansion have been studied in great details [39, 40, 41] and we studied as well, up to some
extents, with the means of a PIC plasma simulation code, which we present later.

In [39, 42, 43] the authors, using a Vlasov code, show that if we include also heavier ions
in the plasma, mixed uniformly with the protons, in the proton energy spectrum a significantly
high and narrow peak appears, which is a very interesting and important feature. If the protons
around this peak could be selected, a mono-energetic beam with high current could be produ-
ced. Unfortunately there are two conditions: constant electron temperature and the heavy ion
density must be higher than the proton density. We believe that the target in the reality has a
layered structure (which was also considered in [42, 43]), the heavy ions of the metal are se-
parated from the hydrogen-dominated contamination layer. Recent works in this direction have
been done by Albright [44] and Brantov [45] where a semi-analytical model describes the mo-
dification of the potential profile due to the accelerated proton layer and the energy distribution
is evaluated numerically. The assumptions taken and the regimes covered in these works we
discuss later together with our results including the charge separation effects.

Another acceleration mechanism, which has not been mentioned so far, is the quasi-static ac-
celeration (QSA) [46, 11, 47]. In this model the layer is assumed to be very thin, such that the
number of protons is much smaller the number of hot electrons in the Debye-sheath. In this case
the protons are accelerated as test particles in the almost unaffected electron cloud, that is why
it is called quasi-static acceleration. This model predicts much smaller energy spread, but also
lower maximum energy. If we solve the Poisson equation for electrons with Boltzmann distri-
bution, then we get an infinitely long logarithmic potential profile [48] outside of the plasma,
which leads to infinitely high proton energies. This is not what we expect, therefore the end of
the electron cloud has been defined based on energy conservation[47, 11, 49]. The minimum
potential (maximum kinetic energy of protons) is defined by the maximum electron energy in
the plasma. In the model of Schreiber [50] the derivation is done in cylindrical geometry and
the maximum ion energy is related directly to the laser pulse parameters.

As we can see many ideas and theories have shown up in the last decade and these are on-
ly one-dimensional aspects. In higher dimensions almost exclusively simulation tools has to be
used to model and understand the ion acceleration induced by laser pulse. Most powerful and
compact tool, but time consuming at the same time, is the PIC plasma simulation code, which
usually requires high computational power. In the literature we can find 2D PIC simulation stu-
dies [51, 52, 53], which report some scaling laws on the maximum proton energy depending on
the laser and target parameters (laser intensity, pulse duration, target thickness, etc.). In all ca-
ses a proton plasma is considered, because for this ion the acceleration time scale is the shortest
(highest plasma frequency), thus the number of time steps in the simulations is rather small.
The most recent simulation work deals with the optimization of laser and target parameter
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in order to maximize the proton energy and beam current considering CH (carbon-hydrogen)
target [54].

The important conclusion of the TNSA simulations is that two different regimes could be
identified. The first is the gradient-dominated (quasi-neutral) regime, where the density scale
length (Ln = −n(dn/d x)−1) of the expanding plasma is larger than the hot electron Debye
length. It is the case for thin targets, where the hot electron density, due to the recirculation [55],
is high and the Debye-length (λD = (ε0Th/(q

2
e
nh0))

1/2, where nh0 is the hot electron density) is
small. In the case of thick targets the laser pulse intensity (hot electron temperature) must be not
too high in this regime. The electric field scales as E = Th/(qe Ln), like in the isothermal plasma
expansion. The second regime is called Debye-length-dominated (non-neutral) regime, because
the Ln is very small, therefore it happens for short laser pulses and thick targets, when the
plasma does not have time to expand and the hot electron density is small (λD is large). In this
case the electric field is proportional to the square root of the hot electron pressure, ∝

p

nhTh,
therefore the maximum ion energy scales differently with the pulse and target parameters, as it
was also observed in experiments [53].

1.4 Thesis structure

The theoretical introduction of the laser-plasma interaction is presented in chapter 2, where
we describe what is the ponderomotive force (section 2.1), what overdense plasma means (sec-
tion 2.2) and the main mechanism of the electron heating (section 2.3). The ion acceleration
mechanisms induced by the laser pulse are discussed in section 2.4.

Because it is a more numerical than analytical work, we introduce the PIC simulation con-
cepts in chapter 3, where we present the code in general (section 3.1) and discuss its weakness
(section 3.2). Our simulation tool is the VORPAL [56] plasma simulation code, which has some
useful features implemented and it is capable of performing fast and reliable simulations. Its
performance and stability is discussed in sections 3.4 and 3.5.

In the following three chapters we present our 1D and 2D simulation results. In chapter 4
simulation of the high intensity laser pulse interacting with a proton plasma is discussed and
compared to the predictions of the isothermal plasma expansion model (section 4.2). We inves-
tigate in great details the proton velocity phase-space and the electron cooling during and after
acceleration. The difficulties of analyzing the simulation data and comparing it to the idealized
analytical model is discussed in section 4.3. A useful alternative to study TNSA is the plasma
expansion simulation, where we do not use the laser pulse to generate the hot electrons, but
load them into the simulation box according to a well-known density distribution with a fixed
initial temperature. This trick simplifies the problem, excludes the stochastic non-equilibrium
behavior of the laser-produced hot electrons and gives the same physics what we see by using
the laser pulse. This kind of simulations are presented and analyzed in chapter 5, where we
describe the double layer structure of the plasma (section 5.1). The consequences of changing
the proton layer thickness are investigated in the following sections, where we point out that
the plasma expansion and QSA are only two extreme cases of the TNSA (section 5.3). Finally we
propose a simple analytical expression for the energy conversion from hot electrons to protons
in section 5.6 and check its applicability in TNSA using laser pulse in section 5.8.

In chapter 6 basically we do in 2D the same study as we did in 1D, but in less details. In 2D
we have to use a laser pulse in order to maintain the constant source of hot electrons, which
quickly spread out in the transverse dimension. We focus on the divergence of the accelerated
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beam and discuss its dependence on the layer thickness in section 6.1. We pick the two extreme
cases, which are in 1D well-understood, and give analytical expressions of the energy dependent
divergence in the thick layer regime in sections 6.2. In section 6.4 we present the reduced energy
conversion, which would be even smaller in 3D. Using our 2D model it is possible to build an
analytical description of the 3D proton velocity phase-space and density distribution, which
is presented in section 6.5. Finally the model is applied to real experimental data showing a
good agreement with the observed divergence of the protons. The conclusions and remarks are
summarized in chapter 7.
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2 Laser-plasma interaction
In this chapter we briefly discuss the main effects which occur in the relativistic laser-plasma

interaction. The main source is the book of P. Gibbon [57], which gives a very good introduction
into the short pulse laser interaction with atter. Further theoretical description of the physics
can be found in the book of P. Mulser [58], which covers more quantum-mechanical and re-
lativistic effects. We consider only the overdense plasma case and concentrate mainly on the
electron heating via different mechanisms. The laser pulse is always linearly polarized, also in
our simulations, and the incidence angle is 90 degrees.

2.1 Motion of electrons in a laser wave

First let us define the parameter which tells us how relativistic is a laser pulse. When we
consider a single electron, moving freely in the fields of the laser pulse, there are two forces
acting on it: a transversal force in the direction of the electric field, Fe = qeEL sin(ωL t), there-
fore the electron will acquire a velocity v⊥ = −qeEL/(meωL) cos(ωL t), where EL is the electric
field amplitude, ωL is the laser frequency, me is the electron mass and qe is the elementary
charge. In the longitudinal direction due to the magnetic field the electron experiences the
force: Fm = qev⊥BL sin(ωL t), where BL is the magnetic field component. The laser pulse is cal-
led relativistic when the longitudinal force exceeds the transversal one, therefore a normalized
parameter can be introduced:

aL =
Fm

Fe

=
qeEL

mecωL

, (2.1)

where we used the relation BL = EL/c, c is the speed of light. This quantity is also called
the normalized electric field amplitude and it is equal to the relativistic gamma factor of the
transversal motion. The laser intensity is given by IL0 = ε0cE2

L
/2, therefore aL can be expressed

in terms of laser intensity:

a2
L
=

IL[W/cm2]λ2
L
[µm2]

1.37 · 1018
(2.2)

Let us take a closer look at the Lorentz force acting longitudinally on the electrons. For con-
stant field amplitudes the time average of this force is zero. If the laser pulse amplitude is
not uniform, but has, for instance, a Gaussian envelope shape, then the magnetic field can be
expressed according to the Maxwell-Faraday law:

BL =
1

ωL

dEL

d x
cos(ωL t) (2.3)

Now if we calculate again the Lorentz force pointing in the longitudinal direction, we obtain :
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Fm = −
q2

e

4meω
2
L

dE2
L

d x
(1+ cos(2ωL t)) (2.4)

Two important things can be observed in this expression. First we see that the force is propor-
tional to the energy gradient in the pulse (square of the electric field). Secondly, this force has an
oscillating component which has a frequency twice the laser frequency. It means that twice per
every cycle electrons are accelerated at the plasma surface, where the laser gets reflected. This
heating mechanism we discuss later in more details. The time-independent part of the force is
also called ponderomotive pressure, which is the highest pressure ever produced in laboratory.

2.2 Interaction of intense laser with matter

When a laser pulse reaches a plasma it can penetrate and propagate through the plasma, if
the density is low. In this regime with relativistic and short laser pulse the so-called wake-field
acceleration can be induced, which is a different type of laser acceleration, where the accelerated
particles are electrons. If the plasma is dense such that the electron plasma frequency (ωpe) is
higher than the laser frequency, then the electromagnetic wave can not penetrate the plasma
and a part of it gets reflected, another part is absorbed and some part can tunnel further into
the plasma in the form of higher harmonics. The condition of reflection can be easily obtained
by analyzing the dispersion relation of the relativistic light wave:

ω2
L
= k2

L
c2+ω2

pe
, (2.5)

where ωpe = (neq
2
e
/(meγ̄ε0))

1/2 and γ̄ =
Æ

1+ a2
L/2 is the cycle average gamma factor, which

is an important quantity in the hot electron temperature scaling. In this equation it is clear that
for ωpe >ωL the wave number becomes imaginary, which is unphysical. Now we can write the
expression for the critical density which is the border between the overdense and underdense
plasmas:

ncr =
ε0meγ̄ω

2
L

q2
e

. (2.6)

Usually in a TNSA experiment both regimes are present, because of the long preplasma on
the target front surface. The laser pulse propagates in the exponential density profile of the
expanded plasma until it reaches the point where the electron density is equal to ncr. The target
can become transparent for the laser, if its intensity is high enough. The reason is that in Eq.
(2.6) if the gamma factor is large and most of the electrons are already heated (long pulse is
required), then the critical density can be higher than the density of the target, thus allowing the
laser pulse to go through. The laser wavelength is always more or less the same, λL ≈ 0.8µm.
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2.3 Hot electron generation in overdense plasma

Although we mentioned that the only considered case in our simulations is the perpendicular
incidence, but for completeness we describe some mechanisms which depend on the incidence
angle. In a simple picture the collisionless laser energy absorption can have four different scena-
rios as it is described in the book of Gibbon [57]. There is a fifth case which is the most relevant
for the perpendicular incidence and high intensities, which is the j×B heating.

The first mechanism is the resonance absorption, which was already theoretically described in
the 60’s. In this case the plasma scale length (Ln) is much longer than the laser wavelength. The
p-polarized light (the electric field component, the incident and reflected wave vectors are in the
same plane) propagates until the critical surface (ne = ncr) where it drives up a plasma wave,
which grows over a few periods, then gets dumped due to wave breaking. Here the electrons
gain energy from the electric field not from the ponderomotive force. Another mechanism is the
vacuum heating (Brunel mechanism) [59, 60], which happens for steep density profiles. In this
case the electrons are dragged out from the plasma by the electric field and half of a period
later they are accelerated back into the plasma, where the laser field can penetrate only to the
skin depth ls ≈ c/ωp, where ωp = (neq

2
e
/meε0)

1/2 is the electron plasma frequency, therefore
the laser field can not act on the electron any more. The optimum angle of this absorption
predicted by Brunel was around 73 degrees, when all of the laser energy is absorbed. However,
the simulations have shown lower efficiency, because the effect of the magnetic fields were not
included in the model.

The other two mechansim are closely related to the vacuum heating, both manifest themselves
in a tiny layer near the plasma surface. When the mean thermal excursion length of the electrons
is larger than the skin layer (vte/ωL ≫ ls) we talk about anomalous skin effect. In this case the
electron temperature is so high that the electric field can not pull it out from the plasma, but
it will act on an enlarged skin depth, thus the absortion is increased. The opposite limit of this
mechanism (vte/ωL ≪ ls) is called sheath inverse-bremsstrahlung (SIB). The electrons receive
several kicks from the laser field as they are passing the skin layer.

In experiments, due to the prepulse, the latter two mechanisms are irrelevant. For the hea-
ting the ponderomotive force is responsible, when the laser is ultra-relativistic and is s shooted
perpendicularly to the plasma. With different angle of incidence the resonance absorption can
increase the electron heating efficiency, but the significant part is pushed by the ponderomoti-
ve force. In this regime the electron heating is a stochastic process [61], it is the result of the
interplay between the oscillating ponderomotive pressure and the induced charge-separation
field around the critical surface. The highly non-linear physics of the interaction can be studied
in great details by using a PIC simulation code. Wilks used ZOHAR [2] in order to support his
theoretical scaling law of the hot electron temperature and to reveal 2D effects, like bubble for-
mation (in the presence of under-dense preplasma) and hole boring, which can be the reason,
together with the induced magnetic fields, of the divergent hot electron current through the
target. In his simple model the electrons gain energy from the ponderomotive potential and the
temperature scales as:

Th = mec
2(
q

1+ a2
L − 1) (2.7)

This scaling found to be not accurate for higher intensities (aL > 10), it overestimated the
temperature. Later Beg [62] proposed a different scaling law based on experimental measure-
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ments. This empirical law was confirmed by a relativistic theoretical model [63], which gave
very similar results with only 10 % discrepancy. The original Beg’s scaling reads: Th(keV) =

215(I18λ
2
µm
)1/3, while the theory predicted Th = [(1 +

p
2aL)

1/2 − 1]mec
2. The much lower

electron energies than the ponderomotive scaling was also observed in simulations [64]. The
newest theoretical model, based on a kinetic approach, shows very good agreement with simu-
lations and experiments over the whole intensity range [65]. However more simulations and
experiments are needed to check its reliability and dependence on the incident angle.

The hot electron temperature is often defined as the average energy of the electrons with the
energy higher than a certain threshold, which divides the electrons in hot and cold populations,
or it is obtained by fitting the energy spectrum with an exponential function. Unfortunately
this single number does not tell us anything about the energy and density distribution of the
hot electrons, which are important if we want to know the energy flux or energy and angular
spread. A detailed simulation work has been done by Sherlock [66], who found the hot electron
energy distribution function by fitting to the simulation results:

f (W,θ) = C exp

�

−
�

W −Wav

∆W

�2
�

exp

�

−
�

θ

θ1/2

�4
�

(2.8)

where C is a normalization coefficient, Wav
is the average energy, ∆W ≈ 0.57Wav

is the
energy spread and θ1/2 ≈ 25◦ is the half opening angle. The given function fits very well to the
simulation results in the intensity range 1019-2·1020 W cm−2.

2.4 Ion acceleration mechanisms

In this section we present the main acceleration regimes of the TNSA mechanism. As we
discussed earlier the acceleration is triggered by charge separation fields induced by the laser-
produced hot electrons at the target rear surface, where they can escape from the neutral ionized
solid target, which is considered as a thermal plasma. The analytical derivations can be found
in the corresponding articles, here only the main steps and results are presented. The figures
present results from 1D electrostatic PIC simulations. In these simulations only a thermal plasma
is used, without heating it with a laser pulse. We are interested in the charge separation effects
around the plasma surface and in the consequent ion acceleration in the electric field of the hot
electron-sheath.

2.4.1 Quasi-static acceleration regime of TNSA

In the first approximation we can consider the ions to be immobile. Thus we can obtain the
equilibrium density distribution of electrons by solving the Poisson equation inside and outside
of the plasma. Assuming thermal equilibrium everywhere the Poisson equation in 1D geometry
can be written in the following form:

∂ 2
Φ

∂ x2
=

qe

ε0

�

nh0 exp(qeΦ/Th) + nc0 exp(qeΦ/Tc)− n0

�

(2.9)

where nc0, Tc are the cold electron density and temperature. Here we do not consider the
proton layer yet, the neutralizing background is made of immobile singly ionized ions.
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The detailed derivation of the solution can be found in [48], here we highlight the results
important for us. These are the potential profiles inside (x < 0) and outside (x ≥ 0) of the
plasma:

ϕout(x) = ϕ0 − 2 ln(1+
x

λD

p

2exp(−ϕ0)
) (2.10)

ϕin(x)≈ ϕ0 exp(r x/λD) (2.11)

where r =
p

1+ (nc0/nh0)(Th/Tc), the potential is normalized to Th/qe and at the plasma
surface (ϕ0 = ϕ(x = 0)) it has the following value [48]:

ϕ0 = −
1+ (nc0/nh0)(Tc/Th)

1+ nc0/nh0

(2.12)

The corresponding electric field, which is equal to the starting peak electric field in the plasma
expansion for t = 0, is the derivative of the potentials with negative sign:

Eout(x) = 2E0/(
Æ

2exp(−ϕ0) +
x

λD

) (2.13)

where E0 =
p

nh0Th/ε0 and

Ein(x) =
Æ

2exp(ϕ0)E0 exp(α r x/λD) (2.14)

where α must be calculated numerically from the neutrality condition (the total charge is zero
in the system) using the density profiles. The protons placed in a layer thinner than the skin
depth (penetration depth) of the electric field will be accelerated as test particles. Their charge
is so small that they do not modify significantly the electron cloud, therefore this acceleration is
called quasi-static acceleration. The scale length of the penetration of the electric field into the
plasma is ≈ r x/λD, which is equal to the cold electron Debye-length λDc = (ε0Tc/(q

2
e
n0))

1/2,
for r ≫ 1.

Assuming the Boltzmann distribution for the electrons we can calculate their density profiles.
These expressions will be used as initial density distributions in the plasma expansion simula-
tions. The Eq. (2.11) is not an exact solution, therefore we have to use the α correction factor
in our simulations. The value of the potential at the plasma surface depends on the hot and
cold electron parameters, it is ϕ0 = −1 when the cold electron density is zero (one-temperature
plasma) and ϕ0 ≈ 0 when the cold electron population is dominant. Usually the latter is the
case in the interaction of laser with overdense plasma.

It is necessary to obtain an initial thermal equilibrium for the electrons, which would be
achieved only after many plasma oscillations, if we used a step-like density profile. Outside
of the plasma, x > 0, only hot electrons are present, therefore, using the relation nh(x) =

nh0 exp(ϕ(x)), their density profile is:

nh(x) = nh0

2

(
p

2exp(−ϕ0) + x/λD)
2

(2.15)
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The extension of the Debye-sheath depends on the maximum electron energy (εmax). The
correct shape of the potential far from the target can not be calculated analytically [46]. In our
simulations we take Eq. (2.15), which holds close to the surface, and we define the end of the
electron cloud as the point where the potential is equal to εmax :

Le = λD

Æ

2exp(−ϕ0)

�

exp

�

ϕ0 + εmax

2

�

− 1

�

(2.16)

For εmax we choose 7.5Th, which is close to the prediction of scaling laws used in Ref. [11]
if we use the laser parameters of PHELIX at GSI: ≈500 fs laser pulse duration and 1019-1020

W/cm2 peak intensity. For this value of εmax the hot electron energy spectrum can be resolved
with the number of macroparticles used in our simulations.
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Figure 2.1: Left: The electron density profiles around the plasma surface atωpeht=143. The point

x = 0 corresponds to the initial plasma surface. The full lines show the density of

hot (black) and cold (blue) electrons from simulation, while the dashed blue line

represents Eq. (2.18) and the dashed black line is Eqs. (2.15, 2.19). The dashed red

line indicates the initial hot electron density, nh0. The initial electron parameters:

nc0/nh0 = 5, Tc/Th = 0.05. Right: The potential from simulation (blue dashed line)

compared with Eq. (2.10) (black) and with the numerical solution of Eq. (4) from [46]

(red). The horizontal dashed line represents the value of εmax .
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Figure 2.2: Charge separation field at the plasma surface in 1T (left) and 2T plasma ( right) with

nc/nh=3 and Tc/Th=0.05. The black lines are simulation results and the green repre-

sent the analytical formulas.
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Inside of the plasma, x < 0, in the one-temperature (1T) case the hot electron density is
described using Eq. (2.11) with ϕ0 = −1 and r = 1:

nh1T(x) = nh0 exp(−exp(α x/λD)) (2.17)

In the two-temperature (2T) plasma the cold electrons dominate inside of the plasma, therefore
for their density we use again Eq. (2.11), but they are also in equilibrium with the potential
nc(x) = nc0 exp(ϕ(x)Th/Tc), which gives:

nc(x) = nc0 exp(ϕ0

Th

Tc

exp(α r x/λD)) (2.18)

In the 1T plasma α = 0.95, but in the 2T plasma this correction factor depends on the electron
pressure ratio and in our simulations it varies between 0.7-0.9. The hot electrons are in pressure-
equilibrium with the cold electrons, therefore for their density distribution we use a similar
exponential function, obeying the correct boundary condition at x=0 for the electric field:

nh2T(x) = nh0 exp(
ϕ0

r
exp(

r

ϕ0

Æ

2exp(ϕ0)x/λD)) (2.19)

In order to confirm the validity of these expressions we performed an electrostatic simulati-
on with 2T plasma starting with step-like density profiles. The resulting hot and cold electron
density after thermalization is shown in Fig. 2.1, left plot, and compared with the analytical
expressions with α = 0.86. The time is normalized to ωpeh = (nh0q2

e
/meε0)

1/2. A small dis-
crepancy appears in the cold electron density close to the surface due to the strong plasma
oscillations. During the relaxation the cold electrons get heated and can escape from the plas-
ma. Another small effect is that inside of the plasma the hot electron density will be lower than
its initial value, because a part of them escapes from the plasma, while the cold electrons are
slightly compressed. This effect is very small for Lp ≫ λD, therefore we neglect it in the ana-
lytical description. For large r (small ϕ0) values instead of Eq. (2.19) we can simply take a
constant value, nh0. In Fig. 2.1, right plot, the potential profile is shown outside of the target
and compared to the numerical solution of Eq. (4) from [46]. As we can see the electron cloud
does not fit with Eq. (2.10) far from the target, but it is very close to the numerical result.

In this way we can simulate a correct charge separation at a plasma surface including one-
or two-temperature electrons, which are in thermal equilibrium. The resulting electric field
from the simulation, where the electron density distribution is initialized with the analytical
expressions, is shown in Fig. 2.2 and compared to the analytical predictions.

The analytical expression for the potential outside the plasma (Eq. 2.10) for x →∞ does not
converge to a finite value, but it increases logarithmically. This is of course unrealistic, because
the protons do not gain infinite kinetic energy during the acceleration. The Poisson equation
has to be modified such that it includes only the hot electrons with negative total energy, which
means that the electrons with kinetic energy larger than the local potential leave the plasma and
only the trapped electrons contribute to the electric potential. With this correction the Poisson
equation for x > 0 has the form [46]:

∂ 2
Φ

∂ x2
=

qe

ε0

nh0 exp(qeΦ/Th)Er f (
Æ

qeΦ/Th) (2.20)
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Figure 2.3: Charge separation fields at the plasma surface for : np = 5n0 (black), np = n0

(red), np = n0/5 (blue) and np = n0/15 (green). In this simulation nc0/nh0 = 5

and Th/Tc = 20. The vertical dashed lines indicate the borders of the layer with

d = 5λDc.

where Er f (z) = 2/
p
π
∫ z

0
exp(−ϕ2)dϕ is the error function. This function basically equivalent

to the integral of the Maxwellian energy distribution from zero up to the local potential value.
By solving numerically this equation and applying the boundary values ϕ(0) = ϕ0 and ϕ(∞) =
εmax − 1 we obtain the red dashed line in Fig. 2.1. The maximum energy of the protons at the
end of the Debye-sheath will be Wmax ,QSA ≈ εmax − 1, if εmax ≫ 1 [46], which is confirmed in
section 5.3.

Now we can include a proton layer with density np and study its effect on the initial electric
field profile. Depending on the layer density we can have four situations: np > n0, np = n0,
nh0 < np < n0 and np < nh0. The fourth case is a special case and it is described in [45].
Inside of the plasma the electric field can have different shapes, but it does not influence the
acceleration as far as d ≫ δE, where δE ≈ 5λDc. In the target in the calculation of λDc we
always take the value of the cold electron density in the layer. If d ≈ δE and np > n0, then the
cold electrons are swept out from the layer, where a large positive charge is left behind.

The four initial electric field configurations are shown in Fig. 2.3. In the case of the black
line the peak electric field is higher, because the cold electron density inside the layer is very
high and E(0)/E0 >

p

2exp(ϕ0) [48] if nc0/nh0 > Th/Tc. In these simulations we started with
step-like density profiles and waited for several hundred ω−1

peh
, just like in Fig. 2.1. The protons

were also immobile.

2.4.2 Plasma expansion regime of TNSA

The ions are not considered immobile, we are interested in the dynamics of the acceleration
process and in the time evolution of the density and energy distribution of the protons. The
experimental results, like the energy spectrum in Fig. 1.4, seemed to be consistent with an
analytical model, called isothermal plasma expansion model [9], as we discussed in sections 1.3
and 1.1. Theory of plasma expansion is quite simple in the isothermal approximation, when the
electron temperature is constant in time and space and only hot electrons are assumed to be in
the plasma. The electrons can be described as an ideal gas and the ion motion is govern by the
fluid equations, which have the form:
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∂

∂ t
+ vp

∂

∂ x

�

np = −np

∂ vp

∂ x
(2.21)

�

∂

∂ t
+ vp

∂

∂ x

�

vp = −
qe

mp

∂ Φ

∂ x
(2.22)

where the subscript p means protons. The electric field can be calculated from the electron
pressure:

E = −(∂ Pe/∂ x)/(qene) (2.23)

By taking Pe = neTh and ne = np (quasi-neutrality) we obtain the analytical solution for density
and velocity profiles of protons:

np = n0 exp(−1− x/(Cs t)) (2.24)

vp = Cs + x/t (2.25)

where Cs =
Æ

Th/mp is the proton acoustic speed, which is equal to the speed of the rarefaction
wave [35]. This wave separates the unperturbed plasma from the downstream expanding plas-
ma. This is illustrated in Fig. 2.4, where the density profiles are shown for two time moments in
one- and two-temperature plasma. The starting position of the dashed lines is always at −Cs t ,
which is the position of the rarefaction wave in the one-temperature plasma. In the 1T case it
needs 20/ωpi time to reach the end of the plasma, whereωpi = Cs/λD, because the total length
of the plasma is Lp = 20λD. In the 2T plasma this wave is slower and the density profile is also
different because of the cold electrons, but the density scale length evolves in the same way as
in the 1T case.

We can easily obtain the self-similar electric field using Eq. (2.24) and Eq. (2.23), which gives
Ess = Th/(Cs t) = E0/(ωpi t). This electric field is correct inside of the expanding proton plasma,
where the neutrality assumption is relevant. At the proton front the neutrality condition is not
fulfilled, there is always a charge separation present.

In order to obtain the peak electric field at the proton front, we investigate the proton front
velocity. This can be calculated, as it is suggested in [9], by knowing that at the proton front the
local electron Debye-length, λD exp[(1+ x/Cs t)/2] is equal to the proton density scale length,
Cs t . From this equation we obtain that vp, f ront = 2Cs ln(ωpi t), which implies that the peak
electric field is twice the self-similar electric field, E f = 2E0/(ωpi t).

A more precise expression, validated by a hydro code, is given in [9], where Eout(x = 0) =

E0

p

2/exp(1) but only for a 1T plasma. In the 2T case the initial peak electric field is Eout(x =

0) = E0

p

2/exp(−ϕ0), see Eq. 2.13. The time evolution of the peak electric field is shown in
Fig. 2.5, where nc0/nh0 = 5.25 and Th/Tc = 20 in the 2T case. The full lines show the modified
expression given by Mora [9], which we write as:

E f =
2E0

(2exp(−ϕ0) +ω
2
pi

t2)1/2
(2.26)
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Figure 2.4: The density profiles of protons (full black line) and hot electrons (dotted blue line)

at ωpi t = 6 (left) and ωpi t = 12 (right) in one- (upper row) and two-temperature

plasma (lower row). The hot electron density and temperature is the same in both

simulations. The dashed lines represent Eq. (2.24).

which is valid at any time. For t = 0 it gives the peak electric field in a charge separation
only with hot electrons [32, 48]. The lower values measured in the simulations is attributed to
the electron cooling, which is not included in the model. By knowing the time dependent peak
electric field, the proton front velocity can be easily calculated, which has the form:

v f = 2Cs ln

 

τ
p

2e−ϕ0
+

√

√ τ2

2e−ϕ0
+ 1

!

(2.27)

where τ = ωpi t . Using this formula the time dependency of many other quantities can be
obtained, which we can find in [9]. The most important is the expression for the proton energy
spectrum:

dN

dW
=

nh0Cs t
p

2W Th

exp(−
Æ

2W/Th) (2.28)

where W is the kinetic energy of the protons and their density is equal to the density of hot
electrons.

Assuming non-relativistic motion the cut-off energy of the distribution (maximum energy) can
be easily deduced from Eq. (2.27):

Wmax = 2Th[ln(2
τ

p
2e−ϕ0

)]2. (2.29)
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Figure 2.5: The peak electric field is shown with dots in 1T (red) and 2T (blue) plasma. The full

lines are given by Eq. 2.26.

The energy spectrum measured in experiments were very similar to Eq. (2.28) and the maxi-
mum energy estimations using Eq. (2.29) were also in good agreement with the measurements
if the acceleration time was chosen correctly. Unfortunately this time is not known exactly, a
good choice seemed to be the 1.3 times the laser pulse duration.

In the reality the plasma expansion is more adiabatic than isothermal, because there is no
infinite source of hot electrons, especially after the laser pulse. The adiabatic plasma expansion
is not treatable fully analytically [34, 33], mainly because the adiabatic constant is not known
for a Maxwellian momentum distribution. Recently the adiabatic constant equal to 3.0 has been
found, for which an analytical solution can be derived from the hydrodynamic approach [67].
However in this case a step-like (water-bag) energy distribution of the electrons is a require-
ment. A scaling law was given for the hot electron cooling in the case of a finite thermal plasma
in [35], where the author also gives the time duration of the isothermal phase of the expansion,
when the hot electron temperature is nearly constant, therefore the isothermal model holds.
This acceleration time is approximately the time needed for the rarefaction wave to reach the
end of the plasma: tacc ≈ Lp/Cs.

The electron cooling in the adiabatic phase can be estimated by using energy conservation
principles. The change in the thermal energy of the hot electrons is equal to the work done by
the electric field on the electron fluid. This can be written in a mathematical form [35]:

1

2
Ne

dTh

d t
= −

∫ ∞

−∞
Thn0

∂ ve

∂ x
d x (2.30)

where Ne is the total number of electrons and ve is the electron velocity. The electrons are co-
moving with the protons, therefore we can use Eq. (2.25) to evaluate the right hand side, which
will result in NeTh/t . Solving this simple differential equation the cooling rate is immediately
given:

Th(t)∝ t−2 (2.31)
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Figure 2.6: The global hot electron temperature in 1T (black) and 2T (blue) plasma from the

simulations presented in Fig. 2.4. The dashed line is described in the text.

This expression is compared to the simulation results in Fig. 2.6, where the dashed line is Eq.
(2.31), shifted with Lp/Cs along the horizontal axis and the initial temperature is set to Th0/3,
because some cooling happens also in the isothermal phase. The picture clearly shows that the
significant cooling starts after ωpi t = 20, which is the traveling time of the rarefaction wave
through the plasma and it is the same in 1T and 2T cases.

Starting from the Eqs. (2.21,2.22) we could derive the proton velocity and density as functions
of space and time by assuming that the temperature is constant in space and time. With these
conditions the self-similar electric field can be easily obtained from the electron pressure. Let us
assume that the temperature is not constant in space and we do not know anything about the
electric field. Using Eq. (2.23) we can express the electron density as:

ne =
1

qe

∂ Pe

∂ Φ
(2.32)

After some mathematical manipulation of Eqs.(2.21,2.22) we can arrive to the equation [38]:

dΦ

dξ

�

qe

mp

+ Cs

∂ Cs

∂ Φ

�

+ Cs = 0 (2.33)

where Cs = (1/mp)(∂ Pe/∂ ne), a different definition of the proton acoustic speed, and ξ= x/t
is the similarity parameter. In the parentheses there is basically the total energy (kinetic and
potential) change over the change in the potential. Obviously it must be positive, which is the
case in the one-temperature plasma. If this ratio is negative then Eq. (2.33) gives multiple valued
solutions for the potential, which is unphysical. The condition for such a situation is:

∂ C2
s

∂ Φ
+ 2≤ 0 (2.34)

In a two-temperature plasma the electron density can be written as in Eq. (2.9), which leads
to the acoustic speed:
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Cs2 =

�

1

mp

nc + nh

nh/Th + nc/Tc

�1/2

(2.35)

After plugging this expression into Eq. (2.34) and evaluating the derivatives we find that for
Th/Tc ≥ 5+

p
24 the inequality becomes true. In this case the potential has a singularity, which

triggers the formation of a rarefaction shock. The velocity of this shock is approximately Cs2, the
so-called effective sound speed [68], which can be written as Cs2 = aCs, where

a =

p

1+ nc0/nh0

r
(2.36)

and r is defined in Eq. (2.11). In the case nh/nc = 0 and Th/Tc ≫ 1, a =
p

Tc/Th ≪ 1 [41].
The numerical solution of Eq. (2.33) is shown in Fig. 2.7 for different hot and cold electron
parameters. The physically correct potential-profile can be obtained from the Hugoniot curve
together with the mass-, energy- and momentum-conservation equations [38, 40]. The sharp
potential-drop means a very localized and strong acceleration of the protons, which results in a
significant peak in the energy distribution, but only in the low energy part [40], around W ≈ Th.

As we can see in the 2T plasma the rarefaction wave is slower and the initial electric field is
stronger. These effects are confirmed and their consequences are presented in chapter 5.

2.4.3 Other acceleration mechanisms

Beside the TNSA, which we address in our work, there are several other mechanisms which
lead to ion acceleration mostly at the front side of the target. These schemes predict small
longitudinal energy spread and higher energy, but the transversal properties are questionable
due to different instabilities which may occur. Let us first see what happens at the target front
side for moderate laser intensities. As the linearly polarized light pushes the electrons at the
front the ions are also pushed by the strong charge separation field; this process is known as hole
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boring [2]. The velocity of the moving ion front can be estimated by applying the conservation
of momentum and mass, which gives:

u

c
=

�

nc

2npe

Zme

M

Iλ2
L

1.37 · 1018

�1/2

(2.37)

where npe is the electron density at the pushing surface, M is the ion mass and Z is the charge
state.

If the target is thick the hot electrons can not turn back from the rear surface in time to
partially neutralize the positive charge, where the electrons are swept out by the light pressure.
In this case small Coulomb-explosion can happen, which result in short, energetic ion bunches
which gain additional velocity from the explosion [69]:

usw

c
=

√

√ 2Φp

Mc2
(2.38)

where Φp = mc2(
Æ

1+ a2
L/2−1) is the ponderomotive potential. Finally the maximum velocity

of the ions vmax = u + 1.5usw, which is in agreement with the simulations [69]. For higher
intensities (≈ 1021 W/cm2) the hole boring process becomes stronger and the ion energy can
be higher than in the TNSA. In this regime a new mechanism shows up, the radiation pressure
acceleration (RPA). In this case the Mach number (u/Cs ≥ 1.6) is high and the ions pushed
at the front propagate in the form of a shock-wave reflecting almost all of the ions in its way
in the forward direction. Thus the reflected ions will have the velocity 2u [70]. With linearly
polarized laser this mechanism is not so efficient, because the ions accelerated during the TNSA
ruin the mono-energetic feature of the RPA. However there is one extreme case, when the target
is very thin and the laser intensity is high (1021 W cm−2), which leads to an enhanced TNSA
acceleration; it is called the laser break-out afterburner (BOA) [71]. In this case the target
becomes quickly relativistically transparent and the laser pulse can further accelerate the ions
behind the target via a Buneman-like instability. The 1D simulation result shows is a train of
short mono-energetic bunches, but there is no experimental evidence yet.

In the RPA regime the undesired background of TNSA-accelerated ions can be avoided by
using circularly polarized laser. In this case a constant push separates the electrons from the
ions at the front, which are accelerated by the static electric field [72]. The problem is that
circular polarization at this intensity is a challenging process and still requires improvements.
In the limit of thin foils the laser accelerates all the ions in the laser path and the foil is pushed
as a whole (the so-called Light-Sail regime). In this case the accelerating force scales linearly
with the laser intensity and numerical simulations have predicted relativistic ions with GeV per
nucleon. This kind of acceleration exists only in simulations [73].
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3 Particle-in-Cell code, numerical aspects
The particle-in-cell (PIC) simulation codes have become powerful tools in the laser plasma

modelling. The plasma expansion and other plasma behaviors can be also simulated using hy-
brid fluid codes, where the particle distributions are described by a given function (Maxwell-
Boltzmann distribution). In this case the fluid equations (equation of motion and continuity)
are coupled with the Poisson equation and solved numerically assuming thermal equilibrium
everywhere in the plasma. Kinetic models, like Vlasov solvers and PIC codes, calculate the par-
ticle distribution self-consistently and do not assume that the distributions remain Maxwellian.
In a Vlasov code the momentum distribution (usually Maxwellian) is evaluated in time and
the particle densities are calculated from the integration of this function. The advantage is the
noiseless output, but it needs a large memory because of the required high resolution of the
velocity phase-space. Even for a problem reduced to a 1D geometry it typically needs 2 or 3
velocity components in order to incorporate the appropriate electron motion and its coupling to
the Maxwell’s equations. The PIC technique is more economical, easy to implement and suitable
for the study of kinetic and non-Maxellian effects.

3.1 General description of a PIC code

Simulating a plasma would mean the calculation of motion of each individual particle (ion or
electron) interacting through the Lorentz force, which requires to sum up all of the electric and
magnetic field vectors produced by the particle charges. In a high density plasma the number
of particles in a few tens of micrometers length (1D) is more than 1020, which is impossible to
treat on any computer. A good idea is to represent≈1017 particles (or less in higher dimensions)
as one macroparticle. This simplification is still not enough to run such a simulation, because it
is still too costly to calculate the fields at the particle positions created by all other particles in
each time step. An easier way to calculate the fields is the integration of the Maxwell’s equations,
which requires charge and current density. Because these are not known analytically we have to
use a numerical method, which is based on the discretization of space and time. Therefore the
space is represented as a grid with well defined grid cells and grid points, where the field values
are calculated.

The basic four steps taken in each simulation cycle are presented in Fig. 3.1. First, if there
are initial fields defined, the particle movement is calculated using the well-known leapfrog
integration method. Then the new positions and velocities of the particles are known, which are
used to recalculate the charge and current densities in the plasma. At this step an interpolation
method has to be chosen, because the fields are defined on the grid, but the particles are inside
a cell, between the grid points. Details about the particle shapes, weighting and their effects can
be found in [74]. The next step is to solve the Maxwell’s equations, which provide the electric
and magnetic fields strengths at the grid points. Again, we have to weight these fields back to
the particles in order to apply to forces and push them further.

The accuracy depends on how fine we define the grid or how many macroparticles we load
into the simulation. An issue arises, how reliable and stable is a PIC code if interpolation func-
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Figure 3.1: Sketch of one cycle of a PIC simulation.

tions are used, which can alter the physical distributions and lead to perhaps incorrect results
[75].

3.2 Numerical errors, instabilities

A very powerful approach for periodic systems is to use Fourier transformation on all grid
quantities. It provides spatial spectral information on ρ (charge density), J (current density),
E (electric field), φ (potential), B (magnetic field) and it makes easier to solve the equations,
because the Laplace operator is replaced by −k2, where k is the wave number and the time
derivative becomes a multiplication with the frequency, ω. In the case of discrete fast Fourier
transformation (FFT) the general equation is

G(kn) =∆ x

NG−1
∑

j=0

g(X j)e
−iknX j (3.1)

where G can be any field quantity,∆ x is the grid size, X j = j∆ x and NG is the number of grid
points. In oder to obtain the field values in the real space we have to apply an inverse FFT, after
the operations in the ω and k space, which has the form:

g(X j) =
1

L

NG/2−1
∑

n=−NG/2

G(kn)e
iknX j (3.2)

where L = NG∆ x is the length of the simulation box and kn = n(2π/L). As we can see the NG

number defines also the spectral resolution, which means that we can not represent all of the
wavelengths in the plasma, if L/NG is larger than the minimal wavelength in the system. In [75]
it is shown that the effect of the discrete spatial grid is to couple density perturbations and forces
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at wave numbers which differ by integer multiplies of the grid wave number kg = 2π/∆ x . With
other words, the particles in a PIC simulation interact not only with each other, but also with the
grid. This effect is called aliasing, because the perturbations (or oscillations) with a wavelength
different from p2π/kg , where p is an integer, will appear as a wave with wave number pkg

and its amplitude will be artificially increased. This effect is also called grid heating and it is the
strongest for the wavelengths shorter than the grid size, therefore in a correct simulation the
minimum physical wavelength has to be resolved by the grid.

Very often (and also in our case) the important wavelength is much smaller than the physical
scale lengths of the processes, which we intend to simulate and the required grid size results in
many million grid cells. In this case a coarser grid can be applied only if the number of particles
per cell is increased and higher order weighting is used. By this technique the steep jumps in
the current and charge density between the grid points are smoothed out, therefore the high
frequency amplitudes of the Fourier spectrum are strongly reduced. There is a good analogy of
this in the analysis of sampled time series. If one does not sample often enough, then differing
frequencies become indistinguishable. This can be improved by low-pass filtering the signal
before sampling, and the role of the particle shape functions is similar in the PIC simulations.
Basically we sample charge between the grid points, which is equivalent to using a finer grid.

With higher order interpolation of the fields we can achieve the same effect: the high frequen-
cy components are eliminated from the spectrum and the numerical aliasing effect is reduced.
Of course there is always a better solution to improve the accuracy by decreasing the grid size,
which requires more computational power or time. If the high frequencies originate from the
statistical noise of the granulated charge density, then using this smoothing technique is a good
choice. First the smallest physical wavelength has to be estimated which can occur in the system,
then the grid size can be set such that this wave is reproducible with the applied interpolation.
If the higher order particle shapes are also used (with the same order, as we show later), then
∆ x can be much larger than the wavelength in the plasma, which is the Debye-length.

As an example we show how the Poisson equation is solved using the FFT (Eqs. (3.1,3.2)) on
the charge density scalar field. The potential is obtained from the equation

φ(k) =
ρ(k)

ε0K2
(3.3)

where

K = k

�

sin(k∆ x/2)

k∆ x/2

�

(3.4)

and the electric field

E(k) = −iκφ(k) (3.5)

where

κ= k

�

sin(k∆ x)

k∆ x

�

(3.6)

Here we obtain the analytical continuous limit when k∆ x → 0. The expressions Eqs.
(3.4,3.6) also hold for the time derivation, thus now we can write the Maxwell’s equations
in vacuum
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∂ B

∂ t
= −∇× E (3.7)

∂ E

∂ t
= c2∇× B (3.8)

in the wave number and frequency domain:

ΩB = cκ× E,ΩE = −cκ× B (3.9)

where we neglect the particle current and Ω = ω sin(ω∆ t/2)/(ω∆ t/2). By eliminating E

and B from Eqs. 3.9 we arrive to the dispersion relation of the electro-magentic wave on a grid,
which in two dimensions has the form:

�

sin(ω∆ t/2)

c∆ t

�2

=

�

sin(kx∆ x/2)

∆ x

�2

+

�

sin(ky∆ y/2)

∆ y

�2

(3.10)

Obviously ω has to be real, which happens to be if:

1

(c∆ t)2
<

�

1

∆ x2
+

1

∆ y2

�

(3.11)

or c∆ t < ∆ x/
p

2 for ∆ x = ∆ y , which is also called the Courant criterion. This is the main
criterion which has to be fulfilled in any electro-magnetic (EM) simulation. This is the result
of the centered time integration scheme, which is illustrated in Fig. 3.2. It is the same leapfrog
method which is used to advance particle position and velocity.

Figure 3.2: Time integration scheme of the field and particle quantities in an EM simulation.

In order to better understand the stability of a PIC code we show the dispersion diagram in
Fig. 3.3, where Eq. (3.10) is plotted for the 1D case. These curves represent the phase velocity
of the waves normalized to the speed of light, with different k number and for different time
steps. As we can see for time steps, which do not satisfy the Courant criterion the simulation
becomes unstable (the ω is imaginary) and the phase velocity approaches a minimum value
when ∆ t → 0. If the simulation contains relativistic particles they can travel faster than the
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light on the grid which results in numerical Cherenkov radiation. This is the same effect what
we can observe in the reality, when in a medium the light has velocity lower than c, because
of the physical properties of the material, and relativistic electrons emit light. The difference is
that in a PIC simulation the electrons do not slow down after emission, hence the energy is not
conserved, but it increases.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

k Dx

Ω
D

x�
c

Unstable!

Empty!

1.0

1.2

0.99

0.9

0.5

0.01
cDt�Dx

Figure 3.3: The dispersion curve of an EM wave on the grid for different time steps.

In higher dimensions this dispersion diagram is different and the phase velocity depends also
on the direction of the k vector. It can be shown that the deflection from the diagonal curve
(violet line in Fig. 3.3) is the strongest along the edges of the grid cell. The numerical Cherenkov
emission is only relevant in 2D or 3D, because in 1D by choosing ∆ t = 0.99∆ x/c we are
always at the safe side and the phase velocity is very close to the speed of light, even for short
wavelengths. The heating cosed by this numerical effect can be eliminated by using filtering
[76], when the slow, high frequency waves are taken out from the simulation. The higher order
particle shapes (or field interpolation) reduces not only the grid heating, but also the artificial
Cherenkov emission.

We mentioned already that when the particle quantities (position, velocity) are advanced in
time the fields are weighted such that fields at the closest grid points (nodes) contribute to the
motion proportionally to their distance from the given particle. In this case the momentum of
particles is conserved, but the field energy microscopically can change. However the macrosco-
pic total energy changes by amounts small compared to other energies of interest, for example
kinetic energy. There is another way to push the particles and to conserve their energy if the
time integration is accurate. If the fields are not weighted, but their value is taken from the
node for all particles which are at a distance less than ∆ x/2 from that node, then the energy is
conserved. In this case the force is basically calculated from the gradient of the field energy. If
we choose this option, the momentum is not conserved which can have an effect for instance on
the temperature of a particle beam. The cold electrons (or ions) passing through a neutralizing
background can become hot while its drift velocity (or directed energy) decreases.
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3.3 Features of the VORPAL code

The code has all the usual capabilities of PIC codes and there are some special modules in-
cluded, which we do not need for our problem, like ionization, collision, secondary electron
emission from metal surfaces, etc. Beside that it is fully parallelised with high performance ca-
pable of performing large simulations in a relatively short time. The numerical issues presented
in the previous section can be found also in this code and will be tested in the next section. Here
we mention those features, which help us to deliver a physically correct and reliable result. The
input file has an Xml-like structure and syntax. The output is saved in .h5 format which can be
visualized using the VorpalView (given with the software) or other plotting and data analysing
software which support the .h5 format. Our visualization tool is IDL 8.0.

Figure 3.4: The layout of a 2D simulation box, including the boundaries.

Let us start with the boundaries used in our 2D simulations (in 1D they are the same in the
longitudinal direction). The usual simulation box is presented in Fig. 3.4. The usual length and
width is about 50 µm which is enough to study the longitudinal and transversal acceleration of
ions. The PML (perfectly matched layer) has an important role, because it is responsible for the
absorption of the outgoing (right end) and reflected light waves from the over-dense plasma
(left end). If there were periodic or reflecting boundaries, then the whole simulation domain
would be filled up with the laser wave. In the transverse direction first we put periodic bounda-
ries, because it is more useful for the converge study. For a more realistic TNSA simulation we
can place PML regions also on the transversal boundaries, thus the fields can go away in each
direction, like in the reality. We can simulate a real infinite space if we include special reflecting
boundaries for the electrons in transverse direction. These are the so-called diffuse boundaries,
which reflect particles with a Maxwellian velocity distribution, where the temperature is given
by the user in the input file. In this way the hot electrons, which would spread out on the whole
target surface, now are re-emitted into the plasma with cold temperature, which is the initial
electron temperature (≈ 1 keV), therefore the total charge is conserved (quasi-neutral plasma).

The initial physical parameters (electron density, temperature, laser intensity, etc.) will be
given later in the corresponding chapters. Now we present the main idea behind the PML region.
It is an artificial absorbing layer for wave equations, commonly used in numerical methods to
simulate problems with open boundaries. The idea is that the gradient operator (∂ /∂ x) is
replaced by (1+ iσ(x)/ω)−1∂ /∂ x , wherever it appears in the wave equations. The function
σ(x) is a positive function of x and in VORPAL it is defined as:
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σ(x) = σ0

�

�

�

�

x − Lpml

∆ x

�

�

�

�

s

(3.12)

where Lpml is the width of this layer andσ0, s can be freely defined, depending on how fast or ef-
fectively should be the wave absorbed. We understand how it works if we apply the new operator
on the wave form exp[i(kx−ω t)], which is transformed to: exp[i(kx−ω t)− k

ω

∫

x
σ(x ′)dx ′],

where the wave propagates in the +x direction (k > 0). The amplitude of the wave will de-
crease after each grid cell it passes. The Lpml has to be set carefully, because if the wave goes
through and enters the other PML layer or gets reflected with a significant amplitude, the effect
will be reversed (k < 0) and it can end up with a much larger amplitude than the initial one.
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Figure 3.5: The performance of the parallel 2D simulation as a function of the number of nodes.

The code has a parallelized executable, which is compatible with MPI platform. A significant
speed-up can be achieved up to 32 nodes for our typical 2D setup. The scalability test is shown
in Fig. 3.5, where we can see that the optimum speed is reached around 30 nodes. If more
nodes are used, then the communication between the nodes requires more time which results
in a slower simulation. In Vorpal we can choose between the momentum and energy conserving
algorithms of the field solvers, but we always use the first one, because we are mostly interested
in the velocity phase-space of particles and the parameters we choose such that the energy
change is insignificant on the time scale of the simulation.

3.4 Convergence study

Before we check the convergence of the laser-plasma simulations let us see the effect of the
higher order filtering (particle shape and field interpolation). The third order interpolation is
the most commonly used, which we also use in our simulations and compare with the linear
one. In these 2D EM simulations the whole domain is filled with uniform plasma and periodic
boundaries are used everywhere. The size of the simulation box is 100∆x in each direction. In
this scenario the only wave length which has to be resolved is the electron Debye-length. Usually
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this we can not resolve in a 2D simulation, because the ratio of the characteristic acceleration
length and the cold electron Debye-length is on the order of 103 or more. It results in 106 grid
cells, which is very time consuming on 32 nodes. Therefore we are interested in the behavior of
a thermal plasma when the grid size is larger than the electron Debye-length.

In Fig. 3.6, left, we can see how powerful the cubic filtering can be. Even if the grid size is
40 times larger than the Debye-length and the number of particles per cell (PPC) is only 2, the
grid heating is by orders of magnitudes lower than in the linear case. The time is normalized
to the electron plasma frequency ωpe = (n0q2

e
/meε0)

1/2, where n0 is the plasma density. In the
right side plot in Fig. 3.6 we observe finer changes of the temperature. The grid heating can
be suppressed with linear filtering only with very high resolution, ∆ x = 4λD, but there is still
some significant increase of energy (red line). Using the cubic filtering in the same simulation
(brown line) the heating is not observable. With higher PPC and resolution the simulation with
linear interpolation is more correct and the grid heating is negligible, but it would require a
huge amount of memory and long run time for a 2D TNSA simulation. The CPU time for the
brown line was 4 hours, while in the case of the blue line it was 27 hours, which means a factor
of 7 increase in speed.
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Figure 3.6: Left: The RMS momentum of electrons from a thermal plasma simulation with 1 keV

initial electron temperature. Right: The same simulation, but with different simulati-

on parameters.

As the laser pulse interacts with the plasma relativistic electrons are produced, which can
contribute to the numerical heating via the Cherenkov field emission. As we mentioned earlier
the cubic filtering eliminates this problem as well, as it is confirmed in Fig. 3.7. With a non-
relativistic temperature the grid heating results in relatively small (only factor of two in 4 ps)
with linear interpolation because of the high resolution (black line). If we increase the tempera-
ture to a relativistic value, the heating appears again, which can be explained by the Cherenkov
radiation. The same simulation with cubic filtering shows no heating effect (blue line). The
simulation domain was a square with 50λD long edge.

As we have seen the distance between the grid points can be 20-40 times larger than the
Debye length and the simulation can still be stable with the filtering technique. Unfortunately in
TNSA we have different scale lengths which must be resolved on the uniform grid (the adaptive
grid is not implemented in VORPAL for plasma simulations). One important characteristic length
is the laser skin depth which is larger than the cold electron Debye length (ls > λDc, because
c > vth). The hot electron production depends on how the skin depth is resolved by the grid. On
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Here 1/ωpe = 2.1 fs.
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Figure 3.8: Left: The longitudinal hot electron temperature and proton front velocity versus time.

The color legend is the same as in the right picture. Right: The total energy of the

system (full line) and the total energy of particles (dashed line).

the other hand we want to resolve the proton acceleration at the rear side of the target, where
the density gradients are quite steep due to plasma expansion. Therefore we have to perform a
convergence test, where we can check how the physical processes depend on the small changes
of the simulation parameters.

First let us see the effect of the grid size by keeping the PPC constant in 2D simulations. The
result is presented in Fig. 3.8, upper row. As we expected for different grid sizes the temperature
of heated electrons (Th) is not the same and convergence is also not visible yet. The convergence
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Figure 3.9: The hot electron temperature over time for different spatial resolutions in 1D

simulation.

becomes apparent, when we change only the PPC, as is it shown in Fig. 3.8, lower row. In this
case the initial Th is the same always, but the cooling and ion acceleration is different because
as the plasma expands the ion front is less resolved if the PPC is lower. In these simulations
the laser pulse duration is 200 fs as we can see in the evolution of the total energy. After the
laser pulse is off the total energy of the system is constant, as it should be, or it can slightly
decrease because of the absorbing boundaries (see Fig. 3.4), which indicates that the energy is
conserved and no numerical heating is present. The electron cooling in the case of the lowest
PPC is slightly slower than with more particles. It can be attributed so the grid heating, which is
very small in this case. The cubic filtering was used in all of the simulations and the target is a
neutral plasma with immobile ions in the first half of the target (front side) and with protons in
the second half.

In all of our 2D simulations we use the shifted-Gaussian pulse shape, which provides an almost
constant hot electron pressure at the beginning of the expansion. There is not much difference
between the simulation with this pulse and with the normal Gaussian, as we will show in section
6.3.4. However, by getting closer to the conditions assumed in the analytical model we can have
a greater confidence in the study of the transverse divergence of the protons.

We could see the convergence over the grid size only in 1D simulations. The laser pulse du-
ration was 100 fs with peak intensity 4 · 1019 W/cm2 and the target setup was the same. The
resulting temperature of hot electrons is shown in Fig. 3.9. The difference between the tempe-
rature values is not so large as in 2D and it increases faster, because the transversal degree of
freedom is missing. Between the simulations with grid size λDc/4 and λDc/2 there is no signi-
ficant difference which indicates the convergence. Such a high resolution we can not use in the
2D simulations, but the undergoing acceleration on the rear side of the target is correct with a
coarser grid as well.

3.5 Optimal 2D simulation setup

As a conclusion of the previous section we can use the grid size ∆ x = 10λDc and PPC ≈ 20

as a good initial parameter-set for a 2D simulation. The results are correct (if the simulation is
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not too long) and the run time is less than one day. The main parameter which defines the grid
size is the cold electron Debye-length. In principle we can increase its value by increasing the
initial electron temperature or decreasing the target density, but there are three criteria which
has to be fulfilled. The hot electron temperature has to be much higher than the initial one
(Tc), the target density must be higher than the critical density (ncr) and the laser wave length
must be at least 20 times longer than the grid size, otherwise it would not be well resolved by
the grid. These quantities are defined by the laser parameters: intensity (defines Th) and wave
length (defines ncr). A simple drawing in Fig. 3.10 helps to better understand the trade-off
between these requirements.

Figure 3.10: A sketch to illustrate the possibilities of increasing the cold electron Debye-length.

The initial cold Debye length can be made larger by increasing Tc, but the situation is not
improved, because the hot electron Debye length will be longer, because the Th/Tc ≈ 100 ratio
has to be fulfilled, thus we need more grid cells to ensure enough place for the acceleration
behind the target. By increasing too much the laser intensity we can enter the radiation pressure
acceleration regime, which is not in our region of interest.

Moreover λDc can not be set too large, because the laser wave length must be always much
longer than the grid size, which is proportional to the cold Debye-length. In principle we can
increase the laser wave length, but it has an effect on the plasma density (see Eq. (2.6)). For a
longer λL the cold Debye-length becomes automatically larger, if the n0/ncr is kept the same. Let
us take an example, where n0/ncr is fixed. If the plasma density we set a factor of N lower, then
λL , λDc, ls and ∆x will be

p
N times larger. The hot electron temperature will be ≈ N times

larger, if the intensity remains unchanged, because aL ∝ ILλ
2
L
] (see Eq. (2.2)). By decreasing

n0 the density of laser-produced hot electrons will be also lower, at least by a factor of
p

N

(N times lower density, but
p

N times larger laser skin depth). Thus the resulting hot electron
Debye-length is N3/4 times larger, which means a longer simulation domain. In order to have
the same acceleration length the laser intensity has to be reduced by a factor of N3/2, but then
the condition Th/Tc ≥ 100 might not be fulfilled.

As we can see, by increasing the cold electron Debye-length of the target plasma we have
to change the parameters of the laser pulse in order to obtain the same physical results. The
hot electron Debye-length will be inevitably effected such that the simulation domain has to be
increased. Finally we can not achieve any significant speed-up of our simulation.

In 1D simulations we do not have such issues with stability and numerical errors. The grid size
can be even 10 times smaller than the cold electron Debye-length and the simulation finishes in
a reasonable time.
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4 One-dimensional, electromagnetic
simulations

4.1 TNSA from a proton plasma

In the experiments the target is usually a metal foil (for example Aluminum or Gold) with a
thickness of the order of 10 µm. The accelerated ions which are observed actually originate from
the few nm thin contamination layer on the target surface. It can contain many different atoms
(mostly Carbon and Hydrogen) which react differently to the electric field of the Debye-sheath.
In theory we always have to simplify the real world in order to model and understand the
undergoing physics. As a first step we study the proton acceleration in the case of an over-dense
purely proton plasma interacting with a high intensity laser pulse.

In the following we present results from two simulation setups where only the laser pulses are
different. The setup and the measured physical quantities, at the time when the peak intensity
reaches the target, are shown in Table 4.1. The laser pulse reaches the plasma 20 fs after the
beginning of the simulation. For the initial plasma density we have to choose a value higher
than critical density (ncr), which is fixed. Our freedom in choosing this parameter is limited,
because for very high density, the initial Debye-length is very small, which requires a very high
grid resolution. We have a much broader range of choice for the initial electron temperature,
but it has to be much lower than the laser-produced hot electron temperature. Its realistic value
is not well known, therefore in the laser community Tc ∝1 keV is a compromise [51, 53]. This
value is typically much smaller than Th and it is large enough to allow the usage of a coarser
grid, which results in a faster simulation.

Physical quantity Pulse 1 Pulse 2
Time duration (tL) 115 fs 196 fs
Laser intensity (IL0) 1023 W/m2 6.08·1022 W/m2

Normalized laser amplitude (a) 2.7 2.09
Debye length (λD) 7.79·10−8 m 5.25·10−8 m
Target density (n0) 2.43·1028 m−3 2.0·1028 m−3

Plasma frequency (ωpi) 7.945·1013 s−1 9.3·1013 s−1

Hot electron temperature (Th) 400 keV 250 keV
Hot electron percentage (nh0/n0) 16% 25%

Acoustic speed of protons (Cs) 6.19·106 ms−1 4.89·106 ms−1

Initial potential-drop (ϕ0) 0.164 0.256

Table 4.1: Parameters of 1D simulations and calculations

In Fig. 4.1, left, the electron velocity phase-space is shown at an early time of the interaction.
The short electron jets, with a time separation half of the laser period, propagate through the
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plasma and turn back at the rear side. They can escape from the neutral plasma until their kinetic
energy is fully transformed into the potential energy. This is how they build up a potential-well,
which gives rise to the strong electric field. In the left picture we can see the effect of the
electric field induced by the charge separation at both sides of the plasma, which triggers the
plasma expansion. The RPA is clearly visible in the first half of the plasma, where a short, mono-
energetic bunch evolves and gets accelerated as it is described in section 2.4. At this low intensity
the number and energy of protons accelerated via RPA is quite low compared to other energetic
protons coming from the back side of the target.

Figure 4.1: Velocity phase-space of electrons (left) at 51 fs and of the protons (right) at 178 fs

from the simulation with the Pulse 1.

In these simulations the grid size is half of the initial Debye-length and the total length of the
simulation box is 25 µm, which corresponds to 15000 grid cells. The number of particles per cell
is 200, but it is increased when we simulate a long time scale. The initial electron temperature
is 2 keV and the plasma density is 10 times the critical density, which corresponds to 2.43·1028

m−3.
At the front side of the target we place a preplasma with a scale length 0.1 µm and with a

total length 0.5 µm. With this artificial preplasma, with an exponential density profile, the laser
absorption is somewhat increased [77] and we avoid the step-like plasma density profile, which
is never the case in the reality.

4.2 Comparison with theory

In this section we use the analytical plasma expansion model [9] to interpret and understand
the simulation results, where the laser pulses from Table 4.1 are used. The laser parameters are
chosen such that the total energy of the two pulses is the same. In all of the plots presented here
the physical quantities are normalized by the values shown in Table 4.1. The target thickness is 3
µm and consists of electrons and protons. The simulation results are compared to the analytical
formulas presented in the section 2.4.2.

4.2.1 Proton distribution

First let us see the time evolution of the proton front velocity, which is the most important
observable in laser the acceleration. The results are shown in Fig. 4.2. As we can see the ac-
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celeration can be divided in three parts: laser phase, until the laser-plasma interaction lasts;
quasi-isothermal plasma expansion and adiabatic phase, when the acceleration is much wea-
ker and practically stops. In the laser phase the hot electron pressure increases, therefore the
front velocity does not agree with the theory. After the laser is off the target still contains hot
electrons, which sustain the isothermal condition until the time L t/(2Cs) (L t is the target thick-
ness), as we discussed in section 2.4.2. After this the electron temperature quickly drops and the
acceleration depletes the hot electron energy, which means the end of the acceleration. Finally
we can write the total acceleration time in the form:

t1D
acc
= tL +

L t

2Cs

(4.1)
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Figure 4.2: Themaximum proton velocity during acceleration for Pulse 1 (left) and Pulse 2 (right).

The dashed lines represent Eq. (2.27).

The energy spectra of the protons outside of the target is shown in Fig. 4.3. As we can see
the agreement is very good if we use the above defined acceleration time. One can notice that
for the shorter pulse the final cut-off energy is larger. This is because the total energy of the
two pulses is the same, but their duration is different. The longer pulse has a lower intensity
at the beginning of the expansion, when the TNSA field is strong (see Eq. (2.26)). In this case
the plasma interacts with a lower electric field of the laser (due to the Gaussian intensity profile
of the laser pulse) for a longer time. It results in a lower electron temperature and in a weaker
acceleration. In the case of the shorter pulse the hot electron temperature is higher in the active
part of the expansion (first 10 proton plasma periods, see Fig. 2.5). The number of accelerated
protons is slightly higher in the case of the longer pulse, because the hot electron density is
higher.

As we can see in the 1D simulations the acceleration time is much longer than the 1.3tL ,
which is used in the experiments. This is because in 1D the electrons are forced to move along
a line, the transversal degree of freedom is not present. In higher dimensions the hot electrons
spread out on the rear surface when they escape the target and most of them do not contribute
to the acceleration, or only for a short time.
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Figure 4.3: The energy spectrum of protons for Pulse 1 (left) and Pulse 2 (right). The full lines

represent Eq. (2.28) and (2.29).

4.2.2 Electron distribution and cooling

In Fig. 4.4, left, the electron spectrum is shown from the simulation with Pulse 1. At an
early time (black line) the number and energy of hot electrons is very small. The cold electron
population is barely visible, because their temperature is 2 keV with maximum energy ≈ 15 keV.
When the laser pulse reaches the plasma a part of the electrons gain much larger energy than
the maximum energy of the cold electrons. At the peak of the pulse the temperature reaches its
maximum value (red line) and a cold and a hot electron populations are distinguishable. The
border between them is not clear, there is no sharp separation between them, but we define 100
keV as an energy border between the hot end cold electrons. This value is used throughout the
thesis. The cold electrons are also heated up (the slope is not so steep) and in later times the
hot electrons cool down (blue line).
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Figure 4.4: Left: The electron energy spectrum at different time instances from the simulation

with Pulse 1. Right: The mean kinetic energy of electrons with energy higher than

100 keV for Pulse 1 (black) and Pulse 2 (red).

The cooling process can be followed in time if we calculate the mean kinetic energy of the
hot electrons at each time. The result is presented in Fig. 4.4, right, for the shorter and longer
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pulses. Here the cooling rate is the same in both cases and the best fit shows t−2.1, which is close
to the theoretical prediction, Eq. (2.31).

An important issue, which can be investigated with PIC simulations, is the velocity distribution
of the electrons. We are interested if the hot electrons are co-moving with the protons or not. In
our definition co-moving term that the mean velocity of electrons is higher than their RMS (or
thermal) velocity,

vrms(x) =
Æ

〈(v (x)− 〈v (x)〉)2〉 (4.2)

The results are shown in Fig. 4.5, where the electron and proton mean velocity is compared to
the thermal velocity of electrons. Initially the electron temperature is high, especially outside of
the plasma, where only hot electrons are present (see left picture). Later the hot electrons cool
down and the temperature becomes non-uniform. This effect has been shown and explained in
[36]. In the right picture of Fig. 4.5 the co-moving feature of the electrons is confirmed, their
mean energy is equal to the proton velocity everywhere and their thermal velocity is 10 times
smaller than at the beginning.
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Figure 4.5: The electron rms velocity (of all electrons) in red atωpi t=18 (left),ωpi t=50 (middle)

and ωpi t=200 calculated by Eq. (4.2). In black the mean velocity is plotted. The blue

line represents the proton velocity in space. The x = 0 point is the middle of the

target. These are results of laser-plasma simulation with Pulse 1.

We can now calculate the electron temperature when the proton front reaches a certain posi-
tion, x f . For this we should estimate the distance from the target until the proton front has to fly
in order to have a cold co-moving electron population in the plasma. Let us call the temperature
Tx f , when the proton front is at x f . The path of the proton front is a sum of two parts:

x f = x iso + xadi (4.3)

where x iso is the distance traveled during the isothermal phase and xadi is the distance traveled
until the temperature reaches Tx f . By calculating the integral of Eq. 2.27 in the limitωpi t ≫ 1,
we obtain:

χiso =
p

2τacc(ln(
p

2τacc)− 1) (4.4)

where χiso = x iso/λD and τacc = ωpi tacc. The second part of the path is simply the final front
velocity times the cooling time: xadi = v f (tacc)tcool, where tcool is calculated from the scaling
law Tx f /T0 = (tacc/(tcool + tacc))

2. In the units of normalized quantities it can be written as:

χadi = 2 ln(
p

2τacc)(
p

ϑ− 1)τacc (4.5)
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where ϑ = T0/Tx f and T0 is the temperature of hot electrons at the end of the isothermal phase,
which is approximately 1/3 of the initial value (see Fig. 2.6). Finally we can write the distance
x f , where the electron temperature ϑ times smaller than at the beginning, normalized to the
initial Debye-length and using that τacc≫ 1 and ϑ≫ 1:

χ f ≈ 2τacc

p

ϑ ln(
p

2τacc) (4.6)

In order to calculate exactly this value in the reality, three values are needed: the hot electron
density, the hot electron temperature and the acceleration time. As an example we take for the
hot electron density nh = 1027 m−3 and for the temperature 3 MeV (T0 = 1 MeV). With these
realistic values the the hot electron Debye-length is λD = 0.235µm and the proton plasma
frequency ωpi = 4.16 · 1013 Hz. We can assume that the laser pulse duration is tL =500 fs,
thus the acceleration time is τacc = 1.3tLωpi = 27. If we are interested in the position of the
proton front where the electron temperature is 1 keV, we can use Eq. (4.6), which gives 6226λD

or 1.46 mm. If we want the temperature to be 0.1 keV (ϑ = 104) then the proton front has to
travel 4.63 mm. These distances are surprisingly small, for lower temperature they would be
even smaller. In the reality the cooling rate is probably much slower. The scaling law derived
in the plasma expansion model holds only for collision-less plasma, but at low temperatures
the collision can become an important effect in the evolution of the electron phase-space. This
phase of the expansion is beyond our scope and we can not treat it correctly in the simulation.
Due to the large macro-charge of the virtual PIC particles the density at these distances can not
be resolved.

4.3 Effect of the laser pulse-shape
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Figure 4.6: Time evolution of the hot electron temperature and density during the laser-plasma

interaction with Pulse 2.

In simulations with a laser pulse the hot electron temperature and density change in time,
therefore the accelerating field is also not constant. The maximum proton velocity deviates
from the analytical prediction (see Fig. 4.2), it increases rather linearly than logarithmically in
the laser phase. However the calculated maximum velocity agrees with the simulation taking
the acceleration time defined in Eq. (4.1) and the electron parameters at the peak intensity.
The increasing hot electron pressure is illustrated in Fig. 4.6 for Pulse 2. If we include the
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time dependency of hot electron pressure in the plasma expansion theory the equations become
analytically unsolvable.

Even if the laser intensity is constant over the whole pulse duration the hot electron parame-
ters increase in 1D simulations. We try to look for a pulse shape for which at least initially the
hot electron parameters are constant. In order to investigate the time development of the elec-
tron heating and the proton acceleration we performed simulations with three different pulses.
The time profiles are shown in Fig. 4.7, where the electric field of the laser waves are described
by the following expressions:

EL = EL0 exp

�

−
(2t − tL)

2

t2
L

�

cos(2πct/λL) (4.7)

EL = EL0 exp

�

−(2(t − tL/3)− tL)
2

t2
L

�

cos(2πct/λL) (4.8)

EL = EL0 cos(2πct/λL) (4.9)
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Figure 4.7: Intensity profile of the laser pulses: constant Eq. (4.9) -black, Gaussian Eq. (4.7) -red,

shifted Gaussian Eq. (4.8) -blue.

In these simulations the target is 1.5 µm thick and it consists of immobile ions at the front (1
µm) and a thick proton layer at the back (0.5 µm). The initial plasma density is 2.57 ·1028m−3,
which is 8 times larger than the critical density. The total energy ( 9.33 · 109 J) and the peak
intensity (IL0 = 2 · 1019 W/cm2) of the pulses is the same in all three simulations. Their time
duration is different: 200 fs for the shifted Gaussian, 94.3 fs for the constant and 156.5 fs for
the Gaussian pulse.

The evolution of hot electron density and temperature in time is shown in Fig. 4.8, left. The
temperature and density is almost the same in the first half of the black and blue pulse, therefore
the acceleration of the proton front is also very similar. The hot electron pressure in the late stage
of the expansion has no significant effect, because of the ∝ t−1 time dependency of the electric
field (see Fig. 2.5). The maximum energy of the protons is mostly determined by the initial
temperature and density of the hot electrons. The proton front velocity is very close to the
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analytical prediction Eq. 2.27, shown with the green dashed line and calculated for Th = 900

keV, nh0 = 5 · 1027 m−3 and ϕ0 = 0.2.

Figure 4.8: Left: The time evolution of the hot electron density and temperature. Right: Proton

front velocity compared to Eq. 2.27. The color legend is the same as in Fig. 4.7.

The stochastic feature of the hot electron production does not allow us to compare precise-
ly physical quantities measured in simulations with idealized analytical models. The very fine
structure of the charge separation field at the rear surface is also difficult to study in these con-
ditions. A very useful and easy approach is to perform plasma expansion simulations, where
the hot electron parameters are well-known from the beginning and they are not changed by
external forces (like a laser pulse).
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5 One-dimensional, electrostatic
simulations

In this chapter we are going deeper into the details of the two-temperature plasma expansion
and we are getting closer to the reality by taking a double layer configuration of the plasma. As
we know the target consists of bulk heavy ions and a much thinner hydrogen-rich contamination
layer, where the protons come from. The laser pulse is neglected in this study, instead of the
pulse length the plasma length will define the acceleration time. The Boltzmann distribution is
imposed on electrons only in the initial condition, in the expansion and acceleration the electron
kinetic effects are automatically included. It gives a more realistic results than the fluid or hybrid
codes.

5.1 Double layer foil

The accelerating field on the target surface is created by the hot electrons, produced by the
intense laser pulse. Initially the hot electrons recirculate in the target, their density is increasing
and they are not in a thermal equilibrium, therefore the electric field is not constant. In our
simulations we skip this chaotic phase of the acceleration and start with a sedate state of the
plasma. The target is considered as a plasma with two electron populations, hot electrons and
cold electrons with much lower temperature, but higher density. We set up a plasma where the
charge separation is well described and the hot-to-cold electron pressure ratio is well known.
In this case the problem is simplified and the constant electron parameters allow us to compare
simulation results to analytical predictions. The challenge is to find the equilibrium density
distribution of the electrons around the plasma surface. One attempt can be found in [34], but
by fitting the potential inside the plasma with a parabolic function the system can not be neutral,
the positive charge inside will be 15 % higher than the negative charge outside of the plasma.
For the same purpose we use an exponential function, as suggested in [48]. In experiments and
simulations [78] the usual density and temperature ratios are: nc/nh ≈ 100 and Th/Tc ≈ 100,
where the subscript c and h corresponds to cold and hot respectively. In the following we will
consider two cases: only hot electrons are present in the plasma (1T) and two-temperature case
(2T).

The basic build up of this work is presented in Fig. 5.1. The target consists of protons, heavy
ions, which are considered immobile on the time scale of proton acceleration, and electrons. As
we can see the 2T plasma is a multi-scale problem, because inside the plasma the cold Debye-
length has to be resolved, while outside only hot electrons are present with λD≫ λDc. Because
of numerical limitations we do not use such high parameter ratios mentioned before, but in all
of our 2T simulations the cold electrons dominate. The penetration depth of the electric field
has a scale length very close to the hot (1T, Fig. 5.1, left) or cold (2T, Fig. 5.1, right) electron
Debye length.

In our work we always assume that the proton density is equal to the total electron density
(or density of the singly ionized heavy ions), because the number density of protons in organic
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Figure 5.1: Sketch of the density profiles in a charge separation at the plasma surface for 1T

(left) and 2T (right) plasma. The red color shows the hot electrons with temperature

Th and the blue shows the cold electrons with temperature Tc.

materials is close to the solid density (≈ 1028 m−3). It is confirmed with measurements [79],
where the layer was analyzed by x-ray photoemission spectroscopy, which showed ≈ 1 nm thick
layer with hydrogen density≈ 1029 m−3. Another experiment [14] reports that the hot electron
density, measured by an optical refletcrometry technique, is only ≈ 1026 m−3 at the axis of
symmetry of the laser pulse. It means that in the TNSA the realistic proton density can be more
than 100 times higher than the hot electron density.

5.2 Simulation setup

The protons are initially placed in the interval x = [−d, 0], where d is the layer thickness.
The ions are placed in the interval [−Lp,−d], where Lp is the total plasma length. At x = −Ld

there is a reflecting boundary for particles and at the other end of the simulation box we place
an absorbing boundary. In the 1D simulations high grid resolution and many macroparticles can
be used, which means that the Debye-length can be well resolved and the statistical noise-level
is very low. Numerical parameters: grid size ∆x = λDc/4, n0 = nc0+ nh0. In the 1T case ∆x =

λD/10. In some simulations we consider layer thicknesses 100 times smaller than the electron
Debye-length. In these cases the grid resolution would be too high for our computer, therefore
we keep the layer thickness equal to ∆x , defined before, and we reduce the layer density such
that the mass of the layer is the same as it would be if we had chosen d = λD(c)/100. The
used time step: d t = 0.04/ωp and the number of macro-particles per cell is 2000. The typical
numbers for time step is 10−18 s and for grid size 10−10 m in the 2T plasma, while in the 1T case
these number are about 50 times larger. The length of the simulation box is about 4 times the
length of the electron cloud (Le), which corresponds to ≈ 104 grid cells. The electric potential
and electric field are calculated by a Poisson solver implemented in VORPAL. The electric field
at both ends of the simulation domain is set to zero.

The large number of grid cells is very demanded in this kind of simulation, especially in the
2T case, where the cold electron Debye-length is much smaller than the hot one. We have to
resolve the smallest scale lengths, which means that in the regions where the hot electrons
dominate the grid resolution is much higher than the required, because the grid is uniform. We
have requirements on the number of macroparticles as well in order to ensure the physically
correct output. In the next section we will see that in the Debye-sheath the electron density goes
down as x−2, which means that the number of macroparticles per cell is very small far from the
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target and therefore the noise-level is higher. In some cases when nc0/nh0 is high we choose a
higher number than 2000 in order to have a smooth hot electron density profile outside of the
plasma. Another important physical effect which gives a time limitation for simulation is the
decreasing density of the proton front during plasma expansion. In [9] we find that np at the
front is proportional to t−2, which means that after some time the proton front is represented
by one macroparticle in one cell and the density at this point can not decrease any further. The
typical simulated time is a few hundreds of femtoseconds, which corresponds to ∝ 104 (in 1T)
and ∝ 105 (in 2T) time steps.

5.3 Thin and thick proton layers

As we have seen the electric field inside the plasma has an exponential form (see Eq. 2.14)
with a scale length equal to λD/r (for simplicity we neglect α). Therefore we introduce a di-
mensionless parameter:

D = r
d

λD

=

√

√

1+
nc0Th

nh0Tc

d

λD

(5.1)

where nc0 in our simulations will be equal to the cold electron density inside the target and
np = n0. From now on we use D to characterize the layer, which represents the ratio of the
thickness d to the scale length of the penetrating electric field into the dense plasma.

Let us consider a layer which is much thinner than the penetration depth of the electric field
into the target, D≪ 1. In this case the protons are accelerated as test particles, all of them feel
the same field strength and finally they form a quasi-mono-energetic bunch. Its velocity can be
estimated by integrating the electric field (Eq. (2.13)) from the plasma surface (x = 0) until the
end of the electron cloud (x = Le), which gives:

vmax = 2Cs

Ç

ln(1+ Le/(λD

p

2e−ϕ0)) (5.2)

where Cs =
Æ

Th/mp, mp is the proton mass. This velocity corresponds to the kinetic energy
Wmax ,QSA ≈ 6.5Th, which is in agreement with the analytical prediction[46, 11]: Wmax ,qsa =

(εmax − 1)Th, for εmax ≫ 1. In our case εmax is a fixed parameter, but in reality it depends
on the fast electron generation during the laser-plasma interaction. For εmax = 7.5 the length
of the electron cloud is Le ≈ 60λD and vmax/Cs ≈ 3.8, which is in good agreement with the
simulation shown is Fig. 5.2.

In the opposite extreme case, D ≫ 1, the protons are accelerated via plasma expansion [9],
which can be described analytically up to the point when the adiabatic phase starts and the
electron cooling becomes important [35]. This time is approximately the laser pulse duration,
but in the case of an expanding plasma slab the acceleration time is tacc ≈ Lp/Cs, where Cs is
the proton acoustic speed, which is equal to the speed of the rarefaction wave [35], as we have
described it in section 2.4.2.

When the rarefaction wave reaches the middle (ωpi t ≈ 20) of the plasma the hot electron
temperature is already one third of the original value. After this the hot electron cool down
quickly and the proton acceleration becomes weaker. The final front velocity can be estimated
using the following formula [9]:
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Figure 5.2: Maximum velocity of protons from simulations (dashed lines) compared with the

analytical predictions (full lines). The red (1T) and blue (2T) color corresponds to the

thick layer case, while the black (1T) and green (2T) represents the thin layer case

(quasi-static acceleration, D = 0.01). The black full line is given by Eq. (5.2) and the

red and blue full lines correspond to Eq. (5.3).

v f = 2Cs ln

�

τacc +
q

1+τ2
acc

�

(5.3)

where τacc =ωpi tacc/
p

2e−ϕ0.
In Fig. 5.2 we can see that for D = 20 the electron cooling has a significant effect on the late

stage of proton acceleration. The analytical model does not predict a final velocity for t → ∞,
while the simulation shows a converging proton front velocity.

5.4 Detachment of a thick layer

A proton layer at the rear side of a heavy target can detach only if the rarefaction wave
reaches the point where the layer is in contact with the heavy ions. This wave in the 2T plasma
for Th/Tc ≫ 9 behaves as a shock-wave [38] and it has an influence on the detachment. The
properties of this shock have been studied by using a Boltzmann-Vlasov code [39]. The cold
electrons slow down the rarefaction wave and modify the density profile of the protons.

In Fig. 5.3, left, the simulation results are shown in the case of 1T and 2T plasma, where
nc0/nh0 = 9 and Th/Tc = 200. In the 2T case the proton density at x = 0 is equal to nh0/e

a and
behind it a steep drop shows up. The analytical expression from [9] can be generalized in the
following form:

n(x) = nh0 exp(−a−
x

Cs t
) (5.4)

which is valid for the electrons as well, since they are co-moving with the protons if we neglect
the small charge separation at the proton front.

One very important consequence of this shock-wave is that the proton velocity in the tail of the
bunch at the time of detachment is not zero, but ≈ 0.59Cs [39, 40]. This effect can be seen in
Fig. 5.3, right, where the dashed lines correspond to the velocity profile before the detachment
and the full lines after the detachment.
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Figure 5.3: Left: The proton density profile (full line) is compared to the analytical prediction Eq.

(5.4) (dashed line) in the 1T (black) and 2T (red) case, for ωpi t = 7. Right: The color

legend is the same. The longitudinal velocity profile of protons is shown atωpi t = 7

(dashed line) andωpi t = 18 (full line). The dimensionless layer thickness is D=20.

The detachment time can be defined as tdet ≈ d/(aCs). In the 1T case (a = 1) this time is
always shorter than tacc, because d ≪ Lp. In the 2T case the detachment time can be longer
than the acceleration time, d/(aCs) > Lp/Cs, which requires the condition d/Lp > a. After de-
tachment the energy conversion from electrons to protons is less efficient, therefore tdet should
be always longer than tacc, which is close to the laser pulse duration.

5.5 Intermediate regime

The acceleration in this regime has not been described up to now fully analytically. Our si-
mulation results in a dependence on the dimensionless layer thickness are represented in Fig.
5.4. There is a smooth transition between the two regimes. In the case of a very thin layer the
accelerated protons form a quasi-monoenergetic beam (pink line in Fig. 5.4) and in the case of
a thick layer (black line) the spectrum is similar to an exponential energy distribution [9].
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For intermediate thicknesses the proton bunch detaches from the target and gets accelerated
in the static field until it reaches the position x t , where the electron trapping takes place. This
trapping process with the modified electric field is illustrated in Fig. 5.5. It is clearly visible that
the electrons follow the proton bunch and partly neutralize it.
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Figure 5.5: Left: Density profiles of electrons (dotted line) and protons (full line). Right: The cor-

responding electric field. Simulation parameters are: D = 1, np/nh0 = 4, Th/Tc = 20.
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The dashed line shows the initial profile (Eq. (2.10)). Right: The space structure of the

potential for different layer thicknesses, illustrating the potential-drop, Φd .

In Fig. 5.6, left, we can see that a bump appears in the potential, which slowly smooths out.
Later the proton bunch expands and due to the trapped neutralizing electrons the potential takes
a constant value along the bunch (the flat region in the last curve). Thus between the plasma
surface and the bunch tail evolves a potential-drop (Φd), which converges in time to a constant
value. In Fig. 5.6, right we can see that this drop depends on the layer thickness. In order to
estimate Φd we have to take a closer look at the potential profile between the heavy ions and
the proton bunch. For this the Poisson equation has to be solved, which gives us the potential
profile modified by the proton bunch. This problem has been solved in [44] by assuming that
nc0Tc/(nh0Th)≪ 1.

We are interested in the potential at the position where the electric field is zero, because this
is when the electron trapping starts. In [44] this potential is given as:
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qe

ln

�p
2r

D

nh0

np

�

(5.5)

We can obtain the same expression using Eq. (6) from [45]. This expression predicts an infinite
potential-drop for zero thickness, therefore we have to introduce a minimum layer thickness for
which ϕd = qeΦd/Th = εmax − 1 = −ϕmax . On the other hand for thicker layers the potential-
drop should be ϕd = −ϕ0. With these corrections we find dmin = λDn−1

p

p
2/(exp(−ϕmax/2)−

exp(−ϕ0/2)) and we arrive to an expression:

ϕdcor r = 2 ln

�

exp(−ϕ0/2) +

p
2nh0

np(D/r + dmin/λD)

�

(5.6)
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Figure 5.7: Potential drop measured from 2T simulations with Lp = 4λD (blue) and Lp = 20λD

(red). The black full line represents Eq. (5.6) and the dashed line Eq. 5.5.

The simulation results are compared to Eq. (5.6) in Fig. 5.7. Here nc/nh = 3, Th/Tc = 20 and
we performed simulations for two plasma lengths. The dashed line shows the ϕd if the electron
cloud would be infinitely long. The full line shows good agreement with the simulations in the
small D region. In the case of thick layers the potential-drop is higher than it was at the moment
when the electron trapping started (or the electric field has negative value), see Fig. 5.6, this
is why we measured higher Φd than the theoretical prediction. In the case of the short plasma
the electrons cool down faster, because their total energy is smaller. In Fig. 2.6 it was confirmed
that the fast cooling of hot electrons happens after tacc, which depends on Lp. If Lp is large then
Th remains unchanged for a longer time, while in a short plasma the temperature drops, which
results in a smaller potential-drop.

5.6 Thickness-dependent energy conversion

The average energy of the protons in the case of thin layers will be equal to the potential drop,
Φd . We are interested in the energy conversion from the hot electrons to the protons, which is
the ratio of the final total proton energy and the initial total hot electron energy. Therefore the
energy conversion for thin layers can be written as:
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Cthin = 2ϕdcor r

np
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(5.7)
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Figure 5.8: Energy conversion from hot electrons to protons. The color legend is the same as in

Fig. 5.7 and the dashed lines show Eq. 5.7, while the full line Eq. 5.8.

For thicker layers the protons drag the electrons with them and at the proton front there
will always be an electron cloud, which creates the accelerating field. Mostly the electrons with
a kinetic energy higher than Φd contribute to the acceleration. By integrating the Maxwellian
energy distribution of electrons from Φd until εmax Th and dividing by the total initial electron
energy we obtain the energy conversion from the electrons to the protons as a function of D:

Cthick =
2

Th

∫ εmax

eΦd

We fe(We)dWe (5.8)

where fe(We) = (
p

2π ThWe)
−1 exp(−We/Th). This estimation is compared with the simulation

results in Fig. 5.8. As we can see below D = 1 the dashed lines are in a pretty good agreement
with the simulations. For D≫ 1 the full line is very close to the results from the simulation with
long plasma. The reason of the full energy conversion for the short plasma is that the condition
d/Lp > a is fulfilled and for this layer detachment can not happen.

5.7 Relativistic momentum distribution function of electrons

In our 1D plasma expansion simulations we assumed non-relativistic electrons, because they
have the Maxwell momentum distribution, which is implemented as default in VORPAL. For
relativistic particles the Maxwell-Juettner distribution [49] is usually assumed, which corre-
sponds to the equilibrium distribution of a relativistic gas. This distribution is achieved through
collisions between molecules with relativistic speed [80]. In the laser plasma interaction the
collisions are not important and the electrons are not in thermal equilibrium. Their energy spec-
trum can be fitted with a simple exponential function (see Fig. 4.4), which is different from the
Maxwell-Juettner distribution.
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Figure 5.9: Energy spectrum of electrons from the laser-plasma simulation and plasma expansion

simulation, where the analytical momentum distribution was used, Eq (5.10).

Based on the simulation results we can start from the energy distribution fh(We)=(Nh/Th)×
exp(−We/Th), where Nh is the number of hot electrons, and using the relation

fh(p) =
1

2
f (We)

dWe

dp
(5.9)

we can derive the momentum distribution function:

fh(p) =
ANh

2

|p|
(mec)

2γ(p)KT

exp

�

−γ(p)− 1

KT

�

(5.10)

where γ(p) = (1+(p/(mec))
2)1/2, KT = Th/(mec

2) is the normalized temperature, p = meγ ve

is the relativistic momentum and A is a normalization constant (limKT→∞ A = 0.5). For the
kinetic energy we took the relativistic expression: We = me(γ− 1)c2. For the cold electrons we
use the usual non-relativistic Maxwell-distribution:

fc(v ) =
Ncp

2πvth

exp

�

−
v

2
e

2v
2
th

�

(5.11)

where v
2
th
= Tc/me is the thermal speed and Nc is the number of cold electrons. In VORPAL it is

possible to implement any random number generator according to arbitrary chosen probability
density function. Loading the electrons into the simulation with these momentum distributions
we can reproduce the energy spectrum observed in the laser-plasma interaction. The compa-
rison is shown in Fig. 5.9. The heating of the cold electrons is not included in the expansion
simulation, that is the reason of discrepancy at low energy.

The simulations with relativistic electrons require more computational power, becauseλD/λDc

is large. In our 1D study the usual temperature-ratio is Th/Tc ≈ 20. With nc0/nh0 = 5 the ratio of
the scale lengths is λD/λDc = 10, while in these simulations for Th/Tc = 320 it would be 40. The
equilibrium density profiles of the cold and hot electrons are the same as in the non-relativistic
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case, therefore we can conclude that relativistic TNSA can be simulated with non-relativistic
electrons, the result is the same in normalized units. The electric field and potential profile is
studied in great details for arbitrary momentum distributions in [49], where the influence of
the directed kinetic energy is found to be significant. In our simulations the electrons possess
only thermal energy and in the laser-plasma simulations the directed energy is significant only
during the first few recirculation period of the hot electrons.

5.8 Effect of the layer thickness in laser-plasma simulations

An advantage of plasma expansion simulations is that the hot electron density and tempera-
ture are well-known from the beginning and stay almost constant during the isothermal phase.
This is not true in the laser-plasma interaction as we can see in Fig. 4.6. In this section we return
to the TNSA with laser pulse, but instead of a proton plasma we use a heavy ion plasma with
a proton layer, like in the previous sections. There is a significant increase in the hot electron
temperature if the heavy ions are used, as we can see in Fig. 5.10. In this simulation the laser
pulse was 100 fs long at 1019 W/cm2 intensity. The higher electron energy is due to the lack
of ion acceleration on the front side of the plasma. The RPA and plasma expansion processes
observable in the interaction with proton plasma consume energy of the electrons, which results
in lower temperature. The temperature achieved by using a heavy target is similar to the Wilk’s
prediction (Eq. (2.7)), which gives 961 keV.

Figure 5.10: Time evolution of the mean kinetic energy of the hot electrons when a laser inter-

acts with a proton plasma (black) and with an immobile ion plasma (red).

In these simulations the hot electron temperature is much higher than the initial one (r ≫ 1),
therefore the normalized layer thickness we can write as d/λDc. In Fig. 5.11 we compare the
results of simulations with two laser pulses. The energy conversion from electrons to protons
and the final proton velocities are measured for different proton layer thicknesses. The peak
laser intensity was the same in both cases (IL = 1019 W/cm2) with different pulse durations.
In the case of the longer pulse the energy conversion is lower, as it is expected (Lp larger), but
the final velocity is higher, especially in the plasma expansion regime. In the QSA regime the
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maximum velocity depends on the length of the electron cloud, while in the thick layer regime
obviously the time dependency of the front velocity plays a role.

Figure 5.11: The black lines shows the energy conversion for 200 fs (dashed-dotted) and 400 fs

(full) laser pulses. The red lines show the corresponding maximum proton velocity.

5.9 Conclusion and discussion of the 1D results

In the last 2 chapters we have presented electromagnetic (with laser pulse) and electrostatic
1D simulations. We started from the simplest case of the TNSA, when the target consists only
of protons and electrons. The uncertainty of the hot electron parameters in the laser-plasma
interaction requires the investigation of a simplified setup, where a two-temperature plasma is
initialized with well-known hot and cold electron parameters. The non-trivial, but small effects
of the cold electrons on the charge separation and plasma expansion can be studied and under-
stood only in these circumstances. The next step was to implement the double layer structure
of the target, which revealed the different acceleration regimes of the TNSA. These regimes
can be identified by the value of a normalized layer thickness (Eq. 5.1), which depends on the
hot-to-cold electron pressure ratio.

In the realistic TNSA only the initial cold electron Debye length and the layer thickness has to
be known in order to identify the acceleration mechanism. In the interval 1< d/λDc < 10 there
is a jump in the maximum energy, but the energy conversion increases almost linearly, which
indicates that the energy spectrum becomes broader with more ions in the low energy tail. The
laser intensity determines the maximum energy, but in the thick layer regime the pulse duration
is also important. It should be equal to the detachment time when the layer is thick, because
after detachment the heavy ions are accelerated and the energy conversion from hot electrons
to the protons will be low, see Fig. 5.8. In the thin layer regime it has to be at least as long as
the time needed for the proton bunch to fly through the Debye-sheath, which is around 30/ωpi,
see Fig 5.2. These conditions are optimal for proton acceleration, with longer pulses the heavier
ions from the target are also accelerated.

By including the transversal dimension the acceleration quantitatively changes. We expect
lower energy conversion and weaker acceleration, because the hot electrons can disappear from
the hot-spot. The new degree of freedom does not allow us to set up an initially equilibrium
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plasma with a transversally non-uniform hot electron density distribution. In the next chapter
in all of the simulations a laser pulse inevitably has to be used.
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6 2D TNSA simulations
In the previous chapter we explored the different regimes of TNSA by changing the proton

layer thickness. Here we do the same in 2D geometry, but a laser pulse is used to create the hot
electron population. We need a source of hot electrons because of the transversal degree of free-
dom. If we set up a hot electron cloud somewhere in the plasma with well defined temperature
and density, then it would spread out in each directions on a much shorter time-scale then the
acceleration of ion.

The grid resolution can not be as high as in 1D, therefore the QSA regime can not be properly
simulated, because of the extremely small scale length of the penetrating electric field. Howe-
ver, the main effects in the transversal acceleration can be observed. We performed a series of
simulations to investigate the effect of the proton layer thickness on the transverse divergence.

6.1 Thickness-dependent divergence of the protons

In these simulations a 200 fs long laser pulse interacts with a 2 µm thick plasma slab with
variable proton layer thickness on the rear surface. The laser intensity is 4·1019 W/cm2 with a
Gaussian transversal intensity profile, σ = 8 µm. The initial electron temperature is 5 keV. The
grid size is 3 times larger than the initial electron Debye-length and the particles are represented
by 50 macroparticles per cell. In each simulation the setup is the same, only the layer thickness
is changed. The layer can not be thinner than ∆x, therefore in the QSA regime (d < λDc) the
layer density is reduced.
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Figure 6.1: The longitudinal electric field behind the target for D = 0.5 (left), D = 6 (middle)

and D = 50 (right). The rear surface is at x = 9µm.

As we have seen in the last chapter, with high temperature ratios the skin layer of the TN-
SA field becomes equal to the cold electron Debye-length, λD/r ≈ λDc. In this chapter we
always use the simplified definition of normalized layer thickness: D = d/λDc, which is a good
approximation.

First we show the contour plots of the longitudinal electric field in Fig. 6.1. There is nothing
special in the 2D case, the time evolution in a dependence of layer thickness is the same as in 1D.
It is worth to note the Gaussian transversal strength profile of the electric field, which is due to
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the Gaussian hot electron density profile, as we will see later. Because of the non-uniform trans-
versal density profile of the hot electrons, the Debye-sheath initially acts as an electrostatic lens,
accelerating the protons towards the laser axis. The later stage of the transverse acceleration
depends on the layer thickness.
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Figure 6.2: The longitudinal (upper row) and transversal (lower row) components of the pro-

ton veloicty for D = 0.5 (left column), D = 6 (middle column) and D = 50 (right

column). The rear surface is at x = 9µm.

For very thin layer the electric field is not influenced by the protons, which are accelerated
as test particles. In the intermediate regime we can see the negative electric field at the tail of
the proton bunch, like in Fig. 5.5, and for thick layers a peak electric field only at the proton
front is visible, which is a characteristic feature of the plasma expansion. The resulting velocity
distribution created by these electric fields is shown in Fig. 6.2. The transverse acceleration in
the two extreme cases has opposite direction. We call it positive focusing in the QSA regime,
because the protons are accelerated inwards, while in the expansion regime it is called negative
focusing. In the intermediate regime the velocity contour shows a very complicated structure.
The fields are always perpendicular to the surface and because in this regime there are two
surfaces (bunch head and tail), and they are curved, the negative focusing in the front and
positive focusing in the back act at the same time.

In order to characterize the divergence we measure the RMS velocity and the average velocity
of the protons on the front surface at the end of the laser pulse. One may expect that there
is a layer thickness for which the divergence is zero if it has different sign in the two extreme
cases. The average velocity is calculated only in the half space, from the laser axis to the right.
Our expectation is confirmed in Fig. 6.3, left plot, where the average velocity is zero for a
given D value and the RMS velocity has a minimum (close to zero). Unfortunately this optimum
thickness changes in time. The reason can be understood by looking at the right picture. Initially
in the intermediate regime the acceleration is similar to the QSA, as we discussed already in
the 1D case. In this phase the positive focusing is present. As the proton bunch flies further
the acceleration transforms into the expansion regime, when the negative focusing overtakes
the transverse acceleration. If the acceleration in the second phase is not too long, then the
transverse velocity gained during the first phase is canceled by the charge separation field at the
bunch surface. If the plasma expansion phase lasts longer, then the divergence increases again.
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The positive focusing can be induced (or it can last longer) by changing the target surface
shape, for instance by using a concave initial curvature of the target rear surface. In this case
the thick proton layer can have small divergence even if the laser pulse is long.
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Figure 6.3: Left: The average and RMS angle (in radian) at the proton front at different times.

Right: The time evolution of the RMS angle for different layer thicknesses.

In these simulations the plasma density was only 2 times higher than the critical density,
because in this case the initial Debye-length is longer and the simulations could be performed
in a shorter time. The drawback of this speed up is that the second and higher harmonics of the
laser pulse can go through the target and disturb the transversal electric field. Because these
harmonic waves have small amplitude, the effect on the longitudinal acceleration is negligible.
The much weaker transverse fields are slightly modified, but by averaging the fields of the higher
harmonics in time the overall effect is zero. In order to clearly see the transversal electric fields
produced by the space-charge or charge separation, we have to increase the plasma density,
which results in slower simulations.

6.2 QSA in 2D

In this section we illustrate the electric field configuration on the rear side of the target made
of electrons and immobile ions. The proton layer is neglected because its small charge and the
layer thickness can not be resolved anyway in our 2D simulation. The transversal dynamics
is difficult to describe, because of the rapidly changing density gradient of the hot electrons.
In a first approximation we can model the Debye-sheath as an electron cloud with Gaussian
transversal density profile. The longitudinal profile is the same as in 1D. The hot electrons,
due to space charge, expand with a very high speed, therefore the width of the Gaussian is
increasing in time. In order to obtain the transverse proton velocity phase space we need to
solve the Poisson equation in 2D, which can be done only numerically, and the time dependency
of the density profile has to be included, which is not known.

Snapshot of the electric field is shown in Fig. 6.4. The transversal field, accelerating the pro-
tons towards the middle, is also responsible for the fast spread of the electrons over the target
surface. In this simulation the plasma density is 8 times the critical density. The full length at
half maximum of the laser intensity profile is 3 µm. The target is placed at 7 µm from the laser
source and its thickness is 3 µm. The width of the simulation box is 48 µm.
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Figure 6.4: Simulation with immobile ions showing the electric fields: the longitudinal (upper

row) and transversal (lower row) components at 45 fs (left) and at 76 fs (right). The

rear surface is at x = 10 µm.
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Figure 6.5: The longitudinal (red line), transversal (black line) temperature and density (blue line)

of hot electrons. The plots are made for the same time instances as in Fig. 6.4.

We can take a look also at the electron temperature and density in a 1 µm thick layer at
the rear side of the target plasma. Fig. 6.5 shows the mean kinetic energy and density of the
electrons with energy higher than 100 keV. The edge of the electron cloud propagates with a
velocity ≈ 2 ·108 m/s. With this high speed the electron cloud can not be considered static and
the analytical estimation of the transverse divergence is impossible. However, as the electrons
spread out the transversal fields weaken and the transverse acceleration in comparison with the
longitudinal one becomes negligible. That is why the transverse velocity in the QSA regime is
much smaller than in the case of thick layers (see Fig. 6.2).

For the investigation of the acceleration of a thin layer in these fields, we have to resolve
not only the layer thickness (should be smaller than the cold electron Debye-length), but also
the exponential profile of the electric field close to the plasma surface (x ≤ 0). These strong
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requirements are beyond the capabilities of our computational resources. One alternative way
to simulate the QSA regime in 2D is the implementation of an analytical charge distribution in
VORPAL. Assuming a longitudinal density profile defined in Eqs. (2.15 and 2.17) and a Gaussian
transversal profile we can write the charge distribution as:

ρ = ρe0 exp
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 (6.1)

where α = 0.96 (obeying charge neutrality), σ is the standard deviation of the transverse
laser intensity profile, ρe0 = qenh0 is the hot electron charge density at the plasma surface
(x = 0) and λD(y) = λD exp(y2/(4σ2)) is the hot electron Debye-length, which depends on
the transverse position. We assume a 1T plasma because the skin depth of the electric field is
larger. Although in the TNSA a 2T plasma is present the final maximum energy is the same for
a 1T plasma as well, it depends only on the maximum electron energy (or length of the Debye-
sheath). Using a Poisson solver the electric field is obtained from the static charge distribution
and only the hot electron Debye-length has to be resolved. In the laser-plasma interaction for a
correct QSA simulation the cold electron Debye-length has to be resolved, which is not feasible.
In this simulation the grid size is 8 times smaller than λD = 0.16µm and the proton positions
were generated separately in an IDL script. Thus we could set up a much thinner layer than the
grid size, d = 5 nm (D = 0.03).

The resulting potential and velocity phase-space of protons is shown in Fig. 6.6. The pro-
ton acceleration can be imagined as they slide down on this potential-well, initially sitting at
eΦ/Th = −1, at the position x = 0. In this simulation σ = 2µm, which is much smaller than
in the reality and the transversal velocity is 6 times smaller than the longitudinal which corre-
sponds to 9.5 degree maximum divergence. The divergence of a thin proton is typically smaller
than in the expansion regime because of the short traveling time of the protons in the Debye-
sheath. Beside this, due to the broadening electron cloud, the transversal fields become weaker
as the protons reach the end of the electron sheath.
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Figure 6.6: Left: The potential in a 3D contour plot produced by the charge distribution given in

Eq. (6.1). Right: The longitudinal (black) and transversal (blue) velocity components

of the protons atωpi t = 18.
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at the outer surface of the expanding plasma at the end of the laser pulse duration.

In Fig. 6.7 the comparison of the two extreme cases is shown. It confirms that in the QSA
regime the transverse acceleration is much weaker than in the plasma expansion regime. Here
the black line represents the average velocity of the protons in a 0.2 µm thin layer at the proton
front. The red line is calculated for all of the protons because the local energy spread at each
y position is very small. Many experimental results and theoretical works [4, 12, 13, 14] imply
that the layer should be thicker than penetration depth of the electric field.

6.3 2D plasma expansion, envelope model

If we want to handle and further transport the proton beam we have to know its space pro-
perties, especially the divergence angle. In the experiments the typical observation is ≈ 20

degrees maximum envelope angle [21, 23]. Our scope is to give an analytical model, which
explains this feature and to support it with 2D PIC simulations. With the model presented here
we try to describe the mechanism of the transversal acceleration and the divergence observed
in experiments. The analytical results are validated by 2D TNSA simulations. With our 32 nodes
available for VORPAL we are restricted to a quite small spacial domain: max. ≈ 100x100µm2,
but it is large enough compared to the hot electron Debye-length (≈ 0.2, µm) or to the laser
spot (≈ 10µm).

Just like in our 1D studies, the target consists of a thick (2 µm) heavy ion slab and a much
thinner proton layer (0.5 µm) with cold neutralizing electrons. The laser pulse has a Gaussian
transversal intensity profile. We are focusing on the expansion of a proton layer which is thi-
cker than the penetration depth of the electric field into the target (few nm). Because of the
exponential density profile of an expanding plasma we are restricted to a short time window
(several hundred fs), in which the proton front can be resolved by the macroparticles. This time
is enough, because the fields are strong only at the beginning of the expansion, later on the
front velocity does not change significantly, even if the laser pulse is long.

In the following we present the basic idea behind the 2D expansion model, then we compare
the analytical predictions with our simulation results and discuss the discrepancies.
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6.3.1 The Model

Our 2D simulations show that the self-similar electric field (E0 =
p

nh0Th/ε0), which defines
the acceleration, can be fitted with the function

f (y) = exp(−y2/(4σ2)) (6.2)

which indicates that the product of the hot electron density and temperature (pressure) results
in a Gaussian transversal profile. This is confirmed in Fig. 6.8, where E0 is plotted at three time
instances and compared with the analytical fit. The simulation parameters are presented in Table
6.1, Sim3 column. As we can see the width of the hot spot increases, but in the relevant time
interval it agrees well with the simulation (blue line). For the analytical calculations we have to
use the hot electron pressure in the early stage of the plasma expansion, because this is when the
acceleration is the most active and the proton surface is defined. In the model for the transverse
hot electron density distribution we use a Gaussian, which has an RMS transverse size (σ)
comparable to the half width of the laser pulse and the temperature is considered to be uniform
in space and constant in time. Although the intensity profile of the laser is also Gaussian the hot
electron temperature becomes isotropic faster than the density. This hot electron configuration
also provides the same electric field shown in Fig. 6.8. The peak value of the density (nh0) is
measured at the laser axis. For this we rely on the simulation and do not use other semi-empirical
estimations.

Figure 6.8: The self-similar electric field (E0) calculated from the measured hot electron parame-

ters during the acceleration. The green dashed line shows the analytical fit Eq. (6.2),

with σ = 4.6µm.

After laying down the initial conditions and assumptions we can derive a transversal accelera-
tion by using the 1D isothermal model. The model is based on the fact that electric field vector
is always perpendicular to the proton surface, which is determined by the proton front. The
transverse component (Ey) is proportional to the tangent of the surface angle. An example for
the electric field configuration around the expanding plasma is shown in Fig. 6.9. As a simpli-
fication we calculate Ey by multiplying Ex with the surface angle, because it is small (Θ < 0.2

rad) in our time frame of interest (ωpi t < 20) if σ/λD is large. All we need to know is the
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Figure 6.9: The longitudinal (left) and transversal (right) electric field in a 2D TNSA simulation

with a thick layer, D = 50.

time-dependent derivative of the proton front as a function of y . The starting equation gives the
position of the ion front [9]:

χ f (υ,τ) = 2τ(ln(η(υ)τ+
Æ

(η(υ)τ)2+ 2)− ln(
p

2))−2(
Æ

(η(υ)τ)2+ 2−
p

2)/η(υ) (6.3)

where η =
p

nh(υ)/nh0 and nh(υ) = nh0 exp(−υ2/2). Here the transverse coordinate is
normalized to σ, υ = y/σ , the time t is normalized to 1/ωpi and the longitudinal coordinate
x is measured in the units of λD. This curve can be fitted with a parabolic function, f (y) =

x f (0, t) − Ct y2, where Ct is a time-dependent fitting parameter, with high accuracy in the
interval [−2σ, 2σ]. This function for the proton surface was also suggested in [81]. We have
to mention that the Euler number (eN ) is missing from the expression, because the 1D model
[9] is derived for one-temperature electrons, but in the two-temperature case ϕ0 appears in the
exponent. It depends on the hot-to-cold electron pressure ratio and on y , which would make
the equations more complicated. Assuming that the cold electron density is much higher than
that of the hot electrons, we can use the approximation ϕ0 ≈ 0. If we calculate the derivative of
Eq. (6.3), we get the following expression:

∂ χ f

∂ υ
=
υτ

Σ

�√

√

1+
1

k(υ,τ)
−
√

√ 1

k(υ,τ)

�

(6.4)

k(υ,τ) = exp(−υ2/2)τ2/2 (6.5)

where Σ = σ/λD. Now we use Ey(υ,τ) = (∂ χ f /∂ υ)Ex(υ,τ), where

Ex(υ,τ) =
2η(υ)

p

2+η(υ)2τ2
(6.6)

The transverse velocity (vy) of the protons at the front can be calculated if we integrate Eq.
(6.6) over time, which results in

6.3 2D plasma expansion, envelope model 72



vy(υ,τ)/Cs =
υτ

Σ

�

2−
√

√ 1

k(υ,τ)

vx

Cs

�

(6.7)

where vx = 2Cs ln(η(υ)τ/
p

2 +
p

1+ (η(υ)τ)2/2) is the longitudinal velocity. The opening
angle of the protons at the surface we obtain by dividing Eq. (6.7) with vx which gives:

Θ(υ,τ) =
υτ

Σ

�

2Cs

vx

−
√

√ 1

k(υ,τ)

�

(6.8)

This angle is approximately 3.4 times smaller than the surface angle given in Eq. (6.4). This
expression gives us the divergence of the protons at the surface and we will see that it can be
used to describe the velocity phase-space of the whole expansing proton plasma.

6.3.2 Comparison with simulations

In this section we are going to validate the model presented above by 2D PIC simulations using
laser pulse. Three different simulations were carried out where the hot electron parameters
were measured at the middle of the laser pulse and used for the normalizations. In Table 6.1 the
simulation parameters and the measured hot electron parameters are listed for the three cases.
The initial cold electron density was always the same, n0 = 8.8 · 1027 m−3, which corresponds
to 4ncr.

In the following we present the results and compare with the analytical model for different
time steps. The expansion at the rear side of the target starts at 30 fs. In Fig. 6.10, 6.11, 6.12
the analytical curves are shown by the red lines, while the simulation results are presented by
the black lines. At early time the longitudinal velocity is smaller than the predicted one, because
we use the hot electron density and temperature measured at a later time. As we can see the
discrepancy is large for small Σ, because the proton surface strongly deviates from the Gaussian
because of an unrealistic 2D effect.

Physical quantity Sim1 Sim2 Sim3
Pulse duration 300 fs 500 fs 300fs
Laser intensity 4·1023 W/m2 0.8·1023 W/m2 4·1023 W/m2

σL 1.7 µm 8.51 µm 3.4 µm
σ 2.5 µm 8 µm 4.6 µm

Debye length (λD) 7.28·10−8 m 6.51·10−8 m 7.6·10−8 m
Plasma frequency (ωpi) 8.28·1013 s−1 8.09·1013 s−1 8.73·1013 s−1

Hot electron temperature 380 keV 290 keV 460 keV
nh0/n0 0.45 0.43 0.50

Table 6.1: Parameters of 2D simulations and calculations
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Figure 6.10: Longitudinal and transversal velocities for Sim1 at the time moments: 50, 100, 200

fs.
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Figure 6.11: Longitudinal and transversal velocities for Sim2 at the time moments: 80, 200, 320

fs.

A very important feature is that the hot electron density is not realistic in transverse direction.
The physical problem has a cylindrical symmetry which means that the electrons propagate in
each direction, not only along the y coordinate. It means that nh should decrease as 1/r, where
r is the distance (radius) from the middle (axis of symmetry of the laser pulse). This effect
can not be seen in our simulations that’s why the protons are accelerated not only in the hot
spot, but farther away from this region. A real validation of the model needs a 3D simulation.
However, the good agreement close to the center indicates that we can assume the Gaussian
density profile to be a good approximation and the model is applicable in the real life.
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Figure 6.12: Longitudinal and transversal velocities for Sim3 at the time moments: 90, 150, 240

fs.

The next step is to map the entire velocity phase space of the proton bunch using the model.
For this we have to know what happens to the protons which are behind the front surface. In
Fig. 6.13, left the proton density is shown, and in the right the velocity angle along a line at
the position x = 16µm at different time moments. As we can see the protons follow the front
surface, each proton at a given position has the same angle (Θ) as the proton front had at the
time when it was at the position of the selected proton. This is illustrated by the green point,
which at t = 250 fs was at the proton front, but when it is inside the expanding plasma the
divergence is the same as it was of at the proton front earlier.

This is a very useful feature of the expanding plasma, because from the time evolution of
the proton front we can reconstruct the whole velocity phase-space. This is confirmed by a
comparison shown in Fig. 6.14 where vx versus vy normalized to the acoustic speed is plotted.
The analytical plots were produced by drawing the velocities at the surface at each time moment.
If we want to know the velocity angle in one point inside of the gray area we have to track back
Eq. (6.8) until the outer boundary is crossing that point.

6.3.3 Beam properties

Our ultimate scope is to have an expression for the envelope angle as a function of pro-
ton energy and time. For this we have to relate the longitudinal velocity of the protons to the
transverse position. This we can do if we use an approximation for τ≫ 1:

vx/Cs = ln(2η(υ)2τ2) (6.9)

The normalized velocity can be written as vx/Cs =
p

2W/Th. From this equation we can
express the υ coordinate as a function of energy and time:

υ(W,τ) =
p

2
�

ln(2τ2)−
Æ

2W/Th

�1/2
(6.10)
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Figure 6.13: Left: Contour plot of the expanding proton plasma at two time instances. Right:

The angle of the proton velocity vector with respect to the x direction along the

line x = 16µm, indicated in the left by the horizontal lines.
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Figure 6.14: Velocity phase-space of protons from Sim3 at ωpi t = 19.2. In the left plot the

analytical prediction Eqs. (6.7,6.9) is shown and in the right one is the simulation

result.

If we plug this expression into Eq. 6.8 we have the envelope angle in time as a function of
energy. For the cut-off energy we use the prediction from [9]: Wmax = 2Th(ln(

p
2τ))2. In Fig.

6.15 a comparison is presented between the model and simulations. As we can see for larger
Σ the agreement is better. Due to the filamentations occurred in the laser-plasma interaction
in the simulation we don ot have such a smooth curve as in the model and due to the above
discussed 2D effect we can expect good agreement only close to the top of the surface where
the high energy protons are.

As we know, the isothermal model gives a simple expression for the velocity as a function
of time and space: v = Cs + x/t . This does not depend on the hot electron density and the
interesting consequence of it is that along a line parallel to the target surface, the longitudinal
velocity is the same. It makes very easy to calculate the velocity components of a proton once
we know its position.
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Figure 6.15: Left: The envelope angle of protons as a function of energy at ωpi t = 20 for Sim2.

Right: The envelope angle of protons as a function of energy atωpi t = 24 for Sim3.

The dashed black line is simulation result and the full red line is the model.
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Figure 6.16: The transverse velocity along the lines : x/λD = 50,80,107 from Sim3. The time

moment is ωpi t = 22. The red dashed line is obtained from the model and the

black dots from the simulation.

We can use the model to predict and analyze the transverse phase-space of the beam, which
also depends on the longitudinal energy. The [y, y ′] phase space along one line can be obtained
numerically if we calculate the time from Eq. 6.3 when the proton front reaches a given x

position for each y coordinate. Then we insert this time in Eq. 6.8, which we multiply with
1 + x/t to obtain the normalized two-dimensional array:

�

y, y ′
�

. This numerical solution is
plotted and compared to Sim2 in Fig. 6.16. As we can see the agreement is quite good. One
can observe that the transverse phase-space of the protons is rotating to the vertical position as
the energy increases. The opening angle as a function of energy and transverse position can be
represented with contour plots, as it is shown in Fig. 6.17.

This feature of the proton beam has been observed in other simulations [82] and experiments
[21] as well. This is very important and has to be taken into account in the further simulations,
where the beam is collimated or transported to other devices. The most energetic protons reach
first the magnetic focusing element, which are close to the center and experience the less fo-
cusing because of their small divergence. As the beam penetrates the magnetic field the slower
protons close to the axis will have an even smaller opening angle, but towards the outer surface
their divergence increases up to the maximum value.
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6.3.4 Simulation with a Gaussian laser pulse

We repeated the simulation Sim3 with a Gaussian pulse and we found a negligible difference
in the results. The pulses are defined like in Fig. 4.7 and their spatial intensity contour is shown
in Fig. 6.18. The duration of the Gaussian pulse is reduced to 247 fs in order to keep the total
energy the same. The plasma interacts with a lower intensity initially, but later the temperature
and density of hot electrons will be higher, as it is shown in Fig. 6.19. The time development
of the hot electron population is very similar to the 1D case, but in 2D their longitudinal tem-
perature does not increase as much, in the simulation with the shifted pulse it stays constant at
the beginning. Probably for shorter pulses one can observe more significant effects of the pulse
shapes, because of the quickly changing intensity amplitudes.

Figure 6.18: Comparison of the normal (left) and shifted Gaussian (right) pulses in 2D.

The hot electron energy now is shared between the longitudinal and transversal plane, but the
longitudinal temperature is higher. The hot electrons spread with high velocity in the transverse
direction, and their density remains almost constant, while the total number increases.

The divergence of the protons for the two pulses is also very similar, as it is shown in Fig. 6.20.
At the beginning the acceleration is weaker with the Gaussian pulse, but later it overtakes the
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Figure 6.19: The time development of the hot electrons for the Gaussian (red) and shifted Gaus-
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acceleration induced by the shifted pulse. The higher velocity in the later stage of the expansion
indicates a faster development of the surface angle, which results in a slightly larger divergence
which we observe in the third picture.
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Figure 6.20: Longitudinal (full line) and transversal (dashed line) velocities of the protons at the

front for : 100 fs (left), 200 fs (middle), and 300 fs (right). The color legend is the

same as in Fig. 6.19

6.4 Energy conversion in 2D

Using the simulations presented in section 6.1 we can calculate the energy conversion from
the hot electrons to the protons. The absorbed energy from the laser was about 35 %. The result
in a dependence of layer thickness is shown in Fig. 6.21, left.

The obvious consequence of the new transversal dimension is the lower energy conversion
compared to the 1D case. The dependence on the layer thickness is about the same as in 1D and
it is clear that in the expansion regime most of the energy goes to the low energy protons, when
we compare the red and blue lines in Fig. 6.21. In the QSA regime almost all of the protons
have higher energy than half of the maximum energy, which is shown in Fig. 6.21, right. If we
compare this plot with the 1D case in Fig. 5.11 we observe that the energy conversion in 2D is
3-4 times smaller. The hot electrons lose about 50 % of their energy at the lateral boundaries.

6.4 Energy conversion in 2D 79



æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

0.2 0.5 1.0 2.0 5.0 10.0 20.0
0.001

0.005

0.010

0.050

0.100

0.500

D

C

æ W >Wmax�2

æ All protons

0 2 4 6 8
W (MeV)

1012

1013

1014

1015

1016

dN
/d

W
 (

1/
10

0 
ke

V
-1
)

D=0.1

D=24

Figure 6.21: Left: The energy conversion from electrons to protons. In the case of the blue line

we take into account all of the protons, but the red line shows the conversion for

the protons with energy higher than half of the cut-off energy. Right: Comparison

of the energy spectrum of the protons in the extreme cases.

6.5 3D velocity phase space of protons

As we discussed earlier the 2D simulation with Cartesian grid does not gives the correct elec-
tron density in the transverse distribution. In the reality the density profile would be much more
similar to a Gaussian function, everywhere, not only close to the center. If we assume that the
whole expansion is rotation symmetric we can easily extend the model to 3 dimensions in cylin-
drical coordinates. The evolution of the proton front will be the same at each angle and y has
to replaced with r (radius). It means that in every equation of the previous section instead of
y2 we can write y2 + z2. The velocity components in 3D will have the following form:

vx = Cs(1+ x/t); vy =
|y|
y

vxΘ cos(arctan(
z

y
)); vz =

|z|
z

vxΘ| sin(arctan(
z

y
))| (6.11)

The proton surface is defined by Eq. 6.3. The visualization of the proton bunch is done in Fig.
6.22, where the main parameters are: Cs = 0.5 · 107 m/s, λD = 1.2 · 10−7 m, ωpi t = 15 and
σ = 6µm. These four parameters are necessary to set up the initial proton bunch analytically.
The diameter of the bunch is 4σ (24 µm) and the protons with vx higher than 2Cs are included.
Basically we virtually cut out the top of the expanding proton plasma from a TNSA, where the
hot electron parameters would be: nh0 = 1.e27 m−3 and Th = 260 keV. Now we can load it into
a simulation box with the neutralizing and co-moving hot electrons. We performed a simulation
with Th0 =90 keV and let it run until 2 ps. Such a plasmoid can be easily resolved even in 3D,
because only hot electrons are present and their Debye-length is large. The grid size in each
direction is 0.5 µm and the length of the simulation box is 40 µm.

The results are shown in Fig. 6.23. As we can see the transversal velocity has increased signi-
ficantly, which results in a 18 degrees maximum opening angle. It is in good agreement with
the experimental findings at the PHELIX, where the source size is larger, but the pulse duration
is also longer than 15/ωpi (360 fs in our case). The divergence angle is proportional to the ac-
celeration time, but it is inversely proportional to the Σ, therefore in experiments it is better to
use a large laser spot and long pulse duration for higher cut-off energy and smaller divergence.
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This simulation technique allows us to study the behavior of a proton bunch in any magnetic
field (solenoid, quadrupole), which are used in the experiments. With the proposed analytical
model we can simulate the focusing and transport of the beam with realistic density and phase-
space distributions. Thus we have the connection between the first and second stages of the
LIGHT project.
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6.6 Comparison with experiments

The proton surface for low energies is not known exactly, but we can study in the divergence
angle in the high energy portion of the proton beam. From Eq. 6.10 we can conclude that the
energy is proportional to the fourth power of the transverse position. In this case we can simplify
our expression for Θ by taking k(τ)≈ τ2/2, which means that the high energy protons are very
close to the center (υ≪ 1). Thus in this limit and for τ≫ 1 the expression has the form:

Θ0(W,τ) =
υ(W,τ)

Σ

�

τ

ln(
p

2τ)
−
p

2

�

, (6.12)

where υ(W, t) is given by Eq. 6.10. The unknown parameters are the hot electron temperature
(Th) and density (nn0), the acceleration time and the σ. For Th we can use the newest scaling
law [65]:

Th =
πmec

2

2Kel l(−a2
L)

(6.13)

where Kel l is the complete elliptic integral of the first kind. The acceleration time we choose to
be 1.3 times the pulse duration. The other two parameters are independent, because the hot
electron density determines the maximum energy and the σ is responsible for the divergence.
In this scenario we remain with two fitting parameters, which can be also estimated by other
means and compared to the result of the fitting of Eq. 6.12 to the experimental measurements.

The σ of electrons we can relate to the full with at half maximum (FWHM) of the laser spot-
size, which is known, if we introduce an other parameter, the spread-angle of hot electrons
(Θel), which is the half opening angle of the hot electrons inside the target. This opening angle
is unknown, but in the experiments it is assumed to be around 10 degrees. The σ as a function
of this angle can be easily expressed as:

σ =
SFW HM

2
p

2 ln(2)
+ L t tan(Θel) (6.14)

The experimental data is taken from the PhD thesis of Frank Nuernberg [19] and Marius Scholl-
meier [83] together with the used laser and target parameters presented in table 6.2. The ex-
periments were done at three different facilities and the energy spectrum together with the
divergence angle were measured by the same RIS technique.

The measured data and the fitted curves using Eq. 6.12 are presented in Fig. 6.24. As we
expected, in the low energy part there is no agreement at all, but a perfect fit can be seen in the
high energy part. The parameters given in table 6.2 are also close to the realistic estimations
[14],[84]. As we can see in Fig. 6.23 a significant part of the transverse acceleration can happen
after the isothermal phase of the expansion (after the laser pulse). This fact is not included in
our comparison, which means that Θel is probably larger in the reality (up to 30 degrees [85]).

6.6 Comparison with experiments 82



Physical quantity Z-Petawatt LULI PHELIX
Pulse duration 480 fs 350 fs 500 fs
Laser intensity 9.2·1023 W/m2 3·1023 W/m2 5.6·1023 W/m2

Normalized laser amplitude (aL) 8.2 4.6 6.4
Spot-size (FWHM) 5 µm 8 µm 15 µm
Target thickness 25 µm 15 µm 25 µm

Hot electron temperature (Th) 1.38 MeV 766 keV 1.08 MeV
Electron spread-angle (Θel, degrees) 16 16.5 6.8

Hot electron density (nh0) 2.2·1026m−3 12·1026m−3 5.9·1026m−3

Table 6.2: Parameters of experiments and the fitting values
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Figure 6.24: The analytical expression Eq. 6.12 fitted to the experimental data using the parame-

ters shown in table 6.2.
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7 Conclusions
The aim of this work was the numerical study of the TNSA mechanism by the means of a

particle-in-cell code. Our tool was the VORPAL [56] plasma simulation software, which is a
fully relativistic electro-magnetic PIC code. Simulation data were analyzed and compared to
analytical models and scaling laws. First we studied the interaction of a laser pulse with a pure
proton plasma and the consequent plasma expansion in 1D. In the next step the double layer
structure of the target has been considered, which is more realistic.

We tested the convergence and stability of the 2D simulations in VORPAL for our physical
problem. Because of the small scale lengths in the high density plasma the TNSA simulation
in general requires very high resolution. Therefore we had to find what are the acceptable
numerical parameters, which lead to reliable, but not too time consuming simulations.

In the first part of our work we focused on the 1D view of the acceleration. First the laser-
plasma interaction was studied. We found that the energy absorption of the laser pulse is only
about 20 % and it slightly depends on the preplasma scale-length. The mass of the ions have an
impact on the hot electron temperature. If the ions are heavier, then the hot electrons can achie-
ve higher temperature, because they do not loose energy at the laser-plasma interface (front
side of the target). With protons the lower hot electrons temperature results in a weaker acce-
leration at the rear side (TNSA) [2]. However, by using protons the time scale of acceleration is
rather short, thus the simulations need less time.

The consequent acceleration from a purely proton plasma was studied and compared with
the isothermal plasma expansion theory [9] showing an acceptable agreement. The hot elec-
tron temperature and density are not constant during the laser pulse, therefore it is difficult to
compare the process to an idealized model, where everything is fixed and only hot electrons
are included. We have shown that the hot electrons become co-moving with the ions after some
cooling time, which means that their mean velocity is higher the thermal velocity.

Because of the uncertainty of the hot electron parameters, the plasma expansion simulati-
on was considered a better option. In these simulations a thermal plasma is initialized with
well-known electron parameters and with one (protons) or two ion species (protons and heavy
ions arranged in a layered structure). In the simulations with only protons we found a perfect
agreement between the results and the model [9] in the isothermal phase of the expansion.
The difference between the one- and two-temperature (with hot and cold electrons) plasma has
been studied and the expansion model could be generalized for the two-temperature case.

The next step was the investigation of a more realistic plasma, with two-ion species: bulk
heavy target and a thin proton layer (contamination layer in the reality). We could obtain a
semi-analytical equilibrium distribution of the electrons around the plasma surface, where they
trigger the charge-separation. By loading the electrons into the simulation with a density ac-
cording to these expressions, we start with an equilibrium electric field and we skip the initial
perturbations which would occur if we started with a step-like density profile. The electrons
have a non-relativistic Maxwell momentum distribution with a given temperature.

The longitudinal energy spectrum and velocity phase-space has been investigated in a depen-
dence on the proton layer thickness. A new dimensionless parameter has been introduced, the
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normalized layer thickness (D), which characterizes the layer and helps to identify the accelera-
tion regime. If the layer is very thin (D≪ 1) the quasi-static acceleration (QSA) takes place in
the Debye sheath [46], but if the layer is thick (D≫ 1) the protons get accelerated via plasma
expansion. In the latter the maximum energy scales as the square of the time logarithm, while
in the QSA regime it scales as the logarithm of the length of the electron sheath, which depends
on the maximum hot electron energy.

With this plasma expansion simulation technique we could get an insight into the longitudinal
dynamics of the proton layer detached from the heavy target. By monitoring the self-consistent
electric field we could derive an analytical expression for the energy conversion from the elec-
trons to the protons as a function of layer thickness and electron parameters. The simulation
show that after detachment a potential-drop evolves between the proton bunch and the heavy
target, which stays constant after the bunch is neutralized. The electrons with energy smaller
than this potential-drop can not contribute to the acceleration, which determines the amount of
energy transferred to the protons, if the electron energy spectrum is known.

The dependence of the proton beam properties on the layer thickness has been studied also
in the 2D Cartezian geometry using a Gaussian laser pulse. We need the source of hot electrons,
because they can escape transversally from the hot spot, not like in 1D. A series of 2D simulations
have been performed in order to investigate the transverse acceleration in a dependence on
D. We found that the longitudinal acceleration is similar to the 1D case. Due to numerical
limitations the thin layer regime could not be simulated accurately, because the electric field
profile inside the target has an extremely small scale length. In 2D we observed a more constant
hot electron density, because they can move and escape transversally and are replaced by new
laser-produced electrons with a constant flux. Their longitudinal temperature basically depends
on the laser pulse shape (Gaussian), which is time-dependent, but initially it also stays constant.

In the transversal dimension the acceleration has opposite direction in the two extreme ca-
ses. For D≪ 1 the protons feel the space-charge field cerated by the hot electron cloud, which
accelerates them towards the center. If D≫ 1 the quasi-neutral proton plasma expands, where
the peak electric field at the Gaussian proton front has a transversal component proportional
to the tangent of the proton surface. This field accelerates the protons outwards. In both cases
the focusing force inversely proportional to the width of the hot-spot. In the intermediate re-
gime there is a layer thickness for which the divergence of the protons is minimal. The large
divergence and the exponential longitudinal energy spectrum measured in experiments can not
be explained in the thin layer regime, therefore in particular for the thick layers we derived a
simple envelope model which describes the 2D plasma expansion in the case of hot-spot-width
much larger than the hot electron Debye-length. This analytical model shows good agreement
with the simulation and the transverse beam parameters can be calculated.

The model is applied also for the experimental measurements and we found that by using
realistic fitting parameters the energy resolved divergence can be reasonably well reproduced
in the high energy limit, close to the center of the Debye-sheath. The width of the Gaussian hot
electron density profile and the its absolute maximum value determine the divergence and the
cut-off energy respectively. Only these two parameters are needed to perform the fitting. The
temperature can be assumed to be uniform in space and its value is estimated [65], while for
the acceleration time we can take the well-known and widely used relation: 1.3 times the laser
pulse duration.

The energy conversion in higher dimensions is lower because the hot electrons can escape
transversally.
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The study of the TNSA using PIC simulation codes can help in the optimization of the laser
and target parameters in order to achieve more efficient acceleration and better bunch beam
parameters. According to our study, once the layer parameters are known the energy conversion
can be estimated and the divergence can be understood. By extending our 2D model to 3D we
can obtain the full velocity phase-space and density distribution of the proton bunch, which
makes possible to connect the third and fourth stages of the LIGHT project, as it is illustrated in
Fig. 1.5.
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List of symbols
α Correction factor of the electron distribution inside the plasma

γ̄ Cycle average gamma factor of the laser, γ̄ =
Æ

1+ a2
L/2

χ f The normalized proton front position, χ f = x f /λD

∆x Grid size

δE Scale length of the electric field inside the plasma

ε0 Electric permittivity in vacuum

εmax Maximum electron energy normalized to Th

λD Hot electron Debye-length,λD =
Æ

ε0Th/(q
2
e
nh0)

λL Laser wave length

λDc Cold electron Debye-length, λDc =
Æ

ε0Tc/(q
2
e
nc0)

ωL Laser frequency

ωpi Ion plasma frequency, used for the protons, ωpi = Cs/λD =
q

nh0q2
e
/(mpε0)

ωp Electron plasma frequency, ωp =
Æ

neq
2
e
/meε0

Φ Electric potential

Φd Potential-drop between the bulk plasma and the detached proton layer

Φp Ponderomotive potential, Φp = mc2(
Æ

1+ a2
L/2− 1)

Σ The normalized RMS width of the hot spot, Σ = σ/λD

σ Standard deviation of the Gaussian hot electron density profile

σL σ of the transversal intensity profile of the laser

τ Normalized time, τ =ωpi t

τacc Normalized acceleration time, τacc =ωpi tacc

Θ Envelope opening angle of the protons

υ The normalized transversal coordinate in 2D, υ = y/σ

ϕ Normalized electric potential, ϕ = qeΦ/Th

ϕ0 Normalized electric potential at the plasma surface
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ϕmax The lowest normalized potential value at the end of the Debye-sheath

a A parameter of the 2T plasma, which defines the speed of the rarefaction wave, a =
p

1+ nc0/nh0/r

aL Normalized laser electric field amplitude, a2
L
=

IL0[W/cm2]λ2
L[µm2]

1.37·1018

C Energy conversion from electrons to protons

c Speed of light

Cs Acoustic speed of the protons in a 1T plasma, Cs =
Æ

Th/mp

Cs2 Velocity of the rarefaction wave in a 2T plasma, Cs2 = aCs

Cthick Energy conversion from electrons to protons in the thick layer regime

Cthin Energy conversion from electrons to protons in the thin layer regime

D Normalized layer thickness, D =
r

1+
nc0Th

nh0Tc

d

λD

d Thickness of the proton layer

E Electric field

E0 Peak electric field at the plasma surface, E0 =
p

nh0Th/ε0

E f Peak electric field at the ion front

IL0 The peak laser intensity

Le Length of the Debye-sheath

Ln Density scale length

Lp Total length of the plasma slab

ls Laser skin depth

L t Target thickness

me Electron mass

n0 Plasma density, n0 = nh0+ nc0

np Proton density

nc0 Cold electron density inside the plasma

ncr Critical density

nh0 Hot electron density, inside the plasma

Pe Electron pressure

qe Elementary charge, in the figures its symbol is e.
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r A parameter of the 2T plasma, which defines the scale length potential profile inside the
plasma, r =

p

1+ (nc0/nh0)(Th/Tc)

SFW HM Spot size of the laser

Tc Cold electron temperature

Th Hot electron temperature

tL Laser pulse duration

tacc Acceleration time in an expanding plasma, tacc = Lp/Cs

t1D
acc

Acceleration time in the expansion of a plasma heated by a laser, 1D case, t1D
acc
= tL +

Lt

2Cs

t ex p
acc

Efective acceleration time used in the experiments, t ex p
acc
= 1.3tL

u Velocity of the proton shock in the hole boring

v f Proton front velocity

vp Proton velocity

vth Thermal velocity of electrons

W Kinetic energy of the protons

We Kinetic energy of the electrons

x f Position of the proton front
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[31] A. Frank, A. Blažević, P. L. Grande, K. Harres, T. Heßling, D. H. H. Hoffmann, R. Knobloch-
Maas, P. G. Kuznetsov, F. Nürnberg, A. Pelka, G. Schaumann, G. Schiwietz, A. Schökel,
M. Schollmeier, D. Schumacher, J. Schütrumpf, V. V. Vatulin, O. A. Vinokurov, and M. Roth.
Energy loss of argon in a laser-generated carbon plasma. Phys. Rev. E, 81:026401, Feb
2010.

[32] J. E. Crow, P. L. Auer, and J. E. Allen. The expansion of a plasma into a vacuum. Journal

of Plasma Physics, 14:65–76, August 1975.

[33] J. Denavit. Collisionless plasma expansion into a vacuum. Physics of Fluids, 22:1384–1393,
July 1979.

[34] S Betti, F Ceccherini, F Cornolti, and F Pegoraro. Expansion of a finite-size plasma in
vacuum. Plasma Physics and Controlled Fusion, 47(3):521, February 2005.

[35] P. Mora. Thin-foil expansion into a vacuum. Phys. Rev. E, 72:056401–056406, Nov 2005.

[36] T. Grismayer, P. Mora, J. C. Adam, and A. Héron. Electron kinetic effects in plasma expan-
sion and ion acceleration. Phys. Rev. E, 77:066407–066418, Jun 2008.

[37] P. Mora and T. Grismayer. Rarefaction acceleration and kinetic effects in thin-foil expansion
into a vacuum. Phys. Rev. Lett., 102:145001–145005, April 2009.

Bibliography 95



[38] B. Bezzerides, D. W. Forslund, and E. L. Lindman. Existence of rarefaction shocks in a
laser-plasma corona. Physics of Fluids, 21:2179–2186, December 1978.

[39] V T Tikhonchuk, A A Andreev, S G Bochkarev, and V Yu Bychenkov. Ion acceleration
in short-laser-pulse interaction with solid foils. Plasma Physics and Controlled Fusion,
47(12B):B869, 2005.

[40] A. Diaw and P. Mora. Rarefaction shock in plasma with a bi-maxwellian electron distribu-
tion function. Phys. Rev. E, 84:036402–036411, Sep 2011.

[41] A. Diaw and P. Mora. Thin-foil expansion into a vacuum with a two-temperature electron
distribution function. Phys. Rev. E, 86:026403–026410, Aug 2012.

[42] A. P. L Robinson, A. R. Bell, and R. J. Kingham. Effect of target composition on proton
energy spectra in ultraintense laser-solid interactions. Phys. Rev. Lett., 96:035005–035009,
Jan 2006.

[43] V. Yu. Bychenkov, V. N. Novikov, D. Batani, V. T. Tikhonchuk, and S. G. Bochkarev. Ion
acceleration in expanding multispecies plasmas. Physics of Plasmas, 11(6):3242–3251,
May 2004.

[44] B. J. Albright, L. Yin, B. M. Hegelich, Kevin J. Bowers, T. J. T. Kwan, and J. C. Fernán-
dez. Theory of laser acceleration of light-ion beams from interaction of ultrahigh-intensity
lasers with layered targets. Phys. Rev. Lett., 97:115002–115006, Sep 2006.

[45] A. V. Brantov, V. T. Tikhonchuk, V. Yu. Bychenkov, and S. G. Bochkarev. Laser-triggered
ion acceleration from a double-layer foil. Physics of Plasmas, 16(4):043107–043115, April
2009.

[46] Maurizio Lontano and Matteo Passoni. Electrostatic field distribution at the sharp interface
between high density matter and vacuum. Physics of Plasmas, 13(4):042102–042109, April
2006.

[47] M. Passoni and M. Lontano. One-dimensional model of the electrostatic ion acceleration
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