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”agitate; annotate; arbitrate; artistry; back and forth; brevity; ca d’etait; can-
didate; can’t you see; can’t you stay; cape cod you say; card estate; cardio
tape; car district; catch a tape; cavitate; cha cha che; cogitate; computate;
conjugate; conscious state; counter tape; count to ten; count to three; count
yer tape; cut the steak; entity; fantasy; God to take; God you say; got a date;
got your pay; got your tape; gratitude; gravity; guard the tit; gurgitate; had to
take; kinds of tape; majesty; marmalade.”

Perceived words reported by a subject who was exposed to a looped recording
of the word ”cogitate”. First switch from the perception of ”cogitate” to
another meaningfull word after one to two minutes. Alternates switched every
10 to 30 presentations [von Foerster (1988); Naeser and Lilly (1971)].
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1 Summary

In this doctoral thesis, several aspects of information integration and learning

in neural systems are investigated at the levels of single neurons, networks,

and perception.

In the first study presented here, we asked the question of how contextual,

multiplicative interactions can be mediated in single neurons by the physiolog-

ical mechanisms available in the brain (chapter 3). Multiplicative interactions

are omnipresent in the nervous system [Salinas and Sejnowski (2001)] and

although a wealth of possible mechanisms were proposed over the last decades,

the physiological origin of multiplicative interactions in the brain remains

an open question [Koch (1999); Nezis and van Rossum (2011)]. We investi-

gated permissive gating [Katz (2003); Gisiger and Boukadoum (2011)] as a

possible multiplication mechanism. We proposed an integrate-and-fire model

neuron that incorporates a permissive gating mechanism and investigated

the model analytically and numerically due to its abilities to realize multipli-

cation between two input streams. The applied gating mechanism realizes

multiplicative interactions of firing rates on a wide range of parameters and

thus provides a feasible model for the realization of multiplicative interactions

on the single neuron level.

In the second study (chapter 4) we asked the question of how gaze-invariant

representations of visual space can develop in a self-organizing network that

incorporates the gating model neuron presented in the first study. To achieve

a stable representation of our visual environment our brain needs to trans-

form the representation of visual stimuli from a retina-centered coordinate

system to a frame of reference that is independent of changes in gaze direction

[Duhamel et al. (1997)]. In the network presented here, receptive fields and

gain fields organized in overlayed topographic maps that reflected the spatio-

temporal statistics of the training input stream. Topographic maps supported

a gaze-invariant representation in an output layer when the network was

trained with natural input statistics. Our results show that gaze-invariant

representations of visual space can be learned in an unsupervised way by a

biologically plausible network based on the spatio-temporal statistics of visual
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stimulation and eye position signals under natural viewing conditions.

In the third study we investigated psychophysically the effect of a three day

meditative Zen [Kapleau (2000)] retreat on tactile abilities of the finger tips.

Here, meditators strongly altered the statistics of their attentional focus by

focussing sustained attention on their right index finger for hours. Our data

shows that sustained sensory focussing on a particular body part, here the

right index finger, significantly affects tactile acuity indicating that merely

changing the statistics of the attentional focus without external stimulation

or training can improve tactile acuity.

In the view of activity-dependent plasticity that is outlined in this thesis, the

main driving force for development and alterations of neural representations is

nothing more than neural activity itself. Patterns of neural activity shape our

brains during development and significant changes in the patterns of neural

activity inevitably change mature neural representations. At the same time,

the patterns of neural activity are formed by environmental sensory inputs as

well as by contextual, multiplicative inputs like gaze-direction or by internally

generated signals like the attentional focus. In this way, our environments

as well as our inner mental states shape our neural representations and our

perception at any time.
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2 Main Introduction

As humans, we are in constant perceptual contact with our environment via

our sensory organs that translate physical states into chemical and electrical

signals which are meant to be the language of our nervous systems. Our

nervous systems integrate these different signals coming from our multiple

sensory organs and creates our percept of the environment. In the best case,

the internally perceived environment and the external physical environment fit

in a way that the organisms re-actions to mental phenomena in the internally

perceived environment lead to results in the physical environment that enable

the organism to survive. In the worst case they do not fit. If the canvas,

the brushes, and the colors that create my internal representation of the

environment are not adequate, my actions will lead to tremendous problems

for me - and maybe also for the environment.

How does our nervous system gain the ability to fit our inner perceptual world

to the external physical world so that I am able to survive by interacting

properly with my environment? How does it select adequate brushes and

colors to paint a picture onto the canvas of my inner conscious world that helps

me to act adequately in the environment? How do these abilities emerge?

Is our perceptual world fixed from the moment of our birth, an inception

that empowers us with our skills? Are we equipped with a nervous system

painting pictures on the white canvas of our conscious world with a fixed set

of painting skills, sets of colors and only a few brushes? Are we genetically

determined, prewired, and predefined in the way who we are and what we

perceive? Or are we constantly developing beings, born as the white canvas

of our conscious world and equipped with a nervous system that constantly

adapts its painting skills and its artist’s workroom with constantly changing

sets of brushes, spatulas and color sets according to the very actual pictures

it is asked to paint and that arranges its workroom due to the experiences

we make throughout our lives? Furthermore, if the second is true: Is there a

point, at which development stops or are we in a constant state of development

and thus endowed with the opportunity to change ourselves, the way we see

the world, and the way we act in it at any time?
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2.1 Main Questions

Let us assume that our environments constantly change1. In a constantly

changing environment it is not beneficial for organisms to genetically pass

on a fixed set of perceptual abilities from one generation to the next. This

is because these fixed sets would quickly become obsolete when faced with

the changing environment and next generations would no longer be able to

interact with their environment in an adequate way.2

In contrast to genetically passing on a fixed set of perceptual abilities from

one generation to the next is the idea of passing on the ability of the nervous

system to develop and to adapt its perceptual and acting abilities according to

that actual world that calls the organism to respond to it. The central idea of

this developmental, adaptational view of the nervous system is a steady state

of use dependent self-organization that serves to constantly match perceptual

and acting abilities to the actual environment the organism is confronted with

[Dinse and Merzenich (2002)]. In this view, perception is a circular process in

which the world we perceive and in which we act, forms the way we perceive

the world.

Viewing brains as self-organizing systems, the main driving force for devel-

opment and adaptation of neural representations is neural activity [Singer

(1986)]. Patterns of neural activity shape our brains during development

and significant changes in the patterns of neural activity inevitably change

mature neural representations. At the same time, the patterns of neural

activity are formed by environmental sensory inputs as well as by contextual,

multiplicative inputs like gaze-direction or by internally generated signals like

1Two hundred years ago, there were no cars. Five years ago, cars looked different than
today. My girlfriend left last year, a new one came, my neighbour has got new glasses, in
summer, leaves are green, in winter there are no leaves. I do not own a cat nor a car, but
I think about getting both, ten years ago I had five friends in my home town, today, I
am supposed to have fivethousand on Facebook. I lived in Munich last year, now I live in
Freiburg. It seems reasonable to assume that our environments constantly change.

2If you are interested in a funny but nevertheless serious statement of what may happen,
if you approach a new environment with old sets of perceptual abilities and opinions, I
recommend the book Briefe in die chinesische Vergangenheit by Herbert Rosendorfer, in
which a chinese Mandarin from the 10th century is supposed to wake up in 20th century
Munich after traveling in a time machine.
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the focus of controlled attention. It all collapses into two questions:

• How does our environment shape our neural representations and the way

we perceive the environment and which role do contextual influences

play in this process?

• How do factors in our inner world, for example our interests, the way we

pay attention to things and the way we are aware of phenomena, shape

our neural representations and the way we perceive the environment?

This doctoral thesis will try to contribute scientific knowledge to these ques-

tions. Moreover, the results will support the adaptational, developmental

view of the nervous system. But before I begin presenting the conducted

studies, let me introduce you to a few fundamentals of neuroscience that are

important in order to understand the presented studies and to classify them

into the contemporary view of the nervous system.3

2.2 Outline

In the next chapters I will go deeper into the above mentioned topics and

questions concerning learning and perception. I will briefly review the neuro-

scientific view of how physical stimuli in the environment are transformed into

the language of the nervous system: chemical signals, electrical potentials, and

action potentials. I will review the concept of receptive fields and topographic

maps which lie at the core of the question of how the brain encodes and

represents its environment. I will look at the ability of the nervous system to

integrate signals originating from different sensory modalities into one neural

response, a topic known as multimodal integration. Here, the interaction

between primary sensory information and contextual information is especially

relevant. The study ”Multiplication in Neurons via Permissive Gating”, which

will be presented in chapter 3, is thematically rooted here, because contextual

interactions are thought to be mediated by multiplicative interactions in

3Fundamentals of neuroscience will be presented densely and briefly in this introductory
chapter. For further studies I recommend the extensive introductory material presented in
the books ”From Neuron to Brain” [Kuffler et al. (1984)], ”Neuroscience” [Purves et al.
(2004)] and ”Gehirn oder Geist - Wer und was sind wir?” [Bauer (2008)].
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neurons. Furthermore, I will discuss how neural representations are formed

by stepping into the developmental, adaptational view of the nervous system,

reviewing literature on learning and self-organization. This will form the

basis for the study ”Unsupervised Learning of Gaze-Invariance” presented in

chapter 4 in which it is shown that gaze-invariant representations of visual

space can be learned by a self-organizing network. However, once established,

these neural representations are not static but are in a constant state of use

dependent self-organization that keeps brain organization and functionality

plastic for the whole lifetime of an organism. Reviewing the concepts of

neural plasticity, perceptual learning and attention, I will form the basis

for the study ”Improvement of Tactile Perception by Meditation” which

will be presented in chapter 5. In this study, I will present an experiment

investigating the effects of sustained attention in adults on the perceptual

abilities in the somatosensory area.

Regarding the above mentioned main questions of this thesis, the study

”Multiplication in Neurons via Permissive Gating” can be seen as a prepara-

tory investigation for the study ”Unsupervised Learning of Gaze-Invariance”,

where the two studies ”Unsupervised Learning of Gaze-Invariance” and ”Im-

provement of Tactile Perception by Meditation” directly relate to the main

questions.

After the introduction I will go on presenting the three studies separately and

I will discuss the results of the three studies in chapter 6.

2.3 Sensory Organs and Neurons

2.3.1 Sensory Organs

Our sensory organs form the contact stage between our physical environment

and our brain. Sensory organs are specialized modalities composed of even

more specialized sensory receptors that act as measuring instruments pro-

jecting the wealth of physical states in the environment onto their respective

state space. For example, our eye is specialized in detecting electromagnetic

waves of wavelengths in a range between around 400nm and 800nm, whereas
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our ear is specialized in detecting sounds in a frequency range between around

16Hz and 20000Hz. The huge part of the physical environment beyond those

tiny ranges is not considered.

Sensory receptors in the eye are selective for special frequency bands of light

and translate the frequency-dependent light intensity into chemical and electri-

cal signals. Sensory receptors in the inner ear are mechanical receptors: Sound

reaching the eardrum undergoes a frequency analysis in the inner ear resulting

in deviations of the basial membrane where different sound frequencies lead to

deviations at different positions of the basilar membrane. Frequency-selective

sensory receptors detect those deviations and translate them into chemical

and electrical signals. Sensory receptors in the skin detect different aspects

of touch and also translate them into chemical and electrical signals. Our

smell and taste receptors detect that specific aspects of the environment on

which they are specialized on - odorants. All sensory receptors share one

principle: physical states in the environment are transformed into chemical

and electrical signals.4

Our sensory organs, confronted with an unthinkable wealth of physical states,

measure those tiny aspects of these states that proved to be functionally mean-

ingful in evolution. To me it feels like a miracle that our organisms are able

to, first, effectively detect the specific information important for our survival

and that, second, it creates from these different information sources a single,

continuous and integrated internal representation of the environment on the

canvas of our consciousness that feels so unbeliveably real and overarching.

The basis for this miracle is that the results of the measurements made by the

sensory receptors can be transmitted into stages that are able to construct use-

full content from these measurements. This will be elaborated in the following.

2.3.2 Neurons, Synapses & Action Potentials

In the common neuroscientific view, the basic mediators of information con-

tent in the brain are neurons. The human brain contains about 1012 neurons,

4Statements in this paragraph are based on scientific views presented in textbooks such
as [Purves et al. (2004)].
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each forming several thousand synapses, the functional contacts between

neurons. Physiologically, neurons are cellular components of the brain [Cowan

and Sharp (1988); Ramon y Cajal (1911, 1984)] able to conduct electrical

pulses rapidly over large distances.

Neurons. Typically, neurons are viewed as consisting of dendrites, a soma,

an axon, and synapses. A dendrite is a short, branching process of cellular

extensions specialized to act as the receptive network of the neuron receiving

electrical and chemical stimulation from sensory receptors or other neurons

and transmiting it to the soma. Each neuron has numerous dendrites with

profuse dendritic branches. The soma is the cell body of a neuron and contains

the nucleus and most of the metabolic machinery of the cell. The axon is the

electrically active process of a neuron being able to transmit action potentials,

the main mediator of the neural code [Hodgkin (1951); Hodgkin and Huxley

(1952); Rieke et al. (1999)]. Neurons mostly have only one axon, but this

undergoes extensive branching enabling communication with many target cells.

Synapses. The functional contacts between neurons are synapses. Synapses

consist of a presynaptic terminal bouton separated by a narrow gap, called the

synaptic cleft, from an area of postsynaptic membrane containing receptors.

At a chemical synapse, a release of neurotransmitters from the presynaptic

terminal triggered by changes in the membrane potential of the presynaptic

neuron carries a signal to the receptors on the postsynaptic membrane. In

this way, the electrical excitability in the postsynaptic neuron is influenced.

Chemical synapses can mediate either excitatory or inhibitory effects. Here,

excitation is the depolarisation of the membrane potential of a postsynaptic

neuron, the electrical potential difference across a neuron’s membrane. Excita-

tion increases the likelihood of an action potential in the postsynaptic neuron

to occurr. Inhibition is the hyperpolarization of the membrane potential of

a postsynaptic neuron, reducing the likelihood of an action potential in the

postsynaptic neuron.

Action potentials. An action potential or spike is a large (≈ 100mV)
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and short (≈ 1ms) electrical signal that is executed when the membrane

potential of a neuron is strongly depolarized such that it exceeds a spiking

threshold [Lapicque (1907); Brunel and van Rossum (2007); Adrian (1914);

Hodgkin (1951); Hodgkin and Huxley (1952)].5 Action potentials propagate

without failure, in an all-or-none fashion, along the neurons axon to its presy-

naptic terminal and evoke a response in a postsynaptic neuron [Eccles (1964)]

in the form of a postsynaptic potential. When the membrane potential of the

postsynaptic neuron exceeds its threshold due to input by synaptic potentials,

another action potential is generated in the postsynaptic neuron.

The specificity of synaptic connections between neurons forms the basis for

selectivities of neurons and for the development of neural representations as

discussed in the next chapter.

2.4 Neural Representations

2.4.1 Receptive Fields

The receptive field of a neuron is defined as the region of sensory state space

the stimulation of which leads to excitation or inhibition of the neuron. The

receptive field in this way describes the selectivity of a neuron to specific

stimuli [Sherrington (1909)]. In the special case of visual receptive fields

in early stages of computation, the term refers to the spatial position in a

respective coordinate frame (e.g. retinal position) and to the quality (e.g.

color, spatial shape) a visual stimulus must have to cause a response in the

neuron. The response of a neuron can be characterized by determining its

average firing rate as a function of the stimulus parameter under consideration.

The firing rate of a neuron is defined as the number of action potentials per

second produced by a neuron. Other neural codes such as timing, latency

or synchrony codes are possible [Theunissen and Miller (1995); Rieke et al.

(1999); Vanrullen et al. (2005); Gollisch (2008); Brostek (2012)]. However, in

this study I will focus on the firing rate code. Determining the firing rate

for different stimuli allows to determine a response tuning curve [Dayan and

Abbott (2002)], which specifies the selectivity of the neuron with respect to

5Other views on action potential generation are presented in [Izhikevich (2007)].
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the parameters under consideration. For example, neurons in primary visual

cortex (V1) of cats are tuned to bright or dark bars of certain orientations

that are presented at specific retina-centered positions [Hubel and Wiesel

(2005)]. Here, the retina-centered position of an object specifies the position

of an objects image on the retina with respect to the center of the retina. The

retina-centered position of objects changes when the direction of gaze changes.

Objects positions can also be represented in other frames of reference: a

head-centered and body-centered frame of reference is specified by an objects

position with respect to the center of the head or the body, respectively

(read more in chapter 4). Most visual neurons at early visual stages have

receptive fields that are retina-centered. Selectivities for stimuli are mediated

by specific patterns of connectivity in neural networks combining excitatory

and inhibitory connections as well as other forms of synaptic and dendritic

integration [Dayan and Abbott (2002)].

A feature of neural representations is the organization of selectivities in

topographic feature maps.

2.4.2 Topographic Maps

Topographic maps are found in many areas of sensory and motor pathways

[Kaas (1997); Swindale (2000); Brown et al. (2000); Chklovskii and Koulakov

(2004); Thivierge and Marcus (2007)]. In a topographic map, neurons that

are spatially close together encode similar stimulus properties [Thivierge and

Marcus (2007)]. An example of topographic maps is found in visual area

V1 [Hubel and Wiesel (1974); Hirsch and Gilbert (1991); McLaughlin and

O’Leary (2005)]. Neurons in area V1 are retinotopically organized. This

retinotopic organization is superimposed by an orientation topography, where

neighbouring populations of neurons respond to edges of similar orientation

[Hubel and Wiesel (1974)]. Topographic maps are not limited to the case of

ordered mapping of visual content. For example, in somatosensory cortex,

selectivities for skin regions are arranged in a topographic map that reflects

the positions of the skin regions in the body.6

6In the cochlea, the organ of hearing in the inner ear, there is a tonotopic map ordered
by frequency that projects to the auditory cortex [Weisz et al. (2004)]. In the olfactory
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Before I will go on reviewing theories of how receptive fields and topographic

maps develop, let me review the concept of multimodal integration.

2.5 Contextual or Multimodal Integration

Contextual or multimodal integration is the ability of a neuronal system to

integrate information from different sensory sources into one neural response.

Multimodal interaction is widespread in the brain [Hassenstein and Reichardt

(1956); Reichardt (1961); Andersen and Mountcastle (1983); Andersen et al.

(1985); Brotchie et al. (1995); Treue and Martinez-Trujillo (1999); McAdams

and Maunsell (2000); Gabbiani et al. (2002); Freeman (2004); Womelsdorf

et al. (2006)]. The benefit for an organism having the capability for this

multimodal integration is that it must not only rely on one specific type of

sensory modality in order to orient itself in the world but that it can combine

information from different sensory modalities and form a more reliable percept

of the envoironment.

A physiological mechanism that could underlie multimodal interactions is

gain-modulation [Salinas and Sejnowski (2001)]. Here, primary sensory inputs

and contextual inputs are combined in the output firing rate of one neuron.

A primary sensory input elicits an output firing rate in a neuron due to its

receptive field [Hubel and Wiesel (1962)]. The gain of this tuning function

is modulated by a contextual input source in a nearly multiplicative way

while the tuning concerning the primary sensory input is unaffected. Parallel

to the concept of the receptive field, the selectivity of the gain-modulatory

effect with regard to its sensory source can be called gain field. A prominent

example of gain-modulation is the nearly multiplicative modulation of retina-

centered tuning curves in parietal cortex of macaque monkeys by gaze direction

[Andersen and Mountcastle (1983)] which will be a central aspect in the

system there is a map where functionally similar neurons (representing specific odorants)
of the olfactory epithelium project onto specific modules of the olfactory bulb regardless of
their spatial location [O’Leary et al. (1999)]. In area TEd of the inferotemporal cortex,
topography of complex features, even for characteristics of object views were found: different
views of faces evoke activity in nearby populations of neurons [Wang et al. (1996)] which
suggests that some features of high dimensional input space are mapped continuously in
adjacent regions [Tanaka (1996, 2003)].
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study ”Unsupervised Learning of Gaze-Invariance” presented in chapter 4.

In the study ”Multiplication in Neurons via Permissive Gating” that is

presented in chapter 3 we investigate permissive gating [Katz (2003); Kepecs

and Raghavachari (2007); Gisiger and Boukadoum (2011)] as a possible

physiological mechanism that could underlie gain modulation and contextual

interactions.

Let us now focus on theories of how receptive fields and topographic maps

develop.

2.6 Learning and Early Perceptual Development

One problem in neurophysiology has been to understand the origin of feature-

sensitive neurons and their spatial order with regard to topographic represen-

tations: How are receptive fields, selectivities and topographic maps formed

in sensory areas? How do they develop?

2.6.1 The Brain as a Self-Organizing System

Genetic information is insufficient to explain the huge amount of specific

connectivity between the approximately 1012 neurons in a human brain [Singer

(1986)]. In contrast to this is the view of the brain as a self-organizing system.

Here, during the early phase of brain development, the detailed form and

function of cells as well as the coarse connectivity between cells are shaped

by biochemical signals that are communicated between nearby neurons and

glial cells [Singer (1986)]. However, when neurons become electrically active,

connections between nerve cells undergo a process of activity-dependent self-

organization. In embryogenesis, basic connections in the nervous system

are shaped by self-generated spontaneous activity [Singer (1986); Firth et al.

(2004); Feller (2009)]. After this process, self-organization as a function of

sensory experience becomes more and more important.

2.6.2 Sensory Experience and Development

Numerous experiments indicate that the detailed, specific connectivities in

the brain are nurtured by sensory experience in a steady process of self-
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organization. In visual cortex I of grown up cats, monkeys, and other species,

neurons being selective for bars of different orientations can be found [Hubel

and Wiesel (1962, 1968, 2005); Kuffler et al. (1984); Bosking et al. (1997)].

Orientation selectivities of different cells are distributed around the clock with

each orientation appearing with equal probability [Hubel and Wiesel (1962);

Blakemore and Cooper (1972)]. Restricting the early visual environment of

cats to stripe patterns of one orientation biased this distribution of orientation

selectivities towards the stripe patterns a cat was exposed to [Hirsch and

Spinelli (1971); Blakemore and Cooper (1972); Pettigrew et al. (1973)]. If a

cat was exposed to an environment with horizontal or vertical stripes, mostly

cells could be found that were selective for horizontal or vertical stripes,

respectively. The selectivity and organizational structure of neurons in early

visual cortex seems to depend strongly on the environment an organism is

exposed to during its early development. These representations seem to be

shaped by experience.

2.6.3 Synaptic Plasticity

Developmental processes and learning processes in general are based on

changes on the synaptic level. The first anatomical theory of learning goes

back to 1885 where Alexander Bain proposed: ”For every act of memory,

every exercise of bodily aptitude, every habit, recollection, train of ideas,

there is a specific grouping or co-ordination of sensations and movements

by virtue of specific growths in the cell-junctions.” [Bain (1855); Cooper

(2005)] Phenomena of learning and memory are ascribed to groupings on

the intracellular range, whereas the belief of a separate brain area that is

responsible for learning and memory has taken a backseat since then. The

idea that learning mechanisms are based on dependencies between single

neurons can be seen as the basis for today’s theories about learning. Today

it is widely believed that activity-dependent plasticity of synaptic efficacies

forms the basis for learning and memory [Dayan and Abbott (2002)].
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2.6.4 Spike-Timing-Dependent Plasticity

In 1949, Donald Hebb supposed that if a presynaptic neuron A often con-

tributed to the firing of a postsynaptic neuron B, the synapse from neuron A

to neuron B would be strengthened [Hebb (1949)]. Indeed, experiments have

shown that the temporal order of pre- and postsynaptic spiking determines

the sign and amplitude of changes in the synaptic efficacy [Zhang et al. (1998)].

Within a window on the order of tenths of milliseconds between pre- and

postsynaptic spike, the sign of long-lasting synaptic modification depends

on the order of spiking: A presynaptic spike that precedes a postsynaptic

spike produces long-term potentiation (LTP), the persistent strengthening

of synapses lasting hours to days [Bliss and Lomo (1973)]. A presynaptic

spike that follows a postsynaptic spike results in long-term depression (LTD)

[Murkey and Malenka (1992); Kirkwood and Bear (1994)] of synaptic efficacies,

a persistent weakening of synapses lasting hours to days. This mechanism

is referred to as spike-timing-dependent plasticity (STDP) [Markram et al.

(1997); Magee and Johnston (1997); Bell et al. (1997); Bi and Poo (1998); Dan

and Poo (2004); Song et al. (2000)]. These changes in synaptic efficiacy are

able to shape receptive fields and the neurons selectivities. Hebb’s postulate

is in line with these findings as a synapse is strengthened only when a presy-

naptic spike precedes a postsynaptic spike and therefore can be interpreted

as having contributed to it.

2.6.5 Self-Organization of Topographic Maps

The emergence of topographic maps can be explained by self-organizing net-

works. The emergence of topographic maps of feature-sensitive cells was first

demonstrated in simulations by von der Malsburg (1973) and extended by

Kohonen (1982, 1984). Those self-organizing networks rely on three main ele-

ments: Hebbian learning in forward connections, short range lateral excitation

and long range lateral inhibition. This scheme of pattern formation by local

self-activation and lateral inhibition occurs in many different developmental

situations, from single cells to mammalian embryology [Meinhardt and Gierer

(2000)]. In a process of self-organization where the system changes its synaptic



2 MAIN INTRODUCTION 19

weights due to the activity in the network and the input layers, the feature

maps form according to the interaction of stimuli, recurrent connections in

the network and learning parameters.

Self-organizing networks can learn orientation maps similar to the ones found

in visual cortex when they are trained with a stimulus set of oriented bars

[Kohonen (1982, 1984); Choe and Miikkulainen (1998)]. In these models,

spatial correlations (i.e. the spatial similarity between stimuli) are the crucial

feature which enables the models to form topographic maps: Orientations

that are highly spatially correlated are represented in nearby regions of the

topographic map. The mapping of spatial statistics in the environment

onto spatial relations in neural representations is a substantial feature of

self-organization of topographic maps in the brain.

2.6.6 Temporal Invariance Learning

Not only spatial statistics, but also temporal statistics play a major role

in the self-organizing process of the brain. These temporal statistics are

especially important in the development of invariant object recognition: the

ability to recognise familiar objects independent of the viewing conditions.

Here, the problem is that a small change in viewing angle, viewing distance,

illumination, and gaze direction can cause a dramatic change in the retinal

image of an object. In order to achieve invariant object recognition, our visual

system has to develop a representation which is insensitive to the dramatic

changes in the retinal image; but which is sensitive to object-specific qualities

of the sensory input. These relevant qualities provide a cue for object identity.

In a natural scene object identities are largely temporally invariant on the

time scale of changes in gaze direction, viewing angle or other parameters.

Therefore a cue for learning object identities is temporal invariance.

Földiák (1991) proposed a modified Hebbian learning rule that serves as a

model for explaining the development of temporally invariant representations.

The so called trace rule changes synaptic weights according to the temporal

correlation between pre- and postsynaptic spiking activity. Weight changes

depend not on instantaneous correlations only as in the Hebb rule but also
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on the postsynaptic spiking history, which is preserved in a memory trace

and can be described as a temporal low pass filtering of the postsynaptic

activity. This has the effect that activity at one moment influences learning

at a later moment and allows for learning features in the environment that

are invariant over time - e.g. object identities. Several other mechanisms were

proposed for learning invariant representations through temporal correlations

which explain the development of essential neural properties such as the

phenomenon of invariant object recognition [Wallis (1996); Wallis and Rolls

(1997); Einhäuser et al. (2005); Wallis et al. (2009); Stringer et al. (2006)],

place cells [O’Keefe (1976); Wyss et al. (2006); Franzius et al. (2007)] or

complex cells in visual cortex [Wiskott and Sejnowski (2002); Einhäuser et al.

(2002); Berkes and Wiskott (2005)]. A crucial feature in these models is the

extraction of temporal statistics under natural viewing conditions: the models

learn invariances for slowly changing features in input streams which relate

to slowly changing features under natural viewing conditions. Those systems

adapt to the spatial and temporal correlations in the input streams they are

presented to.

2.6.7 Invariance Learning in Self-Organizing Networks

A biologically plausible mechanism that combines self-organization via spatial

and temporal statistics in input streams was proposed by Michler et al.

(2009). They showed that it is possible to map spatio-temporal correlations

in input signals onto a topographic map by combining the principles of short

range lateral excitation and long range lateral inhibition with the concept

of the trace-rule [Földiák (1991)]. The implementation of the trace rule is

realized by synapses with long synaptic decay time constants that mediate

the recurrent connections and serve as a memory trace due to their long time

constants. These synapses have a physiological correlate in the binding period

of glutamate in NMDA channels [Wallis and Rolls (1997)]. The network

architecture will be described in detail in section 4. The network maps

spatio-temporal correlations in the input sequence upon the topography of

a self-organizing map, which has similar properties as the object feature
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topography in the inferotemporal cortex [Gross et al. (1985); Rolls et al.

(1985); Rolls and Baylis (1986); Rolls et al. (1987); Tovee et al. (1994); Ito

et al. (1995); Tanaka (1996); Wang et al. (1996); Tanaka (2003)].

2.6.8 Self-Organization of Contextual Interactions

In this section the view of how sensory representations and receptive fields

develop in resonance with sensory experience in young organisms was reviewed.

Spatio-temporal statistics, synaptic plasticity and self-organizing networks

are the main key-words to keep in mind here. By this it can be explained, how

receptive fields and topographic maps are formed. However, it is still an open

question how contextual interactions like gain fields develop. Attempts have

been made to answer this question [Zipser and Andersen (1988); Mazzoni et al.

(1991); Salinas and Abbott (1997); White and Snyder (2004); Davison and

Fregnac (2006)]. However, these models are quite unphysiological. In chapter

4 we will present the study ”Unsupervised Learning of Gaze-Invariance” in

which a physiologically plausible model for the development of contextual gain

fields in visual cortex is investigated which is based on the network presented

by Michler et al. (2009).

In the last chapter we focussed on reviewing the neuroscientific view of

neural development concerning the question of how neural representations are

formed in young organisms. Let us now consider the question of how plastic

cortical representations in adult brains are.

2.7 Neural Plasticity in Adults

In visual cortex I of normally grown up cats, columnar regions of neurons

can be found that respond to inputs of either the right eye or the left eye

[Hubel and Wiesel (1962); Bienenstock et al. (1982); Freeman (2004)]. In their

pioneering experiments, Hubel and Wiesel [Hubel and Wiesel (1965)] found

that by patching one eye in young kittens, most neurons in visual cortex I

responded to inputs from the open eye. Only a few cells were found to be

activated by inputs to the patched eye: the structure of ocular dominance



2 MAIN INTRODUCTION 22

columns was strongly altered. Transferring the patch during a critical phase

of the first few months of the kittens life to the open eye inverted the effect.

After that critical phase, an inversion of the effects could not be observed

any more. These experiments established a view of early sensory areas as

being plastic during early development but being hardwired and static after

a certain critical age in adult organisms [Fahle and Poggio (2002)].

2.7.1 Adult Sensory Representations Adapt to Significant Changes

in the Environment

However, adult early sensory areas show a high degree of plasticity: Once

developed, the neural representations in early sensory areas are not static but

are in a constant process of use dependent adaptation [Dinse and Merzenich

(2002)]. In their pioneering work, Jenkins et al. (1990) showed in a neuro-

physiological experiment with adult owl monkeys, that finger stimulation over

about ten days altered the neural representation of the stimulated fingers in

primary somatosensory cortex. Characteristics of receptive fields as well as

topographic representations of fingers differed greately from that recorded in

control experiments. The results of Jenkins et al. (1990) showed a clear effect

of training on early sensory representations in adult owl monkeys and were a

milestone - if not the foundation stone - in the field of Neuroplasticity. Use

dependent plasticity of somatsensory areas was also shown in adult humans.

Comparing the cortical representation of fingers in professional string players

and controls showed that the cortical representation of the left hand of string

players was larger than that in controls [Elbert et al. (1995)]. A wealth of

studies report similar effects of training on cortical reorganization [Godde

et al. (1996); Jürgens and Dinse (1997); Dinse and Merzenich (2002); Dinse

et al. (2003); Lissek et al. (2009)].

2.7.2 Perceptual Learning

Sensory experience or training specifically influences perceptual performance

by changing the coding properties in primary sensory areas [Fahle and Poggio

(2002)]. For example practicing to discriminate small orientation deviations
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of a horizontally aligned visual stimulus leads to improvements in perceptual

performance for horizontal stimuli but not for vertically aligned stimuli

[Fiorentini and Berardi (1980)]. In the same way improvements of vernier

discrimination are specific for stimulus orientation [Fahle (1997)]. Moreover,

perceptual improvements of texture discrimination are highly eye-specific

[Karni and Sagi (1995); Fahle and Morgan (1996)]. This has led to the

assumption that the neural correlates of these types of perceptual learning are

native to a relatively early stage of processing where cells are both monocular

(unlike in areas beyond primary visual cortex) and orientation-specific (unlike

in the retina) [Fahle and Poggio (2002)]. Physiological experiments in primary

visual areas [Gilbert and Wiesel (1992); Fahle and Skrandies (1994)], primary

auditory areas [Recanzone et al. (1993)], and primary somatosensory areas

[Diamond et al. (1993); Wang et al. (1995); Godde et al. (2000)] inspired

by Jenkins et al. (1990) support this view of the plasticity of adult primary

sensory areas [Fahle and Poggio (2002)].

A crucial factor in perceptual learning is the phenomenon of attention [Ahissar

and Hochstein (2002)] which will be introduced in the next section.

2.8 Attention

As organisms, equipped with multiple sensory organs, we are confronted with

a tremendous wealth of messages from the environment that our brain is

asked to process in a meaningfull way in order to yield adequate information

about the environment whereas most of the messages from the environment

are behaviorally irrelevant at the moment [Treue (2001)]. Having finite

processing resources, our cognitive system needs to select some behaviorally

relevant messages or tasks and withdraw others [Broadbent (1956); Deutsch

and Deutsch (1963); Strayer and Johnston (2001); Spence and Read (2003)].

By this top-down influence the brain optimizes its processing resources by

concentrating processing on a very small portion of incoming messages [Treue

(2001)]. William James, one of the founders of psychology, stated in his book

the principles of psychology [James (1890)]:

”Everyone knows what attention is. It is the taking possession by
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the mind in clear and vivid form, of one out of what seem several

simultaneously possible objects or trains of thought. Focalization,

concentration of conciousness are of its essence. It implies withdrawal

from some things in order to deal effectively with others.”

The view of attention as a selecting mechanism is still up-to-date in psychology

[Ahissar and Hochstein (2002); Ashcraft (2005)].

2.8.1 Input Attention and Controlled Attention

In cognitive psychology, mainly two forms of attention are distinguished:

input attention and controlled attention [Ashcraft (2005)]. Input attention

denotes a mostly input-driven, reactive, involuntary process. The orienting

reflex, the immediate response of an organism to significant changes in the

environment by directing attention to the novel phenomenon, is one example

that can be captioned by the term input attention [Cowan (1995); Abrams and

Christ (2003)]. In contrast to input attention, controlled attention denotes

the act of voluntarily directing attention to phenomena that are of interest

for an organism without the necessary condition of significant changes in the

environment. ”I” control or select what I want to pay attention to and what I

want to ignore instead. This is why the ability to attend to one phenomenon

while ignoring another is also called selective attention. Here, phenomena can

be physical objects in the environment as well as thought or ideas [Ashcraft

(2005)].

Paying attention to a task has strong implications for perception and action.

For example, without directing attention to a simple reporting task, false

conjunctions are likely to be made between color and shape in an unattended

region of the displayed stimuli [Treisman and Gelande (1980)]. By directing

attention to a message spoken by one person, while being disturbed by other

messages by many other speakers, we can reliably understand the selected

message. This phenomenon is termed cocktail party effect and its reliability

depends on the physical differences between the spoken messages [Cherry

(1953); Cherry and Taylor (1954)].
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2.8.2 Neural Correlates of Attention

The process of paying attention changes the neural responses of single neurons

in the abscence of changes in sensory inputs as reviewed in [Treue (2001)].

For example, when a monkey pays attention to a given stimulus, the neurons

that encode the stimulus show enhanced responsiveness and selectivity as

well as altered tuning curves [Spitzer et al. (1988); Mountcastle et al. (1987);

Richmond and Sato (1987)]. The amount of arousal also has an effect on the

responsiveness of single neurons in visual cortex of cats in a way that neurons

of sleeping cats show a reduced signal-to-noise ratio compared to awake cats

[Livingstone and Hubel (1981)]. Top-down attentional modulations of neural

responses and neurons tuning curves go all the way back to the very primary

sensory cortices [McAdams and Maunsell (1998); Roelfsema et al. (1998);

Ito and Gilbert (1999); McAdams and Maunsell (1999); Lee et al. (1999);

Gilbert et al. (2000); McAdams and Maunsell (2000); Corbetta et al. (1990);

Brefczynski and De Yoe (1999); Gandhi et al. (1999); Martinez et al. (1999);

Somers et al. (1999); Treue (2001)]. Here, directing attention on a stimulus

seems to induce a gain-modulating effect in those neurons in primary sensory

cortices that encode the specific stimulus [Treue (2001)].

2.8.3 Attention and Perceptual Learning

Psychophysical experiments indicate that attention is essential for the learning

of simple tasks in perceptual learning [Ahissar and Hochstein (1993, 2002)].

Experimenters found a near absence of learning when subjects did not attend

to the stimulus aspects that were relevant for the task. This indicates that the

attentional focus may prevent the organism from learning irrelevant stimulus

aspects [Ahissar and Hochstein (2002)]. Furthermore, the attentional focus

increases the effectiveness of perceptual training in the auditory, visual, and

somatosensory domain [Seitz and Dinse (2007)].

In chapter 5 I will present the study ”Improvement of Tactile Perception

by Meditation”. Here, it is indicated that attention is not only an essential

ingredient for learning but that it is also sufficient: perceptual learning occurrs
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in the abscence of any external training only by paying sustained attention

to a sensory phenomenon.
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3 Multiplication in Neurons via Permissive

Gating

3.1 Abstract

Multiplicative interactions in neurons are omnipresent in the nervous system

[Salinas and Sejnowski (2001)]. However, the mechanisms that underlie

these multiplicative interactions are unclear. In this study, we investigated

permissive gating [Katz (2003); Kepecs and Raghavachari (2007); Gisiger

and Boukadoum (2011)] as a possible multiplication mechanism. Permissive

gating was modelled via two functionally different input pathways which

interact in a specific manner: input from the feeding pathway F contributes

to the somatic membrane potential of the neuron only if input from the gating

pathway G exceeds a specific gating threshold γ.

The applied gating-mechanism realized multiplicative interactions of firing

rates on a wide range of parameters and thus provides a feasible model for

the realization of multiplicative interactions on the single neuron level.

3.2 Introduction

In 1907, Louis Lapicque proposed a classical model of action potential gener-

ation in neurons which today is called the integrate-and-fire model: whenever

the sum over synaptic inputs exceeds a spiking threshold, an action potential

is generated [Lapicque (1907)]. After more than one hundred years of scientific

development, including the formulation of the Hodgkin-Huxley model which

explains the generation of action potentials via the dynamical interaction of

voltage dependent ion-channels [Hodgkin and Huxley (1952)], the integrate-

and-fire model is still a valid working hypothesis for modelling single neurons

[Dayan and Abbott (2002); Herz et al. (2006); Brunel and van Rossum (2007)].

In the view of the integrate-and-fire model an important characteristic of the

cell is its output firing rate - the number of spikes per second - in relation to

one input stream. The output firing rate is obtained by temporally averaging

over a spike train. This allows to derive the classical receptive field of the
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neuron which describes the selectivity of the neuron for a given stimulus

space. The canonical computations in those kinds of models are summation,

thresholding, and averaging. Studies published over the last decades suggest,

that this view of a neuron as a simple summation and thresholding stage that

provides an output firing rate should be revised.

In 1983 Anderson and Mountcastle found evidence for a multiplicative effect

of gaze direction on the output firing rate of neurons in area 7a of parietal

cortex of macaque monkeys that are selective for visual stimuli [Andersen

and Mountcastle (1983)]. Additional to the well known properties of neurons

showing selectivities for sensory stimuli, these neurons were found to include

contextual information about gaze direction in a non canonical, multiplicative

fashion. Such multiplicative interactions have turned out to be omnipresent

in the nervous system. The most prominent examples are source-position

estimations in the barn owl auditory system [Pena and Konishi (2001); Fisher

et al. (2007)], looming stimulus detection [Gabbiani et al. (2002)], binocular

interaction [Freeman (2004)], motion detection in the visual system [Hassen-

stein and Reichardt (1956); Reichardt (1961); Borst (2011)], gaze direction

gain fields and coordinate transforms in the visual system [Andersen and

Mountcastle (1983); Andersen et al. (1985); Brotchie et al. (1995); Ono et al.

(2010)], and modulation of neurons output firing rates by attentional context

[Treue and Martinez-Trujillo (1999); McAdams and Maunsell (2000); Wom-

elsdorf et al. (2006)].

The ability of neurons to multiply inputs implies tremendous computational

abilities for neural networks. The Stone-Weierstrass theorem [Stone (1948)]

states that any continuous function can be accurately approximated by poly-

nomials [Koch and Poggio (1992); Nezis and van Rossum (2011)]. Polynomials

are compositions of variables and constants via summation, subtraction, and

multiplication. Summation and subtraction are notorious features of neurons

equipped with excitatory and inhibitory synapses. Including the ability to

multiply inputs in this system thus allows it - in principle - to compute any

function of its inputs. In computational modelling, prominent examples for

this computational power are coordinate transformations via basis function

networks [Pouget and Snyder (2000)]. Basis function networks can be seen
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as the neural correlate of the Stone-Weiserstrass theorem as they allow to

compute a wealth of nonlinear functions of their inputs [Dayan and Abbott

(2002)].7

Subsuming, multiplication is omnipresent in the nervous system and the

ability to multiply inputs leads to a wealth of computational abilities and

perceptual benefits. Multiplicative interactions can be modelled phenomeno-

logically in black-box models of neurons without caring about the biophysical

mechanisms that realize multiplication in the brain. This has led to many

insights concerning the possibilities that the application of multiplicative

mechanisms in neural networks allows for [Zipser and Andersen (1988); Sali-

nas and Abbott (1995); Pouget and Snyder (2000)]. However, the biophysical

basis of multiplicative interactions remains unclear.

A wealth of possible biophysical mechanisms has been proposed over the

last decades in order to answer the question of how multiplication could

in principle be realized by the physiological mechanisms available in the

brain [Koch and Poggio (1992); Salinas and Sejnowski (2001)]. They differ

with respect to two main approaches. One set of approaches focusses on

the explanation of multiplicative mechanisms as an emergent property of

neural networks composed of ordinary single neurons that themselves are

not capable of mediating multiplicative interactions. Here, ordinary means

that neurons do not need more functional properties than the traditional

averaging, thresholding, summation, and subtraction to realize multiplication

in the networks. Here, multiplication is mediated by specific feedforward

networks [Nezis and van Rossum (2011)] as well as by recurrent network

connectivities [Salinas and Abbott (1996); Salinas and Sejnowski (2000)]. The

second approach focuses on the explanation of multiplicative interactions via

biophysical mechanisms in single cells. Here, dendritic interactions [Tal and

Schwartz (1997); Larkum et al. (2004)], coincidence detection [Srinivasan and

Bernard (1976)], background synaptic activity [Chance et al. (2002); Brostek

7Chapter 4 deals with the computational power of basis function networks: the described
network transforms retina-centered to head-centered coordinates - which implies massive
benefits for perception and action in an organism.
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(2012)], or nonlinear properties of ion channels [Mel (1992, 1999); Schiller et al.

(2000)] are taken into account in order to explain multiplicative interactions.

The above mentioned mechanisms that propose answers to the question of how

multiplication could in principle be mediated by the physiological mechanisms

available in the brain are presented in detail in the supplementary materials

(chapter 8.1.1 and 8.1.2). In the following I will focus on a mechanism called

permissive gating which is another such candidate mechanism and serves as

the basis for the multiplicative interactions in the model neuron presented in

this study.

3.2.1 Permissive Gating

In permissive gating, the presence of the gating-input A opens a gate for input

B and thus allows input B to pass and contribute to the membrane potential

of the neuron. By this, input B can only contribute to the membrane potential

of the neuron, if the gating-input A is present. However, the gating-input

A does not directly contribute to the membrane potential but only input B

does. This permissive form of gating can be thought of as being a basis for

gain-modulation and multiplicative interactions as it implements a sort of

AND gate.

Gating is commonly understood to be a mechanism for excluding synaptic

input - the ability to close gates that are open and thus to forbid signals to

pass [Katz (2003)] also known as shunting. In this view, the presence of the

gating-input A would forbid signal B to pass. Primary afferent depolarization

is a classical example of exclusive gating: Here, central locomotor circuits

(gating-input A) prevent sensory input (B) from arriving during inappropriate

phases of the locomotor cycle by inhibiting the release of neurotransmitters

from sensory afferents [Rudomin (1999); Büschges and El Manira (1998)].

But gating can also be understood in the above mentioned permissive fashion.

Many possible biophysical mechanisms that may serve as a basis for permis-

sive gating were investigated over the last years. One candidate mechanism

for the biophysical basis of permissive gating is neuromodulation. Studies

in the mollusc Aplysia have shown that serotonin selectively enhances the
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amount of neurotransmitters released from sensory neurons [Byrne and Kan-

del (1996)] leading to permissive gating. Other canditate mechanisms that

could realize permissive gating involve ionotropic receptors [MacDermott et al.

(1999); Vitten and Isaacson (2001)] or intrinstic neuromodulation [Katz and

Frost (1996)]. Other studies focus on explaining permissive gating via the

interaction between resting membrane potentials and integrative electrophys-

iological properties of neurons [Ivanov and Calabrese (2003); Evans et al.

(2003); Herberholz et al. (2002); Katz (2003)]. Last but not least, bistable or

up/down neurons that oscillate between silent down states and firing up states

are thought to be a basis for gating information in the cortex [Gisiger and

Boukadoum (2011)] and are meant to be common in the brain [MacLean et al.

(2005)]. Here, the down state names a situation with hyperpolarized mem-

brane potentials, the up state names a situation where the neurons membrane

potential is just below the neurons firing threshold. Furthermore, the down

state is accompanied with the complete abscence of action potential genera-

tion by the neuron, whereas in the up state action potentials can be observed.8

3.2.2 Permissive Gating and Multiplicative Interactions

In 2007 Kepecs and Raghavachari examined the roles of NMDA-receptors in

postsynaptic integration and found that NMDA-receptors may serve to gate

the flow of information as well as control the gain of information transfer

[Kepecs and Raghavachari (2007)]. The authors proposed a biophysical

model that realizes the phenomena of an up/down neuron via two input

pathways with different AMPA/NMDA receptor content. The proposed

model is a detailled two-compartmental Hodgkin-Huxley like model [Hodgkin

and Huxley (1952)] composed of a spike-initiation zone and an active dendrite.

8For example, neurons in the nucleus accumbens (NAC) show these transitional up/down
properties [O’Donnell and Grace (1995)]. Here, stimulation of the prefrontal cortex triggers
almost no action potentials in NAC neurons when they are in a down state, where
stimulation of hippocampal neurons leads to a shift of NAC neurons from a down to an
up state - without invoking spike initiation in NAC neurons. However, stimulation of
prefrontal cortex reliably leads to spikes in NAC neurons when those neurons are in an up
state. Hippocampal input to NAC neurons can thus be understood as being a gatekeeper
[Katz (2003)] for prefrontal-cortex input in NAC neurons.
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Here, the NMDA-rich pathway gates the spike generation of the AMPA-rich

pathway: the AMPA-rich pathway can not trigger an up-state and alone

can not generate enough current to generate an action potential. However,

sufficiently strong input to the NMDA-rich pathway can trigger an up-state

and allow input to the AMPA-rich pathway to elicit a spike. Once in the

up-state, a further increase in input to the NMDA-rich pathway changes the

gain of the neuron by realizing a multiplicative increase in the output firing

rate of the neuron without changing its selectivity resulting from inputs to

the AMPA-rich pathway. These gain-modulatory properties correspond to

physiological findings [Andersen and Mountcastle (1983)]. The results of

Kepecs and Raghavachari (2007) suggest that permissive gating mechanisms

in principle are capable of realizing multiplicative interactions between two

input streams.

3.2.3 Scope of this study

Multiplicative mechanisms as well as mechanisms of permissive gating are

common in the brain [Katz (2003)]. The study by Kepecs and Raghavachari

(2007) showed that permissive gating may lead to multiplicative interactions

in a detailled biophysical model neuron. However, in simulations of learning

mechanisms in large networks, computational time has to be kept as small as

possible from a practical point of view. Here, simple integrate-and-fire models

are more feasible than detailled biophysical models, as they skip the time-

consuming process of calculating the detailed generation of action potentials.

In this study we investigate a simple implementation of a permissive gating

mechanism due to its ability to realize multiplicative interactions between two

input streams in an integrate-and-fire model neuron [Eckhorn et al. (1990)].

3.3 Methods

We investigated a phenomenological implementation of a permissive gating

mechanism due to its ability to realize multiplicative interactions in a spiking

neuron model. Incoming spikes are modelled as delta pulses and elicit excita-

tory postsynaptic potentials (EPSPs) as an impulse response in two separate
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dendritic regions. The time course of the feeding (F) and gating (G) EPSPs

(measured in mV) is modeled by an instantaneous jump in the postsynaptic

potential followed by an exponential decay

F (t) = wf · e−dt·t/τf G(t) = wg · e−dt·t/τg (3.1)

where t is an integer time-step with duration dt = 0.25ms. The amplitude of

the impulse response is specified by the synaptic weights wf and wg (in mV).

The permissive gating mechanism is implemented by a specific interaction

between the two dendritic regions: EPSPs from the feeding stream F only

contribute to the somatic membrane potential of the neuron if EPSPs from

the gating stream G exceed a specific gating threshold γ. By this, the gating

stream permissively gates the feeding input stream. Successive EPSPs elicited

in the same dendritic region superimpose linearly. The feeding input stream

represents junctions in the main stimulus driven pathway of a neuron where

the gating stream represents junctions receiving contextual signals that are

ment to modulate the feeding inputs influence on the output firing rate.

The somatic membrane potential of a neuron at time step t thus computes as

U(t) = F (t) ·Θ(G(t)− γ) (3.2)

where Θ(x) is the Heaviside step function and γ (in mV) is the gating-

threshold. The resting membrane potential is 0mV.

To allow for a preliminary investigation of the gating mechanism, mechanisms

of spike thresholding in the soma will be skipped in a simplified neuron model.

In this situation the output spike train is a simple copy of the feeding input

stream if the gate is opened all the time. The output firing rate of the model

neuron decreases when the opening probability of the gate is lowered. This

skipping of thresholding mechanisms in the soma allows us to investigate the

influence of the gating mechanism with regard to the opening probability of

the gate independent of nonlinear interactions in the somatic region. This

neuron model will be called simplified neuron model in the following.

A skipping of somatic thresholding mechanisms is useful for the investigation

of the gating mechanism but is biologically implausible with regard to the
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Figure 1: Gating model neuron. The figure displays the signaling pathway in
the gating model neuron. Feeding inputs F (t) contribute to the somatic membrane
potential U(t) only when gating inputs G(t) are large enough to open the gate
by crossing the gating-threshold γ. Inputs are integrated in the soma. When the
somatic membrane potential U(t) crosses the dynamical threshold Γ(t), an action
potential is generated. In the simplified model, somatic mechanisms are skipped in
order to investiage the gating mechanism independent of somatic nonlinearities:
the dynamical spiking threshold and synatic decay time constants in the feeding
stream are set to zero. Thus, in the simplified model, each spike in the feeding
stream elicits a spike in the output stream if the gate is open (G(t) > γ). For the
mathematical formulation see equation 3.2.
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dynamical integrate-and-fire nature of action potential generation. Thus, we

set up a second model neuron which will be called complete model neuron in

the following. We extended the simplified model neuron with skipped somatic

mechanisms by a somatic thresholding mechanism similar to the one used in

the Marburg Model Neuron proposed by Eckhorn et al. in 1990 [Crair and

Malenka (1995); Eckhorn et al. (1990); Pauly (2000)]. Synaptic decay time

constants are chosen to be τf = τg = 7ms initially. An action potential is

generated when the somatic membrane potential U(t) exceeds a dynamical

threshold Γ(t). This dynamical threshold consists of a baseline threshold

Γbase = 1mV and a threshold potential Γξ(t).
9 When a spike is generated at

time step ts, the threshold potential is increased by a fixed value ξ = 1mV

and then exponentially decays with time constant τξ = 10ms. The dynamical

threshold at time step t thus computes as

Γ(t) = Γbase + Γξ(t) (3.3)

Γξ(t) = ξ ·
∑
ts

exp(−dt · (t− ts)/τξ). (3.4)

This kind of thresholding serves as a simulation of the absolute and relative

refractory period in real neurons [Eckhorn et al. (1990)]. The model neuron

is illustrated in figure 1.

Input spike trains to the model neuron are modelled as a homogeneous Poisson

process which is often used as an approximation of stochastic neural firing

[Dayan and Abbott (2002)]. Evaluation methods will be described in the re-

spective passage in the results section. Simulations were executed on a Lenovo

x61s laptop running Ubuntu 10.04 LTS. Simulation software was written in

the programming language Python (version 2.6.5) using standard scientific

libraries (Scipy, Numpy and Pylab). Each parameter set was simulated for

10s with a sampling rate of dt = 0.25ms.

9All voltage-related units in the theoretical studies presented in this thesis (chapters
3 and 4) are gauged in relation to the arbitrarily chosen value of the dynamical spiking
threshold Γbase = 1mV.
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3.4 Results

In this section the model neurons will be investigated focussing on the effect

of the gating mechanism on the neurons output. We will first consider the

generation of single spikes in the complete model neuron that incorporates

the interaction between the gating and the feeding input stream as well as

somatic spike thresholding. After that we consider the influence of the gating

mechanism on the average output firing rate of the simplified model neuron

with skipped somatic thresholding mechanisms. We will analytically derive a

relationship between parameters of the gating input stream and the opening

probability of the gate and relate it to the output firing rate of the simplified

model neuron. Simulations with the simplified and complete model neuron

show that the gating mechanism realizes multiplicative interactions on a wide

range of input parameters.

3.4.1 Generation of Single Spikes - Complete Model Neuron

Typically, integrate-and-fire neurons elicit a spike when the sufficient condition

that the sum over synaptic input currents exceeds a spiking threshold is met

[Lapicque (1907); Eckhorn et al. (1990)]. Only one condition has to be met

here to allow the model neuron to elicit a spike. In the model neuron presented

here, two conditions have to be met to allow the input streams to elicit a spike.

First, the gating potential G(t) has to be larger than the gating threshold γ

in order to let the Heaviside function Θ(G(t)− γ) become 1 and thus to let

feeding inputs pass on to the somatic thresholding mechanism (equation 3.2).

Second, the feeding potential F (t), that determines the membrane potential

U(t) when the gate is open, has to be larger than the dynamical spiking

threshold Γ(t). Only when these two conditions

(G(t) > γ) AND (F (t) > Γ(t))

are met, can a spike be elicited. This mechanism is illustrated in figure 2 and

implements an AND gate between the feeding and the gating input-stream

which is known to be a basis for multiplicative interaction [Mel (1999)].

If nonlinear spike thresholding mechanisms in the soma are skipped in the



3 MULTIPLICATION IN NEURONS VIA PERMISSIVE GATING 37

simplified model neuron, an output spike is elicited in the model neuron if (1)

a spike in the feeding input stream and (2) an open gate (G(t) > γ) occurr

simultaneously.

3.4.2 Influence of the Gating Mechanism on Output Firing Rates

- Simplified Model Neuron

The concept of gain modulation assumes a modulatory input stream to

multiplicatively modulate the output firing rate of a neuron with respect
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Figure 2: Generation of output spikes in the complete gating model
neuron. The upper panel shows feeding EPSPs F (t) as an impulse response
to incoming spikes at feeding synapses (blue trace) and the dynamical spiking
threshold Γ(t) (red trace). The middle panel shows gating EPSPs G(t) elicited
by gating inputs (blue trace) and the static gating threshold γ = 0.7mV (green
trace). Whenever G(t) > γ feeding potentials F (t) are allowed to contribute to the
membrane potential (green dots in the upper panel). A spike is generated (lower
panel), when the two necessary conditions that (1) the gating potential is larger
than the gating threshold (G(t) > γ) and (2) the feeding potential is larger than
the dynamical threshold F (t) > Γ(t) are met. One of these two conditions alone is
not sufficient to elicit a spike.
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to a sensory input stream [Andersen and Mountcastle (1983); Salinas and

Sejnowski (2001)]. To investigate if the gating mechanism presented here is a

feasible model for mediating gain modulation we test how inputs to the gating

input stream influence output firing rates of the model neuron with respect to

the feeding input stream. We first skip the spike thresholding mechanism in

the soma of the model neuron setting Γ(t) = 0mV and τf = 0ms as described

in the methods section for the simplified model neuron. Thus, each spike in

the feeding input stream elicits one output spike if the gate is open (G(t) > γ).

When the gate is open all the time, the output stream is a copy of the feeding

input stream and the output firing rate ro equals the feeding inputs firing

rate rf . If the gate is closed all the time, no output spike is elicited at all

(ro = 0Hz). In between these two extreme situations, we expect the gating

mechanism to modulate the output firing rate ro between 0Hz (gate closed

all the time) and the firing rate of the feeding input stream ro = rf (gate

open all the time). We express the output firing rate ro as the product of the

opening probability of the gate popen and the feeding input frequency rf :

ro = rf · popen (3.5)

We then analytically describe the opening probability of the gate popen as a

function of the gating input firing rate rg, the gating decay time constant τg

and the gating input weight wg. When the input weight wg is larger than the

gating threshold γ, one spike in the gating input stream opens the gate and

it takes a time of tc milliseconds until the gate closes again. The closing time

tc can be calculated via the time it takes until the exponentially decaying

gating EPSP with amplitude wg relaxes to the gating threshold value of γ:

wg · e−tc/τg = γ (3.6)

⇔ tc = τg · ln(
wg
γ

) (3.7)

When average inter spike intervals isig = 1/rg are much larger than the

closing time tc then overlapping gating EPSPs can be neglected. In this

situation the probability popen that the gate is open can be estimated by the
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product of tc and the input firing rate rg:

popen(rg, τg, wg, γ) = rg · tc (3.8)

This suggests that the opening probability popen is proportional to the gating

input firing rate with proportionality factor tc given that isig >> tc and

wg > γ. Under these conditions the combination of equation 3.5 and equation

3.8 suggests that the output firing rate ro with respect to rf is modulated

multiplicatively by the gating firing rate rg with proportionality factor tc:

ro = rf · popen = rf · rg · tc when..isig >> tc..and..wg > γ. (3.9)

Figure 3 illustrates this for a feeding firing rate of rf = 150Hz and tc =
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Figure 3: Output firing rate as a function of gating input firing rate
in the simplified model neuron. Output firing rates ro of the simplified
model neuron are shown in the blue trace as a function of gating input firing rates.
The red trace shows output firing rates as predicted by equation 3.9. The predicted
output firing rate deviates from the models output firing rate when the claim
isig >> tc is violated. Inter spike intervals equal the closing time tc when rg = 100
Hz (green trace isi = tc). The yellow trace illustrates the saturation frequency
ro = rf = 150 Hz which is reached when the gate is opened all the time.
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10ms (wg = 3.0mV, τg = 7ms). Output firing rates of the model neuron

are well described by equation 3.9 when isig >> tc (which corresponds to

rg << 100Hz) but not when interspike intervals are in the range of tc. When

the gating firing rate is rg = 100Hz average interspike intervals equal the

closing time (isig = tc). Here, equation 3.9 predicts an output firing rate of

150Hz that should equal the feeding input firing rate because the gate should

be opened all the time. Nevertheless, the saturation frequency of 150Hz was

foremost reached at much higher gating input firing rates due to overlapping

gating EPSPs which decrease the opening probability. This is not considered

in the analytical description of the model. Output firing rates deviated from

predicted firing rates at a gating input frequency larger than approximately

50Hz. Thus, in the following we simulated the model neuron in a range where

isig > 2tc.

We tested the model for different feeding and gating input firing rates rf =

[0, ..., 150]Hz and rg = [0, ...., 150]Hz with a closing time of tc = 2.5ms (wg =

1.0mV, τg = 7ms). As the smallest average inter spike intervals in the gating

input stream were larger than the closing time isimin = 1
150Hz

= 6.7ms > 2tc

we expected the output firing rate to be the weighted product of the feeding

and the gating input firing rates under the assumption that the analytical

equation 3.9 describes the model neuron sufficiently. Figure 4 shows the

2-d-matrix of output firing rates as a function of feeding and gating input

firing rates. Here, it can be seen that gating inputs modulated the output

firing rate for a wide range of feeding input firing rates. To quantify the

type of interaction between the feeding and the gating inputs, the 2d-array of

output firing rates was fit based on a multiplicative and an additive model

as done in previous studies [Pena and Konishi (2001); Fisher et al. (2007);

Kepecs and Raghavachari (2007)]:

routmult = am · rf · rg (3.10)

routadd = as · rf + bs · rg. (3.11)

am, as and bs were fitting parameters. Analytical models were fit to the data

by a least square method. The multiplicative analytical model corresponds to
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equation 3.9 with the fitting parameter am representing the closing time..tc.

Correlations between the multiplicative analytical model and the output

of the gating neuron model were high r2 = 0.987 (figure 5). The additive
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Figure 4: Output firing rates of the simplified model neuron as a
function of feeding and gating input firing rates. Upper left panel:
output frequency of the simplified gating model neuron as a function of feeding
input firing rates and gating input firing rates. Gating inputs modulated the output
firing rate for different feeding input firing rates. Upper right panel: normalized
exact product of the feeding and gating input firing rates. Lower panel: normalized
exact sum of feeding and gating input firing rates. Visual inspection indicates that
the model neuron showed multiplicative rather than additive behaviour.
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model showed a lower correlation value r2 = 0.668. Moreover, the fitting

parameter am of the multiplicative analytical model reflected the constant

closing time factor tc in equation 3.9: tc = 2.5ms and am = 2.3ms. Repeating

the simulations for parameters that violate the condition isig > 2tc with

rg = [0, ...., 400]Hz with a minimal inter spike interval of isimin = 1
400

= 2.5ms

and a closing time of tc = 10ms (wg = 3.0mV, τg = 7ms) yielded relatively

small correlation values of r2 = 0.8 for the multiplicative and r2 = 0.6 for the

additive model. This is as overlapping gating EPSPs and saturation effects

that appear when isig ≯ tc are not considered in the analytical models.

To test equation 3.9 for different parameters, we did two experiments. First,

we varied the gating input weights between wg = [1.0, ...., 10.0]mV while

mutually varying τg to keep tc constant. Here, we also kept the gating

threshold γ = 0.7mV constant; second, we varied gating input weights be-
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Figure 5: Correlations between the responses predicted by analyti-
cal models and the data obtained with the gating threshold model.
Firing rates obtained by fitting the multiplicative (eq. 3.10) and the additive ana-
lytical model (eq. 3.11) are plotted against the output of the gating model neuron.
The red line denotes the diagonal with correlation value 1. Analytical models are
explained in the main text. (a) Correlation between data and multiplicative model
routmult with r2 = 0.99. (b) Correlation between data and additive model routadd with
r2 = 0.67.
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wg [mV] 1.0 2.0 5.0 10 20
τg [ms] 8.0 2.7 1.4 1.07 0.85
r2
mult 0.99 0.99 0.99 0.99 0.99
r2
add 0.66 0.65 0.67 0.67 0.67

fit am 2.6 2.6 2.38 2.33 2.31

Table 1: Correlation values between the multiplicative analytical model and the
output of the simplified gating neuron model r2

mult and correlation values between
the additive analytical model and the output of the simplified gating neuron model
r2
add. Gating weights wg and gating time constants τg were varied mutually in order

to keep tc ≈ 2.8 ms constant (eq. 3.7 with constant gating threshold γ = 0.7mV).
Correlation values were high for the multiplicative analytical model and low for
the additive analytical model. The multiplicative fitting parameter am was in the
range of the closing time tc.

tween wg = [1.0, ...., 20.0]mV while mutually varying the gating threshold

γ = [0.35, ..., 7.0]mV to keep tc constant. Here, we kept τg = 5ms con-

stant. We varied feeding and gating input firing rates rf = [0, ..., 150]Hz

and rg = [0, ...., 150]Hz and calculated tc with a supposed saturation firing

rate of rg = 350Hz in order to fulfill isig > 2tc. By this, every parameter in

equation 3.9 was varied in a broad range. Table 1 shows that changing wg

and τg mutually while keeping γ constant did not influence the correlation

values. Moreover, the closing time tc ≈ 2.8ms was in the range of the fitting

parameter am. Changing wg and γ mutually while keeping τg constant also

did not influence correlation values as shown in table 2. Here, the closing

time tc was also in the range of the fitting parameter am (eq. 3.10). Corre-

lation values were high for the multiplicative analytical model invariant of

mutual changes in gating input weights wg, gating time constant τg or gating

threshold γ. This confirms that the output firing rate of the model neuron is

sufficiently described by ro = tc ·rf ·rg under conditions isig > 2tc and wg > γ

(eq. 3.9) in the tested range. The model neuron is reliably described by a

multiplicative interaction between the feeding and the gating input streams.
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wg[mV ] 1.0 2.0 5.0 10 20
γ [mV] 0.35 0.7 1.75 3.5 7.0
r2
mult 0.99 0.99 0.99 0.99 0.99
r2
add 0.65 0.66 0.66 0.65 0.67

fit am 2.6 2.5 2.6 2.6 2.6

Table 2: Correlation values between the multiplicative analytical model and the
output of the simplified gating neuron model r2

mult and correlation values between
the additive analytical model and the output of the simplified gating neuron model
r2
add. Gating weights wg and gating thresholds γ were varied mutually in order to

keep tc ≈ 2.8 ms constant (eq. 3.7 with constant gating time constant τg = 5ms).
Correlation values were high for the multiplicative analytical model and low for
the additive analytical model. The fitting parameter am was in the range of the
closing time tc.

3.4.3 Gating Mechanism in the Complete Model Neuron

We now transfer the findings obtained with the simplified model neuron

to the model neuron that incorporates dynamical thresholding of feeding

EPSPs. The influence of the gating mechanism on the output firing rate of the

simplified model neuron was described by the opening probability. Analytical

equations concerning the opening probability of the gate are still valid here.

Equation 3.9 describes the conditions that have to be met for the gating

stream to have a multiplicative influence on the output firing rate of the model

neuron. In the last chapter it was shown that this equation describes the

gating mechanism invariant of mutual changes in gating parameters. Thus,

in the following gating parameters are fixed to one set of parameters which

fullfils equation 3.9 for gating firing rates between 0 and 150 Hz (wg = 1.0mV,

τg = 8.0ms, γ = 0.7mV). We hypothesize that with these parameters a

multiplicative interaction between the feeding and the gating input stream is

obtained.

To quantify the type of interaction between the feeding and the gating

input stream, we fitted the multiplicative (eq. 3.10) and additive (eq. 3.11)

analytical models to 2d-arrays of output firing rates obtained by varying

feeding and gating input firing rates between 0Hz and 150Hz. In the feeding

input stream we varied parameters wf = [0.5, ..., 25]mV and τf = [1, ..., 50]ms
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ro,max[Hz]

r2mult/r
2
sum

τf = 2ms τf = 5ms τf = 10ms τf = 25ms

wf = 0.5mV 1
−/−

4
0.79/0.49

9
0.85/0.57

28
0.87/0.64

wf = 0.75mV 4.5
0.9/0.54

9
0.92/0.61

17
0.92/0.65

47
0.91/0.67

wf = 1.0mV 9
0.96/0.7

15
0.96/0.69

30
0.97/0.69

69
0.92/0.68

wf = 1.25mV 14
0.96/0.73

21
0.98/0.71

35
0.95/0.71

92
0.93/0.69

wf = 5.0mV 60
0.97/0.72

94
0.96/0.73

150
0.95/0.72

372
0.95/0.72

wf = 10.0mV 104
0.98/0.72

171
0.96/0.73

267
0.95/0.73

650
0.96/0.74

Table 3: Correlation values r2
mult and r2

sum and maximum output firing rates
ro,max of the complete model neuron for different feeding time constants τf and
different feeding input weights wf . Gating parameters were kept constant: wg =
1.0mV, τg = 8.0ms, γ = 0.7mV.

in a broad range to check for parameter ranges in which multiplicative

interaction is achieved. Correlation values between the output firing rates

and the analytical models as well as the rounded maximum output firing

rates are displayed in table 3. Correlation values between the data and the

multiplicative analytical model were lower than the values obtained with

the simplified model neuron. This is because the multiplicative analytical

model does not account for nonlinearities in the feeding input stream caused

by the spike-thresholding mechanism. For example, in the integrate-and-fire

neuron, a spike is elicited if the membrane potential is at least greater than

the baseline of the spiking threshold Γbase = 1mV. If feeding weights are less

than wf = 1mV, only consecutive spikes that overlap in the temporal range

of the feeding decay time constant can elicit an output spike. For low feeding

firing rates this is very unlikely even when the gate is open all the time: a

certain input firing rate is needed to elicit output spikes. This is displayed in

figure 6 for the parameter set wf = 0.5mV and τf = 5ms. Here, feeding input

firing rates below 30Hz led to an output firing rate of 0Hz even at high gating

firing rates. Qualitatively, this is in line with input-output nonlinearities in

biological neurons where a certain input to neurons dendrites is needed to

elicit an output spike [Koch and Poggio (1992); Dayan and Abbott (2002)].

However, the multiplicatice analytical model does not account for such kinds

of nonlinearities and thus yielded low correlation values.
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To account for these nonlinearities, another analytical model which we will

call multiplicative-exponential model, was fit to the data:

routmult−exp = am · rbmf · rcmg (3.12)

where am, bm, and cm are fitting parameters. By mutually scaling the rf and

the rg axis the multiplicative-exponential analytical model captures the non-

linear behaviour of the feeding input stream together with the multiplicative

interaction between both streams (figure 6). To account for nonlinearities

in the additive model, we fitted a similar additive-exponential model to the

data:

routadd−exp = as · rbsf + cs · rdsg (3.13)

where as, bs, cs, and ds are fitting parameters. We calculated correlation values

between the two models and the data values obtained with feeding weights

and feeding decay time constants used above (except for the parameter pair

wf = 0.5mV,τf = 2ms). Correlation values for the multiplicative-exponential
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Figure 6: Output firing rates for low feeding weigth wf = 0.5mV < Γbase =
1mV and low synaptic decay time constant τf = 5ms (complete model neuron). At
feeding input firing rates below 30Hz no output spikes were elicited in the model -
not even at high gating firing rates.
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analytical model were high on average (r̄2
mult−exp = 0.985±0.007, lowest value:

0.97) and comparable to correlation values obtained with the simplified model

neuron. Correlation values for the additive-exponential analytical model were

low on average (r̄2
add−exp = 0.76 ± 0.03, highest value: 0.79). We conclude

that in the tested range the output firing rate of the integrate-and-fire neuron

can be explained by the product - but not by the sum - of the gating firing

rate and a nonlinearly transformed feeding firing rate.

3.4.4 Effects of Input Synchrony

In the model neurons a main prerequisite for an output spike to occurr is

a temporal overlap between feeding spikes and periods where the gate is

open. Moreover, synchronicities and correlations between input spike trains

are known to have influences on neurons gains [Srinivasan and Bernard

(1976)].10 To see how synchronies between feeding and gating input streams

influence the output firing rate of the model neuron we simulated the simplified

model neuron with two identical input spike trains with input frequencies

rf = rg = [5, 25, 50, 75, 100]Hz. Reduced synchrony was realized by jittering

the spike times of the gating input stream. Here, an average jitter of x ms

corresponded to a modulation in the timings of each spike according to a

uniform distribution of jitters between −2 · x to 2 · xms. Figure 7 shows the

output firing rate of the simplified model neuron as a function of average

jitter while wg = 1.0mV, τg = 7ms and γ = 0.7mV. Synchronization in input

spike trains led to a strong increase in the output firing rate when the jitter

is in the range of the gating time constant. At an average jitter around 10

ms the output firing rate was comparable to that obtained with statistically

independent input streams. For an input firing rate of 75Hz we calculated

the gain factor in the output firing rate which was obtained by dividing the

10In general, in addition to the average firing rate, the precise timing of action potentials
seems to be relevant for information coding [Theunissen and Miller (1995); Rieke et al.
(1999); Vanrullen et al. (2005); Gollisch (2008)]. A typical expample for this type of neural
coding is the synchrony code in which groups of neurons synchronize their activity [Gollisch
(2008)]. For example, visual cortical neurons synchronize their responses as a function
of how coherent features in the visual field are [Eckhorn et al. (1988, 1990); Engel et al.
(1992); Damasio (1990)]
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Figure 7: Effects of input synchrony on output firing rates for four
different input firing rates. Output firing rates of the simplified model neuron
are shown as a function of average jitter between identical feeding and gating input
streams for five different input firing rates. When the average jitter was zero, the
two input streams were identical and thus perfectly synchronized.

maximum output firing rate with zero jitter by the average output firing rate

between a jitter of 40 to 50ms. We calculated this factor for different gating

input weights between wg = [0.5, ..., 10]mV while keeping all other parameters

constant (table 4). With increasing gating weights the gain factor got smaller,

being very high at gating weights smaller than the gating threshold (table 4).

At high gating weights, successive gating EPSPs are likely to overlap and the

opening probability of the gate is high. Thus, synchronization does not have

a big effect on the output firing rate here. When the gating weight is in the

order of magnitude of the gating threshold (γ = 0.7mV), synchrony becomes

an important modulation factor. Nevertheless in the brain it is difficult to

imagine that a sensory input stream and a contextual input stream that most

likely originate in two different cortical areas are synchronized as precisely as

claimed here.
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wg [mV] 0.4 0.5 0.6 0.7 0.8 0.9 1.0 2.0 3.0 4.0 10
gain factor 8.9 7.3 4.8 4.8 4.3 3.2 2.8 1.8 1.5 1.4 1.2

Table 4: Gain factors calculated by dividing the maximum output firing rate
with zero jitter by the average output firing rate between a jitter of 40 to 50 ms
for an input firing rate of 75Hz. Gain factors are shown for different gating input
weights wg.

3.5 Discussion

We investigated the multiplicative properties of a simple implementation of

a permissive gating mechanism in a leaky integrate-and-fire model with a

feeding and a gating input pathway. Feeding and gating input pathways

interacted multiplicative on a wide range of parameters.

3.5.1 Comparison to a Detailled Biophysical Model

As shown previously in a detailed biophysical model, permissive gating mech-

anisms seem to be capable of implementing multiplicative behaviour be-

tween two input streams. In the detailled biophysical model of Kepecs and

Raghavachari [2007] the interaction of two input streams via a permissive

gating mechanism was investigated. This model yielded high correlation val-

ues for the multiplicative analytical model r2 = 0.99 and lowered correlation

values for the additive model which were identical to the analytic models

used here. The correlation values are comparable to the simplified neuron

model investigated here where spike thresholding mechanisms in the soma are

skipped. It remains an open question as to how the multiplicative properties

of the biophysical model neurons [Kepecs and Raghavachari (2007)] change

when parameter values are changed by e.g. learning mechanisms.

3.5.2 Multiplicative Interactions with Small Gating Weights

The influence of the gating mechanism on the output firing rate of the model

neurons was described via the opening probability of the gate ro = rf · popen.

An important claim for the analytical description of the opening probability

of the gating mechanism was that gating weights wg have to be larger than



3 MULTIPLICATION IN NEURONS VIA PERMISSIVE GATING 50

the gating threshold γ. Under these conditions the opening probability of the

gate was well described by equation 3.8. In the case where gating weights

wg are smaller than the gating threshold γ, the opening probability can not

be described by equation 3.8 any more. When wg < γ, two or more spikes

that produce overlapping EPSPs in the gating stream are necessary to open

the gate. This introduces nonlinearities in the analytical description of the

opening probability. Where equation 3.5 (ro = rf · popen) is still valid in that

case, the opening probability can not simply be described by popen = rg · tc
anymore as it considers wg > γ. An analytical description of popen will not

be given here for wg < γ. We hypothesize that feeding and gating input

streams interact in a way where nonlinearly modulated gating firing rates are

multiplied with the feeding input firing rates as captured by the multiplicative-

exponential analytical model. To test this, we fitted the four analytical models

to 2d-matrices of output firing rates obtained by varying rf and rg between 0

and 500Hz. Maximum input firing rates were chosen to be high in order to

raise the probability of overlapping gating EPSPs. Parameters in the gating

input stream were varied between wg = [0.5, ..., 0.9]mV and τg = [2, ...25]ms

while keeping the gating threshold fixed at a value of γ = 1.0mV. In the

simplified model neuron, correlation values for the multiplicative and the

additive analytical model as well as in the additive-exponential model were

low on average (r2
mult = 0.87±0.09 , r2

add = 0.71±0.04 , r2
add−exp = 0.75±0.01).

Correlation values in the multiplicative-exponential model were very high

on average (r2
mult−exp = 0.99 ± 0.008). In the complete integrate-and-fire

model neuron correlations values were qualitatively similar (r2
mult = 0.84± 0.1

, r2
add = 0.7 ± 0.05 , r2

add−exp = 0.74 ± 0.01, r2
mult−exp = 0.99 ± 0.007). We

conclude that when wg < γ the model neuron is sufficiently described by a

product of the feeding input firing rate and a nonlinearly modulated gating

firing rate.

3.5.3 Exact and Nearly Multiplicative Interactions

The model neuron showed exact multiplicative behaviour when the assump-

tions in equation 3.9 were followed which was quantified by calculating
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correlation values between the model output and an analytical multiplicative

model (eq. 3.10). For exact multiplication, gating weights are assumed to be

larger than the gating thresholds (wg > γ) in order to be able to derive the

closing time tc which serves as a scaling factor for the multiplication of feeding

and gating firing rates (ro = rf · rg · tc). Furthermore, interspike intervals in

the gating input stream are assumed to be larger than the closing time so

that overlapping gating EPSPs can be ignored. Under those conditions, the

output of the model neuron is well described by a multiplication of the scaled

feeding and the gating input firing rates. If these conditions are ignored,

nonlinearities that distort the exact multiplicative interaction are observed.

In the complete model neuron with somatic spike thresholding, the output of

the model neuron is better described by a multiplication of two nonlinearly

modulated feeding and gating input firing rates, ro = am · n(rf) · m(rg),

where n and m are nonlinear functions. In the study presented here, simple

exponential nonlinearities ro = am · rbmf · rcmg were sufficient to fit the output of

the neuron model on a wide range of tested parameters. Moreover, the model

was not well approximated by a summation of nonlinearly modulated feeding

and gating firing rates ro = as ·rbsf +cs ·rdsg . For biological neurons this implies

that a physiological implementation of the presented gating mechanism is

well suited for realizing nearly muliplicative interactions between two input

streams on a wide range of parameters. This was previously suggested by

Kepecs and Raghavachari (2007).

3.5.4 Robustness of Models that Explain Multiplicative Interac-

tions via a Network Approach

In previous studies [Salinas and Sejnowski (2001); Nezis and van Rossum

(2011); Salinas and Sejnowski (2000)], multiplication was explained as an

emergent property of a network of ordinary single neurons. Here, ordinary

means that neurons do not need more functional properties than the traditional

averaging, thresholding, summation, and subtraction to realize multiplication

in the networks. These mechanisms do not provide an answer to multiplicative

interactions on the cellular level but treat multiplicative interactions as
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emergent properties in networks. In all these models, the ability of the network

to realize multiplicative interactions depends on the specific connectivity in

the network. However, connectivities in biological networks show a large

amount of plasticity due to long term potentiation, [Siegelbaum and Kandel

(1991); Dan and Poo (2004)], short term synaptic plasticity [Tsodyks et al.

(1998)] and other adaptational effects [Miller and Mackay (1994)]. By this,

the connectivity and functionality in biological networks changes at any

time. It is not known if models that explain multiplication via network

interactions are feasible when plasticity mechanisms are taken into account.

To our knowledge, investigations of the applicability of those mechanisms

in self-organizing networks that incorporate synaptic plasticity mechanisms

remain open.

3.6 Outlook to Chapter 3

In the next chapter, the integrate-and-fire neuron model presented here

will be implemented in a self-organizing network that learns gaze-invariant

representations of visual space in an unsupervised way. The robustness

and applicability in this self-organizing networks that will be shown in the

next chapter makes permissive gating a feasible candidate mechanism as a

mediator of gain field phenomena observed in biological neurons [Andersen

and Mountcastle (1983); Salinas and Sejnowski (2001)].
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4 Unsupervised Learning of Gaze-Invariance

4.1 Abstract

To achieve a stable representation of our visual environment, for perception

and goal-based action, our brain needs to transform the representation of

visual stimuli from a retina-centered coordinate system to a frame of reference

that is independent of changes in gaze direction [Duhamel et al. (1997)].

Here we present a model that learns these coordinate transformations via a

biologically plausible learning mechanism [Michler et al. (2009)]. In contrast

to previous studies [Zipser and Andersen (1988); Mazzoni et al. (1991); Salinas

and Abbott (1997)], the network model develops gaze-invariant representa-

tions of visual stimuli in an unsupervised way from the statistics of visual

inputs under natural viewing conditions only. Gaze-invariance is achieved

by a coordinate transformation by neurons that are gain-modulated by gaze

direction [White and Snyder (2004)]. Our model provides a possible explana-

tion for the functional relevance of topograhic maps and the development of

retina-centered neurons in parietal cortex that are gain-modulated by gaze

direction.

4.2 Introduction

Every second, we make several saccadic eye movements to bring objects of

interest into our visual and attentional focus. These rapid jumps in gaze

direction shift the image of the environment on our retina, disrupting the

spatio-temporal contiguity of the neuronal representation of the visual world

[Bremmer and Krekelberg (2003)]. Many postretinal stages of the visual

system are retinotopically organized and are similarly affected by saccades.

In order to achieve a stable representation of visual space, our brain must rep-

resent information about visual space in a frame of reference that is invariant

to changes in gaze direction [Duhamel et al. (1997)]. Here, a representation

of the visual environment denotes a set of topographically arranged neurons

with each neuron encoding the luminosity at a specific position in a respective

coordinate frame. Thus, a retina-centered representation refers to response
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strengths of topographically arranged neurons, where each neuron encodes the

luminosity value of the retinal image at a position of a specific photoreceptor

on the retina. Such a representation is called retinotopic.

Think of the process of finding this doctoral thesis on the desk and grab-

bing it for reading. After having localized the thesis by scanning the visual

environment, one has to reach for it. This is not a trivial problem, since

the reference frame in which the thesis is encoded - the retina - is different

from the effectors reference frame - the hand. Encoding of the position of

objects requires a frame of reference and different sensory modalities are

coded in different frames of reference. A retinal frame of reference specifies

an objects position with respect to the center of the retina, a head-centered

and body-centered frame of reference is specified correspondingly. A head-

centered representation is invariant to changes in gaze direction and therefore

is a candidate for providing the information necessary to achieve a stable

perception of the visual environment.

Physiological findings indicate, that visual information at early visual stages is

represented in a retina-centered frame of reference [Boussaoud and Bremmer

(1999)], the auditory system uses a head-centered frame of reference that

arises from the early computations in the auditory system [Pena and Konishi

(2001)], and arm movements are generated with respect to the body [Geor-

goloulus et al. (1986)]. Our ability to interact with objects in our environment

depends on the ability to execute reliable arm, hand, finger movements and

movements of the lower extremities and on the ability to coordinate all these

movements. The execution of arm movements with reference to visual infor-

mation requires a transformation of an objects position from a retina-centered

into a body-centered frame of reference: The representation of the image of

an object on the retina must be combined with gaze direction, which leads to

a head-centered representation. To achieve a body-centered representation,

this head-centered representation must be combined with the position of the

head relative to the body. In this process, the first stage is the transformation

from retina-centered to head-centered coordinates.
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Figure 8: Coordinate transformation from retina-centered to head-
centered coordinates. The position of an object in head-centered coordinates
h is determined by adding the direction of gaze g to the position of the object in
retinal coordinates r.

4.2.1 Coordinate Transformations and Basis Function Networks

What must be done to determine the position of an object relative to the

head on the basis of visual cues? The coordinates of the object in a head-

centered coordinate frame must somehow be extracted from the retinal image,

which however depends on gaze direction and thus changes when our eyes

move. The determination of the position of an object relative to the head

is possible by the combination of information about gaze direction with the

retinal position of the object, as illustrated in figure 8. The position of an

object in head-centered coordinates h is determined by adding the direction

of gaze g to the position of the object in retinal coordinates r which is the

head-centered position of the object related to the direction of gaze r := h−g.

Thus, the head-centered position can be determined from retinal position and

gaze direction by

h = (h− g) + g = r + g. (4.1)

As the position h is not influenced by a change in gaze direction, it is called

gaze-invariant. However, this position summation is only the transformation
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of one retinal position. A head-centered representation that contains informa-

tion about every position in head-centered space requires a transformation

from every position in retina-centered space to the respective position in

head-centered space. For a pixel representation, this corresponds to the

transformation of a retinal pixel representation to a head-centered pixel repre-

sentation representation, i.e. the transformation of the represented positions

with their corresponding luminosities. It is known from theoretical studies

on neural networks [Pouget and Sejnowski (1997)], that a head-centered

representation of the visual environment can be achieved by combining infor-

mation about gaze direction with information about the retinal image in a

multiplicative way.

Neurons in parietal cortex of macaque monkeys have been found to com-

bine information about visual stimuli with information about gaze direction.

Those neurons encode stimuli in a retina-centered frame of reference while

being gain-modulated by gaze direction [Andersen and Mountcastle (1983)]:

The direction of gaze modulates the activity of these neurons in a nearly

multiplicative way while selectivities for visual stimuli, characterized by the

neurons receptive field, remain largely unchanged. Parallel to the concept of

the receptive field, the interaction between visual responses and gaze direc-

tions is called a gain field [Andersen and Mountcastle (1983); Salinas and

Sejnowski (2001)].

Such gain-modulated neurons may be involved in the coordinate transfor-

mation from retina-centered to head-centered coordinates [Andersen and

Mountcastle (1983); Pouget and Snyder (2000); Pouget et al. (2002)]: In

the framework of basis function networks, information about the position of

an object relative to the head can be constructed by reading out nonlinear

combinations of retinotopic responses with information about the direction

of gaze [Pouget and Snyder (2000)]. So far, however, it is unclear how such

mechanisms can develop in the visual system.
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4.2.2 Development of Gaze-Invariant Representations

Zipser and Andersen (1988) showed that coordinate transformations from a

retina-centered to a gaze-invariant, head-centered frame of reference can be

learned in an artificial neural network. Neurons in the network showed gain-

modulation properties similar to those found in parietal cortex [Andersen and

Mountcastle (1983)]. However, it is unlikely that the applied backpropagation

learning algorithm is used in the brain. Attempts have been made to improve

the biological plausibility of methods to learn coordinate transformations

[Mazzoni et al. (1991); Salinas and Abbott (1997); White and Snyder (2004);

Davison and Fregnac (2006)] but in all cases supervised learning via teaching

signals was applied, whereas it is thought that the brain would have to learn

the processing of visual information in an unsupervised way [Barlow (1989)].

Here we propose a model of unsupervised learning for how the brain might

learn the coordinate transformations necessary to represent visual space in

a gaze-invariant frame of reference by taking into account the statistics of

natural viewing conditions. Under natural viewing statistics, when a visual

scene is explored by saccadic eye movements, the position of an objects image

on the retina changes on a faster time scale than the objects position in the

environment [Einhäuser et al. (2007)]. In our network model (figure 9) we

exploit this temporal asymmetry to learn gaze-invariant representations. The

basis for our model is a self-organizing network model proposed by Michler et

al. [2009] that develops representations of an input signal in which neurons are

selective for slowly varying features and invariant for fast changing features

of a retinotopic input signal. We extended this model by a second input

layer representing the direction of gaze and trained the network with inputs

whose spatio-temporal statistics were in accordance with natural viewing

conditions: mimicking saccadic eye movements, the position of an objects

image on the retina changes in a faster time scale than the objects position

in the environment. Training stimuli consisted of idealized visual scenes with

slowly moving objects, represented by Gaussian luminance blobs, that were

scanned by frequent horizontal saccadic eye movements.

Inputs from neurons representing retinal and gaze direction information are
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nonlinearly combined via a permissive gating mechanism [Katz (2003)]: Reti-

nal inputs are added to the membrane potential of neurons in a self-organizing

layer only when excitatory postsynaptic potentials (EPSPs) from the gaze

direction layer cross a certain gating threshold. This nonlinear combination

is implemented in order to allow for a nearly multiplicative - gain field like -

interaction of retinal and gaze direction inputs (see chapter 3).

Our model explains the unsupervised development of gain-modulation prop-

erties [Andersen and Mountcastle (1983); Duhamel et al. (1997)] on the basis

of a new neuron model of nonlinear interactions between retinal and gaze

direction inputs (chapter 3). The network model learns coordinate trans-

formations to a gaze-invariant frame of reference by biologically plausible

neural mechanisms that take into account the statistics of visual inputs under

natural viewing conditions.

4.3 Methods

4.3.1 Network Architecture

The network model consists of four layers, each with toroidal topology (figure

9): a retinotopic input layer R (15 horizontal ×5 vertical neurons) represent-

ing the position of an object in retinal coordinates; a gaze direction layer

G (15× 5) representing the direction of gaze; a recurrently connected map

formation layer M (50× 50) which receives input from layers R and G; an

output layer O (10 × 10) receiving convergent input from neurons in layer

M via a Gaussian kernel (wo,max = 1.0mV, σ = 3 where 1 is the distance be-

tween two neighbouring neurons). Neurons in the output layer have localized

receptive fields in the map layer in order to represent invariant features of the

input signal [Michler et al. (2009)]. Connections from neurons in layer R and

G to neurons in layer M were initially connected all-to-all with equal weights

(wr = wg = 0.02mV). The map formation layer is recurrently connected

with short-range excitatory connections to NMDA synapses via a Gaussian

kernel (wmax = 0.035mV, σ = 1.2) and inhibitory connections (wi = 0.04mV)

to GABA synapses [von der Malsburg (1973); Kohonen (1982); Choe and

Miikkulainen (1998); Michler et al. (2009)]. Each map layer neuron receives
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Gaussian recurrent 
excitatory connections

Random recurrent
inhibitory connections 

Localized forward 
connections
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with a local
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R: retinotopic input layer  (15x5) G: gaze direction layer (15x5)

M: map formation 
   layer (50x50)

 O: Output Layer (10x10)

Figure 9: Network architecture. The model consists of four layers of neurons.
The retinotopic input layer R encodes the position of a two dimensional objects
image on the retina; gaze direction layer G encodes gaze direction. The map
formation layer M combines inputs from layers R and G in a nonlinear way (see
section 4.3.2). Forward connections are plastic and synaptic weights are changed
according to a local Hebbian learning rule (see section 4.3.3). The map formation
layer is recurrently connected via random inhibitory connections and Gaussian
excitatory connections in order to implement the principles of topographic map
formation [Kohonen (1982)]. Excitatory recurrent connections elicit responses in
synapses with long decay time constants in order to realize a memory trace [Földiák
(1991)] that supports invariance learning [Michler et al. (2009)]. The output layer
O receives convergent input from neurons in layer M.
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inhibitory connections from 250 randomly chosen presynaptic neurons in the

map layer.

4.3.2 Neuron Model & Synapse Types

Neurons are modeled as leaky integrate-and-fire units with a dynamical

voltage threshold and biologically plausible time constants [Lapicque (1907);

Eckhorn et al. (1990)]. The multiplicative-like gain modulation of map layer

neurons is modeled by a permissive gating mechanism: excitatory postsynaptic

potentials (EPSPs (in mV)) from the retinal layer contribute to the membrane

potential of the neuron only if EPSPs from the gaze direction layer exceed a

gating-threshold value. The multiplicative properties of this permissive gating

mechanism and its biophysical basis was extensively described in chapter 3.

Incoming spikes are modelled as delta pulses and elicit postsynaptic potentials

as an impulse response. The membrane potential of a neuron (in mV) in the

map layer at time step t is computed by

UM(t) = R(t)×Θ(G(t)− γ) + E(t)− I(t) + Ω(t) (4.2)

where R(t) and G(t) are retinal and gaze direction EPSPs originating from

incoming retinal and gaze direction spikes, respectively; Θ(x) is the Heaviside

step function; γ = 0.4mV is a gating-threshold; E(t) and I(t) are EPSPs from

excitatory and inhibitory recurrent connections, respectively; Ω is Gaussian

noise with zero mean and standard deviation 0.25mV. The resting membrane

potential is 0mV and successive EPSPs superimpose linearly.

Postsynaptic potentials are increased by the synaptic weight wi,j assigned

to the connection between pre- (j) and postsynaptic (i) neuron each time

a spike arrives at the postsynaptic neuron. After a spike arrives at the

synapse, postsynaptic potentials decay exponentially with corresponding time

constants τAMPA = 2.4ms (retinal and gaze direction inputs), τNMDA = 100ms

(excitatory recurrent connections) and τGABA = 7ms (inhibitory recurrent
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connections) [Crair and Malenka (1995)]:

R(t) = wr · e−t/τAMPA (4.3)

G(t) = wg · e−t/τAMPA (4.4)

E(t) = we · e−t/τNMDA (4.5)

I(t) = wi · e−t/τGABA . (4.6)

When the overall membrane potential UM(t) exceeds a dynamical threshold

Γ(t), an action potential is assigned to this time step. The dynamical threshold

consists of a baseline threshold Γbase = 1mV and a threshold potential. When

a spike is generated at time-step ts, the threshold potential is increased by

a fixed value ξ = 1mV and then exponentially decays with time constant

τξ = 10ms [Eckhorn et al. (1990)]. The total threshold is thus computed by

Γ(t) = Γbase +
∑
ts

ξ · exp(−(t− ts)/τξ). (4.7)

The dynamical threshold serves as a simulation of the relative and absolute

refractory period in real neurons.

Recurrent excitatory NMDA synapses exhibit short term synaptic depression

[Tsodyks et al. (1998); Michler et al. (2009)]. The synaptic efficacy ei,j(t) of

the synapse between neuron j and i decreases after a presynaptic spike at

time tsj and recovers exponentially with time constant τrec = 250ms. The

time course of the synaptic efficacy is

d

dt
ei,j =

1− ei,j(t)
τrec

− Use · ei,j(t) · δ(t− tsj), (4.8)

where Use = 0.3 is the fraction of available transmitter that is released during

a presynaptic action potential.

The membrane potential of neurons in the retinotopic input layer (UR), the
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gaze direction layer (UG), and the output layer (UO) is computed by

UR(t) = InR(t) + Ω(t) (4.9)

UG(t) = InG(t) + Ω(t) (4.10)

UO(t) = M(t) + Ω(t) (4.11)

where M(t) are EPSPs originating from incoming spikes from the map for-

mation layer, InR(t) and InG(t) are EPSPs originating from input stimuli

(section 4.3.4), and Ω is Gaussian noise with zero mean and standard devia-

tion 0.25. M(t), InR(t), and InG(t) decay exponentially with time constant

τAMPA = 2.4ms. Dynamical thresholding mechanisms are identical to the

one described for UM(t). Synaptic delays between 1 and 10ms were assigned

randomly to each synapse in the network.

4.3.3 Learning Rule

A Hebbian learning rule similar to those proposed by other authors [Gerstner

et al. (1996); Saam and Eckhorn (2000); Michler et al. (2009)] is used. The

synaptic weights wi,j from neuron j to i of the forward connections from

layers R and G to the map layer are modified simultaneously according to

the learning rule

d

dt
wi,j = δi · α · Lpre,jLpost,i (4.12)

Lpre,j =
∑
tsj

exp

(
−t− tsj

τpre

)
(4.13)

Lpost,i =
∑
tsi

exp

(
−t− tsi
τpost

)
. (4.14)

δi is 1 when a spike occurs in the postsynaptic neuron. tsj and tsi denote

the times of the past pre- and postsynaptic spikes. When a spike occurs, the

pre- and postsynaptic learning potentials Lpre,j and Lpost,i are increased by 1.

They exponentially decay with time constants τpre = 20ms and τpost = 10ms

[Michler et al. (2009)]. α = 0.0007 is a constant that corresponds to the

learning rate.
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To prevent synaptic weights from growing infinitely, a homeostatic mechanism

is implemented in the model. Each time the firing rate of a postsynaptic

neuron in the map formation layer exceeds a threshold Γfiringrate = 40Hz, its

input weights are multiplied by a normalization factor f = 0.999 [Michler

et al. (2009); Miller and Mackay (1994); Bienenstock et al. (1982)]. There is

evidence for such kind of synaptic weight normalization in the brain [Royer

and Pare (2003)].

4.3.4 Stimuli, Training & Testing Procedure

Training stimuli mimicked the typical viewing situations when a visual scene is

explored by saccadic eye movements, with gaze direction changing on a faster

time scale than object positions in space. We trained the network with two

two-dimensional Gaussian stimuli (σ = 0.75) normalized to a maximum value

of 0.2mV. Gaussians were presented to the two 15×5 dimensional input layers

and were centered vertically while the 15 horizontal positions in each layer

changed systematically. The stimulus set represented 15× 15 combinations

of retinal position and gaze direction, corresponding to 15 object positions

in head-centered space and 15 different gaze directions. Horizontal gaze

directions changed randomly each 300ms, corresponding to the exploration

of a visual scene by saccades (figure 10). Head-centered object positions

changed continuously every 6s, corresponding to the continuously varying

position of a slowly moving object in the environment. The position of the

retinal Gaussian was determined by a projection of the position of the object

in the head-centered environment onto the retina considering the actual

gaze direction. Numerical voltage values of stimuli were added to the input

potentials InR(t) and InG(t) at each time step (section 4.3.2).

The same stimuli were used for testing. Each stimulus combination of the

15 retinal positions and 15 gaze directions was presented five times for 2s

in order to account for noise-variability of stimulus responses. From the

average response we determined receptive fields and selectivities for retinal-

and head-centered object positions. Selectivities for retinal- and head-centered

positions were quantified using selectivity indices. To determine how well
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stimulus positions were encoded we calculated estimation errors.

Simulation software was written in C++. Simulations were executed on the

German Neuroinformatics Node (G-Node) with a sampling rate of 0.25ms.

Evaluation software was written in IDL (version 6.2).

Figure 10: Training protocol. Horizontal positions of Gaussian stimuli on
the retinal and gaze direction layers changed systematically during training. Cor-
responding positions in head-centered coordinates changed slowly and smoothly
(lower panel) compared to changes in gaze direction (middle panel). Changes in
gaze direction lead to jumps in the position of the head-centered objects image in
retinal coordinates (upper panel). Statistics of inputs during training mimicked the
situation where a visual scence with a slowly moving object is explored by saccadic
eye movements, with gaze direction changing at a faster time scale than object
positions in visual space.
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4.4 Results

4.4.1 Receptive Fields and Topographic Maps in Map Formation

Layer Neurons

Figure 11: Learned receptive fields in the map formation layer. Re-
sponse strength of one typical map layer neuron as a function of retinal stimulus
position of the stimulus for five adjacent gaze directions (1-5). Each stimulus
was presented five times, error bars show the standard deviation in response
strengths. The neuron has a localized retina-centered receptive field. Response
gain is modulated by gaze direction [Andersen and Mountcastle (1983)].

After training, neurons in the map layer showed an organized pattern

of selectivities with respect to both input layers. A typical neuron in the

map formation layer received input from a localized region in the retina

layer, corresponding to a retina-centered receptive field. The activity of map

layer neurons was modulated by inputs from the gaze direction layer (figure

11). Changes in gaze direction did not change the selectivity of the neuron

but multiplicatively scaled the neurons tuning curves. This is in agreement

with gain modulation properties of neurons in parietal cortex of macaque

monkeys..[Andersen and Mountcastle (1983)].

Selectivities for positions of objects in the visual environment were organized

topographically in the map formation layer (figure 12). Neighboring neu-

rons were selective both for neighboring retina-centered positions and for

neighboring gaze directions, and topographic maps showed a pinwheel-like
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organization structure [Obermayer and Blasden (1993)]. In addition, neu-

rons with similar head-centered selectivities were clustered in larger regions

that contained neurons with different retina-centered receptive fields and

gain-fields. We quantified this by calculating the peak spatial frequencies of

the topographic maps: When head-centered object positions changed after

every 20th saccade, which is in accordance with natural viewing conditions

Figure 12: Topographic maps. Topographic organization of preferred retina-
centered (left panel), gaze direction (middle panel) and head-centered (right panel)
selectivities in the map formation layer. Color encodes preferred stimulus position
in the respective coordinate frame, brightness encodes relative response strength.
In the upper panels (natural statistics), head-centered object position changed 20
times slower than gaze directions during training which mimics natural viewing
statistics [Einhäuser et al. (2007)]. Patches of similar head-centered preferred
positions are larger than the patches of retina-centered positions. In the lower
panels (control), equal time scales for changes in head-centered object positions
and gaze directions were used during training which does not correspond to natural
viewing statistics [Einhäuser et al. (2007)]. Patches of similar retina-centered
preferred positions are larger than patches of head-centered positions.
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[Einhäuser et al. (2007)], frequencies of head-centered maps are lower than

those of retinal or gaze direction maps (fh = 0.98, fr = 2.2, fg = 1.98 periods

per map length). However, when head-centered object positions changed on

the time scale of saccades11, neurons with similar retina-centered receptive

fields were clustered in larger regions (fh = 2.2, fr = 0.98, fg = 2.2). This

difference in spatial frequencies of topographic maps argues for a major role

of viewing statistics in the self-organization process of the model.

These topographic distributions of selectivities determined the properties of

output layer neurons with localized receptive fields in the range of the large

head-centered regions (width of Gaussian kernel: σ = 3).

4.4.2 Receptive Fields and Coding Properties of Output Layer

Neurons

After training the network with statistics of natural viewing conditions, neu-

rons in the output layer were selective for stimuli at specific head-centered

positions and head-centered selectivities showed a high degree of invariance to

changes in gaze direction (figures 13 and 14) similar to receptive fields of neu-

rons in area VIP of macaque monkeys [Duhamel et al. (1997)]. Retina-centered

selectivities were not invariant to changes in gaze direction (figure..15).

To quantify the selectivity of output layer neurons for head-centered and

retina-centered positions, respectively, we calculated selectivity indices. Each

output layer neuron’s selectivity index was calculated from the minimum

and the maximum of its retinal (tr) and head-centered averaged tuning curve

(th) (figure 13). Head-centered and retinal selectivity sh/r was calculated by

sh/r =
max(th/r)−min(th/r)

max(th/r)+min(th/r)
where max(th/r) is the maximum of the averaged

head-centered or retina-centered tuning curve, respectively, and min(th/r) is

the minimum of the averaged head-centered or retina-centered tuning curve,

respectively. The selectivity index thereby measures the relative difference in

responses to different stimuli.

When the network was trained with natural viewing statistics, output layer

neurons had high selectivity indices in the head-centered coordinate frame

11Under control statistics the network was trained with gaze directions and head-centered
positions changing every 300ms.
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Figure 13: Receptive fields of a largely gaze invariant output layer
neuron. Response strengths for different retina-centered (left) or head-centered
(right) positions and gaze directions. The output layer neuron is located at the
center for the map formation layer. The line plots on top show spatial tuning curves
derived by averaging across gaze directions. Responses of output layer neurons are
fairly invariant to changes in gaze direction in a head-centered frame of reference
[Duhamel et al. (1997)]. Receptive fields of other neurons are shown in figures 14
and 15.

(sh = 0.59± 0.17) and low selecticity indices (sr = 0.31± 0.12) in the retina-

centered coordinate frame (figure 16). When the network was trained with

control statistics where head-centered stimulus positions changed on the

time scale of saccades output layer neurons had low selectivity indices in the

head-centered coordinate frame (sh = 0.36± 0.18) and high selectivity indices

in the retina-centered coordinate frame (sr = 0.6 ± 0.16) (figure 16). The

difference between joint selectivity indices in the two training conditions is

due to the differences in the structure of topographic maps in the map forma-

tion layer. When trained with natural viewing statistics, patches of similar

preferred head-centered positions were larger than patches of similar preferred

retina-centered positions. Due to the convergent connectivity from map layer

neurons to output layer neurons, neurons in the output layer tended to be



4 UNSUPERVISED LEARNING OF GAZE-INVARIANCE 69

selective for head-centered positions invariant to changes in retinal position or

gaze direction in the natural training condition. When trained with control

statistics, neurons in the output layer tended to be selective for retina-centered

positions invariant to changes in gaze direction due to the reciprocal structure

of topograpic maps where patches of similar preferred retina-centered posi-
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Figure 14: Head-centered receptive fields and preferred head-
centered positions of output layer neurons trained with natural
viewing statistics. Each square shows the response characteristics of one of the
10× 10 neurons in the output layer. The horizontal axis of each square denotes
the 15 head-centered positions and the vertical axis denotes the 15 gaze directions
analogous to the right panel in figure 13. a) Response strengths of the 10 × 10
output layer neurons to different head-centered positions (horizontal axis) and gaze
directions (vertical axis). The neuron shown in figure 13 is marked with black
dots. b) The preferred head-centered position (horizontal axis) is shown for each
neuron and each gaze direction (vertical axis). Preferred head-centered positions
are largely invariant to changes in gaze direction.
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tions were larger than patches of similar preferred head-centered positions.

To determine how well the response of output layer neurons predicts head-

centered or retina-centered positions of stimuli we calculated estimation errors.

For each stimulus combination of retinal position and gaze direction, we de-

termined the population response of the output layer by taking the sum

Retina-centered response characteristics of output layer neurons
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Figure 15: Retina-centered receptive fields and preferred retina-
centered positions of output layer neurons trained with natural
viewing statistics. Each square shows the response characteristics of one of the
10× 10 neurons in the output layer. The horizontal axis of each square denotes the
15 retina-centered positions and the vertical axis denotes the 15 gaze directions
analogous to the left panel in figure 13. a) Response strengths of the 10 × 10
output layer neurons to different retina-centered positions (horizontal axis) and
gaze directions (vertical axis). The neuron shown in figure 13 is marked with black
dots. b) The preferred retina-centered position (horizontal axis) is shown for each
neuron and each gaze direction (vertical axis). Preferred retina-centered positions
are not invariant to changes in gaze direction.
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Figure 16: Selectivity indices of output layer neurons for natural
and control statistics. Selectivity indices for retina-centered position plotted
against selectivity indices for head-centered position for all 100 output layer neurons.
Crossed black lines indicate mean and standard deviation of selectivity indices.
The left panel (natural statistics) shows selectivity indices for the representation
trained with natural statistics where head-centered object positions changed after
every 20th saccade. Here, selectivity indices for head-centered stimulus position
(sh) tend to be higher than selectivities for retina-centered stimulus position (sr).
The right panel (control) shows selectivity indices for the representation trained
with control statistics where head-centered stimulus positions changed on the time
scale of saccades. Here, selectivity indices for retina-centered stimulus position (sr)
tend to be higher than selectivities for head-centered position (sh).

over each neuron’s head-centered or retina-centered tuning curve weighted

by each neuron’s output firing rate as a response to the given stimulus. The

maximum of the population response was taken as the decoded head-centered

or retina-centered position for the specific stimulus combination. Estimation

errors were determined by calculating the differences between the decoded

head-centered or retina-centered position and the actual head-centered or

retina-centered position of a presented stimulus for each stimulus combination.

When the network was trained with natural statistics estimation errors were

low for head-centered positions and were higher for retina-centered positions

(figure 17). Estimation errors show that the neural activity in the output

layer contained reliable information about the spatial stimulus position of a

presented object and little information about the retinal stimulus position
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Figure 17: Histogram of estimation errors for natural and control
statistics. Distributions of estimation errors derived from the responses of
output layer neurons for retina-centered (dotted line) and head-centered (solid
line) positions. When the network was trained with natural statistics (left panel)
head-centered estimation errors were lower than retina-centered estimation errors.
When the network was trained with control statistics (right panel) retina-centered
estimation errors were lower than head-centered estimation errors.

when the network was trained with natural statistics. When trained with

control statistics, estimation errors for head-centered positions were higher

than those for retina-centered positions.

We conclude that under natural viewing conditions where gaze direction

changes on a faster time scale than head-centered object positions the popula-

tion of output layer neurons achieves a representation of the visual environment

that is consistent with a head-centered frame of reference. However, when

we neglect statistics of natural viewing conditions, training the network with

head-centered object positions changing on the time-scale of saccades, the

population of output layer neurons tends to represent visual space in a retina-

centered frame of reference. This argues for a major role of natural viewing

statistics for learning gaze-invariant, head-centered representations of visual

space.
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4.4.3 Reduction of the Dimension of the Map Formation Layer

After learning, the network of gain-modulated neurons is functionally similar

to a basis function network [Pouget and Snyder (2000)]. Retinal and gaze

direction inputs are combined in the map formation layer in a nonlinear way

and form a basis set that spans the head-centered space. These basis functions

are organized in topographic maps (figure 12) according to the spatio-temporal

statistics in the inputs only [Michler et al. (2009); Einhäuser et al. (2007)].

This yields a head-centered representation in the output layer with receptive

field properties similar to those of neurons in area VIP [Duhamel et al. (1997)].

According to the theory of basis function networks [Pouget and Snyder (2000)]

the map formation layer should contain at least 15 × 15 neurons in order

to transform 15 horizontal object positions accurately. This assumption

implies a tremendous number of neurons needed in the map formation layer

when more horizontal positions or horizontal and vertical positions need

to be transformed. However, reduction of the number of neurons in the

map formation layer after learning hardly affected decoding performance

(figure 18). We simulated this by randomly erasing single neurons in the map

formation layer after the learning process until the desired reduced number

of neurons was reached. The decoding performance for each reduced network

was quantified by averaging the head-centered estimation errors over the whole

stimulus set. Reducing the map layer from 50× 50 to 15× 15 neurons did not

at all reduce decoding performance, as with 15× 15 neurons the full stimulus

space is still combinatorially represented. A reduction to 10 × 10 neurons

reduced performance to 83% (fit data12), with 5× 5 neurons a performance

of 56% was achieved and even with 15 neurons a performance of 47% was

achieved.

We suggest that this robustness is due to the advantages of representing

information in population codes. Due to overlapping retinal tuning curves

and gain fields of individual neurons in the map formation layer, many neurons

respond to a given stimulus combination and a specific position can be encoded

12Original data was fit via a least square method by a root function a · b
√
N − c where

a,b, and c are fitting parameters and N is the number of neurons in the map layer.
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without a neuron being specifically selective for only this position.

4.4.4 Stable Head-Centered Representations and Choice of Model

Neurons

Results presented in the last paragraphs were obtained by simulating nonlinear

interaction between retinal (R) and gaze direction (G) input via a permissive

gating-mechanism (see chapter 2). However, other approaches to realize

nonlinear interactions in the framework of the presented network model

are possible as presented in Philipp (2009). We tested the performance

of the network with three map layer model neurons which differed in the

nonlinear interaction between retinal (R) and gaze direction (G) inputs and

250 200 150 100 50 1
Number of neurons in map layer

0

20

40

60

80

100

120

%
 p

er
fo

rm
an

ce
 c

om
pa

re
d 

to
 1

5x
15

 n
eu

ro
ns

Figure 18: Decoding performance with reduced map formation layer.
Relative decoding performance of the network with a reduced map formation layer
compared to a network with 15× 15 neurons in the map formation layer (see text).
Relative performance is shown as a function of the number of neurons in the map
formation layer. Black dots show original data; the blue solid line is a fit root
function.
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were identical otherwise concerning modeling of synaptic dynamics and spike

generation as described in the methods section. In the gating model neuron,

nonlinear interactions were realized by a thresholding mechanism

U(t) = R(t)×Θ(G(t)− γ) +Rec(t) (4.15)

where U(t) is the membrane potential of a map layer neuron, γ is the gating

threshold, R(t) and G(t) are retinal and gaze direction EPSPs, Θ(x) is the

Heaviside step function, and Rec(t) = E(t)− I(t) + Ω(t) are the additional

recurrent inputs.

In the second model neuron, nonlinear interactions were modeled as a direct

product of the retinal and gaze direction EPSPs

U(t) = R(t)×G(t) +Rec(t). (4.16)

In the third neuron model, nonlinear interactions were modeled by a more

modulatory than multiplicative combination of retinal and gaze direction

EPSPs as proposed by Eckhorn et al. (1990):

U(t) = R(t)× (1 +G(t)) +Rec(t) = R(t) +R(t)×G(t) +Rec(t). (4.17)

However, in our self-organizing network only the gating-mechanism led to

stable head-centered representations in spite of extensive parameter scans.

The multiplicative interactions in theR×G approach resulted in uncontrollable

learning dynamics and representations that showed undefined salt and pepper-

like topographic maps [Koulakov and Chklovskii (2001)] without gaze-invariant

receptive fields of output layer neurons. We suggest that the problem of the

R×G multiplicative model is that the effect of the gaze direction inputs does

not saturate with increasing gaze direction input - as it does in the gating

model neuron (see figure 3 in chapter 2). In the gating model neuron, the

influence of the gating inputs is bounded. The maximum influence is achieved

in the situation where a neurons gate is opened all the time. In this case the

membrane potential is determined by the retinal EPSPs only U(t) = R(t)× 1,

because Θ = 1. Here, a further increase in gaze direction inputs has no more
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influence on the membrane potential of the postsynatic neuron. However, in

the multiplicative R×G model the effect of gaze direction inputs increases

unbounded. This can have unwanted effects on the network dynamics as with

increasing synaptic weights unrealistically high firing rates can be obtained

which may not be compensated for by the implemented homeostatic synaptic

mechanisms [Miller and Mackay (1994)].

The modulatory R×(1+G) approach led to retina-centered topographic maps

independent of viewing statistics where head-centered and gaze-direction maps

showed an undefined salt and pepper structure [Koulakov and Chklovskii

(2001)]. Selectivities in the map formation layer developed for retinal inputs

only whereas changes in gaze direction had no influence on the neuron’s gain.

It seems as if gaze direction inputs had no influence on the outcome of the

process of self-organization. We suggest that this is due to the fact that in the

R× (1 +G) model, the presence of a gaze direction input is not a necessary

condition to produce an output spike - which it is in the gating model neuron

(see figure 2 in chapter 3). Retinal inputs are sufficient to produce output

spikes and thus the network organizes itself with respect to the retinal inputs

and neglects gaze direction inputs.

4.5 Discussion

We presented a neural network model that explains how gaze-invariant rep-

resentations of the visual environment can be learned on the basis of the

statistics of natural viewing conditions where a slowly changing scene is

scanned by frequent saccades. To our knowledge this is the first model to

explain how gaze-invariant representations of the visual environment can

be learned in a biologically plausible, unsupervised way. Previous models

used supervised learning mechanisms [Zipser and Andersen (1988); Mazzoni

et al. (1991)] such as backpropagation which are unlikely to be used in the

brain. Our model provides a possible explanation for the development of

retina-centered neurons in parietal cortex that are gain-modulated by gaze

direction [Andersen and Mountcastle (1983)].
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Figure 19: Topographic maps with a striped pattern in head-
centered coordinated. Topographic organization of preferred retina-centered
(left panel), gaze direction (middle panel) and head-centered (right panel) selectivi-
ties in the map layer. Color encodes stimulus position in the respective coordinate
frame, brightness encodes relative response strength. Simulation parameters were
identical to simulations with natural viewing conditions (see figure 12). Head-
centered preferred positions are organized in a stripe structure. Patches of similar
retina-centered preferred positions show a pinwheel-like organization structure.

4.5.1 Gain Fields and Structure of Topographic Maps

In an experiment using the technique of optical imaging, a topographic or-

ganization of gaze direction selectivities was found in parietal cortex [Siegel

et al. (2003)]. Our model predicts a togographic organization of gaze direction

selectivities that is superimposed by topographic maps for retinal and head-

centered selectivities (figure 12) yielding a transformation to a head-centered

frame of reference. The detailled structure of the topographic maps that

were obtained in our simulations differ with respect to two main organization

structures: One structure shows pinwheel-like organization in each coordinate

frame (see figure 12), the other structure shows pinwheel-like organization

patterns in the maps displaying retinal and gaze direction selectivities and

shows a striped pattern in the head-centered map (see figure 19). Selectivity

indices, estimation errors and receptive fields of output-layer neurons are qual-

itatively similar in both organization structures. This indicates that the two
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organization structures are functionally similar with regard to head-centered

selectivities and gaze-invariance. Surprisingly, both structures appear in

simulations that are identical concerning all simulation parameters except

for the precise noise-values which differ between individual simulations (Ω(t)

in equation 4.2). Thus, the appearance of the two structures could be an

emergent property of the process of self-organization that depends on slight

deviations in noise values. However, it is unclear which mechanism determines

the pinwheel-like or stripe-like organization structure. Further studies are

required to answer the question of the origin of the two different organization

structures.

Koulakov and Chklovskii [2001] proposed a model that explains the formation

of the different organization structures observed here. The model is based

on an evolutionary strategy that serves to minimize the recurrent connection

length between neurons that encode similar stimulus properties. In the model

it is assumed that evolution was likely to select for developmental rules that

produce orientation maps which are optimized according to wire length. By

varying the width of the recurrent interaction kernels in the map layer, the

authors can induce the development of the resulting organization structures.

However, it is unclear how these results transfer to the model presented here.

The occurence of stripe and pinwheel patterns was also observed in another

model for the optimization of cortical maps [Keil and Wolf (2011)].

4.5.2 Coordinate Transformations and Eye Velocity Gain Fields

We investigated the development of gaze-invariant representations on the

basis of gaze direction gain fields which are known to support coordinate

transformations [Zipser and Andersen (1988); Mazzoni et al. (1991); Salinas

and Abbott (1997); Pouget and Snyder (2000); White and Snyder (2004)]. The

self-organizing network presented here learned a gaze-invariant representation

of visual space from a nonlinear combination of retinal and gaze direction input.

Neurons in the dorsal subpart of the medial superior temporal cortex (MSTd)

in posterior parietal cortex are also thought to compensate for self-generated
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eye or head movements [Brostek (2012)]. Area MSTd processes visual motion

stimuli as well as information about eye movements [Newsome et al. (1988)]

and neurons in MSTd nonlinearly combine information about the retinal

image with information about eye velocity during tracking eye movements

like smooth pursuit [Newsome et al. (1988)] or optokinetic response rather

than information about gaze direction [Bradley et al. (1996); Bremmer et al.

(2010); Brostek (2012)]. Model simulations suggest that the distibution of eye

velocity gain fields in MSTd allows for a transformation from retinal image

velocity to head-centered stimulus velocity during tracking eye movements

[Brostek (2012)]. The authors suggest that eye velocity gain fields that

developed during a process of supervised learning form a basis set that allows

to generate numerous visual motion related variables, for example an estimate

of head position or self-motion velocity [Brostek (2012)]. However, it is

unknown, how such networks can develop in an unsupervised way. In the

study presented here, we showed that gaze-invariant representations can

develop in an unsupervised way in a network that is trained with statistics

of natural viewing including saccadic eye movements. Our network could

be a starting point to explain the development of eye velocity gain fields

for coordinate transformations as studied by Brostek (2012). By training

the network with input data that encodes retinal inputs and eye movements

that mimic the statistics of natural viewing during tracking eye movements,

the network could in principle learn coordinate transformations like those

obtained by Brostek (2012) in an unsupervised way.

4.5.3 A General Mechanism for Information Integration?

The applied learning mechanism of exploiting spatio-temporal statistics of

natural viewing conditions to form superimposed topographic maps and in-

variant representations was suggested by Michler et al. (2009). When the

model was trained with a stimulus set in which the identity of objects changed

on a slower time scale than the viewing angle under which an object was

presented, the model developed a representation that was selective for object

identity and invariant to viewing angle. Such neurons can be found in the



4 UNSUPERVISED LEARNING OF GAZE-INVARIANCE 80

ventral path of the visual system. Here we presented a model of learning

gaze-invariant representations of visual space - associated with the dorsal path

of the visual system [Andersen and Mountcastle (1983)]. We conclude that

the applied learning mechanism could be a general mechanism of information

integration in the brain - not only coordinate transformations - appliable to

all kinds of invariances - not only gaze- and viewing angle-invariance.

4.6 Outlook to Chapter 4

The presented model argues for a strong influence of natural statistics and

contextual interactions on the development of neural representations: The

combination of natural viewing conditions with contextual information about

gaze direction that interacts nonlinearly with retinal information allows for the

development of a gaze-invariant representation. From the input perspective,

three main aspects are important for the developmental process of self-

organization: (i) primary sensory input, (ii) contextual input that influences

the sensory input, and (iii) natural joint statistics in both input streams.

Those aspects also occurr in a modified form in the next study presented

in this thesis. In the next chapter the influence of the contextual entity

of attention on somatosensory perception will be investigated. Here, adult

Zen-meditators altered the natural statistics (iii) of the attentional context

(ii) by focussing attention on their right index finger for hours. External

somatosensory input (i) was prevented during the meditative intervention

by the rigid meditation posture in Zazen. With psychophysical markers that

measure perceptual abilities, we observed the effects of this intervention.
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5 Improvement of Tactile Perception by Medi-

tation

5.1 Abstract

Neuroplasticity typically describes the effects of a bodily training paradigm

on neural representations [Jenkins et al. (1990); Merzenich and Jenkins

(1991); Fahle and Poggio (2002)]. We here investigated the effect of a three

day Zen retreat, a purely mental intervention, on somatosensory perception.

Discrimination performance in the right index finger improved in the absence of

any bodily training only by focussing sustained attention on the tip of the right

index finger. Our findings indicate that the framework of neuroplasticity has to

be extended to incorporate the observation that intrinsic brain activity created

without external events can alter neural representations and perception.

5.2 Introduction

In neuroscience, neural representations are commonly characterized by single

neurons receptive fields and topographic maps of selectivities for sensory

stimuli. These neural representations build up during development and are in

a constant process of adaptation in order to gain a dynamically maintained

steady state that reflects the adaptation of the neural system to the statis-

tics of an average environment [Barlow (1961); Dinse and Merzenich (2002);

Simoncelli and Olshausen (2001)]. Environmental changes induce adapta-

tional mechanisms in the brain aiming at a neural representation that fits

the present environmental statistics and situations in order to gain maximal

viability in perception and action with respect to the requirements of the

actual environment.

There is a wealth of evidence that cortical maps and neural representations

are in this above described state of permanent use- and experience-dependent

fluctuation [Dinse and Merzenich (2002)]. The core of these studies is that

alterations in afferent input statistics strongly influence the neural represen-

tation of the respective sensory entity: Our brain adapts to profound changes
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in our sensory environment. The first studies concerning plasticity of cortical

maps were conducted in the somatosensory area of higher mammals where

selectivities for skin areas are represented in ordered topographic maps that

reflect adjacencies on the body surface [Dinse and Merzenich (2002)]. In

their pioneering work, Jenkins et al. (1990) showed in a neurophysiological

experiment with adult owl monkeys, that finger stimulation over about ten

days altered the neural representation of the stimulated fingers in primary

somatosensory cortex. After training, the stimulated skin surface was repre-

sented over an expanded cortical region with receptive fields of individual cells

being unusually small in these expanded areas. Topographic representations

of fingers also ”differed greately from that recorded in control experiments”:

Representational discontinuities emerged in these map regions and borders

between representations of individual fingers shifted. These results showed a

clear effect of altered external inputs on cortical representations and were a

milestone - if not the foundation stone - in the field of Neuroplasticity.

5.2.1 Neural Plasticity Without External Stimulation

The common view of neuroplasticity is that changes in the statistics of the

environment lead to adaptational changes in neural representations. Con-

sidering the brain and its cortical maps as a self-organizing system, one can

hypothesize that changes in the internal state of the brain can induce equally

profound adaptational mechanisms in the brain as changes in the statistics of

the external environment do.

Recent studies argue for this hypothesis: alterations of cortical representa-

tions and perceptual abilities can be induced without emphasis on external

training. It seems that neural plasticity can be triggered merely by changing

the internal state of the subject by mental imagery of stimuli [Tartaglia et al.

(2009, 2012)] or by induction of activity patterns via neurofeedback [Shibata

et al. (2011); Scharnowski et al. (2012)]. Furthermore, it is known that the

attentional focus strongly increases the efficiacy of perceptual training [Seitz

and Dinse (2007)].
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In the visual domain, Tartaglia et al. (2009) showed that imagining a crucial

part of a bisection stimulus was sufficient for perceptual learning in a dis-

crimination task in the abscence of external training via repetitive stimulus

presentation. The authors conclude that the neural processes underlying

perceptual learning, which were usually assumed to be primarily dependent

on stimulus processing, could be equally based on mentally generated signals.

Similar results of mental imagery on perceptual performance were obtained in-

vestigating visual discrimination of motion directions [Tartaglia et al. (2012)].

In another study, an effect of visual attentional training with only minimal use

of a visual stimulus enhanced visual spatial acuity [Dupuis-Roy and Gosselin

(2007)].

In the study presented here we investigated the effect of a three day Zen

retreat on the tactile abilities of the finger tips. During the retreat, subjects

had to focus attention on the spontaneously arising percepts in their right in-

dex finger. In the instructions given to the subjects concerning the meditative

intervention, there was no focus on any kind of external training, stimulation

or movements.

5.3 Methods

5.3.1 Measures of Tactile Abilities

As markers of tactile abilities we measured 2-point discrimination (2pd)

thresholds and localization performance on the tip of digit 2 and 3 of the right

hand (r2 & r3 ) and digit 2 of the left hand (l2 ) via standard procedures.

2pd thresholds were assessed by using a custom-made device. Localization

performance was measured using a forced choice paradigm, where subjects

had to report the absolute position where they perceived a touch sensation

within quadrants of a square that was printed on the skin of the fingertip.
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(a) (b)

Figure 20: Equipment to assess measures of tactile abilities.(a): custom
made device to assess 2pd thresholds. The arrow points to the stimulus with 1.6mm
distance which is denoted at the opposite side of the wheel. (b): quadrants printed
on the finger tip to assess localization performance. The subject is stimulated via
a von Frey filament.

5.3.2 2-Point Discrimination Thresholds

The 2-point discrimination (2pd) threshold is a reliable marker of discrimi-

nation performance in humans. The 2pd thresholds were assessed by using

the method of constant stimuli [Godde et al. (2000); Dinse et al. (2005)]. A

custom-made device was used to assess the 2pd thresholds on a fixed position

on the skin of the fingertips by rapidly switching between stimuli (figure 20

a). The stimuli consisted of 7 pairs of brass needles with different distances

(ranging from 0.7 to 2.5mm in increments of 0.3 mm or from 1 to 4mm in

increments of 0.5mm) and a single needle as 0 distance (control condition).

The needles were 0.07mm in diameter with blunt ends that were approxi-

mately 200µm in diameter. Tactile stimuli were applied for approximately 1s;

application forces of 150 to 200mN are applied when the custom made device

is used appropriately. The subjects were instructed to place their finger on

the support and to maintain the initial position of the finger. The stimuli

were presented 10 times in randomized order resulting in 80 trials per session.

Subjects were not informed about the ratio of needle pairs and single needles,

which was 7:1. Subjects had to decide immediately after stimulus application
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if they had the sensation of 1 or 2 needles by reporting the percept of a single

needle or of a doubtful stimulus as ”1”, but the distinct percept of 2 stimuli

as ”2”. All responses were plotted against needle distances resulting in a

psychometric function, which was fitted by a sigmoid function (figure 21).13

The 2pd threshold was taken from the fit where 50% probability was reached.

All subjects had to accomplish one training session to become familiar with

the testing procedure.
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Figure 21: Sigmoidal curve fit to determine 2-point discrimination
threshold. 2pd stimuli consisted of 7 pairs of brass needles with different distances
and a single needle of 0 distance (80 trials per session). The probability that two
tips were perceived was plotted against needle distances resulting in a psychometric
function (red crosses), which was fitted by a sigmoidal function (blue trace). The
2pd threshold was taken from the fit where 50% probability was reached (1.68mm).
The figure exemplary shows 2pd data and fit of one session done with a subject
from the sensory focussing group (s9) on day 0 (see table supplementary table 1).

5.3.3 Localization Performance

Localization performance on the tip of the fingers was measured using a forced

choice paradigm, where subjects had to report the absolute position on the tip

132pd threshold data was fit by a sigmoidal function a · tanh(b · (x− c) + 1) via a least
square method where a,b, and c were fitting parameters and x was the needle distance.
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of a finger where they perceived a touch sensation without visual inspection

[Dinse et al. (2005)]. A small square (1 cm2) was printed on the skin of the

fingertip (figure 20 b), which contained four quadrants of equal size (5x5 mm

each). The center of each quadrant was touched in a pseudorandomized order

40 times with a von Frey filament (Marstocknervtest, Marburg, Germany) with

a buckling force of 1.4mN or 2.0mN, respectively, that was above threshold and

clearly detectable at each of the four quadrants [Bell-Krotoski et al. (1995);

Desrosiers et al. (1996)]. Subjects were instructed to report the number of

that quadrant, where they felt the sensation. To facilitate this procedure,

subjects were allowed to see a drawing of the fingertip with 4 quadrants

identified by numbers 1 to 4. Average localization performance is given for

each finger by the rate of correct quadrant identifications.14

5.3.4 Subjects, Measurement Protocol & Meditative Intervention

Before the first measurement on day 0 subjects were assigned to one of two

groups: a sensory focussing group and a control group (all right handed). The

groups’ names were not told to the subjects. Subjects in both groups were

told that we investigate the effects of a meditation retreat on somatosensory

perception. Each subject was asked the following question:

”In group A you will have to take part in three measurements on day 0,

3 and 4. In group B, you will have to come to these measurements and

spend additional two hours per day on a special meditation technique.

Which group do you want to be in? If you are not willing to spend

effort on the special meditation technique, please choose group A!”

We asked this to be secure that subjects in the sensory focussing group were

motivated to practice the special meditation technique of focussing attention

on their right index finger. The group assignment was done based on the

subjects decisions and based on the objective to have age and gender-matched

14As a possible third marker of tactile abilities we assessed touch thresholds by probing
the fingertips with von Frey filaments ranging from 0.08 mN to 10 mN in logarithmic
scaling using a staircase procedure. However, as problems with this specific method for the
assessment of touch thresholds were indicated recently, this data set will not be presented
here.
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groups. The mean age of the ten subjects in the sensory focussing group (4 fe-

male) was 49.9±5.7(std) years. The mean age of the 10 subjects in the control

group (5 female) was 51.7± 4.2(std) years. We asked subject to estimate the

amount of hours per week they spend meditating in everyday life. Subjects

in the sensory focussing group estimated 3.8± 1.7(std) meditation-hours per

week, subjects in the control group estimated 3.9± 1.4(std) meditation-hours

per week. Average meditation experience in the sensory focussing group was

14.7± 7.5(std) years and 9.5± 7.13(std) years in the control group. Subjects

of both groups were paid and naive concerning the experimental hypothesis

(control group: 30e; sensory focussing group: 70e. Subjects did not know

about different payments. Difference in payment is due to effort that subjects

in the sensory focussing group are supposed to put into the sensory focussing

meditation technique.). Physical stimulation of the finger tips did not occur

due to the rigid meditation posture in Zazen.

Measures of tactile abilities (chapter 5.3.1) were taken on day 0 - before

Figure 22: Timeline of measurements and meditative intervention.
Measures of tactile abilities were taken on day 0, 3 and 4 on the finger tips of digits
r2, r3 and l2 (pre-, post- and postpost-measures). On day 1, 2 and 3, subjects in
the sensory focussing group were asked to focus attention on the finger tip of the
right index finger (meditative intervention). Subjects in the control group kept
their normal meditative practice for the whole time.
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the beginning of the retreat - and on days 3 and 4 (figure 22). One set of

measurements took about 45 minutes. The Zen retreat was held in total

silence with long meditation periods (> 8 hours per day). During the total

meditation period of 3 days, subjects in the sensory focussing group were

asked to be completely aware of the spontaneously arising sensory percepts

in their right index finger for 2 hours per day; while keeping their normal

meditative practice (focussed attention on breath) for the rest of the day (6

hours). Subjects’ tactile performance was measured again after the 3 day

meditation period (day 3) and also after a 4th day of normal meditation

without focussing on somatosensory percepts (day 4). Subjects in the control

group kept their normal meditative practice for the whole 4 days without

focussing on somatosensory percepts.

5.3.5 Data Aquisition, Software, and Investigator

During the measurements data was directly entered into a Lenovo R61 laptop

equipped with self written software in the programming language Python

2.5. Software for data evaluation was also self written and uses open source

scientific standard packages Scipy, Numpy and Matplotlib for fitting functions

and graphical illustrations and IBM SPSS Statistics for statistical evaluation.

The measurements were performed by Sebastian Philipp. The problem of a

non-blind experimentator will be elaborated in the Discussion section at the

end of this chapter.

5.4 Results

Original data values, the responses of subjects on each individual stimulus,

were analyzed as described in the methods section. Analysis yielded one 2pd

threshold and one localization performance value for each day 0, 3, and 4,

and each finger r2, r3, and l2 for each subject. These values are presented in

a tabular view in the supplementary material (section 8.2.1 and 8.2.2).

The meditative intervention practiced by the sensory focussing group was a

sustained direction of attention on the spontaneously arising percepts in the

right index finger (r2). Therefore the presentation of results will focus on
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changes of tactile abilities in the right index finger. Results concerning the

development of tactile abilities in the right middle (r3) and the left index finger

(l2) are treated as control measurements for the specificity of the observed

effects. The central questions are:

• Does focussing attention on r2 influence tactile abilities in r2?

• Does it also influence performance in the neighbouring finger r3?

• Does it even influence performance in l2 which is represented in the

contralateral primary somatosensory cortex?

5.4.1 2pd Thresholds

The meditative intervention of focussing attention on the right index finger

strongly altered psychometric 2pd curves and 2pd thresholds (figure 23).

Individual measures of r2 2pd thresholds on different days are presented

in figure 24. 2pd thresholds in the right index finger were lowered for 8 of

10 subjects of the sensory focussing group on day 3 after the meditative

intervention. Individual improvements of 2pd performance in r2 on day 3

ranged from −6% to 63%. Two subjects decreased slightly in r2 performance

on day 3 (−6% and −1%) and 8 subjects increased performance in r2 (7% to

63%). On day 4, after one day of conventional meditation, 9 of 10 subjects of

the sensory focussing group showed lowered r2 2pd thresholds compared to

day 0. Individual improvements of 2pd performance in r2 on day 4 ranged

from −7% to 72% compared to day 0.

As a sample size of 10 subjects per group is too small for a parametric test,

a non-parametric related-samples Wilcoxon signed rank test was used for

statistical analysis. Grouped data is presented in figure 25. For the sensory

focussing group, Wilcoxon’s test indicates a probability of pr2 = 0.013, pr3 =

0.025, and pl2 = 0.086 that the median of differences in 2pd thresholds

between day 0 and day 3 was zero. Thus, the null hypothesis that the median

of differences between day 0 and day 3 was zero can be rejected for r2 and r3

but not for l2 on a significance level of p < 0.05. 2pd performance on day 3
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Figure 23: Psychometric 2pd curves on day 0 and day 3. The figure
exemplary shows psychometric curves of subject s9 in the sensoy focussing group
on day 0 and day 3. The 2pd threshold was taken from the sigmoidal fit where 50%
probability was reached. On day 0, subject 9 showed a 2pd threshold of 1.68mm.
On day 3, subject 9 showed a lowered threshold of 1.27mm which relates to an
improvement in 2pd performance of 24%.
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Figure 24: Two point discrimination thresholds for r2. Figure shows
measured two point discrimination thresholds on day 0, 3 and 4 of individual
subjects from the sensory focussing (blue) and control group (green) for the right
index finger. 2pd thresholds in r2 were lowered for 8 of 10 subjects of the sensory
focussing group on day 3 and for 9 of 10 subjects of the sensory focussing group on
day 4.

improved on average by 17± 13% in r2 and by 12± 16% in r3.15 Furthermore,

Wilcoxon’s test indicates that medians differ between day 0 and day 4 for r2

and r3 (pr2 = 0.014, pr3 = 0.022) but not for l2 (pl2 = 0.26). A prolonged

effect of the meditative intervention is thus indicated for fingers r2 and r3.

2pd performance on day 4 improved by 22± 21% in r2 and by 15± 17% in

r3 compared to day 0. Wilcoxon’s test indicates that medians of differences

between day 3 and day 4 equal zero for each finger (pr2 = 0.65, pr3 = 0.88, and

pl2 = 0.33). This indicates that the amounts of performance improvements

were persistent for each finger.

The statistical analysis indicates an improvement in 2pd performance of the

sensory focussing group on day 3 and day 4 for fingers r2 and r3 of the right

hand. In the control group, average 2pd thresholds remained unchanged in

15Averaged over individual improvements.
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Figure 25: Changes in average two point discrimination thresholds.
For each finger and each group average touch two point discrimination thresholds
measured on day 0, day 3 and day 4 are shown. Two point discrimination thresholds
in the sensory focussing group were lowered significantly for r2 on day 3 (Wilcoxon’s
test p < 0.05). Controls showed no significant changes.

each finger on day 3 (r2: 3 ± 10%, r3: 1 ± 10%, l2: −6 ± 19%) and day 4

(r2: −1 ± 10%, r3: 2 ± 10%, l2: 0.7 ± 11%). This is indicated as changes

in distributions were not significant on day 3 (pr2 = 0.12, pr3 = 0.45, and

pl2 = 0.58) and day 4 (pr2 = 0.92, pr3 = 0.67, and pl2 = 0.96).

5.4.2 Localization Performance

Individual localization performance was altered unspecifically in both groups

(see figure 26 for r2). Individual localization performance was averaged over

subjects for both groups for each finger and each day (figure 27). Wilcoxon’s

test for the sensory focussing group indicates no alterations in performance

on day 3 (pr2 = 0.92, pr3 = 0.81, pl2 = 0.57) and day 4 (pr2 = 0.48, pr3 = 1.0,

pl2 = 0.94) for each each finger. Statistical analysis of the control group also

indicates no alterations on day 3 (pr2 = 0.33, pr3 = 0.36, pl2 = 0.13) and day



5 IMPROVEMENT OF TACTILE PERCEPTION BY MEDITATION 93

day 0 day3 day 4 day 0 day 3 day 430

40

50

60

70

80

90

100

Lo
ca

liz
at

in
o 

pe
rf

or
m

an
ce

 [%
]

Localization performance of right index finger (r2)

r2 focus
control
mean
std dev

Figure 26: Localization performance for r2. Figure shows measured lo-
calization performance on day 0, 3 and 4 of individual subjects from the sensory
focussing and control group for the right index finger

.

4 (pr2 = 0.34, pr3 = 0.51, pl2 = 0.28). Neither the meditative intervention

of focussing attention on the right index finger, nor the intervention of

conventional meditative practice had an effect on localization performance.

5.5 Discussion

Our data shows that focussing attention on a particular body part, here

the right index finger, significantly affects discrimination performance (2pd

thresholds) indicating that merely being aware, without external stimulation

or training, can improve tactile abilities. Focussing attention on the right

index finger resulted in significant improvements in 2pd performance in the

right index finger (r2) and the neighboring right middle finger (r3) with no

improvement in the left index finger (l2) which is represented in the con-

tralateral primary somatosensory cortex. Such changes in stimulus processing

are likely to be accompanied by changes in early cortical stages of sensory
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Figure 27: Changes in average localization performance. For each group
and each finger average localization performance measured on day 0, day 3 and
day 4 are shown.

processing [Godde et al. (1996); Pleger et al. (2001); Lissek et al. (2009);

Shibata et al. (2011); Scharnowski et al. (2012)]. In the somatosensory area,

primary somatosensory cortex (S1) contains a unilateral representation of

the fingers whereas second somatosensory cortex (S2) contains a bilateral

representation of the fingers. As significant changes in 2pd performance were

found for r2 and r3 but not for l2, the results indicate an involvement of S1

in the learning process and no involvement of higher bilateral somatosensory

areas (S2 and beyond). Furthermore, the improvement of 2pd performance

in r2 and r3 argues for a non-locality of the effect of r2-focussing on the level

of S1.

On day 4, after one day of conventional meditation, changes in r2 and r3 were

still significant compared to day 0. Thus, a long-term effect of the meditative

intervention is indicated. 2pd thresholds were not influenced by conventional

meditation practiced by subjects in the control group. In both groups, no

changes in localization performance were observed. Due to the rigid medita-

tion posture in Zazen, where meditators are completely motionless, physical
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stimulation of the finger tips can be ruled out.

5.5.1 Learning Mechanisms that Could Underlie the Observed Ef-

fects

A hypothesis that could explain how sensory focussing can create neural

plasticity would be that focussing attention on the right index finger may

elicit brain activity in the somatosensory area of the finger by enhancing

the input gain of the respective neurons [Treue (2001)]. Focussing attention

could thereby induce an asymmetry in spontaneous activity in somatosensory

cortex leading to enhanced activity in the region of the respective body part

where attention is focussed on which in turn implies activity-dependent self-

organization processes. In visual cortex, directing attention to a peripheral

location in visual space while expecting a stimulus produced increased activity

in visual cortex in the abscence of visual stimulation [Kastner et al. (1999)].

Such an increase in activity could also be induced in somatosensory cortex

when attention is directed on the right index finger without somatosensory

stimulation and could induce neural plasticity.

Another explanation for the observed effects is possible. It is known that

changes in the peripheral properties of the fingers such as temperature and

circulation influence tactile abilities [Stevens (1989); Stevens et al. (2003)].

This is as the effectiveness of sensory receptors and peripheral signaling cas-

cades in the autonomous nervous system can have an influence on tactile

abilities. Thus, changes in perceptual measures induced by training must not

only be due to changes in cortical organization structures but can also be

due to changes in the sensory periphery. Focussing sustained attention on

the fingers during a meditative intervention could in principle induce changes

in the autonomous nervous system and in the peripheral physiology of the

fingers. To test this hypothesis we are currently conducting experiments

where we monitor temperature, circulation and other appropriate measures

in the hand before, during, and after a meditative intervention.



5 IMPROVEMENT OF TACTILE PERCEPTION BY MEDITATION 96

5.5.2 Joint Changes in Perceptual Measures and Immobilization

The observed changes after meditation were selective for the two different

tasks, but the pattern of joint changes were different from those observed after

external training or stimulation [Sterr et al. (1998); Godde et al. (2000); Lissek

et al. (2009)]. Subjects that were treated with repetitive external stimulation

[Godde et al. (2000); Ragert et al. (2004); Lissek et al. (2009)] showed

lowered 2pd thresholds and worse localization performance in the trained

fingers. In the study presented here, subjects in the sensory focussing group

showed lowered 2pd thresholds and no changes in localization performance

in r2. Differences in joint changes between the meditative intervention and

external training argue for different mechanisms of neural plasticity in the

two interventions.

Reducing the use of a limb for brief periods is known to have strong effects

on somatosensory representations [Lissek et al. (2009)]. Lissek et al. (2009)

showed that a few weeks of hand and arm immobilization by wearing a cast

reduced hand use and strongly impaired tactile abilities. As the use of limbs

is strongly reduced during a Zen-retreat where it is common to sit completely

motionless for more than eight hours per day, an impairment in tactile abilities

could be expected in the presented study although a period of four days of

immobilization is quite short compared to periods of wearing a cast [Lissek

et al. (2009)]. In our study, in both groups no impairments in tactile abilities

were observed. We suggest that the potential for immobilization-impairments

was compensated for by the intense awareness training practiced during the

Zen-retreat by subjects in both groups [Walach et al. (2011)].

5.5.3 Possible Experimenter Effects

The experimenter (Sebastian Philipp) had to know, which subject belonged

to the sensory-focussing or the control group from the beginning of the ex-

periment for organizational reasons. Expectancies that could result from

such a knowledge about groups are known to have the potential to influence

the outcome of experiments [Rosenthal and Rubin (1978); Sheldrake (1998);

Walach (2011)]. Possible experimenter effects can only be ruled out completely
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by repeating the experiment under double-blind conditions.

5.5.4 Relation to Other Studies

Improvements in 2pd performance induced by external training and by sensory

focussing are in the same order of magnitude [Godde et al. (2000)]. Two hours

of external training by repetitive stimulation (coactivation) resulted in an

improvement in 2pd performance by 16%. In our study, six hours of sensory

focussing resulted in a significant improvement in 2pd performance of 17% in

the right index finger where attention was focussed on and to a complemen-

tary improvement of 12% in the neighboring right middle finger. When the

external coactivation protocol was applied for only 30 minutes, discrimination

thresholds remained unaffected indicating a critical lower boundary for the

induction of coactivation-induced changes [Godde et al. (2000)]. For future

experiments it would be interesting to also measure a probable lower boundary

for the induction of changes by sensory focussing. Godde et al. (2000) also

measured the detailed recovery time course of coactivation effects: 4 hours

after finishing the training protocol subjects showed a complete recovery.

In the study presented here, 2pd improvements were still strong one day

after sensory focussing, which indicates a possible long term effect. However,

between day 3 and day 4 subjects in the sensory focussing group continued

with their normal meditative practice of focussing attention on their breath.

This intense awareness training may have compensated for recovery of 2pd

thresholds. For organizational reasons we were not able to measure recov-

ery effects over a longer period without the involvement of meditative practice.

Experiments conducted by other authors also dealt with the effect of mental

states on sensory processing. In 2009 it was shown that imaging a crucial

part of a visual bisection stimulus induces perceptual learning [Tartaglia et al.

(2009)]. Subjects were asked to imagine an offset to the left or right of an

imaginary line centered between two visible flanking lines. Imagined offsets

should be as small as possible compared to the center of the two flanking lines.
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The sensitivity for offsets of visible lines presented between the two flanking

lines was increased by this mental training. The authors concluded that

the neural processes underlying perceptual learning, which were usually as-

sumed to be primarily dependent on presentations of stimuli, could be equally

based on mentally generated signals. Similar results of mental imagery on

perceptual performance were obtained investigating visual discrimination of

motion directions [Tartaglia et al. (2012)]. The improvements in 2pd threshold

performance observed in our study are inline with these findings. However,

the intervention of r2-focussing is slightly different to mental imagery. In

r2-focussing subjects were only asked to be aware of the spontaneously arising

percepts in their right index finger where subjects in Tartaglia et al. (2009)

and Tartaglia et al. (2012) were asked to imagine specific stimulus properties

that directly related to the discrimination tasks. Our results indicate that

in the somatosensory area merely being aware, without emphasis of mental

imagery on a specific task, improves discrimination perfomance.

Recently, two important experiments were conducted showing an effect of

internally generated brain activity on perceptual performance and neural

representations [Shibata et al. (2011); Scharnowski et al. (2012)]. In both

experiments, a group of subjects was trained to elicit specific brain activity

in visual cortex by fMRi neurofeedback. By this, subjects induced specific

brain activity in visual areas resulting in enhanced sensitivity for visual tasks.

The authors of both studies concluded that merely the induction of activity

patterns without stimulus presentation induces neural plasticity in early visual

areas. It would be interesting to know how the activity patterns produced

by neurofeedback relate to activity patterns produced by the intervention of

sensory focussing used in our study.

The results obtained in our study are inline with those findings sharing

the statement that internally generated brain activity via mental imagery

[Tartaglia et al. (2009, 2012)], neurofeedback [Shibata et al. (2011); Scharnowski

et al. (2012)], or somatosenory focussing induce changes in perceptual mea-

sures and brain organization.
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5.5.5 Conclusion

Typically, neuroplasticity describes how external training shapes brain organi-

zation. Our findings support the view that this framework has to be extended

to incorporate the observation that intrinsic brain activity created without

external events can similarly alter perception and brain organization.
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6 Main Discussion

In the studies presented in this doctoral thesis, several aspects of information

integration and learning in neural systems were investigated at the levels of

single neurons, networks, and perception.

6.1 Multiplicative Interactions in Single Neurons

In the first study we asked the question of how contextual, multiplicative

interactions can be mediated by the physiological mechanisms available in

the brain (chapter 3). Multiplicative interactions are omnipresent in the

nervous system. Prominent examples are source-position estimations in the

barn owl auditory system [Pena and Konishi (2001); Fisher et al. (2007)],

looming stimulus detection [Gabbiani et al. (2002)], binocular interaction

[Freeman (2004)], motion detection in the visual system [Hassenstein and

Reichardt (1956); Reichardt (1961)], gaze direction gain fields and coordinate

transforms in the visual system [Andersen and Mountcastle (1983); Andersen

et al. (1985); Brotchie et al. (1995); Ono et al. (2010)], and modulation

of neurons output firing rates by attentional context [Treue and Martinez-

Trujillo (1999); McAdams and Maunsell (2000); Womelsdorf et al. (2006)].

Although a wealth of possible mechanisms of how multiplication is realized

in the nervous system were proposed over the last decades, the origin of

multiplicative interactions in the brain remains an open question [Koch

(1999); Nezis and van Rossum (2011)]. A mechanism hardly studied in

association with multiplicative interactions in the brain is permissive gating

[Katz (2003); Gisiger and Boukadoum (2011)]. Here, the presence of the

gating-input A opens a gate for input B and thus allows input B to pass

and contribute to the membrane potential of the neuron. By this, input B

can only contribute to the membrane potential of the neuron, if input A is

present. This permissive form of gating can be thought of as being a basis

for gain-modulation and multiplicative interactions as it implements a sort of

an AND gate. We proposed a model neuron that incorporates a permissive

gating mechanism and investigated the model analytically and numerically

due to its abilities to realize multiplication between two input streams. Here,
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a feeding input stream was associated with primary sensory input and a gating

input stream was associated with contextual input. It turned out that the

gating mechanism was capable of realizing multiplicative interactions on a

wide range of parameters. The gating mechanism implemented in the model

neuron turned out to be very robust in realizing multiplicative interaction

in the tested parameter ranges. We conclude that permissive gating can be

regarded as a candidate mechanism for how multiplication between two input

streams can be realized in the brain.

6.2 Unsupervised Learning of Gaze-Invariance

In the second study we asked the question of how gaze-invariant neural repre-

sentations in visual cortex that require a nonlinear interaction between sensory

retinal and contextual gaze direction inputs can develop in a self-organizing

network (chapter 4). The nonlinear interaction between retinal and gaze di-

rection inputs was modeled via the multiplicative gating mechanism presented

in the first study (chapter 3). We proposed a model network that learns gaze-

invariant representations of visual space in an unsupervised way. Contextual

information about the direction of gaze was integrated into the self-organizing

network presented by Michler et al. (2009). The self-organizing network

proposed by Michler et al. (2009) learns representations of a spatio-temporal

input stream that are selective for the slowly varying features in the input

stream and invariant to its fast changing features. The input stream reflected

natural viewing statistics in which gaze direction changes on a fast time

scale while gaze-invariant object positions change slowly corresponding to the

exploration of a visual scene by saccadic eye movements. By self-organization

of the mutual weights of the retinal input stream and the gaze direction input

stream, the network developed a representation that showed gaze-invariant

response properties.

The development of gaze-invariant representations was formerly modeled by

learning mechanisms that apply some kind of teaching signals that represents

knowledge about the gaze-invariant object positions [Zipser and Andersen

(1988); Mazzoni et al. (1991); Salinas and Abbott (1997); Pouget and Snyder
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(2000); White and Snyder (2004)]. The ability of a biologically plausible

self-organizing network to learn gaze-invariant representations was previously

unknown. To our knowledge we showed for the first time that gaze-invariant

representations of visual space can be learned in an unsupervised way by

exploiting the spatio-temporal statistics of natural viewing conditions, only.

The strong influence of viewing statistics on the obtained representations of

visual space argues for a strong involvement of environmental factors on the

development of neural representations which is inline with previous studies

[Barlow (1989); Simoncelli and Olshausen (2001); Einhäuser et al. (2002);

Fahle and Poggio (2002); Dinse et al. (2003); Wachtler et al. (2007); Michler

et al. (2009)].

Other mechanisms have been proposed for learning representations of spatio-

temporal input streams [Földiák (1991); Wiskott and Sejnowski (2002);

Einhäuser et al. (2002)]. All these mechanisms share the main principle

to develop representations of input streams that are selective for the slowly

varying features in the input stream and invariant for its fast varying features.

Training these mechanisms with an input stream similar to the one used here,

with multiplicatively interacting retinal and gaze direction inputs and statis-

tics that mimic natural viewing statistics [Einhäuser et al. (2007)], should in

principal lead to similar results as obtained in the study presented here.

In the first study of this doctoral thesis, the applicability of a pemissive gating

mechanism for realizing multiplicative interactions in an integrate-and-fire

model neuron was investigated. This model neuron was included in the

self-organizing network presented in the second study. The model neurons

learned gain modulation of a visual input stream by gaze direction inputs for

coordinate transformations (figure 11) and thus prooved to be feasible for

learning gain fields in a self-organizing network that incorporates Hebbian-like

plasticity [Siegelbaum and Kandel (1991); Dan and Poo (2004)], short term

synaptic plasticity [Siegelbaum and Kandel (1991); Dan and Poo (2004)], and

adaptational effects [Miller and Mackay (1994)]. The model neuron presented

in chapter 3 realizes nearly multiplicative interactions on a wide range of

parameter values and is well suited to be used in networks that incorporate

plasticity mechanisms. This robustness and applicability in self-organizing
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networks makes permissive gating a feasible candidate mechanism as a medi-

ator of gain field phenomena observed in biological neurons [Andersen and

Mountcastle (1983); Salinas and Sejnowski (2001)].

6.3 Improvement of Tactile Perception by Meditation

In the third study we asked the question of how attention, without involve-

ment of primary sensory training, influences the processing of sensory stimuli

(chapter 5). Psychophysical experiments have shown that focussing attention

on a training task increases the effectiveness of perceptual training in the

auditory, visual, and somatosensory domain [Seitz and Dinse (2007)]. We

asked the question of how effective perceptual learning is if only the focus of

sustained attention onto a sensory area without any involvement of external

training or stimulation is considered. The results presented in chapter 5

indicate that focussing sustained attention on a particular body part, here the

right index finger, significantly affects tactile acuity indicating that merely

being aware without external stimulation or training can improve tactile

abilities.

From neurophysiological experiments it is known that attention modulates

the response properties of sensory neurons in a nearly multiplicative way

similar to the multiplicative modulation by gaze direction in parietal cortex

[Spitzer et al. (1988); Mountcastle et al. (1987); Richmond and Sato (1987);

Treue (2001)]. In this view, attention can be regarded as a contextual cue

similar to the cue of gaze direction. In the second study presented in this

doctoral thesis, we showed that the multiplicative contextual information

about gaze direction has a strong effect on the development of neural rep-

resentations in a self-organizing network. Viewing sensory layers in cortex

as such self-organizing systems [Singer (1986)], it is rational to assume that

the multiplicative contextual cue of the focus of attention has similar effects

on the development of sensory neural representations. At the same time,

organization and reorganization, development and plasticity of mature neural

representations depend strongly on the spatio-temporal characteristics of

the sensory environment. Our nervous system seems to adapt its skills and
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representations to the actual sensory environments it is exposed to. Signifi-

cant changes in sensory environments alter brain organization and perceptual

abilities even in adult organisms [Fahle and Poggio (2002)]. For example,

if I extensively practice playing the violin, which significantly changes the

statistics of the sensory stimulation of the fingers of my left hand, the repre-

sentation of my left hand changes as my sensory cortex adapts to the changed

statistics of the environment [Elbert et al. (1995)]. If the environment changes,

our brains change [Barlow (1961); Simoncelli and Olshausen (2001); Fahle

and Poggio (2002)].

But what if not the statistics of the environment change but if the statistics

of the attentional focus change. In which way does such an attentional asym-

metry influence the neural representations involved? In the third study we

investigated this question by having subjects focus sustained attention on

their right index finger without any involvement of sensory training. The

results were clear: the introduction of an asymmetry in the statistics of the

attentional focus drastically improves perceptual abilities in the sensory entity

where attention was focussed on - without any involvement of external sensory

training. This argues for a strong involvement of internally generated neural

signals on brain organization and perceptual abilities, as previously suggested

by other authors [Kerr et al. (2008); Tartaglia et al. (2009); Shibata et al.

(2011); Tartaglia et al. (2012); Scharnowski et al. (2012)].

To understand what happens in the brain when attention is focussed on the

right index finger without the involvement of sensory stimulation and to un-

derstand which changes in brain organization underlie the observed alterations

in perceptual abilities, we currently repeat this study under double-blind

conditions and combine it with functional magnetic resonance imaging and

computer models of neural fields which were previously applied to somatosen-

sory learning phenomena [Wilimzig et al. (2012)]. In the last decades fMRi

has been used extensively to study effects of training paradigms on brain

organization and functionality in humans [Logothetis (2008)]. We think that

the combination of this technique with computational models of neural fields

will allow us to find the plasticity mechanisms involved in the alterations of

perceptual measures produced by sustained sensory focussing. Furthermore,
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we are conducting experiments with stroke patients in order to investigate

how the results obtained with sensory focussing could be effectively com-

bined with therapeutical methods [Johansson (2012)] or with new approaches

[Kattenstroth et al. (2012)] for sensorimotor rehabilitation in stroke patients.

6.4 Neural Plasticity and Mental States

Before the studies of Jenkins et al. (1990) primary sensory representations and

cortical maps were thought to be fixed after a critical period in development

[Hubel and Wiesel (1965)]. However, this view on the nervous system turned

out to be wrong. Jenkins et al. (1990) showed for the first time that mature

neural representations in early sensory areas are still capable of adapting to

significant changes in the environment. This study determined a breaking

point in neuroscience concerning the plasticity of the nervous system and on

the view of how the environment shapes neural representations even in adult

organisms. The field of neural plasticity emerged and since then the nervous

system is viewed as being in a steady state of use dependent self-organization

that serves to constantly match perceptual and acting abilities to the actual

environment the organism is confronted with [Dinse and Merzenich (2002)].

Today, we are at a similar breaking point: not only the environment, but

merely the inner state of a subject seems to be sufficient to alter neural

representations [Kerr et al. (2008); Tartaglia et al. (2009); Shibata et al.

(2011); Tartaglia et al. (2012); Scharnowski et al. (2012)].

The revolutionary aspect of the investigation of the effects of subjects inner

states on neural representations is that the inner state of a subject enters the

natural sciences. In western culture we live in a society that is still strongly

characterized by a picture of man in which body and mind are segregated.

Since Descartes’ postulate of res extensa (the material world) and res cogitans

(the spiritual, mental world) as being segregated entities [Descartes (1641)]

our scientific culture divided into two paths: first, a physical path governed

by the natural sciences and, second, a humane, mental, spiritual path. Subtle,

mental phenomena were generally excluded from neuroscientific research or

from the natural sciences in general [Bauer (2008)].
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Early psychological research at the beginning of the last century focussed

mostly on the easily observable parameters of a subject such as behaviour

[Watson (1913)] or task performance [Ashcraft (2005)], and not on supposedly

unobservable phenomena that take place in the minds of subjects. Later in

the last century, psychological research began to investigate the effects of

attention on perceptual phenomena [Cherry (1953); Cherry and Taylor (1954);

Broadbent (1956); Deutsch and Deutsch (1963); Treisman and Gelande (1980)].

Today it is known that attention has strong effects on stimulus processing

that go all the way back to the very primary sensory cortices [Treue (2001)].

Furthermore, attention is known to be important for the learning of simple

tasks in perceptual learning [Ahissar and Hochstein (1993, 2002)] and the

attentional focus is known to increases the effectiveness of external perceptual

training in the auditory, visual, and somatosensory domain [Seitz and Dinse

(2007)]. Here, attention is viewed as being important for perceptual learning

but external training or stimulation is still viewed as being the main driving

force for changes in stimulus processing or cortical organization structures.

In contrast, when conducting psychophysical experiments as the one pre-

sented in chapter 5 or the ones done by Tartaglia et al. (2009, 2012), when

pre and post measures of sensory abilities are conducted, when environmen-

tally nothing is changed in between these two measurements by training or

external stimulation, when only changes in the inner state of the subject

are instructed, and when then differences in the sensory abilites before and

after the intervention of changing the inner state of the subject are found,

then the effects of the mere inner state of a subject on stimulus processing

are observed. In these studies, the inner attentional or awareness state of a

subject is identified as being not only important, but actually sufficient to

induce the observed changes in stimulus processing. Moreover, such changes

in stimulus processing are most likely to be accompanied by changes in early

cortical stages of sensory processing [Godde et al. (1996); Pleger et al. (2001);

Lissek et al. (2009); Shibata et al. (2011); Scharnowski et al. (2012)]. The

effects of mental inner states without the involvement of external training or

stimulation on stimulus processing and - most likely - on material cortical

representations reflect the interaction and interconnectedness between the
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two supposedly segregated categories of res extensa and res cogitans.

In terms of cognitive psychology, the changes in the inner state of a subject

we focussed on can be captured by the term controlled attention. Controlled

attention [Ashcraft (2005)] denotes the act of voluntarily directing attention

to phenomena that are of interest for an organism without the necessary

condition of significant changes in the environment16. In this way, controlled

attention can be interpreted as a reflection of the interest of a subject. A

voluntarily induced bias of our attentional focus to certain phenomena, which

can be interpreted as a change in our interest, is likely to change our percep-

tion and cortical organization without an involvement of significant changes

in the environment [chapter 5, Tartaglia et al. (2009, 2012); Kerr et al. (2008);

Shibata et al. (2011)]. We seem to able to change ourselves not just by

experiencing the environment but merely by experiencing what goes on inside

of us. A change in our interests changes ourselfs.

6.5 Activity-Dependent Plasticity, the Inside, and the

Outside

All these lines of thought are not surprising when we combine the theories

of activity-dependent plasticity with recent results obtained by la Fougére

et al. (2009). In our daily perception there is a strict segregation between the

external world composed of supposed physical objects and the internal world

of thoughts, ideas, imaginations, and emotions. However, la Fougére et al.

(2009) showed that the difference between measured [(18)F]-FDG-PET signals

after real locomotion in an environment and measured fMRi signals during

imagined locomotion is only marginal: mostly the same areas in cortex were

active during real locomotion in an environment and imagined locomotion.

There is no reason why these results should not transfer to other sensory

areas.

In the framework of activity-dependent placticity the effectiveness of a synapse

that connects neuron A and B is altered when pre- and postsynaptic spikes

16In contrast to the voluntarily process of controlled attention, input attention denotes a
mostly input-driven, reactive, involuntary process.
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are elicited at the same time. Therefore, activity in the brain inevitably

changes brain organization by changing synaptic weights. If imagined and

real phenomena share similar activity patterns in the brain, it is not surprising

that mental, imagined phenomena can alter brain organization in the same

way that real phenomena do.

The effect that altered statistics in the environment have on perception and

brain organization [Fahle and Poggio (2002)] are - in a precise manner - effects

of altered statistics in our neural activity that originate in changes in the

statistics of the environment. Those altered statistics in neural activity change

brain organization via activity-dependent synaptic plasticity. The origin of

these altered statistics may only play a minor role in this view of the brain.

Whether the origin for changes in the statistics of neural activity is in the

environment or in the nervous system does not seem to have to matter in the

view of neural plasticity I outlined in this thesis.



7 ACKNOWLEDGEMENTS 109

7 Acknowledgements

I would like to thank:

• PD Dr. Thomas Wachtler (LMU München) as the main supervisor of

my thesis work,

• Prof. Dr. Andreas Herz (LMU München) and Prof. Dr. Tim Gollisch

(Göttingen) for being very supportive and motivating parts of my thesis

advisory committee,

• PD Dr. Hubert Dinse (RU Bochum) for supervision of the study

presented in chapter 5,

• the members of the Computational Neuroscience at the LMU München

for hosting, for great scientific support, and for a great time in München,

• Prof. Dr. Stefan Schmidt (Klinikum Freiburg) and his team for fruitful

discussions on this thesis,

• Frank Michler for supporting me with simulations in chapter 4,

• Dr. Tobias Kalisch and Dr. Jan Christoph Kattenstroh (RU Bochum)

for supporting me with statistical evaluations in chapter 5,

• John Wilson (Freiburg) and Armin Bahl (MPI Munich) for error check-

ing and correction of this thesis,

• Gisela Drescher (Zen-Linie Leere Wolke) without who the study pre-

sented in chapter 5 would have never been possible,

• the whole team of the Benediktushof for hosting me during the mea-

surements of the study presented in chapter 5,

• the Graduate School of Systemic Neurosciences Munich for education,

financial support and excellent administrative, structural, and organiza-

tional support during my PhD time (special thanx to Dr. Alexandra

Stein and Lena Bittl),

• my friends and family for always being there.



8 SUPPLEMENTARY MATERIAL 110

8 Supplementary Material

8.1 Multiplication in Neurons via Permissive Gating

A wealth of possible mechanisms has been proposed over the last decades
in order to answer the question of how multiplication could in principle be
realized by the physiological mechanisms available in the brain. Those models
can be categorized in (1) models that explain multiplication as an emergent
property of networks of ordinary single neurons that themselfs are not capable
of multiplying inputs and (2) models that explain multiplication on the level
of single neurons.

8.1.1 Models of Multiplicative Interactions - Network Level

Multiplication in a recurrent network. Salinas and Abbott showed in
1996 that a recurrently connected network model of firing rate units can
produce nearly multiplicative gain fields if recurrent connections are strong
enough [Salinas and Abbott (1996)]. The single firing rate units themselfs
were not intrinsically capable of multiplying inputs. Firing rate units were
recurrently connected in a way that neurons with overlapping receptive fields
excite each other and neurons with separated receptive fields inhibit each
other [Stemmler et al. (1995)]. Each neuron also received sensory retinal
and gaze direction inputs that were summed linearly. Retinal receptive fields
were tuned as a Gaussian function of retinal location where gaze direction
inputs varied linearly as a function of gaze direction. Although retinal and
gaze direction inputs were summed linearly, simulations showed that when
recurrent connectivity was present, the gaze direction signal acted as a gain
factor multiplying the retinal response.

Multiplication in a feedforward circuit. A recent study shows that
a feedforward circuit of ordinary noisy integrate-and-fire model neurons is
also capable of realizing multiplicative interactions [Nezis and van Rossum
(2011)]. Here, the central idea is that a product of two firing rates can be well
approximated by a smoothed minimum function. A minimum function of
two input streams can be easily implemented in a small feedforward network
of four ordinary noisy integrate-and-fire model neurons [van Rossum et al.
(2002)] that are connected in an excitatory and inhibitory pattern [Nezis
and van Rossum (2011)]. Such a feedforward circuit realizes multiplicative
interactions of two input streams. Multiplication is most accurate if the
minimum function implemented in the network is smoothed by appropriate
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amounts of synaptic noise.

Multiplication via correlations in a recurrent network. Salinas and Se-
jnowski proposed a model for multiplicative interactions mediated by changes
in correlations of recurrent connectivity [Salinas and Sejnowski (2000)]. In a
study that combines an analytic, stochastic description of a leaky integrate-
and-fire neuron model neuron with computer simulations of an integrate-and-
fire neuron [Troyer and Miller (1997)] with hundreds of recurrent excitatory
and inhibitory inputs and one feedforward input synapse, Salinas and Se-
jnowski [2000] investigated the impact of correlations on the average output
firing rate of the model neuron. Correlations have the largest impact on
the output firing rate of the neuron when excitatory and inhibitory synaptic
inputs are in balance (same net influence of excitatory and inhibitory inputs).
In this balanced regime, correlations among excitatory recurrent connections
have a multiplicative effect on the output firing rate of the model neuron.

8.1.2 Models of Multiplicative Interactions - Single Neuron Level

Multiplication via coincidence detection. Srinivasan and Bernard [1976]
showed that an integrate-and-fire like model neuron can detect coincident
spikes in two separated input streams that are summed linearly and produce
an output firing rate that is proportional to the product of the two input firing
rates. The central idea is that synaptic time constants, input weights and
inter-spike intervals can be fine-tuned such that one of the two input streams
alone can not elicit supra-threshold EPSPs and thus can not produce an
output spike. Only the coincident arrival of spikes from the two input streams
elicits supra-threshold EPSPs that lead to output spikes. This detection of
coincident spikes leads to multiplicative interactions on the basis of an AND
condition. Srinivasan and Bernard [1976] define a temporal difference, ∆,
that two EPSP’s must have for their coincidence detector neuron to exceed
the threshold level γ. At time t = 0, a spike elicits the first EPSP and
increases the membrane potential to the peak amplitude A < γ. Assuming an
exponential waveform the membrane potential will have the value A ·exp(−∆

τ
)

after time ∆ , with τ being the time constant of the EPSP. A second spike
elicits an EPSP which again increases the membrane potential by A. When
the sum of these values equals at least the threshold γ, a spike will be elicited.
The following equations are obtained:

γ = A · exp(−∆

τ
) + A ⇔ ∆ = τ · ln(

1

γ/A− 1
) (8.1)
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Srinivasan and Bernard conclude that under the condition γ/2 < A < γ
a spike is triggered in the neuron only by a pair of input spikes and not
by a single spike. At the same time, the smallest interspike interval in
each of the input spike trains has to be larger than ∆. This ensures that
the neuron does not detect false coincidences by temporal summation of
EPSP’s from one input stream. This mechanism works only for very low
input firing rates where EPSPs of each individual input stream do not overlap.
At the same time, only very low output firing rates are produced in this model.

Multiplication via a logarithmic-exponential cascade. The relation-
ship between external stimuli and neural responses is often roughly logarithmic
[Ratliff (1965); Tal and Schwartz (1997)]. Furthermore, experiments indicate
that neurons in locust have nearly exponentially shaped output tuning curves
[Gabbiani et al. (2002); Herz et al. (2006)]. Based on these two findings one
can hypothesize that multiplication of two signals x and y can be realized
via summation of logarithmically transformed signals on dendrites and for-
warding of this sum to an exponential nonlinearity [Koch and Poggio (1992);
Hatsopoulos et al. (1995); Herz et al. (2006)]. Mathematically written this
states as x ·y = exp(ln(x ·y)) = exp(ln(x)+ ln(y)). Tal and Schwartz [Tal and
Schwartz (1997)] showed that the transfer function of a leaky integrate-and-
fire neuron can provide a compressive nonlinearity sufficiently close to that
of a logarithmic transformation. The authors conclude that multiplication
can be realized by summation over leaky integrate-and-fire neurons outputs
yielding the logarithm of the product.

Multiplication via background activity. Recent results from simula-
tions with a Hodgkin-Huxley-type model neuron suggest that variation in the
background activity of cortical circuits may allow for gain modulation [Brostek
(2012)]. Based on the assumption that neurons might have two classes of
inputs, driving inputs and modulatory inputs [Sherman and Guillery (1998)],
the authors [Brostek (2012)] constructed a Hodgkin-Huxlex-type model neuron
that incorporates sensory driving inputs and inputs representing background
activity elicited by spontaneous activity of recurrent networks. Both in-
puts were mediated by different synaptic mechanisms. The authors [Brostek
(2012)] found that an increase of background synaptic activity can result in
multiplicative modulatory gain modulation of driving inputs. Similar results
- a divisive modulatory mechanism - were obtained in a neural network by
varying the level of balanced background excitatory and inhibitory inputs
[Chance et al. (2002)].

Multiplication via dendritic interactions. Dendritic trees contain many



8 SUPPLEMENTARY MATERIAL 113

types of voltage-dependent channels that can boost synaptic inputs [Mel
(1999)]. Such voltage-dependent membrane mechanisms in dendritic trees
could underlie multiplicative interactions. Synapses on a dendritic tree can
interact nonlinearly because the dendritic tree contains those active voltage
sensitive channels. This can lead to multiplicative interactions at the output
level of a neuron [Mel (1992, 1999); Poirazi et al. (2003)]. Moreover, experi-
ments indicate that basal and distal apical dendrites of pyramidal neurons
may have different functions in neural computation [Schiller et al. (1997);
Golding and Staff (1998); Mel (1999)]. The computational function of the
distal dendrities is thought to be a gain modulatory influence on the output
firing rate of the neuron [Koch and Poggio (1992); Kepecs et al. (2002);
Larkum et al. (2004); Mel (1999)]. In an elegant study it was shown that
weak input to a distal dendritic region modulates the influnce of proximal
inputs on a neurons output firing rate [Larkum et al. (2004)]. By combining
electrophysiological measurements in primary somatosensory cortex of rats
with simulations in a two-compartment model this effect could be explained
by an interaction between the two spatially segregated regions [Larkum et al.
(1999)]. This interaction between distal and proximal dendritic regions is
thought to be mediated by dendritic back-propagating Na2+ action poten-
tials and dendritic forward-propagating Ca2+ action potentials [Larkum et al.
(2004)]. Here, forward-propagating Ca2+ action potentials are caused by distal
inputs and back-propagating Na2+ action potentials are caused by proximal
inputs. The interaction between both kinds of dendritc action potentials
results in an action potential burst in the axonal spike initiation zone of
the neuron which increases the output firing rate of the neuron. This is
as backpropagation Na2+ action potentials can lower the threshold for the
initiation of forward-propagating Ca2+ action potentials which in turn can
initiate a burst of action potentials in the soma. By this, the association
between distal and proximal inputs leads to an increase in the neurons gain.

Multiplication via NMDA-gated receptors. The current flow through
a group of NMDA-gated receptors is not only dependent on the amount of
neurotransmitters docking the receptors but also depends on the postsynaptic
potential [Purves et al. (2004)]. NMDA-receptors are blocked by a Mg2+ ion
at voltage values around the resting potential. This block is released at a
more depolarized membrane potential. In principal, such a synapse acts as an
AND gate: a depolarization that is sufficient to generate an action potential
can only occurr when presynaptic transmitter release AND postsynaptic
pre-depolarization are present. This mechanism - in principle - could realize
multiplicative interactions [Mel (1999); Schiller et al. (2000)].
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8.2 Improvement of Tactile Perception by Meditation

8.2.1 Original Data - Sensory Focussing Group

r2 focus group s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

age [years] 41 54 46 50 58 48 48 56 54 52
med. experience [years] 8 20 10 4 10 16 29 15 10 25
med. per week [hours] 5 2 7 1.5 4 5 2.5 3 5 3

2PD thresholds [mm]

day 0, r2 2.45 2.46 2.34 1.49 2.69 2.29 1.92 1.9 1.68 1.84
day 0, r3 1.63 2.46 2.9 1.78 3.9 3.14 1.76 1.86 2.91 1.78
day 0, l2 2.34 2.38 3.16 1.36 2.71 2.24 1.31 2.51 3.38 4.81

day 3, r2 2.07 2.17 2.47 1.14 1.78 2.13 1.55 1.92 1.27 1.15
day 3, r3 1.9 2.04 1.87 1.3 3.74 2.82 1.98 1.39 2.6 1.36
day 3, l2 1.94 2.52 2.74 1.43 2.63 2.36 1.33 2.2 2.8 3.76

day 4, r2 1.71 2.65 1.99 1.3 2.31 2.19 0.53 1.6 1.31 1.04
day 4, r3 1.48 2.7 2.46 0.79 3.69 2.74 1.4 1.99 2.22 1.43
day 4, l2 1.88 2.59 2.34 1.44 2.72 2.51 1.19 2.43 2.82 4.65

Localization performance [%]

day 0, r2 62.5 83.3 83.3 66.7 62.5 66.7 79.2 66.7 79.2 70.8
day 0, r3 41.7 70.8 70.8 58.3 75 66.7 83.3 54.2 79.2 75
day 0, l2 91.7 83.3 75 75 54.2 29.2 87.5 70.8 54.2 70.8
day 3, r2 95.8 66.7 66.7 79.2 66.7 54.2 83.3 83.3 75 58.3
day 3, r3 79.2 70.8 62.5 75 58.3 70.8 75 95.8 70.8 70.8
day 3, l2 79.2 79.2 75 58.3 75 70.8 79.2 70.8 79.2 75
day 4, r2 62.5 70.8 83.3 83.3 66.7 62.5 70.8 87.5 87.5 83.3
day 4, r3 70.8 66.7 70.8 70.8 66.7 50 83.3 66.7 79.2 58.3
day 4, l2 79.2 75 66.7 70.8 54.2 62.5 87.5 79.2 66.7 50

.....

Supplementary table 1: Original data - sensory focussing group. The table shows

tactile performance measures of individual subjects in the sensory focussing group (s1-s10)

as well as age, estimated meditation experience and estimated meditation hours per week

in everyday life. 2pd thresholds and localization performance are shown for each finger (r2,

r3, and l2) on each day (0, 3, and 4).
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8.2.2 Original Data - Control Group

control group c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

age [years] 57 47 51 53 49 56 48 46 58 51
med. experience [years] 8 3 6 15 2 13 22 2 20 4
med. per week [hours] 4 4 2 5 3.5 7 4 2.5 3 4

2PD thresholds [mm]

day 0, r2 2.5 2.34 3.07 2.06 1.81 1.92 2.68 2.68 2.39 2.64
day 0, r3 2.55 2.68 3.05 2.31 2.24 2.27 2.05 2.94 2.46 2.81
day 0, l2 2.47 1.89 2.34 2.11 1.72 2.61 2.48 3.02 2.84 2.7

day 3, r2 2.57 2.27 2.24 2.34 1.73 1.82 2.65 2.61 2.31 2.65
day 3, r3 2.66 2.42 2.59 2.53 2.39 2.59 2.15 2.66 2.13 2.67
day 3, l2 3.13 2.47 2.49 2.83 1.93 2.35 2.4 2.6 1.81 2.06

day 4, r2 2.74 2.3 3.14 2.58 1.84 1.79 2.26 2.66 2.37 2.63
day 4, r3 2.85 1.89 2.81 2.4 1.9 2.11 2.42 2.99 2.42 2.9
day 4, l2 2.67 1.93 2.42 2.54 1.7 2.13 2.64 2.6 1.9 2.24

Localization performance [%]

day 0, r2 41.7 66.7 83.3 83.3 83.3 62.5 79.2 66.7 70.8 37.5
day 0, r3 45.8 62.5 79.2 83.3 66.7 62.5 58.3 83.3 62.5 87.5
day 0, l2 37.5 45.8 87.5 95.8 66.7 66.7 62.5 62.5 83.3 41.7
day 3, r2 54.2 66.7 87.5 66.7 83.3 75 66.7 87.5 66.7 75
day 3, r3 70.8 66.7 75 83.3 83.3 66.7 58.3 79.2 83.3 62.5
day 3, l2 70.8 62.5 87.5 95.8 62.5 91.7 54.2 70.8 83.3 70.8
day 4, r2 41.7 83.3 87.5 87.5 75 66.7 58.3 75 75 50
day 4, r3 45.8 70.8 87.5 79.2 54.2 70.8 75 87.5 66.7 62.5
day 4, l2 62.5 50 79.2 87.5 75 79.2 33.3 83.3 87.5 75

...
Supplementary table 2: Original data - control group. The table shows tactile per-
formance measures of individual subjects in the control group (c1-c10) as well as age,
estimated meditation experience and estimated meditation hours per week in everyday life.
2pd thresholds and localization performance are shown for each finger on each day.
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8.2.3 Evaluated Two Point Discrimination Thresholds - Right In-
dex Finger (r2)

r2 2PD thresholds sensory focussing group control group

day 0: mean and std [mm] 2.11± 0.37 2.41± 0.37
day 0: median [mm] 2.11 2.45

day 3: mean and std [mm] 1.77± 0.44 2.32± 0.31
day3: median [mm] 1.85 2.33

day 4: mean and std [mm] 1.66± 0.61 2.43± 0.39
day 4: median [mm] 1.66 2.48

Wilcoxon p day 0 - day 3 0.013 0.12
Wilcoxon p day 0 - day 4 0.014 0.92
Wilcoxon p day 3 - day 4 0.65 0.14

improvement day0− day3 (mean and std) 17± 13% (3± 10%)
improvement day0− day4 (mean and std) 22± 21% (−1± 10%)

.....

Supplementary table 3: Evaluated data - 2pd thresholds - right index finger.
The table shows evaluated 2pd thresholds in the right index finger of subjects in both
the sensory focussing and the control group. The table shows average 2pd thresholds on
each day (0, 3, and 4), as well as median 2pd thresholds, standard deviations, significance
values obtained by Wilcoxon’s statistical test and improvements. Evaluation methods are
described in detail in the main text (chapter 5).

8.2.4 Evaluated Two Point Discrimination Thresholds - Right Mid-
dle Finger (r3)

r3 2PD thresholds sensory focussing group control group

day 0: mean and std [mm] 2.42± 0.73 2.54± 0.31
day 0: median [mm] 2.16 2.5

day 3: mean and std [mm] 2.1± 0.73 2.48± 0.19
day 3: median [mm] 1.94 2.56

day4: mean and std [mm] 2.09± 0.81 2.47± 0.39
day4: median [mm] 2.11 2.42

Wilcoxon p day 0 - day 3 0.025 0.45
Wilcoxon p day 0 - day 4 0.022 0.67
Wilcoxon p day 3 - day 4 0.88 0.96

improvement day0− day3 (mean and std) 12± 16% (1± 10%)
improvement day0− day4 (mean and std) 15± 17% (2± 13%)

.....

Supplementary table 4: Evaluated data - 2pd thresholds - right middle finger.
The table shows evaluated 2pd thresholds in the right middle finger of subjects in both the
sensory focussing and the control group.
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8.2.5 Evaluated Two Point Discrimination Thresholds - Left In-
dex Finger (l2)

l2 2PD thresholds sensory focussing group control group

day0: mean and std [mm] 2.62± 0.96 2.32± 0.4
day 0: median [mm] 2.44 2.41

day 3: mean and std [mm] 2.37± 0.67 2.41± 0.38
day 3: median [mm] 2.44 2.44

day4: mean and std [mm] 2.46± 0.9 2.28± 0.33
day4: median [mm] 2.47 2.33

Wilcoxon p day 0 - day 3 0.086 0.58
Wilcoxon p day 0 - day 4 0.26 0.96
Wilcoxon p day 3 - day 4 0.33 0.17

improvement day0− day3 (mean and std) (7± 10%) (−6± 19%)
improvement day0− day4 (mean and std) (5± 12%) (0.7± 11%)

.....

Supplementary table 5: Evaluated data - 2pd thresholds - left index finger. The
table shows evaluated 2pd thresholds in the left index finger of subjects in both the sensory
focussing and the control group.

8.2.6 Evaluated Localization Performance - Right Index Finger
(r2)

r2 localization performance sens. foc. gr. control group

day 0: mean and std [%] 72.1± 7.9 67.5± 15.8
day 0: median [%] 68.75 68.75

day 3: mean and std [%] 72.9± 12.1 72.9± 10.2
day 3: median [%] 70.8 70.8

day 4: mean and std [%] 75.8± 9.6 70± 14.9
day 4: median [%] 77 75

Wilcoxon p day 0 - day 3 0.92 0.33
Wilcoxon p day 0 - day 4 0.33 0.34
Wilcoxon p day 3 - day 4 0.32 0.51

improvement day0− day3 mean and std (0.8± 15.6%) (5.5± 15%)
improvement day0− day4 mean and std (3.6± 10%) (2.5± 10%)

.....

Supplementary table 6: Evaluated data - localization performance - right index
finger. The table shows evaluated localization performance in the right index finger of
subjects in both the sensory focussing and the control group.
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8.2.7 Evaluated Localization Performance - Right Middle Finger
(r3)

r3 localization performance sens. foc. gr control group

day 0: mean and std [%] 67.5± 12 69.2± 12.8
day 0: median [%] 70.8 64.6

day 3: mean and std [%] 72.9± 9.5 72.9± 8.8
day 3: median [%] 70.8 72.9

day 4: mean and std [%] 68.3± 9.5 70± 13.4
day 4: median [%] 68.8 70.8

Wilcoxon p day 0 - day 3 0.81 0.36
Wilcoxon p day 0 - day 4 1.0 0.51
Wilcoxon p day 3 - day 4 0.39 0.77

improvement day0− day3 mean and std (5.5± 19%) (3.8± 13.6%)
improvement day0− day4 mean and std (0.9± 13.5%) (1± 11.6%)

.....

Supplementary table 7: Evaluated data - localization performance - right mid-
dle finger. The table shows evaluated localization performance in the right middle finger
of subjects in both the sensory focussing and the control group.

8.2.8 Evaluated Localization Performance - Left Index Finger (l2)

l2 localization performance sens. foc. gr control group

day 0: mean and std [%] 69.2± 18.7 65± 19.6
day 0: median [%] 72.9 64.6

day 3: mean and std [%] 74.2± 6.5 75± 13.9
day 3: median [%] 75 70.8

day 4: mean and std [%] 69.2± 11.7 71.3± 17.6
day 4: median [%] 68.8 77.1

Wilcoxon t day 0 - day 3 0.57 0.13
Wilcoxon t day 0 - day 4 0.94 0.28
Wilcoxon t day 3 - day 4 0.37 0.33

improvement day0− day3 mean and std [%] 4± 16.8 11.7± 12.9
improvement day0− day4 mean and std [%] 0.3± 15.1 6.2± 17.3

.....

Supplementary table 8: Evaluated data - localization performance - left index

finger. The table shows evaluated localization performance in the left index finger of

subjects in both the sensory focussing and the control group.
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Einhäuser, W., Hipp, J., Eggert, J., Körner, E., and König, P. (2005). Learning
viewpoint invariant object representation using a temporal coherence principle.
Biological Cybernetics, 93:79–90.
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P. (2007). Human eye-head co-ordination in natural exploration. Network:
Computation in Neuroscience, 18(3):267–297.

Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., and Taub, E. (1995).
Increased cortical representation of the fingers of the left hand sting players.
Science, 270:305–307.

Engel, A., König, P., Kreiter, A., Schillen, T., and Singer, W. (1992). Temporal
coding in the visual cortex: new vistas on integration in the nervous system.
Trends in Neuroscience, 15(6):218–226.

Evans, C., Jing, J., Rosen, S., and Cropper, E. (2003). Regulation of spike
initiation and propagation in an aplysia sensory neuron: gating-in via central
depolarization. Journal of Neuroscience, 23:2920–2931.

Fahle, M. (1997). Specificity of learning curvature, orientation, and vernier discrim-
inations. Vision Research, 1885-1895:37(14).

Fahle, M. and Morgan, M. (1996). No transfer of perceptual learning between
similar stimuli in the same retinal position. Current Biology, 6:292–297.

Fahle, M. and Poggio, T. (2002). Perceptual learning. MIT Press.

Fahle, M. and Skrandies, W. (1994). An electrophysiological correlate of learning
in motion perception. German Journal of Ophthalmology, 3:427–432.

Feller, M. (2009). Retinal waves are likely to instruct the formation of eye-specific
retinogeniculate projections. Neural Development, 4:24:1–5.



REFERENCES 124

Fiorentini, A. and Berardi, N. (1980). Perceptual learning specific for orientation
and spatial frequency. Nature, 287:43–44.

Firth, S., Wang, C.-T., and Feller, M. (2004). Retinal waves: mechanisms and
function in visual system development. Cell Calcium, 37:425–432.

Fisher, B., Pena, J.-L., and Konishi, M. (2007). Emergence of multiplicative
auditory response in the midbrain of the barn owl. Journal of Neurophysiology,
98:1181–1193.
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