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Abstract

Health care is a complex system and it is therefore expected to behave in a non-linear
manner. It is important for the delivery of health interventions to patients that the
best possible analysis of available data is undertaken. Many of the conventional
models used for health care data are linear. This research compares the performance
of linear models with non-linear models for two health care data sets of complex
interventions.
Logistic regression, latent class analysis and a classi�cation arti�cial neural network
were each used to model outcomes for patients using data from a randomised con-
trolled trial of a cognitive behavioural complex intervention for non-speci�c low back
pain. A Cox proportional hazards model and an arti�cial neural network were used
to model survival and the hazards for di�erent sub-groups of patients using an ob-
servational study of a cardiovascular rehabilitation complex intervention.
The arti�cial neural network and an ordinary logistic regression were more accurate
in classifying patient recovery from back pain than a logistic regression on latent
class membership. The most sensitive models were the arti�cial neural network and
the latent class logistic regression. The best overall performance was the arti�cial
neural network, providing both sensitivity and accuracy.
Survival was modelled equally well by the Cox model and the arti�cial neural net-
work, when compared to the empirical Kaplan-Meier survival curve. Long term
survival for the cardiovascular patients was strongly associated with secondary pre-
vention medications, and �tness was also important. Moreover, improvement in
�tness during the rehabilitation period to a fairly modest `high �tness' category was
as advantageous for long-term survival as having achieved that same level of �tness
by the beginning of the rehabilitation period. Having adjusted for �tness, BMI was
not a predictor of long term survival after a cardiac event or procedure.
The Cox proportional hazards model was constrained by its assumptions to produce
hazard trajectories proportional to the baseline hazard. The arti�cial neural network
model produced hazard trajectories that vary, giving rise to hypotheses about how
the predictors of survival interact in their in�uence on the hazard.
The arti�cial neural network, an exemplar non-linear model, has been shown to
match or exceed the capability of conventional models in the analysis of complex
health care data sets.
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Chapter 1

Introduction

1.1 Complex interventions

A complex intervention is conventionally de�ned as an intervention that has many

parts which may work independently or interdependently (Campbell et al. [2000]).

This thesis utilises data from two complex interventions which are described in detail

in Chapter 3. This chapter introduces complex interventions and describes how they

di�er from other intervention types and how their development, implementation and

evaluation are conducted using insights from complex adaptive systems concepts.

It is now accepted that many health care interventions are complex (Craig

et al. [2008], Emsley et al. [2010], Lancaster et al. [2010], Burton [2012]). The con-

trast with more simple interventions, such as a drug given to treat a single condition

is that in clinical trials to establish e�cacy, most sources of variability can be iden-

ti�ed and controlled for, either directly or by randomisation (Burton [2012], Hawe

et al. [2004]). There is no sharp boundary between simple and complex interventions

(Craig et al. [2008]). The greater the di�culty in de�ning precisely what exactly the

active ingredients of an intervention are and how they relate to each other, the

greater the likelihood that you are dealing with a complex intervention (Craig et al.

[2008]). Some highly complex interventions may comprise a set of individually com-

plex interventions, such as the Sure Start intervention to support families with young

children in deprived communities (Craig et al. [2008]).

The Medical Research Council identi�es 5 factors which make an intervention

complex:

• Number of interacting components within the experimental and control inter-

ventions
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• Number and di�culty of behaviours required by those delivering or receiving

the intervention

• Number of groups or organisational levels targeted by the intervention

• Number and variability of outcomes

• Degree of �exibility or tailoring of the intervention permitted

(Craig et al. [2008]).

In addition to interventions, health problems themselves can have di�erent

levels of complexity. Campbell et al. (Campbell et al. [2007]) illustrate this with the

example of cardiovascular disease: High death rates in people with cardiovascular

disease are a�ected by:

• Disease-Atherosclerosis, risk factors (cholesterol, blood pressure, smoking), co-

morbidity

• Patient-Beliefs about lifestyle, adherence to treatment, and symptoms

• Practitioner-Accessibility, prescribing practices, practices in health promotion

• Health service-Availability of e�ective preventive and therapeutic care

• Policy-Policies on preventive services (tobacco control, diet, exercise, etc)

• Social context-Socioeconomic status, social support.

It is important to recognise that some health problems can occur at multiple levels,

if a decision to intervene at one level could be cancelled out or promoted by actions

at other levels. For example, improving practitioners' health promotion practices

may have no e�ect on patients' health behaviour if social and environmental factors

obstruct response. One example of the importance of context was found in a trial of

a secondary prevention programme for cardiovascular disease. Interviews and focus

groups showed that because patients viewed heart attacks as self-limited episodes,

they were less willing to adopt long term lifestyle changes. It also showed that the

ability of practice nurses to provide skilled continuity of care was a�ected by both

their lack of training and by their low status in the primary health care team. The

understanding of complex interventions include issues of service and organisation

and the frameworks of understanding that inform the behaviour of healthcare users;

these are features of the interactions between intervention and environment that

characterise complex interventions (Oakley et al. [2006]). This connection between

levels means that sometimes the psychological domain is targeted to bring relief
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to physical su�ering, such as a cognitive behavioural approach to angina (Lewin

et al. [2002]) or back pain (Lamb et al. [2010b]), or a cardiovascular rehabilitation

intervention, which typically includes both psychological support and appropriate

medication, exercise, and education (Turner [2007]). Since there are, by de�nition,

many parts which may work independently or interdependently in a complex inter-

vention, it can be di�cult to design such an intervention such that it can be tested

for e�cacy and the successful parts or combinations identi�ed. To this end, a panel

of experts produced a framework for the design and evaluation of complex inter-

vention in health in the year 2000 (Campbell et al. [2000]). They de�ne a 5-stage

protocol, which need not be linear, where at each stage the �ndings may inform the

next or a reiteration of the previous stage. The 5 stages were:

• The preclinical stage for exploration of relevant theory

• Phase I modelling stage, for identifying the components of the intervention and

their modes of e�ect.

• Phase II an exploratory trial where the insights from theory and modelling are

tested

• Phase III the de�nitive randomised controlled trial, testing the complex inter-

vention against an appropriate alternative

• Phase IV, the long-term implementation.

This framework was later criticised to be too close to the framework for a drug trial,

which is usually a simple intervention. The framework was reviewed and updated

in 2008 as experience of evaluating complex interventions accumulated and interest

in the methodology had grown (Craig et al. [2008]). Several papers had identi�ed

limitations in the framework, recommending, for example, greater attention to early

phase piloting and development work, a less linear model of evaluation process, in-

tegration of process and outcome evaluation, recognition that complex interventions

may work best if they are tailored to local contexts rather than completely stan-

dardised, and greater use of the insights provided by the theory of complex adaptive

systems (Craig et al. [2008]). However, the 2000 framework provides a useful way

to organise an introduction to complex interventions and the issues that surround

them.

Preclinical or theory phase

In the preclinical stage, the relevant theory is explored in order to inform the design

and select the intervention, to develop a clear hypothesis and to identify major

3



confounders and strategic design issues. Identifying evidence that an intervention

might have the desired e�ect will include taking relevant evidence from outside health

sciences (e.g. theory of organisational change) and may lead to adjustment of the

hypothesis. Preliminary work can include simulation, qualitative testing through

focus groups, etc. and case studies. Qualitative research can be used to ascertain the

mechanism of e�cacy and barriers to be overcome. A range of research methods can

be used to collect evidence: systematic literature reviews, epidemiological research,

and expert opinion to quantify the extent of the problem and identify the groups most

at risk and the key modi�able risks. For example, reasons for delayed presentation

by patients with symptoms of lung cancer are poorly understood, so epidemiological

and qualitative research is being undertaken to identify and quantify determinants

and targets that may be amenable to intervention (Campbell et al. [2007]).

Conceptual modelling or mapping can clarify the mechanisms by which an in-

tervention might achieve its aims. The process involves mapping out the mechanisms

and pathways proposed to lead from the intervention to the desired outcomes, then

adding evidence and data to this map. Modelling of the intervention both depends

on, and informs, understanding of the underlying problem. The intervention must

engage the target group and a�ect pathways amenable to change that are identi�ed

as important to the problem (Campbell et al. [2007]).

The term 'mediator' is commonly used for a variable on a causal pathway,

and 'moderator' for a variable which modi�es the strength of part or all of a causal

pathway. Complex interventions have, by de�nition, multiple components and are

therefore characterised by complex treatment e�ect mechanisms with multiple medi-

ators, with the possibility of moderators such as the background characteristics and

environment of the patient.(Emsley et al. [2010]).

Optimising combinations of components in the intervention is not a straight-

forward task and there is no consensus on how to achieve this. Once a conceptual

model has been formed, some complex interventions may be amenable to simulations

or carefully controlled experimental studies outside the normal clinical setting such

as simulated patients. In one study, simulated patients were used to test the inter-

vention with general practitioners, which identi�ed the likely outcomes for a range

of patients and allowed general practitioners to comment on how the intervention

could be improved. Simulation can also be used to explore the e�ect of changes in

dose on response, and changes in contextual in�uences. (Campbell et al. [2007]).
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Phase I or Modelling phase

The second stage is Phase I when the intervention and the underlying mechanism

by which they will in�uence the outcome are identi�ed. The purpose of this phase is

to provide evidence that prediction of the relation between the components and the

interaction between them can be made. Clearly, there is some overlap with the pre-

vious phase in methodologies used to achieve this; simulated patients, for example,

could be used in this phase, too. Preliminary surveys, focus groups and case studies

can be used to de�ne components of the complex intervention and detailed descrip-

tions of the setting or intervention variants can inform the design. Potential barriers

can be identi�ed through qualitative research, such as whether knowledge or lack of

time or resources is the main barrier, and the intervention can be designed appro-

priately. Some researchers identi�ed barriers to patient participation that included

concerns about information and consent; patient preferences for treatment and ad-

ditional demands such as additional procedures. Barriers to clinician participation

included lack of sta� and training; concern about the impact on the doctor patient

relationship; time constraints and di�culties with the consent procedure (Lancaster

et al. [2010]).

Phase II or Exploratory Trial

Phase II of this scheme is the exploratory trial in which a fully de�ned complex

intervention is compared with a suitable alternative. For this, the protocol must

be theoretically defensible, reproducible and adequately controlled. The study must

also have appropriate statistical power. Lancaster et al (Lancaster et al. [2010])

provide a detailed discussion of statistical issues related to complex interventions

in primary care, with particular emphasis on cluster randomised trials which are

commonly used with complex interventions. Complex intervention trials often have

designs with multiple parts and multiple routes through which an intervention can

act and operate. Consequently there are larger number of covariates that may predict

outcome, and which need to be considered to avoid confounding than would be found

in a simple intervention for the same health problem (Lancaster et al. [2010]).

The purpose of a trial, including the exploratory one, is to evaluate e�cacy

of the intervention, to identify the mechanisms of action, the components delivering

change and the potential for tailoring the complex intervention to individual pa-

tients. As such, the complex intervention trial needs to be a sophisticated clinical

experiment designed to test the theories motivating the intervention and will also

help understand the underlying nature of the clinical problem being treated (Emsley
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et al. [2010]).

Key objectives of a pilot study are:

• Test the integrity of the study protocol. This is especially important if multi-

ple sites are to be involved. This includes evaluating the inclusion/exclusion

criteria, determining if interim analyses are necessary.

• Sample size calculation. This is to obtain initial estimates, considering vari-

ability and an estimate of intra-class correlation coe�cient if the main trial is

to be cluster randomised.

• Recruitment and consent rates. This is important for planning the length of

the study, the strategy for recruitment of practices and participants, how to

explain the study in layman's terms, trial the readability of patient information

and consent forms.

• Develop and test the implementation of the complex intervention. To deter-

mine the optimal duration of delivery of the intervention, the ease of adherence,

testing of materials, equipment and techniques, including if self-administration

is possible, and whether support, such as an on-call help service is needed

• Determine the acceptability of the intervention to participants, assessors and

funders, ascertain if there are any side e�ects and if costs are feasible and

undertake pre-trial modelling of cost-e�ectiveness.

• Train sta� in delivery and assessment procedures, determine inter-rater and

intra-rater reliability if applicable, and carry out calibration of instruments. It

is also important to trial the data collection, recording and data entry.

• Selection of most appropriate primary outcome measure, and determine if it

would be useful to use more than one primary outcome measure or secondary

outcome measures or biomarkers. Whether patient-reported outcomes are ap-

propriate and reliable.

• Randomisation procedure implementation, including whether use of a 24 hour

randomisation service is needed and its acceptability to participants.

• Pilot data collection forms and/or questionnaires and assess their face/content

validity, whether the self-completion should take place at hospital or at home

and if the use of postal questionnaires is appropriate or whether home visits

and interviewers are required.
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• Prepare and plan data collection and monitoring procedures, covering databases,

data entry, validation methods, backup, forms for monitoring adverse events

and missing data minimisation strategies.

(Lancaster et al. [2010]).

The exploratory phase should ideally itself be randomised to allow assess-

ment of the size of the e�ect. This initial assessment will provide a sound basis for

calculating sample sizes for the main trial. Other design variables can also be estab-

lished in an exploratory trial. Variability in individual level outcomes may re�ect

higher level processes and sample sizes may need to be larger to take account of

the extra variability and cluster randomised designs considered (Craig et al. [2008]).

The �ndings from a trial of a complex intervention are more generalisable if the trial

takes place in the setting in which the eventual intervention is likely to be delivered

and with the population likely to be o�ered the treatment.

In complex interventions, individual randomisation is often not possible, so

cluster randomisation frequently is used (in which clusters (or groups) of individuals,

rather than individuals themselves, are randomised.). This requires active partici-

pation from general practices, nursing homes or households, for example, depending

upon the unit of randomisation (Lancaster et al. [2010]). It is also often not pos-

sible to conceal the allocation of the treatment from the patient, practitioner and

researcher and the potential biases of unblinded trials need to be accounted for. A

preference trial design is one where any patient who expresses a preference for one

of the alternate treatment regimes is allocated to their preference and others at ran-

dom, but results from a preference trial design can be hard to interpret. There is

evidence that treatments patients prefer have greater e�ects (Adamson et al. [2008]).

The CONSORT statements for individual and cluster randomised trials are helpful

and informative for planning randomisation. They cover issues such as procedure,

method and level of randomisation. The decision to randomise clusters requires

justi�cation because of the associated cost of the increased numbers of patients in-

volved. The avoidance of potential contamination between individuals in di�erent

study arms is a common justi�cation. It may also be the case that an individu-

ally randomised trial is impossible or that a cluster randomisation would re�ect the

manner in which an intervention would ultimately be delivered. (Lancaster et al.

[2010]).

With this type of design, there is a higher probability that arms in a study

will become imbalanced in size, and that baseline covariates will show an imbalanced

distribution at the level below the unit of randomisation, usually individuals or possi-

bly, in studies with relatively few clusters, at the level of randomisation itself. There
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are two issues to consider for cluster randomised trials to optimise power: ensuring

equal numbers of clusters and ensuring equal numbers of patients per treatment arm.

In studies where few units of observation are randomised imbalances may lead to a

reduction in study power. A design-stage alternative is to eliminate the occurrence

of imbalance in chosen covariates by using a restricted randomisation method such as

strati�cation by covariates when there are su�cient randomisation units for this to

be practicable (Lancaster et al. [2010]). Eldridge et al. (Eldridge et al. [2005]) give

examples of di�erent recruitment strategies and discuss what can be done to avoid

bias in identifying and recruiting participants to cluster randomised trials, where

recruitment may operate at a number of di�erent levels (Lancaster et al. [2010]).

Care must be taken, therefore with eligibility criteria and recruitment of

intervention sites and personnel: a trial of complex intervention needs to consider

expertise of health professionals as well as investigations, drugs, treatment guidelines,

arrangements for discharge and follow up and the organisation, management and skill

mix of the unit where the intervention is delivered

Appropriate methods of analysis for individually randomised trials are based

on standard methods of statistical analysis, which are well-documented. Whilst there

are more complex issues to consider when analysing cluster randomised trials, where

researchers have to account for groups of individuals within clusters (Lancaster et al.

[2010]), neither of the complex interventions considered in this thesis were assessed

through a cluster randomised trial, so details are not given here. Details of the

analysis methods used are given in Chapter 4.

During Phase II, it is important to test for e�ects such as a learning curve, the

feasibility of delivering the intervention in di�erent places, consistency of delivery,

and the acceptability of the intervention to both providers and patients. If evidence

of a learning curve is found, adjustments should be made, such as a run-in period

before recruitment to a trial to overcome confounding due to a learning curve in

providers.

The feasibility and acceptability of an intervention can be measured by the

level of attrition found in the study in those that are willing to participate. A re-

search question that is considered to be important to primary care will usually make

recruitment easier, as it will engender greater interest at practice level. It is also

important to consider how the study will be perceived to impact on the patient-

doctor relationship more generally, and the priority given to the research question in

relation to other issues. Information about low participation rates can also provide

information about the feasibility and generalisability of likely uptake of the inter-

vention. A systematic review can be used to explore this across several randomised
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controlled trials. Relative attrition (attrition in the intervention group divided by

the attrition in the control group) has been used as a measure of acceptability that

allows the calculation of an overall e�ect estimate and the study of di�erent levels

of attrition based on the population of each trial (Lancaster et al. [2010]).

Suitable outcome measures should be ascertained by the exploratory trial.

Outcomes can be measured at the individual level or at the level of a group or cluster,

which in primary care research is usually the GP practice. In choosing the primary

and secondary outcomes to be measured, it is vital that they are �t for purpose,

both theoretically and practically. An example of an interventions in primary care

administered at the practice level might be the introduction of a universal parenting

programme to prevent early childhood behavioural problems, with main outcomes

concerning parenting, child behaviour and maternal mental health. In general, out-

come measures need to be valid (i.e. shown to have face/concurrent/predictive valid-

ity), to be repeatable (i.e. stable over time when the disease state is not changing),

to be reproducible (i.e. when applied by di�erent assessors), and to be objectively

measured in situations where self-reporting may be unreliable (for example, self-

reported smoking cessation with additional biochemical validation (Lancaster et al.

[2010]).

The MRC guidance on developing and evaluating complex interventions states

that researchers need to decide which outcomes are most important, which are sec-

ondary, and how they will deal with multiple outcomes in the analysis. A single

primary outcome and a small number of secondary outcomes are the most straight-

forward for statistical analysis but may not represent the best use of the data or

provide an adequate assessment of the success or otherwise of an intervention that

has e�ects across a range of domains. It is important also to consider which sources

of variation in outcomes matter and to plan appropriate subgroup analyses (Craig

et al. [2008]).

All interventions need to be cost e�ective if they are to be used. Model

building can be a cost-e�ective way of evaluating the likely quality-adjusted life-

year (QALY) of an intervention from a complex intervention using data from a pilot

study, which can also provide estimates of likely e�ectiveness and cost.

Eldridge et al. (Eldridge et al. [2005])developed a cost-e�ectiveness model of

a complex falls prevention intervention from pilot study data in order to assess the

viability and design of a subsequent trial. Using two models, they �rst estimated the

probability of falling over a 12-month period using a probability tree, and then used a

Markov simulation to assess the impact of the programme over time. The probability

tree model showed that the intervention would reduce the proportion falling by only
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2.8% over a 12-month period. The major reason for this small e�ect was that less

than a quarter of older people at risk of falling were assessed using their screening

tool. Sensitivity analyses showed that the only scenarios that produced a substantial

increase in the e�ect of the intervention were those in which all older people are

assessed, and this was not cost-e�ective. They found that even if policy-makers

were willing to spend ¿30,000 per QALY gained, there was only a 40% chance that

the intervention would be cost-e�ective (Lancaster et al. [2010]). The value of well

designed pilot or feasibility studies, prior to large multi-centre randomised controlled

trials, is illustrated by the feasibility study for the UK Back pain, Exercise, Active

management and Manipulation (UK BEAM) trial. The aim was to pilot all aspects

of the trial including the intervention, to identify problems in design or execution,

to investigate unresolved issues and to demonstrate that the main trial could ful�l

its aims, in terms of its design and implementation, and was therefore worthy of

funding. Overall, the feasibility study demonstrated that the majority of methods

and processes were successful. It identi�ed where changes were required to the trial

design or execution and highlighted unexpected problems, allowing further design

changes before the start of the main trial. This study proved that pilot studies

are vital, especially when evaluating complex interventions, for providing planning

information and identifying unanticipated issues in advance of expensive, complex

trials (Lancaster et al. [2010]).

Using the information from the exploratory trial, the optimum intervention is

developed, possibly in a variety of versions, and consideration given to consistency of

delivery and whether there is evidence of improved performance of the intervention

over time. A suitable control intervention and outcome measures will have been

found.

Phase III the de�nitive trial

Having established the e�ect size, sample sizes, inclusion and exclusion criteria, and

methods of randomisation, as well as the challenges of complex interventions in the

pilot, Phase III, the main trial, can be undertaken (Campbell et al. [2000]). Pro-

cess evaluation in a trial is an example of the trend to move beyond the rhetoric of

quantitative versus qualitative methods. Process evaluations within trials explore

the implementation, receipt, and setting of an intervention and help in the interpre-

tation of the outcome results. Process evaluation can help to distinguish between

interventions that are inherently faulty (failure of intervention concept or theory)

and those that are badly delivered (implementation failure). Process evaluations

are especially necessary in multi-site trials, where the "same" intervention may be
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implemented and received in di�erent ways (Oakley et al. [2006]). For example,

the RIPPLE (randomised intervention of pupil peer-led sex education) study was a

cluster RCT designed to investigate whether peer delivered sex education is more

e�ective than teacher delivered sessions at decreasing risky sexual behaviour. By

integrating process and outcome data, the ability to interpret results according to

empirical evidence was maximised (Oakley et al. [2006]).

With most (simple) interventions, integrity is de�ned as having the "dose"

delivered at an optimal level and in the same way in each site. Complex intervention

thinking de�nes integrity of interventions di�erently. The issue is to allow the form

to be adapted while standardising the process and function (Hawe et al. [2004]).

If standardisation is taken to mean that all the components of an intervention are

the same in di�erent sites, this treats a complex intervention as if it were a sim-

ple intervention. An alternative way of thinking about standardisation is that the

�xed aspects of the intervention are the essential functions (the steps in the change

process that the elements are purporting to facilitate or the key functions that they

are meant to have) and the variable aspect is their form in di�erent contexts. In

this way an intervention evaluated in a pragmatic, e�ectiveness, or real world trial

would not be de�ned haphazardly. In evaluations seeking to identify active ingre-

dients within a complex intervention, strict standardisation may be required and

controls put in place to limit variation in implementation, but some interventions

are designed to be adapted to local circumstances. In complex interventions, the

function and process of the intervention should be standardised not the components

themselves. This allows the form to be tailored to local conditions and could im-

prove e�ectiveness. Intervention integrity is then de�ned as evidence of �t with the

theory or principles of the hypothesised change process. For example, in a trial of a

school based intervention to promote health and wellbeing, schools were encouraged

to use a standardised process to develop strategies which suited them rather than

adopt a �xed curriculum, resulting in widely varied practice between schools (Hawe

et al. [2004]). Reports of such studies should include a detailed description of the

intervention to enable replication, evidence synthesis, and wider implementation.

Phase IV, the long-term implementation

The �nal phase is Phase IV which examines the implementation of the interven-

tion into practice. Its purpose is to determine whether others can reliably replicate

the intervention and results in uncontrolled settings over the long term. Long term

follow-up may be needed to determine whether outcomes predicted by interim or

surrogate measures do occur or whether short term changes persist. Although un-
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common, such studies can be highly informative.

Summary

In summary, the process of developing and evaluating a complex intervention has

several phases, which may not follow a linear sequence. Experimental designs are pre-

ferred to observational designs in most circumstances, but are not always practicable.

Complex interventions may work best if tailored to local circumstances rather than

being completely standardised. Understanding processes is important but does not

replace evaluation of outcomes (Craig et al. [2008]). Trials of complex interventions

are of increasing importance because of the drive to provide the most cost e�ective

health care. Although such trials pose substantial challenges to investigators, the use

of an iterative phased approach that harnesses qualitative and quantitative meth-

ods should lead to improved study design, execution, and generalisability of results

(Campbell et al. [2000]).

Another de�nition

One of the more recent developments in the consideration of complex interventions

in heath care is the greater use of the insights provided by the theory of complex

adaptive systems (Shiell et al. [2008]). Shiell et al. state that although it is rarely

delineated, complexity in healthcare has two meanings. In the �rst it is a property

of the intervention, and in the second it is a property of the system in which the

intervention is implemented. The �rst view of complexity, that complex intervention

is "built up from a number of components, which may act both independently and

inter-dependently" makes it hard to de�ne the "active ingredients" and to be sure

which component or combinations of components is more important. This is the

more often used de�nition and the one used above.

The second view is that complexity is considered to be a property of a system

not an intervention. A complex system is one that is adaptive to changes in its

local environment, is composed of other complex systems (for example, the human

body), and behaves in a non-linear fashion (change in outcome is not proportional to

change in input, Shiell et al. [2008]). The idea that healthcare is a complex system

is discussed in detail in Chapter 7. Whilst the active elements are subject to more

variation, making evaluation of complex interventions di�cult, economic evaluation

is still possible by measuring the resources required and the intended outcomes seen.

However, in a complex system it may be di�cult to measure and evaluate the spin-o�

outcomes, such as a slow change in attitude which reaches a point where it creates
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the context for change e.g. the ban on smoking in public places (Shiell et al. [2008]).

The �rst empirical evidence to support the argument that complex interven-

tions are interventions in complex systems was provided by Burton (Burton [2012]).

One testable property of complex systems is the presence of characteristic heavy-

tailed statistical distributions. Such distributions appear to be ubiquitous in nature

and have also been found in healthcare systems. These distributions are very di�er-

ent from the Gaussian (normal) distribution which characterises the distribution of

simple e�ects. If complex interventions are truly interventions in complex systems

the e�ect sizes of these interventions should be expected to show a heavy-tailed

distribution, typical of those seen in other complex systems (Burton [2012]).

The e�ect sizes of a range of complex interventions collected and processed by

the methodologically rigorous Cochrane review group was used to reduce the chance

that the distribution of e�ect sizes found was due to the inclusion of methodologically

weak studies with high risk of bias. When �tting these data, Burton found the e�ect

sizes had heavy tailed distributions typical of those seen in classical complex systems,

supporting the notion of complex interventions as interventions in complex systems

(Burton [2012]).

Under either de�nition, complex interventions o�er the possibility of tailoring

interventions to patients, and methodological techniques for the analysis of data from

complex interventions is needed. This thesis explores di�erent methods for analysing

data from two distinct complex interventions.

1.2 Aims of this research

Having established that health care interventions can be complex, the overarch-

ing aim of this research was to explore whether using non-linear models can better

model health care and so capture the information contained in health care data sets

of complex interventions. In this work, the term linear model was used in the usual

statistical sense of a model that is linear in the parameters, so that logistic regres-

sion and the non-parametric Cox model for survival analysis are linear models. The

non-linear model which was used as an exemplar was the arti�cial neural network

model consisting of two layers of adaptive weights with full connectivity between in-

puts and hidden units and using sigmoidal activation functions (called a multi-layer

perceptron). This choice was made because this particular architecture is capable of

universal approximation, meaning that it can approximate any continuous function

to arbitrary accuracy from a compact region of input space, provided the number

of hidden units is su�ciently large, and provided the weights and biases are chosen
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appropriately (Nabney [2002]). This means these models have the full capability

required for modelling non-linear relationships between variables.

Two exemplar data sets were used, one from each of two common study

types in health research, namely the randomised controlled trial and the observa-

tional cohort study. Each data set contains information about patients' responses to

a complex intervention.

In order to achieve the aims of this research, one goal was to build on the

population-level information provided by the standard analysis in the Back Skills

Training Trial (BeST) of a cognitive behavioural approach to low back pain (Lamb

et al. [2010b]) and investigate whether non-linear models enable individual tailoring

to be possible for this treatment. i.e. to discover whether it is feasible to predict

which patients will bene�t from the treatment. If so, this has potential to inform

clinical decision making when recommending treatment for an individual presenting

with low back pain. The accuracy of predictions of both linear an non-linear mod-

els were compared to test the hypothesis that allowing for non-linear relationships

among the explanatory variables leads to improvements in performance in modelling

this complex system.

Another goal was to ascertain what predicts long-term survival after a car-

diac event or procedure using data from a cardiovascular rehabilitation population.

A linear and non-linear model was each �tted using the same explanatory variables

and compared to ascertain which gave a better �t to the population survival curve.

The two models were then be assessed for their performance to predict hazards for

groups of people with the same values of the explanatory variables. By comparing

plots that di�er in just one covariate, interrelations between the covariates were hy-

pothesised.

In order to achieve the research aim, a number of speci�c objectives were

formulated:

• Can latent class analysis identify sub-sets of patients within a cohort of patients

recruited to a clinical trial for non-speci�c low back pain?

• Is it possible to use linear models and the classes identi�ed by the latent class

analysis to tailor interventions for non-speci�c low back pain to patients?

• How do the performances of the linear and non-linear models compare for
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the prediction of patient outcomes following a cognitive behavioural approach

intervention for non-speci�c low back pain?

• What is the potential for these linear and non-linear models to inform policy

on the treatment of non-speci�c low back pain?

• Using a linear model, what predicts long-term survival after a cardiac event or

procedure, at population level?

• Can a non-linear arti�cial neural network be used to model long-term survival

after a cardiac event or procedure?

• How do linear and non-linear models compare in modelling the survival and

hazard of a population who have experienced a cardiac event or procedure?

• What is the potential for this research to inform policy for those who have

experienced a cardiac event or procedure?

In Chapter 2, following, an overview of the literature relevant to the health

care applications and the analysis methods employed in this thesis is given. Then

the two data sets are introduced in Chapter 3, giving the context, collection and

demographics of the cohorts, and a description of previous work using these data

sets is given. Following this, the conventional methods, latent class analysis and

survival analysis, are described in Chapter 4 and then the arti�cial neural networks

methodology is introduced in Chapter 5. The results of using the linear models and

the non-linear models for both data setts is given in Chapter 6 and followed by a

discussion of results and the degree of success in achieving the objectives listed above

in Chapter 7. The conclusions are drawn in Chapter 8. The appendix contains copies

of the published and submitted research papers, diagnostic plots for the multiple

imputation of missing data, and a comparison of the survival analysis with the data

sets with missing data imputed.
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Chapter 2

Literature Review

This literature review is divided into four sections, each being mirrored by a section

in the results chapter. The �rst section is an overview of classi�cation of patients

for the allocation of treatments for back pain, and discusses a variety of approaches

to classi�cation. The second section explores the use of Arti�cial Neural Networks

(ANNs) to classify patient outcomes. The next section gives and overview of what

is known about long and short term survival in cardiac patients, focusing on the

covariates that predict survival in those two time scales, and the �nal section explores

the use of ANNs for survival analysis.

The purpose of this literature overview is to provide background for the research

question and an indication of where the question �ts with the existing literature.

It also provides background for the analysis decisions and the interpretation of the

results. A thorough search has been made for the latest reviews and studies, however

this overview is not claimed to be a systematic review in the formal sense.

2.1 Classi�cation for treatment allocation in back pain

There are a large number of treatments for back pain each of which provide dis-

cernible relief for a substantial proportion of patients. Almost everyone experiences

non-speci�c low back pain (LBP) sometime during their lifetime (Dionne [1999]).

Each year in the UK, about one third of the population experiences back pain of

which 20% consult their Geb=neral practitioner(GP, family doctor. NICE [2009]).

There are a number of interventions known to be e�ective for non-speci�c low back

pain including exercise programmes, manual therapy, acupuncture (NICE [2009])

and a cognitive behavioural approach (Lamb et al. [2010b]). However, these inter-

ventions have small mean e�ects. This has prompted researchers to try to identify
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ways of classifying those seeking treatment so that classes of patients can be matched

to interventions in order to maximize treatment e�ect (Kent et al. [2010]). Many

di�erent classi�cations have been developed, including biopsychosocial classi�cations

(McCarthy et al. [2004]), but there is little consensus on their use (Kent and Keating

[2005]). For non-speci�c low back pain of greater than 6 weeks duration, the UK

National Institute of Health and Clinical Excellence (NICE) has suggested patient

preference should guide the choice of treatment from a range of e�ective interventions

(NICE [2009]). The Latent Class Analysis (LCA) of the BeST data aimed to provide

additional guidance for patients and clinicians as whether or not to consider the use

of a cognitive behavioural approach (Lamb et al. [2010b], Barons et al. [2013a]).

In a recent systematic review of the role of clinical classi�cation systems in

chronic low back pain (Fairbank et al. [2011]), three types of classi�cation are identi-

�ed in the literature: those relying on clinical descriptor (Diagnostic), those describ-

ing prognosis (Prognostic), and those considering treatment response (Treatment-

based); the latter is where the LCA of the BeST data belongs. In the review (ibid)

they found 28 classi�cation systems in use including �ve in the treatment-based cat-

egory. In three of these, patients were classi�ed by a clinician according to where

the pain manifest and under what postural conditions, using the McKenzie method.

This method was found to have high reliability, in that clinicians trained to use

the method matched each others' categorisation in a high proportion of cases (70-

100%). However, a 260-patient randomised contol trial (RCT) did not �nd signi�cant

reduction in pain from tailoring treatments based on McKenzie classi�cation. The

strength of evidence was classi�ed as high in the review. The Sikorski method of

classi�cation had no reliability studies, and the Van Dillen and O'Sullivan methods

had no clinical trial studies. The Canadian Back Institute Classi�cation was based

on location of pain and improvement or worsening with speci�c movements. It had

good agreement (78%) in a reliability study. In a study with 1,356 patients given

classi�cation-tailored treatments and compared with 754 who had usual care, those

having the individualised treatment regime speci�c to this classi�cation system had

decreased pain, improved function and less medication use. Evidence for the classi�-

cation system was rated insu�cient, and for the e�ectiveness, low because there was

only one study reporting moderate examiner agreement. The review concluded that

there is a need for a classi�cation of low back pain which directs both surgical and

non-surgical treatments. In all these studies, classi�cation was done by the clinician

and based wholly or in part on observations about pain location and change with

movement.
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The next section describes studies which did not appear in this review either

because they were published later, or were excluded from the review because they

are not clinical classi�cations but statistical partitioning of data.

Delitto's classi�cation-based treatment approach (Hebert et al. [2011]) was

compared with usual care in an RCT of 156 patients with sub-acute and chronic

back pain, split 74 to classi�cation and 82 to usual care (Apeldoorn et al. [2012]).

Classi�cation-based treatment was direction-speci�c exercise, spinal manipulation

or stabilization exercises. Delitto's classi�cation is also based on therapist observa-

tions, and the Apeldoorn study found no statistically signi�cant di�erences between

treatment groups. In an observational study, an association between cluster and

subjective pain intensity was found in patients who had participated in a chronic

pain-management programme (Chapman and Pemberton [1994]). 122 Patients were

followed up 6-66 months later and classi�ed into 7 groups using the Minnesota Mul-

tiphasic Personality Inventory (MMPI) using repeated measures analysis of variance

(ANOVA). Clusters were also associated with occupation in univariate ANOVA.

In a cohort of 301 LBP patients, a hypervigilant sub-group was identi�ed using a

standardised clinical examination with good between-therapist agreement and used

by physiotherapists (McCarthy et al. [2011]). This means of identi�cation of dis-

tinct patient sub-type is accompanied by a suggestion that the hypervigilant might

be targeted, but this was not tested. Distinguishing between neuropathic and non-

neuropathic pain using the PainDETECT questionnaire with 145 patients in sec-

ondary care with 3 to 12 months of LBP did not predict treatment response to a

usual care only intervention, but did predict prognosis - those patients with neu-

ropathic pain had more pain, more limited activity and poorer self-rated health at

baseline, 3 and 12 months (Morso et al. [2011]).

A variety of work has been published using statistical methods for partition-

ing data sets of patients with low back pain.

K-means clustering partitions cases into clusters in which each case belongs

to the cluster with the nearest mean, with `nearest' being de�ned by some distance

metric (Hastie et al. [2009]). A k-means algorithm was used on samples of 127 male

(57%) and 94 female patients with LBP to form clusters based on their responses

to the Symptom Checklist 90 (SCL-90) which measures physical and psychiatric

symptoms (Shutty Jr. and DeGood [1987]). The responses were scored in both the
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standard 9-dimensions (S-Score) and in a modi�ed 10-dimensions (F-Score) which

was formed by an alternative division of response scales. The SCL-90 was admin-

istered at baseline and at follow-up 2 weeks to one month later and compliance

to whatever treatment was recommended for the individual was recorded as a di-

chotomous variable. The optimal clustering using the S-Score was 3 clusters for

each gender, whilst using the F-score the optimal was 3 clusters for males and 4 for

females. The mean scores within each cluster on each of the score was reported.

The clusters were numbered by size and 37% of males and 48% of females changed

cluster number between scoring schemes. No links of cluster allocation to outcome

were tested, and there were no reliability studies. In addition, 65% of the cohort was

unemployed with 90% of those attributing their work status to the back pain.

A k-means algorithm was used to divide MMPI scores into 5 clusters for a cohort

of 401 patients (60% female) with chronic LBP (McCreary [1985]). The intital clus-

tering was performed on 271 cases, the remaining 130 reserved for cross-validation.

Outcome was improvement in pain intensity during the previous week evaluated at

baseline and follow-up 6 months to one year later (54% response rate). The same

cluster characteristics were found in the cross-validation set. Treatment was a tai-

lored combination of rest, exercises, advice and analgesic medication; the authors

do not say how the tailoring di�ered. The ability to predict improvement in pain

intensity from cluster membership was superior in males, and one particular clus-

ter predicted both poor (below average) improvement in pain intensity for men and

good (above average) improvement in pain intensity for women, although the au-

thors concede that the small numbers in the separate-gender analyses may make

the results unstable. They concluded that a larger percentage of men showed severe

psychological disturbances and poor response to medical treatment.

The k-means clustering algorithm was used in an adapted form to learn a division

of 21 patients into those who did and did not experience signi�cant pain reduc-

tion of LBP using dynamic transcutaneous electrical nerve stimulation (DTENS)

(Akhmadeeva et al. [2010]). The algorithm was trained on 74 clinical and paraclin-

ical factors including health-related quality of life and the results of psychological

testing. For an independent cohort of 35 patients who all experienced signi�cant

pain reduction, the algorithm was able to able to predict signi�cant pain reduction

for 70% and possible pain reduction for the remaining 30%. Since the algorithm was

not tested on patients whose outcome was little no pain reduction, no assessment of

its use in the general population can be made.

Clustering was performed on data from three separate cohorts of LBP pa-
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tients (n=170, 82 & 124; Langworthy and Breen [1997]). A technique of sequential

testing of squared Euclidean distance was employed to construct dendograms to

identify clusters. (A dendogram is a tree diagram used to illustrate the arrangement

of the clusters produced by hierarchical clustering.) Two clusters was found to be

optimal in all three cohorts and these corresponded to patients with constant pain

and patients with cyclic pain (i.e. that is worse at certain times of the day) in each

cohort. None of the demographic features (age, sex, social class and job status) was

association with cluster membership. The clusters were not used to inform treatment

decision.

A longitudinal study of the time course of LBP collected monthly questionnaires

about pain intensity from patients for 6 months and used LCA to divide their pain

pathways into classes (Dunn et al. [2006]). Demographic information was collected

at baseline. At baseline and 12-month follow-up, disability was measured using the

Roland Morris Disability Questionnaire (RMQ), HADS was used to identify clinical

anxiety and depression and catastrophising was captured with the Coping Strategies

Questionnaire. 342 participants returned at least 4 of the questionnaires and were

included in the analysis. Four classes were identi�ed: persistent mild (122 patients),

recovering (104 patients), severe chronic (71 patients) and �uctuating (45 patients).

At 12 months, patients in the persistent mild class had the same pain but improved

psychological scores, the majority in the recovering group were pain free, more than

half of those in the severe chronic class were o� work, and the patients classi�ed as

�uctuating were still consulting their practitioner and a persistent one third of those

were depressed. There was no investigation of a link between class membership and

treatment response, nor of whether patients could be allocated on baseline charac-

teristics alone, in order to inform treatments. Quality of life (QoL) as measured

by the SF36 was signi�cantly lower for patients in 2 of 4 latent classes when 1,391

17-year-olds were classi�ed using LCA (Beales et al. [2012]). LBP was assessed using

the Nordic questionnaire for musculoskeletal symptoms, and general linear models

used to associate class with quality of life. Female patients having LBP, depres-

sion and anxiety and male patients having LBP and behavioural disorders had lower

QoL than others with or without LBP but without signi�cant comorbidity. The

Subgroups for Targeted Treatment (STarT) back screening tool was developed (Hill

et al. [2008]) based on referred leg pain, comorbid pain, disability (2 items), both-

ersomeness, catastrophizing, fear, anxiety, and depression. The tool demonstrated

good reliability and validity and was acceptable to patients and clinicians. Patients

were classi�ed as low risk, medium risk and (those scoring high on a psychosocial

subscale) high risk of persistent disability. STarT was trialled with 851 patients as-
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signed randomly 2:1 to intervention and control (Hill et al. [2011]). In the control

group, treatment decisions were made on the basis of the physiotherapists' clinical

judgment, without knowledge of a participant's STarT Back Tool classi�cation. In

the intervention group, the high risk patients received support for psychosocial barri-

ers to recovery in addition to the physiotherapy for symptoms and function received

by the medium risk group. All groups in the intervention received advice, a copy of

The Back Book, information about exercise facilities and saw a a 15-min educational

video entitled `Get Back Active'. There was a larger improvement in RMQ scores

in the intervention group at 4 and 12 months, and the cost was lower (Whitehurst

et al. [2012]). The tool is published on the web and is free to download. Some prac-

titioners in the UK and elsewhere have declared themselves to be users and describe

the treatment they use. (STarT [accessed 18/05/13])

Many studies have used classi�cation techniques to distinguish between cat-

egories of patients with low back pain, and a few have used such classi�cations to

inform treatment regimens. In the few cases where an attempt was made to asso-

ciate classi�cation with outcome, only pain intensity was considered, and not back

pain disability as measured by tools like the RMQ. In the one case where RMQ

was used as an outcome, a new back screening tool was being tested and the treat-

ment was related to items that could potentially be modi�ed by treatment options

in primary care. Very few studies have used classi�cations de�ned solely by patient

questionnaires and just one has used the factors interventions may tackle as the basis

for classi�cation. The conclusion of the 2011 systematic review largely still stands;

there continues to be a need for classi�cation which directs treatments. In particu-

lar, research that increases understanding of the complex interaction within people,

within complex interventions and between people and the interventions, would be

very bene�cial, particularly in decision support, design of interventions and tailoring

interventions to patients.

2.2 Non-linear relationships and machine learning for

back pain

One of the motivations for selecting ANNs to classify LBP data is that LBP has

been found to have non-linear relationships with covariates. ANNs have the facility

to capture non-linear relationships between variables. In this section, the evidence

for non-linear relationships between LBP and covariates is illustrated, and this is

followed by the background for the use of ANNs to model LBP.

21



2.2.1 Non-linear relationships

Previous studies on non-speci�c low back pain have found non-linear relationships

between physical activity and back pain.

In a cross-sectional survey of employees in two Swiss national companies undertaken

between 1996 and 1998, frequency of physical activity per week during leisure time

had a signi�cant but non-linear relationship to back pain (Lee et al. [2005]). Par-

ticipation was 41% of all employees giving 10,321 participants (6,251 = 60.6% male,

mean age 39.9 ± 10.8 years and 4,070 = 39.4% female, mean age 37.9 ± 11.3 years).

Using both a self-administered questionnaire and physical �tness tests, this study

assessed participants' general constitution, physical problems, back pain, work en-

vironment, stress, smoking habits and physical activity. Participants were asked

whether they performed physical activity (running, cycling, aerobics, etc.) in their

leisure time at least once a week and on how many days a week. The number of days

(one to seven times per week) was taken as an indicator for physical activity. A �t-

ness test was carried out under the supervision of doctors and nurses who visited the

various branches of both companies and assessed endurance, �exibility, upper body

strength and abdominal musculature, which was then compared with the normal

range of the healthy population for those age groups. 4,945 (48%) reported having

had mild back pain in the previous 4 weeks, and 696 (7%) reported having su�ered

from severe back pain. The severe back pain group comprised 340 (48.9%) women

and 356 (51.1%) men; the percentage of men was statistically signi�cantly higher.

No association between body mass index (BMI: weight in kilogrammes divided by

(height in metres)2) and back pain was found. In univariate analyses, �exibility,

upper body strength, abdominal strength, age (especially over 55 years), smoking

category, and the sum of the stress factors were statistically signi�cant. Stress factor

scores for smokers, non-smokers and ex-smokers were signi�cantly di�erent. Fre-

quency of physical activity per week had a signi�cant but non-linear relationship to

back pain: no or little activity (none to two times a week), but also intensive phys-

ical activity (six to seven times a week), was associated with back pain. However,

moderate activity (three to four times a week) was associated with less back pain

(χ2=30.86, P<0.001). A similar relationship was found for intense back pain and

physical activity (χ2=31.78, P<0.001). In multivariate analyses, back pain preva-

lence of any intensity decreased with increasing age and a weak upper body and

personal stress increased the likelihood of back pain, as did smoking and ex-smoker

status. The variables gender, obesity, strength of the abdominal musculature and

frequency of physical activity were insigni�cant in multivariate analysis.
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A previous, similar workplace cross-sectional study had uncovered an inter-

action between ergonomic work variables and poor psychosocial work environment

(a composite of workload, work content and social support, Linton [1990]). In this

study, a relationship between regular exercise and back pain was not found, but

back pain was not categorised or clearly de�ned by minimum pain intensity or du-

ration, and the authors admit that this may have masked the e�ect. Heavy lifting,

monotonous work, uncomfortable posture, vibration, age, workload, work content

and social support was each associated with low back pain. In addition, an inter-

action between psychosocial environment and each of monotonous work, lifting and

posture was found to be of greater signi�cance than the constituent variables alone.

Furthermore, the relationship between age and psychosocial factors was found to

be nonlinear, with the under-30 and over-50 age groups more strongly a�ected by

psychosocial environment than the intermediate age groups.

EuroQol (EQ-5D) measures health-related quality of life and is composed of 5 dimen-

sions, each with 3 levels and a visual analogue scale. To account for the di�erences

between national characteristics, the scoring of the 5 dimensions is calibrated by cal-

culating speci�c national coe�cients in the linear model that relates the dimension

levels with the visual analogue scale to produce a single-number summary. Using a

cohort of 633 patients with low back pain, the Spanish version of EQ-5D was shown

to give statistically di�erent model coe�cients for those with LBP than the gen-

eral population (Zamora et al. [2007]). It was also shown that a non-linear model

(in which the regression coe�cients noticeably indicated the presence of non-linear

e�ects in the di�erent dimensions of the EQ-5D instrument) gave a more accurate

prediction of the visual analogue scale from the scores of the 5-dimensions.

In addition to the non-linear relationships between physical activity and back

pain, previous studies on non-speci�c LBP have found non-linear relationships be-

tween anxiety and pain (Beesdo et al. [2009]) and between anxiety and depression

(Katerndahl [2009]). A systematic review (Ramond et al. [2011]) found that LBP

is a complex condition and that depression, psychological distress, passive coping

strategies and fear-avoidance beliefs were psychosocial factors sometimes found to

be independently linked with transition from acute to chronic non-speci�c LBP in

the adult general population, whereas most social and socio-occupational factors

were not. The authors concluded that psychosocial factors should be considered

as momentary and partial indicators of more complex and dynamic distress, which

required tailored management. Therefore, appropriate treatments for back pain are

of great importance.
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2.2.2 Machine learning for back pain

Arti�cial Neural Networks (ANNs) belong to a class of learning methods that de-

veloped separately in the distinct �elds of statistics and arti�cial intelligence, based

on essentially identical models and are described in detail on page 89. They can be

represented by a network diagram like Figure 5.1, and their architecture is described

by the number of layers, and the number of units in each layer e.g., 6-3-2 is a 3

layer network with 6 input units (explanatory variables), 3 hidden units (units in

the single hidden layer) and 2 output units (response variables). The transfer or

activation function is the function applied to the weighted sum of the inputs to a

unit to provide the output of the layer.

Whilst clinical applications of ANNs are widespread (Dybowski and Gant

[2001]), the literature on using ANNs to model LBP data is sparse. A 3-layer feed-

forward ANN with sigmoidal transfer functions (242-20-3 architecture) was used to

classify patients into healthy, LBP su�erers and malingerers (Gioftsos and Grieve

[1996]). The training data was derived from 36 people, a similar number from each

category, with malingerers represented by actors pretending to have LBP. Each study

participant's movements were video recorded from the side whilst they stood up from

and sat down on a chair. The changes in �exion-extension angles of the hip, knee

and lumbar spine were captured electronically and the horizontal and vertical foot

pressure measured with a force plate in front of the chair. Five episodes of sitting

and standing were captured and the normalised pressures and angles used as inputs

to the ANN. The root means squared error was the loss function and leave one out

cross validation was used to evaluate the performance of the trained network, giv-

ing 31 (86%) correct. The video recordings were used to allow 9 physiotherapists

to classify the same participants into the 3 categories. They found it easy to dis-

criminate between the normal and abnormal patterns, despite the fact that they

had not been trained to assess patients by watching them on monitors, but hard to

distinguish LBP cases from malingerers. Each physiotherapist's accuracy was sta-

tistically signi�cantly lower than the ANN. Another study used a 3-layer ANN with

sigmoidal activation (or transfer) functions (3-3-1 architecture) to classify patients

into pain / no pain 6 months after hospitalisation (Hallner and Hasenbring [2004]).

The training data was derived from 71 people who were treated conservatively or by

surgery and had their pain intensity measured at the beginning of hospitalisation and

6 months later. The number of neurons in the hidden layer were reduced until the

accuracy began to decline. Inputs to the ANN were psychosocial variables, with the

three with highest predictive power used in the �nal version (depression, suppressive
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behaviour, thoughts of suppression). Accuracy was 83% with sensitivity 78% and

speci�cty 97%, with no reported validation. The authors conclude that this could aid

the early detection of risks for chronicity which could lead to improved cognitive, be-

havioural and emotional management of patients to aid the avoidance of chronicity.

Another 3-layer ANN (378-n-5, n not given) was used to classify patients referred to

surgical spine clinic into one of 5 diagnoses using pain drawings used routinely as a

diagnostic tool (Sanders and Mann [2000]). Types of pain were marked on a human

outline and a clinician examined the patterns to see if they follow a dermatomal

pattern, a segmented �eld of skin innervated by a spinal nerve. The drawings were

digitised using a video camera and segmented into 85 regions derived from low back

pain dermatomes and gross anatomical regions. The number of pixels with a pain

mark was normalised by the number of pixels in the region. Training was carried out

on 200 samples and testing on 50, and over�tting avoided by early stopping. The

ANN sensitivity was 49% which was statistically equivalent to the physicians (51%)

and was a statistically signi�cantly improvement over discriminant analysis (46%).

The authors conjecture that low number of cases and an inadequate image capture

might explain the disappointing sensitivity.

ANNs have been employed to aid diagnosis of genuine back pain, to assess

risk of chronicity and to diagnose the origin or type of back pain. No literature has

been found that uses ANNs to predict the outcome of a speci�c treatment for back

pain based on baseline measurements of the patient characteristics that the inter-

vention was designed to tackle. Similarly, no literature has been found addressing

the usefulness of ANN prediction of outcome to tailor treatments to patients.

2.3 Cardiovascular Survival

Coronary heart disease is estimated to cost the UK economy ¿33bn (Euro40bn;

$53bn) annually, of which just under half is due to direct health costs (Allender

et al. [2008]). It remains the leading cause of mortality in the United Kingdom, with

coronary heart disease accounting for 18% of all deaths in men and 13% in women

(Scarborough et al. [2010]). The UK has been experiencing dramatic falls in death

rates from coronary heart disease in recent years due to the fall in smoking preva-

lence (Hardoon et al. [2008]) and due to improvements in treatment, particularly

secondary prevention (Unal et al. [2004], Hughes et al. [2011]).
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There are a number of factors known to be associated with the development of

cardiovascular disease (CVD). A recent study, based on the Framingham O�spring

cohort, assessed the e�ect of risk factors measured at baseline on the long term

(30-year) risk of developing hard cardiovascular disease (hard CVD is used to mean

coronary death, myocardial infarction and fatal and non-fatal stroke) in those free of

CVD and cancer at baseline examined using Cox regression (Pencina et al. [2009]). In

a secondary model full CVD was used as outcome. Considering the extensive length

of follow-up and the potential bias due to the competing risk of non-cardiovascular

mortality in the prediction of long-term risk, the estimates were adjusted for the

competing risk of non-CVD mortality as those who die of non-cardiovascular causes

are ineligible for development of CVD events. Standard CVD risk factors (male sex,

age, systolic blood pressure, anti-hypertensive treatment, total and HDL cholesterol,

smoking and diabetes) were highly signi�cant in the multivariate model. BMI was

weakly signi�cant in the �nal model, but in a simpli�ed o�ce-based risk model in

which BMI replaced the lipids it was highly signi�cant along with all other risk fac-

tors. In time-dependent analysis updating all variables approximately every 4 years,

all standard risk factors remained signi�cantly related to the hard CVD outcome

with hazard ratios similar to those obtained in 30-year risk models. BMI lost its

entire impact in time-dependent model. The authors conclude that this �nding il-

lustrates how the e�ect of BMI is mediated through other risk factors: it was present

in 30-year risk model when the follow-up is extended for a long period from the base-

line but then it impacted the individual risk factors, and after controlling for this

impact in time-updated models, BMI lost its signi�cance.

2.3.1 Primary prevention

Primary prevention is preventing illness in someone who does not currently have the

illness. There is no single cause for coronary heart disease, although a cluster of risk

factors has been identi�ed which make individuals more prone to developing it. Some

are unalterable, such as being male or inheriting a family history, but other known

risk factors such as smoking, depression, raised cholesterol and sedentary lifestyle

can be modi�ed.

Smoking cessation reduced risk for coronary heart disease substantially more than

cholesterol lowering (Critchley and Capewell [2003]). The evidence was su�cient

to infer a causal relationship between smoking and coronary heart disease (Sur-

geon General [2004]) and 11,500 deaths from ischaemic heart disease among those

over 65 in England were estimated to be smoking attributable (Twigg et al. [2004]).

IMPACT, a widely used and replicated epidemiological model was used to synthe-
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sise estimates strati�ed by age, gender, and area deprivation quintiles for the English

population aged 25 and older between 2000 and 2007. IMPACT is an epidemiological

model used to explain the contributions of population-level risk factor changes (inci-

dence reduction) and uptake of evidence-based treatments (case fatality reduction)

to the change in CHD deaths between two points in time. This model suggested that

approximately half the recent CHD mortality fall in England was attributable to im-

proved treatment uptake. This bene�t occurred evenly across all social groups. The

single largest contribution to the overall CHD mortality decrease came from a popu-

lation fall in systolic blood pressure amongst those not on hypertensive medications

with relatively small gains from hypertension therapies. Furthermore, moderate de-

clines in smoking levels were actually greater in deprived areas (Bajekal et al. [2012]).

A recent Cochrane review into the reduction and alteration of fat in the diet (Hooper

et al. [2012]) concluded that total mortality and cardiovascular mortality were unaf-

fected by reduction of fat in the diet; there was a small reduction in cardiovascular

risk on modi�cation of dietary fats but not reduction in total fats.

The most successful CVD primary prevention strategies have been reduction in smok-

ing and blood pressure and uptake of medications.

2.3.2 Secondary prevention

Secondary prevention is used to mean methods to diagnose and treat existent disease

in early stages before it causes signi�cant morbidity.

While many studies have reported on the e�ects of treatment on short term case

fatality (Gale et al. [2008], Vale et al. [2011b], Greenhalgh et al. [2010], Nordmann

et al. [2005], Elfstrom et al. [2012], Mikhail [2005], Kodama et al. [2009], Singh [2003])

there is much less evidence published on factors associated with the long term sur-

vival (greater than 5 years) of individuals who have experienced a coronary event

(e.g. myocardial infarction, MI, heart attack) or procedure (e.g. coronary artery

bypass graft, CABG, percutaneous coronary intervention, PCI) (Grundtvig [2012],

Grundtvig et al. [2011], Hannan [2012], Kavanagh et al. [2002]) and predictors of

long- and short-term survival di�er (Filardo et al. [2012], Fox et al. [2008], Shahian

et al. [2012]). This review investigates what is know about risk factors for short and

long term survival for such individuals.

Long term (5-year) prognosis after hospital admission for MI is improving

(Dudas et al. [2012]). Preoperative risk factors, which are good predictors of short-

term outcomes, have been found to contribute little information to the prediction of

long-term survival in CABG patients (Filardo et al. [2012]). Traditional predictors
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of early survival in CABG patients over the age of 65 do not a�ect long-term sur-

vival, but late mortality is increasingly associated with chronic diseases and health

behaviours (Shahian et al. [2012]). Patients who were de�ned as having limited

functional status before undergoing CABG did not have a di�erent long-term all-

cause mortality from those who did not (Cervera et al. [2012]). Patients undergoing

CABG or valve surgery and who have prolonged stay in intensive care also have

poorer long-term survival (Elfstrom et al. [2012]). The change in de�nition of MI

which was introduced in 2000 (Antman et al. [2000], Thygesen et al. [2012]), diag-

nosed many more patients with MI than under the previous de�nition. However,

the long-term survival of patients diagnosed with MI under either scheme is not

signi�cantly di�erent (Grundtvig [2012]). Fitness as measured peak oxygen intake,

V O2 max, (most accurate measure of exercise capacity) was found to be a predic-

tor of long-term mortality of both men and women; even moderate �tness conferred

a 50% reduction in cardiac mortality (Kavanagh et al. [2002], Kavanagh et al. [2003]).

Statins are a class of drugs used to lower cholesterol levels by inhibiting the

enzyme HMG-CoA reductase, which plays a central role in the production of choles-

terol in the liver. Statins have gained a pivotal role in the primary and secondary

prevention of coronary artery disease, and are thought to improve perioperative

outcomes in patients undergoing cardiac surgery. A recent Cochrane review (Li-

akopoulos et al. [2012]) identi�ed eleven randomised controlled trials with a total

of 984 patients undergoing cardiac surgical procedures, and found that preoperative

statins reduced postoperative atrial �brillation and was associated with a shorter

stay in the intensive care unit. Statins failed to in�uence short-term perioperative

mortality and there was no reduction in MI. Early statin treatment (initiation within

14 days) for patients with acute coronary syndrome (ACS) reduced the occurrence of

unstable angina at 4 months following ACS, but did not reduce death, MI or stroke

up to 4 months following ACS (Vale et al. [2011a]).

Beta blockers (BB) and angiotensin-converting-enzyme inhibitor (ACE inhibitor) are

used in patients experiencing acute cardiovascular events. The e�ect of early treat-

ment (within 24 hours of event) with these and other drugs on short-term mortality

was investigated in a Cochrane review (Perez et al. [2009]). Whilst Nitrates reduced

all-cause mortality during the �rst two days following acute MI, ACE inhibitors had

a signi�cant e�ect only at 10 days and Beta blockers and calcium channel block-

ers had no e�ect on mortality at 2, 10 or 30 days. There was no information on

their e�ect on mortality risk at 5 years or beyond. In a systematic review of sec-

ondary prevention of ischaemic cardiac events, survival bene�ts of BB were similar
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in men and women. The highest absolute bene�t from beta-blockers was found in

people who were over 50 years of age, with a higher heart rate at study entry, with

a history of MI, angina pectoris, hypertension, or treatment with digitalis, and with

transient signs or symptoms of mechanical or electrical failure in the early phases

of MI (Skinner and Cooper [2011]). The same review advised that ACE inhibitors

should be considered for secondary prevention in all patients after acute MI with

left ventricular systolic dysfunction and in high-risk patients without left ventricular

systolic dysfunction. It further suggested that after CABG, ACE inhibitors should

be initiated with caution in low-risk patients without left ventricular dysfunction.

The bene�ts of ACE inhibitors in very low-risk patients with a previous MI and

without left ventricular dysfunction may warrant further investigation. If this ad-

vice is followed, those taking ACE inhibitors are those at increased risk.

2.3.3 Cardiac rehabilitation

Following a cardiac event or procedure, patients are routinely referred to Cardiac

rehabilitation (CR, Bethell et al. [2009]). Cardiac rehabilitation is the process by

which patients with cardiac disease are encouraged and supported to achieve and

maintain optimal physical and psychosocial health and is a complex intervention

consisting of three core elements: education, exercise training and psychological

support (Heran et al. [2011], Jolli�e et al. [2009], Bethell and Mullee [1990], Bethell

et al. [1983], Bethell et al. [2009], Plüss et al. [2008], Taylor et al. [2004], Turner

et al. [2003], Turner et al. [2002], Unal et al. [2004], West et al. [2011]). In this

section, literature describing what is known about the various elements of cardiac

rehabilitation, especially long-term e�ects, is discussed.

The education element of cardiac rehabilitation

A recent review of the education element of CR concluded that there is some evi-

dence to suggest that education may improve health-related quality of life, and that

it may reduce costs by reducing subsequent use of health care, but there was no

strong evidence of an e�ect of education on all-cause mortality, cardiac morbidity or

hospitalisation (Brown et al. [2011]).

Depression and anxiety in psychological rehabilitation

Psychological interventions showed small to moderate e�ects on depression and anx-

iety following a cardiac event in a Cochrane review which also found that in smaller
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studies (with some evidence of small-study bias) there was a modest positive e�ect

of psychological interventions on cardiac mortality (Whalley et al. [2011]). Overall,

there was no strong evidence that psychological intervention reduced total deaths, or

risks of revascularisation and non-fatal infarction. Relative to placebo, antidepres-

sants produced no change in cardiovascular function in heart disease, in respiratory

function in lung disease, or in vital signs or laboratory tests in cancer, although were

signi�cantly likely to improve depression (Gill and Hatcher [2000]). Depression 7

days after MI has been associated with 18-month cardiac mortality (Frasure-Smith

et al. [1995]) but only medical history related to heart disease and was controlled

for in this study. One meta-analysis of observational studies concluded that depres-

sion is more strongly associated with short-term than long-term mortality (5 years

and longer) and that more studies of long term mortality are needed (Barth et al.

[2004]). A later observational study of 588 followed up for up to 8 years after MI

found no association between depression and cardiac mortality, whether measured

just before MI or at 12 months follow-up (Dickens et al. [2007]). Fitness is known

to a�ect depression (Turner [2007]) but was not measured in this study. Another

meta-analysis of prospective studies found that the presence of depressive symptoms

after MI was not uncommon and was associated with a 2- to 2.5-fold increased risk

of impaired cardiovascular outcome within 2 years (van Melle et al. [2004]). The

authors state that confounding factors are possible and a causal inference cannot be

drawn. A subsequent prospective study employed a case-control design and assessed

depression using a structured interview (i.e. met diagnostic criteria for either major

depression, minor depression, or dysthymia on the Depression Interview and Struc-

tured Hamilton) in contrast to patient questionnaires (e.g. HADS). This study found

that depression was an independent risk factor for death 5 years after an acute MI

and minor depression was associated with an increased risk of death, although the

authors stated it was not known whether treating depression can improve survival

or not (Carney et al. [2008]). Again only medical items directly associated with MI

were controlled for, and �tness was not measured. A systematic review of depression

screening tools in CVD patients found that sensitivity ranged from 39% to 100%

(median, 84%) and speci�city ranged from 58% to 94% (median, 79%). The screen-

ing tools have a known high false positive rate and a clinical interview is necessary to

con�rm a diagnosis of depression. Additionally, this systematic review found depres-

sion treatment with medication or cognitive behavioral therapy resulted in modest

reductions in depressive symptoms in those with CVD, and there was no evidence

that depression treatment improved cardiac outcomes (Thombs et al. [2008]). The

failure of psychological interventions to reduce mortality suggested the association
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is not causal (Dickens et al. [2007]).

A LCA of the course of depression symptoms found that there is a class of pa-

tients whose risk of a new cardiovascular risk is raised (Kaptein et al. [2006]). Scores

on the Beck Depression Inventory for 475 patients (385 men [80%], 90 women, mean

age 60.6 years) who had MI were assessed during hospitalisation and at 3, 6, and 12

months. The prevalence of depressive symptoms was 22.7% during hospitalization.

The analysis identi�ed 5 classes: no depressive symptoms (56.4%), mild depressive

symptoms (25.7%), moderate and increasing depressive symptoms (9.3%), signi�cant

but decreasing depressive symptoms (4.6%), and signi�cant and increasing depres-

sive symptoms (4.0%). Participants in this last class had a statistically signi�cantly

higher risk of a new cardiovascular event compared with those without depressive

symptoms. Controlling for baseline cardiac status and sociodemographic data did

not alter the association; �tness was not measured and there was no long-term folow-

up.

Depression predicted failure to complete cardiac rehabilitation (Casey et al. [2008],

Turner [2007]).

Exercise in cardiac rehabilitation

Exercise-based cardiac rehabilitation has been found to reduce overall mortality, car-

diovascular mortality and hospital admissions in the short and medium term. The

vast majority of studies have less than two years follow-up, and only three had longer

than �ve years follow up. These three studies are described in this section.

The National Exercise and Heart Disease Project examined whether a supervised ex-

ercise programme improved 19-year survival in 30- to 64-year-old male MI patients

(Dorn et al. [1999]). This 3-year multi-centre randomised clinical trial was conducted

in the United States from 1976 to 1979 and involved 651 men with neither hyper-

tension nor signi�cant comorbidity and with a ability to exercise at an intensity

level ≥ 3 metabolic equivalents (METs) and a supine resting diastolic blood pres-

sure <100 mm Hg. After completion of a 6-week, low level exercise program run-in

period (those failing to complete were excluded), the men were randomly assigned

to the exercise-treatment group (n=323) or non-exercising control group (n=328).

The exercise prescription consisted of brisk physical activity in the laboratory for 8

weeks, exercising 1 hour per day, 3 days per week. Thereafter activities consisting of

15 minutes of continuous jogging, cycling, or swimming, were followed by 25 minutes

of recreational games until the end of the study period. The duration of individual

programs ranged from 6 weeks to 48 months, and follow-up periods ranged from 24
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to 60 months. The research found that the exercise group had non-signi�cantly re-

duced mortality risks early in the follow-up period. Bene�ts diminished as time since

participation increased, which suggested that the protective mechanisms associated

with the program may be short term. Analyses were performed with intention-to-

treat and by the end of 2 years, 23% of the treatment group had stopped attending

sessions and did not report exercising elsewhere, whereas 31% of the control group

reported they were exercising regularly. Contamination between groups over time

could also explain the diminished e�ects, because increased maximal physical work

capacity (as determined by exercise testing) provided survival bene�ts up to 19 years.

In a study of 95 consecutive men aged 49 to 60 years su�ering a �rst, recent

MI study, La Rovere et al. report the impact on survival, during a 10-year follow-

up period, of producing an exercise-induced increase in barore�ex sensitivity (BRS,

causing changes in heart rate to maintain blood pressure) of ≥ 3 ms/mm Hg. The

men were were randomly assigned to a 4-week endurance training period (n=49) or

to no training (n=46). The exercise sessions were 30 minutes, 5 times a week for a 4-

week training period and consisted of calisthenics and stationary bicycle ergometry.

Exclusion criteria were atrial �brillation or abnormal sinus node function, insulin-

dependent diabetes, exercise-induced myocardial ischemia, and hypertension. There

was a marginally statistically signi�cant reduction in cardiac deaths in the trained

group. However, those within both groups who had signi�cantly improved BRS also

had statistically signi�cantly lower mortality; an improvement in exercise capacity

not paralleled by signi�cant changes in BRS was not accompanied by a better prog-

nosis (La Rovere et al. [2002]).

The Alton cardiac rehabilitation trial, an exercise-only trial, randomized 200

men who had su�ered acute MI to either a 3 month supervised exercise course or

an advice only group and followed them up for 11 years (Bethell et al. [1999]). The

included patients were age 65 or under and were recruited between December 1979

and March 1984 and were excluded if they lived more than 25 miles from Alton, if

they had medical or orthopaedic problems that precluded their taking part in the

exercise course, if they had insulin dependent diabetes mellitus or were in atrial

�brillation, if they had previously been through the course, or if they were on the

investigator's personal general practice list (Bethell and Mullee [1990]). The follow-

up questionnaire response rate fell from approximately 90% of survivors at year 1

to 72% at year 11. There had been 54 exclusions and 28 pre-randomization deaths

among the original 311 patients and a further 12 died and 17 were excluded between

32



randomization and the �rst exercise test, leaving 200 for the study. Eighteen were

excluded on medical grounds and these would have included some sicker patients

with poor prognoses. There was no signi�cant di�erence between the two groups for

non-fatal reinfarction nor for long-term mortality. It did not reduce the risk of total

MI, CABG or PCI. One or more previous myocardial infarcts, increasing age and

low initial �tness were among the signi�cant predictors of cardiac death.

All these studies included only men without signi�cant comorbidity and under

the age of 65 who do not fully re�ect the typical characteristics of patient population

who have experienced a cardiac event or procedure.

E�cacy of cardiac rehabilitation

A recent Cochrane review (Heran et al. [2011]) analysed 47 studies randomizing

10,794 patients to exercise-based cardiac rehabilitation or usual care. It found that

cardiac rehabilitation did not reduce the risk of total MI, CABG or PTCA. Despite

the inclusion of more recent trials, the population studied in this review was still

predominantly male, middle aged and low risk. It concludes that well-designed, and

adequately reported RCTs in groups of coronary heart disease (CHD) patients more

representative of usual clinical practice are still needed.

There have been recent claims that the inclusion of historic trials has biased

the Cochrane reviews in favour of cardiac rehabilitation (West et al. [2011]). Based

on the RAMIT multi-centre RCT, West et al. suggested that there was no di�erence

between patients referred to CR and those given usual care. The RAMIT study

included 1,813 patients in England and Wales recruited between 1997 and 2000 with

903 allocated to comprehensive cardiac rehabilitation and 910 to usual care without

cardiac rehabilitation. They found there was no signi�cant di�erence between the

two groups either at 2 years or at 7-9 years in all-cause mortality, morbidity, health

service use, health-related quality of life (as measured by SF36), psychological gen-

eral well-being and cardiovascular risk factors at 1 year. The evidence in favour of

CR in the Cochrane review of 2000 is said to be heavily weighted by early trials

when mortality was high. The improvement in mortality following CR is not seen

when pooling just those trials in the Cochrane review that followed the WHO trial

in 1983. This may be because the establishment of coronary care units, care regi-

mens and secondary prevention medication have so altered the context of CR. This

paper calls into question the value of cardiac rehabilitation as practiced in the UK at

present. However, West acknowledges that extended cardiac rehabilitation training
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(Plüss et al. [2011]), HF-ACTION Randomized Controlled Trial (O'Connor et al.

[2009]), and GOSPEL Italian RCT (Giannuzzi et al. [2008]) may have bene�ts that

current UK cardiac rehabilitation does not.

Plüss et al followed up for �ve years participants in a single-centre prospec-

tive randomised controlled trial of standard cardiac rehabilitation versus expanded

cardiac rehabilitation (Plüss et al. [2011]). The expanded rehabilitation group expe-

rienced reduced cardiovascular events. Of the original 828 candidates, there were just

224 patients in the trial, split 113 to standard and 111 to expanded rehabilitation.

The most common reason for exclusion was age over 75 years (308) followed by living

outside the hospital catchment (101), loss to screening (25), severe co-morbidity (17)

and language di�culties (15). The patients were recruited between May 1999 and

May 2002 and all had recent acute MI or CABG. The expanded CR included all the

elements of standard care (physical training, cardiologist counselling session, `heart

school' education, individual counselling as needed and smoking cessation) and in

addition a �ve-day stay at the `patient hotel' with physical training and informa-

tion, 22 group stress management session over a year, and three cooking sessions

with diet counselling. Most patients were taking secondary prevention medications

(Beta-blockers, aspirin, statins, and ACE inhibitors). Follow-up was by national

registry and so was nearly 100%. Cox proportional hazards models were compared,

using the primary end points of cardiovascular mortality, acute MI, or readmission

to hospital for CVD. The result of the study was that the expanded cardiac rehabili-

tation cohort had a hazard ratio (HR) of 0.47 for non-fatal MI and 0.76 for ischaemic

stroke. The total number of hospitalization and the number of days of hospitalization

were each signi�cantly lower for the expanded CR group. This contrasted with the

one-year follow-up which found no di�erence in biochemical risk markers or exercise

performance between the two groups (Plüss et al. [2008]). Fitness was not measured.

The GOSPEL RCT investigated the value of a multi-factorial intervention

consisting of one-to-one support held monthly from month 1 to month 6, then every

6 months for 3 years (Giannuzzi et al. [2008]). Each session consisted of 30 min-

utes of supervised aerobic exercise, plus lifestyle and risk factor counseling lasting

at least 1 hour and reinforcement of preventive interventions lasting approximately

30 minutes. To improve adherence, a booklet was distributed and the support of

family members was encouraged in ad hoc meetings. There were 3,778 patients re-

cruited after MI between January 2001 and December 2002 randomised 1,620 to

intervention and 1621 to usual care, after losses due to exclusion and loss to follow
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up. Exclusion criteria were age over 75, poor short-term prognosis, disease limiting

exercise and logistic di�culties. The targets of the intervention strategy were to give

up smoking, adopt a healthy Mediterranean diet, increase physical activity up to at

least 3 h/wk at 60% to 75% of the mean maximum heart rate, BMI of 25 or less,

blood pressure of 140/85mm Hg or lower, total cholesterol level of 200 mg/dL or

lower, low-density lipoprotein (LDL) cholesterol level lower than 100 mg/dL, blood

glucose level of 110 mg/dL or lower, and haemoglobin A1c (HbA1c) level lower than

7.0% in subjects with diabetes. The intensive intervention decreased CV mortality

plus nonfatal MI and stroke by 33% (95% CI, 0.47-0.95; P=0.02), cardiac death plus

nonfatal MI by 36% (95% CI, 0.43-0.94; P=0.02), and nonfatal MI by 48% (95% CI,

0.31-0.86; P=0.01) with respect to usual care. Total mortality, sudden death, and

total stroke decreased, although not signi�cantly. The authors conclude that the

GOSPEL intervention was e�ective in decreasing the risk of several important CV

outcomes, particularly nonfatal MI, although the overall e�ect was small (Giannuzzi

et al. [2008]). Fitness was not measured.

The HF-ACTION RCT was designed to investigate the safety and e�cacy of

exercise training for those with heart failure (O'Connor et al. [2009]). 2,331 patients

were randomised to usual care or usual care plus aerobic exercise training, consisting

of 36 supervised sessions followed by home-based training. The trial was delivered at

82 centres in 3 countries and follow-up was at clinic visits every 3 months for the �rst

2 years and yearly thereafter for up to 4 years. Cardiopulmonary exercise testing and

a 6-minute walk test were performed at the 3-, 12-, and 24-month follow-up visits.

Exclusion criteria included major comorbidities or limitations that could interfere

with exercise training, recent or planned major cardiovascular events or procedures,

performance of regular exercise training, or use of devices that limited the ability to

achieve target heart rates. The 6-minute walk test (distance walked in 6 minutes)

was also performed at the 3-year and �nal visits. Patients made their �nal visit at

the end of the study follow-up period or at 4 years. To provide comparable levels

of attention from study personnel in the 2 randomized arms, all patients were to be

called and asked about their exercise every 2 weeks for the �rst 9 months, monthly

until 24 months of follow-up, and quarterly thereafter. At all time points, approx-

imately 30% or more of the patients in the exercise training group exercised at or

above the target exercise minutes per week. In the exercise group, 37 patients had at

least 1 hospitalization due to an event that occurred during or within 3 hours after

exercise. In the usual care group, 22 patients had such a hospitalization, despite

not undergoing a formal exercise programme. There was no signi�cant di�erence
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in the number of deaths (189 [16%] in the exercise group vs 198 [17%] in the usual

care group). The authors concluded that exercise training resulted in nonsigni�cant

reductions in the primary end point of all-cause mortality or hospitalization. Fitness

was not measured.

Home-based cardiac rehabilitation is an attractive alternative to no cardiac

rehabilitation for elderly patients (over 65) with coronary heart disease who decline

participation in centre-based CR (Oerkild et al. [2012]). In an RCT, a physiother-

apist made 2 home visits in a 6-week period in order to develop an individualised

exercise programme that could be performed at home and surrounding outdoor area.

Risk factor intervention, medical adjustment, physical and psychological assessments

were o�ered at baseline and after 3, 6 and 12 months to both intervention and control

groups. The primary outcome was 6 min walk test. Secondary outcomes were blood

pressure, body composition, cholesterol pro�le, cessation of smoking, health-related

quality of life, anxiety and depression. The study population was characterised by

high age (median age 77 years, range 65 to 92 years) and high level of comorbidity.

Patients receiving home-based CR had a signi�cant increase in the 6 min walk test

at 3 months, whilst the usual care group did not signi�cantly improve, but with no

signi�cant di�erences between the groups. At 12 months follow-up, there was a sim-

ilar decline in 6 min walk test in both groups (55.2m and 52.1m for intervention and

control respectively). Participation in home-based CR improved exercise capacity

among elderly patients with coronary heart disease, but there was no statistically

signi�cant di�erence between the home intervention and the control group. In addi-

tion, no statistically signi�cant di�erence was found in the secondary outcomes and

during the follow-up (mean 4.5 years), there was no di�erence in all-cause mortality.

When intervention ceased, the initial increase in exercise capacity was rapidly lost.

This cohort had little depression so that statistically signi�cant improvement was

not possible.

A systematic review of home-based CR interventions compared to usual care

and centre-based supervised rehabilitation found that home-based cardiac rehabili-

tation for low-risk patients does not have signi�cantly poorer outcomes compared to

centre-based programmes. However, duration of follow-up is short and there are only

limited data on mortality rates and from well conducted RCTs (Jolly et al. [2006]).

A recent narrative review of CR concludes that observational studies in the

new millennium consistently conclude that CR does signi�cantly reduce mortality
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even in the context of improved medical and revascularization strategies (Dobson

et al. [2012]). The authors suggest that advances in the quality of cardiac rehabili-

tation programmes and European-wide guidelines have led to improved survival.

Long-term survival after a cardiac event

In this section, studies investigating long-term survival (≥ 5 years) after a cardiac

event are discussed and the factors known to a�ect long-term survival identi�ed.

In a recent study, long-term survival �gures were evaluated based on Eu-

roSCORE, a widely utilized as a pre-operative risk prediction tool (O'Boyle et al.

[2012]). A number of the risk factors in EuroSCORE have previously been identi�ed

by Cox regression analysis as signi�cant factors with regard to long-term survival,

leading to some authors utilizing EuroSCORE as a possible predicator of long-term

survival despite its derivation being based on in-hospital operative mortality. Only

patients who had undergone an isolated CABG were included and long-term follow

up was from 6 months to 12 years, mean 6.6 years. Cox regression analysis demon-

strated that age, diabetes, ejection fraction, BMI, dialysis, logistic EuroSCORE, cre-

atinine kinase myocardial isoenzyme (CKMB), left internal mammary artery (LIMA)

usage and peripheral arterial disease were signi�cant factors a�ecting long-term sur-

vival. Except for diabetes, BMI, CKMB and LIMA usage, all these variables were

incorporated in the EuroSCORE, however their weighting will vary. The authors

concluded that this explains why EuroSCORE was a reasonable approximation as

a predictor for long-term survival, but the incidence of diabetes, CKMB and LIMA

usage will a�ect its accuracy.

Non-high-density lipoprotein cholesterol (non-HDLC) can predict the risk of

cardiovascular events among general population without coronary heart disease and

may be a practical predictor of long-term cardiac death in patients with CHD after

CABG (Fukushima et al. [2012]). A more active lifestyle is signi�cantly associated

with improved survival in elderly (over 70 years) CABG patients. The nonlinearity

of the relation suggests that more sedentary patients could have the most bene�t

on survival by increasing their exercise lifestyle habits. The improved outcome is

explained by both cardiac and overall mortality reduction (Rengo et al. [2010]). In

a study of 1,158 (84%)men and 215 women aged 35 to 64 years, followed-up for 12

years for non-fatal and fatal CHD events and all-cause mortality, the overall sur-

vival of men who underwent CABG was similar to the survival of the corresponding

background population for about ten years but started to worsen after that (Keto-

nen et al. [2008]). The CHD mortality of men who had undergone the operation
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was clearly higher than in the background population. Among women, the all-cause

mortality after CABG was about twice the expected mortality in the corresponding

background population. In Cox proportional hazards models age, smoking, history

of MI, BMI and diabetes were signi�cant predictors of mortality. Fitness was not

measured.

In a study of 10,268 patients, multivariate logistic regression analyses showed

that underweight was associated with higher early mortality after CABG surgery

(van Straten et al. [2010]). Multivariate Cox regression analyses revealed morbid

obesity as an independent predictor of late mortality. A study to analyze the im-

pact of varying BMI on early clinical outcome and long-term survival in a group

of patients who underwent CABG and/or cardiac valve procedures found there was

no association between BMI and hospital mortality in the entire patient population

(Rahmanian et al. [2007]). Multivariate analysis revealed obesity as an independent

predictor of hospital mortality in patients who underwent valve surgery. Obesity

was associated with an increased risk for sternal infection , whereas underweight

correlated with postoperative bleeding. Underweight was an independent predictor

for decreased long-term survival. Fitness was not measured.

The Basingstoke and Alton study

There is a need for studies of survival after a cardiac event or procedure that that

measure �tness and can identify the relative importance of �tness and BMI. Survival

in these patients has been improved by secondary prevention and especially medi-

cation. There is some evidence that CR improves survival, especially programmes

that include a signi�cant exercise component. Few studies have followed up patients

in the long term and very few have measured �tness.

2.4 Arti�cial Neural Networks for Survival

Arti�cial neural Networks (ANNs) have been widely used in clinical applications

(Dybowski and Gant [2001]), predominantly in classi�cation problems i.e. to as-

sign the patient to one of a small set of classes based on their measured features.

ANNs have recently been used for survival analysis, but most of the literature has

been devoted to treating the problem as a classi�cation one or making piecewise or

discrete approximations of the hazard function (Bottaci et al. [1997], Tangri et al.

[2008], Regnier-Coudert et al. [2012], Biglarian et al. [2013]). This literature review
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will focus largely on use of ANNs for regression, where time is used as a continuous

variable and a survival probability distribution is produced. The key contributions

in this �eld have been made by Ruth Ripley, Rashmi Joshi and the collaboration

group including Antoni Eleuteri, Azzam Taktak, Paulo Lisboa and Bertil Damato.

2.4.1 The continuous-time approach

The use of arti�cial neural networks in non-linear survival analysis began in 1992

when Ravdin and Clark used them to predict the survival probability of breast can-

cer patients, given the prognostic variables, using time as an input variable (Ravdin

and Clark [1992]). Ravdin and Clark �rst introduced the idea that time to event or

censoring should be coded as one of the prognostic variables. Their data set con-

sisted of 1,373 breast cancer patients followed up for a minimum of 36 months. The

prognostic variables included patient age and a number of medical measurements of

the tumour. Some of the variables were transformed by taking the logarithm of the

variable plus a constant in order to approximately equate the median and mean of

the distributions. All prognostic variables were normalised to lie in [−1, 1] for use

with the tanh transfer (or activation) function. The data were split into training,

validation and testing sets of size 500, 453 and 420 cases respectively. Time was

divided into periods where 10% decrement in survival was seen, i.e. 12 months, 18

months, 27 months, 40 months and 60 months, by which time 50% of cases had

died. These time intervals were coded 1 to 5 and predictions were made for survival

at these time intervals. In order to correct the bias introduced by 231 of the cases

within time 5 (maximum) having died in the interval and 45 having survived, the

authors selected at random 45 of the 231 of the deceased cases for inclusion and

deleted the remainder to match the 50% survival shown on the Kaplan-Meier es-

timate. The multi-layer perceptron (MLP) used had a 9-7-1 architecture and was

optimised using the back-propagation algorithm (described on page 93). The weight

vectors were stored at intervals during the training and the resulting network varaints

were evaluated using the validation set. The optimal number of training iterations

was determined by calculating the goodness of �t for the prognostic indices using

the global χ2 statistic of a Cox regression on the same transformed variables using

the validation data set. The in�uence of the individual inputs was investigated by

omitting each in turn and measuring the global χ2 statistic. The patients predicted

to have excellent and poor early and late prognosis by the network were identi�ed

and their Kaplan-Meier survival estimates used to con�rm their qualitative cate-

gorisation. There was no attempt to produce con�dence intervals, use alternative
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learning rules or to optimise over network architectures. Although this paper used

time in a piecewise approximation of the hazard, it was the �rst to demonstrate that

using time as a prognostic variable, an ANN can make a set of predictions for given

patients over time.

Brian and Ruth Ripley summarised the use of neural networks as non-linear

statistical methods in survival analysis (Ripley and Ripley [2001]). They point out

the pitfalls of using neural networks (over�tting, sensitivity and speci�city) and that

standard statistical models can be more robust in that they can be built up from

simple models, with each stage of added complexity being tested for a signi�cant

improvement in �t. There is no analogue for this in �tting ANNs.

The performance of 7 di�erent neural network models were compared using a data

set of times to �rst relapse in days since surgery for 1,335 patients with primary

ductal breast cancer (Ripley et al. [2004]). That study used a MLP and back prop-

agation with a quasi-Newton method for optimisation. In three models time to �rst

recurrence was categorical and in the remaining 4 it was continuous.

The �rst discrete time model predicted probability of relapse within 5 years using a

standard classi�cation neural network. The following 2 models estimated the prob-

ability of relapse in the time periods less that one year, one to two years, two to

three years, three to �ve years, and greater than �ve years. The �rst of these two

discrete time models ignored the ordering of the time periods and �tted the model

using a softmax neural network (see page 94). The second discrete time model in-

corporated the ordinality of the outcomes, and was the �rst time such a method

was used for survival analysis with ANNs. The continuous time models were three

extensions of linear models (log-logistic, log-normal, and proportional hazards) and

a time-varying extension of the proportional hazards model. The authors observed

that use of back-propagation of errors was not possible in these cases as the log

partial likelihood was not a sum over data examples. By ordering the patients in

reverse order of time of relapse, the risk set always consisted exactly of the patient

under consideration plus all those previously processed. This allowed the partial

sums to be accumulated as the patients were processed in order and allowed for ef-

�cient programming of the exact derivatives and their use in standard optimization

algorithm. The performance of the seven models was compared on a breast cancer

data set of 1,335 women obtained from the Imperial Cancer Research Fund Medical

Oncology Unit in Oxford. There were 680 cases with no missing data and missing

values for the remainder were estimated using multiple regression on available vari-

ables. For patients censored before the end of the observation period, the authors
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estimated the conditional probability that the censored patient would have survived

to the end of the observation period conditional on the fact that they survived until

their censoring time. 276 patients su�ered relapse in the observation period (Ripley

[1998]). Comparison of results with the same analysis using only the complete cases

produced similar results. The basis for comparison of the models was the prediction

of relapse within 5 years using the sum of the log probabilities, accuracy, sensitivity

and speci�city on the cross-validation data and based on a probability cut o� of

0.5; �ve-fold cross validation was used since the data set was too small to split into

a training and testing set. The size of the arti�cial neural networks' hidden layers

and the value for the weight decay parameter were also assessed by cross validation.

These tests showed that the binary model and the continuous time models did best,

the ordinal model second best and the multiple time model least well. Accuracy of

the best models was around 78%. The sensitivity (correct prediction of relapses)

ranged between 31 and 41% and the speci�city (correct prediction of non-relapses)

90-94%. The authors conclude that the improvement due to non-linearity is not very

great in this case, and that the binary model is a useful system to predict risk of

relapse in newly diagnosed patients.

Joshi and Reeves have reported work on arti�cial neural networks for malig-

nant melanoma prognosis (Joshi et al. [2003], Joshi et al. [2005], Reeves and Johnston

[2008] and Joshi [2004]). The data comprised 1,946 patients diagnosed with malig-

nant melanoma between 1987 and 1996, of which 1,160 (60%)were female, 786 were

male and 1,628 (84%) were living at follow up to 31st December 1999 (Joshi et al.

[2005]). Cox survival model analysis showed violations of the proportional hazards

assumption, so the data was strati�ed in the non-proportional variables, and a strat-

i�ed Cox model was �tted. This identi�ed 4 signi�cant prognostic variables with

between 2 and 5 categories, making 120 possible combinations. Since the ANN ap-

proach was to enter all prognostic variables into the network as binary variables, the

5-level variable was dropped leaving 24 combinations. These were the inputs to the

ANN along with bias and scaled time as event time divided by maximum event time.

The ANN had 3 hidden nodes; 5 nodes was known to produce superior results but

was computationally intensive. The data was split into the 24 subsets each with a

uniform distribution of responses to the 4 prognostic variables and the ANN weights

were optimised by minimising the log-likelihood, with weight decay regularisation

to avoid over-�tting. A monotonic survival function is ensured by constraining the

weights relating to the time input from the hidden layer to the output are of dif-

ferent sign to the weights from the inputs to the hidden layer. The optimal brain
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surgeon technique was used to assess the signi�cance of each of the 34 weights and

to prune the network to 24 weights. The Hessian of the log likelihood was required

for this procedure, and could also be used to produce the large sample approximate

variance-covariance matrix. The ANN model was assessed by plotting the survival

probability for each of the 24 subsets against the equivalent Kaplan-Meier estimate,

the strati�ed Cox model and a log-normal model and this showed that the ANN

most closely matched the data. The 10-year survival probabilities for the Kaplan-

Meier, Cox, ANN and another ANN optimised by minimising least squares were

compared for each subset, and the sum of the absolute di�erences compared to the

Kaplan-Meier. By this measure, the least squares ANN was most accurate, followed

by the Cox model. The standard errors on the ANN weights were constructed using

the weight ± 1.96×
√
jj component of F isher Information Matrix. Con�dence

intervals on the output of the ANN were produced using a bootstrap approach on

the multivariate normal distribution simulated by Cholesky decomposition of the

variance-covariance matrix of the optimised ANN.

2.4.2 A Bayesian approach

The collaboration group including Antoni Eleuteri, Azzam Taktak, Paulo Lisboa

and Bertil Damato have produced a number of papers since 2003. In Eleuteri et al.

[2003], a standard sigmoidal activation function was used in a multi-layer perceptron

(MLP) for the covariates, except for time, which had instead a logarithmic activation

function. The only input to this unit through the weight was the time unit; neither

biases nor other inputs fed through this unit. The purpose of this was to ensure that

the survival function at time zero was 1 and at +∞ was zero. In order to ensure

that the survivor function was non-increasing as time increased, they constrained the

weights associated with the time input to be non-negative. Instead of a conventional

approach to training which minimizes an error function with a single weight vector,

the authors use a Bayesian scheme which considers a probability distribution over

weights. For the unconstrained weights, a zero mean Gaussian prior was selected,

whilst the positivity constraint weights had an Levy prior, which has positive sup-

port and leads to a stable, non-degenerate joint distribution of the weights out of the

activation functions. This strategy was tested on data on 12 covariates from 1,776

patients with colon cancer. The data was split 700 for testing and 1,076 for training

and the outputs for the ANN and a Cox model compared to the Kaplan-Meier esti-

mate. The authors concluded that their novel ANN architecture performed as well

as the Cox PH model.
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The Bayesian approach to modelling survival with an ANN has been further

developed by this group to include automatic relevance determination (PLANNARD,

Taktak et al. [2006]), adjustment for skew and labeling of missing data (Lisboa et al.

[2003]), modelling of the log of the hazard rate function (CHENN, Eleuteri et al.

[2007a], Eleuteri et al. [2007b]), applications in Choroidal Melanoma (Damato et al.

[2008]), colon cancer (Dolgobrodov et al. [2007]), Ocular melanoma (Taktak et al.

[2008]), competing risks (Lisboa et al. [2009]), and model selection using Genetic

Algorithms (Ambrogi et al. [2007]).

Arti�cial neural networks have been used in medical applications, often for

decision support (Dybowski and Gant [2001]) including myocardial infarction detec-

tion (Haraldsson et al. [2004]), medical diagnosis (Kononenko [2001]), pathological

staging of prostate cancer (Regnier-Coudert et al. [2012]). The use of ANNs to model

survival is not widespread. The literature that exists has been overwhelmingly in

the classi�cation context, where survival for a speci�ed time is a binary prediction.

The use of survival time as one of the inputs during training, and the consequent

ability to produce a survival probability distribution curve is much less frequently

used, and has been used only on Cancer data sets. Whilst there have been exemplar

hazards produced by these ANNs (Ripley et al. [2004], Lisboa et al. [2009]), produc-

ing hazard rates for speci�c subgroups of patients and comparing them with hazard

rates produced by other survival models to generate hypotheses has not been done.

Arti�cial neural network (ANN) modelling has been used to model time to relapse

in cancer patients (Joshi et al. [2003], Joshi [2004], Ripley et al. [2004], Joshi et al.

[2005]), but modelling the long-term survival of patients who have has a cardiac

event or procedure with ANNs is new. There is a need to extend continuous time

ANNs to survival on non-cancer data sets (Joshi [2004]). The ability of ANNs to pro-

duce hazard rates has not been exploited either by comparison to rates provided by

other models, or to produce research hypotheses. This research has addressed these

omissions, selecting the Joshi methodology in order to make a direct comparison.

The following chapter gives details of the two data sets used in this research

and the work that has already been done using those data sets.
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Chapter 3

Data

The purpose of this chapter is to give details of the two data sets that have been used

in this thesis, and the analysis and results of the original study teams who collected

them. The methods used in my re-analysis of the data for this research are detailed

in chapters 4 and 5 (starting on pages 64 and 87 respectively) and the results of my

analyses in the Results chapter starting on page 103.

The two data sets are: the Back Skills Training Trial, designed and undertaken

by Professor Sallie Lamb and colleagues at Warwick Clinical Trials Unit, which is

a multi-centred randomised controlled trial of a primary-care based cognitive be-

havioural program (a complex intervention) for low back pain; The Basingstoke

and Alton Cardiovascular Rehabilitation data set is an observational study designed

and undertaken by Dr. Sally Turner who collected and analysed it with a view to

determining the role of depression and �tness on survival in a cohort attending a

community cardiovascular rehabilitation programme (a complex intervention).

3.1 Introduction to the Back Skills Training Trial Data

3.1.1 Introduction

The Back Skills Training Trial (BeST) was a large, randomised controlled trial of

a cognitive-behavioural approach to the relief of back pain, conducted by Warwick

Trials Unit and published in The Lancet (Lamb et al. [2010b]). The motivation for

the trial was the signi�cant prevalence and cost to the economy of lower back pain

coupled with evidence that psychological risk factors play an important role in the

progression of lower back pain. Starting in 2000 there has been a major change in the

management of lower back pain in primary care to active management which is ad-

vice to engage in physical activity and avoid bed rest, to take appropriate medication
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and to take a positive attitude. This advice was summarised in a booklet called `The

Back Book', routinely handed to patients being treated for lower back pain. Cog-

nitive behavioural approaches for back pain were �rst introduced in secondary care

for chronic and severe lower back pain. Trials of the cognitive behavioural approach

for subacute and chronic low back pain produced a mixed picture, and variable ad-

herence to the principles of cognitive behavioural approach was hypothesised as an

explanation. The aim of the BeST trial was to develop and test a group-based cog-

nitive behavioural approach intervention for lower back pain that could be accessed

from UK NHS primary care (Lamb et al. [2010a]).

3.1.2 Methods

A complex intervention is de�ned as an intervention that has many parts which

may work independently or interdependently (Campbell et al. [2000]). The BeST

trial compared active management (AM) with a complex intervention comprising

active management plus group treatment using a cognitive behavioural approach

(AM+CBA), and found that AM+CBA was e�ective in treating subacute and chronic

low back pain (LBP) in both short and long term, and that it was cost-e�ective.

Training was provided to health care professionals in order to deliver both treatments

e�ectively. To deliver the active management consistently, primary care nurses were

given a 1-hour training session on the best practice for the management of LBP,

and asked to cascade this within their practices. To deliver the active management

plus cognitive behavioural management consistently, other nurses, physiotherapists,

psychologists, and occupational therapists attended a 2-day course, supported with

remote mentoring.

701 patients with at least moderately troublesome back pain of at least 6

weeks' duration were recruited from 56 general practices in 7 regions in the UK be-

tween April 2005 and April 2007. The patients were randomised 2:1 in favour of the

cognitive behavioural approach arm of the trial. Originally, randomisation was to

have been balanced 1:1 between the two treatment arms, but such a randomisation

would have produced too few participants to run the cognitive behavioural approach

groups, so it was switched to 2:1 randomisation in favour of the AM+CBA arm.

Those in the control group received active management which is best practice care,

including advice to keep active, to use painkillers, and take a positive outlook. They

were also given a copy of `The Back Book', which was designed by LBP experts to

reinforce these messages. Those in the intervention group received this same treat-

ment, but in addition were invited to attend a series of six cognitive behavioural
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group sessions with about eight participants in each. In the group sessions, the

topics of goal setting, pacing, challenging beliefs, managing pain, and improving

communication with health professionals were covered. Compliance with treatment

was de�ned as attendance at least three of the six sessions. Patients recruited to

the trial had subacute and chronic lower back pain that was at least moderately

troublesome and of at least 6 weeks duration and had attended general practice,

were at least 18 years of age, and had not been managed previously in a cognitive

behavioural programme.

Demographic and clinical data were collected at the pre-randomisation stage, includ-

ing date of birth, sex, lower back pain symptoms in the last six weeks, frequency of

pain in the last six weeks, ethnic origin, age when left full-time education, and em-

ployment details. The two primary outcomes were the Roland Morris Questionnaire

(RMQ, Roland and Morris [1983], Roland and Fairbank [2000]) and the Modi�ed

Von Kor� (MVK, Kor� and Anthony [1982]) scale.

The Roland Morris Questionnaire (Roland and Fairbank [2000]) is the most

widely used measure of lower back pain disability in primary care trials. It contains

24 yes / no responses relating to a range of functions commonly a�ected by lower

back pain, and the score is the sum of the responses. There were concerns expressed

by the trial report authors that the RMQ does not conform to the assumptions of

scaling and normality of distribution that underpin its use in statistical analysis. It

has been shown to be di�erentially sensitive at low, mid and high ranges, with better

sensitivity in the mid-range (Lamb et al. [2010a]). Previous trials have adopted a

clinically signi�cant di�erence between groups of 2.5 RMQ points.

The Modi�ed Von Kor� Scale assesses two dimensions, pain and disability,

associated with back pain in the last four weeks. It is made up of six items, each

of which is rated on a scale from 0 (no pain or disability) to 10 (worst pain or dis-

ability). The �rst three items relate to disability and the interference of pain with

daily activity, recreation and ability to work. The last three items relate to worst

pain, average pain and rating of back pain today. RMQ is scored by summing the

responses and so has a maximum score of 60 (Kor� and Anthony [1982]).

Secondary outcomes were occupational disability and limited activity days,

participant satisfaction, psychological and behavioural measures, quality of life (QoL),

health economics (including quality-adjusted life year (QALY)) and resource use.

The psychological and behavioural measures were included because they measure
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constructs hypothesised to lie on the causal pathway of e�ect, and might provide

some explanation as to why the treatment was or was not e�ective.

The Fear Avoidance Beliefs Questionnaire (FABQ) is a measure of the degree

of fear of pain and disability, and the avoidance of physical activities that can result

(Vlaeyen and Linton [2000]). Each item is scored on a Likert scale 0 to 6 and mea-

sures fear avoidance beliefs about work and fear avoidance beliefs about physical

activity. The latter was selected for use as it has generic applicability. The sum

score has a maximum of 24, with a higher score indicating a greater degree of fear

and avoidance beliefs.

Pain self-e�cacy (PSE) is a measure of a patient's con�dence to carry out a

range of activities despite their back pain. There are ten items on a Likert scale each

with responses 0 to 6, sum score up to 60, with higher score indicating the higher

attribute of good pain self-e�cacy (Nicholas [2007]).

Quality of life is measured using the Short Form 12 (SF12) a measure of health

related quality of life widely used in back pain trials. There is a manual for scoring

the physical and mental components on a scale of 1 to 100 for each and designed

to have a mean of 50 and a standard deviation of 10 in a representative sample of

the U.S. population, so that a score greater than 50 represents above-average health

status (Ware et al. [1996]).

The Hospital Anxiety and Depression Scale (HADS) is a self-report rating

scale designed to measure both anxiety and depression. It consists of two sub scales,

each containing seven items on a 4-point scale (ranging from 0-3). The HADS is

scored by summing the ratings for the 14 items to yield a total score, and by sum-

ming the ratings for the 7 items of each sub scale to yield separate scores for anxiety

and depression (Lisspers et al, 2007).

Troublesomeness was reported as a response to the question `How troublesome

has your back been during the past 6 weeks?' on a single likert scale, with options

`Not at all troublesome', `Slightly troublesome', `Moderately troublesome', `very

troublesome', and `Extremely troublesome'. Those whose responses were `Not at

all troublesome' or `Slightly troublesome' were not recruited to the trial.
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3.1.3 Missing values

The data losses occurred because not all participants responded to every question,

therefore some of the responses needed to calculate the scores were missing. The

complete cases all match the trial HTA report (Lamb et al. [2010a]), where it re-

ports them:

Fear Avoidance 662 complete cases, as on page 239 of HTA report

PSE 676 complete cases, as on page 240 of HTA report

RMQ baseline 700 complete cases, as on page 238 of HTA report

RMQ 12months 498 complete cases, as on page 238 of HTA report

SF12 687 complete cases, consistent with page 241 of HTA report (Complete cases

for individual questions is not given)

Appendix 12 of HTA report does not include details on the following:

HADS anxiety 686 complete cases

HADS depression 693 complete cases

Troublesomeness 638 complete cases

Taking the complete cases only in a sequential manner we now arrive at 407

complete cases altogether; accumulated missingness is detailed in table 6.1 on page

107 in Chapter 6.

Where items making up the RMQ were missing, the mean was taken of the responses

that were given and multiplied by 24, consistent with published research (Kent and

Laurisden [2011]). For all other variables, a missing item response meant the variable

was considered missing.

3.1.4 Previous results

Follow up was measured at 3, 6 and 12 months and outcomes were summarised as

the change from baseline score. At 12 months, the mean change from baseline in

the RMQ score was 1.1 (95% CI 0.39 to 1.72) in the control (AM) group and 2.4

(95% CI 1.89 to 2.84) in the AM+CBA group. The di�erence of 1.3 (95% CI 0.56

to 2.06) is statistically signi�cant (p = 0.01), and can be delivered at low cost to the

provider. 1,465 people of the 9,771 initially identi�ed appeared to be eligible, and

after excluding those who no longer had back pain, or who had only infrequent pain,

or pain that was not troublesome, or were pregnant, 705 were randomised of whom

four did not provide baseline data, leaving 701 for the trial analysis. Of these, 70%

experienced pain every day, 55% had moderately troublesome pain and the remain-

der had very or extremely troublesome pain.
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The average age of the trial participants was 54 years, 60% were women, most

had left full-time education before age 15, and half were currently working, mostly

full-time; most of those not working had retired. Strati�ed block randomisation was

carried out by an independently administered telephone randomisation service at

the MRC clinical trials unit in London.

There was no statistically signi�cant di�erence in the follow-up questionnaire

return rates between the two arms of the trial at any of the observation points nor

any evidence of a systematic di�erence in the baseline characteristics of participants

who provided follow-up data and those who did not. Attendance at all six of the

cognitive behavioural sessions was achieved by 25% of the participants allocated to

the AM+CBA arm, 63% attended at least three sessions and were considered to

have received the basic elements (adhered), and just over 10% did not attend any.

There were no di�erences between the patients who were adherent and those who

were not in any of RMQ score, troublesomeness of pain, fear avoidance beliefs, sex

or Modi�ed Von Kor� disability at baseline. Adherent patients had slightly lower

MVK pain scores at baseline (mean di�erence 4.5, 95% CI 0.95 to 8.19) and were

older (average 4.5 years older, 95% CI 1.8 to 7.5). There were 62 groups run with

mean size of 8 (SD 1.62, range 4-12) and a range of times were o�ered to meet the

needs of participants. There was no evidence of either group or therapist e�ects.

Improvements in the AM only arm were, on average, 1.1 RMQ points, with

change occurring between baseline and three months and no further improvement

thereafter. The change in the CBA arm was almost double by three months, and the

treatment di�erence continued to widen at six and twelve month follow-up points.

The mean treatment di�erence was 1.1 Roland Morris Questionnaire points at three

months, 1.4 at six months and 1.3 at twelve months, and all were statistically sig-

ni�cant.

The MVK disability scale showed improvement over both arms of the trial,

with the improvement in the active management arm occurring between baseline

and three months and declining thereafter, and the cognitive behavioural approach

arm showing a greater improvement. The mean di�erence between the two arms

was 4.3% at three months, 8.1% at six months, and 8.4% at twelve months. The

MVK pain scale also showed improvement over both arms, with the active manage-

ment arm improving gradually over the twelve months, and greater improvements
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in the cognitive behavioural approach, particularly at three months. The di�erence

between the two arms was 6.8% at three months, 8% at six months and 7% at twelve

months, and all were statistically signi�cant.

The SF12 physical subscale showed improvements in both arms of the trial in

the �rst six months, but greater improvement in the cognitive behavioural approach

arm, and in the active management arm there was no di�erence from baseline by

twelve months. The mean di�erence between the two arms was 2.2 at three months,

1.8 at six months, and 4.1 at twelve months, all statistically signi�cant. The SF12

mental subscale showed no signi�cant improvement or di�erences between the two

arms at twelve months. There were statistically signi�cant improvements in the

cognitive behavioural arm at six months, but by twelve months the improvement

disappeared. Fear avoidance beliefs did not change in the active management arm

but substantial improvements occurred in the CBA arm between 0 and three months

and were maintained to twelve months. The mean di�erence at three months was

2.6, 3.1 at six months and 3.0 at twelve months, and the di�erences between treat-

ments were signi�cant at all time points.

Pain self-e�cacy improved in the cognitive behavioural arm, with peak im-

provement at six months maintained at twelve months. In the active management

arm, there were no discernible changes in pain self-e�cacy, the mean di�erence at

three months was 3.2, 4.1 at six months and 3.8 at twelve months.

Distributions of patient scores is given in Table 3.1. Subgroup analysis re-

vealed that fear avoidance beliefs at baseline was not associated with treatment

e�ects measured by the RMQ, but there was a statistically signi�cant interaction

between baseline fear avoidance and outcomes measured by MVK for disability, with

those not fear avoidant at baseline having a larger treatment e�ect. However these

observations were not consistent across all primary outcomes. The treatment e�ect

was larger for people with moderately troublesome back pain as opposed to severe

pain. Active management had little or no e�ect for these patients which accounts

for the di�erence, and the interaction was not signi�cant. There was no di�erence

in the results between the observed case analysis and an analysis based on multiple

imputation, and the �ndings appeared insensitive to the method of dealing with

missing data.
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Variable Male Female Total
Number 161 (39.6%) 246 (60.4%) 407 (100%)
Mean age in years (sd) 54.2 (14.7) 53.9 (14.3) 54.0 (14.0)

N % N % N %
Age group under 40 years 31 11.9 44 17.9 75 18.4
Age group 40-49 years 34 30.7 54 21.9 88 21.6
Age group 50-59 years 35 30.7 60 24.4 95 23.4
Age group 60-69 years 45 37.9 58 23.6 103 25.3
Age group 70 years and over 16 19.5 30 12.2 46 11.3
Treatment allocation
Active management only 51 31.7 75 30.5 126 31.0
Active management and CBA 110 68.3 171 69.5 281 69.0
RMQ improvement of 3+ points
Achieved 64 39.8 117 47.6 181 44.5
Not achieved 97 60.2 129 52.4 226 55.5
Anxiety
Not anxious 91 56.5 86 35.0 177 43.5
Borderline 43 26.7 80 32.5 123 30.2
Anxious 27 16.8 80 32.5 107 26.3
Depression
Not depressed 113 70.2 144 58.5 257 63.1
Borderline 40 24.8 75 30.5 115 28.3
Depressed 8 5.0 27 11.0 35 8.6
Pain self e�cacy
Very low 6 3.7 20 8.1 26 6.4
Low 25 15.5 36 14.6 62 15.0
Moderate or better 30 80.8 190 77.3 320 78.6
Troublesomness
Somewhat 2 1.3 1 0.4 3 0.7
Moderately 82 50.9 113 45.9 195 47.9
Very 57 35.4 102 41.5 159 39.1
Extremely 20 12.4 30 12.2 50 12.3
interference with
social activities
All of the time 3 1.9 6 2.5 9 2.2
Most of the time 15 9.3 30 12.2 45 11.0
Some of the time 50 31.1 81 32.9 131 32.2
A little of the time 30 18.6 46 18.7 76 18.7
None of the time 63 39.1 83 33.7 146 35.9

Table 3.1: The numbers and proportions of patients in each category of each score
in the BeST trial.
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3.1.5 Discussion

This was a large scale randomised controlled trial which demonstrated the long-term

e�ectiveness and cost-e�ectiveness of a cognitive behavioural approach in treating

subacute and chronic lower back pain, with bene�ts lasting at least to twelve months

and the cost per QALY less than half that of most other interventions for lower back

pain. The intervention was delivered by NHS sta�, demonstrating that it could be

delivered within the NHS, which was the aim. Since the trial sample was recruited

from a range of general practices, the external validity is good. The sample is repre-

sentative of those who will accept an invitation to a cognitive behavioural approach,

and of the ethnic mix within the UK, and there was no upper age limit imposed.

The study was powered to be de�nitive and the statistical signi�cance of the

comparisons across a range of measures supported the rejection of the null hypothesis

that there was no di�erence between the groups. Just over half the people randomised

to the cognitive behavioural approach reported improvements, which is more than

would be expected from natural recovery or from provision of active management

alone. The trial team hypothesise that this approach could be adapted to treat a

range of musculoskeletal pain.
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3.2 Introduction to Basingstoke and Alton

Cardiac Rehabilitation data

3.2.1 Introduction

The Basingstoke and Alton cardiovascular rehabilitation data set is an observational

study of an unselected cohort of 2,714 patients passing through routine NHS reha-

bilitation service in the 10-year period between 1st January 1993 and 31st December

2002 (Turner et al. [2002]). This cohort has now been followed up for an average

of 11.5 years (range between one day and 18 years and three months), providing

11,871 person-years of follow-up. The study original hypothesis was formed and the

data were collected by Dr Sally Turner (ST) during her employment as a programme

coordinator at Basingstoke and Alton cardiac rehabilitation centre, and the prelim-

inary analysis was performed in the course of her PhD research (Turner [2007]). ST

describes the motivation of her research in terms of a particular patient who was

being treated medically for clinical depression and who enrolled in cardiac rehabili-

tation following his discharge from hospital with a diagnosis of myocardial infarction

(heart attack). This patient attended the rehabilitation programme regularly for

three months, and on completion not only had his �tness improved, but he enjoyed

improvements in his depression such that his antidepressant medication had been

reduced. This case prompted ST to look more closely at the outcomes collected

at this cardiac rehabilitation centre and to investigate whether baseline �tness or

changes in �tness as a result of �tness training, or baseline psychological scores and

changes in these would predict the prognosis of cardiovascular rehabilitation patients.

The study hypotheses formulated by ST were that risk of mortality in this

coronary population:

• is predicted by baseline �tness, �tness on completion of cardiovascular reha-

bilitation programme, and the change in �tness during the programme, where

�tness is measured by peak exercise performance on an exercise treadmill or

bicycle ergometer;

• is predicted by the severity of depressive symptoms at baseline, at time of

discharge from the programme, or the degree of change in the depression score

as measured by the Hospital Anxiety and Depression Scale (HADS);

• is associated with a statistically signi�cant interaction between baseline �tness

and baseline depression scores, between �tness and depression scores at grad-
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uation from the programme, and between change in �tness level and change in

depressive symptoms by graduation from the programme.

Cardiac rehabilitation is the process by which patients with cardiac disease

are encouraged and supported to achieve and maintain optimal physical and psy-

chosocial health. Patients were referred to the Basingstoke and Alton cardiovascular

rehabilitation programme by cardiologists and general practitioners at Basingstoke

and North Hampshire Hospital and neighbouring general hospitals and primary care

trusts. The programme was provided at three locations, the hospital physiotherapy

gymnasium at Basingstoke, in a community centre at Tadley, 9 miles north of the

hospital, and at purpose-built premises at Alton, 16 miles south of the hospital.

There are four phases of cardiovascular rehabilitation: Phase I is when the patient is

in hospital and being supported, along with their family, by specialist medical sta�

including the provision of going home advice and/or a self-help manual to assist

convalescence; Phase II is the period immediately after hospital discharge, whilst

surgery wounds heal, and the advice from Phase I is put into practice; Phase III is

the active physical recovery provided through an individualised, incremental exercise

prescription together with continuation of lifestyle advice and risk factor monitoring

as provided in the Phase I and II; Phase IV involves patients complying with healthy

lifestyle and risk factor control in the long term, and lasts for life.

This programme o�ers Phase I, III, and IV. The Phase III active physical

recovery component lasted between six weeks and six months according to need, and

is o�ered to all myocardial infarction (heart attack) patients discharged from the

hospital, and to patients recovering from cardiac surgery or revascularisation and

who lived within the catchment area which extended to a 25-mile radius of the Al-

ton premises. The Phase III programme on o�er at Basingstoke and Alton cardiac

rehabilitation centre assessed patients for physical and psychological health at the

beginning and end of the programme. They began a supervised aerobic exercise

class once or twice a week, with home aerobic exercises in between. The supervised

sessions comprised circuit training for 40 minutes, with those patients needing to

rest between di�erent aerobic exercises switching to strength and endurance exer-

cises for `active recovery'. Besides the exercise programme, a health education and

stress management component was o�ered, to which patients' spouses or partners

were also invited. This component covered relaxation techniques and a health educa-

tion programme (understanding coronary heart disease, cholesterol, healthy eating,

blood pressure, the bene�ts of regular physical activity, smoking advice, cardiac

medications) and stress management.
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3.2.2 Method

The Basingstoke and Alton cardiac rehabilitation data consists of baseline measures,

taken at the �rst visit, of:

• �tness

• anxiety and depression

• a list of medications

• blood pressure

• age

• gender

• reason for referral

• former exercise habit

• employment status

• occupation

• quality of life score

• diabetes

• other co-morbidities

• blood cholesterol

• triglycerides

• thyroid function

• postcode (to be related to index of deprivation)

• weight

• Height (routinely recorded starting in 1998)

55



At the end of the rehabilitation, when the patient had reached the required

ability to complete the exercises in the supervised session without recourse to active

recovery, measurements were made of:

• �tness

• anxiety and depression

• blood pressure

• a list of medications

• the number of sessions attended

• any adverse events during rehabilitation

The date and cause of death were also recorded, being obtained automatically from

the medical research department of the O�ce for National Statistics (National Statis-

tics). These are coded using a binary indicator variable as Cardiac deaths or oth-

erwise. Descriptive statistics and preliminary survival analysis using a Cox propor-

tional hazards model was performed by ST and presented in her PhD Thesis (Turner

[2007]).

Risk strati�cation

All patients who are recruited to exercise-based CR undergo risk strati�cation dur-

ing initial assessment. In the Basingstoke and Alton CR, patients' risk level was

assessed as standard. Exercise testing was a part of this process. Risk strati�cation

enables an appropriate and individualised exercise prescription to be planned for pa-

tients that re�ects the severity of cardiac illness, co-morbidity and current medical

state. The American Association of Cardiovascular and Pulmonary Rehabilitation

[(ACVPR) was the �rst to lay down criteria for risk strati�cation. Comorbidity as

measured by the D'Hoore co-morbidity index were calculated for each Basingstoke

and Alton CR patient (D'Hoore et al. [1996]).
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Risk strati�cation criteria for cardiac patients (AACVPR 1999)

LOW RISK

• Uncomplicated MI, CABG, angioplasty or atherectomy

• Functional capacity equal to or greater than 6 METS 3 or more weeks after

clinical event

• No resting or exercise induced myocardial ischaemia manifested as angina

and/or ST segment displacement

• No resting or exercise-induced complex arrhythmias

• No signi�cant left ventricular dysfunction (Ejection fraction equal to or greater

than 50%)

MODERATE RISK

• Functional capacity less than 5- 6 METS 3 or more weeks after clinical event

• Mild to moderately depressed left ventricular function (Ejection fraction 31-

49%)

• Failure to comply with exercise prescription

• Exercise induced ST-segment depression of 1-2mm or reversible ischaemia de-

fects (echocardiography or nuclear radiography)

HIGH RISK

• Severely depressed left ventricular function (Ejection fraction equal to or less

than 30%)

• Complex ventricular arrhythmias at rest or appearing or increasing with exer-

cise

• Decrease in systolic blood pressure of >15mmHg during exercise or failure to

rise consistent with exercise workloads

• MI complicated by Congestive Heart Failure, cardiogenic shock and/or complex

arrhythmias

• Patients with severe CHD and marked (>2mm) exercise induced ST-segment

depression

• Survivor of a cardiac arrest
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D'Hoore co-morbidity index

Table 3.2 gives details of the D'Hoore co-morbidity index.

D'Hoore co-morbidity index

Weight Condition
1 Myocardial infarct*

Congestive heart failure*
Peripheral vascular disease
Dementia
Cerebrovascular disease †
Chronic pulmonary disease
Connective tissue disease
Ulcer disease
Mild liver disease‡

2 Hemiplegia ‡
Moderate/severe renal disease (end stage) �
Diabetes
Any tumour ♣
Leukaemia ♣
Lymphoma ♣

3 Moderate or severe liver disease

6 Metastatic solid tumour

Table 3.2: *Myocardial infarct and congestive heart failure were omitted from the
index because they are included in the AACVPR risk strati�cation for events.
†includes patients with history of stroke or history of cerebrovascular disease.
‡Mild liver disease and hemiplegia were omitted from index because it could not be
quanti�ed in Zoghbi database
�Includes patients with end stage renal disease
♣ Labelled as one category (malignancy)
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3.2.3 Missing values

Details of the number and percentage of missing values are given in tables 6.18, 6.19

and 6.20 on pages 146, 147 and 148 in Chapter 6.

3.2.4 Previous results

Of the 2,714 patients who entered the study with a baseline �tness score, 1,398 com-

pleted cardiac rehabilitation (CR) and had an exit �tness score taken using the same

protocol (bicycle or treadmill, Turner [2007]). There were statistically signi�cant dif-

ferences between patients who completed the CR programme and those who did not.

There were twice as many current smokers in the group who did not complete CR.

A greater proportion of patients with elementary occupations did not complete, and

a higher proportion of managers and senior o�cials did complete. The patients who

completed CR included 1.47% who reported no social support at all, whilst 4.48% of

the non-completers reported no social support at all. Those who did not complete

CR had a lower median �tness and greater median depression and anxiety than those

who completed CR.

The mean age of the cohort was 62 years, with females (mean age 64.7 years)

statistically signi�cantly older than males (mean 61.0). The majority of patients

were male (79.8%). Females were less �t than males (median V O2 of 14.0ml/kg/min

compared with 20.2ml/kg/min) and had higher median HADS anxiety scores (7 cf 6)

and depression (4 cf 3). 4.6% of the cohort showed signs of being clinically depressed

at baseline with 10.6% borderline on the depression scale. Myocardial infarction

(MI) was the most common reason for referral (53.5%) with coronary artery bypass

graft (25.4%) next and then angioplasty (PCI) (9.3%, a further 3.7% with MI plus

PCI). Current smoking was reported in 8.9% of the patients, with a further 30.6%

who had given up smoking within the previous year.

Comparison of those measures taken both before and after CR showed a

16.8% improvement in mean �tness, but systolic and diastolic blood pressure rose

signi�cantly (the expectation is that systolic blood pressure falls with increasing

�tness). Almost half the patients categorised as low �tness at baseline moved into

the medium �tness category by the end of CR, and just over half from the medium

into the high �tness category, whilst very few moved to a lower �tness category.

Anxiety and depression median scores and mean weight decreased signi�cantly, and

perception of social support rose.
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Variable Male Female Total
Number 1320 (86.3%) 209 (13.7%) 1529 (100%)
Mean years of follow-up (sd) 11.3 (3.8) 11.1 (3.6) 11.3 (3.7)
Mean age in years (sd) 61.0 (9.4) 62.9 (9.0) 61.3 (9.4)

N % N % N %
Age group under 50 years 158 11.9 19 9.1 177 11.5
Age group 50-59 years 405 30.7 50 23.9 455 29.8
Age group 60-69 years 500 37.9 85 40.7 585 38.3
Age group 70 years and over 257 19.5 55 26.3 312 20.4
Diagnostic Category
Myocardial Infarction (MI) 673 51.0 108 51.7 781 51.1
Coronary Artery Bypass
Graft (CABG) 382 28.9 51 24.4 433 28.4
Percutaneous Coronary
Intervention (PCI) 124 9.4 22 10.5 146 9.5
MI + PCI 56 4.3 7 3.3 63 4.1
Angina 61 4.6 19 9.1 80 5.2
Other cardiac 24 1.8 2 1.0 26 3.8
Smoking history
Never smoked 347 26.3 93 44.4 440 28.8
Not for 10 years+ 430 32.6 30 14.4 460 30.1
Not for 1-10 years 56 4.2 9 4.3 65 4.3
Recent quitter 407 30.8 64 30.6 471 30.8
Current smoker 80 6.1 13 6.3 93 6.0
D'Hoore Co-morbidity score
None 968 73.3 141 67.5 1109 72.5
1 (least) 150 11.4 22 10.5 172 11.2
2 168 12.7 42 20.1 210 13.7
3 21 1.6 3 1.4 24 1.6
4 (most) 13 1.0 1 0.5 14 1.0
Diagnosis of diabetes 158 12.0 29 13.9 187 12.2
Family history of CHD 613 46.4 115 55.0 728 47.6
Weight at baseline
A under 75kg 407 30.8 144 68.9 551 36.0
B 75-90kg 608 46.1 39 18.7 647 42.3
C over 90kg 305 23.1 26 12.4 331 21.7
Medications
ACE inhibitor No 665 50.4 88 42.1 753 49.2
ACE inhibitor Yes 655 49.6 121 57.9 776 50.7
Aspirin No 45 3.4 12 5.7 57 3.7
Aspirin Yes 1275 96.6 197 94.3 1472 96.3

Table 3.3: Baseline values for patients at recruitment to the programme.
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Variable Male Female Total
N % N % N %

Statin No 455 34.5 57 27.3 512 33.5
Statin Yes 865 65.5 152 72.7 1017 66.5
Beta blockers No 727 55.1 108 51.7 835 54.6
Beta blockers Yes 593 44.9 101 48.3 694 45.4
Occupation
Managers & senior o�cials 236 17.9 16 7.6 252 16.5
Professional Occupations 143 10.8 11 5.3 154 10.1
Associate Professional 145 11.0 25 12.0 170 11.1
Administrative & secretarial 125 9.5 67 32.1 192 12.6
Skilled trade 362 27.4 13 6.2 375 24.5
Personal service 23 1.7 34 11.5 47 3.1
Sales and customer 26 2.0 16 7.6 42 2.7
Process, plant & machines 155 11.7 12 5.7 167 10.9
Elementary occupations 105 8.0 25 12.0 130 8.5
Fitness
High baseline 590 44.7 29 13.9 619 40.5
Mid baseline 509 38.6 81 38.7 590 38.6
Low baseline 221 16.7 99 47.4 320 20.9
Depression at baseline
Not depressed 1162 88.0 160 76.6 1322 86.5
Borderline 113 8.6 36 17.2 149 9.7
Depressed 45 3.4 13 6.2 58 3.8
Anxiety at baseline
Not anxious 930 70.5 122 58.4 1052 68.8
Borderline 251 19.0 42 20.1 293 19.2
Anxious 139 10.5 45 21.5 184 12.0
Median baseline estimated
V O2 ml/kg / min 21.0 15.5 20.1
(10th, 90th percentiles) (13.09, 29.70) (8.38, 24.50) (11.0, 29.2)

Table 3.4: baseline values of patients at recruitment to the programme, continued.
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3.2.5 Discussion

Before the work of ST, the evidence base for cardiovascular rehabilitation consisted

of studies on mainly male patients in the middle age bracket with a low risk for a

further cardiac event, and could not be generalised to females, to the elderly or to

those with signi�cant co-morbidity. Improved treatments and advancing diagnostic

techniques have changed the pro�le of the cardiac rehabilitation population. The def-

inition of myocardial infarction was changed again in 2005 (Thygesen et al. [2012]),

with increased diagnosis including more patients than under the old, narrower de�-

nition. Many patients now have a diagnosis before su�ering a myocardial infarction

and have revascularisation (bypass) surgery or angioplasty and stenting (where the

artery is opened up and a stent inserted to prevent it narrowing again). These pa-

tients have a swifter initial recovery period and can progress more quickly to Phase

III exercise, and undertake a greater intensity of exercise. In addition, post-event

medication has improved, with the use of cholesterol reduction with statins, ACE

inhibitors, beta-blockers and anti-platelet therapy becoming standard and helping

secondary prevention of coronary heart disease.

This cohort of patients was more representative than that of previous studies be-

cause it was an observational study of all those coming through the Basingstoke and

Alton Cardiac Rehabilitation programme over a period of ten years. These include

both elderly and female patients and those with signi�cant co-morbidity, unlike the

previous studies, which were small randomised controlled trials and meta-analyses.

This cohort was also larger than other studies with 2,714 patients included in the

study, giving it greater credibility.

This work was limited by the need to measure �tness using a treadmill or bicycle

ergometer, rather than with sophisticated lab equipment. However, the equipment

used is typical of the facilities used in NHS clinics, giving the work practical ap-

plicability. A further limitation was the small numbers of patients exhibiting signs

of clinical depression using HADS, which limits the power of the data set to detect

the in�uence of depression in the mortality of this cohort. Statins were not widely

available until the mid 1990s and ACE inhibitors were less commonly prescribed

until mid-way through the study period. There is variability in the drug protocol for

patients which is time-dependent, further limiting the applicability. Nevertheless,

this data provides an important opportunity for understanding a typical cardiac

rehabilitation cohort, especially since most of the previous studies have restricted

eligibility for participation in ways which make the population under consideration

atypical.
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The Cox proportional hazards survival model was built using the 385 deaths

from all causes (25.2% of 1,529) including 192 (12.6%) from cardiovascular causes

as at March 2011. Age, gender, diagnosis, co-morbidity score, �tness category after

CR and �tness category before CR were all signi�cant in explaining both all-cause

and cardiovascular deaths. There was evidence that depression increased mortality,

but this became not signi�cant when �tness category was added to the model.

The next chapter introduces the methods used in the re-analysis of these two

data sets.
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Chapter 4

Methods 1: Conventional Methods

`The study of complex systems is about understanding indirect e�ects. Problems that

are di�cult to solve are hard to understand because the causes and e�ects are not

obviously related' New England Complex Systems Institute (NECSI Team [2000]).

Health care data are often complex because, although the e�ects are seen,

the mechanism which connects causes to e�ects is not well understood, for example

the connection between patient attitude of mind and physical illness and symptoms.

There is usually structure in medical data due to correlations between data collected

at similar times or locations, and especially from the same patient. Data may also

vary over time and space, and in a medical context this can mean slow changes in

treatments over time due to new discoveries, equipment and policies, variation in

treatment protocols between countries or hospitals, and even new diseases or rede�-

nitions of existing ones. The two medical data sets we consider here are both complex

in most of these ways. They are also both observations from complex interventions,

treatments having many parts which may act independently or interdependently, as

detailed on page 1 (Campbell et al. [2000]). In order properly to evaluate the contri-

bution made by the arti�cial neural network (ANN) approach to complex health care

data, it is �rst necessary to analyse the data using conventional methods to establish

a baseline against which to compare the performance, advantages and disadvantages

of the ANNs. In this chapter, the conventional methods used on each data set are

explained. The results of conventional analysis were used as a basis for comparison

of the outputs of the non-linear ANN models, to make a valid judgment as to the

additional information provided by adding the non-linearity in the model by this

method.

The �rst commonly used method is latent class analysis, a model-based approach to
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dividing units of observation (often people) into subgroups. The subgroups cannot

be observed directly, but are observed indirectly by means of two or more observed

variables. This technique is applied to the Back Skills Training trial (BeST) data

to ascertain if there are `types' of patients whose response to this treatment di�ers.

This is then a basis for comparison of the ability of the ANN to distinguish between

patients with a positive response to the treatment and those without.

The second conventional method is standard survival analysis using the Cox propor-

tional hazard model and this is applied to the Cardiovascular Rehabilitation (CR)

data. This is then a basis for comparison of the ability of the ANN to produce a

survival curve and to predict, both in the short and long term, the survival prob-

ability for a given patient. The further conventional method described here and

used to explore the data is multiple imputation for missing data. This is required in

the analysis of the cardiovascular rehabilitation data to assess the impact of missing

data in real data sets. These will not be modelled directly by the arti�cial neural

network, but their impact on predictions was assessed.

4.1 Latent Class Analysis

Latent Class Analysis (LCA) is a method for identifying sub classes of people used

in many �elds, for example ADHD and comorbid symptoms in a population sample

of adolescent female twins (Neuman et al. [2001]), longitudinal cohort study on back

pain (Dunn et al. [2006]), symptom pro�les of persons who experience traumatic

events (Breslau et al. [2005]), satisfaction-with-life-domain pro�les (Eid et al. [2003]),

identifying clinically distinct subgroups of self-injurers among young adults (Klonsky

and Olino [2008]), eating disorder phenotypes (Keel et al. [2004]), developmental

trajectories of crime (Eggleston et al. [2004]), ADHD symptoms in a school sample of

Brazilian adolescents (Rohde et al. [2001]), human herpes virus 8 assay performance

and infection prevalence in sub-Saharan Africa and Malta (Engels et al. [2000]),

course of depressive symptoms after myocardial infarction and cardiac prognosis

(Kaptein et al. [2006]), child behaviour checklist anxiety and depression in children

and adolescents (Wadsworth et al. [2001]), country and consumer segmentation of

�nancial product ownership (Bijmolt et al. [2004]), symptoms associated with chronic

fatigue syndrome and �bromyalgia (Sullivan et al. [2002]), distinguishing phenotypes

of childhood wheeze and cough (Spycher et al. [2008]), underage problem drinking

of 16 to 20 year olds (Reboussin et al. [2006]).
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4.1.1 Introduction to latent class analysis

The objective of LCA is to categorise people into classes using the observed variables

and to identify those items which best distinguish between classes (Nylund et al.

[2007]).

LCA was introduced as a way of formulating latent variables from dichotomous

survey items in data about attitudes (Lazarsfeld and Henry [1968]). LCA models

identify an error-free latent class variable, which is unobserved and categorical, by

measuring a number of observed response variables, which are assumed to be subject

to error. Statistical analysis based on latent variable models attempts to separate the

latent variable and the measurement error (Collins and Lanza [2010]). LCA models

assume that the latent variable is categorical, in contrast to factor analysis which

posits continuous latent variables. Factor analysis is a variable-oriented approach

where the focus is to identify the relationship between variables which, it is supposed,

applies across all people. LCA is a person-oriented approach which seeks to identify

subtypes of individuals who exhibit similar patterns of individual characteristics. In

this application the aim is to identify patient types and their likely responses to the

complex intervention tested in the BeST trial. For this reason, the patient-oriented

LCA approach was used.

LCA assumes that each observation (patient) is a member of one, and only one, of C
latent classes. The classes are not observed directly, but observed via the responses

of the individuals given to the variables measured. The categorical latent variable

which we seek to discover, L, has c = 1 . . . C latent classes. The prevalence of each
latent class is the probability of membership in latent class c of latent variable L,
and is denoted γc. Since the latent classes are mutually exclusive and exhaustive,

the prevalences sum to one
C∑
c=1

γc = 1 (4.1)

In general, the latent class model has j = 1 . . . J observed variables and observed

variable j has rj = 1 . . . Rj response categories. Cross tabulating the J variables

forms a contingency table with W =
∏J
j=1Rj cells. The entire range of possible

combinations of responses forms an array of response patterns Y with W rows and

J columns. Each response pattern y is associated with a probability P (Y = y) and∑
P (Y = y) = 1. The item-response probability ρj,rj |c is the probability of response

rj being given to observed variable j, conditional on membership in latent class c.

For example, the probability of a patient being classi�ed `clinically anxious', given

they have been assigned to a certain class. Since each patient provides only one of
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the response alternatives to variable j, the vector of item-responses for a particular

variable conditional on a particular latent variable sums to 1

Rj∑
rj=1

ρj,rj |c = 1 ∀ j (4.2)

If yj represents element j of response pattern y, and indicator function I(yj = rj) = 1

when the response to variable j = rj , and 0 otherwise, then the probability of

observing a particular vector of responses is given by

p(Y = y) =
C∑
c=1

γc

J∏
j=1

Rj∏
rj=1

ρ
I(yj=rj)
j,rj |c . (4.3)

The log likelihood function that is maximised with respect to ρj,rj |c and γc in a data

set with N observations is

ln L =
N∑
i=1

ln
C∑
c=1

γc

J∏
j=1

Rj∏
rj=1

ρ
I(yj=rj)
j,rj |c . (4.4)

The expectation-maximisation (EM) algorithm (Dempster et al. [1977]) is

often used to estimate the parameters in LCAmodels. Finding a maximum likelihood

solution requires taking the derivatives of the likelihood function with respect to all

the unknown values, resulting in a set of interdependent equations in which solving

for the parameters requires the latent variables and vice-versa. This is overcome by

an iterative algorithm which estimates the parameters and the latent variables by

�rst picking values for one and then using those values in solving for the other. Then

those solutions are used in �nding better estimated for the �rst, and so on. This is

repeated until the log likelihood ceases to increment beyond some arbitrarily small

value (Linzer and Lewis [2011a])

There are few modelling assumptions associated with LCA; the one funda-

mental assumption is that, conditioned on the latent variable, the observed variables

are independent. This is called the assumption of local independence, and underpins

equation (4.3) so that the responses are conditioned on the classes and not also on

each other. This is not to say that the the observed variables in the data set to be

analysed are independent, but that the relations among the observed variables are

explained by the latent classes. The latent classes are assumed nominal and their

categorical indicators (the variables used to identify the classes) have a joint multi-

nomial distribution. It is therefore unnecessary to assume a distributional form, for

example, a multivariate normal distribution on the model.
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4.1.2 Model selection

Since item-response probabilities are not regression coe�cients but conditional prob-

abilities, it is necessary to examine the pattern of item-response probabilities across

all response alternatives for the variable and across all latent classes and not just

a single probability when determining the strength of the relation of the observed

variable and the latent variable (Collins and Lanza [2010]). There are two criteria

which together reveal a strong relation between an observed variable j, and a latent

variable L, namely an array of item-response probabilities that are close to 0 or 1

corresponding to the variable j and a distribution for the conditional probabilities

ρj,rj |c that varies across the latent classes. When the observed variable and the latent

variable are independent, the conditional probabilities are the same as the variable's

marginal proportions for each response, i.e. ρj,rj |c = Pj,rj . When they are not in-

dependent, we have ρj,rj |c 6= ρj,rj |c′ for some c and c
′. If ρj,rj |c = 1 for rj = k, then

ρj,rj |c = 0 ∀ rj 6= k i.e. conditional on membership of class, a particular response (k)

can be determined with certainty. An item response probability of 1 clearly re�ects

a high degree of certainty. An item response probability, rj , of 0 also re�ects a high

degree of certainty, and if there are just two response alternatives, then the other

response must have probability 1. In such a case, 0 re�ects as much certainty as

1, but if there are more alternatives, a 0 probability for one response does not give

any information on the probability of other responses. Where the marginal response

proportions are close to 0 and 1, then independence between the observed variable

and the latent variable cannot be discounted, hence the requirement for both criteria

in determining the strength of the relation.

Homogeneity and latent class separation are helpful aids to interpretation of the

latent classes. Latent class c is highly homogeneous when members of c are highly

likely to provide the same observed response pattern, implying this response pat-

tern is characteristic of latent class c. If the response patterns seen in class c are

highly variable, then there is low homogeneity. Recalling equation (4.3) and that

γc = P (L = c),

p(Y = y|L = c) =
J∏
j=1

Rj∏
rj=1

ρ
I(yj=rj)
j,rj |c . (4.5)

Homogeneity of latent class c is perfect when ρj,rj |c is 0 or 1 for all variables j and

all response categories rj . In this case, there is a unique response pattern y′ for

which P (Y = y′|L = c) = 1 when ρj,rj |c = 1 ∀ ρ 6= 0 and P (Y = y′|L = c) = 0 for

all the remaining response patterns. Good latent class separation occurs when the

pattern of item-response probabilities across indicator variables clearly di�erentiates
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among the latent classes. Perfect latent class separation is seen when for each latent

class c′ there is a unique response pattern y′ for which P (Y = y′|L = c′) = 1 and

P (Y = y′|L = c) = 0 ∀ c 6= c′. Homogeneity and latent class separation are based on

the same quantities and a high degree of latent class separation implies a high degree

of homogeneity since if for latent class c′, P (Y = y′|L = c′) = 1 then it follows that

P (Y = y′|L = c) = 0 ∀ c 6= c′. Perfect homogeneity for latent class c′ requires P (Y =

y′|L = c′) = 1 but this does not give any information about the homogeneity of the

other classes; 1 ≥ P (Y = y′|L = c) ≥ 0 holds for c 6= c′. Homogeneity and latent

class separation are closely related to uncertainty in probability of membership in

class c conditional on response pattern y, P (L = c|Y = y). To obtain an expression

for this, equations (4.3) and (4.5) are substituted into Bayes' theorem

P (A|B) =
P (B|A)P (A)

P (B)
(4.6)

which in the LCA context becomes

P (L = c|Y = y) =
P (Y = y|L = c)P (L = c)

P (Y = y)
(4.7)

substituting equations (4.3) and (4.5),

P (L = c|Y = y) =
(
∏J
j=1

∏Rj

rj=1 ρ
I(yj=rj)
j,rj |c )γc∑C

c=1 γc
∏J
j=1

∏Rj

rj=1 ρ
I(yj=rj)
j,rj |c

. (4.8)

Equation (4.8) can be used to obtain a vector of classi�cation probabilities for each

individual based on that individual's observed response pattern and the latent class

prevalence and item-response probabilities from any latent class model �t to the

data. The vector will include the probability of membership in each of the C latent
classes for that individual (Collins and Lanza [2010]) and will sum to 1. These pos-

terior probabilities tend to be large for one single latent class and small for all others

where there is both strong latent class separation and strong homogeneity, i.e there

is little classi�cation uncertainty. When either homogeneity or class separation is

weak, there is greater classi�cation uncertainty seen as posterior probabilities which

are more similar across latent classes.
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4.1.3 Latent class analysis in R

The R package poLCA (R Development Core Team [2011]) was used to build the

Latent class models. The poLCA package uses the expectation-maximisation and

Newton-Raphson methods to �nd maximum likelihood estimates of the model pa-

rameters, the proportions of observations in each class, γc, and the probabilities of

observing each response to each manifest variable conditional on latent class, ρj,rj |c,

(Linzer and Lewis [2011b]). In order to ensure a global maximum likelihood has been

obtained, rather than a local one, use was made of the facility within the poLCA

package to re-estimate the model automatically a speci�ed number of times and

then retain the models with the greatest likelihood. Ten replications were speci�ed

and a maximum of up to 10,000 iterations, to ensure convergence to the parameter

estimates that produce the global maximum likelihood. Several repeats of model-

�tting with these settings produced models with consistent maximum log likelihood,

parsimony measures AIC (equation (4.23)) and BIC (equation(4.24)), likelihood ra-

tio (G2) (Equation (4.22)), and Pearson's χ2 goodness of �t for observed versus

predicted cell counts. The optimal number of latent classes is not automatically

determined by the package but speci�ed by the user, so in the case of the BeST

data, models with two to six models were �tted and compared using the goodness

of �t statistics listed above. Evaluation of di�erent information criteria for assess-

ing the number of latent classes has been investigated through a simulation study

(Yang [2006]). The performance of the various criteria was a�ected by sample size

and number of latent classes in the underlying simulated data. AIC out-performed

BIC at the sample sizes and for the range of latent class numbers investigated here.

But in a subsequent simulations study, BIC was found to perform more accurately

(Nylund et al. [2007]). Therefore, both are considered in the analysis of the BeST

data given on page 108
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4.2 Survival Analysis

Survival analysis is the phrase used to describe the analysis of data in the form of

times from a well-de�ned time origin until the occurrence of some particular event or

end-point. In medical applications, these often correspond to recruitment of a patient

into the study and an event such as recurrence of illness or patient death respectively.

This approach is widely described as time-to-event analysis, since the methodology

used in modelling survival of patients can also be used in other applications, such as

failure times of plant and machinery in reliability analysis, time to drop-out from a

course of study in education research, etc. Survival (or reliability) data are said to

be censored when the event of interest is not observed. Often censoring occurs when

the data from a medical study, where the end-point of interest is patient death, are to

be analysed at a point in time when some of the individuals are still alive. Censoring

can also occur when the survival status of one or more individuals is not known at

the date of analysis because they have been lost to follow-up, perhaps because they

have relocated and their current address is unknown to the study team, or because

they died of another cause, such as a road tra�c accident rather than the event of

interest. Through a modelling approach to the analysis of survival data, the survival

experience of a group of patients, and how it depends on the values of one or more

explanatory variables, whose values have been recorded for each patient at the time

origin, can be explored (Collett [2003]).

4.2.1 Introduction to survival analysis

Informative censoring

An important assumption in the analysis of censored survival data is that the ac-

tual survival time of an individual, t, is independent of any mechanism that causes

an individual's survival time to be censored at time c, where c < t. This means

that if we consider a group of individuals, all of whom have the same values of

relevant prognostic variables, an individual whose survival time is censored will be

representative of those at risk at the censoring time if the censoring process oper-

ates randomly. When survival data are to be analysed at a predetermined point in

calendar time, or at a �xed interval of time after the origin for each patient, the

prognosis for individuals who are still alive can be taken to be independent of the

censoring, so long as the time of analysis is speci�ed before the data are examined.

Informative censoring is the case where the censoring is related to the survival time,

such as if patients in a trial comparing treatments were withdrawn from one arm of

the study because that treatment caused life-threatening side e�ects. The survival
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rates for that treatment would appear larger than they were, leading to an incorrect

estimate of the treatment di�erence. In such a case, sensitivity analysis is performed

to compare the original data analysis to analysis which �rst assumes the censored

patients were high risk and experienced the event right after censoring, and then

assumes they were low risk and survived the longest. If informative censoring begins

only after a signi�cant period of time, survival up to onset of censoring cause can be

analysed. The assumption of uninformative censoring can be examined by plotting

observed survival times against the values of explanatory variables, distinguishing

censored from uncensored survival times. If there is a greater proportion of censored

survival times in patients with a particular range of values of explanatory variables,

there is evidence of informative censoring.

Kaplan-Meier estimate of the survivor function

The �rst step in the analysis of censored survival data is often to calculate the

Kaplan-Meier estimate of the survivor function, Ŝ(t), from the data. It can be

shown that the Kaplan-Meier estimator maximizes the generalized likelihood over

the space of all distributions so its evaluation on large data sets gives a good qual-

itative description of the true survival function (Eleuteri et al. [2003]). To obtain a

Kaplan-Meier estimate, a series of time-intervals is created, each containing a single

death time. Each death event is assumed to have occurred at the beginning of the

time interval. The Kaplan-Meier estimate of the survivor function is based on the

assumption that the r death times of the n individuals in the sample occur inde-

pendently of one another. If nj individuals are alive just before dj deaths occur at

time tj then the estimated probability of survival through the time interval from

tj − δ to tj , where δ is small and contains only one death, is (nj−dj)
nj

. Then, the

estimated survivor function at any time, t, in the kth constructed time interval from

t(k) to t(k+1) , k = 1, 2, . . . , r, where t(r+1) is de�ned to be ∞, will be the estimated

probability of surviving beyond t(k). This is actually the probability of surviving

through the interval from t(k) to t(k+1) and all the preceding intervals, and leads to

the Kaplan-Meier estimate of the survivor function, which is given by:

Ŝ(t) =
k∏
j=1

(nj − dj)
nj

(4.9)

for t(k) ≤ t < t(k+1).

72



Basic equations of survival modelling

Survivor function is the probability that the survival time T is greater than some

value t:

S(t) = P (T ≥ t). (4.10)

F (t) is the cumulative density function of T , and f(t) is the probability density

function of T :

F (t) = P (T < t) =

∫ t

0
f(u)du = 1− S(t), (4.11)

so

f(t) =
dF (t)

dt
= −S′(t). (4.12)

The hazard function is the risk or hazard of death at time t, and is derived from the

probability that an individual dies at time t conditional on their having survived up

to that time. This conditional probability is expressed as probability per unit time

by dividing by the time interval δt to give a rate (sometimes called the hazard rate,

the force of mortality, or the instantaneous death rate), and the hazard function,

h(t), is the limiting value as δt tends to zero. This leads to:

h(t) =
f(t)

S(t)
= − d

dt
(logS(t)) . (4.13)

The cumulative hazard, H(t) is

H(t) =

∫ t

0
h(u)du = −logS(t), (4.14)

so that

S(t) = exp (−H(t)) . (4.15)

When �tting survival models to data, estimates of the unknown parameters are found

by maximising the logarithm of the likelihood.

The likelihood function for randomly censored data

When the censoring times are not informative, the likelihood function is derived

(Collett [2003]) as follows:

The likelihood function for randomly censored data of n individuals, with observed

time ti for ith individual, i = 1, 2, . . . , n, and event indicator ∆ which takes the value

∆ = 1 if ti is an event time and ∆ = 0 if the event of interest is censored.

Let Ti be the random variable associated with event time of the ith individual and
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Ci be the random variable associated with time to censoring. Then the value ti is

an observation on the random variable τi = min(Ti, Ci). The density function of

Ti is fT i(t) and the survivor function ST i(t). Similarly, the the random variable

associated with censoring time Ci has density function fCi(t) and survivor function

SCi(t).

The probability density distribution for the pair (τi,∆i) for censored observations,

so that ∆ = 0 is described by

p(τi = t,∆i = 0) = P (Ci = t, Ti > t).

This joint probability is a mixture of continuous and discrete components but to

simplify the presentation, P (Ti = t), for example, will be understood to be the

probability density of function of Ti. Assuming independence of the event time

distribution Ti from censoring time Ci,

P (Ci = t, Ti > t) = P (Ci = t)P (Ti > t)

= fCi(t)STi(t)
,

and so

P (τi = t,∆i = 0) = fCi(t)STi(t).

Similarly, if the observations are not censored, so that ∆ = 1

P (τi = t,∆i = 1) = P (Ti = t, Ci > t)

= P (Ti = t)P (Ci > t)

= fTi(t)SCi(t)

,

again assuming that the distributions of Ci and Ti are independent.

Combining these results, the joint probability, or likelihood of the n observations,

t1, t2, . . . , tn, is
n∏
i=1

(fTi(ti)SCi(ti))
∆i(fCi(ti)STi(ti))

(1−∆i)

which can be written as

n∏
i=1

(fCi(ti)
(1−∆i)SCi(ti))

∆i ×
n∏
i=1

(fTi(ti)
∆iSTi(ti))

(1−∆i).

Under the conditions of non-informative censoring, the �rst product will not contain

any parameters that are relevant to the distribution of survival times, and so can be

regarded a constant. The likelihood of the observed data is therefore proportional
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to the second product:

L =
n∏
i=1

(fTi(ti)
∆iSTi(ti))

(1−∆i). (4.16)

Log-likelihood is

log L =
n∑
i=1

[∆i log(f(ti)) + (1−∆i) log(S(ti))] (4.17)

which can be maximised to �t a survival model to data.

4.2.2 Cox proportional hazards model

The Kaplan Meier estimate of the survival function is a non-parametric approach. In

most medical studies, survival data is supplemented by physiological variables and

lifestyle factors which can be used as explanatory variables. Statistical modelling

is used to explore how the survival experience of a group of patients depends on

the explanatory variables, whose values have been recorded for each patient. In the

analysis of survival data, the risk or hazard of death at any time after the origin of

the study is the centre of interest. As a consequence, the hazard function is modelled

directly in survival analysis.

The most widely used survival speci�cation which takes into account the sys-

tem features is the proportional hazards model. The two most common approaches

are either to choose a parameterized functional form for the baseline hazard and

then make use of Maximum Likelihood to �nd values for those parameters, or to

make a Maximum Likelihood estimation of only the feature dependent part of the

model without �xing the baseline hazard, and derive a non-parametric estimate for

the baseline hazard (Eleuteri et al. [2003]).

There are two broad reasons for modelling survival data. One objective of the

modelling process is to determine which combination of potential explanatory vari-

ables a�ects the form of the hazard function, H(t). In particular, the e�ect that the

treatment has on the hazard of death can be studied, as can the extent to which the

other explanatory variables a�ect the hazard function. Another reason for modelling

the hazard function is to obtain an estimate of the the hazard function itself for an

individual, in contrast to regression analysis where the mean response is modelled.
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This hazard function may be of interest in its own right, but in addition, from the

relationship between the survivor function and hazard function described in equation

(4.15), an estimate of the survivor function can be found for the individual. This

will in turn lead to an estimate of quantities such as the median survival time, which

will be a function of the explanatory variables in the model. The median survival

time could then be estimated for current or future patients with particular values of

these explanatory variables. The resulting estimate could be particularly useful in

devising a treatment regimen, or in counselling a patient about their prognosis.

When the hazard of death at any time for any individual in one group is proportional

to the hazard at that time for a similar individual in another group, the assumption

of proportional hazards may be employed. The proportional hazard model proposed

by Cox in 1972 is based on the assumption of proportional hazards, and since no par-

ticular form of probability distribution is assumed for the survival times, the model

is a semi-parametric model.

Let the set of values of the explanatory variables in the proportional hazards model

be the vector x = (x1, x2, . . . , xp)
′. When the values of all the explanatory variables

that make up the vector x are zero, the hazard function is called the baseline hazard

function, h0(t). The hazard function for the ith individual can then be written

hi(t) = ν(xi)ho(t), (4.18)

where ν(xi) is a function of the values of the vector of explanatory variables for the

ith individual, and can be interpreted as the hazard at time t for an individual whose

explanatory variable is xi 6= 0 relative to an individual whose explanatory variable is

xi = 0. Since the relative hazard ν(xi) cannot be negative, it is convenient to write

it as exp(ηi) where (ηi) is a linear combination of the explanatory variables. The

general proportional hazards model then becomes

hi(t) = exp(β1x1i + β2x2i + . . .+ βpxpi)h0(t) (4.19)

so that the log of the hazard ratio is a linear regression:

ln

(
hi(t)

h0(t)

)
= β1x1i + β2x2i + . . .+ βpxpi. (4.20)

The estimation of the β parameters in the linear component of a propor-

tional hazards models is all that is required to draw inferences about the e�ect of

explanatory variables in the model on the hazard function. These can then be used

to estimate the hazard function itself, and the corresponding survivor function. The
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estimates of the baseline hazard, survivor and cumulative hazard functions can be

used to obtain corresponding estimates for an individual patient with vector of ex-

planatory variables xi.

Factors can be included in the Cox model in the same way as variates, except

that one level of the factor has to correspond to the baseline hazard, and so the

other levels of the factor are expressed in proportion to this reference level. Similarly,

interactions between factors can be included along with their relevant main e�ects,

as can mixed terms formed of an interaction between a factor and a variate. Fitting

the Cox model entails estimating the unknown coe�cients (βi) of the explanatory

variables using the method of maximum likelihood to give the maximum likelihood

estimates. Cox showed that the relevant likelihood function for the proportional

hazards model is given by

L(β) =
r∏
j=1

exp(β′x(j))∑
l∈R(t(j))

exp(β′xl)
. (4.21)

where R(t(j)) is the set of individuals at risk at time tj , i.e those alive and uncensored

at a time just prior to tj . The proportional hazard model for survival data assumes

the hazard function is continuous and under such an assumption, tied survival times

are not possible. In practice, the recording of deaths to the nearest day, month or

year can give rise to tied survival times. Kalb�eisch and Prentice gave the appro-

priate likelihood function for this case (Kalb�eisch and Prentice [2002]), but often a

simpler approximation to the likelihood function is used. This work uses the Breslow

method for tied times (Breslow [1975]). Having estimated the coe�cients (βs), the

approximate 95% con�dence interval can be calculated using the standard normal

distribution. Evidence that the value of β is not zero is given if this interval does

not contain zero, and testing the null hypothesis β = 0 using the statistic β̂

seβ̂
using

the standard normal distribution gives a small p-value, also provides such evidence.

Equivalently, the Wald test uses the square of this statistic compared to the per-

centage points of a χ2 distribution. In the usual case where there are a number of

explanatory variables, the e�ect of each term depends on the other terms currently

in the model. If another model is built using a subset of the terms in the origi-

nal model, it is said to be parametrically nested within the original model. Nested

models can be compared using the ratio of their likelihoods, and

−2 log

(
L̂(1)

L̂(2)

)
(4.22)
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follows a χ2 distribution with degrees of freedom equal to the di�erence between the

number of independent β parameters between the nested models, q. Comparison of

models, which need not be nested, can be made using Akaike's information criterion

AIC or Bayesian information criterion (BIC) which both take account of the number

of parameters and are de�ned as:

AIC = −2 ln L̂+ 2q, (4.23)

BIC = −2 ln L̂+ q ln (n) (4.24)

The smaller the value of the AIC or BIC, the better the model �t; the value of the

information criteria will rise when unnecessary parameters are added to a model,

although the AIC penalises the number of parameters less strongly than does the

BIC.

The usual recommended strategy for model selection is �rst to use each vari-

able as a lone predictor and ascertain which models are a signi�cant improvement

on the null model, h0(t). These variables are then �tted together in a single model,

and nested models formed by removing each variable in turn are tested, with those

leading to a signi�cant decrease in the −2 log L̂ retained in the model, and the

remainder removed. Variables which were not signi�cant as sole predictors are then

added one at a time and the same statistic is used to determine if they have become

signi�cant in the presence of other variables. Only after this are interactions and

other higher order terms (such as powers of variates) tested for inclusion. Higher

order terms are used to capture non-linearity suspected of existing in the system.

When a model has been selected by this optimisation procedure, the coe�cients of

each variate are interpreted as the logarithms of the ratio of the hazard of death

to the baseline hazard. The linearity assumption means that the hazard ratio, for

example between a patient aged 80 relative to to one age 75, is the same as the

hazard ratio between a patient aged 20 relative to one aged 15. If this assumption

does not hold, the variate can be divided into levels of a factor and these can be

tested for inclusion in the model instead.

Although the proportional hazards model �nds widespread applicability in

the analysis of survival data, there are relatively few probability distributions for

the survival times that can be used with this model. Moreover, the distributions

that are available, principally the Weibull and Gompertz distributions, lead to haz-

ard functions which increase or decrease monotonically.
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A model that encompasses a wider range of survival time distributions is the

accelerated failure time model. In circumstances where the proportional hazards as-

sumption is not tenable, models based on this general family may prove to be fruitful.

Again, the Weibull distribution may be adopted for the distribution of survival times

in the accelerated failure time model, but some other probability distributions are

also available.

One other general family of survival models, known as the proportional odds

model, may be useful in some circumstances. Although any continuous distribution

for non-negative variables might be used, the properties of the log-logistic distribu-

tion make it a particularly attractive alternative to the Weibull distribution. The

lognormal, gamma and inverse Gaussian distributions are sometimes used in accel-

erated failure time modelling.

One limitation of the Weibull hazard function is that it is a monotonic func-

tion of time. However, for example, following a heart transplant, a patient faces an

increasing hazard of death over the �rst 10 days or so while the body adapts to the

new organ. The hazard then decreases with time as the patient recovers. The log-

logistic distribution is so called because the variable log T has a logistic distribution,

a symmetric distribution whose probability density function is very similar to that

of the normal distribution.

The gamma distribution, like the Weibull distribution, includes the exponen-

tial distribution as a special case. Indeed the gamma distribution is quite similar to

the Weibull distribution and and inferences based on either model will often be very

similar. The generalised gamma distribution is actually more useful and includes

the Weibull and lognormal distributions as special cases.

The inverse Gaussian is a �exible model that has some important theoretical prop-

erties, but the complicated form of the survivor function makes this distribution

di�cult to work with.

When the number of observations in a single sample is reasonably large, an em-

pirical estimate of the hazard function could be obtained using the life table or

Kaplan-Meier methods. A plot of the estimated hazard function may then suggest

a suitable parametric form for the hazard function.
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Model Checking

If the model �tted to the observed data is satisfactory, then a model-based estimate

of the survivor function Ŝi(ti) for the ith individual at ti, the survival time of that

individual, will be close to the corresponding true value Si(ti). This suggests that

if the correct model has been �tted, the values Ŝi(ti) will have properties similar to

those of Si(ti). Then the negative logarithms of the estimated survivor functions,

−log Ŝi(ti), i = 1, 2, . . . , n will behave as n observations from a unit exponential

distribution. These estimates are the Cox-Snell residuals. If the observed survival

time for an individual is right-censored, then the corresponding value of the residual

is also right-censored. The residuals will therefore be a censored sample from the

unit exponential distribution, and a test of this assumption provides a test of model

adequacy. Modi�ed Cox-Snell (Cox and Snell [1968]) residuals take account of the

fact that censored observations lead to residuals that cannot be regarded on the

same footing as residuals derived from uncensored observations.

Modi�ed Cox-Snell residuals can be re�ned further into Martingale residu-

als (Therneau and Grambsch [2000]) with zero mean when uncensored. Unlike the

above, Martingale residuals are similar to residuals encountered in other areas of

data analysis in that it is the di�erence between the observed number of deaths

and the corresponding estimated expected number on the basis of the �tted model.

They are not, however, symmetrically distributed about zero, so Therneau et al.

introduced Deviance residuals (Therneau et al. [1990]), which are symmetrically dis-

tributed about zero.

Two disadvantages of the residuals described above are that they depend

heavily on the observed survival time and require an estimate of the cumulative

hazard function. Both these disadvantages are overcome in the Schoenfeld residuals

(Schoenfeld [1982]). This residual di�ers from the others in one other important

respect: that there is not a single value of the residual for each individual, but a

set of values, one for each explanatory variable included in the �tted Cox regression

model. Schoenfeld residuals are standard for time-to-event analysis.

We need to assess the validity of the β values and the proportionality assumption

in evaluating Cox model �t. The functional form of the covariates can be checked

using the Martingale residuals obtained from �tting the null model (no covariates).

Plotting these against the values of each covariate in the model then this should

display the functional form required for the covariate, as shown by Therneau. In

particular, a straight line plot indicates that a linear term is needed.
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In�uential observations can be identi�ed by examining the extent to which

the estimated parameters in the �tted model are a�ected by omitting the observa-

tion. Testing the assumption of proportional hazards can be performed as follows:

if the log-cumulative hazard functions for individuals with di�erent values of their

explanatory variables are plotted against time, the curves so formed will be parallel

if the proportional hazards model is valid. In terms of assessing the overall �t of a

model, a plot of the deviance residuals against the risk score gives information on

observations that are not well �tted by the model, and their relation to the set of

values of the explanatory variables. Plots of residuals against survival times, the

rank order of the survival times or explanatory variables may also be useful.

4.3 Missing Data

4.3.1 Introduction to analyses with missing data

Standard statistical analysis methods have largely been developed for use with rect-

angular data sets comprising rows of cases or observations and columns of variables

(Little and Rubin [2002]). A common approach to cases that have some observations

missing is to omit such cases from the analysis, and work with the remainder as if

it were the entire data set. This is called `complete-case analysis'. In situations

where missing values are con�ned to a tiny percentage of cases, this is likely to leave

the conclusions drawn from the analysis unchanged. However, in many real-world

applications, cases with missing observations comprise a substantial proportion of

the collected data. The reasons why the data is missing dictates how it may be

treated. If a survey respondent declined or omitted to answer some of the ques-

tions, or the measurement equipment in an experiment su�ered a failure, then it is

reasonable to suppose that there are actual underlying values that would have been

observed had the data gathering mechanism performed better. In contrast, if an

opinion survey asks a respondent to choose between two or more options, it is not

clear whether non-response is due to omission or to indecision, in the latter case pos-

sibly representing a `don't know' stratum of the population (Little and Rubin [2002]).

It is possible to code the non-responses as missing and even to have several

codes to distinguish between `don't know', `refuse to answer', or `out of legitimate

range'. Some statistical packages default to complete-case analysis and simply ex-

clude cases that have data missing in any of the variables involved in the analysis.
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Complete-case analysis is generally inappropriate since the investigator is usually

interested in making inferences about the entire target population, rather than just

the portion of the target population that would provide responses on all relevant

variables in the analysis.

Missing data patterns describe which values are observed and which are miss-

ing in the data matrix. Missing data mechanisms concern the relationship between

missingness and the values of variables in the data matrix.

Some example of missing data patterns are :

• Univariate missing data where the missing values all occur in a single variable,

e.g. values are missing for an entire plot in an agricultural experiment.

• Unit and item non-response survey data:

Item non-response occurs where values are missing on particular items, e.g. in

a questionnaire and typically have a haphazard pattern.

Unit non-response occurs where variables are all observed or missing on the

same set of cases, e.g. where some of the respondents cannot be contacted for

part of the survey.

• Attrition in longitudinal studies having a monotone missing data pattern:

Participants drop out over time so all data is available for some variables, but

later collections show increasing missingness.

• File matching problem with two sets of variables never jointly observed. When

variables are never observed together, parameters relating to the association

between them cannot be estimated.

• Latent variable indicator variables with manifest variable patterns that are

never observed.

It is assumed that the missingness indicators in all these cases hide true values that

are meaningful for analysis, so that it makes sense to �ll in (impute) the missing

values of the unobserved variables.

Mechanisms that lead to missing data are a di�erent issue to patterns of missing

data. Whether the fact that variables are missing is related to the underlying values

in the data set informs the analyst which missing data methods are appropriate.

In 1976, Rubin formalised the crucial role of mechanism (Little and Rubin [2002])

by treating the missing-data indicators as random variables and assigning them a

distribution as follows:
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De�ne the complete data Y = (yij) and the missing data matrix M = (Mij). The

missing data mechanism is characterised by the conditional distribution of M given

Y and unknown parameters φ i.e. f(M |Y, φ)

• Missing completely at random (MCAR) : Missingness does not depend on the

values of the data Y , missing or observed.

f(M |Y, φ) = f(M |φ) ∀ Y, φ (4.25)

• Missing at Random (MAR): Missingness depends only on the components Yobs
of Y that are observed and not on the components that are missing, Ymiss.

This is equivalent to saying that the behaviour of two units who share observed

values have the same statistical behaviour on the other observations, whether

observed or not.

f(M |Y, φ) = f(M |Yobs, φ) ∀ Ymiss, φ (4.26)

• Missing not at random (MNAR) The distribution ofM depends on the missing

values in the matrix Y . Even accounting for all the available observed infor-

mation, the reason for observations being missing still depends on the unseen

observations themselves.

4.3.2 Imputation and multiple imputation

Imputing values by any method and then assuming analyses for complete data sets

can be used with impunity is a mistake (Little and Rubin [2002]). Imputations are

means or draws from a predictive distribution of the missing values and require a

method of creating a predictive distribution for the imputation based on the observed

data. The two generic approaches are explicit modelling (formal statistical model e.g.

multivariate normal with explicit assumptions) and implicit modelling (algorithm

supplies an underlying model with implicit assumptions which need to be recognised

and assessed for reasonablity).

Explicit methods:

• Mean Imputation: means from responding units are used, can be weighted.

• Regression Imputation: regression of the missing item on items observed for the

unit, usually calculated from units with both observed and missing variables

present.

• Stochastic regression imputation: replaces missing values by a value predicted
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by regression plus a residual, drawn to re�ect uncertainty about the missing

value.

Implicit modelling:

• Hot deck imputation: substituting individual values drawn from `similar' re-

sponding units. Literature on the theoretical properties of this approach are

sparse (Little and Rubin [2002]).

• Substitution: used for unit non-response at the �eld work stage; an alternative

unit is selected into the sample to replace the nonresponsive one. The substi-

tuted units are responders and may di�er systematically from non-responders.

• Cold deck imputation: substitutes a constant value from an external source,

e.g. a previous survey.

• Composite methods: e.g. combination of predicted mean for a regression with

a residual randomly chosen from empirical residuals.

The weaknesses of these is that the inferences about parameters based on the �lled-

in data do not account for imputation uncertainty. Multiple imputation addresses

both this drawback and the loss of e�ciency.

To estimate imputation uncertainty:

• Apply explicit variance formulae that allow for non-response.

• Modify the imputations so that valid standard errors can be computed from a

single �lled-in data set.

• Apply the imputation and analysis procedure repeatedly to re sampled versions

of the incomplete data. Uncertainty is estimated from the variability of point

estimates of parameters from a suitable samples drawn from the original sample

(bootstrap or jackknife, Efron and Tibshirani [1993]).

• Create multiply imputed data sets that allow additional uncertainty from im-

putation to be assessed. This provides consistent standard errors under broad

classes of imputation procedures. Complete-data estimates and standard errors

from each imputed data set are combined with between-imputation uncertainty

derived from variability in estimates across the data sets.

Multiple imputation refers to the procedure of replacing each missing value by a

vector of D ≥ 2 imputed values. The D values are ordered in the sense that D

completed data sets can be created from the vectors of imputations; replacing each
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missing value by the �rst component in its vector of imputations creates the �rst

completed data set, replacing each missing component with the second component in

its vector creates the second completed data set and so on. Standard complete-data

methods are then used to analyse each data set. When the D sets of imputations

are random draws from the predictive distribution of the missing values under a

particular model for non-response, the D complete-data inferences can be pooled to

form one inference that properly re�ects uncertainty due to non-response under that

model (Little and Rubin [2002]). When the imputations are from two or more models

for non-response, the combined inferences under the models can be contrasted across

models to display e sensitivity of inference to models for non-response, a particularly

critical activity when non ignorable non-response is being entertained.

4.3.3 Multiple imputation on the cardiovascular rehabilitation data

The missing data were imputed using the R package MICE (R Development Core

Team [2011], van Buuren and Groothuis-Oudshoorn [2011]) which used chained equa-

tions and a Gibbs sampler to impute plausible values where data were missing and

then used Rubin's rules to produce pooled estimates of parameters from the com-

pleted data sets. First it is necessary to ascertain whether the assumption that the

data were missing at random (including missing completely at random) was suspect.

Second, the form of the imputation model must be speci�ed for each variable which

had data missing, including capturing known relationships between the covariates.

Next the set of variables to be included as predictors in the imputation was speci�ed.

In this case all of those found to be signi�cant univariate predictors of survival were

included. If any of the variables to be imputed were sum scores or other functions

of incomplete variables, passive imputation could be implemented. The number of

iterations of the algorithm needs to be speci�ed and the convergence of the Gibbs

sampler checked by plotting the mean and variance of the parameters against the

iteration number and checking that di�erent imputed values mix freely and without

trend. The number of imputed data sets to be produced needs to be speci�ed. In

the cardiovascular rehabilitation work, the number of imputed data sets was 20, and

the number of iterations was also set to 20, which is of the order recommended in the

MICE documentation; this produced plots showing convergence of the Gibbs sample

to similar values for each imputed variable within the data sets. Setting this too low

can lead to p-values that are too low (van Buuren and Groothuis-Oudshoorn [2011]).

If θ is a vector of unknown parameters of the multivariate distribution of the com-

plete data Y , the chained equations methodology obtains the posterior distribution
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of θ by sampling iteratively from the conditional densities:

P (Y1 |Y−1, θ1)
...

P (Yp |Y−p, θp)

(4.27)

where θ1 . . . θp are the parameters of the conditional densities, Y1 . . . Yp are the p

incomplete variables and Y−j = (Y1, Y2, . . . , Yj−1, Yj+1, . . . , Yp). The plausible data

values imputed into each completed data set were drawn from a distribution speci�-

cally modelled for each missing entry. The estimates for the quantities of interest, in

this case the parameters of the Cox model, were pooled into a single estimate and its

variance is estimated. For quantities that were approximately normally distributed,

within- and between-imputation variance could be given.

For the cardiac rehabilitation data predictive mean matching was selected as

the imputation model for continuous variables and for factors with 2 levels logistic

regression and with more levels, polytomous regression.

Details of the analysis results are found in Chapter 6 on page 103, and the diagnostic

plots of the multiple imputation in Chapter 9 on page 252.
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Chapter 5

Methods 2: Arti�cial Neural

Networks

There are two cultures in the use of statistical modeling to reach conclusions from

data. One assumes that the data are generated by a given stochastic data model. The

other uses algorithmic models and treats the data mechanism as unknown. (Breiman

[2001])

The purpose of this chapter is to give an introduction to arti�cial neural net-

works (ANNs), a form of machine learning, including their use in survival analysis.

The motivation for using arti�cial neural networks in these settings is that they have

the capacity to capture non-linearities in the relationships between the variables and

the outcomes for patients, and this may prove more appropriate than purely linear

models.

Pattern recognition encompasses a wide range of information processing problems,

such as the classi�cation of hand written characters, identifying faces, and medical

diagnosis and ANNs are often applied to such problems. Many humans solve these

in a seemingly e�ortless fashion, but computer solution has proved to be immensely

di�cult in many cases (Bishop [1996]). ANNs have been applied in the study of

cancer, diagnosis of pulmonary embolism, lung disease, breast cancer and di�eren-

tiating benign from malignant pulmonary nodules (Joshi et al. [2003], Veropoulos

[2001], Fukushima et al. [2004], Eng [2002], Wu et al. [1993], Matsuki et al. [2002]).

Statistical pattern recognition is a well established �eld which recognises the

probabilistic nature both of the information to be processed and of the appropri-

ate form in which the results should be expressed. The probability of the pattern
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belonging to class Ck after the pattern vector x has been observed is given by the

posterior probability P(Ck|x). Where estimation of the probability density is im-

practical, suitable alternative discriminant functions can often be determined from

the training data (Bishop [1996]). There are two separate stages in the classi�cation

process. The �rst is inference where training data is used to determine values for the

posterior probabilities. The second stage is decision making where these are used to

make decisions such as assigning a new data point to one of the possible classes.

The high dimensionality of pattern recognition problem data makes it imprac-

tical to store every possible combination of values, so a classi�er must be designed to

generalise, i.e. to classify correctly a previously unseen vector. Such systems can be

described as a mapping from a set of input variables, x1, . . . , xd to output variables

yk, modelled in terms of a mathematical function containing a number of tunable

parameters whose values are determined with the help of the data. The general form

is yk = yk(x;w) where w denotes the vector of parameters, called weights in the

context of ANN models. Both regression and classi�cation problems can be seen as

particular cases of function approximation; in classi�cation problems the task is to

assign new inputs to one of a number of discrete classes or categories, whilst in re-

gression problems, the outputs represent the values of a continuous variables (Bishop

[1996]).

Machine learning can be de�ned as follows: A computer program is said to

learn from experience E with respect to some class of tasks T and a performance mea-

sure P , if its performance at tasks T , as measured by P , improves with experience E

(Mitchell [1997]). Machine learning can be supervised or unsupervised. Supervised

machine learning is the search for algorithms that reason from externally supplied

instances to produce general hypotheses, which then make predictions about future

instances (Kotsiantis [2007]). If one supposes that (X,Y ) are random variables rep-

resented by some joint probability density P(X,Y ), then supervised learning can be

formally characterised as a density estimation problem where one is concerned with

determining properties of the conditional density P(Y |X) (Hastie et al. [2009]). In

unsupervised machine learning one has a set of N observations of a random p-vector

X having joint density P(X). The goal is directly to infer the properties of the prob-

ability density P(X) without the help of a supervisor or teacher providing correct

answers (Hastie et al. [2009]).
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5.1 Arti�cial Neural Networks

Figure 5.1: The Multi-layer Perceptron. (Bishop [1996])

Arti�cial Neural Networks belong to a class of learning methods that developed sepa-

rately in the distinct �elds of statistics and arti�cial intelligence, based on essentially

identical models. The term ANN has come to encompass a large class of models and

learning methods. Multi-layered networks having threshold or sigmoidal activation

functions are called multi-layer perceptrons (MLP)(Bishop [1996]). An activation

(or transfer) function acts on the linear function of the input variables to give a

discriminant function. If the activation is the identity function the network collapses

to a linear model in the inputs.

The importance of neural networks in the context of practical applications

is that they o�er a very powerful and very general framework for representing non-

linear mappings from several input variables to several output variables, where the

form of the mapping is governed by a number of adjustable parameters. The pro-

cess of determining values for these parameters on the basis of the data is called

learning or training, and for this reason the data set of examples is generally re-

ferred to as a training set. ANN models, as well as many conventional approaches

to statistical pattern recognition, can be viewed as speci�c functional forms used

to represent the mapping, together with particular procedures for optimising the

parameters in the mapping. In fact, ANNs often contain conventional approaches

as special cases. ANNs are an extension of conventional techniques, which builds

on the many powerful results that the �eld of machine learning o�ers (Bishop [1996]).
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ANN models represent non-linear functions of many variables in terms of

superpositions of non-linear functions of a single variable, called hidden functions

or hidden units. The hidden units are adapted to the data as part of the training

process, so the number of such functions needs to grow only as the complexity of

the problem grows. For a given number of hidden units, the number of free pa-

rameters typically grows linearly or quadratically with the dimensionality, d, of the

input space, compared to dM growth for a generalMth-order polynomial. When the

output variables are continuous, the pattern recognition is a regression problem, and

when discrete, a classi�cation problem. In regression problems, the arti�cial neural

network approximates the regression function, whilst in classi�cation, the outputs of

a arti�cial neural network can be interpreted as approximations to posterior proba-

bilities of class membership.

MLPs with sigmoidal node functions are the most commonly used arti�cial

neural networks. Each hidden node produces a hyperplane boundary in the multidi-

mensional space containing the input data. The output node smoothly interpolates

between those boundaries to give decision regions of the input space occupied by

each class of interest. With a single logistic output, multilayer perceptrons can be

viewed as non-linear extensions of logistic regression and, with two layers of weights,

they can approximate any continuous function (Dybowski and Gant [2001], Bishop

[1996]).

MLPs are regression or classi�cation models typically represented by a net-

work diagram as in �gure 5.1. Some describe these as non-linear statistical models

(Hastie et al. [2009]), whilst others argue that for a model to be statistical, assump-

tions about the variability of the data need to be made (Breiman [2001]). These

tools are especially e�ective in high signal to noise settings where prediction without

interpretation is the goal. They are less e�ective in problems where the goal is to

describe the physical process that generated the data and the roles of the individual

inputs. Each input enters into the model in many places, in a non-linear fashion. In

general, the di�culty of interpretation has limited their use in �elds like medicine

where the interpretation of the models is very important.

In this study the MLP used consisted of two layers of adaptive weights with

full connectivity between inputs and hidden units, and used sigmoidal activation

functions. This architecture is capable of universal approximation, meaning that

it can approximate any continuous function to arbitrary accuracy from a compact
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region of input space provided the number of hidden units is su�ciently large, and

provided the weights and biases are chosen appropriately (Nabney [2002]). There is

a direct correspondence between a network diagram and its mathematical function,

and general network mappings can be developed by considering more complex net-

work diagrams. In this project, attention was restricted to feed-forward networks,

which have the property that there are no feed-back loops in the network. In general,

a network is feed-forward if it is possible to attach successive numbers to the inputs

and all hidden and output units such that each unit received connections only from

inputs or units having a smaller number. Feed-forward networks have the property

that the outputs can be expressed as deterministic functions of the inputs, and so the

network represents a multivariate non-linear functional mapping. Note that if the

activation functions of all the hidden units in a networks are taken to be linear, then

for any such a network there is an equivalent network without hidden units, since

the composition of successive linear transformations is itself a linear transformation.

If the number of hidden units is smaller than either the number of input units or the

number of output units, then the linear transformation that such network generates

is not the most general possible, as information is lost in the dimensionality reduc-

tion at the hidden units.

In a network with d inputs, M hidden units and c output units, the analytic

function corresponding to the network can be expressed as follows:

The output of the jth hidden unit is formed with a weighted linear combination of

the d input values and adding a bias (i.e. constant term) to give

aj =
d∑
i=1

w
(1)
ji xi + w

(1)
j0 . (5.1)

Here w(1)
ji denotes a weight in the �rst layer going between input i and hidden unit

j, and w(1)
j0 denotes the bias for the hidden unit j. By including an additional input

variable x0 = 1, the bias term for the hidden units can be absorbed into the weights

to give

aj =
d∑
i=0

w
(1)
ji xi. (5.2)

The activation of hidden unit j is then obtained by transforming the linear sum in

(5.2) using an activation function g1(·) to give

zj = g1(aj). (5.3)
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The outputs of the two-layer network are obtained by transforming the activations

of the hidden units using a second activation function. For each output unit, k, a

linear combination of the outputs of the hidden units is constructed. Absorbing the

bias as before gives

ak =
M∑
j=0

w
(2)
kj zj . (5.4)

The activation of the kth output unit is obtained by transforming this linear combi-

nation using a non-linear activation to give

yk = g2(ak) (5.5)

where the notation g2(ak)is used to emphasise that the activation of output units

need not be the same function as used for the hidden units. Combining (5.2), (5.3),

(5.4) and (5.5) the explicit expression for the complete function represented by the

network is

yk = g2

 M∑
j=0

w
(2)
kj g1

(
d∑
i=0

w
(1)
ji xi

) (5.6)

The sigmoid activation function is

g(z) =
1

1 + (1
be
− z

a )
(5.7)

where a is the slope parameter and b shifts the curve up or down. For �tting survival

functions b is set to unity (Reeves and Johnston [2008]).

The weights are at �rst speci�ed using domain knowledge or applied randomly to

the inputs if there is none, and the output compared to the target output as given

in the training data set. If the weights are near zero the operative part of the

sigmoid is roughly linear, so setting weights near zero to start means the model starts

out nearly linear and becomes non-linear as the weights increase; individual units

localise to directions and introduce non-linearities as needed. An error function is

de�ned to measure the degree to which the prediction and target di�er. The credit

assignment problem is the determination of which of the hidden units should be

regarded as responsible for generating the error. When the activation functions of the

network are di�erentiable, the activations of the output units become di�erentiable

functions of both the input variables, and of the weights and biases. Evaluation

of the derivatives of the error with respect to the weights allows the weight values

which minimise the error function to be found (Bishop [1996]). The most common

algorithm for evaluating these derivatives of the error function is called error back-
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propagation. Most training algorithms involve an iterative procedure for minimising

the error function, adjusting the weights in a sequence of steps: �rst evaluating the

derivatives, then use the derivatives to compute the adjustments to be made to the

weights. Then the errors are evaluated using the new weights, and the procedure

repeated. Each iteration is one training cycle. One of the simplest and most common

training algorithms is called gradient descent. In the batch version of the algorithm,

the weight vector is initialised randomly and then the vector is iteratively updated

in the direction of the greatest rate of decrease of the error. Weight changes are

accumulated over an entire presentation of the training data (an epoch) before being

applied. In the on-line or sequential version of the algorithm, the error function

gradient is evaluated for just one pattern at a time, and the weights updated after the

presentation of each training example (Bishop [1996]). The label `on-line learning'

can be misleading as it implies that learning may occur during use in the �eld.

However, with both algorithms training is normally done o�-line during a separate

phase with controlled data sets (Wilson and Martinez [2003]). Nevertheless, the

on-line approach does o�er the opportunity to update the training with a small

collection of new patterns, for example as clinical practices slowly change, without

having to delay until an entirely new data set is collected.

A network with too many weights will over�t the data at the global minimum of

the error function, so early stopping or weight decay regularisation is used (see page

99). However, it is better to have too many hidden units rather than too few or

the model may not have enough �exibility to capture non-linearities and the extra

weights can be shrunk toward zero if appropriate regularisation is used.

Multiple minima may be present in the error function so one option is to choose a

number of starting values for the weights and select the solution giving the lowest

penalised error

5.2 Arti�cial Neural Networks for Survival Analysis

Recall the survival analysis equations on page 73 and equation (5.6) above and the

log likelihood equation

log L =
n∑
i=1

[∆i log(f(ti)) + (1−∆i) log(S(ti))]. (5.8)

Expressions for S(t), the survivor function and f(t), the probability density function

of survival time T , are required. A single layer arti�cial neural network has survival
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function

S(ti) = g2

∑
j

w
(2)
kj g1

(∑
i

w
(1)
ji xi

) (5.9)

Now if

z(ti) =
∑
j

w
(2)
kj g1

∑
j

w
(1)
ji xi

 (5.10)

so that

S(ti) = g2 (z(ti)) (5.11)

then

z(ti) = g−1
2 (S(ti)) (5.12)

and

S′(ti) = g′2 (z(ti))z
′ (ti) (5.13)

from equation 5.11 by the chain rule and from 5.10

z′(ti) =
∑
k

g′1

∑
j

w
(1)
ji xi

w(2)
j wpj . (5.14)

De�ne xd = t so d
dt

∑
j w

(1)
ji xi = wjd giving

S′(ti) = g′2 (z(ti))
∑
j

g′1

∑
j

w
(1)
ji xi

w(2)
kj w

(1)
jd (5.15)

and f(ti) = −S′ (ti). The use of arti�cial neural networks for survival analysis has

a relatively recent history (Ripley et al. [2004], Joshi et al. [2003], Joshi [2004]).

Both classi�cation and regression networks can be used for survival modelling. In

classi�cation, it is the probability of survival or time to relapse up to a given time

point that is modelled. It is possible to choose a single time point, e.g. relapse

within 5 years which is a simple binary output unit, or a series of time intervals,

such as relapse in less than one year, one to two years, two to three years, etc. The

multiple category cases may be �tted using a softmax function on the outputs which

produces outputs which lie in the range [0,1] and sum to 1 so can be interpreted as

probabilities. The Softmax function (Hastie et al. [2009]) is

yk =
eak∑
k′ e

ak′
. (5.16)

94



Since the probabilities must add up to 1 for N categories, only N − 1 of them can

vary independently. The natural ordering of these times can be taken into account.

In the regression model, the log likelihood is optimised (Joshi et al. [2005]) and the

probabilities of survival can be expressed as a survival curve by predicting on a vector

of times.

5.3 Optimising the Network

5.3.1 Minimising the error function

Non-linear activation functions are often used in arti�cial neural networks, and since

hidden and output units perform di�erent roles, the choice of activation function for

the output units may di�er from that for the hidden units. In a general feed-forward

network, each unit computes a weighted sum of its inputs in the form

aj =
∑
i

wjizi

where z is as de�ned in equation (5.3). Suppose that the error function can be

written as a sum over all patterns in the training set of an error de�ned for each

pattern separately,

E =
∑
n

En

and that En is di�erentiable function of the network variables so that

En = En(y1, . . . , yc).

The derivatives of the error function E with respect to the weights and biases in the

network can be expressed as sums over the training set of the derivatives for each

pattern separately. En depends on weight wji only via the summed input unit aj to

unit j. The derivative of En with respect to a weight wji can be obtained using the

chain rule for partial derivatives

∂En

∂wji
=
∂En

∂aj

∂aj
∂wji

. (5.17)

The required derivative is obtained by multiplying the value of ∂E
n

∂aj
for the unit at

the output end of the weight by the value of ∂aj
∂wji

for the unit at the input end of
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the weight. For the output units

∂En

∂ak
= g′(ak)

∂En

∂yk
(5.18)

by the chain rule on equation (5.3). For the hidden units we have

∂En

∂aj
=
∑
k

∂En

∂ak

∂ak
∂aj

(5.19)

where the sums run over all units k to which unit j sends connections, and using the

fact that variations in aj give rise to variations in the error function only through

variations in the variables ak. This leads to the back propagation formula

∂En

∂aj
= g′(ak)

∑
k

wkjg
′(ak)

∂En

∂ak
(5.20)

which allows the evaluation of errors recursively. The use of the logistic sigmoid as

an activation function is computationally e�cient here, since its derivative can be

expressed in the form

g′(a) = g(a)(1− g(a)). (5.21)

The dervatives of the error function with respect to the weights obtained in this

way form the Jacobian matrix of partial derivatives. The derivatives of the outputs

with respect to the inputs can also be calculated in a similar manner to form a

Jacobian matrix which estimates the contribution of the errors associated with the

input variables to the error of the output variables (Bishop [1996]). Back propagation

can also be used to obtain the second derivatives of the error with respect to the

weights to form the Hessian
∂2E

∂wji∂wlk
. (5.22)

The Hessian and its inverse plays an important role in neural computing which is

detailed in Bishop [1996]. The inverse of the Hessian H of the error with respect

to the weights can be approximated using the outer product approximation. If

R ≡ ∇wE, is the gradient of the error function and N is the number of patterns in

the data set, then the outer product approximation can be written

HN =
N∑
n=1

Rn(Rn)T (5.23)
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and the Hessian can be built up sequentially using

HN+1 = HN +RN+1(RN+1)T . (5.24)

Then this matrix identity (Kailath [1980]) can be used to provide the inversion:

(A+BC)−1 = A−1 −A−1B(I + CA−1B)−1CA−1. (5.25)

where I is the identity matrix. Identifying HN = A, RN+1 = B, (RN+1)T = C we

have

H−1
N+1 = H−1

N −
H−1
N RN+1(RN+1)TH−1

N

1 + (RN+1)TH−1
N RN+1

(5.26)

This represents a procedure for evaluating the inverse of a Hessian using a single

pass through the data set. The initial matrix, H0 is chosen to be αH where α is a

small quantity. It is important to state that the outer product approximation for use

with the sum of squares error function is only likely to be valid for a network trained

on the same data set, or one with the same statistical properties as the one used to

evaluate the Hessian. For a general network mapping, the second derivative terms

will typically not be negligible. The Hessian of the error with respect to the weights

can be evaluated exactly for a network of arbitrary feed-forward topology and with

an di�erentiable error function using an algorithm based on back-propagation for

the evaluation of �rst derivatives, detailed on page 157 of Bishop [1996].

For regression problems and for classi�cation problems, the purpose of net-

work training is to model the underlying generator of the data so that the best

possible predictions of the target t are made when the trained network is presented

with a new input vector x. For associative prediction problems of this kind, it is

convenient to decompose the joint probability density in the product of the condi-

tional density of the target data, given the input data and the unconditional density

of the input data thus:

P(x, t) = P(t|x)p(x). (5.27)

Many error functions can be motivated from the principle of maximum likelihood.

For training data {xn, tn}, the likelihood can be written as

L =
∏
n

P(xn, tn) (5.28)

L =
∏
n

P(tn|xn)P(xn) (5.29)
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under the assumption that each data point (xn, tn) is drawn independently from

the same distribution. It is generally more convenient to minimise the negative log

likelihood than to maximise the likelihood, and these are equivalent since the negative

logarithm is a monotonic function. Fitting an ANN by maximum likelihood is known

as `entropy' �tting and is not common (Ripley and Ripley [2001], Joshi et al. [2005]).

E = −lnL = −
∑
n

ln P(tn|xn)−
∑
n

ln P(xn). (5.30)

The second term in equation (5.30) does not depend on the network parameters and

is therefore an additive constant which may be omitted from the error function.

These procedures have the advantage that they constrain the weights assigned

to the variables during learning to have values falling within the same interval.

5.3.2 Model complexity

The trained network model's ability to generalise is important for making good

predictions on new inputs; this requires model complexity to be optimised. As

with other statistical models, this requires a trade-o� between bias and variance.

One way to achieve this in the arti�cial neural network setting is to compare the

performance of networks with a varying number of hidden units. A large data set

is advantageous here; as the number of data points grows, more complex models

can be supported, so reducing bias whilst ensuring the data constrains the model,

simultaneously reducing the variance. In practice, the data available are usually

limited. Adding a penalty term to the error function is a particular example of the

concept of regularisation (Hastie et al. [2009], Bishop [1996]) and is another way of

controlling model complexity. The general form is

Ẽ = E + νΩ (5.31)

where E is the error function of choice, and ν controls the extent to which the penalty

term Ω constrains the form of the solution. One of the simplest forms of regularisa-

tion is weight decay and consists of the sum of squares of the adaptive parameters

(weights) in the network. The minimisation of the error function determines the

values for the free parameters in a network, but cannot indicate the optimal number

of such parameters, or equivalently the optimal size of the network. As with the

trade-o� between bias and variance for curve-�tting, the goal of training the data is

to produce a network with good generalisation performance on new input vectors,

and this is typically not the network which gives the smallest error on the training
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data. Networks with too little �exibility will smooth out the structure in the data,

corresponding to high bias, whilst very complex networks will over-�t the data cor-

responding to high variance. In both cases, generalisation is poor. This is where the

determination of the regularisation coe�cient in equation (5.31) becomes important.

A too large value for ν produces a network with large bias, whilst a too small value

allows the network to have high variance. Direct minimisation of Ẽ leads to ν = 0

which is an over-�tted solution. In the case of weight decay we have

Ω =
∑
i

w2
i (5.32)

with the sum over all weights and biases. When used in curve �tting this form of

regularisation is called ridge regression. To produce an over-�tted mapping with

regions of large curvature requires large weights. Weight decay encourages weights

to be small and avoid the over�tting. Other alternatives include early stopping,

when training is stopped at the point where the error on a validation data set stops

falling and begins to grow. Curvature driven smoothing is another technique for

directly penalising curvature and uses second derivatives. Adding random noise to

input vectors has also been shown to lead to improvements in network generalisation

(Bishop [1996]). The most common pre-processing is linear rescaling of inputs so

that they all lie on a common scale-dividing each variable by the maximum value it

could take ensured all the variables fall in the interval zero to one. It is also possible

to rescale so that each variable has mean zero and variance one. Rescaling becomes

particularly important if weight penalty is used, since all the inputs need to be in the

same range to avoid over-penalizing the weights associated with large input values.

5.3.3 Cross validation

Cross-validation is a common mechanism for assessing the optimality of the model;

part of the data set is reserved for validating, some for testing and the remainder

used for training (Bishop [1996], Dybowski and Gant [2001], Hastie et al. [2009]).

When the network has been trained using the training set, then optimisation of the

model is made using the validation set. The e�cacy of the model in predicting new

cases is then reported using the independent test set. Often many partitions are used

and the accuracy of various candidate models judged on the average performance of

this procedure. The validation set is used to select ν by plotting the training and

validation errors against ν. The errors on the training set continue to fall, since that

is what the training algorithm requires. It is typical to see that, at a certain value
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of ν the error on the validation set ceases to fall and begins to rise. The value of ν

where the error is minimum on the validation set is the optimal value and is selected

for use in training the network. A similar technique can be used when varying the

number of hidden nodes.

5.3.4 The black box

One criticism levelled at neural networks is that they are black box systems by which

it is meant that the manner in which arti�cial neural networks derive an output value

from a given feature is not readily comprehensible, making the use of the output from

arti�cial neural networks unacceptable to users. Black box methods such as arti�-

cial neural networks, which can be quite useful in purely predictive settings such as

pattern recognition, are far less useful for data mining (Hastie et al. [2009]). In a

model, desirable characteristics are accuracy and interpretability. Accuracy means

the model estimate of the value must be close to the true value, and interpretability

means that the input - output relationships that can be extracted from the model are

comprehensible to the intended user of the model. There are several types of inter-

pretation: how each input a�ects the output value, as seen in regression coe�cients;

input-output relationships as if-then rules, as seen in tree-structured classi�ers; how

the output value is obtained from the input vector as in the most probable con�gu-

ration in Bayesian Belief networks (Cooper [1990]). Interpretability is desirable if it

uncovers previously unknown but useful input-output summary, or discloses an error

in the model. If accurate prediction is what the model is required to produce, and

careful, extensive testing and ongoing monitoring provide reassurance of accuracy,

the lack of intepretability is less important than if the goal is knowledge discovery.

Interpretation of the mass of weights and connections within the network is very dif-

�cult when trying to extract previously unknown but useful information from data.

This is where saliency (the relative importance of weights, Bishop [1996]) can be

used, not only for optimising network structure and performance, but also for giving

some intuition about which inputs contribute most to the accuracy of the network

predictions. There has been much e�ort directed at learning rules from trained ar-

ti�cial neural networks (Dybowski and Gant [2001]) for this reason.

100



5.3.5 Applying the ANNs

The arti�cial neural network for survival analysis used here takes as inputs the vari-

ables found to be signi�cant in the optimal Cox survival analysis, categorised as in

Table 6.24 on page 152. The weights were optimised using the maximum likelihood

of the function given in Equation 4.17 on page 75. The weight decay and number

of hidden nodes was optimised in MATLAB using training sets of 9/10 of the data,

selected at random, and a test set of the remaining data. After training, the log

likelihood was calculated for the test set. Hidden nodes greater than 3 could not be

supported because of lack of data, but 1, 2, and 3 hidden units were tested. The

weight decay values 1, 0.1, 0.01, 0.001, 0.0001, 0 were tested with each of the hidden

unit con�gurations and the optimal combination was found to be a weight decay of

0.1 and 3 hidden nodes. A vector of times (scaled by dividing by maximum time to

be between 0 and 1) was entered into the optimised network and a vector of values

between 0 and 1 returned. These are interpreted as probabilities of survival and were

compared the empirical Kaplan- Meier Survivor function and the survivor function

obtained from the Cox proportional hazards to assess model �t, as shown in Figure

6.18 on page 160.

The inputs to the arti�cial neural network for predicting recovery from back

pain were treatment allocation plus the same variables used for building the latent

class model, listed on page 106, each score divided by the maximum to scale them

between 0 and 1. Achievement of a 3-point improvement in RMQ score, represented

as a dichotomous variable, was used as the target. The weights were optimised using

maximum likelihood using Equation 6.1 on page 125. The network architecture and

the weight decay were optimised using 10-fold cross validation scores for percentage

error and the log score given in Equation 6.2 on page 118, and those with mini-

mal values retained. Weight decays 0, 0.0001, 0.001, 0.01, 0.1 and 1 were tested

along with architectures with 1-5 hidden units. Details are given in Table 6.14 on

page 127. A network with 1 hidden unit and a weight decay of 0.1 was optimal.

The output of the model is a value between 0 and 1 with values 0.5-1 interpreted

as the model predicting recovery for this patient, and as predicting non-recovery

for the lower values. The model �t is assessed by percentage accuracy on the �tted

network, the log score, the sensitivity and the speci�city as in Table 6.15 on page 131.

The receiver operating characteristic (ROC), or ROC curve, is a graphical

plot which illustrates the performance of a binary classi�er system as its discrimina-

tion threshold is varied. The ROC curve illustrates the performance of the ANN as
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the value at which predicting recovery / non-recovery is varied. There are four pos-

sible outcomes from the classi�cation: a recovering patient can be classi�ed by the

model as recovering (a true positive) or not recovering (a false negative) and a non-

recovering patient can be classi�ed as recovering (false positive) or non-recovering

(true negative). The true positive rate or sensitivity is the proportion of all the

recovering patients that are classi�ed as recovering by the model, calculated as true

positive / (true positive + false negative). Similarly, the true negative rate or speci-

�city is true negatives / (true negatives + false positives). The ROC curve illustrates

the variation in these two quantities as the threshold value used by the model is var-

ied. A line of slope 1 indicates that the model has no discriminatory ability, and

that cases are allocated no better than at random.

In medical applications, the relative importance of avoiding false positives

and false negatives depends on the speci�c illness and treatment options under con-

sideration. Clearly, the ideal scenario is perfect classi�cation, but in real-world ap-

plications this is unlikely. When used for diagnosis, or other decision support about

treatment, correct classi�cation leads to correct (or best) treatment and cure, whilst

incorrect treatment can sometimes lead to serious consequences, either from failure

to give correct treatment leading to disease progression, or the su�ering of serious

side-e�ects without the pay-o� of curing the disease. The overall error rate of the

classi�er is a useful measure of the performance of a classi�er and there are others

(Hand [2010]).
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Chapter 6

Results

This chapter sets out to describe and compare the results obtained by applying the

di�erent analyses outlined in Chapter 4 and Chapter 5 to the BeST data and the

the Basingstoke and Alton Data. Both data sets were introduced in Chapter 3,

The BeST data from the complex intervention for back pain were analysed

using latent class analysis (described in Chapter 4) in an attempt to �nd classes

of patients for whom the response to the intervention di�ered either positively or

negatively. The aim was to facilitate the tailoring of interventions to patients by

identifying the subgroups of patients for whom this treatment is particularly e�ec-

tive or particularly ine�ective. The manifest (observed) variables used to identify

the latent variable were those which the intervention was designed to tackle. The

BeST data were also subjected to a classi�cation arti�cial neural network (ANN, de-

scribed in Chapter 5), to categorise patients according to whether they experienced

signi�cant improvement or not, based on these same input variables. The methods

were compared for their ability to identify groups with similar outcomes. The e�ect

of missing data was assessed using multiple imputation to complete the data sets.

Comparison was made of the analysis based on the data with the cases with missing

variables omitted, and with the missing values multiply imputed.

The Basingstoke and Alton cardiac rehabilitation data were analysed using

a Cox proportional hazards model, to identify those covariates which are signi�cant

predictors of long-term survival. These data were also subjected to a continuous-time

arti�cial neural network analysis which produced a survival curve. A comparison was

made of the two curves' �t to the data and hazard rates.
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6.1 Analysis of BeST Back Pain Trial data

The Best Data was analysed by three methods, each using the same explanatory

and response variables. Logistic regression was used to predict a minimum RMQ

improvement from the explanatory variables. Latent class analysis was used to

form classes of patients using the explanatory variables, and the optimal model was

used as the explanatory variable in a logistic regression to predict a minimum RMQ

improvement. Finally, an ANN was trained using the explanatory variables and used

to predict the same minimum RMQ improvement.
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Figure 6.1: Schematic representing the analysis scheme for the BeST data set.
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6.2 Latent Class analysis of BeST Back Pain Trial data

6.2.1 Principal �ndings

Scores which measure the characteristics that the intervention was designed to tackle

were successfully used to classify trial participants into groups. For trial participants

who received the intervention treatment, there was an association between outcome

and class membership in the three-class model. After adjusting for age, sex and work

status in a logistic regression model, there was a marginally signi�cant coe�cient

for the interaction between treatment and membership of class 3 in the three-class

model.

6.2.2 Introduction

The BeST Trial demonstrated that a group-based cognitive behavioural approach

(CBA), delivered by a range of health professionals, had a sustained e�ect on chronic

non-speci�c low back pain. This compared favourably with the range of treatments

recommended for the early treatment of persistent back pain by the National Insti-

tute for Health and Care Excellence (NICE) guidelines (NICE [2009]).

The design, intervention, and main analyses of the BeST Trial were reported in de-

tail by the trial team in (Lamb et al. [2010b]), and summarised in Chapter 3 starting

on page 44. Underwood and colleagues undertook a secondary analysis on this data

to look for e�ect moderators (Underwood et al. [2011]) and found that neither trou-

blesomeness nor fear avoidance moderated treatment e�ect on any of the primary

outcomes. The only moderation by baseline variables of the e�ect of the intervention

was on the RMQ outcome: being younger and currently working both moderated

treatment e�ect, resulting in larger improvements as a response to treatment.

The analysis approach was to �rst �nd the best latent class model �t, and so

to ascertain the optimal number of classes for this data set. Then the relationship

between class membership and outcome for each of the intervention and control

cohorts was investigated using logistic regression, analysis of deviance and Fishers'

exact test. Finally, an adjusted logistic regression was used to control for other

variables of interest, namely age, sex and work.

6.2.3 Analysis approach

Latent class analysis was implemented on the full BeST data set using only cases

where 12-month follow-up RMQ score was available. Given the context of a cog-
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nitive behavioural approach to the treatment of back pain, after discussion with a

clinical colleague it was agreed that the most appropriate observed variables for the

latent class modelling would be those which the intervention sought to modify. The

complete cases were used for the analysis.

The observed items that the intervention tackled are:

• SF12 question 7 i.e. `During the past 4 weeks, how much of the time has your

physical health or emotional problems interfered with your social activities,

(like visiting with friends, relatives, etc.)?' and responses are 1. All of the

time; 2. Most of the time; 3. Some of the time; 4. A little of the time; 5. None

of the time. See page 141 of Lamb et al. [2010b] (SF12_7).

• Pain self-e�cacy total score (PSE).

• Fear Avoidance Beliefs Questionnaire, items 2-5 relating to physical activity

(PA).

• Hospital Anxiety and Depression Scale (HADS)- using the separate scores:

HADS depression and HADS anxiety.

• Troublesomeness: moderately; very; extremely.

Each score was calculated according to its questionnaire manual detailed on page 46.

Recall that latent class analysis requires categorical variables (see page 67).

The two subscales of anxiety and depression measured by HADS were split according

to their standard interpretation, i.e. that scores lower than 8 were considered to

indicate a patient was not depressed (anxious), 8 to 10 that they were `borderline'

and over 10 that they were depressed (anxious). The HADS anxiety and depression

scales were the most informative in distinguishing between classes.

Similarly, the same cut points were adopted for PA as in the trial, i.e. a score of

under 14 was considered to indicate that a patient was not fear avoidant, whist a

score of 14 and over that a patient was fear avoidant.

There was no obvious or standard categorisation known for the remaining score,

PSE. Some time was spent undertaking sensitivity analysis, and it was decided that

medical opinion was a better guide to appropriate discretisation than optimising

on the basis of this data set, since any cut points found by the latter method may

not generalise to other data sets. It was therefore agreed, after discussion with a
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clinical colleague, to split PSE into very low, low and better than low (scores 0-

20, 21-30, 31-60) because it made no clinical sense to di�erentiate between high

and very high e�cacy patients, but the di�erence between low and very low may

have clinical importance in distinguishing between patient outcomes. SF12_7 was

used as it stands, i.e. with a separate category for each of the 5 possible responses.

Troublesomeness was also used in its 5 categories, noting that recruitment to the trial

required patients to have at least moderately troublesome pain, e�ectively reducing

the categories in use to 3.

A subset was made of patients for whom all the 6 observations detailed above plus

baseline and 12-month follow-up RMQ scores were complete. The data losses were

as follows in Table 6.1.

Variable complete cases cases remaining item level case level

out of after sequential missingness missingness

original 701 (%) removal of (%) (%)
missing (%)

Fear Avoidance 662 (94.4) 662 (94.4) 34 (4.9) 5 (0.7)
Anxiety 686 (97.9) 648 (92.4) 13 (1.8) 2 (0.3)
Depression 693 (98.9) 645 (92.0) 6 (0.8) 2 (0.3)
SF12 question 7 689 (98.3) 635 (90.6) NA 12 (1.7)
Pain Self e�cacy 676 (96.4) 620 (88.4) 22 (3.1) 3 (0.4)
Troublesomeness 638 (91.0) 567 (80.9) NA 63 (9.0)
RMQ at baseline 700 (99.9) 567 (80.9) 0 (0.0) 1 (0.1)
RMQ 12 months 498 (71.0) 407 (58.1) 0 (0.0) 203 (29.0)

Table 6.1: Variables: cases complete in individual cases and after sequential removal. SF12_7 and
Troublesomeness are single-item scores so there is no distinction between item-level and case-level
missingness.
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Outcome was de�ned as a 3-point or greater improvement in RMQ score at 12 months

or a score of less than or equal to 3 at baseline, maintained at 12-month follow-up,

to include those whose scores may not allow for an improvement of 3-points, but

are well (Bombardier et al. [2001], Lauridsen et al. [2006]). This is the de�nition

of `signi�cant improvement' in RMQ reported throughout this thesis. There were

407 such patients, 181 with a RMQ improvement described above, and 226 without

such an improvement. The numbers and proportions of patients in each category of

each score was given in Table 3.1 on page 51. A latent class analysis algorithm (R

package poLCA Linzer and Lewis [2011a]) was run on this complete cases data set,

and models with 2, 3, 4, 5 and 6 classes were produced. The models were evaluated

by considering the Akaike information criterion (AIC, Akaike [1974]) and Bayesian

information criterion (BIC, Schwarz [1978]) as detailed on page 78.

6.2.4 The models

Models with 2 to 6 classes were built and compared. The model with the minimum

AIC was the 4-class model while the model with the lowest BIC was the 3-class

model. For comparison, the AIC and BIC values of the 5 models is given in Table

(6.2).

Number of classes 2 3 4 5 6
AIC 4216.2 4116.8 4104.7* 4109.6 4120.6
BIC 4340.4 4305.2* 4357.2 4426.3 4501.5

Table 6.2: BIC and AIC for latent class models with 2 to 6 classes. Asterisk indicates lowest
information criterion.
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6.2.5 Patient characteristics for the three and four class models

Typical characteristics of the patients in the three classes were:

• Class 3.1: Patients in this class were generally those whose back pain caused no

interference with social activity; were not fear avoidant; had high con�dence in

managing despite any pain they experienced; were not clinically anxious; were

not clinically depressed and whose back pain was moderately troublesome.

• Class 3.2: Patients in this class were generally those whose back pain caused

signi�cant interference with social activity; were fear avoidant; had low con�-

dence in managing despite any pain they experienced; were clinically anxious;

were clinically depressed and whose back pain was extremely troublesome.

• Class 3.3: Patients in this class were generally those whose back pain caused

moderate interference with social activity; were fear avoidant; had high con-

�dence in managing despite any pain they experienced; were borderline or

clinically anxious; were borderline or not depressed and whose back pain was

moderately to very troublesome.

This list may give the impression that the patient characteristics were clearly de-

�ned for each class. However, the estimated class-conditional response probabilities

reported by the poLCA software are not 0 or 1 , and in some cases the probabilities

in two or more levels of a variable can di�er only slightly. For example, in the 4-class

model, Class 4 had estimated class-conditional response probabilities 0.16 for not

fear avoidant and 0.84 for fear avoidant which are clearly distinct, whilst Class 2

had 0.53 for not fear avoidant and 0.47 for fear avoidant which are roughly equal.

Taking all six predictor variables into account, with between 2 and 5 levels in each

predictor, the distributions are generally more complex than can be captured in sim-

ple descriptions. The colormaps (Figures 6.2, to 6.8) are a useful way to capture the

estimated class-conditional response probabilities. The most positive level of any

predictor (high con�dence, not fear avoidant, not anxious or depressed, etc.) is on

the left of the map with the levels ordered towards the most negative level on the

right.
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Figure 6.2: Three-class model: Class 1 showing the distribution of the probabilities of responses
under each score, with the healthiest patients to the left, and the least health to the right.
The colours near to the red end of the spectrum represent a high probability (near to 1) of having
this attribute given the class membership, and those near blue a low probability.

Figure 6.3: Three-class model: Class 2 showing the distribution of the probabilities of responses
under each score, with the healthiest patients to the left, and the least health to the right.
The colours near to the red end of the spectrum represent a high probability (near to 1) of having
this attribute given the class membership, and those near blue a low probability.
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Figure 6.4: Three-class model: Class 3 showing the distribution of the probabilities of responses
under each score, with the healthiest patients to the left, and the least health to the right.
The colours near to the red end of the spectrum represent a high probability (near to 1) of having
this attribute given the class membership, and those near blue a low probability.
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Typical characteristics of the patients in the four classes were:

• Class 4.1: Patients in this class were generally those whose back pain caused

little or no interference with social activity; were not fear avoidant; had high

con�dence in managing despite any pain they experienced; were not clinically

anxious; were not clinically depressed and whose back pain was moderately

troublesome.

• Class 4.2: Patients in this class were generally those whose back pain caused

moderate interference with social activity; could be either fear avoidant or not

fear avoidant; had low con�dence in managing despite any pain they expe-

rienced; were borderline or not clinically anxious; were borderline clinically

depressed and whose back pain was very troublesome .

• Class 4.3: Patients in this class were generally those whose back pain caused

moderate interference with social activity; were fear avoidant; had high con�-

dence in managing despite any pain they experienced; were borderline to clini-

cally anxious; were borderline depressed and whose back pain was moderately

to very troublesome.

• Class 4.4: Patients in this class were generally those whose back pain caused

signi�cant interference with social activity; were fear avoidant; had low or very

low con�dence in managing despite any pain they experienced; were clinically

anxious; were clinically depressed and whose back pain was extremely trouble-

some.
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Figure 6.5: Four-class model: Class 1 showing the distribution of the probabilities of responses
under each score, with the healthiest patients to the left, and the least health to the right.
The colours near to the red end of the spectrum represent a high probability (near to 1) of having
this attribute given the class membership, and those near blue a low probability.

Figure 6.6: Four-class model: Class 2 showing the distribution of the probabilities of responses
under each score, with the healthiest patients to the left, and the least health to the right.
The colours near to the red end of the spectrum represent a high probability (near to 1) of having
this attribute given the class membership, and those near blue a low probability.
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Figure 6.7: Four-class model: Class 3 showing the distribution of the probabilities of responses
under each score, with the healthiest patients to the left, and the least health to the right.
The colours near to the red end of the spectrum represent a high probability (near to 1) of having
this attribute given the class membership, and those near blue a low probability.

Figure 6.8: Four-class model: Class 4 showing the distribution of the probabilities of responses
under each score, with the healthiest patients to the left, and the least health to the right.
The colours near to the red end of the spectrum represent a high probability (near to 1) of having
this attribute given the class membership, and those near blue a low probability.
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The class membership which was most probable for each individual patient was

attached to their record, and associations between outcome and group membership

were tested using Fisher's exact test, logistic regression and analysis of deviance.

Fisher's exact test, like a χ2 test, tests for an association between the rows and

columns of a table, in this instance, the class and the outcome. Fisher's exact test

is valid for all sample sizes. A small p-value suggests an association, and in this

analysis a p-value of 5% or lower was used to indicate signi�cance and a p-value

of between 5% and 10% was considered marginally signi�cant. Logistic regression

predicts the log odds of the outcome as a linear model in the predictors. The p-value

given is for the e�ect of a unit change in the predictor on the log odds signi�cantly

di�erent from 0. Note that if the log odds is zero then the odds is 1, and there is no

di�erence between the chance of recovery and the chance of no recovery. The analysis

of deviance gives the reduction in residual deviance of adding each predictor variable

in turn to the logistic regression model. As with analysis of variance for ordinary

least squares regression, it is a measure of how much variability in the outcome

is explained by the predictor in question. After attaching the most probable class

membership to each case, the patient data were split into two groups according

to whether the patients had received the cognitive behavioural approach (CBA)

intervention or not, and Fisher's exact test was performed to test for an association

between class and outcome. In the case of the Three-class model, Fisher's exact

test showed an association between outcome and class (at 5% level) in the case of

the CBA (intervention) patients. The 2, 4, 5 and 6-class models did not show an

association between outcome and class under Fisher's exact test (at the 5% level) for

the CBA (intervention) patients. In the case of the best care only (control group)

patients, there was no association between outcome and class for any of the models.

The p-values for Fisher's exact test are given in Table 6.3.

Number of classes 2 3 4 5 6
Intervention 0.44 0.05* 0.20 0.32 0.07
Control 1.0 0.70 0.72 0.68 0.23

Table 6.3: Fisher's exact test for association between class membership and outcome. * Signi�cant
at 5% level.

The next step was to try to identify which speci�c classes of patients were more

likely to recover and which were less likely to recover. To do this, the models with

the best relative goodness of �t were analysed more closely.
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Testing the Four-Class Model

The four-class model, having the lowest AIC, was investigated to see if patients in

some classes did better with the CBA treatment than patients of the same class who

did not receive this treatment. Analysis of deviance was used to test if an interaction

term was signi�cant in the logistic regression model.

In the case of the four-class model, numbers of patients in each class were as shown

in Table 6.4. Note that Class 2 had fewest patients, just 10% of the total data set,

32 in the intervention group and 10 in the control group.

Class: 1 2 3 4
Patients 210 42 101 54

Table 6.4: Patients in the four-class model. Note that the numbers of patients in this table were
from across both arms of the trial, i.e. both those who had the CBA treatment, and those who did
not, 407 altogether.

Analysis of deviance showed that treatment was signi�cant in explaining outcome,

but the class and interaction between class and treatment were not. This means

that receiving treatment given that a patient was in a certain class was not a clear

predictor of outcome for the four-class model.

A logistic regression model was used to predict outcome (recovery, as de�ned on page

108) by treatment and class. The coe�cient for treatment was signi�cantly di�erent

from zero (p=0.004) for the control group. The coe�cients for class membership or

the interaction between class and outcome was not signi�cantly di�erent from zero

in the regression model.

Since the objective of the analysis was to uncover classes of patients with a common

response to the treatment, when the standard contrasts did not give the required level

of detail, new, detailed contrasts were constructed, each with one degree of freedom,

i.e. being in Class 2 is contrasted with not in Class 2, Class 3 contrasted with not

in Class 3, and so on. The contrasts were re-de�ned to keep the model deviance

the same but split the contrasts into one-degree-of-freedom items. In this way,

membership of each class was in turn compared to membership of any of the other

classes, and the capacity to predict a signi�cant improvement in RMQ (recovery, as

de�ned on page 108) assessed. The analysis of deviance showed that treatment was

signi�cant in predicting outcome (p=6.07× 10−5) but that class and the interaction

between class and treatment were not signi�cant.

The patients were split into two groups according to whether they received the CBA

intervention or not, and Fisher's exact test was performed to assess if there was

any association between class membership and outcome for each intervention group
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(results in Table 6.3). Table 6.5 gives numbers in each class in the CBA arm of

the trial. Recall that the patients were split 2:1 in favour of the intervention so that

splitting patients into groups at random should yield approximately 67% of any class

in the treatment arm and 33% in the control arm if there were no e�ect of class.

Class Intervention Control

Recovery Recovery
Number (%) No Yes Number(%) No Yes

1 137 (65) 71 66 73 (35) 49 24
2 32 (76) 14 18 10 (24) 8 2
3 68 (67) 28 40 33 (33) 22 11
4 43 (80) 26 17 11 (20) 9 2

Table 6.5: Four-class model: Number and percentage of each class who did and did not recover in
each arm of the trial. Recovery is de�ned in 6.2.3. Recall that the patients were split 2:1 in favour
of the intervention.

In all the above analyses, treatment is a predictor of recovery, but neither class

membership or receiving treatment given that a patient is in a certain class was a

clear predictor of outcome for the four-class model.

Testing the three-Class Model

The three-class model, having an AIC measure almost as low as the four-class model,

and a lower BIC was also investigated to see if patients in some classes did better

with the CBA treatment than patients of the same class who did not receive this

treatment.

In the case of the three-class model, numbers of patients in each class are in Table

6.6.

Class 1 2 3 All
Patients 211 52 144 407

Table 6.6: Patients in the three-class model. Note that the numbers of patients in this table were
from across both arms of the trial, i.e. both those who had the CBA treatment, and those who did
not.

Analysis of deviance showed that treatment was highly signi�cant (p=6.07× 10−5)

in explaining outcome and also that class was marginally signi�cant (i.e. signi�cant

at 10% level, p=0.066) in explaining outcome, but the interaction between class and

treatment was not. This means that receiving treatment given that a patient is in a

certain class was not a clear predictor of outcome for the three-class model. Logistic

regression was used to predict outcomes by treatment and class. The coe�cient

for treatment in the best care only arm, was signi�cant, but the coe�cient for class
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membership and for the interaction between class and outcome were not signi�cantly

di�erent from zero.

Once again, the contrasts were re�ned into contrasts each with one degree of freedom,

and a logistic regression model �tted. Treatment was signi�cant in the best care

only group in the logistic regression model. The analysis of deviance showed that

treatment is highly signi�cant in the model. It also revealed marginal signi�cance

for membership of Class 2 (at 10% level, p=0.065). It should be noted that Class 2

is the smallest class with 52 patients (12.8% of the whole data set).

The patients were split into two groups according to whether they received the

CBA intervention or not, and Fisher's exact test performed to assess if there was

any association between class membership and outcome for each intervention group.

Table 6.7 gives numbers in each class in the both arms of the trial.

Class Intervention Control

Recovery Recovery
Number (%) No Yes Number(%) No Yes

1 138 (65) 73 65 73 (35) 49 24
2 41 (79) 25 16 11 (21) 9 2
3 101 (70) 41 60 43 (30) 30 13

Table 6.7: Three-class model: Number and percentage of each class who did and did not recover
in each arm of the trial. Recovery is de�ned in 6.2.3. Recall that the patients were split 2:1 in
favour of the intervention.

In all the above analyses, treatment is a predictor of recovery, and membership of

class 2 is a predictor of recovery using a 10% signi�cance level but receiving treatment

given that a patient is in a certain class was not a clear predictor of outcome for

the three-class model either. Class 2 had the fewest patients in it, and whilst there

is some indication that membership of Class 2 a�ects the likelihood of recovery this

result could also be an artifact of the low numbers in the class. The proportion

of patients in Class 2 in the no-recovery category for both intervention and control

patients is much higher than the proportion in the recovery column. The di�erence

in proportions between those who recovered and who did not is far greater in Class

2 than in either of the other two classes, but with so few patients, we cannot rule

out that this occurred at random and is not a true e�ect.

6.2.6 Adjusting for other variables

To investigate the in�uence of the important variables identi�ed in Underwood et al.

[2011], age, sex and work were added to the logistic regression model.

Age was categorised into 5 groups of approximately equal size in the full data set of
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701 cases:

Age group number of patients
under 40 146
40-49 147
50-59 160
60-69 150
70 and over 98
Total 701

Table 6.8: Age categories, showing the number of patients in each category of the full data set of
701 cases.

The question relating to work is: `are you currently working (either self employed or

in paid employment)?'

For all the latent class models from the two-class model up to the six-class model,

there was a signi�cant interaction between treatment and work in the analysis of

deviance. Treatment was signi�cant in every model. In the two models of interest,

the three- and four-class models, the four-class model had a marginally signi�cant

interaction between membership of Class 2 and treatment, both in the model with

regular contrasts and the model with re�ned contrasts (in Class 2 compared to not

in Class 2). In the three-class model, there was a marginally signi�cant interaction

between membership of Class 3 and treatment, again both in the regular contrast

model and the re�ned contrast model. This suggests that, having adjusted for age,

sex and work status, work modi�es the e�ect of treatment (see Table 6.11.

These analyses support the �ndings of Underwood and colleagues, who found that

working moderated the treatment e�ect, resulting in larger improvements as a re-

sponse to treatment. In addition, for the two models of interest, there is some

indication that class membership moderated treatment e�ect, although the evidence

for this is modest.

It is of interest to investigate whether the variables age, sex or work status were

represented equally within the classes or whether there is a pattern of the working

people, who were marginally more likely to recover, also being the majority con-

stituents of the classes most likely to recover, i.e. Class 3 in the three-class model

and Class 2 in the four-class model.
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Variables used for Class 1 Class 2 Class 3 Class 4 All

identifying classes

SF127 1 * 0 0 1 8 9
SF127 2 4 9 4 28 46
SF127 3 21 21 74 15 131
SF127 4 56 7 11 1 75
SF127 5 128 5 11 2 146
Not Anxious 155 21 0 0 176
Borderline 44 20 58 1 123
Clinically Anxious 11 1 43 53 108
Not Depressed 204 14 3 0 257
Borderline 6 27 60 21 114
Clinically depressed 0 1 2 33 36
Not troublesome 3 0 0 0 3
Moderately 120 12 49 13 194
Very 79 21 42 17 159
Extremely 8 9 10 24 51
Fear Avoidant 76 19 71 45 211
Not Fear Avoidant 134 23 30 9 196
Pain Self e�cacy Very Low 0 6 0 20 26
Low 0 33 0 29 62
Moderate and above 210 3 101 5 319
Outcome variables Class 1 Class 2 Class 3 Class 4 All

RMQ Signi�cant improvement 90 20 51 19 180
No Signi�cant Improvement 120 22 50 35 227
RMQ † mean baseline 6.62 10.87 9.08 14.08 8.47
RMQ † mean 12 months 4.31 8.42 6.68 12.27 6.30
Variables (adjusted model) Class 1 Class 2 Class 3 Class 4 All

Age under 40 35 8 25 7 75
40-49 42 9 23 13 87
50-59 48 7 22 19 96
60-69 56 10 24 13 103
70 and over 29 8 7 2 46
Female 113 22 75 36 246
Male 97 20 26 18 161
Working 125 14 54 15 208
Not working 84 28 47 38 197
missing 1 0 0 1 2

Table 6.9: Patient Characteristics in the four-Class latent class model
* SF12 question 7 `How much of the time does your pain interfere with social activities?' 1= all of
the time, 2=most of the time, 3=some of the time, 4=a little of the time, 5= none of the time.
† Roland Morris Disability Questionnaire. RMQ score takes integer values 0 to 24, with lower score
indicating less disability.
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Variables used for Class 1 Class 2 Class 3 All

identifying classes

SF127 1 * 0 8 1 9
SF127 2 2 29 15 46
SF127 3 19 11 101 131
SF127 4 60 2 13 75
SF127 5 130 2 14 146
Not Anxious 155 1 20 176
Borderline 43 1 79 123
Clinically Anxious 13 50 45 108
Not Depressed 206 0 51 257
Borderline 5 16 93 114
Clinically depressed 0 36 0 36
Not troublesome 3 0 0 3
Moderately 122 11 61 194
Very 79 16 64 159
Extremely 7 25 19 51
Fear Avoidant 76 44 91 211
Not Fear Avoidant 135 8 53 196
Pain Self e�cacy Very Low 2 19 5 26
Low 2 26 34 62
Moderate and above 207 7 105 319
Outcome variables Class 1 Class 2 Class 3 All

RMQ Signi�cant improvement 89 18 73 180
No Signi�cant Improvement 122 34 71 227
RMQ † mean baseline 6.35 13.71 9.69 8.47
RMQ † mean 12 months 4.21 12.02 7.31 6.30
Variables (adjusted model) Class 1 Class 2 Class 3 All

Age under 40 36 8 31 75
40-49 43 13 31 87
50-59 48 17 31 96
60-69 55 12 36 103
70 and over 29 2 15 46
Female 113 36 97 246
Male 98 16 47 161
Working 127 16 65 208
Not working 83 35 79 197
missing 1 1 0 2

Table 6.10: Patient Characteristics in the three-Class latent class model
* SF12 question 7 `How much of the time does your pain interfere with social activities?' 1= all of
the time, 2=most of the time, 3=some of the time, 4=a little of the time, 5= none of the time.
† Roland Morris Disability Questionnaire. RMQ score takes integer values 0 to 24, with lower score
indicating less disability.
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Variable Class & Treatment model Age Sex and Work

Std Std
Coe� error p-value Coe� error p-value

Best care only -0.71 0.24 0.004** -0.28 0.73 0.70
Cognitive behavioural approach -0.11 0.49 0.17 -0.42 0.44 0.34
Class 1 - - - 0 - -
Class 2 -0.79 0.82 0.34 -1.25 0.91 0.17
Class 3 -0.12 0.41 0.77 -0.36 0.46 0.44
Treatment * Class 1 - - - 0 - -
Treatment * Class 2 0.46 0.89 0.61 0.99 0.99 0.31
Treatment * Class 3 0.62 0.49 0.21 0.94 0.54 0.08 •
Age under 40 - - - 0 - -
Age 40-49 - - - 0.67 0.68 0.32
Age 50-59 - - - 0.45 0.66 0.49
Age 60-69 - - - 0.07 0.71 0.91
Age 70 and over - - - -0.48 0.97 0.62
Male - - - -0.65 0.42 0.12
Female - - - 0 - -
In Work - - - -0.64 0.55 0.24
Not in Work - - - 0 - -
CBA* under Age 40 - - - 0 - -
CBA* Age 40-49 - - - -0.82 0.78 0.29
CBA* Age 50-59 - - - -0.61 0.77 0.42
CBA* Age 60-69 - - - -0.22 0.83 0.79
CBA* Age 70 and over - - - 0.32 1.10 0.77
CBA*Female - - - 0 - -
CBA* Male - - - 0.38 0.49 0.43
CBA*Not in work - - - 0 - -
CBA*in work - - - 1.53 0.63 0.02 ?

Table 6.11: Logistic Regression Model Coe�cients
Signi�cance codes: • signi�cant at α = 0.1, ? signi�cant at α = 0.05, **signi�cant at α = 0.01

These tables reveal that, in the four-class model, Class 2 is very small, 42 patients

out of 407 which is just 10.3%. It is likely, therefore, that the marginal association

between Class 2 and treament for this model is an artefact of the small number of

observations, and may not be a genuine e�fect. In the three-class model, 144 patients

are in Class 3, 35% of the observations, which is what would be expected if patients

were allocated into three groups at random. It is much less likely, therefore, that the

marginal association between membership of Class 3 and treatment is an artefact of

the distribution of patients between classes.

Scores which measure the characteristics that the intervention was designed

to tackle were successfully used to classify trial participants into three and four
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Class Work No Work missing Total
Recovery Yes No Yes No Yes No
Class 1 59 66 30 54 0 1 210
Class 2 9 5 11 17 0 0 42
Class 3 30 24 22 25 0 0 101
Class 4 8 7 10 28 1 0 54

Table 6.12: Work and recovery in classes for the 4-class model.

Class Work No Work missing Total
Recovery Yes No Yes No Yes No
Class 1 67 60 29 54 0 1 211
Class 2 8 8 9 26 1 0 52
Class 3 38 27 35 44 0 0 144

Table 6.13: Work and recovery in classes for the 3-class model.

groups. For trial participants who received the intervention treatment, there was an

association between outcome and class membership in the three-class model. After

adjusting for age, sex and work status in a logistic regression model, there was a

marginally signi�cant interaction between treatment and membership of Class 3 in

the three-class model, suggesting that Class 3 patients respond to the treatment

di�erently than Class 2 and Class 1 patients, but with the caveat that the sample

size is small. Underwood et al concluded that although BeST is one of the larger

trials of back pain treatment, it is still too small reliably to detect moderation if it

exists (Underwood et al. [2011]).
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6.3 Arti�cial Neural Network analysis of the BeST data

This is a comparison of arti�cial neural network, latent class analysis and logis-

tic regression for determining which patients bene�t from a cognitive behavioural

approach to treatment for non-speci�c low back pain Barons et al. [2013b].

6.3.1 Principal �ndings

Using the same 7 variables as for the latent class analysis, a classi�cation ANN

and an ordinary logistic regression were more accurate in classifying patients with

respect to recovery than a logistic regression using Latent Class membership as

the predictor. The best log score performances were by the ANN and the latent

class logistic regression, whilst the best sensitivity was shown by the ANN, and for

speci�city, latent class logistic regression was highest. The best overall performance

was the ANN, with the best performance in 3 of the 4 measures and providing both

sensitivity and accuracy. The ANN is the best candidate of these three models for

decision support for allocating patients to the cognitive behavioural approach to the

treatment of back pain.

6.3.2 Introduction

The aim of this study was to compare three methods for using patient character-

istics as predictors of a 3-point or greater improvement in the RMQ score between

baseline and 12-month follow-up. A classi�cation ANN was compared to two logistic

regression models, one using the variables directly, and the other using the classes

derived from the latent class analysis as predictors. All three models were subjected

to 10-fold cross validation and the averaged accuracy performance was reported.

In each of the three approaches, the same seven variables were used as in the

construction of the latent class models above. These were selected on the basis that

they measure the attributes which the cognitive behavioural approach was designed

to in�uence. The outcome measure was the RMQ score change by 12-month follow-

up. The predictor variables were PSE, SF12_7, HADS (anxiety and depression

scales separately) and troublesomeness. The 407 cases with complete data, detailed

in Table 6.10, were used for the analyses.

As described in Chapter 5, arti�cial neural networks are a form of machine

learning (Mitchell [1997]). A feed-forward arti�cial neural network with a single

hidden layer was used, and the number of hidden nodes was varied from 1 to 5 to

124



optimise using the percentage error and the log score comparison metrics described

below. The logistic function was used for both activation and output functions. The

inputs were scaled ∈ [0, 1] by dividing each score by the maximum score, and weight

decays 0, 0.0001, 0.001, 0.01, and 0.1 were tested. 10-fold cross validation was carried

out and the percentage error and the log score calculated to determine the optimal

network and for comparison with the other two models.

For comparison with the ANN and the latent class analysis, which are capable

of capturing non-linearity, a linear logistic regression was used to predict outcome

using all the six predictors listed. This was also used to predict outcome in a 10-fold

cross validation, and the log score was calculated for these models.

6.3.3 Comparison metrics

All analyses were carried out in R statistical software (R Development Core Team

[2011]). The arti�cial neural network was built using the the R package nnet (Ven-

ables and Ripley [2002]) which had a logistic activation function and with a logistic

output activation selected. The optimisation of weights was carried out by selecting

the entropy option which is maximum conditional likelihood �tting, or equivalently

for the case with a binary output, minimising the Kullback-Leibler distance (Ven-

ables and Ripley [2002]).

E =
∑
p

∑
k

[
tpk log

tpk
ypk

+ (1− tpk) log
(1− tpk)
(1− ypk)

]
(6.1)

where tp is the target (recovery ∈ [0, 1]), and yp is the model's output for the pth

patient and k is the number of classes. The percentage error - the total percentage

of patients assigned to the wrong outcome, is reported, making no distinction be-

tween sensitivity errors and speci�city errors (false positives or false negatives) and

averaged over the 10-fold cross validation. In this application, it is desirable to be

able to identify all those for whom the treatment will be e�ective, even at the risk

of allocating some to this programme who were unlikely to bene�t, since there are

no known or suspected contraindications. The log score is calculated:

∑
p

∑
k

−tpk log ppk (6.2)

Clearly, whenever the outcome is no recovery (tpk = 0) then there is zero contribu-

tion to this sum, so the log score reported is for the positive outcomes only and is

calculated using Equation 6.2. A lower log score indicates greater ability to identify
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those who will recover; it will predict a high probability of recovery for a patient who

actually recovered. The behaviour of log score is illustrated by plotting probability

of recovery from 0.1 to 1 against log score.
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Figure 6.9: As average probability of recovery varies, there is signi�cant change in the value of
the log score, for example as average probability of recovery rises from 0.5 to 0.6, the log score
reduces from 124.8 to 91.9.

This shows that even a small change in the mean probability of recovery predicted

by any of the models, for the recovered patients, in�uences the log probability score.

It follows that the log score is also sensitive to outliers; a single value much lower or

higher than the rest will also adjust the log score. This demonstrates that the log

score is a useful measure in this context.

The two logistic regression models were subjected to 10-fold cross validation using the

R package DAAG (Maindonald and Braun [2012]), and the log score was calculated

for each.

Arti�cial neural network

Log score was minimised when there were two hidden nodes for all networks, except

the network with weight decay set at 0.1, where the one hidden node con�guration

had the lowest log score. When weight decay = 0.1, the network with 4 hidden

nodes also provides a lower log score than either 3 or 5 hidden nodes. Percentage

error (misclassi�cation during cross validation) is minimised in the networks with

one hidden node for all values of the weight decay. The distribution of probabilities

of recovery assigned by the ANN model (with one hidden node and weight decay 0.1)

to the patients who did recover is shown in the histogram (Figure 6.11). A perfect

plot would have the entire mass at 1. This plot shows that the bulk of the predicted
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Figure 6.10: This plot shows how the log score varies as the number of patients with probability
of recovery much smaller than the remainder rises. For example, if 1 patient had a probability of
0.1 and average probability of recovery for the remaining 179 is 0.5, and then the log score rises
from 124.8 to 126.4. If two patients have probabilities of 0.1, the log score is 127.9, if three then
129.6.

probabilities were 0.5 and above, which indicates why the log score is reasonably

good at 145.5 and the prediction error is 38.8% (sensitivity 0.58, speci�city 0.63).

Hidden nodes 1 2 3 4 5
Weight decay
0 % error 40.5 41.3 42.3 45.5 43.2

Log Score 150.0 145.8 154.3 154.6 166.7

0.0001 % error 39.8 42.8 43.9 44.9 45.5
Log Score 149.9 147.9 155.7 158.4 171.6

0.001 % error 39.8 42.5 42.8 45.2 44.9
Log Score 150.9 149.6 154.7 157.8 164.2

0.01 % error 40.8 41.5 42.5 43.7 44.9
Log Score 149.3 144.5 152.4 154.3 161.4

0.1 % error 38.8 41.0 42.0 43.5 43.5
Log Score 145.5 146.8 149.1 148.5 152.1

Table 6.14: Evaluation of number hidden nodes required for optimal neural network.
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Figure 6.11: Histogram of the probabilities of recovery for cases that did recover, as predicted by
the arti�cal neural network with one hidden node and weight decay 0.1.
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Figure 6.12: Histogram of the probabilities of recovery for cases that did recover, as predicted by
the standard logistic regression.
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Probabilities of recovery in latent class LR

Recovery probabilities predicted by latent class LR
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Figure 6.13: Histogram of the probabilities of recovery for cases that did recover, as predicted by
the latent class logistic regression.
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Here is for ROC curve for the �tted ANN. The diagonal line is the line of no

discrimination, and since the ANN line is above this, the model is shown to have

some discrimination capability. As with the other measures, the ROC curve also

shows that the model has room for improvement. Since there are no known side-

e�ects of attending CBA, it is more important in this application to capture those

patients likely to bene�t, at the cost of treating some who are unlikely to recover.

Without a method for making such a prediction, all patients are likely to be treated

and costs will be higher still.
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Figure 6.14: ROC curve for illustrating the balance of errors as the threshold at which the
boundary between classi�cations used by the model is varied.
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Model Prediction Error % Log Score Sensitivity Speci�city
LCA+ LR (3-class) 42 146.5 0.33 0.82
LR 38.8 170.5 0.46 0.72
ANN (1 hidden unit w-decay 0.1) 38.8 145.5 0.58 0.63

Table 6.15: Comparison of all analysis methods

Logistic Regression

The �rst logistic regression we consider is the standard logistic regression model

using the same explanatory variables as the ANN. 10-fold cross validation gave a

prediction error of 38.8%, and a log score of 170.5 (sensitivity 0.46, speci�city 0.72).

Next the latent class model with three classes was used. The latent class model was

built using 6 variables, then the class membership and the treatment were used as

predictors in a regression model. The 10-fold cross validation prediction error was

42.0% and the log score was 146.5 (sensitivity 0.33, speci�city 0.82).

The distribution of probabilities of recovery assigned by the logistic regression

models to the patients who did recover is shown in the histograms (Figures 6.12 and

6.13). The distribution of probabilities assigned to the patients who did recover by

the ordinary logistic regression have a few very high values and a higher proportion

of the probabilities below 0.5 than in the case of the ANN. This ordinary logistic

regression had the highest log score. The latent class logistic regression model had

probability distribution for the patients who did recover which is skewed towards

the larger values, with the bulk of the probabilities falling in the 0.5 and 0.6 bins.

It had fewer very low probabilities than the ordinary logistic regression and also no

high probabilities. The log score for this model is only slightly higher than the log

score for the best ANN model, indicating that these two models outperform ordinary

logistic regression.

The overall accuracy is highest for the ANN and the ordinary logistic regres-

sion, with the latent class logistic regression misclassifying 13 more patients than the

other two models. The logistic regression is the only linear model, and had the lowest

error rate but the highest log score. The other two models allow for non-linearity.

The latent class logistic regression model uses 6 of the variables to assign patients to

classes, followed by using the class membership and the treatment as predictors of

outcome in a logistic regression. This is superior to the ordinary logistic regression in

sensitivity but poorer in overall accuracy. The second non-linear model is the ANN

using the same 7 variables as inputs. This performs as well as the logistic regression

with respect to accuracy, but is superior in the log score. The ANN performs as well
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as the latent class logistic regression in terms of log score, but is superior in overall

accuracy.

We hypothesise that by using techniques that can account for non-linearities and

seeing improvement suggests that linear models do not describe the connection be-

tween the cognitive domain and the experience of back pain well. We have shown

that the arti�cial neural network provides the best combination of overall error rate

and sensitivity, and would be the best candidate of these three models for decision

support for the cognitive behavioural approach to treatment of lower back pain.
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6.4 Analysis of the Basingstoke and Alton cardiac reha-

bilitation cohort data

These data were analysed by two methods. The Cox proportional hazards model,

which is a standard survival analysis method, was used and optimised to �nd the

best subset of explanatory variables for all-cause and cardiovascular survival. This

subset of explanatory variables was used to �t an ANN and used to predict mortality.
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Figure 6.15: Schematic representing the analysis scheme for the BeST data set.
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6.5 The Cox Model for Long-Term Survival After a Car-

diovascular Event

The long-term mortality of an unselected cohort of patients who have experienced a

coronary event or procedure was investigated, to identify factors which were associ-

ated with longer term survival.

6.5.1 Principal �ndings

Predictors of long-term survival (> 5 years) in patients who have had a coronary

event or procedure were not identical to the predictors of short-term survival. After

adjusting for age, sex and medications, �tness remains a strong predictor of long-

term survival from both all-cause and cardiovascular mortality. When changes in

�tness during the rehabilitation period were taken into account, an improvement to

high �tness is associated with the same bene�ts as having started with high �tness.

6.5.2 Introduction

Recall that access was granted to data on a cohort of patients recruited between 1st

January 1993 and 31st December 2002 through the Basingstoke and Alton (Hamp-

shire, UK) cardiac rehabilitation programme with follow-up to 30th March 2011.

The cohort is unselected, includes all NHS referrals, and participants have now been

followed for between one day and 18 years and three months providing 11,871 person-

years of follow-up. Recruitment to the cohort was undertaken typically 2 to 6 weeks

after their index coronary event (Bethell et al. [2009], West et al. [2011]). NHS

patients in the area served by the rehabilitation centre were routinely referred to

this programme following an acute myocardial infarction, episode of unstable angina

or revascularisation. The only other inclusion criterion for the study was that the

patients had registered with the cardiac rehabilitation programme. This resulted in

an unselected cohort of 2,714 patients. Data collection was undertaken by one per-

son (ST) for each patient, at recruitment and on graduation from the programme,

ensuring consistency over time (Turner [2007]). The O�ce for National Statistics

provided data on dates and causes of death. All patients who attended the pro-

gramme and had baseline �tness measured were included in the analysis. Data

collected included whether the programme was completed, diagnosis, co-morbidity,

family history, occupation, date of birth, age, sex, smoking history, resting heart

rate, cholesterol level, triglycerides level, post code, and, from 1998, height. At

both recruitment and on graduation records were made of each patient's weight,
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blood pressure, �tness, anxiety and depression (as measured by Hospital Anxiety

and Depression Scale (Bjelland et al. [2002],Turner [2007])), current smoking habit

and medications (ACE inhibitor, aspirin, beta blocker, statins). There were devel-

opments in protocols for secondary prevention medications during the period of the

study (Turner [2007]). At the start of the study, around 80% of those attending the

Basingstoke and Alton rehabilitation programme were prescribed aspirin, 20% pre-

scribed ACE inhibitor and beta blocker, and almost none prescribed statins. Statin

prescriptions climbed dramatically to almost 60% in the two years to 1996, to 85%

in the following 4 years, and then more slowly to a steady 95% from 2002 onwards.

Beta blocker prescription rose from 20% to 30% between 1993 and 1998 and then

to 60% in the 2 years to 2000, remaining between 50% and 60% for the duration of

the study. Similarly, ACE inhibitor prescription rose slowly between 1993 and 1998

and then experienced a strong increase, so that by 2002, over 80% of patients were

prescribed ACE inhibitors. Aspirin prescription rose steadily from over 80% at the

start of the study to almost 100% by 2001. The patients recruited during the last

4 years of enrolment almost all had prescriptions for aspirin and statins, 80% had a

prescription for ACE inhibitor and between 40% and 50% had prescriptions for all 4

secondary prevention medications. A plot showing the changes in use of secondary

prevention can be found on page 184 of Turner [2007]. It might be expected that

these patients had a longer life expectancy post-event than those recruited under the

earlier regime.

6.5.3 Calculated variables

Changes in weight, �tness, anxiety and depression were calculated from the entry and

exit values for each individual. Since height was not routinely recorded throughout,

BMI was available for only 889 patients. Baseline weight was categorised into under

75kg, 75-90kg, and over 90kg and labelled A, B and C respectively for brevity. The

index of multiple deprivation was ascertained from post code, occupation was coded

under 9 headings (see Table 6.22), and age was categorised into under 50, 50-59,

60-69 and 70 and over. The Modi�ed D'Hoore Co-morbidity Index is designed to as-

sess non-coronary co-morbidity speci�cally in the out-patient cardiac rehabilitation

environment, rather than the acute setting (D'Hoore et al. [1996]), and was calcu-

lated for each patient based on the recorded co-morbidities (see table 3.2 on page 58).

Up to August 1995, �tness was measured on a bicycle ergometer with ECG

monitoring and measurement of estimated peak workload. After that date, exercise

tests were performed on a treadmill, using either the Bruce protocol (Bruce et al.
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[1973]) or, for frail or elderly patients, the modi�ed Bruce protocol (Bruce [1973]).

Peak exercise tolerance was expressed as the predicted oxygen uptake (V O2 max)

in ml/kg/minute, from the known oxygen cost of bicycling at di�erent workloads

(Astrand and Rodahl [1986]). The treadmill test used the same endpoints as for

bicycle tests and V O2 max predicted on the assumption that each one minute of

the Bruce protocol uses one MET (metabolic equivalent - or 3.5ml O2/kg/min) and

that the �rst three stages of the modi�ed Bruce protocol each use one MET. V O2

max<15ml/kg/min was categorised as low �tness, V O2 max>22ml/kg/min as high

�tness with the remainder as medium (established for cardiac rehabilitation by Ka-

vanagh et al. [2002] Kavanagh et al. [2003]).

The researchers who collected the data report that the exercise test protocol for the

treadmill tests was either the full Bruce or the modi�ed Bruce protocol, with the

latter used for frailer patients as it starts more gently. With the treadmill set at a

constant 1.7 mph, the gradient is increased from 10% (full Bruce) or 0% (modi�ed

Bruce) every 3 minutes to a maximum gradient of 22%. The metabolic equivalents

(METs) are calculated from the number of minutes until the patient had reached

85% of their predicted heart rate maximum for their age or developed symptoms

which precluded the test's continuation using the standard conversion that 1 minute

of the Bruce protocol used one MET, and the �rst two stages of the modi�ed Bruce

protocol use 1 MET each. (Turner [2007]). Each MET is equivalent to 3.5ml/kg/min

so V O2 max Max is estimated as 3.5(1+x), with x being the number of minutes and

the additional 3.5ml/kg/min representing the resting metabolic rate.

Treadmill testing using the Bruce protocol is used for both diagnosis and prognosis

in patients at risk of coronary disease. Symptoms of Ischemia prompt a diagnosis

of disease. Prognosis is estimated using exercise duration, exercise hypotension, ex-

ercise hypertension chronotropic incompetence, heart rate recovery and ventricular

ectopy. Exercise duration is a good measure of functional capacity and a longer du-

ration indicates a lower probability of mortality from coronary disease or any other

cause, including in healthy subjects and retains its prognostic value after adjusting

for age and sex (Miller [2008]). Lower exercise duration can be an indicator of lower

�tness or more severe cardiovascular disease.

Depression and anxiety were categorised into none, borderline and depressed

or anxious using a Hospital Anxiety and Depression Scale score below 8 to suggest

no depression (anxiety), 8-10 to suggest borderline and a score over 10 to suggest

clinical depression or clinical anxiety (Bjelland et al. [2002]).
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In the main analysis, baseline categories of �tness, depression and anxiety

were used as predictors. Since the in�uence of an improvement in �tness, depression

or anxiety categories on survival is of interest, and whether these depend on baseline

categories, variables Fitness, Anxiety and Depression were de�ned so that a scale

of 1 to 7 captured each starting category and improvement or deterioration (see

Table 6.23 ). Very few patients started in the highest �tness category and then

deteriorated over the course of the programme (5 men) so these were combined with

the `no change' category. There were no patients who deteriorated having started in

the mid-�tness category, so this category was omitted. Survival time was de�ned as

the period between the date the participant joined the programme and the date of

death.

Statistical analysis

In the survival analyses both all-cause mortality and cardiovascular mortality were

considered, with non-cardiovascular deaths treated as censored in the latter anal-

ysis. Cox proportional hazards models (Collett [2003], Cox [1972]) were used to

model both all-cause and cardiovascular survival, beginning from the subset of vari-

ables that were found to be signi�cant predictors (at 5% level) of all-cause mortality

after preliminary univariate analyses as the baseline model. A backward stepwise

selection algorithm was employed to �nd the model with minimum AIC (Akaike

[1974]), retaining age and sex as the minimum model. The high calibre practice at

the rehabilitation programme gives us con�dence that there was no loss to follow-up.

All analyses were carried out in R statistical software (R Development Core Team

[2011]).

Missing data

The Cox proportional hazards model was used on the complete cases. There were

1,529 cases (56.3%) of the 2,714 available which were complete in all 36 variables

which were signi�cant in the univariate analysis and became the starting point for

the de�nitive analysis. There were 1,029 cases (38%) which were complete in these

variables and also had observations of �tness, depression and anxiety at the end of the

programme. To address the issue of missing data in order to assess the credibility of

a model built using only the complete cases (Little and Rubin [2002]), hazard ratios

from the complete-case analysis were compared with those from an analysis of all

data (2,714 cases) after replacement of missing values with imputed data. Multiple

imputation was performed in the R package MICE (Multivariate Imputation using
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Chained Equations, R Development Core Team [2011]), providing 20 completed data

sets with values imputed where they were missing. The optimised model was then

built with each of these 20 data sets, and pooled estimates of model coe�cients and

variances calculated using the rules devised by Little and Rubin (Little and Rubin

[2002]) for comparison. There were no known reasons to believe that the data were

missing other than at random, except in the case of the end �tness data. Reasons

for end �tness to be missing included referral for cardiac surgery and poor health,

suggesting that time to death for these individuals might di�er from those with end

�tness observations. A t-test showed that the mean time to death was not the same

for those with and without an end �tness measurement (P<0.001)

A total of 2,054 patients completed the programme (Turner [2007]); the main reasons

for not completing were patient preference, referral for cardiac surgery, poor health

or death. Those without complete end �tness data included those who were taken to

a di�erent heart rate at the �nal �tness test, most of whom were on a beta blocker

for which the dose had been changed or who were tested at a di�erent time of day,

and those who were tested using a di�erent test protocol.
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Figure 6.16: Patient recruitment and eligibility. *The number of patients with missing data in
individual variables of interest varied, with �tness after the programme missing in 48.5% of cases,
and the remaining variables ranging between 0 and 29.4 % . Details of variables and numbers and
percentage of missing observations are in Table 6.18 on page 146.
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The mean follow-up for those with complete data was 11 years 4 months.

Detailed characteristics of patients are shown in Table 3.3. Women (13.7%) had

a higher mean age. The largest age group, for both sexes, was 60-69 years. The

most common reason for referral to the programme was acute myocardial infarction

(51.1%). Nearly half the women had never smoked compared to just under one third

of the men and close to a third of both sexes had recently given up smoking. Around

half of all patients had a family history of coronary heart disease and over 70% were

free from non-coronary co-morbidity, although a higher proportion of the women had

diabetes. The men had a higher mean �tness than the women and the percentage of

men in the high-�tness category at recruitment was 3 times that of the women; most

of the women were in the low-�tness category. At graduation, 67% of the men and

34% of the women were in the high-�tness category, with one �fth of the patients

having improved from the mid-�tness category. Median �tness was improved by a

similar amount in both sexes, and high �tness was the largest group at graduation.

There was little evidence of clinical depression in this cohort, and most of

those whose scores suggested a borderline category improved by graduation, as did

almost all of the few whose scores at recruitment suggested clinical depression. There

was more anxiety, although the rates were not high. Again, the majority who began

in the borderline category improved, as did a signi�cant proportion of those starting

in the clinical anxiety category, but the proportion of women who remained in the

clinical anxiety class was 3 times that of the men.

The maximum recorded co-morbidity score was 7 (very high) but only 2.6%

of participants had a co-morbidity score of 3 or more (D'Hoore et al. [1996], see

Table 3.2 on 58).

Survival

During the course of the study and follow-up of the 1529 participants, 385 died, and

of those deaths 192 (49.9%) were from cardiovascular causes.

Two Cox proportional hazards models were constructed from these data, the primary

model used baseline only measures of �tness, depression and anxiety, for which there

were 1,529 complete cases available. The secondary model used baseline and change

�tness, depression and anxiety as described in Table 6.23 for which 1,029 cases were

available. Table 6.16 details all the signi�cant predictors in the primary propor-

tional hazards model of all-cause mortality. In this primary model, age was the most
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Figure 6.17: Kaplan-Meier survival curves for all cause and cardiovascular mortality for the
primary model, the cohort with complete baseline data, 1529 cases. The plot is for the entire
observation time and the dotted lines are the 95% con�dence intervals.

important predictor of all-cause mortality, with risk increasing with age. In this

cohort, the next most important predictor was �tness category at recruitment, with

the �ttest patients having lowest risk. Risk increased with co-morbidity, and both

aspirin and statins prescriptions reduced risk. Myocardial infarction was the diag-

nosis carrying the greatest risk, along with myocardial infarction with percutaneous

coronary intervention, angina and other cardiac diagnoses. Coronary artery bypass

graft and angina were much lower risk diagnoses. Female sex carried a lower risk

of mortality, as did a lower resting heart rate. Systolic blood pressure was also a

risk indicator. ACE inhibitor prescription was associated with higher risk, perhaps
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because this prescription is given to the high risk cases.

All-cause survival model

complete cases Imputed data

model model

Model Term Hazard Con�dence Pooled
Ratio Interval Hazard

lower .95 upper .95 Ratio
Age category under 50 1 - - 1

50-59 2.13 1.17 3.88 2.02
60-69 3.84 2.15 6.88 3.08
70+ 7.94 4.38 14.39 6.07

Fitness:
High baseline 1 - - 1
Mid baseline 1.56 1.16 2.09 1.76
Low baseline 2.60 1.86 3.60 2.76

D'Hoore
Co-morbidity
score None 1 - - 1

1 (least) 1.23 0.91 1.66 1.17
2 1.42 1.08 1.86 1.48
3 1.35 0.68 2.66 1.87
4 (most) 4.50 2.13 9.50 2.67

Statins Yes 0.72 0.57 0.89 0.74
No 1 - - 1

Aspirin Yes 0.53 0.35 0.79 0.63
No 1 - -

Diagnostic
Category MI 1 - - 1

CABG 0.69 0.54 0.89 0.69
PCI 0.54 0.32 0.89 0.68
MI + PCI 0.85 0.44 1.67 0.82
Angina 0.87 0.54 1.39 0.79
Other cardiac 0.99 0.44 2.23 0.94

Sex Male 1 - - 1
Female 0.73 0.54 0.98 0.62

Systolic blood
pressure before 0.995 0.991 0.999 0.998
Ace inhibitor Yes 1.26 1.01 1.57 1.19

No 1 - - 1
Resting heart rate 1.007 1.000 1.014 1.006

Table 6.16: All-cause survival model, ordered by importance of variables to the model, using
baseline only �tness, anxiety and depression categories (1,529 cases, 385 deaths). Pooled hazard
ratios are from multiple imputation of missing data. MI is Myocardial Infarction, CABG is coronary
artery bypass graft, PCI is percutaneous coronary intervention.
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Cardiovascular survival model: baseline �tness

complete cases Imputed data

model model

Model Term Hazard Con�dence Pooled
Ratio Interval Hazard

lower .95 upper .95 Ratio
Fitness: High baseline 1 - - 1

Mid baseline 1.69 1.11 2.60 2.16
Low baseline 4.00 2.54 6.30 4.12

Statin Yes 0.45 0.33 0.61
No 1 - -

Age category under 50 1 - - 1
50-59 1.59 0.76 3.32 1.53
60-69 2.68 1.32 5.43 2.42
70+ 4.10 1.98 8.48 3.83

Diagnostic
Category Myocardial Infarction (MI) 1 - - 1

Coronary Artery Bypass 0.60 0.42 0.85 0.62
Graft (CABG)
Percutaneous Coronary 0.26 0.09 0.70 0.49
Intervention (PCI)
MI + PCI 1.05 0.42 2.62 0.73
Angina 0.85 0.46 1.56 0.71
Other cardiac 0.72 0.23 2.29 1.01

Aspirin Yes 0.48 0.28 0.80 0.56
No 1 - - 1

Sex: MALE 1 - - 1
FEMALE 0.65 0.43 0.99 0.53

Ace inhibitor Yes 1.42 1.04 1.94 1.37
No 1 - - 1

Table 6.17: Optimised Cardiovascular survival model, ordered by importance of variables to the
model, using only baseline values for �tness, depression and anxiety (1,529 cases 192 cardiovascular
deaths). Pooled hazard ratios are from multiple imputation of missing data.

The cardiovascular mortality model is detailed in Table 6.17. Fitness cate-

gory at baseline was the strongest predictor of cardiovascular mortality, with higher

�tness associated with lower risk. A prescription for statins cut the risk of cardiovas-

cular mortality by more than half in this cohort. Age was the next most signi�cant

predictor of mortality, with risk increasing with age as expected. As with all-cause

mortality, a diagnosis of myocardial infarction carried the highest associated risk of

mortality, with MI+PCI, angina and other cardiac diagnoses equally high. Female

sex was associated with lower risk, and a prescription for ACE inhibitor with higher

risk.

142



In the cohort having complete data including end depression, anxiety and �t-

ness (the secondary model), age was still the strongest predictor of risk for all-cause

mortality (Table 6.24). The next most important predictor was the combination

of �tness category at recruitment, and whether they improved or maintained that

�tness, with highest risk attributed to those who began in the low-�tness category.

There was no statistically signi�cant di�erence (assessed at the 5% level) between

those who began in the mid-�tness category and improved to high �tness and those

who began in the high-�tness category and maintained high �tness. However, those

who did not improve su�ciently to move up from the mid-�tness category had sig-

ni�cantly higher risk; improvement to a mid-�tness from low-�tness category did not

signi�cantly reduce risk, although a signi�cant di�erence in risk is evident between

low and medium �tness for the patients whose category did not change. Having a

prescription for statins or having a prescription for aspirin was each associated with

a lower risk of mortality. A prescription for ACE inhibitors was associated with a

higher risk of mortality and females had lower all-cause mortality.

The cardiovascular mortality model for the cohort having complete data in-

cluding end depression, anxiety and �tness is detailed in Table 6.25. A prescription

for statins was the most powerful predictor of cardiovascular mortality with those

having a prescription having one third the risk of those without. Once again, �tness

was important, low baseline and failure to improve being powerful predictors of car-

diovascular mortality. After �tness, age was important with those over 70 years at

higher risk of cardiovascular death. Aspirin was associated with lower risk, as was

being female.

Imputed data

The hazard ratios derived from the pooled imputed data (shown in Tables 6.16 and

6.17), were very similar to those from the complete cases model, both in size and

direction, and fall within the con�dence intervals given for the model estimates.

This suggests that the analysis that used only the complete cases did not produce

substantailly di�erent results on account of removing the cases with incomplete data.

There were 889 cases which were complete in baseline BMI as well as baseline �tness,

depression and anxiety as in the primary model, and both all-cause and cardiovas-

cular mortality models were derived for these, to test the importance of BMI. In

neither case did BMI remain in the optimised model.
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Main �ndings

Attaining a �tness level of V O2 max>22ml/kg/min (de�ned here as high �tness) in

the early months following a cardiac event or procedure is associated with improved

long-term survival in those who have experienced a coronary event or procedure.

(A useful comparison is that a young, untrained male would typically have a �tness

level of V O2 max 35-40 ml/kg/min and a cycling athlete V O2 max 80 ml/kg/min.)

High �tness at recruitment to the rehabilitation programme was likely to re�ect high

�tness before a coronary event or procedure, but there was no statistically signi�cant

di�erence between patients who improved from moderate �tness at recruitment to

high �tness at graduation and those who maintained high �tness from recruitment,

for those who completed the programme. Secondary prevention medications were

also strongly associated with improved long-term survival in both all-cause and car-

diovascular mortality. In particular, a prescription for statins or a prescription for

aspirin were associated with lower risk of both all-cause and cardiovascular mortality.

A prescription for ACE inhibitors was associated with higher mortality, but those on

ACE inhibitors were the high risk cases. Patients having a CABG surgery and PCI

have a signi�cantly higher long-term survival from cardiovascular mortality than do

patients with a myocardial infarction or angina.

Fitness for life confers signi�cant potential bene�ts for those who may go on

to experience a coronary event or procedure. Promotion of �tness after a coronary

event or procedure, even for those already moderately �t, had potential for improved

life expectancy.

The key role of medications in the early weeks after a cardiac event or proce-

dure on reducing long term mortality both from cardiovascular causes and all-causes

in patients experiencing a cardiac event or procedure had been demonstrated previ-

ously (Unal et al. [2004]) and in this model. We have no follow-up information on

the adherence or changes to medication after graduation from the programme, so do

not know how long patients continued with their medication. Given this, the strong

e�ect of secondary preventative medication is striking.

The protective e�ect of female sex extends both to cardiovascular causes of

death and to all-causes in cardiovascular patients, contrary to some other �ndings

(Dallongevillle et al. [2010]). Weight does not appear to a�ect all-cause or cardio-

vascular mortality in cardiovascular patients, which is consistent with other studies

(Romero-Corral et al. [2006], Shahian et al. [2012]). A prescription for ACE in-
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hibitors at entry to the programme were closely related to a high risk level and were

associated with increased risk of cardiovascular mortality. When �tness is measured

and included in the survival analysis, BMI ceases to be a predictor of all-cause or

cardiovascular mortality.

Numbers and percentages of the individual variables that were missing in the

2714 cases which met the inclusion criterion of having a baseline �tness measurement

were shown in Table 6.18.
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Variable description Missing %
id Unique identi�er 1 0.04
Illness date Date of the index event 0 0
Entry date Date entered the programme 0 0
Graduate date Date graduated from the programme 0 0
Death date Date of death 0 0
Diagnosis ‡ A number from 1 to 8 where

1 is myocardial infarction (MI),
2 is coronary artery bypass grafting (CABG),
3 is percutaneous transluminal coronary
angioplasty(PCI)with or without stenting,
4 is angina pectoris (AP),
5 is valve surgery (VS),
6 is other cardiac conditions
e.g. cardiomyopathy, ischaemic and
non-ischaemic heart failure (OC),
7 is non-cardiac conditions (NC) and
8 is myocardial infarction with percutaneous
transluminal coronary angioplasty as a single
episode of care, (MI+PCI). 0 0

Family History ‡ Family history, yes / no 0 0
Age ‡ Age in years 0 0
age category ‡ Age in categories: 1 is under 50, 2 is 50 to 59,

3 is 60 to 69 and 4 is 70 0 0
Sex ‡ Sex 0 0
Cholesterol Cholesterol measurement at recruitment 537 19.8
Triglycerides Triglycerides measurement at recruitment 787 29.0
Diabetes ‡ patient has diabetes, yes / no 0 0
Comorbidity List of comorbidities in free text 0 0
Height Height in Metres 1161 42.8
Weight ‡ Weight in kilogrammes at recruitment 20 0.7
Weight after ‡ Weight in kilogrammes at graduation 799 29.4
weight category before ‡ A is de�ned as under 75kg,

75-90kg as overweight,
and over 90kg as C. 20 0.7

Table 6.18: Missing Data (continued next page)
‡indicates this variable was a signi�cant predictor of mortality in a single-variable model.
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Variable description Missing %
sbp before ‡ Systolic blood pressure at recruitment 15 0.6
dbp before Diastolic blood pressure at recruitment 26 1.0
sbp after ‡ Systolic blood pressure at graduation 742 27.3
dbp after Diastolic blood pressure at recruitment 763 28.1
V O2 before ‡ Fitness at recruitment in V O2 max 0 0
V O2 after ‡ Fitness at graduation in V O2 max 1316 48.5
V O2 category before ‡ Fitness category at entry 0 0
V O2 category after ‡ Fitness category at exit 1316 48.5
anxiety before Anxiety measured at recruitment

using the hospital anxiety and depression .
scale (HADS). A score between 8 and 10
indicates borderline anxiety,
whilst over 10 suggests clinical anxiety. 89 3.3

anxiety after ‡ Categorisation by HADS at graduation 748 27.6
depression before ‡ Categorisation by HADS at recruitment 89 3.3
depression after ‡ Categorisation by HADS at graduation 749 27.6
over all health before Patient's perception of overall health at entry

- one of six domains from the Dartmouth Coop /
Wonca charts used to assess functional
health and quality of life.
Only patients joining after April 1996 were
assessed in this way 773 28.5

over all health after 1 (excellent) to 5(poor) patient's perception of
overall health at graduation 1275 47.0

life before patient perception of life in general
at recruitment 773 28.5

life after at graduation 1275 47.0
feelings before patient perception of feelings

at recruitment 773 28.5
feelings after at graduation 1275 47.0
painful tension before patient perception of

painful tension at recruitment 775 28.6
painful tension after painful tension at graduation 1276 47.0
physical �tness before patient perception of

physical �tness at recruitment 775 28.6
physical �tness after physical �tness at graduation 1274 46.9
social support before patient perception of social support

available to them at recruitment 775 28.6
social support after at graduation 1274 46.9

Table 6.19: Missing Data continued.
‡indicates this variable was a signi�cant predictor of mortality in a single-variable model.
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Variable description Missing %
risk category before ‡ Risk category at recruitment 101 3.7

(high, medium, low)
risk category after ‡ Risk category at exit 730 26.9
Smoking history ‡ coded 0 to 4 where 0 is never smoked,

1 is not smoked for 10 years or more,
2 is not smoked for between 1 and 10 years,
3 is recent quitter, and 4 is current smoker. 3 0.1

aspirin before ‡ Prescription for aspirin at recruitment, yes / no 1 0.04
aspirin after ‡ Prescription for aspirin at graduation 671 24.7
ace before ‡ Prescription for ACE inhibitor at recruitment 1 0.04
ace after ‡ Prescription for ACE inhibitor at graduation 671 24.7
bb before ‡ Prescription for beta blockers at recruitment 1 0.04
bb after ‡ Prescription for beta blockers at graduation 673 24.8
statin before ‡ Prescription for statins at recruitment 9 0.3
statin after ‡ Prescription for statins at graduation 678 25.0
full secondary
prevention before Prescription for aspirin and ACE inhibitors

and beta blockers and statins at recruitment 1 0.04
full secondary
prevention after ‡ Prescription for aspirin and ACE inhibitors

and beta blockers and statins at graduation 1 0.04
resting heart rate ‡ resting heart rate at entry 7 0.3
hrateafter ‡ Heart rate after exercise 681 25.1
exercise sessions number of exercise sessions attended

to graduation or drop-out 105 3.9
imd2004score ‡ Index of multiple deprivation derived

from post code 114 4.2
combined total
comorbidity ‡ D'Hoore comorbidity score 0 0
occupation code ‡ Occupational Code 1-9: Managers &

senior o�cials, Professional occupations,
Associate professional, Administrative &
secretarial, Skilled trade,
Personal service, Sales & customer, Process,
plant & machines, Elementary occupations 293 10.8

completer category‡ 1 is completed the programme,
2 is started but did not complete, 3 is never started. 0 0

Table 6.20: Missing Data continued.
‡indicates this variable was a signi�cant predictor of mortality in a single-variable model.
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For the 1,029 cases with complete end �tness, anxiety & depression data see

Table 6.21.

Variable Male Female Total
Number 895 (86.9%) 134 (13.1%) 1,029 (100%)
Mean years of follow-up (sd) 11.6 (3.9) 11.2 (3.8) 11.5 (3.9)
Mean age in years (sd) 61.1 (9.3) 63.1 (9.0) 61.3 (9.3)

N % N % N %
Age group under 50 years 104 11.6 14 10.5 118 11.5
Age group 50-59 years 275 30.7 29 21.6 304 29.5
Age group 60-69 years 336 37.6 52 38.8 388 37.7
Age group 70 years and over 180 20.1 39 29.1 219 21.3
Diagnostic Category
Myocardial Infarction (MI) 456 50.9 73 54.5 529 51.4
Coronary Artery Bypass
Graft (CABG) 269 30.1 34 25.4 303 29.4
Percutaneous Coronary
Intervention (PCI) 81 9.1 12 9.0 93 9.0
MI + PCI 36 4.0 3 2.2 52 5.1
Angina 41 4.6 11 8.2 13 1.3
Other cardiac 12 1.3 1 0.7 39 3.8
Smoking history
Never smoked 249 27.8 63 47.0 312 30.3
Not for 10 years+ 285 31.9 19 14.2 304 29.6
Not for 1-10 years 34 3.8 4 2.9 38 3.7
Recent quitter 273 30.5 40 29.9 313 30.4
Current smoker 54 6.0 8 6.0 62 6.0
D'Hoore Co-morbidity score
None 663 74.1 89 66.4 752 73.1
1 (least) 111 12.4 14 10.5 125 12.1
2 102 11.4 27 20.2 129 12.5
3 12 1.3 3 2.2 15 1.5
4 (most) 7 0.8 1 0.7 8 0.8
Diagnosis of diabetes 92 10.3 22 16.4 114 11.1
Family history of CHD 424 47.4 67 50.0 491 47.7
Weight at baseline
A under 75kg 286 32.0 93 69.4 379 36.8
B 75-90kg 418 46.7 25 18.7 443 43.1
C over 90kg 191 21.3 16 11.9 207 20.1

Table 6.21: Baseline values for patients at recruitment to the programme: secondary analysis -
1,029 patients
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Variable Male Female Total
N % N % N %

ACE inhibitor No 479 53.5 54 40.3 533 51.8
ACE inhibitor Yes 416 46.5 80 59.7 496 48.2
Aspirin No 31 3.5 10 7.5 41 4.0
Aspirin Yes 864 96.5 124 92.5 988 96.0
Statin No 338 37.8 43 32.1 381 37.0
Statin Yes 557 62.2 91 67.9 649 63.0
Beta blockers No 573 64.0 80 59.7 653 63.5
Beta blockers Yes 322 36.0 54 40.3 376 36.5
Occupation
Managers & senior o�cials 152 17.0 11 8.2 163 15.8
Professional Occupations 98 10.9 7 5.2 105 10.2
Associate Professional 105 11.7 17 12.7 122 11.8
Administrative & secretarial 75 8.4 41 30.6 116 11.3
Skilled trade 250 27.9 7 5.2 257 25.0
Personal service 14 1.6 16 11.9 30 2.9
Sales and customer 18 2.0 10 7.5 28 2.7
Process, plant & machines 110 12.3 10 7.5 120 11.7
Elementary occupations 73 8.2 15 11.2 88 8.6

Table 6.22: baseline values of patients at recruitment to the programme continued: secondary
analysis - 1,029 patients

150



Variable Male Female Total
N % N % N %

Fitness
High baseline, no change 397 44.3 18 13.4 415 40.3
High baseline, deteriorate 5 0.6 0 0 5 0.5
Mid baseline, improve 203 22.7 28 20.9 231 22.5
Mid baseline, no change 151 16.9 25 18.7 176 17.1
Mid baseline, deteriorate 0 0 0 0 0 0
Low baseline, improve 86 9.6 20 14.9 106 10.3
Low baseline, no change 53 5.9 43 32.1 96 9.3

Depression
Not depressed, no change 780 87.2 107 79.9 887 86.2
Not depressed, deteriorate 14 1.6 2 1.5 16 1.5
Borderline, improve 62 6.9 15 11.2 77 7.5
Borderline, no change 8 0.9 2 1.5 9 0.9
Borderline, deteriorate 2 0.2 0 0 3 0.3
Depressed, improve 26 2.9 7 5.2 33 3.2
Depressed, no change 3 0.3 1 0.7 4 0.4

Anxiety
Not anxious, no change 607 67.8 73 54.4 887 86.2
Not anxious, deteriorate 40 4.5 10 7.5 16 1.5
Borderline, improve 99 11.1 17 12.7 77 7.5
Borderline, no change 45 5.0 10 7.5 9 0.9
Borderline, deteriorate 9 1.0 0 0 3 0.3
Anxious, improve 68 7.6 11 8.2 33 3.2
Anxious, no change 27 3.0 13 9.7 4 0.4
Median �nal estimated
V O2 ml/kg / min 25.3 18.1 24.5
(10th, 90th percentiles) (16.3, 35.0) (10.4, 26.8) (15.2, 35.0)
Median change from baseline in
V O2 ml/kg / min 3.3 2.6 3.2
(10th, 90th percentiles) (0.5, 8.1) (0.0, 7.95) (0.3, 8.1)

Table 6.23: Change from baseline for patients at graduation from the programme - 1,029 patients

151



Table of models with baseline and end �tness, depression and anxiety

All-cause survival model

complete cases Imputed data

model model

Model Term Hazard Con�dence Pooled
Ratio Interval Hazard

lower .95 upper .95 Ratio
Age category under 50 1 - - 1

50-59 1.66 0.86 3.22 2.12
60-69 2.48 1.31 4.69 3.05
70+ 5.54 2.90 10.61 5.80

Fitness: High baseline, no change 1 - - 1
Mid baseline, improve 1.29 0.86 1.93 1.52
Mid baseline, no change 2.32 1.59 3.38 2.39
Low baseline, improve 2.84 1.87 4.31 2.84
Low baseline, no change 3.78 2.40 5.94 3.80

Aspirin Yes 0.38 0.24 0.59 0.63
No 1 - - 1

Ace inhibitor Yes 1.45 1.12 1.88 1.29
No 1 - - 1

Sex Male 1 - - 1
Female 0.64 0.44 0.92 0.60

Statins Yes 0.74 0.57 0.97 0.72
No 1 - - 1

Table 6.24: Optimised all-cause survival model for secondary analysis, ordered by importance of
variables to the model. Pooled hazard ratios are from multiple imputation of missing data.
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Cardiovascular survival model

complete cases Imputed data

model model

Model Term Hazard Con�dence Pooled
Ratio Interval Hazard

lower .95 upper .95 Ratio
Fitness: High baseline, no change 1 - - 1

Mid baseline, improve 1.08 0.58 2.00 1.61
Mid baseline, no change 2.19 1.26 3.80 2.86
Low baseline, improve 3.40 1.86 6.20 3.18
Low baseline, no change 5.10 2.67 9.76 5.23

Statin Yes 0.43 0.29 0.63 0.52
No 1 - - 1

Age category under 50 1 - - 1
50-59 1.16 0.52 2.60 1.61
60-69 1.83 0.84 3.98 2.47
70+ 3.31 1.47 7.43 3.82

Aspirin Yes 0.39 0.22 0.71 0.60
No 1 - - 1

Sex: Male 1 - - 1
Female 0.50 0.29 0.87 0.51

Ace inhibitor Yes 1.58 1.08 2.30 1.39
No 1 - - 1

Diagnostic Myocardial Infarction (MI) 1 - - 1
Category Coronary Artery Bypass 0.63 0.41 0.98 0.65

Graft (CABG)
Percutaneous Coronary 0.20 0.04 0.83 0.47
Intervention (PCI)
MI + PCI 1.18 0.36 3.86 0.77
Angina 0.96 0.49 1.89 0.73
Other cardiac 1.02 0.25 4.19 0.93

Table 6.25: Optimised Cardiovascular survival model for secondary analysis, ordered by impor-
tance of variables to the model. Pooled hazard ratios are from multiple imputation of missing
data.

153



6.6 Arti�cial Neural Network for Modelling Long-Term

Survival After a Cardiovascular Event

Arti�cial neural networks are a novel approach to modelling survival after a cardiac

event. A Cox proportional hazards modelling approach has been used above with

the data from the Basingstoke and Alton cardiac rehabilitation centre. These results

show the comparison of the two approaches.

6.6.1 Principal �ndings

Both the Cox proportion hazards model and the ANN model produce survival esti-

mates which were a good �t to the Kaplan-Meier estimate of survival from the data.

The Cox model is constrained by its proportional hazards assumptions, and so the

hazard over time is always proportional to the baseline hazard. The ANN is free from

this constraint, and whilst for some covariates (e.g. statins, �tness) a proportional

hazard is modelled, for others (e.g. ACE inhibitors, age) the hazard over time varies

di�erently between categories of the covariate.

The comparison of hazard rates produced by the Cox and ANN models has shown

the ability of the ANN to model hazard rates that vary over time in ways not con-

strained by a proportional hazards assumption and has produced some revealing

variations in modelling this data set, which provide a basis for hypothesis generation

and potential for tailoring interventions more closely to individual patients.

6.6.2 Introduction

The 6 variables found to be signi�cant in the �tted Cox model (i.e. age, sex, �tness

and medications ACE inhibitor, aspirin and statins) were used as inputs in a feed-

forward arti�cial neural network with a single hidden layer comprising three hidden

nodes (multi-layer perceptron). The network was regularised using weight decay with

a parameter of 0.5. Optimisation was by minimisation of the log likelihood, and car-

ried out in MATLAB R© using scripts adapted from those developed by Johnston and

Reeves (Reeves and Johnston [2008]) and o�ered in the book Intelligent and Adaptive

Systems in Medicine edited by Keith Burnham and Olivier Haas. The interface be-

tween MATLAB R© and the R statistical software (R Development Core Team [2011])

was via the R package R.matlab. The hazard rate for the ANN model was calculated

using the equation 4.13. The Cox model was �tted using R statistical software (R

Development Core Team [2011]) and the hazard rate calculated by multiplying the

baseline hazard by the relevant coe�cients using the fact that the exponential func-
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tion obeys the basic exponentiation identity, ex+y = ex×ey so that when calculating
the hazard rate from the baseline hazard rate hi(t) = e(β1x1i+β2x2i)ho(t) can be cal-

culated by the baseline hazard multiplied by the relevant exponentiated coe�cients,

both drawn from the �tted Cox model thus: hi(t) = eβ1x1i×eβ2x2iho(t), See page 73.

Two aspects of the model were explored here, the �t to data and the di�erences in

the model hazard rates.

Fitness was in 5 categories labelled 1,3,4,6,7 which represent the 5 combinations of

before and after rehabilitation �tness categories seen in the data set; the combina-

tions of baseline category and improvement represented by category 2 and 5 were

not in the data set (see Table 6.23 on page 151). Age was in 4 categories (under 50

Years, 50-59, 60-69 and 70 and over) labelled 1 to 4 respectively, sex was labelled

1 for male and 2 for female, and the medications were 1 if prescribed, 0 otherwise.

Altogether there were 320 possible combinations of these 6 variable categories. Each

of the 320 was represented by a 6-�gure number and 159 of the possibilities were to

exist in the data set. These are shown in Tables 6.26, 6.27, & 6.28 starting on page

156, with details of the number of deaths from all causes observed in each variable

category combination. Variable category combinations are indicated by a 6-�gure

number giving the categories of the variables in the sequence: age, sex, �tness, and

medications ACE inhibitor, aspirin and statins, so that 311011 represents age cate-

gory 3 (60-69), male, high �tness at start and end of rehabilitation, no prescription

for ACE inhibitor, a prescription for aspirins and also for statins.
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Variable Combination Alive Dead Variable Combination Alive Dead
111000 1 0 211111 48 2
111010 16 1 213000 1 0
111011 22 1 213001 0 1
111110 4 0 213010 19 3
111111 23 2 213011 12 1
113000 1 0 213101 0 1
113010 13 1 213110 7 1
113011 3 0 213111 14 3
113101 1 0 214000 1 3
113110 2 0 214010 10 3
113111 4 0 214011 2 3
114010 2 0 214110 2 3
114011 0 1 214111 7 1
114110 2 1 216010 2 0
116101 0 1 216110 0 2
116110 1 1 216111 7 3
121000 1 0 217010 0 1
121011 2 0 217110 0 1
121111 2 0 217111 0 1
123001 1 0 221010 1 0
123011 1 0 221011 1 0
123110 1 0 221110 1 0
123111 1 0 221111 1 0
124010 1 0 223010 1 0
124011 1 0 223011 3 2
124110 1 0 223100 1 0
124111 0 1 223110 0 1
126110 0 1 223111 1 1
211000 1 0 224001 0 1
211001 1 1 224010 3 0
211010 35 3 224110 1 0
211011 52 4 224111 3 0
211110 13 0 226000 1 0

Table 6.26: Combinations of variables with numbers of patients in the data set alive or dead.
The combination label is made up from the values of the categorical variables in the sequence age,
sex, �tness, ACE inhibitor, aspirin, statin, so that 311011 represents age category 3 (60-69), male,
high �tness at start and end of rehabilitation, no prescription for ACE inhibitor, a prescription for
aspirins and also for statins.
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Variable Combination Alive Dead Variable Combination Alive Dead
226011 1 0 321110 1 0
226111 1 0 321111 4 0
227011 2 0 323000 1 0
227111 2 0 323010 2 0
311001 1 0 323011 1 0
311010* 22 7 323110 2 0
311011* 29 9 323111 2 0
311101 0 0 324000 0 1
311110 3 4 324010 1 0
311111 52 4 324011 1 0
313001 1 0 324110 1 0
313010* 15 10 324111 2 0
313011 14 0 326011 4 0
313110 5 3 326110 0 2
313111 28 4 326111 5 1
314000 2 0 327010 1 1
314010* 18 8 327011 7 0
314011 13 4 327101 0 1
314100 0 1 327110 2 1
314101 1 0 327111 3 4
314110 1 6 411010 4 1
314111 16 5 411011 7 4
316000 0 0 411110 2 1
316010 1 5 411111 16 4
316011 6 1 413000 0 1
316101 1 1 413010 4 3
316110 4 2 413011 2 6
316111 4 2 413110 4 0
317010 1 1 413111 10 3
317011 4 4 414010 1 8
317110 0 1 414011 8 6
317111 6 2 414110 1 5
321011 1 0 414111 4 4

Table 6.27: Combinations of variables with numbers of patients in the data set alive or dead
(continued). The combination label is made up from the values of the categorical variables in the
sequence age, sex, �tness, ACE inhibitor, aspirin, statin, so that 311011 represents age category 3
(60-69), male, high �tness at start and end of rehabilitation, no prescription for ACE inhibitor, a
prescription for aspirins and also for statins.
* The combinations with an asterisk are shown in the survival plots
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Variable Combination Alive Dead Variable Combination Alive Dead
416000 0 1 423011 2 1
416010 3 3 423111 2 1
416011 3 4 424010 1 1
416100 0 1 424011 1 0
416101 1 1 424111 1 3
416110 1 4 426010 0 1
416111* 11 8 426110 0 1
417010 0 5 426111 0 1
417011 3 3 427000 0 1
417100 0 1 427010 0 2
417110 0 5 427101 0 1
417111* 7 7 427110 0 4
421110 1 0 427111 8 3
421111 1 1

Table 6.28: Combinations of variables with numbers of patients in the data set alive or dead
(continued). The combination label is made up from the values of the categorical variables in the
sequence age, sex, �tness, ACE inhibitor, aspirin, statin, so that 311011 represents age category 3
(60-69), male, high �tness at start and end of rehabilitation, no prescription for ACE inhibitor, a
prescription for aspirins and also for statins.
* The combinations with an asterisk are shown in the survival plots.
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6.6.3 Model �t to data

Both the Cox and ANN models produce survival curves which were comparable to

the Kaplan-Meier estimate of the survivor function obtained from the data.

The Kaplan-Meier estimates of the survivor function are shown in Figure 6.18 for

the variable category combinations in the data set that have at least 7 deaths and

so provide su�cient information to make a useful comparison between the Kaplan-

Meier curve and the model survival curves. These variable category combinations

have between 14 and 38 cases observed in the data and are asterisked in the Tables

6.26, 6.27, & 6.28. These cases all fell in the 60+ age brackets, were all male and all

have a prescription for aspirin. They have a variety of �tness categories and other

medication regimes. Both the Cox proportional hazards model and ANN model

estimates of the survivor curve for those same variable category combinations are

also shown. The con�dence intervals on each model's survival curves shown are 95%

con�dence intervals. Both models clearly produce survival curves that were a good

�t to the Kaplan Meier estimate from data, and their con�dence intervals overlap.

The ability of the ANN to produce a more �exible model is clearly seen in each plot.
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Figure 6.18: Survival plots showing the Kaplan-Meier estimate from the data, the Cox propor-
tional hazards model and the ANN model for data subsets with 7 or more deaths, marked with an
asterisk in the Tables 1, 2, and 3. 95% con�dence intervals for each model are also shown.
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6.6.4 Model predictions compared

For the 6 cases where there is the most data (marked with an asterisk in the Tables

6.26, 6.27, & 6.28), the contrasts between the hazard rates for the levels of each

variable were plotted in turn, so that the hazard rate for males is plotted against

females, each medication against not taking that medication, �tness levels and age

categories against each other. The item being varied is indicated in the subset label

by an asterisk in the place of its category level, so that 3*1011 indicates the hazard

rate plot comparing males and females who were aged 60-69, had no prescription for

ACE inhibitor, and did have a prescription for both aspirin and statins.

The contrasts between male and female are shown in in Figures 6.19 and 6.20

on page 162. The hazard rates on the right of each �gure show the Cox proportional

hazards model, and on the left the hazard rate given by the ANN model. Note

that the hazard rates for the Cox proportional hazards model were produced by

multiplying the baseline hazard rate by their relevant exponentiated coe�cients in

the optimised Cox model, and so were constrained to be proportional to each other

in line with the model assumptions. This is seen in the case of the male / female

contrasts, in that female hazard rates follow the same course over time and were

always lower than the male hazard. The ability of the ANN model to capture non-

linearity means that the hazard rates were not constrained to be proportional and

can vary independently from each other. In the male / female contrasts, the hazard

rates for the 60-69 age group were the same for males and females at early times,

whereas at later times, the male risk was seen to rise sharply. In the 70+ age group,

the female hazard rate was consistently lower than the male rate, and reading these

together it should be noted that, with a mean follow-up time of 11.5 years (max

18 years 3 months), the cases recorded as being in the 60-69 age group at baseline

would have mostly have reached the 70+ age group by the end of follow-up.

Contrasting the hazard rates produced by the Cox proportional hazards and

ANN models for statins compared with no statins (Figures 6.21 and 6.22 on page

164), a very similar picture emerges. Both cases with and without a prescription for

statins have a similar hazard rates at early times, and the hazard rate for the no

statins cases rises steeply at later times for the 60-69 age group (when they will be

70+). Once again, the behaviour of the hazard rate curves for the 70+ age group

is di�erent. It is the same regardless of statins status and is much steeper than the

younger age group. The ANN hazard plot suggests that the model switches from an

exponential curve to a logistic curve between the two age categories when considering

statins.
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Figure 6.19: Hazard rate Males and Females. The Cox proportional hazards model is shown
on the right of the �gure, and the ANN model on the left. The hazard rate for the Cox model
is calculated by multiplying the baseline hazard by the relevant exponentiated model coe�cients,
and the ANN hazard rate is calculated using equation 4.13. The combination label is made up
from the values of the categorical variables in the sequence age, sex, �tness, ACE inhibitor, aspirin,
statin, so that 311011 represents age category 3 (60-69), male, high �tness at start and end of
rehabilitation, no prescription for ACE inhibitor, a prescription for aspirins and also for statins. *
asterisked position is the variable being compared, e.g. male and female.
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Figure 6.20: Hazard rate Males and Females. The Cox proportional hazards model is shown
on the right of the �gure, and the ANN model on the left. The hazard rate for the Cox model is
calculated by multiplying the baseline hazard by the relevant exponentiated model coe�cients, and
the ANN hazard rate is calculated using equation 4.13. The combination label is made up from the
values of the categorical variables in the sequence age, sex, �tness, ACE inhibitor, aspirin, statin,
so that 41777 represents age category 4 (70+), male, low �tness at start and end of rehabilitation, a
prescription for ACE inhibitor, a prescription for aspirins and also for statins. * asterisked position
is the variable being compared, e.g. male and female.
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Figure 6.21: Hazard rate statins and no statins. The Cox proportional hazards model is shown
on the right of the �gure, and the ANN model on the left. The hazard rate for the Cox model
is calculated by multiplying the baseline hazard by the relevant exponentiated model coe�cients,
and the ANN hazard rate is calculated using equation 4.13. The combination label is made up
from the values of the categorical variables in the sequence age, sex, �tness, ACE inhibitor, aspirin,
statin, so that 311011 represents age category 3 (60-69), male, high �tness at start and end of
rehabilitation, no prescription for ACE inhibitor, a prescription for aspirins and also for statins. *
asterisked position is the variable being compared, e.g. male and female.
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Figure 6.22: Hazard rate statins and no statins. The Cox proportional hazards model is shown
on the right of the �gure, and the ANN model on the left. The hazard rate for the Cox model is
calculated by multiplying the baseline hazard by the relevant exponentiated model coe�cients, and
the ANN hazard rate is calculated using equation 4.13. The combination label is made up from the
values of the categorical variables in the sequence age, sex, �tness, ACE inhibitor, aspirin, statin,
so that 41777 represents age category 4 (70+), male, low �tness at start and end of rehabilitation, a
prescription for ACE inhibitor, a prescription for aspirins and also for statins. * asterisked position
is the variable being compared, e.g. male and female.
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The power of the ANN model to model non-linearity is clearly seen in com-

paring the plots of hazard rates for cases with and without a prescription for ACE

inhibitors (Figures 6.23 and 6.24 on page 167). In the Cox model, the coe�cients for

ACE inhibitors are larger than 1, indicating that a prescription of ACE inhibitors

was associated with higher risk (probably because ACE inhibitors were prescribed

for the high risk cases, such as heart failure). This feature is also captured in the

ANN model hazard rate curves, where a prescription for ACE inhibitor produces

a higher hazard rate. The only di�erence between cases indicated by 311*10 and

311*11 is that the latter had a prescription for statins. The hazard rate is signi�-

cantly modi�ed, making the hazard rate for ACE and No ACE the same for early

times, with hazard rate for No ACE increasing in later times. In the cases 311*10,

313*10 and 314*10, the changing �tness levels make no di�erence to the fact that

having a prescription for ACE inhibitor gives a much steeper and higher hazard rate.

However, in the 70+ age group 416*11 and 417*11, the hazard rate is very similar

regardless of ACE prescription status, and is more similar to the higher ACE pre-

scription curve for the younger age category, suggesting that increased age negates

the lower risk of no ACE prescription.

In the contrast between aspirin and no aspirin prescription (Figures 6.25 and

6.26 on page 169) the hazard rate of the ANN model for those with an aspirin

prescription is much lower than those without an aspirin prescription for the 60-69

age group, but the di�erence disappears for the 70+ age group, despite that group

also having a prescription for statins, which a�ects the time course of the hazard

rate in the younger, �tter group 3110*1, by removing the upward turn at later times

for those with an aspirin prescription (red dashed line). It is noteworthy that for the

70+ age group with the lowest �tness, there is a small but clearly discernible bene�t

for the hazard rate with a prescription for aspirin, not seen in the �tter 70+ cases.

Age (Figures 6.27 and 6.28 on 171) is an important predictor of risk in the

Cox proportional hazards model, and the hazard rate plots for this model show the

proportional hazards between age classes, with the 70+ age group having the largest

multiplicative factor and so a much steeper increase in hazard rate over time. The

ANN model also captures this feature, producing a proportional-like hazard for the

3 younger age groups, which were more similar to each other than in the Cox model,

and a steeper hazard curve over time for the cases in the 70+ age category at the

beginning of the observations. This pattern was repeated for all the sample variable

category combinations, with a slight modi�cation in the case of the lowest �tness

categories, where the 60-69 age group showed a steep increase in hazard rate at later

times, when it would be entering the 70+ age category.
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Figure 6.23: Hazard rate ACE inhibitor and No ACE inhibitor. The Cox proportional hazards
model is shown on the right of the �gure, and the ANN model on the left. The hazard rate for the
Cox model is calculated by multiplying the baseline hazard by the relevant exponentiated model
coe�cients, and the ANN hazard rate is calculated using equation 4.13.
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Figure 6.24: Hazard rate ACE inhibitor and No ACE inhibitor. The Cox proportional hazards
model is shown on the right of the �gure, and the ANN model on the left. The hazard rate for the
Cox model is calculated by multiplying the baseline hazard by the relevant exponentiated model
coe�cients, and the ANN hazard rate is calculated using equation 4.13.
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Figure 6.25: Hazard rate aspirin and no aspirin. The Cox proportional hazards model is shown
on the right of the �gure, and the ANN model on the left. The hazard rate for the Cox model is
calculated by multiplying the baseline hazard by the relevant exponentiated model coe�cients, and
the ANN hazard rate is calculated using equation 4.13.
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Figure 6.26: Hazard rate aspirin and no aspirin. The Cox proportional hazards model is shown
on the right of the �gure, and the ANN model on the left. The hazard rate for the Cox model is
calculated by multiplying the baseline hazard by the relevant exponentiated model coe�cients, and
the ANN hazard rate is calculated using equation 4.13.
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Figure 6.27: Hazard rate in di�erent age groups (age at recruitment). The Cox proportional
hazards model is shown on the right of the �gure, and the ANN model on the left. The hazard rate
for the Cox model is calculated by multiplying the baseline hazard by the relevant exponentiated
model coe�cients, and the ANN hazard rate is calculated using equation 4.13.
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Figure 6.28: Hazard rate in di�erent age groups (age at recruitment). The Cox proportional
hazards model is shown on the right of the �gure, and the ANN model on the left. The hazard rate
for the Cox model is calculated by multiplying the baseline hazard by the relevant exponentiated
model coe�cients, and the ANN hazard rate is calculated using equation 4.13. Fix the headings in
two plots *16111 and *17111
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Figure 6.29: Hazard rate in di�erent �tness categories. Change the labels to 13467 . Fitness is in
5 categories labelled 1,3,4,6,7 which represent the 5 combinations of before and after rehabilitation
�tness categories seen in the data set: high �tness at start of rehabilitation maintained (1), mid
�tness at start improved to high �tness (3), mid �tness at start maintained (4), low �tness at start
improved (6), low �tness at start and end (7).
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Fitness (Figure 6.29 on page 173) shows a proportional hazard rate for both

the Cox model, where it is constrained to be proportional, and in the ANN model

where it is not. There were, however, still clear di�erences between the models.

The sharp rise in the hazard rate at later times seen for cases 31*010 is not seen

in 31*011, where the only di�erence is a prescription of statins for the latter. The

oldest age group also had a steeper rise in hazard rate over time than the 60-69 age

group in every �tness group. The spread in the 70+ age group is is also greater than

the 60-69 age group.

The comparison of hazard rates produced by the Cox and ANN models has

shown the ability of the ANN to model hazard rates that vary over time in ways not

constrained by a proportional hazards assumption and has produced some revealing

variations in modelling this data set, which provide a basis for hypothesis generation

and potential for tailoring interventions more closely to individual patients.

A full discussion of the results presented in this chapter is given in Chapter

7.
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Chapter 7

Discussion

This chapter begins with a discussion of complexity science and health care as a

complex system. This is followed by the results in the context of the literature

which is divided into the same four subdivisions in the results and literature review,

namely LCA for the BeST data, ANN for the BeST data, long-term survival after

a cardiac event using a Cox model and ANN for survival modelling. Following this

discussion, each of the research aims stated in the introduction have been revisited

and evaluated. The chapter closes with a discussion of further research directions.

7.1 Complexity Science

The New England Complex Systems Institute introduces Complexity Science thus:

`Complex Systems is a new �eld of science studying how parts of a system give

rise to the collective behaviors of the system, and how the system interacts with its

environment. Social systems formed (in part) out of people, the brain formed out of

neurons, molecules formed out of atoms, the weather formed out of air �ows are all

examples of complex systems. The �eld of complex systems cuts across all traditional

disciplines of science, as well as engineering, management, and medicine. It focuses

on certain questions about parts, wholes and relationships. These questions are

relevant to all traditional �elds.' (The New England Complex Systems Institute

[2013]).

7.2 Complexity in health care

It is well-established that health care and health itself are complex systems (Plsek

and Greenhalgh [2001], Wilson and Holt [2001], Plsek and Wilson [2001], Fraser and
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Greenhalgh [2001], Topolski [2009]). In a series of 4 articles on Complexity Science

and its relevance to health care in 2001, the British Medical Journal de�ned complex

adaptive systems: `A complex adaptive system is a collection of individual agents

with freedom to act in ways that are not always totally predictable, and whose actions

are interconnected so that one agent's actions changes the context for other agents.

Examples include the immune system, a colony of termites, the �nancial markets

and just about any collection of humans (for example, a family, a committee, or a

primary health care team).' (Plsek and Greenhalgh [2001]).

There follows an overview of complexity in various aspects of health and health care

and how ideas from Complexity Science have been used to address the challenges in

the health care system. At the end of this chapter is a statement of the aims of this

research.

7.2.1 The Complexity challenge

Conventional models of the universe and its subsystems as machines with simple

rules and absolutely predictable and controllable outcomes, have been the frame-

work for understanding medicine and health care as evidenced by the orientation

of medicine around organ-based disciplines and physiological processes and organi-

sation around linear, hierarchical relationships and rules (Plexus [2003]). The shift

from a bio-mechanical view of the body followed the realisation that no part is con-

stant, independent or predictable; complex systems typically have fuzzy boundaries,

membership of sub-systems can change and agents can simultaneously be members

of several systems (work, family, hobby, communities, for example). Conventional,

reductionist scienti�c thinking assumes that we shall eventually �gure it all out and

resolve the unresolved issues, whilst Complexity theory accommodates uncertainty

and inherent tension between di�erent parts of the system (Plsek and Greenhalgh

[2001]). Complex systems often exhibit non-linear behaviour and sensitive depen-

dence on initial conditions, such that small di�erences in the initial variables leads

to large di�erences in outcomes. This makes complex systems fundamentally unpre-

dictable over time. Despite this lack of predictability, it is often possible to make

generally true and practically useful statements about a complex system. Attractors

are patterns of behaviour within a complex system. A health care example is the

tendency of psychotherapy patients to accept counsellor's advice when it is framed in

ways that enhance their core sense of autonomy, integrity and ideals. Order, innova-

tion and progress can emerge within a complex system without them being imposed

from outside, e.g termite colonies, driving conventions and behaviour patterns in

repeated meetings. Whilst a surgical theatre team performing a routine procedure
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might think in mechanistic terms and fall into agreed roles, few situations in mod-

ern health care have such a high degree of certainty and agreement about procedure

and, for those, rigid protocols may not be appropriate. It is claimed that mechanistic

thinking is no longer appropriate in health care and that �exible responses based on

autonomy and creativity should be embraced (Plsek and Greenhalgh [2001]).

7.2.2 Complexity and clinical care

The complexity of both biological and social systems are said to be the reason few, if

any, human illnesses can be said to have a single cause or cure. Glycaemic control in

a diabetes patient is an example of this inherent complexity. The management of the

condition based on simple cause-and e�ect understanding of insulin and blood glucose

levels led to more hypoglycaemia episodes than an approach which emphasized the

patients' own intimate knowledge of their own pro�les and body rhythms and their

experimentation with practical responses to variations (Wilson and Holt [2001]).

Another complex systems approach to modelling glucose levels in diabetes found a

di�erence in how the levels were correlated at di�erent time points between people

with diabetes and those without (Khovanova et al. [2012]). Where lifestyle changes

are needed to improve health, the patients' readiness to change is a key element

of success, and it is suggested this readiness comes when the system is far from

equilibrium, and a new attractor can be accommodated (Wilson and Holt [2001]).

The wider context of other advice which the patient may receive or seek, whether

from a social network, internet source, alternative therapy etc. has been explored

and, for example, there is evidence that social networking is changing people's health-

related experience through the emergence of on-line expert patient groups and the

discovery of community around particular health conditions, which exhibit both

complementarity and competition with the patient-doctor encounter (Gri�ths et al.

[2012]).

7.2.3 Complexity in leadership and management

Leadership and management, including in health care, depends largely on productive

interaction. However, the organisation and management of health care is enacted as

if a well functioning organisation were akin to a large, well-oiled machine. This leads

to the imposition of separate budgets and targets for primary, secondary and social

care which promotes an internal focus for each part (Plsek and Wilson [2001]). One

example is the target to administer thrombolytic drugs to eligible patients within 60

minutes of the onset of a myocardial infarction (heart attack) which is confounded
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with a target for administration within 30 minutes of arrival at hospital, with am-

bulance response times and also any delay by the patients in calling for help, so

that the patient may miss out on full intended bene�t despite the individual targets

being met. It is suggested that Complexity-based organisational thinking leads to

whole-system goals and pooled resources which generate relationships among the

stakeholders which provoke creative ideas organisation. A complex adaptive systems

framework could improve outcomes in transitions between health care settings, in-

cluding hospital discharge, which was found to be associated with high re-admission

and adverse event rates in the newly-discharged (Geary and Schumacher [2012]).

Where the organisation as a machine paradigm is in place, initiating change is seen

as akin to a replacement part being �tted, and resistance to change tackled with

the hammer of strong leadership, sanctions, or strict budget controls (Plsek and

Wilson [2001], Johnson et al. [2010]). Instead, it was suggested, a complex systems

approach considers resistance to be the pull of a di�erent attractor, such as a desire

to focus on an under-served patient group. Understanding the context and attitude

in which change is attempted can o�er strategies to adapt without loss of focus on

what is done well. Variation within a complex organisation arises out of interac-

tion between di�erent factors. The strict elimination of all variation is an appeal

to the machine metaphor and will have the byproduct of sti�ing innovation. In the

nursing home context, complexity-type management led to better patient outcomes

(Anderson et al. [2003]). In the US health care system, multi-scale complex systems

analysis suggests that the overall system can be dramatically improved by establish-

ing two separate but linked health care systems with distinct organisational forms:

one a high-e�ciency system performing large-scale repetitive tasks such as screening

tests, inoculations, and generic health care, and the other a high-complexity system

treating complex medical problems of individual patients (Bar-Yam [2006]).

7.2.4 Complexity and medical education

As the government and managers seek to deliver a health care system that is ever

safer, constantly up to date, and focuses on patients' changing needs, medical ed-

ucation needs to deliver not only competence (knowledge, skills and attitude) but

also capability (the ability of an individual to adapt to change, generate new knowl-

edge, and continue to improve their performance). Capability cannot be taught or

passively assimilated, but requires existing competencies to be adapted and tuned

to new circumstances (Plsek and Wilson [2001]). In the modern information age,

an expert is someone who knows how to access knowledge e�ciently and can form

conceptual links between seemingly unrelated areas. Learning how things are inter-
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connected is often more useful than learning about the pieces for applying learning

to new contexts, but this is not a strength of traditional curricula. Checklist-driven

approaches to clinical care become useful only after the problem has been thor-

oughly understood; the acquisition of understanding requires intuition and imagi-

nation (Weiss et al. [2011]). Education that makes use of insights from complex

systems e.g. through storytelling and group problem-based learning helps build on

these distinctly human capabilities (Plsek and Wilson [2001]).

7.2.5 Health as a complex system

Health is traditionally de�ned in western medicine as absence of disease, and life

de�ned in terms of death (Topolski [2009]). As the nineteenth century biomedical

model of health replaced theories of humours and spirits, it was itself expanded by

Engel's 20th century biopsychosocial model. The experience of health results from

many di�erent interconnected factors, changes in which can have a non-linear e�ect

on the whole, leading to the conclusion that Engel's model can be further improved

using the concepts from Complex Systems science. This new model asserts that

living systems are open to their environment (e.g.weather, Parsons et al. [2011]),

and borrows the language of statistical physics in describing ageing (Topolski [2009])

and illness (Burton et al. [2010]) as increase in entropy and decrease in complexity.

This model describes a log-normal distribution of maximum health potential with

a minimal sum of health for survival. The theoretical maximum health potential

is modi�ed by the in�uence of surroundings on the six paired parameters which

describe health, vis. physical and environmental, emotional and social and cognitive

and semiotic which sum to describe the experience of health and well-being. This

Complexity science based model unites the concepts of identi�able pathologies and

subjective illness in one conceptual model.

7.2.6 The complex individual

Gri�ths et al. [2010] state that `This notion of the individual has much in com-

mon with that of the complex system: open systems with emergent properties and

transformational potential. The emergent property of a complex system is the qual-

ity that indicates its nature as a whole, and cannot necessarily be predicted or

explained by detailed examination of the parts of the system. There is constant

interaction within a complex system and between the system and its environment,

and so constant change. The nature of this change might be small adjustments or

adaptations, but the system remains qualitatively similar; however, change might
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be transformational and, if this occurs, the system becomes qualitatively di�erent.

The nature or quality of the system is the emergent property of the system at that

time. Complexity science is concerned with describing and explaining the patterns

of change of a system, both the transformations and the adjustment and adaptation

between transformations. This social theory on the nature of the individual and

complex systems suggested that we could consider individuals as complex systems

with emergent properties (what we have referred to above as how a person is overall,

her or his qualitative state) that are constantly changing, and that the pattern of

change might be important. An individual's pattern of adjustment and adaptation,

and any transformations, could result from all he or she does and all that happens

to him or her over time. '

This description attempts to capture some of the reasons why individuals do not

respond uniformly to stimuli (Thorogood et al. [2006]). For example, the stigma

of depression intersects with responses to depression: some people get more de-

pressed, but for others stigma makes them get up and prove themselves (Boardman

et al. [2011]). Similarly, alcohol has both positive and negative health e�ects: same

exposure, di�erent outcomes. In a linear model, the coe�cients of these may be

both positive and negative and so tend toward zero, despite the e�ect being sig-

ni�cant. Human development is also a complex process (McGonigle-Chalmers and

Kusel [2012], McGonigle-Chalmers et al. [2008]) and human interactions are key to

health and disease (Danon et al. [2012], Dong et al. [2012], Centola [2011], House

[2011], Centola [2010], Christakis and Fowler [2008], Fowler and Christakis [2008],

Centola [2007], Christakis and Fowler [2007], Centola et al. [2005]).

On every scale, health and health care are complex systems and yet most

of the quantitative analysis relating health care to outcomes uses linear models. A

2010 review collated more than 100 articles about complex adaptive systems think-

ing in health care and related sectors (Health-Foundation [2010]) and noted a lack

of empirical research.

Having established that health care is a complex system which has non-linear

interactions between its constituent parts, the overarching aim of this research was

to explore whether using non-linear models can better model health care and so

capture the information contained in health care data sets of complex interventions.
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7.3 Latent Class Analysis of BeST Back Pain Trial Data

Many studies have used classi�cation techniques to distinguish between categories of

patients with low back pain (LBP), and the treatment-based classi�cation schemes

have been described in the literature review. Tailoring on the basis of classi�cation

in some studies lead to a reduction in pain, whilst others showed no evidence that

tailoring treatment on the basis of classi�cation was e�ective. In the vast majority

of cases, the classi�cation was made based on clinicians' observations of increased

and decreased pain under varying postural conditions of the patient, and only a

few on patient-reported measures. There were a few schemes which used statistical

methods such as the k-means algorithm to form clusters based on means of various

measures. The k-means method requires that a distance between two measurement

of something is meaningfully de�ned. In the case of a sum score like HADS, it is

not clear how meaningful the mean of the score is, or how to take a mean of the

categorical version of the variable (e.g., clinically depressed, borderline, normal), so

k-means was not considered suitable for this investigation. In contrast, latent class

analysis (LCA) is a model-based approach (as described on page 64) which does not

require such a distance metric. Two papers were found that described the use of

LCA in relation to back pain. In one, the use of LCA for the classi�cation of LBP

time courses was found to produce descriptive classes, but these were not linked to

treatments or outcomes (Dunn et al. [2006]). The other LCA model linked patient

characteristics to quality of life (36-Item Short Form Health Survey, SF-36, Version

1), rather than pain and disability changes (Beales et al. [2012]). These last two

studies are the most similar to the BeST LCA study detailed here in that they used

some of the same measures, but they were not attempting to associate outcome with

a treatment based on these patient characteristics.

The need to �nd classi�cation schemes which can direct treatment and improve both

pain and disability, elucidated in Fairbank et al. [2011], has yet to be fully satis�ed.

An important contribution has been made in the BeST LCA study presented in this

thesis, in using the patient characteristics that the treatment was designed to tackle

to derive classes of patients, and relating these classes to pain and disability out-

comes. The results starting on page 105 show that it is possible to identify distinct

classes of patients using LBP interference with social activities, pain self-e�cacy,

fear avoidance beliefs relating to physical activity, depression, anxiety and perceived

troublesomeness. In a cognitive behavioural approach (CBA) to tackling these char-

acteristics in people with non-speci�c LBP, there is some evidence that at least a

prede�ned minimum level of reduction in pain and disability is more likely to be

181



enjoyed by one class than the others.

Additionally, in a model adjusted for class membership, age, gender and employment,

an association between outcome and work status was found which was also found

independently by a separate secondary analysis of the same data looking for poten-

tial e�ect moderators using the same outcome measures (Underwood et al. [2011]).

Underwood's work tested three hypotheses that were de�ned at the design stage of

the trial: that treatment bene�t would be greater in those with more troublesome

back pain; that the treatment e�ect would be greater in those with high levels of fear

avoidance; that the treatment bene�t would be greater in those with subacute low

back pain (≤ 3 months) than those with chronic low back pain. For those analyses,

the Bonferroni correction was applied and the signi�cance assessed at α= 0.025. In

addition, they investigated baseline demographic data to identify potential predictors

or moderators of outcome, using 2-sided tests with statistical signi�cance assessed at

α= 0.05. The �ndings were that univariate analyses showed that age, employment,

bene�ts, and the MVK disability score were predictors of change from baseline of

RMQ, MVK disability and MVK pain. It was also discovered that troublesomeness,

duration, baseline RMQ, and baseline MVK pain predicted outcome in some but

not all three measures. A stepwise selection model was tested and found signi�cant

interactions only when using RMQ as the outcome. Speci�cally, being younger and

employed were e�ect modi�ers. Doubt is expressed in Underwood's paper whether

this is a true moderation e�ect.

In the BeST LCA presented here, although treatment predicts recovery in the 4-

class model, no association can be found between class membership and recovery or

receiving treatment given membership of any of the classes in the logistic regression

analyses of the unadjusted model or in the analysis of deviance. In the model ad-

justed for age, gender and employment, however, there was a marginally signi�cant

coe�cient for the interaction between membership of Class 2 and treatment with the

CBA intervention in the logistic regression models, suggesting that after adjusting

for age, gender and work status, membership of Class 2 is associated with recovery

for those receiving CBA. In this 4-class model, Class 2 is populated with patients who

were moderately a�ected on all dimensions (details on page 112). The signi�cance of

Class 2 was not replicated in the analysis of deviance for the adjusted model, which

showed treatment to be highly signi�cant, and the interaction of treatment and work

to be signi�cant. Looking at Table 6.9 (page 120), it is clear that both Class 2 and

Class 4 have at least twice as many members not working as working, and that Class

1 has 50% more in the working category than not working, so the link between class

and work is evident. In Table 6.12 it is clear that of those in work, approximately
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half recovered and half did not (bearing in mind that allocation to treatment is 2:1

in favour of the CBA intervention), whilst in the not-working group, the majority

did not recover. This is seen particularly in classes 1 and 4, where approximately

twice as many did not recover as did recover. Whilst the signi�cance of results re-

lating to Class 2 and Class 4 might be artifacts of low numbers in those classes, the

same cannot be said for Class 1 or Class 3 suggesting that the results with respect

to work are robust, and are con�rming results obtained by alternative methods in

Underwood et al. [2011].

In the 3-class model, treatment is a predictor of recovery throughout. Addi-

tionally, membership of Class 2 is marginally signi�cant in analysis of deviance in

the unadjusted model, indicating the possibility of a di�erent response to treatment

for the patients in Class 2. However, Class 2 of the three-class model is also the

smallest class with just 52 patients (12.8% of the data set) and therefore any results

for this class might be highly dependent on the precise mix of characteristics of the

individuals allocated to Class 2, and may, therefore, not replicate in a di�erent data

set. Recall that in this data set, those in Class 2 of the 3-class model are the patients

with the severest symptoms (details on page 109). The indication that membership

of Class 2 a�ects the likelihood of recovery may be related to the severity of the

symptoms individuals are experiencing, or an artefact of the low numbers in the

class. The lack of signi�cance for the interaction term indicates that receiving treat-

ment given a patient belongs to a certain class is not a clear predictor of outcome.

Fisher's exact test showed an asociation between class membership and recovery for

those in the treatment arm of the trial, which was not mirrored for those in the

best care only (control) arm of the trial, suggesting a di�erent response to treatment

between the two arms of the trial which is class-dependent. In the adjusted model,

the interaction between treatment and work is signi�cant in the analysis of deviance,

both for the regular and for the re�ned contrasts. Furthermore, in the re�ned con-

trast model, membership of Class 2 was again marginally signi�cant, although the

interaction of Class 2 and treatment was not. Once again, in the adjusted model the

interaction of treatment and work is highly signi�cant. The same patterns can be

seen in Table 6.13 as in Table 6.12, namely that whilst among the people in work,

recovery was evenly distributed between recovery and no recovery, the majority of

people out of work did not recover, with Class 2 having three times as many who

did not recover as did. This could explain why the analysis uncovered work status

and Class 2 membership both to be important. Whilst there is some indication that

membership of Class 2 a�ects the likelihood of recovery, caution must be exercised
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for reasons stated above.

Whilst the number and characteristics of classes yielding the models with

minimum AIC and BIC scores was robust, during the analysis it became clear that

the regression coe�cients in the linear models relating class membership to outcome

were sensitive to changes in a few patient cases, and therefore the conclusions drawn

from these analyses may be fragile. It is clear that dividing 407 patient cases into 3

or 4 classes will yield classes which may be small and therefore in danger of having

atypical pro�les. There is no detail given in the BeST trial report (Lamb et al.

[2010b]) as to why there is so much of the follow-up RMQ missing. If the original

701 patients all had a follow-up RMQ score, the results from these analyses would

be more reliable.

An important contribution has been made in identifying classes of patients

with LBP based on the patient characteristics that the CBA treatment was designed

to tackle. These classes have been related to outcomes in adjusted and unadjusted

models. There are also some hints that using the patient characteristics that the in-

tervention was designed to tackle has identi�ed classes within the patient population

that have di�ering responses to CBA. A previously identi�ed association between

outcome and work status, which was found independently using alternative methods,

has been also identi�ed by these analyses. This work has the potential to identify

those for whom a cognitive behavioural approach (CBA) is e�ective or ine�ective

and so guide the choice of treatments to those most suitable for individuals.

7.4 Arti�cial Neural Network Analysis of the BeST Data

The use of ANNs for predicting the outcome of treatment for back pain, using base-

line measures of the patient characteristics the intervention is designed to tackle,

has explored a gap in the literature. For patients o�ered a cognitive behavioural

approach to back pain, this technique would be able to provide a good estimate of

whether a 3-point improvement on the RMQ is likely to be achieved for an individ-

ual, given their baseline characteristics. If a similar prediction were available for the

other back pain treatment options, then these could be combined into a useful tool

for allocating a given patient to the most appropriate treatment based on their base-

line characteristics. Having established that back pain has a non-linear relationship

with some covariates such as frequency of physical activity in univariate analysis,

using techniques that can account for non-linearities is a reasonable approach. The
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fact that these non-linear models were shown to display improved performance over

linear models suggests that linear models do not describe the connection between the

cognitive domain and the experience of back pain well. The values of the sensitivity

and speci�city for the ANN are in line with those produced by Ripley et al. (Ripley

et al. [2004]).

Given prevalence of LBP, numbers in this trial were small, especially after we require

the data to be complete in the explanatory and the response variable, RMQ improve-

ment. It would be useful to be able to replicate the technique on other and especially

larger data sets to eliminate the possibility of an atypical result based on a small

data set. Perhaps more data would discount the bene�ts of non-linear modelling we

see here, or perhaps con�rm it, but much more data would be needed before strong

claims can be made. It is also possible that using the measures of the mechanism of

treatment are not the best predictors and future work could test the other variables

available in this data set and others to see if these have greater predictive power in

linear or non-linear models. Nevertheless, in this type of health care application,

which uses scores from self-reported questionnaires, it could be argued that the data

will always be complex and that the levels of performance we see here are unlikely

to be surpassed simply by collecting more data.

We have shown that the arti�cial neural network provides the best combination of

overall error rate and sensitivity, and would be the best candidate of the three mod-

els tested for decision support for the cognitive behavioural approach to treatment

of lower back pain.

7.5 The Cox Model for Long-Term Survival After a Car-

diovascular Event

This analysis of the Basingstoke and Alton data set contributes to the body of re-

search seeking to identify risk factors for long-term mortality in coronary patients.

The majority of the trials included in systematic reviews have followed up partic-

ipants for two years or less, whilst this observational study has followed up for up

to 18 years. This length of follow-up is unusually long for studies on patients ex-

periencing a cardiac event or procedure (Heran et al. [2011]). Other studies that

did follow up for more than 5 years, limited participants to men under the age of

65 without diabetes or signi�cant comorbidity, whilst this study includes men and

women of all ages and all does not exclude diabetes or other comorbidities. Such

limitations have compromised the generalisability of the systematic reviews (Turner

[2007]). Most studies did not include �tness or anxiety and depression as possible
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explanatory variables, whilst this study included both, and also change in �tness dur-

ing the rehabilitation programme. Di�erences between cardiovascular mortality and

all-cause mortality were not considered in the majority of these studies, and there

was little consideration of secondary prevention medications as predictors of survival.

The three long-term studies detailed on page 31 are di�erent from this study

in important ways: they had only male participants under 65 years old, only those

who had su�ered MI, and excluded those with signi�cant comorbidity. In all cases,

there was an exercise dose that was �xed, and �tness was not measured, in contrast

with the Basingstoke and Alton data set where �tness was measured at entry and

exit, and the programme for any individual lasted as long as it took for a given level

of exercise capacity to be reached. In addition Dorn et al. excluded those failing

to complete the initial 6-week low-level exercise programme, further reducing the

similarity between their study cohort and patients typically seen in cardiac rehabil-

itation (Dorn et al. [1999]).

The strengths of this study are the large, unselected cohort with an average

11.5 years of follow-up for those with complete observations. The data were collected

in routine clinical practice and collected by one person, Dr Sally Turner, giving con-

�dence in the quality of the data and relevance to NHS practice. The problem of

potential of bias in the model due to the missing data has been dealt with using an

established method (namely multiple imputation and pooling) and the robustness

of the model con�rmed. These patients, including a proportion women that is typ-

ical for studies in this area, already have coronary heart disease, and there is very

little literature for this class of patient. The bene�ts of a single NHS centre study

with consistent sta�ng and programme is that there is consistent delivery of the

programme between patients. Over the course of the study, two di�erent methods

of estimating �tness (V O2max) were used, but only patients whose �tness at the

beginning and end are measured in the same way are included. One weakness of

the Basingstoke and Alton data set is that physical �tness was assessed indirectly

using predicted, not measured, oxygen uptake. However, these method of �tness

assessment are typical of the pragmatic methods used in such NHS settings.

Another limitation was the use of the same �tness categories for all patients, and

this is likely to underestimate the bene�cial e�ects of �tness for women (Kavanagh

et al. [2002], Kavanagh et al. [2003]). Patients who never attended, or attended at

least once but did not have a baseline measure of �tness are included in the popu-

lation of patients typically experiencing a cardiac event or procedure, and excluding
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these cases from the analysis diminishes the generalisability of the results. Some

of these individuals will have been the most frail patients, and excluding them also

explains the initial period of no deaths seen in the Kaplan Meier plot (Figure 6.17).

However, our study showed that �tness level in the early weeks after a cardiac event

or procedure was equally important for cohorts with a wider range of initial �tness,

a wider age range, signi�cant co-morbidities and that included women.

In the survival analysis of the Basingstoke and Alton data set presented in

this thesis, �tness category was a signi�cant predictor of all-cause mortality and car-

diovascular mortality, whether the baseline measurement was used alone or whether

it was used alongside �tness category improvement. This is a much more appropri-

ate variable than simple exercise dose since it is well known that individuals' dose

response for exercise varies widely (Scharhag-Rosenberger et al. [2010], Savage et al.

[2009]). It has previously been found that improvement in �tness during a CR pro-

gram was associated with decreased mortality in those with low �tness alone (Martin

et al. [2011], Vanhees et al. [1995]). The change in peak V O2max during the training

period of cardiac rehabilitation was found to predict cardiovascular mortality and

lower resting heart was linked to cardiovascular survival (Fox et al. [2007], Fox et al.

[2008]).

BMI was not available in the a large part of the Basingstoke and Alton data

set, so weight was categorised in such a way as to represent normal, overweight

and obese categories in an average-height person in a typical UK group with this

gender mix. Whilst alone weight category was a signi�cant predictor of mortality,

in the presence of other variables, including �tness category, it ceased to be signi�-

cant. Moreover, when the 889 cases which did have complete data in baseline BMI

(and other variables of interest) were modelled, BMI was not retained in the model

as a signi�cant predictor of either all-cause or cardiovascular mortality, but �tness

was signi�cantly related to mortality. This �nding was consistent with other liter-

ature, for example, the GOSPEL study, and intensive intervention that decreased

CV mortality plus nonfatal myocardial infarction (MI) and stroke, included vari-

ous lifestyle targets alongside its �xed-dose exercise prescription, including healthy

Mediterranean diet and BMI ≤ 25. There were other studies linking BMI with sur-

vival, and whilst some considered BMI and exercise the majority did not consider

both BMI and �tness (Li et al. [2006], Willett et al. [1995]). The health e�ects of

BMI adjustment (weight loss) were found to be complex, possibly composed of op-

positely acting processes, and in need more research (Sorensen et al. [2005]). In a
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systematic review of cohort studies, the authors concluded that better outcomes for

cardiovascular and total mortality seen in the overweight and mildly obese groups

could not be explained by adjustment for confounding factors. They suggested these

�ndings could be explained by the lack of discriminatory power of BMI to di�eren-

tiate between body fat and lean mass (Romero-Corral et al. [2006]).

The all-cause mortality rate of �t, obese men was found to be not signi�cantly di�er-

ent from that of �t, lean men and that un�t men with low waist girths had greater

risk of all-cause mortality than did �t men with high waist girths (Lee et al. [1999]).

Others found that BMI, as a predictor of all-cause mortality risk in women, may be

misleading unless cardiorespiratory �tness (CRF) is also considered. (Farrell et al.

[2002], Kodama et al. [2009]). It is clear that the relationship between BMI, �tness

and survival is not well-established.

The Basingstoke and Alton data set study found that �tness and improve-

ment in �tness within the early months after a coronary event or procedure predict

long term survival of patients. One �fth of the patients in this study who com-

pleted the programme and therefore had an end �tness measurement, moved from

mid-�tness to high �tness and these had as good a long-term outcome as those who

had begun in the highest �tness category, and a better prognosis than those who

began in the mid-�tness category and did not improve. There was also a group who

moved from the low �tness to the mid-�tness category and had improved survival

over those who did not. The Basingstoke and Alton CR programme di�ered from

other programmes because the exercise training continued for each individual until

they were able to perform a physical exercise session without a break, i.e. until they

attained a measure of stamina, then their �tness was measured, making no assump-

tions about dose-response.

Recall that lower V O2 max estimated from a treadmill test can indicate lower

�tness or more severe cardiovascular disease and a higher risk in the AACVPR (see

pafe 136. Those patients whose �tness category is low and who do not improve may

be those whose cardiovascular disease is more severe. Exercise regimes aimed at

improving �tness category should also take account of their disease severity.

The largest age group for both genders in this study was 60-69 years, with

536 (35.1%) of the patients with complete baseline data aged over 65, who would

have been excluded from other studies on age grounds , and similarly for the many

participants with comorbidities. And yet these patients are typical of those present-
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ing for CR after a cardiac event or procedure, and it is valuable to have information

on risk factors and especially strategies for modifying risk factors which apply to

them.

In the Basingstoke and Alton cohort, secondary prevention medications con-

tribute signi�cantly to improved long-term survival in both all-cause and cardiovas-

cular mortality, as expected for short-term mortality (Liakopoulos et al. [2012],Vale

et al. [2011a], Perez et al. [2009]), with the exception of ACE inhibitors which were

associated with lower life expectancy. As discussed previously, ACE inhibitors are

prescribed to those in high risk categories (Skinner and Cooper [2011]), and this as-

sociation is probably a re�ection of underlying poor health; there was a correlation

in the Basingstoke and Alton data set between a prescription for ACE inhibitors and

high risk category. There is no information on how long the medications were used,

suggesting that the e�ect is very strong.

In the Basingstoke and Alton data set, diagnosis is a signi�cant predictor of

cardiovascular mortality and of all-cause mortality when �tness at baseline only is

used as an explanatory variable. When �tness plus change in �tness category is used,

diagnosis is not a signi�cant predictor of mortality suggesting that change in �tness

category is correlated with diagnosis. In the other models, patients having coronary

artery bypass surgery and percutaneous coronary intervention have a signi�cantly

higher long-term survival from cardiovascular mortality than do patients with a my-

ocardial infarction or angina. This accords with Buckley et al. where prognosis to

death or cardiac outcomes for patients with angina alone was similar to those with

previous acute MI or revascularisation, while health status was poorer (Buckley and

Murphy [2009]).

Smoking is known to be a factor in the development of heart disease, so it

might be expected to be a predictor of mortality in those who have had a cardiac

event or procedure (Ketonen et al. [2008], Hardoon et al. [2008]). In the Basingstoke

and Alton data set, current smoking habit data showed nearly half the women had

never smoked compared to just under one third of the men and close to a third of

both genders had recently given up smoking. Whilst current smoking habit was a

predictor of mortality when used alone, it ceased to be a signi�cant part of the model

in the presence of other variables. This may be because current smoking habit is a

`snapshot' at a point in time and does not give all the information about long-term

behaviour. Initial cessation of smoking is quite common in CHD patients. However,
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approximately 50% of those who stop smoking begin smoking again within 1 year

after the event (Barth et al. [2004]). Another possibility is that smoking is correlated

with �tness, and having controlled for �tness, smoking is no longer an independent

predictor of mortality. Recent epidemiologic studies show evidence for a link between

smoking behaviour and depression (Schmitz et al. [2003]).

There was little evidence of clinical depression in the Basingstoke and Al-

ton cohort, and most of those whose HADS scores suggested either depressed or a

borderline category improved by graduation. Depression and anxiety were each pre-

dictors of long-term mortality in univariate models, but neither was signi�cant in the

multivariate model. Depression is known to be associated with short-term mortality.

Dickens et al. investigated the association of depression with mortality following

MI in 588 subjects and followed up their cases for up to 8 years. Depression was

not associated with cardiac mortality, whether depression was detected immediately

before MI, 12 months after MI or at both time points. They concluded that the asso-

ciation between depression and post-MI mortality is complex, possibly being limited

to depression immediately after MI (Dickens et al. [2007]). A recent meta-analysis

found that the presence of depressive symptoms after myocardial infarction was not

uncommon and was associated with a 2-fold to 2.5-fold increased risk of impaired

cardiovascular outcome within 2 years (van Melle et al. [2004]). They concluded that

the potential mechanisms linking depression and impaired cardiovascular prognosis

were still poorly understood. First, unhealthy behavior of depressed MI patients

(diminished compliance, smoking, unhealthy diet, inactivity) was found to be im-

portant. Second, evidence was found to be growing that physiological mechanisms

were involved. Finally, physicians also prescribed signi�cantly less thrombolysis, as-

pirin, ACE inhibitors, and BB to MI patients with comorbid depression. Therefore,

de�cits in quality of medical care may explain, in part, the excess mortality experi-

enced by patients with depression after MI. Another meta-analysis found results on

the long-term impact of clinical depression to be rather limited and further research

to be necessary to obtain more stable e�ects on the impact of depressive disorders

on mortality in CHD patients (Barth et al. [2004]). The ENRICHD RCT sought to

investigate the e�ect of treating depression and low perceived social support on mor-

tality and recurrent MI after a �rst MI (Berkman et al. [2003]). 1,084 women and

1,397 men were randomised between usual care and individual and group cognitive

behavioural therapy during the �rst 6 months after MI. The intervention improved

depression and social isolation, but did not increase event-free survival at mean 29

months follow-up. The relative improvement in the psychosocial intervention was
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less than expected because of substantial improvement in the usual care group. It

is known that the natural history of depression following acute coronary syndrome

(ACS) is variable (Haas [2006]). It is not clear, therefore, whether the improvement

in depression and anxiety seen in the Basingstoke and Alton cohort is part of the

natural history of the illness or due to treatment, exercise or the support of the

group at the exercise and education sessions. Nevertheless the improvement is wel-

come, and with much longer follow-up, con�rms that depression is not associated

with long-term mortality. Another study found that depression predicts failure to

complete cardiac rehabilitation (Casey et al. [2008]), and this was also evident in the

Basingstoke and Alton cohort (Turner [2007])

With 13.7% of patients female, the Basingstoke and Alton cohort was fairly

typical of the patients seen in CR. As discussed above, the majority of trials have

included only men, leading some researchers to conclude that coronary heart dis-

ease in women is under diagnosed, under treated, and under-researched (Mikhail

[2005]). Women account for less than 30% of the participants in most studies and

trials in cardiology making it di�cult to draw conclusive evidence on managing car-

diovascular disease in women. Despite di�erences between the sexes in risk factors,

presentation, and response to treatment, women continue to receive similar treat-

ments to men on the basis of trials that include mainly male participants (Mikhail

[2005]). One review article concluded that the pathogenesis of CHD was very similar

for men and women. Yet, diabetes, HDL and triglycerides levels were found to have

a greater impact on CHD risk in women compared to men. In addition, there were

indications that risk factors such as smoking, family history and in�ammation char-

acterized as C-reactive protein, had a more negative in�uence on CHD in women

than in men. On the other hand the evidence showing that lipoprotein(a) was a

cardiovascular risk factor seems to be stronger in men than in women. The majority

of cardiovascular risk factors showed no important di�erences between the genders

(Roeters van Lennep et al. [2002]). The EUROASPIRE III survey (in 22 European

countries in 2006-2007) identi�ed 8,966 consecutive patients (25.3% women) who had

had a coronary event or revascularisation before the age of 80. The results showed

that despite similarities in medication exposure, women were less likely than men

to achieve BP, LDL-cholesterol and HbA1c targets after a coronary event. This gap

did not appear to narrow between 1994 and 2007 (Dallongevillle et al. [2010]). In

an investigation into the e�ect of doctor and patioent gender, Adams et al. found

doctors appeared less a�ected by patient gender but both male and especially female

doctors took more account of male patients' age, and considered more age-related
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disease possibilities for men than women. Findings highlighted the need for better

integration of knowledge about female presentations within accepted CHD risk mod-

els, and did not support the contention that women receive better-quality care from

female doctors (Adams et al. [2008]).

A postcode-based index of multiple deprivation was recorded for the Bas-

ingstoke and Alton cohort. Health may be expected to be generally better in an

a�uent area such as this than in a deprived geographical area, so these results may

not be fully generalisable to other regions. A study analysing recent socioeconomic

trends in coronary heart disease mortality in England found both death rates and

the number of deaths were lowest in the most a�uent quintile and the pace of fall

was also faster than in the most deprived quintile. Overall, about half of the decrease

in death rates was attributable to improvements in uptake of medical and surgical

treatments. The contribution of these to the deaths averted was very similar across

all quintiles. Risk factor changes accounted for approximately a third fewer deaths in

2007 than occurred in 2000, but were responsible for a smaller proportion of deaths

prevented in the most a�uent quintile compared with the most deprived. However,

the bene�ts of improvements in blood pressure, cholesterol, smoking, and physical

activity were partly negated by rises in body mass index and diabetes, particularly

in more deprived quintiles (Bajekal et al. [2012]). Occupation was recorded for the

Basingstoke and Alton cohort, but was not a signi�cant predictor of mortality in the

multivariate model. In a prospective occupational cohort study of 17,186 male civil

servants aged 40-69 years between 1967 and 1970 in the UK (the Whitehall study),

employment grade was used as a proxy for socioeconomic position. Men with low

employment grades generally had less favourable risk pro�les than those with high

grades. Systolic blood pressure, glucose, and proportions of current smokers and

non-insulin dependent diabetes patients were higher in the low employment grade

group than in the high grade group. However, total cholesterol concentrations were

slightly greater in the high grade group than in the low grade group. During the

15-year follow-up, 1,262 men died from coronary heart disease and low employment

grade and all risk factors were associated with high mortality (Kivimäki et al. [2008]).

Promotion of �tness after a coronary event or procedure may extend life

expectancy. Monitoring of patients at risk of a coronary event and intervention

where appropriate to prevent myocardial infarction may improve life expectancy.
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7.6 Arti�cial Neural Network for Modelling Long-Term

Survival After a Cardiovascular Event

The ANN and Cox models both produced survival probabilities for mortality in car-

diovascular patients consistent to with the Kaplan-Meier estimate and with each

other (page 160), in line with the �ndings of Joshi and Reeves (Joshi et al. [2005])

and Ripley et al. (Ripley et al. [2004]) in their studies on cancer. The use of Kaplan-

Meier curves for comparison is standard practice and there are recent proposal to

correct for case-mix where this is appropriate (MacKenzie et al. [2012]).

Whilst Ripley gave exemplar hazard functions for each of the 7 models studied,

neither Ripley nor Joshi showed or discussed the hazard rates produced by their

respective ANN models in relation to their data. In the new work presented here,

using the models' ability to predict a �xed length of time has been avoided as a basis

of comparison. Cox models are not designed to estimate the probability of survival

at a �xed time, they are intended to show the dependence of the survivor curve on

the explanatory features (Ripley and Ripley [2001]). When used for prediction they

are able to predict the whole survivor curves and it is not surprising that they are

less well able to predict a single point on that curve than the methods designed to

predict just one point. Furthermore, censoring biases will always favour the ANN as

it estimates the probability of survival to a �xed time conditional on the patient still

being under follow-up, and not the unconditional probability estimated by survival

analysis or by a clinician. Ripley et al. use the deviance as a measure of �t (the

sum of minus twice the logarithms of the predicted probability of the event over all

the patients in the training set) which provides a more sensitive measure of �t than

the success rate, especially in the survival analysis models where the exact time of

death is used.

The comparison between the Cox proportional hazards and the ANN hazards is

given on pages 162 to 173. The Cox model is constrained by its proportional haz-

ards assumption, but the ANN is free to vary over time and between levels of the

covariates, allowing the development of hypotheses which can be used in further

investigations. The contrast between male and female hazards in the ANN model is

negligible, when other variables are held constant, in all but the two groups with the

oldest age and lowest �tness. Here, there is a small increase in hazard for the males,

but the hazards are proportional, as with the Cox model. In addition, the hazard

increases more quickly over time for these elderly, un�t patients. This suggests that

the e�ect of gender itself on the hazard is proportional but modi�ed by age or by

�tness or both. Statins appears to have little or no e�ect on the hazard. There is a
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slight upturn at late times for the patients without a Statins prescription, but this

is a slight di�erence. Consistently with the hazard split by age, the shape of the

hazard is di�erent for the older, less �t patients, increasing more sharply over time,

but in this case the the curves lie on top of each other, suggesting that hazard is not

di�erent for those with and without a prescription for Statins. The same cannot be

said for those with and without an ACE inhibitor prescription, except in the case of

the older, less �t patients. In the younger patients, the hazard is increased markedly

for those having an ACE inhibitor prescription, and increases more quickly at later

times. The exception is the patients also having a prescription for Statins; com-

pared to those who do not, and with all other variables held constant, the hazard

is the same for those with and without ACE inhibitor prescriptions, except at very

late times when the hazard for those with a prescription have a rapidly increasing

hazard. This suggests that the e�ect of a prescription for ACE inhibitors on hazard

is modi�ed by a prescription for Statins, including for older patients. It may also

be modi�ed by age or or both. Aspirin also shows a clear di�erence in the hazard

as modelled by the ANN, between those who have and those who do not have a

prescription. In this case, having a prescription lowers the risk, and for the slightly

younger, �tter patients, the risk remains largely unchanged over time. For those

without a prescription for Aspirin, the hazard pro�le is very similar to that of the

oldest, least �t patients, for whom Aspirin has little or no modifying e�ect on the

hazard. Having a prescription for Statins does not alter the hazard for having or

not having a prescription for Aspirin, suggesting that Statins and Aspirin act inde-

pendently. The e�ect of Aspirin on the hazard may be modi�ed by age or �tness

or both. When the hazard for each of the 4 age categories is investigated, the ANN

models shows those who are over 70 years of age at baseline to have a higher hazard

than the other 3 categories, which are approximately the same, regardless of Statins.

Fitness does not seem to have an e�ect on hazard, except for the least �t categories

where at late times, those age 60-69 years at baseline have a sharp increase in hazard.

This suggests that there is something akin to a step change in hazard for those who

are least �t when they reach around 70 years of age. Finally, �tness seems to have

a proportional relationship with hazard in the ANN model, with the di�erences in

hazard being greatest for the over 70s, although by no means large. This suggests

there is an interaction between age and �tness.

It seems to be an open question whether the e�ects of �tness di�er measurably for

the over 70s, although the ability maintain �tness gains in the over 70s does seem

limited (Oerkild et al. [2012]). According to this ANN model, the hazard for the

older and least �t patients is qualitatively di�erent than than of the other patients,
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and either age or �tness or both seem to a�ect the e�ect of medications and gender.

Moreover, it seems that age and �tness a�ect each other. This warrants additional

investigation if interventions suitable for patients of all demographic groups are to

be developed.

The hazards under the ANN model, when all other covariate are kept con-

stant, are proportional for gender, statins and �tness, but not for age, ACE inhibitors

or aspirin. This suggests that using a model able to capture non-linear relationships

has revealed nuances that the linear model cannot. These hypotheses have been

drawn using subsets of the data where there is a reasonable number of patients. It

happens that all such subsets have male patients, since this cohort was overwhelm-

ingly male. This contrasts with the previous work; Joshi & Reeves had 1,160 females

to 786 (41%) males in malignant melanoma and Ripley all female (breast cancer).

Furthermore, Joshi used di�erent cut-points for the male and female patient age

categories, determined by on Martingale residuals of the Cox model.

An ANN approach has successfully been extended to a non-cancer data set

and hazard rates produced by the model have been examined and hypotheses gen-

erated.

7.7 Concordance with Research Aims and Objectives

The research aims were set out on page 13, and in this section each objective has

been revisited and the extent to which it has been achieved has been evaluated.

Discussion on how the results would need to be extended to the point where policy

would be informed has also been described.

7.7.1 Can latent class analysis identify sub-sets of patients within a

cohort of patients recruited to a clinical trial for non-speci�c

low back pain?

Using a probabilistic model, classes of patients have been identi�ed within the BeST

cohort. From a number of competing models, it was possible to identify two models

with substantially better �t than the others. The models have proved to be robust

against minor re-speci�cation of cases. This contributes to the existing work seeking

to understand the di�erent responses of patients to the same treatment by dividing
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them into groups. This is a �rst step in the attempt to take a population-level result

and apply it to groups of individuals sharing relevant characteristics.

7.7.2 Is it possible to use linear models and the classes identi�ed

by the latent class analysis to tailor interventions for non-

speci�c low back pain to patients?

Having identi�ed sub-populations (classes) within the LBP population in the BeST

trial, the next question was `did the patients in di�erent classes respond di�erently

to the CBA treatment?'. This was tackled by using logistic regression to predict

outcomes using class membership and treatment allocation as predictors. A second

logistic regression was used to predict outcomes using class membership, age, sex and

work status, since other work suggested these might be important. It proved di�cult

to establish with any certainty that the classes of patients responded di�erently to

the CBA complex intervention. Whilst an association between class membership

and outcome for those who received the complex intervention was evident, it was

not possible to discern whether the association for any given class was positive or

negative (whether a particular class was more likely or less likely to achieve the

speci�ed improvement). It was not possible, either, to identify which speci�c class

or classes responded di�erently to the complex intervention in terms of outcome.

This is not unusual in complex systems. As already discussed to the introduction,

complex systems often exhibit non-linear behaviour and sensitive dependence on

initial conditions making them unpredictable over time.

7.7.3 How do the performances of the linear and non-linear models

compare for the prediction of patient outcomes following a

cognitive behavioural approach intervention for non-speci�c

low back pain?

The linear logistic regression based on class membership alone was compared to

a logistic regression using the same variables as the LCA used to model classes

and these were both compared to an ANN which also used the same variables for

prediction. Over all, the non-linear ANN performed better in terms of accuracy of

prediction, sensitivity and log score than either of the linear models. These models

could each be used to inform a clinician's advice to a patient about the likely e�cacy

for them of the BeST CBA intervention. In such an application, the ANN is likely

to be more useful, but ANNs lack interpretability. If the clinician wished, or was

required, to justify their advice, the lack of interpretability would make this di�cult.
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7.7.4 What is the potential for these linear and non-linear models

to inform policy on the treatment of non-speci�c low back

pain?

The BeST trial showed that the CBA intervention was e�ective on average, and

the LCA work has attempted to answer the question `for whom is it e�ective?'. If

a model is to be used to to inform policy or aid clinical decision making, it needs

to be accurate and easy to understand. As they stand at present, the accuracy of

the models introduced here is around 60%. Whether this is good enough depends

on the alternatives and the cost of a misclassi�cation. In the narrow application of

allocating patients to CBA treatment for their back pain, it could be argued that

the alternative is to allocate all patients to CBA treatment, since it was e�ective on

average. In that case, any of these models might provide an improvement, although

the non-linear model had the highest accuracy of the three. In an ideal scenario,

there would be a single tool which identi�ed the particular treatment, out of the ar-

ray of options available, which would be optimal for the patient at hand. The STarT

tool (Hill et al. [2011]) has made a step in this direction by identifying broad types

of treatment best suited to patients who fall into 3 categories for risk of chronicity.

STarT is available on the web and around 75 clinicians, in a variety of countries

and settings, have indicated that they are using the tool with a variety of treatment

approaches (STarT [accessed 18/05/13]).

Accuracy of the models could be improved with more data, particularly the

question about the associations between class membership and outcome. One ap-

proach would be to combine data from di�erent data sets. There is a project under-

way at the University of Warwick to collect anonymised data of therapist-delivered

intervention for low back pain, called Low Back Pain Repository project. There is

precedent for this kind of approach: researchers combined data from 2 large trials

(making 40,000 cases) and were able to de�ne 28 sub-groups and contribute valuable

insight on bene�ts and risks of aspirin after ischaemic stroke for small subgroups

of patients for whom the individual trials did not contain enough cases to arrive at

�rm conclusions (Chen et al. [2000]). The di�culties of di�erent studies de�ning

di�erent outcome measures is being addressed by the Core Outcome Measures in

E�ectiveness Trials (COMET) initiative launched in 2010. COMET facilitates the

development of agreed standardised minimum sets of outcomes to be measured and

reported in all clinical trials, audits of practice or other forms of research for a spe-

ci�c condition. Outcomes in a particular study are not restricted to those in the

core outcome set, but there is an expectation that the core outcomes will also be
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collected and reported to allow the results of trials and other studies to be compared,

contrasted and combined as appropriate (Williamson et al. [2012]).

7.7.5 Using a linear model, what predicts long-term survival after

a cardiac event or procedure, at population level?

Using a Cox model, a linear model for survival, it was discovered that �tness cate-

gory, secondary prevention medications (statin, aspirin and ACE inhibitor), diagno-

sis, age and sex were associated with cardiovascular mortality after a cardiac event or

procedure at population level. All cause mortality was associated with these same

variables, and in addition, co-morbidity and systolic blood pressure. It was also

found that after adjusting for �tness, BMI was not associated with either cardiovas-

cular or all-cause mortality after a cardiac event or procedure. Since the Cox model

is a linear model, its parameters have a straightforward interpretation as hazard

ratios, which can be used to predict the likely survival experience of an individual

one the value of their variables is known.

7.7.6 Can a non-linear arti�cial neural network be used to model

long-term survival after a cardiac event or procedure?

The particular form of ANN selected for use in this study had previously been used

on a Cancer data set, and was selected for ease of comparison. As with the cancer

data set, this ANN was able to model survival. and the concordance of the survival

probability distribution produced with the Kaplan-Meier estimate was as good as

that of the Cox model

7.7.7 How do linear and non-linear models compare in modelling

the survival and hazard of a population who have experienced

a a cardiac event or procedure?

The concordance of the survival probability distribution produced by the ANN with

the Kaplan-Meier estimate was as good as that of the Cox model,

When the Cox and ANN survival models produced hazard rates for subsets of in-

dividuals who all shared the same values of explanatory variables, the Cox model

was constrained by its proportional hazards assumption, but the ANN had no such

constraint. Where the hazards modelled were those for groups of patients whose

explanatory variables di�ered only in one variable, hypotheses about the e�ects of

di�erent explanatory variables and interactions between them could be formed, as
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described above. This is the �rst time an ANN survival model has been used in this

way.

7.7.8 What is the potential for this research to inform policy for

those who have experienced a a cardiac event or procedure?

Cardiovascular disease is a well-studied disease. Nevertheless, its context is con-

stantly changing, with new forms of clinical management and de�nitions, such as

the rede�nition of myocardial infarction in the year 2000 and in 2012 (Thygesen

et al. [2012]). The hypotheses generated using the ANN could be tested, given su�-

cient cases, and the remarks made above about the pooling of data hold for this case,

too. There is a cardiac surgery register (Bridgewater et al. [2010]), but its focus is

quality and short term survival and not all the patients in cardiac rehabilitation will

have had surgery.

Hip to waist ratio and BMI are not independent of �tness and whenever the prog-

nostic power of the former is suspected, cardiorespiratory �tness should always be

measured to discriminate between these indicators. Caution should be exercised in

attributing causation to BMI and advice to adjust BMI to reduce reduce mortality in

cardiovascular patients is not supported by this research. However, the promotion

of �tness to reduce mortality in Cardiovascular patients is well supported by this

research.

7.8 Future research

The research presented here has some limitations which provide opportunity for

further research. Whilst the use of non-linear models did provide additional insight,

their e�cacy in tailoring interventions to patients has not yet reached the point of

informing policy or useful application in clinical practice.

7.8.1 BeST back pain trial

The BeST study, with 701 participants, is described as a large-scale randomised

controlled trial (Lamb et al. [2010a]). Whilst this study size was appropriate for the

demonstration of long-term e�ectiveness and cost e�ectiveness of CBA intervention

at population level, it has (especially with only 407 with complete observations)

constrained the usefulness of the division of the patient population into classes us-

ing LCA. In this respect, the ANN was a more successful non-linear model, since

its superior ability to predict recovery makes it a candidate for use in aiding clinical
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decisions about the treatment most likely to be e�ective for a given individual. How-

ever, with an accuracy of 61% its usefulness is limited. Larger data sets would enable

the assessment of these non-linear models for use clinically. Larger data sets might

include similar sized data sets with fewer missing values, or data sets with similar

levels of missingness and more participants. As has been discussed previously, it can

be hard to establish with certainty that missing data are missing at random, and

biasses can be introduced in data sets with missing observations.

LCA and ANNs are more frequently used in very large data sets (Mitchell

[1999]) where the use of standard statistical analyses becomes problematic: small

e�ects can be found with very large sample sizes and it is important to recognize

that a statistically signi�cant �nding may not be meaningful or useful. Variance

diminishes as the sample size increases, but bias stays constant and when the bias

is large, a small truly random sample or randomized study can be more valuable.

One very large database of observational clinical data is the Clinical Practice Re-

search Datalink (CPRD, formerly the General Practice Research Database, GPRD)

which makes available anonymised data from the GP Practices which are registered

with it. There is also an NHS Data linkage service at the Health and Social care

Information Centre which is able to link CPRD data and Hospital Episode Statistics

(HES) data in a suitably anonymised form, or to link study-collected data or dis-

ease register data with CPRD and HES data. HES is a data warehouse containing

details of all admissions, outpatient appointments and A&E attendances at NHS

hospitals in England, collected during a patient's time at hospital and is submitted

to allow hospitals to be paid for the care they deliver. The use of general medical

or administrative data sources must be approached with caution, however, since its

primary purpose is not research but administration and the needs for accuracy may

di�er in the details between these two purposes. For this reason, any study using

these kinds of data needs to include a practitioner who can give appropriate insight

into the likely accuracy of the variables, data quality control and reasons for missing

data. The UK's national health service puts it in a unique position with respect to

the possibility of unselected medical data, but it should be remembered that CPRD

and HES data is observational, and the usual cautions with respect to bias in obser-

vational studies apply (Hammer et al. [2009]).

The increasing adoption of core outcome measures in e�ectiveness trials

(COMET) is making it easier to combine the results of several trials in a speci�c dis-

ease group, since the agreed measures are reported alongside the researchers' other
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outcomes. The repository above can take advantage of the fact that standard out-

come measures have been proposed for low back pain research (Dayo et al. [1988]),

speci�cally: bothersomeness or severity and frequency of LBP; RMQ or Oswestry

Disability questionnaire (Roland and Fairbank [2000], Maughan and Lewis [2010]);

SF-12 or EuroQoL; days of work absenteeism, cut down activities and bed rest; and

a single question on overall satisfaction. However, the ability to undertake sub-group

analysis on such data may not be straightforward, and the cautions issued for sub-

group analysis in Cochrane review meta-analyses should be heeded (Higgins and

Green [2011]). There may not be su�cient detail given in di�ering studies to be

certain that the patients truly belong in the same sub-group, which may bias the

analysis. It is important to consider whether the di�erences between sub-groups are

clinically plausible, are supported by other evidence, or support di�erent recommen-

dations.

The Low Back Pain Repository project to collect anonymised data of therapist-

delivered intervention for low back pain, currently has more than 9,000 cases in

the repository and the aim is to reach 10,000. One challenge here is that, despite

standard outcome measures having been proposed for low back pain research, even

when the same or similar patient characteristics and outcomes were measured, the

instruments for measuring them are not all the same, and very few measure trou-

blesomeness. The repository divides the measures into domains, and some work to

understand how these individual measures relate to each other will be needed. It

will be interesting to discover how troublesomeness is related to the other measures.

If it proves possible to model a proxy to troublesomeness, it will be possible vali-

date these result on trials with troublesomeness recorded and also on these proxy

outcomes. In addition not all interventions have been the same, so uncovering the

similarity and di�erences of patient responses to disparate interventions may be chal-

lenging. Another challenge is the heterogeneity in the follow-up times and how these

might be robustly rescaled to match. Since the data is anonymised, there is no way

to know whether the same individual is represented multiple times in di�erent trials,

and to date the age distribution has not matched that in the population at large.

Nevertheless, there is signi�cant opportunity for validating a classi�cation approach

in such a large database.

The burden of data collection on both study participants and researchers can

have an e�ect of the rates of missingness, so it may be better to collect those vari-

ables known to be informative and make e�ort to avoid missing data, than to try to
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collect everything and risk much missingness. Exploration of the repository or other

data sets present an opportunity to reveal what the minimal e�ective data collection

would be to inform future research.

Research into a classi�cation approach to tailoring interventions to patients

with low back pain using LCA would be aided by a more extensive data set. Method-

ological advances which allow multiple imputation and robust pooling for non-linear

models would like LCA and ANN would help to make best use of the relatively small

data sets which are able to be collected during back pain intervention trials.

7.8.2 Basingstoke & Alton cardiac rehabilitation

Currently there is not a core outcome set in place for cardiac arrest clinical trials but

there is a COMET initiative underway to rank the importance of potential outcome

measures with the use of a Delphi process for all key stakeholder groups and to host

a consensus meeting involving all key stakeholders to �nalise a core outcome set

(Collaboration [Accessed 25/05/2013]). Another source of data are disease registers.

There is an adult cardiac surgery register (Bridgewater et al. [2010]), but not all

patients who have a cardiac event or procedure have surgery. The purpose of the

cardiac register is to measure the quality of care of adult cardiac surgery in the UK

and provide information for quality improvement and research, so it may nor be ideal

for investigation into long-term survival for a more general population of patients

who have had a cardiac event or procedure.

For the ANN survival analysis, Bayesian methods for learning could be ap-

plied as they have been in other studies. De�ning a suitable prior may reveal more

detail, especially since a Bayesian approach might help overcome some of the limi-

tations of a small data set (Eleuteri et al. [2007b], Taktak et al. [2008]). This ANN

analysis has relied on identifying prognostic factors using the Cox model as in Joshi

et al. [2005], but variable selection can be done using the ANN (Bourdès et al. [2007]),

and in Biglarian et al. [2010] ANNs were compared to a Weibull model for deter-

mining prognostic factors in gastric cancer patients. The normalised importance

was the measure of signi�cance for the ANN and the p-value for the Weibull model.

The markers were broadly the same, but order of signi�cance was di�erent. The

performance as measured by correct prediction was superior in the ANN, but both

models were good (≥ 74% for death, survival and total). In the work of Eleuteri &

Taktak, automatic relevance determination was used, a Bayesian method described

in Bishop [1996] capable of determining the relative importance of input variables,

202



and allowing the inclusion of a large number of inputs without fear of over�tting

(MacKay [1994]). It is also possible to assess the saliency of each weight by setting

to zero and examining the change in the cost function. A number of feature-salience

ranking techniques are discussed in Wang et al. [2000].

Development of good methods for interpreting ANNs could make them far

more useful: a common problem is that users, and particularly clinicians, are quite

reasonably reluctant to trust important decisions to systems they do not understand

(Plate et al. [2000]). Illustrating with a data set on squamous-cell lung cancer, Plate

et al. showed that plotting the e�ect on the output of a particular input variable

for some selection of points in the input space can reveal which variables contribute

to the output and even indicate interactions. There have been attempts to interpret

the output of an ANN using rule extraction from the trained network, and there

is a survey of these methods in Saad and WunschII [2007]. In addition, the ROC

framework has been extended to evaluate performance of time-to-event data and a

framework developed to represent the operation of ANNs as low-order Boolean rules

that can be checked against domain expert knowledge (Lisboa et al. [2007])

It has recently been shown that another form of machine learning, support vector

machines (SVM), can be adapted to perform survival analysis (Lama et al. [2011]).

The basic SVM is a classi�cation machine, but relevance vector machines (RVM)

is an extension with a Bayesian learning algorithm providing posterior probabilistic

outputs. Using a partial logistic framework, Lama et al. used SVMs to analyse data

from a head and neck cancer trial.

Missing data is often a challenge in real-world applications. In an ANN-based

decision support system, missing values in a key variable were substituted using the

mean value, a random value, nearest neighbour or a neural network estimate and were

compared to omitting the variable in training the decision support ANN (Pesonen

et al. [1998]). The imputation methods gave broadly similar accuracy and omitting

the variable from the input of the decision support ANN also gave acceptable results.

Machine learning, including ANNs, can be used as techniques for providing imputed

values before analysis (Jerez et al. [2010]).

Research into long-term survival following a cardiac event or procedure could

be extended by using larger data sets and by extending the ANN approach into a

Bayesian framework. Visualisation and interpretability of outputs is vital in order

to make non-linear models acceptable for use in health care settings, especially if
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used in decision support for treatment choices.

7.9 Summary

In the case of patients with non-speci�c low back pain, a cognitive behavioural ap-

proach was previously found to be e�ective on average and cost e�ective. The work

in this thesis has shown that it is possible to use the patient characteristics that the

intervention was designed to tackle to divide the patient cohort into classes. There

is some evidence that there is a di�erential response to the intervention, although

the evidence here is not robust. However, the ability of these methods to pick out

the same e�ect modi�ers as independent work on the same data set gives some ev-

idence that the methods are �nding true e�ects. One avenue of con�rmatory work

could be the use of the back pain repository to test out the hypothesis that classes

of patients can be identi�ed such that class membership is associated with di�ering

outcomes following a cognitive behavioural approach. The same methodology could

be used to evaluate the division of patients into classes and investigate association

with outcome for other interventions.

Arti�cial neural networks have been applied to predicting outcomes based on the

same characteristics that the cognitive behavioural intervention was designed to

tackle. Compared to a logistic regression on these variables, and compared to a

logistic regression using class membership based on these variables, predictions from

the ANN were superior. The same methodology could be used to evaluate the likely

response of patients to other interventions, and move towards a tailoring of inter-

ventions for patients that may increase the rate of recovery from �rst-treatments by

distinguishing which of a range of treatments is most likely to be e�ective for a given

individual.

In the case of patients recovering from a cardiac event or procedure, the standard sur-

vival analysis has shown that �tness is an invaluable prognostic indicator for both

cardiovascular and all-cause mortality. Furthermore, when �tness is measured as

V O2max, then BMI is no longer statistically signi�cant as a prognostic factor. The

fact that BMI ceased to be a signi�cant predictor of prognosis when �tness was mea-

sured in cardiac rehabilitation has important implications for other areas of medicine

where BMI is a prognostic factor. It is important that proper distinction is made

between correlated variables like BMI and �tness to ensure that patients are given

correct advice. If prognostic value ascribed to BMI is actually the e�ect of �tness,

but this was not measured, it may go some way to explaining the obesity paradoxes
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being seen in (Ryan [2005], von Haehling et al. [2011]), as people attempting to lose

weight typically increase their activity leading to an improvement in �tness, inde-

pendent of any weight loss. In future work, whenever BMI and hip to waist ratio

are measured, �tness should also be measured so that the correct factors can be

identi�ed and appropriate health advice can be given and optimal interventions may

be designed.

An ANN has been successfully used to model survival in this cardiovascular re-

habilitation cohort. The predicted survival by this method was a good �t to the

Kaplan-Meier estimate, and more �exible than the Cox model �t. The hazards over

time for individual covariates have been explored (as in Lisboa et al. [2009]) giving

rise to testable hypotheses. These results suggest that the e�ect on the hazard of

ACE inhibitors is modi�ed by Statins and that the response of un�t patients over

the age of 70 years is di�erent from their �tter counterparts in the age range 60-69

years. Extensions to this work would ideally include a larger data set where each

of the sets of variable combinations was adequately represented, particularly women

and the age groups under 60 years about which the ANN approach can say little.

In addition more detail may allow the testing of the hypotheses about interactions

between variables. A Bayesian approach could be taken and variable selection could

be performed within the ANN framework instead of adopting the variables selected

in the optimal Cox model. Other machine learning techniques, such as radial basis

function networks could be explored.

In the following chapter, conclusions are drawn on the value of using non-

linear models to explore complex health care data sets.
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Chapter 8

Conclusion

It is well-established that health care and health itself are complex systems and they

are therefore expected to behave in a non-linear manner. Many of the conventional

models used for health care data are linear. The aim of this research was to explore

whether using non-linear models could better model health care and so capture the

information contained in health care data sets. In order to achieve this goal, this

research compared linear models with non-linear models for two health care data

sets of complex interventions. This research has attempted to contribute to an in-

crease in understanding of the complex interaction within people, within complex

interventions and between people and the interventions, particularly in pursuit of

decision support in tailoring interventions to patients and generation of hypotheses.

Latent class analysis was able to identify classes of patients with similar char-

acteristics to each other and these classes were related to the patients response to a

complex intervention for low back pain. It was not possible to identify with certainty

the speci�c responses (positive or negative) of particular classes, which limited the

use of the classi�cation for tailoring interventions to patients. Tailoring decisions

were best supported by the use of an arti�cial neural network, since its ability to

predict likely outcome for an individual was superior to the other models investi-

gated. The ability of these models to inform policy on the allocation of treatments

for low back pain was limited by the modest accuracy and missing data. Neverthe-

less, it was demonstrated that this approach has potential, and that the non-linear

models o�ered more accurate predictions than the linear model.

After a cardiac event or procedure cardiovascular mortality in the long-term

is predicted by age, sex, �tness, secondary prevention medications and speci�c diag-

nosis of cardiac event or procedure. All-cause survival in this population is predicted
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by these same variable with the addition of co-morbidity and systolic blood pressure.

There was a di�erent survival time for those who completed and did not complete

the rehabilitation programme. For those who did complete the rehabilitation, �tness

gained during the programme predicted increased survival times, and �tness was a

more signi�cant predictor of survival than BMI. using the same explanatory vari-

ables, the non-linear arti�cial neural network model was able to predict the survival

probability as well as the linear model. The non-linear model of hazard rate gave

rise to a number of hypotheses about interactions between covariates which may

a�ect, which were nor obtainable from the linear model. These models are not yet

su�ciently robust to inform policy, but if visualization of the model outputs was

developed and the hypotheses generated were tested, then these models could be

used. The non-linear model o�ered new hypotheses that are pertinent to tailoring

interventions to patients using phenotype, rather than genotype.

The conclusion drawn is that non-linear models are useful in the analysis of

complex health care data sets because of their ability to capture some of the com-

plexity of the data that cannot be captured by linear models.
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9.2 Diagnostic plots

9.2.1 Survival models with imputed data
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9.2.2 Plots of the multiply imputed variable distributions

For key variables with substantial proportion of missing data, the distributions of

the observed and imputed values are shown in �gures 9.1 to 9.12.
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Figure 9.1: Distribution of observed and imputed values for weight at baseline for the cardiovas-
cular rehabilitation cohort.
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Figure 9.2: Distribution of observed and imputed values for weight at graduation for the cardio-
vascular rehabilitation cohort.
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Figure 9.3: Distribution of observed and imputed values for systolic blood pressure at baseline
for the cardiovascular rehabilitation cohort.

254



Systolic blood pressure Before

D
en

si
ty

50 100 150 200 250

Imputation 1 Imputation 2

50 100 150 200 250

Imputation 3 Imputation 4

50 100 150 200 250

Imputation 5

Imputation 6 Imputation 7 Imputation 8 Imputation 9 Imputation 10

Imputation 11 Imputation 12 Imputation 13 Imputation 14 Imputation 15

Imputation 16

50 100 150 200 250

Imputation 17 Imputation 18

50 100 150 200 250

Imputation 19 Imputation 20

Observed Imputed

Figure 9.4: Distribution of observed and imputed values for systolic blood pressure at graduation
for the cardiovascular rehabilitation cohort.
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Figure 9.5: Distribution of observed and imputed values for �tness category at graduation for
the cardiovascular rehabilitation cohort.
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Figure 9.6: Distribution of observed and imputed values for anxiety at graduation for the cardio-
vascular rehabilitation cohort.
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Figure 9.7: Distribution of observed and imputed values for aspirin prescription at graduation
for the cardiovascular rehabilitation cohort.
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Figure 9.8: Distribution of observed and imputed values for ACE inhibitor prescription at grad-
uation for the cardiovascular rehabilitation cohort.
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Figure 9.9: Distribution of observed and imputed values for beta blocker prescription at gradua-
tion for the cardiovascular rehabilitation cohort.
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Figure 9.10: Distribution of observed and imputed values for statin prescription for the cardio-
vascular rehabilitation cohort.
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Figure 9.11: Distribution of observed and imputed values for deprivation at baseline for the
cardiovascular rehabilitation cohort.
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Figure 9.12: Distribution of observed and imputed values for occupation at baseline for the
cardiovascular rehabilitation cohort.
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9.2.3 Diagnostic plots for the proportional hazards assumption

These are plots of the Schoenfeld residuals versus log(time) for each of the predictors

in the model including a lowess smoothing curve. See page 80 for an introduction.
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Figure 9.13: Schoenfeld residuals versus log(time)for ACE inhibitor, Aspirin and Statin prescrip-
tions.
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Figure 9.14: Schoenfeld residuals versus log(time). Diagnosis 1 is myocardial infarction, 2 is
coronary artery bypass graft, 3 is percutaneous coronary intervention, 4 is angina, 8 is myocardial
infarction and percutaneous coronary intervention and 6 is other cardiac diagnoses.
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Figure 9.15: Schoenfeld residuals versus log(time). Age 1 is under 50 years, 2 is 50-59, 3 is 60-69
and 4 is 70 years and over. Sex 2 is female and �tness at baseline 1 is high, 2 is mid and 3 is low.
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