
http://wrap.warwick.ac.uk/ 

 
 

 
 
 
 
 
 
 
 
Original citation: 
LHCb Collaboration (Including: Back, John J., Craik, Daniel, Dossett, D., Gershon, 
Timothy J., Kreps, Michal, Latham, Thomas, Pilar, T., Poluektov, Anton, Reid, Matthew 
M., Silva Coutinho, R., Wallace, Charlotte, Whitehead, M. (Mark) and Williams, M. P.). 
(2013) Measurement of CP Violation in the Phase Space of B±→K±π+π− and B±→K±K+K− Decays. 

Physical Review Letters, Volume 111 (Number 10). Article number 101801 

Permanent WRAP url: 
http://wrap.warwick.ac.uk/58387  
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the 
University of Warwick available open access under the following conditions. 
 
This article is made available under the Creative Commons Attribution- 3.0 Unported 
(CC BY 3.0) license and may be reused according to the conditions of the license. For 
more details see http://creativecommons.org/licenses/by/3.0/ 
A note on versions: 
The version presented in WRAP is the published version, or, version of record, and may 
be cited as it appears here. 
 
For more information, please contact the WRAP Team at: publications@warwick.ac.uk  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/18328156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/58387
http://creativecommons.org/licenses/by/3.0/
mailto:publications@warwick.ac.uk


Measurement ofCPViolation in the Phase Space ofB� ! K��þ�� andB� ! K�KþK� Decays

R. Aaij et al.*

(LHCb Collaboration)
(Received 5 June 2013; published 3 September 2013)

The charmless decays B� ! K��þ�� and B� ! K�KþK� are reconstructed using data, correspond-

ing to an integrated luminosity of 1:0 fb�1, collected by LHCb in 2011. The inclusive charge asymmetries of

these modes are measured as ACPðB�!K��þ��Þ¼0:032�0:008ðstatÞ�0:004ðsystÞ�0:007ðJ=cK�Þ
and ACPðB� ! K�KþK�Þ ¼ �0:043� 0:009 ðstatÞ � 0:003 ðsystÞ � 0:007ðJ=cK�Þ, where the third

uncertainty is due to the CP asymmetry of the B� ! J=cK� reference mode. The significance of

ACPðB� ! K�KþK�Þ exceeds three standard deviations and is the first evidence of an inclusive CP

asymmetry in charmless three-body B decays. In addition to the inclusive CP asymmetries, larger

asymmetries are observed in localized regions of phase space.

DOI: 10.1103/PhysRevLett.111.101801 PACS numbers: 13.25.Hw, 11.30.Er

Violation of the combined symmetry of charge conjuga-
tion and parity (CP violation) is described in the standard
model by the Cabibbo-Kobayashi-Maskawa quark-mixing
matrix [1,2]. CP violation is experimentally well estab-
lished in the K0 [3], B0 [4,5], and B� [6] systems. One
category of CP violation, known as direct CP violation,
requires two interfering amplitudes with different weak and
strong phases to be involved in the decay process [7]. Large
CP violation effects have been observed in charmless
two-body B-meson decays such as B0 ! K��� [8,9] and
B0s ! K��� [10]. However, the source of the strong
phase difference in these processes is not well understood,
which limits the potential to use these measurements to
search for physics beyond the standard model. One possible
source of the required strong phase is from final-state
hadron rescattering, which can occur between two or more
decay channels with the same flavor quantum numbers,
such as B� ! K��þ�� and B� ! K�KþK� [11–14].
This effect, referred to as ‘‘compoundCP violation’’ [15] is
constrained by CPT conservation so that the sum of the
partial decay widths, for all channels with the same final-
state quantum numbers related by the S matrix, must be
equal for charge-conjugated decays.

Decays of B mesons to three-body hadronic charmless
final states provide an interesting environment to search for
CP violation through the study of its signatures in the
Dalitz plot [16]. Theoretical predictions are mostly based
on quasi-two-body decays to intermediate states, e.g.,
�0K� and K�0ð892Þ�� for B� ! K��þ�� decays and
�K� for B� ! K�KþK� decays (see, e.g., Ref. [17]).
These intermediate states are accessible through amplitude

analyses of data, such as those performed by the Belle
and BABAR Collaborations, who reported evidence of
CP violation in the intermediate channel �0K� [18,19]
in B� ! K��þ�� decays and more recently in the chan-
nel �K� [20] in B� ! K�KþK� decays. However, the
inclusive CP asymmetry of B� ! K��þ�� and B� !
K�KþK� decays was found to be consistent with zero.
In this Letter, we report measurements of the inclu-

sive CP-violating asymmetries in B� ! K��þ�� and
B� ! K�KþK� decays with unprecedented precision.
(The inclusion of charge-conjugate decay modes is implied
except in the asymmetry definitions.) We also study their
asymmetry distributions across the phase space. The CP
asymmetry in B� decays to a final state f� is defined as

ACPðB� ! f�Þ ¼ �½�ðB� ! f�Þ;�ðBþ ! fþÞ�; (1)

where �½X; Y� � ðX� YÞ=ðX þ YÞ is the asymmetry
operator, � is the decay width, and the final states are
f� ¼ K��þ�� or f� ¼ K�KþK�.
The LHCb detector [21] is a single-arm forward spec-

trometer covering the pseudorapidity range 2<�< 5,
designed for the study of particles containing b or c quarks.
The analysis is based on pp collision data, corresponding
to an integrated luminosity of 1:0 fb�1, collected in 2011 at
a center-of-mass energy of 7 TeV.
Events are selected by a trigger [22] that consists of a

hardware stage, based on information from the calorimeter
and muon systems, followed by a software stage, which
applies a full event reconstruction. Candidate events are
first required to pass the hardware trigger, which selects
particles with large transverse energy. The software trigger
requires a two-, three-, or four-track secondary vertex with
a high sum of the transverse momenta pT of the tracks and
a significant displacement from the primary pp interaction
vertices (PVs). At least one track should have pT >
1:7 GeV=c and �2

IP with respect to any primary vertex
greater than 16, where �2

IP is defined as the difference
between the �2 of a given PV reconstructed with and
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without the considered track, IP is the impact parameter.
A multivariate algorithm is used for the identification of
secondary vertices consistent with the decay of a b hadron.

A set of off-line selection criteria is applied to recon-
struct B mesons and suppress the combinatorial back-
grounds. The B� decay products are required to satisfy a
set of selection criteria on their momenta, transverse mo-
menta, the �2

IP of the final-state tracks, and the distance of

closest approach between any two tracks. The B candidates
are required to have pT > 1:7 GeV=c, �2

IP < 10 (defined

by projecting the B candidate trajectory backwards from
its decay vertex) and displacement from any PV greater
than 3 mm. Additional requirements are applied to varia-
bles related to the B-meson production and decay, such
as quality of the track fits for the decay products, and the
angle between the B candidate momentum and the direc-
tion of flight from the primary vertex to the decay vertex.
Final-state kaons and pions are further selected using
particle identification information, provided by two
ring-imaging Cherenkov detectors [23]. The selection is
common to both decay channels, except the particle iden-
tification selection, which is specific to each final state.
Charm contributions are removed by excluding the regions
of �30 MeV=c2 around the D0 mass in the two-body
invariant masses m��, mK�, and mKK. The contribution
of the B� ! J=cK� decay is also excluded from the
B� ! K��þ�� sample by removing the mass region
3:05<m�� < 3:15 GeV=c2.

The simulated events used in this analysis are generated
using PYTHIA 6.4 [24] with a specific LHCb configuration
[25]. Decays of hadronic particles are produced by EVTGEN

[26], in which final-state radiation is generated using
PHOTOS [27]. The interaction of the generated particles

with the detector and its response are implemented using
the GEANT 4 toolkit [28], as described in Ref. [29].

Unbinned extended maximum likelihood fits to the mass
spectra of the selected B� candidates are performed. The
B� ! K��þ�� and B� ! K�KþK� signal components
are parametrized by so-called Cruijff functions [30] to

account for the asymmetric effect of final-state radiation on
the signal shape. The combinatorial background is described
by an exponential function, and the background due to
partially reconstructed four-body B decays is parametrized
by an ARGUS function [31] convolved with a Gaussian
resolution function. Peaking backgrounds occur due to decay
modes with one misidentified particle and consist of the
channels B� ! KþK���, B� ! �þ����, and B� !
�0ð�0�ÞK� for the B� ! K��þ�� mode, and B� !
KþK��� for the B� ! K�KþK� mode. The shapes of
the peaking backgrounds are obtained from simulation.
The peaking background yields are obtained from simulation
to be N�0K ¼ 2140� 154 (most of which lie at masses

lower than the signal), N��� ¼ 528� 58, and NKK� ¼
219� 25 for B� ! K��þ��, and NKK� ¼ 192� 20
for B� ! K�KþK� decays. The invariant mass spectra
of the B�!K��þ�� and B�!K�KþK� candidates are
shown in Fig. 1.
The mass fits of the two samples are used to obtain the

signal yields NðK��Þ ¼ 35901� 327 and NðKKKÞ ¼
22119� 164, and the raw asymmetries, ArawðK��Þ ¼
0:020� 0:007 and ArawðKKKÞ ¼ �0:060� 0:007, where
the uncertainties are statistical. In order to determine the
CP asymmetries, the measured raw asymmetries are cor-
rected for effects induced by the detector acceptance and
interactions of final-state particles with matter, as well as
for a possible B-meson production asymmetry. The decay
products are regarded as a pair of charge-conjugate had-
rons hþh� ¼ �þ��, KþK�, and a kaon with the same
charge as the B� meson. The CP asymmetry is expressed
in terms of the raw asymmetry and a correction A�,

ACP ¼ Araw � A�; A� ¼ ADðK�Þ þ APðB�Þ: (2)

Here, ADðK�Þ is the kaon detection asymmetry, given in
terms of the charge-conjugate kaon detection efficiencies
"DðK�Þ by ADðK�Þ ¼ �½"DðK�Þ; "DðKþÞ�, and APðB�Þ
is the production asymmetry, defined from the B� produc-
tion rates RðB�Þ as APðB�Þ ¼ �½RðB�Þ; RðBþÞ�.
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FIG. 1 (color online). Invariant mass spectra of (a) B� ! K��þ�� decays and (b) B� ! K�KþK� decays. The left panel in each
figure shows the B� modes, and the right panel in each shows the Bþ modes. The results of the unbinned maximum likelihood fits are
overlaid. The main components of the fit are also shown.
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The correction term A� is measured from data using a
sample of approximately 6:3�104 B� ! J=c ð�þ��ÞK�
decays. The B�!J=cK� sample passes the same trigger,
kinematic, and kaon particle identification selections as
the signal samples, and it has a similar event topology.
The kaons from B� ! J=cK� decay also have similar
kinematics in the laboratory frame to those from the B� !
K��þ�� and B� ! K�KþK� modes. The correction is
obtained from the raw asymmetry of the B� ! J=cK�
mode as

A� ¼ ArawðJ=cKÞ � ACPðJ=cKÞ; (3)

using the world average of the CP asymmetry
ACPðJ=cKÞ ¼ ð0:1� 0:7Þ% [32]. The CP asymmetries
of the B� ! K��þ�� and B� ! K�KþK� channels
are then determined using Eqs. (2) and (3).

Since the detector efficiencies for the signal modes are
not flat in the corners of the Dalitz plot and the raw
asymmetries are also not uniformly distributed, an accep-
tance correction is applied to the integrated raw asymme-
tries. It is determined by the ratio between the B� and Bþ
average efficiencies in simulated events, reweighted to
reproduce the population in the Dalitz plot of signal data.
Furthermore, the detector acceptance and reconstruction
efficiency depend on the trigger selection. The efficiency
of the hadronic hardware trigger is found from calibration
data to have a small charge asymmetry for final-state
kaons. Therefore, the data are divided into two samples
with respect to the hadronic hardware trigger decision:
events with candidates selected by the hadronic trigger
and events selected by other triggers independently of the
signal candidate. In order to apply Eq. (3) to B� !
K�KþK� events selected by the hadronic hardware trig-
ger, the difference in trigger efficiencies caused by the
presence of three kaons compared to one kaon is taken
into account. The acceptance correction and subtraction of
A� are performed separately for each trigger configuration.
The trigger-averaged value of the asymmetry correction
is A� ¼ �0:014� 0:04, which is consistent with other
LHCb analyses [6,33,34]. The integrated CP asymmetries
are then the weighted averages of the CP asymmetries for
the two trigger samples.

The systematic uncertainties on the asymmetries are
related to the mass fit models, possible trigger asymmetry,
and phase-space acceptance correction. In order to esti-
mate the uncertainty due to the choice of the signal mass
shape, the initial model is replaced with the sum of a
Gaussian and a crystal ball function [35]. The uncertainty
associated with the combinatorial background model is
estimated by repeating the fit with a first-order polynomial.
We evaluate three uncertainties related to the peaking
backgrounds: one due to the uncertainty on their yields,
another due to the difference in mass resolution between
simulation and data, and a third due to their possible non-
zero asymmetries. The deviations from the nominal results

are accounted for as systematic uncertainties. The system-
atic uncertainties related to the possible asymmetry
induced by the trigger selection are of two kinds: one
due to an asymmetric response of the hadronic hardware
trigger to kaons and a second due to the choice of sample
division by trigger decision. The former is evaluated by
reweighting the B� ! J=cK� mode with the charge-
separated kaon efficiencies from calibration data. The
latter is determined by varying the trigger composition of
the samples in order to estimate the systematic differences
in trigger admixture between the signal channels and
the B� ! J=cK� mode. Two distinct uncertainties are
attributed to the phase-space acceptance corrections: one is
obtained from the uncertainty on the detection efficiency
given by the simulation, and the other, due to the choice of
binning, is evaluated by varying the binning of the accep-
tance map. The systematic uncertainties for the measure-
ments of ACPðB�!K��þ��Þ and ACPðB�!K�KþK�Þ
are summarized in Table I.
The results obtained for the inclusiveCP asymmetries of

the B� ! K��þ�� and B� ! K�KþK� decays are

ACPðB� !K��þ��Þ¼ 0:032�0:008�0:004�0:007;

ACPðB� !K�KþK�Þ¼�0:043�0:009�0:003�0:007;

where the first uncertainty is statistical, the second is the
experimental systematic, and the third is due to the CP
asymmetry of the B� ! J=cK� reference mode [32].
The significances of the inclusive charge asymmetries,
calculated by dividing the central values by the sum in
quadrature of the statistical and both systematic uncertain-
ties, are 2.8 standard deviations (�) for B� ! K��þ��
and 3:7� for B� ! K�KþK� decays.
In addition to the inclusive charge asymmetries, we also

study the asymmetry distributions in the two-dimensional
phase space of two-body invariant masses. The
background-subtracted Dalitz plot distributions of the
signal region, defined as the mass region within three
Gaussian widths from the signal peak, are divided into
bins with equal numbers of events in the combined B�
and Bþ samples. The background under the signal is
estimated from the sideband distributions. A raw asymme-
try variable AN

raw ¼ �½NðB�Þ; NðBþÞ� is computed from

TABLE I. Systematic uncertainties on ACPðK��þ��Þ and
ACPðK�KþK�Þ. The total systematic uncertainties are the sum
in quadrature of the individual contributions.

Systematic uncertainty ACPðK��Þ ACPðKKKÞ
Signal model 0.0010 0.0002

Combinatorial background 0.0006 <0:0001
Peaking background 0.0007 0.0001

Trigger asymmetry 0.0036 0.0019

Acceptance correction 0.0012 0.0019

Total 0.0040 0.0027
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the number NðB�Þ of negative and positive entries in each
bin of the background-subtracted Dalitz plots.

The distributions of the AN
raw variable in the Dalitz plots

of B� ! K��þ�� and B� ! K�KþK� are shown in
Fig. 2, where the B� ! K�KþK� Dalitz plot is symme-
trized and its two-body invariant mass squared variables
are defined asm2

KþK� low
<m2

KþK�high
. For B�!K��þ��,

we identify a positive asymmetry located in the low �þ��
invariant mass region, around the �ð770Þ0 resonance, as
seen by Belle [18] and BABAR [19], and above the f0ð980Þ
resonance. This can also be seen in the inset figure of the
�þ�� invariant mass projection, where there is an excess
of B� candidates. No significant asymmetry is present in
the low-mass region of the K��� invariant mass projec-
tion. The AN

raw distribution of the B� ! K�KþK� mode
reveals an asymmetry concentrated at low values of
m2

KþK� low
and m2

KþK� high
in the Dalitz plot. The distribu-

tion of the projection of the number of events onto the
m2

KþK� low
invariant mass (inset in the right plot of Fig. 2)

shows that this asymmetry is not related to the
�ð1020Þ resonance but is instead located in the region
1:2<m2

KþK� low
< 2:0 GeV2=c4.

The CP asymmetry in each of the channels is further
studied in the region where the raw asymmetry is observed
to be large. The B� ! K�KþK� region m2

KþK� high
<

15 GeV2=c4 and 1:2<m2
KþK� low

<2:0GeV2=c4 is defined

such that the �ð1020Þ resonance is excluded. For the
B� ! K��þ�� mode, we measure the CP asymmetry
of the region m2

K��� < 15 GeV2=c4 and 0:08<m2
�þ�� <

0:66 GeV2=c4, which spans the lowest �þ�� masses,
including the �ð770Þ0 resonance. Unbinned extended maxi-
mum likelihood fits are performed to the mass spectra of the
candidates in the two regions, using the same models as the
global fits. The spectra are shown in Fig. 3. The resulting
signal yields and raw asymmetries for the two regions
are NregðK��Þ ¼ 552� 47 and A

reg
rawðK��Þ ¼ 0:687�

0:078 for the B� ! K��þ�� mode, and NregðKKKÞ ¼
2581� 55 and A

reg
rawðKKKÞ ¼ �0:239� 0:020 for the
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B� ! K�KþK� mode. The CP asymmetries are obtained
from the raw asymmetries by applying an acceptance cor-
rection and subtracting the detection and production asym-
metry correction A� obtained from B� ! J=cK� decays.
The validity of the global A� from B� ! J=cK� decays
for the results in the regions was tested by comparing the
kinematic distributions of their decay products. Systematic
uncertainties are estimated due to the signal models, trigger
asymmetry, acceptance correction for the region, and the
limited validity of Eq. (2) for large asymmetries. The local
charge asymmetries for the two regions are measured to be

Areg
CPðK��Þ ¼ 0:678� 0:078� 0:032� 0:007;

A
reg
CPðKKKÞ ¼ �0:226� 0:020� 0:004� 0:007;

where the first uncertainty is statistical, the second is the
experimental systematic, and the third is due to the CP
asymmetry of the B� ! J=cK� reference mode.

In conclusion, we have measured the inclusive CP
asymmetries of the B�!K��þ�� and B�!K�KþK�
modes with significances of 2:8� and 3:7�, respectively.
The latter represents the first evidence of an inclusive
CP asymmetry in charmless three-body B decays. These
charge asymmetries are not uniformly distributed in the
phase space. For B� ! K��þ�� decays, we observe
positive asymmetries at low �þ�� masses, around the
�ð770Þ0 resonance, as indicated by Belle [18] and
BABAR [19], and also above the f0ð980Þ resonance, where
it is not clearly associated to resonances. The asymmetry
appears only at low K��� mass around the �ð770Þ0
invariant mass. A signature of CP violation is present in
the B� ! K�KþK� Dalitz plot, mostly concentrated in
the region of low m2

KþK� low
and low m2

KþK� high
. A similar

pattern of the CP asymmetry was shown in the preliminary
results of the B� ! KþK��� and B� ! �þ���� decay
modes by LHCb [36], in which the positive asymmetries
are at low �þ�� masses and the negative at low KþK�
masses, both not clearly associated with intermediate
resonant states.

Moreover, the excess of B� ! K��þ�� decays with
respect to Bþ ! Kþ�þ�� is comparable to the excess of
Bþ ! KþKþK� decays with respect to B� ! K�KþK�.
This apparent correlation, together with the inhomogene-
ous CP asymmetry distribution in the Dalitz plot, could
be related to compound CP violation. Since the B� !
K��þ�� and B� ! K�KþK� modes have the same
flavor quantum numbers (as do the pair B� ! KþK���
and B� ! �þ����), CP violation induced by hadron
rescattering could play an important role in these charm-
less three-body B decays. In order to quantify a possible
compound CP asymmetry, the introduction of new ampli-
tude analysis techniques, which would take into account
the presence of hadron rescattering in three-body B decays,
is necessary.
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