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Abstract

There is a strong research interest in identifying the surface roughness of the carotid arterial inner wall via texture analysis
for early diagnosis of atherosclerosis. The purpose of this study is to assess the efficacy of texture analysis methods for
identifying arterial roughness in the early stage of atherosclerosis. Ultrasound images of common carotid arteries of 15
normal mice fed a normal diet and 28 apoE2/2 mice fed a high-fat diet were recorded by a high-frequency ultrasound
system (Vevo 2100, frequency: 40 MHz). Six different texture feature sets were extracted based on the following methods:
first-order statistics, fractal dimension texture analysis, spatial gray level dependence matrix, gray level difference statistics,
the neighborhood gray tone difference matrix, and the statistical feature matrix. Statistical analysis indicates that 11 of 19
texture features can be used to distinguish between normal and abnormal groups (p,0.05). When the 11 optimal features
were used as inputs to a support vector machine classifier, we achieved over 89% accuracy, 87% sensitivity and 93%
specificity. The accuracy, sensitivity and specificity for the k-nearest neighbor classifier were 73%, 75% and 70%,
respectively. The results show that it is feasible to identify arterial surface roughness based on texture features extracted
from ultrasound images of the carotid arterial wall. This method is shown to be useful for early detection and diagnosis of
atherosclerosis.

Citation: Niu L, Qian M, Yang W, Meng L, Xiao Y, et al. (2013) Surface Roughness Detection of Arteries via Texture Analysis of Ultrasound Images for Early
Diagnosis of Atherosclerosis. PLoS ONE 8(10): e76880. doi:10.1371/journal.pone.0076880

Editor: Xiaoming Yang, University of Washington School of Medicine, United States of America

Received May 27, 2013; Accepted August 26, 2013; Published October 17, 2013

Copyright: � 2013 Niu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The work was supported by National Research Program (973 Grant Nos. 2011CB707903 and 2013CB733800) from Ministry of Science and Technology,
China, and National Science Foundation Grants (NSFC Grant Nos. 11302239, 11304341, 81027006, 61020106008, 11002152, 11272329, and 61002001). The funders
had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: hr.zheng@siat.ac.cn (HZ); ming.qian@siat.ac.cn (MQ)

Introduction

Diagnosis of atherosclerosis in its early stage is important for

predicting the occurrence of strokes and heart attacks, and

provides opportunities for their prevention. The earliest patholog-

ical abnormality in atherosclerosis is the fatty streak, which is an

accumulation of lipid-filled macrophages within the intima of the

artery [1]. To predict the silent progression of atherosclerosis more

effectively, various studies based on blood fluid and cardiovascular

wall mechanics have been undertaken to identify vessel abnor-

malities prior to end organ damage [2,3]. The examination of the

carotid arteries is of high clinical interest since the carotid and

cerebral vessels have significant implications for stroke. The

measurement of carotid intima-media thickness (IMT) has become

an accepted and reliable surrogate marker for identification of

atherosclerosis [4,5]. However, recent studies have shown that it is

highly likely that the inner surface of the arterial wall becomes

rough before becoming thicker [6,7]. Thus, it is potentially useful

to evaluate roughness of the inner structures of the arterial wall for

early diagnosis of atherosclerosis.

Ultrasound is one of the most widely used techniques for non-

destructive testing of roughness. Wilhjelm et al. developed an

angular spectrum-based formulation method to study planar

rough phantoms [8]. As the surface roughness varies significantly,

the relative proportions of specular reflection and scattering vary

correspondingly. The higher the surface roughness is, the higher

the proportion of scattered ultrasound becomes. As such,

Gunarathne et al. developed an ultrasonic spectroscopic technique

to measure the gross surface texture of non-medical materials.

They introduced a roughness coefficient to specify the texture on a

quantitative basis [9]. Then, Schmidt-Trucksäss et al. proposed

the arithmetic mean of the IMT profile deviations to characterize

the roughness of common carotid arteries [6]. Later on, Zhang

et al. developed a 3D ultrasound system to extract surfaces using

radial basis functions. This method produced realistic surfaces with

a high level of detail [10]. But the measurement error lies in the

millimeter range. To detect minute roughness, Cinthio et al.

utilized the phase change that occurs in a radio frequency (RF)

echo from the rough surface of an object during its lateral motion

[7]. However, their method requires the acquisition of high frame

rate RF data.

Image processing methods have potential in providing the

objective and quantitative evaluation of arterial roughness. Our

previous studies and the other existing works have identified

texture analysis as being useful in the analysis of ultrasound images
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[11–13]. To date, plaque texture analysis has been applied to

conventional 2D brightness mode (B-mode) ultrasound images and

has been shown to have considerable success in identifying

symptomatic carotid plaques including risk stratification and

predicting stroke plaques. First-order statistics, especially the gray

scale median (GSM), were widely used in the study of plaque

echogenicity [14]. Low GSM values were associated with

symptomatic plaques, high degrees of stenosis and a high

incidence of ipsilateral brain infarction. Second-order statistics

were estimated from B-mode ultrasound images of the carotid

artery and correlated with plaque histology [15]. The fundamental

laws of texture energy were used to automatically classify plaques

into symptomatic or asymptomatic classes [16]. The fractal

dimension was found to be able to differentiate between

symptomatic and asymptomatic plaques [17]. In addition,

Christodoulou et al. showed that texture features, shape param-

eters, and morphological features from carotid plaques could be

applied to discriminate subjects with symptomatic and asymp-

tomatic stenosis [18]. Loizou et al. utilized texture analysis to

evaluate ten despeckle filters that are used to improve the class

separation between symptomatic and asymptomatic plaques [19].

In addition, Tsiaparas et al. proposed a multiresolution approach

to discriminate between symptomatic and asymptomatic cases

[20]. Recently, 3D carotid imaging with plaque texture feature

analysis was adopted for the study of asymptomatic carotid stenosis

and a risk of stroke study [21].

All of these previous works underscored the potential of using

texture features to evaluate carotid atherosclerotic plaque. To the

best of our knowledge, no previous work has used texture analysis

to evaluate arterial roughness in the early stage of atherosclerosis.

Therefore, the aims of this study are: (1) to assess the efficacy of

texture analysis methods in identifying arterial roughness; and (2)

to determine which texture features provide a more accurate

evaluation.

Methods

A. Data Acquisition
A group of 40 apoE2/2 C57BL/6 mice (8 weeks of age; Peking

University, Beijing, China) were fed with a high-fat diet for 16

weeks. Twenty 8-week-old normal C57BL/6 mice were fed a

normal chow diet as control group. In order to standardize the

ultrasound scanning protocol, only 28 apoE2/2 mice and 15

normal mice with heart rate within the range of 300–500 bpm

during anesthesia were included for texture analysis. All animal

experiments were conducted in accordance with the protocol

approved by the Institutional Animal Care and Use Committee of

Shenzhen Institutes of Advanced Technology, Chinese Academy

of Sciences.

Ultrasound data were acquired using a high-frequency ultra-

sound system (Vevo 2100, Visualsonics, Toronto, Canada)

equipped with a linear array transducer (MS 550D, frequency

22–55 MHz). The mouse was first anesthetized with an intraper-

itoneal injection of 50 mg/kg pentobarbital sodium (1% in normal

saline) and anesthesia was sustained with 1.5% isoflurane

(delivered in 100% O2) supplied through a nose cone. The mouse

was then placed on a heated procedure board and the limbs were

gently taped to ECG electrodes coated with electrode cream and a

rectal thermometer was inserted for maintenance of normother-

mia (37uC internal temperature). The imaging location, on each

mouse, was carefully shaved of any fur, and warmed ultrasound

gel was liberally applied to ensure optimal image quality. The left

common carotid artery (CCA) was imaged and visualized in a

long-axis view and a CINE loop of 100 frames was stored for later

off-line analysis. The time gain compensation curve was adjusted

(gently sloping) to produce uniform intensity of echoes on the

screen. The gain was set to 30 dB and the dynamic range to

65 dB. To reduce variability, image parameters remained constant

throughout the experiment (i.e., focus and depth optimized for

each animal at the beginning of the experiment and the point of

monitoring was fixed through the entire experiment). All

examinations were performed by one experienced operator and

all the measurements were repeated three times at the same site.

Because B-mode ultrasound images of the carotid artery are

characterized mainly by two brightness levels, a darker one

corresponding to blood and a brighter one corresponding to

surrounding tissue, a region of interest (ROI) proximal to the

carotid bulb can be manually selected not to include accidently

some surrounding tissue by the operator for image post-processing.

A total of 133 CCA-ROIs (45 normal and 88 abnormal) obtained

from 15 normal and 28 abnormal mice, were analyzed. Fifteen

normal and twenty-eight abnormal CCA-ROIs were used to train

the classifier, and the remaining 30 normal and 60 abnormal

CCA-ROIs were applied to evaluate the classifier.

Table 1. Statistical analysis of the texture features computed
from 43 (15 normal and 28 apoE2/2) ultrasound images of
mice common carotid arteries.

Normal(n = 15)
ApoE2/2

(n = 28) p value
FDR
correction

First-Order Statistics (FOS)

AGL 197.8613.4 136.9625.8 0.0001 !

SD 22.4263.78 25.9864.35 0.009 !

Fractal Dimension Texture Analysis

Df 2.02260.067 1.99660.029 0.169 NS

Spatial Gray-Level Dependence Matrix(SGLDM)

CON 7.0562.05 9.8763.67 0.013 !

COR 0.8960.039 0.90460.028 0.228 NS

ENE 0.03160.008 0.01960.0048 0.0001 !

HOM 0.51260.049 0.49360.034 0.196 NS

ENT 1.34760.065 1.43760.058 0.0001 !

Gray Level Difference Statistics (GLDS)

CON1 22.6613.4 25.5669.66 0.458 NS

ASM 0.17160.043 0.13860.026 0.015 !

ENT1 0.87960.121 0.94360.087 0.087 NS

MEAN 0.014260.003 0.01660.0028 0.102 NS

Neighborhood Gray Tone Difference Matrix(NGTDM)

COA 6.8862.03 10.6563.16 0.0001 !

CON2 0.45560.13 0.62360.304 0.057 NS

BUS 1.9760.828e-5 1.3960.66e-5 0.027 !

COM 638662395 956563667 0.001 !

STR 1657168246 36144619340 0.0001 !

Statistical Feature Matrix(SFM)

CON3 1.17660.107 1.20260.116 0.477 NS

COV 0.7460.067 0.8660.102 0.0001 !

For each feature the mean and standard deviation were computed.
All features significant (p,0.05) after false discovery rate correction for multiple
comparisons over all texture features.
doi:10.1371/journal.pone.0076880.t001

Surface Roughness Detection Early Atherosclerosis
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B. Histology
Immediately after all the imaging procedure has been complet-

ed, the mice were euthanatized. Then, the CCA samples were

dissected for histologic phenotyping, covered with Tissue-Tek

(Sakura, Torrance, CA, USA), and frozen in liquid nitrogen vapor.

The CCA sections (5 mm thick) were cut with a cryostat

microtome (CM1950, Leica, Heidelberg, Germany) and were

routinely stained with hematoxylin and eosin (H&E). Tissue

sections were viewed under a confocal microscope (FV1000,

Olympus, Tokyo, Japan).

C. Feature Extraction
Texture features were extracted from the ROI for identifying

arterial roughness. Textures are characteristic intensity variations

that typically originate from roughness of object surfaces [22], and

contain important information about the structural arrangement

of image content and surfaces. In this paper, a total number of 19

texture features were extracted from the ROIs. The tested feature

sets have also been successfully used in previous work in texture

analysis [18,23]. Some of the used features (energy and entropy;

coarseness and busyness) capture complementary textural proper-

ties. Features that did not reach statistical significance were

eliminated. Six different texture feature sets (a total of 19 features)

are described in detail as follows:

1) First-Order Statistics (FOS). The FOS describes the

gray level histogram of an image (or of some local ROI of an

image). Statistical properties of the gray level histogram are

frequently used for texture description. In this study, two texture

features, namely, average gray level (AGL) and standard deviation

(SD) were computed from 43 CCAs (15 normal CCAs and 28

abnormal CCAs). Here, the AGL gives the measure of average

gray level; SD measures how spread out the gray levels are around

the AGL,

AGL~
XL

i~1

i:pi, ð1Þ

SD~
1

L{1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL

i~1

i{AGLð Þ2pi

vuut : ð2Þ

Here, pi is the probability of occurrence of gray level value i, and

L is the number of possible gray levels.

2) Fractal Dimension Texture Analysis (FDTA). Mandelbrot

developed the fractional Brownian motion model to describe the

roughness of natural surfaces [24]. The Hurst coefficient H(w) was

computed [25] for image resolutions w = 1, 2, 3. Fractal dimension Df

can be computed from the relationship

Figure 1. The ultrasound images of the common carotid artery of normal mice fed a normal diet and abnormal mice fed a high-fat
diet for 16 weeks, and the regions of interest (ROIs) were outlined in red.
doi:10.1371/journal.pone.0076880.g001

Surface Roughness Detection Early Atherosclerosis
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Df~3{H: ð3Þ

A small value of Df (large value of parameter H) means a

smooth surface, and large Df (small H), a rough surface.

3) Spatial Gray-Level Dependence Matrix (SGLDM). The

SGLDM is a statistical method which constructs co-occurrence matrix

to reflect the spatial distribution of gray levels in the ROI [26]. It is

based on the estimation of the second-order joint conditional

probability density functions, f(i, j; d, h). Each f(i, j; d, h) is the

probability of going from gray-level i to gray-level j, given that the

intersample spacing is d and the direction is specified by the angle h.

The estimated values for these probability density functions will be

denoted by P(i, j; d, h).

Figure 2. Two-dimensional scatter-plots showing training data, classified data, support vectors and decision boundaries for
support vector machine classifier using (a) FOS, (b) SGLDM, (c) GLDS, (d) NGTDM.
doi:10.1371/journal.pone.0076880.g002

Table 2. The accuracy, sensitivity and specificity of the support vector machine and the k-nearest neighbor classifiers with k = 5 for
five feature sets, for all the 19 features used as one feature set, and for the 11 optimal features shown in Table 1.

Feature Set
Feature Set
Vector Size SVM Classifier KNN Classifier

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

FOS 2 83% 80% 90% 90% 90% 87%

SGLDM 5 80% 85% 70% 62% 80% 27%

GLDS 4 71% 73% 67% 61% 67% 50%

NGTDM 5 77% 77% 77% 73% 75% 70%

SFM 2 56% 70% 27% 56% 70% 27%

All 19 87% 88% 83% 73% 75% 70%

Optimal 11 89% 87% 93% 73% 75% 70%

doi:10.1371/journal.pone.0076880.t002

Surface Roughness Detection Early Atherosclerosis
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Haralick et al. proposed 14 measures that can be employed to

extract useful texture information from P(i, j; d, h) [26]. In this

study, we used five measures as follows:

a) Contrast: It is a measure of the local variations of gray levels

present in an image. Images with large neighboring gray level

differences are associated with high contrast. This parameter

can also characterize the dispersion of the matrix values from

its main diagonal. Note that the contrast is defined as follows:

CON~
XL

i~1

XL

j~1

i{jð Þ2:P i,j; d,hð Þ: ð4Þ

b) Correlation: It is a measure of gray level linear-dependencies

in an image. High correlation values (close to 1) imply a linear

relationship between the gray levels of pixel pairs. This

correlation is defined as follows:

COR~
XL

i~1

XL

j~1

ijP i,j; d,hð Þ{mxmy

� ��
dx,dy

� �
: ð5Þ

where mx and sx are the mean and standard deviation of the

row sums of the matrix P(i, j; d, h), and my and sy are the

corresponding statistics of the column sums.

c) Energy: It is a measure of image homogeneity and reflects

pixel-pair repetitions. Homogeneous images have few

dominant gray tone transitions, which result in higher

energy. The energy is defined as follows:

ENE~
XL

i~1

XL

j~1

P i,j; d,hð Þ2: ð6Þ

d) Homogeneity: It is a measure of local homogeneity in an image. It

assigns larger values to smaller gray level differences within pixel

pairs. This parameter gets higher when the texture includes more

homogeneous regions. The homogeneity is written as:

HOM~
XL

i~1

XL

j~1

1

1z i{jð Þ2
P i,j; d,hð Þ: ð7Þ

e) Entropy: It is a measure of non-uniformity in an image. If the

image is heterogeneous, many elements on P(i, j; d, h) have

small values, which imply that entropy is very large. The

entropy is inversely correlated to energy. It is given by the

following equation:

ENT~{
XL

i~1

XL

j~1

P i,j; d,hð Þ:log P i,j; d,hð Þð Þ: ð8Þ

For a chosen distance d (in this paper d = 1) and for angles 0u,
45u, 90u and 135u we computed four values for each of the

above 5 texture measures.

4) Gray Level Difference Statistics (GLDS). The GLDS

algorithm uses FOS of local property values based on absolute

differences between pairs of gray levels or of average gray levels

[27]. For any given displacement c= (Dx, Dy), let Ic(x, y) = |I(x,

y)2I(x+Dx, y+Dy)|. Let fc be the probability density of Ic(x, y). If

there are L gray levels, this has the form of an L-dimensional

vector whose ith component is the probability that Ic(x, y) will have

value i. If the picture I is discrete, it is easy to compute fc by

counting the number of times each value of Ic(x, y) occurs, where

Dx and Dy are integers. Four measures are listed as follows:

a) Contrast: It is the second moment of fc, whereby it is denoted

by:

CON1~
XL

i~1

i2fc ið Þ: ð9Þ

b) Angular Second Moment: It is small when the fc (i) are very

similar and large when some values are high and others low,

e.g., when the values are concentrated near the origin. This is

denoted by:

Figure 3. Receiver operating characteristic curves for support
vector machine classifier with different feature sets.
doi:10.1371/journal.pone.0076880.g003

Table 3. Area under the Receiver operating characteristic
curve for each feature set for support vector machine
classifier.

Test Result Variables Area

FOS 0.850

SGLDM 0.775

GLDS 0.700

NGTDM 0.767

SFM 0.483

All 0.858

Optimal 0.900

doi:10.1371/journal.pone.0076880.t003

Surface Roughness Detection Early Atherosclerosis
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ASM~
XL

i~1

fc ið Þ2: ð10Þ

c) Entropy: It is large for equal fc (i) and small when they are

very unequal. It expressed as:

ENT1~-
XL

i~1

fc ið Þ:log fc ið Þ
� �

: ð11Þ

d) Mean: It is small when the fc (i) are concentrated near the origin

and large when they are far from the origin and is shown by:

MEAN~
1

L

XL

i~1

i:fc ið Þ: ð12Þ

The above features were calculated for displacements c= (0, 3),

(3, 3), (3, 0), (3, 23), where c= (Dx, Dy), and their mean values

were taken.

5) Neighborhood Gray Tone Difference Matrix

(NGTDM). Here, the NGTDM defines features related to

human perception of a texture [28]. A NGTDM, s(i), is a column

matrix formed by summing the absolute value of the pixel being

observed minus the average of the pixels in its neighborhood. The

neighborhood was predefined as a distance of d = 2 pixels. Once

the NGTDM was formed, five texture features were calculated,

namely, the coarseness, contrast, busyness, complexity, and

texture strength, as follows:

a) Coarseness: It is the reciprocal of normalized sum of the

deviations of pixel intensities from their neighborhood

average intensities. Large values represent areas where

gray-level differences are small, i.e., coarse texture. This

parameter is expressed as:

COA~
XL

i~1

pi s ið Þ
" #{1

: ð13Þ

b) Contrast: Perceptually, an image is said to have a high level of

contrast if areas of different gray levels are clearly visible.

Figure 4. Two-dimensional scatter-plots showing training data and classified data for KNN classifier using (a) FOS, (b) SGLDM, (c)
GLDS, (d) NGTDM.
doi:10.1371/journal.pone.0076880.g004

Surface Roughness Detection Early Atherosclerosis
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Thus high contrast means that the intensity difference

between neighboring regions is large. Also the spatial

frequency of the changes in intensity will affect the contrast

of an image. The contrast is denoted by:

CON2~
1

Ng(Ng{1)

XL

i~1

XL

j~1

pipj i{jð Þ2: 1

n2

XL

i~1

s ið Þ: ð14Þ

where Ng is the total number of different gray levels in the

image. For an N6N image, n = N-2d.

c) Busyness: A busy texture is one in which there are rapid

changes of intensity from one pixel to its neighbor; that is the

spatial frequency of intensity changes is very high. If these

changes are very small in magnitude, they may not be visually

noticeable and a high level of local uniformity in intensity

may be perceived. Busyness is expressed as:

BUS~
XL

i~1

pis ið Þ
,XL

i~1

XL

j~1

ipi{jpj

� �
: ð15Þ

d) Complexity: It refers to the visual information content of a

texture. A texture is considered complex if the information

content is high. The complexity is given by:

COM~
XL

i~1

XL

j~1

i{jj jð Þ
�

n2 pizpj

� �� �� 	
pis ið Þzpjs jð Þ
� 	

:ð16Þ

e) Texture Strength: It is a difficult concept to define concisely.

However a texture is generally referred to as strong when the

primitives that comprise it are easily definable and clearly

visible. This parameter is written as:

STR~
XL

i~1

XL

j~1

pizpj

� �
i{jð Þ2

,XL

i~1

s ið Þ: ð17Þ

The SFM is a method that directly evaluates the statistical

features for several intersample spacing distances from the image.

The following two features, contrast and covariance, are used in

this paper are defined as:

CON3~E I x,yð Þ{I xzDx,yzDyð Þ½ �2
n o

, ð18Þ

COV~Ef½I(x,y){AGL�½I(xzDx,yzDy){AGL�g: ð19Þ

where E(?) denotes the expectation operation.

D. Classifier Design
1) K-Nearest-Neighbor (KNN) classifier. The KNN

classifier is used to classify whether a CCA is normal or

abnormal. In the KNN algorithm, in order to classify a new

input pattern, its k nearest neighbors from the training set are

identified [29]. A new pattern is classified to the most frequent

class among its neighbors based on a similarity measure that is

usually the Euclidean distance. The shorter the inter-distance,

the greater the similarity. In this paper, the KNN classifier was

implemented for k = 5.

2) Support Vector Machine (SVM) classifier. The SVM is

a relatively new type of learning algorithm, originally introduced

by Vapnik and successively extended by a number of other

researchers [30–32]. The goal of the SVM is to produce a model

(based on the training data) that predicts the target values of the

test data given only the test data attributes.

Given a training set of instance-label pairs (Xi, Ci), i = 1, 2,…, l

where l is the dimension of training set and CM{21,1}. The SVM

requires the solution of the following optimization problem:

min
w,b,j

1

2
W T WzK

Xl

i~1

ji:

subject to Ci W TW Xið Þzb
� �

§1{ji:

ð20Þ

Here training vectors Xi are mapped into a higher (maybe

infinite) dimensional space by the function W. ji $0 is the so-called

slack variables that allow for misclassification of noisy and difficult

data points. The SVM finds a linear separating hyperplane with

the maximal margin in this higher dimensional space. Here, K .0

controls the tradeoff between the slack variable penalty and the

margin. The function W(X) maps the data to a higher dimensional

Figure 5. Receiver operating characteristic curves for k-nearest
neighbor classifier with different feature sets.
doi:10.1371/journal.pone.0076880.g005

Table 4. Area under the Receiver operating characteristic
curve for each feature set for k-nearest neighbor classifier.

Test Result Variables Area

FOS 0.883

SGLDM 0.533

GLDS 0.583

NGTDM 0.725

SFM 0.483

All 0.725

Optimal 0.725

doi:10.1371/journal.pone.0076880.t004
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space. This new space is defined by its kernel function that is

expressed as V Xi,Xj

� �
:W Xið ÞTW Xj

� �
:

The important advantage of a SVM classifier is the transfor-

mation of the learning task to the sequential minimal optimization

with linear constraints. For this type of optimization there exist

many highly effective learning algorithms [33,34], leading in

almost all cases to the global minimum of the cost function.

E. Statistical Analyses
Data are expressed as the mean value 6 standard deviation.

Comparison of continuous variables was performed using

Student’s t-test. Significance corrections for multiple comparisons

over all features were done using false discovery rate (FDR)

correction (p,0.05) [35]. Accuracy, sensitivity and specificity were

calculated for each classifier. The accuracy is defined as the

percentage of the correctly classified CCAs to the total number of

the tested CCAs. Sensitivity (true-positive rate) is the percentage of

abnormal mice based classification approach; specificity (true-

negative rate) is the proportion of the normal mice based

classification approach. One minus specificity is the false-positive

rate (1-specificity). Receiver operating characteristic (ROC) curves

plot sensitivity VS (1-specificity). Curves toward the upper left-

hand corner of a receiver operating characteristic graph represent

stronger screening tests. The areas under receiver operating

characteristic curves (AUROCs) are used to determine the ability

of the KNN and SVM classifiers to distinguish between normal

and abnormal CCAs. Higher AUROC corresponds to stronger

performance of screening tests. Statistical analyses were performed

using SPSS for Windows 17.0 (SPSS Inc).

Results

A total of 133 CCA-ROIs were used in this study. One hundred

ultrasound images were analyzed for each CCA-ROI. Six different

texture feature sets (a total of 19 features) were extracted from the

Figure 6. Receiver operating characteristic curves for the support vector machine and the k-nearest neighbor classifiers, using as
input the 11 optimal feature sets (a) and first-order statistics feature set (b).
doi:10.1371/journal.pone.0076880.g006

Figure 7. Photograph of atherosclerotic lesion in the common carotid artery of apoE2/2 mouse fed a high-fat diet with hematoxylin
and eosin (H&E) staining.
doi:10.1371/journal.pone.0076880.g007
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manually segmented CCA images as described in Section II. For

each feature set, the mean and standard deviation for the normal

and abnormal classes were computed, as well as the p values were

obtained using the t-test and were corrected for multiple

comparisons by the method of FDR. (Table 1). The 11 texture

features were considered to be statistically significant. They are:

the average gray level and standard deviation of FOS, the contrast

and energy of SGLDM, the contrast and angular second moment

of GLDS, the coarseness, busyness, complexity, and texture

strength of NGTDM, and the covariance of SFM. Texture in

abnormal CCA tends to be more hypoechoic, with higher

contrast, more heterogeneous, rougher, coarser and more

distinctive, whereas in normal CCA texture tends to be more

hyperechoic, with lower contrast, more homogeneous, more

smooth, less coarse and less distinctive, as shown in Figure 1.

For the classification task, the SVM classifier and the KNN

classifier were implemented. Table 2 shows the classification

accuracy, sensitivity and specificity obtained using these two

classifiers, for different feature sets. For SVM classifier, the best

feature set was the FOS with an accuracy of 83%, sensitivity of

80% and specificity of 90%, followed by the SGLDM with an

accuracy of 80%, sensitivity of 85% and specificity of 70%, the

NGTDM with an accuracy of 77%, sensitivity of 77% and

specificity of 77%, and the GLDS with an accuracy of 71%,

sensitivity of 73% and specificity of 67%. The worst feature set was

SFM with an accuracy of 56%, sensitivity of 70% and specificity of

27%. In addition, when all 19 features were used for SVM

classification, it reaches the accuracy, sensitivity and specificity of

87%, 88%, and 83%, respectively. When the 11 optimal features

were chosen for SVM classification, it results in accuracy,

sensitivity and specificity of 89%, 87%, 93%, respectively.

Figure 2 shows two-dimensional scatter plots of SVM classifier

using some of the features listed in Table 1. The figure shows that

the two classes are well separated, and demonstrates that texture

features can be used to identify arterial roughness accurately.

The ROC analysis is a standard approach for evaluating the

sensitivity and specificity of diagnostic procedures [36]. Figure 3

displays the ROC curves when different feature sets were used as

inputs to the SVM classifier. The areas under the curves were

calculated and presented in Table 3. The ROC curves and the

areas show that the SGLDM and NGTDM can obtain a ROC

area of 0.775 and 0.767, respectively. The FOS and all 19 features

are better for identifying abnormal mice (AUROC: FOS = 0.850,

All = 0.858). The optimal features selected can achieve maximum

ROC area (0.900).

The statistical KNN classifier was implemented and the results

were compared with those of the SVM. In Table 2, the results are

tabulated for k = 5. The best individual result for the KNN

classifier was also achieved with the FOS feature set with an

accuracy of 90%, sensitivity of 90% and specificity of 87%,

followed by the NGTDM with an accuracy of 73%, sensitivity of

75% and specificity of 70%, the SGLDM with an accuracy of

62%, sensitivity of 80% and specificity of 27%, and the GLDS

with an accuracy of 61%, sensitivity of 67% and specificity of 50%.

The worst feature set was SFM with an accuracy of 56%,

sensitivity of 70% and specificity of 27%. When all 19 features or

the 11 optimal features were used as one feature set, it comes out

with the same accuracy, sensitivity and specificity at 73%, 75%,

and 70%, respectively. Figure 4 shows two-dimensional scatter

plots of KNN classifier using some of the features tabulated in

Table 1. Compared with Figure 2, Figure 4 shows a higher degree

of overlap of the texture features for the two classes. Figure 5

displays the ROC curves when different feature sets were used as

inputs to the KNN classifier. The areas under the curves were

calculated and presented in Table 4. The FOS is the best feature

set for identifying abnormal mice, with ROC area of 0.883.

NGTDM, all 19 features, and 11 optimal features all resulted in

ROC areas of 0.725.

Figure 6 displays the ROC curves for the SVM and the KNN

classifiers when 11 optimal features and only the FOS feature set

were used to train the classifiers. With 11 optimal features used,

SVM classifier showed better performance compared to the KNN

classifier (AUROC: SVM = 0.900, KNN = 0.725), as shown in

Figure 6(a). However, when the classifiers were trained with FOS

feature set, the area below the curve was slightly higher for the

KNN classifier, 0.883, whereas for the SVM classifier was 0.850,

as shown in Figure 6(b).

Pathological evaluations of carotid lesions were carried out.

Figure 7 shows the CCAs sections stained with H&E, which

revealed the induction of atherosclerotic lesion formation.

Discussion

This study aims to confirm the feasibility of using texture

features for early identification of arterial roughness from

ultrasound images, and to determine the optimal texture features.

A total of 19 texture features were extracted from high-frequency

ultrasonic images of mice carotid arteries. Statistical analysis

indicated that 11 features can be used to distinguish between

normal and abnormal groups, as shown in Table 1. Eleven

optimal features, when combined in a feature set, achieved higher

classification accuracy, sensitivity and specificity. These results are

consistent with those of other studies [18,37] and suggest that

smooth surface, echogenicity, and a homogenous texture are

characteristics of asymptomatic plaques, whereas irregular surface,

echolucency and a heterogeneous texture are characteristics of

potentially symptomatic plaques.

The SVM classifier and KNN classifier were implemented for

the classification of mice with CCA abnormalities. The SVM

classifier was chosen because it gives superior performance over

other statistical approaches and because it is robust against

overtraining and the curse of dimensionality [38]. The SVM is

well suited for pattern classification problems, where there is a

high degree of accuracy to identify arterial roughness, as shown in

Figure 2. In this study, six different feature sets were considered at

the beginning. However, the FDTA was proven to have no

statistical significance and was therefore excluded. So, five

different feature sets were extracted from the mice CCA images

and used for training the SVM classifier. As shown in Table 2, the

best feature sets was the FOS feature set, followed by the SGLDM,

NGTDM, and the GLDS. In general, all feature sets performed in

a range of about 71%–83%, excepting the SFM feature set that

performed worse. When all the 19 features were used as inputs to

the SVM classifier, it achieves over 87% accuracy, 88% sensitivity

and 83% specificity. However, when the classifiers were trained

with 11 optimal features, their classification performance im-

proved to be 89% accuracy, 87% sensitivity and 93% specificity.

The KNN classifier also performed well and yielded results

comparable in most cases with the results obtained by the SVM

classifier. The best individual result for the KNN classifier was also

achieved with the FOS feature set, with an accuracy of 90%. As

shown in Figure 6, using 11 optimal features as input, the SVM

classifier showed better performance, while using FOS feature set

as input, the KNN classifier achieved better performance. This

suggests that different classifier designs potentially offer comple-

mentary information. As the previous work has shown [39,40],

hybrid SVM/KNN classifier taking the advantages of the SVM
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and KNN, could be harnessed to improve the overall classifier

performance.

Carotid IMT is a well-accepted and commonly used surrogate

marker for early atherosclerosis [41]. A variety of IMT measure-

ment protocols, based on different ultrasound methods (B-mode

and RF processing), have been developed and improved in order

to obtain reliable and reproducible results [42,43]. However, the

B-mode method is time consuming and operator dependent [44].

The advantage of the method used in this study is that it is less

time consuming and less operator dependent than the B-mode

method. RF IMT method measures only the CCA segment of the

far wall that is located 2 cm proximal to the origin of the carotid

bulb [45]. The site of measurement of the RF approach may be

less likely to contain plaques, because it is more distant from the

bifurcation that is most prone to develop carotid plaques. The

method used in this study can identify abnormalities at any

position along the carotid artery. However, the study is still need

for further studies and verification of clinical trials.

One of limitations of this study is that the B-mode images of

mice CCA were not standardized. The quality of the ultrasound

images affects the quality of the extracted texture features.

Brightness and contrast of the B-mode image strongly depend

on the system gain, time gain compensation and dynamic range

[46]. Images obtained from different scanners, by different

ultrasonographers and through different ultrasound systems at

different settings may be different. Thus, images should be

standardized to insure the measurements of the CCA echodensity

to be comparable. In this study, the B-mode images of mice CCA

were obtained using the Vevo 2100 high-resolution ultrasound

system under the same conditions and by the same ultrasonog-

raphers, thus the standardization was not conducted in our study.

However, this step may be necessary in order to get images with

low intra- and inter-observer variability, which will allow the

development of meaningful studies in relation to clinical events. In

addition, studies have pointed out that it is not possible to

extrapolate findings in the CCA to the bifurcation or the internal

carotid artery, due to differences in geometry, flow pattern,

cellularity and relationships with different risk factors [47].

Additional prospective studies will have to scrutinize whether the

texture features of the CCA gives additional information with

respect to the future risk of cardiovascular disease taking into

consideration the complete atherosclerotic process of the carotid

tree.

Conclusions

In summary, the results in this study show that it is likely to

identify early CCA abnormalities based on texture features

extracted from high-resolution ultrasound images. The SVM

classifier is able to diagnose the normal and abnormal CCA with

an accuracy, sensitivity and specificity of 89%, 87%, 93%. This

paves way for insight into the mechanisms of atherosclerosis and a

more objective diagnosis methodology. Furthermore, it may be

possible to identify and differentiate those individuals into high

and low risk groups according to their cardiovascular risk.
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