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APPROXIMATION ALGORITHMS FOR FAULT TOLERANT
FACILITY ALLOCATION∗

HONG SHEN† AND SHIHONG XU‡

Abstract. Given nf sites, each equipped with one facility, and nc cities, fault tolerant facil-
ity location (FTFL) [K. Jain and V. V. Vazirani, APPROX ’00: Proceedings of the Third Inter-
national Workshop on Approximation Algorithms for Combinatorial Optimization, Spinger, New
York, 2000, pp. 177–183] requires computing a minimum-cost connection scheme such that each
city connects to a specified number of facilities. When each city connects to exactly one facility,
FTFL becomes the classical uncapacitated facility location problem (UFL) that is well-known NP
hard. The current best solution to FTFL admits an approximation ratio 1.7245 due to Byrka,
Srinivasan, and Swamy applying the dependent rounding technique announced recently [Proceed-
ings of IPCO, 2010, pp. 244–257], which improves the ratio 2.076 obtained by Swamy and Shmoys
based on LP rounding [ACM Trans. Algorithms, 4 (2008), pp. 1–27]. In this paper, we study a
variant of the FTFL problem, namely, fault tolerant facility allocation (FTFA), as another gen-
eralization of UFL by allowing each site to hold multiple facilities and show that we can obtain
better solutions for this problem. We first give two algorithms with 1.81 and 1.61 approxima-
tion ratios in time complexity O(mR logm) and O(Rn3), respectively, where R is the maximum
number of facilities required by any city, m = nfnc, and n = max{nf , nc}. Instead of apply-
ing the dual-fitting technique that reduces the dual problem’s solution to fit the original problem
as used in the literature [K. Jain et al., Journal of the ACM, 50 (2003), pp. 795–824; K. Jain,
M. Mahdian, and A. Saberi, STOC’02: Proceedings of the 34th Annual ACM Symposium on the
Theory of Computing, New York, 2002, pp. 731–740; A. Saberi et al., Approximation, Random-
ization, and Combinatorial Optimization: Algorithms and Techniques, Springer, New York, 2001,
pp. 127–137], we propose a method called inverse dual-fitting that alters the original problem to fit
the dual solution and show that this method is more effective for obtaining solutions of multifactor
approximation. We show that applying inverse dual-fitting and factor-revealing techniques our second
algorithm is also (1.11,1.78)- and (1,2)-approximation simultaneously. These results can be further
used to achieve solutions of 1.52-approximation to FTFA and 4-approximation to the fault tolerant
k-facility allocation problem in which the total number of facilities is bounded by k. These are
currently the best bifactor and single-factor approximation ratios for the problems concerned.

Key words. algorithms, theory, approximation algorithms, facility location, k-median problem

AMS subject classifications. 15A15, 15A09, 15A23

DOI. 10.1137/090781048

1. Introduction. The classical facility location problem [26] has been widely
studied in the field of operations research. In this problem, we are given a set F of nf

sites, each holding one facility, and a set C of nc cities; each facility i ∈ F is associated
with a nonnegative number fi as the facility operating cost and each facility-city
pair (i, j) is associated with a connection cost cij to access facility i from city j,
i ∈ F , j ∈ C. The objective is to open a subset of the facilities in F and connect each
city to an open facility so that the total cost is minimized. In this paper, we study a
generalization of the facility location problem, namely, fault tolerant facility allocation
(FTFA), in which each site allows multiple facilities (replicas) to be opened and each
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FAULT TOLERANT FACILITY ALLOCATION 1585

city requires a desired number of connections for the purpose of fault tolerance and
efficiency (parallel access). That is, city j ∈ C establishes rj connections to open
facilities. FTFA requires us to allocate to each site a proper number of facilities and
further to each city the required number of facilities so that the total combined facility
cost and connection cost is minimized. Because a city may require connection to an
arbitrary number of facilities, each site is assumed to have an unlimited supply of
facilities. The FTFA problem can be formulated by the following integer program:

(1.1)

minimize
∑

i∈F fiyi +
∑

i∈F
∑

j∈C cijxij

subject to ∀j ∈ C : ∑i∈F xij ≥ rj ,
∀i ∈ F , j ∈ C : yi ≥ xij ,
∀i ∈ F , j ∈ C : xij , yi ∈ Z+.

In this formulation, nonnegative integer yi is the number of facilities deployed at site
i and xij is the number of connections established between site i and city j. The first
constraint ensures quality of service w.r.t. each city’s connection requirement, i.e.,
city j’s established connections must satisfy its required connection degree, achieving
the desired fault tolerance. The second constraint ensures there are enough opened
facilities at site i to be connected from city j. In this paper, we consider the metric
version of the problem, i.e., the connection costs satisfy the triangle inequality.

Definition 1.1. An algorithm is a bifactor (λf , λc)-approximation or a single-
factor max (λf , λc)-approximation for FTFA iff for every instance I of FTFA and
any feasible solution SOL of I with facility cost FSOL and connection cost CSOL, the
total cost produced from the algorithm is at most λfFSOL + λcCSOL, where λf and
λc are constants greater than or equal to one.

FTFA is similar to the well-studied fault tolerant facility location (FTFL) prob-
lem [16, 10, 11, 30], which has the same objective function and constraints as FTFA
except the range of variants: xij and yi are nonnegative integers (i.e., Z+) in FTFA
but binary integers (i.e., 0 or 1) in FTFL for all i ∈ F , j ∈ C. Without the restriction
on the maximum number of facilities that can be opened at each site, FTFA is less
constrained and hence incurs a smaller total cost than FTFL. The FTFA problem
finds applications in grouped resource allocation in distributed systems and networks
that require both reliability and efficiency, where reliability is provided through main-
taining connections to different sites and efficiency is achieved by parallel access to
different facilities within a group at the same site. These resources include data
storage, server replicas/mirrors, virtual machines, and various kinds of services. For
example, in a cloud system composed of multiple data centers (sites), each holding
a large amount (103 ∼ 105) of stored data organized in stacks and racks, to satisfy
clients’ different needs, the system should allow clients to access both data stores
across different data centers for reliability and different data stores within a data cen-
ter for efficiency. Because the number of data stores in each data center is huge, an
unlimited supply of facilities at each site is a reasonable assumption. Other applica-
tions include surrogate server deployment in a content distribution network, where
multiple facilities (surrogate servers or asynchronous transfer modes (ATMs) in an
ATM network) can be deployed at one site if necessary and which share the duty to
serve cities together. We notice that the FTFA problem becomes the classical unca-
pacitated facility location (UFL) problem when connectivity requirement rj = 1 for
all j ∈ C. It is not hard to see that the hardness of UFL, FTFA, and FTFL complies
with the following relation:

UFL ⊆ FTFA ⊆ FTFL.
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1586 HONG SHEN AND SHIHONG XU

Here, the second inclusion is implied by a special FTFL problem which has a set of
facilities distributed by groups. Let F ′ = F × {1, 2, . . . , R}, where R = maxj∈C rj is
the number of identical facilities in each group. Using this setting, the FTFA problem
can be solved by FTFL algorithms because the number of facilities at any site is no
more than R in any optimal solution of the FTFA problem. However, we notice that
the existing algorithms for FTFL are not as efficient as the algorithms for UFL, in
both approximation ratio and time complexity: most FTFL algorithms employ an
LP rounding which is rather time consuming (typically requires O(n7) time) and the
best known approximation ratio for FTFL is 1.725, which is worse than the ratio 1.5
for UFL. Therefore, in order to achieve a better result than that from applying FTFL
algorithms directly, we must take full advantage of existing methods for UFL in solving
the FTFA problem. In fact, we can transform the FTFA problem into a UFL problem
by replacing F by the aforementioned F ′ and C by C′ = {(j, p), j ∈ C, 1 ≤ p ≤ rj},
where (j, p) is the pth port of city j, with an additional constraint. In this setting, we
need to ensure no parallel connections are made between any facility-city pair, i.e.,
different ports of a city must be connected with different facilities. This constraint is
nontrivial and as a result FTFA becomes harder to solve than UFL, yielding the first
inclusion and hence implying its NP-hardness from that of UFL. In the subsequent
sections, we will show how to deal with this constraint and obtain better single-factor
and bifactor approximation solutions to FTFA than that for FTFL.

1.1. Related work. The facility location problem and its variants occupy a
central place in operations research [26]. For the simplest problem—the maximiza-
tion version of UFL to maximize the total profit when all demands (connections) are
satisfied, Cornuejols, Fisher, and Nemhauser [9] obtained a (1− e−1)-approximation
algorithm. The first approximation algorithm for the minimization version to mini-
mize the total cost for satisfying all demands is a greedy algorithm due to Hochbaum
[12], which is O(log n)-approximation in the general (nonmetric) case. The UFL prob-
lem has found extensive applications since these results and its metric version has been
most widely studied. In metric UFL, the function of connection cost forms a metric,
i.e., the connection costs between facilities and cities satisfy the triangle inequality.
Existing algorithms for themetric UFL problem mainly apply two types of techniques,
LP rounding and primal-dual, forming two groups of algorithms, respectively.

The first constant-factor approximation algorithm for the metric UFL problem
was due to Shmoys, Tardos, and Aardal [28] based on the LP rounding technique.
They gave a 3.16-approximation algorithm using the filtering technique of Lin and
Vitter [20] to round the optimal solution of a linear programming relaxation. This
ratio was improved by Chudak and Williamson to 1.736 [8] and by Sviridenko to 1.582
[29] through rounding an optimal fractional solution to a linear program.

In the line of primal-dual algorithms, three significant results were prosented dur-
ing about the same period: Jain and Vazirani’s algorithm (JV) [17], the algorithm of
Mahdian, Markakis, and Saberi (MMS) [21], and the Jain–Mahdian–Saberi algorithm
(JMS) [14], achieving approximation ratios of 3, 1.861, and 1.61, respectively. Differ-
ent from the traditional primal-dual scheme [15, 31], dual-fitting relaxes the feasibility
of the dual solution—if the dual solution becomes feasible after being shrunk by a fac-
tor, then this factor is the approximation ratio of the algorithm. Jain et al. studied
the trade-off [13] between facility and connection cost and gave a series of bifactor
approximation ratios. Charikar and Guha [5] improved the result of the JV algo-
rithm to 1.853 and 1.728 applying a primal-dual and greedy augmentation technique.
Mahdian, Ye, and Zhang [23] improved the JMS algorithm to 1.52-approximation by
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FAULT TOLERANT FACILITY ALLOCATION 1587

adding a cost scaling and greedy augmentation procedure to it. Byrka [2] modified the
Chudak and Shmoys algorithm [7] and obtained a new algorithm which is the first one
that touches the approximability limit. Their new approach gave a 1.5-approximation
algorithm, which is currently the best known for the problem.

FTFL [16] is a generalization of UFL, where connectivities at different cities (e.g.,
the number of distinct facilities that serve a city) are specified to meet fault-tolerant
requirements. Guha, Meyerson, and Munagala obtained a 3.16-approximation algo-
rithm by rounding the optimal fractional solution to the problem and further im-
proved the result to 2.41 by employing a greedy local improvement step [11]. In the
uniform connectivity case when all cities have the same connectivity requirement, Jain
et al. [13] showed that MMS and JMS algorithms can be adapted to FTFL with the
same approximation factors of 1.861 and 1.61. For the nonuniform connectivity case
(general case), Swamy and Shmoys presented a 2.076-approximation algorithm ap-
plying LP rounding [30], and Byrka, Srinivasan, and Swamy [3] achieved the current
best ratio of 1.7245 using dependent rounding.

When allowing each site to hold multiple facilities, FTFL becomes FTFA, which is
defined in this paper as another generalization of UFL. For FTFA, we can transform it
to FTFL by replacing each multiple-facility site with multiple single-facility sites and
hence immediately have 1.61- and 1.7245-approximation solutions for the uniform-
connection case and general case, respectively. There is no prior result that can
achieve a ratio better than 1.7245 for solving the general case FTFA.

Guha and Khuller proved that the best possible approximation ratio (lower bound)
for UFL is 1.463 [27], assuming NP � DTIME[nO(log logn)]. This result also holds for
the fault tolerant version of the problem.

The k-median problem [20] has also been studied extensively [1, 4, 6] and the best
known approximation ratio for this problem is 3 + ε [1]. Jain and Vazirani studied a
new problem called k-facility which is a combination of the k-median and UFL prob-
lems and achieved a 6-approximation algorithm [17] and further a 4-approximation
[13] based on the JMS algorithm [14, 13]. The fault tolerant k-facility problem was
also studied by Swamy and Shmoys [30] and they achieved a 4-approximation algo-
rithm for the uniform connectivity case. Performance of their algorithm is unknown
for the general nonuniform connectivity case.

1.2. Our technique. Consider an integer program containing k ≥ 1 items in
the objective function. For the facility location problem, k = 2—the facility cost
and connection cost. Suppose an optimal solution OPT1 =

∑k
p=1 I

∗
p , i.e., I

∗
p is the

cost for the pth item in the optimal solution. We say a solution SOL is (λ1, . . . , λk)-

approximation if SOL ≤ ∑k
p=1 λpI

∗
p for any optimal solution. When k = 1 or λ1 =

λ2 = · · · = λk, we say it is a single-factor approximation solution and otherwise a
multifactor approximation solution.

Consider a minimization problem and a primal-dual algorithm—an algorithm that
is iteratively making primal and dual updates using linear programming relaxation
of the problem and its dual. Let the primal solution and dual solution have the
same value for objective function in the process of evolution. As pointed out in the
literature, the dual solution produced under this condition is, in general, infeasible
to the dual problem (otherwise, we would be able to find an optimal solution for
the primal problem). Instead of shrinking the dual solution by a factor in order to
make it fit the primal problem as used in the dual-fitting technique [14, 13, 25], we
propose a method called inverse dual-fitting that constructs an additional instance of
the primal problem to make the problem fit its dual solution. Inverse dual-fitting has
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1588 HONG SHEN AND SHIHONG XU

the same effect as dual-fitting for single-factor approximation but is more powerful in
multifactor approximation as shown below.

Formally, for a primal problem of minimization, we scale the coefficients in the
objective function (i.e., the right side of the constraints in the dual problem) with

constant λp for the pth item and obtain OPT2 ≤
∑k

p=1 λpI
∗
p , where OPT2 is the

optimal solution to the scaled instance of the primal problem. Actually, we can regard
the primal optimal solution (now with total cost

∑k
p=1 λpI

∗
p ) as a feasible solution to

the scaled instance. Due to the duality theory which states that the maximum of the
dual problem is at most the minimum of the primal problem, we have SOLD ≤ OPT2.
As such, we only need to ensure that SOLP = SOLD and SOLD is a feasible dual
solution to the scaled instance to achieve the result of (λ1, . . . , λk)-approximation,

i.e., SOLP ≤
∑k

p=1 λpI
∗
p . The first condition is usually ensured by the algorithm—

for our algorithms, the total cost is equal to the total credit paid by all cities. In
order to ensure the feasibility of SOLD (to the scaled instance), we need proper
constants λp, 1 ≤ p ≤ k. A factor-revealing technique is usually used to derive these
constants.

Our inverse dual-fitting technique has shown successful applications in solving
other relevant optimization problems in addition to FTFA. These problems include
constrained fault-tolerant resource allocation, where each site has a limited supply of
resources [18], and reliable resource allocation, where each city is associated with a
fractional reliability for connection [19].

1.3. Our results. We use an inverse dual-fitting technique to design and analyze
two algorithms for the metric FTFA problem in the general case. Both algorithms run
throughR phases and in each phase employ a subroutine to pick the most cost-effective
star iteratively. The concept of cost efficiency is used by the MMS algorithm [25]
which is a single-phase algorithm for UFL. The difference here is that our algorithms
comprise multiple phases and in each phase deal with a distinct constraint to ensure
the feasibility of the solution. To satisfy the constraint, our algorithms need to process
three types of events: one for facilities opened in a previous phase, one for facilities
opened in the current phase and another for opening a new facility in the current
phase. Combined with factor-revealing LPs in the literature, our algorithms achieve
1.81 and 1.61 approximation factors within running time O(mR logm) and O(Rn3)
respectively, where m = nfnc and n = max{nf , nc}.

The second algorithm aforementioned is also shown to be (1.11,1.78)- and
(1,2)-approximation simultaneously by applying the techniques of inverse dual-fitting
and factor-revealing. These results are further used to obtain respectively a 1.52-
approximation algorithm to FTFA and a 4-approximation algorithm for the fault
tolerant k-facility allocation (FTKFA) problem, which has an upper bound on the
total number of facilities, i.e., k, on the basis of FTFA.

The remainder of the paper is organized as follows. In section 2 and section 3, we
present the single-factor and bifactor approximation algorithms for solving the FTFA
problem. In section 4, we show how to extend the bifactor approximation solution for
FTFA to solve the problem of FTKFA in which the number of facilities has an upper
bound k. Section 5 discusses some generalizations of FTFA for future study.

2. Single-factor approximation.

2.1. Problem formulation. In order to obtain a suitable dual for formula-
tion (1.1) from which a satisfactory approximation ratio can be derived, we need to
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FAULT TOLERANT FACILITY ALLOCATION 1589

first transform (1.1) into an equivalent formulation by applying a greedy approach of
multiphase connection establishment as follows.

Assume each site has R facilities and city j has rj ports. All ports of city j must
be connected in the order 1 to rj and all facilities at a site can be opened, if necessary,
in the order 1 to R. We use a multiphase algorithm and connect one port for each
city (if it is not fully connected) in one phase. More specifically, we establish one
connection for all cities in Cp = {j ∈ C : rj ≥ p} in phase p ∈ R = {1, 2, 3, . . . , R}.
We use vector ypi ∈ {0, 1} to denote whether the pth facility at site i is opened in
phase p and xp

ij ∈ {0, 1} whether the pth port of a city is connected with a facility at
site i. It is clear that yi =

∑
p∈R ypi , xij =

∑
p∈R xp

ij , and xp
ij = 0 if p > rj . With the

above, program (1.1) can be rewritten as

(2.1)

minimize
∑

i∈F
∑

p∈R(fiy
p
i +

∑
j∈C cijx

p
ij)

subject to ∀p ∈ R, j ∈ Cp :
∑

i∈F xp
ij ≥ 1,

∀p ∈ R, j ∈ Cp, i ∈ F :
∑

p∈R ypi ≥
∑

p∈R xp
ij ,

∀p ∈ R, j ∈ Cp, i ∈ F : xp
ij , y

p
i ∈ {0, 1}.

Note that the second constraint does not necessarily imply ypi ≥ xp
ij for any p ∈ R

which otherwise will make the problem a simple aggregation of the UFL problem.
Now consider the situation that ypi < xp

ij , i.e., y
p
i = 0 and xp

ij = 1 for some p. Since∑
p∈R ypi ≥

∑
p∈R xp

ij , for any (i, j, p) with ypi < xp
ij there must exist a q < p that

satisfies yqi − xq
ij > 0. This observation implies that a connection can be established

with a facility opened at an earlier phase. Let fp
i be the cost paid to open a facility

at site i in phase p. That is,

fp
i =

{
fi if a new facility of site i must be opened in phase p;

0 otherwise.

As an open facility can be accessed for free, the cost paid to the site is equal to zero
if no new facility has to be opened. We use zpi ∈ {0, 1} to denote whether site i is
involved in the new established connections in phase p, i.e., zpi = 1 if

∑
j∈Cp x

p
ij > 0

and 0 otherwise. Apparently, ypi = 1⇒ zpi = 1 because for any i, maxj∈C
∑p

q=1 x
q
ij >∑p−1

q=1 y
q
i ≥ maxj∈C

∑p−1
q=1 x

q
ij implies

∑
j∈C x

p
ij > 0, i.e., zpi = 1. Therefore, we have

zpi ≥ ypi for any i and p. This yields fp
i = fi if ypi < zpi and 0 otherwise. Since

the objective of program (2.1) carries a minimization function and fp
i z

p
i ≥ fp

i y
p
i ≥ 0,

it is easy to see that with proper case reduction we can equivalently transform the
objective to

minimize
∑
p∈R

∑
i∈F

(
fp
i z

p
i +

∑
j∈Cp

cijx
p
ij

)

and at the same time the second constraint to

zpi ≥ xp
ij ∀p ∈ R, j ∈ Cp, i ∈ F .

As a result, program (2.1) can be rewritten as

(2.2)

minimize
∑

p∈R
∑

i∈F(f
p
i z

p
i +

∑
j∈Cp cijx

p
ij)

subjected to ∀p ∈ R, j ∈ Cp :
∑

i∈F xp
ij ≥ 1,

∀p ∈ R, j ∈ Cp, i ∈ F : zpi − xp
ij ≥ 0,

∀p ∈ R, j ∈ Cp, i ∈ F : xp
ij , z

p
i ∈ {0, 1}.

Noticing
∑

p∈R zpi is not necessarily equal to yi, we set yi = maxj∈C
∑

q∈R xq
ij .
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1590 HONG SHEN AND SHIHONG XU

The LP-relaxation of this program can be obtained by allowing xij and yi to
be nonnegative real numbers. The dual problem of this LP relaxation can be easily
derived as the following form of maximizing the aggregated credits offered from all
the cities making connections in phase p:

(2.3)

maximize
∑

p∈R
∑

j∈Cp α
p
j

subjected to ∀p ∈ R, i ∈ F :
∑

j∈Cp β
p
ij ≤ fp

i ,

∀p ∈ R, i ∈ F , j ∈ Cp : αp
j − βp

ij ≤ cij ,

∀p ∈ R, i ∈ F , j ∈ Cp : αp
j , β

p
ij ≥ 0.

Here, following the same interpretation as in [25, 13], αp
j stands for the total credit

offered from city j and βp
ij for the part of αp

j contributed toward opening a facility at
site i during phase p.

Lemma 2.1. For any feasible solution (α, β) to dual problem (2.3) and feasible solu-
tion (x, y) to primal problem (2.1), we have

∑
p∈R

∑
j∈Cp α

p
j≤
∑

i∈F (
∑

j∈C cijxij+fiyi).
Proof. We derive the inequality by applying all conditions in the constraints of

the primal and dual:

∑
p∈R

∑
j∈Cp

αp
j ≤

∑
p∈R

∑
j∈Cp

(∑
i∈F

xp
ij

)
αp
j(

because
∑
i∈F

xp
ij ≥ 1 [(2.2) constraint 1]

)

≤
∑
p∈R

∑
i∈F

∑
j∈Cp

[(αp
j − βp

ij)x
p
ij + βp

ijz
p
i ]

(because zpi ≥ xp
ij [(2.2) constraint 2])

≤
∑
p∈R

∑
i∈F

( ∑
j∈Cp

cijx
p
ij + fp

i z
p
i

)
(
because αp

j − βp
ij ≤ cij [(2.3) constraint 2],

∑
j∈Cp

βp
ij ≤ fp

i [(2.3) constraint 1],

and xp
ij , z

p
i ≥ 0 [(2.3) constraint 3]

)

=
∑
i∈F

(∑
j∈C

cijxij + fiyi

)
.

According to the weak duality theorem, finding a feasible solution to the primal
problem (2.2) is transformed into that to the dual problem (2.3), because the latter’s
approximation ratio (to the optimal solution of the primal) will never exceed the
former’s.

2.2. The algorithm. We now show how to construct an effective algorithm for
solving the dual problem (2.3). An interesting observation is that we can extract
p ∈ R in the constraints of the dual problem and this even holds for the objective
function because αp

j = 0 when p > rj . We utilize this observation to design a high-level
algorithm which decomposes the problem into R subproblems and processes them in
order. Specifically, all ports are categorized into groups according to their port IDs,
and Cp = {j ∈ C, rj ≥ p}. For simplicity, let Xb

ij =
∑b

p=1 x
p
ij and ybi =

∑b
p=1 y

p
i , 1 ≤
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b ≤ R. Our algorithm evolves the solution from the initial stage (suppose X0
ij = 0

and Y 0
i = 0), through R phases, to XR

ij and Y R
i . In each phase p ∈ R, the algorithm

establishes one connection for each city in Cp. A facility opened in one phase at site
i can be used for free by any city j in a later phase, suppose p, if this usage does not
violate the constraint Xp

ij ≤ Y p
i .

The process of our algorithm is presented in Algorithm 1. In the pth phase,
the solution inherited from the last phase, i.e., (Xp−1

ij , Y p−1
i ), as well as F and Cp,

are used as the input of the subroutine. Note that cities with rj < p are already
fully connected and therefore not included in Cp. Suppose the new opened facilities
and new established connections are denoted by (xp

ij , y
p
i ); then in the next phase, we

have Xp
ij = Xp−1

ij +xp
ij and Y p

i = Y p−1
i + ypi as part of the input. The algorithm ends

when all R phases are finished.

Algorithm 1. 1.861-approximation FTFA.

Input: fi, rj , cij , i ∈ F , j ∈ C.
Output: xij , yi, i ∈ F , j ∈ C.
(1) Initialization: X0

ij ← 0, Y 0
i ← 0, C1 = C, p← 1.

(2) While p ≤ R:
(a) Invoke the pth phase connection with input ({Xp−1

ij }, {Y p−1
i },F , Cp) and

produce output ({Xp
ij}, {Y p

i }).
(b) Set p← p+ 1.

(3) Set xij ← XR
ij and yi ← Y R

i , i ∈ F , j ∈ C.

In the pth phase algorithm, we use the notation of a star and a definition of cost
efficiency. A star is composed of a facility and a group of cities that are connected
with the facility. Consider the time before the new star is selected; the cost efficiency
of a star is defined to be

(2.4) eff(i, p, C′) =
fp
i +

∑
j∈C′ ci,j

|C′| ,

where fp
i is the cost paid to open a facility at site i in phase p and C′ is the set of mem-

ber cities in the star. The two items in the numerator represent the total cost of the
star and therefore the cost efficiency of a star is actually the average payment of all
member cities to establish the star. Let U ⊆ Cp be the set of not fully connected cities
in phase p, and C′ ⊆ U is a set of cities chosen by the algorithm to be connected with
facility i. Because an open facility can be accessed for free under certain conditions,
the cost paid to the facility is equal to zero if no new facility has to be opened.

Algorithm 2. The pth phase connection.

(1) Initially set U ← Cp.
(2) While U 
= ∅:

(a) Find the most cost-efficient star (i, p, C′) according to formula (2.4).
(b) Open a facility at site i if ∃j ∈ C′: Xp−1

ij = Y p−1
i , and establish a connection

to the facility for all cities in C′.
(c) Set fi ← 0, U ← U \ C′.

Now the dual variables, i.e., αp
j and βp

ij , can be used to find the most cost-
efficient star. We use the same interpretation which was first used to interpret their
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1592 HONG SHEN AND SHIHONG XU

fi = ∑
j∈C ′ max(t − cij, 0)

αp
j = t

j1 j2 j3 j4 ... jk jk+1 jk+2

ci,jk+2t

ci,jk−1

ci,j1
ci,j2

Fig. 2.1. Credit offers for opening a facility.

counterparts in UFL as in [25, 13]: αp
j is the total cost (including the connection

cost and the contribution to open facilities) paid by the pth port of city j and βp
ij

is the contribution received by facility i from the pth port of city j. As such, the
most cost-effective star in each iteration of the subroutine can be found in this way:
if the dual variables of all unconnected cities are raised simultaneously with time t,
the most cost-effective star will be the first star (i, p, C′) such that∑

j∈C′
max(t− cij , 0) = fp

i ,

where αp
j = t and βp

ij = max(t− cij , 0).
The pth phase connection opens the most cost-efficient star repeatedly until all

the cities in Cp are connected with a facility. Once a city is connected, it is removed
from U . In contrast, a facility is never removed; instead it can be reused for free
under certain conditions. In fact, the subroutine is very close to the MMS algorithm
[21] for the UFL problem. The difference is here we need to ensure the feasibility of
the solution by maintaining Xp

ij ≤ Y p
i for any i ∈ F , p ∈ R, j ∈ Cp. For simplicity, we

set ypi ← 1 when a new facility at site i is opened and xp
ij ← 1 when a new connection

between city j and facility i is established. In order to maintain the feasibility of a
solution, i.e., Xp

ij ≤ Y p
i , we consider three cases for any j ∈ Cp:

1. Xp−1
ij < Y p−1

i . In this case, feasibility of the solution is maintained if we set
xp
ij ← 1. There is no need to open a new facility at site i and fp

i = 0. We
say facility i is available to be connected by city j.

2. Xp−1
ij = Y p−1

i and ypi = 0. In this case, we must open a new facility at site i,
i.e., set ypi ← 1 in order to establish a new connection for city j and therefore
fp
i = fi. The operating cost is shared between a set of cities in C′ that need
to connect to facility i.

3. Xp−1
ij = Y p−1

i and ypi = 1. In this case, a new facility has been opened by
some cities before j in C′ during the pth phase, so city j can access facility i
without paying any operating cost. Feasibility of the solution is maintained
if we set xp

ij ← 1 and fp
i = 0.

In these three cases, only the second one involves more than one city. Suppose each
facility has a list of cities that are ordered according to their connection costs to
the facility. As showed in Figure 2.1, the most cost-efficient star will consist of a
facility and a set, containing the first k cities in this order, for some k. Therefore the
algorithm can be finished efficiently in polynomial time.

Here, we use three types of events to process these cases respectively. Note that
a city will contribute to opening a facility only when it has accumulated more credit
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(increases in time) than the connection cost to an eligible open facility, and a star
is formed only when a set of unconnected cities collectively makes a contribution fi
to open a facility at site i. We implement the pth phase connection as Algorithm 3
based on these observations.

Algorithm 3. Implementation of the pth phase connection.

(1) Initialization: t← 0, U ← Cp, αp
j = 0 for all j ∈ U .

(2) While U 
= ∅, increase time t until an instance of Event-1 or Event-2 or Event-3
occurs. If two events occur at the same time, process them in an arbitrary order.
(a) Event-1: A city j ∈ U has enough credit to be connected with an available

site, suppose i, i.e., t = cij and Xp−1
ij < Y p−1

i . Set Xp
ij ← Xp−1

ij + 1.
(b) Event-2: A site i ∈ F receives enough payment from cities in U to open

its pth facility, i.e.,
∑

j∈U max(t − cij , 0) = fi. Set Y p
i ← Y p−1

i + 1 and

Xp
ij ← Xp−1

ij + 1 for any j ∈ C′ = {j ∈ U : cij ≤ t}.
(c) Event-3: A city j ∈ U has enough credit to be connected with a newly opened

facility, i.e., t = cij . Set X
p
ij ← Xp−1

ij + 1.
(d) For all cities j ∈ U , set αp

j ← t and remove j from U if it is connected with a
facility in phase p.

Remark 2.2. The output of Algorithm 1 is independent of the order of the cities
processed. For example, we may also process cities in order CR, CR−1, . . . , C1.

2.3. Analysis.

High-level analysis. We assume that the function of connection cost forms a
metric. In order to analyze the performance of Algorithm 1, we first show that the
maximum cost ratio in each phase is bounded by a constant for any instance of the
problem. Formally, letting I be an instance of the FTFA problem and p ∈ R a phase
when solving the problem, we define

λp,I = max
i∈F ,p∈R,C′⊆Cp

∑
j∈C′ α

p
j

fi +
∑

j∈C′ cij

as the maximum cost ratio with respect to any possible star (i, p, C′).
Claim 2.3. The cost of the solution in each phase is equal to

∑
j∈Cp

αp
j and the

maximum cost ratio λp,I is bounded by a constant λ for any phase p ∈ R and any
instance I of the problem.

We apply the inverse dual-fitting technique to analyze the approximation ratio of
the high-level algorithm. We do this by composing an extra instance of the problem
which has the same size as the original problem but different values of facility cost
and connection cost. We achieve this by scaling the facility cost and connection cost
by constant λ: f ′

i ← λfi and c′ij ← λcij . Instead of shrinking the dual variable as
in the dual-fitting [25, 14, 13] technique to achieve a feasible solution to the unscaled
dual problem, we use the unshrunk dual solution which is feasible to the composed
instance of the dual problem and achieve a λ-approximation ratio based on the claim.
It is not hard to see that the same result can be achieved by applying the dual-fitting
technique. However, we argue that our inverse dual-fitting technique is more powerful
in multifactor approximation analysis, as shown in our other work [32].

Theorem 2.4. If the pth phase connection fulfills Claim 2.3, the high-level algo-
rithm, Algorithm 1, is a λ-approximation algorithm to the FTFA problem.
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Proof. First we check the feasibility of the solution. In the pth phase connection,
in each phase we have for all i ∈ F , j ∈ Cp : Xp

ij ≤ Y p
i . In fact, this is required by

the subproblem (2.1) in each phase. It is not hard to see that Xp
ij stops increasing

when p > rj because a city j is included in Cp only when p ≤ rj (it is already fully
connected when p > rj). Therefore, we have for all i ∈ F , j ∈ C : XR

ij ≤ Y R
i because

Y p
i is increasing monotonically (we never close a facility). Feasibility of the solution

is proved.
In order to show the cost ratio, we compose an extra instance of the problem and

its feasible dual solution. Letting βp
ij = max(αp

j − λcij , 0) for any i ∈ F , j ∈ C, p ∈ R,
and C′ = {j ∈ C : αp

j ≥ λcij}, we have
∑

j∈C β
p
ij =

∑
j∈C′ β

p
ij =

∑
j∈C′(α

p
j − λcij).

According to Claim 2.3, we have∑
j∈C′

(αp
j − λcij) ≤ λfi

for any i ∈ F , p ∈ R. That is, there exists dual variable βp
ij ≥ 0 such that

∀p ∈ R, i ∈ F :
∑
j∈C

βp
ij ≤ λfi(2.5)

and ∀p ∈ R, i ∈ F , j ∈ C : αp
j − βp

ij ≤ λcij .(2.6)

From the definitions of αi and βij apparently for all p ∈ R, i∈F , j∈C : αp
j , β

p
ij ≥ 0.

We note that the above inequalities are exactly the constraints of the dual problem
(2.3) after λ-factor scaling on fi and cij . Therefore, we can compose an instance of
the dual, suppose I ′, with facility cost f ′

i = λfi and connection cost c′ij = λcij . Let
OPT2 be the optimal solution to the primal problem of I ′ and OPT1 the optimal
solution to the primal problem of I. It is clear that
(2.7) OPT2 = λOPT1.

From inequalities (2.5) and (2.6), we know that (α, β) is a feasible solution to the dual
problem of I ′. Due to the weak duality theorem, which states that the optimum of
the dual problem (in the form of maximization) is no more than the optimum of the
primal problem (in the form of minimization), we have

(2.8)
∑
j∈Cp

∑
p∈R

αp
j ≤ OPT2.

On the other hand, letting SOL be the solution derived by the algorithm, we
have

(2.9) SOL =
∑
p∈R

∑
j∈Cp

αp
j

according to the first part of Claim 2.3. Combining (2.7), (2.8), and (2.9), we have

SOL ≤ λOPT1.

The theorem follows.
Remark 2.5. For many problems single-factor approximation analysis may be

achieved by using the classical dual-fitting technique, i.e., shrinking the dual solution
λ times to make it “fit” to the primal problem. Some greedy algorithms for the UFL
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problem, like the MMS algorithm [25, 13] or the JMS algorithm [14, 13], are analyzed
through decomposing the optimal solution into a group of stars because any solution
to UFL can be decomposed into vertex-disjoint stars. Our proposed inverse dual-
fitting provides an alternative way for single-factor analysis that is simpler and more
effective in many cases.

From Algorithm 1, we can see that all payments are for either the connection cost
or operating cost. Therefore the first part of the claim is satisfied by the algorithm,
and we only need to find a proper value of λ ≥ 1 such that for any instance I of the
FTFA problem

max
i∈F ,p∈R,C′⊆Cp

∑
j∈C′ α

p
j

fi +
∑

j∈C′ cij
≤ λ.

It is clear that we only need to consider cities in C′ = {j ∈ Cp : αp
j ≥ λcij}

for each p. Without loss of generality, suppose there are k such cities in Cp and
αp
1 ≤ αp

2 ≤ · · · ≤ αp
k. We consider some important properties of the pth phase

connection in order to find a proper value of λ.

Analysis of the pth phase connection. First, we have the following lemma
on the contribution received by a site according to Event-2 and Event-3.

Lemma 2.6. For any instance I and phase p ∈ R, ∑k
j=h max(αp

h − cij , 0) ≤ fi
for any site i ∈ F and city h, 1 ≤ h ≤ k.

Proof. Assume
∑k

j=h max(αp
h − cij , 0) > fi; then a new facility at site i must be

opened at time t = αp
h − ε according to Event-2 because any j with αp

j ≥ αp
h still

contributes to opening facilities at time t. According to the assumption, there is at
least one city, suppose j′, such that

αp
j′ ≥ αp

h and αp
h > cij′ .

That is, αp
j′ > cij′ . Actually, j

′ can be connected with site i at least at time t according

to Event-3 of the algorithm, which implies αp
j′ ≤ cij′ . The contradiction establishes

the lemma.
It is natural to follow the approach proposed by Mahdian and others [13, 25] to

obtain a property regarding the triangle inequality. However, in the fault-tolerant
context, this becomes more complex. In fact, we are not able to conclude that
a contribution is less than the connection cost to any open facility. As shown in
Figure 2.2(a), neither α3

j ≤ ci1j nor α3
j ≤ ci2j can be achieved even if i1 and i2 are

opened. This is because h is already connected with facilities i1 and i2 before making

i3 i2

j

i1

h

i∗

p = 1

p = 2
p = 3

p = 1p = 2

i4 i2

j

i1

h

i∗

p = 1

p = 2
p = 3

p = 1

p = 2 p = 3

i3

(a) p = 3, rh = 2 (b) p = 2, rh = 2

Fig. 2.2. Ranking of contributions.
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its third contribution. Fortunately, in our algorithm, only ports of the same rank are
processed in a phase and this makes an important difference. In fact, if there are p
open facilities, the pth contribution of a city is no more than the maximum connection
cost from the city to these facilities. As shown in Figure 2.2(b), we have α3

j ≤ ci3j .
Formally, we have the following lemma.

Lemma 2.7. For any instance I and phase p ∈ R, αp
j ≤ αp

h + cij + cih holds for
any site i ∈ F and cities h and j, 1 ≤ h, j ≤ k.

Proof. Assume αp
j > αp

h, since otherwise the lemma is obvious. Let H be the set
of facilities that are connected with city h at time t = αp

j − ε, so we have |H | = p
because h is already connected in the pth phase. Hence, there must exist a facility in
H which is not connected with j at the moment in phase p. Suppose it is a facility at
site i′, and we have Xp−1

i′j < Y p
i′ . Therefore j can be connected with i′ without paying

operating cost. Considering two cases, i.e., the facility is opened respectively in an
early phase or in phase p, we have αp

j ≤ ci′j for both cases according to Event-1 and
Event-3. Further, we have αp

j ≤ cij if i = i′ and αp
j ≤ αp

h + cij + cih by the triangle
inequality otherwise. Because αp

h ≥ ci′h for any i′ connected with city h, we have
ci′j ≤ ci′h + cij + cih. The lemma follows.

Performance of Algorithm 1. The above lemmas present some important
properties of the pth phase connection and the following result shows that they are
enough to bound the ratio of the total cost of a derived solution to that of an optimal
solution. Let λk be the maximum of the following LP:

(2.10)

maximize
∑k

j=1 αj

f+
∑k

j=1 cj

subjected to ∀1 ≤ j < h ≤ k : αh ≤ αj + cj + ch,

∀1 ≤ h ≤ k :
∑k

j=h max(αh − cj , 0) ≤ f,

∀1 ≤ j ≤ k : αj , cj , f ≥ 0.

If λk has an upper bound with respect to any integer k, we are able to choose this
upper bound as the value of λ with respect to Claim 2.3. LPs like program (2.10) are
also called factor-revealing LPs in the literature [24, 25, 14, 13].

Corollary 2.8. Algorithm 1 is 1.861-approximation for the metric FTFA
problem.

Proof. For notational convenience, denote αp
j by αj , cij by cj , and fi by f . It

is clear that Lemmas 2.6 and 2.7 imply the two constraints of program (2.10). As a
result, we have

λ ≤ sup
k≥1
{λk}.

In fact, Mahdian and others [25, 13] showed that program (2.10) has an upper bound
1.861 in their analysis for the MMS algorithm. Combined with Theorem 2.4, the
corollary follows.

In each phase, there are at most nf · |Cp| events for which the algorithm needs
nf · |Cp| log(nf · |Cp|) time to sort these events. Considering that the algorithm runs
R phases and in each phase |Cp| ≤ |C|, we have the following lemma.

Lemma 2.9. The time complexity of Algorithm 1 is O(mR logm), where m =
ncnf .

3. Bifactor approximation. Interesting enough, the dual-fitting technique does
not seem to have found use outside single-factor approximation analysis (i.e.,
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1.861- and 1.61-approximation). For example, the JMS algorithm is also (1.11,1.78)-
approximation [22] and (1,2)-approximation [14, 13] for UFL. However, these results
were achieved through proving an upper bound of the total cost paid by all cities
in any possible star s, i.e., λffi + λc

∑
j∈s∩C cij , rather than by applying the dual-

fitting technique. This approach is straightforward because a solution to the UFL
problem can be decomposed into a group of vertex-disjoint stars but is incapable of
deriving bifactor ratios for FTFA effectively because of the difficulties in finding a
best assignment of each city’s multiple costs to the respective stars that balances the
costs among all stars. In this section, we show that our inverse dual-fitting technique
can be deployed for effective bifactor approximation analysis for FTFA to achieve a
similar result to that of UFL. This technique also simplifies algorithm design through
a consistent and intuitive explanation to the original dual variables during the process
of fitting to the dual.

3.1. The algorithm. We note that once a city in Algorithm 1 is fully connected,
it is not processed any more even if a facility is opened with a smaller connection cost.
It is obvious that we are able to improve the algorithm by establishing connections,
for each city, to facilities with smallest connection costs. We do this by switching
two connections of a city, an old one with higher connection cost and a new one
with smaller connection cost. Taking into account the reduction in total cost by
connection switch, we redefine the cost efficiency of a star at the time before the new
star is selected by

(3.1) eff(i, p, C′) =
fp
i +

∑
j∈C′ cij −

∑
j∈Cp\U max(ci′j − cij , 0)

|C′| ,

where Cp \ U is the set of cities which are already connected in phase p and ci′j the
maximum connection cost of city j. The first two items in the numerator represent
the total cost of the star, which is the same as in Algorithm 1. The third item is the
contribution made by connected cities via connection switch.

The new algorithm for bifactor approximation, Algorithm 4, has the same struc-
ture as Algorithm 1, with the subroutine of the pth phase connection being replaced
by the improved pth phase connection that uses a new cost efficiency as redefined
by (3.1). With the same interpretation of dual variables as in Algorithm, the most
cost-efficient star in each iteration of the algorithm can be found in a similar way: if
the dual variables of all unconnected cities are raised simultaneously with time t, the
most cost-efficient star will be the first star (i, p, C′) for which∑

j∈C′
max(t− cij , 0) +

∑
j∈Cp\U

max(ci′j − cij) = fp
i .

When fp
i = 0, the improved pth phase connection is the same as the original. When

fp
i = fi, it receives payment from unconnected cities as well as payment from con-
nected cities through a connection switch and, once its amount is equal to the facility
cost, it opens a new facility at site i. Like the pth phase connection, it can be imple-
mented through handling three types of events.

The above algorithm ensures that in each phase for all i ∈ F , j ∈ Cp : Xp
ij ≤ Y p

i

as the result of handling three events. It is not hard to see that Xp
ij stops increasing

when p > rj because a city j is included in Cp only when p ≤ rj . Therefore, we have
for all i ∈ F , j ∈ C : XR

ij ≤ Y R
i because Y p

i is increasing monotonically. (We never
close a facility.) Feasibility of the solution is ensured.
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1598 HONG SHEN AND SHIHONG XU

Algorithm 4. Bifactor approximation FTFA.

(1) Initialization: X0
ij ← 0, Y 0

i ← 0, C1 = C, p← 1.
(2) While p ≤ R:

(a) Invoke the improved pth phase connection with input ({Xp−1
ij }, {Y p−1

i },F ,
Cp) and produce output ({Xp

ij}, {Y p
i }).

(b) p← p+ 1.
(3) xij ← XR

ij and yi ← Y R
i , i ∈ F , j ∈ C.

Algorithm 5. The improved pth phase connection.

(1) Initialization: t← 0, U ← Cp.
(2) While U 
= ∅, increase time t until an instance of Event-1 or Event-2 or Event-3

occurs. If two events occur at the same time, process them in an arbitrary order.
(a) Event-1: A city j ∈ U has enough credit to be connected with an eligible site,

suppose i. In this case t = cij and Xp−1
ij < Y p−1

i . Set Xp
ij ← Xp−1

ij + 1.
(b) Event-2: A site i ∈ F receives enough credit from cities in U to open its pth

facility. In this case
∑

j∈U max(t− cij , 0)+
∑

j∈Cp\U max(ci′j − cij) = fi. Set

Y p
i ← Y p−1

i + 1 and Xp
ij ← Xp−1

ij + 1 for all j ∈ C′
1 = {j ∈ U : cij ≤ t} and

j ∈ C′
2 = {j ∈ Cp \ U : cij ≤ ci′j}, and set Xp

ij ← Xp−1
ij − 1 for all j ∈ C′

2.
(c) Event-3: A city j ∈ U has enough credit to be connected with a newly opened

facility. In this case t = cij . Set X
p
ij ← Xp−1

ij + 1.
(d) For all cities j ∈ U , set αp

j ← t and remove city j from U if it is connected
with a facility in phase p.

In Algorithm 5, the amount of credit paid for a connection can be divided
further as part for a connection with a smaller cost and part for opening other facil-
ities. Despite the difference from Algorithm 3, it is still true that all payments of a
city are used to either open facilities or establish connections, and therefore the total
cost of the solution is still

∑
j∈C

∑rj
p=1 α

p
j . This results in the following lemma.

Lemma 3.1. A solution produced by Algorithm 4 is feasible to the FTFA problem
and its total cost is equal to

∑
j∈C

∑rj
p=1 α

p
j .

3.2. Analysis. Let λf ≥ 1 be a constant (to be fixed later), and define the
maximum connection cost ratio with respect to any possible star (i, p, C′) as

λ′
I = max

i∈F ,p∈R,C′⊆Cp

∑
j∈C′ α

p
j − λf · fi∑

j∈C′ cij
.

Claim 3.2. The maximum cost ratio λ′
I is bounded by a constant λc for any

instance I of the FTFA problem.
Theorem 3.3. If the improved pth phase connection satisfies Claim 3.2, Algo-

rithm 4 produces a solution within cost λfF
∗+λcC

∗, where F ∗ and C∗ are respectively
the facility cost and connection cost of an optimal solution to the FTFA problem.

Proof. Let βp
ij = max(αp

j − λccij , 0) for any i ∈ F , j ∈ C, p ∈ R, and C′ = {j ∈
C : αp

j ≥ λcij}, and we have
∑

j∈C β
p
ij =

∑
j∈C′ β

p
ij =

∑
j∈C′(α

p
j − λccij). According

to Claim 3.2, we have ∑
j∈C′

(αp
j − λccij) ≤ λffi

for any i ∈ F , p ∈ R. That is, there exists dual variable βp
ij ≥ 0 such that
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∀i ∈ F , p ∈ R :
∑
j∈C

βp
ij ≤ λffi(3.2)

and ∀i ∈ F , j ∈ C, p ∈ R : αp
j − βp

ij ≤ λccij .(3.3)

We note that the above inequalities have the same form as the constraints of the
dual problem (2.3). Therefore, we can compose an instance of the FTFA, suppose I ′,
with facility cost f ′

i = λffi and connection cost c′ij = λccij . Let OPT2 be the optimal
solution to the primal problem of I ′ and OPT1 the optimal solution to the primal
problem of I. It is clear that

(3.4) OPT2 ≤ λfF
∗ + λcC

∗

because the optimal solution to I is also a feasible solution to I ′. (Its cost is equal to
the left side of the above inequality.) From inequality (3.2) and (3.3), we know (α, β)
is a feasible solution to the dual problem of I ′. Due to the weak duality theorem,
which states that the maximum of the dual problem is no more than the minimum of
the primal problem, we have

(3.5)
∑
j∈C

∑
p∈R

αp
j ≤ OPT2.

On the other hand, letting SOL be the solution produced by the algorithm, we
have

(3.6) SOL =
∑
j∈C

∑
p∈R

αp
j ≤ OPT2 ≤ λfF

∗ + λcC
∗

according to Lemma 3.1. So the theorem follows.
For an FTFA problem, we say a solution is (λf , λc)-approximation to FTFA if its

cost is no more than λfF
∗ +λcC

∗, where F ∗ and C∗ are respectively the facility cost
and connection cost of an optimal solution. Now, we only need to find a proper value
of λc ≥ 1 such that for any instance I of the FTFA problem

max
i∈F ,p∈R,C′⊆Cp

∑
j∈C′ α

p
j − λffi∑

j∈C′ cij
≤ λc.

Again, we only need to consider cities with αp
j ≥ λccij . Without loss of generality,

suppose there are k such cities in Cp and further αp
1 ≤ αp

2 ≤ · · · ≤ αp
k. We consider

some important properties of the improved pth phase connection before finding a
proper value of λc.

Consider time t = αp
h − ε (ε→ 0) and define

ujh =

{
t, αp

j = αp
h,

ci∗j , αp
j < αp

h,

for any 1 ≤ j ≤ h ≤ k, where ci∗j is the maximum connection cost of city j at time
t. We have the following properties for Algorithm 4.

Lemma 3.4. For a given instance I and any phase p ∈ R, αp
h ≤ ujh + cij + cih

for any 1 ≤ j < h ≤ k.
Proof. If αp

j = αp
h, ujh → αp

h according to the definition, the inequality is obvious.
So we only need to consider αp

j < αp
h. Letting H be the set of facilities connected
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with city j at the moment t, we have |H | = p. Hence, there must exist a facility
in H which is not connected with h. Suppose it is a facility at site i′, and we have
Xp−1

i′h < Y p
i′ . Therefore h can be connected with i′ without paying the operating cost.

Considering two cases when the facility is opened in a previous phase and in phase
p, respectively, we have αp

h ≤ ci′h for both cases according to Event-1 and Event-3.
Furthermore, if i = i′ we have αp

h ≤ cih. Otherwise, combining the triangle inequality
ci′h ≤ ci′j + cij + cih immediately yields αp

h ≤ ujh + cij + cih because ujh is the
maximum connection cost of city j at time t when αp

j < αp
h. The lemma follows.

At time t = αp
h, the amount of contribution that city j offers to open a facility at

site i is equal to

max(ujh − cij , 0) if j < h and

max(αp
h − cij , 0) if j ≥ h.

Note that by the definition of ujh this holds even if αp
j = αp

h. It is clear that the total
offer of cities to a site can never exceed the operating cost at this site. Therefore,
we have

∑h−1
j=1 max(ujh − cij , 0) +

∑k
j=h max(αp

h − cij , 0) ≤ fi. This results in the
following lemma.

Lemma 3.5. For a given instance I and any phase p ∈ R, ∑h−1
j=1 max(ujh −

cij , 0) +
∑k

j=h max(αp
h − cij , 0) ≤ fi holds for any 1 ≤ h ≤ k.

The above lemmas present some properties of Algorithm 4, and the following
theorem shows that they are enough to prove Claim 3.2. Define f and cj to be the
functions for fi and cij on i, respectively, and let λk

c be the maximum of the following
factor-revealing LP:
(3.7)

maximize
∑k

j=1 αj−λf ·f
∑k

j=1 cj

subjected to ∀1 ≤ j ≤ h ≤ k : αh ≤ ujh + cj + ch,

∀1 ≤ h ≤ k :
∑h−1

j=1 max(ujh − cj , 0) +
∑k

j=h max(αh − cj , 0) ≤ f,

∀1 ≤ j ≤ h ≤ k : αj , cj , ujh, f ≥ 0.

It is clear that Lemmas 3.4 and 3.5 imply the two constraints of program (3.7). As a
result, we have

λc ≤ sup
k≥1
{λk

c}

corresponding to Claim 3.2. Actually, for different λf ≥ 1, there is a unique upper
bound supk≥1{λk

c} as showed on the approximation curve in [13]. Furthermore, we
have the following theorem according to the existing results on the factor-evealing LP.

Theorem 3.6. For λc defined in Claim 3.2, we have
1. if λf = 1.61, then λc ≤ 1.61 (see [14]);
2. if λf = 1.11, then λc ≤ 1.78 (see [22]);
3. if λf = 1, then λc ≤ 2 (see [13]).

Proof. Proofs of these results can be obtained directly from the cited references.
Here, for the third result we give an alternative proof which is simpler than that given
in [13]. We first relax the second constraint as

∀1 ≤ h ≤ k :
h−1∑
j=1

(ujh − cj) +
k∑

j=h

(αh − cj) ≤ f.

According to the first constraint, we are able to use αh− cj − ch to replace ujh in the
above inequality. After moving some items to the right side, we have
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∀1 ≤ h ≤ k :
k∑

j=1

(αh − cj) ≤ f +
h−1∑
j=1

(cj + ch).

For the above inequality combining all cases for 1 ≤ h ≤ k, we have

k∑
h=1

(kαh − kch) ≤ k · f +
k∑

h=1

h−1∑
j=1

(cj + ch).

Observing
∑k

h=1

∑h−1
j=1 (cj + ch) = (k − 1)

∑k
h=1 ch, we have

k

k∑
h=1

αh ≤ kf + (2k − 1)

k∑
h=1

ch,

that is, ∑k
j=1 αj − f∑k

j=1 cj
≤ 2k − 1

k
< 2.

This yields the third result.
From Theorem 3.6 the following corollary is immediate.
Corollary 3.7. Algorithm 4 is a 1.61-, (1.11,1.78)- and (1,2)-approximation

algorithm for the metric FTFA problem.
Different from Algorithm 1, Algorithm 4 has to traverse all fully connected cities

for each site, i.e., Cp \ U , to obtain their maximum connection costs. Therefore it
needs O(|Cp| · nf ) time to reach the time that the next event occurs. So, in total
Algorithm 4 needs at most O(|Cp| ·n2

f ) steps to complete each phase because Event-2
occurs at most nf times.

Lemma 3.8. The time complexity of Algorithm 4 is O(Rn3), where n is the
maximum of nf and nc.

3.3. Cost scaling and greedy augmentation. Guha and Khuller [27] and
Charikar and Guha [4] showed that it is possible to improve the performance of the
JMS algorithm by using cost scaling and greedy augmentation. Similarly, we use
the same technique to improve Algorithm 4. The combined algorithm is given in
Algorithm 6.

Algorithm 6. 1.52-approximation FTFA.

(1) Scale the facility costs by δ: fi ← δfi for all i ∈ F .
(2) Run Algorithm 4 on the scaled instance.
(3) Scale back the facility costs and perform greedy augmentation. Define the gain of

opening a facility at site i, gain(i), to be the reduction in total cost obtained by
opening a facility at i to the current solution (gain(i) = 0 if the total cost does
not decrease). While there exist facilities with positive gains, choose the facility

at i for which gain(i)
fi

is maximized and add it to the current solution.

The next lemma was first proved in [27, 4] for the UFL problem and then in [11]
for the FTFL problem. Noticing that the FTFA problem is a special case of the FTFL
problem, we have the next lemma.

Lemma 3.9 (see [30, 11]). Let F ∗ and C∗ be the facility cost and connection
cost, respectively, of an optimal solution to the FTFA problem. Greedy augmentation,
when applied to a solution with initial facility cost F and connection cost C, produces
a solution of cost at most F +max{0, ln(C−C∗

F∗ )} · F ∗ + F ∗ + C∗.
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The above lemma implies the following result.
Lemma 3.10 (see [5, 23, 30]). If Algorithm 4 is a (λf , λc)-approximation, Algo-

rithm 6 with parameter δ ≥ 1 gives a (λf + ln δ, 1+ λc−1
δ )-approximation solution for

any instance of the FTFA problem.
As showed by Mahdian, Ye, and Zhang [22], we get λf + ln δ = 1 + λc−1

δ = 1.52
taking (λf , λc) = (1.11, 1.78) and δ = 1.504, which implies that Algorithm 6 is a
1.52-approximation.

Theorem 3.11. Algorithm 6 is a 1.52-approximation with running time O(Rn3)
for FTFA.

4. The FTKFA problem. In this section, we consider the FTKFA problem
which can be seen as a combination of the k -median problem and the FTFA problem.

The k -median problem [20] has also been studied extensively [1, 4, 6]. This prob-
lem requires opening no more than k medians in a set of geographically distributed
candidate sites and connecting each city with the closest open median so that the
total connection cost of all cities is minimized. The k -facility problem differs from
the k -median problem by considering the specified operating cost for each facility
and minimizing the combined cost for facility operating and connection establish-
ing. The FTKFA problem is a further generalization of the k -facility problem, where
the connectivity at each city is not necessarily equal to one. FTKFA is also an ex-
tension of FTFA by applying an extra upper bound on total open facility numbers,
i.e., k.

Jain and Vazirani [15] reduced the k-facility problem to the UFL in the follow-
ing way: Suppose A is an approximation algorithm for the facility location problem.
Consider an instance I of the problem with optimum cost OPT , and let F and
C be the facility and connection costs of the solution found by A. Algorithm A is
called a Lagrangian multiplier preserving (LMP) λ-approximation if for every instance
I, C/λ+ F ≤ OPT . Jain and Vazirani [15] proposed that an LMP λ-approximation
algorithm for the metric UFL problem gives rise to a 2λ-approximation algorithm
for the metric k-facility problem. Here we consider the fault-tolerant version of the
problem. Instead of using the concept of LMP λ-approximation, we use bifactor ap-
proximation. We use a (1,λ)-approximation algorithm to FTFA as a subroutine to
obtain a (λ + 1

nf
)(2 − 1

nf
)-approximation algorithm for the metric FTKFA problem.

This result is better than 2λ when λ ≥ 2 but worse than 2λ otherwise. Applying
the result on the bifactor approximation given in the previous section, we know Al-
gorithm 4 is a (1,2)-approximation to FTFA and therefore the result we get has a
4−1/n2

f approximation factor for the FTKFA problem. The algorithm has the virtue
of simplicity and can be completed efficiently in strongly polynomial time.

We also assume each city contains rj ports and let P denote the set of all ports
of all cities. Let s be a star composed of a facility and a group of ports connected
with the facility. Let S be all possible stars and Si all possible stars centered at site
i. The FTKFA problem can be formulated by

(4.1)

minimize
∑

s∈S csxs

subject to
∑

s∈S xs ≤ k
∀l ∈ P :

∑
s:l∈s xs ≥ 1,

∀i ∈ F , j ∈ C : ∑l∈Pj

∑
s:l∈s xs ≤

∑
s∈Si

xs,

∀s ∈ S : xs ∈ {0, 1}.
In the above integer linear programming (ILP), Pj is the set of all ports of city
j. The first constraint ensures at most k facilities are opened in total, the second
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ensures at least one connection for each port, and the third constraint ensures enough
open facilities at each location so that connections between any site-city pair can be
assigned to distinct facilities.

Suppose the number of the facilities opened by an algorithm for FTFA is k′.
It is clear that the solution can be used directly if k′ ≤ k. So we only need to
consider k′ > k. In this case, in order to minimize the total cost, we can always
open k facilities, i. e.

∑
s∈S xs = k. Let x̃s be the optimal solution of the primal

problem (with facility cost fi). We set the cost of operating a facility at site i to
fi + z, and let c−s =

∑
l∈s∩P ci,j and cs = c−s + fi(s). Supposing an algorithm A is

(1, λ)-approximation and it happens to open k facilities, we have∑
s∈S

(cs + z)xs ≤
∑
s∈S

(fi(s) + z)x̃s + λ
∑
s∈S

c−s x̃s

and ∑
s∈S

xs = k ≥
∑
s∈S

x̃s.

That is,

(4.2)
∑
s∈S

csxs ≤
∑
s∈S

(cs + z)xs −
∑
s∈S

zx̃s ≤
∑
s∈S

fi(s)x̃s + λ
∑
s∈S

c−s x̃s ≤ λ
∑
s∈S

csx̃s.

We can conclude that the solution is λ-approximation. However, this result relies on
the assumption that the algorithm for FTKFA opens exactly k facilities. In the rest
of the thesis, we assume such an algorithm does not exist, and instead we combine
two solutions with k1 and k2 facilities, respectively, k1 < k < k2, to achieve a solution
with k facilities.

4.1. Bisection search and combination. Jain and Vazirani proposed an ap-
proach to get a 2λ-approximation algorithm for the metric k-facility problem by using
an LMP λ-approximation algorithm for the metric UFL problem [15]. They achieved
a 6-approximation algorithm using an LMP 3-approximation algorithm [17, 15] and
further a 4-approximation algorithm for UFL in [14]. Their approaches are based on
the concept of LMP λ-approximation and as a result need an extra step described
in [14] to transform the JMS algorithm which is a (1, λ)-approximation to UFL into
an LMP λ-approximation algorithm. Our approach simplifies this process by elimi-
nating the middle step and using (1, λ)-approximation algorithms directly. Note that
our approach is for the fault-tolerant extension of this problem. We first prove that
two (1, λ)-approximation solutions to FTFA can be combined to achieve a (λ + 1

nf
)-

approximation fractional solution to FTKFA. In the next subsection, we will round
the fractional solution, losing a small factor.

Consider an algorithm using a bisection search to approximate the value of z,
i.e., facility cost fi + z. Let cmax be the maximum of all connection costs; it is clear
that

∑
s∈S xs = maxj∈C rj ≤ k when z = nccmax and

∑
s∈S xs ≥ k when z = 0.

Instead of using nccmax and 0 directly, we find two values of z which are very close
and then combine corresponding solutions together. Assume the solutions are x1, x2,
respectively, for z1 and z2, and

∑
s∈S x1

s = k1 and
∑

s∈S x2
s = k2. The combined

solution x = ax1+ bx2, where a = (k2−k)/(k2−k1) and b = (k−k1)/(k2−k1). Now
the problem is how efficiently we can find the values of z1 and z2 such that they are
close enough to ensure the quality of the combined solution and how we can get an
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1604 HONG SHEN AND SHIHONG XU

integer solution from the combined fractional solution. We have the following lemma
for the first problem.

Lemma 4.1. The cost of fractional solution x is within a factor of (λ + 1
nf

) of

the cost of an optimal fractional solution to FTKFA if z1 − z2 ≤ Rfmin+nccmin

knf
.

Proof. Suppose the primal solution and the dual solution derived by Algorithm 4
are (x1,α1) and (x2,α2), respectively. Let x̃s be the optimal solution of the original
problem (with facility cost fi). We have∑

s∈S
(cs + z1)x

1
s ≤

∑
s∈S

(fi(s) + z1)x̃s + λ
∑
s∈S

c−s x̃s

according to the definition of (1, λ)-approximation. Considering
∑

s∈S x̃s ≤ k, we
have

(4.3)
∑
s∈S

csx
1
s ≤ z1(k − k1) + λ

∑
s∈S

csx̃s.

Similarly we have

(4.4)
∑
s∈S

csx
2
s ≤ z2(k − k2) + λ

∑
s∈S

csx̃s

and

(z1 − z2)(k − k2) ≤ 1

nf

∑
s∈S

csx̃s

because z1 − z2 ≤ Rfmin+nccmin

knf
≤

∑
s∈S csx̃s

knf
.

Now, we replace z2 with z1 in the first item of inequality (4.4) and increase the
coefficient of the second item by 1

nf
. (The coefficient of z2, i.e., k − k2, is negative.)

Combined with inequality (4.4), we have

(4.5)
∑
s∈S

csx
2
s ≤ z1(k − k2) +

(
λ+

1

nf

)
·
∑
s∈S

csx̃s.

Multiplying inequality (4.3) with constant a = (k2 − k)/(k2 − k1) and inequality
(4.5) with constant b = (k− k1)/(k2− k1), we have the items with z1 eliminated, i.e.,

∑
s∈S

csxs ≤
[
aλ+ b

(
λ+

1

nf

)]∑
s∈S

csx̃s ≤
(
λ+

1

nf

)∑
s∈S

csx̃s.

The lemma follows.
Since the total range of z is fmax + nccmax and the interval between z1 and z2

is required to be smaller than (Rfmin + nccmin)/knf , so the total number of probing

steps is log
knfnccmax

Rfmin+nccmin
. Letting L = cmax/(Rfmin + nccmin) and n = max(nc, nf ),

we have the following lemma.
Lemma 4.2. After O(log(nL)) probes on z using a bisection search, z1 and z2

are so close that z1 − z2 ≤ (Rfmin + ncmin)/kn and k1 ≤ k ≤ k2.
We notice that Swamy and Shmoys [30] achieved a similar result. Our solution

applies a similar approach to that in [30] but differs in three aspects:
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1. Their result only applies the uniform connectivity case for the fault tolerant
k-facility location problem where each site allows at most one facility while
ours applies for both the uniform case and the general case and each site
allows an unlimited number of facilities.

2. Their bisection search needs O(poly(n)L′ ) steps, where L′ = log cmax, while ours
only needs O(log n+logL), where L = cmax/(Rfmin+ncmin). This is because
we do not require the corresponding dual solutions are identical for the two
primal solutions, and as a result the length of search interval is substantially
greater.

3. Their approach depends on how to break ties between events in the primal-
dual algorithm, while ours does not.

4.2. Randomized procedure for rounding.

Facility opening. We use the same randomized procedure as in [17] to open
facilities. We show that a similar result can also be achieved in the fault tolerance
context.

Let A and B be the sets of open facilities in the two solutions, |A| = k1 and
|B| = k2. For each facility in A, we find the closest facility in B, which are not
required to be distinct to each other. Let B′ ⊂ B be these facilities. If |B′| ≤ k1, we
arbitrarily include additional facilities from B \ B′ into B′ until |B′| = k1. Now we
open all facilities in A with probability a and open all facilities in B′ with probability
b = 1 − a. In addition, a set of cardinality k − k1 is picked randomly from B \ B′

and facilities in this set are opened. Furthermore, each facility in B is opened with
probability b. The procedure is demonstrated in Figure 4.1. For convenience, we use
ŷi and x̂ij , i ∈ F , j ∈ C, to denote the integer solution in which there are totally k
open facilities; we have the following lemma.

Lemma 4.3. The expected facility cost E[
∑

i∈F fiŷi] is no more than a
∑

i∈A fixi+
b
∑

i∈B fixi.

Connection establishment. Instead of connecting a city with the rj nearest
open facilities, we consider a suboptimal approach for the sake of approximation factor
revealing. The approach is first proposed in [30]. Our analysis follows the same idea
but leads to a more strict result because we can only lose a factor (2− 1

nf
) instead of 2

to achieve an approximation ratio smaller than 4. This is because the factor we lost in
the last step is (2 + 1

nf
) for the sake of time complexity. We introduce the procedure

A, |A| = k1

B′

B, |B| = k2

B \ B′

k − k1A ∩ BA \ B |B′| = k1

k1 ≤ k ≤ k2

Fig. 4.1. Randomized procedure.
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1606 HONG SHEN AND SHIHONG XU

briefly as follows. Note that this approach is used only in the analysis because for
the algorithm the optimal approach, i.e., connecting a city with the rj nearest open
facilities, is always preferred.

Let Al be the set of facilities in A to which city j ∈ C is connected, namely,
Aj = {i ∈ A : xij = 1}. Similarly, let Bj be the set of facilities in B that serve j.
Clearly |Aj | = |Bj | = rj . For each port l of city j, we define a set of facilities Tl, and
l will only be connected to a facility in Tl. First, we arbitrarily assign each facility
i ∈ Aj , and the facility in Bj to which it is matched (which could be the same as i),
to a distinct set Tl. Observe the important fact that the sets Tl are disjoint, since
distinct facilities in Aj are matched to distinct facilities in B. Let m(Aj) denote the
set of facilities that are matched to facilities in Aj . Then |m(Aj)| = |Aj | = |Bj | ⇒
|m(Aj) \Bj | = |Bj \m(Aj)|, so the number of Tl’s not containing a facility from Bj

after the first step is equal to the number of unmatched facilities in Bj . We assign
a distinct unmatched facility of Bj to each set Tl which does not already contain a
facility from Bj . Note that the sets Tl remain disjoint, so if we connect each port l
to a facility in Tl, we will get a feasible solution.

Lemma 4.4. After the above randomized procedure, a city j is connected with rj
distinct facilities.

Furthermore, we have the following lemma on the connection cost.
Lemma 4.5. The expected connection cost for a city j, denoted by E[cost(j)], is

no more than (1 + max(a, b))
∑

i∈F cijxij .
Proof. For convenience, if facility i ∈ Aj is matched with i′, we will consider i

and i′ as two different facilities even if i = i′. Let the service cost of city j ∈ C be
cost(j) and the service cost of port l be cost(l). The set Tl contains at least one small
facility i1 ∈ Aj and one large facility i2 such that i1 is matched with i2.

If these are the only two facilities, then it must be that i2 ∈ Bj . Either i1 or i2
is open, and we assign l to that open facility. So E[cost(l)] = aci1j + bci2j .

Otherwise, Tl contains a third facility i3 ∈ Bj such that i3 is unmatched and
i2 ∈ Bj .We assign l to i3 if it is open and to i1 or i2, whichever is open, otherwise. So
E[cost(l)] = a(aci1j + bci2j) + bci3j . Since i1 is matched with i2 and i3 is unmatched,
it must be that i2 is closer to i1 than i3. So,

ci2j ≤ ci1j + ci1i2 ≤ ci1j + ci1i3 ≤ 2ci1j + ci3j .

Therefore

E[cost(l)] ≤ bci3j + a(aci1j + 2bci1j + bci3j)

= a(1 + b)ci1j + b(1 + a)ci3j .

Thus for every port l, if i, i′ ∈ Tl, where i ∈ Aj and i′ ∈ Bj , we have

E[cost(l)] ≤ a(1 + b)cij + b(1 + a)ci′j).

For both cases, we have E[cost(l)] ≤ (1 + max(a, b))(acijx
1
ij + bci′jx

2
i′j), since

x1
ij = x2

i′j = 1. So, summing up the costs for all ports l, since the set of all facilities
at i for the first component of the last item is precisely Aj and the set of all facilities
at i for the second component is the set Bj , we get

E[cost(j)] ≤ (1 + max(a, b))

( ∑
i∈Aj

acijx
1
ij +

∑
i∈Bj

bcijx
2
ij

)

= (1 +max(a, b))
∑
i∈F

cij(ax
1
ij + bx2

ij),
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where the last equation holds since x1
ij = 0 if i /∈ Aj and x2

ij = 0 if i /∈ Bj . The lemma

follows because xij = (ax1
ij + bx2

ij).

Approximation factor. We have the following theorem.
Theorem 4.6. A (1, λ)-approximation algorithm for FTFA can result in a (λ+

1
nf

)(2 − 1
nf

)-approximation stochastic algorithm for FTKFA.

Proof. According to Lemma 4.4, we have

E

[∑
i∈F

∑
j∈C

cij x̂ij

]
≤ (1 + max(a, b))

∑
i∈F

∑
j∈C

cijxij .

According to Lemma 4.5, we have

E

[∑
i∈F

fiŷi

]
≤ (a+ b)

∑
i∈A∪B

fiyi ≤ (1 + max(a, b))
∑
i∈F

fiyi.

Combining them together, we have

E

[∑
s∈S

csx̂s

]
≤ (1 + max(a, b))

∑
s∈S

csxs.

On the other hand, it’s easy to see that a ≤ 1− 1/nf (this happens for k1 = k− 1
and k2 = nf ) and b ≤ 1 − 1/k (this happens for k1 = 1 and k2 = k + 1). Therefore,
1 + max(a, b) ≤ 2− 1/nf . Combined with Lemma 4.1, the theorem follows.

4.3. Derandomization. Because the randomization procedure is used only to
open facilities (we always connect a city to the nearest open facilities), the derandom-
ization technique proposed by Jain and Vazirani [17] can be applied here directly. We
have the following result.

Lemma 4.7. The bisection search based deterministic algorithm which employs
Algorithm 4 as a subroutine is a (4 − 1

n2
f
)-approximation algorithm for FTKFA and

its time complexity is O(Rn3 log(nL)), where L = cmax/(Rfmin + ncmin) and n =
max(nc, nf ).

5. Discussion.

5.1. Dealing with demand. As mentioned, the FTFA problem with nonuni-
form demands (access frequencies) is equivalent to the FTFA problem with indepen-
dent demands. Suppose the demand of city j is dj ; the problem becomes

minimize
∑

i∈F fiyi +
∑

i∈F
∑

j∈C cijdjxij

subjected to ∀j ∈ C : ∑i∈F xij ≥ rj ,
∀i ∈ F , j ∈ C : xij ≤ yi,
∀i ∈ F , j ∈ C : xij , yi ∈ Z+.

When dj is an integer, cost dj · ci,j implies that there are dj copies of city j at the
same location. It is clear that the new problem can be transformed into the FTFA
problem with each city being replicated dj copies. When dj is not an integer, we
multiply a large number with both dj and fi so that d′j becomes an integer. It is not
hard to show that the new problem has the same solution as the original problem. By
applying the above approach, the problem can be transformed into an FTFA problem.

5.2. Fault tolerant network design. The FTFA problem also arises in the
fault tolerant network design. Suppose the downtime ratio is uniformly σ for each
facility and the usability required by city j is μj (percent of time that a city is serviced).
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If the downtime of facilities (or links) is predicable (deterministic), for example, in
a system where each facility needs a fraction of time to “rest,” the corresponding
network design problem can be modeled as an FTFA problem with rj set to �μj/(1−
σ)�. If the downtime is unpredictable (stochastic), then rj should be set to �logσ(1−
μj)�. In both cases, the proposed algorithms are able to solve the problem. However, if
facilities or links have nonuniform downtimes, the constraint on connectivity becomes∑

i∈F(1 − σij)xij ≥ μj for the deterministic model and
∏

i∈F :xij=1 σij ≤ 1 − μj for

the stochastic model, where σij is the downtime ratio of connection (i, j). For these
cases our FTFA algorithms cannot be directly applied to solve the problem. We shall
leave them as open problems for future study.
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