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Abstract

Both the current trends in technology such as smart phones, general mobile devices, sta-
tionary sensors and satellites as well as a new user mentality of utilizing this technology to
voluntarily share information produce a huge flood of geo-spatial and geo-spatio-temporal
data. This data flood provides a tremendous potential of discovering new and possibly
useful knowledge. In addition to the fact that measurements are imprecise, due to the
physical limitation of the devices, some form of interpolation is needed in-between discrete
time instances. From a complementary perspective - to reduce the communication and
bandwidth utilization, along with the storage requirements, often the data is subjected to
a reduction, thereby eliminating some of the known/recorded values. These issues intro-
duce the notion of uncertainty in the context of spatio-temporal data management - an
aspect raising an imminent need for scalable and flexible data management.

The main scope of this thesis is to develop effective and efficient techniques for similarity
search and data mining in uncertain spatial and spatio-temporal data. In a plethora
of research fields and industrial applications, these techniques can substantially improve
decision making, minimize risk and unearth valuable insights that would otherwise remain
hidden. The challenge of effectiveness in uncertain data is to correctly determine the set
of possible results, each associated with the correct probability of being a result, in order
to give a user a confidence about the returned results. The contrary challenge of efficiency,
is to compute these result and corresponding probabilities in an efficient manner, allowing
for reasonable querying and mining times, even for large uncertain databases.

The paradigm used to master both challenges, is to identify a small set of equivalent
classes of possible worlds, such that members of the same class can be treated as equiv-
alent in the context of a given query predicate or data mining task. In the scope of this
work, this paradigm will be formally defined, and applied to the most prominent classes
of spatial queries on uncertain data, including range queries, k-nearest neighbor queries,
ranking queries and reverse k-nearest neighbor queries. For this purpose, new spatial
and probabilistic pruning approaches are developed to further speed up query processing.
Furthermore, the proposed paradigm allows to develop the first efficient solution for the
problem of frequent co-location mining on uncertain data.

Special emphasis is taken on the temporal aspect of applications using modern data
collection technologies. While the aforementioned techniques work well for single points of
time, the prediction of query results over time remains a challenge. This thesis fills this gap
by modeling an uncertain spatio-temporal object as a stochastic process, and by applying
the above paradigm to efficiently query, index and mine historical spatio-temporal data.
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Zusammenfassung (Abstract in
German)

Moderne Technologien, z.B. Sattelitentechnologie und Technologie in Smart Phones, erzeu-
gen eine Flut räumlicher Geo-Daten. Zudem ist in der Gesellschaft ein Trend zu beobachten
diese erzeugten Daten freiwillig auf öffentlich zugänglichen Plattformen zur Verfügung zu
stellen. Diese Datenflut hat immenses Potential, um neues und nützliches Wissen zu ent-
decken. Diese Daten sind jedoch grundsätzlich unsichere räumliche Daten. Die Unsicher-
heit ergibt sich aus mehreren Aspekten. Zum einen kommt es bei Messungen grundsätzlich
zu Messungenauigkeiten, zum anderen ist zwischen diskreten Messzeitpunkten eine Inter-
polation nötig, die zusätzliche Unsicherheit erzeugt. Auerdem werden die Daten oft ab-
sichtlich reduziert, um Speicherplatz und Transfervolumen einzusparen, wodurch weitere
Information verloren geht. Diese Unsicherheit schafft einen sofortigen Bedarf für skalier-
bare und flexible Methoden zur Verwaltung und Auswertung solcher Daten.

Im Rahmen dieser Arbeit sollen effektive und effiziente Techniken zur Ähnlichkeitssuche
und zum Data Mining bei unsicheren räumlichen und unsicheren räumlich-zeitlichen Daten
erarbeitet werden. Diese Techniken liefern wertvolles Wissen, das auf verschiedenen For-
schungsgebieten, als auch bei industriellen Anwendungen zur Entscheidungsfindung genutzt
werden kann. Bei der Entwicklung dieser Techniken gibt es zwei Herausforderungen.
Einerseits müssen die entwickelten Techniken effektiv sein, um korrekte Ergebnisse und
Wahrscheinlichkeiten dieser Ergebnisse zurückzugeben. Andererseits müssen die entwick-
elten Techniken effizient sein, um auch in sehr groen Datenbanken Ergebnisse in annehm-
barer Zeit zu liefern.

Die Dissertation stellt ein neues Paradigma vor, das beide Herausforderungen meis-
tert. Dieses Paradigma identifiziert mögliche Datenbankwelten, die bezüglich des gegebe-
nen Anfrageprädikats äquivalent sind. Es wird formal definiert und auf die relevantesten
räumlichen Anfragetypen angewendet, um effiziente Lösungen zu entwickeln. Dazu gehören
Bereichanfragen, k-Nächste-Nachbaranfragen, Rankinganfragen und Reverse k-Nächste-
Nachbarnanfragen. Räumliche und probabilistische Pruningkriterien werden entwickelt,
um insignifikante Ergebnisse früh auszuschlieen. Zudem wird die erste effiziente Lösung
für das Problem des ”Spatial Co-location Minings” auf unsicheren Daten präsentiert.

Ein besonderer Schwerpunkt dieser Arbeit liegt auf dem temporalen Aspekt moder-
ner Geo-Daten. Während obig genannte Techniken dieser Arbeit für einzelne Zeitpunkt
sehr gut funktionieren, ist die effektive und effiziente Verwaltung von unsicheren räumlich-



xxiv Zusammenfassung (German Abstract)

zeitlichen Daten immer noch ein weitestgehend ungelöstes Problem. Diese Dissertation
löst dieses Problem, indem unsichere räumlich-zeitliche Daten durch stochastische Prozesse
modeliert werden. Auf diese stochastischen Prozesse lässt sich das oben genannte Para-
digma anwenden, um unsichere räumlich-zeitliche Daten effizient anzufragen, zu indexieren,
und zu minen.
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Introduction





3

Figure 1: Google Maps: Restaurants near The Chinese Tower, Munich.

Spatial Data

A spatial database system can be defined as a database system that offers spatial objects
in its data model and query language, and supports spatial objects in its implementation,
providing at least spatial indexing and spatial join methods [79]. A spatial database is
optimized to store, query and mine data that is related to objects in space. Figure 1
shows a map from Google Maps (http://maps.google.com) obtained by entering the query
“Find restaurants near the Chinese Tower in Munich”. It shows different representations
of spatial objects such as points, lines and regions. A point may represent a data object for
which only its location is important and its extent in space is not important. For example,
the balloons labelled A to I point to the locations of restaurants. Lines and polylines
represent connections in space (i.e., roads, highways, rivers). Polygons describe spatial
regions, such as parks and facilities. In Figure 1, the Institute of Informatics of Ludwig-
Maximilians-University and the English Garden are represented by regions. In addition
to spatial attributes describing the location of a spatial object, a spatial object generally
includes further non-spatial information. Such geo-enriched data may include additional
information, such as

• numerical attributes, describing for example the age of an object, or the average rent
of an apartment building or a region.

• textual attributes, such as names or textual descriptions of the object.
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Figure 2: GPS trajectory of an anonymous individual.

• social information, describing relationships between users and spatial objects. In
such a geo-social network like facebook1, Google Latitude 2 and foursquare3 users
can rate spatial objects and recommend them to their friends.

• image and video information of an object, e.g. showing a restaurants from outside
and from inside.

The main challenge of querying and mining spatial data, is to combine both spatial and
non-spatial attributes. For example, a user u may initiate a query such as “return all of
the user’s friends within 100m distance of the user.”. This query returns all objects o that
satisfy both the spatial query predicate (o is within 100m range of u) and the non-spatial
query predicate (o is a friend of u). An example of a spatial data mining task is to find
areas of a city having a low average rent level.

Spatio-Temporal Data

A traditional spatial database does not offer support for objects that change their lo-
cation over time. However, efficient management of large collections of (location, time)
data pertaining to mobile entities whose whereabout change over time is a paramount in
a plethora of application domains: from geo-social network applications, through struc-
tural and environmental monitoring, disaster/rescue management and remediation, to Ge-
ographic Information Systems (GIS) and Tourist Information-Providing (TIP) systems.
Database systems are required to capture the time varying nature of the modelled phe-
nomena, and spatial databases must capture the movement of spatial objects over time.

1http://www.facebook.com
2http://latitude.google.com/
3http://foursquare.com
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Figure 3: Trajectories in space and time

A spatio-temporal database system is database that supports management and analysis of
large collections of (location, time) data pertaining to mobile entities whose whereabout
changes over time. Figure 2 shows a map from Google Maps enriched with information
about the movement data of an anonymous individual over time, which results from check-
in data taken from FourSquare (http://foursquare.com). A database that manages such
data relating to both space and time information is a spatio-temporal database. A common
example is a database tracking moving objects, which typically can occupy only a single
position at a given time. As an example, a mobile phone that moves among the various
cells of the wireless network leaves, during its interactions with the network, a set of triples
(id, loc, time), each specifying the localization at space loc and at time time of the phone
id. This work uses the common model ([207, 81]) in which a spatio-temporal database is
a collection of (id, loc, time) triples, so-called observations, where time is a point in time
at which a database object id is known to be at a spatial location location. Starting from
the set of triples for a given object id is therefore possible, in principle, to approximate a
function

id : time→ space,

which assigns a location to object id for each moment in a given time interval. We call
such a function a trajectory, as depicted in Figure 3(a) for a one-dimensional space.

The tremendous wealth of information hidden in spatial and spatio-temporal data is
emphasized by the recent McKinsey report “Big data: The next frontier for innovation,
competition, and productivity” (June 2011) estimating “600 billion USD potential annual
consumer surplus from using personal location data globally” [137], thus identifying a
great opportunity for industry. Furthermore, our ability to reveal valuable information
from spatial and spatio-temporal data will enable scientists of any discipline to gain a
new and so far unknown level of knowledge from their data, promoting novel scientific
workflows and groundbreaking insights. This will leverage the paradigm of data-driven
science (a.k.a. eScience), envisioned by the late Turing Award winner Jim Gray in 2008 as
the 4th paradigm of science [87].
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Figure 4: Observed past locations of a vehicle and possible future locations.

Uncertainty in Spatial and Spatio-Temporal Data

The task to unearth this wealth of knowledge is not trivial, with one of the main challenges
being the inherent uncertainty of spatial and spatio-temporal data. Typical, the source
context of spatial databases consists of heterogeneous sensor deployments, including mo-
bile stations, satellite imagery, citizen supplied (crowd sourced) data, ground and aerial
LIDAR, and many more types of sources. In addition to many different types of sensors,
the same type of sensor is often used redundantly, to measure the same variable from dif-
ferent positions and angles. It is clear that different sensors may yield inconsistent and
contradictory information. Traditional database approaches ([13]) to repair such inconsis-
tencies cannot be applied here: Due to the uncertainty, the part of the real world modelled
by the database can no longer be expressed by one single version that is guaranteed to be
correct. Rather, there exist many possible worlds, each associated with a probability of
being correct.

In spatio-temporal databases, we need to consider the case where information about
an object can only be measured sporadically, such as in applications where positions of
objects are tracked by GPS or RFID technology. Between such observations, the position
of the object is not explicitly stored in the database, as depicted in Figure 3(b). Some kind
of model is required to calculate and objects current position by using past observations.
Such an interpolation, which is called dead reckoning in navigation, may give the best
available information on the objects position, but is subject to significant errors due to
many factors as both speed and direction deteriorate unexpectedly. Furthermore, each
estimate of position is relative to the previous one, causing cumulative errors.

Traditional spatial and spatio-temporal database systems simply ignore these aspects
of uncertainty, by expressing the database by a single world aggregated for example by
using expected values, maximum likelihood or dead reckoning. Yet, this single world may
be entirely impossible or it may have a very small probability of being be correct. Clearly,
query processing and data mining tasks based on such an aggregation of uncertainty, may
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yield misleading and wrong results. To illustrate the problem of aggregated uncertainty,
consider the situation illustrated in Figure 4, showing a vehicle that has been observed
northwest of lake “Emmeringer See” at time 12:05 and at time 12:06 at the depicted
positions. At a later time 12:07, no further observation of the vehicle has been made, such
that its location at time 12:07 is uncertain. A simple dead reckoning approach using linear
interpolation assumes that the object continues to drive in the very same direction it has
taken between time 12:05 and 12:06, causing the vehicle to be located in the lake at time
12:07. Accounting for the fact that the vehicle may have taken either a left turn, or a
right turn at the depicted road intersection, there will be two depicted possible positions
of the vehicle. Without any further knowledge about the likelihood of a left (right) turn,
we must assume a uniform distribution, leading to a 0.5 probability of the vehicle to be at
either position. A simple aggregation, that reduces this random position to an expected
position, would yield a useless result, putting the vehicle into the lake once more.

This shortcoming of traditional spatial and spatio-temporal database systems raises an
urgent need for approaches to directly utilize uncertainty information, by considering all
possible worlds. Such probabilistic approaches have the potential to significantly improve
the quality of spatial database systems, by allowing to model knowledge about the real
world that is omitted in traditional spatial database systems. The challenge of this thesis
is to identify solutions to reap the potential benefits of this probabilistic information to
more effectively query and mine spatial and spatio-temporal data. Solving this challenge
will be a major milestone leading to the greater vision of combining spatial and non-spatial
data into geo-enriched data to create new application to enhance everyday’s life.

Outline

For this purpose, this thesis is subdivided as follows. The next part, Part II, will give a
survey on the field of managing, querying and mining uncertain and spatial data, explaining
the various concepts required to understand this thesis. Furthermore, it will introduce the
paradigm of equivalent worlds, a general concept that facilitates development of efficient
algorithms for problems involving uncertain data. In Part III, the paradigm of equivalent
worlds is be applied to find efficient solutions for the most relevant types of spatial queries
on uncertain data, including range queries, k-nearest neighbor queries, ranking queries and
reverse k-nearest neighbor queries. Part IV applies this paradigm to give efficient solutions
for the important problem of spatial data mining of spatial-collocation mining. In Part V,
the temporal aspect of uncertain spatial data is considered, leading to uncertain spatio-
temporal data. New solutions to efficiently query, index and mine uncertain spatio-temporal
data are presented, based upon the paradigm of equivalent worlds. Part VI envisions future
research directions, by pushing the results of this thesis one step ahead, to efficiently handle
uncertainty in semantically enriched geo-spatial data. Part VII concludes this thesis.

Preliminary results of this thesis have been published as full papers at various database
and data-mining conferences and journals, including SIGMOD ([65]), VLDB/PVLBD
([23, 141]), SIGKDD ([28]), ICDE ([22, 66]), CIKM ([66]), SDM ([113]) and TKDE ([25]).
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Furthermore, the introductional parts of this thesis have been presented to the research
community as slides in the scope of tutorials. A tutorial on querying and mining of un-
certain spatial data, for which I have prepared a majority of presentation slides, has been
presented to a broad audience at VLDB Conference 2010 ([157]), while a tutorial on the
management and mining of spatio-temporal data, that I will co-present, has been accepted
for presentation in the scope of a tutorial at ICDE Conference 2014. Finally, one of the fu-
ture visions presented in Section VI is given opportunity to be discussed at a new workshop
([140]) that is held in conjunction with ACM SIGMOD Conference 2014 and for which I
am co-chairing the programm.

At the beginning of each of the main parts of this thesis (Parts II - VI), a road-map is
given, summarizing the chapters of each part, and indicating whether and where parts of
these chapters have been published. This thesis is self-contained, such that no knowledge of
the aforementioned papers is required to read this thesis. To achieve this self-containment,
introductions and tutorials to the fields of spatial, spatio-temporal and uncertain database
management are given in this thesis. Experts may skip the preliminary part of this thesis.
Chapters presenting research results unpublished at the time of submission of this thesis
are marked as such.

Further publications on the field of querying and mining uncertain data that emerged
during the course of this PhD contain extensions that are discussed only briefly ([30, 64, 24])
in this thesis, or are omitted entirely ([26, 71, 29]) for brevity and to control the extents
of this document. These extensions are not necessary for the main concepts presented in
this thesis.

More publications by the author of this thesis consider spatial data without any notion
of uncertainty ([107, 5, 108, 61, 63]), and therefore fail to qualify for the scope of this thesis.
Nevertheless, the experience gained while working on the field of spatial data management
has highly benefited this thesis.

All these publications have their list of authors sorted in alphabetical order, following
the tradition of the group of Prof. Dr. Hans-Peter Kriegel.
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This part of this thesis gives a survey on the field of modeling, managing and querying
uncertain spatial data. It is subdivided into the following chapters:

• Chapter 1 formally defines spatial data and introduces the most relevant spatial sim-
ilarity query predicates including spatial ε-range queries, k-nearest neighbor queries,
and reverse k-nearest neighbor queries. For each spatial similarity query type, effi-
cient solutions in the presence of uncertainty are present later, in Chapters 4-8.

• Before these solutions can be presented, the concepts of managing, modeling and
querying uncertain data are elaborated in Chapter 2. Parts of this chapter have been
presented in the form of presentation slides on our conference tutorial held in 2010 at
the 36th International Conference on Very Large Data Bases ([157]). This chapter is
subdivided into a number of sections in order to give a survey of definitions, notions
and techniques used in the field of querying and mining uncertain spatio-temporal
data. Section 2.1 presents a survey of state-of-the-art data representations models
used in the field of uncertain data management. To answer any query on uncertain
data, well-defined semantics of such queries are required. Therefore, Section 2.3 in-
troduces the possible world semantics for uncertain data, widely used in related work
as well as in the remainder of this thesis. Given an uncertain database, the result
of a probabilistic query can be interpreted in two ways as elaborated in Section 2.4.
This distinction between different probabilistic answer semantics is not made explic-
itly in any related work, but is required to gain a deep understanding of problems
in the field of querying uncertain spatial data and their complexity. Furthermore, a
probabilistic query is required to specify a probabilistic query predicate. A probabilis-
tic query predicate defines the requirements for a candidate result to be sufficiently
stochastic significant to be returned as a query result. Probabilistic query predicates
described in Section 2.5 include possibilistic queries, probabilistic threshold queries
and probabilistic top-k queries. Section 2.6 explains Monte-Carlo sampling based
probability approximation techniques.

• Chapter 3 introduces a novel paradigm for uncertain data to efficiently answer any
kind of query using possible world semantics. This Paradigm of Equivalent Worlds
generalizes existing solutions by identifying requirements a query must satisfy in
order to have a polynomial solution. For any query satisfying these requirements, a
general framework is presented to find an efficient solution. All solutions given in
the remainder of this thesis will be based on this general paradigm. This general
paradigm of approaching uncertain data is first published in this thesis. Following
the paradigm of equivalent worlds, Section 3.3 presents efficient solutions for the
problem of computing the sum of a Poisson-binomial distributed random variable.
This Section presents existing techniques to solve this problem and explicitly shows
how these existing solutions implicitly apply the paradigm of equivalent worlds. The
techniques shown in this chapter will be paramount to develop novel solutions to
efficiently answer similarity queries on uncertain spatial data in Part III.
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Chapter 1

Spatial Data

Objects in a spatial database can be points, lines and polygons. This thesis focuses on the
case of spatial points, as in most application where data uncertainty is involved, the extent
of objects is either non-existent or non-relevant. For instance, GPS signals are represented
by longitude and latitude values, i.e., a point in the two-dimensional geo-space. Analo-
gously, traffic management system tracking the position of vehicles using RFID technology,
can only measure the location of an object, but not its extent. Furthermore, spatial objects
for which their spatial extent is relevant, such as building and lakes, do not change their
position frequently, such that their is usually little uncertainty involved in the management
of objects represented by lines and polygons.

The assumption that objects are represented by points leads to the following simple
definition of a spatial database.

Definition 1. A spatial database DB = {o1, ..., oN} consists of a set of N := |DB| spatial
objects. Each spatial object oi ∈ Rd is represented by a d-dimensional real vector corre-
sponding to the location of oi in a d-dimensional space.

A main requirement for a spatial database management system is to provide efficient
support for the tasks of spatial similarity search. In a nutshell, the task of spatial similarity
search is to find all objects in the database similar to a given query object. This chapter
recapitulates the various types of similarity queries commonly used in spatial databases.



14 1. Spatial Data

1.1 Spatial Similarity Queries

A spatial similarity query returns, for a given spatial database DB and a spatial query
object q, the set of all objects in DB which are similar to q. However, the semantic of
similarity between two objects may differ between applications. For example, consider the
following three spatial applications:

I In a geo-social network, a user wishes to find the set of friends, who are in close
spatial vicinity (i.e., spatially similar to) to his favorite pub.

II In a road network, the driver of a vehicle wishes to find the gas station closest to
him.

III To open a pizza restaurant, the owner wishes to find the location in a city where he
influences the largest number of customers.

In Application I, the aim is to find all friends that are close enough, thus having a
spatial distance of less than some given threshold ε.1 The corresponding query type is an
ε-range query. In contrast, an epsilon-range query may be inappropriate for Application
II. The set of all gas station in range of the limit of the vehicles current fuel level may
be very large. Picking one result at random may result in a gas station that is barely in
range and thus, causing the user to run out of fuel if this gas station happens to be closed.
Rather, Application II requires to return one (or more) gas station(s) in DB having the
smallest distance to the vehicle. This type of query is denoted as a k-nearest neighbor
(kNN) query. In Application I, a k-nearest neighbor query may not make much sense,
as the k friends of yours having the smallest distance to you may still be too far away if
there is less than k of your friends close to your pub. Or, there may be more than k of
your friends close by, resulting in some of them not being returned as a result. Finally,
Application III requires, for a set of alternative locations for the new shop, to find the
location for which it holds that a large number of potential customers (i.e., a large number
of apartment buildings) have the new pizza restaurant as one of their closest restaurants.
This type of query is denoted as a reverse k-nearest neighbor (RkNN) query. Using a k-
nearest neighbor query in Application III will yield a result of k-nearest restaurants for
each possible shop location, thus not giving any new insights. However, a RkNN query may
return more (or less) results than k, giving an indication of how many database objects
are influenced by the query object q.

In the following, the three presented query types will be formally defined. Therefore,
let dist(·, ·) be a spatial distance metric, such as Euclidean distance, distance on a road
network, fuel consumption on a road network, etc.

1In such an application, the social distance may also be considered, such that close friends are allowed to
have a larger spatial distance in order to still be returned as a result. This interesting aspect of geo-social
data is omitted here for brevity.
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Figure 1.1: A spatial ε-range query.

1.1.1 The Spatial Range Query

The most commonly used query type in spatial databases is the spatial range query. In this
work, we consider the most prominent types of spatial range queries, namely the ε-range
query and the window query.

Definition 2 (ε-Range Query). Let DB be a spatial database, let q be a query point, and
let ε be a positive real value. A ε-range query returns all objects in DB having a distance
of at most ε to q, i.e.,

ε-range(q) = {o ∈ DB|dist(q, o) ≤ ε},

Example 1. In Figure 1.1 a database of spatial point objects and a spatial query point
q are depicted. The circle around q with radius ε highlights the space having a Euclidean
distance of at most ε to q. The set {I, J,K} of objects containing only the database objects
located in this circle are returned by this ε-range query.

A query type closely related to the ε-range query is the window query.

Definition 3. [Spatial Window Query] Let DB be a spatial database, let q be a query point,
and let δX and δY be positive real values. A spatial window query returns all objects located
in the region having a vertical distance of at most δX , and a horizontal distance of at most
δY .

�(q, δX , δY ) = {o ∈ DB|abs(q.X − o.X) ≤ δX ∧ abs(q.Y − o.Y ) ≤ δY }.

Thus, the main difference between the ε-range query and the spatial window query, is
the shape of the query region. Note that in the literature, the query rectangle is often given
by two points (Xmin, Ymin) and (Xmax, Ymax), which is an equivalent representation of a
rectangle. This representation can be transformed into the representation of Definition 3
by defining q := (Xmin+Xmax

2
, Ymin+Ymax

2
), δX = Xmin−Xmax

2
and δY = Ymin−Ymax

2
.
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Figure 1.2: A spatial 3-nearest neighbor query.

1.1.2 The k-Nearest Neighbor Query

A spatial ε-range query require the user to specify a proper value of ε, in order to get a
proper number of relevant results: a value of ε that is chosen too small may yield few or
no results at all, while a value of ε chosen too large may return too many results or even
the whole database. To guarantee a certain result size, a k-Nearest Neighbor (kNN) query
is defined as follows.

Definition 4 (k-Nearest Neighbor Query). Let DB be a spatial database, let q be a query
point, and let k be a positive integer. A k-nearest neighbor query returns the smallest set
kNN(q,DB) of at least k objects in DB such that

∀o ∈ DB \ kNN(q), ∀p ∈ kNN(q) : dist(q, p) ≤ dist(q, o).

The distance
kNN-dist(q) := maxo∈kNN(q)dist(q, o)

is called the kNN-distance of q.

Example 2. In Figure 1.2, the 3-nearest neighbor set of query object q is 3NN(q,DB) =
{H,L,M}, since for any object X ∈ {H,L,M} and for any object Y ∈ DB \ {H,L,M}
it holds that dist(q,X) ≤ dist(q, Y ). The depicted circle illustrates the space having a
distance of less or equal to the 3NN distance of q. The 3NN(q,DB) query contains all of
the objects and only the objects in this circle.

Unlike for a ε-range query, the range in which results of a kNN query can be found
depends on the query object q, as different query objects may have a different distance to
their k’th nearest neighbor. Note that in the definition above, the number of results of
a kNN query may be greater than k in the case of ties, i.e., in the case where multiple
objects have a distance to q identical to the kNN distance of q. In applications that require
to return exactly k results, ties can be broken arbitrarily, by iteratively dropping objects
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Figure 1.3: A spatial ranking query.

having a distance to q identical to the kNN distance of q, until k objects are left. In many
applications, the task may to return the k-nearest neighbors sorted increasingly by their
distance to q. This task defines similarity ranking queries as follows.

Definition 5 (Similarity Ranking Query). Let DB be a spatial database, let q be a query
point, and let k be a positive integer. A similarity ranking query returns a list

rank(q, k,DB) = [op1 ∈ kNN(q,DB), ..., opk ∈ kNN(q,DB)]

of length k sorted in increases order of their distance to q, such that

∀o ∈ DB \ rank(q, k,DB), ∀p ∈ rank(q, k,DB) : dist(q, p) ≤ dist(q, o),

and
∀1 ≤ i 6= j ≤ k : opi 6= opj ⇒ dist(q, opi) ≤ dist(q, opi).

The main challenge of similarity ranking queries is that in most applications, k is not
known at query time. Therefore, a ranking query iteratively returns individual results
to the user, until the user signals that no more results are needed. This kind of query
is often referred to incremental similarity ranking query. The algorithmic challenge of
such queries is to avoid running a complete k-nearest neighbor query from scratch in each
iteration. Rather, efficient solutions are required to incrementally determine the result
of rank(q, k,DB) given the result of rank(q, k − 1,DB) as well as intermediate results
acquired during previous iterations.

Example 3. Figure 1.3 shows the result of a ranking query for the depicted query object
q. Object L is the first object that is returned, being the nearest neighbor of q. If requested
by the user, object N is returned second, and object P is returned third.
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1.1.3 The Reverse k-Nearest Neighbor Query

Definition 6 (Reverse k-Nearest Neighbor Query). Let DB be a spatial database, let q be
a query point, and let k be a positive integer. A reverse k-nearest neighbor query returns
the set of of objects having q as one of their k-nearest neighbor, i.e.,

RkNN(q) = {o ∈ DB \ {q}|q ∈ kNN(o)} if q ∈ DB and

RkNN(q) = {o ∈ DB|dist(q, o) ≤ kNN-dist(q)} if q /∈ DB.

Example 4. For k = 2, object q1 in Figure 1.4 has no reverse nearest neighbor, since
no database object has q1 as one of its two nearest neighbors. In particular, the objects
A, B and C that are nearest to q1, have each other as their two-nearest neighbor sets. In
contrast, object q2 has objects D, E and F as two-reverse nearest neighbors, since all of
these objects contain q2 in their two-nearest neighbor set.

It is important to note that the kNN relation kNNDB := {(r ∈ DB, s ∈ DB \ {r})|s ∈
kNN(r)} is not identical to the RkNN relation RkNNDB := {(r ∈ DB, s ∈ DB \ {r})|s ∈
RkNN(r)}. This observation follows direct from the fact that the relation kNNDB is not
symmetrical, i.e., (oi, oj ∈ kNNDB) does not imply (oj, oi ∈ kNNDB).

Example 5. For example, in Figure 1.4, object q1 has object B as its 1-nearest neighbor.
However, object B does not have object q1 as its 1-nearest neighbor since objects A and C
are closer to B than q1.

A further type of spatial similarity query is the spatial skyline query[37], which is not
featured in this dissertation.



Chapter 2

Uncertain Data

2.1 Discrete and Continuous Models for Uncertain

Data

An object is uncertain if at least one attribute of o is uncertain. The uncertainty of
an attribute can be captured in a discrete or continuous way. A discrete model uses a
probability mass function (pmf) to describe the location of an uncertain object. In essence,
such a model describes an uncertain object by a finite number of alternative instances,
each with an associated probability [110, 147], as shown in Figure 2.1(a). In contrast,
a continuous model uses a continuous probability density function (pdf), like Gaussian,
uniform, Zipfian, or a mixture model, as depicted in Figure 2.1(b), to represent object
locations over the space. Thus, in a continuous model, the number of possible attribute
values is uncountably infinite. In order to estimate the probability that an uncertain
attribute value is within an interval, integration of its pdf over this interval is required
[177]. The random variables corresponding to each uncertain attribute of an object o can
be arbitrarily correlated.

To capture positional uncertainty, such models can be applied by treating longitude
and latitude (and optionally elevation) as two (three) uncertain attributes. In the case
of discrete positional uncertainty, the position of an object A is given by a discrete set
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Figure 2.1: Models for Uncertain Attributes



20 2. Uncertain Data

(a) Discrete Case (b) Continuous Case

Figure 2.2: Uncertain Objects

a1, ..., am of m ∈ N possible alternatives in space, as exemplarily depicted in Figure 2.2(a)
for two uncertain objects A and B. Each alternative ai is associated with a probability
value p(ai), which may for example be derived from empirical information about the turn
probabilities of intersection in an underlying road network. In a nutshell, the position A is
a random variable, defined by a probability mass function pdfA that maps each alternative
position ai to its corresponding probability p(ai), and that maps all other positions in
space to a zero probability. An important property of uncertain spatial databases is the
inherent correlation of spatial attributes. In the example shown in Figure 2.2(a) it can be
observed that the uncertain attributes a and b are highly correlated: given the value of one
attribute, the other attribute is certain, as there is no two alternatives of objects A and B
having identical attribute values in either attribute.

Clearly, it must hold that the sum of probabilities of all alternatives must sum to at
most one:

m∑
i=1

p(ai) ≤ 1

In the case where
∑m

i=1 p(ai) ≤ 1 object A has a non-zero probability of 1−
∑m

i=1 p(ai) ≥
0 to not exist at all. This case is called existential uncertainty, and A is denoted as
existentially uncertain [205]. If the total number of possible instances m is greater than
one, A is denoted as attribute uncertain. In the context of uncertain spatial data, attribute
uncertainty is also referred to as positional uncertainty or location uncertainty. An object
can be both existentially uncertain and attribute uncertain. In Figure 2.2(a), object A is
both existentially uncertain and attribute uncertain, while object B is attribute uncertain
but does exist for certain.

In the case of continuous uncertainty, the number of possible alternative positions of an
object A is infinite, and given by the non-zero domain of the probability density function
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pdfx. The probability of A to occur in some spatial region r is given by integration∫
r

pdfA(x)dx.

Since arbitrary pdfs may be represented by an infinitely large number of (position, probability)
pairs, such pdfs may require infinite space to represent. For this reason, assumptions on
the shape of a pdf are made in practice. All continuous models for positionally uncertain
data therefore use parametric pdfs, such as Gaussian, uniform, Zipfian, mixture models,
or parametric spline representations. For illustration purpose, Figure 2.2(b) depicts three
uncertain objects modelled by a mixture of gaussian pdfs. Similar to the discrete case, the
constraint ∫

Rd
pdfA(x)dx ≤ 1

must be satisfied, where Rd is a d dimensional vector space. In the case of spatial data, d
usually equals two or three. The notion of existentially and attribute uncertain objects is
defined analogous to the discrete case.

The following section reviews related work and state-of-the-art on the field of modeling
uncertain data.

2.2 Existing Models for Uncertain Data

This section gives a brief survey on existing models for uncertain spatial data used in the
database community. Many of the presented models have been developed to model uncer-
tainty in relational data, but can be easily adapted to model uncertain spatial data. Since
one of the main challenges of modeling uncertain data is to capture correlation between
uncertain objects, this section will elaborate details on how state-of-the-art approaches
tackles this challenge. Both discrete and continuous models are presented.

Discrete Models

In addition to reviewing related work defining discrete uncertainty models, the aim of this
section is to put these papers into context of Section 2.1. In particular, models which are
special cases or equivalent to the model presented in Section 2.1 will be identified, and
proper mappings to Section 2.1 will be given.

Independent Tuple Model. Initial models have been proposed simultaneously and
independently in [74, 217]. These works assume a relational model in which each tuple is
associated with a probability describing its existential uncertainty. All tuples are considered
independent from each other. This simple model can be seen as a special case of the model
presented in Section 2.1, where only existential uncertain but no attribute uncertainty is
modelled.

Block-Independent Disjoint Tuples Model and X-Tuple model A more re-
cent and the currently most prominent approach to model discrete uncertainty is the
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block-independent disjoint tuples model ([56]), which can capture mutual exclusion be-
tween tuples in uncertain relational databases. A probabilistic database is called block
independent-disjoint if the set of all possible tuples can be partitioned into blocks such
that tuples from the same block are disjoint events, and tuples from distinct blocks are
independent. A commonly used example of a block-independent disjoint tuples model is
the Uncertainty-Lineage Database Model([16, 163, 172, 202, 203]), also called X-Relation
Model or simply X-Tuple Model that has been developed for relational data. In this model,
a probabilistic database is a finite set of probabilistic tables. A probabilistic table T con-
tains a set of (uncertain) tuples, where each tuple t ∈ T is associated with a membership
probability value Pr(t) > 0. A generation rule R on a table T specifies a set of mutu-
ally exclusive tuples in the form of R : tr1 ⊕ ... ⊕ trm where tri ∈ T (1 ≤ i ≤ m) and
P (R) :=

∑m
i=1 tri ≤ 1. The rule R constrains that, among all tuples tr1 , ..., trm involved

in the rule, at most one tuple can appear in a possible world. The case where P (R) < 1
the probability 1 − P (R) corresponds to the probability that no tuple contained in rule
R exists. It is assumed that for any two rules R1 and R2 it holds that R1 and R2 do not
share any common tuples, i.e., R1 ∩ R2 = ∅. In this model, a possible world w is a subset
of T such that for each generation rule R, w contains exactly one tuple involved in R if
P (R) = 1, or w contains 0 or 1 tuple involved in R if Pr(R) < 1.

This model can be translated to a discrete model for uncertain spatial data as discussed
in Section 2.1 by interpreting the set T as the set of all possible locations of all objects,
and interpreting each rule R as an uncertain spatial object having alternatives tri . The
constraint that no two rules may share any common tuples translates into the assumption
of mutually independent spatial objects. Finally, the case P (R) < 1 corresponds to the
case of existential uncertainty (see Section 2.1).

A similar block-independent disjoint tuples model is called p-or-set [156] and can be
translated to the model described in Section 2.1 analogously. In [11], another model for
uncertainty in relational databases has been proposed that allows to represent attribute
values by sets of possible values instead of single deterministic values. This work extends
relational algebra by an operator for computing possible answers. A normalized repre-
sentation of uncertain attributes, which essentially splits each uncertain attribute into a
single relation, a so-called U-relation, allows to efficiently answer projection-selection-join
queries. The main drawback of this model is that it is not possible to compute probabilities
of the returned possible answers. Sen and Deshpande [166] propose a model based on a
probabilistic graphical model, for explicitly modeling correlations among tuples in a proba-
bilistic database. Strategies for executing SQL queries over such data have been developed
in this work. The main drawback of using the proposed graphical model is its complexity,
which grows exponential in the number of mutually correlated tuples. This is a general
drawback for graphical models such as Bayesian networks and graphical Markov models,
where even a factorized representation may fail to reduce the complexity sufficiently: The
idea of a factorized representation is to identify conditional independencies. For example,
if a random variable C depends on random variables A and B, then the distribution of
C has to be given relative to all combination of realizations of A and B. If however, C
is conditionally independent of A, i.e., B depends on A, C depends on B, and C only
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transitively depends on A, then it is sufficient to store the distribution of C relative only
to the realizations of B. Nevertheless, if for a given graphical model a random variable
depends on more than a hand-full of other random variables, then the corresponding model
will become infeasible.

And/Xor Tree Model. A very recent work by Li and Deshpande [123] extends the
block-independent disjoint tuples model by adding support for mutual co-existence. Two
events satisfy the mutual co-existence correlation if in any possible world, either both hap-
pen or neither occurs. This work allows both mutual exclusiveness and mutual co-existence
to be specified in a hierarchical manner. The resulting tree structure is called an and/xor
tree. While theoretically highly relevant, the and/xor tree model becomes impracticable
in large database having non-trivial object dependencies, as it grows exponentially in the
number of database objects.

If not stated otherwise, this thesis will apply the block-independent disjoint tuples
model as model of choice for discrete uncertain data.

Continuous Models

In general, similarity search methods based on continuous models involve expensive integra-
tions of the PDFs, hence special approximation and indexing techniques for efficient query
processing are typically employed [52, 177]. In order to increase quality of approximations,
and in order to reduce the computational complexity, a number of models have been pro-
posed making assumptions on the shape of object PDFs. Such assumptions can often be
made in applications where the uncertain values follow a specific parametric distribution,
e.g. a uniform distribution [50, 48] or a Gaussian distribution [48, 59, 146]. Multiple such
distributions can be mixed to obtain a mixture model [193, 35]. To approximate arbitrary
PDFs, [124] proposes to use polynomial spline approximations.
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Figure 2.3: An uncertain database and all of its possible worlds.

2.3 Possible World Semantics

In an uncertain spatial database DB = {U1, ..., UN}, the location of an object is a random
variable. Consequently, if there is at least one uncertain object, the data stored in the
database becomes a random variable. To interpret, that is, to define the semantics of a
database that is, in itself, a random variable, the concept of possible worlds is described in
this section.

Definition 7 (Possible World Semantics). A possible world w = {ua11 , ..., u
aN
N } is a set of

instances containing at most one instance uaii ∈ Ui from each object Ui ∈ DB. The set of
all possible worlds is denoted as W. The total probability of an uncertain world P (w ∈ W)
is derived from the chain rule of conditional probabilities:

P (w) := P (
∧

u
ai
i ∈w

Ui = uaii ) =
N∏
i=1

P (uaii |
∧
j<i

u
aj
j ). (2.1)

By definition, all worlds w having a zero probability P (w) = 0 are excluded from the set
of possible worlds W. Equation 2.1 can be used if conditional probabilities of the position
of objects given the position of other objects are known, e.g. by a given graphical model
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Table 2.1: Possible worlds corresponding to Figure 2.3.
World Probability World Probability
{u1

1, u
1
2, u

1
3} 0.5 · 0.7 · 0.5 = 0.175 {u2

1, u
1
2, u

1
3} 0.5 · 0.7 · 0.5 = 0.175

{u1
1, u

1
2, u

2
3} 0.5 · 0.7 · 0.3 = 0.105 {u2

1, u
1
2, u

2
3} 0.5 · 0.7 · 0.3 = 0.105

{u1
1, u

1
2, u

3
3} 0.5 · 0.7 · 0.2 = 0.07 {u2

1, u
1
2, u

3
3} 0.5 · 0.7 · 0.2 = 0.07

{u1
1, u

2
2, u

1
3} 0.5 · 0.2 · 0.5 = 0.05 {u2

1, u
2
2, u

1
3} 0.5 · 0.2 · 0.5 = 0.05

{u1
1, u

2
2, u

2
3} 0.5 · 0.2 · 0.3 = 0.03 {u2

1, u
2
2, u

2
3} 0.5 · 0.2 · 0.3 = 0.03

{u1
1, u

2
2, u

3
3} 0.5 · 0.2 · 0.2 = 0.02 {u2

1, u
2
2, u

3
3} 0.5 · 0.2 · 0.2 = 0.02

{u1
1, u

1
3} 0.5 · 0.1 · 0.5 = 0.025 {u2

1, u
1
3} 0.5 · 0.1 · 0.5 = 0.025

{u1
1u

2
3} 0.5 · 0.1 · 0.3 = 0.015 {u2

1, u
2
3} 0.5 · 0.1 · 0.3 = 0.015

{u1
1, u

3
3} 0.5 · 0.1 · 0.2 = 0.01 {u2

1, u
3
3} 0.5 · 0.1 · 0.2 = 0.01

such as a Bayesian network or a Markov model. In many applications where independence
between object locations can be assumed, as well as in applications where only the marginal
probabilities P (uaii ) are known, and thus independence has to be assumed due to lack of
better knowledge of a dependency model, the above equation simplifies to

P (w) =
N∏
i=1

P (uaii ). (2.2)

Example 6. As an example, consider Figure 2.3 where a database consisting of three
uncertain objects DB = {U1, U2, U3} is depicted. Objects U1 = {u1

1, u
2
1} and U2 = {u1

2, u
2
2}

each have two possible instances, while object U3 = {u1
3, u

2
3, u

3
3} has three possible instances.

The probabilities of these instances is given as P (u1
1) = P (u2

1) = 0.5, P (u1
2) = 0.7, P (u2

2) =
0.2, P (u1

3) = 0.5, P (u2
3) = 0.3, P (u3

3) = 0.2. Note that object U2 is the only object having
existential uncertainty: With a probability of 1− 0.7− 0.2 = 0.1 object U2 does not exist at
all. Assuming independence between spatial objects, the probability for the possible world
where U1 = u1

1, U2 = u1
2 and U3 = u1

3 is given by applying Equation 2.2 to obtain the
product 0.5 · 0.7 · 0.5 = 0.175. All possible worlds spanned by DB are depicted in Figure
2.3. The probability of each possible world is shown in Table 2.1, including possible worlds
where U2 does not exist.

Recall that a predicate can evaluate to either true or false on a crisp (non-uncertain)
database. An exemplary predicate is There are at least five database objects in a 500meter
range of the location “Theresienwiese, Munich”. To evaluate a predicate φ on an uncertain
database using possible world semantics, the query predicate is evaluated on each possible
world. The probability that the query predicate evaluates to true is defined as the sum of
probabilities of all worlds where φ is satisfied, formally:

Definition 8. Let DB be an uncertain spatial database inducing the set of possible worlds
W, let φ be some query predicate, and let

I(φ,w ∈ W) := P (φ(DB)|DB = w) ∈ {0, 1}
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be the indicator function that returns one if world w satisfies φ and zero otherwise. The
marginal probability P (φ(DB)) of the event φ(DB) that predicate φ holds in DB is defined
as using the theorem of total probability [220]:

P (φ(DB)) =
∑
w∈W

I(φ,w) · P (w) (2.3)

The main challenge of analyzing uncertain data is to efficiently and effectively deal
with the large number of possible worlds induced by an uncertain database DB. In the
case of continuous uncertain data, the number of possible worlds is uncountably infinite,
even in the case where the database contains only one uncertain object. Thus, expensive
integration operations or numerical approximation are required for most spatial database
queries and spatial data mining tasks. Even in the case of discrete uncertainty, the number
of possible worlds grows exponentially in the number of objects: in the worst case, any
combination of alternatives of objects may have a non-zero probability, as shown exemplary
in Figure 2.3. This large number of possible worlds makes efficient query processing and
data mining an extremely challenging problem. In particular, any problem that requires
an enumeration of all possible worlds is #P-hard. In particular, a number of probabilis-
tic problems have been proven to be in #P [194]. Following this argumentation, general
query processing in the case of discrete data using object independence has proven to be a
#P-hard problem [57] in the context of relational data. The spatial case is a specialization
of the relation case, but clearly, the spatial case is in #P as well, which becomes evident
by construction of a query having an exponentially large result, such as the query that
returns all possible worlds. Consequently, there can be no universal solution that allows
to answer any query in polynomial time. This implies that querying processing on models
that are generalizations of the discrete case with object independence, e.g., models using
continuous distribution, or models that relax the object independence assumption, must
also be a #P hard problem. The result of [57] implies that there exists query predicates,
for which no polynomial time solution can be given. Yet, this result does not outrule the
existence of query predicates that can be answered efficiently. For example the (trivial)
query that always returns the empty set of objects can be efficiently answered on uncertain
spatial databases. Now, the imminent question is whether the most important types of
spatial queries can be answered efficiently. This thesis will positively answer this ques-
tion, and propose exact and efficient solutions for the most prominent spatial query types.
Furthermore, this thesis will present a paradigm for query processing and data mining on
uncertain spatial data that can be adapted to new query types and data mining tasks.
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Figure 2.4: Example Database showing possible positions of uncertain objects and their
corresponding probabilities.

2.4 Probabilistic Answer Semantics

Example 7. Recall that a spatial similarity queries always requires a query object q and, in-
formally speaking, returns objects to the user that are similar to q. In the case of uncertain
data, there exists two fundamental semantics to describe the result of such a probabilistic
spatial similarity query. These different answer semantics will be denoted as object based
answer semantics and the result based answer semantics. Informally, the former semantics
return possible result objects and their probability of being part of the result, while the later
semantics return possible results, which consist of a single object, of a set of objects or of
a sorted list of objects depending on the query predicate, and their probability of being the
result as a whole.

To the best of my knowledge, the only publication where this classification been presented
is our VLDB tutorial [157] in the context of probabilistic kNN queries on uncertain data.
There exists no publication explicitly explaining these semantics in the general case. All
existing publications on uncertain data implicitly assume either semantics. I feel that the
explicit identification and definition of these semantics is a necessary step to put existing
work into context.

2.4.1 Object Based Probabilistic Answer Semantics

Using object based probabilistic answer semantics, a probabilistic spatial query returns a
set of objects, each associated with a probability describing the individual likelihood of this
object to satisfy the spatial query predicate.

Definition 9 (Object Based Answer Semantics). Let DB be an uncertain spatial database,
let q be a query object and let φ denote a spatial query predicate. Under object based
(OB) probabilistic answer semantics, the result of a probabilistic spatial φ query is a set
φOB(q,DB) = {(o ∈ DB, P (o ∈ φOB(q,DB)))} of pairs. Each pair consists of a result object
o and its probability P (o ∈ φOB(q,DB)) to satisfy φ. Applying possible world semantics
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(c.f. Definition 7) to compute the probability P (o ∈ φOB(q,DB)) yields

P (o ∈ φOB(q,DB)) =
∑

w∈W,o∈φ(q,w)

P (w), (2.4)

where φ(q, w) is the deterministic result of a spatial φ query having query object q applied
to the deterministic database defined by world w.

Formally, the result of a probabilistic spatial query under object based answer semantics
is a function

φOB(q,DB) : DB → [0, 1]

o 7→ P (o ∈ φOB(q,DB)).

mapping each object o in DB (the results) to a probability value.
Figure 2.4 depicts a database containing objects DB = {A,B,C}. Objects A and B

have two alternative locations each, while the position of C is known for certain. The
locations and the probabilities of all alternatives are also depicted in Figure 2.4. This leads
to a total number of four possible worlds. For example, in world w1 where A = a1, B = b1

and C1 = c1, object A is closest to q, followed by objects B and C. Assuming inter-object
independence, the probability of this world is given by the product of individual instance
probabilities P (w1) = P (a1) · P (b1) · P (c1) = 0.04. The ranking of each possible world and
the corresponding probability is also depicted in Figure 2.4. For a probabilistic 2NN query
for the depicted query object q, the object based answer semantic computes the probability
of each object to be in the two-nearest neighbor set of q. For object A, the probability P (A)
of this event equals 0.1, since there exists exactly two possible worlds w1 and w2 with a total
probability of 0.04 + 0.06 = 0.1 in which A is on rank one or on rank two, yielding a result
tuple (A, 0.1). The complete result of a P2NN query under object based answer semantic
is {(A, 0.1), (B, 0.94), (C, 0.96)}. Note that in general, objects having a zero probability are
included in the result. For instance, assume an additional object D such that all instances
of D have a distance to q greater than the distance between q and b2. In this case, the pair
(D, 0) would be part of the result.

The result of a query under object based probabilistic answer semantics contains one
result tuple for every single database object, even if the probability of the corresponding
object to be a result is very low or zero. In many applications, such results may be mean-
ingless. Therefore, the size of the result set can be reduced by using a probabilistic query
predicate as explained later in Section 2.5. A computational problem is the computation
of the probability P (o ∈ DB) of an object o to satisfy the spatial query predicate. In
the example, this probability was derived by iterating over the set of all possible worlds
w1, ..., w4. Since this set grows exponentially in the number of objects, such an approach
is not viable in practice. Therefore, efficient techniques to compute the probability val-
ues P (o) are required. Such techniques must avoid an explicit enumeration of all possible
worlds and will be presented for various query predicates in Part III of this thesis.

This thesis will apply object based answer semantics, following the general trend of the
a majority of related research. Nevertheless, to understand some of the remaining related



2.4 Probabilistic Answer Semantics 29

work, result based answer semantics will be explained in the following. To understand
the different of both result semantics is essential: in some related publication the problem
of answering some probabilistic query may be proven to be in #P , while another related
publication gives a solution problem that lies in P -TIME, even though both the spatial
query predicate and the probabilistic query predicate are identical. In such cases, different
answer semantics may explain these results without assuming P = NP .

2.4.2 Result Based Probabilistic Answer Semantics

In the case of result based answer semantics, possible result sets of a probabilistic spatial
query are returned, each associated with the probability of this result.

Definition 10 (Result Based Answer Semantics). Let DB be an uncertain spatial database,
let q be a query object and let φ denote a spatial query predicate. Under result based (RB)
answer semantics, the result of a probabilistic spatial φ query is a set

φRB(q,DB) = {(r, P (r))|r ⊆ DB, P (r) =
∑

w∈W,φ(q,w)=r

P (w)}

of pairs. This set contains one pair for each result r ⊆ DB associated with the probability
P (r) of r to be the result. Following possible world semantics, the probability P (r) is defined
as the sum of probabilities of all worlds w ∈ W such that a spatial φ query returns r.

Formally, the result of a probabilistic spatial query under result based answer semantics
is a function

φRB(q,DB) : P(DB)→ [0, 1]

r 7→ P (r).

mapping a elements of the power set P(DB) (the results) to probability values.

Example 8. For a probabilistic 2NN query for the depicted query object q, result based
answer semantics require to compute the probability of each subset of {A,B,C} to be in
the two-nearest neighbor set of q. For the set {B,C}, the probability of this event is 0.90,
since there is two possible worlds w3 and w4 with a total probability of 0.54 + 0.36 = 0.9
in which B and C are both contained in the 2NN set of q. Note that in worlds w3 and
w4 objects B and C appear in different ranking positions. This fact is ignored by a kNN
query, as the results are returned unsorted. In this example, the complete result of a P2NN
query under object based answer semantic is {({A,B,C}, 0), ({A,B}, 0.04), ({A,C}, 0.06),
({B,C}, 0.90), ({A}, 0), ({B}, 0), ({C}, 0), ({∅}, 0)}.

Clearly, the result of a query using result based answer semantics can be used to de-
rive the result of an identical query using object based answer semantics. For instance,
the result of Example 8 implies that the probability of object A to be a 2NN of q is
0.10, since there exists two possible results using result based answer semantics, namely
({A,B}, 0.04)and({A,C}, 0.06) having a total probability of 0.04 + 0.06 = 0.1, which
matches the result of Example 7.
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Lemma 1. Let q be the query point of a probabilistic spatial τ query. It holds that the result
of this query using object based answer semantics φOB(q,DB) is functionally dependent of
the result of this query using result based answer semantics. The set PSφQOB(q,DB) can
be computed given only the set PSφQRB(q,DB) as follows:

PSφQOB(q,DB) = {(o, P (o))|o ∈ DB ∧ P (o) =
∑

(r,P (r))∈PSφQRB(q,DB),o∈r

P (r)}

Proof. Let W denote the set of possible worlds of DB, and let p(w ∈ W) denote the
probability of a possible world. Furthermore, let

wS⊆DB := {w ∈ W|φ(q, w) = S}

denote the set of possible worlds such that φ(q, w) = S, i.e., such that the predicate that a
φ query using query object q returns set S holds. In each world w, query q returns exactly
one deterministic result PSφQRB(q, w). Thus, the sets wS⊆DB represent a complete and
disjunctive partition of W , i.e., it holds that

W =
⋃

S⊆DB

wS (2.5)

and
∀R, S ∈ P(DB) : R 6= S ⇒ wR

⋂
wS = ∅. (2.6)

Using Equations 2.5 and 2.6, we can rewrite Equation 2.4

P (o ∈ φOB(q,DB)) =
∑

w∈W,o∈φ(q,w)

P (w)

as
P (o ∈ φOB(q,DB)) =

∑
S∈P(DB)

∑
w∈wS ,o∈φ(q,w)

P (w).

By definition, query q returns the same result for each world in w ∈ wS. This result
contains object o if o ∈ S. Thus we can rewrite the above equation as

P (o) =
∑

S∈P(DB),o∈S

P (S).

The probabilities P (S) are given by function PSφQRB(q,DB).

In the above proof, we have performed a linear-time reduction of the problem of an-
swering probabilistic spatial queries using object based answer semantics to the problem of
answering probabilistic spatial queries using result based answer semantics. Thus, we have
shown that, except for a linear factor (which can be neglected for most probabilistic spatial
query types, since most algorithm run in no better than log-linear time), the problem of
answering a probabilistic spatial query using result based answer semantics is at least as
hard as answering a probabilistic spatial query using object based semantics.
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Figure 2.5: Example of an uncertain ε-range query. Object A is a true hit, objects B, C
and D are possible hits.

2.5 Probabilistic Query Predicates

As explained in Section 1.1, a spatial similarity query requires to evaluate spatial query
predicates such as the distance between two objects is less than ε and one object is the nearest
neighbor of another object. Generally, in an uncertain database, the question whether an
object satisfies a given query predicate φ cannot be answered deterministically, due to
possible uncertainty of object attributes. Due to this uncertainty, the predicate that an
object satisfies φ is a random variable, having some (possibly zero, possibly one) probability.
A probabilistic query predicate quantifies the minimal probability required for a result to
qualify as a result that is sufficiently significant to be returned to the user. This section
formally define probabilistic query predicate for general query predicates. The following
definition are made for uncertain data in general, but can be applied analogously for
uncertain spatial data.

A probabilistic query can be defined without any probabilistic query predicate. In this
case, all objects, and their respective probabilities are returned.

Definition 11 (Probabilistic Query). Let DB be an uncertain database, let q be a query
point and let φ be a query predicate. A probabilistic query φ(q,DB) returns all database
objects o ∈ DB together with their respective probability P (o ∈ φ(q,DB)) that o satisfies φ.

φ(q,DB) = {(o ∈ DB, P (o ∈ φ(q,DB)))} (2.7)

The term probabilistic query is simply derived from the fact that unlike a traditional
query, a probabilistic query result has probability values associated with each result. The
main challenge of answering a probabilistic query, is to compute the probability P (o ∈
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φ(q,DB)) for each object. Using possible world semantics, a probabilistic query can be
answered by evaluating the query predicate for each object and each possible world, i.e.,

P (o ∈ φ(q,DB)) :=
∑

w∈Wfind(φ,w)·P (w)

.

But clearly, it is necessary to avoid the combinatorial growth that would be induced by
this ”naive” evaluation method.

Example 9. For example, consider the query “Return all friends of user q having a spatial
distance of less than 100m to q” depicted in Figure 2.5. Thus, the predicate φ is a 100m-
range predicate using query point q. We can deterministically tell that friend A must be
within ε = 100m Euclidean distance of q, while friends E and F cannot possibly be in
range. The pairs (A, 1), (E, 0) and (F, 0) are added to the result. For friends B, C and
D, this predicate cannot be answered deterministically. Here, friend B has some possible
positions located inside the 100m range of q, while other possible positions are outside this
range. The two locations inside q’s range have a probability of 0.1 and 0.2, respectively,
thus the total probability of object B to satisfy the query predicate is 0.1 + 0.2 = 0.3. The
pair (B, 0.3) is thus added to the result. The pairs (C, 0.2) and (D, 0.9) complete the result
100m-range(q,DB) = {(A, 1), (B, 0.3), (C, 0.2), (D, 0.9), (E, 0), (F, 0)}.

The immediate question in the above example is:“Is a probability of 0.3 sufficient to
warrant returning B as a result?”. To answer this question, a probabilistic query can
explicitly specify a probabilistic query predicate, in order to return only significant results
having a sufficiently high probability.

2.5.1 Probabilistic Threshold Queries

This paragraph defines a probabilistic query predicate that allows to return only results
that are statistically significant.

Definition 12 (Probabilistic Threshold Query (PτQ)). Let DB be an uncertain (spatial)
database, let q be a spatial query object, let 0 ≤ τ ≤ 1 be a real value and let φ be a spatial
query predicate. A probabilistic τ query (PτQ) returns all objects o ∈ DB such that o has
a probability of at least τ to satisfy φ(q,DB):

Pτφ(q,DB) := {o ∈ DB|P (o ∈ φ(q,DB)) ≥ τ}.

Example 10. In Figure 2.5, a probabilistic threshold 100m-range(q,DB) query with τ = 0.5
query returns the set of objects P0.5 100m-range(q,DB) = {A,D}, since objects A and D
are the only objects such that their total probability of alternatives inside the query region
is equal or greater to τ = 0.5.

Semantically, a probabilistic threshold spatial query returns all results having a statis-
tically significant probability to satisfy the query predicate. Therefore, the probabilistic
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threshold query serves as a statistical test of the hypothesis “o is a result” at a significance
level of τ . This test uses the probability P (o ∈ φ(q,DB)) as a test statistic. Efficient
algorithms to compute this probability P (o ∈ φ(q,DB)), will be presented in Part III for
the cases of ε-range queries, kNN queries, similarity ranking queries and RkNN queries.

A probabilistic threshold query on uncertain spatial data is useful in applications, where
the parameters of the spatial predicate τ (e.g. the range of an ε-range query, or the param-
eter k of a kNN query), as well as the probabilistic threshold τ are chosen wisely, requiring
expert knowledge about the database DB. If these parameters are chosen inappropriately,
no results may be returned, or the set of returned result may grow too large. For example,
if τ is chosen very large, and if the database has a high grade of uncertainty, then no result
may be returned at all. Analogously, if the parameter ε is chosen too small then no result
will be returned, while a too large value of ε may return all objects.

2.5.2 Probabilistic Topk Queries

In cases where insufficient information is given to select appropriate parameter values,
the following probabilistic query predicate is defined to guarantee that only the k most
significant results are returned.

Definition 13 (Probabilistic Topk Query (PTopkQ)). Let DB be an uncertain spatial
database, let q be a spatial query object, let 1 ≤ k ≤ |DB be a positive integer, and let
φ be a spatial query predicate. A probabilistic spatial Topk query (PTopkQ) returns the
smallest set PTopkφ(q,DB) of at least k objects such that

∀Ui ∈ PTopkφ(q,DB), Uj ∈ DB \ PTopkφ(q,DB) : P (Ui ∈ φ(q,DB)) ≥ P (Uj ∈ φ(q,DB))

Thus, a probabilistic spatial Topk query returns the k objects having the highest proba-
bility to satisfy the query predicate. Again, in case of ties, the resulting set may be greater
than k.

Example 11. In Figure 2.5, a PTop3φ query using a φ = 100m-range spatial predicate
returns objects PTop3 100m-range(q,DB) = {A,B,D}, since these objects have the highest
probability to satisfy the spatial predicate, i.e., have the highest probability to be located in
the spatial 100m-range.

Note, that the probabilistic Topk query predicate can be combined with a kNN spatial
query, i.e., with the case where φ = kNN . Such a probabilistic Topk jNN query returns
the set of k objects having the highest probability, to be j-nearest neighbor of the query
object. Clearly, k and j may have different integer values, such that differentiation is
needed.
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2.5.3 Discussion

In summary, a probabilistic spatial query is defined by two query predicates:

• A spatial predicate φ to select uncertain objects having sufficiently high proximity to
the query object, and

• a probabilistic predicate ψ, to select uncertain objects having sufficiently high prob-
ability to satisfy φ.

It has to be mentioned, that alternatively to this definition, a single predicate can be used,
that combines both spatial and probabilistic features. For example, a monotonic score
function can be utilized, which combines spatial proximity and probability to return a
single scalar score. An example of such a monotone score function is the expected distance
function

E(dist(q, U ∈ DB)) =
∑
u∈U

P (u) · dist(q, u),

where q is the query object, and DB is an uncertain database. The expected support
function is utilized by a number of related publications, such as [133, 55]. Using such
a monotone score function, objects with a sufficiently high score can be returned. The
advantage of using such an approach, is that objects that are located very close to the
query require a lower probability to be returned as a result, while objects that are located
further away from the query object require a higher probability. Yet, the main problem
of such a combined predicate, is that the probability of an object is treated as a simple
attribute, thus losing its probabilistic semantic. Thus, the resulting score is very hard to
interpret. An object that has a high score, may indeed have a very low probability to
exist at all, because it is located (if it exists) very close to the query object. Consequently,
the score itself no longer contains any confidence information, and thus, it is not possible
to answer queries according to possible world semantics using a single aggregate, such as
expected distance, only.

2.6 Approximate Queries

In general, the problem of probabilistic query processing on uncertain data has been proven
to be in #P [57]. Thus, there exists query predicates that require to consider an exponential
large set of cases. For such queries, an analytical solution is infeasible. Furthermore,
even queries that can be answered in PTIME may be too slow in practice. Yet, exact
result probabilities are not required in many applications. A good approximation of result
probabilities with probabilistic guarantees may suffice in such applications.

2.6.1 Monte Carlo Algorithms

Using object based query semantics, each object o ∈ DB has a probability P (o ∈ φ(DB)) ∈
[0, 1] to satisfy the spatial query predicate. Thus, the event that o satisfies φ is a binomial
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random variable, having a probability of P (o ∈ φ(DB)) to be true, and a probability of
1−P (o ∈ φ(DB)) to be false. To estimate the a-priori unknown probability P (o ∈ φ(DB)),
random worlds can be instantiated. For a given possible world w ∈ W , a traditional (non-
uncertain) φ query can be executed to decide whether o ∈ φ(q, w).

Definition 14 (Monte-Carlo Approach). Let Pψφ(q,DB) be a spatial query, where DB
is an uncertain spatial database, q is a query point, φ is a spatial query predicate and
ψ is a probabilistic query predicate. A Monte-Carlo approach creates a multi-set S =
{w1, ..., w|S|}, wi ∈ W of randomly and independently sampled possible worlds.1 The spatial
query predicate φ(q, w) is evaluated on each possible world. The estimator

µ̂ :=

∑
w∈S find(o ∈ φ(q, w))

|S|
, (2.8)

yields an unbiased estimator of the probability P (o ∈ φ(q,DB)), where find(o ∈ φ(q, w)) is
an indicator function that returns one if o ∈ φ(q, w) and zero otherwise.

Note that µ̂ is a random variable, since each world w ∈ S is chosen at random, each
having a probability of P (o ∈ φ(q,DB)) to satisfy φ. In particular µ̂ is the relative
fraction of successful Bernoulli trials out of a total of |S| Bernoulli trials, each having a
success probability of P (o ∈ φ(q,DB)). Consequently, µ̂ follows a Binomial B(|S|, P (o ∈
φ(q,DB))) distribution.

Since the number of possible worlds increases exponential in the number of uncertain
objects in DB, any probabilistic φ query algorithm that explicitly considers each pos-
sible world individually will be inapplicable to handle databases of non-trivial size. A
Monte-Carlo algorithm entirely avoids to use any expensive probabilistic query processing
algorithm. Instead, any non-uncertain φ query processing algorithm can be utilized to
compute the indicator function find(o ∈ φ(q, w)). This has to be repeated a total of |S|
times leading to a total time complexity of O(|S| · ρ), where ρ is the time complexity of
the problem of answering a spatial φ query on (certain) point data.

Lemma 2. If the sample of possible worlds S is drawn in an unbiased way, then the
Monte-Carlo estimator µ̂ is unbiased, i.e.,

E(µ̂) = P (o ∈ φ(q,DB)),

where P (o ∈ φ(q,DB)) is the probability that an object o is in the result of a spatial query
predicate φ having query object q on database DB.

Proof. Using Definition 14 we get

E(µ̂) = E(

∑
w∈S find(o ∈ φ(q, w))

|S|
).

1This implies that the same world may be sampled in S more than once. Thus S is defined as a multi-set
rather than a set, to allow duplicate elements.
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Exploiting linearity of expectation we get

E(µ̂) =
∑
w∈S

E(find(o ∈ φ(q, w)))

|S|
(2.9)

By definition of the expected value as E(X) =
∑

x x · P (x), and by assuming that any
world w is sampled randomly without any bias we get

E(find(o ∈ φ(q, w)) =
∑
w∈W

find(o ∈ φ(q, w)) · P (w)

By definition of possible world semantics (Definition 8), it holds that the sum on the right
hand side of the above equation is equal to P (o ∈ φ(q,DB)). This yields

E(find(o ∈ φ(q, w)) = P (o ∈ φ(q,DB)) (2.10)

Substitution of Equation 2.10 in Equation 2.9 yields

E(µ̂) =
∑
w∈S

P (o ∈ φ(q,DB))

E(|S|)

Since the expected value E(|S|) of a constant |S| equals |S| we get

E(µ̂) =
∑
w∈S

P (o ∈ φ(q,DB))

|S|

Since the body P (o∈φ(q,DB))
|S| of the above sum no longer contains the parameter w, this body

is added once for each iteration of the sum. As the sum is iterated exactly |S| times (once
for each element of S) we obtain

E(µ̂) = |S|P (o ∈ φ(q,DB))

|S|

which simplifies to
E(µ̂) = P (o ∈ φ(q,DB)).

Example 12. Once again, consider the example in Figure 2.6. As we have seen in Exam-
ple 7, the probability of object A to be the result of a 2NN spatial query, is 0.1. This result
was derived by explicitly considering all possible worlds, and thus, is not applicable for
large databases. Using a Monte-Carlo approach, we draw a number of |S| = 1000 sample
worlds, getting a total of 94 worlds where A is in the 2NN result. This yields an estimator
of µ̂ = 92

1000
= 0.092, having an approximation error of only 0.008, which may be “good

enough” in practice.
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Figure 2.6: Example Database showing possible positions of uncertain objects and their
corresponding probabilities.

2.6.2 Probabilistic Guarantees

Whether a sample size is “good enough” is hard to assess in practice where the true value
of P (o ∈ φ(q,DB) is not known. In the above example, there is a non-zero (albeit small)
probability that out of 1000 worlds, there exists no world where A is a 2NN result. This
would yield an estimator of µ̂ = 0 which is quite far from the true value of P (P (o ∈
φ(q,DB)) = 0.1. To ensure that the error is small, probabilistic guarantees are required.

Definition 15. A probabilistic guarantee ensures that the error of an approximate tech-
nique does not exceed some error threshold ε with a probability of at least τ , i.e.,

P (|µ̂− µ| ≤ ε) ≥ τ,

where µ̂ is an estimator of a parameter µ.

In the case of Monte-Carlo estimation of the probability that an object o ∈ DB satisfies
some spatial query predicate φ, we can exploit that by Definition 14 the estimator µ̂
follows a Binomial B(|S|, P (o ∈ φ(q,DB))) distribution. This observation allows to apply
Hoeffding’s inequality [90] to obtain the following probabilistic guarantee:

P (|µ̂− P (o ∈ φ(q,DB))| < ε) ≥ 1− 2e−2ε2|S|, (2.11)

where µ̂ is is defined by Equation 2.8.

Example 13. Reconsider the example in Figure 2.6 where the true probability P (A) of
object A to be the result of a 2NN spatial query, is 0.1. Assume that the number of Monte
Carlo samples |S|) is 10, 000. According to Equation 2.11, the probability that the estima-
tion error of µ̂ is less that 0.01 is at least

P (|µ̂− P (P (o ∈ φ(q,DB))| < 0.01) ≥ 1− 2e−2·0.012·10000

= 1− 2 · e−2 = 1− 2 · 0.135 = 0.73.
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Figure 2.7: Components of a probabilistic spatial query.

Note that this approximation is not very tight. For example, if |S| = 1000), then Equation
2.11 yields

P (|µ̂− P (o ∈ φ(q,DB))| < 0.01) ≥ 1− 2e−2·0.012·1000

= 1− 2 · e−0.2 = 1− 2 · 0.819 = −0.637

which is a trivial statement.

While the bounds acquired by Equation 2.11 are rather loose, they can be evaluated
very efficiently. Most importantly, these bounds allow to avoid evaluating the exact pdf
of the binomial distribution B(|S|, P (P (o ∈ φ(q,DB))), which requires to evaluate large
binomial coefficients.

2.7 Summary

A probabilistic spatial query is defined by a series of components which have been described
in this section and which are summarized in Figure 2.7. These components include the
choice of a spatial query predicate as well as a probabilistic query predicate. Both query
predicates specify the requirements that objects must meet in order to be returned as a
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result. Further, probabilistic answer semantics must be specified, to define whether result
probabilities correspond to result sets, or to individual objects. Next, a probabilistic data
representation must be chosen to model the data. Uncertainty models impose assumptions
on the physical world in order to reduce computation complexity. The model of choice
depends on the application and the assumption that can be made without vital loss of
information. Based on the chosen model, a choice has to be made between analytical
solutions to compute exact results, and numerical solutions that return approximate results.
The choice of each individual component has a strong impact on the semantic and the
complexity of a probabilistic spatial query.

In the subsequent parts of this work, the main contributions of this thesis on the field
of uncertain spatial database research are presented:

• First, a general paradigm for query processing on uncertain data is presented in
Chapter 3. This paradigm will be applied throughout this thesis to find efficient
solutions for the most important types of spatial queries and data mining tasks on
uncertain spatial and spatio-temporal data.

• Based on this paradigm, exact and efficient solutions for answering probabilistic
spatial queries on uncertain spatial databases are presented in Part III, including

– probabilistic spatial range and window queries,

– probabilistic k-nearest neighbor (kNN) queries,

– probabilistic ranking queries and

– probabilistic reverse k-nearest neighbor queries.

• Following the same paradigm, a solution to the spatial data mining problem of prob-
abilistic spatial collocation mining on uncertain spatial databases is presented in Part
IV.
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In Section 2.3 the concept of possible world semantics has been introduced. Possible world
semantics give an intuitive and mathematically sound interpretation of an uncertain spatial
database. Furthermore, queries that adhere to possible world semantics return unbiased
results, by evaluating the query on each possible world. Since any such approach requires
to run queries on an exponential number of worlds, any naive approach is infeasible. Alter-
natively, we have seen that a Monte-Carlo approach (c.f. Section 2.6.1), which randomly
samples possible worlds, will converge to the result of a query using possible worlds seman-
tics, if the number of Monte-Carlo samples approaches infinity. Depending on the precision
required by an application, a large number, ranging from thousands to millions of sample
worlds have to be evaluated. This incurs significant computational effort and, at the same
time, yields results having a possibly significant error.

3.1 Equivalent Worlds

The drawbacks of both naive and Monte-Carlo approaches can be completely avoided, if
we can find a way to efficiently compute exact probabilities, while still adhering to possible
world semantics. Introducing a general paradigm to achieve is goal, is the purpose of this
part. Therefore, reconsider Definition 8, defining the probability that some predicate φ
is satisfied in an uncertain database DB as the total probability of all possible worlds
satisfying φ. Recall Equation 2.3

P (φ(DB)) =
∑
w∈W

I(φ,w) · P (w),

where W is the set of all possible worlds; I(φ,w) is an indicator function that returns one
if predicate φ holds (i.e., resolves to true) in the crisp database defined by world w and zero
otherwise, and P (w) is the probability of world w. To reduce the number of possible worlds
that need to be considered to compute P (φ(DB)), we first need the following definition.

Definition 16 (Class of Equivalent Worlds). Let φ be a query predicate and let S ⊆ W be
a set of possible worlds such that for any two worlds w1, w2 ∈ S we can guarantee that φ
holds in world w1 if an only if φ holds in world w2, i.e.,

∀w1, w2 ∈ S : I(φ,w1)⇔ I(φ,w2)

Then set S is called a class of worlds equivalent with respect to φ. In the remainder of this
thesis, if the spatial query predicate φ is clearly given by the context, then S will simply be
denoted as a class of equivalent worlds. Any worlds wi, wj ∈ S are denoted as equivalent
worlds.
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We now make the following observation:

Corollary 1. Let S ⊆ W be a class of worlds equivalent with respect to φ (c.f. Definition
16, we can rewrite Equation 2.3 as follows:

P (φ(DB)) =
∑
w∈W

I(φ,w) · P (w)⇔

P (φ(DB)) =
∑

w∈W\S

I(φ,w) · P (w) + I(φ,w ∈ S) ·
∑
w∈S

P (w). (3.1)

Proof. Due to the assumption that for any two worlds w1, w2 ∈ S it holds that φ holds
in world w1 if an only if φ holds in world w2, we get I(φ,w1) = 1 ⇔ I(φ,w2) = 1 and
I(φ,w1) = 0⇔ I(φ,w2) = 0 by definition of function I. Due to this assumption, we have
to consider two cases.

Case 1: ∀w ∈ S : I(φ,w) = 0
In this case, both Equation 2.3 and Equation 3.1 can be rewritten as

P (φ(DB)) =
∑

w∈W\S

I(φ,w) · P (w).

Case 2: ∀w ∈ S : I(φ,w) = 1
In this case, both Equation 2.3 and Equation 3.1 can be rewritten as

P (φ(DB)) =
∑

w∈W\S

I(φ,w) · P (w) +
∑
w∈S

P (w)

The only different between both cases if the additive term
∑

w∈S P (w), which exists
only in Case 2. The indicator function I(φ,w ∈ S) ensure that this term is only added in
the second case. As main purpose, Corollary 1 states that, given a set of equivalent worlds
S, we only have to evaluate the indictor function I(φ,w) on a single representative world
w ∈ S, rather than on each world in S. This allows to reduce the number of (crisp) φ
queries required to compute Equation 2.3 by |S| − 1.

Corollary 1 leads to the following Lemma.

Lemma 3. Let S be a partitioning of W into disjunctive sets such that
⋃
S∈S S =W and

for all S1, S2 ∈ S : S1 ∩ S2 = ∅. Equation 2.3 can be rewritten as

P (φ(DB)) =
∑
w∈W

I(φ,w) · P (w)⇔

P (φ(DB)) =
∑
S∈S

I(φ,w ∈ S) ·
∑
w∈S

P (w). (3.2)

Proof. Lemma 3 is derived by applying Corollary 1 once for each S ∈ S.
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Figure 3.1: Summary of the Paradigm of Equivalent Worlds.

3.2 Exploiting Equivalent Worlds for Efficient Algo-

rithms

Given a partitioning S of all possible worlds, Equation 3.2 requires to perform the follow-
ing two tasks. The first task requires to evaluate the indicator function I(φ,w ∈ S) for
one representative world of each partition. This can be achieved by performing a tradi-
tional (non-uncertain) φ query on these representatives. The final challenge is to efficiently
compute the total probability P (S) :=

∑
w∈S P (w) for each equivalent class S ∈ S. This

computation must avoid an enumeration of all possible worlds, i.e., must be in o(|S|).1
Achieving an efficient computation is a creative task, and usually requires to exploit prop-
erties of the model (such as object independence) and properties of the spatial query
predicate. The paradigm of equivalent worlds is illustrated and summarized in Figure 3.1.
In the first step, set of all possible worlds W , which is exponential in the number N of
uncertain objects, has to be partitioned into a polynomial large set of classes of equivalent
worlds, such that all worlds in the same class are guaranteed to be equivalent given the
query predicate φ. This yields a the set C = {C1, C2, ..., Ck} of classes of equivalent worlds.

1Note that if an exponential large set is partitioned into a polynomial number of subsets, then at least
on such subset must have exponential size. This is evident considering that O( 2n

poly(n) ) = O(2n).
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To allow efficient processing, this set must be polynomial in size, since each class has to
be considered individually in the following. Next, we require to compute the probability
of each class Ci, without enumeration of all possible worlds contained in Ci, the number of
which may still be exponential. In fact, at least one class Ci must contain O(2N) possible
worlds. Next, we need to decide, for each class Ci, whether all worlds w ∈ Ci satisfy
the query predicate φ, or whether no world w ∈ Ci satisfies φ. Due to equivalence of all
possible worlds in Ci, these are the only possible cases. For some query predicates, this
decision can be made using special properties of the query predicate, as we will see later in
this thesis. In the general case, this decision can be made by choosing one representative
world w ∈ Ci (e.g. at random) from each class Ci, and evaluating the query predicate
on this world. This yields at total run-time of O(|C|) · O(I(φ,w)), where I(φ,w) is the
time complexity of evaluating the query predicate φ on the certain database w. If this
query predicate can be evaluated in polynomial time, i.e., if O(I(φ,w)) ∈ O(poly(N)),
then the total run-time is in O(poly(N)). This is evident, since if O(C) is in O(poly(N)),
then O(C) · O(I(φ,w)) is in O(poly(N)) · O(poly(N)) which is in O(poly(N)). For each
class Ci, where the representative world satisfies φ, the corresponding probability P (Ci) is
added to the result probability.

The following lemma summarizes the assumptions that a query predicate has to satisfy
in order to efficiently apply paradigm of finding equivalent worlds.

Lemma 4. Given a query predicate φ and an uncertain database DB of size N := |DB|,
we can answer φ on DB in polynomial time if the following four conditions are satisfied:

I A traditional ψ query on non-uncertain data can be answered in polynomial time.

II we can identify a partitioning C of W into classes C ∈ C of equivalent worlds (see
Definition 16.

III The number |C| of classes is at most polynomial in N .

IV The the total probability of a class S ∈ C can be computed in at most polynomial
time.

Proof. Answering a φ query on DB requires to evaluate Equation 2.3 which we reformed
into Equation 3.2 using property II. This requires to iterate over all |C| classes of equivalent
worlds in polynomial time due to property III. For each class C ∈ C, this requires to perform
two tasks. The first task requires to compute the total probability of all worlds in C, and
the second task requires to evaluate φ on a single possible world w ∈ C. The former
task can be performed in polynomial time due to property IV. The later task requires to
perform a crisp φ query on the (crisp) world w in polynomial time due to property I.

3.3 Case Study: Sum of Independent Bernoulli Trials

In this chapter, the paradigm of equivalent worlds will be applied to efficiently solve the
problem of computing the distribution of the sum of independent Bernoulli trials. An
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Figure 3.2: Deterministic finite automaton corresponding to the problem of the sum of
independent Bernoulli trials.

efficient solution to this problem is the basis of many algorithms presented in this thesis.
Then, in Part III, this paradigm of identifying worlds that are equivalent to the query
predicate will be applied for the most relevant types of spatial queries on uncertain spatial
data.

Let X1, ..., XN be independent and not necessarily identically distributed Bernoulli
trials, i.e., random variables that may only take values zero and one. Let pi := P (Xi = 1)
denote the probability that random variable Xi has value one. In this section, we will show
how to efficiently compute the distribution of the random variable

N∑
i=1

Xi

without enumeration of all possible worlds. That is, for each 0 ≤ k ≤ N , this section shows
how to compute the probability P (

∑N
i=1Xi = k) that exactly k trials are successful.

In the following, two approaches to compute the probability distribution of
∑

iXi will
be presented. While both approaches are equivalent in terms of time and space complexity,
both approaches use significantly different techniques, which are applicable in different
contexts, as we will see in the remainder of this thesis.

3.4 Poisson-Binomial Recurrence

The first approach iteratively computes the distribution of the sum of the first 1 ≤ k ≤ N
Bernoulli variables given the distribution of the sum of the first k − 1 Bernoulli variables.
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To gain an intuition of how to do this efficiently, consider the deterministic finite au-
tomaton depicted in Figure 3.2.2 The states (i/j) of this automaton correspond to the
random event that out of the first j Bernoulli trials X1, ..., Xj, exactly i trials have been
successful. Initially, zero Bernoulli trials have been performed, out of which zero (triv-
ially) were successful. This situation is represented by the initial state (0/0) in Figure 3.2.
Evaluating the first Bernoulli trial X1, there is two possible outcomes: The trial may be
successful with a probability of p1, leading to a state (1/1) where one out of one trials have
been successful. Alternatively, the trial may be unsuccessful, with a probability of 1− p1,
leading to a state (0/1) where zero out of one trial have been successful. The second trial is
then applied to both possible outcomes. If the first trial has not been successful, i.e., we are
currently located in state (0/1), then there is again two outcomes for the second Bernoulli
trial, leading to state (1/2) and (0/2) with a probability of p2 and 1 − p2 respectively. If
currently located in state (0/1), the two outcomes are state (2/2) and state (1/2) with the
same probabilities. At this point, we have unified two different possible worlds that are
equivalent with respect to

∑
iXi: The world where trial one has been successful and trial

two has not been successful, and the world where trial one has not been successful and
trial two has been successful have been unified into state (1/2), representing both worlds.
This unification was possible, since both paths leading to state (1/2) are equivalent with
respect to the number of successful trials.

The three states (0/2), (1/2) and (2/2) are then subjected to the outcome of the third
Bernoulli trial, leading to states (0/3), (1/3), (2/3) and (3/3). That is a total of four states
for a total of 23 = 8 possible worlds. In summary, the number of states in Figure 3.2 equals
N2

2
. However, it is not yet clear how to compute the probability of a state (i/j) efficiently.

Naively, we have to compute the sum over all paths leading to state (i/j). For example,
the probability of state (2/3) is given by p1 · p2 · (1− p3) + p1 · (1− p2) · p3 + (1− p1) · p2 · p3.
This naive computation requires to enumerate all

(
j
i

)
combinations of paths leading to

state (i/j).
For an efficient computation, we make the following observation: Each state of the DFA

depicted in Figure 3.2 has at most two incoming edges. Thus, to compute the probability
of a state (i/j), we only require the probabilities of states leading to (i/j). The states
leading to state (i/j) are state (i − 1/j − 1) and state (i/j − 1). Given the probabilities
P (i − 1/j − 1) and P (i/j − 1), we can compute the probability P (i/j) of state (i/j) as
follows:

P (i/j) = P (i− 1/j − 1) · pj + P (i, j − 1) · (1− pj) (3.3)

where
P (0/0) = 1 and P (i/j) = 0 if i > j or if i < 0.

Equation 3.3 is known as the Poisson-Binomial Recurrence (To the best of our knowl-
edge, the Poisson binomial recurrence was first introduced by [117]) and can be used to

2Note that this automaton is deterministic, despite the process of choosing a successor node being a
random event. Once the Bernoulli trial corresponding to a node has been performed, the next node will
be chosen deterministically, i.e., the upper node will be chosen if the trial was successful, and the right
node will be chosen otherwise. Either way, there is exactly one successor node.
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Figure 3.3: Example deterministic finite automaton for a total of four Bernoulli random
variables.

compute the probabilities of states (k/N), 0 ≤ k ≤ N which by definition, correspond to
the probabilities P (

∑
i=1N Xi = k) that out of all N Bernoulli trials, exactly k trials are

successful.
This approach follows the paradigm of equivalent worlds in each iteration k: The set

of all 2k possible worlds is partitioned into k + 1 equivalent sets, each corresponding to a
state i/k, where i ≤ k. Each class contains only and all of the

(
k
i

)
possible worlds where

exactly i Bernoulli trails succeeded. The information about the particular sequence of the
successful trials, i.e., which trials were successful and which were unsuccessful is lost. This
information however, is no longer necessary to compute the distribution of

∑N
i=0Xi, since

for this random variable, we only need to know the number of successful trials, not their
sequence. This abstraction allows to remove the combinatorial aspect of the problem.

An example showcasing the Poisson binomial recurrence is given in the following.

Example 14. Let N = 4 and let p1 = 0.1, p2 = 0.2, p3 = 0.3 and p4 = 0.4. The
corresponding DFA is depicted in Figure 3.3. The probability of state (0/0) is explicitly set
to 1.0 in Equation 3.3. To compute the probability of state (0/1), we apply Equation 3.3
to compute

P (0/1) = P (−1/0) · p1 + P (0/0) · (1− p1).

with P (−1/0) = 0 and P (0/0) = 1 explicitly defined in Equation 3.3 this yields

P (0/1) = 0 · p1 + 1 · (1− p1) = 0.9

Analogously, we obtain

P (1/1) = P (0/0) · p1 + P (1/0) · (1− p1) = 1 · p1 = 0.1
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Using these initial probabilities, we can continue to compute

P (0/2) = P (−1/1) · p2 + P (0/1) · (1− p2) = 0 · 0.2 + 0.9 · 0.8 = 0.72

P (1/2) = P (0/1) · p2 + P (1/1) · (1− p2) = 0.9 · 0.2 + 0.1 · 0.8 = 0.26

P (2/2) = P (1/1) · p2 + P (2/1) · (1− p2) = 0.1 · 0.2 + 0 · 0.8 = 0.02

The probabilities P (i/2), 0 ≤ i ≤ 2 can be used to compute

P (0/3) = P (−1/2) · p3 + P (0/2) · (1− p3) = 0 · 0.3 + 0.72 · 0.7 = 0.504

P (1/3) = P (0/2) · p3 + P (1/2) · (1− p3) = 0.72 · 0.3 + 0.26 · 0.7 = 0.398

P (2/3) = P (1/2) · p3 + P (2/2) · (1− p3) = 0.26 · 0.3 + 0.02 · 0.7 = 0.092

P (3/3) = P (2/2) · p3 + P (3/2) · (1− p3) = 0.02 · 0.3 + 0 · 0.7 = 0.006

Finally, these probabilities can be used to derive the final distribution of the random variable∑4
i=1Xi:

P (0/4) = P (−1/3) · p4 + P (0/3) · (1− p4) = 0 · 0.4 + 0.504 · 0.6 = 0.3024

P (1/4) = P (0/3) · p4 + P (1/3) · (1− p4) = 0.504 · 0.4 + 0.398 · 0.6 = 0.4404

P (2/4) = P (1/3) · p4 + P (2/3) · (1− p4) = 0.398 · 0.4 + 0.092 · 0.6 = 0.2144

P (3/4) = P (2/3) · p4 + P (3/3) · (1− p4) = 0.092 · 0.4 + 0.006 · 0.6 = 0.0404

P (4/4) = P (3/3) · p4 + P (4/3) · (1− p4) = 0.006 · 0.4 + 0 · 0.6 = 0.0024

These probabilities describe the PDF of
∑4

i=1Xi by definition of P (i/j).

Complexity Analysis

To compute the distribution of
∑

iXi we require to compute each probability P (i/j) for

0 ≤ j ≤ N, i ≤ j, yielding a total of N2

2
∈ O(N2) probability computations. To compute

any such probability, we have to evaluate Equation 3.3, which requires to look up four
probabilities P (i− 1/j− 1), P (i/j− 1), pj and 1− pj, which can be performed in constant
time. This yields a total runtime complexity of O(N2). The O(N2) space complexity
required to store the matrix of probabilities P (i/j) for 0 ≤ j ≤ N, i ≤ j can be reduced
to O(N) by exploiting that in each iteration where the probabilities P (i/k), 0 ≤ i ≤ k are
computed, only the probabilities P (i/k − 1), 0 ≤ i ≤ k − 1 are required, and the result of
previous iterations can be discarded. Thus, at most N probabilities have to be stored at a
time.
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3.5 Generating Functions

An alternative technique to compute the sum of independent Bernoulli variables is the gen-
erating functions technique. While showing the same complexity as the Poisson binomial
recurrence, its advantage is its intuitiveness.

Represent each Bernoulli trial Xi by a polynomial poly(Xi) = pi ·x+ (1−pi). Consider
the generating function

FN =
N∏
i=1

poly(Xi) =
N∑
i=0

cix
i. (3.4)

The coefficient ci of xi in the expansion of FN equals the probability P (
∑N

n=1 Xn = i)
([123]). For example, the monomial 0.25 · x4 implies that with a probability of 0.25, the
sum of all Bernoulli random variables equals four.

The expansion of N polynomials, each containing two monomials leads to a total of 2N

monomials, one monomial for each sequence of successful and unsuccessful Bernoulli trials,
i.e., one monomial for each possible worlds. To reduce this complexity, again an iterative
computation of FN , can be used, by exploiting that

Fk = Fk−1 · poly(Xk). (3.5)

This rewriting of Equation 3.4 allows to inductively compute Fk from Fk−1. The induction
is started by computing the polynomial F0, which is the empty product which equals the
neutral element of multiplication, i.e., F0 = 1. To understand the semantics of this polyno-
mial, the polynomial F0 = 1 can be rewritten as F0 = 1 ·x0, which we can interpret as the
following tautology:“with a probability of one, the sum of all zero Bernoulli trials equals
zero.” After each iteration, we can unify monomials having the same exponent, leading
to a total of at most k + 1 monomials after each iteration. This unification step allows to
remove the combinatorial aspect of the problem, since any monomial xi corresponds to a
class of equivalent worlds, such that this class contains only and all of the worlds where the
sum

∑N
k=1Xk = 1. In each iteration, the number of these classes is k and the probability

of each class is given by the coefficient of xi.

An example showcasing the generating functions technique is given in the following.
This examples uses the identical Bernoulli random variables used in Example 14.

Example 15. Again, let N = 4 and let p1 = 0.1, p2 = 0.2, p3 = 0.3 and p4 = 0.4. We
obtain the four generating polynomials poly(X1) = (0.1x + 0.9), poly(X2) = (0.2x + 0.8),
poly(X3) = (0.3x + 0.7), and poly(X4) = (0.4x + 0.6). We trivially obtain F0 = 1. Using
Equation 3.5 we get

F1 = F0 · poly(X1) = 1 · (0.1x+ 0.9) = 0.1x+ 0.9.

Semantically, this polynomial implies that out of the first one Bernoulli variables, the
probability of having a sum of one is 0.1 (according to monomial 0.1x = 0.1x1, and the
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probability of having a sum of zero is 0.9 (according to monomial 0.9 = 0.9x0. Next, we
compute F 2, again using Equation 3.5:

F2 = F1·poly(X2) = (0.1x1+0.9x0)·(0.2x1+0.8x0) = 0.02x1x1+0.08x1x0+0.18x0x1+0.72x0x0

In this expansion, the monomials have deliberately not been unified to give an intuition
of how the generating function techniques is able to identify and unify equivalent worlds.
In the above expansion, there is one monomial for each possible world. For example, the
monomial 0.18x0x1 represents the world where the first trial was unsuccessful (represented
by the zero of the first exponent) and the second trial was succesful (represented by the one
of the second exponent). The above notation allows to identify the sequence of successful
and unsuccessful Bernouli trials, clearly leading to a total of 2k possible worlds for Fk.
However, we know that we only need to compute the total number of successful trials, we
do not need to know the sequence of successful trials. Thus, we need to treat worlds having
the same number of successful Bernoulli trials equivalently, to avoid the enumeration of
an exponential number of sequences. This is done implicitly by polynomial multiplication,
exploiting that

0.02x1x1 + 0.08x1x0 + 0.18x0x1 + 0.72x0x0 = 0.02x2 + 0.08x1 + 0.18x1 + 0.72x0

This representation no longer allows to distinguish the sequence of successful Bernouli
trials. This loss of information is beneficial, as it allows to unify possible worlds having
the same sum of Bernoulli trials.

0.02x2 + 0.08x1 + 0.18x1 + 0.72x0 = 0.02x2 + 0.26x1 + 0.72x0

The remaining monomials represent equivalent class of possible worlds. For example, mono-
mial 0.26x1 represents all worlds having a total of one successful Bernoulli trials. This is
evident, since the coefficient of this monomial was derived from the sum of both worlds
having a total of one successful Bernoulli trials.In the next iteration, we compute:

F3 = F2 · poly(X3) = (0.02x2 + 0.26x1 + 0.72x0) · (0.3x+ 0.7)

= 0.006x2x1 + 0.014x2x0 + 0.078x1x1 + 0.182x1x0 + 0.216x0x1 + 0.504x0x0

This polynomial represents the three classes of possible worlds in F2 combined with the two
possible results of the third Bernoulli trial, yielding a total of 32̇ monomials. Unification
yields

0.006x2x1 + 0.014x2x0 + 0.078x1x1 + 0.182x1x0 + 0.216x0x1 + 0.504x0x0 =

0.006x3 + 0.092x2 + 0.398x1 + 0.504

The final generating function is given by

F4 = F3 · poly(X4)

= (0.006x3 + 0.092x2 + 0.398x1 + 0.504) · (0.4x+ 0.6)

= 0.0024x4 + 0.0036x3 + 0.0368x3 + 0.0552x2 + 0.1592x2 + 0.2388x1 + 0.2016x1 + 0.3024x0

= 0.0024x4 + 0.0404x3 + 0.2144x2 + 0.4404x+ 0.3024
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This polynomial describes the PDF of
∑4

i=1 Xi, since each monomial cix
i implies that

the probability, that out of all four Bernoulli trials, the total number of successful events
equals i, is ci. Thus, we get P (

∑4
i=1 Xi = 0) = 0.0024, P (

∑4
i=1Xi = 1) = 0.0404,

P (
∑4

i=1Xi = 2) = 0.2144, P (
∑4

i=1Xi = 3) = 0.4404 and P (
∑4

i=1Xi = 4) = 0.3024. Note
that this result equals the result we obtained by using the Poisson binomial recurrence in
the previous section.

Complexity Analysis

The generating function technique requires a total of N iterations. In each iteration 1 ≤
k ≤ N , a polynomial of degree k, and thus of maximum length k + 1, is multiplied with
a polynomial of degree 1, thus having a length of 2. This requires to compute a total of
(k+1)·2) monomials in each iteration, each requiring a scalar multiplication. Thus leads to
a total time complexity of

∑N
i=1 2k+2 ∈ O(N2) for the polynomial expansions. Unification

of a polynomial of length k can be done in O(k) time, exploiting that the polynomials are
sorted by the exponent after expansion. Unification at each iteration leads to a O(n2)
complexity for the unification step. This results in a total complexity of O(n2), similar to
the Poisson binomial recurrence approach.

An advantage of the generating function approach is that this naive polynomial multi-
plication can be accelerated using Discrete Fourier Transform (DFT). This technique allows
to reduce to total complexity of computing the sum of N Bernoulli random variables to
O(Nlog2N)([126]). This acceleration is achieved by exploiting that DFT allows to expand
two polynomials of size k in O(klogk) time. Equi-sized polynomials are obtained in the
approach of [126], by using a divide and conquer approach, that iteratively divides the
set of N Bernoulli trials into two equi-sized sets. Their recursive algorithm then combines
these results by performing a polynomial multiplication of the generating polynomials of
each set. More details of this algorithm can be found in [126].

3.6 Summary

Both presented techniques, the Poisson-Binomial recurrence and the generating functions
technique allow to efficiently compute the distribution of a Poisson-Binomial distributed
random variable, i.e., the sum of independent but not necessarily identical distributed
Bernoulli trials. Both approaches achieve this efficient computation, by unifying sets of
possible worlds, and treating the resulting set as a whole, rather than treating each world
individually. In particular, the Poisson-Binomial recurrence unifies, in each iteration, all
world having the same number of successful Bernoulli trials out of the currently considered
Bernoulli trials. The generating functions techniques unifies worlds using simple algebra,
adding monomials having the same exponent. Thus, both approaches identify and unify
sets of possible worlds, thus following the paradigm of equivalent worlds introduced in
this chapter. The efficient computation resulting from either technique is paramount in
answering many probabilistic queries on spatial and spatio-temporal data. Both techniques
will be applied, adapted and improved throughout this thesis.
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In this section, the paradigm of equivalent worlds presented in Chapter 3 is applied
to permit efficient spatial similarity search on uncertain spatial data. For the most rele-
vant spatial query types, which have been presented in Chapter 1, efficient solutions are
presented. This part is structured as follows.

• Chapter 4 will give an efficient solution to answer range queries on uncertain data,
for both cases where the query object is a (certain) point, and the case where the
query object is uncertain itself. Furthermore, the problem of answering range queries
on uncertain data will be extended by considering the range count query, which is to
return the number of objects within a given range of a query object. In an uncertain
database, this number is a random variable, for which this section will give an efficient
solution to compute its distribution. The solutions shown in this chapter are rather
straight-forward, given the paradigm of equivalent worlds. Nonetheless, solutions for
range queries on uncertain data are necessary for completeness of this thesis, and at
the same time, show-case the function of the paradigm of equivalent worlds. Some
of the results of this chapter have been published in [30].

• Chapter 5 presents a novel a approach to facilitate spatial pruning of uncertain ob-
jects that are conservatively approximated by minimal bounding boxes. This spatial
pruning approach is a key technique to boost efficiency of similarity queries such as
k-nearest neighbor queries, ranking queries and reverse k-nearest neighbor queries
on uncertain data. Parts of this chapter have been published at the ACM SIGMOD
Conference in 2010 ([65]) as a full paper.

• In Chapter 6 a solution for kNN-queries on uncertain data is presented. Here, the
main challenge is that the predicate of an object being a kNN of a query object is
a random variable, which stochastically depends on the position of other objects.
An efficient solution to handle these dependencies is given in this section. Parts
of this chapter have been published at the IEEE International Conference on Data
Engineering (ICDE) 2011 ([22]) as a full paper.

• Chapter 7 extends chapter 6 by giving a solution to the problem of answering spa-
tial ranking queries in uncertain databases. This section will show how to efficiently
compute the rank distribution, i.e., the probability of each rank of each object in an
uncertain database. Parts of this chapter have been published at the IEEE Transac-
tions on Knowledge and Data Engineering journal 2010 ([25]) as a regular paper.

• Finally, Chapter 8 will give the first efficient solution for the problem of reverse kNN
queries in uncertain databases. Parts of this chapter have been published in the
Proceedings of the VLDB Endowment (PVLDB), Volume 4, 2011 ([23]) as a full
paper.
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Chapter 4

Probabilistic Range Queries on
Uncertain Data

hot spotshot spots

(a) Astrological hot items in terms of interesting
constellations.

hot spots in terms ofhot spots in terms of
drug offences

(b) Hot item detection for crime defence appli-
cations.

Figure 4.1: Applications for hot item detection.

4.1 Introduction

The detection of dense regions in a feature space is paramount in a variety of several density-
based data mining techniques, in particular density-based clustering [68, 161], density-
based outlier detection [38] and other density-based mining applications [113, 175]. We
call a region R, for which a sufficiently large population of objects in DB exists a dense
region or hot location. Analogously, we call an object o, for which a sufficiently large
number of other objects in DB are similar to o, a hot item. Intuitively, an item that
shares its attributes with a lot of other items could be potentially interesting as its shows
a typical occurrence of items in the database. Deciding for a given item, whether it is an
hot item is an important subtask in density-based clustering algorithms such as DBSCAN
[68], where such items are called core items or core points. Further application areas
where the detection of hot items is potentially important exemplarily include scientific
applications, e.g. astrophysics (cf. Figure 4.1(a) showing a clipped capture of a star field
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in the Sagittarius area), biomedical, sociological and economic applications. In particular,
the following applications give a good motivation for the efficient detection of hot items:
Pre-detection of criminal activities: After a soccer game one might be interested in
the detection of larger groups of hooligans that should be accompanied by guards in order
to avoid criminal excess. If we assume that the locations of all hooligans are monitored,
then it would be interesting which of these individuals have a lot of other hooligans in
their immediate vicinity. Another example is the detection of outstanding crime delicts,
e.g. cases of drug abuse in areas with high population of drug offences as depicted in Figure
4.1(b).1 To find hot items, the density of other items in the vicinity of the probed object
has to be assessed. In traditional databases, an ε range query can be utilized to perform
this task: if the number of other database objects inside a certain range ε around an object
exceeds a minimal threshold minItems, this object is declared a hot item, formally

Definition 17 (Hot Item). Given a spatial point database DB, a scalar spatial distance
threshold ε and an integer minimum population threshold minItems. An object o ∈ DB is
called hot item, if and only if

|{o′ ∈ DB\{o} : dist(o, o′) < ε}| > minItems.

Both parameters ε and minItems are user-specified and application dependent. An
example is depicted in Figure 4.2(a), where the ε-range for two objects of a exemplary
database ε-range is depicted. For a parameter value of and minItems = 5, only one of these
items is a hot item. On uncertain data, the task of deciding whether a database object is a
hot item becomes more challenging as seen in Figure 4.2(b). For the highlighted object o,
the predicate dist(o, o′) < ε that o is sufficiently close to another object o′ becomes a random
variable, that may be true with some probability, and false otherwise. Consequently, the
number of objects in range of o also turns into a random variable having a probability mass
function defined on N0.

This chapter will show how to efficiently answer range queries on uncertain data. Re-
lated work is presented in the following Section 4.2. Next, the paradigm of equivalent
worlds (c.f. Chapter 3) is applied in Section 4.3 in order to find an efficient solution for
the problem of answering probabilistic range queries on uncertain data in the special case
where the query object is a (certain) point. While this type of query is rather trivial to
answer efficiently due to object independence in the X-tuple model, it is a good showcase
of the paradigm of equivalent worlds introduced in Chapter 3. This solution is general-
ized to the case of an uncertain query point in Section 4.4 by again using the paradigm
of equivalent worlds. Since range queries do not directly return a scalar measuring the
density of a region, but rather return a set of potential result objects associated with their
respective probability to be a result, Section 4.5 presents an efficient solution to the prob-
lem of computing the distribution of the total number of objects located in a given range,
which allows to assess the probability that an object is hot. This problem is particular
challenging, since distances between objects are stochastically dependent even in the case

1source: www.amethyst.gov.uk/crime map/crimedrugs.htm
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hot item

not a hot item

(a) Hot items in certain data.

possible siblebe
hot item

(b) Hot items in uncertain data.

Figure 4.2: Examples of hot items.

where the location of objects are stochastically independent. An detailed explanation and
an example of this problem is also given in Section 4.5. Again, an efficient solution can
again be found using the paradigm of equivalent worlds. To allow an experimental evalua-
tion of the efficiency of this approach, a straightforward approach as well as a competitive
approach is introduced. The results of an experimental evaluation of all approaches are
presented in Section 4.6 before this chapter is concluded in Section 4.7.
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4.2 Related Work

The aspect to identify objects that are similar to a given amount of other objects is the
basis of several density-based algorithms for discovering clusters and outliers. There exist
approaches for density-based clustering of uncertain data, e.g. [111] which are quite related
to our approach. However the proposed model used to determine the probabilistic density
does not respect the mutual exclusiveness of alternative attribute values. The missing con-
ditional probability in their approach leads to approximative results only which disqualifies
this approach from the accurate detection of hot items. A more detailed description of this
problem is given in Section 4.5.

This problem does not occur in the special case where the query object is given by a
single (certain) point rather than an uncertain object. For this case, and efficient solution
for range search on uncertain data has been proposed in [184]. This approach utilized an
index structure, called the U-tree for minimizing the query overhead. This index struc-
ture employs so called probabilistic constrained regions, which essentially approximate the
marginal distribution of uncertain objects, to permit probabilistic pruning.

The detection of core objects can be efficiently supported by a similarity join query
used in a preprocessing step, in particular the distance range self-join. Approaches for
an efficient join on uncertain data are proposed in [109]. The main advantage of this ap-
proach is that sampled positions in space can efficiently be indexed using traditional spatial
access methods thus allowing to reduce the computational complexity of complex query
types. Our approach exploits the similarity join approach proposed in [109]. However, the
cost of the probabilistic detection of hot items are originally highly CPU-bound which is
demonstrated in the experimental evaluation (cf. Section 4.6).

4.3 Probabilistic Range Queries on Uncertain Data:

Certain Query

Adhering to possible world semantics and object based answer semantics, a spatial range
query for a (certain) query point q on uncertain data is defined as follows:

Definition 18 (Probabilistic Range Query). Let DB be an uncertain spatial database, let
q be a query point, and let ε be a positive real value. A spatial range query computes, for
each database object, the probability of having a distance less than ε to q.

ε-range(q,DB) := {(U ∈ DB, P (dist(q, U) ≤ ε)}

The main challenge of answer a probabilistic range query is to compute the probability
P (dist(q, U) ≤ ε)) of the predicate dist(q, U) ≤ ε) for each U ∈ DB. Naively, we can use
possible worlds semantics to compute this probability by using Equation 2.3 to obtain

P (dist(q, U) ≤ ε)) =
∑
w∈W

I(dist(q, U) ≤ ε, w) · P (w)
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Clearly, this solution is inefficient, as it requires to enumerate all possible possible. Towards
an efficient solution, we make the following observation.

Corollary 2. Let u be an instance of uncertain object U . The set of possible worlds where
U = u is a class of worlds equivalent with respect to the predicate dist(q, U) ≤ ε.

Proof. Corollary 2 follows trivially from the fact that the distance dist(q, U) is independent
from all database objects U ′ ∈ DB \ {U}.

A partitioning of W can be derived trivially using Corollary 2.

Corollary 3. Let {u1, ..., um} the set of possible instances of uncertain object U , where m
is the number of alternatives of U . Let Si ⊆ W be the set of possible worlds where U = ui.
Furthermore, let S0 ⊆ W be the set of possible worlds where U does not exist.2 The set
{S0, ..., Sm}, is a disjunctives partitioning of W.

Proof. Corollary 3 follows from the property of mutual exclusive alternatives in the x-
tuple model, where in each world, every object (in particular object U) has at most one
alternative value.

Corollary 3 leads to the following Lemma:

Lemma 5. The probability P (dist(q, U) ≤ ε)) can be computed in polynomial time.

Proof. Reconsider the paradigm of equivalent worlds presented in Chapter 3. Property I
is satisfied trivially, as a range query on certain data can be answered in linear time via a
single database scan. Corollary 3 directly satisfies property II. The number of equivalent
classes is equal to one plus the number of alternatives of object U , which is assumed to be
finite and constant in the size of the database in the x-tuple model. Thus property III is
satisfied. Finally, the probability P (Si) of class Si is given by the x-tuple model due to the
assumption of independence objects: The probability of Si equals the probability P (ui) of
instance ui for 1 ≤ i ≤ m and equals the probability 1−

∑m
i=1 P (ui) for i = 0.

With all four properties being satisfied, we can apply Equation 3.2:

P (φ(DB)) =
∑
S∈S

I(φ,w ∈ S) ·
∑
w∈S

P (w).

Substitution of the abstract predicate φ(DB) = dist(q, U) ≤ ε) and substitution of the
abstract partition S = {S0, ..., Sm} yields

P (dist(q, U) ≤ ε)) =
∑
Si∈S

I(dist(q, U) ≤ ε, w ∈ Si) ·
∑
w∈Si

P (w).

Substitution of the total probability P (Si) =
∑

w∈Si P (w) = P (ui) of each class yields

P (dist(q, U) ≤ ε)) =
∑
Si∈S

I(dist(q, U) ≤ ε, w ∈ Si) · P (ui), (4.1)

2This set may only be non-empty if existential uncertainty is allowed.
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where

I(dist(q, U) ≤ ε, w ∈ Si)

is an indicator function that returns one if dist(q, o) ≤ ε in world w and zero otherwise.
We can exploit that for each world in class Si, it holds that U = ui by definition of Si.
thus we can instead use the indicator function

I(dist(q, ui) ≤ ε)

that returns one if dist(q, ui) ≤ ε and zero otherwise.

In summary, Equation 4.1 can be computed efficiently, since

• the indicator function I(dist(q, ui) ≤ ε) can be evaluated efficiently, by performing a
single distance computation on certain data,

• and the probability P (ui) of a single instance of an uncertain object U can be eval-
uated efficiently, by evaluating the probability mass function of U , which is given by
the uncertain data model.

While answering range queries efficiently is a rather trivial result, the main role of this
section was to give an example of how the paradigm of finding equivalent worlds can be
applied to a simple query predicate. The remainder of this chapter, as well subsequent
chapters of this thesis will present more challenging spatial query types.

4.4 Probabilistic Range Queries on Uncertain Data:

Uncertain Query

Again, adhering to possible world semantics and object based answer semantics, a spatial
range query for an uncertain query point q on uncertain data is defined as follows:

Definition 19 (Probabilistic Range Query). Let DB be an uncertain spatial database, let
Q be an uncertain query object, and let ε be a positive real value. A spatial range query
computes, for each database object, the probability of having a distance less than ε to Q.

ε− range(Q,DB) := {(U ∈ DB, P (dist(Q,U) ≤ ε)}

Definition 19 is almost equal to Definition 18, except that the query object is no longer
assumed to be a certain point, but rather may itself be an uncertain object.

To compute the probability P (dist(Q,U) ≤ ε), we first need to formally define the dis-
tance between two uncertain objects dist(Q,U). Clearly, for two objects having uncertain
locations, the distance between these two objects is also uncertain, i.e., a random variable.
In the discrete case, a probabilistic distance function is defined as follows.



4.4 Probabilistic Range Queries on Uncertain Data: Uncertain Query 63

Definition 20 (Probabilistic Distance). Let DB be an uncertain spatial databases and
let dist : Rd × Rd → R+

0 be a distance function on (certain) points. Furthermore, let Ui
and Uj be two uncertain objects. A probabilistic distance dist(Ui, Uj) returns a cumulative
probability density function (CDF) of the distance between Ui and Uj.

dist : DB ×DB → (R0 → [0, 1])

dist(Ui, Uj) = {(d ∈ R0, P (dist(Ui, Uj) ≤ d) ∈ [0, 1])},

where

P (dist(Ui, Uj) ≤ d) =
∑
w∈W

I(dist(Ui, Uj) ≤ d, w) · P (w).

Note that the function dist(·, ·) has previously been defined between two certain points.
This function is overloaded deliberately. It should be clear from the context whether the
traditional distance dist : Rd × Rd defined on (certain) points, or the uncertain version
dist : DB ×DB → (R0 → [0, 1]) defined on uncertain objects is used.

Lemma 6. The probability P (dist(Ui, Uj) ≤ d) can be computed in polynomial time.

Proof. To compute the probability P (dist(Ui, Uj) ≤ d) we observe that exploiting object
independence, the probability P (dist(Ui, Uj) ≤ d) depends only on the positions of uncer-
tain objects Ui and Uj, and is independent of any other database object in DB \ {Ui, Uj}.
This observation allows to easily find sets of possible worlds that are equivalent with re-
spect to the random event dist(Ui, Uj) ≤ d: Let x ∈ Ui be a possible location of Ui, and let
y ∈ Ui be a possible location of Uj, then any world w ∈ Cx,y := {w ∈ W|Ui = x, Uj = y}
is equivalent with respect to the random event dist(Ui, Uj) ≤ d. Thus the equivalence
∀w1, w2 ∈ Cx,y : dist(w1.Ui, w1.Uj) ≤ d ⇔ ∀dist(w2.Ui, w2.Uj) ≤ d holds. Formally, this
equivalence is evident, by substitution of w1.Ui = w2.Ui = x and w1.Uj = w2.Uj = y. Since
there exists one equivalent class Cx,y for each x ∈ Ui and each y ∈ Uj, the number of
equivalent classes equals |Ui| · |Uj|, where |Ui| (|Uj|) is the number of possible locations of
Ui (Uj). Thus, conditions II and III of Lemma 4 are satisfied. Condition I is satisfied
trivially, assuming that the distance function dist(x, y) for two (certain) points x and y
can be computed in polynomial time, which is the case for Euclidean distance. Finally,
condition IV requires to compute the total probability of a equivalent class to be computed
efficiently, i.e., the probability

P (Cx,y) =
∑

w∈Cx,y

P (w)

has to be computed efficiently. By definition of Cx,y, this equation can be rewritten as∑
w∈Cx,y

P (w) =
∑

{w∈W|Ui=x,Uj=y}

P (w).
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The right-hand side of above equation aggregates the probabilities of all worlds where
Ui = x, Uj = y. Using the indicator function I(Ui = x ∧ Uj = y, w) that returns 1 if the
predicate Ui = x ∨ Uj = y holds in world w, this can be rewritten as∑

{w∈W|Ui=x,Uj=y}

P (w) =
∑
{w∈W}

I(Ui = x ∧ Uj = y, w)P (w).

Using the definition of possible world semantics (Equation 2.3), we obtain∑
{w∈W}

I(Ui = x ∧ Uj = y, w)P (w) = P (Ui = x ∧ Uj = y)

Exploiting independence between Ui and Uj we finally obtain

P (Ui = x ∧ Uj = y) = P (Ui = x) · P (Uj = y),

which can be computed in constant time by looking up the probabilities P (Ui = x) and
P (Uj = y) given by the models of Ui and Uj.

Thus, condition IV holds, and Lemma 4 is applicable to compute P (dist(Ui, Uj) ≤ d)
efficiently by

P (dist(Ui, Uj) ≤ d) =
∑

Cx,y ,x∈Ui,y∈Uy

I(dist(w.Ui, w.Uj) ≤ d, w)P (Cx,y) (4.2)

This equation requires to iterate over all equivalent classes Cx,y, x ∈ Ui, y ∈ Uy, sum-
ming up the probabilities P (Cx,y) for each class where dist(w.Ui, w.Uj) ≤ d for a world
w ∈ Cx,y. Exploiting that the probability P (Cx,y) of each class Cx,y can be computed in
constant time, the total time complexity of computing P (dist(Ui, Uj) ≤ d) is in O(|C|)
where |C| is the number of classes, which equals O(|x| · |y|) where |x| and |y| denote the
number of possible locations of objects x and y.

Two answer a probabilistic ε-range query as defined in Definition 18, we can apply
Equation 4.2 to compute the probabilities P (dist(Q, o) ≤ ε) for each o ∈ DB by substi-
tuting d by ε, Ui by Q, and Uj by o for each o ∈ DB. This yields a total run-time of
O(
∑

o∈DB |Q| · |o|) which is in O(|DB| · |Q| ·maxo∈DB|o|).

4.5 Range Count Queries on Uncertain Data

This section gives an efficient solution of the problem of finding the distribution of the
total number |{U ∈ DB|dist(Q,U) ≤ ε)}| of database objects located within an ε-range
around a query object Q. At first glance, this task may seem rather straightforward, given
the probabilities P (dist(Q,U) ≤ ε) for each U ∈ DB, which can be computed efficiently
as shown in Section 4.4. Given these probabilities of each object to be located in ε-range
of Q, it may seem possible to use the techniques presented in Section 3.3 to compute
the sum of independent Bernoulli trials. However, the events dist(Q,U1 ∈ DB) < ε and
dist(Q,U2 ∈ DB) < ε are not stochastically independent, as both events depends on the
position of Q. This problem described in detail in the following example.
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C

0.5 0.5q1 q2

Figure 4.3: An example database showing the stochastic dependencies between probabilis-
tic distances.

Example 16. To illustrate this problem, consider Figure 4.3. It shows a query object Q
having two alternative positions having a probability of 0.5 each. If Q has position q1, i.e.,
assuming that Q = q1, we see that all three database objects A, B and C are certainly located
in the ε-range of q1, which is depicted by the large circle centered at q1. If Q has position
q2, that is if Q = q2, then all objects will certainly be located outside of the ε-range of q2.
Thus, it is clear that for any object O ∈ {A,B,C} it holds that P (dist(Q,O) ≤ ε) = 0.5:
With a probability of 0.5, Q is at location q1 and certainly has O in it’s range, and with a
probability of 0.5, Q is at location q2 and O is certainly out of range of Q. If we (incorrectly)
assume independence between the events dist(Q,O) ≤ ε, we can compute the distribution
of the number count(Q, ε,DB) := |{O ∈ DB|}|dist(Q,O) ≤ ε) of objects in range of Q
using the technique of generating functions by

F(x) = (0.5 + 0.5x) · (0.5 + 0.5x) · (0.5 + 0.5x) = 0.125x3 + 0.375x2 + 0.375x+ 0.125.

Interpreting the semantics of the monomials of this expansion yields the following (in-
correct) probabilities P (count(Q, ε,DB) = 0) = P (count(Q, ε,DB) = 3) = 0.125 and
P (count(Q, ε,DB) = 1) = P (count(Q, ε,DB) = 2) = 0.375. We can clearly see that these
probabilities must be wrong, since in all worlds where Q = q1, we know that count(Q, ε,DB)
must equal 3. Knowing that P (Q = q1) we get that P (count(Q, ε,DB) = 3) = 0.5. Anal-
ogously, for the case Q = q2 we get P (count(Q, ε,DB) = 0) = 0.5. The wrong results
returned by the above generating functions technique are a result of the incorrect assump-
tion of independence between the three stochastic events dist(Q,O ∈ {A,B,C}) ≤ ε. In
this example, these events are indeed highly correlated, since it holds that dist(Q,A) ≤ ε
if and only if dist(Q,A) ≤ ε if and only if dist(Q,A) ≤ ε. Thus, the three events are
equivalent, thus having a correlation of one.
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4.5.1 Probabilistic Hot Items

The problem of computing the density in the range of a query object is defined as follows

Definition 21 (Probabilistic Hot Item). Let DB be an uncertain spatial database, let ε be
a real value and let minItems be a positive integer. A database object U ∈ DB is called a
hot item if

U is a hot item := |{U ′ ∈ DB \ {U}|dist(U,U ′) ≤ ε}| > minItems

Using possible worlds semantics, the probability of this random event is given by

P (|{U ′ ∈ DB|dist(U,U ′) ≤ ε}| > minItems) =
∑
w∈W

I({U ′ ∈ DB\{U}|dist(U,U ′) ≤ ε},DB)·P (w)

(4.3)

Based on the uncertainty models and the corresponding definitions given above, we can
compute hot items in uncertain data in a probabilistic way. However, we have to solve the
problem of distance-dependencies of the uncertain attributes. Though we assume that the
locations of uncertain spatial objects are independent of each other, we have to respect that
the random variables dist(U1, U2) and dist(U3, U4) for objects U1, ..., U4 ∈ DB are mutually
dependent if {U1, U2} ∩ {U3, U4} 6= ∅. Obviously, the problem here is that the uncertain
object Q is used in both random variables P (dist(Q,A) ≤ ε) and P (dist(Q,B) ≤ ε),
rendering these variables mutually dependent, despite the independence between objects
A, B and Q, as shown in Example 16. To avoid this dependency, we perform a partitioning
of possible worlds into subsets of worlds: One partition for each possible position of q ∈ Q.
In each such partition, the random variables P (dist(q, A) ≤ ε) and P (dist(q, B) ≤ ε) are
independent, since the only involved uncertain objects are A and B, which are independent
by model definition.

Definition 22 (Conditional Probabilistic Hot Item). Given a database DB with uncertain
objects and a minimum population threshold minItems. Furthermore, let ε ∈ R+

0 be a
scalar. Under the condition that an uncertain object U ∈ DB has a certain location x ∈ Rd,
the probability that U is a hot item, given that U = x is denoted as

P (U is a hot item|U = x)

This definition allows to compute the probability that U is a hot item as follows:

Corollary 4.

P (U is a hot item) =
∑
x∈U

P (U is a hot item|U = x) · P (x)

Proof. Corollary 4 follows directly from the law of total probability ([220]).
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Corollary 4 allows to reduce the problem of computing the probability that an uncertain
item is hot, to the problem of computing the probability that a single location is hot. To
compute the probability

P (U is a hot item|U = x) = P (|{o′ ∈ DB \ {U}|dist(U,U ′) ≤ ε}| > minItems|U = x)

= P (|{U ′ ∈ DB \ {U}|dist(x, U ′) ≤ ε}| > minItems)

we first start by computing the probabilities

P (dist(x, U ′) ≤ ε)

using the technique presented in Section 4.3. Note that, depending on the value of ε,
usually only a small portion DB′ ⊂ DB of the database has a non-zero probability to be
in ε-range of x. A quick search of those objects which have to be taken into account can
be efficiently supported by means of an index structure, e.g. the R*-tree. In particular,
the index supported ε-range join [39] can be used to speed-up the search as proposed in
[34]. Here, approximative representations like the minimal bounding rectangle (mbr) of an
uncertain object are very appropriate to be used as index key for a filter step following the
multi-step query processing paradigm. A solution for the ε-range join on uncertain data
is proposed in [109] which can be used as a preprocessing step for our proposed algorithm
for the detection of hot items.

To efficiently compute the distribution of the number |{U ′ ∈ DB\{U}|dist(x,O′) ≤ ε}|
of objects close to instance x ∈ U , we proceed as follows. Since each random event
dist(x, Ui ∈ DB\{U}) ≤ ε follows a Binomial distribution, having two possible values true
and false, we can simply define a Bernoulli distributed random variable Bi that returns
one if dist(x, Ui) ≤ ε and zero otherwise. By definition, the sum∑

Ui∈DB\{U}

Bi

corresponds to the number of random events dist(x, Ui ∈ DB) ≤ ε that hold true. These
events dist(x, Ui) ≤ ε and dist(x, Uj) ≤ ε, Ui, Uj ∈ DB \ {U}, Ui 6= Uj are now in-
dependently distributed, since x is now a fixed location and not a random variable.
Consequently, the corresponding Beroulli random variable Bi and Bj are also mutually
independent. Thus, we can use the techniques presented in Section 3.3 to compute
the distribution of

∑
Ui∈DB\{U}Bi efficiently. This distribution can be used to compute

P (U is a hot item|U = x) for each possible alternative x ∈ U of U . Given these proba-
bilities, we can apply Corollary 4 to compute the probability P (U is a hot item).
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4.6 Experimental Evaluation

In Section 3.3 and in Section 4.5.1 the paradigm of equivalent worlds has been used to
efficiently compute the probabilistic distribution of the sum of Bernoulli distributed random
variables. To show the power of this technique, this section presents two competitive
approaches to compute the probability of a database objects to be a hot item. While the
first algorithm is a straightforward baseline algorithm, the second algorithm is an adaption
of an algorithm proposed in [27].

4.6.1 Brute-Force Algorithm

That condition probability that an object U ∈ DB is a hot item, given that U is at position
x can be rewritten as follows:

P (U is a hot item|U = x) =

P (|{U ′ ∈ DB \ {U}|dist(x, U ′) < ε}| ≥ minItems) =∑
SminItems ⊆ DB \ {U}
|SminItems| ≥ minItems

(
∏

U ′∈SminItems

P (dist(x, U ′) ≤ ε)·
∏

U ′∈DB\(SminItems∪{U})

(1−P (dist(x, U ′) ≤ ε))).

This computation is very expensive, since a total of
∑|DB|−1

i=minItems

(
|DB| − 1

i

)
different

sets SminItems have to be taken into account to calculate the sum term. Furthermore, for
each summand we have to compute the product of |DB|− 1 multipliers. Even if we ignore
the cost of the product, the computational complexity of the sum term remains O(2|DB|).
However, only those objects for which the probability that the predicate dist(x, U ′) ≤ ε is
satisfied is greater than zero have to be taken into account. In total, the computational
complexity is O(2|DB

′|), where DB′ ⊆ DB denotes the set of objects U ′ ∈ DB′ for which
P (dist(x, U ′) ≤ ε) > 0 holds. Even if |DB′| << |DB|, the computational cost would
explode for reasonably large database size and reasonable settings for the minItems value.
Yet, this approach is faster than the naive approach that enumerates all possible worlds,
whose run-time equals the case where |DB′| = |DB|.

4.6.2 Bisection-Based Algorithm

The computational cost can be significantly reduced if we utilize the bisection-based al-
gorithm as proposed in [27]. The bisection-based algorithm uses a divide-and-conquer
approach to compute the probability P (|{U ′ ∈ DB \ {U}|dist(x, U ′) < ε}| = k) that ex-
actly k objects are inside the query range by iteratively dividing the database DB\{I} into
two equally sized subsets DB1 and DB2, exploiting the law of total probability as follows:

P (|{U ′ ∈ DB \ {U}|dist(x, U ′) < ε}| = k) =

P (|{U ′ ∈ DB1|dist(x, U ′) < ε}| = i) · P (|{U ′ ∈ DB2|dist(x, U ′) < ε}| = k − i)
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Figure 4.4: Performance w.r.t database size.

This approach allows to reduce the effective size of the database relevant for each proba-
bility computation to 1

2a
, but incurring a total of ka probability computations rather than

a single one, where a is the number of divide-and-conquer iterations. For each probability
computation, this approach of [27] applies a straight-forward computation having expo-
nential worst-case complexity in the size of the size of the database considered for the
probability computation.

This technique can easily be adapted for our problem. The main idea is to recursively
perform a binary split of the set of relevant objects, i.e. objects which have to be taken
into account for the probability computation. Details of this algorithm can be found in
[27].

4.6.3 Run-Time Experiments

In this section, we present the results of an experimental evaluation of the proposed meth-
ods w.r.t. efficiency.

Datasets and Experimental Setup

The hot item detection methods were applied to one artificial dataset (ART ) and two
scientific real-world datasets (SCI1,SCI2 ), based on the discrete uncertainty model.

In the ART dataset, each object is represented by a set of positions sampled uniformly
from the [0, 1]5 space.

Each of the 1500 objects of the datasets SCI1 and SCI2 consists of 10 samples, where
each sample corresponds to a set of environmental sensor measurements of one single
day that consist of several dimensions (attributes). The attribute set of SCI1 describes
temperature, humidity and CO concentration, whereas SCI2 has a larger set of attributes
(temperature, humidity, speed and direction of wind as well as concentrations of CO, SO2,
NO, NO2 and O3).
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Here, we compare two variants of our approach denoted by DPB and PHID. The
algorithm DPB applies the techniques presented in Section 4.5.1 on the complete database.
In contrast, PHID applies a spatial pruning filter using the R∗-Tree to find objects which
must have a probability of zero to be in range of the query object. The performance of PHID
and DPB is compared to that of the brute-force solution (BF ) by applying the formula
given in Definition 4.3. Furthermore, we compare them to the bisection-based method [27]
(BSB) Let us note that BSB is considerably more efficient than the brute-force solution
and, thus, a more challenging competitor than BF.

Note that in our algorithm, we concentrate on the evaluation of the CPU-cost only.
The reason is that the PHID-algorithm is clearly CPU-bound. The only I/O bottleneck
is the initial computation of the likelihood that U ′ is in the ε-range of ui, for each object
U ′ ∈ DB and each sample ui, where U,U ′ ∈ DB, ui ∈ U and U 6= U ′. This requires a
distance-range-self-join of the database which can be performed by a nested-block-loop join
that requires O(|DB|2) page-faults in the worst case. In contrast, the CPU time for the
PHID-algorithm is cubic: To compute the number of objects in ε-range of an instance of
an object, i.e., to compute the sum of Bernoulli variables Bi, 1 ≤ i ≤ |DB|, we can either
use the Poisson binomial recurrence technique presented in Section 3.4 or the generating
function technique presented in Section 3.5. Either way, the incurred complexity is in
O(|DB|2) time and has to be performed once for each sample in the database. In our
experimental evaluation, we use an implementation of the Poisson binomial recurrence to
compute the number of objects in the range of an instance of an object.

The first experiments relate to the scalability of the proposed approaches. The re-
sults depicted in Figure 4.4 demonstrate how the runtime of the competing techniques is
influenced by the database size. Figure 4.4(a) shows that, though the bisection-based ap-
proach has exponential runtime, it outperforms the brute-force approach by several orders
of magnitude. However, the Poisson binomial recurrence approaches scale significantly bet-
ter than their competitors which in contrast to DPB and PHID have polynomial runtime.
Furthermore, the pre-processing step of PHID obviously pays off. The performance can be
further improved by an order of magnitude when applying the Poisson binomial recurrence
only on objects U ′ having a non-zero chance to be in range. The next experiment shows
the scalability of PHID for different ε-range values. Here, the average time required to
compute the hot item probability for an object was measured. The results shown in Figure
4.4(b) demonstrate that PHID scales well, even for very large databases.

Figure 4.5(a) demonstrates the performance w.r.t. the minItems value for different
database sizes. Contrary to DPB and PHID, the BSB is very affected by the minItems
value due to the expensive probability computation. The slight increase of the DPB and
PHID performances can be explained by the reduced number of hot items with increasing
minItems value.

Finally, we evaluate the performance based on real-world data (cf. Figure 4.5(b)).
Unlike the exponential algorithms, DPB and PHID are able to perform a full hot item
scan of the database in reasonable time, even for a relatively large database size.
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Figure 4.5: Performance experiments.

4.7 Conclusions

In this chapter, efficient solutions to answer probabilistic range queries on uncertain spatial
data have been proposed. First, a solution for the simple case of a certain query point has
been given. This solution, while solving a rather simple problem, was used as a showcase of
how to apply the paradigm of equivalent worlds. Next, a solution for the more challenging
case of uncertain query objects has been given. This solution accounts for the problem
of stochastically dependent distances between uncertain objects. Finally, the problem of
counting the number of uncertain objects in a region, and thus of the problem of finding
hot items, i.e., objects for which at least minItems close objects exist, has been given an
efficient solution. In particular this approach computes for each object o in an uncertain
database the probability that o is a hot item. We proposed methods that are able to
break down the high computational complexity required to compute for an object o the
probability, that o is a hot item. We theoretically and experimentally show that our
approach can efficiently find all hot items in O(minItems · n2), where n is the number of
uncertain objects and minItems is the number of objects required to be in proximity for
an object to be considered a hot item. The decision if a single item is a hot item can be
made in O(minItems · n).

In the next chapters, uncertain database solutions for more complex spatial similar-
ity queries, including k-nearest neighbor queries (Chapter 6), similarity ranking queries
(Chapter 7) and reverse k-nearest neighbor queries (Chapter 8) will be presented. All of
these query types require, given two uncertain objects A and B, which object is closer to
a another uncertain object R. The next section, will present a spatial pruning technique,
to efficiently solve this problem for rectangular object approximations. This technique will
then be utilized in the subsequent chapters.
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Chapter 5

Optimal Spatial Pruning

Fast query processing of complex objects, e.g. spatial or uncertain objects, depends on effi-
cient spatial pruning of the objects’ approximations, which are typically minimum bound-
ing rectangles (MBRs). This section proposes a novel effective and efficient criterion to
determine the spatial topology between multi-dimensional rectangles. Given three rect-
angles R, A, and B in a multi-dimensional space, the task is to determine whether A is
definitely closer to R than B. This domination relation is used in many applications to
perform spatial pruning. Traditional techniques apply spatial pruning based on minimal
and maximal distance. These techniques however show significant deficiencies in terms
of effectivity. It is proven that the presented decision criterion is correct, complete, and
efficient to compute even for high dimensional databases. Experiments show that the
new pruning criterion, albeit very general and widely applicable, significantly outperforms
current state-of-the-art pruning criteria.

5.1 Introduction

Speeding-up queries using minimal bounding rectangles (MBRs) as object approximations
is a common technique used in many different ways. For example, rectangles are used
for data sets with spatially extended objects such as polygons or CAD models because
operations on the exact object representation are usually much more expensive than on
the object approximations. Furthermore, MBRs are used as spatial key for spatial access
methods, e.g. the most prominent ones including the R-Tree [82], R*-Tree [15], X-Tree
[19] as well as specialized adaptations like the TPR tree [160] and the U-Tree [177] among
many others. In the last decade, MBR approximations have also become very popular for
uncertain databases [31, 45, 48, 51, 131] in order to approximate all possible locations of
an uncertain vector object such as a GPS signal.

Rectangular approximations are commonly integrated into spatial pruning methods in
order to speed-up spatial queries such as distance-range (ε-range) queries and k-nearest
neighbor queries. Generally, current spatial pruning methods utilize the boundaries of
regions, in particular of axis-aligned rectangles, in order to facilitate the pruning, i.e.
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Figure 5.1: Spatial pruning on MBRs.

to filter out true drops that do not match the query predicate. In this context, spatial
pruning techniques are used for numerous application fields including searching in multi-
dimensional vector spaces [75, 88, 159], similarity search in time series databases [102],
query processing on spatio-temporal data [84, 181] and probabilistic query processing on
uncertain data [31, 50, 177].

Most types of spatial/similarity queries used for the above mentioned applications,
including k-nearest neighbor (kNN) queries, reverse k-nearest neighbor (RkNN) queries,
and ranking queries, commonly require the following information. Given three point sets A,
B, and R in a multi-dimensional space Rd, e.g. representing MBRs, the task is to determine
whether object A is definitely closer to R than B w.r.t. a distance function defined on
the objects in Rd. If this is the case, we say A dominates B with respect to (w.r.t.) R.
An example of such a situation is depicted in Figure 5.1. The concept of domination is a
central problem for most types of similarity queries including the ones mentioned above in
order to identify true hits and true drops (pruning). For example, in case of a 1NN query
around R, we can prune B if it is dominated by A w.r.t. R and for an R1NN query around
R, we can prune B if A dominates R w.r.t. B.

The domination problem is trivial for point objects. However, applied to rectangles, the
domination problem is much more difficult to solve. The problem is that the distance be-
tween two objects approximated by rectangles is no longer a single value but is represented
by an interval. If two such distance intervals overlap, we cannot definitely detect whether
one distance is smaller than the other. Traditionally, the minimal distance and maximal
distance between rectangles are used to decide which object is closer to another object.
For example, in a nearest-neighbor query we can prune all objects whose minimal distance
to the query object exceeds the maximal distance between at least one other object and
the query object. In fact, the traditional distance approximations based on minimal and
maximal distance are not always suitable to determine the distance relationship between
objects. An example is depicted in Figure 5.1 showing three objects A, B and R each
approximated by rectangles. In order to decide whether object A is closer to R than object
B, we cannot apply the minimal/maximal distances because the minimal distance between
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B and R is smaller than the maximal distance between A and R. Here, the problem is
that when comparing the maximal distance between A and R with the minimal distance
between B and R we take two different positions of the object R into account. For the
maximal distance between A and R, we assume that the object R is located at the upper
left corner of its rectangle approximation. For the minimum distance between B and R we
assume that the object R is located at the lower right corner of its rectangle approxima-
tion. However, since an object approximated by a rectangle cannot be located at different
positions at the same time, the two distances between A and R and between B and R
depend on each other. To the best of our knowledge, none of the existing work, except
approaches for reverse k-NN queries [180, 64], take this dependency into account. In our
example, in fact, it can be detected that object A is closer to R than to object B when
taking the above mentioned conditions into account. This chapter claims the following
contributions.

• We discuss current state-of-the-art decision criteria for the domination problem among
rectangles focussing on their correctness, completeness, and efficiency.

• We propose a novel decision criterion for the domination problem among rectangles
that is correct, complete, and can be efficiently computed.

• We present extensive experiments to evaluate our new pruning criteria in comparison
to state-of-the-art approaches.

The remainder of this chapter is organized as follows: First, Section 5.2 formally defines
the concept of spatial domination. Next, Section 5.3 reviews existing approaches to detect
spatial domination. Section 5.4 introduces a novel domination decision criterion. It is
shown theoretically that this new domination decision criterion is optimal, i.e., it is able to
return true in all, and only in cases where the domination relation truly holds. Furthermore,
it is shown that the current state-of-the-art approach does not satisfy this optimality
property. This decision criterion is exploited in Section 5.5 to find groups of rectangles that
are able to collaboratively dominate another object. Section 5.6 shows how to apply the
concept of spatial domination for spatial query problems. Section 5.7 presents experimental
results and Section 5.8 finally concludes this section.
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5.2 The Problem of Detecting Spatial Domination

Let DB ⊆ Rd be a database of d-dimensional points and dist be a distance function on
objects in Rd. In this chapter we will focus on the Lp norms as the most commonly used
family of distance functions in the area of similarity search. Intuitively, our problem is the
following. Given the point sets A,B,R ⊆ DB, we want to decide if A “is definitely closer
to” R than B to R w.r.t. the distance function dist . If this is the case, we say A dominates
B w.r.t. R, denoted by the predicate (A ≺R B). In fact, we will focus on points sets that
represent rectangles, e.g. minimum bounding rectangles (MBRs) because rectangles are
the most prevalent form of approximations for sets of points representing more complex
objects like page regions of directory nodes in spatial index structures, polygons, time
series, uncertain objects, etc. (see above).

Definition 23 (Domination). Let A,B,R ⊆ Rd be rectangles. The rectangle A dominates
B w.r.t. R iff for all points r ∈ R it holds that every point a ∈ A is closer to r than any
point b ∈ B, i.e.

(A ≺R B)⇔
∀r ∈ R, ∀a ∈ A, ∀b ∈ B : dist(a, r) < dist(b, r) (5.1)

To evaluate the predicate (A ≺R B), Equation 5.1 is not very helpful because a rectangle
contains an infinite number of points in Rd and it is simply not computable to test all triples
a ∈ A, b ∈ B and r ∈ R. Rather, a domination decision criterion DDC(A,B,R) for the
single domination relation is required, which should satisfy the following three properties:

• Correctness: if DDC(A,B,R) returns true then A dominates B w.r.t. R, i.e.

DDC(A,B,R)⇒ (A ≺R B).

• Completeness: if DDC(A,B,R) returns false then A does not dominate B w.r.t.
R, i.e.

¬DDC(A,B,R)⇒ ¬(A ≺R B).

• Efficiency: DDC(A,B,R) can be evaluated efficiently.
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5.3 Existing Approaches

In the following, Xi = [Xmin
i , Xmax

i ] represents the interval of the rectangle X in dimension
i, Xmid

i = 1/2 · (Xmin
i +Xmax

i ) is the mean of interval Xi, and xi denotes the value of point
x in dimension i (1 ≤ i ≤ d).

5.3.1 The Min-/MaxDist decision criterion.

Probably the most well-known decision criterion for the domination problem among
rectangles used in many database applications is based on two well known metrics defined
on rectangles [159]. The minimum distance MinDist(A,B) between two rectangles A and
B always underestimates the distance of point pairs (a, b) ∈ A×B and is defined as

MinDist(A,B) := p

√√√√√ d∑
i=1


|Amini −Bmax

i |p, if Amini > Bmax
i

|Bmin
i − Amaxi |p, if Bmin

i > Amaxi

0 , else
= p

√√√√ d∑
i=1

MinDist(Ai, Bi)

(5.2)
The maximum distance MaxDist(A,B) between two rectangles A and B always over-

estimates the distances of all point pairs (a, b) ∈ A×B and is defined as:

MaxDist(A,B) := p

√√√√ d∑
i=1

{
|Amaxi −Bmin

i |p, ifAmidi ≥ Bmid
i

|Bmax
i − Amini |p, ifBmid

i > Amidi

= p

√√√√ d∑
i=1

MaxDist(Ai, Bi)

(5.3)

Definition 24 (Min-/MaxDist criterion). Let A, B, R ∈ Rd be rectangles. The Min-
/MaxDist domination decision criterion is defined as

DDCMinMax(A,B,R)⇔ MaxDist(A,R) < MinDist(B,R).

Lemma 7. The Min-/MaxDist decision criterion is correct, i.e.,

DDCMinMax(A,B,R)⇒ (A ≺R B).

Proof. The following holds due to the conservative properties of MinDist and MaxDist:
DDCMinMax(A,B,R) ⇔ MaxDist(A,R) < MinDist(B,R) ⇒ ∀a ∈ A,∀r ∈ R, ∀b ∈ B :
dist(a, r) ≤ MaxDist(A,R) < MinDist(B,R) ≤ dist(b, r)⇔ (A ≺R B).
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Figure 5.2: MBR pruning example

Lemma 8. The Min-/MaxDist decision criterion is not complete, i.e.,

¬DDCMinMax(A,B,R) 6⇒ ¬(A ≺R B).

Proof. Figure 5.2 shows an example for the 2D space where DDCMinMax(A,B,R) is false
although (A ≺R B) holds. In the examples, A = a and B = b are rectangles with
zero extension, i.e. points. Clearly, MaxDist(a,R) < MinDist(b, R) is not satisfied, i.e.
DDCMinMax(a, b, R) is false. The Voronoi line Hab between a and b, i.e. the line containing
all points that have equal distance to a and b, which is the dashed line in Figure 5.2 divides
the 2D space into two half spaces. It is obvious that all points above that line (located
in the half space containing a) have a distance to a that is smaller than the distance to
b. Thus, according to Definition 23, a dominates b w.r.t. all objects which lie completely
above Hab. As a consequence, (a ≺R b) holds.

Let us note that the Min-/MaxDist domination decision criterion is complete for two
arbitrary rectangles A and B if R is a point, i.e. R has no extension in all dimensions. In
addition, the Min-/MaxDist domination decision criterion can be computed efficiently in
O(d) time since the calculation of MinDist and MaxDist is linear in d.

5.3.2 Voronoi-based decision criterion.

The Voronoi plane Hab between two points a and b that has been used in the proof of
Lemma 8 is used in [180] as a different decision criterion for points. In a d-dimensional
space Hab = {x ∈ Rd | dist(a, x) = dist(b, x)} is a (d−1)-dimensional hyperplane containing
all points having equal distance to a and to b. It divides the space into two half-spaces
Hab(a) containing a and Hab(b) containing b. If a rectangle R lies completely within one
of these half-spaces, then R is closer to the respective point in the same half-space. In
the example of Figure 5.2, R is in the half-space Hab(a), thus all r ∈ R are closer to a
than to b. A Voronoi hyperplane between a point and a rectangle has been proposed in
[64]. For the general case of two rectangles, we need to construct the Voronoi plane HAB
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Figure 5.3: Voronoi-based decision criterion on MBRs

between two rectangles A and B which is the intersection of all Voronoi half-spaces between
all pairs of points of the corresponding rectangles and can be defined as HAB = {x ∈
Rd |MinDist(x,B) = MaxDist(x,A)}, see [64]. An example of a Voronoi plane between
two rectangles A and B is HAB, depicted in Figure 5.3. This Voronoi plane is piecewise
linear and curvilinear (again, see [64] for more details on the Voronoi plane between two
rectangles). If a rectangle lies completely within the half-space HAB(A), then R is definitely
closer to A. However, to determine the half-space containing all points that are definitely
closer to B than to A, HAB(B) cannot be used and the Voronoi plane HBA has to be
computed. The reason is that unlike in the case of points, there exist points p for which
neither (A ≺R p) nor Dom(B ≺R p) holds. Intuitively, the Voronoi-based domination
decision criterion states that A dominates B w.r.t. R if R is completely contained in the
half-space HAB(A).

Definition 25 (Voronoi-based criterion). Let A, B, R ∈ Rd be rectangles. The Voronoi-
based decision criterion is defined as

DDCVoronoi(A,B,R)⇔ R ⊆ HAB(A).

Lemma 9. The Voronoi-based decision criterion is correct and complete, i.e.,

DDCVoronoi(A,B,R)⇔ (A ≺R B).

Proof. By definition of HAB the statement holds:
DDCVoronoi(A,B,R) ⇔ R ⊆ HAB(A) ⇔ ∀a ∈ A, b ∈ B: R ⊆ Hab(a). ⇔ ∀a ∈ A, ∀b ∈
B, ∀r ∈ R : dist(a, r) < dist(b, r) ⇔ (A ≺R B).
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Table 5.1: Overview decision criteria
Criterion Correct Complete Efficient
DDCMinMax YES NO YES: O(d)
DDCVoronoi YES YES NO: O(2d)
DDCCorner YES YES NO: O(2d)
DDCOptimal YES YES YES: O(d)

Computing any Voronoi plane between any a ∈ A and b ∈ B to obtain the curvi-
linear plane as depicted in Figure 5.3 is rather complex. To the best of our knowledge,
there exists no efficient solution for this problem. However, it is clear that any such al-
gorithm must scale exponentially in the dimensions, since even for the simple case where
b is a point, the number of different pieces of the plane is equal to the number of corners
of A which is in O(2d) (cf. [64] for a discussion on the computation of such Voronoi planes).

5.3.3 Corner-based decision criterion.

The corner-based decision has recently been proposed as a pruning criterion for RkNN
search of spatial objects in R2 [64]. This approach exploits the property that the side
HAB(A) of HAB that is responsible for pruning is convex for RkNN queries. Thus, if a
rectangle R is not fully contained in HAB(A) (i.e. R cannot be pruned), then at least one
corner of R must be contained in HAB(B). Therefore, it is sufficient to consider only cor-
ners of MBRs. The Min-/MaxDist decision criterion, that is correct and complete in the
case where only points are considered, is then applied to the corners. For more details on
this decision criterion, refer to [64]. Since this criterion requires to consider all 2d corners
of MBRs, the complexity must scale in O(2d).

5.3.4 Summary.

Table 5.1 summarizes the discussion of existing decision criteria for the domination prob-
lem. It can be observed, that none of these approaches meets all the desired properties, i.e.
either is not complete or suffers from exponential runtime. The fourth approach in Table
5.1 called “Optimal” is our new decision criterion which is described in the next section.



5.4 A Correct, Complete, and Linear-Time Domination Decision Criterion 81

5.4 A Correct, Complete, and Linear-Time Domina-

tion Decision Criterion

We will derive a new decision criterion that is correct, complete, and can be computed
in O(d) time. Our novel domination decision criterion can be derived from the original
definition of domination in Definition 23 by applying the following six equivalences.

Equivalence 1.
∀a ∈ A, b ∈ B, r ∈ R : dist(a, r) < dist(b, r)⇔

∀r ∈ R : MaxDist(A, r) < MinDist(B, r)

Proof.
(1) “⇒”
If the left-hand side holds for each r ∈ R then it also holds for that a ∈ A and b ∈ B that
maximize and minimize the distance to r, respectively. These points a ∈ A and b ∈ B
obviously determine the values of MaxDist and MinDist, respectively.

(2) “⇐”
If the right-hand side holds for each r ∈ R as well as for that a ∈ A and b ∈ B that
maximizes and minimizes the distance to r, i.e. determines the value of MaxDist and
MinDist, respectively, then it also holds for any a ∈ A and any b ∈ B.

Equivalence 2.

∀r ∈ R : MaxDist(A, r) < MinDist(B, r)⇔

∀r ∈ R : p

√√√√ d∑
i=1

MaxDist(Ai, ri)
p < p

√√√√ d∑
i=1

MinDist(Bi, ri)
p

Proof. Straightforward substitution of the definition of MaxDist and MinDist for Lp norms
as given in Section 24.

Equivalence 3.

∀r ∈ R : p

√√√√ d∑
i=1

MaxDist(Ai, ri)
p < p

√√√√ d∑
i=1

MinDist(Bi, ri)
p ⇔

∀r ∈ R :
d∑
i=1

(MaxDist(Ai, ri)
p −MinDist(Bi, ri)

p) < 0
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Proof.

∀r ∈ R : p

√√√√ d∑
i=1

MaxDist(Ai, ri)
p < p

√√√√ d∑
i=1

MinDist(Bi, ri)
p ⇔

∀r ∈ R :
d∑
i=1

MaxDist(Ai, ri)
p <

d∑
i=1

MinDist(Bi, ri)
p ⇔

∀r ∈ R :
d∑
i=1

MaxDist(Ai, ri)
p −

d∑
i=1

MinDist(Bi, ri)
p < 0⇔

∀r ∈ R :
d∑
i=1

(MaxDist(Ai, ri)
p −MinDist(Bi, ri)

p) < 0

Equivalence 4.

∀r ∈ R :
d∑
i=1

(MaxDist(Ai, ri)
p −MinDist(Bi, ri)

p) < 0⇔

max
r∈R

(
d∑
i=1

(MaxDist(Ai, ri)
p −MinDist(Bi, ri)

p)) < 0

Proof. Instead of considering all possible r ∈ R, it is sufficient to consider only that point
r′ ∈ R which maximizes the left-hand side of the inequality. If the inequality holds for this
point r′, then it obviously holds for all possible r ∈ R and vice versa.

The next equivalence requires the following lemma:

Lemma 10. Let F : Rd → R be a function that is summed by treating each dimension
independently, i.e. there exists a function f : R→ R such that

F (o) =
d∑
i=1

f(oi)

Also, let A ⊆ Rd be a rectangle and

σ := argmaxa∈A(F (a))

be the object in A that maximizes F . Then, the following holds:

max
a∈A

(
d∑
i=1

f(ai)) =
d∑
i=1

max
ai∈Ai

(f(ai))
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Proof.

max
a∈A

(
d∑
i=1

f(ai))
Def F (a)

= max
a∈A

(F (a))
Def σ
= F (σ)

Def F (a)
=

d∑
i=1

f(σi)
Def σ
=

d∑
i=1

max
ai∈Ai

(f(ai))

Equivalence 5.

max
r∈R

(
d∑
i=1

MaxDist(Ai, ri)
p −MinDist(Bi, ri)

p) < 0⇔

d∑
i=1

max
ri∈Ri

(MaxDist(Ai, ri)
p −MinDist(Bi, ri)

p) < 0

Proof. This follows from Lemma 10 by substituting

F (r) = MaxDist(A, r)−MinDist(B, r)

The final equivalence (equivalence 6) makes the equation computable. It is based on
the assumption that for finding the maximum ri in dimension i, it is sufficient to consider
the boundary points (Rmin

i and Rmax
i ) of the interval Ri. This assumption is proven in the

following two lemmas.

Lemma 11. Let A and B be intervals. The function f : R → R defined as f(x) =
MaxDist(A, x)p −MinDist(B, x)p has no local maximum.

A
B

A.mean B.min B.max

(a) A.mean ≤ B.min

A
B

A.meanB.min B.max

(b) B.min < A.mean < B.max

A
B

A.meanB.min B.max

(c) A.mean ≥ B.min

Figure 5.4: Illustration of Lemma 11.

Proof. By definition (c.f. Equations 5.2 and 5.3), the value of MaxDist(A, x) only depends
on A.mean while the value of MinDist(B, x) only depends on B.min and B.max. Since
A.min ≥ A.max, this leads to the three possible cases depicted in Figure 5.4. In the
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following, we will show for each of the cases that there may not exist any point for which
it holds that f(x) is increasing to the left of x and decreasing to the right of x.

Case 1: A.mean ≤ B.min (Figure 5.4(a)):

• For the interval ]−∞, A.mean] Equations 5.2 and 5.3 yield:
f(x) = dist(x,A.max)p − dist(x,B.min)p =
(|A.max− x|)p − (|B.min− x|)p.
This is constant if p = 1 or if A.max = B.min since both |A.max−x| and |B.min−x|
are decreasing. If p > 1, this term can be either monotonically increasing or
monotonically decreasing, depending on whether A.max is greater than B.min
or not.

• For the interval ]A.mean,B.min] Equations 5.2 and 5.3 yield:
f(x) = dist(x,A.min)p − dist(x,B.min)p, where dist(x,A.min) is increasing and
dist(x,B.min) is decreasing, thus f(x) is monotonically increasing for any p.

• For the interval ]B.min,B.max] Equations 5.2 and 5.3 yield:
f(x) = dist(x,A.min)p − 0.
This term is monotonically increasing since dist(x,A.min) is increasing.

• For the interval ]B.max,∞[ Equations 5.2 and 5.3 yield:
f(x) = dist(x,A.min)p − dist(x,B.max)p = (|A.min− x|)p − (|B.max− x|)p.
This is constant for p = 1 since both |A.min−x| and |B.max−x| are increasing. Since
A.min < A.mean < B.min < B.max, above term is monotonically increasing
for p > 1.

Putting the monotonic pieces together, it is clear that f(x) may have one local minimum
at A.mean, but definitely has no local maximum.

Case 2: B.min < A.mean < B.max (Figure 5.4(b)):

• For the interval ]−∞, B.min] Equations 5.2 and 5.3 yield:
f(x) = dist(x,A.max)p − dist(x,B.min)p =
(|A.max−x|)p−(|B.min−x|)p. This term is constant for p = 1 since both |A.max−x|
and |B.min− x| are decreasing. Since |A.max− x| ≥ |A.mean− x| > |B.min− x|,
above term is monotonically decreasing for p > 1

• For the interval ]B.min,A.mean] Equations 5.2 and 5.3 yield:
f(x) = dist(x,A.max)p − 0. This is monotonically decreasing for any p ≥ 1.

• For the interval ]A.mean,B.max] Equations 5.2 and 5.3 yield:
f(x) = dist(x,A.min)p − 0. This is monotonically increasing for any p ≥ 1.

• For the interval ]B.max,∞[ Equations 5.2 and 5.3 yield:
f(x) = dist(x,A.min)p − dist(x,B.max)p =
(|A.min− x|)p − (|B.max− x|)p.. This is constant for p = 1 since both |A.min− x|
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and |B.max− x| are increasing. Since |A.min− x| ≤ |A.mean− x| < |B.min− x|,
above term is monotonically increasing for p > 1.

Thus, f(x) has one local minimum at A.mean, but definitely no local maximum.

Case 3: A.mean ≥ B.max (Figure 5.4(c)): This case is analogous to the first case.

Lemma 12. Let f : R→ R be a function that has no local maximum and I = [Imin, Imax] ⊂
R be an arbitrary finite interval. The value that maximizes f in the interval I must be either
Imin or Imax, i.e.

argmax
i∈I

(f(i)) ∈ {Imin, Imax}

Proof. Let p ∈ [Istart, Iend] be the value that maximizes f in I, i.e. p = argmaxi∈I(f(a)).
Then, ∀i ∈ I : f(i) ≤ f(p), in particular, f(Imin) ≤ f(p) and f(Imax) ≤ f(p). Note that
f(Imin) < p and f(Imax) < p cannot both be true, because this would be a contradiction to
the assumption that f(x) has no local maximum. Thus it must either hold that f(Istart) =
f(p) or f(Iend) = f(p), i.e. Imin = argmaxi∈I(f(x)) or Imax = argmaxi∈I(f(x)).

Now we can derive the final equivalence.

Equivalence 6.

d∑
i=1

max
ri∈Ri

(MaxDist(Ai, ri)
p −MinDist(Bi, ri)

p) < 0⇔

d∑
i=1

max
ri∈{Rmini ,Rmaxi }

(MaxDist(Ai, ri)
p −MinDist(Bi, ri)

p) < 0

Proof. Follows from Lemma 11 and Lemma 12.

Definition 26 (optimal decision criterion). Our novel optimal domination decision crite-
rion is defined as

DDCOptimal(A,B,R) ⇔

d∑
i=1

max
ri∈{Rmini ,Rmaxi }

(MaxDist(Ai, ri)
p −MinDist(Bi, ri)

p) < 0

Lemma 13. The novel optimal domination decision criterion is correct and complete.

Proof. Correctness and completeness follow directly from equivalences 1 to 6.

Obviously, the novel optimal domination decision criterion can be computed in O(d)
time and, thus, satisfies all three desired properties described in Section 5.2.
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Figure 5.5: Partial Domination example for an RNN-query

5.5 Domination Count Computing

In most applications, testing the single domination relation of only two rectangles (w.r.t.
a reference rectangle) is too basic. Rather, in the context of a set of rectangles O ⊆ Rd,
the number of rectangles Ai ∈ O that dominate a given rectangle B w.r.t. R (referred
to as domination count) is required. For example, a kNN query algorithm can use the
information that at least k rectangles of O dominate rectangle B ∈ O w.r.t. a query
rectangle R to identify B as true drop that can be pruned. The number of rectangles that
dominate a given rectangle can analogously be used e.g. for RkNN queries and inverse
ranking queries.

Definition 27 (domination count). Let B,R ⊆ Rd be rectangles and O be a set of rectan-
gles. The domination count of B w.r.t. R is defined by:

DC(O, B,R) = min
r∈R
{|Ai ∈ O :MaxDist(Ai, r)<MinDist(B, r)|}

Intuitively, if the domination count of B w.r.t. R is k, then for each point r ∈ R there
exist at least k rectangles Ai ∈ O which are closer to r than B.

Let us note that the domination count of B w.r.t. R cannot be computed by simply
counting the number of rectangles that dominate B w.r.t. R by means of Definition 23
because this does not involve groups of rectangles that dominate R collectively, but not
individually. An example of such a group of rectangles is shown in Figure 5.5. Neither
rectangle A1 nor rectangle A2 dominates B w.r.t. R. However, B is dominated partially
by A1 and partially by A2, respectively, i.e. it is dominated by A1 and A2 w.r.t. specific
subregions of R.

However, when considering any point r ∈ R, rectangle B is dominated by at least one
of the two rectangles A1, A2 w.r.t. r and, thus, B is dominated by the group A = {A1, A2}
according to Definition 23.

In general, the problem of finding the subregion with the minimal domination count is
hard. First, the computation of the intersection of a half-space and a hyper-polyhedron
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becomes increasingly complex [180] for increasing dimensionality. Secondly, the number of
subregions grows very fast. To give a brief intuition of the possible number of subregions
generated by a total of n objects, consider the case of axis parallel pruning regions. If
n ≤ d, then each object may split R in a different dimension, resulting in a total of 2n

subregions. For n > d, balanced splitting of dimensions results in at least (1 + bn
d
cd)

subregions. If d is assumed to be constant, then (1 + bn
d
cd) ∈ O(nd). Thirdly, the resulting

subregions can be complex d-dimensional polygons, particularly the subregions could have
not only straight sides but also parabolic sides which makes computations involving these
polygons very complex.

Though we are not able to compute the exact domination count of a given rectangle
efficiently, we can try to find efficient solutions for approximating the domination count
of a rectangle. In principal, in order to determine the domination count of B w.r.t. R we
need to take the two constituting types of dominations into account: The first part is to
count all objects A for which (A ≺R B) holds. This number is called basic domination
count. This can be done using e.g. DDCOptimal. The second and more challenging part is
to detect all minimal groups A that dominate B as a group but do not contain an element
that already dominates B separately, i.e. each Ai ∈ A only partially dominate B. The
consideration of this type of domination requires the concept of partial domination which
will be introduced later on.

A simple lower bound of the domination count can be achieved by computing the basic
domination count. Intuitively, the basic domination count simply counts the number of
rectangles that (completely) dominate the rectangle B w.r.t. rectangle R, i.e. neglects
groups of rectangles that only partially dominate B separately but completely dominate
B as a group.

Definition 28 (Basic Domination Count). Let O = {A1, ..., AN} be a set of d-dimensional
rectangles and let B,R ⊆ Rd be two rectangles. The basic domination count of B w.r.t. R
is the number of objects in O that dominate B w.r.t. R, formally:

DCbasic(O, B,R) = |{Ai ∈ O | (Ai ≺R B)}|.

Using our novel domination decision criterion DDCOptimal, the basic domination count
DCbasic can be computed in O(N · d). This is worth noting since existing decision criteria
only allow either to compute the exact DCbasic value in exponential time or to compute
an approximation of the DCbasic value in linear time. In the latter case, we would obtain
a lower bound of DCbasic which makes the lower bounding estimation of the domination
count even more loose.

As discussed above, the domination count also takes into account all sets of rectangles
that increase the domination count of a rectangle as a group and that do not contain any
element that does so separately. Therefore, we need the concept of partial domination. In
the remainder of this section, we will first formalize the concept of partial domination. In
particular we will discuss how our novel domination decision criterion DDCOptimal can be
used for (i) detecting partial domination and (ii) deriving a conservative approximation of
the domination count.
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5.5.1 Partial Domination

The concept of partial domination (cf. Figure 5.5) was first introduced in [64] (in this work,
we used the term “partial pruning”) for boosting RkNN queries in the 2D space. It can
be applied to any other similarity query type analogously.

Definition 29 (partial domination). Let A,B,R ⊆ Rd be rectangles. A dominates B
partially w.r.t. R, denoted by PDom(A,B,R) if A dominates B for some, but not all
r ∈ R, i.e.

PDom(A,B,R) ⇔

¬(∀a ∈ A, b ∈ B, r ∈ R : dist(b, r) > dist(a, r)) (5.4)∧
∃r ∈ R : ∀a ∈ A, b ∈ B : dist(b, r) > dist(a, r) (5.5)

Inequality 5.4 holds if A does not dominate B w.r.t. all points r ∈ R. Note that
Inequality 5.4 is simply the negation of (A ≺R B) and can also be computed in O(d) using
our novel decision criterion DCCOptimal. Inequality 5.5 is only satisfied if there exists an
r ∈ R for which B is dominated by A.

Obviously, the sets of objects that dominate B as a group can only contain rectangles
Ai that partially dominate B, i.e. for which PDom(Ai, B,R) holds. In other words, for the
computation of the second part of the domination count of a rectangle B, we could use the
detection of partial domination as a first step because only those rectangles Ai for which
PDom(Ai, B,R) holds could be the elements of those set of rectangles that dominate B
as a group.

Partial domination can efficiently be detected by applying the following six equivalences
analogously to Section 5.4. We start with above Inequality 5.5.

Equivalence 7.
∃r ∈ R : ∀a ∈ A, b ∈ B : dist(b, r) > dist(a, r)

⇔ ∃r ∈ R : MaxDist(A, r) < MinDist(B, r)

Proof. This proof is analogous to the proof of Equivalence 1, i.e. it exploits that the
DDCMinMax, decision criterion is optimal in the case where R is a point.

Equivalence 8.

∃r ∈ R : MaxDist(A, r) < MinDist(B, r)⇔

∃r ∈ R : p

√√√√ d∑
i=1

MaxDist(Ai, ri)
p < p

√√√√ d∑
i=1

MinDist(Bi, ri)
p

Proof. Follows directly from the definition of MaxDist and MinDist for Lp norms.
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Equivalence 9.

∃r ∈ R : p

√√√√ d∑
i=1

MaxDist(Ai, ri)
p < p

√√√√ d∑
i=1

MinDist(Bi, ri)
p ⇔

∃r ∈ R :
d∑
i=1

MaxDist(Ai, ri)
p −MinDist(Bi, ri)

p < 0

Proof.

∃r ∈ R : p

√√√√ d∑
i=1

MaxDist(Ai, ri)
p < p

√√√√ d∑
i=1

MinDist(Bi, ri)
p ⇔

∃r ∈ R :
d∑
i=1

MaxDist(Ai, ri)
p <

d∑
i=1

MinDist(Bi, ri)
p ⇔

∃r ∈ R :
d∑
i=1

MaxDist(Ai, ri)
p −

d∑
i=1

MinDist(Bi, ri)
p < 0⇔

∃r ∈ R :
d∑
i=1

MaxDist(Ai, ri)
p −MinDist(Bi, ri)

p < 0

Equivalence 10.

∃r ∈ R :
d∑
i=1

MaxDist(Ai, ri)
p −MinDist(Bi, ri)

p < 0⇔

MINr∈R(
d∑
i=1

MaxDist(Ai, ri)
p −MinDist(Bi, ri)

p) < 0

Proof. The rationale for equivalence 10 is that if there exists an r ∈ R for which the left-
hand side returns less than 0, then this also holds for the r which minimizes the term on
the right-hand side and vice versa.

Equivalence 11.

min
r∈R

(
d∑
i=1

MaxDist(Ai, ri)
p −MinDist(Bi, ri)

p) < 0⇔

d∑
i=1

min
ri∈Ri

(MaxDist(Ai, ri)
p −MinDist(Bi, ri)

p) < 0
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Proof. This proof is analogous to the proof of Equation 5 using minimization instead of
maximization.

Analogously to Equivalence 6, the last equivalence below makes the equation com-
putable. Again, we need two lemmas.

Lemma 14. Let D be a one dimensional vector database using Lp-Norm. Let A and B be
intervals. The function f : R→ R:

f(x) = maxDist(A, x)p −minDist(B, x)p

may have a local minimum only at A.mean.

Proof. This proof is contained in the formal proof of lemma 11.

Lemma 15. Let f : R → R be a function that has at most one local minimum at x. For
any finite interval I ⊂ R = [Istart, Iend] the following holds:

argmin
i∈I

(f(i)) ∈ {Istart, Iend, x}

That is, the point of the interval I that minimizes f(x) must be either the lower or the
upper bound of I, or the local minimum x.

Proof. The proof is similar to the proof of Lemma 12 and thus omitted here.

In consideration of the above lemmas we now derive the final equivalence:

Equivalence 12.

d∑
i=1

min
ri∈Ri

(MaxDist(Ai, ri)
p −MinDist(Bi, ri)

p) < 0⇔

d∑
i=1

minri(MaxDist(Ai, ri)
p −MinDist(Bi, ri)

p) < 0, where ri ∈ {Rmin
i , Rmax

i , Amidi }

Proof. Directly follows from Lemma 14 and Lemma 15.

Thus, using the formula in Equivalence 12 we can efficiently detect all partial domi-
nations. However, as indicated above, this is only the first step towards computing the
domination count. In fact, we need to determine that subregion of the reference rect-
angle R, for which the domination count is minimal. Since we cannot test all possible
points r ∈ R (see also the discussion above), we propose three heuristics to conservatively
approximate the domination count of a rectangle.



5.5 Domination Count Computing 91
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HAB

B R

Figure 5.6: Partial domination using grid partitioning

5.5.2 Domination Count Estimation

Using the techniques proposed in Sections 5.4 and 5.5.1 we can check if an MBR A dom-
inates B completely or partially w.r.t. R. These tests are generally applicable as long as
the involved objects are MBRs. For calculating the domination count of B it is therefore
possible to split R into smaller MBRs and then calculate the domination count for each
cell individually. The following three heuristics use different approaches for splitting R to
estimate the domination count.

Domination Count Estimation based on grid partitioning

A straight forward approach for splitting R is performed by using a grid with a fixed
number m of partitions in each dimension. Considering the example in Figure 5.6, we can
(using the decision criteria for domination and partial domination) assert that A dominates
B w.r.t. all dark gray cells and partially dominates B w.r.t. all light gray cells of R. For
the rest of the cells (white) A does not dominate B. Using this grid partitioning, the
domination count (DC(O, B,R)) can be estimated by the minimum domination count of
all cells ci ∈ R, that is:

DCgrid(O, B,R) = mini(DCbasic(O, B, ci))

This estimation is valid as we know that B is dominated by at least this amount of
Ai ⊂ O w.r.t. each cell ci ∈ R.

An example for the grid based partial pruning is given in Figure 5.7. Here an MBR
R is partitioned into 16 cells. In addition two Voronoi hyperplanes HA1B and HA2B are
shown. The objects O = {A1, A2} and B generating the hyperplanes are ommited here.
For the area on the right-hand side of HA1B, object B is dominated by object A1 and for
the left-hand side of HA2B, B is dominated by A2. It is clear that neither A1 nor A2 (fully-)
dominate B with respect to the whole MBR R. For each cell the conservative domination
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1 1 1 1HA1B HA2B

1 2 1 10

1 2 2 10

1 1 2 10

1 1 2 21

Figure 5.7: Domination Count estimation using grid partitioning.

count DCbasic(O, B, ci) is shown. With respect to dark cells, A1 and A2 dominate B and
thus the cells have a value of 2. With respect to light cells, only one of the two objects
dominates B, therefore they get marked with a value of 1. By taking the minimum value
of all cells ci ∈ R we obtain DCgrid(O, B,R) = 1. The advantage of this approach is, that
it returns a very accurate estimation of the domination count while avoiding expensive
materialization of the Voronoi hyperplanes. The accuracy can be boosted by increasing
the number of splits per dimension. In return increasing m will highly increase the runtime
of the algorithm, as the number of cells ci ∈ R is md. This implies that this approach is
not applicable for high dimensions. For each cell ci, DCbasic(O, B, ci) can be computed in
a single scan of the objects for which PDom(Ai, B,R) holds using the DDCOptimal (c.f.
Definition 26). Thus the total time complexity is in O(d · |O| ·md).

Domination Count Estimation based on slices

In order to reduce the runtime of the domination count estimation, we propose a second
algorithm, which is not based on a grid partitioning. Instead of cells, this approach con-
siders slices. Therefore an MBR R is split into m slices sdimi in each of the d-dimensions
(1 ≤ dim ≤ d). This results in d·m overlapping slices. The domination count DC(O, B,R)
can then be approximated by computing, for each dimension, the minimal domination
count of all slices and using the result of the dimension maximizing this estimation.

DCslice(O, B,R) = maxdim(mini(DCBasic(O, B, sdimi )))

For example, the domination count DC(O, B, si) for each slice si (i.e. each row and
each column) and each cell ci is shown in Figure 5.7 for a 2 dimensional MBR R. The
minimal domination count considering all rows is 0, while the minimal domination count
w.r.t. all columns is 1. Thus DCslice(O, B, si) = 1 in this example. The complexity of
this algorithm is in O(m · d). However, this approach yields much worse results than the
grid-based approach for an identical m parameter. Details can be found in our experiments
(Section 5.7).
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Figure 5.8: Example for computing DCbisect

Domination Count Estimation based on bisections

We next propose a bisection based approach that yields much better efficacy, while still
being linear in d. This approach works iteratively. During each iteration, one section of R
is chosen to be split evenly (mean split) in one dimension. After m splits, this results in
m+ 1 sections s0 ∪ s1 ∪ . . . ∪ sm = R and it holds that:

DCbisect(O, B,R) = mini(DCbasic(O, B, si))

The challenge here is to wisely choose the split section of R and the dimension to split in
each iteration.

We propose to split the section s ⊂ R with the lowest domination count estimation.
This decision is optimal, because the estimation of DC(O, B,R) is determined by the
section which results in the lowest domination count. Thus, in order to increase the
domination count approximation, s must be split. If the decision for s is ambiguous, then
one of the candidates of s is chosen arbitrarily. To determine the split axis, the heuristic
tests each dimension, and greedily uses the dimension that yields the highest domination
count DCbisect(O, B,R) considering the two resulting bisections of s. In the case of ties the
axis is chosen which maximizes the sum

∑m
i=0DCbasic(O, B, si). An example is shown in

Figure 5.8. Considering Figure 5.8(a) it is clear that none of the two objects A1, A2 ∈ O
that are responsible for the Voronoi hyperplanes HA1B and HA2B dominates B w.r.t. R.
Beginning with the y-axis as split axis would result in two equi-sized MBRs both of which
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result in a domination count DCbisect(O, B,R) of 0 and therefore the approximation of
DC(O, B,R) does not increase. Choosing the x-axis as split axis would result in two equi-
sized MBRs shown in Figure 5.8(b) yielding the same domination count approximation
but a higher sum (

∑m
i=0 DCbasic(O, B, si) = 1). In the next iteration, the right MBR is

chosen to be split, since it is responsible for the lowest domination count approximation.
Both possible split axes are equal according to our heuristic. In the example, the y-axis is
chosen arbitrarily (c.f. Figure 5.8(c)). The third (see Figure 5.8(d)) split of the lower-right
MBR increases DCbisect(O, B,R) to 1.

The bisection-based Domination Count Estimation algorithm uses m iterations. In each
iteration i there exist exactly i sections of which the section with the lowest conservative
domination count has to be found. This yields a complexity of O(m2) but can be reduced
to O(m · log(m))) by using a Priority Queue to find the section with the lowest conservative
domination count. For the greedy heuristic, in each iteration, each dimension has to be
tested to determine the best split axis in O(m · d). Thus we get a total complexity of
O(m · log(m) +m · d) = O(m ·max(log(m), d)), where m is the number of iterations.

5.6 Boosting Similarity Queries

In this section, we will show how the concepts of domination and domination count can be
used to boost the pruning power of similarity search algorithms.
Nearest-Neighbor Search. For a kNN query with query object Q, any object O ∈ DB
can be pruned if DC(DB, O,Q) ≥ k. Note, that for a kNN query, the query object
corresponds to the reference object R in Definition 26. Thus, DDCOptimal has an advantage
over DDCMinMax in the general case but is equivalent in the special case where Q is a
point, because then DDCMinMax is optimal. However, as discussed above, there are many
applications in which the query object is a rectangle.
Reverse Nearest Neighbor Search. For a general RkNN query with query object Q,
any object O ∈ DB can be certainly pruned if DC(DB, Q,O) ≥ k. For RkNN queries, the
query object corresponds to the object B in Definition 26. Thus DDCOptimal is superior
to DDCMinMax also in the special case where the query object is given as a point.
True hit detection. Our decision criterion DDCOptimal can be used to prune potential
result candidates by being able to decide that they must not be part of the result set. A
problem very similar to pruning is the detection of true hits, i.e. to quickly decide that a
potential result candidate must be part of the result set. For example, in the case of kNN
queries, an object B is a true hit, if there may be at most k objects that can be closer to
R than B. In other words, B is a true hit, if it dominates at least |DB|− k objects. Thus,
for a kNN query, an object B is a true hit if |{A ∈ DB|(B ≺Q A)}| > |DB| − k. For a
RkNN query, an object B is a true hit if |{A ∈ DB|(Q ≺B A)}| ≥ |DB| − k. The concept
of partial domination can be applied to true hit detection as well.
Inverse Similarity Ranking. The problem of inverse ranking is to determine for a given
query object Q the number of objects that are closer to a given reference object R. Such
queries are useful e.g. to determine the financial standing of bank customers in relation to
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Figure 5.9: Refinement areas for fixed R and A

existing customers. In this scenario, the attributes of customers are often uncertain (e.g.
income of 40k−50k) and thus modeled by uncertain regions, i.e. rectangles. Lower and
upper bounds for the rank of Q are DC(DB, Q,R)+1 and |DB|−|{A ∈ DB|(Q ≺R A)}|+1,
respectively.

5.7 Experimental Evaluation

This section evaluates the effectiveness and efficiency of our novel domination decision
criterion in comparison to the prevalent DDCMinMax decision criterion. After that we
evaluate the performance of our domination-count-detection approach which is based on
the concept of partial domination. Finally, we exemplarily will show how our new methods
influences the performance of existing similarity search methods designed for kNN and
RkNN queries. For all experiments the underlying distance function is the euclidian norm.

5.7.1 Single Object Domination

We first evaluate the effectiveness gain of DDCOptimal compared to DDCMinMax in con-
sideration of the decision power. In order to measure the decision power, we take for a
given pair of rectangles R and A the region into account containing all points that can-
not be detected to be dominated by A w.r.t. R. In the reminder we call this region
refinement area, since all objects intersecting this area might be refined in order to de-
tect the domination relation. It should be clear that the smaller this area, the higher
the corresponding domination power. Figure 5.9 exemplarily shows the refinement areas
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for the 2-dimensional MBRs A and R w.r.t. both criteria DDCMinMax and DDCOptimal,
respectively. In this example, object B is detected to be dominated by A only if we apply
DDCOptimal instead of DDCMinMax. The refinement areas depend on several conditions
such as position, shape, distance and extension of the MBRs specifying the refinement area
as well as the dimensionality of the space. For our experiment evaluating the domination
power, pairs of MBRs R and A are positioned in [0, 1]d with a fixed MinDist of 0.5 and
equal distances in each dimension. The length of each side of the two MBRs was scaled
from 0.1 to 0.5 and dimension screened from 1 to 10. The gain of the domination power
is measured by the ratio of the volumes of the refinement area w.r.t. DDCOptimal and the
refinement area w.r.t. DDCMinMax by means of Monte-Carlo-Sampling. The results in
Figure 5.10 show that DDCOptimal leads to a much higher decision power. The effect be-
comes more evident as the number of dimensions and the extension of the MBRs increase.
As expected, increasing the extension of the MBRs leads to diminishing completeness of
the DDCMinMax decision criterion. It is notable, that the DDCMinMax criterion suffers
considerably from an increasing dimensionality. Note that we used MBRs of equal side
length as we observed that this setting favors the decisions power based on DDCMinMax

in order to make a fair comparison. In fact, the advantage of the gain of the decision power
based on DDCOptimal will increase even further for non-quadratic rectangles.

In addition to the above experiment which is more from a theoretical point of view,
we compared the number of domination relations detected by applying DDCOptimal and
DDCMinMax . Therefore we randomly generated one million triples of rectangles (A, B,
R) with a fixed extent (i.e. the sum of side lengths) in the [0, 1]2 space. For each triple we
tested if the decision criterion is able to determine whether (A ≺R B) holds. Finally we ag-
gregated the number of positive decisions for different extents of the MBRs. The results are
illustrated in Figure 5.11(a). Note that an extent of zero yields points instead of rectangles
such that both criteria perform equal. However, we can observe that with increasing extent,
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Figure 5.11: Comparison of MinMax- and optimal-criterion on synthetic data

the percentage of positive decisions of DDCOptimal compared to DDCMinMax increases
considerably. The gain of the decision power based on DDCOptimal over DDCMinMax is
illustrated in Figure 5.11(b) showing the factor of positive domination decisions using
DDCOptimal in comparison of that using DDCMinMax. We varied the dimensionality of
the rectangle space up to 5 dimensions. Here we can observe that the gain increases with
increasing extent. In contrast, when increasing the dimensionality, the gain of the decision
power decreases. The reason is that in this setting, the extent of the MBRs is fixed for
all dimensionality settings such that the average side length per dimension decreases and
MBRs converge to points for high dimensionality.

5.7.2 Domination Count Estimation

The next experiments evaluate the accuracy of the domination count estimation of a rectan-
gle B w.r.t. a rectangle R for the approaches proposed in Section 5.5.2: Basic Domination
Count Estimation (DCbasic), grid partitioning (DCgrid), slice partitioning (DCslice) and
bisection based partitioning (DCbisect). For these experiments, we generated one thousand
three-dimensional MBRs with random positions. One MBR R was positioned in the center
of the data space. Then we computed the conservative domination count w.r.t. R for each
MBR using the four approaches mentioned above. We performed several runs for different
parametric settings and averaged the results. Figure 5.12 shows the performance of all four
approaches in terms of estimated domination count. First, we want to get a grasp of the
relationship between accuracy of the domination count estimation and the cost required
for the domination count computation. Therefore, the cost is measured in terms of num-
ber of calls of DDCOptimal. It should be clear that when increasing the number of MBR
partitions, and thus the required number of DDCOptimal calls, the estimation accuracy of
all approaches improves, except for the basic approach since it does not use any parti-
tioning. Figure 5.12(a) shows the results for MBRs with an extent of 0.3. It can be seen
that all approaches show a significant improvement compared to DCbasic when increasing



98 5. Optimal Spatial Pruning

70000

72000

nt

68000

ti
on

 c
ou

n

64000

66000

BASIC

do
m
in
at

62000

64000 BASIC
GRID
SLICEre

ga
te
d 

60000

SLICE
BISECTag

g

56000

58000

8 27 64 125 216 343 512

decisions per MBR

(a) Accuracy vs. efficiency

0,8

1

1,2

1,4

GRID

SLICE

BISECT

n 
fa
ct
or

0

0,2

0,4

0,6

0,1 0,2 0,3 0,4 0,5 0,6

ga
i

extent

(b) Performance w.r.t. MBR size

Figure 5.12: Heuristics for partial domination

the number of allowed DDCOptimal calls. In particular, the accuracy increases very fast
at the beginning of the partitioning process but slows down later on. We can also observe
that DCbisect significantly outperforms the other approaches when allowing more than 27
DDCOptimal calls per MBR, while DCgrid performs best for 8 or less DDCOptimal calls.

In the next experiment, as shown in Figure 5.12(b), we fixed the number DDCOptimal
calls per MBR to 64 and varied their extent. We measured the gain of the domination
count over DCbasic. Here, again, DCbisect outperforms the other approaches in particular
for larger MBR sizes. Note that for a given application, the optimal number of partitions
depends on the cost for evaluating a candidate object. The higher that cost, the more
partitions can be used in order to reduce the total runtime.

5.7.3 Impact on Standard Spatial Query Processing Methods

In our last experiments, we evaluate the impact of our approaches on the performance
of standard query processing methods. Here, we refer to Section 5.6, describing how our
methods can be plugged into state-of-the-art query processing methods. In particular, we
exemplarily consider the most prominent query methods, the k-nearest neighbor (k-NN)
search and the reverse k-nearest neighbor (Rk-NN) search. For this evaluation we use one
synthetic dataset, containing 100k uniformly distributed 5D points, and two real world
datasets TAC [210] consisting of 705099 2D points and Forest [86] containing 581012 10D
points.

First, we evaluate the impact of our two domination-count estimation approaches
DCbasic and DCbisect on a reverse k-nearest neighbor search method. As a baseline, we
use the algorithm proposed in [4] (in the following referred to AKKRZ ) for Rk-NN search
on the Euclidean space using an R∗-Tree1. The AKKRZ algorithm originally uses the Min-
/MaxDist decision criterion to conservatively prune candidates. We evaluate the impact
by comparing the query performance of the original AKKRZ algorithm with the version

1We use the R∗-Tree provided in the Elki Framework [3]
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Figure 5.13: AKKRZ using different decision criteria. Page accesses (left side) and distance
calculations (right side).

where we replace the domination count estimation with our methods. Note, that with ex-
cept of the domination count estimation method, both Rk-NN versions are identical. The
results illustrated in Figures 5.13(a), 5.13(c) and 5.13(e) show the query performance of
both Rk-NN versions in terms of average number of page accesses for varying parameter k
and different datasets. It is notable that the enhanced algorithm requires less page access
by almost a full order of magnitude on all datasets. Using DCbisect to apply the paradigm
of partial pruning based on bisections (c.f. Section 5.5.2) with a maximum number of ten
splits per MBR, the number of page accesses can be significantly dropped even further. The
large performance increase compared to the original version of AKKRZ can be explained
by the fact that our domination decision criterion has a much higher pruning power on
large MBRs compared to the original version that is based on the Min/MaxDist criterion.
This allows us to prune candidates already on a high directory level and, thus, to prune a
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Figure 5.14: Evaluation of the different decision criteria for 10 nearest neighbor queries.

large number of candidate MBRs very early.
Beside the I/O cost, it is also important to consider the cpu cost since the accuracy of

our domination count estimation methods is highly influenced by the cpu cost spent for the
estimation process, as shown in the previous section. For this reason, in addition to the I/O
cost evaluation we evaluate the cpu cost measured by the number of distance calculations
required for the competing techniques as the cpu cost are mainly distance computation
bounded. We counted the total number of distance calculations. Calls of DDCOptimal
and DDCMinMax were penalized with two distance calculations2. The resulting numbers
of total distance calculations are shown in Figures 5.13(b), 5.13(d) and 5.13(f). It can
be observed that the enhanced AKKRZ algorithm using DCbasic significantly outperforms
the basic AKKRZ by close to two orders of magnitude. The rationale for this is that the
number of calculations increases quadratic in the number of candidates. However, the high
computational cost required when applying partial pruning becomes evident here. Using
DCbisect with a maximum of ten splits, the number of distance calculations increases by a
factor of about five.

Finally, we evaluate the impact of DDCOptimal and partial domination on k-NN queries
among objects approximated by MBRs. These experiments are based on three artificial
datasets that rely on the three datasets used in the foregoing experiments (TAC, Uniform,
Forest). Each vector in a dataset defines the center of an MBR. For each of the resulting
datasets 100 MBRs were chosen randomly as query MBR Q for a 10-NN query on the
remaining dataset. Here we did not apply any index structure. The performance of the
competing approaches were measured by the average number of candidates that could
neither be pruned nor be reported as true hits. The results showing the performance
in terms of the number of remaining candidates are depicted in Figure 5.14 for varying
extent of the MBRs. It can be observed, that DCbasic significantly reduces the number
of candidates compared to pruning based on DDCMinMax on all datasets. The relative
performance boost increases for an increasing extent of the MBRs. We also found out in our
experiments, that the parameter k has no significant influence on the relative performance
boost. Figure 5.14 also shows, that DCbisect is able to further boost the performance,
especially for large MBRs.

2in concordance with run-time experiments omitted here due to space considerations
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5.8 Conclusions

The concept of domination is a very useful tool to perform spatial pruning on rectangles
in a wide field of applications. Current state-of-the-art approaches are either incomplete
or scale exponentially in the number of dimensions. In this chapter we proposed a decision
criterion that is complete and efficiently computable in O(d). In addition, we discuss how
this decision criterion can be used to accurately estimate the domination count of objects
by incorporating information about partial domination. While all current approaches that
use information about partial domination can only be used on two dimensional data our
solution can be applied to data of arbitrary dimensionality. Our experimental evaluation
shows that our novel decision criterion can be used to vastly increase the pruning power
of existing applications by several orders of magnitude. For future work, we plan to plug-
in our novel decision criterion to more existing applications. In addition we will explore
decision criteria for object representations having non-rectangular shape.
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Chapter 6

Probabilistic k-Nearest Neighbor
Queries on Uncertain Data

In this section, an effective and efficient probabilistic pruning criterion for k-Nearest Neigh-
bor Queries queries on uncertain data is presented. This criterion allows to assess the prob-
ability that an uncertain object A is closer to an uncertain query object Q than a third
uncertain object B. This approach supports a general uncertainty model using continuous
probabilistic density functions to describe the (possibly correlated) uncertain attributes
of objects. In a nutshell, the problem to be solved is to compute the PDF of the ran-
dom variable denoted by the probabilistic domination count : Given an uncertain database
object B, an uncertain query object Q and a set DB of uncertain database objects in a
multi-dimensional space, the probabilistic domination count denotes the number of uncer-
tain objects in DB that are closer to Q than B. Unlike the domination count introduced
in Definition 26 in Chapter 5, the probabilistic domination count is defined on uncertain
data, and thus, is not a single scalar, but a random variable. This probabilistic domination
count is used to efficiently answer probabilistic k-Nearest Neighbor queries on uncertain
data using possible world semantics. Based on the spatial pruning criterion presented in
Chapter 5 a novel geometric pruning filter is proposed and an iterative filter-refinement
strategy for conservatively and progressively estimating the probabilistic domination count
is introduced. An experimental evaluation shows that the proposed technique allows to
acquire tight probability bounds for the probabilistic domination count quickly, even for
large uncertain databases.

6.1 Introduction

This section introduce a novel scalable pruning approach to identify candidates for a class of
probabilistic similarity queries. This novel pruning method is applied to the most promi-
nent query of the above mentioned class, the probabilistic k-nearest neighbor (PkNN)
query.
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BB

A

R

Figure 6.1: A dominates B w.r.t. R with high probability.

6.1.1 Uncertainty Model

In this chapter, we assume a continuous model, where each object Ui ∈ DB = {U1, ..., UN}
is represented by a continuous probability density function fi. Following the convention of
uncertain databases [31, 45, 48, 51, 55, 131, 170], we assume that fi is (minimally) bounded
by an uncertainty region U�i such that ∀x /∈ U�i : fi(x) = 0 and∫

U�i

fi(x)dx ≤ 1.

Specifically, the case
∫
U�i
fi(x)dx < 1 implements existential uncertainty, i.e. object oi

may not exist in the database at all with a probability greater than zero. In this chapter
we focus on the case

∫
U�i
fi(x)dx = 1, but the proposed concepts can be easily adapted to

existentially uncertain objects. If fi is an unbounded PDF, e.g., Gaussian PDF, we truncate
PDF tails with negligible probabilities and normalize the resulting PDF. This procedure
is also used in related work [45, 48, 31]. In specific, [31] shows that for a reasonable low
truncation threshold, the impact on the accuracy of probabilistic ranking queries is very
low.

In this way, each uncertain object can be considered as a d-dimensional rectangle with
an associated multi-dimensional object PDF (c.f. Figure 6.1). Here, we assume that
uncertain attributes may be mutually dependent. Therefore the object PDF can have any
arbitrary form, and in general, cannot simply be derived from the marginal distribution
of the uncertain attributes. Note that in many applications, a discrete uncertainty model
is appropriate, meaning that the probability distribution of an uncertain object is given
by a finite number of alternatives assigned with probabilities. This is a special case of the
model used here.
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6.1.2 Problem Formulation

To answer kNN queries on uncertain objects efficiently, we exploit the observation that
an object o is a k-nearest neighbor of an object q if and only if there is less than k objects
in the database, that are closer to q than o. Thus, we address the problem of detecting
for a given uncertain query object Q and an uncertain object B the number of uncertain
objects of an uncertain database DB that are closer to (i.e. dominate) Q than B. We call
this number the domination count of B w.r.t. Q as defined in the following.

Definition 30 (Probabilistic Domination). Consider an uncertain database DB = {U1, ..., UN}
and an uncertain query object Q. Let A,B ∈ DB. Let (A ≺Q B) denote the random indi-
cator variable that returns one, if and only if A dominates B w.r.t. Q, formally:

(A ≺Q B) := I(dist(A,Q) < dist(B,Q),DB)

where I(dist(A,Q) < dist(B,Q),DB) is a random indicator variable that returns one if
the random location of A is closer to the random location of Q than the random location
of B, and zero otherwise.

Note that in Section 5, the predicate (A ≺Q B) has been defined for rectangles. In
the above Definition 30, the notation (A ≺Q B) has deliberately been overloaded as a
random variable having uncertain objects as formal parameters, rather than a predicate
having rectangles as formal parameters. The random variable (A ≺Q B) follows a Bernoulli
distribution, i.e., a distribution having a success probability P (A ≺Q B) of taking value
one, and a 1− P (A ≺Q B) probability of taking value zero.

Definition 31 (Domination Probability). The probability P (A ≺Q B) that object A domi-
nates object B with respect to Q is denoted as domination probability. If P (A ≺Q B) = 0,
then we say that A does not dominate B with respect to Q. If P (A ≺Q B) = 1, then we
say that A certainly dominates B with respect to Q. If 0 < P (A ≺Q B) < 1, then we stay
that A dominates B probabilistically with respect to Q. This case is called probabilistic
domination.

Definition 32 (Probabilistic Domination Count). Consider an uncertain database DB =
{U1, ..., UN} and an uncertain query object Q. For each uncertain object B ∈ DB, the
probabilistic domination count DomCount(B,Q) is defined as the random variable of the
number of uncertain objects A ∈ DB (A 6= B) that are closer to q than B:

DomCount(B,Q) :=
∑

A∈DB,A 6=B

(A ≺Q B)

DomCount(B,Q) is the sum of N − 1 non-necessarily identically distributed and non-
necessarily independent Bernoulli variables. The domination count can be used directly to
efficiently answer probabilistic threshold k-NN queries.
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Corollary 5. Let Q be an uncertain query object and let k be a scalar. The problem is to
find all uncertain objects kNNτ (Q) that are the k-nearest neighbors of Q with a probability
of at least τ . Given the probability mass function of DomCount(B,Q), we can compute
the probability P kNN(B,Q) that an object B is a kNN of Q as follows:

P kNN(B,Q) =
k−1∑
i=0

P (DomCount(B,Q) = i)

Proof. The above corollary is evident, since the proposition “B is a kNN of Q” is equivalent
to the proposition “B is dominated by less than k objects”.

To decide whether B is a kNN of Q, i.e. whether B ∈ Pτ kNN(Q,DB), we just need
to check if P kNN(B,Q) ≥ τ .

The problem solved in this chapter is to efficiently compute the probability mass func-
tion ofDomCount(B,Q). The solutions to compute the sum of independent Bernoulli trials
presented in Section 3.3 cannot applied directly, since the two random events (Ai ≺Q B)
and (Aj ≺Q B) are mutually dependent, as they both depend on the location of uncertain
objects B and Q. In this chapter, the technique of generating functions, introduced in Sec-
tion 3.3 will be adapted, to give upper and lower bound functions of the probability mass
function of DomCount(B,Q). Experiments will show, that the resulting bound functions
are very tight, allowing to guarantee correct kNN results in most cases, avoiding expensive
integration to obtain exact result.

6.1.3 Basic Idea

First (Section 6.3) presents a methodology to efficiently find objects in DB that certainly
dominate B w.r.t. Q as well as objects inDB that do not dominate B. At the same time, we
find the set of objects that dominate B probabilistically. Using a decomposition technique,
for each object A in this set, we can derive a lower and an upper bound for P (A ≺Q B),
i.e., for the probability that A dominates B w.r.t. Q. In Section 6.4, we show that due to
dependencies between object distances to Q, these probabilities cannot be combined in a
straightforward manner to approximate the distribution of DomCount(B,Q). We propose
a solution that copes with these dependencies and introduce techniques that help to to
compute the probabilistic domination count in an efficient way. In particular, we prove
that the bounds of P (A ≺Q B) are mutually independent if they are computed without
a decomposition of B and Q. Then, we provide a class of uncertain generating functions
that use these bounds to bound the distribution of DomCount(B,Q). We then propose
an algorithm which progressively refines DomCount(B,Q) by iteratively decomposing the
objects that influence its computation in Section 6.5. In Section 6.6, we experimentally
demonstrate the effectiveness and efficiency of our probabilistic pruning methods for various
parameter settings on artificial and real-world datasets.
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6.2 Related Work

Uncertain similarity query processing has focused on various aspects. A lot of existing work
dealing with uncertain data addresses probabilistic one nearest neighbor (1NN) queries for
certain query objects [51, 110] and for uncertain queries [95]. To reduce computational
effort, [48] add threshold constraints in order to retrieve only objects whose probability of
being the nearest neighbor exceeds a user-specified threshold to control the desired confi-
dence required in a query answer. Similar semantics of queries in probabilistic databases
are provided by Top-k nearest neighbor queries [31], where the k most probable results of
being the nearest neighbor to a certain query point are returned. The solution of [133] for
probabilistic k-nearest neighbor (kNN) queries is restricted to expected distances of un-
certain objects to the query object. The use of expected distances drops any uncertainty
information, yielding expected results, whose reliability cannot be assessed ([171, 125]).

The work of [49] used result based query semantics to answer probabilistic kNN queries.
For a probabilistic kNN query, the set of possible answers using result based semantics
equals DBk, i.e., one possible result for each k-combination of objects in DB. Since in the
worst case, the result is exponentially in this case, the problem itself must be exponentially
hard, since returning the computed results requires exponential time. For this reason, [49]
presents approximation techniques, to find result sets having a probability of at least
τ . However, due to the exponential large set of possible answers, a proper τ value that
still returns any results, becomes exponentially small. Furthermore, the approach of [49]
assumes a certain query point.

Several approaches return the full result to queries as a ranking of probabilistic objects
according to their distance to a certain query point [27, 55, 125, 171]. However, all these
prior works have in common that the query is given as a single (certain) point.

6.3 Similarity Domination on Uncertain Data

In this section, we tackle the following problem: Given three uncertain objects A, B and
Q in a multidimensional space Rd, determine whether object A is closer to Q than B w.r.t.
a distance function defined on the objects in Rd. If this is the case, we say A dominates
B w.r.t. Q. In contrast to Chapter 5, where this problem is solved for certain data, in the
context of uncertain objects this domination relation is not a predicate that is either true
or false, but rather a (dichotomous) random variable as defined in Definition 30. In the
example depicted in Figure 6.1, there are three uncertain objects A, B and R, each bounded
by a rectangle representing the possible locations of the object in R2. The PDFs of A, B
and R are depicted as well. In this scenario, we cannot determine for sure whether object
A dominates B w.r.t. R. However, it is possible to determine that object A dominates
object B w.r.t. R with a high probability. If Q = R is the uncertain query object of a
probabilistic 1NN queries, we can guarantee that B must have a low probability to be a
result of this query, because A has a high probability to be closer to Q than B.
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The problem at issue is to determine the domination probability P (A ≺Q B) as de-
fined in Definition 31. Naively, we can compute P (A ≺Q B) by simply integrating the
probability of all possible worlds in which A dominates B w.r.t. Q exploiting inter-object
independency:

P (A ≺Q B) =∫
a∈A

∫
b∈B

∫
q∈Q
I(a, b, q) · P (A = a) · P (B = b) · P (Q = q)da db dq,

where I(a, b, q) is the following (crisp) indicator function:

I(a, b, r) =

{
1, if dist(a, r) < dist(b, r)

0, else

The problem of this naive approach is the computational cost of the triple-integral. The
integrals of the PDFs of A, B and Q may in general not be representable as a closed-form
expression and the integral of I(a, b, q) does not have a closed-from expression. Therefore,
an expensive numeric approximation is required for this approach. In the rest of this
section we propose methods that efficiently derive bounds for P (A ≺Q B), which can be
used to prune objects, thus avoiding integral computations.

6.3.1 Complete Domination

First, we show how to detect whether A completely dominates B w.r.t. Q (i.e. if P (A ≺Q
B) = 1) based only on the rectangular approximations A�, B� and Q�. The state-of-the-
art criterion to detect spatial domination on rectangular uncertainty regions is with the use
of minimum/maximum distance approximations. This criterion states that A dominates
B w.r.t. Q if the minimum distance between Q� and B� is greater than the maximum
distance between Q� and A�. Although correct, this criterion is not tight (cf. Chapter
5), i.e. not each case where A� dominates B� w.r.t. Q� is detected by the min/max-
domination criterion. The problem is that the dependency between the two distances
between A and Q and between B and Q is ignored. Obviously, the distance between A and
Q as well as the distance between B and Q depend on the location of Q. However, since Q
can only have a unique location within its uncertainty region, both distances are mutually
dependent. To obtain a tighter decision criterion, we adopt the spatial domination concepts
proposed in Chapter 5 for rectangular uncertainty regions.

Corollary 6 (Complete Domination). Let A,B,Q be uncertain objects having rectangular
space approximation A�, B� and Q�, respectively. The following implication holds:
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P (A ≺Q B) = 1⇐ (6.1)
d∑
i=1

max
qi∈{Qmini ,Qmaxi }

(MaxDist(Ai, qi)
p −MinDist(Bi, qi)

p) < 0,

where Ai, Bi and Qi denote the projection interval of the respective rectangular uncertainty
region A�, B� and Q� on the ith dimension; Qmin

i (Qmax
i ) denotes the lower (upper) bound

of interval Qi, and p corresponds to the used Lp norm. The functions MaxDist(Ai, qi)
and MinDist(Ai, qi) denote the maximal (respectively minimal) distance between the one-
dimensional interval Ai and the one-dimensional point qi.

Proof. In Section 5.4 of Chapter 5 it is shown that the right hand side of implication 6.1
is equivalent to the following statement:

∀a ∈ A�, b ∈ B�, q ∈ Q� : dist(a, b) < dist(q, b) (6.2)

which is true if and only if for each a ∈ A�, b ∈ B�, q ∈ Q� it holds that a is closer
to b than q, where A�, B� and Q� are rectangular approximations. By definition of the
possible worlds model, the set of combinations a ∈ A�, b ∈ B�, q ∈ Q� corresponds
to a superset of all possible worlds. Consequently, the above Predicate 6.2 implies that
∀a ∈ A, b ∈ B, q ∈ Q : I(dist(a, b) < dist(q, b)) = 1 by definition of indicator function I.
Using Equation 8.1 we obtain the triple-sum

P (A ≺Q B) =∑
ai∈A

∑
bj∈B

∑
qk∈Q

1 · P (ai) · P (bj) · P (qk)

As we can see, the above triple-sum is equal to the sum of the probabilities of all possible
worlds which is equal to one. Consequently, we obtain P (A ≺Q B) = 1.

In addition, it holds that

Corollary 7.
P (A ≺Q B) = 1⇔ P (B ≺Q A) = 0

Proof. The above corollary is evident, since in any world where A = a, B = b and Q = q
it holds that (A ≺Q B) = 1− (B ≺Q A). Thus, if and only if (A ≺Q B) = 1 in all possible
worlds, then (B ≺Q A) = 0 in all possible worlds and vice versa.

Lemma 16 (Complete Non-Domination). Let A,B,Q be uncertain objects having rectan-
gular space approximation A�, B� and Q�, respectively. The following statement holds:

P (B ≺Q A) = 0⇐
d∑
i=1

max
qi∈{Qmini ,Qmaxi }

(MaxDist(Ai, qi)
p −MinDist(Bi, qi)

p) < 0,
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(a) Complete domination (b) Probabilistic domination

Figure 6.2: Similarity Domination.

Proof. This Lemma follows directly from Lemma 6 and Corollary 7.

In the example depicted in Figure 6.2(a), the grey region on the right shows all points
that definitely are closer to A than to B and the grey region on the left shows all points
that definitely are closer to B than to A. Consequently, A dominates B (B dominates A)
if Q completely falls into the right (left) grey shaded half-space.1

6.3.2 Probabilistic Domination

Now, we consider the case where A does not completely dominate B w.r.t. Q. In con-
sideration of the possible world semantics, there may exist worlds in which A dominates
B w.r.t. Q, but not all possible worlds may satisfy this criterion. Let us consider the
example shown in Figure 6.2(b) where the uncertainty region of A is decomposed into five
partitions, each assigned to one of the five grey-shaded regions illustrating which points
are closer to the partition in A than to B. As we can see, Q only completely falls into
three grey-shaded regions. This means that A does not completely dominate B w.r.t. Q.
However, we know that in some possible worlds (at least in all possible words where A is
located in A1, A2 or A3) A does dominate B w.r.t. Q. The question at issue is how to
determine the probability P (A ≺Q B) that A dominates B w.r.t. Q in an efficient way.
The key idea is to decompose the uncertainty region of an object X into subregions for
which we know the probability that X is located in that subregion (as done for object A
in our example). Therefore, if neither (A ≺Q B) nor (B ≺Q A) holds, then there may still
exist subregions A′ ⊂ A, B′ ⊂ B and Q′ ⊂ Q such that (A′ ≺Q′ B′) holds. Given disjunc-
tive rectangular decomposition schemes A, B and Q we can identify triples of subregions
(A′ ∈ A, B′ ∈ B, Q′ ∈ Q) for which (A′ ≺Q′ B′) holds. Let I(A′, B′, Q′) be the following
indicator function:

1Note that the grey regions are not explicitly computed; we only include them in Figure 6.2(a) for
illustration purpose.
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I(A′, B′, Q′) =

{
1, if (A′ ≺Q′ B′)
0, else

Lemma 17. Let A,B and Q be uncertain objects with disjunctive rectangular object de-
compositions A,B and Q, respectively. To derive a lower bound PLB(A ≺Q B) of the
probability P (A ≺Q B) that A dominates B w.r.t. Q, we can accumulate the probabilities
of combinations of these subregions as follows:

PLB(A ≺Q B) =

∑
A′∈A,B′∈B,Q′∈Q

P (a ∈ A′) · P (b ∈ B′) · P (r ∈ Q′) · I(A′, B′, Q′),

where P (X ∈ X ′) denotes the probability that object X is located within the region X ′.

Proof. The probability of a combination (A′, B′, Q′) can be computed by P (a ∈ A′) ·
P (b ∈ B′) · P (r ∈ Q′) due to the assumption of mutually independent objects. These
probabilities can be aggregated due to the assumption of disjunctive subregions, which
implies that any two different combinations of subregions (A′ ∈ A, B′ ∈ B, Q′ ∈ Q) and
(A′′ ∈ A, B′′ ∈ B, Q′′ ∈ Q, A′ 6= A′′ ∨B′ 6= B′′ ∨Q′ 6= Q′′ must represent disjunctive sets of
possible worlds. It is obvious that all possible worlds defined by combinations (A′, B′, Q′)
where I(A′, B′, Q′) = 1, A dominates B w.r.t. Q. But not all possible worlds where A
dominates B w.r.t. Q are covered by these combinations and, thus, do not contribute to
PLB(A ≺Q B). Consequently, PLB(A ≺Q B) lower bounds P (A ≺Q B).

Analogously, we can define an upper bound of P (A ≺Q B):

Lemma 18. An upper bound PUB(A ≺Q B) of P (A ≺Q B) can be derived as follows:

PUB(A ≺Q B) = 1− PLB(B ≺Q A)

Naturally, the more refined the decompositions are, the tighter the bounds that can be
computed and the higher the corresponding cost of deriving them. In particular, starting
from the entire MBRs of the objects, we can progressively partition them to iteratively
derive tighter bounds for their dependency relationships until a desired degree of certainty
is achieved (based on some threshold). However, in the next section, we show that the
derivation of the domination count DomCount(B,Q) of a given object B (cf. Definition
32), which is the main module of prominent probabilistic queries cannot be straightfor-
wardly derived with the use of these bounds and we propose a methodology based on
generating functions for this purpose.
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Figure 6.3: A1 and A2 dominate B w.r.t. Q with a probability of 50%, respectively.

6.4 Probabilistic Domination Count

In Section 6.3 we described how to conservatively and progressively approximate the prob-
ability that A dominates B w.r.t. Q. Given these approximations PLB(A ≺Q B) and
PUB(A ≺Q B), the next problem is to cumulate these probabilities to get an approxima-
tion of the domination count DomCount(B,Q) of an object B w.r.t. Q (cf. Definition
32). To give an intuition how challenging this problem is, we first present a naive solution
that can yield incorrect results due to ignoring dependencies between domination relations
in Section 6.4.1. To avoid the problem of dependent domination relations, we first show in
Section 6.4.2 how to exploit object independencies to derive domination bounds that are
mutually independent. Afterwards, in Section 6.4.3, we introduce a new class of uncertain
generating functions that can be used to derive bounds for the domination count efficiently,
as we show in Section 6.4.4. To motivate this new class of generating functions, Section
6.4.5 shows that the traditional generating function technique fails to compute tight prob-
ability bounds. Finally, in Section 6.4.6, we show how to improve our domination count
approximation by considering disjunct subsets of possible worlds for which a more accurate
approximation can be computed.

6.4.1 The Problem of Domination Dependencies

To compute DomCount(B,Q), a straightforward solution is to first approximate P (A ≺Q
B) for all A ∈ DB using the technique proposed in Section 6.3. Then, given these proba-
bilities we can apply the technique of uncertain generating functions (cf. Section 6.4.3) to
approximate the probability that exactly 0, exactly 1, ..., exactly n− 1 uncertain objects
dominate B. However, this approach ignores possible dependencies between domination
relationships. Although we assume independence between objects, the random variables
(A1 ≺Q B) and (A2 ≺Q B) are mutually dependent because the distance between A1 and
Q depends on the distance between A2 and Q because object Q can only appear once.
Consider the following example:

Example 17. Consider a database of three certain objects B, A1 and A2 and the uncertain
query object Q, as shown in Figure 6.3. For simplicity, objects A1 and A2 have the same
position in this example. The task is to determine the domination count of B w.r.t. Q.
The domination half-space for A1 and A2 is depicted here as well. Let us assume that A1
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(A2) dominates B with a probability of P (A1 ≺Q B) = P (A2 ≺Q B) = 50%. Recall that
this probability can be computed by integration or approximated with arbitrary precision
using the technique of Section 6.3. However, in this example, the probability that both A1

and A2 dominate B is not simply 50% · 50% = 25%, as the generating function technique
would return.

The reason for the wrong result in this example, is that the generating function requires
mutually independent random variables. However, in this example, it holds that if and only
if Q falls into the domination half-space of A1, it also falls into the domination half-space
of A2. Thus we have the dependency (A1 ≺Q B) ↔ (A2 ≺Q B) and the probability for Q
to be dominated by both A1 and A2 is

P (A1 ≺Q B) · P (A2 ≺Q B)|(A1 ≺Q B))

= 0.5 · 1 = 0.5.

This example has shown that ignoring the dependency between two domination random
variables (A1 ≺Q B) and (A1 ≺Q B) can significantly distort the probabilistic domination
count.

6.4.2 Domination Approximations Based on Independent Ob-
jects

In general, domination relations may have arbitrary correlations. Therefore, we present a
way to compute the domination count DomCount(B,Q) while accounting for the depen-
dencies between domination relations.

Complete Domination

In an initial step, complete domination serves as a filter which allows us to detect those
objects A ∈ DB that definitely dominate a specific object B w.r.t. Q and those objects
that definitely do not dominate B w.r.t. Q by means of evaluating (A� ≺Q� B�) using the
spatial domination decision criterion of Chapter 5. It is important to note that complete
domination relations are mutually independent, since complete domination is evaluated on
the entire uncertainty regions of the objects. After applying complete domination, we have
detected objects that dominate B in all, or no possible worlds. Consequently, we get a first
approximation of the domination count DomCount(B,Q), obviously, it must be higher
than the number N of objects that dominate B and lower than |DB|−M , where M is the
number of objects that dominate B in no possible world, i.e. P (DomCount(B,Q) = k) = 0
for k ≤ N and k ≥ |DB|−M . Nevertheless, for N < k < |DB−M | we still have a very bad
approximation of the domination count probability of 0 ≤ P (DomCount(B,Q) = k) ≤ 1.
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Probabilistic Domination

In order to refine this probability distribution, we have to take the set of influence objects
influenceObjects = {A1, ..., AC}, which neither completely prune B nor are completely
dominated by B w.r.t. Q. For each Ai ∈ influenceObjects, 0 < P (Ai ≺Q B) < 1.
For these objects, we can compute probabilities P (A1 ≺Q B), ..., P (AC ≺Q B) according
to the methodology in Section 6.3. However, due to the mutual dependencies between
domination relations (cf. Section 6.4.1), we cannot simply use these probabilities directly,
as they may produce incorrect results. However, we can use the observation that the
objects Ai are mutually independent and each candidate object Ai only appears in a
single domination relation (A1 ≺Q B), ..., (AC ≺Q B). Exploiting this observation, we
can decompose the objects A1, ..., AC only, to obtain mutually independent bounds for the
probabilities P (A1 ≺Q B), ..., P (AC ≺Q B), as stated by the following lemma:

Lemma 19. Let A1, ...AC be uncertain objects with disjunctive object decompositions A1, ...,AC,
respectively. Also, let B and Q be uncertain objects (without any decomposition). The
lower (upper) bound PLB(Ai ≺Q B) (PUB(Ai ≺Q B)) as defined in Lemma 17 (Lemma
18) of the random variable (Ai ≺Q B) is independent of the random variable (Aj ≺Q B)
(1 ≤ i 6= j ≤ C).

Proof. Consider the random variable (Ai ≺Q B) conditioned on the event (Aj ≺Q B) = 1.
Using Equation 17, we can derive the lower bound probability of (Ai ≺Q B) = 1|(Aj ≺Q
B) = 1 by conditioning all random variables as follows:

PLB(Ai ≺Q B|(Aj ≺Q B) = 1) =∑
A′i∈Ai,B′∈B,Q′∈Q

[P (ai ∈ A′i|(Aj ≺Q B) = 1)·

P (b ∈ B′|(Aj ≺Q B) = 1)·

P (r ∈ Q′|(Aj ≺Q B) = 1) · I(A′i, B
′, Q′)]

Note that the indicator function I(A′i, B
′, Q′) is not a random variable, and thus is not

conditioned.2 Now we exploit that B and Q are not decomposed, thus B′ = B and Q′ = Q,
and thus P (B ∈ B′|(Aj ≺Q B) = 1) = 1 = P (B ∈ B′) and P (Q ∈ Q′|(Aj ≺Q B) = 1) =
1 = P (Q ∈ Q′). We obtain:

PLB(Ai ≺Q B|(Aj ≺Q B) = 1) =∑
A′i∈Ai,B′∈B,Q′∈Q

[P (ai ∈ A′i|(Aj ≺Q B) = 1)·

P (b ∈ B′) · P (r ∈ Q′) · I(A′i, B
′, Q′)]

2Recall that I(A′i, B
′, Q′) returns one only if A′i spatially dominates B′ with respect to Q′. This spatial

(full) domination is independent of any random events.
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Next we exploit that P (ai ∈ A′i|(Aj ≺Q B) = 1) = P (ai ∈ A′i) since Ai is independent of
the random variable (Aj ≺Q B) and obtain:

PLB(Ai ≺Q B|(Aj ≺Q B) = 1) =∑
A′i∈Ai,B′∈B,Q′∈Q

[P (ai ∈ A′i) · P (b ∈ B′) · P (r ∈ Q′) · I(A′i, B
′, Q′)]

= PLB(Ai ≺Q B)

Analogously, it can be shown that

PUB(Ai ≺Q B|(Aj ≺Q B) = 1) = PUB(Ai ≺Q B).

In summary, we can now derive, for each object Ai a lower and an upper bound of
the probability that Ai dominates B w.r.t. Q. However, these bounds may still be rather
loose, since we only consider the full uncertainty region of B and Q so far, without any
decomposition. In Section 6.4.6, we will show how to obtain more accurate, still mutual
independent probability bounds based on decompositions of B and Q. Due to the mutual
independency of the lower and upper probability bounds, these probabilities can now be
used to get an approximation of the domination count of B. In order to do this efficiently,
we adapt the generating functions technique which is proposed in [125]. The main challenge
here is to extend the generating function technique in order to cope with probability bounds
instead of concrete probability values. It can be shown that a straightforward solution
based on the existing generating functions technique applied to the lower/upper probability
bounds in an appropriate way does solve the given problem efficiently, but overestimates the
domination count probability and thus, does not yield good probability bounds. Rather,
we have to redesign the generating functions technique such that lower/upper probability
bounds can be handled correctly.



116 6. Probabilistic k-Nearest Neighbor Queries on Uncertain Data

6.4.3 Uncertain Generating Functions (UGFs)

Given a set of N independent but not necessarily identically distributed Bernoulli {0, 1}
random variables Xi, 1 ≤ i ≤ N . Let PLB(Xi) (PUB(Xi)) be a lower (upper) bound
approximation of the probability P (Xi = 1). Consider the random variable

N∑
i=1

Xi.

We make the following observation: The lower and upper bound probabilities PLB(Xi) and
PUB(Xi) correspond to the probabilities of the three following events:

• Xi = 1 definitely holds with a probability of at least PLB(Ai ≺R B).

• Xi = 0 definitely holds with a probability of at least 1− PUB(Xi).

• It is unknown whether Xi = 0 or Xi = 1 with the remaining probability of PUB(Ai ≺R
B)− PLB(Ai ≺R B) = PUB(Ai ≺R B)− PLB(Ai ≺R B).

Based on this observation, we consider the following uncertain generating function
(UGF):

FN =
∏

i∈1,...,N

[(PLB(Xi) · x+ (1− PUB(Xi)) · y+

(PUB(Xi)− PLB(Xi)))] =
∑
i,j≥0

ci,jx
iyj.

The coefficient ci,j has the following meaning: With a probability of ci,j, B is definitely
dominated at least i times, and possibly dominated another 0 to j times. Therefore,
the minimum probability that

∑N
i=1 Xi = k is ck,0, since that is the probability that

exactly k random variables Xi are 1. The maximum probability that
∑N

i=1Xi = k is∑
i≤k,i+j≥k ci,j, i.e. the total probability of all possible combinations in which

∑N
i=1Xi = k,

may hold. Therefore, we obtain an approximated PDF of
∑N

i=1 Xi. In the approximated

PDF of
∑N

i=1 Xi, each probability
∑N

i=1Xi = k is given by a conservative and a progressive
approximation.

Example 18. Let PLB(X1) = 20%, PUB(X1) = 50%, PLB(X2) = 60% and PUB(X2) =
80%. The generating function for the random variable

∑2
i=1Xi is the following:

F2 = (0.2x+ 0.3y + 0.5)(0.6x+ 0.2y + 0.2)

= 0.12x2 + 0.34x+ 0.1 + 0.22xy + 0.16y + 0.06y2

That implies that, with a probability of at least 12%,
∑2

i=1Xi = 2. In addition, with a
probability of 22% plus 6%, it may hold that

∑2
i=1 Xi = 2, so that we obtain a probability

bound of 12% − 40% for the random event
∑2

i=1Xi = 2. Analogously,
∑2

i=1 Xi = 1
with a probability of 34% − 78% and

∑2
i=1 Xi = 0 with a probability of 10% − 32%. The

approximated PDF of
∑2

i=1Xi is depicted in Figure 6.4.
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Figure 6.4: Approximated PDF of
∑2

i=1Xi.

Each expansion F l can be obtained from the expansion of F l−1 as follows:

F l = F l−1·
[PLB(Xl) · x+ (1− PUB(Xl)) + (PUB(Xl)− PLB(Xl)) · y].

We note that F l contains at most
∑l+1

i=1 i non-zero terms (one ci,j for each combination
of i and j where i+ j ≤ l). Therefore, the total complexity to compute F l is O(l3).

6.4.4 Efficient Domination Count Approximation using UGFs

We can directly use the uncertain generating functions proposed in the previous section to
derive bounds for the probability distribution of the domination count DomCount(B,Q).
Again, let DB = A1, ..., AN be an uncertain object database and B and Q be uncertain
objects in Rd. Let (Ai ≺Q B), 1 ≤ i ≤ N denote the random Bernoulli event that Ai
dominates B w.r.t. Q. Also recall that the domination count is defined as the random
variable that is the sum of the domination indicator variables of all uncertain objects in
the database (cf. Definition 32).

Considering the generating function

FN =
∏

i∈1,...,N

[(PLB(Ai ≺Q B) · x+

(PUB(Ai ≺Q B)− PLB(Ai ≺Q B)) · y)+
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(1− PUB(Ai ≺Q B))] =
∑
i,j≥0

ci,jx
iyj, (6.3)

we can efficiently compute lower and upper bounds of the probability thatDomCount(B,Q) =
k for 0 ≤ k ≤ |DB|, as discussed in Section 6.4.3 and because the independence property
of random variables required by the generating functions is satisfied due to Lemma 19.

Lemma 20. A lower bound DomCountkLB(B,Q) of the probability that DomCount(B,Q) =
k is given by

DomCountkLB(B,Q) = ck,0

and an upper bound DomCountkUB(B,Q) of the probability that DomCount(B,Q) = k is
given by

DomCountkUB(B,Q) =
∑

i≤k,i+j≥k

ci,j

Example 19. Assume a database containing uncertain objects A1, A2, B and Q. The task
is to determine a lower (upper) bound of the domination count probability DomCountkLB(B,Q)
(DomCountkUB(B,Q)) of B w.r.t. Q. Assume that, by decomposing A1 and A2 and us-
ing the probabilistic domination approximation technique proposed in Section 6.3.2, we
determine that A1 has a minimum probability PLB(A1 ≺Q B) of dominating B of 20%
and a maximum probability PUB(A1 ≺Q B) of 50%. For A2, PLB(A2 ≺Q B) is 60% and
PUB(A2 ≺Q B) is 80%. By applying the technique in the previous subsection, we get the
same generating function as in Example 18 and thus, the same approximated PDF for the
DomCount(B,Q) depicted in Figure 6.4.

To compute the uncertain generating function and thus the probabilistic domination
count of an object in an uncertain database of size N , the total complexity is O(N3). The
reason is that the maximal number of coefficients of the generating function Fx is quadratic
in x, since Fx contains coefficients ci,j where i+j ≤ x, that is at most x2

2
coefficients. Since

we have to compute Fx for each (x < N), the total time complexity is O(N3). Note that
only candidate objects c ∈ Cand for which a complete domination cannot be detected (cf.
Section 6.3.1) have to be considered in the generating functions. Thus, the total runtime
to compute DomCountkLB(B,Q) as well as DomCountkUB(B,Q) is O(|Cand|3). Finally,
we will show how to reduce, specifically for kNN queries, the total time complexity to
O(k2 · |Cand|).

6.4.5 Generating Functions vs Uncertain Generating Functions

It is clear that instead of applying the uncertain generating function to approximate the
domination count of B, two regular generating functions can be used; one generating
function that uses the progressive (lower) bounds PUB(Ai ≺Q B) and one that uses the
conservative (upper) probability bounds PUB(Ai ≺Q B). In the following we give an
intuition and a formal proof that using regular generating functions yields looser bounds
for the approximated domination.
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Let DB = A1, ..., AN be an uncertain object database and B and Q be uncertain objects
in Rd. Let (Ai ≺Q B), 1 ≤ i ≤ N denote the random Bernoulli event that Ai dominates B
w.r.t. Q. Let PLB(Ai ≺Q B) (PUB(Ai ≺Q B)) be a lower (upper) bound approximation of
the probabilistic event (Ai ≺Q B) = 1.

A lower bound of the probability DomCount(B,Q) = k can be derived using the
following generating function:

FN =
∏

i∈1,...,N

[(PLB(Ai ≺Q B) · x+

(1− PUB(Ai ≺Q B))] =
∑
i≥0

cix
i. (6.4)

Intuitively, this generating function uses the progressive approximation PLB(Ai ≺Q
B) of the probability that Ai dominates B w.r.t. Q and the progressive approximation
1−PUB(Ai ≺Q B) of the probability that Ai does not dominate B w.r.t. Q. This generating
function is equal to the uncertain generating function (cf. Equation 6.3) if the uncertain
percentage (i.e. the coefficient of y) is omitted for each candidate Ai, i.e. if the coefficient
of each y is set to 0.

Lemma 21. Let ck be the coefficients obtained by the generating function in Equation 6.4
and let PLB(DomCount(B,Q) = k) be the lower bound derived by applying the generating
function in Equation 6.3 and exploiting Lemma 20. It holds that

ck = PLB(DomCount(B,Q) = k),

i.e. the lower bound obtained by the (non-uncertain) generating function in Equation 6.4
is as good as the lower bound obtained using the technique in Section 6.4.4.

Proof. The lower bound derived using the uncertain generating function for the probability
DomCount(B,Q) = k is equal to the coefficient ck,0. The coefficient ck,0 corresponds to
the variable xky0 = xk. Since Equation 6.4 and Equation 6.3 are identical except for the
variables containing at least one y, but no y is contained in the variable of the coefficient
ck,0 in Equation 6.3, it is identical to the coefficient ck in Equation 6.4.

We can see that we can use a (non-uncertain) generating function to derive the same
lower bound. The advantage here is that the (non-uncertain) generating function is easier
to compute, due to a much (linear in k) lower number of coefficients. However, deriving
an upper bound of the probability DomCount(B,Q) = k is not as easy, because the upper
bound does use the uncertainty of objects. An upper bound can be derived using the
following generating function:

FN =
∏

i∈1,...,N

[(PUB(Ai ≺Q B) · x+

(1− PLB(Ai ≺Q B))] =
∑
i≥0

cix
i. (6.5)
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The idea is to use a conservative approximation PUB(Ai ≺Q B) for the probability that
Ai dominates B and a conservative approximation 1 − PLB(Ai ≺Q B) for the probability
that Ai does not dominate B. The difference of this generating function compared to
the uncertain generating function (cf. Equation 6.3) is that the uncertain percentage (the
coefficient of y) is added to both probabilities P (Ai ≺Q B) and P (¬(Ai ≺Q B))3.

Lemma 22. Let ck be the coefficients obtained by the generating function in Equation 6.5
and let PLB(DomCount(B,Q) = k) be the lower bound derived by applying the generating
function in Equation 6.3 and exploiting Lemma 20. It holds that

ck ≥ PLB(DomCount(B,Q) = k),

i.e. the upper bound obtained by the (non-uncertain) generating function in Equation 6.4
is in general not as good as the lower bound obtained using the technique in Section 6.4.4.

Proof. We give an example where the upper bound derived by Equation 6.4 is worse than
the upper bound derived by Equation 6.3 and exploiting Lemma 20. Assume a database
containing uncertain objects A1, A2, B and Q. The task is to determine the probability
that DomCount(B,Q) = 1. Also assume that we have determined (e.g. as proposed
in Section 6.3.2) a lower bound PLB(A1 ≺Q B) (PLB(A2 ≺Q B)) and an upper bound
PUB(A1 ≺Q B) (PUB(A2 ≺Q B)) of the probability that A1 (A2) dominates B w.r.t. Q.
To ease the notation, let A+

i denote PLB(Ai ≺Q B), let A−i denote 1− PUB(Ai ≺Q B) and
let A?

i denote the uncertain fraction PUB(Ai ≺Q B)− PLB(Ai ≺Q B).

3Note that adding the coefficient of y to only one of the summands will result in incorrect bounds.
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Using this notation, Equation 6.3 becomes:

(A+x+ A?y + A−) · (B+x+B?y +B−)

Expansion yields:

A+B+x2 + A+B?xy + A+B−x+ A?B+xy + A?B?y2+

A?B−y + A−B+x+ A−B?y + A−B−

Exploiting Lemma 20 yields the following upper bound probability for DomCount(B,Q) =
1:

PUB(DomCount(B,Q) = 1) =

A+B? + A+B− + A?B+ + A?B? + A−B? + A−B+ + A−B?

On the other hand, Equation 6.4 becomes:

((A+ + A?)x+ A− + A?) · ((B+ +B?)x+B− +B?)

Expansion yields:

(A+ + A?) · (B+ +B?)x2 + (A+ + A?) · (B− +B?)x+

(A− + A?) · (B+ +B?)x+ (A− + A?) · (B− +B?)

Extracting the coefficient c1 of x1 yields:

c1 = (A+ + A?) · (B− +B?) + (A− + A?) · (B+ +B?)

Expansion yields:

c1 = A+B− + A+ +B? + A?B− + A?B?+

A−B+ + A−B? + A?B+ + A?B?

Comparing PUB(DomCount(B,Q) = 1) and c1, we obtain:

c1 − PUB(DomCount(B,Q) = 1) = A?B?

Thus, the upper bound c1 of the (non-uncertain) generating function is greater (and thus
worse) than the upper bound PUB(DomCount(B,Q) = 1) of the uncertain generating
function by a total of A?B?.

Intuitively, the problem of the upper bound using the (non-uncertain) generating func-
tion is that the uncertain fraction (i.e. A?) is added to both the probability that Ai
dominates B (i.e. A+) and to the probability that Ai does not dominate B (i.e. A−).
Therefore, this approach incorrectly considers some possible worlds more often than once.
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6.4.6 Efficient Domination Count Approximation Based on Dis-
junctive Worlds

Since the uncertain objects B and Q appear in each domination relation P (A1 ≺Q B),
..., P (AC ≺Q B) that is to evaluate, we cannot split objects B and Q independently (cf.
Section 6.4.1). The reason for this dependency is that knowledge about the predicate
(Ai ≺Q B) may impose constraints on the position of B and Q. Thus, for a partition
B1 ⊂ B, the probability P (Aj ≺Q B1) may change given (Ai ≺Q B) (1 ≤ i, j ≤ C, i 6= j).
However, note:

Lemma 23. Given fixed partitions B′ ⊆ B and Q′ ⊆ Q, then the random variables (Ai ≺Q′
B′) are mutually independent for 1 ≤ i, j ≤ C, i 6= j.

Proof. The proof of this lemma is analogous to the proof of Lemma 19.

This allows us to individually consider the subset of possible worlds where b ∈ B′

and r ∈ Q′ and use Lemma 23 to efficiently compute the approximated domination count
probabilities DomCountkLB(B′, Q′) and DomCountkUB(B′, Q′) under the condition that B
falls into a partition B′ ⊆ B and Q falls into a partition Q′ ⊆ Q. This can be performed
for each pair (B′, Q′) ∈ B × Q, where B and Q denote the decompositions of B and Q,
respectively. Now, we can treat pairs of partitions (B′, Q′) ∈ B × Q independently, since
all pairs of partition represent disjunctive sets of possible worlds due to the assumption
of a disjunctive partitioning. Exploiting this independency, the PDF of the domination
count DomCount(B,Q) of the total objects B and Q can then be obtained by creating an
uncertain generating function for each pair (B′, Q′) to derive a lower and an upper bound
of P (DomCount(B′, Q′) = k) and then computing the weighted sum of these bounds as
follows:

DomCountkLB(B,Q) =∑
B′∈B,Q′∈Q

DomCountkLB(B′, Q′) · P (B′) · P (Q′).

The complete algorithm of our domination count approximation approach can be found in
the next Section.
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6.5 Implementation

Algorithm 1 Probabilistic Domination Count Algorithm
Require: : Q, B, DB
1: influenceObjects = ∅; CompleteDominationCount = 0
2: //Complete Domination
3: for all Ai ∈ DB do
4: if DDCOptimal(Ai, B,Q) then
5: CompleteDominationCount++
6: else if ¬DDCOptimal(B,Ai, Q) then
7: influenceObjects = influenceObjects ∩Ai
8: end if
9: end for

10: //probabilistic domination count
11: DomCountLB= [0,...,0] //length |DB|
12: DomCountUB= [1,...,1] //length |DB|
13: while ¬ stopcriterion do
14: split(Q), split(B), split(Ai ∈ DB)
15: for all B′ ∈ B, Q′ ∈ Q do
16: candLB= [0,...,0] //length |uncertainObjects|
17: candUB= [1,...,1] //length |uncertainObjects|
18: for all (0 < i < |influenceObjects|) do
19: Ai = influenceObjects[i]
20: for all A′i ∈ Ai do
21: if DDCOptimal(A

′
i, B
′, Q′) then

22: candLB [i]+=(P (A′i))
23: else if DDCOptimal(B

′, A′i, Q
′) then

24: candUB [i]-=(P (A′i))
25: end if
26: end for
27: end for
28: compute DomCountLB(B′, Q′) and DomCountUB(B′, Q′) using UGFs.
29: for all (0 < i < DB) do
30: DomCountLB [i]+=DomCount(B′, Q′)LB · P (B′) · P (Q′)
31: DomCountUB [i]+=DomCount(B′, Q′)UB · P (B′) · P (Q′)
32: end for
33: end for
34: ShiftRight(DomCountLB ,CompleteDominationCount)
35: ShiftRight(DomCountUB ,CompleteDominationCount)
36: end while
37: return (DomCountLB , DomCountUB)
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Algorithm 1 is a complete method for iteratively computing and refining the prob-
abilistic domination count for a given object B and a query object Q. The algorithm
starts by detecting complete domination (cf. Section 6.3.1). For each object that com-
pletely dominates B, a counter CompleteDominationCount is increased and each object
that is completely dominated by B is removed from further consideration, since it has
no influence on the domination count of B. The remaining objects, which may have
a probability greater than zero and less than one to dominate B, are stored in a set
influenceObjects. The set influenceObjects is now used to compute the probabilistic
domination count (DomCountLB, DomCountUB)4: The main loop of the probabilistic
domination count approximation starts in line 13. In each iteration, B, Q, and all in-
fluence objects are partitioned. For each combination of partitions B′ and Q′, and each
database object Ai ∈ influenceObjects, the probability P (Ai ≺Q′ B′) is approximated
(cf. Section 6.4.2). These domination probability bounds are used to build an uncertain
generating function (cf. Section 6.4.4) for the domination count of B′ w.r.t. Q′. Finally,
these domination counts are aggregated for each pair of partitions B′, Q′ into the domina-
tion count DomCount(B,Q) (cf. Section 8.5.3). The main loop continues until a domain-
and user-specific stop criterion is satisfied. For example, for a threshold kNN query, a stop
criterion is to decide whether the lower (upper) bound that B has a domination count of
less than (at least) k, exceeds (falls below) the given threshold.

The progressive decomposition of objects (line 14) can be facilitated by precomputed
split points at the object PDFs. More specifically, we can iteratively split each object X
by means of a median-split-based bisection method and use a kd-tree [17] to hierarchi-
cally organize the resulting partitions. The kd-tree is a binary tree. The root of a kd-tree
represents the complete region of an uncertain object. Every node implicitly generates a
splitting hyperplane that divides the space into two subspaces. This hyperplane is perpen-
dicular to a chosen split axis and located at the median of the node’s distribution in this
axis. The advantage is that, for each node in the kd-tree, the probability of the respective
subregion X ′ is simply given by 0.5X

′.level−1, where X ′.level is the level of X ′. In addition,
the bounds of a subregion X ′ can be determined by backtracking to the root. In general,
for continuously partitioned uncertain objects, the corresponding kd-tree may have an in-
finite height, however for practical reasons, the height h of the kd-tree is limited. The
choice of h is a trade-off between approximation quality and efficiency: for a very large
h, considering each leaf node is similar to applying integration on the PDFs, which yields
an exact result; however, the number of leaf nodes, and thus the worst case complexity
increases exponentially in h. Note that our experiments (c.f. Section 6.6) show that a
low h value is sufficient to yield reasonably tight approximation bounds. Yet it has to be
noted, that in the general case of continuous uncertainty, our proposed approach may only
return an approximation of the exact probabilistic domination count. However, such an
approximation may be sufficient to decide a given predicate as we will also see in Section

4DomCountLB and DomCountUB are lists containing, at each position i, a lower and an upper bound
for P (DomCount(B,Q) = i), respectively. This notation is equivalent to a single uncertain domination
count PDF.
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6.6 and even in the case where the approximation does not suffice to decide the query
predicate, the approximation will give the user a confidence value, based on which a user
may be able decide whether to include an object in the result.

For kNN queries, the total complexity to compute the uncertain generating function
can be improved from O(|Cand|3) to O(|Cand| ·k2) since it can be observed from Corollary
5 that for kNN queries, we only require the section of the PDF of DomCount(B,Q) where
DomCount(B,Q) < k, i.e. we only need to know the probabilities P (DomCount(B,Q) =
x), x < k. This can be exploited to improve the runtime of the computation of the PDF of
DomCount(B,Q) as follows: Consider the iterative computation of the generating func-
tions F1, ...,F |cand|. For each F l, 1 ≤ l ≤ |cand|, we only need to consider the coefficients
ci,j in the generating function F i where i < k, since only these coefficients have an influ-
ence on P (DomCount(B,Q) = x), x < k (cf. Section 20). In addition, we can merge all
coefficients ci,j, ci′,j′ where i = i′, i + j > k and i′ + j′ > k, since all these coefficients
only differ in their influence on the upper bounds of P (DomCount(B,Q) = x), x ≥ k,
and are treated equally for P (DomCount(B,Q) = x), x < k. Thus, each F l contains at
most

∑k+1
i=1 i coefficients (one ci,j for each combination of i and j where i + j ≤ k). Thus

reducing the total complexity to O(k2 · |cand|).

6.6 Experimental Evaluation

In this section, we review the characteristics of the proposed algorithm on synthetic and
real-world data. The algorithm will be referred to as IDCA (Iterative Domination Count
Approximation). We performed experiments under various parameter settings. Unless
otherwise stated, for 100 queries, we chose B to be the object with the 10th smallest
MinDist to the query object Q. We used a synthetic dataset with 10,000 objects modeled
as 2D rectangles. The degree of uncertainty of the objects in each dimension is modeled
by their relative extent. The extents were generated uniformly and at random with 0.004
as maximum value. For the evaluation on real-world data, we utilized the International Ice
Patrol (IIP) Iceberg Sightings Dataset5. This dataset contains information about iceberg
activity in the North Atlantic in 2009. The latitude and longitude values of sighted icebergs
serve as certain 2D mean values for the 6,216 probabilistic objects that we generated. Based
on the date and the time of the latest sighting, we added Gaussian noise to each object,
such that the passed time period since the latest date of sighting corresponds to the degree
of uncertainty (i.e. the extent). The extents were normalized w.r.t. the extent of the data
space, and the maximum extent of an object in either dimension is 0.0004.

6.6.1 Runtime of the Monte-Carlo-based Approach

To the best of our knowledge, there exists no approach which is able to process uncertain
similarity queries on probabilistic databases with continuous PDFs. A naive approach

5The IIP dataset is available at the National Snow and Ice Data Center (NSIDC) web site
(http://nsidc.org/data/g00807.html).
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Figure 6.6: Optimal vs. MinMax decision criterion.

needs to consider all possible worlds and thus needs to integrate over all object PDFs,
implying a runtime exponentially in the number of objects. Since this is not applicable
even for small databases, we adapted an existing approach to cope with the conditions.
The approach most related to our work is [131], which solves the problem of computing the
domination count for a certain query and discrete distributions within the database objects.
Thus the proposed comparison partner works as follows: Draw a sufficiently large number S
of samples from each object by Monte-Carlo-Sampling. Then, for each sample qi ∈ Q of the
query, apply the algorithm proposed in [131] to compute an exact probabilistic domination
count PDF of an object B. As proposed in [131], this is done using the generating function
technique and using an and/xor tree to combine individual samples into discrete distributed
uncertain objects. Finally, accumulate the resulting certain domination count PDFs of each
qi ∈ Q into a single domination count PDF by taking the average. The execution time for
this approach, which we will refer to as MC in the following, is shown in Figure 6.5. It
can be observed that for a reasonable sample size (which is required to achieve a result
that is close to the correct result with high probability) the runtime becomes very large.

Note that our comparison partner only works for discrete uncertain data (cf. Sec-
tion 6.6.1). To make a fair comparison our approach relies on the same uncertainty model
(default: 1000 samples/object). Nevertheless, all the experiments yield analogous results
for continuous distributions.
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6.6.2 Optimal vs. Min/Max Decision Criterion

In the first experiment, we evaluate the gain of pruning power using the complete sim-
ilarity domination technique (cf. Section 6.3.1) instead of the state-of-the-art min/max
decision criterion to prune uncertain objects from the search space. The first experiment
evaluates the number of uncertain objects that cannot be pruned using complete domi-
nation only, that is the number of candidates are to evaluate in our algorithm. Figure
6.6(a) shows that our domination criterion (in the following denoted as optimal) is able to
prune about 20% more candidates than the min/max pruning criterion. In addition, we
evaluated the domination count approximation quality (in the remainder denoted as un-
certainty) after each decomposition iteration of the algorithm, which is defined as the sum∑N

i=0DomCount
i
UB(B,Q) − DomCountiLB(B,Q). The result is shown in Figure 6.6(b).

The improvement of the complete domination (denoted as iteration 0) can also be observed
in further iterations. After enough iterations, the uncertainty converges to zero for both
approaches.
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Figure 6.9: Impact of influencing objects.

6.6.3 Iterative Domination Count Approximation

Next, we evaluate the trade-off of our approach regarding approximation quality and the
invested runtime of our domination count approximation. The results can be seen in Figure
6.7 for different sample sizes and datasets. It can be seen that initially, i.e. in the first
iterations, the average approximation quality (avg. uncertainty of an influenceObject)
decreases rapidly. The less uncertainty left, the more computational power is required to
reduce it any further. Except for the last iteration (resulting in 0 uncertainty) each of
the previous iterations is considerably faster than MC. In some cases (see Figure 6.7(b))
IDCA is even faster in computing the exact result.

6.6.4 Queries with a Predicate

Integrated in an application one often wants to decide whether an object satisfies a predi-
cate with a certain probability. In the next experiment, we posed queries in the form: Is
object B among the k nearest neighbors of Q (predicate) with a probability of 25%, 50%,
75%? The results are shown in Figure 6.8 for various k-values. With a given predicate,
IDCA is often able to terminate the iterative refinement of the objects earlier in most of
the cases, which results in a runtime which is orders of magnitude below MC. In average
the runtime is below MC in all settings.

6.6.5 Number of influenceObjects

The runtime of the algorithm is mainly dependent on the number of objects which are
responsible for the uncertainty of the rank of B. The number of influenceObjects depends
on the number of objects in the database, the extension of the objects and the distance
between Q and B. The larger this distance, the higher the number of influenceObjects. For
the experiments in Figure 6.9(a) we varied the distance between Q and B and measured
the runtime for each iteration. In Figure 6.9(b) we present runtimes for different sizes of
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the database. The maximum extent of the objects was set to 0.002 and the number of
objects in the database was scaled from 20,000 to 100,000. Both experiments show that
IDCA scales well with the number influencing objects.

6.7 Conclusions

In this chapter, we applied the concept of probabilistic similarity domination on uncertain
data. We introduced a geometric pruning filter to conservatively and progressively approx-
imate the probability that an object is being dominated by another object. An iterative
filter-refinement strategy is used to stepwise improve this approximation in an efficient
way. Specifically we propose a method to efficiently and effectively approximate the dom-
ination count of an object using a novel technique of uncertain generating functions. We
show that the proposed concepts can be used to efficiently answer probabilistic k-nearest
neighbor queries while keeping correctness according to the possible world semantics. Our
experiments show that our iterative filter-refinement strategy is able to achieve a high level
of precision at a low runtime.
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Chapter 7

Probabilistic Ranking on Uncertain
Data

This chapter introduces a scalable approach for probabilistic similarity ranking on uncer-
tain vector data. Uncertain objects are modelled using the discrete X-tuple model. The
objective is to rank the uncertain data according to their distance to a reference object.
We propose a framework that incrementally computes for each object instance and ranking
position, the probability of the object falling at that ranking position. The resulting rank
probability distribution can serve as input for several state-of-the-art probabilistic ranking
models. Existing approaches compute this probability distribution by applying the Poisson
binomial recurrence technique of quadratic complexity. In this chapter we theoretically as
well as experimentally show that our framework reduces this to a linear-time complexity
while having the same memory requirements, facilitated by incremental accessing of the
uncertain vector instances in increasing order of their distance to the reference object.
Furthermore, we show how the output of our method can be used to apply probabilistic
ranking for the objects, according to different state-of-the-art definitions. We conduct an
experimental evaluation on synthetic and real data, which demonstrates the efficiency of
our approach.

7.1 Introduction

Similarity ranking is a hot topic in database research because it plays a major role in a
large number of emerging applications, such as data retrieval, decision support systems,
and data mining that require exploratory querying of uncertain databases. For example,
clustering and ranking have a mutual reinforcement property for search engines. While
search engines use clustering to identify groups of relevant objects, ranking is used to
report the most important first. A ranking query orders the objects in a database with
respect to their similarity to a reference object. In a spatial database context, ranking
queries return the contents of a spatial object set (e.g., restaurants) in increasing order of
their distance to a reference location. In a database of images, a similarity query ranks
the feature vectors of images in increasing order of their distance (i.e., dissimilarity) to a
query image.
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In this chapter, we focus on similarity ranking of uncertain vector data. Prior work
in this direction includes [36, 55, 172, 171, 203]. For the special case where all objects
are represented by a Gaussian distribution, a solution for probabilistic ranking is given by
[36]. However, this solution cannot be extended to handle arbitrary distributions, as this
approach involves expensive integrations of the pdf’s. All other mentioned publication,
employ the x-relations model used in the Trio system [7]. In this chapter, we once more
adopt the same model.

Consider, for example, a set of three two-dimensional objects A, B, and C (e.g., lo-
cations of mobile users), and their corresponding uncertain instances {a1, a2}, {b1, b2, b3},
and {c1, c2, c3}, as shown in Figure 7.1(a). Each instance carries a probability (shown in
brackets) and instances of the same object are mutually-exclusive. Assume that we wish
to rank the objects A, B, and C according to their distances to the query point q shown
in the figure. Clearly, several rankings are possible. In specific, each combination of object
instances defines an order. For example, for combination {a1, b1, c1} the object ranking is
(B,A,C) while for combination {a2, b3, c1} the object ranking is (A,B,C).
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Figure 7.1: Object Instances and Rank Probability Graph

This example illustrates the ambiguity of ranking in uncertain data. However, most
applications require the definition of a non-ambiguous object ranking. For example, assume
that a robbery took place at location q and the objects correspond to the positions of
suspects that are sampled around the time that the robbery took place. The probabilities
of the samples depend on various factors (e.g., time-difference of the sample to the robbery
event, errors of capturing devices, etc.). As an application, we may want to define a
definite probabilistic proximity ordering of the suspects to the event, in order to prioritize
interrogations.
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Various top-k query approaches have been proposed generating un-ambiguous rankings
from probabilistic data. Examples are U-topk and U-kRanks [172], PT-k [91], Global top-k
[213], and expected rank [55]. A summary of these ranking models can be found in Section
7.5. All of them attempt to weigh the objects based on their probability to be in each of
the first k ranks, but they use different ways to define the weights.

A common module in most of these approaches, with the only exception being the ex-
pected ranks approach of [55], is the computation for each object instance x the probability
Pi that i objects are closer to q than x for all 1 ≤ i ≤ k. The resulting probabilities are
aggregated to build the probability of each object at each rank. For example, the U-kRanks
query reports the ith result as the object that is the most likely to be ranked ith over all
possible worlds. For this computation, we obviously need the probabilities of all instances
to be ranked ith over all possible worlds. The probability that an object is ranked at a spe-
cific position i can be computed by summing the probabilities of the possible worlds that
support this occurrence. In our example, the probability that object A occurs as first one
is 0.46 and the probability that object B is the first is 0.54. All possible occurrences and
the corresponding probabilities are represented by the object-rank bipartite graph which
is shown in Figure 7.1(b). Non-existing edges imply zero probability, i.e. it is not possible
that the object occurs at the corresponding ranking position. In this example, all instances
of A precede all those of C, so C cannot occur as first object and A cannot be ranked to
the last position.

In this chapter, we propose a framework that, given a database with uncertain vector
objects, computes the rank probabilities of the object instances (e.g., a1) in linear time to
the total number of instances of all objects. Here we assume that the instances are accessed
in increasing distance order to the query object q (e.g., with the help of a nearest neighbor
search algorithm [88]). As these can be aggregated on-the-fly, our framework also computes
the rank probabilities of the objects at the same cost. This is a great improvement, over
the state-of-the-art [203], which computes these probabilities in quadratic time. Since
the number of possible worlds is exponential in the number of uncertain objects, it is
impractical to enumerate all of them in order to find the rank probabilities of all object
instances. Recently, it has been shown in [203] that we can compute the probabilities
between all object instances and ranks in O(kn2) time, where k is the maximum ranking
position and n is the number of object instances required to be accessed until the solution
is confirmed. This solution can be applied to all problems that comply to the x-relation
model (including our problem). In this chapter, we propose a significant improvement of
this approach, which reduces the time complexity to O(kn).

7.1.1 Contributions and Outline

The main contributions of this chapter can be summarized as follows:

• Framework: We propose a framework based on iterative distance browsing that
efficiently supports probabilistic similarity ranking in uncertain vector databases.
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• Probabilistic Ranking Module: We present a novel and theoretically founded ap-
proach for computing the rank probabilities of each object. We prove that our method
reduces the computational cost of the rank probabilities from O(kn2), achieved by
the best currently known method, to O(kn).

• Ranking Queries on Probabilistic Data: We show how diverse state-of-the-art
probabilistic ranking models can use our framework to accelerate computation.

• Experiments: We conduct an experimental evaluation, using real and synthetic
data, which demonstrates the applicability of our framework and verifies our theo-
retical findings.

The rest of the chapter is organized as follows: In the next section, we survey existing
work in the field of managing and querying uncertain data. In Section 7.3, we introduce
our framework for computing the rank probabilities of uncertain object instances, followed
by the details regarding the efficient incremental rank probability computation for each
object instance.

The complete algorithm for computing the rank probabilities for all instances and the
corresponding objects is presented in Section 7.4. In Section 7.5, we discuss in detail how
our method can be used as a module in various models that rank the objects according to
the rank probabilities of their instances. We experimentally evaluate the efficiency of our
approach in Section 7.6 and conclude the chapter in Section 7.7.

7.2 Related Work

An initial approach for probabilistic ranking in uncertain databases was presented by [129].
This work proposes spatial and probabilistic pruning strategies, which allow to identify
object that cannot possibly have a sufficiently high probability to be the top-k closest
object to a query point. However, this work does not present an efficient solution for
the refinement of the remaining candidate objects that have not been pruned. Instead, a
straight-forward approach is presented which enumerates all possible worlds to compute
exact probabilities for an object to be at a ranking position. One of the first approaches
to improve this computation for probabilistic ranking queries is [27]. In this work, a
divide and conquer method for accelerating the computation of the ranking probabilities
is proposed. Although the proposed approach achieves a significant speed-up compared
to the naive solution incorporating each possible database instance, its worst-case runtime
is still exponential. Related to our ranking problem, significant work has been done in
the field of probabilistic top-k query processing. Soliman et al. [172] were the first who
studied such problems on the x-relations model of [16]. They proposed two ways of ranking
uncertain tuples. In the first, uncertain top-k (U-Topk) query, the objective is to find the
k-permutation of the most likely tuples to be the top-k. In our setting, this corresponds
to finding the top-k most probable object instances (belonging to different objects) in all
possible worlds. The uncertain k-ranks query (U-kRanks) reports a probabilistic ranking of
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the tuples (again, not the x-tuples). The proposed solution shows a run-time exponential
in the number of ranked objects k. This inefficient run-time can be explained by the
probabilistic result semantics (see Section 2.4): Unlike the works of [27, 55, 171, 203],
and unlike this chapter, the work of [172] uses result based query semantics (c.f. Section
2.4.2). For this reason, the number of possible results having a non-zero probability is in
O(|DB|k). Nevertheless, [172] is able to give an efficient solution for the special case where
all tuples are mutually independent. This assumption however does not generally hold in
the x-relation model, where tuples of the same x-relation are mutual exclusive.

At the same time Re et al. proposed in [155] an efficient but approximative probabilistic
ranking based on Monte-Carlo sampling. Later, Yi et al. proposed in [203] the first
efficient exact probabilistic ranking approach for the x-relation model, for both cases of
single-alternative x-tuples only, i.e. x-tuples with only one uncertain instance, and multi-
alternative x-tuples. They proposed Poisson-binomial-recurrence based methods for the
computation of uncertain ranking queries, which have much lower costs than the previously
best known results. Furthermore, they proposed early stopping conditions for accessing
the tuples. Their methods for U-Topk and U-kRanks queries have O(nlogk) and O(kn2)
time complexity, respectively. The cost of the U-kRanks algorithm is dominated by the
computation of the probability of each accessed tuple to be in each of the k first ranks. In
this chapter, we also use this as a module of finding the object-rank probabilities. However,
we propose an improvement of their O(kn2) algorithm that does the same work in O(kn)
without increasing the memory requirements.

In a recent paper, Cormode et al. [55] reviewed alternative top-k ranking approaches
for uncertain data, including the U-Topk and U-kRanks queries, and argued for a more
robust definition of ranking, namely the expected rank for each tuple (or x-tuple). This is
defined by the weighted sum of the ranks of the tuple in all possible worlds, where each
world in the sum is weighed by its probability. The k tuples with the lowest expected ranks
are argued to be a more appropriate definition of a top-k query than previous approaches.
Nevertheless, we found by experimentation that such a definition may not be appropriate
for ranking objects (i.e., x-tuples), whose instances have large variance (i.e., they are
scattered far from each other in space). In general, the result of this ranking method is
similar to the brute-force approach that would take the mean of the instances for each
object and rank these means. On the other hand, approaches that take into consideration
the rank probabilities (e.g., U-kRanks) would be more suitable for such data. This is the
reason why we focus on the computation of rank probabilities in this chapter. Another
piece of recent related work is [171], where the goal is to rank uncertain objects (i.e.,
x-tuples) whose score is uncertain and can be described by a range of values. Based on
these ranges, the authors define a graph that captures the partial orders among objects.
This graph is then processed to compute U-kRanks and other queries. Although this work
has similar objectives to ours, it operates on a different input, where the distribution of
uncertain scores is already known, as opposed to our work which dynamically computes
this distribution by performing a linear scan over the ordered object instances.

Another efficient solution for probabilistic ranking in uncertain data has been proposed
by Li et. al ([125]) at VLDB 2009 receiving the best paper award. This approach is very
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similar to the approach presented in this chapter. In fact, the main difference is that
[125] uses the generating functions technique (c.f. Section 3.5), while this chapter uses
the Poisson binomial recurrence to compute the matching between ranking position and
probability. Please note that at time of submission our the publication this chapter is
based on, the publication of Li et. al had not yet been published. In fact, the work of Li
et. al was published in August 2009, while our journal manuscript ([25]) was submitted
April 2009; revised August 2009; accepted September 2009, but not published until April
2010. Both publications have been made independently of each other.

7.3 Probabilistic Ranking Framework

Our framework basically consists of two modules which are performed in an iterative way:

• The first module (distance browsing) incrementally retrieves the instances of all ob-
jects in order of their distance to q. This can be achieved with the help of a multi-
dimensional index (e.g., an R∗-tree index [15]), using an incremental nearest neighbor
search algorithm [88].

• The second module computes the probabilistic ranking Pi(x) of each object instance
x reported from the distance browsing for all 1 ≤ i ≤ k. In essence, this module
requires to perform a probabilistic ε-range query (c.f. Chapter 4) at each instance
reported from the distance browsing. This step is the main focus of this chapter,
because of its potentially high computational cost. A naive solution can perform this
computation in quadratic time and linear space [203], by running an ε-range query
from scratch at each instance, then applying the Poisson binomial recurrence. In this
chapter, we improve this method to a linear time and space complexity algorithm.
The key idea is an incremental computation, that uses the probabilistic ranks of the
previous object instance to derive those of the currently accessed one in O(k) time.
Section 7.3.2 has the details of this improvement.

Our framework is illustrated in Figure 7.2. The computation of the probability distribu-
tions is iteratively processed within a loop. First, we initialize a distance browsing among
the object instances starting from a given query point q. Other orders used for the instance
browsing, e.g. descending probability as discussed in [203], might possibly lead to faster
algorithms if the probability distribution favors them. However, the distance based order
is somewhat natural for NN search around a query point, as there exist efficient search
modules that support it. Furthermore, the distance based sorting supports spatial pruning
techniques in order to reduce the candidate set as far as possible due to restricted memory.
For each object instance fetched from the distance browsing (Module 1), we compute the
corresponding rank probabilities (Module 2) and update the rank probability distributions
generated from the probabilistic ranking routine.

Finally, in a postprocessing step, the rank probability distributions computed by our
framework can be used to generate a definite ranking of the objects or object instances.



7.3 Probabilistic Ranking Framework 137

object /
instance rank

object /
instance rank

DB p rankq(oj,i)

instance rank

k k

instance rank
1

2
DB p_ q( j, )

q

Module 1: Module 2:

3

4

5Module 1:
distance browsing among 

object instances

Module 2:
rank probability 

computation

5

iterative distance browsing 
and probability computation

rank probability 
distribution

probabilistic
ranking

Figure 7.2: Framework for probabilistic similarity ranking.

The objective is to find a non-ambiguous ranking where each object or object instance
is uniquely assigned to one rank. Here, one can plug-in any user-defined ranking method
that requires rank probability distributions of objects in order to compute unique positions.
In Section 7.5, we illustrate this for several well-known probabilistic ranking queries that
make use of such distributions. In particular, we demonstrate that by using our framework
we can process such queries in O(nlogn + k · n) time1, as opposed to existing approaches
that require O(k · n2) time.

7.3.1 Dynamic Probability Computation

Consider an uncertain object X, defined by m probabilistic instances X = {(x1, P (X =
x1)), . . . , (xm, P (X = xm))}. The probability that X is assigned to a given ranking position
i is equal to the chance that exactly i − 1 objects Z ∈ (DB \ X) are closer to the query
object q than the object X. This can be computed by aggregating the probabilities over all
instances (x, P (X = x)) of X that exactly i− 1 objects Z are closer to q than the instance
(x, P (X = x)). Formally,

Pi(X) =
∑

(x,P (X=x))∈X

(Pi(x) · P (X = x)). (7.1)

Based on the above formula we can compute the probabilities for an object X to be
assigned to each of the ranking positions i ∈ {1, . . . , k} by computing the probabilities Pi(x)
for all instances (x, P (X = x)) of X. As mentioned above, we perform this computation in

1Note that the O(nlogn) factor is due to pre-sorting the object instances according to their distances
to the query object. If we assume that the instances are already sorted then our framework can compute
the probability distributions for the first k rank positions in O(k · n) time.
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Table of Notations
DB an uncertain database
N the cardinality of DB
q a query vector in respect to which a probabilistic ranking is computed
k the ranking depth that determines the number of ranking positions of the

ranking query result
D a distance browsing of DB with respect to q
X,Y ,Z uncertain vector objects, each corresponding to a finite set of alternative

vector point instances
x,y,z vector point instances belonging to objects X,Y ,Z respectively.
P (X = x) the probability that an uncertain vector object X matches a given vector

point instance x.
Pi(X) the probability that object X is assigned to the i-th ranking position i, i.e.

the probability that exactly (i-1) objects in (DB\{X}) are closer to q than
X

Pi(x) the probability that an instance x of object X is assigned to the i-th ranking
position i, i.e. the probability that exactly i− 1 objects in (DB \ {X}) are
closer to q than x

AOL Active Object List
S a set of objects that have already been seen, i.e. the set that contains an

object X iff at least one instance of X has already been returned by the
distance browsing D

Pi,S,x the probability that exactly i objects X ∈ S are closer to q than an object
instance x

Px(Z) the probability that object Z is closer to query point q than the vector
point x; computable using Lemma 24

Table 7.1: Table of notations used in this chapter.

an iterative way, i.e., whenever we fetch a new object instance (x, P (X = x)) we compute
all probabilities Pi(x) ·P (X = x) for all i ∈ {1, . . . , k}. A list stores the current probability
state according to all ranking positions i ∈ {1, . . . , k} for each object for which we already
have accessed some instances and for which we expect to obtain further instances in the
remaining iterations. Whenever the probabilities according to a new object instance are
computed, we update the list by adding the new probabilities to the current probability
state.

In the following, we show how to compute the probabilities Pi(x) · P (X = x) for all
i ∈ {1, . . . , k} for a given object instance (x, P (X = x)) of an uncertain object X which is
assumed to be currently fetched from the distance browsing (Step 1). For this computation
we first need, for all uncertain objects Z ∈ DB, the probability Px(Z) that Z is closer to
q than the current object instance x. These probabilities are stored in an active object list
AOL, which can easily be kept updated due to the following obvious lemma:
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Lemma 24. Let q be the query object and (x, p(X = x)) be the object instance of an object
X fetched from the distance browsing in the current processing iteration. The probability
that an object Z 6= X is closer to q than x is

Px(Z) =
∑

(z,P (Z=z))∈Z

P (Z = z),

where (z, P (Z = z)) are the instances fetched in previous processing iterations.

Lemma 24 says that we can accumulate in overall linear space the sums of probabilities
of all instances for each object, which have been seen so far and use them to compute Px(Z)
given the current instance x and any object Z in D. In fact, we only need to manage in
the list the probabilities of those objects for which we already have accessed an instance
and for which we expect to access further instances in the remaining iterations.

Now let us see how we can use list AOL to efficiently compute the probabilities Pi(x).
Assume that (x, P (X = x)) ∈ X is the current object instance reported from distance
browsing. Let S = {Z1, . . . , Zj} be the set of objects which have been seen so far, i.e. for
which we already have seen at least one object instance. The probability that an object
X ∈ S appears at ranking position i of the first j objects seen so far only depends on
the event that i − 1 of the remaining j − 1 objects Z ∈ S (Z 6= X) appear before X, no
matter which of these objects fulfill this criterion. Let S denote the set of objects except
for object X seen so far, i.e. X /∈ S. Furthermore, let Pi,S,x denote the probability that
exactly i objects of S are closer to q than the object instance x. Now, we can exploit the
Poisson binomial recurrence (c.f. Section 3.4):

Pi,S,x = Pi−1,S\{Z},x · Px(Z) + Pi,S\{Z},x · (1− Px(Z)),

where

P0,∅,x = 1 and Pi,S,x = 0, if i > |S| ∨ i < 0. (7.2)

The correctness of Equation 7.2 can be shown using the intuition of the Poisson binomial
recurrence: the event that i objects of S are closer to q than x occurs if one of the following
conditions holds. In the case that an object Z ∈ S is closer to q than x, then i− 1 objects
of S \ {Z} must be closer to q. Otherwise, if we assume that object Z ∈ S is farther to q
than x, then i objects of S \ {X} must be closer to q.

For each object instance (x, P (X = x)) reported from the distance browsing, we have
to apply the recursive function as defined above. Specifically, we have to compute for
each instance (x, P (X = x)) the probabilities Pi,S,x for all i ∈ {0, . . . ,min{k, |S|}} and for
j = |S| subsets of S. If n = |DB|, this has a cost factor of O(k · n) per object instance
retrieved from the distance browsing, leading to a total cost of O(k · n2). Assuming that k
is a small constant, we have an overall runtime of O(n2).

In the following, we show how we can compute each Pi,S,x in constant time by utilizing
the probabilities computed for the previously accessed instance.
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7.3.2 Incremental Probability Computation

Let (x, P (X = x)) ∈ X and (y, P (Y = y)) ∈ Y be two object instances consecutively
returned from the distance browsing. W.l.o.g. let (x, P (X = x)) be returned before
(y, P (Y = y)). Each of the probabilities Pi,S\{Y },y (i ∈ {0, . . . , |S \{Y }|}) can be computed
from the probabilities Pi,S\{X},x in constant time. In fact, the probabilities Pi,S\{Y },y can
be computed by considering at most one recursion step backward.

The following three cases have to be considered. The first two are easy to tackle and
the third one is the most common and challenging one.

Case 1: Both instances belong to the same object, i.e. X = Y .

Case 2: Both instances belong to different objects, i.e. X 6= Y and (y, P (Y = y)) is the
first returned instance of object Y .

Case 3: Both instances belong to different objects, i.e. X 6= Y and (y, P (Y = y)) is not
the first returned instance of object Y .

Now, we show how the probabilities Pi,S\{Y },y for i ∈ {0, . . . , |S\{Y }|} can be computed
in constant time considering the above cases which are illustrated in Figure 7.3.

In the first case (cf. Figure 7.3(a)), the probabilities Px(Z) and Py(Z) of all objects in
Z ∈ S \ {X} are equal, because the instances of objects in S \ {X} that appear within
the distance range of q of y and within the distance range of x are identical. Since the
probabilities Pi,S\{Y },y and Pi,S\{X},x only depend on Px(Z) for all objects Z ∈ S \ {X}, it
is obvious that Pi,S\{Y },y = Pi,S\{X},x for all i.

In the second case (cf. Figure 7.3(b)) we can exploit the fact that Pi,S\{X},x does not
depend on Y . Thus, given the probabilities Pi,S\{X},x, we can easily compute the probability
Pi,S\{Y },y by incorporating the object X using the recursive Equation 7.2:

Pi,S\{Y },y =

Pi−1,S\{Y,X},y · Py(X) + Pi,S\{Y,X},y · (1− Py(X)).

Since S \ {Y,X} = S \ {X, Y } and no instance of any object in S \ {X, Y } appears within
the distance range of q according to y but not within the range according to x (cf. Figure
7.3(b)), the following equation holds:

Pi,S\{Y },y =

Pi−1,S\{X,Y },x · Py(X) + Pi,S\{X,Y },x · (1− Py(X)).

Furthermore, Pi−1,S\{X,Y },x = Pi−1,S\{X},x, because Y is not in the distance range according
to x and, thus, Y /∈ S \ {X}. Now, the above equation can be reformulated:

Pi,S\{Y },y =

Pi−1,S\{X},x · Py(X) + Pi,S\{X},x · (1− Py(X)). (7.3)
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Figure 7.3: Cases when updating the probabilities, assuming x was the last processed
instance and y is the current one.

All probabilities of the term on the right hand side in Equation 7.3 are known and, thus,
Pi,S\{Y },y can be computed in constant time assuming that the probabilities Pi,S\{X},x
computed in the previous step have been stored for all i ∈ {0, . . . , |S \ {X}|}.

The third case (cf. Figure 7.3(c)) is the general case which is not as straightforward
as the previous two cases and requires special techniques. Again, we assume that the
probabilities Pi,S\{X},x computed in the previous step for all i ∈ {0, . . . , |S \ {X}|} are
known. Similar to Case 2, the probability Pi,S\{Y },y is equal to:

Pi,S\{Y },y =

Pi−1,S\{X,Y },x · Py(X) + Pi,S\{X,Y },x · (1− Py(X)). (7.4)

Since the probability Py(X) is assumed to be known, now we are left with the compu-
tation of Pi,S\{X,Y },x for all i ∈ {0, . . . , |S \ {X, Y }|} by again exploiting Equation 7.2:

Pi,S\{X},x =
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Pi−1,S\{X,Y },x · Px(Y ) + Pi,S\{X,Y },x · (1− Px(Y ))

which can be resolved to

Pi,S\{X,Y },x =

Pi,S\{X},x − Pi−1,S\{X,Y },x · Px(Y )

1− Px(Y )
. (7.5)

With i = 0 we have

P0,S\{X,Y },x =
P0,S\{X},x − P−1,S\{X,Y },x · Px(Y )

1− Px(Y )
=

P0,S\{X},x

1− Px(Y )
,

because the probability P−1,S\{X,Y },x = 0 by definition (cf. Equation 7.2). The case i = 0
can be solved assuming that P0,S\{X},x is known from the previous iteration step.

With the assumption that all probabilities Pi,S\{X},x for all i ∈ {1, . . . , |S \ {X}|}
and Px(Y ) are available from the previous iteration step, we can use Equation 7.5 to
recursively compute Pi,S\{X,Y },x (1 ≤ i ≤ |S \ {X, Y }|) using the previously computed
Pi−1,S\{X,Y },x. Based on this recursive computation we obtain all probabilities Pi,S\{X,Y },x
(0 ≤ i ≤ |S \ {X, Y }|) which can used to compute the probabilities Pi,S\{Y },y for all
0 ≤ i ≤ |S \ {X, Y }| according to Equation 7.4.

7.3.3 Runtime Analysis

Building on this case-based analysis for the cost of computing Pi,S\{X},x for the currently
accessed instance x of an object X, we now prove that we can compute the rank probabil-
ities of all objects at cost O(nk), where n is the number of object instances accessed. The
following lemma suggests that the incremental cost per object instance access is O(k).

Lemma 25. Let (x, P (X = x)) ∈ X and (y, P (Y = y)) ∈ Y be two object instances
consecutively returned from the distance browsing. W.l.o.g., let us assume that the instance
(x, P (X = x)) was returned in the last iteration in which we computed the probabilities
Pi,S\{X},x for all 0 ≤ i ≤ |S \ {X}|. The next iteration, in which we fetch (y, P (Y = y))
the probabilities Pi,S\{Y },y for all 0 ≤ i ≤ min{k, |S \ {Y }|}, can be computed in O(k) time
and space.

Proof. In Case 1, the probabilities Pi,S\{X},x and Pi,S\{Y },y are equal for all 0 ≤ i ≤
min{k, |S \ {Y })|}. No computation is required (O(1) time) and the result can be stored
using at most O(k) space.

In Case 2, the probabilities Pi,S\{Y },y for all 0 ≤ i ≤ min{k, |S\{Y })|} can be computed
according to Equation 7.3 taking O(k) time. This assumes that the Pi,S\{X},x have to be
stored for all 0 ≤ i ≤ min{k, |S \ {Y }|}, requiring at most O(k) space.
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runtime table no precomputed D precomputed D
ours O(nlogn+kn) O(kn)
[125] O(nlogn+kn) O(kn)

[202, 203] O(kn2) O(kn2)
[27] exponential exponential
[172] exponential exponential
[129] exponential exponential

Table 7.2: Runtime complexity comparison of the best-known approaches to our own
approach.

In Case 3, we first have to compute and store the probabilities Pi,S\{X,Y },x for all
0 ≤ i ≤ min{k, |S \ {X, Y })|} using the recursive function in Equation 7.5. This can be
done in O(min{k, |S \ {X, Y })|}) time and space. Next, the computed probabilities can
be used to compute Pi,S\{Y },y for all 0 ≤ i ≤ min{k, |S \ {Y })|} according to Equation 7.4
which again takes at most O(min{k, |S \ {X, Y })|}) time and space.

After giving the runtime evaluation of the processing of one single object instance, we
are now able to extend the cost model for the whole query process. According to Lemma
25, we can assume that each object instance can be processed in constant time if we
assume that k is constant. If we assume that the total number of object instances in our
database is linear to the number of database objects we would get a runtime complexity
which is linear in the number of database objects, more exactly particular O(kn) where
n is the size of the database and k the specified depth of the ranking. Up to now, our
model assumes that the preprocessing step and the postprocessing step of our framework
requires at most linear runtime. Since the postprocessing step only includes an aggregation
of the results generated in Step 2 the linear runtime complexity of Step 3 is guaranteed.
Now, we want to examine the runtime of the object instance ranking in Step 1. Similar
to the assumptions that hold for our competitors [172, 202, 27] we can also assume that
the object instances are already sorted, which would involve linear runtime cost also for
Step 1. However, for the general case where we have to initialize a distance browsing first,
the runtime complexity of Step 1 would increase to O(nlogn). As a consequence, the total
runtime cost of our approach (including distance browsing) sums up to O(nlogn+kn). An
overview of the computation cost is given in Table 7.2. Keep in mind that the approach
proposed in [172] uses result based answer semantics, so for this work, the comparison is
not entirely fair. Also, recall that the approach of [55] has been published concurrently
and independently of the approach presented in this chapter.

Regarding the space complexity of our approach, we have to store, for each object in
the database, a vector of length k for the probabilistic ranking of size O(kn). In addition,
we have to store the AOL of at most size O(n), yielding a total space complexity of
O(kn+ n) = O(kn). Note that [202, 203] computes a different ranking (cf. Section 7.5 for
details) with a space complexity of O(n). To compute a probabilistic ranking according to
our definition, [202, 203] requires O(kn) space as well.
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7.4 Probabilistic Ranking Algorithm

Algorithm 2 Pseudocode of our ranking algorithm.
Probabilistic Ranking(DB,q)

Input: Database DB, Query Vector q
1 AOL = ∅
2 result = Matrix of zeros // size: |instances|*k
3 Pi(x) = [0,. . . ,0] // Length k
4 Pi(y) = [0,. . . ,0] // Length k
5
6 y = DB.next
7 updateAOL(y)
8 Pi(x)[0]=1
9 Add Pi(x) to the first line of result.
10 FOR (DB is not empty AND ∃p ∈ Pi(x): p > 0)
11 x = y
12 y = DB.next
13 updateAOL(y)
14
15 CASE 1: (c.f. Figure 7.3(a))
16 IF (Y = X)
17 Pi(y) = Pi(x)
18 END-IF
19
20 CASE 2: (c.f. Figure 7.3(b))
21 ELS-IF (Y 6∈ AOL)
22 P (X)=AOL.getProb(X)
23 Pi(y) = dynamicRound(Pi(x),Py(X))])
24 END-IF
25
26 CASE 3: (c.f. Figure 7.3(c))
27 ELSE // (Y != X)
28 P (X)=AOL.getProb(X)
29 P (Y )=AOL.getProb(Y )
30 adjustedProbs = adjustProbs(Pi(x),Py(Y ))
31 p-rank y = dynamicRound(adjustedProbs,Py(X))
32 END-IF
33
34 Add Pi(y) to the next line of result.
35 Pi(x) = Pi(y)
36 END-FOR
37 return result
38 END Probabilistic Ranking.
Output: Probabilistic Ranking (c.f. Definition )

The pseudocode of the algorithm for the probabilistic ranking is illustrated in Algorithm
2, providing the implementation details of the previously discussed steps. Our algorithm
requires a query object q and a distance browsing operator D (cf. [88]), that allows us to
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Algorithm 3 Pseudocode of a dynamic Iteration at instance y
dynamicRound(oldRanking,Py(X))

Input: oldRanking : Intermediate result without object X
Py(X): Prob. that object X is closer to q than instance y.

1 newRanking = [0,. . . ,0] // Length k
2 newRanking [0] =
3 oldRanking [0]*(1-Py(X))
4 FOR i = 1,. . . ,k-1
5 newRanking [i] =
6 oldRanking [i-1]*Py(X)
7 +oldRanking[i]*(1-Py(X))
8 END-FOR
9 return newRanking
10 END dynamicRound.
Output: Result including object X

Algorithm 4 Pseudocode of the algorithm that excludes one object Y from the current
result at instance y ∈ Y .
adjustProbs(oldRanking,Py(Y ))
Input: oldRanking : Intermediate result including object Y

Py(X): Prob. that another instance of object Y is closer to q than instance y.

1 adjustedRanking = [0,. . . ,0] // Length k
2 adjustedProbs[0] =
3 oldRanking [0] / Py(Y )
4 FOR i = 1,. . . ,k-1
5 adjustedProbs[i ] =

oldRanking[i]−oldRanking[i−1]∗Py(Y )
(1−Py(Y ))

6 END-FOR
7 return adjustedProbs
8 END adjustProbs.
Output: Intermediate result at instace y excluding object Y

iteratively access the object instances sorted in ascending order of their similarity distance
to a query object.

First, we initialize the active Object List (AOL) , a data structure that contains one
tuple (X,P (X)) for each object X that

• has previously been found in D, i.e. at least one instance of X has been processed
and

• has not yet been completely processed, i.e. at least one instance of X has yet to be
found,

associated with the sum P (X) of probabilities of all its instances that have been found.
The AOL offers two functionalities:
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• updateAOL(instance x): Adds the probability of x (P (X = x)) to P (X), where X
is the object that x belongs to.

• getProb(object X): Returns P (X).

Note that it is mandatory that the position of a tuple (X,P (X)) can be found in
constant time, in order to sustain the constant time complexity of an iteration. This can
be

• approached by means of hashing or

• reached by giving each object X the information about the location of its correspond-
ing instances (P (X)) at an additional space cost of O(n).

We also keep the result, a matrix that contains, for each object instance x that has been
found and each ranking position i, the probability Pi(x) that x is located at ranking position
i. Note that this result is instance-based. In order to get an object-based rank probability,
we can aggregate instances belonging to the same object, using Equation 7.1. Additionally,
we initialize two arrays p-rank x and p-rank y, each of length k, which contain, at any
iteration of the algorithm, the probabilities Pi,S\{X},x and Pi,S\{Y },y respectively, for all
0 ≤ i ≤ k. x ∈ X is the instance found in the previous iteration and y ∈ Y is the instance
found in the current iteration (see Figure 7.3).

In line 6, the algorithm starts by fetching the first object instance, which is closest to
the query q in the database. A tuple containing the corresponding object as well as the
probability of this instance is added to the AOL.

Then, the first position of p-rank x is set to 1 while all other k− 1 positions remain at
0, because

P1,S\{y},y = P1,∅,y = 1

and
Pi,S\{y},y = Pi,∅,y = 0

for i > 1 by definition (see Equation 7.2). This simply reflects the fact that the first
instance is always on rank 1. Note that p-rank y is implicitly assigned to p-rank x here.

Then, the first iteration of the main algorithm begins by fetching the next object
instance from D. Now, we have to distinguish the three cases explained in Section 7.3.

In the first case (line 16), both the previous and the current instance refer to the
same object. As explained in Section 7.3, we have nothing to do in this case, since
Pi,S\{X},x=Pi,S\{Y },y for all 0 ≤ i ≤ k − 1.

In the second case (line 21), the current instance refers to an object that has not been
seen yet. As explained in Section 7.3, we only have to apply an additional iteration of the
DP algorithm (cf. Equation 7.2). This dynamicRound algorithm is shown in Algorithm
3 and is used here to incorporate the probability that X is closer to y into p-rank y in a
single iteration of the dynamic algorithm.

In the third case (line 27), the current instance relates to an object that has already
been seen. Thus the probabilities Pi,S\{X},x depend on Y . As explained in Section 7.3, we
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first have to filter out the influence of Y on Pi,S\{X},x and compute Pi,S\{X,Y },x. This is
performed by the adjustProbs algorithm in Algorithm 4 utilizing the technique explained
in Section 7.3. Using the Pi,S\{X,Y },x, the algorithm then computes the Pi,S\{Y },y using a
single iteration of the dynamic algorithm like in case two.

At line 35, the computed ranking for instance y is added to the result. If the application
(i.e. the ranking method) requires objects to be ranked instead of instances, then p-rank y
is used to incrementally update the probabilities of Y for each rank.

The algorithm continues fetching object instances from the distance browsing operator
D and repeats this case analysis until either no more samples are left in DB or until an
object instance is found, for the probability zero for each of the first k positions. In the
later case, there exist k objects, that are closer to k with a probability of one and the
computation can be stoped, because the same k objects must be closer to all further object
instances in the database that have not yet been found.

7.5 Probabilistic Ranking Approaches

The method proposed in Section 7.3 efficiently computes for each uncertain object instance
xj and each ranking position i (0 ≤ i ≤ k − 1) the probability that xj has the ith rank.
However, most applications require an unique object ranking, i.e. each object (or object
instance) is uniquely assigned to exactly one rank. Various top-k query approaches have
been proposed generating deterministic rankings from probabilistic data which we call
probabilistic ranking queries. The question at issue is how our framework can be exploited
in order to significantly accelerate probabilistic ranking queries. In the remainder, we
show that our framework is able to support and significantly boost the performance of the
state-of-the-art probabilistic ranking queries. Specifically, we demonstrate this by applying
state-of-the-art ranking approaches including, U-kRanks, PT-k and Global top-k.

Note, that the following ranking approaches are based on the x-relation model [16, 7].
As mentioned before, the x-relation model conceptionally corresponds to our uncertainty
model for uncertain spatial data, where the possible spatial locations (instances) correspond
to tuples and uncertain spatial objects correspond to x-tuples.

7.5.1 Expected Score and Expected Ranks

The Expected Score and Expected Ranks [55] compute for each object instance its expected
score (rank) and rank the instances by this expected score (rank). Expected Ranks runs in
O(n · log(n))-time, thus outperforming exact approaches that do not use any estimation.
The main drawback of this approach is that by using the expected value estimator, infor-
mation is lost about the distribution of the objects. In the following, we will show how our
framework can be used to accelerate the remaining state-of-the-art approaches, including
U-kRanks, PT-k and Global top-k, to O(n · logn+ kn) runtime.
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Figure 7.4: Small example extract of a probabilistic ranking as produced by our framework.

7.5.2 U-kRanks

The U-kRanks [172] approach reports the most likely object instance at each rank i, i.e.
the instance that is most likely to be ranked i-th over all possible worlds. The approach
proposed in [172] has exponential runtime. The runtime has been reduced to O(n2k)
time in [202, 203]. Using our framework, the problem of U-kRanks can be solved in
O(n · log(n) + nk) time using the same space complexity as follows:
Use the framework to create the probabilistic ranking inO(n·log(n)+nk) as explained in the
previous section. Then, for each rank i, find the object instance argmaxj(p rankq(Xj, i))
that has the highest probability of appearing at rank i in O(nk). This is performed by (cf.
Figure 7.4) finding for each rank i the object instance which has the highest probability
to be assigned to rank i. Obviously, a problem of this problem definition is that a single
object instance oj may appear at more than one ranking position, or at no ranking position
at all. For example in 7.4, object instance A is ranked on both ranks 1 and 2, while object
instance B is ranked nowhere. The total runtime for U-kRanks has thus been reduced
from O(n2) to O(nlog(n) + kn), that is O(n ∗ log(n)) if k is assumed to be constant.

7.5.3 PT-k

The probabilistic threshold top-k query (PT-k) [91] problem fixes the problem of the previ-
ous definition by aggregating the probabilities of an object instance xj appearing at rank
k or better. Given a user-specified probability threshold p, PT-k returns all instances,
that have a probability of at least p of being at rank k or better. Note that in this defi-
nition, the number of results is not limited to k and depends on the threshold parameter
p. The model of PT-k consists of a set of instances and a set of generation rules that
define mutually exclusiveness of instances. Each object instance occurs in one and only
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one generation rule. This model conceptionally corresponds to the x-relation model (with
disjoint x-tupels). PT-k computes all result instances in O(nk) time while also assuming
that the instances are already pre-sorted, thus having a total runtime of O(nlog(n) + kn).
The framework can be used to solve the PT-k problem in the following way:
We create the probabilistic ranking in O(nk) as explained in the previous section. For each
object instance x, we compute the probability that x appears at position k or better (in
O(nk)). Formally, we return all instances x ∈ DB for which:

{x ∈ DB|
k∑
i=1

Pi(x) > p}

As seen in Figure 7.4, this probability can simply be computed by aggregating all prob-
abilities of an object instance to be ranked at k or better. For example, for k = 2 and
p = 0.5, we get A and B as results. Note that for p = 0.1, further object instances may be
in the result, because there must be further object instances (from object instances that
are left out here for simplicity) with a probability greater than zero to rank 1 and rank 2,
since the probability of their respective edges does not sum up to 1.0 yet.

Note that our framework is only able to match, not to beat the runtime of PT-k.
However, using our approach, we can additionally return the ranking order, instead of just
the top-k set.

7.5.4 Global top-k

Global top-k [213] is very similar to PT-k and ranks the object instances by their top-k
probability, and then takes the top-k of these. This approach has a runtime of O(n2k).
The advantage here is that, unlike in PT-k, the number of results is fixed, and there is no
user-specified threshold parameter. Here we can exploit the ranking order information that
we acquired in the PT-k using our framework to solve Global top-k in O(n · log(n) + kn)
time:
We use the framework to create the probabilistic ranking in O(n · log(n)+kn) as explained
in the previous section. For each object instance x, we compute the probability that x
appears at position k or better (in O(nk)) like in PT-k. Then, we find the k object
instances with the highest probability in O(k · log(k)).

7.6 Experimental Evaluation

We have performed extensive experiments to evaluate the performance of our proposed
probabilistic ranking approach proposed in Section 7.3 w.r.t. the database size (|DB|)
measured in the number of uncertain vector objects, ranking depth (k) and degree of
uncertainty (UD) as defined below. In the following, the ranking framework is briefly
denoted by PSR.
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7.6.1 Datasets and Experimental Setup

The probabilistic ranking was applied to a scientific real-world dataset SCI and several
artificial datasets ART X of varying size and degree of uncertainty. All datasets are based
on the discrete uncertainty model, i.e. each object is represented by a collection of vector
samples.

The SCI2 dataset that has been presented in Section 4.6.3 consisting of 1500 objects
where each object consists of 48 10-dimensional instances and each dimension represents
the concentrations of gasses such as CO, SO2, NO, NO2, and O3 measured over time.
These attributes are normalized within the interval [0,1] to give each attribute the same
weight.

The ART 1 dataset consists of 1,000,000 objects, each consisting of 20 object instances
for the scalability experiments. For the evaluation of the performance w.r.t. the rank-
ing depth and the degree of uncertainty we applied a collection ART 2 of datasets each
composing 10,000 objects. Each object is represented by a set of 20 3-dimensional in-
stances. The ART 2 datasets differs in the degree of uncertainty (UD) the corresponding
objects have. The degree of uncertainty (UD) reflects the following distribution of object
instances: each uncertain vector object is assumed to be located within an 3-dimensional
hyper-rectangle. The object instances are uniformly distributed within the corresponding
rectangle. In the following, we will refer to the side length of the rectangles as degree of
uncertainty (UD). The rectangles are uniformly distributed within a 10× 10× 10 vector
space. The ART 3 datasets are very similar to ART 3 datasets, except that the instances
of object (again 10,000 objects uniformly distributed in the vector space with 20 instances
each ) follow a three dimensional normal distribution. The datasets of ART 3 vary in the
degree of uncertain as well. For this dataset, the degree of uncertain simply denotes the
standard deviation of the normal distribution of the objects.

The degree of uncertainty is interesting in our performance evaluation since it is ex-
pected to have a significant influence on the runtime. The reason is that a higher degree
of uncertainty obviously leads to an higher overlap between the objects which influences
the size of the active object list (AOL) (cf. Section 7.4) during the distance browsing.
The higher the object overlap the more objects are expected to be in the AOL at a time.
Since the size of the AOL influences the runtime of the rank probability computation, a
higher degree of uncertainty is expected to lead to a higher runtime. This is experimentally
evaluated in Section 7.6.4.

7.6.2 Scalability

In this section, we give an overview of our experiments regarding the scalability of PSR.
We compare our results to the dynamic programming based rank probability computation
used for the U-kRanks method as proposed by Yi et al. in [202]. This method, in the
following denoted by YLKS, is the best approach currently known for solving the (instance-
based) rank probability problem (cf. Table 7.2). For a fair comparison, we used the PSR
framework to compute the same (instance-based) rank probability problem as described in
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Figure 7.5: Scalability evaluated on SCI2 for different k values.

Section 7.3. Let us note that the cost required to solve the object-based rank probability
problem is similar to that required to solve the instance-based rank probability problem.
This is because the former problem additionally only requires to build the sum over all
instance-based rank probabilities which can be done on-the-fly without additional cost.
Furthermore, we can neglect the cost required to build a final definite ranking (e.g. the
rankings proposed in Section 7.5) from the rank probabilities, because they can be also
computed on-the-fly by simple aggregations of the corresponding (instance-based) rank
probabilities.

For the sorting of the distances of the instances to the query point, we used a tuned
quicksort adapted from [18]. This algorithm offers O(n · log(n)) performance on many data
sets that cause other quicksort algorithms to degrade to quadratic runtime.

The results of our first scalability tests on the real-data set SCI2 are depicted in Figure
7.5. It can be observed in Figure 7.5(b) that the runtime of the probabilistic ranking
using the PSR framework increases linearly in the database size, whereas YLKS has a
runtime quadratic in the database size in the same parameter settings (cf. Figure 7.5(a)).
We can also see that this effect persists for different settings of k. Note that the effect of
the O(n · log(n)) sorting of the distances of the instances is insignificant on this relatively
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Figure 7.6: Scalability evaluated on ART 1 for different k values.

small dataset. The direct speed-up of the rank probability computation using PSR in
comparison to YLKS is depicted in Figure 7.5(c). It shows for different values of k, the

speed-up factor, that is defined as the ratio runtime(YLKS)
runtime(PSR)

describing the performance gain
of PSR vs. YLKS. It can be observed that, for a constant number of objects in the
database (|DB| = 1600), the ranking depth k has no impact on the speed-up factor. This
can be explained by the observation that both approaches scale linear in k.

Next, we evaluate the scalability of the database size based on the ART 1 dataset. The
results of this experiment are depicted in Figure 7.6. Figure 7.6(b) shows that we are able
to perform ranking queries in a reasonable time of less than 120 seconds, even for very large
database containing 1,000,000 and more objects, each having 20 instances (thus having a
total of 20,000,000 instances (tuples)). Note that an almost perfect linear scaleup can be
seen in Figure 7.6 despite of the O(n · log(n)) cost for sorting the database. This is due
to the very efficient quicksort implementation in [18] that our experiments have shown to
require only slightly worse than linear time.

In Figure 7.6(a), it can be observed, that due to the quadratic scaling of the YLKS
algorithm, it is inapplicable for relatively small databases of size 5000 or more. The direct
speed-up of the rank probability computation using PSR in comparison to YLKS for
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varying database size is depicted in Figure 7.6(c). Here, we can see that the speed-up of
our approach in comparison to YLKS increases linear with the size of the database which
is consistent with our runtime analysis in Section 7.3.

7.6.3 Ranking Depth k

The influence of the ranking depth k on the runtime performance of our probabilistic
ranking method PSR is studied in the next experiment. As depicted in Figure 7.7, where
the experiments were performed using both the SCI2 and the ART dataset, the influence
of an increasing k yields a linear effect on the runtime of PSR, but does not depend on
the type of the dataset. This effect can be explained by taking into consideration that each
iteration of Case 2 or Case 3 requires a probability computation for each ranking position
0 ≤ i ≤ k.

7.6.4 Influence of the Degree of Uncertainty

In the next experiment, we varied the uncertainty degree of objects using the ART 2
and ART 3 datasets. In the following experiments, the ranking depth is set to a fixed
value of k = 100. As previously discussed, a varying degree of uncertainty leads to an
increase of the overlap between the instances of the objects and thus, objects will remain
in the AOL for a longer time. The influence of the degree of uncertainty depends on the
probabilistic ranking algorithm. This statement is underlined by the experiments shown
in Figure 7.8. It can be seen in Figure 7.8(a) that PSR scales superlinear in the degree of
uncertainty at first, until a maximal value is reached. This maximal value is reached, when
the degree of uncertainty becomes so large that the instances of an object cover the whole
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vector space. In this case, objects remain on the AOL until almost the whole database
is processed in most cases due to the increased overlap of object instances. In this case
of extremely high uncertainty, almost no spatial pruning can be performed, slowing down
the algorithm by several orders of magnitude. It is also worth noting, that in our setting,
the algorithm performs worse on gaussian distributed data than on uniformly distributed
data. This is explained by the fact that the space covered by a normal distribution with
standard deviation x in each dimension, is generally larger than a hyper-rectangle with a
side length of x in each dimension. A comparison of the runtime of YLKS and PSR w.r.t.
the average AOL size is depicted in Figure 7.8(b) for both the uniform and the normal
distributed datasets. The degree of uncertain has a similar influence on both YLKSand
PSR.

7.6.5 Summary

The experiments presented in this section show that the theoretical analysis of our approach
given in Section 7.5 can be confirmed empirically on both artificial and real-world data.
The performance studies showed that our framework computing the rank probabilities
indeed reduces the quadratic runtime complexity of state-of-the-art approaches to linear.
Note that the cost required to pre-sort the object instances are neglected in our settings. It
could be shown that our approach scales very well even for large databases. The speed-up
gain of our approach w.r.t. the rank depth k has shown to be constant, which proofs that
both approaches scale linear in k. Furthermore, we could observe that our approach is
applicable for databases with a high degree of uncertainty (i.e. the degree of variance of
the instance distribution).
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7.7 Conclusions

In this chapter, we proposed a framework for efficient computation of probabilistic simi-
larity ranking queries in uncertain vector databases. We introduced a novel concept that
achieves a log-linear runtime complexity in contrast to the best-known existing approach
that solve the same problem with quadratic runtime complexity. Our concepts are theoret-
ically and empirically proved to be superior to all existing approaches. In an experimental
evaluation, we showed that our approach scales very well and, thus, is applicable even for
large databases. As future work, we plan to extend the concepts proposed in this chapter
to further uncertainty models.
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Chapter 8

Probabilistic Reverse k-Nearest
Neighbor Queries on Uncertain Data

According to Definition 6, a Reverse k-Nearest Neighbor (RkNN) query retrieves all objects
having a given query object as one of their k nearest neighbors. This chapter considers
probabilistic reverse nearest neighbor (PRNN) queries, which return the uncertain objects
having the query object as nearest neighbor with a sufficiently high probability. An algo-
rithm is proposed to efficiently answering PRNN queries using new pruning mechanisms
taking distance dependencies into account. Our experimental evaluation shows that our
approach is able to significantly outperform previous state-of-the.art approaches. In addi-
tion, it is shown how this approach can easily be extended to PRkNN (where k > 1) query
processing for which there is currently no efficient solution.

8.1 Introduction

The problem of RkNN query processing has been studied extensively on certain data
[104, 173, 180]. However, due to the immense number of applications dealing with uncertain
data, novel solutions to cope with uncertain objects are required. This chapter studies the
problem of probabilistic reverse k-nearest neighbor (PRkNN) search in uncertain databases.
A PRkNN query returns the set of objects having a sufficiently high probability to be the
reverse k-nearest neighbor of a query object. Note that the query object can be uncertain
as well.

There is a wide field of applications for PRNN queries (k=1), e.g. decision support,
marketing, location-based services among others [44, 130]. For instance, consider a movie
recommendation system that reports a list of movies that are similar to other movies
that a user likes. What a user likes is however a very subjective variable that depends
on user-specific preferences which cannot be measured. Therefore, each movie record is
assumed to be associated with a set of user reviews, each consisting of a set of attribute
values. Examples of such attributes are classification of the genre, humoristic value and
suspense. An example for two such records is given in Figure 8.1. Thus, each movie record
is represented by multiple records from different users. Differences between records of
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134 The Life of Brian 93 % 5 %
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256 The Life of Brian 12 % 10 %
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Figure 8.1: Uncertain object example: user ratings.

the same movie reflect the uncertainty in the user ratings. The advantage of using this
uncertain data instead of simply using the average user recommendation of each movie
record is shown by the following example: Consider a movie like “Monty Python’s The
Life of Brian” [43]: Many users will rate this movie as extremely funny. However, since
this movie is based on a rather black sense of humor, some users may rate this movie as
absolutely not funny. Thus, this movie would have an average of “moderately funny” and
would result in a very large distance to other funny movies. Thus, this movie would never
be recommended to users purchasing funny movies, even though there is a high probability
that a user looking for funny movies may indeed be interested in this movie. Instead, the
idea of this section is to consider such in a frequentistic way to estimate a probability that
a user will find The Life of Brian to be a funny movie.

In this chapter, we first propose novel efficient methods for the PRNN (PRkNN with
k = 1) query that outperforms the latest state-of-the-art solutions and then show how
this approach can be extended to efficiently answer PRkNN queries (for k ≥ 1) as a first
solution of this problem. The contributions of this chapter can be summarized as follows:

• We propose a general framework for PRNN query algorithms and show how the two
state-of-the-art approaches fit into it.

• By means of the spatial pruning criterion proposed in Chapter 5, we derive an ef-
ficient probabilistic pruning filter criterion. This criterion is shown to be correct in
accordance the possible worlds semantics as it treats inherent distance dependencies
in a correct way.

• We show how the new techniques for spatial pruning, probabilistic pruning and ver-
ification are combined to obtain an efficient PRNN algorithm. Additionally we show
how this algorithm can be extended in order to answer PRkNN queries, which is the
first solution to this problem.

• For the case where the objects are given by a discrete uncertainty model, we will show
that all proposed techniques are correct and the algorithm efficiently yields the exact
result. In the continuous case, where verification cannot be performed efficiently, the
algorithm is able to approximate the exact result as tight as needed.

• We experimentally show that our proposed algorithm performs better than the two
existing solutions under various settings. To the best of our knowledge, this is the
first comparison of the two existing PRNN solutions.
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Figure 8.2: Examples for RNN and PRNN.

The rest of this chapter is organized as follows: First we formally define the problem of
PRNN queries in Section 8.2. Existing work related to PRNN queries is reviewed in Section
8.3. In Section 8.4, we describe the framework for PRNN query processing. In Section
8.5, we introduce novel spatial and probabilistic pruning filter criteria on uncertain data.
The details of our implementation are presented in Section 8.6. An extension to the case
of continuous uncertain is given in Section 8.7. In Section 8.8 we show how to extend
the PRNN framework and algorithm to efficiently answer PRkNN queries. All proposed
techniques are experimentally evaluated in Section 8.9. Finally Section 8.10 concludes this
chapter.

8.2 Problem Definition

In this section, we give a formal definition of the Probabilistic Reverse Nearest Neighbor
(PRNN) problem in uncertain databases. Therefore, we briefly review conventional reverse
nearest neighbor queries and the uncertainty model used in this work.

Reverse k-nearest neighbor queries on (certain) point data have been defined Section
1.1.3. For recapitulation, consider the example illustrated in Figure 8.2(a). This figure
shows the point object set (P = {p1, ..., p5}) with q as query object. Here, the result of an
RNN query would contain the objects p1 and p2 using Euclidean distance. This result is
evident, since p1 and p2 have q as its nearest neighbor, while point p3 has point p2 as its
nearest neighbor, and points p4 and p5 have each other as nearest neighbors.

8.2.1 Uncertainty Model

Again using the X-tuple model, we assume the following: a probabilistic database DB is
given by a set of uncertain objects DB = {U1, . . . , Un} with d uncertain attributes. An
uncertain object Ui is represented by a set of d-dimensional points u1, . . . , um reflecting all
possible instances of Ui. Each instance uj is assigned with a probability P (uj) denoting the
probability that Ui appears at uj, i.e. all instances of Ui reflect the probability distribution
of Ui. The probability distributions of each two objects are pairwise independent and
the events of occurrence of all instances u ∈ Ui are mutually exclusive. For clarity we
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assume P (Ui) = Σm
j=1uj = 1, although the proposed algorithms can easily be adapted

to the case where P (Ui) ≤ 1. A possible world W = u1, . . . , un is a set of instances
containing one instance from each object and occurring with an appearance probability of
P (W ) = Πn

i=1P (ui). Let Ω denote the set of all possible worlds, then ΣW∈ΩP (W ) = 1.

8.2.2 PRNN Queries in Uncertain Databases

For PRNN queries on uncertain databases the threshold parameter τ is introduced (cf.
[44, 130]). Using τ as threshold, the user can restrict the result set to objects which have at
least a predefined probability to be in the result in order to avoid reporting unnecessarily
many results that are unlikely. A probabilistic nearest neighbor query PRNN τ

Q then
returns the set of all objects Ui ∈ DB where P (Ui ∈ RNNQ) (in the following denoted
by P (RNNQ(Ui))) ≥ τ . Naively, this probability can be calculated by performing a (non-
probabilistic) RNN query on each possible world:

P (RNNQ(Ui)) =
∑
W∈Ω

P (W ) · I(Ui ∈ RNN(Q,W ))

where I(Ui ∈ RNN(Q,W )) is an indicator function that is 1 if Ui is a reverse nearest neigh-
bor of Q in world W and 0 otherwise. In the example given in Figure 8.2(b), RNNQ(U1)
holds in all possible worlds, therefore P (RNNQ(U1)) = 1. In contrast, P (RNNQ(U2)) =
P (RNNQ(U4)) = P (RNNQ(U5)) = 0, since there is no possible world in which RNNQ(U2),
RNNQ(U4) or RNNQ(U5) hold, as in each possible world the nearest neighbor of U2 is U1

and the nearest neighbor of U4 is U5 and vice versa. For U3, we obtain the probability
P (RNNQ(U3)) by building the sum of the probabilities of all possible worlds where at
least one of the objects Ui (i ∈ {1, 2, 4, 5}) is closer to U3 than Q to U3. Obviously, this
brute-force approach taking each possible world into account is in general not applicable
because the number of possible worlds grows exponentially with the number of involved
uncertain objects.

8.2.3 RNN Pruning

In order to shrink down the computational overhead of such queries, in this chapter we
introduce efficient filter methods used to exclude (prune) as many objects as possible from
the expensive query evaluation process. An object B can be pruned if we find another
object A that is closer to B than the query object Q, i.e., if we find an object A that
spatially dominates (c.f. Chapter 5) Q with respect to B. Following the notation of
Chapter 6, we let (A ≺B Q) denote the random indicator variable that returns one if A
dominates Q with respect to B and zero otherwise. In the context of RkNN queries, we say
that A prunes B with respect to Q. The probability P (A ≺B Q) denotes the probability
that A prunes B with respect to Q.
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Naively, we can compute P (A ≺B Q) by simply adding the probabilities of all possible
worlds in which A prunes B, exploiting inter-object independency:

P (A ≺B Q) =
∑
ai∈A

∑
bj∈B

∑
qk∈Q

I(dist(ai, bj) < dist(qk, bj)) · P (ai) · P (bj) · P (qk) (8.1)

where I(dist(ai, bj) < dist(qk, bj)) is an indicator function that returns 1 if (dist(ai, bj) <
dist(qk, bj)) and 0 otherwise.

The problem of this naive approach is the computational cost of the triple-sum which
is cubic in the number of instances of the uncertain objects. The number of instances xi of
an uncertain object X may in general be large, for example if the instances are obtained
by Monte-Carlo sampling of an unknown PDF. Another problem is that the probability
P (A ≺B Q) cannot directly be used to derive the probability that an object B is the
RNN of Q. For two uncertain objects A1 and A2, the two events A1 ≺B Q and A2 ≺B Q
are mutually dependent because both events depend on the assumptions made for object
B (more details will be found in Section 8.5.3). In order to keep correctness w.r.t. the
possible worlds semantics, this problem has to be taken into account.

8.3 Related Work

Reverse (k)-Nearest Neighbor (R(k)NN) queries on certain data have been studied for a
long time [104, 173, 180, 185, 204, 206] including some work that I have been directly in-
volved in ([108, 64, 5, 107, 63, 62]). Current state-of-the-art solutions use a filter-refinement
approach to minimize the number of page accesses performed on the index organizing the
data. The authors of [180], for example, perform an incremental nearest neighbor query
in a best-first search manner where objects are organized in a spatial index and accessed
with ascending distance to the query. Each accessed object is then used to prune other
objects or index entries in a filter step. Finally, each remaining candidate has to be eval-
uated by means of a kNN query in a refinement step. Recently, we were able to improve
the efficiency of existing RkkNN approaches in [108] by utilizing an aggregate R-Tree
(aR-Tree [118, 144]). Furthermore, we proposed an efficient approach to return reverse
nearest neighbors incrementally ([107]), i.e., returning iteratively the k’th nearest neighbor
for k = 1, ..., |DB|. An general approach for answering RkNN queries in general metric
(non-necessarily Euclidean) spaces where the database is updated frequently, was devel-
oped by us in [5]. Details of the later publications are omitted in this thesis, as these early
approaches do not consider uncertainty.

Yet, uncertainty in databases is a relatively new field and has received a lot of attention
in the past few years. For Probabilistic Reverse Nearest Neighbor (PRNN) queries partic-
ularly two challenges arise: minimizing I/O-cost and minimizing CPU-cost. To the best
of our knowledge, there are currently two approaches for answering PRNN queries. The
approach from Chen et al. [130] which is designed for PRNN queries on uncertain objects
represented by continuous probability density functions (PDFs) and the approach from
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Figure 8.3: Pruning uncertain objects using minimal and maximal distance.

Cheema et al. [44] which works for the discrete case only. Both algorithms are discussed
in more detail the next section.

8.4 PRNN Algorithm Sketch

Before introducing details of our PRNN query method, we will give a general framework
for efficient PRNN query processing in an abstract fashion. For a comparison with state-
of-the-art solutions, in Sections 8.4.5 and 8.4.6 we show how the two existing solutions
by Cheema et al. [44] (in the following called CLWZP) and by Lian et al. [130] (in the
following called LC) are implemented according to this framework.

8.4.1 Approximation of Objects

The probability distribution (or more specifically the uncertainty region) assigned to an
uncertain object can become arbitrarily complex causing expensive distance computations
at query time. A common solution to overcome this problem is to use conservative ap-
proximations, like spheres or rectangles providing efficient distance computation in a filter
step. For efficient processing, these approximations are often organized in a hierarchical
spatial index structure like the R-tree [82].

Consider Figure 8.3 for an example, where each uncertain object is represented by a
minimum bounding rectangle (MBR) containing all possible instances of the object.

8.4.2 Spatial Pruning

It is possible to (spatially) prune objects without considering their probability distributions
when using only the (spatial) approximations of the objects. Therefore, a pruning technique
is needed. For instance an object B can be pruned by an object A for a query Q if
MaxDist(A,B) < MinDist(B,Q).
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Example 20. Consider again the example shown in Figure 8.3. For a R1NN query, object
U1 can be excluded from further consideration, as the maximal distance between U1 and U2

is smaller than the minimal distance between Q and U1. Thus U1 can never be R1NN of
Q.

The used pruning technique for uncertain objects efficiently organized by an index is
easily extendable for pruning higher-level pages of the index. For example assume object
U1 in Figure 8.3 to be an index page containing several uncertain objects. Then all objects
in this page can be pruned immediately.

8.4.3 Probabilistic Pruning

Probabilistic pruning is performed for objects that cannot be pruned spatially. In the
probabilistic pruning step, the uncertainty regions of objects are partitioned. The aim of
this partitioning is to prune more objects based on the probability threshold τ .

8.4.4 Verification

An object Ui which cannot be pruned by the pruning techniques is denoted as candidate.
The next step requires each candidate to be verified, which means it has to be checked
if P (RNNQ(Ui)) ≥ τ . This involves finding all objects which affect this probability and
considering these objects in more detail. The verification step is very expensive, since
many possibilities have to be considered.

For a comparison with state-of-the-art solutions the following subsection show how the
two existing solutions by Lian et al. [130] (in the following called LC) and by Cheema et
al. [44] (in the following called CLWZP) are implemented according to this framework.

8.4.5 Framework Implementation: LC Algorithm

Approximation: This algorithm is designed for the case where the appearance probability
of uncertain objects is represented as a continuous PDF. Though it can easily be adapted
to the discrete case. Each uncertain object is approximated by a sphere.

Spatial Pruning: The proposed pruning technique is based on trigonometric functions
and can only be applied for spherical objects. Thus, it cannot be directly applied to the
index pages (the authors use an R-tree as index structure). To overcome this shortcoming,
each (rectangular) page of the index is at runtime approximated by a sphere containing
this page.

Probabilistic Pruning: Additionally, a second sphere is computed for each database
object in a preprocessing step. This sphere has the same center as the first sphere, but the
radius is chosen as the minimal radius covering instances with a cumulated probability of
at least 1− τ . The idea of this approach is that if this second sphere can be pruned, then
the corresponding object is pruned with a probability of at least 1 − τ , so it must have a
probability less than τ to be an RNN of Q, and thus, it cannot be a PRNN of Q.
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Verification: In the verification step, a range query around each candidate Ui is issued.
The result contains all objects Uj such that MinDist(Uj, Ui) < MaxDist(Ui, Q), i.e. all
objects which affect P (RNNQ(Ui)). Then P (RNNQ(Ui)) is calculated by considering all
possible worlds of the involved objects.

8.4.6 Framework Implementation: CLWZP Algorithm

Approximation: The CLWZP algorithm uses minimum bounding rectangles for the ap-
proximation of the uncertain objects. Additionally, each uncertain object has a local R-tree
which organizes its instances.

Spatial Pruning: The pruning is performed using several pruning techniques arranged
in series. The first used technique is MinMax. As shown in Chapter 5, MinMax is not
sufficient, which means that, based on rectangular approximations, MinMax cannot detect
valid pruning in all cases. Therefore, a second technique is proposed for special spatial
relations of the query object and the pruner. If this technique cannot be applied, a general
technique is used which considers all corners of the pruner for prune evaluation (see [44]
for details). All proposed techniques (except MinMax) generate a pruning region defined
by the pruner and the query. In this region objects can safely be pruned.

Probabilistic Pruning: Probabilistic pruning utilizes the generated pruning regions.
Based on these regions, it may happen that only parts of a prunee get pruned. In this case,
the prunee is trimmed down and further represented by an MBR containing all instances
which could not be pruned (using a computational geometry algorithm). Additionally, the
authors propose to partition object Q, to further improve the pruning.

Verification: In the verification phase, a range query is issued for each candidate Ui
containing all objects affecting P (RNNQ(Ui)). For each instance ui of a candidate, the
instances of these objects are sorted by the distance to ui and inserted in a list. Based on
these lists it is possible to calculate P (RNNQ(Ui)).

8.4.7 Discussion

Although the LC algorithm is the only PRNN algorithm so far which can handle uncertain
objects represented by a continuous PDF, it has the following drawbacks:

Parameter τ : Since the probabilistic pruning sphere has to be pre-computed using τ ,
it is not possible to change τ at query time. In a dynamic query environment however, the
parameter may be adapted to the user’s preferences, which is not possible in this approach.

Spherical Approximation: The main challenge, especially for the higher-dimensional
case, is to find a small enclosing sphere of an uncertain object for effective pruning results.
Finding the smallest enclosing sphere of an arbitrarily shaped object however has exponen-
tial runtime (w.r.t. to the number of vertices of the object), which allows only finding good
but not best possible spheres in reasonable computational time. Additionally, as stated
in [130], the spatial pruning technique is only conservative but not optimal for dimensions
larger than 2. A third problem regarding the spherical approximation is the approximation
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Figure 8.4: Visualization of different pruning techniques (a)-(c) and object decomposition-
ing (d)-(e).

of pages of the R-tree, which are rectangular by definition. A spherical approximation of
an index page will therefore rarely be tight yielding low pruning power.

Verification: The verification step using integration of all remaining objects is based
on the used uncertainty model. However, if the objects consist of discrete instances, there
are more efficient solutions for the verification step (e.g. [125]). Note that also for the
case where objects are represented by continuous PDFs, this step can be performed more
efficiently, as we will show later.

The CLWZP algorithm on the other hand has a very complex spatial pruning technique
which requires 2d distance calculations in the worst case (where d is the dimensionality of
the data). This makes the approach practically inapplicable for the high-dimensional case.
Just as the LC pruning, the CLWZP pruning is conservative which means that there are
cases where pruning is not performed although possible (we omit the proof due to space
limitations, but will show this by experimental evidence). Regarding the probabilistic
pruning of CLWZP, the problem is that trimming requires expensive geometric computation
but is used extensively in the algorithm.
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8.5 Hierarchical PRNN Processing

In this section, we propose our approach for PRNN processing implementing the above
framework in consideration of the discrete uncertainty model. The complete algorithm of
our PRNN query processing approach can be found in Section 8.6. In Section 8.7 we show
how the proposed approaches can be extended to continuous uncertainty models.

8.5.1 Approximation

Similar to the approximation technique used for the CLWZP algorithm ([44]), in order to
approximate uncertain objects we use minimum bounding boxes covering the uncertainty
regions. This approximation is mainly used for spatial pruning. For probabilistic pruning,
we need a more detailed object approximation. Therefore, we additionally assume that
each uncertainty region of an object X ∈ DB ∪ {Q} is hierarchically decomposed using a
hierarchical space partitioning scheme. Specifically, we use an R∗-tree [15] to hierarchically
organize the instances of X. In addition to the spatial keys, each index entry stores the
aggregated probability of all instances in the corresponding subtree. When traversing the
index assigned to an uncertain object X in a breadth-first manner, each level of the R*-
tree provides a disjoint and complete partitioning X of X such that each partition X ′ ∈ X
contains a non-empty set of m′ ≤ m instances {x′1, ..., x′m′} and⋃

X′∈X

= {x1, ..., xm} and ∀X ′i ∈ X , X ′j 6=i ∈ X : X ′i ∩X ′j = ∅.

An index entry representing partition X ′i contains the aggregated probability P (X ′i) =∑
x′j∈X′i

P (x′j). Note that disjoint property implies that any instance x ∈ X is contained in

at most one partition. The rectangular approximations of the instances contained in each
R∗-tree node however may overlap.

Let us note that we have to carefully select the refinement resolution since the PRNN
computation is CPU-bound, as we will see in our experiments (cf. Section 8.9). We obtain
a good control of this variable by using a very low R∗-tree node capacity, e.g. in our
experiments we used less than four entries per node.

To summarize, we use a memory-resident R*-tree to organize the objects X ∈ DB
(global R*-Tree). The leaf entries containing the MBRs of the objects point to the local
R*-trees of the objects. The local R*-trees are stored in a breadth-first manner, such that
the highest levels of the trees can be obtained with one single scan.

8.5.2 Spatial Pruning

In accordance with our framework, here we propose a spatial pruning method that uses
only the spatial keys of the uncertainty regions of the uncertain objects without taking
into account further knowledge about the probability distribution. The following spatial
pruning approach adopts the spatial domination concepts proposed in Chapter 5 in the
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context of reverse k-nearest neighbor queries on certain data. Here, the main idea, is that
if an object is pruned spatially, then its probability of being dominated equals one:

A� ≺B� Q� ⇒ P (A ≺B Q) = 1, (8.2)

where A�, B� and Q� denote the minimum bounding rectangles of uncertain objects A,
B and Q, respectively. These minimum bounding boxes are given by the root node of the
R∗-tree of each object. An example is given in Figure 8.4(a), where the uncertainty regions
of the uncertain objects A, B and Q are depicted. In addition, the pruning region of A is
shown in grey, that is the region containing exactly the points p in space for which it holds
that p is definitely closer to all points in A than to any point in Q. Note that the pruning
regions do not have to be materialized, here we only use them for illustration purposes.
In this example, object B is completely contained in the pruning region of A and thus
the predicate A ≺B Q holds. Exploiting Equation 6.1, we can safely prune B. In fact, to
decide whether B is completely contained in the pruning region we only have to evaluate
the predicate DDCOptimal(A,Q,B) defined in Definition 26 in Chapter 5.

In addition, we can use Equation 8.2 to find objects A that cannot prune B in any
possible world, since the following equation holds:

Q� ≺B� A� ⇒ P (A ≺B Q) = 0 (8.3)

This equation is evident, since in any world with instances ai ∈ A, bj ∈ B and qk ∈ Q,
it holds that dist(qk, bj) < dist(ai, bj) ⇔ ¬(dist(ai, bj) < dist(qk, bj)) due to the anti-
symmetry of <.

This equation allows to efficiently determine if object A cannot possibly prune B, by
again evaluating DDCOptimal(Q,A,B). An example is given in Figure 8.4(b) where object
B is completely contained in the pruning region of Q and thus, A cannot possibly prune
B. Consequently, we can return any object B ∈ DB as a true hit, if for all objects
A ∈ DB \ {B} the predicate Q ≺B A holds.

8.5.3 Probabilistic Pruning

Using the techniques proposed in the previous section, we can efficiently prune any uncer-
tain object B ∈ DB for which it holds that there exists an uncertain object A ∈ DB \ {B}
such that A ≺B Q holds, exploiting the predicate DDCOptimal(A,Q,B) defined in Defini-
tion 26 in Chapter 5. Now, we consider the case where the probability that A prunes B
is between 0 and 1. In consideration of the possible worlds semantics, that means that
there exist worlds in which A prunes B, but not all possible worlds satisfy this criterion.
An exemplary situation is given in Figure 8.4(c): here, the uncertainty region of B is not
completely contained in the pruning region of A. Thus, there may exist instances bi ∈ B
that are not located in the pruning region of A. That in turn means, that there may
be instances ai ∈ A, bj ∈ B and qk ∈ Q such that dist(bj, qk) < dist(bj, ai) and, thus,
P (A ≺B Q) < 1.
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Individual Object Pruning

In general, the exact computation of P (A ≺B Q) is very expensive (O(m3)). In this section
we show how to compute lower/upper bounds of P (A ≺B Q) efficiently. This allows us
to quickly detect in a filter step whether the probability that B can be pruned is at least
1− τ (or cannot exceed τ) in order to prune B (or to return B as a true hit).

The key idea is to decompose the uncertainty region of an object X into subregions
for which we know the probability that X is located in that subregion (cf. Section 8.5.1).
Therefore, if P (A ≺B Q) < 1, then there may still exist subregions A′ ⊂ A, B′ ⊂ B and
Q′ ⊂ Q such that P (A′ ≺B′ Q′) = 1. Examples of such situations are given in Figures
8.4(d) and 8.4(e). In Figure 8.4(d), some partitions of the uncertain object B are pruned
by the uncertainty region of A. Given the total sum S of the probabilities of all partitions
of B that cannot be pruned, we can conclude that B is an RNN of Q with a probability
of at most S. In Figure 8.4(e), object A is divided into two partitions A1 and A2. It can
be observed that B is fully contained in the pruning region of A1 but not in the pruning
region of A2. Given the probability P of A1, we can conclude that A prunes B with a
probability of at least P . Thus, given a complete and disjoint object partitioning A, B
and Q as described in Section 8.5.1, we can identify triples of subregions (A′ ∈ A, B′ ∈ B,
Q′ ∈ Q) for which P (A′ ≺B′ Q′) = 1 (cf. Equation 6.1) holds.

Lemma 26. Let A,B and Q be uncertain objects with disjoint and complete object de-
compositions A,B and Q, respectively. To derive a correct lower bound PLB(A ≺B Q)
of the probability P (A ≺B Q) that A prunes B, we can accumulate the probabilities of
combinations of these subregions as follows:

PLB(A ≺B Q) =∑
A′∈A,B′∈B,Q′∈Q

P (A′) · P (B′) · P (Q′) · (A′ ≺B′ Q′).

Proof. The probability of a combination (A′, B′, Q′) can be computed by P (A′) · P (B′) ·
P (Q′) due to the assumption of mutually independent objects. These probabilities can
be aggregated due to the assumption of disjoint subregions, which implies that any two
different combinations of subregions (A′ ∈ A, B′ ∈ B, Q′ ∈ Q) and (A′′ ∈ A, B′′ ∈ B,
Q′′ ∈ Q, A′ 6= A′′ ∧ B′ 6= B′′ ∧ Q′ 6= Q′′) must represent disjoint sets of possible worlds.
By definition it holds that, if (A′ ≺B′ Q′) = 1, then A prunes B in all possible worlds
defined by combinations of instances (ai ∈ A′, bj ∈ B′, qk ∈ Q′). But not all possible
worlds where A prunes B are covered by these combinations and, thus, do not contribute
to PLB(A ≺B Q). Consequently, PLB(A ≺B Q) lower bounds P (A ≺B Q).

Analogously, we can define an upper bound of P (A ≺B Q) using the intuition of
Equation 8.3:

Lemma 27. An upper bound PUB(A ≺B Q) of P (A ≺B Q) can be derived as follows:

PUB(A ≺B Q) = 1− PLB(Q ≺B A).
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Proof. This equation is evident due to Lemma 17 and the observation that in any world
where A = a, B = b and R = r it holds that (a ≺r b) = 1⇔ (b ≺r a) = 0.

Following the partitioning concept proposed in Section 8.5.1, we can control the reso-
lution and can refine the partitioning on demand. Naturally, the more refined the object
partitions are, the tighter are the bounds that can be computed but the higher are the
corresponding cost of deriving them. In particular, starting from the entire MBRs of the
objects, we can progressively partition them by traversing the object instance index to
iteratively derive tighter probability bounds until a desired degree of certainty is achieved
(based on some threshold). In general, this allows us to significantly prune the space of
candidate objects. However, the RNN probability of a given object B cannot be straight-
forwardly derived with the use of these bounds, as we will see in the following section.

Joint Object Pruning

Given the probability bounds PLB(A ≺B Q) and PUB(A ≺B Q), the next problem is to
accumulate these probabilities to obtain an approximation of the probability P (RNNQ(B))
that object B is an RNN of Q. The problem at issue is that, though all objects are assumed
to be mutually independent, the two events A1 ≺B Q and A2 ≺B Q are generally mutually
dependent as discussed in Section 6.4.1.

To avoid this problem, we present a way to conservatively approximate the probability
P (RNNQ(B)) while accounting for the dependencies between the random variables Ai ≺B
Q (Ai ∈ DB).

Decomposition of Database Object Ai

Let I = {A1, ..., A|I|} denote the set of influence objects of B, which neither completely
prune B w.r.t. Q nor are completely pruned by B. We only have to consider the set of
random events {A1 ≺B Q, ..., A|I| ≺B Q}, since the objects Ai for which P (Ai ≺B Q) = 0
holds do not have any influence on P (RNNQ(B)), and if there exists an object Ai for which
it holds that P (Ai ≺B Q) = 1, then we can already conclude that P (RNNQ(B)) = 0.

Due to the problem of mutual dependencies between pruning events we cannot simply
use the probability bounds PLB(Ai ≺B Q) and PUB(Ai ≺B Q) directly, as this would yield
incorrect results. However, we can use the observation that the objects Ai are mutually
independent and each candidate object Ai only appears in a single random variable A1 ≺B
Q, ..., A|I| ≺B Q. Exploiting this observation, we can decompose, e.g. using the bounding
boxes of the R∗-trees of the objects, the objects A1, ..., A|I| to obtain mutually independent
bounds for the probabilities P (A1 ≺B Q), ..., P (A|I| ≺B Q), as stated by the following
lemma:

Lemma 28. If B and Q are not decomposed, i.e. if B = {B} and Q = {Q}, then
P (RNNQ(B)) is lower bounded by

PLB(RNNQ(B)) =
∏
Ai∈I

1− PUB(Ai ≺B Q).
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Proof. The event that B is an RNN of Q is (by definition) equal to the event that no
database object Ai in I prunes B. Due to Corollary 8 (see below), the event Ai ≺B Q
is independent of the computation of PLB(Aj ≺B Q) for i 6= j. Therefore, the bounds
PLB(Ai ≺B Q) are also independent of PLB(Aj ≺B Q). This independence allows to
derive a lower bound of the joint probability that all objects A1, ..., A|I| prune B by simply

taking the product of the bounds
∏|I|

i=1 PLB(Ai ≺B Q). The same applies for the joint
probability of the complementary events (i.e. the probability of the events that the Ai’s do
not prune B). Since we only have bounds of P (Ai ≺B Q), we need to use the upper bounds
PUB(Ai ≺B Q) in order to minimize the complementary probability 1− PUB(Ai ≺B Q) to
derive a lower bound of the event that no Ai prunes B.

An upper bound can be derived analogously:

PUB(RNNQ(B)) =
∏
Ai∈I

1− PLB(Ai ≺B Q).

In summary, we can now derive, for each uncertain candidate object B a lower and an
upper bound of the probability that B is an RNN of Q. However, these bounds may still be
rather loose, since we only consider the full uncertainty region of B and Q so far, without
any decomposition. In the following section, we will show how to obtain more accurate,
still mutually independent probability bounds based on decompositions of B and Q.

Decomposition of Candidate and Query Object

Since the uncertain objects B and Q appear in each random event Ai ≺B Q (Ai ∈ DB)
that has to be evaluated, we cannot split the objects B and Q independently. Intuitively,
the reason for this dependency is that any knowledge about the random event Ai ≺B Q
may impose constraints on the position of B and Q. However, Lemma 28 directly yields
the following corollary:

Corollary 8. Given partitions B′ ⊆ B and Q′ ⊆ Q. Under the condition that the location
of B is in B′ and that the location of Q is in Q′, we get

PLB(RNNQ′(B
′)) =

∏
Ai∈I

1− PUB(Ai ≺B′ Q′).

Note that the probability PLB(RNNQ′(B
′)) is equal to the probability PLB(RNNQ(B)|B ∈

B′, Q ∈ Q′), where B ∈ B′, Q ∈ Q′ is a constraint to all possible worlds where B is located
in partition B′ and Q is located in partition Q′. This allows us to individually consider
the subset of possible worlds where B ∈ B′ and Q ∈ Q′ and use Lemma 8 to efficiently
compute PLB(RNNQ′(B

′)) and PUB(RNNQ′(B
′)). This can be performed for each pair

(B′, Q′) ∈ B × Q, where B and Q denote the decompositions of B and Q, respectively.
Now, we can treat pairs of partitions (B′, Q′) ∈ B × Q independently, since all pairs of
partitions represent disjoint sets of possible worlds due to the assumption of a disjoint
partitioning. Exploiting this independency, we can derive tighter bounds PLB(RNNQ(B))
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and PUB(RNNQ(B)) for the probability that B is an RNN of Q by computing a lower
and an upper bound of P (RNNQ′(B

′)) for each (Q′ ∈ Q) and each (B′ ∈ B) and then
computing the weighted sum of these bounds as follows:

PLB(RNNQ(B)) =∑
B′∈B,Q′∈Q

PLB(RNNQ′(B
′)) · P (B′) · P (Q′). (8.4)

8.5.4 Verification

For the verification step, we perform, for each remaining candidate B, a probabilistic
nearest neighbor query using the algorithm proposed in Chapter 7 for probabilistic ranking
queries (and setting k = 1). This algorithm takes Q, B and DB \ B as input and returns
P (NNB(Q)) which is equivalent to P (RNNQ(B)). If this value is above τ , then B is
returned as result, otherwise it is discarded. This algorithm avoids enumeration of all
(exponentially many) possible worlds by sorting the instances of the influence objects I
w.r.t. the distance to B and performing a distance browsing on this sorted list.

8.5.5 Complexity Analysis

In this section we will analyze the runtime complexity of each part of the proposed PRNN
algorithm:

Spatial Pruning: The basic spatial pruning takes each pair of objects A,B ∈ DB
where A 6= B and checks whether A ≺B Q holds. Thus the runtime is O(|DB|2). In
the average case, this step can be accelerated by the use of a spatial index structure to
(O(|DB| · log(|DB))), but the worst-case runtime remains O(|DB|2). The spatial pruning
provides us with a set of candidate objects Scnd where each candidate Ci ∈ Scnd is associated
with a set of influence objects Siifl.

Probabilistic Pruning: The probabilistic pruning step considers each candidate ob-
ject Ci separately and partitions the candidate object, the queryQ and the influence objects
Siifl. Assuming a branching factor of the spatial index of b, each object consists of at most

bdepth partitions, where depth is a parameter chosen before query processing. The pruning
relation A′ ≺Ci′ Q′ is used for each pair of partitions Q′ ∈ Q,Ci

′ ∈ Ci and each partition A′

of objects A in Siifl. This leads to a runtime of O(b2·depth · |Siifl| · bdepth) = O(|Siifl| · b3·depth)
for each candidate Ci. In the worst case, where |Siifl| ∈ O(|DB|), |Scnd| ∈ O(|DB|) and

bdepth = m this yields a total runtime of O(|DB|2 ·m3), where m is the number of instances
in each object.

Verification: After the probabilistic pruning step, a smaller set of candidates S ′cnd(⊆
Scnd) remains. For each candidate Ci ∈ S ′cnd verification is performed. Using the algorithm
proposed in Chapter 7, this requires to sort all m·|Siifl| instances of objects in Siifl according
to all m instances in Ci. We derive a runtime of O(|S ′cnd| · |Siifl| ·m2 · log(|Siifl| ·m)). In
the worst case, this is in O(|DB|2 · log(|DB|), assuming m to be constant.
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The parameter depth: It can be observed, that for the case where m is large, the
runtime of the probabilistic pruning step may exceed the runtime of the verification step.
In our experimental section, we will verify this observation, and show how to choose values
for the parameter depth such that this problem is avoided.

8.6 Implementation

8.6.1 Overview

Algorithm 5 combines the main modules for PRNN processing. The input requires an
uncertain query object Q, an R-tree based index structure organizing the uncertain objects
from the database IDB, a probability threshold τ and a parameter depth controlling the
depth of our probabilistic pruning computation. The spatialPruning method fills the sets
Scnd with potential result objects and Sprn with objects (entries) which can certainly be
excluded using the spatial pruning technique proposed in Section 8.5.2. For each remaining
object B ∈ Scnd, the getInfluenceObjects method returns a set (Sifl) of all objects from
the two sets (Scnd and Sprn) which could influence P (RNNQ(B)). With these objects,
probabilistic pruning according to Section 8.5.3 is performed. Depending on the result,
the candidate is either discarded, added to the result set or verified. In the latter case,
computation following [125] and [44] is performed to calculate the exact P (RNNQ(B)). If
this probability is above τ , the candidate can be confirmed as a result. In the following,
we explain the individual modules in detail.

Algorithm 5 PRNN query processing
Require: Q, IDB , τ , depth
1: Scnd = ∅, Sprn = ∅
2: spatialPruning(Q, IDB , Scnd, Sprn)
3:
4: Sres = ∅
5: for each B ∈ Scnd do
6: Sifl = getInfluenceObjects(Q, B, Scnd \ {B}, Sprn)
7: i := probabilisticPruning(Q, B, Sifl, τ , depth)
8: if i=1 then
9: //B cannot be RNN of Q

10: else if i=-1 then
11: //B is RNN of Q
12: Sres = Sres ∪ {B}
13: else
14: //B has to be verified
15: if verify(Q, B, Sifl, τ) then
16: Sres = Sres ∪ {B}
17: end if
18: end if
19: end for
20: return Sres
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8.6.2 Spatial Pruning

The spatialPruning method (cf. Algorithm 6) performs a best-first search using a heap
H prioritized by minDist(Q, e), where e is an entry of the index IDB. The heap is im-
plemented such that the set of contained objects can be accessed without destroying the
heap structure. For each de-heaped entry e, the predicate e2 ≺e Q checks if this entry is
pruned by another object or entry e2 (contained in H, Sprn or Scnd) according to Q, using
the pruning technique as described in Section 8.5.2. If it can be pruned, it is inserted in
the Sprn set. Otherwise, if e contains a data object, it is added to the candidate set Scnd
and if e is a directory entry, its children are inserted into the heap.

Algorithm 6 spatialPruning
Require: Q, IDB , Scnd, Sprn
1: init min-heap H with root entry of IDB
2: while H is not empty do
3: de-heap an entry e from H
4: if ∃e2 ∈ H ∪ Sprn ∪ Scnd : e2 ≺e Q then
5: Sprn = Sprn ∪ {e}
6: else if e is directory entry then
7: for each child ch in e do
8: insert ch in H
9: end for

10: else if e is data entry then
11: Scnd = Scnd ∪ {e}
12: end if
13: end while

8.6.3 Obtaining Influence Objects

For each candidate B, it is important for the next steps to find the objects which influence
P (RNNQ(B)). This is done by Algorithm 7, which exploits Implication 8.3 in order to
determine those objects that cannot possibly prune B. Therefore, each data entry e for
which Q ≺B e does not hold is inserted into the Sifl set.

8.6.4 Probabilistic Pruning

The goal of the probabilistic pruning is to estimate P (RNNQ(B)) for a candidate B in a
best possible way. If we can detect early that P (RNNQ(B)) > τ or P (RNNQ(B)) < τ ,
further computation can be saved. The parameter depth is used to control how deep
the hierarchical index structures (organizing the instances of each uncertain object) are
resolved for more accurate pruning. Thus, the parameter offers to define a trade-off between
accuracy and computational efficiency in the probabilistic pruning step. In each iteration
the involved objects (Q, B and all I ∈ Sifl) are partitioned, which means we consider
the partitioning at the ith level of each local R*-tree. According to Section 8.5.3, each
combination of (Q′ ∈ Q, B′ ∈ B) must be treated independently. Thus, for each of these
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Algorithm 7 getInfluenceObjects
Require: Q, B, Scnd, Sprn
1: Sifl = ∅
2: for each e ∈ Sprn ∪ Scnd do
3: if ¬(Q ≺B e) then
4: if e is directory entry then
5: Sprn = Sprn \ {e}
6: for each child ch in e do
7: Sprn = Sprn ∪ {ch}
8: end for
9: else if e is data entry then

10: Sifl = Sifl ∪ {e}
11: end if
12: end if
13: end for
14: return Sifl

combinations, we first obtain bounds PLB(I ≺′B Q′) and PUB(I ≺′B Q′) of the probability
that each I ∈ Sifl prunes B′ w.r.t. Q′, using Lemmas 26 and 27. Using Corollary 28, we
multiply the complement of these bounds to acquire the lower (upper) bound probability
PLB(RNNQ′(B

′)) (PUB(RNNQ′(B
′))) that no object I ∈ Sifl prunes B′ according to Q′.

Since all combinations (Q′ ∈ Q, B′ ∈ B) are independent, the results can be summed up
(weighting with the possible world probability of (Q′ ∈ Q, B′ ∈ B)), to obtain the global
probability bounds PLB(RNNQ(B)) and PUB(RNNQ(B)) according to Equation 8.4. This
method returns -1 if the candidate B is PRNN of Q (with τ as threshold), and 1 if B can
be pruned. If depth is not set to the maximum height of the R*-trees, it is possible that
no decision can be made. In this case the method returns 0.

8.7 Continuous Distributions

In this section, we show how our approach can be extended to continuously distributed
uncertainty models. Again, we assume that the database DB consists of multi-attribute
objects o1, ..., oN that may have uncertain attribute values. An uncertain attribute is
defined as follows:

Definition 33 (Continuous Probabilistic Attribute). A continuous probabilistic attribute
attr of an object X is a random variable drawn from a probability distribution with density
function fattri .

An uncertain object X has at least one uncertain attribute value. The function fX(x)
denotes the multi-dimensional probability density function (PDF) of oi that combines all
density functions for all probabilistic attributes attr of X.

Approximation: Following the convention of continuous uncertain databases [31, 45,
48, 51, 55, 131, 170], we assume that each uncertain object X is (minimally) bounded by
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Algorithm 8 probabilisticPruning
Require: Q, B, Sifl, τ , depth
1: for 1. . . depth do
2: split(Q)
3: split(B)
4: ∀I ∈ Sifl split(I)
5: PLB(RNNQ(B)) = 0, PUB(RNNQ(B)) = 0
6: for all Q′ ∈ Q and B′ ∈ B do
7: PLB(RNNQ′(B′)) = 1, PUB(RNNQ′(B′)) = 1
8: for each I ∈ Sifl do
9: PLB(I ≺B′ Q′) = 0, PUB(I ≺B′ Q′) = 1

10: for each I ′ ∈ I do
11: if (I ′ ≺B′ Q′) then
12: PLB(I ≺B′ Q′) = PLB(I ≺B′ Q′) + P (I ′)
13: else if (Q′ ≺B′ I ′) then
14: PUB(I ≺B′ Q′) = PUB(I ≺B′ Q′)− P (I ′)
15: end if
16: end for
17: PUB(RNNQ′(B′)) = PUB(RNNQ′(B′)) · (1.0− PLB(I ≺B′ Q′))
18: PLB(RNNQ′(B′)) = PLB(RNNQ′(B′)) · (1.0− PUB(I ≺B′ Q′))
19: end for
20: PLB(RNNQ(B)) = PLB(RNNQ(B) + P (Q′)) · P (B′) · PLB(RNNQ′(B′))
21: PUB(RNNQ(B)) = PUB(RNNQ(B) + P (Q′)) · P (B′) · PUB(RNNQ′(B′))
22: end for
23: if PLB(RNNQ(B)) > τ then
24: return -1
25: else if PUB(RNNQ(B)) < τ then
26: return 1
27: end if
28: end for
29: return 0

a rectangular uncertainty region X� such that ∀x /∈ X� : fX(x) = 0 and∫
X�

fX(x)dx ≤ 1.

If fi is an unbounded PDF, e.g., a Gaussian PDF, we truncate PDF tails with negligible
probabilities and normalize the resulting PDF. This procedure is also used in related work
[45, 48, 31]. Specifically, [31] shows that, for a reasonably low truncation threshold, the
impact on the accuracy of probabilistic ranking queries is very low.

Spatial Pruning: Since our spatial pruning approach (cf. Section 8.5.2) is based
on rectangular approximations only, it can be applied on continuously distributed objects
without any adaptations.

Probabilistic Pruning: Our probabilistic pruning approach (cf. Section 8.5.3) ap-
plies disjoint and complete partitioning schemes X (X ∈ DB ∪ Q) to conservatively and
progressively approximate the probability P (RNNQ(B)) that an object B is an RNN of
Q. This technique is also applicable for partitions X ′ ∈ X for which the probabilities
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P (X ′) are known. To derive a complete and disjoint partitioning scheme on continuous
uncertain objects, we propose to apply a kd-tree [17] having X� in its root. In each level of
the tree, each node is split with respect to its median in dimension d. The split-dimension
d is rotated for each level of the tree. The advantage of this partitioning scheme is that the
probability of a node on level i (here level 0 denotes the root level) of the tree, has a total
probability of 1/2i. Due to the nature of continuous PDFs, this kd-tree has an infinite
height. Therefore, we propose to restrict the height of the kd-tree (i.e. the maximum
number of splits). The maximum number of splits is denoted by depth.

Verification: To compute the exact probability P (A ≺B Q) that an object A prunes
B for a PRNN query with query object Q, we require to compute the following integral:∫

a∈A�

∫
b∈B�

∫
q∈Q�

fA(a) · fB(b) · fQ(q) · (a ≺b q)da db dq.

This computation requires expensive numeric integrations, since in general the integral
of the PDF fX of an uncertain object may not be representable as a closed-form expres-
sion and the integral of (a ≺b q) does not have a closed-form expression. The computa-
tion of RNNQ(B) is even more expensive, since to compute RNNQ(B), the PDFs of all
database objects may need to be considered to avoid dependencies. Therefore, we propose
to avoid verification by using a large depth parameter, so that the derived probability
bounds PLB(RNNQ(B)) and PUB(RNNQ(B)) become very tight and with a high proba-
bility, no more candidates remain after the probabilistic pruning step. For the remaining
candidates, the best we can do is an efficient approximation ([124]). Therefore, we propose
the following strategies:

• Our approach uses the derived probability bounds of candidates to bound the error.
In many applications, this bound may be sufficient to the user and verification may
be avoided.

• We can adapt the techniques as proposed by [124] to approximate the object PDFs
using cubic splines that have a closed-form solution, and approximate the rank of Q
w.r.t. B.

8.8 Probabilistic RkNN Queries

In this section we show how our proposed techniques can be extended to probabilistic
RkNN queries. An RkNN query is defined as follows: Given a set of (certain) points P , a
query object q, and a positive integer k, a reverse nearest neighbor query (RNNq) returns
all p ∈ P which have q in their k-nearest neighbor set, formally ([180]): RkNNq = {p ∈
P |dist(p, q) ≤ dist(p, pk)}, where pk is the k-th nearest neighbor of p. In the context of
uncertain objects, a PRkNN τ

Q query returns the set of all objects Ui ∈ DB, for which the
probability P (Ui ∈ RkNNQ) that Ui is a RkNN of Q is at least τ .

Approximation: Analogous to the k = 1 case, we approximate uncertain objects
using MBRs and hierarchical partitioning.
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Spatial Pruning: In the case where k > 1, the random event Ai ≺B Q must hold for
at least k uncertain objects Ai, 1 ≤ i ≤ |DB| in order to prune candidate B. Therefore,
an uncertain candidate object can safely be pruned if there exist at least k objects Ai for
which the complete pruning criterion DDCOptimal(Ai, Q,B) holds. The complexity for the
spatial pruning step is O(|DB|2) and independent of k, since in the worst case where a
candidate B cannot be pruned, all objects may have to be considered.

Probabilistic Pruning: For probabilistic pruning, the task is to determine for a
candidate object B, if its probability to be RkNN of Q is definitely less than τ (at least τ)
in order to prune B (return B as a true hit). Analogous to the k = 1 case, we can derive
the following bounds for the probability P (A ≺B Q) that A ∈ DB \ B is closer to B than
Q: a lower bound PLB(A ≺B Q) (using Lemma 26) and an upper bound PUB(A ≺B Q)
(using Lemma 27). Given these bounds, we can apply the concept of uncertain generating
functions proposed in Section 6.4.3 in order to compute for each 0 ≤ j < k a lower bound
PLB(#Pruners = j) and an upper bound PUB(#Pruners = j) of the probability of the
random event that for exactly j uncertain objects Ai, Ai ≺B Q is true. Bounds for the
probability of the event RkNNQ(Ui) that Ui is a RkNN of Q can then be derived as follows:

PLB(RkNNQ(Ui)) =
∑

0≤j<k

PLB(#Pruners = j)

PUB(RkNNQ(Ui)) =
∑

0≤j<k

PUB(#Pruners = j)

An uncertain object Ui can be pruned if PUB(RkNNQ(Ui)) < τ and returned as a true hit
if PLB(RkNNQ(Ui)) > τ .

As shown in Section 6.4.3, the computational complexity is linear in k, yielding a total
of O(|DB|2 × k) for the probabilistic pruning.

Verification: The verification step can be performed analogously to the k = 1 case
using the algorithm proposed in Chapter 7, which has been designed for k ≥ 1. The total
complexity of this algorithm is O(|DB|2 · log(|DB|) + k · |DB|2).
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parameter values synthetic values real

db size 2000 - 10000 6216
dimensionality 2, 3, 4, 5 2
# instances 50, 100, 200, 400 100
τ 0.1 0.2, 0.3 0.2
maxdepth 0, 1, 2, 3, 4 2
MBRextent 0.01, 0.02, 0.03, 0.04, 0.05 N/A

Table 8.1: Parameters and their default values.

8.9 Experiments

In the experimental section, we compare our approach which we call HP (hierarchical
pruning) with the two state-of-the-art PRNN query algorithms CLWZP [44] and LC [130].
For the implementation of CLWZP and LC we replaced R-trees by R*-trees wherever they
were used. For the global R∗-tree we use a page size of 1024 byte. For the local R∗-trees
indexing the instances of an uncertain object, we set the page size to a maximal capacity of
three entries. The page size was chosen small in order to minimize CPU-cost, which we will
see is the main bottleneck of a PRNN query. We tested the three approaches under various
parameter and data settings. For each setting, we performed 100 queries and averaged the
measures. Since our experiments have been conducted against discrete uncertain datasets,
we have adapted the LC algorithm to the discrete case for a fair comparison. The involved
parameters and their default values (bold) can be seen in Table 8.1. For our experiments,
we used one real-world dataset and several synthetic datasets to show the effect of changes
in dimensionality and size. The datasets are described as follows: We generate synthetic
uncertain objects in the [0, 1]d space by uniformly selecting the expected position of the
objects in the space. A rectangle is generated around the expected position with a fixed
total sum of side lengths (referred to as extent) with a default value of 0.05. By default, the
extent is distributed uniformly on the dimensions, so there is a diversity of MBR shapes,
some that are nearly cuboid, while others have a very large extent in few dimensions only.
The object instances within the MBR are distributed uniformly by default. As a real-world
dataset, we utilize the International Ice Patrol (IIP) Iceberg Sightings Dataset1. This data
set contains information about iceberg activity in the North Atlantic in the years 1960 to
2010. It contains the latitude and longitude values of 6216 sighted icebergs. An uncertain
object is generated for each iceberg, by generating 100 Normal-distributed instances having
a mean value corresponding to the position of its most recent sighting at the date 31.12.2009
and a variance corresponding to the time period between this date and the sighting. To
avoid extreme impact of icebergs that have not been seen for decades, any instances outside
a square of extent 0.0004 centered at the mean are cut off. The experiments were run on
a Windows 7 notebook with an Intel Core i5 processor (2.27 GHz), 6GB RAM.

1The IIP dataset is available at the National Snow and Ice Data Center (NSIDC) web site
(http://nsidc.org/data/g00807.html).
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Figure 8.5: Comparison of different pruning techniques.

8.9.1 Spatial Pruning

The first set of experiments compares the spatial pruning techniques from the three compet-
ing algorithms and the MinDist/MaxDist based pruning (cf. Section 8.4) called MinMax.
We generated 2000 uncertain 3-D objects uniformly distributed in the [0, 1]3 space. Each
object consists of 100 instances. 100 RNN queries were issued and we compared the number
of candidates which were left after the spatial pruning step for the competing techniques.
For the experiments shown in Figure 8.5(a), we tested the influence of different extensions
in the dimensions of the objects. Three cases were compared: Random (random extension
in each dimension, with fixed maximum), Equal (each dimension had the same extension
= hypercube) and Dominant (one dimension has 5 times higher extension than the others).
The results show that the spatial pruning technique from our algorithm has the highest
pruning power in almost all settings. Only for objects equally extended in each dimension
the LC-pruning is competitive. This is due to the reason that in this case, a sphere is a
tight approximation for an uncertain object. However, in the other settings the LC-pruning
yields the worst performance. We also compared the spatial pruning techniques for data
with different dimensionality. Figure 8.5(b) illustrates that the advantage of HP-pruning
is stable over varying dimensionality.

8.9.2 I/O-Cost

Next, we investigated the number of page accesses of the three algorithms needed on the
global R*-tree (the index organizing the uncertain object approximations). The results are
shown in Figure 8.6(a) for synthetic data with different database size. The LC algorithm
needs by far the most page accesses which is reasonable, due to the handicaps mentioned in
Section 8.4.5. The CLWZP algorithm performs even slightly better than the HP algorithm.
The reason is mainly founded by the step to get the influence objects for each candidate.
CLWZP here performs a search based on all instances of a candidate which produces a
tighter bound than only using the approximation of the candidate (as performed in HP).
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Figure 8.6: Performance of the PRNN Algorithm

The drawback of this tighter bound is a much higher computational effort, which can be
seen in the experiments in the next section. In summary, even for a small page size of 1
kB, the main bottleneck of a probabilistic RNN query are the CPU-cost, not the I/O-cost.

8.9.3 CPU-Cost

The Parameter depth: The main tuning parameter of the HP algorithm is depth. This
parameter offers a tradeoff between the computational overhead for the probabilistic prun-
ing and the verification step. This behavior can be seen in Figure 8.6(c), where by in-
creasing depth, it is possible to dramatically reduce the CPU-cost in the verification step
and thus the overall costs. It can be observed that for a low value of depth, the verifi-
cation step is the main bottleneck. This is clear, since for a low value of depth, the set
of partitions of each object X that is used for the probabilistic pruning is very small and
contains large partitions. On the one hand, a small number of partitions leads to a very
fast probabilistic pruning step, since only a small number of combinations of partitions has
to be considered. On the other hand, the pruning power of the probabilistic pruning step
is low in this case, due to the coarse approximations. The effect of the depth parameter in
this setting is typical: there exists an optimal depth value depthopt. Our experiments have
shown that depthopt correlates to the height H of the R∗-Tree. In all of our experiments,
choosing depth = H/2 has shown to be a good heuristic. Determining better heuristics to
find depthopt is part of our future work.

Scalability Experiments: Figure 8.6(b) shows the effects of the database size on the
runtime of the LC, CLWZP and HP algorithms. It can be observed that the LC algorithm
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Figure 8.7: Behaviour of the PRkNN-Algorithm

has an extremely high CPU-cost. The reason is that the LC algorithm was proposed for
continuous uncertain objects and thus requires to consider the set of all possible worlds in
the verification step, which is exponential in the number of influence objects. In contrast,
both CLWZP and HP scale linear in the database size. Regarding the effect of the number
of instances size S, Figure 8.6(d) shows that the both algorithms CLWZP and HP scale
super-linearly. The reason is that both algorithms require to sort instances of a set of
influence objects in the verification step, leading to a leading to a runtime of O(S · log(S)).

Impact of τ : Figures 8.6(e) and 8.6(f) show that the runtime of the HP algorithm
decreases for an increasing value of τ for both synthetic and real datasets. The rationale
is that a high value of τ reduces the minimal probability 1 − τ required for an uncertain
object A ∈ DB \B to prune B.

PRkNN: We augmented our algorithm to answer PRkNN queries as proposed in Sec-
tion 8.8 and evaluated the performance of this algorithm on the synthetic dataset using
default parameters (cf. Table 8.1). In the first experiment (cf. Figure 8.7(a)), we varied
the parameter k. It can be observed that the runtime scales slightly worse than linearly,
which can be explained by the usage of uncertain generating functions that show a com-
plexity of O(k2) ([22]). This is notable, since naive approaches need to consider all

(
N
k

)
possible results. In the remaining experiments (Figures 8.7(b) to 8.7(d)) we evaluated
the impact of the parameter τ , the database size and the number of instances per object
(when setting k = 5). Each of these parameters scales equivalently to the k = 1 case. Note
that in the experiments shown in Figure 8.7(d) we set maxdepth = 3 for more than 150
instances, matching our intuition of setting maxdepth = H/2 (cf. Section 8.9.3). Figure
8.7(e) and Figure 8.7(f) illustrate additional experiments on synthetic datasets focusing
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on the extent of the uncertain objects and much larger databases. The smaller the extent
of the uncertain objects the more efficient queries can be performed (cf. Figure 8.7(e)).
For the experiment shown in Figure 8.7(f), we lowered the average extent of the objects
to 0.01. For this extent, the query times are still very good, even for very large datasets
(100000 objects * 100 instances = 10 million data points).

8.10 Conclusions

In this chapter, we developed a general framework for probabilistic reverse nearest neighbor
queries on uncertain data. We showed how two existing approaches and our new algorithm
fit into the framework. Through new techniques to improve important parts of the frame-
work, our algorithm is able to outperform the existing approaches under various settings.
In addition, we proposed an efficient extension for probabilistic reverse k-nearest neighbor
queries. For future work, we want to evaluate techniques to dynamically adapt the pa-
rameter depth in the probabilistic pruning step to the distribution of instances within an
object.
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This part of this thesis presents efficient solutions for the the problem of spatial co-
location mining in uncertain data. A motivation of the problem, a formal definition, related
work and further preliminaries are found in Chapter 9. This chapter will show that the
main challenge of frequent co-location mining in uncertain data is the problem of finding
the distribution of the support of a co-location. It will be shown how this problem can
be mapped to the problem of probabilistic frequent itemset mining. For the problem of
probabilistic frequent itemset mining, two efficient solutions are proposed:

• The first approach, presented in Chapter 10, applies the paradigm of equivalent
worlds (c.f. Chapter 3) to efficiently find all co-locations in an uncertain spatial
database having a non-zero probability to be frequent. Since in practice, the number
of co-locations having a non-zero probability to be frequent can be very large, adap-
tions of this approach are presented that can efficiently return all spatial co-locations
having a sufficiently high probability to exist. This approach is equivalent to applying
a probabilistic threshold query predicate, as explained in Section 2.5.1. Furthermore,
an approach is presented to compute and return results sorted by their probability to
exist. This approach corresponds to an incremental probabilistic top-k query predi-
cate as introduced in Section 2.5.2. Parts of this chapter have been published at the
15th ACM SIGKDD Conference On Knowledge Discovery and Data Mining (KDD)
2011 ([28]) as a full paper. While this paper presents solutions for frequent item-set
mining in uncertain transaction databases, this chapter adapts these techniques to
solve the problem of spatial co-location mining.

• Since a linear scan may be still be prohibitive in a very large database setting that
require real-time responses, approximate approaches are presented in Chapter 11
running in constant time. Three types of approximation techniques are presented,
which are based on the central limit theorem, the law of large numbers, and the law
of small numbers, respectively. Theoretical and experimental evaluations show the
advantages and disadvantages of each approximation approach, and research cases
and applications where each approximation technique is preferable. Parts of this
chapter have been published in the journal “Knowledge and Information Systems”
(KAIS) 2012 ([21]) as a regular paper.
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Chapter 9

Preliminaries

The task of data mining is the automatic or semi-automatic analysis of large quantities
of data to extract previously unknown interesting patterns such as groups of data records
(cluster analysis), unusual records (outlier detection) and dependencies (association rule
mining). It is the advanced analysis step of the Knowledge Discovery in Databases (KDD)
process, which further includes preprocessing steps such as data selection, data cleaning
and data transformation, as well as the evaluation of the results of the data mining step.
Analogously, spatial data mining, is the process of discovering interesting and previously
unknown, but potentially useful patterns from large spatial data sets.

This thesis will present a solution to the problem of spatial co-location mining in the
context of uncertain data. To give an intuition of this problem, consider the following data
mining tasks

I In an environmental monitoring application, occurrences of certain types of plants
and animals have been recorded. The task is to find groups of types of plants and
animals that are (not) commonly found in close vicinity. This gives information about
plants and animals that live in (dis-)harmony or symbiosis, such as plants requiring
disjunctive (identical) minerals from soil.

II In a geo-social network application, the task may be to automatically find groups of
friends, without any apriori knowledge about their friendship graph. If a group of
people is frequently found in very close vicinity of each other, on a series of Friday
nights, then this group of individuals may likely be friends, or at least, share interest
in the same type of Friday night activities. This information can be used to improve
the geo-social network by adding missing links, to recommend similar places this
group may find interesting, or to advertisement a special deal offered in a location
this group may be interested in.

Both applications lead to the problem of spatial co-location mining. To motivate the
problem of spatial co-location mining an example is given, followed by a formal definition
of spatial co-location mining in this chapter.
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Figure 9.1: Data set for spatial co-location mining.

9.1 Spatial Co-location Mining on Certain Spatial Data

Spatial features describe the presence or absence of geographic object types at different
locations. Examples of spatial features include plant species, animal species, road types,
cancers, crime, and business types, or features of individuals, such as personal preferences,
or simply their id. A spatial co-location pattern represents a subset of spatial features
whose instances are frequently located in a spatial neighborhood. For example, “botanists
may have found that there are orchids in 80% of the area where the middle-wetness green-
broad-leaf forest grows” (example taken from [197]). Spatial co-location patterns may yield
important insights for many applications. For example, a mobile service provider may be
interested in services frequently requested by geographical neighbors, and thus gain sales
promotion data. Other application domains include Earth science, public health, biology,
transportation and geo-social networks.

Example 21. Figure 9.1 shows a set of spatial objects. Each spatial object may e.g.
correspond to an individual of a geo-social network. Each object may have a spatial type,
called spatial feature, represented by the shape of each object. In general, a spatial object
may have more than one spatial feature, but in this example, each uncertain object has at
most one spatial feature. In this example, the spatial features are triangles, stars, diamonds,
circles and hearts. Each shape depicted in Figure 9.1 corresponds to a spatial object having
a spatial feature corresponding to the shape. Grey dots correspond to spatial objects having
no spatial feature. In a concrete application, spatial features can, for example correspond
to members of certain groups. For example, each shape may correspond to fans of the same
football club, or correspond to a clique of friends. In the later example, the task may be, to
find interactions between cliques of friends, i.e., to find cliques whose members often co-
locate, i.e., hang out together. The circles depicted in this example represent neighborhoods,
which define the set of objects which we consider to be co-located. Such a neighborhood can
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be defined, e.g., by point of interest such as bars and restaurant. For example, in the top
left circle, a star, a triangle and a circle are co-located in the same neighborhood. These
three objects are an instance of the set of spatial features {star, circle, triangle}. A set of
spatial features is called a co-location. The task of frequent spatial co-location mining is to
find co-locations whose instances are co-located frequently. In this example, the co-location
{star, circle} and the co-location {star, triangle} can be considered frequent, as there is
three instances where these co-locations appear together. This number of occurrences of
a co-location S is called support supp(S) of S. The minimal support that a set requires
in order to be considered frequent is a user specified parameter called minSup. In this
example, for munSup = 3, the co-locations ∅, {star}, {circle}, {triangle}, {star, circle}
and {star, triangle} are the only frequent co-locations, returned by a frequent co-location
mining algorithm. Trivial co-locations having less than two features are usually omitted.

To formally define the problem of spatial co-location mining, we first have to define the
concept of a spatial co-location.

Definition 34 (Spatial Co-location Instance). Given a reflexive and symmetric neighbor
relation R over a spatial database DB, a spatial co-location instance is a set I ⊆ DB of
spatial objects that form a clique [20] under the relation R, i.e., ∀o1, o2 ∈ I : (o1, o2) ∈ R.

The definition of neighbor relation R is an input and should be based on the semantics
of the application domains. The neighbor relation R may be defined using metric rela-
tionships such as Euclidean distance or shortest-path distance in a graph such as a road
network.

Within this thesis, a neighbor relation will be used that is particularly important in
social network applications. This relation uses a set of interesting spatial locations, such
as bars, restaurants and football stadiums. Two individuals are co-located if they are
sufficiently close to the same location. Formally,

Definition 35. Let L be a set of spatial locations, and let DB be a database of spatial
objects. The neighbor relation R is defined as follows

(o1, o2) ∈ R ⇔ ∃l ∈ L : dist(o1, l) ≤ ε ∧ dist(o2, l) ≤ ε

Definition 36 (Frequent Spatial Co-location Mining). Given a set of spatial features F =
{f1, ..., fk} of k spatial features, given a database DB = {o1, ..., oN} of N spatial objects
each having a set f(oi ∈ DB) ⊆ F of spatial features, and given a positive integer minSup,
a frequent spatial co-location mining algorithm returns all sets S ⊆ F of features such that
there exists at least minSup spatial co-locations instances I such that S ⊆

⋃
o∈I f(o).

Since a single database object may have more than a single spatial feature, a single
object o may cause a co-location of features f(o), or a set of two objects may define a
co-location instance containing more than two spatial features. This general definition is
meaningful in application such as Application I, where spatial features may correspond to
diseases carried by animals in plants. A single poor animal or plant may clearly be affect
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Figure 9.2: Spatial co-location mining in certain spatial data.

by more than one disease at a time, and a resulting co-location of diseases that may be
relevant, independent of whether this set of diseases is carried by a single specimen or by
a group. In contrast, in an application such as Application II, where spatial features may
correspond to the affiliation of scientists, a single individual may have multiple affiliations,
for example due to this researcher currently being on sabbatical at a different university.
In the later case, an addition constraint may be imposed on Definition 36 to ensure that
co-location instances correspond to distinct object sets.

The neighborhood relation used in Example 21 is chosen very arbitrarily, and for il-
lustration purpose only. Clearly, the choice of neighbor relation, i.e., the definition of the
predicate that a spatial object is required to satisfy in order to belong to an instance of
a co-location, is very important but highly application specific. In an application such
as described above in Application I, two objects are usually considered neighbors if the
distance between these object does not exceed some predefined threshold. A set of objects
is co-located, if all pairs of these objects are neighbors, i.e., if they form a clique in the
corresponding neighbor relation. These semantics of co-location are used in most related
work (e.g. [214, 93, 200, 167, 92, 197]). An example of such state-of-the-art semantics is
depicted in Figure 9.2(a). Here, the spatial neighborhood relation is illustrated by edges
connecting spatial objects that are sufficiently close to each other. In this example, there
is a number of instances of co-locations: For example, one instance of a co-location con-
tains objects {A1, B2, C1}, since all these objects are pairwise connected. This co-location
contains the spatial features {triangle, diamond, circles}.

Such a definition of spatial neighborhood may be inappropriate for other applications
such as Application II given above. In this application, the neighborhood relation is defined
by objects in proximity (i.e., sufficiently close to) an interesting location, such as a bar,
a restaurant or the beach. An example is given in Figure 9.2(b) where objects represent
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individuals, of a geo-social network. We can see that individuals A1, A2 and A3 are having
a good time together in the bar; B2 and C2 are enjoying the beach; while A2 is having
dinner in solitude. Unlike in an application such as Application I, spatial neighborhood
between two objects is not defined by the distance between the objects, but rather by the
existence of an interesting location in proximity of both objects.

The later semantics of spatial neighborhood will be used in this part of this thesis, due
to its applicability to geo-social network data. For example, the spatial features (triangles,
diamonds and circles) depicted in Figure 9.2(b) may represent the individual’s affiliations.
Frequent co-locating mining on such data may yield interesting patterns, such as “Members
of LMU and HKU are frequently to be found at the same location, while members of TUM
are often found in solitude or among themselves”. While the automatic extraction of such
patterns from large sets of data may be interesting in some applications, the true power
of these semantics shows if we consider the temporal component of data. If we consider
time, each spatial feature may correspond to an individual. Thus, spatial objects having
the same spatial features correspond to the same individual, but at different points of time.
In such an application, Figure 9.2(b) corresponds to the events that all three individuals
corresponding to triangles, diamonds and circles, are found together in the bar at one
time, while at a later time they split up between the beach and the restaurant. In such an
application, each instance of a co-location corresponds to a (location l , time t) pair, i.e.,
each instance of a co-location corresponds to the set of individuals that have been at the
same location l at the same time t. The big challenge here is that the temporal dimension
leads to very large sets of co-location data, since every location and time pair leads to a
possibly non-empty co-location instance. This type of data is already being collected in
vast amounts every day in geo-social networks, where users can user the check-in function
to submit their current location to the geo-social network. Analyzing this data will allow
to find groups of people that significantly often share the same location. Significance tests
are required to exclude incidental co-locations (i.e., the case where individuals happen to
share a location by chance, without actually meeting) with a high probability. The resulting
groups can be used to improve the underlying social network, e.g., by adding missing links,
or by allowing the social network to recommend locations and events, tailored to the
preferences of the group.

In traditional co-location mining, the location of an object is known for certain. Under
this assumption, a lot of work has been published in the last decade [214, 93, 200, 167, 92,
214]. A survey on the field of co-location mining on certain spatial data be found in [134,
135]. However, in many real applications such as plant disease diagnosis, environmental
surveillance and geo-social networks, the location of objects is uncertain. In the following,
the problem of probabilistic spatial collocation mining on uncertain spatial data is defined.
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Figure 9.3: A possible world using the neighborhood relation of [197] .

9.2 Spatial Co-location Mining on Uncertain Spatial

Data

For example, an epiphytology1 expert may highly suspect (but cannot guarantee) that
a plant suffers from mildew (a plant disease). The uncertainty of such a suspicion can
be expressed by existential probability. In this spatially uncertain data, each disease is a
feature and a potential plant with the disease is an instance of the feature and is associated
with an existential probability expressing the likelihood of this plant having the disease.
For instance, at longitude 97.7 E and latitude 26.5 N in “Three Parallel Rivers of Yunnan
protected Areas” area, rhododendra have a 70likelihood of having blight (example taken
from [197]). Using precise spatial data would mean that these plants would be considered
to have 100% likelihood of having the disease. Also, in geo-social networks, the check in
position of a user is inherently uncertain, for many reasons described in the introduction
(Part I) of this thesis.

Only recently, the research community has tackled the challenge of spatial co-location
mining in uncertain data. Recent work ([197]) considers existential uncertainty in spatial
data. In this model, each object has a probability to be present in the database. Thus,
in each possible world, the set of nodes of the corresponding neighbor graph is different.
An example possible world for the neighbor graph of Figure 9.2(a), is shown in Figure
9.3. Here, the non-existent nodes corresponding to objects A2 and B2 are removed. It can
be seen that the graph structure has changed significantly, and it seems intuitive, that in
practice, possible worlds may be highly heterogeneous. For this reason, to the best of our
knowledge, no efficient solution for the problem of frequent co-location mining in uncertain
data has been present. In particular, the solution of [197] has a run-time polynomial
in the number of possible worlds, thus exponential in the number of uncertain objects.
The reason for this high complexity is the neighborhood relation used in [197], which is
chosen arbitrary, i.e., this approach can be applied to any neighborhood relation. This fact
makes efficient co-location mining hard: For example, assume the neighborhood relation
R between two objects is defined by the predicate of having a distance less than some

1The study of plant diseases.
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Figure 9.4: Example Uncertain Spatial Databases with points of interest.

threshold, corresponding to Application I described above. For three uncertain objects A,
B and C, the predicates R(A,B) and R(B,C) are stochastically dependent, despite the
assumption of independence between objects. The reason is that both predicates depend
on the same random variable corresponding to the location (and existence) of B. This
distance dependency is described in more detail in Example 16 in Chapter 4.

This is the reason why in this part of this thesis, an explicit neighborhood function
is given in Definition 35, which is necessary to allow efficient frequent co-location mining.
Unlike the work of [197], both existential and attribute uncertainty are allowed in the
remainder of this chapter.

Table 9.1: Co-locations corresponding to Example 22 and Figure 9.4.
Location Time (User, Probability)∗

Bar 8:00 p.m. (A, 0.8); (B, 1); (C, 1); (D, 0.1))
Restaurant 8:00 p.m. (E, 0.4); (F, 1); (G, 0.4)

Cinema 8:00 p.m. (G, 0.4); (H, 1); (I, 1);
Bar 9:00 p.m. (D, 0.6); (E, 1); (F, 0.3)

Restaurant 9:00 p.m. (B, 0.4); (C, 1); (D, 0.4)
Cinema 9:00 p.m. (I, 1)

... .... ...

An example of the problem of frequent co-location mining in uncertain spatial data
using the neighborhood relation of Definition 35 is given in the following.
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Example 22. Consider uncertain positions of individuals in a geo-social network applica-
tion. The task is to find groups of people that commonly spend time at the same locations,
in order to predict missing social links in the underlying social network, or in order to di-
rect special deals to such groups. Figure 9.4 exemplarily shows the position of a individuals
A, ..., J , together with three locations: a bar, a restaurant and a cinema. For simplicity,
each of these locations is represented by a circular region, but other representations such
as polygons can be used. Due to the uncertainty of the location of individual users. For
example, it is not possible to tell for certain, whether user A is located inside the bar, or
just barely outside of it. In contrast, users B and C are certainly inside the bar, while user
J is certainly not in the bar. The probability P (U in l) that a user U is located inside a
location l can be computed using techniques presented in Chapter 4.2 Exemplary probabili-
ties P (U in l) for all users U and all locations l are shown in Table 9.1. In this table, the
time stamp 8:00 p.m. corresponds to the setting of Figure 9.4. At this time, the users, A,
B and C are co-located at the bar with a high probability. However, at time 9:00 p.m., user
A is no longer located with users B and C, who have moved to the restaurant. In contrast,
it is likely that the group consisting of users E, F and G remained together, hitting the bar
after the restaurant.

Clearly, the number of co-locations may be extremely large, since in an application
like this, there may be one non-empty co-location for each combination of time stamp and
location. The task of probabilistic co-location mining is to find groups of users (objects),
having a significantly high probability of having spent time at the same location for a
sufficiently large number of times.

2For the case proximity to a location is not modelled by a circle, an adaption of the techniques in
Chapter 4 can be made easily, by replacing distance calculation by intersection tests between points and
polygons.
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Figure 9.5: Workflow of probabilistic spatial co-location mining.

9.2.1 Problem Definition

In a nutshell, the problem of probabilistic co-location mining requires two subtasks to be
solved, as illustrated in Figure 9.5:

• First, for each location l and each time interval t, probabilistic instances have to be
computed and derived. This requires to compute the probabilities of all objects, to
be close to location l at time t. This task requires to utilize probabilistic similarity
search methods on uncertain spatial data to derive the probability that a given object
is a member of a co-location instance. For the neighbor relation given in Definition
35, this step requires to perform probabilistic range queries, using the locations L as
query points. The problem of probabilistic similarity search on uncertain spatial data
has been covered thoroughly in Part III of this thesis. Therefore, the focus of this
part will directed to the second subtask. As a result of the first step, an uncertain
spatial database is transformed into a probabilistic co-location database such as the
one depicted in Table 9.1.

• Second, all probabilistic co-location instances need to be mined in order to detect
subsets of spatial features having a statistically significantly high probability to be co-
located frequently in the database. For this subtask, we can assume that a database
DB of probabilistic co-locations such as featured in Table 9.1 is given as a result of
solving the first subtask. Given such a database, the task of finding probabilistic
frequent co-locations in such a database is equivalent to the problem of probabilistic
frequent itemset mining ([28]) in uncertain transaction data. Both problems, of
probabilistic mining of spatial co-locations in uncertain spatial data, as well the the
problem of probabilistic frequent itemset mining in uncertain transaction data, are
formally defined in the following.
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Definition 37 (Uncertain Co-Location Database). Let F be a set of spatial features. An
uncertain co-location database DB is a set of probabilistic co-location instances. Each
probabilistic co-location instance T = (f ∈ F, P (f)) ∈ DB contains a set of spatial fea-
tures, each associated with a probability. For each pair (f ∈ F, P (f)), the probability P (f)
describes the probability that spatial feature f is present in the probabilistic co-location
instance T .

A co-location is a frequent co-location if it occurs in at least minSup co-location
instances, where minSup is a user specified parameter. The number of instances of a
co-location is denoted as the support supp(S) of S. In uncertain co-location databases
however, the support of a co-location is uncertain; it is defined by a discrete probability
distribution function (PDF).

Definition 38 (Probabilistic Support). Let DB be an uncertain co-location database and
let X ⊆ F be a set of spatial features. The support of X is a probability density function

supp(X) : IN0 → [0, 1]

n 7→ P (supp(X) = n).

that maps each non-negative integer n to the probability that the support of features X
equals n.

Therefore, each set of spatial features has a frequentness probability 3 – the probability
that it is frequent.

Definition 39 (Frequentness Probability). Let DB be an uncertain co-location database,
let X ⊆ F be a set of spatial features and let minSup be a non-negative integer. The
probability

P (supp(X) ≥ minSup) =
∞∑

i=minSup

P (supp(X) = i) = 1−
minSup−1∑

i=0

P (supp(X) = i).

is called frequentness probability of X.

Given the frequentness probability of a set of spatial features X, we can apply a prob-
abilistic threshold query predicate in order to decide whether the frequentness probability
of X is significantly high.

Definition 40. A Probabilistic Frequent Set of Spatial Features is a set of spatial features
with a frequentness probability of at least τ .

We are now able to specify the Probabilistic Frequent spatial co-location mining problem
as follows; Given an uncertain spatial database DB, a minimum support scalar minSup
and a frequentness probability threshold τ , find all probabilistic frequent sets of spatial
features. The parameter τ is the user specified minimum confidence in the frequentness
of a set of spatial features. If τ is set close to 1 then the user is interested only in very
confident results, while a small value for τ (close to 0) would lead to results that also
include itemsets which are not frequent in most possible worlds.

3Frequentness is the rarely used word describing the property of being frequent.
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9.2.2 Probabilistic Frequent Itemset Mining

The definition of a uncertain co-location database is equivalent to the definition of an
uncertain transaction database defined in [28].

Definition 41 (Uncertain Transaction Database). Let I be a set of items. An uncertain
transaction database T is a set of probabilistic transactions. Each transaction T = (i ∈
I, P (i)) ∈ T contains a set of items, each associated with a probability. For each pair
(i ∈ I, P (i)), the probability P (i) describes the likelihood that i is present in the probabilistic
transaction T .

This equivalence between Definition 37 and Definition 41 allows to interpret the problem
of probabilistic frequent co-location mining in uncertain spatial data, as the problem of
probabilistic frequent itemset mining in uncertain transaction data. This can be done be
the following interpretation:

• a spatial feature is interpreted as an item

• a probabilistic co-location instance is treated as a transaction.

Using this interpretation, a probabilistic item and an uncertain transaction are defined as
follows.

Definition 42 (Probabilistic Item). Let T be a transaction database. A probabilistic
item is an item x ∈ I whose presence in a transaction t ∈ T is defined by an existential
probability P (x ∈ t) ∈ (0, 1). A certain item is an item where P (x ∈ t) ∈ {0, 1}. I is the
set of all possible items.

Definition 43. An uncertain transaction t is a transaction that contains uncertain items.
A transaction database T containing uncertain transactions is called an uncertain trans-
action database.

Definition 44. A Probabilistic Frequent Itemset (PFI) is an itemset with a frequentness
probability of at least τ .

This interpretation allows to directly apply solution for the problem of probabilistic
frequent itemset mining on uncertain data, which are presented in the following two chap-
ters. The sets of frequent items returned by such algorithms can then be interpreted as
sets of spatial features. These sets of spatial features correspond to spatial co-locations by
Definition 34.
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Chapter 10

Probabilistic Frequent Itemset
Mining

Location Time Person Prob.

Bar t1 Andy 1.0

Bar t1 Brian 0.2

Restaurant t2 Chris 0.4

Restaurant t2 Brian 0.7

World TransactionDB Prob.

1 {Andy} ; {} 0.144

2 {Andy, Brian} ; {} 0.036

3 {Andy} ; {Chris} 0.096

4 {Andy, Brian} ; {Chris} 0.024

5 {Andy} ; {Brian} 0.336

6 {Andy, Brian} ; {Brian} 0.084

7 {Andy} ; {Chris, Brian} 0.224

8 {Andy, Brian};
{Chris, Brian}

0.056

ID Transaction

tA (Andy, 1.0) ; (Brian, 0.2)

tB (Chris, 0.4) ; (Brian, 0.7)

a b
Figure 10.1: Possible Worlds of an Uncertain Transaction Database.

Association rule analysis is one of the most important fields in data mining. It is com-
monly applied to market-basket databases for analysis of consumer purchasing behavior.
Such databases consist of a set of transactions, each containing the items a customer pur-
chased. The database is analyzed to discover associations among different items. The
most important and computationally intensive step in the mining process is the extraction
of frequent itemsets – sets of items that occur in at least minSup transactions. Besides
market-basket analysis, frequent itemset mining is also a core component in applications
such as other applications, such as association-rule mining [8] and sequential-pattern min-
ing [9].

As an example of an uncertain transaction database, consider the following example.

Example 23. The top left table of Figure 10.1 shows the probabilistic result of probabilistic
range queries for two locations bar and restaurant. This result implies that Andy was



200 10. Probabilistic Frequent Itemset Mining

located in the bar for certain at time t1, while Brian has only a 0.2 probability of having
visited the bar at the same time. At time t2, Brian and Chris are located in the restaurant
with a probability of 0.7 and 0.4 respectively. Probabilistic range queries returning such
results have been presented in Chapter 4. This result is stored in an uncertain transaction
database, by simply performing a GROUP BY, using attributes Location and Time. Each
resulting group corresponds to a transaction and is given a unique transaction id. The
resulting uncertain transaction database is given by the table in the bottom left of Figure
10.1. Since in this database, there is three uncertain items, there is a total of 23 = 8
possible worlds, which are depicted in the right of Figure 10.1.

Clearly, applying a traditional frequent itemset mining algorithms to every single possi-
ble world is infeasible, as the number of possible transaction databases grows way too large
for any non-trivial number of probabilistic items. In the following, solutions for the prob-
lem of probabilistic frequent itemset mining will be given. To apply these solutions to the
problem of probabilistic frequent co-location mining, we can simply rewrite the problem
as a probabilistic frequent itemset mining problem.

10.1 Related Work

The problem of probabilistic co-location mining in uncertain spatial data is related to the
problem of frequent itemset mining in uncertain transaction databases. Existing solutions
for this problem transform uncertain items into certain ones by thresholding the proba-
bilities. For example, by treating all uncertain items with a probability value higher than
0.5 as being present, and all others as being absent in a transaction. Such an approach
loses useful information and leads to inaccuracies. Existing approaches in the literature are
based on expected support ([53, 54, 6]). Itemsets are considered frequent if the expected
support exceeds minSup. Effectively, this approach returns an estimate of whether an ob-
ject is frequent or not with no indication of how good this estimate is. Since uncertain
transaction databases yield uncertainty w.r.t. the support of an itemset, the probability
distribution of the support and, thus, information about the confidence of the support of
an itemset is very important. This information, while present in the database, is lost using
the expected support approach.

There is a large body of research on Frequent Itemset Mining (FIM) but very little work
addresses FIM in uncertain databases [53, 54, 121]. The approach proposed by Chui et. al
[54] computes the expected support of itemsets by summing all itemset probabilities in their
U-Apriori algorithm. Later, in [53], they additionally proposed a probabilistic filter in order
to prune candidates early. In [121], the UF-growth algorithm is proposed. Like U-Apriori,
UF-growth computes frequent itemsets by means of the expected support, but it uses the
FP-tree [85] approach in order to avoid expensive candidate generation. In contrast to our
probabilistic approach, itemsets are considered frequent if the expected support exceeds
minSup. The main drawback of this estimator is that information about the uncertainty
of the expected support is lost; [53, 54, 121] ignore the number of possible worlds in which
an itemsets is frequent. [212] proposes exact and sampling-based algorithms to find likely
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frequent items in streaming probabilistic data. However, they do not consider itemsets
with more than one item. To the best of our knowledge, our approach in [28] was the first
that is able to find frequent itemsets in an uncertain transaction database in a probabilistic
way.

However, this publication has stimulated research on the field of probabilistic mining
of frequent itemsets in uncertain transaction data, creating a large number of follow up
publications. A detailed survey can be found in [187]. In [195, 196], an approach is
presented to approximate the support PDF of an itemset using a Poisson distribution.
Approach yields a very small error if the database is sufficiently large. This approximation
furthermore allows to compute the support PDF of an item much faster than the exact
approach presented in [28] and in this chapter. The idea of [195, 196] is used to study a
variety of approximation techniques in Chapter 11, including Expected support, Normal
approximation and Poisson approximation. An approach to accelerate the computation
of our approach in [28] was presented by [106], using massive parallelization exploiting
GPGPU (General-Purpose computation on GPU). Furthermore, the related problem of
mining frequent subgraphs over uncertain graphs [127, 219, 218] has gained alot of research
interest in the last years. Finally, an approach for probabilistic frequent itemset mining
on uncertain data avoiding multiple database scans incurred by the candidate generation
step of [28] has been proposed by us in [29].

10.2 Probabilistic Frequent Itemsets

One simple approach is to transform an uncertain database into a non-uncertain database
by setting the item probabilities to 0 or 1 and then applying a traditional frequent item-
set detection method. For example, probabilities less then 0.5 could be mapped to 0 and
probabilities above 0.5 could be mapped to 1. However, such a transformation obviously
involves loss of information and accuracy. Furthermore, we would have no idea how con-
fident we could be in the results. In particular, itemsets that are often associated with
probabilities close to 0.5 yield a very large error in the result. Another approach is to use
the probabilities associated with the itemsets in order to compute the expected support of
an itemset.

Recall that previous work was based on the expected support [53, 54, 121].

Definition 45. Given an uncertain transaction database T , the expected support E(X)
of an itemset X is defined as E(X)=

∑
t∈T P (X ⊆ t).

The expected support of an itemset X can be efficiently computed by a single scan
over the uncertain transaction database while building the sum of all probabilities associ-
ated with the itemset X. Considering an itemset frequent if its expected support is above
minSup has a major drawback. Uncertain transaction databases naturally involve uncer-
tainty concerning the support of an itemset. Considering this is important when evaluating
whether an itemset is frequent or not. However, this information is forfeited when using
the expected support approach.



202 10. Probabilistic Frequent Itemset Mining

ID Co‐location

t1 (A, 0.8) ; (B, 0.2) ; (D, 0.5) ; (F, 1.0)

t2 (B, 0.1) ; (C, 0.7) ; (D, 1.0) ; (E, 1.0) ; (G, 0.1)

t3 (A, 0.5) ; (D, 0.2) ; (F, 0.5) ; (G, 1.0)

t4 (D, 0.8) ; (E, 0.2) ; (G, 0.9)

t5 (C, 1.0) ; (D, 0.5) ; (F, 0.8) ; (G, 1.0)

t6 (A, 1.0) ; (B, 0.2) ; (C, 0.1)

Figure 10.2: Example of an uncertain co-location database.

Example 24. As an example, consider the database depicted in Figure 10.2, containing a
set of uncertain co-location instances. Treating each co-location instance as a transaction,
the expected support of the itemset {D} is E({D}) = 3.0. The fact that {D} occurs for
certain in one transaction, namely in t2, and that there is at least one possible world where
D occurs in five transactions are totally ignored when using the expected support in order
to evaluate the frequency of an itemset. Indeed, suppose minSup = 3; do we call {D}
frequent? And if so, how certain can we even be that {D} is frequent? By comparison,
consider itemset {G}. This also has an expected support of 3, but its presence or absence
in transactions is more certain. It turns out that the probability that {D} is frequent is 0.7
and the probability that G is frequent is 0.91. While both have the same expected support,
we can be quite confident that {G} is frequent, in contrast to {D}. An expected support
based technique does not differentiate between the two.

The confidence with which an itemset is frequent is very important for interpreting
uncertain itemsets. We therefore require concepts that allow us to evaluate the uncer-
tain data in a probabilistic way. In this section, we formally introduce the concept of
probabilistic frequent itemsets.
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Notation Description

W , w Set of all possible worlds, Possible world instance w ∈W
T , t Uncertain transaction database, transaction t ∈ T
I Set of all items

X, x Itemset X ⊆ I, item x ∈ I
S(X,w) Support of X in world w

Pi(X) Probability that the support of X is i

P≥i(X) Probability that the support of X is at least i

Pi,j(X) Probability that i of the first j transactions contain X

P≥i,j(X) Probability that at least i of the first j transactions contain X

Table 10.1: Summary of Notations of this Chapter

10.2.1 Probabilistic Support

In uncertain transaction databases, the support of an item or itemset cannot be represented
by a unique value, but rather, must be represented by a discrete probability distribution.
Before we give a formal definition of the support probability distribution, we need to define
the support probability. This is the probability that an itemset has a certain support.

Definition 46. Given an uncertain (transaction) database T and the set W of possible
worlds (instantiations) of T , the support probability Pi(X) of an itemset X is the proba-
bility that X has the support i. Formally,

Pi(X) =
∑

wj∈W,(S(X,wj)=i)

P (wj)

where S(X,wj) is the support of X in world wj.

Intuitively, Pi(X) denotes the probability that the support of X is exactly i . The
support probabilities associated with an itemset X for different support values form the
support probability distribution of the support of X.

Definition 47. The probabilistic support of an itemset X in an uncertain transaction
database T is defined by the support probabilities of X (Pi(X)) for all possible support values
i ∈ {0, ..., |T |}. This probability distribution is called support probability distribution. The
following statement holds:

∑
0≤i≤|T | Pi(X) = 1.0.

Returning to our example of Figure 10.2, Figure 10.3(a) shows the support probability
distribution of itemset {D}.

The number of possible worlds |W | that need to be considered for the computation of
Pi(X) is extremely large. In fact, we have O(2|T |·|I|) possible worlds, where |I| denotes
the total number of items. In the following, we show how to compute Pi(X) without
materializing all possible worlds.
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Figure 10.3: Probabilistic support of itemset {D} in the uncertain database of Figure 10.2.

Lemma 29. For an uncertain transaction database T with mutually independent trans-
actions and any 0 ≤ i ≤ |T |, the support probability Pi(X) can be computed as follows:

Pi(X) =
∑

S⊆T,|S|=i

(
∏
t∈S

P (X ⊆ t) ·
∏

t∈T−S

(1− P (X ⊆ t))) (10.1)

Note that the transaction subset S ⊆ T contains exactly i transactions.

Proof. The transaction subset S ⊆ T contains i transactions. The probability of a world
wj where all transactions in S contain X and the remaining |T − S| transactions do not
contain X is P (wj) =

∏
t∈S P (X ⊆ t) ·

∏
t∈T−S(1−P (X ⊆ t)). The sum of the probabilities

according to all possible worlds fulfilling the above conditions corresponds to the equation
given in Definition 46.

10.2.2 Frequentness Probability

Recall that we are interested in the probability that an itemset is frequent, i.e. the proba-
bility that an itemset occurs in at least minSup transactions.

Definition 48. Let T be an uncertain transaction database and X be an itemset. P≥i(X)

denotes the probability that the support of X is at least i, i.e. P≥i(X) =
∑|T |

k=i Pk(X). For
a given minimal support minSup ∈ {0, . . . , |T |}, the probability P≥minSup(X), which we call
the frequentness probability of X, denotes the probability that the support of X is at least
minSup.

Figure 10.3(b) shows the frequentness probabilities of {D} for all possible minSup values
in the database of Figure 10.2. For example, the probability that {D} is frequent when
minSup = 3 is approximately 0.7, while its frequentness probability when minSup = 4 is
approximately 0.3.
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The intuition behind P≥minSup(X) is to show how confident we are that an itemset is
frequent. If the probability that the support is above minSup is high, we can be fairly
confident that the itemset is indeed frequent. With this policy, the frequentness of an
itemset becomes subjective and the decision about which candidates should be reported
to the user depends on the application. Hence, we use the minimum frequentness proba-
bility τ as a user defined parameter. Some applications may need a low τ , while in other
applications only highly confident results should be reported (high τ).

In the possible worlds model we know that P≥i(X) =
∑

wj∈W :(S(X,wj)≥i) P (wj). This
can be computed according to Equation 10.1 by

P≥i(X) =
∑

S⊆T,|S|≥i

(
∏
t∈S

P (X ⊆ t) ·
∏

t∈T−S

(1− P (X ⊆ t))). (10.2)

Hence, the frequentness probability can be calculated by enumerating all possible worlds
satisfying the minSup condition through the direct application of Equation 10.2. This naive
approach is very inefficient however. We can speed this up significantly. First, note that

typically minSup << |T | and the number of worlds with support i is at most

(
|T |
i

)
.

Hence, enumeration of all worlds w in which the support of X is greater than minSup
is much more expensive than enumerating those where the support is less than minSup.
Using the following easily verified Corollary, we can compute the frequentness probability
exponentially in minSup << |T |.

Corollary 9. P≥i(X) = 1−
∑

S⊆T :|S|<i(
∏

t∈S P (X ⊆ t) ·
∏

t∈T−S(1− P (X ⊆ t))).

Despite this improvement, the complexity of the above approach, called Basic in our
experiments, is still exponential w.r.t. the number of transactions. In Section 10.3 we
describe how we can reduce this to linear time.

10.3 Efficient Computation of Probabilistic Frequent

Itemsets

This section presents the Poison-binomial recurrence based approach, which avoids the
enumeration of possible worlds in calculating the frequentness probability and the sup-
port distribution. We also present probabilistic filter and pruning strategies which further
improve the run time of this method.

10.3.1 Efficient Computation of Probabilistic Support

The key to our approach is to consider it in terms of sub-problems. First, we need appro-
priate definitions;
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PminSup,|T|(X)Pi,j(X) = 0 (i>j) PminSup,|T|!1(X)

minSup

0

0

0

0

PminSup!1,|T|!1(X)

# transactions j|T|

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0
0

0

0

1

1 2 j| |

start computation with P1,1(X) P0,j (X)= 1

Figure 10.4: Dynamic Computation Scheme

Definition 49. The probability that i of j transactions contain itemset X is

Pi,j(X) =
∑

S⊆Tj :|S|=i

(
∏
t∈S

P (X ⊆ t) ·
∏

t∈Tj−S

(1− P (X ⊆ t)))

where Tj = {t1, ..., tj} ⊆ T is the set of the first j transactions. Similarly, the probability
that at least i of j transactions contain itemset X is

P≥i,j(X) =
∑

S⊆Tj :|S|≥i

(
∏
t∈S

P (X ⊆ t) ·
∏

t∈Tj−S

(1− P (X ⊆ t)))

Note that P≥i,|T |(X) = P≥i(X), the probability that at least i transactions in the entire
database contain X. The key idea in our approach is to split the problem of computing
P≥i,|T |(X) into smaller problems P≥i,j(X), j < |T |. This can be achieved as follows.
Given a set of j transactions Tj = {t1, ..., tj} ⊆ T : If we assume that transaction tj contains
itemsetX, then P≥i,j(X) is equal to the probability that at least i−1 transactions of Tj\{tj}
contain X. Otherwise, P≥i,j(X) is equal to the probability that at least i transactions of
Tj\{tj} contain X. By splitting the problem in this way we can use the recursion in Lemma
30, which is an adaption of the Poison-binomial recurrence, using the paradigm of dynamic
programming.

Lemma 30. P≥i,j(X) =

P≥i−1,j−1(X) · P (X ⊆ tj) + P≥i,j−1(X) · (1− Pj(X ⊆ tj))

where

P≥0,j = 1 ∀.0 ≤ j ≤ |T |, P≥i,j = 0 ∀.i > j
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Proof. P≥i,j(X) =
∑j

k=i Pk,j(X)
[Kollios et al]

=∑j
k=i Pk−1,j−1(X) · P (X ⊆ tj)+

∑j
k=i Pk,j−1(X) · (1 − P (X ⊆ tj))

[P≥i,j=0 ∀.i>j]
= P (X ⊆

tj) ·
∑j−1

k=i Pk−1,j−1(X) + · (1− P (X ⊆ tj)) ·
∑j−1

k=i Pk,j−1(X)= P (X ⊆ tj) · P≥i−1,j−1(X) +
(1− P (X ⊆ tj)) · P≥i,j−1(X).

Using this dynamic programming scheme, we can compute the probability that at least
minSup transactions contain itemset X by calculating the cells depicted in Figure 10.4.
In the matrix, each cell relates to a probability P≥i,j, with i marked on the x-axis, and j
marked on the y-axis. Note that according to Lemma 30, in order to compute a P≥i,j, we
require the probabilities P≥i−1,j−1 and P≥i,j−1, that is, the cell to the left and the cell to
the lower left of P≥i,j. Knowing that P≥0,0 = 1 and P≥1,0 = 0 by definition, we can start
by computing P≥1,1. The probability P≥1,j can then be computed by using the previously
computed P≥1,j−1 for all j. P≥1,jcan, in turn, be used to compute P≥2,j. This iteration
continues until i reaches minSup, so that finally we obtain P≥minSup,|T | – the frequentness
probability (Definition 48). Note that in each line (i.e. for each i) of the matrix in Figure
10.4, j only runs up to |T | − minSup + i. Larger values of j are not required for the
computation of PminSup,|T |.

Lemma 31. The computation of the frequentness probability P≥minSup requires at most
O(|T | ∗minSup) = O(|T |) time and at most O(|T |) space.

Proof. Using the dynamic computation scheme as shown in Figure 10.4, the number of com-
putations is bounded by the size of the depicted matrix. The matrix contains |T | ∗minSup
cells. Each cell requires an iteration of the dynamic computation (c.f. Corollary 30) which
is performed in O(1) time. Note that a matrix is used here for illustration purpose only.
The computation of each probability Pi,j(X) only requires information stored in the cur-
rent line and the previous line to access the probabilities Pi−1,j−1(X) and Pi,j−i(X) . Only
these two lines (of length |T |) need to be preserved requiring O(|T |) space. Additionally,
the probabilities P (X ⊆ tj) have to be stored, resulting in a total of O(|T |) space.

Note that we can save computation time if an itemset is certain in some transactions.
If a transaction tj ∈ T contains itemset X with a probability of zero, i.e. P (X ⊆ tj) = 0,
transaction tj can be ignored for the dynamic computation because P≥i,j(X) = P≥i,j−1(X)
holds (Lemma 30). If |T ′| is less than minSup, then X can be pruned since, by definition,
P≥minSup,T ′ = 0 if minSup > T ′. The dynamic computation scheme can also omit trans-
actions Tj where the item has a probability of 1, because P≥i,j(X) = P≥i−1,j−1(X) due to
P (X ⊆ tj) = 1. Thus, if a transaction tj contains X with a probability of 1, then tj (i.e.
the corresponding column) can be omitted if minSup is reduced by one, to compensate
the missing transaction. The dynamic programming scheme therefore only has to consider
uncertain items. We call this trick 0-1-optimization.
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10.3.2 Probabilistic Filter Strategies

To further reduce the computational cost, we introduce probabilistic filter strategies. These
reduce the number of probability computations in the dynamic algorithm. Our probabilistic
filter strategies exploit the following monotonicity criteria;

Monotonicity Criteria

First, if we increase the minimal support i, then the frequentness probability of an itemset
decreases.

Lemma 32. P≥i,j(X) ≥ P≥i+1,j(X).

Proof. P≥i+1,j(X)
Definition 48

= P≥i,j(X)− Pi+1,j(X) ≤ P≥i,j(X)

Intuitively, this result is obvious since the predicate “the support is at least i” implies
“the support is at least i+ 1”. The next criterion says that an extension of the uncertain
transaction database leads to an increase of the frequentness probability of an itemset.

Lemma 33. P≥i,j(X) ≤ P≥i,j+1(X).

Proof. P≥i,j+1(X)
Lemma 30

= P≥i−1,j(X) ·P (X ⊆ tj+1) +P≥i,j(X) · (1−P (X ⊆ tj+1))
Lemma 32

≥
P≥i,j(X) · P (X ⊆ tj+1) + P≥i,j(X) · (1− P (X ⊆ tj+1)) = P≥i,j(X)

The intuition behind this lemma is that one more transaction can increase the support
of an itemset. Putting these results together;

Lemma 34. P≥i,j(X) ≥ P≥i+1,j+1(X).

Proof. P≥i+1,j+1(X)
Corollary30

= P≥i,j(X)·P (X ⊆ tj+1)+P≥i+1,j(X)(1−P (X ⊆ tj+1))
Lemma32

≤
P≥i,j(X) · P (X ⊆ tj+1) + P≥i,j(X)(1− P (X ⊆ tj+1)) = P≥i,j .

Next, we describe how these monotonicity criteria can be exploited to prune the dy-
namic computation.

Pruning Criterion

Lemma 34 can be used to quickly identify non-frequent itemsets. Figure 10.5 shows the
dynamic programming scheme for an itemset X. Keep in mind that the goal is to compute
PminSup,|T |(X). Lemma 34 states that the probabilities PminSup−k,|T |−k(X), 1 ≤ k ≤ minSup
(highlighted in Figure 10.5), are conservative bounds of PminSup,|T |(X). Thus, if any of the
probabilities PminSup−k,|T |−k(X), 1 ≤ k ≤ minSup is lower than the user specified parameter
τ , then X can be pruned.
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Figure 10.5: Visualization of the Pruning Criterion

10.4 Probabilistic Frequent Itemset Mining (PFIM)

We now have the techniques required to efficiently identify whether a given itemset X is a
probabilistic frequent itemset (PFI). In this section, we show how to find all probabilistic
frequent itemsets in an uncertain transaction database. Traditional frequent itemset mining
is based on support pruning by exploiting the anti-monotonic property of support: S(X) ≤
S(Y ) where S(X) is the support of X and Y ⊆ X. In uncertain transaction databases
however, recall that support is defined by a probability distribution and that we mine
itemsets according to their frequentness probability. It turns out that the frequentness
probability is anti-monotonic:

Lemma 35. ∀Y ⊆ X : P≥minSup(X) ≤ P≥minSup(Y ). In other words, all subsets of a
probabilistic frequent itemset are also probabilistic frequent itemsets.

Proof. P≥i(X) = 1
|W |
∑|W |

i=1 P (wi) · IS(X,wi)≥minSup, since the probability is defined over all
possible worlds. Here, IZ is an indicator variable that is 1 when z = true and 0 other-
wise. In other words, P≥i(X) is the relative number of worlds in which S(X) ≥ minSup
holds, where each occurrence is weighted by the probability of the world occurring. Since
world wi corresponds to a normal transaction database with no uncertainty, S(X,wi) ≤
S(Y,wi)∀Y ⊆ X due to the anti-monotonicity of support. Therefore, IS(X,wi)≥minSup ≤
IS(Y,Wi)≥minSup∀i ∈ |W |, ∀Y ⊆ X and, thus, P≥i(X) ≤ P≥i(Y ),∀Y ⊆ X.

The above lemma shows that the frequentness probability is anti-monotonic (downward
closed) in the item sets.

We can use the contra-positive of Lemma 35 to prune the search space for probabilistic
frequent itemsets. That is, if an itemset Y is not a probabilistic frequent itemset, i.e.
P≥minSup(Y ) < τ , then all itemsets X ⊇ Y cannot be probabilistic frequent itemsets
either. In this case, we do not need to generate further itemsets by extending X.

Our first algorithm is based on a “marriage” of traditional frequent itemset mining
methods and our uncertain itemset identification algorithms. In particular, we propose
a probabilistic frequent itemset mining approach based on the Apriori algorithm ([8]).
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Like Apriori, our method iteratively generates the probabilistic frequent itemsets using a
bottom-up strategy. Each iteration is performed in two steps, a join step for generating new
candidates and a pruning step for calculating the frequentness probabilities and extracting
the probabilistic frequent itemsets from the candidates. The pruned candidates are, in
turn, used to generate candidates in the next iteration. Lemma 35 is exploited in the join
step to limit the candidates generated and in the pruning step to remove itemsets that
need not be expanded. First, we start with singleton items and compute their frequentness
probability. All items having at least a frequency probability of τ are used to build all
itemsets containing two items (join step). For these itemsets of size two, we compute the
frequency probability, correspondingly, and filter out those having a frequency probability
less than τ (pruning step). In the next iteration, we again build itemsets with three items
from the remaining uncertain frequent itemsets of the previous iteration. This breadth-first
strategy will be continued until all uncertain frequent itemsets are identified.

10.5 Incremental Probabilistic Frequent Itemset Min-

ing (I-PFIM)

Our probabilistic frequent itemset mining approach allows the user to control the confidence
of the results using τ . However, since the number of results depends on τ , it may prove
difficult for a user to correctly specify this parameter without additional domain knowledge.
Therefore, this Section shows how to efficiently solve the following problems, which do not
require the specification of τ ;

• Top-k probabilistic frequent itemsets query: return the k itemsets that have the high-
est frequentness probability, where k is specified by the user.

• Incremental ranking queries: successively return the itemsets with the highest fre-
quentness probability one at a time.

10.5.1 Incremental Probabilistic Frequent Itemset Mining Algo-
rithm

In our incremental algorithm (Algorithm 9), we keep an Active Itemsets Queue (AIQ)
that is initialized with all one-item sets. The AIQ is sorted by frequentness probability
in descending order. Without loss of generality, itemsets are represented in lexiographical
order to avoid generating them more than once. In each iteration of the algorithm, i.e.
each call of the getNext()-function, the first itemset X in the queue is removed. X is the
next most probable frequent itemset because all other itemsets in the AIQ have a lower
frequentness probability due to the order on AIQ, and all of X’s supersets (which have
not yet been generated) cannot have a higher frequentness probability due to Lemma 35.
Before X is returned to the user, it is refined in a candidate generation step. In this step,
we create all supersets of X obtained by adding single items x to the end of X, in such
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Algorithm 9 Incremental Algorithm

//initialise
AIQ = new PriorityQueue
FOR EACH x ∈ I

AIQ.add([x,P≥minSup(x)])
//return the next probabilistic frequent itemset
getNext() RETURNS X
X = AIQ.removeFirst()
FOR EACH (x ∈ I \X : x = lastInLexOrder(X ∪ x))

AIQ.add([X ∪ x,P≥minSup(X ∪ x)])

a way that the lexiographical order of X ∪ x is maintained. These are then added to the
AIQ after their respective frequentness probabilities are computed (Section 10.3). The
user can continue calling the getNext()-function until he has all required results. Note
that during each call of the getNext()-function, the size of the AIQ increases by at most
|I|. The maximum size of the AIQ is 2|I|, which is no worse than the space required to
sort the output of a non-incremental algorithm. The runtime of each call to getNext() is
O(|I| · |T | ·minSup).

10.5.2 Top-k Probabilistic Frequent Itemsets Query

In many applications however, relatively few top probabilistic frequent itemsets are re-
quired. For instance, in the spatial co-location application in Example 22, a user may
want to know the top k = 100 most likely co-locations. Top-k highest frequentness proba-
bility queries can be efficiently computed by using Algorithm 9 and constraining the length
of the AIQ to k − m, where m is the number of highest frequentness probability items
already returned. Any itemsets that “fall off” the end can safely be ignored. The rational
behind this approach is that for an itemset X at position p in the AIQ, p−1 itemsets with
a higher frequentness than X exist in the AIQ by construction. Additionally, any of the
m itemsets that have already been returned must have a higher frequentness probability.
Consequently, our top-k algorithm contrains the size of the initial AIQ to k and reduces
its size by one each time a result is reported. The algorithm terminates once the size of
the AIQ reaches zero.



212 10. Probabilistic Frequent Itemset Mining

10.6 Experimental Evaluation

In this Section we present efficiency and efficacy experiments. First, we give efficiency
results obtained utilizing the different methods of computing the probabilistic support (cf.
Sections 10.2 and 10.3). Then, we discuss the performance and utility of the proposed
probabilistic frequent itemset mining algorithms (cf. Sections 10.4 and 10.5). In all exper-
iments, the runtime was measured in milliseconds (ms).

10.6.1 Evaluation of the Frequentness Probability Calculations

We evaluated our frequentness probability calculation methods on several artificial datasets
with varying database sizes |T | and densities. All artificial data sets have been produced
by the IBM QUEST Market-Basket Synthetic Data Generator1. The number of transac-
tions is scaled from 10k to 10, 000k, using 10k as default setting. The number of distinct
items that can appear in a transaction is set to 1k. The density of an item denotes the
expected fraction of transactions in which an item may be present (i.e. where its existence
probability is in (0, 1]). By default, the density is set to 0.5. The IBM data generator yields
deterministic (crisp) transaction with no uncertainty involved. To add uncertainty, each
item in each transaction is given a probability drawn from a uniform [0, 1] distribution.
The frequentness probability threshold τ of was set to 0.9 by default.

We use the following notations for our frequentness probability algorithms: Basic:
basic probability computation (Section 10.2.2), Dynamic: dynamic probability computa-
tion (Section 10.3.1), Dynamic+P: dynamic probability computation with pruning (Sec-
tion 10.3.2), DynamicOpt: dynamic probability computation utilizing 0-1-optimization
(Section 10.3.1) and DynamicOpt+P: 0-1-optimized dynamic probability computation
method with pruning.

1Original files seemingly no longer available through IBM, but mirrored at http://www.cs.loyola.

edu/~cgianneli/assoc_gen.html

http://www.cs.loyola.edu/~cgianneli/assoc_gen.html
http://www.cs.loyola.edu/~cgianneli/assoc_gen.html
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Figure 10.6: Runtime evaluation w.r.t. |T |.

Scalability

Figure 10.6 shows the scalability of the probability calculation approaches when we vary the
number of transactions, |T |. The runtime of the Basic approach increases exponentially
in minSup as explained in Section 10.2.2, and is therefore not applicable for a |T | > 50 as
can be seen in Figure 10.6(a). Our approaches Dynamic+P and DynamicOpt+P scale
linearly as expected when using a constant minSup value. The 0-1-optimization has an
impact on the runtime whenever there is some certainty in the database. The performance
gain of our pruning strategies depends on the used minSup value. In Figures 10.6(b),
10.6(c) and 10.6(d) the scalability of Dynamic and Dynamic+P is shown for different
minSup values expressed as percentages of |T |. It is notable that the time complexity of
O(|T |∗minSup) becomes O(|T |2) if minSup is chosen relative to the database size. Also, it
can be observed that the higher minSup, the higher the difference between Dynamic and
Dynamic+P; a higher minSup causes the frequentness probability to fall overall, thus
allowing earlier pruning.
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Figure 10.7: Runtime evaluation w.r.t. the density.

Effect of the Density

We now evaluate the effectiveness of our pruning strategy w.r.t. the density. minSup is
important here too, so we report results for different values in Figure 10.7. The pruning
works well for datasets with low density and has no effect on the runtime for higher densi-
ties. The reason is straightforward; the higher the density, the higher the probability that
a given itemset is frequent and, thus, cannot be pruned. Regarding the effect of minSup;
a larger minSup value decreases the probability that itemsets are frequent and therefore
increases the number of computations that can be pruned. The break-even point between
pruning and non-pruning in our experiments is when the density is approximately twice
the minSup value, since, due to the method of creating our datasets, this corresponds to
the expected support. At this value, all itemsets are expected to be frequent.

Overall, with reasonable parameter settings our pruning strategies achieve a significant
speed-up for the identification of probabilistic frequent itemsets.
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Figure 10.8: Runtime evaluation w.r.t. minSup.

Effect of minSup

Figure 10.8 shows the influence of minSup on the runtime when using different densities.
The runtime of Dynamic directly correlates with the size of the dynamic computation
matrix (see Figure 10.4). A low minSup value leads to few matrix rows which need to
be computed, while a high minSup value leads to a slim row width. The total number
of matrix cells to be computed is minSup ∗ (|T | − minSup + 1), with a maximum at

minSup = |T |+1
2

. As long as the minSup value is below the expected support value, the
approach with pruning shows similar characteristics; in this case, almost all item(sets) are
expected to be frequent. However, the speed-up due to the pruning rapidly increases for
minSup above this break-even point.
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Figure 10.9: Effectiveness of AP vs IP.

10.6.2 Evaluation of the Probabilistic Frequent Itemset Mining
Algorithms

Experiments for the probabilistic frequent itemset mining algorithms were run on a subset
of the real-world dataset accidents2, denoted by ACC. It consists of 340, 184 transactions
and 572 items whose occurrences in transactions were randomized; with a probability of
0.5, each item appearing for certain in a transaction was assigned a value drawn from a
uniform distribution in (0, 1]. Here we use AP to denote the Apriori-based and IP for the
incremental probabilistic itemset mining algorithms.

We performed Top-k queries on the first 10, 000 transactions of ACC using a minSup =
500 and τ = 0.1. Figure 10.9(a) shows the result of IP. Note that the frequentness
probability of the resulting itemsets is monotonically decreasing. In contrast, AP returns
probabilistic frequent itemsets in the classic way; in descending order of their size, i.e.
all itemsets of size one are returned first, etc. While both approaches return probabilistic
frequent itemsets, AP returns an arbitrary frequentness probability order, while IP returns
the most relevant itemsets first.

Next we performed ranking queries on the first 100, 000 itemsets (Figure 10.9(b)). In
this experiment, our aim was to find them-itemsetX with the highest frequency probability
of allm-itemsets, wherem ∈ {2, 3, 4}. We measured the number of itemsets returned before
X. It can be seen that the speed up factor for ranking (and thus top-k queries) is several
orders of magnitude and increases exponentially in the length of requested itemset length.
The reason is that AP must return all frequent itemsets of length m− 1 before processing
itemsets of length m, while IP is able to quickly rank itemsets in order of their frequentness
probability, therefore leading to better quality results delivered to the user much earlier.

2The accidents dataset [77] was derived from the Frequent Itemset Mining Dataset Repository
(http://fimi.cs.helsinki.fi/data/)
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10.7 Conclusion

The Probabilistic Frequent Itemset Mining (PFIM) problem is to find itemsets in an un-
certain transaction database that are (highly) likely to be frequent. To the best of our
knowledge, this is the first work addressing this problem under possible worlds semantics.
We presented a framework for efficient probabilistic frequent itemset mining. We theoreti-
cally and experimentally showed that our proposed dynamic computation technique is able
to compute the exact support probability distribution of an itemset in linear time w.r.t.
the number of transactions instead of the exponential runtime of a non-dynamic compu-
tation. Furthermore, we demonstrated that our probabilistic pruning strategy allows us
to prune non-frequent itemsets early leading to a large performance gain. In addition, we
introduced an iterative itemset mining framework which reports the most likely frequent
itemsets first.
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Chapter 11

Approximate Spatial Collocation
Mining

This chapter presents approximation techniques for the problem of probabilistic frequent
itemset mining in uncertain transaction data. Three approximation approches are pre-
sented, each based on a fundamental law of statistics.

• Supported by the Law of Large Numbers, the first approach uses expected support
only, similar to [53, 54, 6].

• The Poisson Law of Small Numbers is exploited for the second approach, to approx-
imate the probabilistic support PDF of an itemset by a Poisson distribution.

• The Central Limit Theorem is applied, allowing the third approaches to use a Normal
distribution to approximate the probabilistic support PDF of an itemset.

Theoretical and experimental evaluations of all approximations are given in Section 11.2
and in Section 11.3, respectively.

11.1 Approximation of the Support PDF of an Item-

set

From the last chapter, we can see that the PDF supp(I) of the probabilistic support of
an itemset I plays an important role in determining whether I is a probabilistic frequent
itemset. However, directly computing supp(I) using the Poisson binomial recurrence ap-
proach presented in Chapter 10 can be expensive due to the incurred runtime linear in the
size of the database (c.f. Lemma 31). We now investigate alternative ways of computing
supp(I). In the following, we study some statistical properties of supp(I) and show how
to approximate the distribution of supp(I) in a computationally efficient way by means of
the expected support (cf. Section 11.1.1) and two standard probability distributions: the
Poisson distribution (cf. Section 11.1.2) and the normal distribution (cf. Section 11.1.3).
In Section 11.1.4 we discuss all three alternatives.
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11.1.1 Approximation by Expected Support

A simple and efficient way to evaluate the frequentness of an item set in an uncertain
transaction database is to use the expected support [54, 6]. The expected support converges
to the exact support when increasing the number of transactions according to the “law of
large numbers”.

Definition 50 (Law of Large Numbers). A “law of large numbers” is one of several the-
orems expressing the idea that as the number of trials of a random process increases, the
percentage difference between the expected and actual values goes to zero. Formally, given a
sequence of independent and identically distributed random variables X1, ..., Xn, the sample
average 1

n

∑n
i=1Xi converges to the expected value µ =

∑n
i=1E(Xi) for n→∞. It can also

be shown ([70]), that the law of large numbers is applicable for non-identically distributed
random variables.

For notational convenience, let pIj be Pr(I ⊆ tj). Since the expectation of a sum is the
sum of the expectations, the expected value of XI , denoted by µI , can be computed by:

µI =
n∑
j=1

pIj (11.1)

Given the expected support µI we can approximate the cdf PrI≤(i) of XI as follows:

PrI≤(i) =

{
0 if i < µI
1 else

(11.2)

According to the above equation, the frequentness probability Prfreq(I) of itemset I is
approximated by 1, if µI is at least minsup and 0 otherwise. The computation of µI can
be efficiently done by scanning DB once and summing up pIj ’s for all tuples tj in DB.

Example 25. As an example, consider an itemset I that only appears in two transactions
with a non-zero probability. One transaction contains I with a probability of 0.5 and the
other transaction contains I with a probability of 0.33. Using the techniques of Chapter 10,
we can compute the exact probability mass of supp(I) as:

P (supp(I) = 0) = 0.33, P (supp(I) = 1) = 0.5, P (supp(I) = 2) = 0.17.

In contrast, to compute the expected support of I, we simply compute µI = 0.5+0.33 = 0.83.
The corresponding probability mass of I using expected support is

P (supp(I) = 0.83) = 1.

Both probability mass functions yield the probability density function (i.e., cumulative mass
functions) depicted in Figure 11.1(a). Obviously, the expected support is only a very coarse
approximation of the exact support distribution.

Important information about the distribution, e.g. the variance, is lost with this ap-
proximation. In fact, we do not know how confident the results are. In the following, we
provide a more accurate approximation for the pdf of supp(I).
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Figure 11.1: Approximations of the support of an example itemset.

11.1.2 Poisson Distribution-Based Approximation

A Poisson binomial distribution can be well-approximated by a Poisson distribution [41]
following the “Poisson law of small numbers”.

Definition 51 (Poisson Law of Small Numbers). Given a sequence of independent random
variables X1, ..., Xn, having expected values µi, 1 ≤ i ≤ n and finite variance σi

2, 1 ≤ i ≤ n,
the density of the sample average X = 1

n

∑n
i=1 Xi is approximately Poisson distributed with

λX = 1
n

∑n
i=1(µ)i if max{P (X1), ..., P (Xn)} tends to zero [89].

According to this law, we obtain:

Pr≥minsup(I) ≈ 1− PoµI (minsup − 1 ) (11.3)

where PoµI the cdf of the Poisson distribution with mean µI , i.e., FµI (minsup − 1) =

1− Γ(minsup,µI)
(minsup−1)!

, where Γ(minsup, µI) =
∫∞
µI
tminsup−1e−tdt.

Example 26. As an example, consider again the support of the itemset described in Exam-
ple 25 having two existential probabilities of 0.5 and 0.33. Computing µ = λI = 0.5 + 0.33
yields the approximated pmf depicted in Figure 11.1(b).

To estimate Pr≥minSup(I), we can first compute µI by scanning DB once as described
above and evaluate Fp(minsup − 1, µI). Then, Equation 11.3 is used to approximate
Prfreq(I). A theoretical analysis of the approximation quality is shown in Section 11.2.1.
According to our experimental results in Section 11.3, the approximation is quite accurate.
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Figure 11.2: Itemset support distribution approximated with the normal distribution.

11.1.3 Normal Distribution-Based Approximation

Provided |DB| is large enough which usually holds for transaction databases, supp(I)
converges to the normal distribution with mean µI and variance σ2

I , where

σ2
I = V ar(supp(I)) =

∑
tj∈DB

P (I ⊆ tj) · (1− Pr(I ⊆ tj))

according to the “Central Limit Theorem”.

Definition 52 (Central Limit Theorem). Given a sequence of independent random vari-
ables X1, ..., Xn, having expected values µi, 1 ≤ i ≤ n and finite variance σi

2, 1 ≤ i ≤ n,
the density of the sample average X = 1

n

∑n
i=1Xi is approximately normal distributed with

µX = 1
n

∑n
i=1 µi and σ2

X = 1√
n

∑n
i=1 σ

2
i.

Lemma 36. The support probability distribution of an item set I is approximated by the
normal distribution with mean µI and variance σ2

I as defined above. Therefore,

P≥minsup(I) ≈ 1−Noµi,σ2
I
(minsup − 1 ) (11.4)

where Noµi,σ2
I

is the cdf of the normal distribution with mean µI and variance σ2
I , i.e.,

Noµi,σ2
I
(minsup − 1 ) =

1

σI
√

2π

∫ minsup−1

−∞
e
− (x−µI )

2

2σ2
I (11.5)



11.1 Approximation of the Support PDF of an Itemset 223

Computing µ = 0.5 + 0.33 and sigma2 = 0.5 · 0.5 + 0.33 · 0.67 = 0.471 yields the ap-
proximated pmf depicted in Figure 11.2(a). The continuity correction which is achieved by
running the integral up to minsup−0.5 instead of minsup−1 is an important and common
method to compensate the fact that supp(I) is a discrete distribution approximated by a
continuous normal distribution. The effect of the continuity correction is shown in Figure
11.2(b).

The estimation of P≥(I) can be done by first computing µI by scanning DB once,
summing up pIj ’s for all tuples tj in DB. During the same scan, the variance σ2

I = V ar(I)
can be computed by exploiting independence of all items to use the Bienaym formula

V ar(
∑
i=1

nXi) =
∑
i=1

nV ar(Xi).

Now Equation 11.4 is used to approximate P≤(I).

While the above method still requires a full scan of the database to evaluate one frequent
itemset candidate, threshold- and rank-based PFIs can be found more efficiently.

11.1.4 Discussion

In this section, we have described three models to approximate the Poisson binomial distri-
bution. Now, we will discuss the advantages and disadvantages of each model theoretically.

Each of the approximation models is based on a fundamental statistics theorem. In
particular, the Expected approach, exploits the Law of Large Numbers [158], the Normal
Approximation approach exploits the Central Limit Theorem[69] and the Poisson Approx-
imation approach exploits the Poisson Law of Small Numbers [152].

Approximation Based on Expected Support

In consideration of the “Law of large numbers”, the Expected approach requires a large
n, i.e. a large number of transactions, where the respective item set is contained with a
probability greater than zero. A thorough evaluation of this parameter can be found in
the experiments.

Normal Distribution-Based Approximation

The rule of thumb for the central limit theorem is, is that for n ≥ 30, i.e. for at least
30 transactions containing the respective item set with a probability larger than zero,
the normal approximation yields good results. This rule of thumb however, depends on
certain circumstances, namely, the probabilities P (Xi = 1) should be close to 0.5. In our
experiments, we will evaluate, for what settings (e.g. databases size, item set probabilities)
the normal approximation yields good results.
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Poisson Distribution-Based Approximation

In consideration of the Poisson Law of Small Numbers, the Poisson approximation the-
oretically yields good results, if all probabilities P (Xi) are small. This seems to be a
harsh assumption, since it forbids any probabilities of one, which are common in real
data sets. However, it can be argued, that for large item sets, the probability may al-
ways become small in some applications. In the experiments, we will show how small
max{P (X1), ..., P (Xn)} is required to be, in order to achieve good approximations, and
how “a few” large probabilities impact the approximation quality. In addition, our exper-
iments aim to give an intuition, in what setting which approximation should be used to
achieve the best approximation results.

Computational Complexity

Each approximation technique requires to compute the expected support E(X) = µ =
λ =

∑n
i=1 P (Xi), which requires a full scan of the database requiring O(n) time and O(1)

space. The normal approximation additionally requires to compute the sum of variances,
which has the same complexity. This is all that has to be done to compute the parameters
of all three approximations. After that, the Expected approach only requires to compare
E(X) with MinSupp, at a cost of O(1) time. The normal approximation approach in
contrast requires, to compute the probability that X > MinSupp, which requires numeric
integration, since the normal distribution it has no closed-form expression. However, there
exist very efficient techniques (such as the Abromowitz and Stegun approximation [2] ) to
quickly evaluate the normal distribution. Regardless, this evaluation is independent of the
database size and also requires constant time. The same rationale applies for the Poisson
approximation, which does also not have a closed-form solution, but for which there exist
manifold fast approximation techniques. In summary, each of the approximation techniques
has a total runtime complexity of O(n+Ci) and a space complexity of O(1). The constant
Ci depends on the approximation technique. In the experiments, we will see, that the
impact of Ci can be neglected in runtime experiments. In summary, each of the proposed
approximation techniques runs in O(n) time. These are more scalable methods compared
to the solution presented in Chapter 10.

11.2 Theoretical Bounds on the Approximation Qual-

ity

This section presents theoretical results on the quality of the Poisson and of the Normal
approximation. An empiric evaluation can be found in Section 11.3
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11.2.1 Quality of the Poisson Approximation

In Section 11.1.2, we use the Poisson distribution to approximate the Poisson binomial
distribution. Here, we summarize the results of this approximation quality, discussed in
[174].

Let X1, X2, ..., Xn be a set of Poisson trials such that Pr(Xj = 1) = pj and X =∑n
j=1 Xj. Then, X follows a Poisson binomial distribution. Suppose µ = E[X] =

∑n
j=1 pj.

The probability of X = i and X ≤ i can be approximated by the probability distribution
function (pdf) and the cumulative distribution function (cdf) of the Poisson distribution,

Pr(X = i) ≈ f(i, µ) = µi

i!
e−µ

Pr(X ≤ i) ≈ F (i, µ) = Γ(i+1,µ)
i!

[174] gives an upper bound of the error of the approximation:

|Pr(X ≤ i)− F (i, µ)| ≤ (µ−1 ∧ 1)
n∑
j=1

p2
j (11.6)

for i = 0, 1, 2, ..., n where µ−1 ∧ 1 = min(µ−1, 1).
Now, we want to compute a bound on expression on the right hand side. Since µ =∑n
j=1 pj,

(µ−1 ∧ 1)
n∑
j=1

p2
j = min(

1∑n
j=1 pj

, 1)
n∑
j=1

p2
j

Obviously the above expression is greater than or equal to 0.
When 0 ≤

∑n
j=1 pj ≤ 1,

(µ−1 ∧ 1)
n∑
j=1

p2
j =

n∑
j=1

p2
j ≤

n∑
j=1

pj ≤ 1

When
∑n

j=1 pj > 1,

(µ−1 ∧ 1)
n∑
j=1

p2
j =

∑n
j=1 p

2
j∑n

j=1 pj
≤

∑n
j=1 pj∑n
j=1 pj

= 1

So, in either case:

0 < (µ−1 ∧ 1)
n∑
i=1

p2
i ≤ 1 (11.7)

The upper bound of the error is very small. As also verified by our experiments, the
Poisson binomial distribution can be approximated well.
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11.2.2 Quality of the Normal Approximation

In Section 11.1.3 we use a normal distribution to approximate a Poisson binomial distri-
bution. Here, we will summarize the current state of research in theoretical quality of this
approximation. Therefore, let X1, ..., Xn independent Poisson trials with respective proba-
bilities p1, ..., pn and let X denote random variable corresponding to the average 1

n

∑n
i=1Xi

of these random variables. Also, let Y denote the CDF of
X·
√

(n)

σ
, i.e. the normalized CDF

of X. In [67], the author was able to prove that the maximum error between Y and the
cdf Φ of the standard normal distribution is bounded as follows:

sup
x
|Y − Φ| ≤ CΨ,

where Ψ = (
∑n

i=1 σ
2
i )
−3
2 ·
∑n

i=1 ρi, where σ2
i is the variance of Xi and ρi is the third moment

of Xi. C is constant that was successively lowered from the original estimate of 7.59 ([67])
to the current best estimate of 0.5600 by [169].

11.3 Experimental Results

We now present the experimental results, again based on the same datasets that have been
used in the experimental Section 10.6 of the previous Chapter 10. The first one, called
accidents, is taken from the Frequent Itemset Mining (FIMI) Dataset Repository1. This
dataset is obtained from the National Institute of Statistics (NIS) for the region of Flanders
(Belgium), for the period of 1991–2000. The data are obtained from the ‘Belgian Analysis
Form for Traffic Accidents’, which are filled out by a police officer for each traffic accident
occurring on a public road in Belgium. The dataset contains 340,184 accident records,
with a total of 572 attribute values. On average, each record has 45 attributes.

We use the first 10k tuples and the first 20 attributes as our default dataset. The
default value of minsup is 20% of the database size n.

The second dataset, called T10I4D100k, is again produced by the IBM data generator
used in Section 10.6. The dataset has a size n of 100k transactions. On average, each
transaction has 10 items, and a frequent itemset has four items. Since this dataset is
relatively sparse, we set minsup to 1% of n.

For both datasets, we consider both attribute and tuple uncertainty models. For at-
tribute uncertainty, the existential probability of each attribute is drawn from a Gaussian
distribution with mean 0.5 and standard deviation 0.125. This same distribution is also
used to characterize the existential probability of each tuple, for the tuple uncertainty
model. The default values of minprob and k are 0.4 and 10, respectively. In the results
presented, minsup is shown as a percentage of the dataset size n. Notice that when the
values of minsup or minprob are large, no PFIs can be returned; we do not show the results
for these values. Our experiments were carried out on the Windows XP operating system,

1http://fimi.cs.helsinki.fi/

http://fimi.cs.helsinki.fi/
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on a work station with a 2.66 GHz Intel Core 2 Duo processor and 2GB memory. The
programs were written in R.

We now compare the performance of five threshold-based PFI mining algorithms men-
tioned in this chapter: (1) DP, the Apriori-based algorithm used in Chapter 10; (2)
Expected, the modified Apriori algorithm that uses the expected support only [54]; (3)
Poisson, the modified Apriori algorithm that uses the Poisson approximation to estimate
the support of an itemset; (4) Normal, the modified Apriori algorithm that uses the normal
approximation.

minsup/n 0.1 0.2 0.3 0.4 0.5

Recall 0.99 0.98 1 1 1

Precision 1 1 1 1 1

Recall & Precision vs. minsup

minprob 0.1 0.3 0.5 0.7 0.9

Recall 0.975 0.975 1 1 1

Precision 1 1 1 0.975 0.941

Recall & Precision vs. minprob

n 1k 5k 10k 50k 100k

Recall 0.937 0.986 0.983 1 1

Precision 0.969 1 0.992 1 1

Recall & Precision vs. n

minsup/n 0.1 0.2 0.3 0.4 0.5

Recall 1 1 1 1 1

Precision 1 1 1 1 1

Recall & Precision vs. minsup

minprob 0.1 0.3 0.5 0.7 0.9

Recall 1 1 1 1 1

Precision 1 1 1 1 1

Recall & Precision vs. minprob

n 1k 5k 10k 50k 100k

Recall 1 1 1 1 1

Precision 1 1 1 1 1

Recall & Precision vs. n

(a) Expected approach. (b) Normal approach.

minsup/n 0.1 0.2 0.3 0.4 0.5

Recall 1 1 1 1 1

Precision 1 0.992 1 1 1

Recall & Precision vs. minsup

minprob 0.1 0.3 0.5 0.7 0.9

Recall 1 1 1 0.983 0.985

Precision 0.986 1 0.985 1 1

Recall & Precision vs. minprob

n 1k 5k 10k 50k 100k

Recall 1 1 1 1 1

Precision 0.989 1 0.992 1 1

Recall & Precision vs. n

(c) Poisson approach.

Table 11.1: Recall and Precision of the approximations.
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11.3.1 Accuracy

Since the model-based approaches Expected, Poisson and Normal each approximate the
exact pdf supp(I) of an itemset I, we first examine their respective accuracy with respect
to DP, which yields PFIs based on exact frequentness probabilities. Here, we use the
standard recall and precision measures [40], which quantify the number of negatives and
false positives. Specifically, let MB∈ {Expected, Poisson, Normal} be one of the model-
based approximation approaches and let FDP be the set of PFIs generated by DP, and FMB

be the set of PFIs produced by MB. Then, the recall and the precision of MB, relative to DP,
can be defined as follows:

recall =
|FDP ∩ FMB|
|FDP |

(11.8)

precision =
|FDP ∩ FMB|
|FMB|

(11.9)

In these formulas, both recall and precision have values between 0 and 1. Also, a higher
value reflects a better accuracy.

Tables 11.1(a) to (c) show the recall and the precision of the MB approaches, for a wide
range of minsup, n and minprob values. As we can see, the precision and recall values are
generally very high. Hence, the PFIs returned by the MB approaches are highly similar to
those returned by DP. In particular, we see that the Expected approach generally yields
the worst results, having precision and recall values of less than 95% in some setting. The
Poisson approach performs significantly better in these experiments. Yet in some settings,
the Poisson approach reports false hits, while in other settings, it performs false dismissals.
The Normal approach is most notable in this experiment. In this set of experiments, the
Normal approach never had a false dismissal, nor did it report a single false hit. This
observation also remained true for further experiments in this line, which are not depicted
here. In the next set of experiments, we will experimentally investigate the effectivity of
the MB approach.

Figure 11.3 shows the exact probability mass functions (pmfs), as well as the pmfs
approximated by the Poisson and the Normal approach, for a variety of settings. In
particular, we scaled both the data set size and the size of the item sets whose pmf is to
be approximated. Since, in this setting, the probabilities of individual items are uniformly
sampled in the [0, 1] interval, and since due to the assumption of item independence, it
holds that P (I) =

∏
i∈I P (i), a large item set I implies smaller existence probabilities.

In Figure 11.3(a), it can be seen that for single item sets (i.e. large probability values),
the pmf acquired by the Poisson approximation is too shallow - that is, for support values
close to µI the exact pmf is underestimated, while for support values far from µI , the pmf
is overestimated. In Figures 11.3(d) and 11.3(g) it can be observed, that this situation
does not improve for the Poisson approximation. However, this shortcoming of the Poisson
approximation can be explained: Since the Poisson approximation does only have one
parameter µI , but no variance parameter σ2

I , it is not able to differ between a set of
five transactions with occurrence probabilities of 1, and five million transactions with
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Figure 11.3: Illustration of the approximation quality of Normal and Poisson for various
settings.
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occurrence probabilities of 10−6, since in both scenarios it holds that µI = 5 · 1 = 5 · 106 ·
10−6 = 5. Clearly, the variance is much greater in the later case, and so are the tails of
the corresponding exact pmf. Since the Poisson distribution is the distribution of the low
probabilities, the Poisson assumes the later case, i.e. a case of very many transactions, each
having a very low probability. In contrast, the normal distribution is able to adjust to these
different situations by adjusting its σ2

I parameter accordingly. Figures 11.3(b), 11.3(e) and
11.3(h) show the same experiments for two-item sets, i.e. for lower probabilities I ⊆ ti.
It can be observed that with lower probabilities, the error of the Poisson approximation
decreases, while (as we will see later, in Table 11.2) the quality of the Normal approximation
decreases. Finally, for item sets of size 5, the Poisson approximation comes very close to
the exact pmf.

# itemsets

n Model 1 2 5

10 Normal 0.020 0.078 0.180
Poisson 0.526 0.283 0.077

100 Normal 0.0003 0.0020 0.0134
Poisson 0.0515 0.0283 0.0052

1000 Normal 2.39E-6 6.12E-6 0.0004
Poisson 5.24E-3 2.85E-3 0.0007

Table 11.2: Approximation Quality

To gain a better intuition of the approximation errors, we have repeated each of the
experiments shown in Figure 11.3 one hundred times, and measured the total approxima-
tion error. That is, we have measured for each approximation DP∈{Normal, Poisson} the
distance to the exact pmf, computed by the DP approach:

D(MP,DP ) =
n∑
i=0

|MPpmf −DPpmf |.

The results of this experiment are shown in Table 11.2. Clearly, the approximation quality
of the Normal approach decreases when the size of the item sets increases (i.e. the proba-
bilities become smaller), while the Poisson approach actually improves. An increase of the
database size, is beneficial for both approximation approaches.

The impact of increasing the database size on the individual approximation models has
been investigated further in Figure 11.4. In this experiment, we use a syntethic item set
where each item is given a random probability uniformly distributed in [0, 1]. In Figures
11.4(a)-(c), the average frequentness probability Prfreq(I) that item I is frequent is de-
picted for all one-item sets I. Since all probabilities are uniformly [0, 1] distributed, it is
clear that µI is about n

2
. Thus, for minsup=0.49, the probability that an item is frequent

increases in the database size, for minsup=0.5, about half of the items are frequent, and
for minsup=0.51, the number of frequent items decreases in the database size. First, it
can be observed that the Normal approximation is nearly perfect, since no error between
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Figure 11.4: Accuracy of model-based algorithms vs. n.

the exact Prfreq(I) and it’s Normal approximated value can be observed visually. This is
also confirmed by Figures 11.4(d)-(f), which show the respective error, i.e. the differences
between the exact frequentness probability and the approximated frequentness probabil-
ities. In contrast, the Poisson approximation does show a significant error for smaller
databases. For minsup=0.49 and minsup=0.51, the Poisson approximation is also able to
yield very good approximation for database sizes larger than 50.000 while the expected
support yields good results for even smaller databases. The reason is that in this case, all
the exact frequentness probabilities quickly converge to 1 (0), which can easily be guessed
by the expected approach. However, the interesting case is the case where minsup=0.5,
since in this case, the items are expected to have an average frequentness probability of
0.5. However, in this case, the expected approach is forced to guess, since it may only take
the values 0 and 1. This explains the large error of the expected approach, which does
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Figure 11.5: Accuracy of the model-based algorithms vs. fraction of low probability values.

not decrease in the database size. The Poisson approach performs significantly better than
the expected approach, but still the error is relatively high, which matches our previous
experiments for large probabilities. To achieve a better setting for the Poisson approxima-
tion, we changed the interval from which the item probabilities are sampled, from [0, 1] to
[0, 0.1] and repeated the experiment for minsup=0.5. The results are depicted in Figures
11.4(g)-(h). It can be observed that in this setting, the Poisson approximation achieves
extremely good results, even slightly outperforming the Normal approximation. In Figure
11.4(i), the expected approach is omitted, to give a better view on the difference of the
Normal and the Poisson error.

In the previous setting, we have evaluated the performance of the model-based approx-
imation approaches in the case where all items have the same occurrence probabilities. We
have seen that for small probabilities, the Poisson approximation works well. Next we will
evaluate, how many probability values are allowed to be large, in order for the Poisson
approximation to still yield good results. In the following experiment, we introduce a new
parameter lowP , which denotes the fraction of the item probabilities, which are chosen
from a smaller interval, such as the interval [0, 0.01], while the remaining 1 − lowP frac-
tion of the items has their probabilities chosen from the [0, 1] interval. The result of the
experiment evaluating the impact of lowP is given in Figure 11.5. It can be seen that the
mean absolute approximation error of the Normal approximation increases as the fraction
lowP of small probabilities increases. In contrast, the approximation error of the Poisson
approximation slightly decreases. However, only for lowP > 0.98, the Poisson approxima-
tion begins to outperform the Normal approximation. Thus, if the data set only contains
a few probability values that are not small, then the Normal approximation outperforms
the Poisson approximation.

While in the previous experiment, the approximation quality has been measured for
individual item sets, we now compare the effectivity of the model-based approaches for the
complete Apriori-based algorithm.
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Figure 11.6: Performance comparison of model-based approaches.

11.3.2 Efficiency

Next, we compare the performance (in log scale) of the model-based approaches (MB)
and the Poisson binomial recurrence based DP. First, we will compare the runtime of the
three (MB)s to each other. The result is shown in Figure 11.6. It can be seen that the
approach using expected support, since it only has to perform a single value comparison
(µI ≥ minsup), is faster than the other model-based approaches by a factor of about two.
The normal and the Poisson approximation take about the same time to compute. While
in our Java experiments (shown here), the Poisson approximation slightly outperforms
the normal approximation, our experiments in R (not depicted here) show the opposite
situation. In summary, we can say that Poisson and normal approximation take about the
same time to evaluate, except for some possibly implementation specific differences.

In the following runtime experiments, we will for simplicity only show one graph for
the model-based (MB) approaches, which corresponds to the runtime of the Normal approx-
imation. For the runtime of the expected approach, simply divide the result by two due to
the observations made in Figure 11.6.
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dynamic programming DP.
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Figure 11.7(a). Observe that MB is about two orders of magnitude faster than DP, over a
wide range of minsup. This is because MB does not compute exact frequentness probabilities
as DP does; instead, MB only computes the µI values, which can be obtained faster. We
also notice that the running times of both algorithms decrease with a higher minsup. This
is explained by Figure 11.7(b), which shows that the number of PFIs generated by the
two algorithms, |PFI|, decreases as minsup increases. Thus, the time required to compute
the frequentness probabilities of these itemsets decreases. We can also see that |PFI| is
almost the same for the two algorithms, reflecting that the results returned by MB closely
resemble those of DP.

Figure 11.7(c) examines the performance of MB and DP (in log scale) over different
minprob values. Their execution times drop by about 6% when minprob changes from
0.1 to 0.9. We see that MB is faster than DP. For instance, at minprob = 0.5, MB needs
0.3 seconds, while DP requires 118 seconds, delivering an almost 400-fold performance
improvement.

11.4 Conclusions

In this chapter, model-based approaches to discover Probabilistic Frequent Itemsets (PFIs)
from uncertain databases have been proposed. The proposed methods represent the prob-
ability mass function of a probabilistic frequent item using probability models, in order to
find PFIs quickly. These methods can efficiently extract threshold- and rank-based PFIs.
They also support attribute and tuple uncertainty models, which are two common data
models. We develop new approximation methods to evaluate frequentness probabilities ef-
ficiently. As shown theoretically and experimentally, our algorithms are more efficient and
scalable than existing ones. They are also highly accurate, although, some models require
certain properties of the data set to be satisfied in order to achieve very high accuracy.
We have theoretically and experimentally compared our proposed model-based approaches
and shown properties of the data which are required for each model to perform well. To
conclude, a summary of the pros and cons of each model is as follows:

11.4.1 Expected Support:

Easy to implement and efficiently to compute, since the total runtime is about twice as
fast as the other approaches, and pruning can be performed. However, this approach lacks
effectivity, since this model requires a very large number of transactions containing an item
set I with a probability greater than zero, in order to achieve acceptable results. Except for
very small item sets, which are usually not interesting because they are trivially frequent,
this requirement is hardly satisfied. Also, the parameter minprob cannot be integrated
into this approach, so that the level of significance of frequent items cannot be determined.
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11.4.2 Poisson Approximation:

Easy to implement and efficiently to compute, since pruning can be performed. However,
this model requires that almost all transactions containing I have a very low probability,
in order to obtain good approximation results. This requirement is hardly ever met on
real data, since such data sets generally contain some transaction containing I with a
probability of 1. However, this model is not robust since a few larger probabilities will
significantly lower the approximation quality.

11.4.3 Normal Approximation:

The implementation must make sure to apply continuity correction to acquire the best
results. Pruning cannot be performed so that for each item set, the whole database has
to be scanned. The experiments have shown that pruning only increases the total runtime
marginally. Regarding the approximation quality, the normal approximation overall yields
by far the the best results. Even for a small number of Poisson trials, the Normal approx-
imation yields highly accurate results. On real data sets, it is very difficult to create a
scenario where the normal approximation does not yield precision and recall values of one.

In summary, we propose to generally use the Normal approximation, except in very
special settings, since the Normal approximation yields the best trade off between approx-
imation quality, which is nearly always one, and efficiency, which is in O(n) like the other
approximation approaches.

In the future, we will examine how the model-based approach can be used to handle
other mining problems (e.g., clustering) in uncertain databases. We will also study how
other approximation techniques, such as sampling, can be used to mine PFIs.
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Part V

Querying and Mining Uncertain
Spatio-Temporal Data
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Efficient management of large collections of (location, time) data pertaining to mobile
entities whose whereabout changes over time is a paramount in a plethora of application
domains: from structural and environmental monitoring and weather forecasting, through
disaster/rescue management and remediation, to Geographic Information Systems (GIS)
and Tourist Information-Providing (TIP) systems. The technological enabling factors for
such applications were advances in sensing and communication/networking, along with the
miniaturizations of the computing devices and development of embedded systems. With
the wide availability of satellite, RFID, GPS, sensor, wireless, and video technologies,
spatio-temporal data, that is data containing both location and time information, has
been collected in massive scale and is becoming increasingly large, rich, complex, and
ubiquitous. In addition to the fact that in-between the discrete instances, some form of
interpolation is needed, the measurements are imprecise, due to the physical limitation
of the devices. From a complementary perspective - to reduce the communication and
bandwidth utilization, along with the storage requirements, often the data is subjected
to a reduction, thereby eliminating some of the known/recorded values. These issues are
introducing the notion of uncertainty in the context of spatio-temporal data management
- an aspect raising an imminent need for scalable and flexible data management.

In this field, a typical data source context consists of heterogeneous sensor deploy-
ments, including mobile stations, weather stations, satellite imagery, weather radar, mobile
weather radar, stream observations, citizen supplied (crowd sourced) observations, ground
and aerial LIDAR, water quality sampling, soil sampling and many more. In addition to
many different types of sensors, the same type of sensor is often used redundantly, to mea-
sure the same variable from different positions and angles. It is clear that different sensors
may yield inconsistent and contradictory information. Traditional database approaches re-
pair [12, 33, 198] such inconsistencies by removing objects or by changing attribute values.
Such approaches that discard uncertainty information cannot be applied here: Due to the
uncertainty, the fraction of the world that is modelled by the database no longer has one
single correct version, but instead, there exist many possible worlds, each associated with
a probability of being true. Any single world, even the most likely world, resulting from a
database repair may have very small probability of being true, due to the huge amount of
possible worlds.

This trend towards big sensor environments, possibly using different sensing technolo-
gies to measure an environmental parameter, is emphasized by so-called Next-Generation
Sensor Networks, described in the book “The Fourth Paradigm: Data-Intensive Scientific
Discovery‘” ([120]). Such sensor environments have become possible due to the rapid de-
crease in the cost to produce sensor devices that become smaller and ”smarter” and have
lead us into a new age of ubiquitous sensing. In accordance to the technical concept of
smart environment, there is an increasing trend to exploit the information derived from
sensors and computational elements that are embedded in the objects of our lives and that
are connected through a continuous network. The rapidly increasing storage capacity and
communication bandwidth of such sensors and computational elements, facilitate to cap-
ture, exchange and store information about phenomenons or properties of our environment
in unprecedented rates and variability. This evolving technology allows us to analyze such



240
lo

ca
tio

n
sp

ac
e

time spacets te

(a) Ideal Case

lo
ca

tio
n

sp
ac

e

time spacets teta tb

?
? ?

?
?

? ?
?

?

(b) Practical Case

Figure 11.8: Spatio-Temporal Data

data yielding new opportunities, and become useful, for many scientific and industrial ap-
plications such as location-based services, traffic monitoring and analysis, transportation
management, environmental monitoring and analysis, among many others.

Managing, querying and mining spatio-temporal data has received a large amount of
research interest in the past years. In most of these works however, the assumption is
made that the trajectory, i.e., the function of a spatio-temporal object that maps each
point in time to a position in space, is known entirely without any uncertainty, such as
the trajectory depicted in Figure 11.8(a). A survey on techniques for managing, querying
and mining trajectory data without uncertainty is given in [216]. However, it is not viable
to maintain positions of moving objects continuously for each point in time for a series of
reasons:

• Storing arbitrary continuous functions at high accuracy would require a very high
space complexity, thus having detrimental impact on query performance.

• In most applications, measurements and observations are taken at discrete times only,
e.g. due to limited bandwidth or energy constraints (e.g. in applications using GPS
technology), thus the information of the full trajectory is not available.

• Some systems only allow to track the position of an object at predefined spatial
positions (e.g. systems using RFID technology).

For practical applications it is thus mandatory to consider uncertainty in spatio-temporal
data, such as depicted in Figure 11.8(b). As an exemplary application, consider the problem
of monitoring iceberg activity in the North Atlantic. Ships transiting between Europe and
east coast ports of North America traverse a great circular route that brings them into the
vicinity of icebergs carried south by the cold Labrador Current near the Grand Banks. It
was here that the R.M.S. Titanic sank in 1912, after it struck an iceberg. This disaster
resulted in the loss of 1517 lives and led directly to the founding of the The International
Ice Patrol (IIP) in 1914. The mission of the IIP is to monitor iceberg danger near the
Grand Banks of Newfoundland and provide the locations of all known ice to the maritime
community. The IIP does this by sighting icebergs, using visual observations from ships and
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aircrafts, as well as data from buoys and radars. A database stores the recorded positions
and extents of observed icebergs and data models are used to predict their movement, based
on the uncertainty of the recorded observations. Estimating the position of an iceberg at
a time t underlies two sources of error:

• the observation measurement error and

• the obsoleteness of the most recent observation.

Ignoring the uncertainty in such data, e.g., by treating the expected position of an iceberg
as truth, may lead to disasters when icebergs deviate from the expected position, running
into ships that have a false feeling of safety.

The aim of this part of this thesis is to uncover the potential knowledge contained
in spatio-temporal data. This challenge is approached by dividing it into the following
chapters:

• Chapter 12 gives necessary background knowledge and motivates the explicit con-
sideration of uncertainty in spatio-temporal data. This chapter will review existing
work on modeling uncertainty in spatio-temporal data and presents the data model
upon which the query and mining algorithms presented in this thesis is based on.
The presented model aims at maximizing the amount of information captured in the
model, while at the same time providing the tools for efficient querying and mining
algorithms. This section presents existing results borrowed from the statistics field of
stochastic processes and puts these into the context of efficient spatio-temporal data
management.

• Chapter 13 presents efficient algorithms for the problem of answering spatio-temporal
window queries. By applying the paradigm of equivalent worlds (c.f. Chapter 3),
this approach is the first one to answer such queries efficiently, while adhering to
possible world semantics. These research results have been published at the IEEE
International Conference on Data Engineering (ICDE) 2012 as a full paper ([66]).

• Chapter 14 studies the problem of answering spatio-temporal nearest neighbor queries.
For this purpose, state-of-the-art nearest neighbor semantics defined on trajectories
are generalized to the case of uncertain spatio-temporal data. This chapter theoreti-
cally investigates the complexity of the answering queries using these semantics, and
comes to the conclusion that exact query processing all nearest neighbor semantics
lead to NP-hard problems. The hardness of this class of problem motivates the use
of approximate solutions as presented later in Chapter 16.

• To support the task of querying uncertain spatio-temporal data, effective spatio-
temporal access structures are mandatory to avoid scanning the full database for
each query. Chapter 15 therefore presents a first approach to effectively index spatio-
temporal data based on the data model introduced in Chapter 12. Furthermore,
Chapter 15 shows how to utilize the presented index structure to answer probabilis-
tic spatio-temporal window queries and spatio-temporal nearest-neighbor queries as
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defined in Chapter 13, speeding up such queries by orders of magnitude. This index
structure has been published at the 21st ACM International Conference on Informa-
tion and Knowledge Management (CIKM) 2012 as a full paper ([66]).

• To efficiently answer any type of spatio-temporal query in general, a sampling ap-
proach based on Bayesian learning is presented in Chapter 16. This approach allows
to efficiently compute approximate answer for computationally hard query predi-
cates. This chapter shows how traditional Monte-Carlo sampling fails in the context
of spatio-temporal data, and proposes new techniques to adapt the data model to
support efficient sampling. The research results presented in Chapter 14 and Chapter
16 have been accepted for publication at the 40th International Conference on Very
Large Data Bases (VLDB) 2014 as a full paper ([141]).

• Chapter 17 presents an experimental evaluation of efficiency and effectiveness of the
spatio-temporal query types presented in Chapter 13 and Chapter 14 as well as an
evaluation of the spatio-temporal access method presented in Chapter 15. Approx-
imate solutions using the sampling based approach of Chapter 16 are presented as
well. Furthermore, the effect of combining both the presented index structure (Chap-
ter 15) and the proposed sampling approach (Chapter 16) is evaluated to learn the
impact of these techniques on both efficiency and effectiveness of the kNN query
predicate presented in Chapter 14. Some of the experimental results found in this
chapter can be found in the aforementioned publications.

• Chapter 18 tackles the challenge of mining uncertain spatio-temporal data. Thus, in
this chapter the challenge is to extract useful and previously unknown knowledge that
is not explicitly stored in the database. As an example of a data mining application,
Chapter 18 shows how the model presented in Section 13 can be utilized to predict
traffic jams on a road network. The results presented in this chapter have been
published at the SIAM International Conference on Data Mining (SDM) 2008 as a
full paper ([113]).



Chapter 12

Modeling Uncertain Spatio-Temporal
Data

In this thesis, the expression spatio-temporal data refers to a collection of data triples
having the form (Object-ID,Location,Time). In practice, such tuples correspond to obser-
vations (e.g. GPS positions, RFID signals, or visual observations) of moving objects in
the past. Thus, each tuple corresponds to a single point of the trajectory of a moving ob-
ject. Many application using modern tracking technology create a flood of such historical
spatio-temporal data ([136]). In practice, the position of an object is observed at discrete
times only, leading to an inherent uncertainty between these discrete times. This leads to
the notion of uncertain spatio-temporal data. Moving objects, for which the position at
any time cannot be determined deterministically is denoted as a uncertain moving object.
The indeterministic trajectory of an uncertain moving object is an uncertain trajectory.
This following section, Section 12.1, reviews current state-of-the-art models to represent
uncertain spatio-temporal data. Shortcomings of these models are addressed in Section
12.2, by applying models from statistics, namely stochastic processes, to treat uncertain
moving objects in a probabilistic way.

lo
ca

tio
n

sp
ac

e

time spacets teta tb

(a) Linear Interpolation

lo
ca

tio
n

sp
ac

e

time spacets teta tb

Q
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Figure 12.1: Interpolation between observations
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12.1 State-of-the-Art

A large body of research has addressed the problem of modeling uncertainty in relational
and spatial data, as surveyed in Section 2.2. In contrast, the problem of modeling and
managing uncertain data with a temporal component has only received limited attention
by the community. Most of the existing works treat spatio-temporal uncertainty as a sim-
ple extension of spatial uncertainty. For instance, the methods of [51] and [190] assume
that for each timestamp in the history and every object, there is a location sample, which
carries uncertainty. The samples are then modeled as uncertain regions, using probability
density functions (PDFs) and these regions are connected to form the trajectories. Given
a spatio-temporal range query [51], we can then estimate the probability that a trajectory
intersects the window by the overlap of the corresponding PDFs with the window. These
types of models, however, may not be acceptable in the case where we only have a sample
of locations in the moving history of an object. In this case, for timestamps where loca-
tions are not sampled, we have to infer the whereabouts of the object with the help of
stochastic models. These models are particularly useful when predicting the future loca-
tions of objects, with the help of current (or recent) location and movement observations.
In addition, these models allow for the economic representation and storage of the data,
since only a subset of the object locations need to be sampled and used for the inference
of their remaining locations.

12.1.1 Interpolation Models

In recent years, the research community often employed linear interpolation to model the
movement of spatio-temporal objects [151, 160, 183], as depicted in Figure 12.1(a). Based
on this model, [179] and [181] addressed the problem of query processing (window queries,
joins, and nearest neighbour queries) under the assumption of linear interpolation. With
the algorithms introduced in these works, the validity interval of a query result can be
computed. However, clearly, the simple model of linearly interpolating between observa-
tions shows several drawbacks. On the one hand, whenever the sampling rate becomes
low, the true trajectory of an object might deviate greatly from the estimated trajectory.
On the other hand it is even possible that a linearly interpolated trajectory becomes im-
possible: Imagine a car travelling from Munich to Berlin with sample points in exactly
those two cities. The driver will never travel exactly along the straight line between the
two cities because there are no streets following this trajectory. Although linear interpo-
lation is one of the most common means of modeling the motion between observations in
certain databases, other approaches have been evaluated as well. Later, [178] introduced
a framework that allows the future motion of objects to be described in a more complex
manner than linear interpolation. Based on these complex motion functions, the authors
aimed at predicting the future position of objects with minimized error. All approaches
introduced so far do not take uncertainty into account. However, in scenarios where data
are inherently uncertain, such as spatial and spatio-temporal databases, answering tradi-
tional queries using expected values and positions is inadequate, since the results could be
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incorrect [31]. To mitigate this problem, several algorithms taking uncertainty into account
have been developed. Conservative Space-Time Approximation Models: The prevalent ap-
proach is to bound all possible (time, location) pairs of an object by a simple geometric
structure in time and space. The result is a spatio-temporal approximation that is based on
previous knowledge such as the maximum speed and the maximum acceleration of objects.
An example for the one-dimensional case is shown in Figure 12.1(b), using the maximum
speed of objects to obtain a conservative two-dimensional (space, time)-approximation.
Generally, such approaches utilize various geometrical shapes, such as sheared cylinders
[190, 191, 192], diamonds [139] and so called beads [116, 188] for the case of two spatial
dimensions (the third dimension is time). Queries on these models include range queries
[150, 192, 191] and kNN queries [190, 51]. The main problem of all these approaches is that
no probability information is given for any object approximation. Thus, it is not possible
to assess the probability of an object to satisfy some query predicate: For example, for
the query window Q depicted in Figure 12.1(b), the only conclusion that can be made is
that the approximated object may possibly intersect Q. However no information about
the likelihood of this event can be assessed. In particular, this probability can be zero due
to the conservative nature of these approximation models. Simple assumptions to estimate
this probability, such as a uniform distribution over the conservative approximation, are
often impractical: In practice, a vehicle having a fairly constant velocity between two (lo-
cation, time) pairs is more likely than the same vehicle going at maximum speed, passing
its destination, then performing a U-turn to race back the opposite direction in order to
barely reach the second (location, time) pair in time.

12.1.2 Models ignoring time dependencies

In order to assess the actual probability of events in a spatio-temporal database, Mokhtar
and Su [139] describe a model where the uncertainty region of each object is described
by a time dependent stochastic process. Objects are given by MBRs which change their
location and extent over time following the stochastic process. The paper shows how to
answer certain types of window queries based on this model. However, describing the
parameters of the uncertainty regions (instead of the object trajectories) by a stochastic
process yields wrong results, i.e., results that cannot possibly be the correct result. The
reason is that location dependency between consecutive timestamps is ignored by this
model. Hence the position of an object at time t is assumed to be independent of its
previous position at time t− 1.

Approaches like [14] and [201] consider uncertain time series (where the concrete value
at each point of time is not known for certain) and data streams, respectively. Similar to
other work, they disregard correlations between points in time.

To illustrate the problem of these approaches disregarding temporal dependencies, con-
sider Figure 12.2(a), where an uncertain object trajectory is modelled. Here, it is assumed
that an object o moves forward in a one-dimensional space with an uncertain velocity. The
velocity of o may change over time, but will not drop below some minimum speed greater
than zero, and will not exceed some maximum speed. Therefore, given the position of o
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Figure 12.2: Modeling Spatio-Temporal Data

at time t0, the future position of the object can be modelled using the expected speed of
o, depicted by the dashed line in Figure 12.2(a), as well as lower and upper bounds, or
alternatively a variance, depicted by the intervals at each point of time. Under the as-
sumption of temporal independence, at each point of time, the positions of o are modelled
as independent random variables. Therefore, a trajectory as depicted in Figure 12.2(b) has
a probability greater than zero. However, since o makes a large leap backward between
times t5 and t6, this trajectory is not possible given the knowledge about the movement of
o, which this model should incorporate. A possible trajectory is shown in Figure 12.2(c).
Here, the object moves within its speed limits at each point of time.

The flaw of modeling trajectories which are not actually possible becomes a problem
when processing spatio-temporal queries based on this model. For example, consider a
spatio-temporal window query, which returns for an object o the probability that o inter-
sects the query window q, depicted in Figure 12.2(b) and Figure 12.2(c). For any model
that ignores the dependency between locations at subsequent points of time, the proba-
bility that o is always outside of the window is the product of many probabilities, thus
becoming very small. Therefore, for a large number of points of time inside the query
region, the probability that o intersects the query window converges to one. However, if
the dependency between locations at subsequent points of time is considered, then the
probability that o is outside of the window at time t6 depends on the probability at time
t5 in this example: If o is not in the window q at t5, then it cannot be in q at t6 either,
since the object cannot move backwards. Thus, the probability that o intersects the query
window q at any time, is equal to the probability that o intersects the query window at time
t5. Therefore, an important aim in this chapter is to properly model such dependencies,
instead of simply treating time as an additional dimension in space. Models considering
time dependencies: An initial approach to address the problem of temporal dependencies
has been made in [154]. The authors assume a discrete state space and the Markov prop-
erty to allow transitions between successive points of time. Their query language Lahar
allows us to formulate queries by stating regular expressions on an alphabet of states, and
returns the probability of observing a sequence of states satisfying this regular expression.
However, this syntax cannot handle time context as required by many common queries.
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For example, no regular expression can express the language that contains at least one
character x at a given position interval. Such a query corresponds to a window query as
used above. Chapter 13 presents a framework for efficiently modeling and querying un-
certain spatio-temporal data that, in contrast to existing research, take time dependencies
into account.

12.2 Modeling Uncertain Spatio-Temporal Data

The key idea of the proposed approach is, similar to [154]: to model possible object tra-
jectories by stochastic processes, more precisely a Markov chain. Employing the Markov
chain model for representing spatio-temporal data has three major advantages over previ-
ous work:

1 It allows answering queries such that results are associated with corresponding prob-
abilities.

2 Dependencies between object locations at consecutive points in time are taken into
account.

3 It is possible to reduce all queries on this model to simple matrix operations, because
transitions between spatial entities over time can be performed by matrix multipli-
cations, for which there exist efficient solutions.

Following state-of-the-art models, discrete space and time domains S and T are as-
sumed, where space is defined by coordinates and time denotes points in time. In practice,
discretization techniques (e.g. a unidistant grid) can be used to satisfy this assumption.

Formally, let S = {s1, ...s|S|} ⊆ Rd be a finite set of possible locations in space which
we call states and let T = N+

0 be the time-space. Consequently, a (certain) object o that
moves in space is represented by a trajectory given by a function o : T → S that defines
the location o(t) ∈ S of o at a certain point of time t ∈ T .

Definition 53 (Spatio-Temporal Object). Given a d-dimensional spatial domain S and a
time domain T , a spatio-temporal object comprises a set Θo of pairs Θo

i = (Θo
i .s,Θ

o
i .t) ∈

S × T .

Semantically, each pair Θo
i ∈ Θo corresponds to the observation that o is located at

location Θo
i .s at time Θo

i .t. The observation argMinΘoi∈Θo(Θ
o
i .t) is called the first observa-

tion of o, and the observation argMaxΘoi∈Θo(Θ
o
i .t) is called the last observation of o. The

time interval [argMinΘoi∈Θo(Θ
o
i .t).t,argMaxΘoi∈Θo(Θ

o
i .t).t] defined by the times of the first

and last observation, is called the lifespan of o.
A main challenge of such data, is to infer the position of o at a time t : ¬∃s : (s, t) ∈ Θo

for which the exact position has not been observed. The quality of this inference depends
on our ability to effectively use the wealth of information stored in a spatio-temporal
database, including
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• all observations temporally preceding (i.e., in the past of) o,

• all observations temporally succeeding (i.e., in the future of) o,

• information about possible trajectories between observations, e.g. given by a road
network and

• empiric information about movement patterns, such as turn probabilities at a road
intersection, empirically learned from other objects.

Following the tradition of uncertain spatial non-temporal databases, we suppose that
the locations of an uncertain spatio-temporal object o ∈ DB at time t are realizations of
a random variable o(t). This model implies that a spatio-temporal objects is described by
a series of random variable (o(t))t∈T . This consideration directly equals the definition of a
stochastic process [101]:

Definition 54 (Stochastic Process). A stochastic process X is a family of random variables
(X(t) ∈ S)t∈T ⊆R. If T ⊆ N, we say that X is a discrete stochastic process.

Note that in general, these random variables X(t1), X(t2), t1, t2 ∈ T are stochastically
dependent.

Example 27. As a simple example for a first stochastic process, let D1, ..., Dn be a se-
ries of random variables such that Di is the result of a single throw of a six-sided dice.
Let X1(t), 1 ≤ t ≤ n be a stochastic process, such that X(t) =

∑t
i=1Di is the total

sum of pips shown after t dice throws. A possible realization of this random variable is
(3, 8, 9, 11, 15, 21, 26, ...). Clearly, each random variable X(t) is stochastically dependent of
the random variable X(t− 1), as the state space of X(t) is bounded by [X(t− 1) + 1, X(t−
1) + 6]. Due to the same observation, X(t) is stochastically dependent of X(t+ 1), yielding
transitive (by induction) dependencies between all random variables X(t1), X(t2) where
t1, t2 ∈ [1, ..., n].

Definition 55 (Uncertain Object Trajectory). Given the spatial domain S and the time
domain T , an uncertain object trajectory o(t) ∈ S of an object o ∈ DB is a stochastic
process (o(t) ∈ S)t∈T .

An example of an uncertain object trajectory of an object o ∈ DB is illustrated in
Figure 12.3. The raster models all possible locations (i.e., states) in S, shown for the
time sequence 〈t0, . . . , t3〉. Here we assume that object o has been obsered at time t0;
all locations of o that follow are uncertain. Consequently, the uncertain trajectory of o
comprises all possible trajectories starting at o(t0).

In accordance to the previous section, the constituent parts of an uncertain spatio-
temporal object are specifications of probability distributions over the space and time
domain. Naive models typically restrict the regions that the object can be at each times-
tamp. All uncertain trajectories are combinations of locations in these regions, giving all
these trajectories equal probabilities ([190, 192, 191, 14, 201, 139]). However, as already
mentioned, these models disregard any time dependencies between locations, treating each
random variable o(t) as independent.
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Figure 12.3: Querying Uncertain Spatio-Temporal Data

Example 28. To illustrate the problem of discarding stochastic dependencies reconsider
the throw-a-dice example in Example 27, where the random variable X(t) corresponds to
the total number of pips after t dice throws. Discarding stochastic dependencies between
these random variables, each X(t) is drawn independently. Thus, a possible instantiation
of X is (3, 7, 14, 9, 14, 29). Clearly, this series is impossible, as e.g., the number of total
pips after three dice throws cannot equal 14, given that the first two dices had a sum of 7
pips. Nor are negative numbers of pips possible.

In a spatio-temporal database, where the random variable is the position of an object,
the effects of ignoring stochastic dependence between positions at different times leads
to the effects we have seen in the example of Figure 12.2. In this example, ignoring
dependencies leading to possible trajectories having an impossibly high velocity in either
direction.

According to Definition 55, the uncertain motion of an object is defined as a stochastic
process. In this work, the motion of moving objects through space and time is model by a
first-order Markov-Chain model. Formally:

Definition 56. A stochastic process o(t), t ∈ T is called a Markov-Chain if and only if

∀t ∈ N0∀sj, si, st−1, ...s0 ∈ S :

P (o(t+ 1) = sj|o(t) = si, o(t− 1) = st−1, ..., o(0) = s0) =

P (ot+1 = sj|ot = si)

The above equality is called Markov assumption or Markov property. The conditional
probability

Pi,j(t) := P (o(t+ 1) = sj|o(t) = si)



250 12. Modeling Uncertain Spatio-Temporal Data

is the (single-step) transition probability of state si to state sj at time t.
In this work we assume that the transition probabilities Pi,j(t) are given, e.g. derived

from expert knowledge or derived from historical data. For example, the current of water
in the Atlantic ocean can be used to infer the transitions of icebergs. For traffic data, the
transition probabilities at road intersections can be estimated using historical data [47].

Definition 57. A Markov Chain is homogeneous if and only if the transition probabilities
are independent of t, i.e. Pi,j(t) = Pi,j.

The (single-step) transition matrix M = Pi,j ∈ RS2
is a stochastic matrix, i.e. the

following properties hold:
∀i, j ∈ S : Pi,j ≥ 0

∀i ∈ S,
∑
j∈S

Pi,j = 1

Let P (o, t) be the distribution vector of an object o at time t, such that (P (o, t) =
s1), . . . , P (o, t) = s|S|), pi ∈ P (o, t) corresponds to the probability that o is located at state
si at time t. The distribution vector of o at time t + 1 can be inferred from P (o, t) as
follows:

Corollary 10.
P (o, t+ 1) = P (o, t) ·M

The m-step transition probability P t
i,j is the probability that an uncertain object o that

is located at state si at time t, will be located at state sj at time t+m and can be computed
exploiting the Equations of Chapman-Kolmogorov ([145]) as follows:

(Pm
i,j) = Mm

Given the probability distribution P (o, t) of an uncertain object o at time t, the prob-
ability distribution P (o, t+m) of o at time t+m can be computed by

Corollary 11.
P (o, t+m) = P (o, t) ·Mm

To estimate the location of an object o, Corollary 10 and Corollary 11 require the
position of an object o at some time in the past. In a nutshell, the Markov-model allows
to carry information about the position of an object o at some time t over to future
points of time t+ k. The quality of this information, and thus the predictive power of the
model, diminishes as the time horizon k increases. This fact is attributed to cumulative
prediction errors incurred over time. In particular, if k approaches infinity, the predicted
location distribution approaches the stationary distribution of the Markov model, which is
independent of the location of t. To ease this loss of information, a main challenge of this
thesis is to use all observations of an object for accurate location prediction. This task will
be achieved by employing a Bayesian learning approach to adapt transition probabilities
of an object given all observations in the past, in the current, and in the future.
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Figure 12.4: Some possible worlds of one uncertain object

Definition 58 (Trajectory Probability). Let M(t) be a Markov chain and let r = (s1, ..., s|T |)
be a trajectory of length |T |. The probability P (o = r) that an object o takes trajectory r
at a time t is given by the product between the probability that o is located at s1 at time t,
and the probabilities of all transitions of this trajectory.

P (o = r, t) := P (o(t) = s1) ·
|T |∏
i=1

·Msisi+1
(i)

To answer spatio-temporal queries on top of this model the main challenge is to correctly
consider the possible world semantics in the model. The set of possible worlds of a spatio-
temporal object o is spanned by the set of all possible trajectories of o.

Definition 59 (Possible Trajectories of an Object). Let M(t) be a Markov chain and let
T = [tstart, tend] be a time interval. The set

W(o, T ) := {(s1, ..., ststart−tend+1)|P (o = (s1, ..., ststart−tend+1), t) > 0}

is called the set of possible trajectories of o during T . The set

W(o) :=W(o, o.T = [argMinΘoi∈Θo(Θ
o
i .t).t, argMaxΘoi∈Θo(Θ

o
i .t).t]),

of possible trajectories of o during o’s whole lifespan is called the set of possible trajectories
of o.

Clearly, the number of possible trajectories of an object o increases exponential in the
lifespan of o: Even in the case where each state si only has two possible subsequent states,
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i.e., the case where each line Mi of the Markov chain has exactly two non-zero elements,
the number of possible trajectories of o equals 2|o.T |−1.

Definition 59 defines the set of possible worlds of a single database object o. Similar
to the case of spatial non-temporal data, the set of all possible worlds is defined by all
combinations of possible instances of individual objects.

Definition 60 (Possible Worlds). Let DB be a spatio-temporal data storing observations
of objects o1, ..., oN . The set of possible worlds W is defined as

W(DB) = {(r1, ..., rN)|ri ∈ W(oi)}.

The total number |W| of possible worlds equals the product
∏N

i=1 |W(o)|. Since the
number of worlds |W(o)| is in O(2|T |), where T is the average lifespan of an object, the
total number of possible worlds is in O((2T )N) = O(2T ·N).

To evaluate a given query predicate φ on DB, possible world semantics require to
evaluate φ on each possible worlds, to compute the probability that DB satisfies φ.

P (φ,DB) =
∑

w∈W(DB)

I(φ,w).

This equation is identical to Equation 2.3 used for spatial non-temporal data in Chapter
2. The sole exception in this definition is that a world is now given by a set of object
trajectories, rather than by a set of object instances. To avoid the enumeration of this
double exponential set of possible worlds, the following chapters will once more apply the
paradigm of equivalent worlds, to develop efficient query processing algorithms.

The next chapter, Chapter 13 presents a novel approach to efficiently answer spatio-
temporal window queries. This type of query can exploit stochastic independence assumed
between moving objects to find efficient algorithms. The problem of nearest neighbor search
on uncertain spatio-temporal data is tackled in Chapter 14. In the case of nearest neighbor
queries, objects do influence each others probability to be the nearest neighbor of a query
trajectory. This chapter will define different types of nearest neighbor semantics, and show
which semantics lead to exponentially hard query processing. For semantics having an
efficient solution, efficient algorithms are presented. A spatio-temporal index structure is
presented in Chapter 15, which supports both spatio-temporal window queries defined in
Chapter 13 as well as spatio-temporal nearest neighbor queries defined in Chapter 14. To
allow answering any general type of spatio-temporal query, a sampling approach based on
Bayesian learning is presented in Chapter 16. This approach allows to efficiently compute
approximate answer for hard query predicates, such as some of the nearest neighbor seman-
tics presented in Chapter 14. It is shown how traditional Monte-Carlo sampling fails in the
context of spatio-temporal data, and proposes new techniques to adapt the Markov-chain
to support efficient sampling.

A thorough experimental evaluation of all proposed spatio-temporal query types, the
impact of the proposed index structure, and the sampling approach will be given in Chap-
ter 17.



Chapter 13

Spatio-Temporal Window Queries

The main contribution of this chapter is a framework for processing spatio-temporal queries
on uncertain spatio-temporal data. This framework relies on efficient analysis of the space
of possible worlds by multiplying Markov-Chain transition matrices. This framework ex-
ploits the power of existing tools for matrix multiplication, e.g. provided by Matlab, in
order to accelerate the computation of spatio-temporal data distributions in accordance
to possible worlds semantics. We gracefully integrate pruning approaches into the Markov
Chain matrices, which results in drastically reducing the search space and the computa-
tional effort during query evaluation. The proposed framework is general enough to be
applied for cases where an arbitrary number of observations exist for uncertain moving
objects and for different spatio-temporal query variants as we demonstrate in Sections 13.3
and 13.4, respectively. As we show experimentally later, in Chapter 17, we achieve a speed
up of multiple orders of magnitude compared to a straightforward solution, which relies
on Monte-Carlo simulation over the space of possible trajectories that the objects may fol-
low. Our approach is easily implementable because the tools provided by Matlab libraries
are available for all common programming languages (e.g., C/C++, Java, etc.) and, as a
result, they can be easily integrated into existing uncertain DBMSs.

13.1 Problem Definition

Our goal is to efficiently evaluate probabilistic spatio-temporal queries on uncertain spatio-
temporal objects; i.e., queries about objects that are probably located in a given spatial
region during a given range in time. Within the scope of this chapter, we focus on spatio-
temporal queries specified by the following parameters: (i) a spatial region S� ⊆ S, i.e.
a set of (not necessarily connected) locations in space, and (ii) a set T� ⊆ T of (not
necessarily subsequent) points in time. In the remainder, we use Q� = S� × T� to
denote the query ranges in the space and time domain. The most intuitive definition of a
probabilistic spatio-temporal query window is given below:
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Definition 61. [Probabilistic Spatio-Temporal (Exists) Query] Given a query region S� in
space and a query region T� in time, a probabilistic spatio-temporal exists query (PST∃Q),
retrieves for each object o ∈ DB the probability P (o(t) = s) ∈ [0, 1] that o is located in S�

at some time t ∈ T�.

This query type has been studied before (e.g. in [192, 191]), albeit over data models
that disregard dependencies between locations at consecutive timestamps, as we have dis-
cussed in Section 12. For our motivating application described in the previous chapter, an
exemplary query could be: find all icebergs that have non-zero probability to be inside the
movement range of a particular ship during the ship’s movement in the North Atlantic.
Another query could be to predict the number of cars that will be in a congested road
segment after 10-15 minutes.

In addition, we study the following two interesting probabilistic query variants. Note
that the second variant has not been considered in the past:

Definition 62. [Probabilistic Spatio-Temporal For-All Query] A probabilistic spatio-temporal
for-all query (PST∀Q) retrieves for each object o ∈ DB the probability P (o(t) = s) ∈ [0, 1]
that o remains in S� for all times t ∈ T�.

Definition 63. [Probabilistic Spatio-Temporal k-Times Query] A probabilistic spatio-
temporal k-times query (PSTkQ) retrieves for each object o ∈ DB and each parameter
1 ≤ k ≤ |T�| the probability that o is located in S� at exactly k times t ∈ T�.

PST∀Q and PSTkQ are important complements to the PS∃TQ. For example, these
queries can progressively determine candidates that remain in a certain region for a while.
For example, for a given region somewhere in the north Atlantic we want to retrieve all
icebergs that have non-zero probability remaining in this region for a specified period of
time, e.g. to be able to make some measurements over a certain time period. Further
examples where such queries are useful are for location-based-service (LBS) applications,
e.g. a service provider could be interested in customers that remain at a certain region for
a while, such that they can receive advertisements relevant to the location.

Note that, although the spatial (temporal) parameters of the queries define contiguous
regions (intervals) in the space (time) domain, our query processing approaches are also
applicable for any arbitrary subset of the space (time) domain.

13.2 Probabilistic Spatio-Temporal Query Processing

using the Markov-Chain Model

In this section, we show how the queries that we presented in Section 13.1 can be evaluated
efficiently. For the ease of presentation, we first assume that for each object, there is a single
observation at time t = 0 and that we want to predict the result of a probabilistic spatio-
temporal exists query (Definition 61) in the future. We propose two approaches towards
efficient query processing. The object-based approach (Section 13.2.1) directly computes
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Figure 13.1: Schematic illustration of OB and QB

P ∃(o, S�, T�) in an efficient way, while the query-based approach (13.2.2) follows a reverse
methodology: computation starts at the query window and the transposed Markov-Chain
matrix is used to compute, for each state s ∈ S the probability that an object starting at s
satisfies the query predicate. We generalize our results for the case of multiple observations
and other queries in Sections 13.3 and 13.4, respectively.

Figure 13.1 shows a high-level example of query evaluation using the object-based and
the query-based approaches. Consider a spatio-temporal query with query time interval
[t�start, t

�
end] illustrated by the shaded rectangle on the right of each subfigure. We would

like to predict the result of the query, based on observations about the locations of the
objects at time (t = 0) and a given model that captures their state transition probabilities
(states correspond to spatial locations illustrated by the y-axis in the example). Exemplary
objects are shown in oval shapes.

The object-based approach, illustrated in Figure 13.1(a), examines for each object the
possible trajectories (i.e., possible worlds) that the object will follow in the future and
finds the probabilities of trajectories that intersect the query window. For instance, the
top-most object has a non-zero probability to be a result of the query, the middle object
has a higher probability and the object at the bottom has a zero probability. To compute
the probabilities of all possible worlds that intersect the window, for each object, we use
matrix multiplications. We show how pruning techniques can be incorporated into the
matrix multiplications for efficiency. Still, this approach iteratively examines all objects in
the database exhaustively. The query-based approach (Figure 13.1(b)), on the other hand,
reverses the computation: given that an object intersects the query window, we compute
the probability that this object corresponds to any of the objects in the database; this way,
examining objects that are irrelevant to the query is avoided, while at the same time the
query results are computed in batch. We now describe these two approaches in detail.
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Figure 13.2: Procedure of OB and QB

13.2.1 Object-Based Query Processing

Given an object o, in order to find the probability that o is part of a query result, we could
use the following straightforward approach: compute, for each point of time t ∈ T� the
probability that o is located in S� and aggregate these probabilities. Clearly, this approach
yields incorrect results (for example, if |T�| = 3 and for each t ∈ T�,P (o, t) = 0.5).
The problem of this approach is that a specific possible world (i.e., trajectory) may be
considered more than once, if it overlaps with the query at multiple timestamps. Therefore,
to correctly process queries, possible worlds which satisfy the query predicate should only
be considered once in the computation of the result.

As an example of proper query evaluation, consider the Markov-Chain: 0 0 1
0.6 0 0.4
0 0.8 0.2

 ,

for which all possible worlds are depicted in Figure 13.2(a) for the first four points of
time.1 Additionally, assume a window query defined by S� = {s1, s2} and T� = {2, 3} and
assume an object o which has been observed at s2 at time t = 0, i.e. P (o, 0) = (0, 1, 0). To
compute the probability P ∃(o, S�, T�) that o intersects the query window, we first compute
the probability distribution P (o, 2) at time t = 2, using Corollary 11. The resulting
probability vector P (o, 2) = (0, 0.32, 0.68) gives us a lower bound of 32% for P o,∃(S�, T�),
since any world in which o is located at state s2 at time t = 2 satisfies the query window.
Thus, these worlds can already be considered as true hits and must be ignored at future
points of time. Thus, we obtain a new probability distribution P (o, 2)′ = (0, 0, 0.68)
which will be used for the next state transition using Corollary 10. The resulting vector
P (o, 3) = (0, 0.544, 0.136) means that out of the remaining 68% of worlds which have not
already been reported as true hits, another 54.4% can now be returned as true hits, since
in these worlds o is located at s2 at time t = 3. Since t = 3 is the last point of time
belonging to the query window, the fraction of 0.136 worlds can be reported as true drops,

1Probabilities are omitted for readability, but can be found in the Markov-Chain.
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since in these worlds, o has not intersected the query window at any t ∈ T�. Thus, the
result of this query is 0.32 + 0.544 = 0.864.

The above example gives an intuition on how to answer queries correctly by identifying
worlds that satisfy the query and excluding them from further processing. We incorporate
this technique directly in the Markov-Chain, to facilitate efficient on-the-fly pruning when
matrix multiplication is performed between a state vector and the Markov-Chain. To
achieve this goal, we introduce a new state which is denoted by “X”, denoting true hits,
i.e. for any world in which an object o reaches X, we know that o satisfies the query
predicate. This X state satisfies the absorbing property, i.e. any world reaching this state
cannot leave it. Instead of directly using the Markov-Chain M , we build the following two
new matrices

M− =

(
M zero(|S|)

zero(|S|)T 1

)
and

M+ =

(
M ′ sum(S�)

zero(|S|) 1

)
,

where zero(|S|) is a vector of size S containing all zeroes, zero(|S|)T is its transposed, M ′

is derived from M by replacing all columns that correspond to states in S� by zero vectors,
and sum(S�) is a column vector containing for each line in M the sum of values removed
this way.

The initial object distribution vector of an object o is now extended by an additional
value of zero, corresponding to the fact that initially (at time t = 0) we cannot identify
any worlds which satisfy the query predicate.2 At each state transition, where the target
state does not belong to T�, we can now use M− instead of M , which has the same effect
as M , while preserving the probability of state X. If the target state belongs to S�, then
M+ is used instead. This way, worlds leading into states in S� are now redirected to state
X instead.

Example 29. For the matrix

 0 0 1
0.6 0 0.4
0 0.8 0.2

 of our running example, the corresponding

new matrices are M− =


0 0 1 0

0.6 0 0.4 0
0 0.8 0.2 0
0 0 0 1

 and M+ =


0 0 1 0
0 0 0.4 0.6
0 0 0.2 0.8
0 0 0 1


The corresponding visualization is depicted in Figure 13.2(b). Here M− is used for

the first transition from t = 0 to t = 1, while for the transitions from t = 1 to t = 2
and from t = 2 to t = 3, M+ is utilized as transition matrix. Thus, for an object that
has been observed at state s2 at time t = 0, we obtain the initial probability distribution
vector P (o, 0) = (0, 1, 0, 0), where the fourth value denotes the initial probability of being

2In the special case where t = 0 belongs to T�, we adjust the initial vector by moving all probabilities
of states in S� to state X.
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a true hit, which is zero since t = 0 does not belong to T�. The transition to t = 1
yields P (o, 1) = P (o, 0) · M− = (0.6, 0, 0.4, 0). Clearly, the fourth value corresponding
to state X is zero, since no state t ∈ T� has been visited so far. Transition to t = 2
yields P (o, 2) = P (o, 1) ·M+ = (0, 0, 0.64, 0.36) and the final transition yields P (o, 3) =
P (o, 2) ·M+ = (0, 0, 0.136, 0.864). Therefore, the resulting probability that o intersects the
query window is 0.864.

13.2.2 Query-Based Query Processing

The object-based approach applies for each object o the methodology described in Section
13.2.1 to compute the probability that o is part of the query result. The query-based
approach assumes that an object intersects the query. Based on this assumption, this
approach starts at the last point of time in the query window, and goes backward in
time using the transposed Markov-Chain. This way, we can compute, at any time t, the
probability vector P (t) containing for each state s, the probability that an object starting
at state s at time t will satisfy the query predicate.

Therefore, we start at time t�end := max(T�). Clearly, at t�end, a path satisfies the query
predicate if and only if it is in state X: If it is not in state X at time t�end, then it will
never reach state X, since at any time after t�end, the matrix M− will be used which does
not allow to enter state X. Thus, the vector P (t�end) has the form (0, ..., 0, 1). Intuitively,
this vector corresponds to the assumption, that a path satisfies the query. Now we go back
in time using this assumption by using the transposed matrices (M−)T and (M+)T : If the
current state belongs to S�, we use (M+)T , otherwise, we use (M−)T . This procedure is
repeated until t = 0, the last point of time at which an object o has been observed, is
reached. The resulting vector v yields, for each state s ∈ S, the probability that an object
starting at s (with a probability of one) satisfies the query. Vector multiplication of the
probability distribution P (o, 0) with v yields the result probability P ∃(o, S�, T�).

Example 30. Again, consider the example depicted in Figure 13.2(c), where we want to
compute the probability that an object o intersects the query S� = {s1, s2}, T� = {2, 3}.
By transposing M− and M+, we obtain:

(M−)T=


0 0.6 0 0
0 0 0.8 0
1 0.4 0.2 0
0 0 0 1


and

(M+)T=


0 0 0 0
0 0 0.0 0
1 0.4 0.2 0
0 0.6 0.8 1


.
The query-based approach starts by assuming the probability distribution P (t = 3) =
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(0, 0, 0, 1). Since t = 3 ∈ T�, we compute

P (t = 2) = P (t = 3) · (M+)T = (0, 0.6, 0.8, 1).

Since t = 3 ∈ T� as well, we repeat this computation:

P (t = 1) = P (t = 2) · (M+)T = (0.8, 0.92, 0.96, 1).

Finally, since t = 1 /∈ T�, we get

P (t = 0) = P (t = 1) · (M−)T = (0.96, 0.864, 0.928, 1)

This vector contains, for each state, the probability that an object started at this position
will intersect the query. Let us again, assume that initially, the object is located at s2, i.e.
P (o, 0) = (0, 1, 0, 0) we finally obtain:

P ∃(o, S�, T�) = P (o, 0) · P (t = 0)T = 0.864.

This result equals the result that we derived using the object-based approach.

13.2.3 Discussion

The advantage of the query-based approach is that we only have to compute P (t = 0) once,
and then compute, for each object o the P ∃(o, S�, T�) by one single vector multiplication,
which can be performed in O(|P (o, 0)|), where |P (o, 0)| is the number of non-zero elements
in P (o, 0), i.e. the number of possible positions of o at t = 0. In particular, if we assume
that the number of possible states observed at t = 0 is small (which is realistic even for
inaccurate observation types),we approach a total CPU cost of O(1) per object. The initial
computation of P (t = 0) has to perform time-transitions using the transposed Markov-
Chain. Thus, a vector-matrix multiplication is required for each transition from t�end to
t = 0. Thus, the total runtime of the query-based approach is O(|DB| + |Sreach|2 · δt),
where |DB| is the number of database objects, |Sreach| is the number of states that have
to be explored, and δt is the number of transitions between t = 0 and t�end.

In contrast, the object-based approach has to perform time-transitions using the Markov-
Chain for each object. Although it is possible in some cases to stop these transitions early
using the inherent true-hit detection (computation can be stopped as soon as the proba-
bility of state X becomes sufficiently large), in the worst case, all transitions from t = 0 to
t�end have to be performed, and for each such transition, a vector-matrix multiplication has
to be performed in O(|Sreach|2) time, where |Sreach| is the total number of states reachable
by o in the time interval [0, t�end]. The total runtime of the object-based approach is thus
O(|DB| · |S|2 · δt).

The query-based approach makes the assumption that all objects follow the same model,
i.e., all have the same Markov-Chain. In many applications, this assumption is reasonable:
The movements of all icebergs are subject to the same currents - the form and shape of
an iceberg can be assumed to have negligible impact on the icebergs movement. In road
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Figure 13.3: Multiple observations of an object

networks, objects may indeed follow different models. In the worst case, we may have to
perform the query-based approach once for each object. If the objects can be partitioned
to classes (e.g. buses, trucks and cars), the query-based approach can naturally be applied
once for each class. In general, if objects follow different Markov-Chains, a technique
to speed up the query-based approach is to cluster objects with similar Markov-Chains,
and represent each cluster by one approximated Markov-Chain, where each entry is a
probability interval instead of a singular probability. This approximated Markov-Chain
can be used to perform pruning by detecting clusters of objects which must have (or cannot
possibly have) a sufficiently high probability to satisfy the query predicate. Only clusters
which cannot be decided as a whole need their objects to be considered individually.

13.3 Multiple Observations

So far, we have assumed that there is only one observation per object and that this ob-
servation happened at a time that (temporally) proceeded the query time. In this section,
we first show how to compute P ∃(o, S�, T�) given two observations, one before query time
and one after query time. Abstractly, this approach can be seen as a time-interpolation,
whereas so far we have only considered time-extrapolation. The aim is to incorporate
knowledge of both observations, in order to exclude all worlds which are not possible,
given both observations, and properly re-weight the probabilities of the remaining worlds.
Our proposed technique is applicable for both the object-based as well as the query-based
approach. Later, we will give an intuition why considering additional observations, which
are further apart from the query window than a considered observation, may still provide
additional information. Finally, we outline how these techniques can be easily adapted to
incorporate information from an arbitrary number of observations.

Given multiple observations, we have to distinguish between three classes of worlds:

A Worlds that become impossible due to the given observations,

B possible worlds that satisfy the query predicate and

C possible worlds that do not satisfy the query predicate.
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The example in Fig. 13.3 shows 4 possible worlds (trajectories) of an object o observed at
a point of time tx. In addition, two further observations of o exists at time ty and tz. The
possible locations of o at each time of the observations are illustrated by the ellipses. Due
to the observation made at tz, worlds w3 and w4 become impossible because they include
impossible states at time tz, i.e. both worlds belong to class A. In contrast, w2 belongs to
class B, since this world has a non-zero probability since it includes only possible states at
all three observations and satisfies the query predicate of intersecting the query window.
Finally, w1 belong to class C, since, albeit possible, it does not intersect the window.

Intuitively and according to the possible worlds semantics, the probability Ptotal that
an object satisfies the query predicate, given some observations, is the fraction of possible
worlds that satisfy the query predicate, i.e. the fraction

Ptotal =
P (B)

P (B) + P (C)
. (13.1)

In the following, we show how the object-based approach can be adapted to consider
multiple observations OBSo = {obso1, . . . , obson} of the same object o. Each observation
obsox is given by a time tobsox ∈ T and a probability distribution Pobsox representing the
observation. Then, the derived matrices M− and M+ can be used for the query-based
approach. The approach of Section 13.2.1 cannot be applied directly, because now, worlds
which have reached the query window are no longer equivalent, and can no longer be unified
in a single state X. The reason is that the current state of such a world now effects the
probability of reaching the state observed at time t = 3. Therefore, we need to maintain,
for each world that has intersected the query, information about its current state at each
time. Therefore, we replace the state X by a set of states s1X,...,s3X. Each state siX
corresponds to the probability, that o has intersected the query window and is currently
located in state si. The transition matrices M− and M+ need to be adjusted accordingly.
The shape of M− is clear: For a transition from t to t+1, where t+1 /∈ T� (the case where
M− is used), states are simply transitioned, and worlds which have (not) intersected the
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query at t must (not) have done so at t+ 1. We obtain:

M− =

(
M 0
0 M

)
In the case where M+ is used, that is the case where t+1 ∈ T�, we have to ensure that any
transition to a state s ∈ S� leads to the corresponding state sX. This yields the matrix

M+ =

(
M −M ′ M ′

0 M

)
,

where M ′ is derived from M by setting all columns to zero, where the corresponding state
s /∈ S�, and M −M ′ is derived by setting all columns to zero for which s ∈ S�.

We start by using the probability distribution Pobso1 of an object o observed at tobso1 . As
in the previous sections, we iteratively apply the modified matrices M− and M+ until we
reach tobso2 . At this point, we have two probability distributions: One distribution derived
using the observation obso1, which has been transitioned to tobso2 , as well as the probability
distribution Pobso2 . These observations can be unified by exploiting independence between
observations.

Lemma 37. Let X(t) := {Pobso1(t), . . . , Pobson(t)} be a set of pdfs of an object o at time t,
derived from independent observations. The joint probability distribution P (o, t) of o at
time t is given by:

P (o, t) = N(
∏
x∈X

x1, ...,
∏
x∈X

x|S|),

where N(·) is the vector normalization function, i.e. N(x) = ( x1∑
x
, ...,

x|S|∑
x
)

Proof. For each i ∈ 1, ..., |S|, P (o, t)i is, by definition of a probability density function,
the probability of the random event that object o is located in state si. Without loss of
generality, let a = (a1, ..., a|S|) ∈ X be the first observation. Given this observation only,
then clearly P (o, t) = a holds. Given further observations, the probability of this event
becomes conditioned to

P (o, t)i = P (ai|X \ {a}).

Since all observations are mutually independent, we get

P (o, t)i = ai ·
∏
x∈X

xi,

which is the fraction of all worlds, including worlds which are no longer possible given the
observations X, in which o is located in state si at time t. Due to possible worlds semantics
(c.f. Equation 13.1), we are only interested in the fraction of possible worlds in which o is
located in state si at time t. Since v contains all possible worlds, the normalization N(v)
yields the correct result.
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As an example, consider Figure 13.4, where we again use our running example Markov-
Chain

M =

 0 0 1
0.5 0 0.5
0 0.8 0.2


and assume that an object O has been observed at state s1 at time t1 and at state s3 at
time t4. We obtain the transition matrices

M− =

(
M 0
0 M

)
=


0 0 1 0 0 0

0.5 0 0.5 0 0 0
0 0.8 0.2 0 0 0
0 0 0 0 0 1
0 0 0 0.5 0 0.5
0 0 0 0 0.8 0.2


and

M+ =

(
M −M ′ M ′

0 M

)
=


0 0 1 0 0 0
0 0 0.5 0.5 0 0
0 0 0.2 0 0.8 0
0 0 0 0 0 1
0 0 0 0.5 0 0.5
0 0 0 0 0.8 0.2


Since at time t = 0, o has been observed in state s1, and since o cannot have reached the
window yet, the initial distribution of o is Pobso1 = P (o, 0) = (1, 0, 0, 0, 0, 0). Transition to
t = 1 using M+ (since t = 1 ∈ T�) yields P (o, 1) = (0, 0, 1, 0, 0, 0). The next transition
using M+ yields P (o, 2) = (0, 0, 0.2, 0, 0.8, 0). The intuition of this vector is that, at time
t = 2, object o is located in state s3 while having reached the query window with a probabil-
ity of 20%, and otherwise is located in state s2 having reached the query window. The next
transition uses M− (since t = 3 /∈ T�) and yields P (o, 3) = (0, 0.16, 0.04, 0.4, 0, 0.4). Now,
at time t = 3, the second observation was made. We assume that this observation only
has information about the state at t = 3, but no information whether o has intersected the
query window. Thus, the observation vector has the form obso2 = (0, 0.5, 0, 0, 0.5, 0). Due
to Lemma 37, and since we assume that obso1 (from which P (o, 3) was derived) and obso2 are
independent observations, we can directly multiply the entries of P (o, 3) and obso2, yielding
P (o, t)′ = (0, 0.08, 0, 0, 0, 0). Normalization yields P (o, t) = N(P (o, t)′) = (0, 1, 0, 0, 0, 0),
which means that at t = 3, given both observations, o must be in state s2 and must not
have intersected the query window. This is intuitive, since the only path between s1 at
t = 0 and s2 at t = 3 does not intersect the query window.
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13.4 Additional Spatio-Temporal Queries

Based on the proposed concepts for answering spatio-temporal ∃-queries, we will now show
how different query predicates can be answered efficiently.

PST∀Q:

In some applications, it may be interesting to compute the probability that o is in the
query window at all times t ∈ TBox. Clearly, the probability that o is located in S� at all
times in T� complements the probability that o is outside S� at any time in T�, i.e.

P ∀(o, S�, T�) = 1− P ∃(o,S \ S�, T�).

Although, in general, S >> S�, the time required to compute P ∃(o,S\S�, T�) is generally
not larger than the time required to compute P ∀(o, S�, T�). The only difference between
these two computations is the content of the matrix M+, since different sets of columns
of matrix M are merged. In most cases, the computation of P ∃(o,S \ S�, T�) is actually
faster, since more columns of M+ are zero.

PSTkQ:

So far, an object o satisfies the query predicate in any world where it intersects the query
window, regardless for how long o remains in the query window. In the following, we will
show how the probability distribution of the number of times that o is located in the query
window (c.f. Definition 63) is computed.

To answer this query, we can extend the idea of adding new virtual states, to capture
the number of times an object has visited the query window; we use the set of states
S ′ = S × {0, ..., |T�|}. Intuitively, an object in state s′ = (s ∈ S, k ∈ {0, ..., |T�|}) ∈ S ′
is currently located in state s and has been in the query window at k points of time. At
any point of time t ∈ T�, all possible worlds located at a state s ∈ S� are transitioned in
order to increase their k value by one. The resulting matrices are

M− =


M 0 ... 0
0 M ... 0
... ... ... ...
0 0 ... M



M+ =


M −M ′ M ′ 0 ... 0

0 M −M ′ M ′ ... 0
... ... ... ... ...
0 0 ... M −M ′ M ′


Since initially, an object o visited the query window zero times3, the initial distribution of
an object is concatenated with k · |S| zeroes. If we perform time transitions until we reach

3The special case where t = 0 belongs to T � is omitted here. In that case, the initial distribution of
an object simply starts at k = 1, i.e. is shifted by |S|.
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t�end, we obtain for each s′ = (s ∈ S, k ∈ {0, ..., |T�|}) ∈ S ′ the probability that o will visit
the query window exactly k times and will finally be in state s. Grouping this result by k,
we obtain for each k ∈ {0, ..., |T�|}, the probability that o visits the query window exactly
k times.

Obviously the above approach is not very memory efficient, since M− and M+ each
blow up the memory requirement of the original transition matrix M by a factor of |T�|.
Thus, a more space efficient approach is presented in the following. For processing an object
o ∈ DB, an additional (|T�|+ 1)× |S|-Matrix C(t) is necessary. Each entry ci,j(t) ∈ C(t)
corresponds to the probability that o is currently located in state sj and has been located
in S� at exactly i points of time t′ ≤ t ∈ T�. We begin by setting the first row of C(0)
to P (o, 0) and all other entries to zero, since at t = 0, o cannot possibly have entered the
query region. At each state transition from t to t + 1, a transition using M is performed
for each row. This is simply achieved by computing C ′(t + 1) = C(t) ·M . If t is not in
T�, then we set C(t+ 1) = C ′(t+ 1). Otherwise, if t ∈ T�, then we additionally shift each
column corresponding to a state si ∈ S down by one, and fill the top entry of this line with
zero. That is

ci,j =


c′i,j, if j /∈ S�
0, if j ∈ S� ∧ i = 0

c′i−1,j otherwise.

When t�end is reached, the probability for o to be in the query exactly k-times can
be obtained by summing up all probabilities in row k of C(t�end). Thus the probability
P k−times(o, S�, T�) that o has visited the query window exactly k times is given by

P k−times(o, S�, T�) =
∑
j

ck,j(t
�
end)

Considering our running example we start with the matrix C(0) and transition as along
as t /∈ T�:

C(0) =

0 1 0
0 0 0
0 0 0

 ·M2

−−→ C(2)′ =

0 0.32 0.68
0 0 0
0 0 0


Now we shift down the probabilities of the states in S� by one row:

C(2) =

0 0 0.68
0 0.32 0
0 0 0


A further transition using the Markov chain yields0 0 0.68

0 0.32 0
0 0 0

 ·M−→ C(3)′ =

 0 0.544 0.136
0.192 0 0.128

0 0 0
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After performing the last shift we obtain

C(3) =

 0 0 0.136
0 0.544 0.128

0.192 0 0

 rowsum−−−−→

0.136
0.672
0.192


The resulting vector reflects the probability of o to be in the query exactly zero times
(P 0−times(o, S�, T�) = 0.136), exactly once (P 1−times(o, S�, T�) = 0.672) and exactly two
times (P 2−times(o, S�, T�) = 0.192).

13.5 Conclusion

In this chapter, we studied the problem of probabilistic query evaluation over uncertain
spatio-temporal data. We consider uncertain trajectories, for which some points are sam-
pled via observations, while the remaining points are instantiated by a stochastic process.
To our knowledge, this is the first work that studies such queries over uncertain moving
object data, which are modeled by stochastic processes, specifically Markov-Chains. This
approach has three major advantages over previous work. First it allows answering queries
in accordance with the possible worlds model. Second, dependencies between object lo-
cations at consecutive points in time are taken into account. And third, it allows us to
infer the probability an object reaches a certain location (state) by matrix multiplications
that can be processed extremely efficient. Based on this method we propose a framework
for processing queries over such data, which injects pruning techniques into the Markov
Chain matrices. An object-based and a query-based approach are proposed; the latter is
always more efficient, typically by orders of magnitude. In our experiments we show that
we are able to answer queries on settings with 100,000 location states and 10,000 objects in
a fraction of a second on a single machine in contrast to state-of-the-art solutions that are
multiple orders of magnitude slower, e.g. the Monte-Carlo approach requires several hours
for the same query. We show how the framework can be applied for the cases where there
exist one or multiple observations per object and for various probabilistic spatio-temporal
query variants.

We believe that many more interesting queries and applications can be set on top of
this model. To support this we release the MATLAB framework which was developed
during the process of this work online4. In the future, we plan to apply our framework for
data analysis tasks over spatio-temporal data (e.g. find areas that are expected to become
congested together with the time periods of this expectation).

4The project page can be found at http://www.dbs.ifi.lmu.de/cms/Publications/UncertainSpatioTemporal



Chapter 14

Spatio-Temporal Nearest Neighbor
Queries

Given a reference state or trajectory q and a time interval T , we define probabilistic nearest-
neighbor (PNN) query semantics, which are extensions of nearest neighbor queries in tra-
jectory databases [72, 80, 96, 182]. Specifically, a P∃NNQ (P∀NNQ) query retrieves all
objects in DB, which have sufficiently high probability to be the NN of q at one time (at
the entire set of times) in T ; a probabilistic continuous NN (PCNNQ) query finds for each
object o ∈ DB the time subsets Ti of T , wherein o has high enough probability to be the
NN of q at the entire set of times in Ti. Note that to the best of our knowledge this is the
first approach that tackles the PNN query problem correctly in consideration of possible
worlds semantics.

PNN queries find several applications in analyzing historical trajectory data. For ex-
ample, consider a geo-social network where users can publish their current spatial position
at any time by so-called check-ins. For a historical event, users might want to find their
nearest friends during this event, e.g. to share pictures and experiences. As another appli-
cation example, consider GPS-tracked taxi cars as given in the T-Drive dataset [209] where
PNN queries can be used for analysis tasks like the assessment of taxi-client assignment
procedures or for search tasks like searching for taxi drivers that might have observed
a certain event like a car accident or a criminal activity such as a bank robbery. The
taxi drivers that have been closest to the certain event location during the time the event
might happened are potential witnesses. Note that this example application is used as our
running application throughout this paper.

The main contributions of our work are as follows:

• A thorough theoretical complexity analysis for variants of probabilistic NN query
problems.

• A sampling-based approximate solution applicable for all PNN problems which is
based on Bayesian inference.

The rest of the chapter is structured as follows. Section 14.1 reviews existing work
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related to NN search on uncertain trajectories. Section 14.2 presents variants of near-
est neighbor search semantics on spatio-temporal data. Section 14.3 gives a theoretical
analysis for each variant. To speed up query evaluation, in Chapter 15, we show that it
is possible to prune some objects from consideration using an index over DB. Then, for
each remaining object o, we have to compute a probability (i.e., P∃NN(o, q,DB, T ) or
P∀NN(o, q,DB, T )) and compare it to the threshold τ . In Section 14.3, it is shown that
the problems of answering P∃NN queries, P∀NN queries and PCNN queries is computa-
tionally hard. To alleviate this problem, Chapter 16 present approximate solutions for this
kind of spatio-temporal queries using Monte-Carlo simulation. A thorough experimental
analysis presented in Chapter 17 shows that this sampling approach yields low run-times
by exploiting efficient matrix operations, and yields result probabilities having an error
that can practically be neglected.

14.1 Related Work

In the context of certain trajectory databases there is not a common definition of nearest
neighbor queries, but rather a set of different interpretations. In [72], given a query tra-
jectory (or spatial point) q and a time interval T , a NN query returns either the trajectory
from the database which is closest to q during T or for each t ∈ T the trajectory which
is closest to q. The latter problem has also been addressed in [80]. Similarly, in [103], all
trajectories which are nearest neighbors to q for at least one point of time t are computed.

Other approaches consider continuous nearest neighbor (CNN) semantics. In [96], CNN
queries were defined taking as input a static spatial query point q and a trajectory database
and returning for each point in time the trajectory closest to q. Other approaches [153, 182]
define the CNN problem differently: Given an input trajectory q and a database consisting
of spatial points, a CNN query segments q such that for each segment qi ⊆ q exactly
one object from the database is the nearest neighbor of qi. This approach was extended
for objects with uncertain velocity and direction, thus considering a predictive setting
rather than historical data, in [94]; the solutions proposed only find possible results, but
not result probabilities. Solutions for road network data were also proposed for the case
where the velocities of objects are unknown [122]. Furthermore, [190, 189] extended the
problem of continuous kNN queries (on historical search) to an uncertain setting, serving
as important preliminary work, however, based on a model which is not capable to return
answers according to possible world semantics.

14.2 Problem Definition

In this chapter, we consider three types of time-parameterized nearest-neighbor queries
that take as input a certain trajectory q and a set of timesteps T .

Definition 64 (P∃NN Query). A probabilistic ∃ nearest neighbor query retrieves all objects
o ∈ DB which have a sufficiently high probability (P∃NN) to be the nearest neighbor of q
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for at least one point of time t ∈ T , formally:

P∃NNQ(q,DB, T, τ) = {o ∈ DB : P∃NN(o, q,DB, T ) ≥ τ}
where P∃NN(o, q,DB, T ) =

P (∃t ∈ T : ∀o′ ∈ DB \ o : d(q(t), o(t)) ≤ d(q(t), o′(t)))

and d(x, y) is a distance function defined on spatial points, typically the Euclidean distance.

This definition is a straightforward extension of the spatio-temporal query proposed in
[72]. In addition, we consider NN queries with the ∀ quantifier which has been introduced
in the previous chapter for spatio-temporal window queries).

Definition 65 (P∀NN Query). A probabilistic ∀ nearest neighbor query retrieves all objects
o ∈ DB which have a sufficiently high probability (P∀NN) to be the nearest neighbor of q
for the entire set of timestamps T , formally:

P∀NNQ(q,DB, T, τ) = {o ∈ DB : P∀NN(o, q,DB, T ) ≥ τ}
where P∀NN(o, q,DB, T ) =

P (∀t ∈ T : ∀o′ ∈ DB \ o : d(q(t), o(t)) ≤ d(q(t), o′(t)))

In addition to the ∃ and ∀ semantics for probabilistic nearest neighbor queries we now
introduce a continuous query type which intuitively extends the spatio-temporal continuous
nearest-neighbor query [153, 182] to apply on uncertain trajectories.

Definition 66 (PCNN Query). A probabilistic continuous nearest neighbor query retrieves
all objects o ∈ DB together with the set of timesets {Ti} where in each Ti the object has a
sufficiently high probability to be always the nearest neighbor of q(t), formally:

PCNNQ(q,DB, T, τ) =

{(o, Ti) : o ∈ DB, Ti ⊆ T, P∀NN(o, q,DB, Ti) ≥ τ}.

Analogously to the CNN query definition [153, 182], in order to reduce redundant answers
it makes sense to redefine the PCNN Query where we focus on results that maximize |Ti|,
formally:

PCNNQ(q,DB, T, τ) =

{(o, Ti) : o ∈ DB,Ti ⊆ T, P∀NN(o, q,DB, Ti) ≥ τ

∧ ∀Tj ⊃ Ti : P∀NN(o, q,DB, Ti) < τ}.

Note that according to this definition result sets Ti ⊆ T do not have to be connected.
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Figure 14.1: An example instance of our mapping of the 3-SAT problem to Markov chains.

14.3 Theoretical Analysis

In this section, we formally show that P∃NN queries, P∀NN queries and and PCNN queries
cannot be answered in PTIME..

14.3.1 The P∃NN Query

In a P∃NN query, for any candidate object o ∈ DB, we should consider the probability
P∃NN(o, q,DB, T ). However, the following lemma shows that this probability is hard to
compute.

Lemma 38. The computation of P∃NN(o, q,DB, T ) is NP-hard in |DB|.

Proof. P∃NN(o, q,DB, T ) is equal to 1−P (¬∃t ∈ T,∀o′ ∈ DB : d(q(t), o(t)) ≤ d(q(t), o′(t))).
We will show that deciding if there exists a possible world for which the expression:

¬∃t ∈ T,∀o′ ∈ DB : d(q(t), o(t)) ≤ d(q(t), o′(t)) (14.1)

is satisfied is an NP-hard problem. (Note that this is a much easier problem than computing
the actual probability.) Specifically, we will reduce the well-known NP-hard k-SAT problem
to the problem of deciding on the existence of a possible world for which Expression 14.1
holds.

For this purpose, we provide a mapping to convert a boolean formula in conjunctive
normal form to a Markov chain modeling the decision problem of Expression 14.1 in poly-
nomial time. Thus, if the decision problem could be computed in PTIME, then k-SAT
could also be solved in PTIME, which would only be possible if P=NP. A k-SAT expression
E is based on a set of variables X = {x1, x2, . . . , xn}. The literal li of a variable xi is either
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xi or ¬xi and a clause c =
∨
xi∈C

li is a disjunction of literals where C ⊆ X and |C| < k.

Then E is a conjunction of clauses: E = c1 ∧ c2 ∧ . . . ∧ cm.

For our mapping, we will consider a simplified version of the P∃NN problem, specifically
(1) q is a certain point, (2) o is a certain point and (3) the state space S of possible locations
only includes 4 states. As illustrated in Figure 14.1, compared to o, states s1 and s2 are
closer to q and states s3 and s4 are further from q.1 Therefore, if an uncertain object is at
states s1 or s2 then o is not the NN of q.

In our mapping, each variable xi ∈ X is equivalent to one uncertain object o′i ∈ DB\ o.
Furthermore each disjunctive clause cj is interpreted as an event happening at time t = j,
i.e., the event c1 happens at time t = 1, c2 happens at time t = 2 etc. Each clause cj can
be seen as a disjunctive event that at least one object o′i at time t = j is closer to q than
o (in this case, cj is true). Therefore, the conjunction of all these events, i.e. expression
E =

∧
1≤j≤m

cj, becomes true if the set of variables is chosen in a way that at each point in

time, compared to o, at least one object is closer to q; this directly represents Expression
14.1. However, in k-SAT, not every variable xi (corresponding to o′i) is contained in each
term cj which does not correspond to our setting, since an uncertain object has to be
somewhere at each point in time. To solve this problem, we extend each clause cj, such
that each variable xi is contained in cj, without varying the semantics of cj. Let us assume
that xi is not contained in cj. Then c′j = cj ∨ false = cj ∨ (xi ∧ ¬xi). This means that we
can assume that object o′i is definitely not closer to q than o at time t.

Let lji be the literal of variable xi in clause cj. Based on the above discussion, we are
able to construct for each object o′i two possible trajectories (worlds). The first one, based
on the assumption that xi is true, transitions between states s2 (if lji = true) and s4 (if
lji = false). The second one, based on the assumption that xi is set to false, transitions
between states s1 (if lji = true) and s3 (if lji = false). Since these two trajectories can never
be in the same state it is straightforward to construct a time-inhomogeneous Markov chain
T o(t) for each object o′i and each timestamp j.

After the Markov chains for each uncertain object o′i in DB have been determined,
we would just have to traverse them and compute the probability P∃NN(o, q,DB, T ). If
this probability is < 1, there would exist a solution to the corresponding k-SAT formula.
However it is not possible to achieve this efficiently in the general case as long as P 6= NP .
Therefore solving P∃NN in subexponential time is impossible.

Example: Consider a set of boolean variables X = {x1, . . . , x4} and the following
formula:

E = (¬x1 ∨ x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ x4) ∧ (x1 ∨ ¬x2)

Therefore, we have

c1 = (¬x1 ∨ x2 ∨ x3), c2 = (x2 ∨ ¬x3 ∨ x4) and c3 = (x1 ∨ ¬x2)

1The states of o and q are omitted for the sake of simplicity.
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By employing the mapping discussed above, we get the four inhomogeneous Markov chains
illustrated in Figure 14.1. For instance, under the condition that x1 is set to true, the value
of the literal ¬x1 is false at t = 1 (in clause c1) such that o′1 starts in the state s4. On the
other hand, if x1 is set to false, then o′1 starts in the state s1.

In the second clause c2, since x1 6∈ C2, the position of o′1 must not affect the result.
Therefore, for both cases x1 = false and x1 = true, o′1 must be behind o. In the last clause
c3, if x1 = true the object moves to state s2. On the other hand, if x1 = false, the object
moves to state s3.

14.3.2 The P∀NN Query

In the following, let o ≺Tq oa denote the random predicate that is true if and only if object
o is closer to an object q than object oa ∈ DB during the query time T = [tstart, tend], i.e.
∀t ∈ T : d(o(t), q(t)) ≤ d(oa(t), q(t)). If o ≺Tq oa holds, we say that o dominates oa with
respect to q during T . If the parameters q and T are clear from the context, we simply
say that o dominates oa. By definition, an object o is a ∀-nearest neighbor of object q if
an only if o dominates all other objects in DB. The following theoretically analysis of the
P∀NN query is organized as follows:

• It will be shown in Lemma 39 that the probability that o dominates a single object oa
can be computed in PTIME. This is an interesting theoretical result, since we have
seen in Section 14.3.1 that this is not possible for P∃NN queries.

• Despite Lemma 39, it will be shown in Lemma 40 that computing the probability
P∀NN(o, q,DB, T ) that an object o is a forall-nearest neighbor of q is hard to com-
pute, due to stochastic dependencies between domination random events o ≺Tq oa
and o ≺Tq ob.

Lemma 39. The probability P (o ≺Tq oa) that o dominates oa can be computed in PTIME.

Proof. The main idea of this proof, is to treat the positions of o and o′ as a single joint
stochastic process, having possible alternatives in S2. Then, the joint a-priori transition
matrix Mo×o′(t) will be conditioned to the event o ≺Tq o′ following the forward-backward
paradigm. For completeness, this paradigm will be presented in detail as part of the
following proof.

Let so×o′(t) denote the joint probability distribution of o and o′ at time t, conditioned to

the event o ≺[t0,t−1]
q o′ that o dominates o′ at any time prior to t. For ease of implementation,

we linearize this two dimensional discrete distribution so×o′(t) to a vector of length |S|2,
such that each entry (so×o′(t))i equals the probability that, at time t, object o is in state
i mod |S| and object o′ is in state idiv|S|, given that o dominates o′ at any time prior to t.
Here, the operator div is the integer division operator, and mod is the remainder of the
integer division. Formally, each entry of vector o dominates o′ at any time prior to t For
instance, if we have a total of 1000 states, vector so×o′(t) has a length of one million entries,
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and entry i = 484.912 contains the probability that o is located at state 912 at time t and
o′ is located at state 484 at time t. Formally, each entry of so×o′(t) is defined as:

so×o′(t))i := P (o(t) = si mod |S| ∧ o′(t) = si div |S||o ≺[t0,t−1]
q o′.

Furthermore, let Mo×o′(t) denote the joint transition matrix of o and o′. This matrix
contains the probabilities of objects o and o′ to transition to a joint state j from a joint
state i at time t. That is, Mo×o′(t) is a |S|2×|S|2 matrix, such that each entry (Mo×o′(t))i,j
corresponds to the probability

P (o(t+ 1) = sj mod |S| ∧ o′(t+ 1) = sj div |S||o(t) = si mod |S| ∧ o′(t) = si div |S|).

Due to independence of o and o′, these probabilities can be computed by

P (o(t+ 1) = sj mod |S| ∧ o′(t+ 1) = sj div |S||o(t) = si mod |S| ∧ o′(t) = si div |S|) =

P (o(t+ 1) = sj mod |S||o(t) = si mod |S| ∧ o′(t) = si div |S|)·

P (o′(t+ 1) = sj div |S||o(t) = si mod |S| ∧ o′(t) = si div |S|) =

P (o(t+ 1) = sj mod |S||o(t) = si mod |S|) · P (o′(t+ 1) = sj div |S||o′(t) = si div |S|) =

= (Mo(t))i mod |S|,j mod |S| · (Mo′(t)i div |S|,j div |S|).

In the forward phase, the idea is to start at time t0, using the joint distribution so×o′(t0),
removing worlds that contradict the predicate o ≺Tq o′ and iteratively performing a transi-
tion to so×o′(t+ 1) given so×o′(t). In each iteration, i.e., at each point of time in the query
interval T , Bayesian inference is used to construct a time-reversed Markov-model Ro×o′(t)
of o and o′ at time t given the observation that o has dominated o′ in the past, i.e., a model
that describes the probabilities

Ro×o′(t)(i, j) =

P (o(t− 1) = sj mod |S| ∧ o′(t− 1) = sj div |S||o(t) = si mod |S| ∧ o′(t) = si div |S| ∧ o ≺[t0,t]
q o′)

of o and o′ coming from a state pair j at time t − 1, given being at a state pair i at time
t, given the observation that o has dominated o′ in the past.

In the Backward-phase, time is traversed in reverse direction, from time tend to t0, by
employing the time-reversed Markov-model Ro× o′(t) constructed in the forward phase.
Again, Bayesian inference is used to construct a new Markov model Fo× o′(t) that is
further adapted, given the observation that o will dominate o′ in the future. This new
Markov model contains the final a-posteriori transition probabilities

Fo×o′(t)(i, j) =

P (o(t+ 1) = sj mod |S| ∧ o′(t+ 1) = sj div |S||o(t) = si mod |S| ∧ o′(t) = si div |S| ∧ o ≺Tq o′).
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In more detail, the forward phase uses the theorem of Bayes to compute backward
probabilities as follows

Ro×o′(t)(i, j) =

P (o(t− 1) = sj mod |S| ∧ o′(t− 1) = sj div |S||o(t) = si mod |S| ∧ o′(t) = si div |S| ∧ o ≺[t0,t]
q o′) =

P (o(t) = si mod |S| ∧ o′(t) = si div |S||

o(t− 1) = sj mod |S| ∧ o′(t− 1) = sj div |S| ∧ o ≺[t0,t]
q o′)·

P (o(t− 1) = sj mod |S| ∧ o′(t− 1) = sj div |S|)|o ≺[t0,t]
q o′

P (o(t) = si mod |S| ∧ o′(t) = si div |S||o ≺[t0,t]
q o′)

(14.2)

Equation 14.2 requires two classes of probabilities to be computed on its right-hand-side:

• The a-priori probabilities

P (o(t) = si mod |S| ∧ o′(t) = si div |S||

o(t− 1) = sj mod |S| ∧ o′(t− 1) = sj div |S| ∧ o ≺[t0,t]
q o′),

1 ≤ i, j ≤ |S|2, t0 ≤ t ≤ tend

of a joint transition of o and o′ at time t, given that o has dominated o′ at any time
less or equal t, and

• The priors so×o′(t0))i := P (o(t) = si mod |S| ∧ o′(t) = si div |S||o ≺[t0,t]
q o′), 1 ≤ i, j ≤

|S|2, t0 ≤ t ≤ tend

The a-priori probabilities are given directly by the joint a-priori Markov chain Mo×o′(t).
Exploiting the Markov property of the transition matrix Mo×o′(t), we can rewritte each
element of Mo×o′(t) as

P (o(t+ 1) = sj mod |S| ∧ o(t+ 1) = sj div |S||

o(t) = si mod |S| ∧ o(t) = si div |S|) =

P (o(t+ 1) = sj mod |S| ∧ o(t+ 1) = sj div |S||

o(t) = si mod |S| ∧ o(t) = si div |S| ∧ o ≺[t0,t]
q o′).

Due to the Markov assumption, the future positions of o and o′ are independent of past
knowledge o ≺[t0,t−1]

q o′. Due to precise knowledge of the position of o and o′ at time

t, the future positions are independent of the current knowledge o ≺[t,t]
q o′. Thus, the

future positions of o and o′ are independent of o ≺[t0,t]
q o′. Consequently, the probability

P (o(t+1) = sj mod |S|∧o(t+1) = sj div |S||o(t) = si mod |S|∧o(t) = si div |S|, which corresponds
to the probability of future positions of o and o′ given current positions of o and o′ is
unaffected by conditioning to o ≺[t0,t]

q o′.
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These prior probabilities are computed inductively as follows. At time t0, we can exploit
the following simplification of vector so×o′(t0)

(so×o′(t0))i = P (o(t0) = si mod |S| ∧ o′(t0) = si div |S||o ≺[t0,t0−1]
q o′) =

(so×o′(t0))i := P (o(t0) = si mod |S| ∧ o′(t0) = si div |S|),

which follows from the fact that the predicate o ≺[t0,t0−1]
q o′ is a tautology, as it is defined on

an empty time interval [t0, t0−1]. This observation follows from the fact that o ≺[t0,t0−1]
q o′

is defined as ∀t0 ≤ t ≤ t0− 1 : dist(q(t), o(t)) ≤ dist(q(t), q′(t)) which simplifies to ∀t ∈ ∅φ
which is a tautology for any formula φ. Due to independence of o and o′, we can compute
the initial probabilities

P (o(t) = si mod |S| ∧ o′(t) = si div |S|) =

P (o(t) = si mod |S|) · P (o′(t) = si div |S|).

Next, all entries of (so×o′(t0))i are set to zero, for which it holds that the distance of
the corresponding state of o has a higher distance to the query trajectory q than the
corresponding state of o′. That is, each entry (so×o′(t0))i such that dist(q(t), si mod |S|) >
dist(q(t), si div |S|) is set to zero. This operation can be defined via matrix-operations only
by defining the following indicator vector:

Ci(t) =

{
1, if dist(q(t), si mod |S|) > dist(q(t), si div |S|)
0, otherwise.

Semantically, the indicator vector C(t) is used to prune all worlds, for which it holds that
dist(q(t), o(t)) > dist(q(t), o′(t)) at time t. Element wise multiplication yields a new vector

so×o′(t0)′ := so×o′(t0) • C(t0).

By definition each cell C(t0)i equals the probability dist(q(t), si mod |S|) > dist(q(t), si div |S|).
This probability must be either one or zero, since it is completely deterministic, given
the position of q, o and o′ at time t. Thus we can rewrite each element of so×o′(t0)′ :=
so×o′(t0) • C(t0) as follows

(so×o′(t0)′)i =

P (o(t0) = si mod |S| ∧ o′(t0) = si div |S|)·

P (dist(q(t), si mod |S|) > dist(q(t), si div |S|)).
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Since the event dist(q(t), si mod |S|) > dist(q(t), si div |S|) is deterministic, it is in partic-
ular independent of any other random variable, such that we can write

(so×o′(t0)′)i =

P (o(t0) = si mod |S| ∧ o′(t0) = si div |S|

∧dist(q(t), si mod |S|) > dist(q(t), si div |S|)).

By definition of o ≺t0q o′, we can write

(so×o′(t0)′)i = P (o(t0) = si mod |S| ∧ o′(t0) = si div |S| ∧ o ≺t0q o′).

Using the joint transition matrix Mo×o′(t) we can now perform a time transition from time
t0 to time t0 + 1 by exploiting the following equation.

so×o′(t+ 1) = Mo×o′(t) · so×o′(t)′. (14.3)

Correctness of Equation 14.3 can be shown using the law of total probability: According
to Equation 14.3, each entry (so×o′(t+ 1))j is computed by the sum∑

i

(so×o′(t))i · (Mo×o′(t))i,j =

∑
i

P (o(t) = si mod |S| ∧ o(t) = si div |S||o ≺[t0,t]
q o′)·

P (o(t+ 1) = sj mod |S| ∧ o(t+ 1) = sj div |S||
o(t) = si mod |S| ∧ o(t) = si div |S|)

Exploiting the Markov property of the transition matrix Mo×o′(t), we can rewritte each
element of Mo×o′(t) as

P (o(t+ 1) = o(t) = sj mod |S| ∧ o(t+ 1) = sj div |S||

o(t) = si mod |S| ∧ o(t) = si div |S|) =

P (o(t+ 1) = sj mod |S| ∧ o(t+ 1) = sj div |S||

o(t) = si mod |S| ∧ o(t) = si div |S| ∧ o ≺[t0,t]
q o′).

The addition of the condition o ≺[t0,t]
q o′ has no effect, since these probabilities are already

conditioned to positions o(t) and o′(t). Due to the Markov assumption, the future positions

of o and o′ are independent of past knowledge o ≺[t0,t−1]
q o′, and due to precise knowledge

of the position of o and o′, the future positions are independent of the current knowledge
o ≺[t,t]

q o′. Thus, the future positions of o and o′ are independent of o ≺[t0,t]
q o′. Consequently,

the probability P (o(t+ 1) = sj mod |S| ∧ o(t+ 1) = sj div |S||o(t) = si mod |S| ∧ o(t) = si div |S|,
which corresponds to the probability of future positions of o and o′ given current positions
of o and o′ is unaffected by conditioning to o ≺[t0,t]

q o′.
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Using the law of total probability2, we obtain∑
i

P (o(t) = si mod |S| ∧ o(t) = si div |S||o ≺[t0,t]
q o′)·

P (o(t+ 1) = sj mod |S| ∧ o(t+ 1) = sj div |S||

o(t) = si mod |S| ∧ o(t) = si div |S| ∧ o ≺[t0,t]
q o′) =

P (o(t+ 1) = sj mod |S| ∧ o(t+ 1) = sj div |S||o ≺[t0,t]
q o′)

which equals the vector (so×o′(t+ 1))j by its definition.
Given both a-priori probabilities and prior probabilities, we can now compute the re-

verse transition matrix Ro× o′(t) of o and o′ using Equation 14.2.

Lemma 40. The computation of P∀NN(o, q,DB, T ) is NP-hard in |DB|.

Proof. By definition of predicate (o ≺Tq oi), we can rewrite the probability that o is the
nearest neighbor of q during T as follows:

P∀NN(o, q,DB, T ) = P (∀oi ∈ DB : o ≺q oi) = P (
∧

oi∈DB

o ≺q oi). (14.4)

Clearly, Equation 14.4 follows from the fact that o is the NN of q if and only if o is
closer to q than all other objects in DB during time T . Using the chain rule of probability,
which iteratively uses the rule P (A∧B) = P (A) ·P (B|A) for conditional probabilities, we
obtain

P (
∧

oi∈DB

o ≺q oi) = (14.5)

P (o ≺q o|DB||o ≺q o1 ∧ ... ∧ o ≺ o|DB|−1)

·... · P (o ≺q o1)

=
∏

1≤i≤DB

P (o ≺q oi|
∧
j<i

o ≺q oj).

To compute the conditional probabilities in the above equation, we can not exploit any
independence. In particular, events (o ≺q o1) and (o ≺q o2) are mutually dependent, even
though objects o, o1 and o2 are assumed to be (marginally) independent. This observation
follows from the fact, that both random predicates (o ≺q o1) and (o ≺q o2) depend on
the position of o. Semantically, the condition (o ≺q o1) changes the distribution of the
possible trajectories of o, by only allowing possible worlds where o is closer to q than o1,

2The law of total probability states that for two random variables A and B, it holds that P (A = a) =∑
b∈B P (A = a|B = b) · P (B = b). Introducing a fixed condition C yields P (A = a|C) =

∑
b∈B P (A =

a|B = b, C) · P (B = b|C). In this case, the random variable A corresponds to the joint distribution of o
and o′ at time t+ 1, the random variable B corresponds to the joint distribution of o and o′ at time t, and

C corresponds to the event o ≺[t0,t]
q



278 14. Spatio-Temporal Nearest Neighbor Queries

thus “pressing” o closer to q, thus increasing the probability of o being closer to q than o2.
Thus, the random events (o ≺q oi) and (o ≺q oj) are positively correlated in general.

To show how this observation implies that P∀NN queries are NP-Hard, we investigate
the complexity of the problem of conditioning the a-priori model Mprior

k,i (t− 1) = P (o(t) =
si|o(t − 1) = sk) of an object o to the event that o dominates another object oa ∈ DB,
yielding model Mpost.

k,i (t− 1) = P (o(t) = si|o(t− 1) = sk, o ≺Tq oa). The problem here is, as
we will see, that the adapted model derived using the forward-backward paradigm, albeit
correct, does not satisfy the Markov property. Thus, the new model can not be used to for
efficient inference, as the lack of Markov property results in exponential number of possible
worlds to consider.

To compute P (o(t) = si|o(t − 1) = sk, o ≺Tq oa), si, sk ∈ S, the idea is to treat the
positions of o and oa as a single joint stochastic process, defined on the event space S2.
Then, the joint a-priori transition matrix Mo×oa(t) is conditioned to the event o ≺Tq oa to
obtain a joint probability matrix Mo×oa(t− 1) =

P (o(t) = si, oa(t) = sj|o(t− 1) = sk, oa(t− 1) = sl, o ≺Tq oa)

.
Next, we need to reduce this joint transition matrix to an adapted transition matrix

Mpost.
k,i (t − 1) = P (o(t) = si|o(t − 1) = sk, o ≺Tq oa) of object o. By applying the law of

conditional probability, it can be shown that:

Mpost.
k,i (t− 1) =

∑
sj

∑
sl

P (oa(t− 1) = sl|o(t− 1) = sk, o ≺Tq oa)∗

P (o(t) = si, oa(t) = sj|o(t− 1) = sk, oa(t− 1) = sl, o ≺Tq oa)

Assuming that the Markov property still holds, we should get the same results for

P (o(t) = si|o(t− 1) = sk, . . . , o(t− n) = st−n, o ≺Tq oa) =∑
sj

∑
sl

P (oa(t− 1) = sl|o(t− 1) = sk, . . . , o(t− n) = st−n, o ≺Tq oa)∗

P (o(t) = si, oa(t) = sj|o(t− 1) = sk, oa(t− 1) = sl, o ≺Tq oa)

which is clearly not equivalent, i.e. the Markov property does not hold on the reduced
transition matrices.
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14.3.3 The PCNN Query

The traditional CNN query [153, 182], retrieves the nearest neighbor of every point on a
given query trajectory in a time interval T . This basic definition usually returns m << |T |
time intervals together having the same nearest neighbor. The main issue when considering
uncertain trajectories and extending the query definition is the possibly large number of
results due to highly overlapping and alternating result intervals. In particular, considering
Definition 66, a PCNN result may have an exponential number of elements when τ becomes
small. This is because in the worst case each Ti ⊆ T can be associated with an object o
for which the probability P∀NN(o, q,DB, Ti) ≥ τ , i.e., 2T different Ti’s occur in the result
set.

To alleviate (but not solve) this issue, in the following we propose a technique based
on Apriori pattern mining to return the subsets of T that have a probability greater than
τ . This algorithm requires to compute a P∀NN probability in each validation step; we
assume that this is achieved by employing the sampling approach proposed in Section 16.
Since each subset of T may have a probability greater than τ (especially when τ is chosen
too small), a worst-case of O(2n) validations may have to be performed.

Algorithm. Algorithm 10 shows how to compute, for a query trajectory q, a time
interval T , a probability threshold τ , and an uncertain trajectory o ∈ DB all Ti ⊆ T for
which o is the nearest neighbor to q at all timestamps in Ti with probability of at least τ ,
and the corresponding probabilities.

Algorithm 10 PCτNN(q, o, DB, T, τ)

1: L1 = {({t}, P )|t ∈ T ∧ P = P∀NN(o, q,DB \ {o}, {t}) ≥ τ}
2: for k = 2;Lk−1 6= ∅; k + + do
3: Xk = {Tk ⊆ T ||Tk| = k ∧ ∀T ′k−1 ⊂ Tk∃(T ′k−1, P ) ∈ Lk−1}
4: Lk = {(Tk, P )|Tk ∈ Xk ∧ P = P∀NN(o, q,DB \ {o}, Tk) ≥ τ}
5: end for
6: return

⋃
k Lk

We take advantage of the anti-monotonicity property that for a Ti to qualify as a result
of the PCNNQ query, all proper subsets of Ti must also satisfy this query. In other words
if o is the P∀NN of q in Ti with probability at least τ , then for all Tj ⊂ Ti o must be
the P∀NN of q in Tj with probability at least τ . Exploiting this property, we adapt the
Apriori pattern-mining approach from [8] to solve the problem as follows. We start by
computing the probabilities of all single points of time to be query results (line 1). Then,
we iteratively consider the set Xk of all timestamp sets with k points of time by extending
timestamp sets Tk−1 with an additional point of time t ∈ T \ Tk−1, such that all T ′k−1 ⊂ Tk
have qualified at the previous iteration, i.e., we have P∀NN(o, q,DB \ {o}, T ′k−1)) ≥ τ
(line 3).

The P∀NN probability is monotonically decreasing with the number of points in time
considered, i.e., P∀NN(o, q,DB\{o}, Tk)≥ P∀NN(q,DB, Tk+1) where Tk ⊂ Tk+1. Therefore
we do not have to further consider the set of points of time Tk that do not qualify for the
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next iterations during the iterative construction of sets of time points. Based on the
sets of timesteps Tk constructed in each iteration we compute P∀NN(o, q,DB \ {o}, Tk)
to build the set of results of length k (line 4) that are finally collected and reported as
result in line 6. The basic algorithm can be sped up by employing the property that
given P∀NN(o, q,DB \ {o}, T1) = 1 the probability of P∀NN(o, q,DB \ {o}, T1 ∪ T2) =
P∀NN(o, q,DB \ {o}, T2).

Based on Algorithm 10 it is possible to define a straightforward algorithm for processing
PCNNQ queries (by considering each object o′ from the database).

Due to the high complexity of all three defined semantics of kNN queries, an approxi-
mate solution is presented in Chapter 16



Chapter 15

Indexing Uncertain Spatio-Temporal
Data

In this chapter, an index structure that facilitates efficient processing of spatio-temporal
window queries based on an appropriate model for uncertain trajectories is proposed. The
proposed hierarchical index uses novel approximation techniques in order to probabilis-
tically bound the uncertain movement of objects; these techniques allow for efficient and
effective filtering during query evaluation. To the best of our knowledge, this is the first ap-
proach that supports query evaluation on very large uncertain spatio-temporal databases,
adhering to possible worlds semantics. We experimentally show that it accelerates the
existing, scan-based approach by orders of magnitude. The next section, Section 15.1
presents (conservative) spatio-temporal as well as probabilistic uncertain spatio-temporal
(UST-) object approximations, which serve as building blocks for our proposed index, to
be presented in Section 15.2.

15.1 Approximating Uncertain Spatio-Temporal Ob-

jects

In order to design an index for uncertain spatio-temporal objects to speed-up probabilis-
tic spatio-temporal queries we first have to identify appropriate search keys that can be
used to determine result candidates quickly. For this purpose we define approximations
of the spatio-temporal space in which an object o ∈ DB can be located in. Thereby, we
will concentrate on approximating the uncertain trajectory of an object between two ob-
servations (o(ti), o(tj), ti, tj ∈ o.Tobs). In the following, we first introduce (conservative)
spatio-temporal as well as probabilistic uncertain spatio-temporal (UST-) object approxi-
mations and show how these approximations can be exploited to identify efficiently result
candidates and true drops.
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15.1.1 UST-Object Approximation

To bound the possible locations of an object o between two subsequent observations
(o(ti), o(tj)), we need to determine all state-time pairs (s, t) ∈ S × T, ti ≤ t ≤ tj such
that o has a non-zero probability of being at state s at time t. This is done by considering
all possible paths between state o(ti) at time ti and state o(tj) at time tj. An example
of a small set of such paths is depicted in Figure 15.1(a). Here, we can see a set of five
possible trajectories of an object o, i.e. all possible (state, time) pairs of o in the time
interval [ti, tj]. In practice, the number of possible paths becomes very large. Nonetheless,
we can efficiently compute the set of possible (state, time) pairs using the Markov-chain
model: The set of state-time pairs Si reachable from o(ti) can be computed by performing
tj − ti transitions using the Markov chain o.M(t) of o, starting from state o(ti) and memo-
rizing all reachable (state, time) pairs. Similarly, we can compute Sj as all state-time pairs
(s, t) ∈ S×T , ti ≤ t ≤ tj such that o can reach state o(tj) at time tj by starting from state
s at time t. Sj can be computed in a similar fashion, starting from state o(tj) and using
the transposed Markov chain o.M(t)T . The intersection Si,j = Si ∩ Sj yields all state-time
pairs which are consistent with both observations. Let us note that in practice, it is more
efficient to compute Si and Sj in a parallel fashion, to reduce the explored space. When
the computation of Si and Sj meet at some time ti ≤ t ≤ tj, we can prune any states
which are not reachable by both s(ti) at time ti and s(tj) at time tj. However, the number
|Si,j| of possible state-time pairs in Si,j can grow very large, so it is impractical for our
index structure (proposed in Section 15.2) to store all Si,j for each o ∈ DB in our index
structure. Thus, we propose to conservatively approximate Si,j. The issue is to determine
an appropriate approximation of Si,j which tightly covers Si,j, while keeping the represen-
tation as simple as possible. The basic idea is to build the approximation by means of
both object observations o(ti) and o(tj) with the corresponding velocity of propagation in
each dimension. To do so, we first compute for the set of state-time pairs Si to derive the
maximum and minimum possible velocity in the time interval [ti, tj]:

v0d := max(s,t)∈Si(
s[d]− o(ti)[d])

t− ti
)

v6d := min(s,t)∈Si(
s[d]− o(ti)[d])

t− ti
)

where s[d] (o(ti)[d]) denotes the projection of state s (o(ti)) to the d-th dimension. By
definition, we can guarantee that for any ti ≤ t ≤ tj it holds that

o(t)[d] ≤ o(ti)[d] + (t− ti) · v0d and

o(t)[d] ≥ o(ti)[d] + (t− ti) · v6d
Furthermore, we bound the velocity of propagation at which o can have reached state

o(sj) at time tj from each location in the state-space Sj:

v1d := max(s,t)∈Sj(
o(tj)[d]− s[d]

tj − t
)
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Figure 15.1: Spatio-Temporal Approximation.

v>d := min(s,t)∈Sj(
o(tj)[d]− s[d]

tj − t
)

again, we can bound the position of o in dimension 1 ≤ d ≤ D at time ti ≤ t ≤ tj as
follows:

o(t)[d] ≤ o(tj)[d]− (tj − t) · v1d , and

o(t)[d] ≥ o(tj)[d]− (tj − t) · v>d
In summary, using the positions o(ti) at time ti and o(tj) at time tj, and using velocities

v0d , v
6
d , v

>
d , v

1
d , we can bound the random variable of the position o(t) of o at time ti ≤ t ≤ tj

by the interval

o(t)[d] ∈ Id(t) := [max(o(ti)[d] + (t− ti) · v6d , o(tj)[d]− (tj − t) · v>d )),

min(o(ti)[d] + (t− ti) · v0d , o(tj)[d]− (tj − t) · v1d )] (15.1)

Deriving these intervals for each dimension, yields an axis-parallel rectangle, approxi-
mating all possible positions of o at time t. In the following, we will call this time dependent
spatial approximation of o(t) in the time interval [ti, tj] between two observations o(ti) and
o(tj) a spatio-temporal diamond, denoted as �(o, ti, tj).1 A nice geometric property of this
approximation is that computing the intersection with the query window at each time t is
very fast. Another advantage is that existing spatial access methods (e.g., R-trees) can be
easily used to efficiently organize these approximations. To store the approximation, we

1Our definition of a diamond differs from related work, since the 4 sides of the polygon (when projected
to each dimension) may differ in length, so the polygon may not be a rhombus, but in practice, the polygon
does resemble a diamond in most cases.
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only need to store the 4·D real values v0d , v
6
d , v

1
d , v

>
d , 1 ≤ d ≤ D.2 A diamond is reminiscent

to a time-parameterized rectangle, used to model the worst-case MBR for a set of moving
objects in [160]; however, the way of deriving velocities is different in our case. As an
example, Figure 15.1(a) shows for one dimension d ∈ D, positions o(ti) at time ti and o(tj)
at time tj. The diamond formed by the velocity bounds v0d , v

6
d , v

>
d and v1d conservatively

approximates the possible (location, time) pairs.

Note that it is possible to use a minimal bounding rectangle �(o, ti, tj) instead of the
diamond �(o, ti, tj) to conservatively approximate the (location, time) space Si,j. In cases,
however, where the movement of an object in one dimension is biased in one direction, a
rectangle may yield a very bad approximation (see Figure 15.1(b) for an example). Our
index employs both approximations �(o, ti, tj) and �(o, ti, tj) for spatio-temporal pruning;
�(o, ti, tj) is used for high-level indexing and filtering, while �(o, ti, tj) is used as a second-
level filter.

15.1.2 Spatio-Temporal Filter

Based on the spatio-temporal approximation of an uncertain object as described in the
previous section, it is possible to perform filtering during query processing. In the case of a
PSTτ∃Q query, if each diamond assigned to an object o ∈ DB does not intersect the query
window, then o is safely pruned. In turn, if a diamond of o is inside the query window
S� in space, i.e. fully covered by S�, at any point of time t ∈ T�, then o is a true hit
and, thus, o can be immediately reported as result of the query. Similarly, for a PSTτ∀Q
query, objects whose diamonds do not intersect the query window during the entire query
time-range T� can be pruned. On the other hand, an object o with a diamond is fully
covered by S� for each point of time t ∈ T�. is immediately reported as a true hit.

In order to employ the above spatio-temporal pruning conditions, for a diamond �(o, ti, tj)
of an object o we need to determine the points of time when it intersect the query window
S� in space, as well as the points of time when �(o, ti, tj) is fully covered by S�. For
this purpose, it is helpful to focus on the spatial domain S and interpret a diamond as
well as the query as a time-parameterized (moving) rectangle. By doing so, we can adapt
the techniques proposed in [160]: In general, a rectangle R1 intersects (covers) another
rectangle R2, if and only if R1 intersects (covers) R2 in each dimension. Thus, for each
spatial dimension d (d ∈ {1, . . . D}), we compute the points of time when the extents of
the rectangles intersect in that dimension and the points of time when the extents of the
diamond rectangle is fully covered by the query rectangle S�.

Regarding a single dimension d, with Equation 15.1 the query window given by Q�d
intersects the diamond given by o(ti)[d], o(tj)[d], v0d , v6d , v1d and v>d within the points of
time

Iint,d := {t ∈ (T� ∩ [ti, tj]|Id(t) ∩ S�d }.

2The observations (o(ti), tj) and o(tj), tj) which are furthermore required to span a diamond, are already
stored in DB.
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Figure 15.2: Intersection between query and diamond

Similar, Q�d fully covers the diamond within the points of time

Icov,d := {t ∈ T� ∩ [ti, tj]|Id(t) ⊆ S�d }.

An example is illustrated in Figure 15.2(a). To compute both sets Iint,d and Icov,d, we
intersect the margins of the diamond with the query window resulting in a set of time
intervals, which subsequently have to be intersected accordingly in order to derive Iint,d
and Icov,d. Now, let us consider the overall intersection time interval Iint =

⋂D
d=1 Iint,d (e.g.,

see Figure 15.2(b)) and the overall points of covering time Icov =
⋂D
d=1 Icov,d. In the case

of a PSTτ∃Q, if for an object o ∈ DB there is no diamond yielding a non-empty set Iint,
o can be safely pruned. If any diamond of o yields a non-empty set Icov, o can be reported
as result. In the case of a PSTτ∀Q, an object o ∈ DB can be safely rejected if all Iint of
all diamonds of o together do not completely cover the query time range T�. Contrary, if
all Icov of all diamonds of o together completely cover T�, o can be reported as a result of
PSTτ∀Q.

In summary, the spatio-temporal filter can be used to identify uncertain object trajec-
tories having a probability of 100% or 0% intersecting (remaining in) the query region Q�.
Still, the probability threshold τ of the query is not considered by this filter. In addition,
the object approximation may cover a lot of dead space if there exist outlier state-time
pairs which determine one or more of the velocities, despite having a very low probabil-
ity. In the following, we show how to exclude such unlikely outliers in order to shrink
the approximation, while maintaining probabilistic guarantees that employ the probability
threshold τ .
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15.1.3 Probabilistic UST-Object Approximation

In the next filter step, we will make a first approach at bounding the actual probability
that a uncertain spatio-temporal object o intersects the query window. Therefore, we
make the following observation: In many applications, the set of possible paths within a
diamond is generally not uniformly distributed. In many applications, paths that are close
to the direct connection between the observed locations are more likely than extreme paths
along the edges of the diamond. For example, when a person as been observed at position
kitchen at two times ti and tj (tj > ti), it is much more likely, that she simply remained
at kitchen in the time between ti and tj, than the extreme alternative of having sprinted
out of the kitchen as fast as possible, then having turned around to sprint back in order to
reach the kitchen just in time tj. On a road network, a vehicle having a maximum speed
of 50mph, is much more like to having travelled at a constant speed of 40mph, rather than
first having driven backwards at −10mph, then switching to full pace forward to barely
reach tj by driving 50mph.

We now propose a tighter approximation, based on the intuition that the set of possible
paths within a diamond is generally not uniformly distributed: paths that are close to the
direct connection between the observed locations often are more likely than extreme paths
along the edges of the diamond. Therefore, given a query with threshold τ , we could take
advantage of a tighter approximation, which bounds all paths with cumulative probabilities
τ to perform more effective pruning.

Based on this idea, we exploit the Markov-chain model in order to compute new dia-
monds, which are spatio-temporal subregions, called subdiamonds, of the (full) diamond
�(o, ti, tj), as depicted in Figure 15.3(a). For each such subdiamond, we will then show
how to compute the cumulative probability of all possible trajectories of o passing only
through this subdiamond. Let us focus on restricting the diamond at one direction of one
dimension; we choose one dimension d ∈ D, and one direction dir ∈ {∧,∨}. Direction ∧
(∨) corresponds to the two diamond sides v0d and v1d (v6d and v>d ). To obtain the subdia-
mond, we scale the corresponding sides by a factor λ ∈ [0, 1] relative to the average velocity
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vavgd =
o(tj)[d]−o(ti)[d]

tj−ti . We obtain the adjusted velocity values for direction ∧ as follows:

v0
λ
d = ((v0d − v

avg
d ) · λ) + vavgd

= v0d · λ+ vavgd · (1− λ)

and
v1

λ
d = ((v1d − v

avg
d ) · λ) + vavgd

= v1d · λ+ vavgd · (1− λ)

The adjusted velocity values for direction ∨ can be computed analogously. Thus, for a
given diamond �(o, ti, tj), dimension d ∈ D, direction dir ∈ {∧,∨} and scalar λ ∈ [0, 1], we
obtain a smaller diamond �(o, ti, tj, d, dir, λ), derived from �(o, ti, tj) by scaling direction
dir in dimension d by a factor of λ. Figure 15.3(b) illustrates some subdiamonds for one
dimension, the ∧ direction and for various values of λ.

To use such subdiamonds for probabilistic pruning, we first need to compute the prob-
ability P (inside(o, �(o, ti, tj, d, dir, λ))) that object o will remain within �(o, ti, tj, d, dir, λ)
for the whole time interval [ti, tj], in a correct and efficient way. The main challenge for
correctness, is to cope with temporal dependencies, i.e. the fact that the random vari-
ables o(ti) and o(ti + δt) are highly correlated. Thus, we cannot simply treat all random
variables o(t) as mutually independent and aggregate their individual distributions. To
illustrate this issue, consider Figure 15.3(a), where one sub diamond is depicted. As-
sume that each of the five possible trajectories has a probability of 0.2. We can see that
three trajectories are completely contained in the subdiamond, so that the probability
P (inside(o, �(o, ti, tj, d, dir, λ))) that o fully remains in the subdiamond �(o, ti, tj, d, dir, λ)
is 60%. However, multiplying for each time instants t ∈ [ti, tj] the individual probabilities
that o is located in �(o, ti, tj, d, dir, λ) at time t, may produce an arbitrary small result,
and generally wrong result, depending on the number of time instants in [ti, tj].

Also, an approach that simply computes the probability P (inside(o, �(o, ti, tj, d, dir, λ)))
by multiplying the probabilities at each point of time t ∈ [ti, tj] is incorrect. This is clear,
since this probability becomes arbitrarily small as the number of time steps between ti
and tj increases. This wrong result can be accounted to the interdependencies between the
random variables o(t), which are ignored by multiplication of their respective probabilities
to be inside the subdiamond.

Furthermore, due to the generally exponential number of possible trajectories, the prob-
ability P (inside(o, �(o, ti, tj, d, dir, λ))) is too expensive to compute by iterating over all
possible trajectories. Instead, we propose the following approach to compute this proba-
bility efficiently and correctly.
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Figure 15.4: Linear Probabilistic Diamond Approximation

Computing the Probability of a Subdiamond

To identify the probability of possible trajectories between o(ti) at ti and o(tj) at tj that are
completely contained in �(o, ti, tj, d, dir, λ), an intuitive approach is to start at o(ti) at time
ti and perform tj− ti transitions using the Markov-chain o.M(t). After each transition, we
identify states that are outside �(o, ti, tj, d, dir, λ). Any possible trajectory which reaches
such a state is flagged. Upon reaching tj, we only need to consider possible trajectories in
state o(tj), since all other worlds have become impossible due to the observation of o at
tj. The fraction of un-flagged worlds at state o(tj) at time tj yields the probability that
o does not completely remain in �(o, ti, tj, d, dir, λ). Since the context is clear, the rest of
this section, we simply use � to denote �(o, ti, tj, d, dir, λ).

To formalize the above approach, we first rewrite the probability P (inside(o, �)|o(ti), o(tj)))
that the trajectory of o remains in the subdiamond �, by explicitly notion of the given the
observations o(ti), o(tj) at times ti, tj ∈ o.Tobs applying the definition of conditional prob-
ability:

P (inside(o, �)|o(ti), o(tj)) =
P (o(tj)|inside(o, �), o(ti))

P (otj |oti)
,

where P (o(tj)|inside(o, �), o(ti)) denotes the probability that o reaches the state o(tj) ob-
served by observation o(tj), given that o, starting at o(ti) at time ti remains inside �.
P (o(tj)|o(ti)) denotes the probability that state o(tj) at time tj is reached, given that o
starts at o(ti) at time ti, regardless whether o remains in �. To compute the latter two
probabilities, we proceed as follows. Instead of a single probability vector pt of length
|S|, describing the state distribution of o at time t, we use two probability vectors p+

t and
p−t , each of length |S|. An entry p+

t (i) corresponds to the joint probability of the event
that o is located at state i at time t and the event inside(o, �, t) that o has (so far) been
completely contained in the diamond in the time interval [ti, t]. Analogously, an entry
p−t (i) corresponds to the probability that o is located at state i at time t and has already
left the diamond at, or before, time t. Thus, vectors p+

t and p−t describe the probability
density function of o on the two dimensional event space (state × inside(o, �, t)), where
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the random variable inside(o, �, t) is dichotomous (i.e. true or false). Then, we proceed
as follows: Starting at ti, we perform tj − ti transitions using alternated Markov-chains,
using both vectors p+

t and p−t . Initially, p+
ti is a unit vector, having p+

ti(o(ti)) = 1 (and all
other entries set to zero) and p−ti is the zero vector. Semantically, this means that at time
ti, o must be in state o(ti) with a probability of one, and must so far have retained to �.
At each transition from tk to tk+1, we decide for each reachable state s ∈ S, whether s is
located in � at time tk+1. This decision can be easily made by simply testing whether the
coordinate s[d] of state s in dimension d falls into interval of � using Equation 15.1. In
the following, let in(s, t, �) be an indicator function that returns 1 if the state/time pair
(s, t) is inside �, and 0 otherwise. For each state s where in(s, tk+1, �) = 0, we add the
probability of p+

t (s) to p−t (s) and set p+
t (s) to zero. That is, in each iteration we compute

p+
tk+1

= ptk ·M, p−tk+1
= ptk ·M

and then for each state 1 ≤ s ≤ |S|

p−tk+1
(s) = p−tk+1

(s) + p+
tk+1

(s) · (1− in(s, t, �)),

p+
tk+1

(s) = p+
tk+1

(s) · in(s, t, �)

At the final time tj, value p+
tj corresponds to P (o(tj)|inside(o, �)); i.e., the probability of o

having reached the observed state o(tj) at time tj, without having left �, and the sum of
p+
tj and p−tj corresponds to the probability P (otj) that o(tj) is reached at all. Thus:

P (inside(o, �)) =
p+
tj(o(tj))

p+
tj(o(tj)) + p−tj(o(tj))

The overall time for computing the probability of a subdiamond � is in O((tj − ti) · |S|),
since in each of the tj − ti iterations, we only need to consider a finite number of 2|S|
states. Since M is a sparse matrix, the vectors p+

t and p−t remain sparse as well. This
observation allows to further accelerate the computation of P (inside(o, �)) using sparse
matrix operations. Also note, that sampling methods are of limited use for computing
P (inside(o, �). In addition to the approximative nature of sampling, most sampled paths
derived by starting at o(ti) at time ti using the Markov chain M , will not reach state
o(tj) at time tj. Thus, a very large sample of paths has to be sampled, in order to find a
representative number of paths that intersect o(tj) at time tj.
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15.1.4 Finding the optimal Probabilistic Diamond

In the previous section, we described, how to compute the probability of a probabilistic
diamond �(o, ti, tj, d, dir, λ) from a diamond �(o, ti, tj), dimension d, direction dir, and
scaling factor λ. In this section we will show how to find, for a given query window Q�

and a given query predicate the sub-diamond with the highest pruning power. Let us focus
on PSTτ∃ queries first. That is, our aim is to find a value for d, dir and λ, such that the
resulting subdiamond �(o, ti, tj, d, dir, λ) does not intersect Q�, and at the same time it
has a high probability P (inside(o, �)). This probability can be used to prune o as we will
show later. Formally, we want to efficiently determine

argmaxd∈D,dir∈{∨,∧},λ∈[0,1][P (inside(o, �(o, ti, tj, d, dir, λ))]

constrained to Q� ∩ �(o, ti, tj, d, dir, λ) = ∅.
For a single dimension d, and the north direction, a possible situation is depicted in

Figure 15.4(a). Here, the projection �d(o, ti, tj) of the full diamond �(o, ti, tj) to the d’th
dimension and the projections Q�1 [d] and Q�2 [d] of two query windows Q�1 and Q�2 are
depicted. The aim is to find the largest values λopt of λ, such that the corresponding
probabilistic diamond �(o, ti, tj, d,∧, λ∃opt) which we call optimal subdiamond, does not
intersect Q�1 (Q�2 ). To solve this problem, we distinguish between the following cases.

Case 1: the direct line between observations (o(ti), ti) and (o(tj), tj) in dimension d inter-
sectsQ�[d]. In this case, there cannot exist any λ ∈ [0, 1] such thatQ�∩�(o, ti, tj, d, dir, λ) =
∅. Therefore, our problem has no solution in dimension d, which is ignored. In this case
there exists no probabilistic diamond for dimension d in direction ∧. If this is the case for
each dimension, i.e. if the direct line between (o(ti), ti) and (o(tj), tj) intersects Q� in the
full space, then we cannot find any useful probabilistic subdiamond. Intuitively, for such a
diamond the true probability of intersecting Q� (after refinement), is expected to be very
large, thus �(o, ti, tj) is unlikely to subjectable to probabilistic pruning, and thus we skip
it entirely in the probabilistic pruning step of our algorithm.

Case 2: the direct line between (o(ti), ti) and (o(tj), tj) does not intersect Q�[d], and we
assume without loss of generality that Q�[d] is located above this line.3 In addition, in
this case, the time value of the north corner c of �d(o, ti, tj) is located in the interval T�

(e.g., see Q�2 in Figure 15.4(a)).4 In this case, the edge v0opt of the optimal subdiamond
�(o, ti, tj, d, dim, λ∃opt) is given by (o(ti), ti) and (s, t) where s correspond to the lower bound
of S�[d] and t is equal the time component of c.

Case 3: Q� is above the direct line between (o(ti), ti) and (o(tj), tj) (as in Case 2), but the
time value of the north corner c of �d(o, ti, tj) is not located in the time interval T� (e.g.
Q�1 of Figure 15.4(a)). In this case, the optimal subdiamond must touch a corner of Q�[d]
due to convexity of both Q�[d] and any diamond. If Q�[d] is located to the left of c (the
right direction is handled symmetrically), then the edge v0opt of the optimal subdiamond is
given by the line between (o(ti), ti) and the lower right corner of Q�[d] (c.f. Fig. 15.4(a)).

3If Q�[d] is below the line, we consider direction dir = ∨ symmetrically.
4Corner c is given by the intersection of lines (o(ti), ti) + v0 and (o(tj), tj) + v1.
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The optimal value λ∃opt for cases 2 and 3 equals the quotient
v0opt−vavg
v0−vavg , i.e., the fraction

of the maximum velocity of the optimal subdiamond and the maximum velocity of the full
diamond, both normalized by the average velocity vavg =

s(tj)[d]−s(ti)[d]

tj−ti . After identifying

the value for λ∃opt, for a dimension d and a direction dir, we can compute the probability
of the corresponding subdiamond �(o, ti, tj, d, dir, λ∃opt). Since we can guarantee, that any
path in this subdiamond does not intersect the query window, we can obtain an lower
bound probability

PLB(never(o, ti, tj, Q
�)) = P (inside(o, �(o, ti, tj, d, dir, λ∃opt))) (15.2)

of the event that o never intersects the query window in the time interval [ti, tj]. This
directly yields an upper bound probability

PUB(sometimes(o, ti, tj, Q
�)) =

1− P (inside(o, �(o, ti, tj, d, dir, λ∃opt))) (15.3)

of the reverse event that o intersects the query window at least once in [ti, tj]. This bound
can be used for probabilistic pruning for PSTτ∃ queries, as we will see in Section 15.1.6.

For PSTτ∀ queries we can naively use the probabilistic subdiamond computed above,
exploiting the fact that any world that does not qualify a PSTτ∃ query Q�, cannot satisfy
the corresponding PSTτ∀ query Q�. Still, we can do better: We can extend the proba-
bilistic subdiamond (i.e., increase the value of λ), until it becomes possible that a path in
the subdiamond remains completely in Q�. In Case 1, where vexp intersects Q�, again we
can find no probabilistic subdiamond; in both other cases, we find the best probabilistic
diamond for each dimension and each direction, as the maximum λ∀opt, such that the re-
sulting subdiamond does not contain both corners of Q�[d] facing �(o, ti, tj). An example
is given in Figure 15.4(b). Here, λ∀opt is chosen for the north direction, such that v1 meets
the lower right corner of Q�[d]. The resulting diamond �(o, ti, tj, d, dir, λ∀opt) is guaranteed
to not contain any path that satisfies a PSTτ∀ query. The reason is that λ∀opt is chosen
such that there is guaranteed to be one point of time 5 when the query window Q� is not
intersected by �(o, ti, tj, d, dir, λ∀opt).

This observation allows to derive the lower bound probability

PLB(sometimes not(o, ti, tj, Q
�))

= P (inside(o, �(o, ti, tj, d, dir, λ∀opt)))
of the event that o misses the query window at least once. Again, we derive an upper
bound probability

PUB(always(o, ti, tj, Q
�))

= P (inside(o, �(o, ti, tj, d, dir, λ∀opt)))
of the reverse event that o is always located in Q�, which can be used for pruning for
PSTτ∃ queries (see Section 15.1.6).

5corresponding to the corner which is not intersected by �(o, ti, tj , d, dir, λ∀opt)
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15.1.5 Approximating Probabilistic Diamonds

The main goal of our index structure, proposed in Section 15.2, is to avoid doing expen-
sive probability computations for subdiamonds. Since the query window is not known in
advance, 2D computations (i.e., one for each dimension and direction) have to performed
in order to identify the optimal subdiamond for a given query and candidate object o.
To avoid these computations at run-time, we propose to pre-compute, for each diamond
�(o, ti, tj) in DB, probabilistic subdiamonds for each dimension and direction and for a
set Λ of λ-values. This yields a catalogue of probability values, i.e. a probability for each
�(o, ti, tj, d, dir, λ), d ∈ D, dir ∈ {∨,∧}, λ ∈ Λ.

Given a query window, the optimal value λopt computed in Section 15.1.4 may not be in
Λ. Thus, we need to conservatively approximate the probability of probabilistic diamonds
�(o, ti, tj, d, dir, λ) for which λ /∈ Λ. We propose to use a conservative linear approxima-
tion of P (inside(o, �(o, ti, tj, d, dir, λ))) which increases monotonically with λ, using the
precomputed probability values. For example, Figure 15.3(c), shows the (λ, probability)-
space, for six values Λ = {0, 0.2, 0.4, 0.6, 0.8, 1}. The corresponding precomputed pairs
(λ, P (inside(o, �(o, ti, tj, d, dir, λ)))) are depicted. Our goal is to find a function f(λ) that
minimizes the error with respect to P (inside(o, �(o, ti, tj, d, dir, λ)), while ensuring that
∀λ ∈ [0, 1] : f(λ) ≤ P (inside(o, �(o, ti, tj, d, dir, λ)). The latter constraint is required
to maintain the conservativeness property of the approximation, which will be required
for pruning. We model this as a linear programming problem: find a linear function
l(λ) = a ·λ+ b that minimizes the aggregate error with respect to the sample points, under
the constraint that the approximation line does not exceed any of the sample values (e.g.,
the line in Figure 15.3(c)). That is, we compute:

argmina,b(
∑
λ∈Λ

P (λ)− (a+ b · λ))

subject to:

∀λ ∈ Λ : P (λ) ≥ a+ b · λ

We use the simplex algorithm to solve fast this optimization problem.

In summary, a probabilistic spatio-temporal object o is approximated by a set of
|o.Tobs| − 1 diamonds, one for each subsequent time points ti, tj ∈ o.Tobs. Each diamond
approximation contains the following:

• The spatio-temporal diamond �(o, ti, tj), consisting of four real values v0, v6, v1, v>.

• A set of 2 ·D linear approximation functions fd,dir(λ), one for each dimension d ∈ D
and each direction dir ∈ {∨,∧}.

Next, we will show how to use these object approximations for efficient query processing
over uncertain spatio-temporal data.
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15.1.6 Probabilistic Filter

For each dimension d ∈ D and direction dir ∈ {∨,∧}, we now have a linear function to
approximate all (λ, P (o, ti, tj, d, dim, λ)). However, using this line directly, may violate the
conservativeness property, since the true function may have any monotonic increasing form,
and thus, for a value λQ located in between two values λ1 and λ2 (λ1, λ2 ∈ Λ, λ1 < λQ < λ2)
the probability is bounded by P (λ1) ≤ P (λQ) ≤ P (λ2). To avoid this problem, we can
exploit that the catalogue Λ is the same for all diamonds, dimensions and directions. Thus,
we chose the function f(λ) = l(bλc), where bλc denotes the largest element of Λ such that
bλc ≤ λ. In our running example, the function f(λ) is depicted in Figure 15.4(c). In this
example, assume that we have computed an optimal value λopt in the previous steps. The
corresponding conservative approximation f(λopt) is shown.

Now, we show how these probability bounds can be used to bound the probability that
an object (i.e. its corresponding chain of diamonds) satisfies the query predicate. This
is done by probing each uncertain trajectory approximation (each necklace) on the query
region Q�. Obviously, we only have to take into account diamonds intersecting the query
time range T�. In turn, when probing an uncertain trajectory approximation �(o, ti, tj) on
the query range Q�, we only have to take the time range [ti, tj] into account; i.e., if the time
range T� of the query spans beyond [ti, tj], we truncate T� accordingly. Consequently, in
the case where more than one diamonds of an object intersect T�, we can split Q� at
the time dimension and separately probe the object diamonds on the corresponding query
parts. The resulting probabilities obtained for individual diamonds can be treated as
independent as shown by the following lemma.

Lemma 41. Let �(o, ti, tj), �(o, tj, tk) be two successive diamonds of object o and �1 :=
�(o, ti, tj, d1, dir1, λ1), �2 := �(o, tj, tk, d2, dir2, λ2) be probabilistic subdiamonds, associated
with respective probabilities P (�1) and P (�2) that o intersects these subdiamonds. Then,
the probability P (�1 ∧ �2) that o intersects both subdiamonds, is given by

P (inside(o, �1) ∧ inside(o, �2)) =

P (inside(o, �1)) · P (inside(o, �2))

Proof. We first rewrite P (inside(o, �1) ∧ inside(o, �2)) using conditional probabilities.

P (inside(o, �1) ∧ inside(o, �2)) =

P (inside(o, �1)) · P (inside(o, �2)|inside(o, �1))

Furthermore, we exploit the knowledge that object o is at the observed location o(tj) at
time tj

P (inside(o, �1) ∧ inside(o, �2)) =

P (inside(o, �1)) · P (inside(o, �2)|inside(o, �1) ∧ o(tj))
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Based on the Markov model assumption, we know that, given the position at tj, the
behavior of o in the time interval [tj, tk] is independent of any position at times t < tj.
Thus, we obtain:

P (�1 ∧ �2) = P (�1) · P (�2|o(tj))
Finally, the lemma is proved based on the fact that the position o(tj) has been observed,
and thus, is not a random variable.

Lemma 41 shows that the random events of two successive probabilistic diamonds of
the same object are conditionally independent, given the observation in between them.
Based on this, It is easy to show inductively that all pairs of random events of probabilistic
diamonds of the same object are stochastically independent.

This observation allows us to compute the probability P ∃(o) that the whole chain of
diamonds of o intersects a query window Q�. Therefore, let {ti, tj} ⊆seq o.Tobs denote the
set of subsequent observations in the list of observations o.Tobs of o.

P ∃(o) = P (
∨

{ti,tj}⊆seqo.Tobs

sometimes(o, ti, tj, Q
�)

That is, o satisfies a PSTτ∃ query, if and only if at least one diamond of o intersects Q�

at least once. Rewriting yields

P ∃(o) = 1− P (
∧

{ti,tj}⊆seqo.Tobs

never(o, ti, tj, Q
�).

Exploiting Lemma 41 yields

P ∃(o) = 1−
∏

{ti,tj}⊆seqo.Tobs

P (never(o, ti, tj, Q
�))

Using our probability bounds derived in Section 15.1.4, we obtain

P ∃(o) ≤ 1−
∏

{ti,tj}⊆seqo.Tobs

PLB(never(o, ti, tj, Q
�))

which can be used to prune o, if

1−
∏

{ti,tj}⊆seqo.Tobs

PLB(never(o, ti, tj, Q
�)) < τ (15.4)

Analogously, we can prune an object o for a PSTτ∀ query if

P ∃(o)≤1−
∏

{ti,tj}⊆seqo.Tobs

PLB(sometimes not(o,ti,tj, Q
�))<τ (15.5)

If Equation 15.4 (Equation 15.5) cannot be applied for pruning, we propose to itera-
tively refine single diamonds of o.6 Thus, the exact probability P (sometimes(o, ti, tj, Q

�))

6Heuristics to determine the order in which diamonds are refined are out of scope of this work.
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Figure 15.5: The UST-Tree.

(P (always(o, ti, tj, Q
�))) is computed using the technique proposed in [66]. This exact

probability of a single diamond can then be used to re-apply the pruning criterion of
Equation 15.4 (Equation 15.5), by using the true probability as lower bound. When all di-
amonds of o have been refined, Equation 15.4 (Equation 15.5) yields the exact probability
P ∃(o) (P ∀(o)).

15.2 The UST-Tree

In the previous section, we showed that we can precompute a set of approximations for each
object, which can be progressively used to prune an object during query evaluation. In this
section, we introduce the UST-Tree, which is an R-tree-based hierarchical index structure,
designed to organize the object approximations and efficiently prune objects that may not
possibly qualify the query; for the remaining objects the query is directly verified based on
their Markov models, as described in [66] (refinement step). Section 15.2.1 describes the
structure of the UST-Tree and Section 15.2.2 presents a generic query processing algorithm
for answering both PSTτ∃Q and PSTτ∀Q probabilistic query types efficiently.

15.2.1 Architecture

The UST-tree index is a hierarchical disk-based index. The basic structure is illustrated
in Figure 15.5. An entry on the leaf level corresponds to an approximation of an object
o represented by a quadruple (�(o, ti, tj), �(o, ti, tj), {fd,dir : d ∈ D, dir ∈ {∨,∧}}, oid),
containing (i) the MBR approximation �(o, ti, tj) (cf. Section 15.1.1), (ii) the diamond
approximation �(o, ti, tj) (cf. Section 15.1.1), (iii) a set {fd,dir : d ∈ D, dir ∈ {∨,∧}}
of 2 · D linear approximation functions for the precomputed probabilistic diamonds of o
(cf. Section 15.1.5), and (iv) a pointer oid to the exact uncertain spatio-temporal object
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description (raw object data). Intermediate node entries of the UST-tree have exactly the
same structure as in an R-tree; i.e., each entry contains a pointer referencing its child node
and the MBR of all MBR approximations stored in pointed subtree. Note that the necklace
of each object is decomposed into diamonds, which are stored independently in the leaf
nodes of the tree. Since the directory structure of the UST-tree is identical to that of the
R-tree, the UST-tree uses the same methods as the R∗-tree [15] to handle updates. Update
operations on the UST-tree are handled in the same way as in an R∗-tree. Consequently,
since the structure of intermediate nodes comply with that of the R∗-tree, split and merge
operations on intermediate nodes are quite obvious. For the leaf level, we also adopt the
split and merge heuristics of the R∗−tree by just taking the mbr-entries into consideration.

15.2.2 Query Evaluation

Given a spatio-temporal query window Q�, the UST-tree is hierarchically traversed starting
from the root, recursively visiting entries whose MBRs intersect Q�; i.e., the subtree of
an intermediate entry e is pruned if e.mbr ∩ Q� = ∅. For each leaf node entry e, we
progressively use the spatio-temporal and probabilistic diamond approximations stored in
e, attempting to filter the corresponding object, as illustrated in Figure 15.6.

In the spatio-temporal filter step, we first use �(o, ti, tj) (ST-MBR Filter) using simple
rectangle intersection tests. If this filter fails, we proceed using �(o, ti, tj) (ST-Diamond
filter) by performing intersection tests against Q� as described in Section 15.1.2. Note that
sometimes multiple leaf entries associated with an object are required to prune an object
or confirm whether it is a true hit. Therefore, candidates are stored in a list until all their
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diamond approximations have been evaluated.
Finally, for the remaining candidates we exploit the probabilistic filter (Probabilistic

Diamond Filter) as described in Section 15.1.6. Thereby, we use the linear approximation
functions {fd,dir : d ∈ D, dir ∈ {∨,∧}} stored in the leaf-node entry in order to derive
an upper bound of the qualification probability P (∃t ∈ (T� ∩ [ti, tj]) : o(t) ∈ S�) or
P (∀t ∈ (T� ∩ [ti, tj]) : o(t) ∈ S�) (depending on the query predicate). For each object
o which is not pruned (or reported as true hit), we accumulate in a list L(o) all upper
bounds of its qualification probabilities from the leaf entries that index the diamonds of
o. After collecting all candidate objects, the qualification probabilities stored in the list
L(o) for each candidate o, are aggregated in order to derive the upper bound of the overall
qualification probability for o: P (∃t ∈ T� : o(t) ∈ S�) or P (∀t ∈ T� : o(t) ∈ S�),
respectively as described in Section 15.1.6. If this probability falls below τ we can skip o,
otherwise we have to refine o by accessing the exact object data referenced by oid.

15.3 Conclusions

In this work, we proposed the UST-Tree which is an index structure for uncertain spatio-
temporal data. The UST-Tree adopts and incorporates state-of-the art techniques from
several fields of research in order to cope with the complexity of the data. We showed how
the most common query types (spatio-temporal ∃- and ∀-window queries) can be efficiently
processed using probabilistic bounds which are computed during index construction. To
the best of our knowledge, this is the first approach that supports query evaluation on very
large uncertain spatio-temporal databases, adhering to possible worlds semantics. Outside
the scope of this work is the consideration of an object’s location before its first and after its
last observation. In both cases, the resulting diamond approximation would be unbounded.
An approach to solve this problem is to define a maximum time horizon for which diamond
approximations are computed. Beyond this horizon, we can use the stationary distribution
of the model M to infer the location of an object.
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Chapter 16

Universal Sampling of Uncertain
Spatio-Temporal Data

As discussed in Part II, general query processing on uncertain spatial data is a #P -hard
problem, due to the exponentially large space of possible worlds. In the case of uncertain
spatio-temporal data, the number of possible alternatives of a single objects, i.e., the num-
ber of alternatives routes an object may take, is already exponentially large. Despite this
double exponential set of possible worlds in spatio-temporal data, it is still possible to an-
swer some queries efficiently, as we have seen in Chapter 13 for the case of spatio-temporal
window queries. Yet, there exists many more relevant spatio-temporal queries, such as
nearest-neighbor queries on spatio-temporal data, ranking queries on spatio-temporal data,
and many more. For these queries, it is not trivial to find an efficient solution to compute
exact result probabilities. Neither it is clear if such a solution exists. Yet, in most applica-
tions requiring such queries, an approximate answer may be sufficient. For this purpose,
this chapter propose a sampling approach, tailored to uncertain spatio-temporal data. It
shows that a traditional (näıve) sampling approach is not applicable for spatio-temporal
data, as it does not account for all observations of an object, creating a very large number
of sample paths, which are not possible given all observations. To tackle this issue, we envi-
sion a model learning approach, that incorporates information about observations directly
into the Markov model, following a forward-backward paradigm. The result model will
allow an adapted sampling approach, that utilizes not only the information given by the
initial Markov model, but also knowledge about observations. This sampling approach has
the potential to efficiently an approximation of the result of any query on spatio-temporal
data. This chapter presents the theoretic foundation of this sampling approach.

This approach uses Bayesian inference in order to iteratively adapt the parameters of
the model, given each observation. Based on the resulting adapted model, a time inho-
mogeneous Markov chain, we can perform traditional sampling in order to ensure samples
that are consistent with all observations, and therefore guarantee that the probability of
drawing each sample is equal to the true probability of the corresponding trajectory.
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Figure 16.1: Traditional MC-Sampling.

16.1 Traditional Sampling

To sample possible trajectories of an object, a traditional Monte-Carlo approach starts by
taking the first observation of an object, then transitioning to new states according to the
distribution given by the underlying transition matrix. This approach however, cannot
directly account for additional observations, as illustrated in Figure 16.1. Here, we assume
(for simplicity) a one dimensional space, and an object randomly transitioning to adjacent
states at each point of time. In the plot, 1000 samples are initiated at the first observation
at time t = 0 and transition according to the model. Given the second observation at time
t = 20, a number of trajectories become inconsistent (i.e., impossible given this second
observation), because these trajectories do not conform to both the observation and the
motion constraints of the object. Such impossible trajectories are no longer expanded to
further states in Figure 16.1. At time t = 40, even more trajectories become invalid; in the
end, only one out of a thousand samples remains possible and useful.

Clearly, the number of sample trajectories required to obtain a single valid trajectory
increases exponentially in the number of observations of an object, making this traditional
Monte-Carlo approach inapplicable. In the next section, we will show how to obtain
possible samples efficiently, for an arbitrary number of observations. The main challenge
here is not only to ensure that only possible trajectories are sampled, but also that the
probability of a sampled path corresponds to the true probability of the object taking this
path, given the initial model and all observations.
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16.2 Adapting the Model to Observations

In the following, let Θo = {< to1, θ
o
1 >, ..., < tom, θ

o
m >} denote the set of observations of

a spatio-temporal object o. Each observation < toi , θ
o
i > of o is a pair, containing the

time toi at which o has been observed in state θoi . This set is assumed to be sorted, i.e.,
j > i ⇒ toj > to. The traditional sampling approach uses uses the transition probabilities
P (o(t + 1) = sj|o(t) = si) given by the Markov chain to create sample trajectories. To
incorporate the knowledge given by a set of observations Θo of an object o, we need to
consider the probability

P (o(t+ 1) = sj|o(t) = si,Θ
o),

that is the probability that object o transitions to state sj from state si at time t, given
all observations. The Markov property yields:

P (o(t+ 1) = sj|o(t) = si, {θoi |ti ≥ t})

This probability can be computed by assuming that o is located at si at time t, and
then computing the probability of visiting state sj at time t+1. This can be done by using
an ∃-window query as defined in Chapter 13. An ∃-window query returns the probability
of intersecting a set of (time, location) pairs (in this case this set contains only one pair
(t + 1, sj)), given observations in the future. Performing the above computation for each
time t between the first and the last observation of o, and for each state pair si,sj yields a
new Markov chain, which is adapted to Θo. The resulting inhomogeneous Markov chain can
be used to draw sample trajectories, which are guaranteed to comply with all observations,
and whose probability of drawing this sample corresponds to the true probability of this
trajectory given information about the initial Markov chain and all observations.Although
correct and computable in polynomial time (unlike the näıve sampling approach), this ap-
proach still suffers from high computational cost for the construction of the new transition
matrices: for each point in time, each entry of the original Markov chains has to be consid-
ered and a window query, which runs in O(|S|2 ·∆t) (c.f. Chapter 13), has to be performed.
Although this has to be done only once, independent of the number of samples, the total
time complexity of O(|S|4 · ∆t2) makes this approach inapplicable for real applications,
even when sparse matrix and vector operations are exploited.

We now present a different algorithm, which can compute the probabilities P (o(t+1) =
sj|o(t) = si,Θ

o) more efficiently.

16.2.1 Efficient Model Adaption

In a nutshell, this problem can be solved in the well-known forward-backward manner:
Starting at the time of the first observation to1 with the initial observation θo1, we perform
transitions of object o using the original Markov chain of o until the final observation at
time t|Θo| is reached. During this Forward -run, Bayesian inference is used to construct a
time-reversed Markov-model Ro

t of o at time t given observations in the past, i.e., a model
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Figure 16.2: An overview over our forward-backward-algorithm.

that describes the probability

Ro
ij(t) := P (o(t− 1) = sj|o(t) = si, {θoi |toi < t)})

of coming from a state sj at time t − 1, given being at state si at time t and given the
observations in the past.

Then, in a second step, the Backward -run, we traverse time backwards, from time
t|Θo| to t1, by employing the time-reversed Markov-model Ro(t) constructed in the forward
step. Again, Bayesian inference is used to construct a new Markov model F o(t − 1) that
is further adapted to incorporate knowledge about observations in the future. This new
Markov model contains the transition probabilities

F o
ij(t− 1) := P (o(t) = sj|o(t− 1) = si,Θ

o). (16.1)

for each point of time t, given all observations, i.e., in the past, the present and the future.
As an example, Figure 16.2 visualizes a one-dimensional uniform random walk, i.e. a

very simple Markov chain where the object may move to adjacent states with a uniform
distribution. Figure 16.2(a) shows the initial model, using knowledge about the first ob-
servation only. In this case, a large set of (time,location) pairs can be reached with a
probability greater than zero. The shading of reachable (time,location) pairs indicates the
likelihood of these pairs, assuming that a detour is less likely than a direct path.1 The
adapted model after the forward phase is depicted in Figure 16.2(b), significantly reducing
the space of reachable (time,location) pairs and adapting respective probabilities, thus
drastically improving the model. Since the model of Figure 16.2 (b) is obtained trivially,
the main contribution of this section is the backward-phase which adapts the Markov
model to observations in the future. This task is not trivial, since the Markov-property
does not hold for the future, i.e., the past is not conditionally independent of the future
given the present. During the backward phase, we traverse the Markov chain backwards,
from time t|Θo| to t1, by employing the information acquired in the forward-phase. This
phase yields the final transition matrices for each point in time, such that all observations
Θo are taken into account for the adapted model. The resulting final transition matrices
F o(t− 1) contain the transition probabilities F o(t− 1)ij = P (o(t) = sj|o(t− 1) = si,Θ

o).
Figure 16.2(c) shows the resulting final model after the backward phase. Before describing
the algorithm in more detail, we prove the following lemma of the Bayes Theorem.

1This assumption is only made for illustration of this example. In general, a detour via a highway may be
more likely than a direct path through a lake. These likelihoods are captured by the given Markov-model.



16.2 Adapting the Model to Observations 303

Lemma 42 (Conditional Bayes).

P (A|B,C) =
P (B|A,C)P (A|C)

P (B|C)

Proof. By applying the Multiplication Theorem of Probability and due to the commuta-
tivity of the conjunction of random events we get:

P (A ∧B ∧ C) = P (C)P (B|C)P (A|B,C)

⇔ P (A ∧B ∧ C)

P (B|C)P (C)
= P (A|B,C)

⇔ P (A ∧B ∧ C)

P (C)
= P (A|C)P (B|A,C)

Mutual substitution leads to Lemma 42.

16.2.2 Forward-Phase

The main challenge of the forward-phase is to construct necessary data structures for
efficient implementation of the backward-phase, namely the time-reversed transition matrix
Ro(t) that summarizes the transition probabilities for a transition from time t to time t−1.
This matrix is used to incorporate information about future observations in the backward
phase.

To obtain Ro(t), we can apply the theorem of Bayes as follows:

Ro(t)ij := P (o(t− 1) = sj|o(t) = si) = (16.2)

P (o(t) = si|o(t− 1) = sj) · P (o(t− 1) = sj)

P (o(t) = si)

By assuming existence of all observation pasto(t) := {θoi |toi < t)} of o that occurred before
time t, all events become further conditioned to these observations as follows, using Lemma
42:

Ro(t)ij := P (o(t− 1) = sj|o(t) = si, past
o(t)) = (16.3)

P (o(t) = si|o(t− 1) = sj, past
o(t)) · P (o(t− 1) = sj|pasto(t))

P (o(t) = si|pasto(t))
The probability P (o(t) = si|o(t − 1) = sj, past

o(t)) can be rewritten as P (o(t) =
si|o(t − 1) = sj), exploiting the Markov property (Eq. 56). This probability is given by
the original Markov-chain T o(t).

Furthermore, both priors P (o(t − 1) = sj|pasto(t)) and P (o(t) = si|pasto(t)) can be
computed in a single run: We start at t = t1 using the initial distribution of θo1. Then,
transitions are performed iteratively using the original Markov chain T o(t). For each
intermediate point of time t, all probabilities P (o(t − 1) = sj|pasto(t)) are memorized.



304 16. Universal Sampling of Uncertain Spatio-Temporal Data

In each iteration of the forward algorithm, where a new observation presento(t) := θox, <
tox, θ

o
x >∈ Θo, tox = t is reached, we incorporate this information to the model. Therefore, we

compute P (o(t) = si|pasto(t), presento(t)) from P (o(t − 1) = sj|pasto(t)) for all states si,
employing all sj. This is done by exploiting the assumption that observations are mutually
independent, i.e. that the error made between two measurements is independent. This
allows to compute the probability of the event Yj := [o(t) = sj|pasto(t)] = “o is in state sj
at time t given observations before t”, and the event Zi := [o(t) = si|presento(t)] =“o is
in state si given the observation θox at time t” exploiting

P (Yj ∧ Zi) = P (Yj) · P (Zi). (16.4)

Clearly, the above joint distribution between states observed due to observations before
t and states observed due to the observation at time t allows contradicting observations
where both random variables result in different states. Let Y := [o(t)|pasto(t)] and Z :=
[o(t)|presento(t)]. Then such contradicting worlds can be removed by conditioning the
probability of Equation 16.4 events to the event Y = Z.

P (Yj ∧ Zi|Y = Z) =
P (Y = Z|Yj ∧ Zi) · P (Yj ∧ Zi)

P (Y = Z)
(16.5)

In the above equation, the term P (Y = Z|Yj ∧ Zi) acts as an indicator function that is
one if for the two random variables Y and Z it holds that Y = Z, i.e., if the observations
are non-contradicting, and zero otherwise. The term P (Yj ∧ Zi) can be rewritten to the
product of the probabilities of both observations to materialize to sj according to Equa-
tion 16.4. Finally, the denominator P (Y = Z) corresponds to the total probability that
both observations are non-contradicting, and can rewritten as

∑
i Yi · Zi also exploiting

independence of observations in Equation 16.4.
In summary, the total probability P (Yj ∧Zi|Y = Z) = P ([(o(t) = sj|past0(t)]∧ [o(t) =

si|presento(t))]|si = sj) that object o is at state sj at time t can be computed by per-
forming a simple element-wise multiplication between the j’th element of vector P (o(t) =
sj|pasto(t))(j) and the j’th element of vector θot .

Now that all observations at time t and before are considered, both data structures, the
new state vector ~so(t) and the adapted transition matrix Ro(t) can be efficiently derived
from the following temporary matrix, computed in Line 4 of Algorithm 11:

X ′(t) = T o(t− 1)T · diag(~so(t− 1))

The equation is equivalent to a simple transition at time t, except that the state vector
is converted to a diagonal matrix first. This trick allows to obtain a matrix describing the
distribution of the position of o at time t − 1 and t, instead of a simple distribution of
the location of o at time t. Formally, each entry X ′(t)i,j corresponds to the probability
P (o(t− 1) = sj ∧ o(t) = si|pasto(t)) which is equivalent to the numerator of Eq. 16.3.2 To

2The proof for this transformation P (A ∩ B|C) = P (A|C) · P (B|A,C) can be derived analogously to
Lemma 42.
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Algorithm 11 AdaptTransitionMatrices(o )

1: {Forward-Phase}
2: ~so(to1) = θo1
3: for t = to1 + 1; t ≤ to|Θo|; t++ do

4: X ′(t) = T o(t− 1)T · diag(~so(t− 1))

5: ~so(t)i =
|S|∑
j=1

X ′ij(t)

6: Ro(t)ij =
X′ij(t)

~so(t)i

7: {Incorporate observation}
8: ~so(t)i = normalize(~so(t) • present(t))
9: end for

10: {Backward-Phase}
11: for t = to|Θo| − 1; t ≥ to1; t-- do

12: X ′(t) = Ro(t+ 1)T · diag(~so(t+ 1))

13: ~so(t)i =
|S|∑
j=1

X ′ij(t)

14: F o(t)ij =
X′ij(t)

~so(t)i
15: end for
16: {Return modified object; state vectors and changed transition matrices are relevant}
17: return o

obtain the denominator of Eq. 16.3 we first compute the row-wise sum of X ′(t) in Line 5:

∀i ∈ {1..|S|} : ~so(t)i =

|S|∑
j=1

X ′(t)ij

The resulting vector directly corresponds to ~so(t), since for any matrix A and vector x it
holds that A · x = rowsum(A · diag(x)). By employing this rowsum operation, only one
matrix multiplication is required for computing Ro(t) and ~so(t).

Next, the elements of the temporary matrix X ′(t) and the elements of o.~s(t) can now
be normalized in Equation 16.3, as shown in Line 6 of the algorithm:

∀i, j ∈ {1..|S|} : Ro(t)ij =
X ′(t)ij
~so(t)i

Here, the resulting reverse probabilities of R are stored directly in the matrix T o(t), so
matrix T o can be discarded. This optimization allows to reuse the allocated space of
matrix T o(t), since the old transition probabilities are no longer used in the remainder of
the algorithm. Finally, possible observations at time t are integrated in Line 8, using Eq.
16.5.
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Backward Phase

During the backward phase, we traverse time backwards, to propagate information about
future observation back to past points of time, as depicted in Figure 16.2(c), thus termi-
nating our algorithm. This phase is equivalent to the Forward-Phase, except that we do
not use the initial matrices but rather the reverse transition matrices Ro(t) created during
the forward phase, which contain, for each point of time t, transition probabilities already
conditioned to observations at time t and before time t. The main benefit of Ro(t) is to
allow transitions backwards in time, since Ro(t) is defined as a transition matrix contain-
ing the probabilities of going from one state at time t+ 1 to another state at time t. In a
nutshell, Ro(t) is a Markov chain with the time axis being reversed. The following reverse
Markov property holds for each element Ro

ij of matrix Ro:

P (o(t) = sj|o(t+ 1) = si, o(t+ 2) = st+2, ..., o(t+ k) = st+k) =

P (o(t) = sj|o(t+ 1) = si) (16.6)

As an initial state for the backward phase, we use the state vector ~so(to|Θo|) that results
from Section 16.2.2, by element-wise multiplication of the vector derived by using the
Markov-chain and all observation but the final observation and the vector θo|Θo| of the
final observation. This way, we take the final observation as given, making any further
probabilities that are being computed conditioned to this observation. At each point of
time t ∈ [t|Θo|, t1] and each state si ∈ S, we compute the probability that o is located at state
si at time t given (conditioned to the event) that the observations futureo(t) := {θoi |toi >
t)} at times later than t are made. Using the probabilities of Ro(t) which are already
conditioned to the observations pasto(t) and presento(t), this yields the final transition
probabilities F o

ij(t) := P (o(t) = sj|o(t + 1) = si,Θ
o), thus including all observations Θo =

pasto(t) ∪ presento(t) ∪ futureo(t). To compute these final probabilities, which we need
for our sampling approach (c.f. Section 16.2), we once again exploit Lemma 42:

P (o(t+ 1) = sj|o(t) = si,Θ
o) =

P (o(t) = si|o(t+ 1) = sj,Θ
o) · P (o(t+ 1) = sj|Θo)

P (o(t) = si|Θo)

By exploiting the reverse Markov property (c.f. Equation 16.6), this becomes equal to:

P (o(t+ 1) = sj|o(t) = si,Θ
o) =

P1 · P (o(t+ 1) = sj|Θo)

P (o(t) = si|Θo)
, (16.7)

where P1 = P (o(t) = si|o(t+ 1) = sj, present
o(t), pasto(t))

The probability P1 is now given by the entries of matrix Ro(t), by its definition. Again,
both priors P (o(t + 1) = sj|Θo) and P (o(t) = si|Θo) can be computed in a single run:
We start at t = t|Θo| using the distribution of ~so(to|Θo|). Then, transitions are performed



16.2 Adapting the Model to Observations 307

(a)

T =

0 0 1
1
2

0 1
2

0 4
5

1
5



(b)

Figure 16.3: Exemplary Markov Chain, Visualization (a) and Transition Matrix (b).

backwards until time t = t1 is reached, and for each intermediate point of time t, all
probabilities P (o(t) = si,Θ

o
1) are memorized.

Note that even if the initial transition matrix was homogeneous (time-invariant), the
resulting transition matrices would typically be inhomogeneous. Also note, that further
observations will lead to a higher sparsity of the transition matrices, since new observations
may render a large number of (time,state) pairs unreachable, as illustrated in Figure 16.2
(c). Finally, we further note that the transition matrices become more sparse at points of
time close to observations. The formal backward algorithm can be found in Lines 11-14 of
Algorithm 11 and follows the structure of the forward phase. The returned state vectors
~so(t) can be employed as an initial distribution for starting sampling at any arbitrary point
in time.

The overall complexity of this algorithm is O(∆t|S|2). The initial matrix multiplication
requires |S|2 multiplications. While the complexity of a matrix multiplication is usually in
O(|S|3), the multiplication of a matrix with a diagonal matrix, i.e., T T · s can be rewritten
as T Ti ·sii, which is actually a multiplication of a vector with a scalar, resulting in an overall
complexity of O(S2). Rediagonalization needs |S|2 additions as well, such as renormalizing
the transition matrix, yielding 3 ·∆t · |S|2 for the forward phase. The backward phase has
the same complexity as the forward phase, leading to an overall complexity of O(∆t|S|2).

Example

To make the algorithm more clear, consider the following example from Figure 16.3(a), con-
sinsting of four consecutive timestaps and three states. The initially time-homogeneous
transition matrix, visualized as dashed lines in Figure 16.3(a), is given in Figure 16.3(b).
Furthermore, let two observations θo1 = (0, 0, 1)T and θo2 = (0, 1, 0)T be given. Clearly,
given these observations, there is a total of only two possible trajectories (the black
lines): p1 = (s3, s3, s3, s2) and p2 = (s3, s2, s3, s2). The probabilities of these paths is
P (s3, s3, s3, s2) = 0.2 · 0.2 · 0.8 = 0.032 and P (s3, s2, s3, s2) = 0.8 · 0.5 · 0.8 = 0.32. Thus,
given the new observations, the probability of trajectory p1 equals 0.032

0.032+0.32
= 1

11
and the
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probability of trajectory is 0.32
0.032+0.32

= 10
11

. Albeit correct, it is impractical to compute
this exact result in practise, as it requires to enumerate the exponentially large set of all
possible trajectories. Furthermore, as discussed in this Section, a naive sampling approach
is not viable, as in practice, only an exponentially small number of samples will hit all
observations. Thus, we show in the following how to adapt the Markov model of this
example, to allow drawing samples that are guaranteed to draw samples conform to the
observations, without incurring any bias of the distributions of these correct samples.

To generate the adapted transition matrices that can only produce the two valid tra-
jectories denoted within the picture, we run the algorithm introduced above.

Forward. First, we multiply the transposed transition matrix T with the initial diag-
onalized observation:

X ′(2) =

0 1
2

0
0 0 4

5

1 1
2

1
5

 ·
0 0 0

0 0 0
0 0 1

 =

0 0 0
0 0 4

5

0 0 1
5


⇒ ~s(2) =

0
4
5
1
5

 , R(2) =

0 0 0
0 0 1
0 0 1


The vector ~s(2) denotes the distribution of the object after the first transition, R(2) the

backward transition probabilities of the object. In the following iteration, we build uppon
s(1) and get:

X ′(3) =

0 2
5

0
0 0 4

25

0 2
5

1
25

⇒ ~s(3) =

 2
5
4
25
11
25

 , R(3) =

0 1 0
0 0 1
0 10

11
1
11


The next iteration works equivalently:

X ′(4) :

0 2
25

0
0 0 44

125
2
5

2
25

11
125

⇒ R(4) :

 0 1 0
0 0 1
50
71

10
71

11
71

 , ~s(4) =

 2
25
44
125
71
125


Since at t = 3 we have an observation, we incorporate it by piecwise multiplication and

normalization, getting s(3) = s(3) · θo2 = (0, 1, 0)T

Backward. The backward phase is quite similar to the forward phase, however we
reuse the reverse transition matrices computed during the forward phase. We get:

X ′(3) = R(4)T · diag(s(4)) =

0 0 0
0 0 0
0 1 0


⇒ F (3) =

0 0 0
0 0 0
0 1 0

 , ~s(3) =

0
0
1
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X ′(2) :

0 0 0
0 0 10

11

0 0 1
11

⇒ F (2) =

0 0 0
0 0 1
0 0 1

 , ~s(2) =

 0
10
11
1
11


X ′(1) :

0 0 0
0 0 1
0 10

11
1
11

⇒ F (1) =

0 0 0
0 0 1
0 10

11
1
11

 , ~s(1) =

0
0
1


The matrices T (i) computed during the backward phase are returned as the set of

adapted, now time-inhomogeneous transition matrices.

Sampling Process

Once the transition matrices for each point of time have been adapted to incorporate
knowledge about all observations, the actual sampling process is simple: For each object o,
each sampling iteration starts by sampling an initial position so(t1) as a random realization
of the random variable defined by the initial distribution of the object’s first adapted state
vector at time t1. Then, a random walk is performed, using the transition probabilities
given by the adapted transition matrices until the final observation of o at time tm is
reached: For each t1 < t ≤ tm a state so(t) is sampled by a random transition using
the adapted transition matrix T (t1). Thus, s(t) is the realization of the random variable
defined by the s(t − 1)’th line of the adapted transition matrix T o(t). On these certain
trajectories so(t), t1 ≤ t ≤ tm, which are realized for each object, standard algorithms for
certain trajectories can be applied. This allows to efficiently answer any query on uncertain
spatio-temporal data, for which efficient solutions for the case of certain trajectories ([216])
exist. To assess the quality of the approximation, techniques presented in Section 2.6 can
be used.

16.3 Research Directions

This chapter has given the required theoretical foundations for an universal sampling ap-
proach, that, unlike traditional sampling approaches, allows to efficiently approximate the
result of most queries on uncertain spatio-temporal data. The only requirement for this
approximation to be efficient, is that an efficient solution for the certain case must exist,
i.e., for the case of traditional (certain) trajectories. This opens a plethora of new applica-
tions. The vision is to extend all kinds of relevant queries ([216]) to the case of uncertain
spatio-temporal data. This extension is highly useful and necessary in a domain, where
uncertain is highly inherent and ubiquitous. It will fuel the vision of data-driven research,
and will take a step towards the challenge presented by the recent McKinsey report ([137])
to unearth a wealth of potential revenue hidden in geo-spatial data.
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Chapter 17

Experimental Evaluation

17.1 Experimental Setup

For our experimental evaluation we used synthetic as well as real datasets. In order to
observe the influence of data characteristics we used several parameters for the construction
of the synthetic datasets. Each experiment is performed using a database of |DB| objects.
The location of each object at time t0 is given by a PDF over a certain number of states.
This value is controlled by the parameter object spread and characterizes the amount of
uncertainty in the database. The total number of states of the system is characterized by
|S|. To control the density of the transition matrix (which corresponds to the number of
possible transitions in the modeled system) we used the parameter state spread. From
each state it is possible to transition into state spread states. To model locality of the
transitions within the system we also introduced a parameter which bounds the possible
states which can be reached by one transition. An object in state si can only transition
into states sj ∈ [si−max step/2; si+max step/2]. All parameters for the synthetic datasets are
summarized in Table 17.1.

As first datasets we used two road network datasets. The first is the road network of
North America which consists of 175,813 nodes and 179,102 edges. As this is a rather sparse
graph we also extracted the road network from Munich which has 73,120 nodes and 93,925
edges. The transition matrix is equivalent to the adjacency matrix of the corresponding
graph. This means each node is treated as a state and each edge corresponds to two
non-zero entries in the transition matrix. The value of the non-zero entries of one line in
the matrix are set randomly and sum up to one. In this way they reflect the transition
probabilites from one node in the road network to its directly connected neighbors. While
the underlying road network corresponds to a real road network, the transition probabilities
are synthetic, such that this data set is considered synthetic in the remainder of this chapter.

A second real data set is generated from a set of GPS trajectories of taxis in the city
of Beijing [208]. The data set was generated using the techniques of [47] to obtain both
a set of possible states (corresponding to crossroads) and a transition matrix reflecting
the possible movements of the cabs. This process yields a state space consisting of about
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parameter value range default

|DB| 1,000 - 100,000 10,000
|S| 2,000 - 100,000 100,000
object spread 5 5
state spread 1 - 20 5
max step 10 - 100 40

Table 17.1: Parameters for the synthetic datasets
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Figure 17.1: Increasing number of states

3000 states and the corresponding transition matrices and direct edges between states. We
assume that a-priori, all objects utilize the same Markov model M . In this data set, both
the underlying road network as well as the estimated transition probabilities are taken
from real trajectories. Thus this data set will be considered a real-world data set in the
remainder of this chapter.

Observations. Additionally to the positions of the states and the transition matrix we
further need observations from each object in order to build a database. The observa-
tions were constructed by a directed random walk through the underlying graph (states
= vertices and non-zero transitions = edges). At some time steps we memorize the cur-
rent position of the object and take these time-state-tuples as an observation of the object.
The time steps between two successive observations was randomly chosen from the interval
[10,15] if not stated otherwise. For the observations of the real dataset we used the GPS
data of taxis where the time between two signals is between 2 and 20 minutes.



17.2 Spatio-Temporal Window Queries 313

17.2 Spatio-Temporal Window Queries

In our experiments we evaluate object-based (OB) and query-based (QB) query process-
ing using several query predicates (∃,∀ and k-count). Additionally we compare these
approaches to a Monte-Carlo based method (MC). The MC approach samples paths of
each object and outputs the fraction of the sampled paths which fulfill the query predi-
cate. Sampling the path of an object requires first drawing a start state from the objects
distribution. Afterwards for each timestep a state from the successor states of the current
state is chosen according to the probability distribution given by the transition matrix.
Note that MC only returns approximate results, where the accuracy can be improved if
more paths are sampled. Since the sampling of paths is equivalent to a Bernoulli sequence,
the standard deviation between the sampled probability (p̂) and the true probability (p) is

given by σp̂ =
√

p·(1−p)
n

. For 100 samples, the standard deviation between p and p̂ is thus

at least 5% and gets worse for small and large values of p.

All experiments were run on a single 64-Bit machine with an Intel Xeon 5160 processor
with 3.0 GHz and 32GB of RAM. The computations where performed using MATLAB
R2011a. Unless mentioned otherwise, we generated 10,000 objects randomly distributed
across the state space and the query window is defined by the states [100, 120] and time
interval [20, 25]. For the Monte-Carlo based approach the number of drawn samples was
set to 100.

The experiments shown in Figures 17.2(a) and 17.2(b) show the dependency of the
PST∃Q algorithms on the timeslot we want to query on synthetic and real data sets. The
runtime of OB is increasing much faster than the runtime of QB. As expected the runtimes
of both algorithms suffer from a longer glance in the future as the vectors to be multiplied
become less sparse with each time stamp. Besides this, QB should not be influenced by
the number of timestamps whereas the runtime of the OB approach scales linearly to that
parameter.

In the first experiment, we vary the size of the state space |S| and measure the cost
of query evaluation for a PST∃Q. In Figure 17.1(a), we used a relatively small synthetic
dataset (|DB| = 1, 000, |S| = [1, 000; 10, 000]). The MC approach is computationally
very demanding in comparison to the other two algorithms. The reason is, that even for
such a small setting the Monte-Carlo based approach has to draw a very high amount
of samples. Note that already for a small number of sampled paths (we used 100 in
this setting) this approach becomes expensive, because the sampling of one path already
requires to draw as many samples as the considered stamps in the query. This corresponds
to 2,500 samples for one object in the database. Due to these high costs we excluded the
MC algorithm from the remaining experiments. As expected the QB approach is much
faster than the OB approach. Figure 17.1(b) shows how these two methods scale at larger
datasets (|DB| = 100, 000, |S| = 10, 000).

In Figure 17.3(a) we compare the three proposed query types PST∃Q, PST∀Q and
PSTkQ query using the object-based approach. Obviously for the PSTkQ we have to
maintain not only one but multiple vectors (as many as the number of times in T�) per
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Figure 17.2: Increasing Time

object, which leads to an increased runtime. The PST∃Q and PST∀Q had equal runtime in
all experimental settings. Using the QB approach all queries run in a fraction of a second
and the runtime of PSTkQ seems to scale rather linearly with k (cf. Figure 17.3(b)).

In the next set of experiments, the runtime behavior of the two approaches w.r.t. dif-
ferent locality parameters is tested. Figure 17.4(a) shows the runtime for increasing the
max step parameter whereas Figure 17.4(b) shows results for increasing state spread pa-
rameter (Note that the algorithm runtimes are marked at different axes). Both algorithms
scale at most linearly with those parameters.

17.2.1 Impact of the UST-Tree Index

The UST-Tree was implemented in Java adapting the R*-Tree implementation of the ELKI
Framework [3]. For all operations involving matrix operations (e.g., the refinement step of
queries) we used MATLAB for efficient processing. The code is publicly available on our
project page [1]. All query performance evaluation results are averaged over 1000 queries.
The spatial extent of the query windows in each dimension was set to 0.1 and the duration
of the queries was set to 10 time steps by default. Unless otherwise stated, we performed
PSTτ∃ queries, with τ = 0.5. The page size of the tree was set to 4 KB.
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Figure 17.4: Comparison of QB and OB behavior with scaling parameters

17.2.2 UST-tree Construction

The first experiment investigates the cost of index construction. In particular, we evaluate
the cost for generating the spatio-temporal and probabilistic diamond approximations used
to build the entries of the leaf level. This is the bottleneck of constructing and updating
the UST-Tree, since actual restructuring operations of the index in our experiments always
take at most 1ms. On the other hand, the construction cost of the probabilistic diamonds is
usually 2-3 orders of magnitude higher, as illustrated in Figure 17.5(a). This cost is reason-
able, since the construction of a probabilistic diamond is comparable to the construction of
2 ·D · |Λ| subdiamonds, which in turn corresponds to one refinement step (considering the
subdiamond as a query window). However these construction times pay off, when the query
load on the database is reasonable. Figure 17.5(a) illustrates the construction time as a
function of the speed of the objects and the number of time steps between successive obser-
vations. From a theoretical point of view, both parameters linearly increase the number of
reachable states, i.e. the density of the sparse vectors representing the uncertain position
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of an object at one point of time. The results reflect the theoretical considerations showing
a quadratic runtime behavior with respect to both parameters. In a streaming scenario
with several updates/insertions per second and large probabilistic diamonds (due to high
speed of objects or large intervals between observations), the construction of probabilistic
diamonds can be performed in parallel and is therefore still feasible.

Since the number of subdiamonds is determined by parameter |Λ|, we illustrate the
construction time w.r.t. this parameter in Figure 17.5(b). Theoretically this parameter
should have a linear impact on the construction time. However our implementation exploits
the monotonicity of the uncertain trajectories regarding probabilistic subdiamonds. This
means that a trajectory which is not included in the probability of a subdiamond, is also
not included in larger subdiamonds in the same dimension and direction. This observation
explains the sublinear runtime w.r.t. |Λ|.
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17.2.3 Query Performance

Next, we evaluate the performance of our UST-tree-based query processing methods. Just
like for most uncertain database queries, the bottleneck in query evaluation is the refine-
ment step. Given two successive observations of an object o and a query window Q�,
refinement involves loading the Markov Chain o.M of o and computing the probability
of the object to satisfy the query according to Section 15.1.6. In the first set of experi-
ments we demonstrate the overall performance of the UST-tree in comparison with two
competitors (cf. Figure 17.6). The experiments have been performed on the synthetic
data set. Scan+ is a scan based query processing implementation, i.e. without employing
any index [66]. Between each two successive observations of an object, refinement is per-
formed immediately, i.e. there is no filter cost. We enhanced the implementation of Scan+
by prepending a simple temporal filter, which does not consider observation pairs which
do not temporally overlap the query window. The R*-Tree competitor approximates all
possible locations (i.e. state-time pairs) between two successive observations of an object
using only �(o, ti, tj). These MBRs are then indexed using a conventional R*-Tree [15].
In Figure 17.6(a), we show the average query runtime in terms of CPU cost (I/O cost is
not the bottleneck of this problem), for the three competitors. The cost are split into filter
and refinement cost. Although R*-Tree has less filter cost, the overall query performance
of the UST-tree is around 3 times better than that of R*-Tree (note the logarithmic scale).
This is attributed to the effectiveness of the different filter steps used by the UST-tree,
while the overhead of the UST-tree filter is negligible compared to the savings in refine-
ment cost. We also evaluated the cost as well as the effectiveness of the individual filter
steps of the filter-refinement pipeline used by the UST-tree; the results are shown in Figure
17.6(b). The bars show the overall runtime (query time) of each filter and the numbers
within the boxes denote the effectiveness of the filter in terms of remaining (observation
pair) candidates after the corresponding filter has been applied. We can clearly see that
the spatio-temporal filters reduce the number of result candidates and, thus, the number
of refinements, dramatically. We can also observe that the probabilistic filter can reduce
the number of refinements by 30% after applying the sequence of spatio-temporal filters.
If we compare the overhead of the probabilistic filter (which is comparable to that of the
spatio-temporal filter) with the additional cost that would be required to refine the candi-
dates that are pruned by the probabilistic filter, we can observe that the cost required to
perform the probabilistic filter can be neglected. This experiment shows that each of the
filters incorporated in the UST-tree indeed pays off in terms of CPU cost.

Although I/O cost is not the bottleneck under our setting, an evaluation of the I/O
cost is illustrated in Figure 17.6(c) for completeness. Filter cost here means all costs
which occur during the tree traversal of the corresponding index structure, i.e. access to
intermediate and leaf nodes. To derive the refinement I/O cost, we used the number of
observation pairs which have to be refined, and assumed that each refinement yields one
disk page access. Note, that the cost of a refinement can be much higher than one page
access (e.g. if the Markov Chain, which can become very large does not fit in one disk page)
under different settings. The filtering of the UST-Tree involves more page accesses since,
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Figure 17.7: Experiments on Synthetic Data

the representation of the probabilistic diamonds requires more memory, which results in
a larger tree. In contrast the R*-Tree based implementation requires less memory for the
MBR approximations, but incurs more I/O cost due to larger number of refinements.

Since the above experiments imply that the most costly operation is the refinement of
spatio-temporal diamonds, we will now take a closer look at the effectiveness of the three
different methods on pruning spatio-temporal diamonds. The next experiments measure
the number of spatio-temporal diamonds which have to be refined at the refinement step;
these results can be directly translated to runtime differences of the different approaches.
Note that a scan based approach would have to exhaustively refine all diamonds in the
dataset.

Size of the Catalogue |Λ|

An important tuning parameter for the index is the size of the catalogue which is used
for building the probabilistic diamond approximations. In Figure 17.7(a), it can be ob-
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served that the filter effectiveness converges at around |Λ| = 10 (default value for the
experiments). Depending on the query parameter τ , a too small catalogue yields up to
twice as many candidates which have to be refined. Note that the number of refinement
candidates does not decrease monotonically in |Λ|. In general a larger catalogue results
in a linear function with a larger approximation error. However the step-function for the
conservative approximation becomes smoother which results in a smaller approximation
error. Because of these two contrary effects a larger catalogue does not always result in
more filter effectiveness.

Query Parameters

The characteristics of the query have different implications on the index performance.
Increasing the spatial extent of the query obviously yields more candidates since more
diamonds in the database are affected (cf. Figure 17.7(b)). The spatio-temporal filter
utilizing the diamond approximations becomes more effective in comparison to the ST-
MBR-Filter . The percentage of the diamonds which can be pruned using the probabilistic
filter remains rather constant (at around 30%) in comparison to the spatio-temporal filter.
Another query parameter is the temporal extent of the query. Increasing the length of the
query time window T� increases the number of refinement candidates. The results are very
similar to the results when increasing the spatial extent of the query; we do not include the
comparison plot due to space limitations. Changing the value of τ obviously only affects
the probabilistic filter (cf. Figure 17.7(c)). The higher τ is set, the more candidates can be
pruned by the probabilistic filter. From a value of around 20% the candidates which have
to be refined decrease linear in τ . The PSTτ∀ query shows similar performance results
(cf. Figures 17.7(g) and 17.7(h)) for the mentioned parameters. For the experiments we
reduced the temporal query extent to 5, since the number of result objects for a PSTτ∀
query is usually much lower than for a PSTτ∃ query with the same query window.

Influencing Variables of ST Diamonds

The size of the spatio-temporal diamonds is generally affected by two parameters. One is
the time interval between successive observations, since a larger interval results in more
space which can be reached by the moving object between the two observations. For this
experiment the number of time steps between successive observations in the data set was
chosen randomly from the intervals on the x-axis in Figure 17.7(d). The second parameter
is the speed of the object and has a similar effect. The speed is corresponding to the
parameter ε, which reflects the maximum distance of points which can be reached by an
object within one time step (cf Figures 17.7(e)). Since larger spatio-temporal diamonds
usually result in more objects which intersect the query window, the number of refinement
candidates increase when increasing these two parameters. Interestingly the effectivity of
the ST-Diamond Filter decreases over the ST-MBR-Filter whereas the pruning effectiveness
of the Probabilistic Filter increases. This shows, that the probabilistic filter copes better
with more uncertainty in the data than the other two filters.
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Figure 17.8: Experiments on Real Data (∀)

Database Size

We evaluated the scalability of the UST-Tree by increasing the amount of observations.
Figure 17.7(f) shows the results of these experiment. The number of results increase linearly
with the database for a window query. The experiment also shows that the refinement
candidates increase linearly for all filter steps.

Real Data

The experiments on the real world data, show similar behaviour as on the synthetic data.
Thus we only show excerpts from the whole evaluation due to space limitations. Figure
17.8(a) illustrates the results for PSTτ∀ queries when varying the value of τ . It is notable
that the ST-Diamond Filter seems to even perform better (compared to the ST-MBR-
Filter) on the real dataset. The reason for this is that the real dataset has much more
inherent irregularity (regarding the locations and the movement of obejcts). This favors
the ST-Diamond filter over the MBR approximation (since diamonds are more skewed as
in Figure 15.1(b)). The probabilistic filter is apparently not affected by this situation.
When varying the query extent (cf Figure 17.8(b)) the results resemble the results on the
synthetic dataset.

17.3 Spatio-Temporal Nearest Neighbor Queries

For performance analysis, the sampling approach (Section 16) is divided into two phases.
In the first phase the trajectory sampler (TS ) is initialized (the adapted transition matrices
are computed according to Algorithm 11). This phase can be performed once and used for
all queries. In the second phase, the actual sampling (SA) of 10k trajectories (per object)
is performed. The exact approach is denoted as EX. In our default setting during efficiency
analysis we set the number of objects |D| = 10k, the number of states N = |S| = 100k,
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Figure 17.9: Varying the Number of States

average branching factor of the synthetic graph b = 6, probability threshold τ = 0 and the
length of the query interval |T | = 10. These parameters lead to a total of 110k observations
(11 per object) and 100k diamonds for the UST-index.

Varying N .

In the first experiment (Figure 17.9) we investigate the effect of an increasing state space
size N , while keeping a constant average branching factor of network nodes. This effect
corresponds to expanding the underlying state space, e.g., from a single country to a whole
continent. In Figure 17.9 (left) we can see that increasing N leads to a sublinear increase
in the run-time of both the sampling approaches and the exact solution. This effect can
be mostly explained by two aspects. First, the size of the a-priori model increases linearly
with N , since the number of non-zero elements of the sparse matrix M increases linearly
with N . This leads to an increase of the time complexity of matrix operations. At the same
time, the number of candidates |C(t)| and influence objects I(t) decreases significantly as
seen in Figure 17.9 (right) because the degree of intersection between objects decreases
with a higher number of states, making pruning more effective. The actual sampling cost
SA, which is too small to be noticeable in Figure 17.9 (left) decreases from 4s for 10k states
to 0.7s for 500k states due to the smaller number of candidates and influence objects.

Varying b.

Figure 17.10 evaluates the branching factor b, i.e., the average degree of each network
node. As expected, Figure 17.10 (left) shows that an increasing branching factor yields
a higher run-time of all approaches due to a higher number of non-zero values in vectors
and matrices, making computations more costly. Furthermore, in our setting, a larger
branching factor also increases the number of influence objects, as shown in Figure 17.10
(right).
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Figure 17.10: Varying the Branching Factor
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Figure 17.11: Varying the Number of Objects

Varying |DB|.

The number of objects (Figure 17.11) leads to a decreasing performance as well. The more
objects stored in a database with the same underlying motion model, the more candidates
and influence objects are found during the filter step. This leads to an increasing number
of probability calculations during refinement, and hence a higher query cost.

Varying s.

As a last experiment on P∀NN queries, we investigated the increase in runtime when
varying the number of samples drawn. Increasing the number of samples (Figure 17.12)
only affects the actual sampling process, but not the number of candidates or pruners.
As expected an increasing number of samples makes the probability computation more
expensive. In our example, the actual sampling time grows from 0.8s (1000 samples) to
about 61s for 1Mio samples.

Real Dataset.

We conducted additional experiments to evaluate P∀NN queries on the taxi dataset (Figure
17.13). Since the underlying state space consisting of 3000 states is very small, we set i = 5
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and v = 0.6 in order to prevent uncertainty regions of objects to cover the whole network.
Based on this dataset, we ran an experiment varying the number of objects between 1000
and 20000. The smaller size of the state space leads to a higher objects density, leading
to a larger number of candidates and influence objects than the corresponding experiment
on the artificial dataset. Additionally, the non-uniform distribution of taxis in the city
is more dense close to the city center, making queries in this area more costly due to the
higher number of candidates and pruners. Further note that in the real dataset, the motion
patterns of objects are more diverse than on the synthetic data. There are taxis standing
still, and taxis moving quite fast. Standing taxis have a larger area of uncertainty between
observations, such that these objects reduce the performance of query evaluation.

17.3.1 Sampling Efficiency.

In the next experiment we evaluate the overhead of the traditional sampling approach
(using the a-priori Markov model only) compared to the approach presented in Chapter 16
which uses the a-posteriori model again based on the artificial dataset. The first, traditional
approach (TS1) discards any trajectory not visiting all observations. As discussed in
Section 16.1, the expected number of attempts required to draw one sample that hits
all observations increases exponentially in the number of observations. This increase is
shown in Figure 17.14, where the expected number of samples is depicted with respect to
the number of observations. This approach can be improved, by segment-wise sampling
between observations (TS2). Once the first observation is hit, the corresponding trajectory
is memorized, and further samples from the current observation are drawn until the next
observation is hit. The number of trajectories required to be drawn in order to obtain
one possible trajectory, i.e., the trajectory hits all observations, is linear to the number of
observations when using this approach. We note in Figure 17.14, that in either approach at
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Figure 17.13: Realdata: Varying the number of objects

Figure 17.14: Efficiency of Sampling without Model Adaption.

least 100k samples are required even in the case of having only two observations. The reason
is that by generation, trajectories follow a near-shortest path, which is a highly unlikely
scenario using the a-priori Markov model. In contrast using the approach presented in
Section 16, the number of trajectories that need to be sampled, in order to obtain a
trajectory that hits all observations, is always exactly one.

17.3.2 Sampling Precision and Effectiveness.

Next, we evaluate the precision of our approximate P∀NNQ and P∃NNQ query and an
aspect of a competitor approach [199]. The latter approach has been tailored for reverse
NN queries, but can easily be adapted to NN query processing. Essentially, this ap-
proach performs a snapshot query P∀NNQ(q,DB, {t}, τ) for each t ∈ T . The probability
P∀NN(o, q,DB, T ) is estimated by

∏
t∈T P∀NN(o, q,DB, {t}). P∃NN(o, q,DB, T ) can

be approximated by 1−
∏

t∈T (1−P∃NN(o, q,DB, {t})). The scatterplots in Figure 17.15
illustrate a set of P∀NN and P∃NN probabilities on synthetic data (v = 0.2, |T | = 5). For
each experiment, we estimate probabilities by our sampling approach (SA) (Section 16)
with (104) samples and by the adapted approach of [199] (SS). We approximated the exact
approach (REF) by drawing a very high (106) number of samples.

We model each case as a (x,y) point, where x models the reference (REF) and y the
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Figure 17.16: Realdata: Effectiveness of the Model Adaption

estimated probability (SA or SS). For (REF) the results always lie on the diagonal identity
function depicted by a straight line. Probabilities of SA are very close to the diagonal,
showing that our sampling solution tightly approximates the results of the exact P∀NNQ
query. Using the snapshot approach, a strong bias towards underestimating probabilities
can be observed for the P∀NNQ query. The snapshot-based P∃NNQ-query overestimates
the results. These biases are a result of treating points of time mutually independent. In
reality, the position at time t must be in vicinity of the position at time t − 1, due to
maximum speed constraints. This positive correlation in space directly leads to a nearest
neighbor correlation: If o is close to q at time t − 1, then o is likely close to q at time t.
And clearly, if o is more likely to be close to q at time t, then o is more likely to be the
NN of q at time t. This correlation is ignored by snapshot approaches. It can be seen that
the systematic error of [199] is quite significant.

The number of samples required to obtain an accurate approximation of the probability
of a binomial distributed random event such as the event that o is the NN of q for each
time t ∈ T has been studied extensively in statistics [90]. Thus the required number of
samples is not explicitly evaluated here.
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17.3.3 Effectiveness of the Forward-Backward Model.

In this section the effectiveness of the forward-backward model adaption in comparison
to other approaches on the real dataset with a time interval between observations of 100
seconds. Figure 17.16 shows the mean error of these approaches, computed during each
point of time, evaluated over a time interval of 30 tics (5 minutes). The mean error has
been computed in leave-one-out manner, i.e. trajectories for computing the error have not
been used to train the model in order to avoid overfitting. The figure visualizes the error
of the a-priori model (NO) considering only the first observation, the model adapted by
the forward phase only (F) and the forward-backward-adapted a-priori-model (FB) from
this paper. We further implemented two additional approaches. The uniform approach
(U), a competitor corresponding to [191, 188], discards all probability information of FB
and, due to a lack of better knowledge, assumes all reachable states at a given time to
have a uniform probability. The difference to the cylinders and beads approximation
models presented in [191, 188] is that these models use conservative approximations that
may include some (time, state) pairs actually having a zero probability for an object to
be located at. Thus, our U approach is at least as good as the cylinders and beads
approximation models in terms of effectiveness, regardless of the approximation type used.
The approach FBU is equivalent to FB, however turning probabilities in the transition
matrix are equally distributed instead of learning the exact transition probabilities from
the underlying map data. First note that the approach not incorporating any observations
(NO), yields significant errors compared to the remaining approaches. Clearly, observations
can reduce errors and uncertainty during query evaluation. The forward-only approach (F)
reduces this error, however the error is still high especially directly before an observation.
This problem is solved by the forward-backward approach from this paper (FB). Note that
even if the Markov chain is assumed to be uniformly distributed (FBU), the results are
still good, but worse than with the actual learned probabilities (FB). This is good news,
as it shows that even a non-optimally learned Markov chain can lead to useful results,
however with a slightly higher error. This good performance comes from the fact that with
a uniform transition distribution the diamond-shaped space of possible time-state pairs still
has high probabilities in the center of the diamond, since trajectories near the center of
the bead will have a higher likelihood than trajectories close to the beads boundary. This
stands in contrast to the uniform approach (U) that models all states at the diamonds
border to have the same probabilities as the states in the diamonds center; explaining
why U performs worse than FBU. To conclude, combining observations with a sufficiently
accurate transition matrix can produce the most accurate results.

17.3.4 Continuous Queries

In our experimental evaluation on continuous queries we compare the runtime cost and
the size of the (unprocessed) result set for various sizes of the database and values of the
threshold τ .

Increasing the number of objects stored in the database leads to an increase in the time
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Figure 17.17: Continuous Queries: Varying the number of objects
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Figure 17.18: Continuous Queries: Varying τ

TS to compute the a-posteriori Markov model for each object (cf. Figure 17.17 (left)).
This result is equivalent to the result for P∀NN queries, since a-posteriori models have to
be computed for either query semantics. However, the time required to obtain a sufficient
number of samples (SA) is much higher, since probabilities have to be estimated for a
number of sets of time intervals, rather than for the single interval T . This increase in run-
time is alleviated by the effect that the number of candidates obtained in the candidate
generation step of our Apriori-like algorithm decreases (Figure 17.17 (right)). This effect
follows from the fact that more objects lead to more pruners, leading to smaller probabilities
of intervals, leading to fewer candidates.

The results of varying τ can be found in Figure 17.18. Clearly an increasing probability
threshold decreases the average size of the result (Figure 17.18 (right)). Consequently, at
the same time, the computational complexity of the query decreases as fewer candidates are
generated. Figure 17.18(left) shows that the run-time of the sampling approach becomes
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very large for low values of τ , since samples have to be evaluated for each generated
candidate set. Similar to the Apriori-algorithm, the number of such candidates grows
exponentially with T , if τ is small.

17.4 Summary

This experimental chapter has shown that the presented algorithms, both exact and ap-
proximative, allow to efficiently and effectively answer probabilistic queries on uncertain
spatio-temporal data. The experimental results of this thesis should help to decide, for
a given application, which algorithm to use. This decision must be based on a trade-off
between result accuracy and run-time.

For systems that require precise result probabilities with a zero error tolerance, our the-
oretic results show, that only window queries can be answered efficiently on spatio-temporal
data. If this type of query is sufficient for a given application, then exact algorithms can
be utilized, as presented in Section 13.2. As we could see experimentally in Section 17, the
run-time of this query can be significantly boosted by utilizing the proposed UST-index of
Section15.

For applications requiring exacts answers to other types of queries not addressed in
this thesis, the paradigm of equivalent worlds (see Chapter 3), helps to find an efficient
solution, or help to find to quickly gain an intuition that no efficient solution may exist.

For applications that permit a small and bounded error, the Bayesian learning approach
presented in Section 16 allows to approximate result probabilities in a very efficient way.
This sampling based approximation can be used for any probabilistic query on uncertain
spatio-temporal data, yielding a fall-back solution for any problem for which an efficient
analytical solution may be out-of-reach.

Finally, the effectiveness results of Section 17 show that the a-posteriori Markov model
which is build from the a-priori Markov model by learning the information provided by
observation data, is able to tightly approximate the motion of moving objects. Surprisingly,
this property even in the case where objects, as we expect them in most applications, do
not have moving patterns following a Markov-chain, i.e., following a weighted random walk:
We could see that trajectories following a near-shortest path could be precisely modelled.
This strong property is the result of combining observation data from a spatio-temporal
database with empiric transition information give by a Markov-chain. The observations
are able to coarsely describe the true motion of objects, while the Markov chain is used
only to predict deviation between discrete observations.



Chapter 18

Statistical Traffic Prediction in Road
Networks

The Markov-Chain model suffers from the problem, that if a given mobile object o is at
some network node n, then the probability distribution does not account for any past states
visited. This problem results directly from the Markov assumption, that assumes that given
the current position, future positions are conditionally independent of past positions (see
Definition 56). In the previous chapter, this problem was solved by using observations
in both future and past, to adapt the Markov chain dynamically. This way, the Markov
chain at each point of time was adapted, to change the model from a simple weighted
random walk model, to a model that ensures that any possible trajectory will conform
to all observations, yielding high accuracy. In summary, this approach is very useful to
interpolate the position between observations. Yet, dropping the Markov-assumption in
order to consider an arbitrarily long history of an object, rather than its last state only,
offers two very promising opportunities:

• The case of extrapolation, i.e., the case where we only have one observation, and
try to predict the future without any future observation, the approach of Bayesean
inference cannot be used, because there is no future information that can be used
to adapt a-prioiri probabilities to a-posteriori probabilities. Without this adaption,
we can only use the initial Markov-chain to model the future motion of an object.
Such a model will equal a random walk, where an object may have a high probability
of bouncing forth and back between two network nodes, without any meaningful
destination. Such a model, clearly, does not project reality very well, since in practice,
moving objects will try moving on a shortest path between their start and destination
nodes, rather than randomly traversing the graph until they accidently reach their
destination.

• a more precise model of the movement of an object between discrete observation may
potentially improve the interpolation quality of all approaches presented in the previ-
ous chapters. In particular, in cases having a long time between discrete observation,
a more sophisticated movement pattern model will be beneficial.
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This chapter will focus on the first opportunity. Therefore, the Markov assumption will
be relaxed, in order to consider the history of an objects movement in the prediction of its
future position. While this can be achieved by simply using a higher order Markov-chain,
such an approach will be highly limited due to the space and time cost exponential in the
order of the Markov chain. The proposed solution will use a data structure, that allows
to adaptively use a long history, i.e., a large list of previously visited nodes, in the cases
where a long history does have a significant impact on the future motion. In cases where
a long motion history does not have a significant impact on the future motion, only a
sufficiently short history is used for prediction purpose. As experiments will show, this
approach allows to efficiently predict the future motion of objects, while still allowing high
efficiency for real time processing. Further experiments will show that in practise, only a
rather small number of previously visited nodes is required to accurately predict the future
motion, if we can assume that objects move on a shortest path.

18.1 Introduction

This chapter proposes a novel statistical approach to predict the density of any edge in a
road network at some future point of time. The proposed method is based on short-time
observations of the traffic history, i.e. the input for the traffic predictor are recent trajec-
tories of the moving objects. The destinations and the following trajectories of the moving
objects are unknown. Therefore, we need to estimate the future motion of the objects in
the network. We assume that the moving objects will act rationally and choose the short-
est path between their starting points to their destinations. Based on this assumption,
we introduce a statistical approach for calculating the likelihood that a certain object is
located at a certain network position at a certain point of time. Using the estimation for
each object in the network, it is possible to estimate the traffic density at a certain position
at a certain point of time. The allowed traffic capacity, i.e. the maximal traffic density
that does not lead to a traffic jam, and the expected future traffic density of an edge at
a certain point of time indicate the risk of a traffic jam. If the estimated traffic density
exceeds the allowed traffic capacity of the edge, we can assume that a traffic jam is very
likely to occur.

Formally this chapter offers a solution to the following problem: Given a set of moving
objects in a road network, we want to estimate the traffic density (i.e. the expected number
of objects located at a road segment at the same time) for all network segments at any
future point of time. Besides the current position of each object, we additionally assume
to have a short time history of each object, i.e. the recently visited network segments
of each object in the network. Furthermore, it is assumed that the moving objects act
rationally, e.g. each object moves along the shortest path between its starting point and
its destination. This assumption can be used to estimate the destination of a moving object
given only a prefix of its full trajectory.

The road network is represented as a directed weighted graph G(V ,E). V denotes the
set of vertices that correspond to street crossings or points connecting two intersecting
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road segments, and E denotes the set of directed edges that connect adjacent vertices and
correspond to road segments. A weight is assigned to each edge that reflects the time
any object requires to pass over the corresponding road segment. As an alternative, the
distance of the way between the two adjacent vertices is used as weight and the time an
object requires to traverse this segment is calculated by assuming some average speed on
the road network. If the future trajectory of an object is known, its future location can be
estimated by assuming an average speed at each road segment. Without this information,
we would have to consider each possible location of the object for the future point of time.
Since the number of possible future locations is often increasing strongly with the length of
the time interval between now and the time of prediction, the prediction accuracy becomes
rather small for prediction times that are not within the close future. However, assuming
that each object moves along a shortest path and that the recently traversed trajectory
is known for each object, it is possible to significantly restrict the potential destinations.
Thus, our prediction model offers stable prediction results for a much longer period of time.
The main contributions of this chapter are:

• A statistical traffic model that can be used to predict the traffic density in a network
at any edge.

• A method to integrate the short time history of the network to significantly improve
the prediction accuracy. Therefore, this method allows to make useful predictions
over a significant period of time.

• Suitable algorithms and data structures to efficiently compute the prediction of the
traffic density based on the provided information.

The remainder of this chapter is organized as follows. The next section contains a
brief overview over existing approaches for traffic analysis and traffic jam prediction. In
section 18.3, we introduce our statistical approach to estimate the traffic in a network at
a certain position and at a certain point of time. An efficient method to speed up the
prediction which is based on a suffix-tree is introduced in Section 18.4. In Section 18.5,
we experimentally show the capability of our approach to make useful predictions about
the traffic density. Furthermore, we illustrate the efficiency of our new algorithm when
calculating these predictions and finally conclude the chapter with a short summary in
section 18.6.

18.2 Related Work

In recent years, a lot of work has been published in the field of traffic data mining. One
important problem in traffic mining is to detect areas with a significant high load of traffic.
Some work has been published for the detection of traffic jams. Approaches for traffic jam
detection are proposed in [76] and [119]. Both works address the problem of clustering
trajectories, namely sets of short sequences of data like movements of objects. The result-
ing clusters indicate routes with a potentially high traffic load as the clusters represent
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sets of objects that simultaneously move nearly the same route. While in [76] a model-
based clustering algorithm is proposed that clusters trajectories as a whole, the approach
proposed in [119] works on partitions of trajectories. Each trajectory is first partitioned
into a set of line segments. Afterwards, similar line segments of different trajectories are
grouped together in order to discover common sub-trajectories from a trajectory database.
An important advantage of [119] against [76] is that it can also detect routes that do not
necessarily span the complete trajectory of an object. Usually, the trajectory of objects
moving in a traffic network are very long compared to the sections which form routes with
high traffic density and thus, only reasonably small parts of a trajectory contribute to such
routes.

Another approach for traffic jam detection is addressed by X. Li et al. in [128]. Their
approach tries to discover hot routes in a road network. Hot routes are road segments
that frequently or even regularly have a high traffic density and mostly lead to a traffic
jam problem. The detection of hot routes is an important problem because each larger
city has such hot routes that regularly block the traffic flow at rush hour and thus, traffic
participants spend long times waiting in traffic jams. While the approaches proposed in
[76] and [119] are individual traffic analysis methods because the traffic is computed by
observing the motion of single individuals, the approach in [128] is based on the FlowScan
algorithm which is also related to aggregate traffic analysis. It is able to extract hot routes
by means of observing the traffic flow over some adjacent road segments. The algorithm
does not completely fall into the category of aggregated traffic analysis because it considers
more than the pure density of traffic on particular road segments. Therefore, the method
can be considered to be a mixture between individual and aggregated traffic analysis.

Further approaches concerning traffic jam detection are based on the detection of dense
areas of moving objects as proposed in [99]. This approach tries to find moving clusters in
moving object databases. The difference of the addressed problem compared to clustering
trajectories is that the identity of a moving cluster remains unchanged while its location and
content may change over time. The same usually holds for traffic jams, in particular if the
traffic jam is due to an obstacle that slows down the traffic. There are normally individuals
that pass the obstacle at the beginning of the traffic jam, and thus, leave the traffic jam
and those which arrive at the end of the traffic jam. Consequently, the contributors of the
traffic jam change over time while the identity of the traffic jam remains.

A quite similar problem is addressed in [83] where areas of moving objects that remain
dense in a long period of time are detected. This approach is quite related to our approach
as it addresses predictions of dense traffics where the prediction concerns any time slot in
the future. Furthermore, like in our approach the predictions are made on the basis of
observations of the current motion. However, there is a big difference from our approach
concerning the assumption of available information of the object motions. Previous traffic
prediction and traffic detection methods assume that the traffic motion and thus, the object
trajectories are known in advance. However, the future trajectory of an object is usually
unknown in advance in our application scenarios.

Another challenging problem is the detection of general traffic patterns. There exist
several approaches for traffic prediction by means of historical observations which are based
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on regression analysis as proposed in [142]. Regression can be used to predict the future
motion of individual objects as long as they do not move in a restricted environment
as in our application. Another method concerning traffic prediction based on current
traffic observations is the approach presented in [168]. In this work, the current traffic
data is derived from a sensor network measuring traffic at certain locations in the traffic
network. In the framework proposed in [168], the sensor network includes about nine
hundred measurement stations. The data is collected in a data warehouse and used to
infer interesting patterns. This kind of system may be used to learn patterns on the
observed data which could be used to predict traffic jams. This method falls into the
category aggregate analysis and mainly differs from our approach as it aggregates the
traffic at certain road segments instead of observing single individuals.

A further related topic in traffic mining is the detection of suitable traveling paths for
individuals that want to travel to a certain destination in a possibly most cost-efficient
way. There is a lot of published work related to fastest path computations [58, 60, 73, 143,
97, 98, 100, 162]. However none of these proposals takes the actual traffic into account.
An efficient technique for fastest path computation taking traffic patterns into account has
been addressed by H. Gonzales et al. [78]. The authors propose an adaptive navigation
method based on historical traffic patterns mined from a large set of given traffic data.

Another field related to traffic mining is graph mining which has attracted a lot of atten-
tion in recent years. At first sight, graph mining seems to be closely related to traffic mining
as traffic flows normally occur in a network graph, e.g. a road network or the internet.
However, most graph mining approaches deal with the topological structure within graphs
or subgraphs. A lot of graph mining approaches aim at finding interesting patterns within
graphs. A comprehensive survey of graph mining techniques is given in [42]. Although
the approach also employs a static network graph topology, the method proposed in [186]
discovering center-piece subgraphs is related to our approach. The center-piece subgraph
problem is to find the node(s) and the resulting subgraph, that have strong connections
to all or most of a given set of query nodes. Usual applications are connectivity mining
in social networks, gene regularity networks and viral marketing. In a traffic network, we
usually have certain places of preferred travel destinations or starting points. Such kind
of hot spots can be malls, theme parks, city centers, commercial centers, conjunction to
highways and so on. These kind of hot spots can be used as query points in order to find
center-piece subgraphs which indicate places of expected high traffic. Similar measures like
“Closeness Centrality” and “Betweenness Centrality” [138] which are traditionally used for
mining in biological interaction networks can be applied to identify road segments with
high risk of traffic jams.

18.3 Statistical Traffic Model

This section will formalize our view on road networks and the traffic that can be observed
on them. Furthermore, we will discuss a statistical model that allows to predict future
states of the network under the knowledge of the current state and a short time history.
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18.3.1 Traffic Density in a Network

A traffic network is modeled as a graph G(V,E) where the vertices represent destinations
and crossings. The edges represent ways or streets between the vertices. A walk is a
sequence of edges w = (e1, .., en) where successive edges are connected, i.e. ei = (vl, vk)⇒
ei+1 = (vk, vm) with vl, vk, vm ∈ V . An object o may travel on this network from one vertex
v1 to another one v2 by following some walk w = (e1, .., en), ei ∈ E where e1 is starting
with v1 and en is ending with v2.

The point of time ti where the object reaches v2 depends on the speed the object is
traveling at on each edge. Therefore, we assume that there is a maximum speed for objects
traveling on a certain edge ei speedei . Knowing the length of edge ei length(ei), we can
determine the time it takes object o to travel from vl to vk via ei. Thus, given the walk
w = (e1, ...en) we can calculate the time it takes object o to follow w by

time(o, w) =
n∑
i=1

length(ei)

speed(ei)

To find out the position of object o at time t traveling on a walk w = (e1, .., en), we
have to calculate the time(o, (e1, .., ei)) for i = 2 to i = n. We can stop at the first edge
for which time(o, (e1, .., ei)) is larger than t, because o will not reach ei in a time shorter
than t. As a result, we know that o will travel on edge ei−1 at time t.

After describing the movement of individual objects in the network, we will turn to
describing the complete state of the network. Thus, we define the density on edge ei at
time t as the number of objects traveling on ei at time t. Formally, the density is defined
as:

Definition 67 (Traffic Density). Let G(V,E) be a traffic network and let O = o1, .., om
be a set of objects traveling on the network. Furthermore, let ρ : E × O → {0, 1} be the
following indicator function

ρ(o, e) =

{
1 if o is on e
0 else

Then, the traffic density on edge e is defined as:

density(e) =
m∑
i=1

ρ(oi, e)

Clearly, it is possible to determine the density of each edge at the current time t when
observing the network.

Additionally, it is possible to compute the density for any future point of time t+ ∆t if
all objects O = {o1, .., om} and their corresponding paths woi are already known at time t.
As mentioned above the position of object oi at the point of t + ∆t can be derived easily
when knowing the walk oi is traveling on.
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The problem of traffic prediction is caused by the absence of knowledge about the walk
w an object o is traveling on. In other words, we can observe each object on the network
at time t but without knowing its route, we cannot exactly tell its position at time t+ ∆t.

Though we cannot tell the exact density of each edge at some future time t + ∆t, it
is possible to calculate an expected density employing the available knowledge about the
objects and their behavior. Generally, our model for determining the expected density
is based on the probability that a given object o is traveling on edge e at time t + ∆t,
Pr[o, e, t+ ∆t].

This probability depends first of all on the existence of a walk that allows o to travel
on edge e at the time of prediction t+ ∆t. If there is no walk allowing o to reach e in ∆t
time, then Pr[o, e, t+ ∆t] can be considered to be zero.

After finding all walks W = {w1, .., wl}that allow o to be at e at time t + ∆t, we can
sum up the likelihoods Pr[o, e, wi] that o would take walk wi:

Pr[o, e, t+ ∆t] =
l∑

i=1

Pr[o, e, wi]

To determine Pr[o, e, wi], we assume that wi is the result of a Markov chain on the
network where the vertices correspond to the states and the edges to the allowed transitions.
The chain is started at the current position of o. Each time o reaches a new vertex v, o
has to decide for one of deg(v) + 1 options. deg(v) denotes the degree of v, i.e. the number
of adjacent edges. Thus, an object can either stop traveling at the vertex v or take any
of the adjacent edges to continue its journey. To find out the likelihood that o follows
the walk w, we need to assume a probability distribution describing the likelihood of each
of these options. Formally, we can calculate the probability that object o follows walk
w = (e1, .., en) where starti and endi denote the starting and ending node of edge ei as:

Pr[o, en] =
n∏
i=1

Pro[endi|starti]

Pro[endi|starti] is the likelihood that o enters ei under the condition of being previously
on node starti. Let us note that we do not distinguish whether o intends to stop at the
endi or continues its travel. In a classical Markov chain Pro[endi|starti] usually depends
on the previously visited edge ei−1. However, in order to keep our framework as general
as possible, we do not limit our method to a certain type of distribution and thus, allow
arbitrary probability distributions. For example, we might assume that the underlying
probability distributions are uniform. In this case, the likelihood that o is taking walk w
follows the random walk assumption, i.e. at each node an object would take any of the
given options with the same likelihood with no regard of any global destination. However,
since objects in a traffic network usually behave more rationally, we will introduce more
sophisticated probability distributions in the next subsection.

After describing the likelihood Pr[o, e, t+∆t] that object o will be at edge e in ∆t time,
we can now calculate the expected density for edge e at t+ ∆t.
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Definition 68 (Expected Density). Let G(V,E) be a traffic network and let O = {o1, .., om}
be a set of objects traveling on the network. Then, the traffic density on edge e at time
t+ ∆t is defined as:

density(e, t+ ∆t) =
m∑
i=1

Pr[oi, e, t+ ∆t]

18.3.2 The Shortest Path Assumption

Though the expected density allows us to predict the expected state of a traffic network
for any future point of time, its applications pose serious problems. First of all, the
prediction is strongly dependent on the underlying probability distributions. Thus, if
these distributions do not model the behavior of the objects well enough, the expected
density will significantly differ from the real density after a short period of time. A second
problem is the computational cost of determining all walks between the current position
of an object o and a future position e. The number of possibilities we have to check is
exponentially increasing with ∆t. Thus, finding all walks allowing o to travel on edge e at
t+ ∆t is very expensive for larger values of ∆t.

Fortunately, the random walk assumption made above is not realistic for most traffic
networks and we can employ more realistic assumptions to derive more suitable probability
distributions and reduce the number of walks.

For example, a driver traveling from New York to Los Angeles would not randomly
decide at each highway intersection in which direction he drives next. The reason for the
more rationale behavior in traffic networks is that each object has usually a predefined
destination, it wants to reach as fast as possible. Furthermore, the topology of the network
is known to each object and thus, the object does not have to stray through the network
until it accidentally reaches its destination. Since each object wants to reach its destination
as fast as possible, we can assume that each object travels along a shortest path where
each edge e is weighted by the time it takes to traverse it, i.e. lenght(e)

speed(e)
. A path in contrast

to a walk is not allowed to contain the same vertex twice. We will refer to this observation
as the Shortest Path Assumption.

Though the general framework for computing the expected density can remain un-
changed, the shortest path assumption has a major impact on the quality of prediction
and the computational complexity.

A first implication is that in order to determine whether object o might be at edge e
after the time period ∆t, we only have to consider the shortest paths of the current position
of o to the end vertex of e. If there is no path ending with edge e, then o travels on edge e
with a probability of 0%. If e is the last edge of some shortest path, we can calculate the
time period o would travel on e. Only if t+ ∆t is within this time period, it is possible to
observe o on edge e at the time of prediction t+ ∆t . Let us note that it is not necessary
to consider any other shortest path because an object traveling on any other shortest path
must arrive at the end of e at the same time. To conclude the shortest path assumption
significantly reduces the number of walks that have to be considered.
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A further implication of the shortest path assumption is that it is possible to find
meaningful probability distributions that can be used to determine the likelihood that
object o travels along path p.

We know that each object o heads towards one predefined destination vdesto . Further-
more, we know that o travels along a shortest path to reach vdesto . Thus, the set of all
possible paths o could follow, is the union of all shortest paths to any possible destination.
Now the likelihood that o travels along path p = (v1, .., vn) depends on the probability
that vn is o’s target, Prdest[o, vn]. Without further knowledge we might assume that each
destination is equally likely. Additionally, it is possible to increase the likelihood of more
popular destinations to integrate domain knowledge. Let us note that in the case that
there is more than one shortest path leading to vn, we assume that all paths are equally
likely.

After assuming a distribution over all destinations, it is possible to derive local prob-
ability distributions that can be employed to estimate the likelihood that object o travels
on a certain edge e. Therefore, we need to sum up the probabilities for each shortest path
containing edge e. Formally, we can define this probability as follows:

Definition 69 (Visiting Probability). Let G(V,E) be a traffic network, let o be an object
having the current position vstart and, let sp(vstart, v) denote the set of shortest paths from
vstart to any other vertex v ∈ V . Furthermore, let P̂vstart(en) = {p|p ∈ sp(vstart, v) ∧ v ∈
V ∧ en ∈ p} be the set of all shortest paths beginning with vstart and containing the edge en.
Now, the probability that o follows the path p = (vstart, ..., vk) Pro[p] is defined as :

Pro[p] =
1

|sp(vstart, vk)|
· Prdest[o, vk]

where Prdest[o, vk] is the likelihood that vk is the destination of object o. Then, the prob-
ability under the shortest path assumption that object o travels on edge en is defined as
follows:

Prsp[o, en] =
∑

pi∈P̂ (vstart,en)

Pro[pi]

The probability Prdest[o, v] describing the likelihood of each possible destination has an
important impact on the accuracy of the prediction. Furthermore, under the shortest path
assumption this likelihood depends on the path pohistory,i.e. the path o has already traversed
until the current point of time. If pohistory is unknown, we generally have to assume that all
vertices are possible destinations of o. However, knowing pohistory allows us to prune some of
these destinations. Since o is traveling on a shortest path, we can exclude all destinations
for which there exists no shortest path starting with pohistory. Thus, knowing the previous
movement of each object o significantly reduces the number of possible destinations and
thus, allows us to find a better estimation of Prdest[o, v].

To conclude, the shortest path assumption can be derived from assuming that all objects
have knowledge of the network topology and try to reach a certain destination as fast as
possible. Based on the shortest path assumption, we can derive more reasonable probability
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distributions for the decisions each object makes at some vertex. Thus, it is possible to
find a more suitable expected density for the edges in the traffic network.

18.4 Efficient Traffic Prediction

In the previous chapter, we defined the expected density for single edges in a traffic network
at a certain time of prediction. In this chapter, we will turn to calculating the complete
density in a network at some future point of time consisting of the expected densities of
each edge in the network. After introducing a straight-forward method to calculate this
expected network density, we will introduce a data structure allowing a much more efficient
computation of density predictions.

18.4.1 Traffic Density Prediction

The goal of our approach to is to predict the state of a traffic network for a future point in
time or even a time period in the future. Therefore, we first of all formalize the expected
density in a traffic network.

Definition 70 (Expected Network Density). Let G(V,E) be a traffic network and let
O = {o1, .., om} be a set of objects traveling on G under the shortest path assumption. For
each object oi ∈ O, we know a short time history pohistory containing the path oi has traversed
before the current time t. Furthermore, the destination of each object oi is unknown. Then,
the Expected Network Density at time t+ ∆t is defined as the set of expected densities
for each edge e: density(e, t+ ∆t).

The Expected Network Density consists of the complete traffic density that can be
expected to be observed at some future point of time.

In the following, we will discuss a straight-forward method for calculating the expected
network density, i.e. the expected density of each edge in the network at the time of
prediction t+ ∆t.

The basic idea of the following method is to determine all possible positions for each
object o at prediction time t + ∆t. Thus, we increase the density of each edge e by the
probability Prsp[o, e] if o might visit e at the time of prediction. To find out all possible
positions and their corresponding likelihoods, we first of all have to determine all possible
destinations. As mentioned before, the number of possible destinations depends on the
path pohistory that o has already traversed. Therefore, we start with the first known position
of o, i.e. the first node in pohistory, and employ Dijkstra’s algorithm to determine all shortest
paths to any other node in the network. Now, to determine all possible positions of o at
time t+ ∆t, we only have to consider the shortest paths being extensions of pohistory. Each
of these extending paths leads to a still possible destination. Thus, we follow each of the
paths p for the time period ∆t and thus, determine a possible position of object o. Now,
the expected density of the edge corresponding to this position is increased by Prsp[o, p],
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(a) Network graph (b) Suffix tree

Figure 18.1: Example of a network graph and the corresponding suffix tree used to effi-
ciently compute an objects probability distribution.

i.e. the likelihood that o travels along path p. After processing each possible position for
each object in the system, the expected network density is derived.

A variation of this method can be applied if we are not only interested in the traffic
density at a special point of time t+ ∆t, but in the expected density at all points of time
between t and t+ ∆t. In this case, the prediction of the expected density is represented by
a time series displaying the expected change of traffic on a given edge. However, computing
the time series is quite similar to computing a single prediction. For each path p, extending
pohistory, we traverse p and update the edges of p for the period of time o might travel on
them. Whenever o could enter a new edge the expected density is increased by Prsp[o, p].
Correspondingly, the expected density has to be reduced each time o leaves some edge e.

Though this method can be employed to determine predictions according to the traffic
model introduced in section 18.3, it has serious short-comings from a computational point
of view. The problem is that in order to determine the possible paths of object o, it is always
necessary to consider each node of the network and determine all possible shortest paths
starting with its first known position. This poses an enormous computational overhead
because some of the paths are computed for multiple objects. However, since the usefulness
of a prediction is rather perishable, a fast computation of the prediction is mandatory.
Thus, in order to derive predictions in efficient time, a solution has to be found avoiding
this computational overhead at prediction time and allowing efficient density predictions
for the complete network.
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18.4.2 A Shortest Path Suffix Tree

In the following, we will present a data structure that is significantly speeding up the
computation of the expected network traffic density. The core idea is to store all possible
shortest paths in a compact data structure. Thus, the computation of shortest paths at
prediction time can be avoided.

Assuming that there exists an unique identifier denoting each node in the network,
we can use these node identifiers as alphabet and represent each path as a string over
this alphabet. Our algorithm needs an efficient way to determine all shortest paths being
extensions of the already observed history of a given object o. Considering each shortest
path as string, we need to find a way to efficiently determine all suffixes extending the
prefix represented by pohistory. Therefore, we propose to store all shortest paths that can be
found in the given network in a suffix tree.

The suffix tree is well known in text processing and bio informatics for its space-
efficient storage of massive amounts of string data. Formally, a suffix tree ST for string
S = S[0..n− 1] of length n over the alphabet A is a tree with the following properties:

• ST has exactly n+ 1 leaf nodes, numbered consecutively from 0 to n.

• All internal nodes (except the root) have at least two children.

• Edges spell non-empty strings.

• All edges from the same node start with a different element of A.

• For each leaf node i, the concatenation of all edges from the root node to i matches
S[i..n− 1].

In order to employ the suffix tree for our problem, we store all shortest paths in the given
network in the suffix tree. Therefore we use the all-pair-shortest-path-algorithm by Floyd
and Warshall to efficiently derive all possible shortest paths. Afterwards, all shortest paths
are converted to strings over the alphabet of node identifiers and stored in the suffix tree.
In this suffix tree, each direct son of the root represents a vertex v in the network and the
corresponding sub tree represents all shortest paths starting with v. Let us note that each
path in this sub tree corresponds to a shortest path and the paths to the leaf node represent
shortest paths that are maximal, i.e. it is not possible to extend these paths to any longer
shortest path. Each inner node vn of the suffix tree represents a crossing in the network
where some object o could arrive after traversing the path corresponding to its history
pohistory. The sons of vn represent all possible shortest paths extending pohistory. Figure
18.1(a) illustrates an example of an object traversing a network graph. The corresponding
suffix tree representing all possible destinations is depicted in Figure 18.1(b).

To efficiently calculate the expected network density, it is not sufficient to directly
access the information about the existence of a shortest path. Additionally, the likelihood
that an object o follows some path p is of great importance. Therefore, we additionally
store the probability distributions describing Pro[endi|starti] in the tree, i.e. the likelihood



18.4 Efficient Traffic Prediction 341

o would turn into the direction of the node endi after reaching starti. In our model, this
probability depends on the cumulated likelihood that o takes any of paths being extensions
of the edge (starti, endi). In the tree, these paths are represented by the sub tree under the
node endi. To speed up the computation of the likelihood of each path during prediction,
we add up the likelihoods of possible directions right after generating the tree. Therefore,
we first of all mark each ending point of each path, with the likelihood that o would take
this path. Let us note that inner nodes are valid ending points as well. Afterwards, we
assign the cumulated likelihood over all paths extending edge ê to ê in the tree. Let us
note that for any node e in the network there usually exist multiple edges ê in tree, one for
each possible prefix. Due to this modification, it is now possible to calculate the likelihood
that some object o might visit edge e while traversing the tree.

To calculate the expected network traffic density using the proposed shortest path suffix
tree, we can proceed as follows. For each object o, we enter the tree traversing along the
string corresponding to the already observed path pohistory. After reaching the node in the
tree corresponding to the current position of o, we can derive all possible positions of o
at t+ ∆t. Therefore, we traverse every path in the sub tree under the current position of
o and calculate the likelihood that o would travel this path during traversal. Traversing
each path is stopped if extending the path would demand more time than ∆t. Finally, we
add the current likelihood to the expected density at the edge corresponding to the current
position of o and continue by extending the next path in the sub tree.

To conclude, employing a shortest path suffix tree allows us to avoid shortest path
computations during traffic density prediction. Furthermore, the number of edges that
have to be traversed for prediction is also reduced to necessary sub paths.
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Figure 18.2: Traffic network graph with simulated cars used as experimental test bed.

18.5 Experimental Evaluation

In this section we show the capability of our approach to make useful predictions about
the traffic density and illustrate the efficiency of our new algorithm when calculating these
predictions. For all experiments, we simulated the traffic in a realistic traffic network as
depicted in Figure 18.2 containing about 679 road segments and 533 intersection nodes.
Our traffic simulator contains about 1250 cars (illustrated by small dots in Figure 18.2)
moving from individual starting points to their destinations on a shortest path. The
starting points as well as the destinations are equally distributed over the entire network
graph. Here, each car moves with a certain velocity which is assumed to be constant during
the whole journey. The velocities of the moving cars are randomly selected for each car
and it took about 60 minutes until all cars have reached their destinations. If not stated
otherwise, as soon as a car has reached its destination it was removed from the network
and, thus, did not contribute to the traffic anymore.

All experiments are based on java implementations. The runtime experiments were
conducted on a dual core Opteron Dual Core processor with a clock time of 2.6 GHz and
32GB of RAM.

18.5.1 Experiments on Quality of the Traffic Density Prediction

The first experiments concerns the quality of our traffic density predictions. The traffic
density of a road segment is simply given by the number of cars that pass through this
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Figure 18.3: Prediction using a spatial temporal poisson model for the entry of new cars.

road segment at a certain point of time. In order to show the quality of the traffic density
prediction, we continuously measured the traffic density prediction error during a certain
range of time. The prediction error is computed by the difference between the predicted
traffic density and the observed traffic density for a road segment. In our experiments,
we use the parameter prediction time ∆t which denotes the the forecasting horizon. In
other words, the prediction time denotes the difference between the time the actual traffic
is measured, (i.e., the time the traffic prediction is related to) and the time at which the
traffic prediction was done.

Generally, in our experiments we only consider those cars that are existent in the
road network at prediction time, i.e. all objects that enter the network graph after the
time the prediction was done are not considered. However, in realistic scenarios new
cars continuously enter the network. In order to evaluate traffic predictions under these
circumstances, an additional statistical model would be required. For example, the entry
of new objects in the network can be modeled using a spatial temporal Poisson-process.
The prediction based on such a model is depicted in Figure 18.3. Obviously, the absolute
prediction error increases with the number of new objects entering after the time the
prediction was done. The rationale of this is that we have no information of the new cars
while the number of cars which are considered for the prediction diminishes. The expected
number of cars which are considered for the traffic prediction is the difference between the
predicted number of cars and the expected number of new cars. This number approaches
zero when all objects considered for the traffic prediction have reached their destination.
In the following experiments we only focus on objects which are present in the network at
the time the prediction is done and do not allow objects to enter after that.

Since the prediction error is an absolute value measured in number of cars, the quality
of the prediction depends on both the prediction error and the number of cars on the
corresponding road segment. If not stated otherwise, we averaged the prediction error
over a set of road segments. In order to achieve more representative results, we measured
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Figure 18.4: Impact of the Markov assumption.

the prediction quality only for a subset of road segments. Here we left out those road
segments that contain only very low traffic over the measured time. Thereby, we try to
avoid that the quality results are inherently biased by road segments with low traffic which
are expected to yield high prediction quality. Since there are a lot of such kind of road
segments with little traffic in our traffic network we did not consider them in order to
obtain fair quality measurements. In the remainder, we will call the set of road segments
taken into account for the quality measurements relevant road segments. This set contains
twenty road segments.

The average number of cars on a relevant road segment is given in Figure 18.4(a). It
shows that the number of cars decreases with the running time of the simulation as the
cars which reach their destination are removed from the traffic simulation. Although the
overall number of objects in the simulation in fact decreases monotonically, here we do not
observe a monotone decrease in the number of cars because we only counted the objects
on the relevant road segments which can fluctuate a little bit.

Figure 18.4(b) shows the average prediction error w.r.t. the prediction time ∆t (i.e.
the forecasting horizon). The figure presents two curves, one curve depicts the prediction
error when considering the complete history of each car for the prediction. The other
curve represents the prediction error when taking only the last two passed road segments
into account. Both curves have similar characteristics, because within the prediction of
the close future the error increases drastically with increasing prediction time. This is
due to the fact that the number of possible locations for each car is initially very small
and increases drastically when the car passes through the first crossings. But with ongoing
prediction time, the absolute prediction error decreases again. The rationale of this effect is
the decreasing number of cars in the simulation. Less cars in the simulation obviously lead
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Figure 18.5: Relative prediction error over certain intervals of prediction time.

to a smaller absolute prediction error. But it can clearly be observed that the prediction
based on the complete history has a significantly better quality than the prediction based
on only the last two road segments. Generally speaking, both predictions have a good
prediction quality, at least in the first few minutes. To quantify the prediction quality, we
measure the relative prediction error defined as

relative prediction error =
absolute prediction error

traffic in terms of the number of cars
.

Intuitively, the relative prediction error measures the average prediction error per car in
the road network. At a prediction time of about 20 minutes the prediction error adds up to
an average of about two cars per road segment (c.f. Figure 18.4(b)) if the complete history
is used. At this time, the average number of cars per road segment is about fourteen
(c.f. Figure 18.4(a)), yielding a relative prediction error of about 14%. With increasing
prediction time the relative prediction error increases rapidly, e.g. at a prediction time of
about 40 minutes the relative prediction error reaches about 1.5 cars average, at average
of only four cars per segment.

We also measured the relative prediction error at the four most relevant road segments
averaged over different prediction time intervals. These results depicted in Figure 18.5
show that the relative prediction error is between 5% and 15% for short-term predictions
and between 10% and 60% for long-term predictions when taking the motion history into
account.

Additionally, we measured the traffic at specific time intervals in terms of number of
cars. The results are given in Table 18.1. If we compare the resulting traffic of the single
road segments to the average of all relevant road segments, we can see that the road
segments selected for this experiment show a heterogeneous traffic. This experiment shows
that the consideration of the history of each car has significant influence on the prediction
quality for short-term predictions (about 20 minutes prediction) as well as for long-term
predictions (about 40 minutes prediction).

In the next experiment we evaluated how the length of the history which was taken
into account for each car influences the prediction quality. For this experiment we have
run the simulation with a set of 500 cars. We measured the average prediction error for
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Road Segment Id 0−∞ 18-22 min 38-42 min

4 11.97 16.93 3.00
17 24.94 30.50 6.00
157 11.68 16.88 4.46
433 14.72 16.33 5.14

sum. 142.84 257.19 74.12

Table 18.1: Traffic table for the experiments shown in Figure 18.5.
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Figure 18.6: Average prediction error for varying motion history.

several prediction times by varying lengths of observed histories. The results are depicted
in Figure 18.6. An interesting observation is that the length of the history in terms of
passed nodes has similar effect for short-term predictions and long-term predictions. A
history longer than ten nodes does not make any difference in the prediction error.

18.5.2 Experiments Concerning the Efficiency

In the next experiments we show the performance comparison between the proposed pre-
diction strategies. In particular, we compare the first solution where the future path prob-
abilities for each car are computed at run-time with the approach using the pre-computed
suffix-tree. The performance is measured in terms of the number of network nodes which
have to be accessed to predict the traffic density at each road segment for one certain point
of time in the future. Additionally we measured the absolute runtime required to make
the prediction. The results of the number of accessed network nodes are shown in Figure
18.7(a).

Furthermore, we evaluated the scalability of our traffic prediction approach when using
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Figure 18.7: Performance of the traffic density prediction.

the suffix-tree in order to accelerate the prediction. Figure 18.7(b) demonstrates the time
required to make a 4-minute traffic-prediction for the entire road network. We measured
the runtime for varying number of cars in the traffic network. Obviously, the prediction
runtime increases linearly with increasing number of moving objects.

18.6 Conclusions

In this chapter, we proposed an approach for density prediction in traffic networks. We
introduced a statistical model that is used to predict the traffic density on any edge of the
network at some future point of time. Furthermore, we showed how short-term observa-
tions can be used to improve the prediction quality and how the traffic densities can be
computed in an efficient way. We experimentally demonstrated that our approach achieves
high prediction qualities in particular when taking the history of the moving individuals
into account. However, we observed that only a quite small history suffices to reach ade-
quate prediction qualities for both short-term and long-term predictions. In addition, our
runtime experiments showed that the computation of the traffic predictions can be made
in reasonable time. In the future, we plan to extend our statistical prediction model by
taking further observable or even learnable motion parameters into account.
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This part will identify research gaps still open, and provide initial ideas of how to close
these gaps. Further research directions based on the work presented in this theses are
given.

• Chapter 19, presents a first step towards managing, querying and mining spa-
tially extended spatio-temporal objects, i.e., polygons or point-clouds moving
through time while changing their location and shape. Applications for such data
include meteorologic data, where spatially extended spatio-temporal objects may
describe areas of low pressure, hurricanes and cyclones. Part of this vision is, to
combine techniques from the field of spatio-temporal database management, with
sophisticated meteorological models, to improve the ability to predict the occur-
rence as well as the movement pattern of storms. Also, mining such data may yield
interesting new patterns, indicating environmental change, such as increasing
frequency of storms.

• In modern applications, geo-spatial data is often enriched by a variety additional
data sources or contexts such as social data, text, multimedia data and scientific
measurements. Such data, called multi-enriched geo-spatial data, provides a
tremendous potential of discovering new and possibly useful knowledge. The novel
research challenge is to search and mine this wealth of multi-enriched geo-spatial
data. The ultimate goal of this project is to develop a general framework of
methods for searching and mining multi-enriched geo-spatial data in order to fuel
an advanced analysis of big data applications beyond the current research frontiers.
This vision is elaborated in more detail in Chapter 20.
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Chapter 19

Probabilistic Ranking in Fuzzy
Object Databases

As described in the introduction of this thesis, a traditional (certain) spatial database con-
sists not only of points, but also of polylines and polygons. In this thesis, all presented
techniques have been tailored to uncertain point data only. The assumption, that uncer-
tain objects are point objects, having a single position in space that is uncertain, is valid in
all of the application described so far in this thesis. In particular in geo-social network ap-
plications, the uncertainty component is the position of users. The positions of interesting
locations, such as bars, and restaurants, are generally known for certain and do not change
frequently over time. Even when a bar switches to a new place, there is no uncertainty in
between - there might be a time interval during which the bar is at no place at all - but it
is not possible to interpolate the position of the bar in space.

Yet, there exists other applications, where uncertain objects are spatially extended. For
example, satellite images of a spatially extended object, such as a building, or a cyclone.
The shapes captures by such images may be uncertain, as images taken at different day
times may have different light intensities, or some images may be blurred due to clouds.
Furthermore, images may be obsolete such that the current position of an object, such as
a cyclone, has to be extrapolated given its recent locations and meteorological movement
models.

Clearly, managing, querying and mining such objects is a big challenge, since we have
seen that even the simpler case of managing, querying and mining uncertain point data
is already a non-trivial tasks. Nevertheless, we were able to make a first big step towards
efficient management of uncertain spatially extended uncertain data published at the 21st
ACM International Conference on Information and Knowledge Management (CIKM) 2012
as a poster paper ([24]). This work is presented in the following chapter.

This work uses an existing model, called fuzzy objects model to represent spatially
extended uncertain objects. It gives a first solution to the problem of probabilistic similarity
ranking on such objects. This solution applies the paradigm of equivalent worlds, in order
to transform spatially extended uncertain objects to uncertain point objects, such that
the distribution of the probabilistic distance of this uncertain point object is equal to
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Figure 19.1: A typical cell image in biomedical analysis. Darker pixels have higher proba-
bility of belonging to the cell [215].

the distribution of the probabilistic distance of the original uncertain spatially extended
object. After this transformation, existing approaches for probabilistic similarity ranking
on uncertain point objects (see Chapter 7) can be applied to solve the problem. This
first step towards efficient querying of uncertain spatially extended uncertain objects is
presented in the next chapter.

19.1 Introduction

Nowadays, as satellites are producing images much faster than before, the huge size of the
datasets rules out the approach of identifying objects and relationships manually. Instead,
we must rely on automatic techniques. However, it is often impossible to interpret the
objects in satellite images unequivocally due to the limitation of image resolution and due
to weather effects. In order to reflect the uncertainty embedded in images and to offer
subsequent analysis more information to work with, a probabilistic mask is produced on
the extent of identified cells by probabilistic segmentation [132].

For example, Figure 19.1 shows a typical cell image in biomedical analysis. The bound-
ary of the cell cannot be identified easily, i.e., it is not crisp. Under the model of probabilis-
tic masks, different pixels in the image will be assigned different probabilities to indicate
the likelihood that the pixel belongs to the cell. By this means, each object is transformed
into a collection of points with probabilities. As such, uncertainty lies in their composi-
tions, i.e., a point may or may not belong to the object. Therefore, they are essentially
different from the uncertain databases in which the objects are assumed to have probabilis-
tic locations at query time. The concept of probabilistic masks essentially represents the
cells in images as fuzzy objects. Although fuzzy objects have long been studied in the GIS
community [165, 176, 10, 164], common spatial queries such as ranking queries still remain
uninvestigated at large. In this chapter, we will address the problem of ranking objects in
Euclidean space over large fuzzy datasets. This type of query has many applications in the
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geo-spatial field, such as “Find all the houses in the database in the order of their distance
from location p or object o” or “Find the nearest city of population greater than 30,000 to
Brisbane, Australia”. Also, such queries are of great interest in the biomedical field such
as brain Alzheimer’s disease analysis [149].

Before stepping further to propose new solutions to rank objects in a fuzzy spatial
database, we have to raise the question: does the fuzziness of objects change the nature of
traditional probabilistic ranking of uncertain objects? Or can we adopt existing solutions
to support this type of data? If we want to plug the fuzzy type into existing probabilistic
ranking algorithms, an object should be represented by a single point in every possible
world. Then a problem arises: how to find this point? Usually it is not easy to choose
a suitable representative point because the underlying object (e.g. neuron cells) has a
complex shape, and not all parts of the object are equally important (kernel vs. boundary)
in terms of their confidence. Hence, choosing arbitrary points will cause considerable
information loss and even produce misleading results.

This chapter shows how this point, which defines the distance between a query point q
and a fuzzy object A can be found dynamically, for each world of A. This observation will
allow to map each fuzzy object A (which generally consists of many points in a possible
world) to a probabilistic object A (which consists of alternatives of which at most one holds
in a possible world). The mapping is done in a way such that a fuzzy ranking performed in
the fuzzy space is identical to a probabilistic ranking performed in the mapped probabilistic
space. Then, we can directly apply existing solutions for efficient ranking of probabilistic
objects.

19.2 Preliminaries

This section introduces the notations used in the remainder of this chapter. Some notions
may be inconsistent with existing works, which however cannot be avoided, since this
chapter uses notations from both the field of fuzzy data management and probabilistic
data management, and disambiguation is needed for some notations.

19.2.1 Fuzzy Objects

Our definition of a fuzzy object is based on fuzzy sets [211]. A fuzzy object A consists
of a set of instances and a membership function µA : Rd → [0, 1] mapping each instance
a ∈ A to a real value µA(a) within the interval [0, 1]. Values in between are associated
with the fuzzy member instances of the object. In this work, we assume the discrete case,
where each object Ai of a fuzzy database DB = {A1, ..., An} consists of a finite number of
of multi-dimensional points.

Definition 71 (Fuzzy Object). A fuzzy object A = {〈a ∈ Rd, µA(a)〉|µA(a) > 0} in the
d-dimensional space is represented by a set of spatial points a, each associated with a
membership probability µA(a) which indicates the probability of a belonging to A. The
function µA is called membership function of A.
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(a) α = 0.1 (b) α = 0.3 (c) α = 0.9

Figure 19.2: Fuzzy object for different values of α.

Any point a ∈ A with µA(a) = 1 is known to exist for certain, i.e., in every possible
world. The largest set of such points is called the core of A. Any point a with µA(a) = 0
cannot possibly belong to A. Such points do not have to be stored explicitly in DB, as
they cannot appear in any possible world. Thus, we can assume without loss of generality
that µA(a) > 0 for all A ∈ DB.

To materialize a fuzzy object A into a possible world, a probability threshold α is chosen
uniformly in the interval [0, 1], and each point a ∈ A, µA(a) ≥ α belongs to A in this world,
while the remaining points do not exist (cf. Figure 19.2).

Definition 72 (α-cut). Given a fuzzy object A, the sets As = {a ∈ A|µA(a) > 0}, Ak =
{a ∈ A|µA(a) = 1 and Aα = {a ∈ A|µA(a) ≤ α} are called the support set, the kernel set
and the α-cut of A, respectively.

With a probability of 1−maxa∈A(µA(a)), object A contains no points and, thus, does
not exist.

To materialize a fuzzy database into a possible world, there exist two approaches [32].
The first approach chooses a global value for α, which is applied to materialize all fuzzy
objects in DB. The local approach chooses an individual value αA for each object A ∈ DB.

The global approach has applications in bio-medical imaging, where it can be assumed
that all object images are taken by the same instruments (e.g. the same microscope). In
such an application, the only unknown (and thus random) variable of the system is the
intensity of any pixel required to belong to its object. The local approach has manyfold
applications in geo-spatial databases, where different object images may be taken in a
different environment. For instance, images taken at different day times may have different
light intensities, or some images may be more blurred due to clouds. Thus, the required
intensity of pixels to belong to an object may differ between objects. In this work, we will
focus on the local approach, as it is a generalization of the global approach. The set of
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possible worlds of an object A is given as

pw(A) = {Aα|0 < α ≤ 1}

Assuming that the set of points belonging to object A is finite, each possible world of A is
associated with a non-negative probability

P (wA ∈ pw(A)) = argmaxα{Aα = wA} − argminα{Aα = wA},

the set of possible worlds of DB is given as

pw(DB) = {pw(A1)× ...× An},

where is possible world is associated the probability

P (w ∈ pw(DB)) =
∏

wA ∈ pw(DB)P (wA).

Since, unlike a probabilistic object, a fuzzy object may consist of more than one point
in space, we further need to define a distance function between point sets that will be used
for ranking. Here, we use the definition of [215] to define the α−distance between a query
point and a fuzzy object.

Definition 73 (Fuzzy Distance). For a crisp query object q and a fuzzy object A, their
distance in a possible world, where A is cut at α, is given by:

dα(q, A) = mina∈Aα [d(q, a)],

where d(x, y) is the Euclidean distance between d-dimensional vectors.

In this chapter, we focus on the issue of obtaining fuzzy objects in their order of distance
from a given query point (termed ranking). This issue is of primary interest in a spatial
database although it is also used in other database applications including multimedia
indexing [115], CAD, and molecular biology [105]. The desired ranking may be full or
partial (e.g., only the first k objects).

19.3 Fuzzy Ranking

The main challenge of this work is to compute, given a query point q, a probabilistic
distance ranking of all database objects. That is, for each database object o ∈ DB and
each ranking position 1 ≤ k ≤ kmax, the task is to compute the probability that o is the
kth closest fuzzy object to q according to the fuzzy distance function defined in Definition
73. Formally:

Definition 74. A probabilistic ranking query ProbRank(q) on a fuzzy object database DB
returns for each object o ∈ DB and each ranking position 1 ≤ k ≤ kmax the probability

P (q, o, k) =
∑

w∈pw(DB),Rank(o)=k

p(w)

that o is on rank k with respect to the distance to q.
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Figure 19.3: Translation from fuzzy to probabilistic distance.

This section first gives an intuition the main idea of translating fuzzy objects into
probabilistic objects, equivalent with respect to the query object and the ranking query
predicate.

Then, this intuition will be formalized into a translation algorithm. The result of this
algorithm can then be given to a probabilistic ranking algorithm.

19.3.1 Identifying the Distance Representative

Essentially, the fuzzy distance (cf. Def. 73) corresponds to the minimal distance of all pairs
of points existing in the corresponding α-cut. Thus, in a possible world (i.e., for some α-
cut), the distance between the crisp query object q and a fuzzy object A is defined by the
distance between q and a point a ∈ A. All other points p ∈ A \ {a} can be completely
ignored for the distance computation. This important property will be exploited in the
algorithm to be presented in this chapter. It allows to treat possible worlds having the
same distance representative as equal, thus applying the paradigm of equivalent world (see
Chapter 3).

Example 31. Figure 19.3(a) illustrates this observation for the distance between the query
point q and a fuzzy object A. A consists of 3 instances a1, a2 and a3, with membership
probabilities µA(a1) = 20%, µA(a2) = 80% and µA(a3) = 50%. a1 is closest to q, and,
thus, in any possible world where a1 exists, a1 defines the fuzzy distance between q and
A. Since a1 exists with a probability of 20%, we can conclude that a1 defines the distance
between q and A with a probability of 20%. Instance a2 is the next-closest point to q, and
exists with a probability of 80%. By Def. 72, and since µA(a1) ≤ µA(a2), it holds that a1
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Algorithm 12 Object Transformation: Fuzzy to Probabilistic
Require: Point q, Fuzzy Object A = {a1, ..., an}
1: Aq = new ProbabilisticObject
2: FLOAT maxProb
3: for ai ∈ A do
4: aqi = new ProbabilisticInstance
5: aqi .coords = ai.coords
6: p(aqi ) = 0
7: if µA(ai) > maxProb then
8: p(aqi ) = µA(ai)−maxProb
9: maxProb = µA(ai)

10: end if
11: Aq = [Aq, aqi ]
12: end for
13: return (Aq)

can only exist if a2 also exists. Thus, the random event “a2 exists and a1 does not exist”
has a probability of 80% − 20% = 60%. If this event holds, then a2 defines the distance
between q and A. Finally, instance a3 is farthest away from q. Due to Def. 72, and since
µA(a3) ≤ µA(a2), a3 exists only if a2 exists. And since a2 is closer to q than a3, it is
not possible for a3 to define the distance between q and A in any possible world. With a
probability of 1−maxi(µA(ai)) = 20% object A has no instance at all, and, thus, does not
exist.

Due to the observations made above, we will now rewrite A as a probabilistic object
Aq, consisting of two probabilistic instances aq1 and aq2 having probabilities p(aq1) = 0.2 and
p(aq2) = 0.6. The spatial locations of aq1 and aq2 correspond to the locations of a1 and a3,
respectively. Note that there is no instance aq3, since a3 never defines the distance between
q and A and thus, can be ignored. Now, keeping in mind that instances of a probabilistic
object are mutually exclusive, we trivially get that instance aq1 defines the distance between
q and Aq with a probability of 0.2, while instance aq2 defines this distance with a probability
of 0.6. Aq does not exist at all with a probability of 1 −

∑
i p(a

q
i ) = 0.2. In summary, we

get a probability density function (PDF) of the distance between q and A as depicted in
Figure 19.3(b).

In this example, we could guarantee that by construction of the probabilistic object
Aq, the probability of a fuzzy instance ai ∈ A defining the fuzzy distance between q and A
is equal to the probability that the corresponding probabilistic instance aqi exists. In the
next section, we will formalize this approach and show that a probabilistic ranking on the
translated probabilistic objects, yields the same result as a fuzzy ranking on the raw fuzzy
objects.
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19.3.2 Translation to Probabilistic Objects

Consider Algorithm 12, which takes as input parameters a (crisp) query point q and a
fuzzy object A = {a1, ..., an}. Let µA be the membership function of A. Without loss of
generality, assume that the instances ai ∈ A are sorted increasingly in their distance to q.1

The main goal of the algorithm, is to transform a fuzzy object into an uncertain objects
defined according to the X-tuple model described in Part 2.2. The algorithm iteratively
creates a probabilistic instance aqi for each fuzzy instance ai of A. The spatial coordinates
of the probabilistic instances are set to the spatial coordinates of the corresponding fuzzy
instances. The probability of each probabilistic instance is set to the difference between
the corresponding fuzzy instance and the maximum membership probability of all fuzzy
instances seen so far. All the newly created probabilistic instances are then unified into
a single probabilistic object Aq. The later step again applies the paradigm of equivalent
worlds, by unifying worlds which are equivalent for a ranking query having the given query
point.

Lemma 43. After running Algorithm 12 with parameters A and q, it holds for each fuzzy
instance ai ∈ A, that the probability that ai defines the fuzzy distance between q and A,
equals the existential probability p(aqi ) of instance aqi of the returned probabilistic object
A = {aq1, ..., aqn}.

Proof. By induction: Instance a1 exists with a probability of µa(a1), and in any world
where a1 exists, it must define the fuzzy distance between q and A. Thus a1 defines the
distance between q and A with a probability of µa(a1), and p(aq1) = µa(a1).

An instance ai, 2 ≤ i ≤ n defines the distance between q and A if and only if instance
ai exists, and no closer instance aj, j < i exists. This is clear due to the assumption that
the instances are sorted, and thus the set {aj}j<i corresponds to the set of all instances
of A which are closer to A than ai. By definition of an α-cut, ai exists if and only if
α < µA(ai). Furthermore, no point in the set {aj}j<i exists if and only if ∀j < i : α >
µA(aj), i.e., if and only if α > maxj<i(µA(aj). Since α is the realization of a uniformly
[0, 1] distribution, the probability of the random event maxj<i(µA(aj) < α < µA(ai) equals
µA(ai)−maxj<i(µA(aj) if µA(ai) > maxj<i(µA(aj)) and 0 otherwise. In line 8 of Algorithm
12, the value of p(aqi ) is assigned to this probability.

In a nutshell, Lemma 43 allows us to transform a fuzzy object A into an uncertain
object A defined according to the X-Tuple model. For disambiguation, uncertain objects
will be denoted as probabilistic objects.2. The resulting probabilistic object A is defined
such that the probability of a probabilistic instance aqi ∈ A corresponds to the probability
that the instance ai ∈ A defines the distance between q and A.

1We make this assumption to ease readability by avoiding double indices. If instances ai are not sorted,
we can simply sort them a priori in log-linear time.

2Since fuzzy objects are uncertain, too.
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Corollary 12. The probability density function of the fuzzy distance between q and A
equals the probability density function of the probabilistic distance between q and A.

Proof. This corollary follows from the construction of A. Since each fuzzy instance ai ∈ A
has the same spatial attributes as its corresponding probabilistic instance aqi ∈ A, it also
holds that their Euclidean distances are equal, i.e., d(q, ai) = d(q, aqi ). Furthermore, the
probability of each fuzzy instance ai ∈ A of defining the distance to q, equals the probability
p(aqi ) of its corresponding probabilistic instance aqi ∈ A to define the distance to q. Thus,
both probability density functions, have the same probability values at the same distance
values, and are thus equal.

Corollary 12 directly leads to the following observation:

Corollary 13. Let DB be a fuzzy database, and let q be a query point. Let DB be a
probabilistic database obtained by transforming all fuzzy objects in DB using Algorithm 12.
It holds a fuzzy distance ranking on DB using query object q is equal to a probabilistic
distance ranking on DB using query object q.

Proof. The above corollary follows directly from Corollary 12, since the ranking is per-
formed on the distance objects.

Finally, Corollary 13 allows us to plug in existing algorithms for probabilistic ranking
(e.g. those presented in and described in the related work section of Chapter 7 which run
in O(N · log(N) +N · k), where N is the total number of instances in the database, and k
is the length of the requested partial ranking.

The transformation to probabilistic objects requires the instances of each object to be
sorted w.r.t. their distance to the query object, which is performed in O(|DB|·N ·log(N)) =
O(N · log(N)) runtime. This additive component has no affect on the total asymptotic run
time of O(N · log(N) +N · k) of the probabilistic ranking.

A total runtime of O(N · log(N) +N · k) is acceptable in probabilistic ranking settings,
where the number of possible alternatives per object is usually rather small (less than a
thousand).
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19.4 Conclusions

To the best of our knowledge, this is the first approach for probabilistic ranking of fuzzy
objects according to possible world semantics. The main idea is to transform each fuzzy
object into a probabilistic object, such that a probabilistic ranking performed on these
objects is guaranteed to be equal to a probabilistic ranking on the raw fuzzy objects.
Currently, the algorithm requires a full scan of the database. Therefore, we are currently
working on an implementation of an aggregate R-tree [118] to index all points of a fuzzy
object in order to minimize the number of points that have to be accessed at query time.
Furthermore, we see a lot of potential in optimizing Algorithm 12 by adapting techniques
for dynamic skyline search [46], as we note that the set of points of a fuzzy object having a
probability greater zero in the transformed probabilistic space, equals the dynamic skyline
of query object q in the distance-probability space. A third extension would extend the
current solution to fuzzy query objects. Another part of our future work is to consider fuzzy
objects with continuous extent in space. Transforming such objects into the probabilistic
object space will yield continuous distance PDFs, which can be ranked using the approach
proposed by [124].

19.5 Research Directions

The problem of querying fuzzy data is at least as hard as querying probabilistic data.
Similar to probabilistic objects, the number of possible worlds of a fuzzy database is expo-
nential in the number of fuzzy database objects, since there may be one possible worlds for
each combination possible shapes of fuzzy objects. Furthermore, in each possible world, a
fuzzy object is no longer described by a single point, but rather by a, generally large, set
of points. This makes the problem of querying fuzzy objects at least as hard as querying
probability objects. Nevertheless, this chapter has shown that efficient query processing is
possible, by efficiently answering an important class of spatial queries, the class of prob-
abilistic ranking queries. This first step opens up a number of further research paths.
While other types of spatial queries, as defined in Chapter 1 require novel solutions, other
problems, such as shape-based similarity between fuzzy objects need to be studied. This
problem requires to find, for two given fuzzy objects, the probability distribution of the
similarity between these objects, where similarity is defined by existing similarity measures
for spatially extended (certain) objects. Also, models are required to capture the change,
in location and shape, of fuzzy objects over time. Here, a future vision is to co-operate with
geographers, geologists and meteorologist to provide domain specific models, for example
to model the past and future motion of a cyclone between observations. Such a project
may require to adapt the techniques presented in Part V, to model the location, as well as
the shape of a fuzzy object between discrete observations.
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Semantically Rich Geo-Spatial Data

In modern applications, spatial and spatio-temporal data is enriched by multiple additional
sources or contexts such as social data, text, multimedia data and scientific measurements,
called multi-enriched geo-spatial data. A novel research challenge is to search and mine this
wealth of multi-enriched geo-spatial data. Recent state-of-the-art methods for analyzing
enriched geo-spatial data are limited to an enrichment by at most one additional data
source. In the future, we envision to develop new techniques manage, query and mine
multi-enriched geo-spatial data. Such techniques will again need modern techniques to
properly handle the uncertainty as well as the temporal variability of such data.

20.1 Overview

The four classes of context which are most relevant to current applications and are described
in the following.

• Social data contains information about real-life social activities of people, such
as friendship relations, shared activities and common interests. The dimension of
location brings social networks back to reality, bridging the gap between the physical
world and online social networks.

• Textual data consists of raw text information, such as user reviews, news articles
and textual descriptions of objects. This data can contain textual location informa-
tion, or it can be tagged with geographic information. Explicitly using this location
information permits to find information that is not only related to the textual con-
text, but also geo-spatially related.

• Multimedia data, particularly audio-visual and image data, has become ubiquitous
as millions of pictures and video files are shared every day. While the extraction of
content information from multimedia data has been well studied, we need to explore
new possibilities of combining this content and geo-spatial information.
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Figure 20.1: Semantically Rich Geo-Spatial Data: An Overview.

• Scientific Measurement Data arises in many applications where feature values
are extracted from the physical world, including objects (such as archeological arti-
facts like bones, skeletons, coins) as well as application specific parameters (such as
environmental measurements or medical data). Spatial location is an inherent but
underused component of these data types.

A need for this project arises from the fact that, on the one hand, such contextually en-
riched geo-spatial data is collected and published ubiquitously all over the world, creating
extremely large sets of data but, on the other hand, we still lack proper methods to an-
alyze this wealth of data in order to utilize the immense amount of hidden knowledge.
The collection of this data has become possible due to the widespread availability of new
technologies for collecting, publishing and sharing data, such as modern sensor and com-
munication technologies, smart mobile devices, and advances in web-based technologies.
Therefore, a variety of popular applications where users can voluntarily publish geo-tagged
information, leads to an explosion and continuously growing bulk of such data. For exam-
ple, users can comment on an event at the exact place where the event is happening (e.g.
via Twitter), voluntarily share their present location on a website (such as Foursquare) for
organizing a group activity in the real world, record travel routes with GPS trajectories
to voluntarily share travel experiences in an online community (for example GeoLife), or
log jogging and bicycle trails for sports analysis and experience sharing (as on Bikely).
Obviously, this data contains an incredible wealth of information that could be discovered
with appropriate data analysis techniques, in order to improve other scientific disciplines
or simply everydays life. While analyzing single-enriched geo-spatial data, i.e., data en-
riched by only one additonal context, is already a challenge by itself, considering several
additional contextsi.e., dealing with multi-enriched geo-spatial data obviously provides an
even more significant gain for data analysis applications since it will reveal a new level of
knowledge that could not have been derived before.

As an example application where multi-enriched geo-data can be used for the benefit
of all, consider the application “Google Flu Trends”. Google Flu trends helps to monitor
a disease such as influenza (flu) or dengue fever using aggregated Google search data of
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related search terms, as well as location information about the origin of these searches.
It estimates and predicts flu activity closely matching clinical data, but preceding it by
1-2 weeks, and, thus, gives an extra time for taking precautious measures due to the use
of geo-spatial data enriched by textual information, i.e., geo-textual data. Furthermore,
individuals can use information about flu activity in their spatial vicinity to estimate their
probability of catching a flu, in order to take appropriate actions. However, with multi-
enriched geo-spatial data, it is possible to go even further, e.g. by additionally integrating
geo-social context and geo-scientific context. When people catch a flu, they may publish
this information including their symptoms in one of their social networks. This information
can be used to adapt the a-posteriori infection probability of friends they recently met.
Additional data from medicine, such as incubation time and infectious period correlated
with the published symptoms can then be used to warn individuals having a high likelihood
of being or becoming infected. These warnings will not only allow these individuals to take
actions to alleviate their disease and possibly even prevent a breakout. Furthermore, these
warnings will give individuals an awareness of their condition in order to prevent infection
of their friends, thus breaking the chain of infection.
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20.2 Research Directions

In the future, more applications will arise where multi-enriched geo-spatial data will emerge
in big quantities. In all of the applications, the ability to properly handle the aspects of
uncertainty and temporality of such data will be paramount. Temporal information is
inherently tied to spatial information in modern geo-spatial data, as geo-tags associated
with any kind of semantic data are always associated with a time stamp. Uncertainty is
not only a direct consequence of temporal information, and thus the presence of obsolete
and outdated information, but it is also a direct result of the process that generates such
data. data obtained by crowd-sourcing is inherently uncertain, as individual humans may
give incorrect information, due to lack of better knowledge, or deliberately due to lack
of time or interest. Next-generation networks ([120]) have inherent uncertainty, due to
measurement errors leading to contradictory data.

For this reason, the research field of managing and mining multi-enriched geo-spatial
data is a natural follow-up to the research presented in this thesis. In order to achieve the
goal of successfully query and mine multi-enriched geo-spatial data a series of subtask has
to be solved:

• Modeling Multi-Enriched Geo-Spatial Data. In subtask, we have to cope with
both the heterogeneity and uncertainty of contextually enriched geo-spatial content,
as such data is often derived from a large variety of different sources and contexts,
including social information, textual descriptions, images, sensor and other scientific
measurements, trajectories in space and time and many others. We will develop
techniques to synchronize heterogeneous data sources that may be inconsistent, as
most sources of geo-spatial data are inherently uncertain, due to impreciseness of
sensing devices, due to a possible obsoleteness of information, and due to human er-
rors which are ubiquitous in user-generated content. In this subtask, this uncertainty
will be addressed by exploring new directions for handling uncertainty effectively and
efficiently in order to avoid inaccurate and possibly wrong results. In addition to the
heterogeneity of sources, a further challenge is to cope with different types of data.
There will be a crucial need for new algorithmic approaches to search in geospatial
data that also contains textual information (i.e., geo-textual data), e.g. modelled as a
high-dimensional term frequency vector, temporal information (i.e., spatio-temporal
data), e.g. modelled as a time series, social information of users (i.e., geo-social
data), e.g. modelled as a graph, and more. This subtask requires to find a suitable
data representation to maximize the amount of useful information captured. Finding
proper data models and choosing smart strategies for feature selection are vital re-
quirements to store information in a concise way, in order to efficiently and effectively
describe, induce and explore information. Once suitable models to describe the data
have been developed, it is crucial to define distance measures, in order to determine
functions to measure similarity and dissimilarity for contextually enriched spatial
objects. For example, we need to cope with questions like which pair of individuals is
more similar? The answer to this question could e.g. be a pair of individuals having
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a spatial distance of 10 km and a social distance of 2 (as defined by the shortest path
in some given social network), or a pair having a spatial distance of 20 km and a
social distance of 1. Thus, the main challenge when deciding which pair is the proper
answer for a given query is to combine spatial- and semantic distance (or similarity)
measures in a meaningful way.

• Querying Multi-Enriched Geo-Spatial Data Based on sufficient techniques
for modeling contextually enriched geo-spatial data, we can define useful similar-
ity queries such as ε-range queries, kNN-Queries, RkNN queries and ranking queries.
An example of such a query using geo-textual data is return the five news articles
most relevant to the keywords Car Theft in my spatial proximity (i.e., having a spa-
tial distance of less than ε to my house). Another example using geo-social data is
return a group of five people in my close vicinity that are strongly connected in a
social graph, in order to advertise a group offer such as a free restaurant table to
this group. An example combining more than one semantic data source is a query
such as give me a warning if I have recently been close to friends that has published
information that he now shows symptoms of the flu..

We need a semantically meaningful approach of combined query evaluation that com-
bine spatial and semantical features. Such a query evaluation to develop universal
index structures that can handle uncertain spatial data as well as all different com-
binations of non-spatial data while providing good performance at the same time.

• Mining Multi-Enriched Geo-Spatial Data Mining contextually enriched geo-
spatial data poses another set of very interesting challenges. While the objectives
in data mining are generally quite diverse, different paradigms including clustering,
outlier detection, regression, classification, and frequent pattern mining all hunt for
rather diverse types of patterns. The methods on which we are focusing here share
many common basics. For example, most data mining algorithms assume vectorized
data or are based on distance computations and can be accelerated by an index that
supports similarity queries.

We envision this research direction to be the first to analyze multi-enriched geo-spatial
data, and thus will ultimately bridge the gap between the present capabilities of data
acquisition and the currently underdeveloped abilities to analyze and utilize this data to
benefit science, industry and everyday life.



368 20. Semantically Rich Geo-Spatial Data



Part VII

Summary





371

Tutorial on Managing and Mining Uncertain Spatial

and Spatio-Temporal Data

One of the main goal of this thesis is to give a thorough introduction to the field of uncertain
data management in Part II. For this purpose, a tutorial to this the field of uncertain data
and uncertain spatial data management has been presented in Part I and Part II of this
thesis. These parts contain a significant update and extension of our VLDB tutorial [157].
These sections are aimed at a graduate student level, to give a jump start to the field, and
to provide all the necessary basics to quickly follow and understand existing publications.
The knowledge of current publications is mandatory to gain a deep knowledge of the
problems and solutions of this field. This knowledge is the basis to develop new ideas, to
push the field further forward. In the short term future, we plan to use the ideas of Part
I and Part II of this thesis to compile a new conference tutorial, which will include all of
the core models, problems, ideas and techniques of the old tutorial [157], but also includes
new concepts that have only been presented in this thesis. This new tutorial will also be
extended to handle uncertainty in spatio-temporal data.

The Paradigm of Equivalent Worlds

In the last years, a large number of efficient solutions for a variety of querying and data
mining problems on uncertain data have been proposed throughout the community. All
the works solve a common problem: Given an exponential large number of possible worlds,
give a solution that runs in polynomial time. To solve these problem, all these works,
implicitly or explicitly partition the set of all possible worlds into sets of worlds, that are
equivalent with respect to the given query predicate. The query is then performed on these
partitions only, without the enumeration of each individual world. The paradigm presented
in Chapter 3 formalizes this approach, and identifies requirements which must hold in order
for this paradigm to be applicable. This formalization, helps to give an intuition to quickly
find an efficient solution for a problem that has an efficient solution. For problems not
having an efficient solutions, the formalized requirements help to identify these problems.

Querying Uncertain Spatial Data

A research field that has been covered thoroughly in Part III of this thesis is the problem of
querying uncertain spatial data. In this part, efficient solutions for the most relevant types
of probabilistic queries on uncertain spatial data have been presented. These solutions
follow the presented in Chapter 3. In particular, and efficient spatial pruning approach
for rectangles has been proposed in Chapter 5. This spatial pruning approach is enriched
by a novel probabilistic pruning approach to give an efficient solution for the problem of
k-nearest neighbor search on uncertain spatial data, presented in Chapter 6. The problem
of probabilistic similarity ranking in uncertain spatial data has been covered in detail
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in Chapter 7, presented the first solution running loglinear in the size of the uncertain
database. Previous solutions have quadric, cubic or exponential run-time. Finally, efficient
solutions to the problem of reverse k-nearest neighbor queries are presented in Chapter 8.

There exists more spatial query types, such as the spatial skyline query, which has many
applications in decision making problem. For this problem, efficient solutions for uncertain
data have been proposed by the community ([205, 148]). Yet, it might be possible to
improve these solutions by applying the paradigm presented in Chapter 3. Apart from
additional query types, from our point of view, the field of querying uncertain spatial data
is solved to a large degree - as the most relevant spatial query types have been covered. The
new challenge is to apply, adapt, and improve these solutions for new research fields, such
as querying spatio-temporal and querying multi-enriched geo-spatial and multi-enriched
spatio-temporal data.

Mining Uncertain Spatial Data

A first efficient solution for a special case of the problem of spatial co-location mining
in uncertain spatial data has been presented in Part IV of this thesis. This special case,
where the neighborhood of spatial objects is defined by its proximity to certain points of
interest, is of particular interest in geo-social networks, where points of interest correspond
to meeting places, like bars and restaurants. To solve this problem, two subproblems had
to be solved. For the first subproblem, probabilistic instances need to be computed, that
is, the probability that an object is close to a point of interested has to be computed. This
can be done by perform a probabilistic range query as described in Chapter 4. The second
subproblem is to find frequent items in the probabilistic transaction defined by the results
of the first subproblem. For this problem, an exact solution has been presented in Chapter
10, and an approximate solution has been presented in Chapter 11.

The field of mining uncertain spatial data is by no means solved. A different data
mining problem on uncertain spatial data is the problem of probabilistic spatial clustering.
We have performed initial research in the field of probabilistic density based clustering
of uncertain spatial data. Finding an efficient solution to this problem seems to be hard
problem, due to the problem of distance dependencies explained in Example 16 and Figure
4.3. Due to this problem, the density connectivity of all pairs of objects are stochastically
dependent random events, making the task of finding the probability of a cluster a hard
problem. The approach proposed in [112] ignores this problem, thus yielding only approxi-
mate results. Finding an exact approach that allows probabilistic density based clustering
on uncertain data is a future challenge. One step towards this challenge was made in
Chapter 4, where solutions for probabilistic range queries on uncertain were given. These
solutions can be applied to compute the probability that a given object is a core object, an
important component of a probabilistic version of the DBScan [68] algorithm. Other data
mining problems on uncertain data, such as spatial outlier detection remain unsolved for
uncertain spatial data.
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Modeling, Querying, Indexing and Mining Uncertain

Spatio-Temporal Data

In Part V, uncertain spatio-temporal data has been modelled as a stochastic process,
which is a time-dependent random variable. This is an intuitive extension of existing
models of (non-temporal) uncertain spatial data that is generally modelled as a random
variable. The stochastic process used in this part is a first order Markov chain, a very
simple model, that assumes that the future is conditionally independent of the past, given
the present. Thus, the future motion of an object only depends on it’s current location,
independently of where the object came from. At first, this model seems rather restrictive,
since in most applications, objects move on a shortest path between their start and their
destination, rather than taking random directions at each intersection until they accidently
find their destination. Yet, this model becomes powerful when more than one observation
is considered. When the location of an object is observed at a past, as well as a future
point of time, then the initial Markov model can be adapted to account for this additional
information. This adapted Markov model can effectively model the position of the object
between both observations. If the object has moved on a shortest path, then the resulting
Markov model will only allow shortest paths (only the shortest path if there is only one)
in its model, as all other paths would take longer than a shortest path, and thus would not
allow the object to reach the observed location in time. If the object does not move on
a shortest path, then the adapted model gives a probability distribution over all possible
detours, weighted by the probabilities of the initial Markov chain, describing empirical
directions from on location to the next.

In cases where no future observation is given, no model adaption as described above can
be made. This is a common case, in application where the future has to be predicted, rather
than the past having to be interpolated. To handle this case, a different model has been
proposed in Chapter 18. This approach uses an adaptive-order Markov chain, represented
by a suffix tree. This structure stores the probabilities of going to a successor state, given
the sequence of previous states visited. The initial suffix tree stores all trajectories that
have been observed on a given road network. Thus, to predict the future motion of a
vehicle v, given its past motion p, all past trajectories containing p, of all vehicles are
selected. The future of v is predicted empirically, by evaluating the selected trajectories.
Thus, if 100 trajectories contain p, out of which 60 trajectories take a right turn after p
and the remaining 40 trajectories take a left turn, then v will be predicted to take a right
turn with a 0.6 probability, and a right turn with a 0.4 probability. This model yields a
high prediction accuracy, in particular if the model has been trained by a large number
of past trajectories. However, the size of the suffix tree model is cubic in the number of
trajectories, thus becoming very large. An option to reduce the size of the model, branches
having a low support can be pruned. That is, trajectories that have been observed less than
minsup times, are removed from the suffix tree. This allows the same prediction quality
for vehicles moving on a trajectory that has been observed sufficiently often in the past.
However, if the vehicle moves on a rare trajectory, then a pruned branch may be reached,
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allowing no prediction to be made. Thus, the minSup parameter allows to give a balance
between prediction quality and space complexity. It should be noted, that branches having
a low support do not provide a significant prediction in the first place. Thus, minSup
should be chosen large enough to give a representative sample of past trajectories. Note
that this approach is not restricted to vehicles moving on shortest paths. Instead, any
empiric traffic patterns can be used to feed the suffix tree. An extension to general suffix
trees, rather than shortest-path-suffix-trees has been made in [114], but is not featured in
this thesis for brevity.

Final Words

In the past years, the research field of uncertain and probabilistic data management re-
ceived tremendous attention from the database research community. This fact is evident,
considering that all major database conferences, including ACM SIGMOD, VLDB and
ICDE had at least one, usually more than one research track dedicated to this field each
year. This success is impressive, considering that this research field was well ahead of
its time. Modern application fields, which are as major motivation for uncertain data,
have emerged only recently with the proliferation of the Web 2.0. For example, one such
application includes crowd-sourced database management. Crowd-sourced data is inher-
ently uncertain due human errors, due to deliberate errors and due to other factors, thus
creating a need for techniques to handle uncertain data. Another new application field
is the field of geo-social network management. In this field, both social information as
well as spatio-temporal information of users is stored. Social networks may have missing
or obsolete links, for which a correct prediction may improve the social network, while
the uncertainty of spatio-temporal data has been motivated and discussed throughout this
thesis. Solutions are required to combine both sources of information, social and spatio-
temporal, to discover new knowledge and invent new and useful applications. Finally, a
research field that will require sophisticated solutions to handle uncertainty, is the field
of semantically rich geo-spatial data. This field, as envisioned in Chapter 20, requires a
combination of data types, including social, text, multimedia and scientific data, all tied
together with spatial and spatio-temporal information. All of these data types may have
inherent uncertainty, due to measurement error, due to obsolete data, and due to the origin
of data, often derived Web 2.0 applications.

While a trend can be observed, that the number of research sessions for the field of
uncertain and probabilistic database is dropping, as most conferences only have one or
two research tracks on this field, this does not mean that the number of research papers
accepted in this field dropping. Rather, relevant research on the field of probabilistic and
uncertain databases management is moving towards these new and emerging fields, which
require solutions from this field.

In summary, the field of probabilistic and uncertain database management is relatively
young, interesting and challenging field. New arising applications have already started to
fuel this field, by creating new applications, keeping the research field strong as it is. How-
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ever, publishing papers in this field has become much more difficult over the last decade.
Initial approaches usually made very simplifying assumptions, and used rather straight-
forward models and solutions. Such approaches however were needed to fit their role as
competitors for more sophisticated approaches. While there may still be a number of un-
published approaches, that, while simple, have a certain elegance, most newer publications
in this field require an adept knowledge of the management of uncertain data. A main
goal of this thesis is to impart some of the necessary knowledge to researchers that wish
to join the field. If this thesis has inspired you, and if you managed to make your way
through the hundred of pages, then feel free to let me know, by inviting me to a beer at
any conference, or any other location that we will meet at!
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Probabilistic frequent itemset mining in uncertain databases. In Proceedings of
the 15th ACM International Conference on Knowledge Discovery and Data Mining
(SIGKDD), Paris, France (2009), pp. 119–128.

[29] Bernecker, T., Kriegel, H.-P., Renz, M., Verhein, F., and Züfle, A.
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[80] Güting, R. H., Behr, T., and Xu, J. Efficient k-nearest neighbor search on
moving object trajectories. VLDB J. 19, 5 (2010), 687–714.
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A. First international acm workshop on managing and mining contextually rich
geo-spatial data., 2014. www.dbs.ifi.lmu.de/georich14/index.php.

www.dbs.ifi.lmu.de/georich14/index.php


BIBLIOGRAPHY 391
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