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Abstract. 

The application of tetradentate aminoalcohol ligands to the KO
t
Bu-catalysed 

hydrogenation of benzophenone has been studied. Hydrogenation was found to 

proceed via a transfer hydrogenation process with the ligands acting as hydrogen 

donors. 

A series of bidentate and tetradentate ligands containing a variety of coordinating 

groups including amino, hydroxy, silyl, phosphine and amido functionalities have 

been prepared and applied to the transition metal-catalysed asymmetric transfer 

hydrogenation of ketones using iron, ruthenium and rhodium metals although none 

were found to be enantioselective for the hydrogenation of acetophenone. 

A series of asymmetric tethered ruthenium half sandwich complexes have been 

applied to the asymmetric pressure hydrogenation of ketones. Studies have 

investigated the effect of changing the sulfonamide group, halide and tether length 

on the activity of the catalysts. The application of an achiral tethered ruthenium half 

sandwich complex as a catalyst for the pressure hydrogenation of aldehydes is also 

reported. 

A novel synthesis of tethered ruthenium complexes using aryl substitution 

methodology has been developed and applied to the preparation of a series of novel 

complexes which were found to be highly active for asymmetric pressure 

hydrogenation of ketones. The application of the synthesis to the preparation of 

poly(methyl methacrylate) supported complexes is also discussed. Application of the 

supported catalysts to asymmetric pressure and transfer hydrogenation of 

acetophenone has shown potential for the development of an active heterogeneous 

catalyst for transfer hydrogenation of ketones in aqueous media. 
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1. Introduction. 

1.1 Chirality. 

Chirality, derived from the Greek word cheir meaning hand, is a form of 

stereoisomerism and is the structural characteristic of an object that can exist as one 

of two non-superimposable mirror images of itself. A molecule is said to be chiral if 

it can exist in a pair whereby both molecules have the same molecular formulae, but 

differ in their structural arrangement to the extent that the pair form mirror images of 

each other.
1
 Each mirror image of the compound is called an enantiomer. Chirality 

arises in a molecule when a central atom has a different atom or functionality as each 

of its substituent groups. The central atom is referred to as the chiral centre. 

It is particularly important within asymmetric synthesis to specify the absolute 

configuration of a chiral molecule at each of its chiral centres. Within a chiral 

compound each chiral centre has either ‘R’, from the Latin rectus meaning right, or 

‘S’, from the Latin sinister meaning left, configuration.
2
 These terms relate to the 

order in which substituent groups are arranged around the chiral centre and hence 

describe the configuration of the molecule at the chiral centre. An equal mixture of 

(R) and (S) enantiomers of the same compound is referred to as a racemate.  

An example of a chiral molecule is bromochlorofluoromethane 1 shown in Figure 1. 

The carbon atom at the centre of the molecule is bound to four different atoms, 

bromine, chlorine, fluorine and hydrogen, and is thus a chiral centre. To determine 

the absolute configuration of each enantiomer it is necessary to use the Cahn-Ingold-

Prelog system to assign priorities to each substituent group.
3
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Figure 1. Assignment of absolute configuration of stereochemistry in enantiomers of 

bromochlorofluoromethane 1. 

 

The priorities relate to the atomic number of each atom bound to the chiral centre. 

The atom having the highest atomic number has the highest priority. Where two 

atoms bound to the chiral centre have the same atomic number, the atomic number of 

the next atom to each in sequence is considered. When priorities have been assigned, 

the molecule is oriented with the lowest priority group pointing backwards. If the 

priorities then decrease in a clockwise manner around the chiral centre the 

configuration is R and if in an anti-clockwise manner the configuration is S. The 

enantiomeric purity of an asymmetric product is reported either as an enantiomeric 

ratio (er.) of R:S or as a percentage enantiomeric excess (ee.) using the equation: 

((proportion of most abundant enantiomer)-(proportion of least abundant 

enantiomer)/(R + S)) x 100. 

Enantiomers of a compound will have the same chemical and physical properties as 

each other, however they are optical isomers of each other. Each enantiomer will 

rotate the plane of polarised light in the opposite direction.
4
 If the light is rotated to 

the left the enantiomer is D, the dextro-rotatory enantiomer (+) and if the light is 

rotated to the right the enantiomer is L, the levo-rotatory enantiomer (-). Polarimetry 

is an analytical technique which measures the rotation of polarised light when passed 

through a chiral sample and can be used to determine which enantiomer of the 
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compound is present. The [α]D value obtained can be compared to literature 

measurements to confirm the R or S configuration of a compound. 

Many naturally occurring compounds are chiral including amino acids, sugars and 

natural products and almost all will possess the (L)-configuration in their natural 

states.
5
 Amino acids are the building blocks for proteins and enzymes within 

biological systems. Enzymes operate as biological catalysts, each exhibiting 

selectivity for a specific reaction or transformation within a biological system. The 

enzymes exhibit a preference for the reaction of one enantiomer of the starting 

material over the other to form an enantiopure product.
6 
 

1.1.1 Industrial importance of chiral compounds. 

Proteins and biological compounds are built from (L)-amino acids meaning that 

biological organisms operate within a chiral environment of a single handedness. 

This has a major impact on the design of drugs which must be compatible with this 

environment in order to work successfully. An example of this is the use of (L)-3,4-

dihydroxyphenylalanine 2 ((L)-DOPA) shown in Figure 2, which is used as a 

treatment for Parkinson’s Disease.
7
 

 

Figure 2. Structure of (L)-DOPA (2) 

 

The active compound dopamine is not able to cross the blood-brain barrier to reach 

the site of action. Dopamine is thus administered as DOPA which undergoes 

enzyme-mediated decarboxylation in the body to form dopamine. Due to the 

enantiomerically pure nature of the amino acids it is built from, the dopamine 
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decarboxylase enzyme is only active for conversion of (L)-DOPA to dopamine. 

Administering racemic DOPA to patients would lead to a dangerous build up of (D)-

DOPA in the body. It is thus important to synthesise and administer pure (L)-DOPA 

to patients. 

1.1.2 Preparation of chiral compounds. 

The need for enantiomerically pure compounds, particularly within the 

pharmaceutical industry, has made asymmetric and enantioselective synthesis an 

important area of chemical research. Many strategies discussed below have been 

used to achieve asymmetric synthesis. 

1.1.2.1 Biosynthesis. 

Biosynthesis involves the use of enzymes to perform chemical transformations. The 

enantioselectivity of enzymes leads to formation of enantiomerically pure products, 

either via kinetic resolution whereby the enzyme converts only one enantiomer of a 

racemic starting material to the product, or via a biocatalysed asymmetric synthesis 

where the stereochemistry of the enzyme allows formation of only one enantiomer of 

a product. An example of a biocatalysed asymmetric hydrogenation is the yeast 

mediated reduction of ethyl acetoacetate (3) reported by Smallridge et al. in 1993 

shown in Scheme 1.
8 

 

Scheme 1. Yeast-catalysed asymmetric hydrogenation of ethyl acetoacetate. 
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1.1.2.2 Chiral pool synthesis. 

Chiral pool synthesis is the use of enantiomerically pure starting materials in 

reactions to give enantiomerically pure products. Naturally occurring chiral 

compounds are almost always enantiomerically pure and can be used 

stoichiometrically to give enantiomerically pure products, as long as the chiral centre 

does not undergo racemisation during the reaction. An example of a successful 

approach is the preparation of Chiraphos (5) from naturally occurring (L)-tartaric 

acid (4) as shown in Scheme 2.
9
  

 

Scheme 2. Asymmetric synthesis of Chiraphos from (L)-tartaric acid. 

 

1.1.2.3 Chiral auxiliaries. 

A chiral auxiliary is an enantiomerically pure compound which is added to a reagent 

to create a chiral centre. Subsequent reaction at an additional chiral or pro-chiral 

centre in the molecule will give an enantiomerically enriched product at this centre 

due to the steric influence imposed by the auxiliary. After the reaction the auxiliary 

is removed to give the enantiomerically enriched product. 

A particularly well known and widely used family of oxazolidinone auxiliaries such 

as 6 was developed by David Evans in the mid 1980s.
10

 Initially the auxiliaries were 

used for asymmetric aldol reactions as shown in Scheme 3.
11 

 
Scheme 3. Use of Evans Auxiliary for asymmetric aldol reaction. 
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Evans auxiliaries have also been applied to the asymmetric synthesis of carboxylic 

acids,
12

 asymmetric Diels-Alder cylcoadditions
13

 and the synthesis of a range of 

antibiotics
14

 and pharmaceutical products including  Ezetimibe
15

 and Lipitor
16

 for 

treatment of high cholesterol and Tipranavir
17

 a HIV protease inhibitor. 

1.1.2.4 Asymmetric catalysis. 

A catalyst increases the rate of a reaction by decreasing the activation energy of the 

transformation but is not itself consumed in the reaction. Catalysts may be 

homogeneous (in the same phase as the reaction mixture) or heterogeneous (in a 

different phase to the reaction mixture) and may be metallic, often based on 

transition metals, or organic comprising of small C, H, N, O, S based molecules. The 

variable oxidation states and incomplete d-orbitals of transition metals gives good 

scope for their use as catalysts allowing variable coordination numbers for 

interaction with ligands and substrate and elimination of products. Catalysts 

possessing chirality, for example with coordinated enantiomerically pure ligands, 

can impose enantioselectivity upon the reaction they are catalysing.  

An achiral catalyst used in the reaction of a racemic or pro-chiral starting material to 

form a chiral product will give the product as a racemate. This is because the 

reaction pathway from either enantiomer of starting material to either enantiomer of 

product requires the same energy. Use of an asymmetric catalyst lowers the energy 

required for the formation of one enantiomer of product below that of the other 

enantiomer as shown in Figure 3. During the reaction this enantiomer of product is 

formed preferentially leading to an enantiomerically enriched product.
18

 

Development of a sufficiently active catalyst may decrease the activation energy to 

such an extent that an essentially enantiomerically pure product is formed. 
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Figure 3. Activation energies for transition state formation with and without an asymmetric catalyst. 

 

Asymmetric catalysis is advantageous as it allows both enantiomers of a starting 

material to react to give a single enantiomer of the product. Racemic starting 

materials can be used rather than expensive, less available, enantiomerically pure 

starting materials. It is also a more efficient process without the need for additional 

steps in the reaction for the addition and removal of an auxiliary for example. Some 

drawbacks of the process are that the metals used are often transition metals which 

may be toxic and not readily available leading to an increase in costs, thus catalysts 

need to be highly active to minimise the amount of them it is necessary to use. 

1.2 Hydrogenation.  

Hydrogenation is the addition of hydrogen to an unsaturated bond, often a C≡C, 

C=C, C=O or C=N bond. Transfer hydrogenation uses a hydrogen donor such as 

formic acid or 2-propanol to supply the substrate with hydrogen, whilst pressure 

hydrogenation uses pressurised hydrogen gas. A vast range of homogeneous and 

heterogeneous catalysts have been used for hydrogenation applications.
19 
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1.2.1 Pressure hydrogenation with transition metal catalysts. 

Pressure hydrogenation of unsaturated compounds is achieved with use of hydrogen 

gas. One of the earliest examples of a homogeneous transition metal catalyst for 

hydrogenation was reported by Wilkinson in 1966.
20

 [RhCl(PPh3)3] (7) as the 

catalyst precursor was used along with hydrogen gas under mild conditions for the 

hydrogenation of alkenes. The catalyst precursor 7 is formed from the reaction of 

RhCl3.3H2O with excess triphenylphosphine. The catalytic cycle for the 

hydrogenation of alkenes is shown in Scheme 4. 

 

Scheme 4. Mechanism of pressure hydrogenation of alkenes using Wilkinson's catalyst. 

 

The mechanism of catalysis
20

 proceeds with oxidative insertion of hydrogen to the 

16-electron Rh
+
 species 7 to give 18-electron dihydride Rh

3+
 complex 8. Loss of a 

triphenylphosphine ligand allows η
2
-coordination of the substrate to the rhodium to 

give complex 10. Migratory insertion into a Rh-H bond followed by reductive 

elimination yields the hydrogenated product. Coordination of triphenylphosphine 

reforms the 16-electron Rh
+
 species 7 for continuation of the catalytic cycle. 
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The system was found to show good selectivity for hydrogenation of alkene bonds 

with ketones, hydroxy, cyano, nitro, chloro, azo, ethers, esters and carboxylic acids  

each being stable to hydrogenation.
20

 Scheme 5 shows the hydrogenation of 

cyclohexene using Wilkinson’s catalyst 7. 

 

Scheme 5. Hydrogenation of cyclohexene using Wilkinson's catalyst. 

The study also investigated the scope of the reaction, finding that terminal alkenes 

underwent hydrogenation more readily than internal alkenes; alkenes with cis 

geometry were hydrogenated more readily than trans and an increase in hydrogen 

pressure was required to bring about hydrogenation of conjugated alkenes.
20 

1.2.2 Asymmetric pressure hydrogenation with transition metal catalysts. 

Asymmetric pressure hydrogenation (APH) is the addition of hydrogen to a pro-

chiral unsaturated bond to give a specific enantiomer of the chiral saturated product. 

The enantioselectivity in the reaction originates from the use of asymmetric ligands 

such diphosphines and diamines as shown in Figure 4.
 

 

Figure 4. Examples of asymmetric ligands. 

 

Early examples of APH took inspiration from Wilkinson’s catalyst, using 

enantiopure chiral phosphine ligands and a rhodium catalyst. An early example was 



Development of catalysts for asymmetric hydrogenation                                                     Introduction 

10 

 

reported by Knowles in 1968.
21

 Reaction of (-)-methylpropylphenylphosphine (P) 

and RhCl3.3H2O gave the catalyst precursor [RhCl3P3] which was applied to the 

hydrogenation of prochiral compounds. Use of 0.15 mol% catalyst with 

benzene:EtOH 1:1 with Et3N (3.5 equiv. relative to Rh) at 60°C allowed the 

hydrogenation of phenylacrylic acid to phenylpropanoic acid with an optical purity 

of 15%. The reaction is believed to have proceeded via the same mechanism as 

Wilkinson’s catalyst and established the potential for asymmetric hydrogenation 

using rhodium-phosphine catalysts.  

Improvements to this system were reported by Kagan in 1971
22

 for the asymmetric 

pressure hydrogenation of unsaturated prochiral acids with an in situ formed catalyst 

comprising of rhodium and an asymmetric diphosphine ligand 16 shown in Figure 5, 

derived from (+)-ethyl tartrate. 

 

Figure 5. Structure of ligand 16 for use in the rhodium APH of unsaturated prochiral acids. 

 

In combination with [Rh(cyclooctene)2Cl]2 and benzene:EtOH 1:2 at room 

temperature and with atmospheric hydrogen, ligand 16 was used in the asymmetric 

hydrogenation of atropic acid giving the product in quantitative yield with an optical 

purity of 63%. The system was found to be particularly active for the asymmetric 

hydrogenation of α-acetamidocinnamic acid giving a quantitative yield of product 

with 72% optical purity.
22 

Knowles reported further improvements to the asymmetric hydrogenation of alkenes 

in 1986 with use of rhodium and an asymmetric diphosphine ligand ethane-1,2-



Development of catalysts for asymmetric hydrogenation                                                     Introduction 

11 

 

diylbis[(2-methoxyphenyl)phenylphosphine] (DiPAMP) 17 shown in Figure 6, for 

the preparation of (L)-DOPA precursor 18 in 94% ee.
23 

 

Figure 6. Structure of (R,R)-DiPAMP 17 and (L)-DOPA precursor 18. 

 

More recently the use of rhodium with asymmetric diphosphine ligands such as C2-

symmetric EtDuPHOS 19 has proved to be an effective system for APH of alkenes. 

Burk has reported the hydrogenation of prochiral acetamidoacrylates and enol 

acetates
24

 at low temperature and hydrogen pressure and with short reaction times 

and low catalyst loadings to give high enantiomeric excesses as shown in Table 1. 

Table 1. Enantiomeric excesses achieved for APH of acetamidoacrylates and enol acetates. 

 

 

 

 

Entry Diphosphine ligand Substrate Ee.
a
 (%) 

1a (S,S)-14 

 

98 (S) 

1b (S,S)-20 99 (S) 

1c (S,S)-19 93 (S) 

2 (S,S)-20 
 

99 (S) 

3 (S,S)-19 

 

90 (R) 

4a (S,S)-14 

 

94 (S) 

4b (S,S)-19 >95 (S) 
a Determined by chiral HPLC. 
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The reaction mechanism was reported by Gridnev and Imamoto
25

 and is shown in 

Scheme 6.  

 
Scheme 6. Mechanism for rhodium-catalysed APH of acetamidoacrylates using asymmetric 

diphosphine ligands such as DuPHOS. 

 

The reaction involves initial coordination of the substrate 22 to the rhodium 

precursor 21 to give complex 23 which exists at a low concentration in a fast 

equilibrium with the substrate chelate complexes 24a and b. Complexes 24a and b 

were found to react slowly with hydrogen to form the product via complexes 25a and 

b whilst 23 reacts quickly with hydrogen. It was therefore proposed that once 

formed, complex 23 reacts quickly with hydrogen to give complex 26. The rhodium 

in 23 is activated to oxidative addition of hydrogen by electron donation from the 
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carbonyl group and also the process is sterically favoured. After oxidative addition 

of hydrogen, the double bond of the substrate coordinates to the rhodium to give 27 

which can exist as one of two diastereomers. Once the sterically favourable 

diastereomer of 27 forms, fast migratory insertion of the C=C bond into the Rh-H 

bond occurs fixing the stereochemistry of the product and giving complex 28. The 

favoured conformation is that which minimises steric clash between the diphosphine 

ligand and the substrate. The product 29 is released by reductive elimination. 

 

The use of rhodium and 2,2’-bis(diphenylphosphino)-1,1’-binapthyl (BINAP) as the 

asymmetric diphosphine has been reported by Noyori and co-workers however its 

scope is limited to the synthesis of amino acids as shown in Scheme 7.
26 

 
 

Scheme 7. Preparation of enantiomerically pure amino acids with rhodium BINAP complex 30. 

 

This system is reported to follow an analogous mechanism to that of the Rh-

DuPHOS system shown in Scheme 6.
26

 The system does not offer a significant 

improvement over the Rh-DuPHOS system, with Noyori reporting it as being 

relatively slow and the need for specific conditions to give a high degree of 

enantioselectivity.
27

 For example, the pressure of hydrogen gas used in the reaction 

must be carefully selected as too high a pressure leads to a reduction in the 

enantiomeric excess of the product. This is due to the relative reactivities of the 

chelate complex diastereomers (analogous to 24a and 24b in Scheme 6). Halpern 

and Ashby report that under low hydrogen pressures the formation of the chelate 

complex is reversible.
28

 The minor diastereomer is more reactive with hydrogen than 
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the major diastereomer. The reversibility of the reaction allows conversion of the 

less reactive major diastereomer to the highly reactive minor diastereomer which 

then determines the configuration of the product.  Increasing the hydrogen pressure 

reduces the reversibility of the process and hence the degree of interconversion 

between diastereomers. With increased hydrogen pressure the amount of the major 

diastereomer present and its reactivity increases which causes a reduction in the 

enantiomeric purity of the product.
28

 

The concentration of the reaction solution with respect to the substrate is also 

important in the reaction. Under high substrate concentrations, complexes containing 

two coordinated substrates each bound through their C=C bonds were observed
28

 and 

the ee. of the products obtained from these complexes was found to be lower than 

that obtained via the conventional mechanism. 

Improvements to this system were first reported by Noyori et al. in 1986 upon using 

ruthenium metal instead of rhodium.
29, 30

 This system was found to be highly 

enantioselective and have broad scope and high activity for a range of substrate 

types. The use of [Ru(BINAP)(carboxylate)2] complexes has been applied to the 

APH of allylic alcohols,
31

 isoquinolines
29

 and α,β-unsaturated carboxylic acids,
32

 

whilst use of [Ru(BINAP)(halide)2] complexes have been applied to the APH of 

ketones
33

 as illustrated in Figure 7. 
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Figure 7. Ruthenium BINAP-catalysed APH of a range of unsaturated substrates.30-33 

 

The mechanism for APH using the ruthenium BINAP catalyst is shown in Scheme 8. 

The mechanism differs to that of the rhodium BINAP catalyst in that it involves a 

ruthenium monohydride and that the ruthenium remains in its +2 oxidation state 

throughout the cycle. The mechanism for the APH of β-keto esters is shown 

below.
34,35 

Heterolytic cleavage of hydrogen allows formation of a ruthenium 

hydride complex 32. The C=O bonds of the β-keto ester substrate coordinate to the 

ruthenium to give complex 33. The C=O of the ketone then inserts into the Ru-H 

bond to give complex 34 before protonation of the Ru-O bond (35) gives the product 

and reforms catalyst pre-cursor (31). 
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Scheme 8. Mechanism for Ru-BINAP-catalysed APH of β-keto esters. 

 

More recently Wills and co-workers have reported an iridium-catalysed approach to 

the APH of ketones using IrCl3 and asymmetric diamine ligands.
36

 Of a range of 

metals tested, IrCl3 was shown to give excellent selectivity for hydrogenation of the 

C=O bond of acetophenone over hydrogenation of the aromatic ring using N-

alkylated TsDPEN ligands. A range of N-alkylated derivatives of TsDPEN were then 

employed as ligands with IrCl3 for the APH of acetophenone with ligand 36 giving 

the highest ee. of 60% as shown in Scheme 9.
36

  

 

Scheme 9. Iridium-catalysed APH of ketones using alkylated TsDPEN ligand 36. 
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The best performing ligands including 36 in Scheme 9 were successfully applied to 

the APH of a range of aromatic ketones. Further extension of this work was reported 

the synthesis and application of derivatives of ligand 36 with a variety of 

sulfonamide groups to iridium-catalysed APH of a range of ketones with the 2-

napthalene sulfonyl derivative was found to be most successful allowing 100% 

conversion of a large range of ketones with up to 85% ee.
37

 

1.2.3 Transfer hydrogenation of ketones with transition metal catalysts. 

Catalytic transfer hydrogenation provides a mild process for reduction of saturated 

compounds, often carbonyl compounds. It is generally considered to be safer than 

pressure hydrogenation as the use of hydrogen donors to supply hydrogen to the 

substrate removes the need to use pressurised hydrogen gas. As shown in Scheme 

10, hydrogen is donated from a donor molecule such as 2-propanol or formic acid, 

and is accepted by the substrate.  

 

Scheme 10. Asymmetric transfer hydrogenation of ketones. 

 

There are two general inner sphere mechanisms for transfer hydrogenation, a 

monohydride mechanism and dihydride mechanism as shown in Figure 8.
 38

 

The monohydride process involves substitution of the chloride in a metal chloride 

precursor for the hydrogen donor molecule. β-elimination generates a metal hydride 

complex and insertion of the unsaturated substrate into the metal hydride bond forms 

the saturated species. The product is displaced from the complex by a further 

hydrogen donor molecule which then allows continuation of the catalytic cycle. 
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The dihydride mechanism involves replacement of chloride in a metal dichloride 

complex with the hydrogen donor molecule and β-elimination to give a metal 

dihydride complex. Co-ordination of the substrate to the complex followed by 

insertion into the metal hydride bond forms the saturated compound which is 

displaced by reductive elimination to give the product. The hydrogen donor molecule 

re-coordinates to the metal complex via oxidative insertion forming a metal hydride 

complex. A further β-elimination then generates the second metal hydride bond with 

displacement of the now unsaturated donor molecule reforming the metal dihydride 

complex for further hydrogenation of the substrate molecule. 

 
Figure 8. Mono- and Dihydride mechanisms for ATH of ketones. 

An early example of transfer hydrogenation reported in the literature is the Meewein-

Schmidt-Ponndorf-Verley (MSPV) reduction which was reported by Meerwein and 

Schmidt 
39

, Ponndorf
40

 and Verley
41

 independently in the 1920s. Each reported the 

use of a stoichiometric aluminium alkoxide reagent (37) in 2-propanol for the 

transfer of hydrogen to aldehydes and ketones shown in Scheme 11. The reverse of 

this process was later reported by Oppenauer
42

 allowing the oxidation of alcohols.  
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Scheme 11. MSPV reduction of ketones. 

 

The ketone substrate and 2-propanol co-ordinate to the aluminium alkoxide and via a 

6-membered cyclic transition state hydrogen is transferred from 2-propanol to the 

ketone in a concerted manner as shown in Scheme 11.
43

  

Catalytic variations of the MSPV reaction have also been reported. The use of protic 

acids was first reported by Rathke in 1977
44

 where use of 2.5 mol% trifluoroacetic 

acid with 5 mol% Al(O
t
Bu)3 allowed the oxidation of cyclohexanol to 

cyclohexanone with 88% yield using benzaldehyde as the hydrogen acceptor. 

Akamanchi and Noorani later reported the reduction of a range of ketones and 

aldehydes using trifluoroacetic acid.
45 

Using a ratio of substrate:aluminium 

isopropoxide:TFA of 1:0.08:0.003, benzaldehyde was reduced to benzyl alcohol 

with 93% conversion. Rathke proposed that use of the protic acid with oligomeric 

aluminium isopropoxide allows replacement of one or more bridging isopropoxy 

ligands with an anion, increasing the Lewis acidity of the aluminium which improves 

coordination with the carbonyl. 

The use of ligands has also been found to improve the activity of the MSPV 

reduction of aldehydes and ketones as shown in Scheme 12. The use of 

tetraphenylporphyrin aluminium complex 38 was reported by Inoue
46

 and the use of 

binuclear aluminium complex 39 was reported by Maruoka.
47
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Scheme 12. Catalytic MSPV reduction of ketones using aluminium complexes. 

 

Kagan has reported the use of lanthanides as catalysts for the MSPV reduction of 

aldehydes. Use of 0.1 equiv. t-BuOSmI2 at 65°C gave 94% conversion of p-

nitrobenzaldehyde to p-nitrobenzyl alcohol with 2-propanol as the hydrogen donor.
48

 

In a later study, use of lanthanum and cerium iso-propoxides were also reported to be 

highly active for the MSPV reduction of 2-octanone with >98 and 95% yield 

respectively, however ytterbium iso-propoxide was less active.
49 

1.2.4 Asymmetric transfer hydrogenation with transition metal catalysts. 

A broad range of asymmetric transition metal catalysts have been developed for use 

in transfer hydrogenation reactions. 

1.2.4.1 Asymmetric MSPV transfer hydrogenation reactions. 

The MSPV reduction methodology has been expanded in recent years to allow 

asymmetric reduction of carbonyl compounds.  

Evans and co-workers have reported the application of samarium complexes with 

asymmetric tridentate aminoalcohol ligands for the asymmetric MSPV reduction  of 

a range of ketones.
50

 O-chloroaxetophenone was reduced with full conversion and 
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97% (R) ee. in 24 hours at room temperature with 5 mol% catalyst using 2-propanol 

as the hydrogen donor. 

Maruoka has reported the use of (R)-phenyl ethanol as a chiral hydrogen source for 

MSPV-type ATH of α-chloroacetophenone achieving 82% yield and an ee. of 54%. 

Use of sterically encumbered (R)-o-bromophenyl ethanol as the hydrogen source 

showed an improved ee. of 82% although the yield of product was reduced to 51% as 

a result of increased steric hindrance.
51

 

In 2002, Nguyen reported the addition of enantiopure 2, 2’-dihydroxy-1, 1’binapthyl 

(BINOL) to the reduction of a range of ketones as shown in Table 2.
52 

Table 2. ATH of acetophenone derivatives using MSPV methodology. 

 

Entry BINOL R Yield
a
 (%) Ee.

a
 (%) 

1 (S) CH2Cl 99 80 (S) 

2 (R) CH2Cl 99 80 (R) 

3 (S) CH2Br 99 83 (S) 

4 (R) CH2CH3 30 50 (R) 

5 (R) CH3 54 30 (R) 

6 (S) CH(CH3)2 20 61 (S) 
   a

 Determined by GC analysis. 

 

Acetophenone was reduced with 54% yield and 30% ee. however this was seen to 

improve upon the reduction of α-chloroacetophenone achieving a yield of 99% and 

ee. of 80%.
52

 Increasing the number of equivalents of 2-propanol used increased the 

yield of product however enantioselectivity was reduced. 
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1.2.4.2 Ruthenium-catalysed ATH reactions. 

Ruthenium catalysts have also been applied to the ATH reactions. In 2006 Reetz and 

Li reported the use of BINOL derivatives as ligands for ruthenium-catalysed ATH of 

ketones. Ligand 40 (Figure 9) was found to be the most effective giving 91% 

conversion of acetophenone to (R)-phenyl ethanol with 97% ee. in 28 hours with 0.5 

mol% ruthenium using 2-propanol and KOH at 40°C.
53

 

 

Figure 9. Structure of BINOL derived ligand 40 used for ATH of ketones. 

 

Wills and co-workers have recently reported the first use of asymmetric tridentate 

triazole containing ligands, such as 41 in Scheme 13, with Ru3(CO)12 for the ATH of 

ketones.
54

 The reaction was found to proceed well with use of the ruthenium 

dodecacarbonyl precursor, other ruthenium sources gave low conversion to product 

with low enantioselectivity. Use of formic acid as the hydrogen source was 

detrimental to the reaction with no reaction taking place, whereas use of 2-propanol 

lead to high yields and enantioselectivities of product. 

 

Scheme 13. ATH of acetophenone using tridentate ligand 41. 
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1.3 Hydrogenation via metal ligand bifunctional catalysis. 

The hydrogenation catalysts discussed thus far have primarily operated via inner 

sphere mechanisms involving interaction of the substrates with the metal centres 

themselves by co-ordination or insertion into metal hydride bonds. A development to 

this strategy was realised by Noyori who developed catalysts for pressure and 

transfer hydrogenation of ketones via an outer sphere mechanism in which the 

substrate does not bind directly to the metal centre and instead interacts with a metal 

coordinated hydride and protonated ligand on the catalyst.
55

 This allows selective 

hydrogenation of polar bonds such as C=O as the mechanism delivers both a 

negatively charged hydride and positively charged proton to the substrate for 

interaction with the δ
+
 C and δ

-
 O of the C=O bond respectively. The process is 

referred to as metal ligand bifunctional catalysis as both the metal and ligand 

participate in the catalytic cycle.  

An example of this within the context of APH is the further development of the 

ruthenium-BINAP system (shown in Figure 7) by Noyori. The addition of a second 

asymmetric ligand in the form of an asymmetric diamine, to the ruthenium-BINAP 

to give complex 42 was reported by Noyori in 1998.
56

 This system offered 

significant advantages over the earlier system using just a BINAP ligand by allowing 

selective hydrogenation of C=O bonds in the presence of C=C functionality as 

shown in Scheme 14. 

 
 

 

 

 

 

Scheme 14. APH of 4,4-dimethyl-2-cyclohexen-1-one using ruthenium BINAP/DPEN catalyst 42. 
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Catalyst 42 uses an (S)-BINAP and (S,S)-DPEN ligand to impose asymmetry on 

substrates. This system is tolerant to low catalyst loadings (S:C 50,000:1) and low 

hydrogen pressures. The mechanism of hydrogenation has been widely studied.
57, 58

 

The chloride ligands in 42 are replaced with hydride ligands and a 6-membered 

cyclic transition state is then formed between the metal hydride and protonated 

diamine ligand with the ketone substrate (Figure 10 A). A hydride is then transferred 

to the δ
+
 carbon of the carbonyl group and the δ

-
 oxygen coordinates with the proton 

on the nitrogen of the amino ligand eliminating the product as a specific enantiomer. 

Potassium alkoxide is also used in the reaction and is reported by Chen and 

Hartmann
59

 to act as a Lewis acid interacting with the nitrogen to properly position 

the alkoxide base to assist with cleavage hydrogen for formation of the active 

ruthenium dihydride complex as shown in Figure 10 B.  

 

 

 

Figure 10. Transition states for hydrogenation of ketones with catalyst 42. 

Wills has also reported the use of phosphine-diamine ruthenium complexes for the 

APH of ketones as shown in Scheme 15. Use of BINOL with DPEN to give complex 

43 was found to be the most effective complex.
60 

 δ 

  δ 
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Scheme 15. APH of acetophenone using ruthenium complex 43. 

The reaction is believed to proceed via the same transition state as with the 

BINAP/DPEN complex 42 reported by Noyori (Figure 10).
56 

Transition metal complexes have also been used for ATH of ketones via metal ligand 

bifunctional catalysis methodology. Noyori and Gao have reported the use of 

diimino/diaminodiphosphine ligands such as 44 and 45 below with ruthenium, 

rhodium and iridium metals.
61-64

 In 1996 and 2000, Noyori and Gao reported the use 

of ruthenium with ligand 45 to afford highly enantioselective hydrogenation of 

ketones.
61, 62

 Ligands 44 and 45 were also combined with [RuCl2(DMSO)4] and 

refluxed in toluene to form complexes 46 and 47 (Figure 11). 

 
 

Figure 11. Diimino/diaminodiphosphine ligands and ruthenium complexes used for ATH of ketones. 

 

The complexes were then applied to the ATH of a series of ketones with the results 

summarised in Table 3. 

 

 



Development of catalysts for asymmetric hydrogenation                                                     Introduction 

26 

 

Table 3. Use of diimino/diaminodiphosphine ruthenium complexes for ATH of ketones. 

 

Entry R Catalyst 
Temp 

(°C) 

Time 

(hours) 

Yield
a
 

(%) 

Ee.
a
 

(%) 

1 H (S,S)-46 23 48 3 18 (R) 

2 H (S,S)-46 82 4 7 5 (R) 

3 H (R,R)-47 23 25 91 97 (S) 

4 H (S,S)-47 45 7 93 97 (R) 

5 o-Cl (S,S)-47 45 5 15 91 (R) 

6 m-Cl (S,S)-47 45 6 99 95 (R) 

7 p-Cl (S,S)-47 45 5 95 94 (R) 

8 p-CN (S,S)-47 45 6 99 89 (R) 

9 p-F (S,S)-47 45 6 97 80 (R) 

10 m-OCH3 (S,S)-47 45 6 74 95 (R) 

11 p-OCH3 (S,S)-47 45 6 67 58 (R) 
        a Determined by GLC analysis. 

 

The diiminodiphosphine complex 46 was found to be relatively inactive to transfer 

hydrogenation conditions (Table 3, entries 1 and 2), whilst the amine derivative 

(complex 47) was found to be highly active demonstrating the importance of the NH 

functionality in the reaction. The reaction is reported to proceed under kinetic control 

with a low level of reversibility and high level of differentiation between 

enantiomeric transition states leading to the high enantioselectivities observed. An 

increase in the concentration of base within the reaction was found to increase the 

rate of reaction but reduce the enantioselectivity, presumably by increasing the rate 

of reaction of the unfavoured enantiomeric transition state increasing the amount of 

the unwanted enantiomer present in the product.  
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These findings were mirrored in the application of the rhodium derivatives of 

complexes 46 and 47 to APH of ketones.
62, 63

 Ligands 44 and 45 were combined with 

[Rh(COD)Cl2]2 and an appropriate anion to give complexes 48-51 (Figure 12). These 

were then applied to the ATH of ketones and the results are shown in Table 4.
63 

 

Figure 12. Diaminodiphosphine rhodium complexes for ATH of ketones. 

 

Table 4. Application of rhodium complexes for ATH of ketones. 

 

Entry Catalyst 
Time 

(hours) 
Yield

a
 (%) Ee.

a
 (%) 

1 
[Rh(COD)Cl]2 +  

(R,R)-44 
9 56 36 (S) 

2 (R,R)-48 7 40 40 (S) 

3 (R,R)-49 7 97 91 (R) 

4 (R,R)-49
b
 24 85 89 (R) 

5 (R,R)-50 7 98 80 (R) 

6 (R,R)-51 9 87 86 (S) 
a Determined by GC. bSubstrate/catalyst 400/1 

Again the imine complex (48) was found to be less active to ATH than the amine 

complexes. Use of PF6 as the anion with the amine complex gave the best 

enantiomeric excess of product (complex 49). 
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In more recent studies, Gao has also applied iridium derivatives of the complexes to 

ATH of ketones shown in Scheme 16.
64 

 

Scheme 16. Application of iridium diaminodiphospine complex 52 to APH of propiophenone. 

 

Other examples of iridium catalysts for ATH applications include the use of 

[Ir(COD)Cl]2 with TsDPEN reported by Lamaire for the hydrogenation of β-keto 

esters, however yields and conversions obtained were low.
65

 

1.3.1 Metal ligand bifunctional catalysis with phosphine free catalysts. 

In the mid 1980s Shvo reported the use of a tetraphenylcylcopentadienyl ruthenium 

carbonyl dimer for hydrogenation and dehydrogenative applications.
66

 Initially the 

structure of the complex was assigned as [(η
4
-Ph4C4CO)(CO)2Ru]2 however 

1
H 

NMR analysis of the compound indicated the presence of a hydride with a signal at -

17.75 ppm.
67

 Replacing two of the phenyl groups with p-Cl-(C6H4) groups allowed 

an X-ray structure to be obtained showing the dimer to have the structure shown 

below with a bridging hydride between the two ruthenium centres and a bridging 

proton between the two oxygen atoms. Use of complex 53 in the dehydrogenation of 

an alcohol gave two complexes 54 and 55 which were presumed to form via 

fragmentation of the bridging hydrogen atoms. A catalytic cycle was proposed for 

complex involving interaction with hydrogen and hydrogen transfer between 

alcohols and ketones as shown in Scheme 17.
67
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Scheme 17. Interaction of Shvo catalyst 53 with hydrogen and transition state for transfer 

hydrogenation of ketones. 

 

In 1985 Shvo reported the application of complex 53 to the pressure hydrogenation 

of ketones however high pressures and temperatures were required.
68

 The 

hydrogenation of acetophenone is shown in Scheme 18. 

 

Scheme 18. Pressure hydrogenation of acetophenone with complex 53. 

 

Shvo also reported the application of the complex to transfer hydrogenation with 

formic acid as the hydrogen source as in Scheme 19. Addition of a small amount of 

water and sodium formate prevented formation of the formate adduct of the desired 

alcohol product.
69 

 
Scheme 19. Transfer hydrogenation of ketones with complex 53. 

 

1.3.1.1 Ruthenium half sandwich complexes. 

In 1995, Noyori reported the preparation and application to ATH of ketones of a new 

type of ruthenium half sandwich catalyst such as 54 shown in Figure 13.
70
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Figure 13. Ruthenium half sandwich complex 54 developed by Noyori. 

 

The catalyst consists of an η-6 bound arene, an asymmetric diamine (TsDPEN) and a 

chlorine ligand and is prepared from the reaction of [Ru(benzene)Cl2]2 dimer and 

TsDPEN with either 1 equivalent of KOH in DCM or with 2 equivalents of Et3N in 

2-propanol at 80°C. The catalyst can also be prepared in situ and in this manner was 

applied to the ATH of a range of ketones and the results are shown in Table 5.
70 

Table 5. In situ formation of ruthenium half sandwich complexes and application to ATH of ketones 
with 2-propanol as the hydrogen donor. 

 

Entry R
1
 R

2
 Time 

(hours) 

Yield
a
 

(%) 

Ee.
b
 

(%) 

1 H Me 15 95 97 (S) 

2 H Et 14 94 97 (S) 

3 o-Me Me 24 53 91 (S) 

4 m-Cl Me 2.5 98 98 (S) 

5 p-Cl Me 19 95 93 (S) 

6 m-OMe Me 16 96 96 (S) 

7 p-OMe Me 20 53 72 (S) 

 Substrate    

8 Tetralone 27 65 97 (S) 

9 1’-acetonapthone 62 92 93 (S) 

10 2’-acetonapthone 16 93 98 (S) 
           a

 Determined by GLC or 1H NMR. b Determined by GLC or HPLC. 
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The use of 2-propanol as a hydrogen donor however has its drawbacks. It allows 

reversibility within the ATH reaction, as both the IPA and product are similar, both 

being secondary alcohols. The desired alcohol product can act as the hydrogen donor 

to the catalyst reforming the ketone substrate.
71

 This reverse reaction is detrimental 

to both the yield of product and its enantiopurity. It is therefore important to use the 

right concentration of substrate within an ATH reaction and also control the time of 

the reaction in order to limit the exposure of the reaction mixture to the catalyst.  

Noyori reported that the use of a 1 M substrate concentration in the reaction mixture 

showed an initial enantiomeric ratio for the product of (S):(R) 99:1 however at a 

conversion of 75% this had reduced to 97:3.
70

 The reverse reaction of the 

dehydrogenation of phenyl ethanol was found to be ~2 orders of magnitude faster for 

(S)-phenyl ethanol than for the (R) enantiomer with use of (S,S)-TsDPEN in the 

catalyst. This therefore means that as well as reducing the product yield the reverse 

reaction also reduces the enantiomeric excess of the remaining product. The reaction 

is enantioselective in both the forward and reverse direction and over time there is a 

tendency towards racemisation. The equilibrium composition of the reaction mixture 

with a 1 M concentration of acetophenone was found to be 80:20 phenyl 

ethanol:acetophenone thus under sufficient reaction time, full conversion is not 

theoretically possible in this system.
70 

In order to maximise the conversion and enantioselectivity of ATH with hydrogen 

donation by 2-propanol it is necessary to use low concentrations of substrate, 

typically ~ 0.1 M. 

The use of formic acid as the hydrogen donor offers a solution to the problem of 

reversibility in ATH reactions. Dehydrogenation of formic acid is irreversible thus 
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increased reaction concentrations, conversions and enantioselectivities are possible. 

Noyori reported the use of an azeotropic mixture of formic acid:triethylamine 5:2 for 

the ATH of a range of ketones and the results are shown in Table 6.
71 

Table 6. Application of complex 55 to ATH of ketones with formic acid as the hydrogen donor. 

 

Entry R
1
 R

2
 

Time 

(hours) 

Yield 

(%) 
Ee.

a
 (%) 

1 Ph Me 20 >99 98 (S) 

2
c Ph Me 1.5 >99 96 (S) 

3 m-Cl Me 21 >99 98 (S) 

4 p-Cl Me 24 >99 95 (S) 

5 p-CN Me 14 >99 90 (S) 

6 m-OMe Me 50 >99 98 (S) 

7 p-OMe Me 60 >99 97 (S) 

8 H Et 60 96 97 (S) 

9 H (CH2)3CO2Et 90 99 95 (S) 

 Substrate    

10 Tetralone 48 >99 99 (S) 

11
b Tetralone 6 >99 98 (S) 

12 1’-acetonapthone 60 93 83 (S) 

13 2’acetonapthone 22 >99 96 (S) 

aDetermined by GC bReaction carried out at 60°C. 
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The ATH of a range of acetylenic ketones has also been reported by Noyori. For 

example, the ATH of 4-phenyl-3-butyn-2-one proceeded with >99% conversion and 

97% (S) ee. as shown in Scheme 20.
72

 

 

Scheme 20. ATH of 4-phenyl-3-butyn-2-one using complex 55. 

 

The ATH of acetylenic ketones proceeds well with 2-propanol as the hydrogen 

donor. Although the reverse reaction is still possible, the product is favoured more at 

equilibrium than with aromatic ketones, therefore higher substrate concentrations can 

be used without the racemisation observed with aromatic ketones. Noyori reports the 

ATH of a 1 M solution of 4-phenyl-3-butyn-2-one using the 16 electron complex 56 

to give a 94% yield and 95% ee. of product and use of a 5 M solution was found to 

give an ee. of 94% although the yield was reduced to 58% in 41 hours (Figure 14).
72

  

 

Figure 14. Structure of 16 electron complex 56. 

 

Use of formic acid as a hydrogen donor was reported to give low conversions for the 

ATH of acetylenic ketones as shown in Figure 15. The p-cymene catalyst 57a was 

found to deactivate under the reaction conditions with irreversible coordination of 

the C≡C bond to the ruthenium to form complex 57b in Figure 15. This prevents 

interaction of the complex with hydrogen.
72 
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Figure 15. Deactivation of catalyst by irreversible coordination to alkyne bonds. 

 

Wills has also reported the use of Noyori-type ruthenium half-sandwich complexes 

as catalysts for ATH of α, β-unsaturated ketones such as shown in Scheme 21.
73 

 

Scheme 21. ATH of 2-phenyl-2-cyclohexen-1-one using complex 57a. 

  

1.3.1.2 Structure of ruthenium half sandwich complexes. 

Noyori has reported X-ray structures for the catalyst the series of reaction 

intermediates
74

 – the catalyst precursor, the active catalyst and the ruthenium hydride 

complex shown in Figure 16. 

 

Figure 16. Ruthenium half sandwich catalyst pre-cursor (57a), 16 electron (56) and hydride (58) 

complexes. 
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The catalyst precursor 57a has 18 electrons and is reported to have a distorted 

octahedral structure with three chiral centres, two within the diamine and the third 

being the ruthenium. The coordination of the diamine to the ruthenium forms a 5-

membered ring and it is this that determines the configuration of the catalyst at the 

ruthenium. Use of (S,S)-TsDPEN gives an (R) configuration at the ruthenium. 
1
H 

NMR analysis found the complex to exist as a single diastereomer in CDCl3.
74 

The 16 electron complex 56 is formed from 57a via elimination of HCl by a base 

such as KOH. The length of the HN-Ru bond shown in the X-ray structure suggested 

a degree of double bond character making the nitrogen lone pair less available than 

in the 18 electron complex. The complex was found to dehydrogenate methanol, 

ethanol and 2-propanol to give complex 58 with a Ru-H bond and protonated 

amine.
73

 Complexes 56 and 58 were found to catalyse the ATH of acetophenone in 

IPA without the need for KOH, showing that the presence of KOH in the reaction 

mixture is necessary only for generation of the 16 electron complex 56.
74

 

1.3.1.3 Mechanism of asymmetric transfer hydrogenation using ruthenium 

half sandwich catalysts. 

The ATH mechanism is shown in Scheme 22.
75

 As mentioned previously, under 

ATH conditions with the presence of base, the 18 electron catalyst precursor (54 in 

Scheme 22) undergoes loss of HCl to form a 16 electron species (59 in Scheme 22). 

The 16 electron species then interacts with the hydrogen donor (2-propanol in 

Scheme 22) forming a 6-membered pericyclic transition state whereby hydrogen is 

transferred to the 16 electron species to again form an 18 electron species with a 

ruthenium hydride and protonated amine (60). The hydride and proton are 

transferred to the substrate via a further cyclic transition state to afford the desired 

product and reform the 16 electron species. 
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Scheme 22.Mechanism for ATH of ketones using ruthenium half sandwich complexes. 

 

Much evidence has been reported that supports this ATH mechanism
74,76,77

 however 

there are also reports that suggest an alternative mechanism. For example Xiao 

reported that the rate of the reaction increased with use of water and a co-solvent 

with the degree of acceleration of the reaction increasing with the polarity of the 

cosolvent.
78 

This suggests that transition states within the reaction must be polar and 

possess a dipole. The pericyclic mechanism proposed by Noyori would not show a 

solvent effect as both the catalyst and reactants possess a similar charge distribution. 

Meijer studied the molecular dynamics of the reaction and found that the concerted 

mechanism was predicted in a gas phase reaction, however in solution phase the 

reaction mechanism became sequential.
79,80

 In water, the hydride was found to 

transfer to the substrate with the proton being transferred by water at a later stage.  

Recently, Ikariya has published the results of further studies into the reaction 

mechanism and proposed a non-concerted mechanism shown in Scheme 23.
81

 After 

formation of the 16 electron species 59, the ruthenium initially coordinates with the 

2-propanol solvent and a proton is transferred to the amino nitrogen to form a 

ruthenium-alkoxide complex 62. The alkoxide is then displaced and the hydride is 

transferred to the ruthenium to form complex 60 and acetone. The hydride is then 

transferred to the substrate forming an alkoxide which first hydrogen bonds with the 

proton on the amino group of the ligand (64) and is then transferred to the ruthenium 



Development of catalysts for asymmetric hydrogenation                                                     Introduction 

37 

 

to give complex 65. The substrate is then displaced with addition of a proton from 

the nitrogen (66) to again form the 16 electron species (59). 

 
Scheme 23. Mechanism of ATH using ruthenium half sandwich complex 59 proposed by Ikariya. 

 

In 2004 Ikariya reported insights into the mechanism of ATH of ketones using 

formic acid as the hydrogen with Noyori-type catalysts.
82

 The reaction of the 16 

electron complex 59 with formic acid first gave a formate complex which underwent 

decarboxylation to give ruthenium hydride complex 61 and CO2. This can then react 

with CO2 to reform the formate complex. The catalyst also promotes hydrogenation 

of CO2 to form formic acid and it is therefore important to remove CO2 from ATH 

reactions. 

1.3.1.4 Further derivatives of half sandwich complexes for ATH applications. 

The use of asymmetric amino alcohols as ligands in place of the TsDPEN in 

ruthenium half sandwich complexes has also been investigated. Noyori first reported 

the use of this type of catalyst in 1996
83 

showing high activity for the ATH of 

ketones as shown in Scheme 24. 
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Scheme 24. ATH of acetophenone using asymmetric amino alcohol ligands 67 and 68. 

 

More recently, Wills and co-workers have used asymmetric amino alcohol ligands 

with [Ru(p-cymene)Cl2]2 for the ATH of ketones as shown in Scheme 25.
84 

 

Scheme 25. Application of amino acid ligand 69 to ruthenium-catalysed ATH of acetophenone. 

 

Puntener and co-workers have since reported the use of a range of amino alcohol 

ligands demonstrating excellent activity for selective ATH of C=O bonds in the 

presence of C=C bonds.
85

 

Wills has reported results of investigations into the effects of N-substituents on the 

TsDPEN ligand of Noyori-type complexes.
87,88

 The use of N-benzyl-N’-tosyl-DPEN 

was reported to give an ineffective catalyst when p-cymene was used as the aryl 

ligand, however when benzene was used the activity of the system was increased 

achieving 97% conversion of acetophenone to (R)-phenyl ethanol with 95% ee. in 7 

days.
87

 Other N-substituted derivatives of TsDPEN were prepared and used with 

[Ru(benzene)Cl2]2 dimer to give complexes 54 and 70-75 which were applied to the 

ATH of acetophenone as shown in Table 7.
86 
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Table 7. ATH of acetophenone using N-alkylated ruthenium complexes. 

 

Entry Complex Time 
Yield 

(%) 

Ee.
a
 

(%) 

1 54 26 hours 99 95 (R) 

2 70 11 hours 99 96 (R) 

3 71 3 days 99 96 (R) 

4 72 3 days 99 96 (R) 

5 73 7 days 88 98 (R) 

6 74 7 days 97 95 (R) 

7 75 7 days 97 96 (R) 

         a Determined by GC. 

 

All N-substituted complexes showed excellent activity and enantioselectivity for the 

hydrogenation of acetophenone, with complex 70 giving the best results. A decrease 

in activity was seen for complexes 71-75 with increasing steric bulk of the 

substituent group. The complexes were also applied to the ATH of 6,7-dimethoxy-1-

methyl-3,4-dihydroisoquinoline giving full conversion and high enantiomeric 

excesses with complexes 54 and 70 providing the highest rate of reaction. Complex 

74 with increased steric hindrance gave the highest enantioselectivity of 85% ee. 

Further work looked at the effect of the degree of substitution on the aryl ligand of 

N-benzyl substituted complexes. Reactivity and enantioselectivity was found to 

decrease upon aryl substitution.
87

 

Wills et al. has also reported the use of a rhodium derivative of Noyori-type catalysts 

for the ATH of ketones. Use of [Rh(C5Me5)Cl2]2 with (R,R)-TsDPEN gave 
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contrasting results to use of [Ru(p-cymene)Cl2]2 for the ATH of chloro and hydroxy 

substituted acetophenone as shown in Scheme 26.
88

 

 

Scheme 26. Application of ruthenium and rhodium half-sandwich catalysts to ATH of α-chloro and 

α-hydroxy acetophenone. 

 

Interestingly, it was also reported that upon subjection of α-tosyloxyacetophenone 75 

to ATH conditions, the use of [Rh(C5Me5)Cl2]2 and (R,R)-TsDPEN gave (R)-2-

tosyloxy-1-phenylethanol 76 with 93% ee. whilst use of [Ru(p-cymene)Cl2]2 and 

(R,R)-TsDPEN gave a cyclic carbonate product 78 with 94% (S) ee.
88

 It was 

proposed that the carbonate formed via hydrogenation of the C=O bond followed by 

formation of phenacylformate 77 which cyclises to give 78 as shown in Scheme 27. 

 

Scheme 27. Reaction of -tosylacetophenone with rhodium and ruthenium catalysts under ATH 

conditions. 
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1.3.1.5 Aqueous ATH of ketones with ruthenium half sandwich complexes. 

The use of water as a solvent for ATH of ketones using Noyori-type complexes has 

also been investigated as a more economical and environmentally solvent than the 2-

propanol or formic acid/Et3N that has conventionally been used. The first report of 

this was by Xiao and co-workers in 2005.
89

 Initial attempts looked at the addition of 

water to the use of formic acid/Et3N azeotrope as the hydrogen source.
90

 

Improvements to the activity of the system were seen with use of aqueous formic 

acid/Et3N with the pH of the reaction solution maintained at 5-8 by addition of 

Et3N.
89

 Further studies were made using sodium formate as a water soluble 

alternative hydrogen source to formic acid/Et3N.
90

 Table 8 shows a comparison of 

the results for the ATH of acetophenone with a range of hydrogen sources.
70-71, 89-90 

Table 8. Comparison of the ATH of acetophenone in formic acid, 2-propanol and water solvents. 

 

 

 

Entry H2 source S/C Solvent 
Temp 

(°C) 

Time 

(hr) 

Conv. 

(%) 

Ee.
a
 

(%) 

1
 2-propanol/KOH 200/1 2-propanol RT 15 95 97 (S) 

2
 

Formic acid/Et3N 5/2 200/1 - 28 20 >99 98 (S) 

3
 

Formic acid/Et3N 5/2 100/1 Water 40 12 98 97 (R) 

4 Formic acid/Et3N 1.2/1 100/1 Water
b 

40 1.5 100 97 (R) 

5 Sodium formate 100/1 Water 40 0.5 76 95 (R) 

aDetermined by GC. bpH of reaction maintained at pH5-8 with addition of Et3N. 

 

Complex 57 showed a relatively slow rate of reaction for the ATH of acetophenone 

in 2-propanol
70

 and formic acid/Et3N
71

 compared to the reaction carried out in water 

(entry 3)
90

; in water with pH 5-8 (entry 4)
89

 and that carried out with sodium formate 
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and water (entry 5).
90

 To further understand the mechanism of the ATH reaction 

carried out in water, Xiao investigated the effect of pH on the reaction, and proposed 

two competing catalytic cycles.
89

 At low pH, the tosylamine of the diamine ligand is 

protonated leading to its partial dissociation from the ruthenium centre. This 

dissociation will reduce the rigidity and hence enantioselectivity of the complex, thus 

the pH of the reaction should be maintained at 5-8 for the duration of the reaction to 

achieve maximum activity and enantioselectivity. 

1.3.1.6 Asymmetric pressure hydrogenation of ketones with Noyori catalysts. 

Noyori has also reported the application of catalyst 57a to asymmetric pressure 

hydrogenation achieving high conversions and enantioselectivities of chromanones 

and α-chloro aromatic ketones as shown in Scheme 28.
75, 91

 

 

Scheme 28. APH of chromanone and α-chloroacetophenone with complex 57a. 

 

Use of the triflate form of the catalyst was found to give improved results over the 

chloride, and indeed Ohkuma developed a related catalyst based on an iridium 

triflate and it too was found to allow effective hydrogenation of ketones with 
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hydrogen gas.
92

 The application of the catalyst to the APH of α-

hydroxyacetophenone is shown in Scheme 29. 

 

Scheme 29. APH of α-hydroxyacetophenone using iridium catalyst 79. 

The enhanced activity of the triflate catalyst over its chloro derivative for APH of 

ketones is explained when the reaction mechanism for APH is considered. 

1.3.1.7 Mechanism of asymmetric pressure hydrogenation using ruthenium 

half sandwich catalysts. 

The mechanism of APH with ruthenium half-sandwich complexes is shown in 

Scheme 30. Under APH conditions the catalyst precursor undergoes loss of chloride 

by ionisation to give cationic complex 80 which possesses a vacant co-ordination 

site for interaction with molecular hydrogen. Heterolytic cleavage of the H-H bond 

then allows formation of the ruthenium hydride species 60 as with ATH. The 

hydrogenation of the substrate proceeds via a cyclic transition state as for ATH.
75, 93 

Scheme 30. Mechanism of APH of ketones using ruthenium half sandwich complexes. 
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The use of ruthenium triflate complexes as shown in Schemes 28 and 29 is believed 

to lead to an increased rate of ionisation in the first step of the mechanism and indeed 

an increased rate of catalyst activation. Silver salts, known to readily interact with 

halides, have also been used to improve the rate of ionisation and activation of the 

catalyst.
94 

1.3.1.8 Derivatives of half-sandwich metal complexes for APH applications. 

Xiao has reported the use of rhodium and iridium derivatives of Noyori-type 

catalysts for the APH of imines as shown in Scheme 31.
94, 95

 

 

Scheme 31. Application of rhodium and iridium complexes to APH of imines. 

 

1.3.2 Tethered ruthenium complexes for ATH and APH of ketones. 

In 2004, Wills and co-workers reported the synthesis and application of a new class 

of half-sandwich ruthenium complex to the hydrogenation of ketones incorporating a 

tether between the aryl and diamine ligand as shown in Scheme 32.
96
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Scheme 32. Synthesis of tethered ruthenium complex 88. 

 
Ruthenium complexes 87 and 88 were applied to the ATH of acetophenone as shown 

in Scheme 33. 

 

Scheme 33. Application of tethered ruthenium monomer 88 and dimer 87 to ATH of acetophenone. 

 

The dimeric (87) and monomeric (88) forms of the catalyst were found to be highly 

active for the ATH of acetophenone and a series of aromatic ketones.
96

 Recently 

Mohar has reported the preparation of a similar tethered catalyst and found excellent 

activity and enantioselectivity for the ATH of 1-napthyl ketones (Scheme 34).
97

 

 
Scheme 34.  ATH of 1-acetonapthone with catalyst 89. 
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Wills and co-workers have reported an alternative synthesis for catalysts of type 88 

which avoids the hazardous Birch reduction for formation of the diene via a [4+2] 

cycloaddition.
98

 The synthesis of the analogous complexes (92a-d) is shown in 

Scheme 35. 

 
Scheme 35. Synthesis of tethered ruthenium catalysts 92a-d by an initial [4+2] cyclisation. 

 

The catalysts prepared were subjected to the ATH of acetophenone however each 

was less active than catalyst 88, with the best being 92a achieving 88% conversion, 

63% ee. in 96 hours with 0.25 mol% dimer in formic acid/Et3N 5/2 at 40°C.
98

 

Further investigations into the position of the tether within the complex by the Wills 

group found that tethering the aryl ligand to the amino rather than sulfonamide 

nitrogen gave a significantly more active catalyst as shown in Scheme 36.
99. 

Scheme 36. Synthesis of 'reverse tethered' ruthenium complex 97. 
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Catalyst 97 was found to show high activity for ATH of ketones allowing the 

formation of (S)-phenyl ethanol with 100% conversion and 96% ee. in 3 hours at 

28°C with 0.5 mol% catalyst.  

Further tethered catalysts, including the use of cyclochexadiamine (98) and the 

incorporation of a benzene ring into the tether (99) as shown in Figure 17, were 

found to be less active than 97.
100 

 

Figure 17. Further derivatives of tethered catalysts. 

 

At 28°C with a catalyst loading of 0.5 mol% catalyst 98 gave only 43% conversion 

to (R)-phenyl ethanol in 66 hours however the ee. was high at 97%. Catalyst 99 was 

more active giving 100% conversion in 12 hours however the ee. was reduced 

slightly to 92% under the same conditions. The activity of catalyst 98 was improved 

with an increase in temperature to 40°C giving (R)-phenyl ethanol in 100% 

conversion and 95% ee.
100 

The incorporation of a tether within the aryl/diamine half sandwich ruthenium 

complexes has been found to give a more stable structure. Catalyst 88 gave full 

conversion of acetophenone to phenyl ethanol within 24 hours, upon which more 

acetophenone and formic acid/Et3N 5/2 was added and full conversion was achieved 

in 73 hours and upon further addition again full conversion was reached in 176 hours 

each time without a reduction in the ee.
99
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1.3.2.1 Structural and mechanistic insights for application of tethered 

ruthenium catalysts to ATH of ketones. 

The preparation of a range of catalysts with different tether lengths and a range of 

aryl substituent groups allowed for further insights into the structure and mechanism 

of action of the catalysts.
101,102

 The catalysts prepared are shown in Figure 18 and 

results of their application to the ATH of acetophenone are given in Table 9. 

 

Figure 18. Structures of tethered catalysts with a variety of tether lengths and aryl substituents. 

 

Table 9. Application of catalysts 97 and 100-104 to the APH of acetophenone. 

 

Entry Catalyst 
Time 

(hours) 
Conv. (%) Ee.

a
 (%)

 

1 100 15 19 92 (R) 

2 97 2 100 96 (R) 

3 101 1.25 100 96 (R) 

4 102 6 38 94 (R) 

5 103 4 100 96 (R) 

6 104 5 100 93 (R) 

    a
Determined by GC. 

 

Complex 101 was the most active of the catalysts both as the monomer shown above 

and also in its dimeric form. Kinetic studies revealed this increase in activity to be 

due to an increased rate of ruthenium hydride formation and ketone reduction. For 
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the other catalysts tested, the overall rate of the reaction was limited by their rate of 

hydride formation. 

Andersson has reported that the H-Ru-NH angle in Noyori-type catalysts is 

important for the catalytic process with a smaller angle giving an increase in reaction 

rate.
103

 It is thought that the smaller angle gives a catalyst that is better pre-organised 

for efficient hydrogen transfer. In catalyst 101 with a four-carbon tether, although an 

X-ray structure of the ruthenium-hydride complex has not been reported, inspection 

of the X-ray for the chloride complexes shows 101 to have the smallest Cl-Ru-N-H 

angle of 3.04° compared to 4.59° in the parent three carbon tethered catalyst 97. If 

this pattern is retained upon formation of the ruthenium hydride complexes then this 

would explain the high reactivity of catalyst 101. 

In addition to providing a more stable structure for the catalysts, the tether also 

prevents rotation of the aromatic ring. The addition of substituent groups to the 

aromatic ring could therefore be used to affect the selectivity or activity of the 

catalyst as their position within the catalyst would be fixed rather than existing in an 

equilibrium environment as in Noyori’s untethered catalysts due to rapid rotation of 

the aromatic ring. Reaction of the complexes with cyclohexyl methyl ketone showed 

complex 104 to give the highest ee. of 90%.
101

 It is believed that the additional 

methyl groups on the aromatic ring, fixed in position with the addition of the tether 

to the catalyst enhance the preference for the substrate to adopt the favoured 

transition state shown in Figure 19, in order to minimise steric clash between the 

cyclohexyl ring and the methyl groups. 
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Figure 19. Cyclic transition states for ATH of cyclohexylmethyl ketone with catalyst 104. 

 

1.3.2.2 O-Tethered ruthenium catalysts. 

In late 2011 and early 2012 both Ikariya 
104

 and Wills
105

 independently reported the 

synthesis and use of four atom ether tethered catalysts 105-107 as shown in Scheme 

37. The catalyst showed improved activity for ATH of ketones over the conventional 

carbon tethered catalysts. Another benefit offered by this catalyst is that its 

preparation is achieved by use of a [4+2] cycloaddition to afford the required diene 

as reported by Wills
98 

rather than the hazardous Birch reduction. 

 

 

 

 

 

 

Scheme 37. Application of ether tethered ruthenium catalysts to the APH of acetophenone. 

 

1.3.2.3 Tethered rhodium catalysts. 

In 2004, Wills and co-workers reported the use of a tethered rhodium catalyst for the 

ATH of ketones.
106

 Initially asymmetric amino alcohol ligands were used however 

later reports showed the use of asymmetric N-(p-tosyl)-1,2-cyclohexanediamine or 

TsDPEN as ligands gave improved enantioselectivity for product formation.
107, 108

 

The results are shown in Table 10. 
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Table 10. ATH of acetophenone with tethered rhodium catalysts 108, 109a and 109b. 

 

Entry Catalyst Base Solvent Time 

(hours) 

Conv.
a
 

(%) 

Ee.
b
 

(%) 

1 108 (5 mol%) KO
t
Bu 2-propanol 10 min. 95 68 (R) 

2 109a (0.5 mol%) - 
Formic 

acid/Et3N 5/2 
2 100 96 (R) 

3 109a (0.5 mol%) - 
Water/sodium 

formate 
3 100 96 (R) 

4 109b (0.5 mol%) - 
Formic 

acid/Et3N 5/2 
10 100 98 (R) 

aDetermined by 1H NMR. bDetermined by chiral HPLC. 

1.3.2.4 APH with tethered catalysts. 

Although Noyori-type untethered ruthenium catalysts have successfully been applied 

to the APH of ketones, there is little precedent in the literature for the application of 

tethered ruthenium catalysts to the APH of ketones. In 2007 Wills and Morris 

reported the application of the three carbon tethered catalyst 97 to the APH of α-

chloro acetophenone as shown in Scheme 38.
109 

 
Scheme 38. Application of catalyst 76 to APH of α-chloroacetophenone. 

 

In the more recent publication, Ikariya reported the application of the O-tethered 

catalyst 105 and the 4C tethered catalyst 106 to the APH of a range of ketones, 
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revealing 105 to be highly active for this application.
104

 Compared to O-tethered 

catalyst 105, the four carbon tethered catalyst 106 was found to be less active for 

APH at very low loadings. The results are summarised in Table 11. 

Table 11. Application of catalysts 105, 106 and 108 to APH of ketones. 

 
 

Entry R
1 

R
2 

Catalyst S/C 
Time 

(hours) 

Yield 

(%) 

Ee.
a
 

(%) 

1 Ph CH3 (R,R)-105 500/1 20 58 90 (R) 

2 Ph CH3 (R,R)-107 500/1 20 99 95 (R) 

3 Ph CH2OH (R,R)-105 5000/1 18 99 93 (S) 

4 Ph CH2OH (S,S)-106 5000/1 18 35 89 (R) 

 Substrate      

5 4-Chromanone (R,R)-105 1000/1 20 99 99 (R) 

6 4-Chromanone (R,R)-107 1000/1 20 99 97 (R) 

7 1-Indanone (R,R)-105 1000/1 18 59 98 (R) 

8 1-Indanone (R,R)-107 1000/1 18 97 98 (R) 

9 1-Tetralone (R,R)-105 1000/1 18 52 >99 (R) 

10 1-Tetralone (R,R)-107 1000/1 18 85 >99 (R) 

aDetermined by GC or HPLC. 

 

1.3.3 Polymer supported catalysts for hydrogenation of ketones. 

Supporting a catalyst on a polymer offers several advantages to a reaction, in 

particular the opportunity for facile and efficient recovery of the catalyst after the 

reaction. This not only reduces the costs involved in purifying reaction products to 

ensure residual catalyst is removed but also allows for the catalysts to be recycled 

and used in subsequent reactions.  
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The use of poly(ethylene glycol) (PEG) as a soluble polymer support for 

hydrogenation catalysts has been widely studied due to its solubility in a range of 

solvents, low toxicity and high stability.
 110, 111 

 

The first reported use of PEG-2000 as a support for a TsDPEN based hydrogenation 

catalyst was developed by Xiao in 2004.
112

 The PEG is linked to the TsDPEN via an 

ether linkage at the meta position of each of the phenyl substituents to give 

PTsDPEN 109 shown in Figure 20.  

 

Figure 20. Structure of PEG supported ligands and complexes. 

 

The reaction of [Ru(p-cymene)Cl2]2 with the supported ligand 109 in water at 40°C 

allowed the formation of polymer supported Noyori-type complex 110. Previous 

application of supported catalyst 110 to the ATH of acetophenone in formic acid 

gave good conversion and enantioselectivity however attempts to recycle the catalyst 

were unsuccessful.
113

 Use of catalyst 110 in water with five equivalents of sodium 

formate gave 99% conversion to (R)-phenyl ethanol with 92% ee. in only 1 hour 

(40°C, 1 mol% catalyst). The catalyst was successfully recycled and used in 

subsequent reactions with the no significant reduction in activity until after the 

fourteenth cycle of the reaction where a conversion of 87% was achieved. 

Chan and Li reported the synthesis and application of other PEG supported TsDPEN 

ligands, firstly with an ether link at the para-position of the benzenesulfonamide 
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group (PEG-BsDPEN 111)
114

 and secondly linked via the free amine (N-PEG-

TsDPEN 112).
115

 The structures of both supported ligands are shown in Figure 21. 

 

Figure 21. Structures of MsDPEN (111) and N-PEG-TsDPEN (112). 

 

When 111 (PEG-750) was combined with [Ru(p-cymene)Cl2]2 at a catalyst loading 

of 1 mol% in water with 5 equivalents of sodium formate, acetophenone was reduced 

to (S) phenyl ethanol with >99% conversion and 96% ee. in 2 hours at room 

temperature. The system was also found to give higher enantioselectivities than 110 

(PTsDPEN) for the ATH of a range of ketones.
114

 Use of ligand 112 (with PEG200-

PEG2000) under the same conditions as for 111 but at 40°C gave the reduction of 

acetophenone to (S)-phenyl ethanol with >99% conversion and 94-94.8% ee. in 15 

hours. Use of N-PEG2000-TsDPEN maintained high conversions and 

enantioselectivity for nine catalytic cycles. Lower molecular weight N-PEG200-

TsDPEN was found to be more soluble than N-PEG2000-TsDPEN and when used in 

hydrogenation reactions a decrease in activity was seen after three cycles possibly 

due to the ligand being too soluble causing leaching of the catalyst.
115

  

The use of pendant groups on a polymer chain as ligands for ruthenium-catalysed 

ATH has also been reported in the literature. Wills has reported the use of pendant 

chiral β-amino alcohols with a copolymer of PEG ethylether methacrylate and 

hydroxyethyl methacrylate (HEMA) for use in catalytic ATH of ketones.
116

 (1S, 2R)-

N-(4-bromobenzyl)norephedrine was coupled with the O-p-bromobenzene derivative 
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of the hydroxyethyl component of HEMA by Suzuki coupling to form a biphenyl 

spacer group and give polymer supported ligand 113 (Figure 22). The best result 

achieved for the ATH of acetophenone to phenyl ethanol was 85% conversion and 

81% ee. in 20 hours with a 0.5 mol% catalyst loading in 2-propanol/KOH.
116 

 

Figure 22. Structure of PEG ethylether methacrylate and hydroxyethyl methacrylate copolymer 

supported TsDPEN ligand 113. 

 

The use of insoluble polymers as supports for ligands has also been applied to the 

ATH of ketones offering convenient recovery of the catalyst from the reaction 

solution by filtration for regeneration and reuse and also allowing removal of traces 

of transition metals from reaction products. Polystyrene has commonly been used in 

this application due to its stability to a range of reaction conditions and wide scope 

for functionalisation. 

Polywka et al. reported the use of two polystyrene bound diamines (114 and 115) for 

the ATH of ketones using ruthenium.
117 

The ligands are bound to the polymer by an 

amide linkage at the para position of the aryl sulfonamide group. The application of 

the ligands to the ATH of acetophenone as shown in Scheme 39 showed ligand 114 

to be the more reactive of the two giving significantly higher conversions and 

enantioselectivities than 115. 
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Scheme 39. Application of polystyrene supported TsDPEN ligand to ATH of acetophenone. 

 

Use of formic acid/Et3N 5/2 increased the activity of ligand 115 to give 95% 

conversion, 96.7% ee. for the ATH of acetophenone although the activity of 114 was 

decreased. The enantioselectivity of the reaction with ligand 115 was unchanged 

over two reaction cycles. 

Itsuno has reported the first application of polystyrene supported TsDPEN in 

aqueous ATH of ketones using polymer supported ligands.
118

 Use of ligand 116 

(Figure 23) with [RuCl2(p-cymene)]2 gave a conversion and enantiomeric excess for 

the ATH of acetophenone of 100% and 97% (R) ee. respectively in only three hours 

using 1 mol% catalyst at 40°C with water and sodium formate. The catalyst was 

recycled five times with conservation of the enantiomeric excess. 

 

Figure 23. Structure of polystyrene supported TsDPEN ligand 116. 

 

1.4 Non-Precious metal catalysts for asymmetric hydrogenation. 

Within synthetic chemistry, particularly on an industrial scale, there is an ever 

growing need to develop more viable preparations of desirable products in order to 
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develop a more environmentally friendly approach, to reduce costs or increase 

efficiency. Of particular interest is the development of non-precious metal catalysts 

for key transformations. Although highly active as catalysts, many transition metals 

are a limited resource making them expensive and many are also toxic making 

expensive and stringent purification methods to ensure their removal from reaction 

products essential. Much research has and is therefore being carried out in this field. 

1.4.1 Base-catalysed hydrogenation of ketones using potassium tert-butoxide.  

One of the earliest reports of non-transition metal-catalysed pressure hydrogenation 

of ketones was reported by Walling and Bollyky in 1964 using KO
t
Bu to catalyse the 

hydrogenation of benzophenone to benzhydrol as shown in Scheme 40.
119

 

 

Scheme 40.  Hydrogenation of benzophenone to benzhydrol using KOtBu catalyst. 

 

The reaction required high temperatures of up to 210°C and hydrogen pressures of 

up to 135 atm. to generate high product yields as shown in Table 12. With low 

loadings of KO
t
Bu the rate of reduction was slow with reactions requiring up to 25 

hours to form high product yields. Using an excess of KO
t
Bu improved this allowing 

slightly reduced temperatures, pressures and time to give an almost quantitative yield 

of product (Table 12, entry 2).
119 
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Table 12. Base-catalysed reduction of benzophenone. (0.43-0.46 M benzophenone). 

Entry Solvent Catalyst 
Moles 

catalyst 

H2 

(atm.) 

Temp 

(°C) 

Time 

(hours) 

Benzhydrol 

(%) 

1 
t
BuOH None - 102 170 28 0 

2 
t
BuOH

 t
BuOK 0.086 102 170 18 63 

3 
t
BuOH

 t
BuOK 0.093 102 153 50.5 47 

4 
t
BuOH 

t
BuOK 0.093 135 210 25 98 

5
a t

BuOH 
t
BuOK 0.333 96 150 14.5 98 

6 Benzene 
t
BuOK 0.093 125 204 23 98 

7 Diglyme 
t
BuOK 0.093 100 170 18 52 

8
b Diglyme 

t
BuOK 0.283 78 130 5 98 

9 
t
BuOH 

t
BuOLi 0.086 102 170 18 32 

10 Benzene 
t
BuONa 0.464 95 100 5 0 

11 H2O KOH 8.9 125 200 28 1 

12 Diglyme (i-PrO)2Al 0.093 123 210 34 Trace 

a 0.111 M benzophenone used. b 0.094 M benzophenone used. 

Walling and Bollyky also investigated the use of different solvents and catalysts in 

the reaction and the results are summarised in Table 12 above. Diglyme, the 

dimethyl ether of diethylene glycol, was reported as the most effective solvent 

allowing higher yields at lower temperatures and pressures than with tert-butanol or 

benzene. Indeed, with excess catalyst, the reaction was complete in only 5 hours at 

the reduced temperature of 78°C and hydrogen pressure of 130 atm. Using LiO
t
Bu 

generated a yield of 32%, but NaO
t
Bu, KOH and (

i
PrO)3Al gave little or no product.  

The reduction of a range of substrates using KO
t
Bu was investigated and it was 

found that the reaction was most effective with aromatic ketones.
119

 Aliphatic 

substrates (acetone and cyclohexene) generated no reduced product. Nitrobenzene 
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was effectively reduced to aniline demonstrating the application of the conditions to 

the reduction of NO2 groups in addition to carbonyl.
119 

In 2002 Berkessel reported further studies into the KO
t
Bu-catalysed hydrogenation 

of ketones.
120

 After initial repetition of the findings reported by Waling and Bollyky 

investigations were carried out to establish a mechanism of the reaction. The reaction 

was found to be irreversible as the reaction of benzhydrol with KO
t
Bu under 45 bar 

hydrogen pressure did not form benzophenone. Increasing the pressure and 

temperature of the reaction was found to increase the rate of reaction. At 100°C the 

conversion to product was found to plateau after a short time at only 15% however at 

210°C quantitative conversion to product was achieved. The reaction was found to 

be first order with respect to benzophenone, hydrogen and KO
t
Bu.

120 

The nature of the alkali metal used as the catalyst was also found to have an effect on 

the reaction.
120

 Use of lithium, sodium, potassium, rubidium and cesium 

benzhydrolates at 135 bar hydrogen and 210°C showed the rate of reaction to 

decrease in the order Cs › Rb ≈ K » Na » Li. This follows the trend of increasing 

covalency of the metal-oxygen bonds, and hence reducing partial charge on the 

metal. A lower charge on the metal makes it less effective at activating the ketone 

towards nucleophilic attack from the hydride of the hydrogen molecule.  

A mechanism for the reaction was proposed as shown in Scheme 41.
120 

 δ 

 

 δ 

 

 

 Scheme 41. Mechanism for base-catalysed hydrogenation of ketones.  
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The mechanism was proposed to proceed via a 6-membered cyclic transition state 

within which both the ketone substrate and alkoxide base are bound to the alkali 

metal. Heterolytic cleavage of the hydrogen molecule occurs to form the final 

product via hydride attack at the carbon centre of the carbonyl group and protonation 

of the alkoxide. Proton transfer to the substrate gives the final product. The cleavage 

of the hydrogen molecule is not thought to be the rate-determining step of the 

reaction and instead it was thought that the formation of the ordered transition state 

was the main factor limiting the reaction rate.
120 

In 2005 Chan and Radom reported further insight into the base-catalysed 

hydrogenation of ketones using computational molecular orbital theory.
121

  

Initially the group looked at the thermodynamics of the reaction and elected to model 

the sodium methoxide-catalysed reduction of formaldehyde at 0°K. The mechanism 

for the reaction was divided into 6 key steps (A-F) as shown in Scheme 42.
121 

 
Scheme 42. Proposed mechanism for sodium methoside-catalysed hydrogenation of formaldehyde. 

 

Sodium methoxide and formaldehyde initially form a strong adduct with both 

oxygen atoms strongly associated to sodium (B). Interaction of the methoxide and 

carbonyl with hydrogen leads to the formation of transition state C which was found 

to have a near linear arrangement of the methoxy oxygen and hydrogen and a highly 

angular arrangement of the carbonyl group and hydrogen. The overall formation of 

C from A was found to have a ΔHA-C of -4 kJ mol
-1

 and thus there is effectively no 
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barrier to the hydrogenation process. From C, a strong complex is formed between 

what will become the alcohol product and the sodium methoxide (D) which then 

dissociates to give the product as a sodium alkoxide (E) before proton exchange via 

a second transition state affords the final alcohol product (F).
121 

Further work looked at the enthalpy and free energy of the reaction at 483.15 K 

(210°C). Findings showed the enthalpy and free energy profiles at 483.15 K to differ 

significantly, for example formation of B has a free energy change of -51 kJmol
-1

 at 

483.15 K whilst at 0 K the change is -109 kJmol
-1

. Formation of C from A has an 

overall free energy change of 65 kJmol
-1

 at 483.15 K and -4 kJmol
-1

 at 0 K. The 

differences are attributed to a significant entropic effect on the reaction which 

supports the theory presented by Berkessel and Walling and Bollyky that the 

formation of an ordered transition state, an entropic effect, is a limiting factor in the 

reaction affecting the size of the energy barrier for the formation of transitions states 

and heterolysis of hydrogen.
121 

Studies into the effect of variables on the reaction were also carried out.
121

 In the 

solution phase, use of group I metals caused the rate of the reaction to increase down 

the group and use of group II metals caused the rate of reaction to decrease down the 

group. Overall group II metals allowed the reaction to proceed with lower energy 

barriers than with group I metals. The effect of the anionic base used in the reaction 

was also investigated. Use of tert-butoxide showed similar catalytic activity to the 

methoxide species showing that the size of the base has little effect on the reaction. 

When benzyloxide analogues were used however, the energy barriers calculated 

were higher than for the methoxides and tert-butoxides, suggesting that aromatic 

alkoxides are less reactive than aliphatic alkoxides. Non-polar solvents gave lower 
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energy barriers for the reaction than polar solvents, however, in practice the metal 

cation in the catalyst is likely to be insoluble in a non-polar solvent and therefore a 

polar solvent would most likely be the solvent of choice for the reaction. It was 

observed that solvents with lower dielectric constants allowed for lower energy 

barriers and hence the most suitable solvent for the reaction was deemed to be a 

polar solvent with a low dielectric constant.  

Different substrates were also investigated, with work focussing on comparing 

aliphatic and aromatic ketones. Previous observations by Walling and Bollyky
119

 and 

also Berkessel
120

 suggested that aromatic ketones were more susceptible to 

hydrogenation than aliphatic ketones. Chan and Radom’s investigations agreed with 

these previous findings with the hydrogenation of acetophenone occurring with a 

lower energy barrier than that of acetone. It was thought that the aromatic ketones 

were more reactive due to the electron-withdrawing phenyl substituent helping to 

activate the carbonyl carbon towards nucleophilic attack from the hydride. 

Resonance effects of the phenyl ring, as shown in Figure 24, can also help stabilise 

an oxygen anion.
121 

 

Figure 24. Resonance stabilisation of charge separated structures of acetophenone. 

1.4.1.1 Asymmetric KO
t
Bu-catalysed hydrogenation of ketones. 

Berkessel also investigated the scope for asymmetric hydrogenation using a chiral 

catalyst and prochiral ketone.
120

 The reduction of prochiral ketone pivalophenone 

with potassium R-1-phenylethanoate catalyst was found to give a 50% yield of the 
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desired alcohol product with an ee. of 12%, the major enantiomer being the R 

enantiomer of the product. In order to ensure that the low ee. was not due to 

racemization of the chiral base used in the catalyst, the alcohol analogue of the base 

was obtained after the reaction and was found to have essentially the same ee. as the 

starting chiral base. The low ee. was therefore attributed to a lack of discrimination 

between the diastereomeric transition states that lead to the final products. 

1.4.2 Iron catalysts for asymmetric hydrogenation of ketones. 

The use of iron catalysts has also been reported for both ATH and APH of ketones as 

well as many other reactions.
122 

An early example of iron-catalysed transfer hydrogenation was reported by 

Bianchini in 1993.
123

 Isostructural trihydride complexes of iron(II), ruthenium(II) 

and osmium(II) were compared for the selective transfer hydrogenation of α, β-

unsaturated ketones. The complexes were of the form 

[MH(H2)(P(CH2CH2PPh2)3)]BPh4 as shown with 117 in Figure 25, and used iso-

propanol or cyclopentanol as the hydrogen source. 

 

Figure 25. Structure of Bianchini’s catalysts. 

 

The use of iron trihydride complex 117 showed limited success for selective 

hydrogenation of the C=O bond over the C=C bond as illustrated in Figure 26.
123 
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Figure 26. Hydrogenation results using catalyst 117. 

 

Hydrogenation of benzylideneacetone (118) was achieved with excellent selectivity 

for hydrogenation of the C=O bond however ketones with terminal or cyclic C=C 

bonds or indeed more hindered C=O bonds as in example 119-121 showed little or 

no selectivity for hydrogenation of the C=O bond over the C=C bond.
123

 When 

applied to the hydrogenation of saturated ketones such as acetophenone, the catalyst 

was highly successful achieving 96% conversion to the racemic alcohol. The use of 

ruthenium and osmium metals with the same ligand system did not offer significant 

improvement to the selectivity for C=O hydrogenation over C=C hydrogenation in 

unsaturated ketones.
123 

An inner sphere mechanism is proposed for the C=O hydrogenation using this 

catalyst. The metal initially loses hydrogen and the ketone co-ordinates to the vacant 

site via the C=O. The hydride is transferred from the metal to the carbon of the 

carbonyl group. The second hydrogen is taken from the solvent alcohol to give the 

desired alcohol product which is then eliminated, and the remaining alkoxide solvent 

co-ordinates to the metal before being eliminated as the carbonyl form.
123

  



Development of catalysts for asymmetric hydrogenation                                                     Introduction 

65 

 

More recently, Casey has reported the use of catalyst 122 below for both transfer and 

pressure hydrogenation of ketones.
124

 The catalyst shown in Figure 27, is based on 

the ruthenium Shvo catalyst
66-69

 and also Knӧlker’s iron complex.
125

 

 

Figure 27. Structure of Knӧlker’s iron catalyst (122), used by Casey for hydrogenation applications. 

 

Using iso-propanol as the hydrogen source and a 1 mol% loading of complex 122 at 

75°C, acetophenone was successfully converted to racemic 1-phenylethanol with a 

yield of 87%.
124

 This result compared well with the application of the complex to 

pressure hydrogenation achieving 83% yield of phenyl ethanol from acetophenone 

with hydrogen gas.  The catalytic cycle is analogous to that of the Shvo catalyst as 

shown in Figure 28. 

 

Figure 28. Catalytic cycle for reduction by catalyst 122. 

 

The use of cyclopentadienyl iron carbonyl complexes has also been reported by 

Wills for oxidation of alcohols
126

 and reduction of ketones.
127

 Scheme 43 shows the 

application of asymmetric iron complexes to the ATH of ketones. The tricarbonyl 

complexes are converted into the active iron hydride complexes in situ with use of 
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trimethyl-N-oxide to remove a carbonyl ligand. The complexes show some 

enantioselectivity although enantiomeric excesses were low.
127 

 
Scheme 43. Racemic and asymmetric hydrogenation of acetophenone with achiral and asymmetric 

iron complexes 123-125. 

 

1.4.2.1 Iron-catalysed asymmetric hydrogenation of ketones with 

diaminodiphosphine ligands. 

Gao and Noyori have previously reported the use of diaminodiphosphine ligands 

with ruthenium, rhodium and iridium for ATH of ketones.
61-64

 In 2004, Gao reported 

the application of the ligands to iron-catalysed ATH using [Et3NH][Fe3H(CO)11]  as 

shown in Scheme 44.
128,129

  

 

Scheme 44. ATH of acetophenone using in situ formed iron diaminodiphosphine catalysts. 

 

The ligands proved most successful with aryl alkyl ketones such as acetophenone 

and both complexes in conjunction with 2-propanol as the hydrogen source gave a 
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promising yield and ee. of 92% and 61% respectively for the DPEN based complex 

and 87% and 72% respectively for the cyclohexadiamine based complex in only 4.5 

hours at 45°C.
128,129 

In recent years, Morris and co-workers have reported the use of similar catalysts for 

ATH and APH of ketones.
129

 Work began with preparation of cyclohexadiamine-

diphosphino iron complexes as shown in Figure 29. 
130 

 
Figure 29. Structure of complexes used by Morris. 

 

 

Complex 127 showed some activity for hydrogenation using hydrogen gas achieving 

40% conversion of acetophenone to phenyl ethanol in 27% ee. using 

substrate/catalyst 225/1 and 25 atm. hydrogen at 50°C, however no activity for 

transfer hydrogenation was seen. In contrast, complex 128 was inactive for 

hydrogenation with hydrogen gas, but gave high conversions for the hydrogenation 

of a series of ketones, aldehydes and imines under transfer hydrogenation conditions, 

although the enantioselectivities obtained were low.
130 

 Complex 129 was also active 

for transfer hydrogenation, giving higher ee.’s than for complex 128 but low 

conversions as shown in Scheme 45. 
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Scheme 45. ATH of acetophenone using iron complexes 128 and 129. 

 

It was proposed that during the reaction the imine ligand may be hydrogenated to its 

amine form allowing transfer of a hydride from the iron and proton from the amine 

to the unsaturated substrate.
130

 

Morris has also reported a template synthesis for the preparation of 

diaminodiphosphine iron complexes as shown in Scheme 46.
131

  

 

 
Scheme 46. Preparation of iron complexes using the template method. 

 

It is thought that initially the phosphonium compound is deprotonated to give an 

unstable diphenylphosphinoacetaldehyde which is then trapped by the iron precursor. 

Elimination of water then gives the desired imine form of the co-ordinated ligand. 

Substitution of an acetonitrile ligand with carbon monoxide leads to the desired 

complex.
131 

Complex 130 shown above was applied to the transfer hydrogenation of 

ketones and was found to have greater activity for transfer hydrogenation of ketones 

than the cyclohexadiamine complexes in Figure 29. With a substrate:catalyst:base 

ratio of 2000:1:8 and at room temperature, acetophenone was converted to 1-

phenylethanol with a conversion of 90% and an ee. of 82% in only 30 minutes.
132
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The complex was also found to exhibit high levels of chemoselectivity when applied 

to the transfer hydrogenation of an α,β-unsaturated ketone as shown in Scheme 47, 

with the major product of the reaction being the unsaturated alcohol with only trace 

amounts of the saturated alcohol and ketone being formed.
132 

 

Scheme 47. Reduction of trans-4-phenyl-3-buten-2-one using complex 130. 

 

This demonstrates a high selectivity of the catalyst for C=O bonds rather than non-

polar C=C bonds complying with an outer-sphere mechanism for the reaction with a 

metal hydride and amino proton interacting with the polar C=O bond. 

The use of further iron complexes shown in Figure 30 for APH of acetophenone as 

shown in Scheme 48 was also investigated by Morris.
133

 

 
Figure 30. Structures of iron complexes used for APH of ketones. 
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Scheme 48. Application of complexes 131-135 to APH of acetophenone. 

 

Complexes 131-135 were most active for pressure hydrogenation of acetophenone. It 

was proposed that ligand 131 may convert to the same active species as that formed 

by 132 via conversion from the imine in 131 to an amine due to the slightly 

enhanced activity of 132 over 131. These findings also indicate an importance for the 

presence of the NH functionality in the ligand which again is evidence for an outer-

sphere mechanism as discussed previously. Complexes 134 and 135 show little 

activity and it was proposed that this was due to the bulky amine substituent groups 

blocking the access of the substrate to the iron.
133 

Morris has also reported a series of investigations into the effects of steric hindrance 

and electronics within the ligand by preparation of a range of complexes shown in 

Figure 31 and their application to the ATH of acetophenone shown in Scheme 49.
134

 

Figure 31. Asymmetric iron complexes prepared from a variety of diamines.  

 

 

Scheme 49. Effect of the diamine structure on the enantiomeric excess of the reduction product. 
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The more bulky diamine ligands in complexes 137 and 138 was found to increase the 

catalytic activity of the complex with higher turnover frequencies and also increase 

the enantioselectivity of the reaction. Morris has also looked at the effect of changing 

the phosphorus substituents from phenyl to alkyl groups.
135

 Variations of both the 

ethyldiamine and DPEN derived tetradentate imine ligands with cyclohexyl, 

isopropyl and ethyl groups on the phosphorus as shown in Figure 32 were prepared 

using the previously discussed template method.
135 

 

 

Figure 32. Complexes used to investigate the effect of the phosphine groups of the ligands on the 

reaction. 

 

Complexes 140-143 with tricyclohexyl and triisopropyl phosphine groups were 

found to be inactive to transfer hydrogenation of acetophenone at room temperature 

and 50°C. The complexes with triethylphosphine groups showed some activity at 

room temperature and improved activity at 50°C although complex 145 with DPEN 

was more active than complex 144 as illustrated in Scheme 50. The 

enantioselectivity was lower than with the initial DPEN derived PPh3 complex 

137.
135
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 Scheme 50. Hydrogenation of acetophenone using catalysts 144 and 145. 

It was proposed that dissociation of the phosphine species from the ligand may be 

necessary for the required catalysis to occur. The more electron-donating cyclohexyl 

and iso-propyl groups would make the phosphorus more basic than with the ethyl 

substituent groups and so dissociation of the phosphorus would be less likely.
135 

1.4.2.2 Iron-catalysed transfer hydrogenation of imines. 

Beller and co-workers have recently investigated the application of Iron systems 

such as those discussed above for the asymmetric hydrogenation of N-

(diphenylphosphinyl)-imines.
136

 The reactions use the iron carbonyl hydride cluster 

complex [Et3NH][HFe3(CO)11] as the catalyst precursor and utilise a KOH base and 

2-propanol as the hydrogen donor. The asymmetric nature of the reaction is provided 

by an asymmetric tetradentate ligand such as the diaminodiphosphine ligands used 

initially by Gao
61-64, 128 

and also Morris
129-135

 discussed above. The cyclohexadiamine 

based ligand was found to be most effective, achieving product yields of 85-95% and 

ee.’s of 94-96% in only 30 min at 45°C (Scheme 51).  

 

 

Scheme 51. Iron-catalysed ATH of diphenylphosphinyl imine. 
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The nature of the base used in the reaction is reported as having no effect on the 

reaction, with the use of KOH, NaO
i
Pr and NaO

t
Bu giving comparable yield and ee. 

values. In an absence of base the ee. of the reaction product was found to decrease 

significantly to 45%. Control experiments containing no iron source and no ligand 

gave no amine product.
136 
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2. Results and Discussion. 

2.1 Potassium-catalysed APH of ketones. 

Although highly active, conventional ruthenium, iridium and rhodium-based 

hydrogenation catalysts are expensive and toxic which, particularly on an industrial 

scale, leads to increased costs and the need for extensive purification processes. The 

development of a transition metal free catalytic system for hydrogenation of ketones 

is therefore of great interest. Inspired by work of Walling and Bollyky in 1964
119

 

work began to develop a potassium-based catalyst for ketone hydrogenation.  

Walling and Bollyky reported the KO
t
Bu-catalysed hydrogenation of ketones under 

high temperatures and hydrogen pressures.
119

 It was necessary to use ketones that did 

not contain protons at the α-position in order to prevent enolate formation which 

would inhibit formation of the alcohol product. We proposed that the use of ligands 

may increase the catalytic activity of the system by providing a well defined 

transition state for the reaction (Figure 33), allowing it to proceed under mild 

conditions. The importance of such a transition state in the reaction was reported by 

Berkessel
120

 and Chan and Radom.
121

 

 δ 

 

 δ 

 

 

Figure 33. Proposed cyclic transition states for KOtBu-catalysed hydrogenation of ketones. 

 

Initial work focused on identifying appropriate conditions for the KO
t
Bu-catalysed 

hydrogenation of benzophenone that would give sufficient conversion to products to 

allow analysis by GC, but would also still allow scope for the observation of 

improvements to conversion when using more effective ligands or catalysts. 
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Secondly, conditions should comply with the need to develop a favourable 

hydrogenation process operating under mild conditions. Initial investigations into 

temperature, pressure and KO
t
Bu loading were therefore carried out (Tables 13 and 

14). Triethylene glycol 146 was used as a model for a potential tetradentate ligand. 

Table 13. APH of benzophenone using KOtBu as a catalyst and triethylene glycol 146 as an example 

ligand structure. 

 

 

 

Entry Solvent 
Mol% 

KO
t
Bu 

Mol% 

ligand 
Ligand 

Benzhydrol 

[%]
a 

Time 

[hours] 

1 
t
BuOH 5 0 None None 113 

2 
t
BuOH 20 0 None 5.2% 113 

3 
t
BuOH 40 0 None 6.8% 113 

4 
t
BuOH 20 20 

 

7.3% 113 

     a Determined by GC analysis. 

 

Entries 1 to 3 in Table 13 show the effect on conversion of increasing the catalyst 

loading in the absence of ligand. With 5 mol% KO
t
Bu no product was obtained, 

however with 20 and 40 mol% KO
t
Bu a small conversion to product was seen. Entry 

4 shows a slight improvement to conversion upon the addition of triethylene glycol 

as a potential tetradentate ligand. Increasing the temperature and hydrogen pressure 

to 100°C and 60 bar hydrogen gave a significant increase in conversion, allowing the 

effect of the presence of ligand to be investigated. The results are summarised in 

Table 14. 
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Table 14. APH of benzophenone using KOtBu and triethylene glycol ligand 146 at increased 

temperature and hydrogen pressure. 

 

 

 

Entry Solvent 
Mol% 

KO
t
Bu 

Mol% 

ligand 
Ligand 

Benzhydrol 

[%]
a 

Time 

[hours] 

1 
t
BuOH 20 5 

 

28 136 

2 
t
BuOH 20 10 

 

27 136 

3 
t
BuOH 20 20 

 

39 136 

a Conversions to benzhydrol determined by GC. 

 

The greatest conversion was achieved with 20 mol% ligand, showing increased 

conversion to benzhydrol compared to the use of 5 and 10 mol% ligand, however a 

significant degree of solvent evaporation occurred during the reaction making results 

unreliable. Future reactions were carried out at the lower temperature of 60°C and 

with 60 bar H2 pressure.  

2.1.1 Further ligands for KOtBu-catalysed APH of ketones. 

The addition of a ligand was shown to benefit the reaction and improve conversion. 

Attention turned to investigating the effectiveness of other ligands in the reaction. A 

variety of ligands comprised of different co-coordinating groups were used for 

hydrogenation of benzophenone with KO
t
Bu. The results are shown in Figure 34. 
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Figure 34. Investigations into the effectiveness of different ligand structures for the KOtBu-catalysed 

APH of benzophenone. 

 

Equal aliquots of a bulk solution of KO
t
Bu, 

t
BuOH and benzophenone were used for 

all reactions in order to eliminate error and allow consistency between reactions with 

the ligand used being the only variable. Bis-(2-hydroxyethyl)ethylenediamine (147) 

was the most effective giving 5.1% conversion of benzophenone to benzhydrol. 

Ligand 149 may react with KO
t
Bu to form the potassium salt of the ligand, meaning 

the potassium may not be available to catalyse the hydrogenation reaction. The 

ligands may also either co-ordinate too strongly to the potassium and hinder the 

approach of the ketone or restrict movement and rotation of the system hindering the 

transfer of hydrogen to the ketone, or may not co-ordinate strongly enough, if at all, 

removing any benefit they may otherwise have brought to the reaction. 

It was noted that the evaporation of the solvent seen with the reactions carried out at 

100°C was still occurring at 60°C. An investigation into the use of solvents with 

higher boiling points was therefore carried out as summarised in Table 15. 
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Table 15. Effect of different solvents on the APH of benzophenone. 

 

 

a
Determined by GC analysis. 

 

Ligand 147 was used as this was one of the most effective ligands at this point, 

showing comparable conversion in Table 15, entry 2 to use of triethylene glycol in 

Table 13, entry 4. Each solvent was used in the reaction both with and without ligand 

and for 
t
BuOH and in 2-methyl-2-butanol the conversion was increased upon the 

addition of ligand. Use of 2-methyl-2-butanol in place of 
t
BuOH showed only a 

minor reduction in conversion and significantly less solvent evaporation taking 

place. The use of triethylene glycol seemed to prevent the reaction entirely. Tables 

13 and 14 suggest that triethylene glycol does have some activity as a ligand thus, 

Entry Solvent 

Boiling 

point 

[°C] 

Mol% 

KO
t
Bu 

Mol% 

ligand 
Ligand 

Benzhydrol
a
 

(%)
 

Time 

(hours) 

1 
t
BuOH 83 20 - None 1.9 124 

2 
t
BuOH 

 

83 

 

20 20 

 

7.4 124 

3 
2-methyl-2-

butanol 
102 20 - None 0.8 124 

4 
2-methyl-2-

butanol 
102 20 20 

 

6 124 

5 
Triethylene 

glycol 
125-127 20 - None 0 124 

6 
Triethylene 

glycol 
125-127 20 20 

 

0 124 
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when used as the solvent triethylene glycol may fully saturate the potassium and 

block co-ordination sites preventing the hydrogenation reaction from taking place.  

The effectiveness of other metals as catalysts in the reaction was investigated as 

shown in Scheme 52, however no conversion to benzhydrol was observed. 

 

Scheme 52. Application of Metal(II) salts to the hydrogenation of benzophenone with ligand 147. 

 

Further investigations into the use ligands containing the bis-(2-

hydroxyethyl)ethylenediamine (147) backbone were carried out. The potential for 

asymmetric hydrogenation was also to be investigated so a variety of tetradentate 

asymmetric ligands were prepared. Initial syntheses gave ligands 150 and 151 from 

reaction of DPEN with salicylaldehyde as shown in Scheme 53.
137-139

 In this case the 

terminal hydroxy groups are provided by phenols rather than primary alcohol groups.  

 
Scheme 53. Preparation of tetradentate ligands 161 and 162.

 

Ligands 152-154 were prepared by the coupling of 2 equivalents of norephedrine 

with dibromoethane (152) and dibromopropane (153), and also the coupling of 

ephedrine with dibromoethane (154) as shown in Scheme 54. 
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Scheme 54. Synthesis of tetradentate ligands 152-154. 

 

The reaction is carried out at 100°C in the absence of solvent with the norephedrine 

or ephedrine melting to give a liquid reaction mixture. As the reaction proceeds 

however, the reaction mixture rapidly solidifies causing stirring and thus the mixing 

of unreacted starting materials to cease. 
1
H NMR analysis of crude reaction mixtures 

showed incomplete conversion to product showing approximately 50:50 

product:unreacted amino alcohol. The unreacted amino alcohol starting material and 

product were both highly polar and separation was difficult. Various alterations were 

made to the reaction: changing the number of equivalents of amino alcohol used, 

adding a solvent to prevent solidification of the reaction mixture and also employing 

different purification strategies, however yields were not improved. 

A sufficient amount of each ligand was obtained for application to the hydrogenation 

of benzophenone. The results are summarised in Figure 35. 
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aLigand obtained from Aldrich. bLigand obtained from Acros Organics. % conversions to benzhydrol.  
 

Figure 35. Percentage conversions for APH of benzophenone using a range of tetradentate 

diaminodihydroxy ligands. 

 

The previous use of the unsubstituted ligand 147 gave a conversion of 7.4% (Table 

15, entry 2). Ligands 150 and 151 both gave low conversions, indicating that the 

ligands are less effective, possibly because the phenol groups do not co-ordinate to 

the potassium as well as free hydroxyl groups. This may be due to the delocalised 

aromatic system drawing electron density away from the oxygen. Also the structure 

and rigidity of the aromatic ring may hinder effective co-ordination to the potassium 

ion. It may also be the case that the phenol groups react with the KO
t
Bu to form the 

potassium salt which prevents the catalysis of the hydrogenation reaction. Ligand 

152 was found to be the most effective ligand giving a conversion of almost 14%. 

Ligand 154 with methyl substituted nitrogen atoms gave no conversion to 

benzhydrol. This is assumed to be because the methyl substituted nitrogen does not 

co-ordinate to the potassium. Use of ligand 153 allowed the importance of the chain 

length of the alkyl ‘bridge’ between the two norephedrine components to be 
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investigated, and gave a conversion of 12%, comparing well with 152. Finally the 

use of cyclic crown-type ligands was investigated with the use of cyclen (ligand 155) 

however this was shown to be ineffective as a ligand for APH of ketones. 

In order to establish the potential for APH of ketones, ligands 152-154 were applied 

to the asymmetric hydrogenation of pro-chiral acetophenone. As conversions of 

benzophenone to benzhydrol with KO
t
Bu as the catalyst remained low and also as 

acetophenone would be likely to enolise in the presence of KO
t
Bu, IrCl3 was used as 

the catalyst. IrCl3 is known to be active and selective for APH of ketones
37

 and the 

system was expected to be more active than with KO
t
Bu allowing greater conversion 

and hence accurate ee. determination. The results are shown in Table 16. 

Table 16. APH of acetophenone using ligands 152-154 and IrCl3. 

 

Entry Ligand Conv.
a
 (%) Ee

a
 (%) 

1 

 

98.6 25.5 (R) 

2 

 

37.5 19.9 (R) 

3 

 

15.5 2.7 (R) 

       aDetermined by GC analysis.  
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Ligand 152 shows excellent conversion to the desired alcohol product, however the 

enantiomeric excess of the product obtained is low. Conversion is reduced 

significantly with use of ligand 153 suggesting that the ethylenediamine structure is 

advantageous to the reaction over the propylenediamine structure, allowing enhanced 

co-ordination to the metal centre. The enantioselectivity achieved with ligand 153 is 

also lower than with 152. Use of the N-methyl ligand 154 gave the lowest conversion 

and essentially racemic product. This confirms the need for the presence of NH 

groups within the ligand for effective complex formation. The results show that the 

prepared ligands do not have potential for use in the asymmetric hydrogenation of 

ketones under these reaction conditions. 

 

2.1.2  Reaction mechanism for KO
t
Bu catalysed hydrogenation of ketones. 

With more effective ligands (152 and 153) beginning to emerge for KO
t
Bu-catalysed 

hydrogenation of benzophenone, investigations were made to identify the reaction 

mechanism. The reaction solution from Figure 35 using ligand 153 was analysed by 

mass spectroscopy after the reaction had taken place and both mono and fully 

oxidised derivatives of the ligand as shown in Figure 36 were found to be present. 

 

 

 

Figure 36. Ligand species identified in reaction solution by mass spectrometry. 

 

The presence of oxidised ligand may be evidence of a transfer hydrogenation process 

rather than interaction of the ketone with hydrogen gas. The ligands may transfer 

RMM = 342.5 gmol
-1 

Found m/z 434.2 [M+H]
+ 

RMM = 340.5 gmol
-1 

Found m/z = 430.5 [M+H]
+
  

RMM = 338.4 gmol
-1 

Found m/z = 339.5 [M + H]
+
 

[M+H]
+
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hydrogen from their terminal hydroxyl groups to benzophenone resulting in 

oxidation of the ligand and reduction of benzophenone. The presence of the phenyl 

groups adjacent to the terminal hydroxyl group may help this process with 

delocalisation of the oxygen’s electron density into the aromatic ring weakening the 

O-H bond. Also the resulting carbonyl group in the ligand would provide increased 

conjugation and hence stability making the oxidation process favourable. A proposed 

mechanism for the transfer hydrogenation process is shown in Scheme 55. 

 

Scheme 55. Proposed mechanism for the transfer of hydrogen from ligand 153 to benzophenone. 

 

The mass spectrometry results, showing the presence of the oxidised derivatives of 

the ligand, are not conclusive as ionisation and fragmentation processes occurring in 

the mass spectrometer could also be the reason for the oxidised species being seen. 

In order to obtain conclusive evidence for or against the hydrogen transfer process, 

the hydrogenation of benzophenone with KO
t
Bu and ligand 153 was carried out 

under atmospheric nitrogen rather than pressurised hydrogen (Scheme 56). If 

molecular hydrogen is not involved in the reaction, and it is indeed the ligands that 

are transferring the hydrogen, conversion to benzhydrol should occur to a similar 

extent as under pressurised hydrogen reported in Figure 35. 

 

Scheme 56. Hydrogenation of benzophenone with KOtBu and ligand 153 in the absence of hydrogen. 
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As shown in Scheme 56, the reaction did proceed under nitrogen and a similar 

conversion to that seen in Figure 35 was obtained. This implies that molecular 

hydrogen is not involved in the process and the ligands are transferring the hydrogen 

to the benzophenone. Further evidence for the transfer hydrogenation process can be 

seen when looking back to results obtained in Figure 35. Where the transfer 

hydrogenation process from ligand to ketone is not possible, no conversion to 

benzhydrol was achieved. For example with ligands 150 and 151, where the 

hydroxyl component of the ligand is provided by a phenol, it is not possible to 

oxidise the C-O bond and transfer hydrogen to the benzophenone, possibly due to 

the formation of the potassium phenoxide salt of the ligand. Also with ligand 155 

possessing no hydroxyl groups, no conversion to benzhydrol was achieved.  

The hydrogen transfer process would be stoichiometric with respect to the ligand and 

thus the reaction was therefore repeated with 20 and 100 mol% ligand. In order to 

investigate the importance of the presence of a phenyl group adjacent to the terminal 

hydroxy groups, bis-(2-hydroxyethyl)ethylenediamine (147) was used. To 

investigate the importance of the tetradentate nature of the ligand, the reaction was 

also carried out using 20 and 100 mol% ephedrine 158. The results are summarised 

in Table 17.  
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Table 17. Conversion to benzhydrol using 20 and 100 mol% ligand for transfer hydrogenation. 

 

Entry Solvent 
Mol% 

KO
t
Bu 

Mol% 

ligand 
Ligand 

Benzhydrol 

(%)
a
 

Time 

(hours) 

1
b 

2-methyl-
2-butanol 

20 20 

 

2.1 116 

2 
2-methyl-

2-butanol 
20 100 

 

0.2 116 

3
c 2-methyl-

2-butanol 
20 20 

 

0.8 116 

4 
2-methyl-

2-butanol 
20 100 

 

2.4 116 

aDetermined by GC analysis. b Ligand obtained from Aldrich. cEphedrine obtained from Aldrich. 

 

The conversions obtained for Table 17, entry 1 with 20 mol% of the unsubstituted 

ligand 147 are significantly lower under the absence of hydrogen than previously 

seen for the same ligand (Table 15) suggesting that the absence of the phenyl groups 

reduces the preference for the transfer hydrogenation process relative to reaction 

with hydrogen gas. When the ligand loading was increased to 100 mol%, the 

conversion to benzhydrol was significantly reduced. It is thought that this may be 

due to the increased amount of ligand saturating the potassium, thereby preventing 

co-ordination of the benzophenone and thus the hydrogenation process. Entries 3 and 

4 of Table 17 investigate the importance of the tetradentate nature of the ligand. Use 

of ephedrine at 20 and 100 mol% loadings of ephedrine gave low conversions 
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suggesting tetradentate ligands are more active for the transfer hydrogenation 

process, possibly exhibiting improved co-ordination to the metal centre. 

 

Our aim in this work was to develop convenient conditions for highly active catalytic 

APH of ketones using transition metal-free catalysts. The transfer hydrogenation 

process found to be taking place is not deemed appropriate for further development 

as a viable transition metal-free process for catalytic asymmetric ketone 

hydrogenation. The process is not efficient both in terms of the synthesis of the 

ligands and also because at best, half an equivalent of ligand relative to the substrate 

would be required to achieve full conversion to the alcohol product. The ligands 

were also found to offer no advantage to the reaction in terms of enantioselectivity. 

Indeed, processes involving active non-precious metal catalysts for transfer 

hydrogenation and asymmetric transfer hydrogenation such as the MSPV reduction
43

 

are already prominent in the literature and thus further development of the KO
t
Bu 

system was not investigated. 

 

2.2 Transition metal-catalysed ATH of ketones. 

The use of iron as a catalyst for hydrogenation is appealing due to its high 

availability and low cost and toxicity. In the past Gao has applied the use of iron 

carbonyl complexes and asymmetric diamine-diphosphine ligands to the ATH of 

ketones.
128

 More recently, Morris has used pre-formed iron-diaminodiphosphine 

complexes for ATH and APH of ketones
129-135, 143

 and in 2006 Beller reported the 

use of iron carbonyl complexes and diaminodiphosphine ligands for the asymmetric 

hydrogenation of N-(diphenylphosphinyl)-imines.
136

 Each approach used ligands 
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such as 45 and 126 shown in Figure 37 and their derivatives, achieving excellent 

conversions and enantioselectivities for the conversion of ketones to alcohols. 

 

Figure 37. Examples of diaminodiphosphine ligands used for iron-catalysed hydrogenation of 

ketones. 

 

2.2.1 Iron-catalysed ATH of ketones with aminophosphine ligands. 

We proposed the development of new asymmetric diaminodiphosphine ligands for 

application to the iron-catalysed ATH of ketones. Initially diaminodiphosphine 

ligands derived from proline 159 were prepared as shown in Scheme 57 in order to 

determine the importance of the NH functionality and also determine the effect on 

the enantioselectivity of the reaction of moving the asymmetry from the diamine 

component of the ligand to the phosphine component.  

 
Scheme 57. Synthesis of proline-based aminophosphine ligands. 
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Preparation of mesylate 161 from Boc prolinol 160 allowed substitution with 

diphenyl phosphine followed by addition of borane to give 162. Formation of borane 

complex 162 stabilises the phosphorus to oxidation allowing purification of the 

compound by column chromatography. Removal of the Boc group and borane with 

TFA gave aminophosphine ligand 163 which could then undergo alkylation with 

benzyl bromide or α,α-dibromo-m-xylene to give ligands 164 and 165 respectively. 

The synthesis of 163 proceeded with good yields, however upon alkylation of the 

amine to give 164 and 165, the yields of product were depleted, primarily due to 

isolation and purification of the compounds. Ligand 45 used by Gao was also 

prepared for use in ATH reactions in order to repeat published results and as a 

comparison for the activity of ligands 163-165.  

Preparation of triethylammonium undecacarbonylhydridotriferrate 166 as used by 

Gao
128

 and Beller
136

 was carried out as reported in the literature
144

 and is shown in 

Figure 38. 
 
Previous work within our group has found iron hydrides to be unstable in 

air and moisture and thus full characterisation is difficult however 
1
H

 
NMR analysis 

in degassed deuterated benzene compared well with that reported in the literature by 

Beller
136

 and showed the desired complex to have been formed with presence of the 

Fe-H signal at -15.25 ppm. The 
1
H NMR spectrum obtained is shown in Figure 38. 
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Figure 38. 
1
H NMR spectrum of [Et3NH][HFe3(CO)11] 166 (300 MHz, d6-benzene). 

 

Ligands 45 and 163-165 were applied to the ATH of acetophenone (Table 18).  

Table 18. Application of proline based aminophosphine ligands to iron-catalysed ATH of 

acetophenone. 

 

Entry Ligand Time (hours) Conversion
a
 (%) Ee.

a
 (%) 

1 

 

41 76 32 (R) 

2 

 

87 2 5 (R) 

3 

 

87 4 6 (R) 

4 

 

90 0.3 4 (R) 

       aDetermined by GC analysis. 

[HFe3(CO)11] 

[HNEt3] 

[HN(CH2CH3)3] 

[HN(CH2CH3)3] 
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Ligands 163-165 did not promote hydrogenation with the iron complex. Ligand 45 

which has been used by Gao did show some conversion and enantioselectivity, 

although these did not compare to the literature results where a conversion of 87% 

and an ee. of 72% for ATH of acetophenone was achieved in 4.5 hours under the 

same conditions.
128, 129 

 Analysis of the 
1
H NMR spectrum for the iron complex 

(Figure 38) shows only 0.2:1 iron hydride:Et3NH suggesting that the desired iron 

hydride complex is not forming as readily as expected thus reducing the loading of 

iron hydride present in the ATH reactions affecting the activity of the system. 

 

2.2.2 Ruthenium and rhodium-catalysed ATH of ketones. 

Gao has also used ligand 45 for the rhodium and ruthenium-catalysed ATH of 

ketones.
61

 The use of ligand 45, [Rh(COD)Cl]2 and IPA/KOH gave some conversion 

and enantioselectivity for ATH of acetophenone
63

 however improved results were 

achieved when the pre-formed rhodium complex 49 was used.
62

 A pre-formed Ru 

complex 47 prepared by the reaction of ligand 45 and [RuCl2(DMSO)4] was also 

successfully used for the ATH of ketones.
61

 the results are summarised in Figure 39. 

 

Figure 39. ATH of acetophenone using diamino-diphosphine Rh and Ru complexes. 
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In a similar manner, ligands 163-165 were also applied to rhodium and ruthenium-

catalysed ATH reactions to see if a more active ligand/catalyst precursor 

combination could be developed (Table 19). The ligands and metal precursors were 

used rather than pre-formed complexes in both cases. Reactions were carried out for 

24 hours to allow time for in situ complex formation. 

 

Table 19. Application of proline-based aminophosphine ligands with rhodium and ruthenium 

catalysts. 

 

Entry Ligand 
Time 

(hours) 
Conversion

a
 (%) Ee.

a
 (%) 

1 

2 

 

24 
Rh: 66 

Ru: None 

72 (R) 

- 

3 

4 
 

24 

Rh: <0.5 

Ru: 0.6 

 

 

ND 

ND 

 
5 

6 
 

24 
Rh: 79 

Ru: None 

0.9 (R) 

- 

7 

8 

 

24 
Rh: 13 

Ru: 5.6 

3.0 (R) 

63.7 (R) 

9 

10 

1 

No ligand 24 
Rh: 10 

Ru: None 

Racemic 

- 

aDetermined by GC analysis.  

 

Table 19, entries 1 and 2 show repeats of the reactions reported by Gao shown in 

Figure 39. Table 19, entry 1 compares well with results reported by Gao,
61-63
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achieving improved conversion and enantioselectivity to that reported for the ATH 

of acetophenone with ligand 45 and [Rh(COD)Cl]2, although the reaction time was 

longer than reported by Gao.
63

 Entry 2 also compares well with the literature results, 

with Gao reporting the use of only pre-formed complexes as achieving high yields 

and enantioselectivities.
61

 Use of ligands 163-165 showed no improvement to the 

reported results. Ligands 163 and 165 gave low conversions and enantioselectivity 

and although ligand 165 gave 79% conversion the enantioselectivity was low. 

With ligands 163-165 proving to be inactive to ATH conditions, further ligands were 

prepared including silyl, hydroxy and amide derivatives of ligands 163-165 (Scheme 

58) and also the N-toluenesulfonamide derivative of ligand 159 (Scheme 59) in order 

to investigate the effect of different co-ordination groups on the activity of the 

ligands towards in situ complex formation and the ATH of ketones. 

Reaction of (L)-prolinol with trimethylacetyl chloride gave amide 167 whilst 

protection of the alcohol in (L)-prolinol with TBDMSCl and alkylation if necessary 

gave silyl ligands 168-170. Removal of the silyl group gave aminohydroxy ligands 

171 and 172 (Scheme 58).  
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Scheme 58. Synthesis of proline-based hydroxyamide, aminosilyl and aminohydroxy ligands. 

Initial formation of the p-toluenesulfonamide from 2-aminobenzyl alcohol followed 

by oxidation with MnO2 gave aldehyde 173. The desired tetradentate ligand 174 was 

obtained after reductive amination with (S,S)-DPEN (Scheme 59). 

 

 

 

 

Scheme 59. Synthesis of N-tosyl substituted derivative of ligand 174. 

 
The ligands were applied to the ATH of acetophenone using a variety of metal 

complexes (Table 20).  
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Table 20. Application of ligands with a range of co-ordination groups to rhodium and ruthenium-

catalysed ATH of acetophenone. 

 

Entry Ligand Complex 
Time 

(hours) 

Conversion
a
 

(%) 
Ee.

a
 (%) 

1 

 

 

[Ru(benzene)Cl2]2 24 11 8.9 (R) 

2 

 

[Ru(benzene)Cl2]2 24 1.1 ND 

3 

 

[Ru(benzene)Cl2]2 24 1.7 ND 

4 

 

[Ru(benzene)Cl2]2 24 56.3 1.5 (R) 

5 

6 

7 

 
 

[Ru(benzene)Cl2]2 

[Rh(COD)Cl]2 

[RuCl2(DMSO)4] 

 

24 

67.4 

21.1 

1.3 

 

Racemic 

Racemic 

ND 

 

8 

9 

10  

[Ru(benzene)Cl2]2 

[Rh(COD)Cl]2 

[RuCl2(DMSO)4] 

24 
65.8 

42.3 

0.79 

Racemic 

Racemic 

Racemic 

11 

12 

13 

 

[Ru(benzene)Cl2]2 

[Rh(COD)Cl]2 

[RuCl2(DMSO)4] 

24 
97.0 

41.5 

0.54 

Racemic 

Racemic 

Racemic 

14 

15 

16  

[Ru(benzene)Cl2]2 

[Rh(COD)Cl]2 

[RuCl2(DMSO)4] 

24 
5.4 

2.1 

6.5 

26.9 (R) 

13.9 (S) 

46.0 (R) 
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17 

18 

19  

[Ru(benzene)Cl2]2 

[Rh(COD)Cl]2 

[RuCl2(DMSO)4] 

24 

96.4 

1.5 

None 

Racemic 

ND 

- 

20 

21 

22 

 

[Ru(benzene)Cl2]2 

[Rh(COD)Cl]2 

[RuCl2(DMSO)4] 

 

24 

 

94.3 

1.2 

1.7 

 

Racemic 

ND 

ND 

 

23 

24 

25 

 
 

[Ru(benzene)Cl2]2 

[Rh(COD)Cl]2 

[RuCl2(DMSO)4] 

 

 

24 

 

26.8 

None 

1.4 

 

 

6.1 (S) 

- 

ND 

 

 

26 

27 

28 

 

[Ru(benzene)Cl2]2 

[Rh(COD)Cl]2 

[RuCl2(DMSO)4] 

24 

2.8 

0.7 

1.7 

ND 

ND 

ND 

29 

30 

 

[Ru(benzene)Cl2]2 

[Rh(COD)Cl]2 
24 

54.5 

48.3 

Racemic 

4.2 (R) 

31 No ligand [Ru(benzene)Cl2]2 24 98 Racemic 

aDetermined by GC analysis. 

 

In some cases the addition of a ligand improved the conversion of acetophenone to 

phenyl ethanol, however none of the ligands were found to induce high 

enantioselectivity in the reaction. In the case of Table 20, entries 11, 17 and 20 

>90% conversion was achieved, however [Ru(benzene)Cl2]2 itself was shown to be 

highly active for ketone hydrogenation (Table 20, entry 31). It is likely that use of 

ligands 170-172 allows such high conversions to be retained because the ligands are 

not co-coordinating to the ruthenium complex and thus [Ru(benzene)Cl2]2 remains 

available to carry out the transfer hydrogenation process itself. In other cases where 

less or indeed no conversion is achieved with the same ruthenium source, it is likely 



Development of catalysts for asymmetric hydrogenation                                   Results and Discussion 

97 

 

that the ligands are able to co-ordinate to the ruthenium and in doing so inhibit the 

transfer hydrogenation reaction, possibly blocking all co-ordination sites on the 

metal centre. 

Entries  6, 9 and 12 in Table 20 also show improved conversion of acetophenone to 

phenyl ethanol with [Rh(COD)Cl]2 compared to the absence of ligand (Table 19, 

entry 9), although again no enantioselectivity was achieved. The use of 

[RuCl2(DMSO)4] gave low conversions of acetophenone to phenyl ethanol with all 

ligands. Ligands 167 and 174 with amide and sulfonamide co-coordinating groups 

respectively showed no significant activity with either of the metal precursors used.  

Due to the lack of enantioselectivity achieved with the ligands tested and a variety of 

metal precursors, further studies into their application to ATH of ketones was not 

pursued. 

2.3  Application of tethered ruthenium catalysts to APH of 

carbonyl compounds. 

 

A successful series of catalysts for both ATH and APH of ketones are half-sandwich 

ruthenium complexes such as 55 in Scheme 60 developed by Noyori, incorporating 

an aromatic ligand and asymmetric TsDPEN ligand.
71, 92 

 

 

 

 

 

Scheme 60. Reported ATH70 and APH89 of acetophenone using Noyori's catalyst 55. 
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A variation of this catalyst was developed by Wills et al. in 2005 incorporating a 

three carbon tether between the aromatic and diamine ligand to give 97 shown in 

Scheme 61.
99

 

 

Scheme 61. (S,S)-TsDPEN-3C-tethered ruthenium catalyst 97 for ATH of acetophenone. 

 

The application of complex 97 to the ATH of ketones has been extensively 

studied
99,101,102 

however limited precedent exists for its application to APH of 

ketones,
109

 a process that would be of particular interest to industry. In collaboration 

with Johnson Matthey, work began to assess the scope of 97 for APH of ketones. 

Initially Johnson Matthey had screened a range of reaction conditions to identify 

appropriate catalyst loadings, reaction concentrations and temperatures for the APH 

of acetophenone. They found that concentrations of 0.5 - 1 M and substrate/catalyst 

loadings of 100-1000/1 allowed for full conversion to phenyl ethanol with high 

enantioselectivity in 16 hours at 40-60°C, with the lower catalyst loadings requiring 

the higher temperature.
145

 Initial studies began with repetition of these findings to 

establish appropriate reaction conditions for our reaction set-up prior to assessing the 

catalyst’s scope for APH of a range of ketones. Results of this investigation are 

shown in Table 21. 
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Table 21. Results for APH of acetophenone using (R,R)-TsDPEN-3C-tethered catalyst 97. 

 

Entry Catalyst 
Substrate/ 

catalyst 
[Substrate]

 Temp. 

(°C) 

Conv.
a 

(%) 

Ee
a 

(%) 

1 none - - 40 0.31 N/A 

2 (R,R)-97 100/1 1 mmol [0.5 M] 40 99.9 92.2 (R) 

3 (S,S)-97 100/1 1 mmol [0.5 M] 40 99.9 94.4 (S) 

4 (R,R)-97 500/1 1 mmol [0.5 M] 60 50.4 91.4 (R) 

5 (S,S)-97 500/1 1 mmol [0.5 M] 60 38.0 87.1 (S) 

6
b

 (R,R)-97 500/1 1 mmol [0.5 M] 60 99.9 91.7 (R) 

7
b

 (S,S)-97 500/1 1 mmol [0.5 M] 60 92.3 93.0 (S) 

8
c (R,R)-97 500/1 1 mmol [0.5 M] 60 65.8 92.8 (R) 

9
b (R,R)-97 1000/1 1 mmol [0.5 M] 60 34.7 86.9 (R) 

10
b (S,S)-97 1000/1 1 mmol [0.5 M] 60 39.2 88.3 (S) 

aDetermined by chiral GC. bAcetophenone purified by kugelrohr distillation. cReaction carried out for 

8 hours. 

Full conversion was achieved at a substrate/catalyst (S/C) ratio of 100/1 (1 mol% 

catalyst) at 30 bar H2 and 40°C. With a reduction in catalyst loading to S/C 500/1 

(0.2 mol%) however, even with an increase in temperature to 60°C full conversion 

was not achieved (Table 21, entries 3 and 4). Purification of the acetophenone by 

kugelrohr distillation was found to improve this allowing full conversion to phenyl 

ethanol at S/C 500/1 (Table 21, entry 5 and 6). A reduction in reaction time to 8 

hours at S/C 500/1 showed a significant reduction in conversion to 65.8% 

demonstrating the need for a 16 hour reaction time at this loading. At S/C 1000/1, 

even with distilled acetophenone, full conversion to phenyl ethanol was not achieved 

in contrast to results obtained by Johnson Matthey. Trace impurities remaining in the 

acetophenone or present in the solvent or catalyst itself, may be the cause of this. At 

such low S/C loadings, even trace impurities could poison a sufficient proportion of 
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the catalyst present to reduce conversion. Conditions as in Table 21, entry 3 were 

used to assess the scope of the catalyst for APH of a range of ketones (Figure 40).
145

  

All conversions and enantiomeric excesses determined by chiral GC unless otherwise stated. 
aDetermined by chiral HPLC. bDetermined by Mosher’s method.156

 

Figure 40. APH of carbonyl compounds using (R,R)-3C-tethered ruthenium catalyst 97. 

The ketones tested demonstrated good catalyst scope for APH with tethered 

ruthenium catalysts achieving high conversions and enantioselectivities. The results 

also show good tolerance of the catalyst and reaction conditions to a range of 

substituent groups.  

For more sterically encumbered ketones such as 2,2-dimethyl-1-phenyl propanone 

however, a reduction in the conversion and ee. were observed, even with longer 
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reaction times. 1-phenyl propanone however was reduced well along with its α-

hydroxy and α-phenoxy derivatives.  

Both electron donating OMe and electron withdrawing CF3 p-substituent groups 

were tolerated on the aromatic ring of the ketone, however a small reduction in ee. 

was observed with CF3 substituents. This may be due to a loss of electron density in 

the phenyl ring of the ketone due to the electron withdrawing nature of the CF3 

group. This would reduce the favourable π/CH-attraction between catalyst and 

substrate shown in Figure 43 and hence reduce the ee. APH of bicyclic ketones was 

found to give the highest conversions and enantioselectivities.  

Aliphatic ketones such as cyclohexylmethyl ketone performed less well under APH 

conditions with catalyst 97, achieving only 66.8% ee. (S), although this is consistent 

with ATH results.
99

 The low ee. is due to there being only a small energy difference 

between transition states for each enantiomer of product. It should also be noted that 

reduction of cyclohexylmethyl ketone gives the opposite enantiomer of product 

compared to the other substrates tested. This is due to the absence of π/CH-

interactions between the catalyst and the substrate, hence steric factors determine the 

most favourable geometry of the transition state. The ketone is oriented with the 

large cyclohexyl substituent away from the catalyst giving the (S) enantiomer of 

product (Figure 41).  

 

Figure 41. Transition state geometry for APH of aromatic and non-aromatic ketones by the 3C-

tethered ruthenium catalyst 97. 
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Ethyl benzoate and 1-benzylpiperidine-2,6-diene were also subjected to the APH 

conditions however no conversion was seen after 24 hours.  

Determination of the enantiomeric excess and assignment of the stereochemistry of  

2-(morpholin-4-yl)-1-phenylethanol from the APH of 2-morpholino-1-

phenylethanone was achieved using Mosher’s method.
146

 This technique involves 

the reaction of the obtained alcohol product with (S)-(+)-α-methoxy-α-

trifluoromethylphenylacetyl chloride to give the resulting ester. The ester now has 

two chiral centres, the first resulting from the acetyl chloride which is 

enantiomerically pure and a second from the initial alcohol APH product which may 

or may not be enantiomerically pure. The resulting ester is therefore present as a 

mixture of diastereomers depending on the enantiomeric purity of the APH product. 

Analysis of the ester by 
1
H NMR

 
allows determination of both the enantiomeric 

excess and configuration of the alcohol product by use of the model shown in Figure 

42 and comparison to 
1
H NMR data obtained for the ester formed from a racemic 

sample of the alcohol product. Further details of the analysis carried out is given in 

the Experimental section of this thesis.  

 
Figure 42. Model for assignment of enantiomeric excess and configuration of 2-(morpholin-4-yl)-1-

phenylethanol. 
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In the case of the hydrogenation of 2-morpholino-1-phenylethanone to 2-(morpholin-

4-yl)-1-phenylethanol, comparison of the Mosher’s ester of the asymmetric product 

to the racemic shows the morpholine peaks to be upfield in the 
1
H NMR spectrum 

confirming the presence of the S-enantiomer of the product. Only one set of peaks 

was present in the 
1
H NMR indicating a high enantioselectivity of >95%. 

In order to investigate chemoselectivity for the APH of C=O bond over C=C bonds 

the APH of 4-phenyl-3-buten-2-one 176 was carried out as shown in Scheme 62. 

 
Scheme 62. APH of 4-phenyl-3-buten-2-one with (R,R)-TsDPEN-3C-tethered catalyst 97. 

 

The reaction gave an overall conversion of 79% conversion but poor 

chemoselectivity for reduction of the carbonyl group with 43% conversion to 

products with hydrogenated C=C bonds. This is in contrast to the results achieved 

under ATH conditions with untethered catalyst 57a reported by Wills
73

 where the 

same ketone was reduced with complete conversion, the product comprising of 75% 

of the unsaturated alcohol 177 and 25% saturated alcohol 178.  

The low selectivity between hydrogenation of the C=C and C=O bond in APH is 

likely to be due to there being only a small energy difference between the energy of 

the transition states for each process meaning that there is little discrimination 

between the occurrence of both processes. In the APH reaction reported in Scheme 

62, it was not possible to separate the two alcohol products formed by column 
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chromatography. The alcohol mixture was therefore subjected to hydrogenation with 

Pd/C and atmospheric hydrogen to give only the saturated alcohol which was then 

analysed by chiral HPLC and showed an ee. of only 4.7% (R). Both APH and ATH 

conditions gave low enantioselectivities for the reduction products. 

2.4 Application of further tethered ruthenium catalysts to the APH 

of ketones. 

With the 3C-tethered ruthenium catalyst 97 demonstrating good activity for APH of 

ketones investigations were carried out into the scope of other catalysts for this 

reaction in order to identify a more active catalyst.
 
Three aspects of the catalyst were 

chosen for further study: 

1) The sulfonamide group 

2) The halide ligand 

3) The length of the aryl-diamine tether. 

2.4.1 3C-tethered MsDPEN ruthenium catalyst. 

Initially the (R,R)-3C-tethered-MsDPEN-RuCl catalyst 180, supplied by Johnson 

Matthey, was applied to the APH of acetophenone as shown in Table 22. 

Table 22. Results for APH of acetophenone using (R,R)-MsDPEN-3C-tethered catalyst 180. 

 

 

 

Entry H2 Pressure 

(bar) 

Substrate/ 

catalyst 

[Substrate]
a
 Temp. 

(°C) 

Conv.
b 

(%) 

Ee
b 

(%) 

1 30 500/1 1 mmol [0.5 M] 60 47.3 89.8 (R) 

2 30 1000/1 1 mmol [0.5 M] 60 25.7 83.8 (R) 

3 50 500/1 1 mmol [0.5 M] 60 99.9 91.1 (R) 

4 50 1000/1 1 mmol [0.5 M] 60 60.4 87.8 (R) 
aDistilled acetophenone used. bDetermined by chiral GC.  
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The MsDPEN catalyst was found to be a less active catalyst than the TsDPEN 

catalyst, requiring an increase in pressure to achieve full conversion at S/C 500/1. 

These findings are mirrored in ATH reactions using the MsDPEN catalyst 180. The 

ATH of acetophenone using catalyst 180 as shown in Scheme 63 required 6 hours to 

achieve full conversion, whilst use of TsDPEN catalyst 97 under the same conditions 

required only 2 hours for full conversion. 

 

Scheme 63. ATH of acetophenone using TsDPEN99 (97) and MsDPEN (180) tethered catalysts. 

The reduction in the activity of the MsDPEN catalyst 180 may be due to a loss of 

steric bulk at the sulfonamide group, or indeed a reduction in the electron 

withdrawing nature of the sulfonamide group with a methyl rather than tolyl 

substituent affecting the electronic nature of the ruthenium and hence the Ru-H 

bond. The use of increased H2 pressure was applied to the APH of a range of ketones 

using MsDPEN catalyst 180 (Figure 43). 



Development of catalysts for asymmetric hydrogenation                                   Results and Discussion 

106 

 

 

Figure 43. APH of ketones using (R,R)-MsDPEN-3C-tethered ruthenium catalyst 180. 

High conversions and ee.’s were achieved for ATH of the ketones using 50 bar H2 

pressure. 

2.4.2 3C-tethered TsDPEN ruthenium iodo catalyst. 

The second alteration made to the catalyst was to prepare the iodo derivative of 

catalyst 97. Williams, Blacker and co-workers have shown iodo catalysts such as 

[Cp
*
IrI2]2 to be highly active for hydrogen transfer processes for the alkylation of 

amines
147

 and also dynamic kinetic resolution of chiral amines.
148  

Noyori has previously reported a proposed mechanism for APH using untethered 

ruthenium catalysts.
75

 As described in Scheme 30, APH occurs under non-basic 

conditions with loss of chloride by ionisation to form a cationic Ru complex. The 

cationic complex then interacts with hydrogen to form an 18 electron ruthenium 

hydride complex. Hydrogenation of the ketone then occurs via a 6-membered 

pericyclic transition state with transfer of a hydride and proton to the C=O bond. 
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Protonation of the resulting ruthenium complex reforms the cation which then 

continues the catalytic process. 

The ionisation step in the APH mechanism is a significant step in the mechanism, the 

faster the cationic species can be formed, the sooner the catalytic cycle and hence 

hydrogenation of substrate can begin. It has been found that Ru triflate complexes 

show improved activity for APH
75,76,93

 due to rapid and facile ionisation in methanol 

solvent.
93

 The literature also reports the use of silver salts within APH reactions to 

assist with the removal of the chloride
94,149

 however studies carried out by Johnson 

Matthey found the addition of a variety of silver salts was detrimental the APH of 

acetophenone with the tethered catalyst 97 reducing conversions to phenyl ethanol to 

<10% and in some cases <1%.
145 

In order to investigate whether iodide may be a 

better leaving group than chloride in the tethered catalyst improving the rate of 

activation of the catalyst, the tethered (181) and untethered (183) ruthenium iodide 

catalysts were prepared as shown in Scheme 64. X-ray crystallographic structures 

were also obtained for each complex (Figure 44). 
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Scheme 64. Preparation of tethered and non-tethered ruthenium iodide catalysts 181 and 183. 

 

 

 

 

 

 

 

 

Figure 44. Solid state X-ray crystallographic structures of (R,R)-3C-tethered-RuI catalysts 181 (left) 

and 183 (right) with atom labelling. 

 

The X-ray structures are consistent with those reported for the analogous RuCl 

complexes
74, 102

. Each complex was present as a single diastereomer, with the tosyl 

group oriented away from the chloride ligand and π/π-stacking between the tosyl 

group and neighbouring phenyl ring of TsDPEN observed. The Ru-I bond lengths 

were 2.77 and 2.78Ǻ respectively for the tethered (181) and untethered (183) 
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complexes, longer in each case than the analogous RuCl complexes (Ru-Cl 2.43
 
and 

2.44
 
Ǻ for the tethered

102
 (97) and untethered

74
 (57a) complexes). 

Conversion of the tethered RuCl catalyst (97) to its iodo derivative (181) proceeded 

with excellent product yield and without the need for purification. Formation of the 

untethered iodo catalyst proved to be less trivial with lower yields obtained due to 

the high solubility of both the monomer and its dimer precursor making isolation of 

the complexes more difficult. Conversion of the pre-formed untethered ruthenium 

chloride catalyst 57a into its iodo derivative (183) gave a significantly higher yield 

than formation of the iodo dimer 184 followed by monomer formation. With both 

iodo catalysts in hand a series of APH reactions were carried out with acetophenone 

as the substrate (Table 23). 

Table 23. APH of acetophenone using tethered and untethered ruthenium chloride and iodide 

catalysts 97, 181, 57a and 183. 

 

Entry  Catalyst S
a
/C Temp. 

(°C) 

Time 

(hr.) 

Conv.
b
 

(%) 

Ee
b
 (%) 

1 
(R,R)-untethered 

RuCl catalyst 57a 
100/1 40 16 94.6 94.3 (R) 

2 
(R,R)-untethered RuI 

catalyst 183 
100/1 40 16 67.0 92.7 (R) 

3 
(R,R)-untethered 

RuCl catalyst 57a 
500/1 60 16 9.1 87.3 (R) 

4 
(R,R)-untethered RuI 

catalyst 183 
500/1 60 16 4.4 61.0 (R) 
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5 
(S,S)-tethered RuCl 

catalyst 97 
500/1 60 16 99.8 93.2 (S) 

6 
(S,S)-tethered RuCl 

catalyst 97 
1000/1 60 16 21.0 86.6 (S) 

7 
(S,S)-tethered 

RuI catalyst 181 
500/1 60 16 56.5 92.7 (S) 

8 
(S,S)-tethered 

RuI catalyst 181 
1000/1 60 16 4.6 75.3 (S) 

9 
(S,S)-tethered RuCl 

catalyst 97 
2000/1 60 64.5 39.8 86.3 (S) 

10 
(S,S)-tethered 

RuI catalyst 181 
2000/1 60 64.5 45.2 86.7 (S) 

    aDistilled acetophenone used. bDetermined by chiral GC. 

 

The tethered iodo catalyst 181 was found to be more active than the untethered iodo 

catalyst 182, however both iodo catalysts were less active than their chloro 

counterparts. Interestingly however, with a low catalyst loading and long reaction 

time (Table 23, entries 9 and 10) the activity of the tethered chloro and iodo catalysts 

was comparable in terms of conversion and ee. This suggests that although less 

active than the chloro catalyst, the iodo derivative 181 may exhibit increased 

stability over the chloro catalyst remaining active for longer allowing greater 

conversion over long reaction times than the chloro catalyst 97. The results suggests 

that the ionisation process is not improved with an Ru-I rather than Ru-Cl bond as 

was originally proposed.  

The reaction profile over time for both the tethered chloro and iodo catalyst offers 

further insight into the relative reactivities of the two complexes. Unlike the ATH 

reactions however, when using the sealed Parr reactor for APH reactions it was not 

possible to sample the same reaction at various time points for conversion analysis. 

Sampling APH reactions required cooling and depressurising the reaction before 

opening the reactor to extract a sample and once open, the reaction and all active 
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catalytic intermediates are exposed to air and moisture which may deactivate the 

catalyst. Indeed when initial reactions were sampled this way conversion was found 

to stop after the first sample was taken. Instead several reactions were carried out for 

different lengths of time and the conversion analysed. Each reaction was carried out 

in duplicate to confirm the results and identify anomalous results due to inaccurate 

weighing of catalyst or acetophenone. The same batch of catalyst, acetophenone and 

MeOH was used throughout. The results are shown in Figure 45. 

 

 

Figure 45. Analysis of conversion over time for APH of acetophenone using chloro (97) and iodo 

(181) tethered catalysts. 
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The conversion vs. time graph shows that the ruthenium iodide catalyst 181 is less 

active than the chloro derivative throughout the reaction process. A close up view of 

the first 4 hours of the reaction shown in Figure 46 shows that the initial activation 

period for the catalysts, is much longer for the iodo catalyst than the chloro catalyst.  

 

Figure 46. Analysis of conversion over time for hours 1-4 of the APH of acetophenone using chloro 
(97) and iodo (181) tethered ruthenium complexes. 

 

The chloro catalyst (97) shows an activation period of 30 min before a significant 

increase in reaction rate is seen, however the iodo catalyst (181) requires 1.5-2 hours 

before the reaction rate increases, however it is a much more subtle increase in 

reaction rate than with the chloro catalyst. This reduction in the rate of activation 

again suggests that the ionisation process is slower for the iodo catalyst, rather than 

faster as was proposed. Contrary to expectations the larger iodide ion may not be a 
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catalyst. Also the formation of HI during the reaction with the iodo catalyst 181 

compared to HCl with the chloro catalyst may be detrimental to the reaction.  

The tethered iodo catalyst 181 was also applied to the ATH of acetophenone. Under 

these conditions, where ionisation of the catalyst is not necessary for formation of 

the active species due to the presence of base, the iodo catalyst 181 performed 

equally to the chloro catalyst 97 (Table 24). 

Table 24. ATH of acetophenone using tethered ruthenium chloride (97) and iodide (181) catalysts. 

 

Entry Catalyst Temp. 

(°C) 

Time 

(hours) 

Conv.
a
 

(%) 

Ee.
a
 (%) 

1 
(R,R)-97 

RuCl 
28 34 92.8 96.5 (R) 

2 
(S,S)-181 

RuI 
28 34 99.6 95.9 (S) 

3 
(R,R)-97 

RuCl 
60 2 99.8 95.0 (R) 

4 
(S,S)-181 

RuI 
60 2 99.4 95.3 (S) 

a
Determined by chiral GC analysis. 

 

For the ATH conditions investigated, both catalysts gave comparable results 

showing no difference in activity upon substitution of the chloride for an iodide in 

the catalyst. The mode of activation for catalysts in ATH processes is loss of the 

halide ligand brought about by the presence of a base such as Et3N or KOH. The loss 

of both chloride and iodide in this way should proceed at equal rates allowing equal 
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formation of the active Ru-hydride species and hence and equal rate of 

hydrogenation taking place.  

2.4.3 4C-tethered ruthenium catalyst. 

The third alteration made to the catalyst was to increase the length of the tether to a 4 

carbon chain. This complex is known and has been reported to give improved results 

for ATH of ketones over the 3 carbon tethered catalyst.
101,102

 

The initial preparation of the catalyst began according to literature procedures
101,102

 

with preparation of the 4-cyclohex-1,4-dienyl)butan-1-ol (185) starting material via 

Birch reduction of 4-phenyl-1-butanol as in Scheme 65. 

 

 

 
Scheme 65. Preparation of 4-cyclohex-1,4-dienyl)butano-1-ol 185. 

 

The next step in the synthesis is to couple the diene to the asymmetric diamine 

ligand, in this case (R,R)-TsDPEN. In the first reported synthesis of this catalyst this 

was achieved via Swern oxidation to afford the aldehyde and then reductive 

amination with TsDPEN to afford the coupled ligand.
99 

Ikariya has published an 

alternative procedure for preparation of tethered diene ligands with conversion of the 

alcohol to a tosylate followed by nucleophilic substitution with the TsDPEN to 

afford the desired diene product.
104

 This process was thus employed for preparation 

of the 4C-tethered ligand 187 as shown in Scheme 66. The ruthenium complex was 

then prepared from ligand 187 according to the reported method.
101,102 
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Scheme 66. Synthesis of (R,R)-TsDPEN-4C-tethered ruthenium catalyst 101. 

 

With the catalyst in hand it was applied to APH of a range of ketones as with the 3C-

tethered catalyst previously. Results are shown in Figure 47. 

 
aConversion and ee. determined by chiral GC unless otherwise stated. bDetermined by chiral HPLC. 

Figure 47. Application of (R,R)-4C-tethered TsDPEN ruthenium catalyst 101 to APH of ketones. 
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APH of ketones with the 4 carbon tethered catalyst 101 proceeded well with high 

activity and enantioselectivity. In most cases however, the 3 carbon catalyst gave the 

best results in terms of conversion, enantioselectivity or both. Only in some cases, 

namely APH of p-trifluoromethylacetophenone, indanone, tetralone and 

chromanone, did the results with 101 match those obtained with 97 in terms of 

conversion and enantioselectivity.  

Under ATH conditions, the improved activity of the 4C-tethered catalyst 101 

compared to its 3C counterpart 97 is reported to be due to the catalyst having a 

higher rate for formation and regeneration of the Ru-H species than 97.
101,102

 The 

results obtained for APH however show the 4C-tethered catalyst 101 to be less active 

than its 3C counterpart.  

This may be due to the different mechanisms for ATH and APH as reported by 

Noyori
75

 and discussed in Schemes 22 and 30. Although in both processes the 

reduction of the ketone occurs via the same cyclic transition state, the formation of 

the Ru-H species occurs by a different pathway for each process. In ATH, the 

presence of base allows the elimination of HCl to give the 16 electron complex 

(Scheme 22), in APH however, the chloride is lost through ionisation generating a 

cationic complex with interacts with molecular hydrogen to form the ruthenium 

hydride species (Scheme 30). In the 4C tethered catalyst 101, the tether is reported to 

be oriented towards the chloride which increases the sterics in this region of the 

catalyst.
102

 The increase in sterics may be a disadvantage under APH conditions, 

inhibiting either the ionisation of the chloride ligand, or the initial co-ordination of 

molecular hydrogen prior to Ru-H formation. Such inhibition would increase the 
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time required for Ru-H formation and regeneration in turn reducing the rate of 

turnover and hence activity of the catalyst. 

2.5 Hydrogenation of aldehydes with tethered ruthenium catalysts. 

The tethered catalysts, particularly the 3C tethered catalyst 97 have shown good 

activity and enantioselectivity for the APH of ketones, however the hydrogenation of 

aldehydes to prepare primary alcohols was also of interest. Initial attempts at the 

hydrogenation of benzaldehyde shown in Scheme 67 gave formation of a second 

product in addition to the desired benzyl alcohol (Figure 48).  

 

 

 
Scheme 67. APH of benzaldehyde using tethered ruthenium catalyst (S,S)-97. 

 

GC conditions: Chrompac cyclodextrin-β-236M-19 50m x 0.25 mm x 0.25 μm, T = 100°C, P = 15psi 

H2, det = FID 220°C, inj = 220°C, benzaldehyde 9.6 min., benzyl alcohol 27.1 min. 

Figure 48. Example chrial GC chromatogram of the APH of benzaldehyde as shown in Scheme 67. 

 

 Isolation of the unknown compound at 15.6 min. was achieved by column 

chromatography. 
1
H NMR analysis identified the compound as 

(dimethoxymethyl)benzene (Figures 49 and 50). 
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 GC conditions: Chrompac cyclodextrin-β-236M-19 50m x 0.25 mm x 0.25 μm, T = 100°C, P = 15psi 

H2, det = FID 220°C, inj = 220°C, (dimethoxymethyl)benzene 15.6 min. 
 

Figure 49. Chiral GC chromatogram showing isolated unidentified compound at RT 15.6 min. 

 
Figure 50. 

1H NMR of isolated unidentified compound at RT 15.6 min. (CDCl3, 300 MHz). 

 

In order to determine if the formation of the dimethoxy product was characteristic of 

aldehydes in general or was simply isolated to the case of benzaldehyde, 

cinnamaldehyde was also subjected to pressure hydrogenation (PH) conditions as 

shown in Table 25, and Figure 51. 

 

OCH3 

CH 
CHAr 
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Table 25. APH of cinnamaldehyde using catalyst (S,S)-97. 

Entry 
Temp 

(°C) 

Conversion to products
a
 (%) 

  
  

Unknown 

at 26 min. 

1 60 0.3 0.3 7 78.4 13.9 

2 40 16 0.9 1.2 59.2 22.7 
aDetermined by GC. 

 

GC Conditions: Chrompac cyclodextrin-β-236M-19 50m x 0.25 mm x 0.25 μm, T = 130°C, P = 15psi 

H2, det = FID 220°C, inj = 220°C, 3-phenylprop-2-enal 11.2 min., 3-phenylpropan-1-ol 20.4 min., 
cinnamaldehyde 21.8 min., unknown product 26.2 min., 3-phenylprop-2-en-1-ol 31.6 min. 

Figure 51. Example GC chromatogram for the APH of cinamaldehyde. 

 

Again an unknown compound was found to form in the reaction (RT = 26.2 min.), 

isolation of this compound and analysis by 
1
H NMR identified it as (3,3-

dimethoxyprop-1-en-1-yl)benzene 189 (Figure 52).  

 

 

Figure 52. (3,3-dimethoxyprop-1-en-1-yl)benzene 189. 
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It was thought that by altering the solvent to a more sterically encumbered alcohol or 

a non alcoholic solvent may prevent formation of such adducts (Table 26). 

Table 26. Investigation into the use of different solvents for the APH of benzaldehyde. 

 

 

 

Entry Solvent 

Conversion to products
a
 (%) 

 

Other 

products  

1 IPA 91.8 0.3 7.9 

2 DCM 98.1 - 1.9 

3 Toluene 96.6 - 3.4 

4 
Cyclo-

hexanol 
95 - 5.0 

5 Dioxane 97.4 0.6 2.0 

6 DMF 93.8 - 6.2 

7 H2O 73.8 - 26.2 
        aDetermined by GC analysis. 

 

Of the solvents tested all gave low conversion to benzyl alcohol but the use of water 

as the solvent gave the highest of these conversions demonstrating a degree of 

tolerance to water for the catalyst. A systematic study was carried out to identify the 

effect of different MeOH/H2O mixtures as the reaction solvent on the conversion of 

benzaldehyde to benzyl alcohol and (dimethoxymethyl)benzene under pressure 

hydrogenation (PH) conditions. The results are shown in Table 27.  
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Table 27. Use of aqueous solvent for the APH of benzaldehyde using (S,S)-97. 

 

Entry Solvent 
Time 

(hours) 

Conversion to products
a
 (%) 

  
 

1 H2O 24 73.8 - 26.2 

2 
MeOH + 

0.2 mol% H2O 
24 5.7 39.5 54.8 

3 
MeOH + 2μL 

H2O 
24 <0.01 38.4 61.6 

4 
75:25 

MeOH:H2O 
24 0.2 <0.01 99.8 

5 
50:50 

MeOH:H2O 
24 0.2 <0.01 99.8 

6 
25:75 

MeOH:H2O 
24 27.8 0.4 71.8 

      aDetermined by GC analysis. 

 

Initially catalytic amounts of water were added to the reaction however no 

improvement to the conversion to benzyl alcohol was seen. With larger amounts of 

water, (Table 27, entries 4 and 5) the formation of (dimethoxymethyl)benzene was 

inhibited and the reaction proceeded with full conversion to benzyl alcohol. Table 

27. entry 6, with 75% water in MeOH shows the water to inhibit the hydrogenation 

reaction with incomplete conversion of benzaldehyde to products in 24 hours, 

although the amount of (dimethoxymethyl)benzene formed remained low. The PH of 

cinnamaldehyde was carried out using conditions as for Table 27, entry 5. 
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Cinnamaldehyde was found to be a more hindered substrate in the initial reductions 

carried out (Table 25) exhibiting lower overall conversion to product than the 

benzaldehyde reduction (Scheme 67) so it was deemed a good substrate to 

investigate the efficacy of the new reaction conditions. The results are shown in 

Scheme 68. 

 

 

 

Scheme 68. APH of cinamaldehyde using (S,S)-97. 

 
Although the reaction showed minimal formation of (dimethoxymethyl)benzene, the 

overall conversion to products for the reaction was 89.3% leaving 10.7% unreacted 

starting material, even with the long reaction time of 24 hours. This shows that the 

addition of water to the MeOH solvent will need to be minimised in order for the 

reaction to remain effective for the PH of more difficult substrates. A further study 

was therefore carried out to determine the minimum amount of water required to 

prevent formation of (dimethoxymethyl)benzene. The results are shown in Table 28.  
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Table 28. APH of benzaldehyde using (S,S)-97 and aqueous solvent. 

 

Entry Solvent 
Time 

(hours) 

Conversion to products
a
 (%) 

  
 

1 
75:25 

MeOH:H2O 
16 19.8 4.6 75.6 

2 
90:10  

MeOH: H2O 
16 <0.01 <0.01 99.9 

3 
95:5 

MeOH:H2O 
16 0.2 - 99.8 

4 
95:5 

MeOH:H2O 
8 0.03 0.03 99.9 

    a
Determined by GC analysis. 

 

The reaction conditions used in Table, 28, entry 4 were deemed to be the best 

conditions for the PH reaction, with short reaction times, minimal amount of water 

and high conversion to the desired alcohol product. With appropriate reaction 

conditions in hand, a sample of 3C-tethered achiral catalyst 190 provided by Johnson 

Matthey was applied to PH of benzaldehyde (Table 29). Use of the achiral catalyst is 

desirable as the hydrogenation of aldehydes does not give chiral products. Thus, the 

presence of expensive enantiomerically pure diamine ligands in the catalyst is not 

required. The achiral catalyst is therefore more cost effective and appropriate to use 

than the asymmetric catalyst 97. 
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Table 29. APH of benzaldehyde with achiral tethered ruthenium catalyst 190 and aqueous solvents. 

 

Entry Solvent 
Substrate/

catalyst 

Temp 

(°C) 

Time 

(hours) 

Conversion to products
a
 (%) 

  

 

1 
95:5 

MeOH:H2O 
500/1 60 8 10.6 13.4 76.0 

2 
95:5 

MeOH:H2O 
500/1 60 4 44.6 32.3 12.3 

3 
95:5 

MeOH:H2O 
1000/1 60 8 48.6 47.2 2.7 

4 
95:5 

MeOH:H2O 
500/1 40 16 40.9 51.7 7.4 

5 
90:10 

MeOH:H2O 
500/1 60 8 17.9 9.2 72.9 

6 
90:10 

MeOH:H2O 
500/1 60 16 0.4 0.1 99.5 

a
Determined by GC analysis. 

 

Initially the achiral catalyst showed reduced activity compared to the (S,S) catalyst. 

Comparison of Table 28, entry 4 and Table 29, entry 1, shows that under the same 

reaction conditions the achiral catalyst gave less conversion to benzyl alcohol and 

also allowed formation of (dimethoxymethyl)benzene. Investigations into reducing 

the reaction time, catalyst loading and temperature were further detrimental to the 

reaction, drastically reducing conversion to the desired product and increasing 

conversion to (dimethoxymethyl)benzene. Increasing the amount of water in the 

solvent and the reaction time was found to correct this achieving almost full 
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conversion to the desired alcohol product (Table 29, entry 6). A range of aldehydes 

were then subjected to APH under these conditions (Table 30). 

Table 30. APH of aldehydes using achiral ruthenium catalyst 190 and aquesous solvent. 

 

Entry Substrate Solvent Time 

(hours) 

Conversion to products
a
 (%) 

1 

 

90:10 

MeOH: H2O 
16 

0.4 

 

99.6 

 

- 

2 

 

90:10 

MeOH: H2O 
16 

0.1 

 
99.8 

Other 0.1 

3 

 

90:10 

MeOH: H2O 
16 

0.8 

 

94.8 

2.8 

 

Other 

1.6 

4 

 

90:10 

MeOH: H2O 
24 

 

0.05 

 

0.06 

96.1 

 

 

 
3.5 

 

 
0.3 

aDetermined by GC analysis. 

 

Good conversion to the desired product was achieved with each aldehyde 

demonstrating tolerance of a variety of aromatic substituents and also good 

chemoselectivity for hydrogenation of the carbonyl group over nitro and alkene 

groups. The hydrogenation of cinnamaldehyde proceeded with greater selectivity for 
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hydrogenation of the C=O bond over the C=C bond than with hydrogenation of 4-

phenyl-3-buten-2-one (Scheme 70). The reduced steric environment of the C=O 

bond in cinnamaldehyde due to the presence of a proton rather than methyl group 

bonded to the carbonyl is thought to give a greater energy difference between 

transition states for C=O and C=C hydrogenation than for 4-phenyl-3-buten-2-one. 

Thus there is a greater preference for hydrogenation of the C=O bond in 

cinnamaldehyde over the C=C bond than in 4-phenyl-3-buten-2-one. 

2.6 Synthesis of tethered ruthenium complexes by aryl substitution 

methodology and application to asymmetric hydrogenation of 

ketones. 

In the previous section, tethered catalysts were successfully applied to the APH of 

ketones and aldehydes demonstrating high activity, enantioselectivity and 

chemoselectivity. Of all the catalysts investigated, the 3C-tethered TsDPEN RuCl 

catalyst 97 proved to be the most active. Although highly active for APH of ketones, 

and also aldehydes in both its chiral and achiral states, the preparation of the catalyst 

is far from ideal requiring a Birch reduction and also a two step ruthenium 

complexation process with formation of the dimer prior to formation of the monomer 

which is used in hydrogenation reactions.
96,97,101,102

 The necessity of the Birch 

reduction also restricts the structure of the tethered catalysts it is possible to form 

using this existing synthesis, limiting substitution on the aryl ring of the catalyst to 

those which can be prepared through the Birch reduction. Reported tethered catalysts 

with aryl substituents have, as a result, been restricted to those containing one or two 

methyl groups (Figure 55).
101,102,104
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Figure 53. Examples of alkyl substituted tethered ruthenium catalysts.  

 

Substituent groups on the aryl ring need to be stable to the Birch reduction 

conditions without hindering the reduction of the aromatic ring. The presence of 

electron donating groups such as alkoxy groups may encourage oxidation of the 

diene formed in the Birch reduction. This would lead to re-aromatisation of the ring 

preventing complexation with ruthenium. Bennett has reported the successful 

preparation of a series of arene ruthenium(II) complexes from a variety of substituted 

dienes including methyl, dimethyl and halogen substituted cyclohexadienes.
150

 In a 

separate report however he reports that attempts to prepare the hexamethylbenzene 

ruthenium chloride dimer were unsuccessful due to the resistance of hexamethyl 

benzene to reduction in order to form its diene derivative for coordination with 

ruthenium.
151

This resistance to reduction suggests that hexamethylbenzene may 

exhibit a strong preference for oxidation due to the electron donation from the six 

methyl substituent groups.  

A further example of this is the reported synthesis of OMe-substituted Noyori type 

complex 193 which requires an 8-9 fold excess of 1-methoxycyclohexa-1,4-diene 

191 in combination with RuCl3 to form the OMe substituted dimer for monomer 

formation with TsDPEN. This reaction is reported in the literature
152, 153

 and further 

confirmed with our own attempts at its synthesis shown in Scheme 69. Initial use of 

1.2 equivalents of diene 191, as used in the reported syntheses of tethered catalysts, 
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gave no formation of the desired dimer 192. Use of 11 equivalents of diene 191 

however gave dimer 192 in a 50% yield (Scheme 69) which was then converted to 

monomer 193. Use of complex 193 for the hydrogenation of acetophenone gave 

>99.9% conversion to phenyl ethanol with an ee. of 94.5% (R) under ATH 

conditions (formic acid:triethylamine 5:2, S/C 100/1, 28°C for 24 hours), but only 

11.8% conversion and 80.2% (R) under APH conditions (30 bar H2 in MeOH, S/C 

500/1 at 60°C for 24 hours). 

 

Scheme 69. Preparation of Noyori-type OMe substituted untethered ruthenium catalyst 204. 

 

Such a large excess of the diene is presumably required due to the electron-rich 

nature of the cyclohexadiene ring, with electron donation from the OMe encouraging 

oxidation to methoxybenzene. Employing a large excess of the diene is therefore 

necessary to ensure that enough diene remains present for complexation with the Ru. 

Whilst this process can be considered far from ideal but acceptable for complexes 

such as 193 which require simple and available diene starting materials, when 

considering the preparation of tethered complexes via a similar route it becomes 

significantly less viable. The use of such large excesses of enantiopure, TsDPEN 

containing diene ligands is not appropriate regarding the cost of such compounds and 

their preparation which involves multiple steps including a Birch reduction as shown 

in Scheme 70. 
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Scheme 70. Example preparations of TsDPEN tethered diene ligand. 

 

The Birch reduction can be avoided, with both Wills
98

 and Ikariya
104

 reporting the 

[4+2] cycloadditions for diene formation as shown in Scheme 71. 

 

Scheme 71. [4+2] cycloadditions for preparation of dienes. 

 

Precedent also exists for [4+2] cylcoadditions involving methoxy substituted 1,3-

butadiene.
154

 However, even with avoidance of the Birch reduction, the issue 

remains with complexing the formed diene ligand with ruthenium.  

Despite the difficulties with the synthesis of such complexes, the preparation and use 

of tethered catalysts possessing aryl substituents remains of significant interest, 
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offering the potential to enhance the interaction between the catalyst and substrates 

in order to improve conversion and enantioselectivity. However, for such potential to 

be investigated, an effective synthesis of such complexes allowing diverse 

substitution of the aryl ring is required. Of particular interest to ourselves was 

preparation of the catalyst via an aryl substitution process, with an electron-poor aryl 

group on a preformed ruthenium dimer being displaced by a more electron-rich aryl 

group of a ligand (Scheme 72).  

 
Scheme 72. Proposed synthesis of tethered ruthenium catalysts by an aryl substitution approach. 

 

This type of reaction is known in the literature however it has not previously been 

applied to the preparation of catalysts with a structure synonymous to the 3C-

tethered TsDPEN RuCl catalyst. There are many reports in the literature of the use of 

aryl substitution in the preparation of complexes involving phosphine ligands as 

shown in Scheme 73.
155

  

 

Scheme 73. Preparation of P-tethered ruthenium complexes by aryl substitution. 
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A review of the literature reveals only two examples of complexes formed via an 

aryl substitution involving nitrogen containing ligands. In 2007 Sadler reported the 

following reaction with tether lengths of 2 and 3 carbons long (Scheme 74).
156 

 

Scheme 74. Preparation of N-tethered ruthenium complexes by aryl substitutions. 

 

In 2009 Ikariya reported the following reaction with tether lengths of 3 and 4 carbons 

long (Scheme 75).
157 

 

Scheme 75. Preparation of N-tethered ruthenium complexes by aryl substitution. 

 

Initially it was thought that 3C-tethered TsDPEN ruthenium chloride complexes 

such as 97 could be prepared in a similar way however past attempts to achieve this 

within our group (carried out by Dr. Silvia Gosiewska) were unsuccessful, either 

with no reaction taking place or with decomposition occurring at higher temperatures 

(Scheme 76). 
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Scheme 76. Previous attempted formations of tethered complexes by aryl substitution in our group. 
Carried out by Dr. Silvia Gosiewska (unpublished result). 

 

These findings showed that unlike the work of Sadler and Ikariya, whereby with a 

ligand containing a single nitrogen atom the nitrogen is first co-ordinated to the 

ruthenium in situ to give an initial complex prior to aryl substitution, in our case with 

a diamine containing ligand, initial co-ordination of both nitrogens to the ruthenium 

inhibits the substitution reaction. It is thought that with both nitrogens co-ordinated 

to the ruthenium the geometry and degree of flexibility of the complex, in particular 

the tethered aryl component, is not of the correct orientation to allow aryl 

substitution to occur. We propose that with only one point of co-ordination between 

the tethered aryl ligand and ruthenium prior to aryl substitution as reported by 

Sadler
156

 and Ikariya
157

, the complex retains flexibility allowing a more favourable 

orientation for aryl substitution to be adopted. An alternative strategy was therefore 

adopted within our group shown in Scheme 77, whereby the ligand 196 and electron 

poor dimer 197 were combined directly rather than attempting the aryl substitution 

on a pre-formed complex.  

 

Scheme 77. Previous attempted synthesis of complex 97 by aryl substitution carried out by Dr. Silvia 

Gosiewska (unpublished result). 
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Under these conditions however, the desired complex was not formed. It was thought 

that the presence of Et3N and a long reaction time at room temperature prior to 

heating may be encouraging formation of the unreactive complex 195 shown in 

Scheme 76, through deprotonation of the tosylated nitrogen which then co-ordinates 

to the ruthenium. Therefore, recent studies in our group carried out by Dr. Soni again 

looked at reacting ligand 196 and dimer 197 directly, however this time the Et3N was 

omitted and the time spent at room temperature before heating was reduced to 30 

min. as shown in Scheme 78. 

 

 

 

Scheme 78. Further attempts at synthesis of complex 97 by aryl substitution (carried out by Dr. Soni). 

 

On this occasion a small amount of product 97 was formed, although by mass 

spectrometry the major component of the reaction mixture was unreacted ligand 196 

rather than complex 195. The absence of base, along with the reduced time at room 

temperature shows inhibition of the formation of complex 195, allowing aryl 

substitution to occur when the reaction was heated. In order to further improve 

conversion to the desired complex, the methoxybenzene derivative of the ligand was 

prepared for use in the aryl substitution reaction as it was felt that the electron rich 

nature of the aromatic ring may bias the system towards displacement of the electron 

poor ethylbenzoate ring and complexation of the methoxybenzene ring to ruthenium 

(Scheme 79). Conversion to complex was improved allowing isolation and 

characterisation of the obtained product.  
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Scheme 79. Synthesis of p-OMe substituted tethered catalyst 199 by aryl substitution (carried out by 

Dr. Soni). 

Additional purification by further column chromatography and recrystallisation of 

the isolated complex was required to give product of sufficient purity for an X-ray 

crystallographic structure to be obtained (Figure 54) and initial ATH reactions to be 

carried out. 

 
Figure 54. X-ray Crystal structure of catalyst 199 obtained by Dr. Soni. 

The X-ray structure compares with that previously reported for complex 97.
99

 The 

complex is a single diastereomer with the tosyl group away from the chloride ligand 

and exhibiting π/π-stacking with the neighbouring phenyl group of TsDPEN. The 

methoxy arene substituent shows a degree of planarity with the aryl ring. 

In an initial screening reaction, Dr. Soni found the catalyst 199 to give >99% 

conversion, 97.9% (R) for ATH of acetophenone using 1 mol% catalyst in formic 

acid triethylamine at 28°C. With the catalyst showing excellent activity for transfer 
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hydrogenation of ketones, it was felt necessary to further optimise its formation. 

Although the product was obtained under reaction conditions shown in Scheme 79, 

high levels of impurities were also formed observed by TLC analysis of the reaction 

product. To purify the product sufficiently for use in catalytic reactions, it was 

necessary to carry out column chromatography followed by multiple 

recrystallisations, a process which was detrimental to the yield of catalyst. It was 

thought that the long reaction time may be contributing to the high levels of 

impurities seen and that a higher temperature may improve this. Dr. Soni repeated 

the synthesis of 199 using chlorobenzene, with its higher boiling point, at 140°C. 

Formation of the complex with no ligand present by TLC was achieved after only 2 

hours, however impurities were still present. Further optimisation of the method was 

required as well as investigations into the application of the methodology to the 

preparation of other tethered ruthenium complexes and their use in APH reactions. 

This work was carried out by myself. 

My initial studies began with identifying the most appropriate synthesis for 

production of ethylbenzoate ruthenium(II)chloride dimer with initial formation of 

cyclohexa-1,4-dienecarboxylic acid, followed by formation of the ethyl ester. The 

ester then undergoes complexation with RuCl3 to give the desired dimer product as 

shown in Scheme 80.  

 

Scheme 80. Synthesis of electron poor Ethylbenzoate ruthenium(II)chloride dimer 197. 
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There are two main methods reported for the production of cyclohexa-1, 4-

dienecarboxylic acid: Birch reduction of benzoic acid
158

 and cycloaddition of 

butadiene with propiolic acid
159

as shown in Scheme 81. 

 

 

 

 

Scheme 81. Synthesis of cyclohexadienecarboxylic acids 200a and b. 

 

Birch reduction of benzoic acid proceeded well on a reasonable scale (8 g benzoic 

acid) giving 75% yield of product 200a. However, along with the associated hazards 

of using sodium metal and ammonia, the reaction was found to be inconsistent with 

different isomers of diene product being formed on different occasions and 
1
H NMR 

analysis showing evidence of decomposition and over reduction of the aromatic ring 

(see Experimental section of this thesis). Formation of 200b by [4+2] cycloaddition 

of 1,3-butadiene and propiolic acid was found to be highly effective forming a single 

isomer of product in an 82% yield. Attempts to carry out the reaction using sulfone, 

which readily decomposes to 1,3-butadiene on heating, instead of 1,3-butadiene 

itself were unsuccessful giving only a 24% yield of the desired product.   

2.6.1 Optimisation of aryl substitution methodology for the preparation of 

tethered ruthenium complexes. 

With a robust synthesis of the dimer 197 in hand, work began to optimise the 

chlorobenzene method for preparation of catalyst 199, as by TLC this method gave 

slightly cleaner product than that obtained from DCM at 90°C, and also was a 

significantly shorter method. Firstly different reaction temperatures were 

investigated (Scheme 82). 
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Scheme 82. Synthesis of p-OMe substituted tethered ruthenium catalyst 210 by aryl substitution. 

 

The reaction was carried out at 90, 120 and 140°C in chlorobenzene for 2 hours after 

the initial 30 min. in DCM at room temperature. The reaction solutions were then 

analysed by TLC and mass spectrometry and the results are described in Figure 55. 

 

 

Figure 55. TLC analysis of complex 199 formation at different temperatures. 

For comparison, the 49 hr., 90°C, DCM reaction was also carried out and analysed 

by TLC along with a sample of the purified catalyst. After 2 hours ligand 209, seen 

by UV light, was present in the 90°C reaction, however none was visible in the 120 

or 140°C reaction. Notably the reaction at 90°C gave significantly cleaner reaction 

product by TLC than the reactions carried out at higher temperatures. In addition, 

209 

standard 
210 

standard 

Chlorobenzene 

      90°C      120°C      140°C 
DCM 90°C 

49 hr. 
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significantly more of the desired complex 199 seemed to be visible by TLC in the 

chlorobenzene reactions than in the DCM reaction. Mass spectrometry confirmed the 

presence of the desired complex in all reactions with a signal at m/z 615.1 [M+H-

Cl]
+
. In order to confirm the most appropriate temperature and reaction time for 

complex formation, further reactions were carried out at 75, 90 and 100°C. At 100°C 

the reaction was found to be complete with no ligand visible by UV after 3 hours, at 

90°C, 5 hours was required for consumption of the ligand  by TLC, however at 75°C 

ligand was still present by TLC after 5 hours. TLC showed more impurities present 

at 100°C than at 75 or 90°C and thus 90°C was deemed to be the most appropriate 

temperature for the reaction giving a good compromise between purity of the product 

obtained and reaction time. 

Further investigations were conducted using different solvents for the reaction 

including chloroform, water, THF, 
i
PrOH, MeCN and xylene at 90°C. After 2 hours, 

TLC and mass spectrometry showed the desired complex to only form in xylene, 

however there were many impurities present thus, chlorobenzene at 90°C was 

deemed the most appropriate conditions for preparation of the methoxy substituted 

catalyst 199.  

2.6.2 Mechanistic insights into the formation of ruthenium complexes by aryl 

substitution. 

With an optimised synthesis of OMe-substituted tethered catalyst 199 via aryl 

substitution in hand, further work was carried out to understand the mechanism of 

formation for the catalyst. It is known from previous studies that the preformed, 

diamine co-ordinated complex 195 does not undergo aryl substitution to the desired 

complex. This was also the case with 202 and its application to the synthesis of 199 
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by aryl substitution as shown in Scheme 83. Reaction of 202 in chlorobenzene at 

90°C showed no evidence of formation of 199 by mass spectrometry after 5 hours. 

 

Scheme 83. Attempted preparation of tethered catalyst 199 from 202. 

 

 

Dr Soni had also found that the absence of base is important for the aryl substitution 

to occur (Schemes 77 and 78). It was therefore possible to propose a mechanism for 

the formation of tethered catalysts via aryl substitution (Scheme 84). 

 
Scheme 84. Proposed mechanism for complexation by aryl substitution. 

 

It is thought that the initial stirring in DCM at room temperature in the absence of 

base allows formation of a coordinative bond between the amino nitrogen of the 

ligand and ruthenium to form complex 203. Upon heating the aryl substitution takes 

place giving intermediate 204, prior to loss of HCl allowing formation of the Ru-

NTs bond to give complex 199. The proposed intermediate 203 is analogous to the in 
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situ formed complexes reported by Sadler
156

 and Ikariya
157

 which are known to 

undergo aryl substitution for complexation with ruthenium. 

An NMR study was carried out whereby the ligand and dimer were combined with 

CDCl3 in an NMR tube and a 
1
H NMR spectrum obtained at various time points. 

The spectra obtained were compared with each other and also with the 
1
H NMR 

spectra of standards of the ligand 198, dimer 197, tethered complex 199, unreactive 

complex 202 and also a sample of the complexation reaction taken after 30 min 

stirring in DCM at RT of dimer 197 and ligand 198. The 
1
HNMR spectra are shown 

in Figure 56.  
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The NMR spectra show rapid consumption of dimer 197 and formation of two 

species upon the mixing of the ligand and dimer in CDCl3 at room temperature 

(spectra 3-9). The formation of the two species is seen most easily by the appearance 

of two peaks at 1.4 and 1.5 ppm in spectra 3-9. These peaks relate to the CH3 group 

in the ethyl ester of species related to dimer 197. Comparison to spectrum 10 shows 

the peak at 1.5 ppm is due to formation of complex 202. Spectra 3-8 show that 

initially the amount of complex 202 present is minimal with the species exhibiting a 

peak at 1.4 ppm present in a greater amount. It is thought that the species generating 

the peak at 1.4 ppm is intermediate 203 (Scheme 84). In spectra 3-5 there is evidence 

of another species under the 1.4 ppm peak, by spectra 7 and 8 the peak has resolved 

to a clean triplet assumed to be the CH3 group in the ethyl ester of intermediate 203.  

Figure 56, spectra 3-8 show that over time, the ratio of complex 202 and the 

presumed intermediate 203 increases, reaching 1:1 in 15 hours, showing increased 

formation of complex 202 which is known to not undergo aryl substitution. 

Spectrum 9 shows the 
1
H NMR spectrum obtained after 30 min. of stirring the ligand 

198 and dimer 197 in DCM at room temperature as in a typical preparation of 

complex 199. The spectrum achieved compares well with spectrum 3 and 4 showing 

minimal formation of complex 202 with a larger amount of 203 present. This 

confirms the importance of a short time frame for the initial stirring of the ligand and 

dimer at room temperature in a complexation reaction to prevent a large amount of 

the unreactive complex 202 forming and allow sufficient reactive material to 

undergo the aryl substitution process. In the case of initial reactions carried out by 

Dr. Gosiewska (Scheme 77) it is likely that in the initial 2 hour stirring period at 

room temperature, a large quantity of the dimer and ligand initially added to the 
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reaction had already formed the unreactive complex 202 leaving less available to 

form the desired tethered complex. Also the use of triethylamine in this earlier 

reaction is likely to have encouraged complex 202 to form more readily through 

deprotonation of the tosylated nitrogen and subsequent co-ordination of the nitrogen 

to ruthenium. 

Within all aryl substitution reactions carried out for preparation of the OMe 

substituted tethered catalyst 199, analysis of the reaction product by mass 

spectrometry shows the presence of ligand 198 (m/z 515 [M+H]
+
) as well as the 

desired complex 199 (m/z 615 [M+H-Cl]
+
), even when TLC showed no ligand to be 

present. An example mass spectrum is shown in Figure 57. 

 

Figure 57. Mass Spectrum of reaction product for formation of complex 199. 

 

It is thought that HCl generated by reaction of the ruthenium dimer 197 with the 

ligand 198 allows formation of the HCl salt of unreacted ligand. The HCl salt (M) of 

the ligand would give the same m/z 515 [M-Cl]
+
 signal in the mass spectrum as the 

free ligand (m/z 515 [M+H
+
]), but would not be observed at the expected Rf of the 

ligand by TLC. Thus TLC analysis would suggest complete consumption of the 
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ligand whilst mass spectrometry would indicate the presence of ligand in its HCl salt 

form. In a separate experiment, (carried out by Dr. Soni), it was found that the HCl 

salt of the ligand does not undergo aryl substitution to form the desired complex 199 

and its presence is hence detrimental to the yield of the desired complex. 

The use of triethylamine is known to be detrimental to the reaction, promoting 

formation of complex 202 (Scheme 77). Use of a weaker base however, may help 

prevent formation of the HCl salt of the ligand but not be strong enough to 

deprotonate the tosylated nitrogen leading to formation of complex 202. A base 

screen was carried out with addition of a range of weak inorganic bases to the 

formation of methoxy substituted tethered complex 199 by aryl substitution. NaOH 

was also screened as a strong base for comparison. The reactions were analysed by 

mass spectrometry after 5 hours and ratios of ligand:complex recorded (Table 31). 

 
Table 31. Addition of inorganic base to the aryl substitution reaction. 

 

Base None Ca(OH)2 Ca(OH)2 NaHCO3 K2CO3 Mg(OH)2 NaOH 

Equiv. 

wrt. 209 

 

- 1 2 1 1 1 1 

Ratio 

209:210 

 

4:1 3:2 3:1 4:1 4:1 6:1 3:1 

Complex 

202 

formed 

No No No No No No Yes 

Ratio refers to relative heights of peaks in mass spectrum. 
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Although mass spectrometry analysis is not quantitative and in this case the ligand is 

known to give a stronger signal than the complex, the spectra obtained provide a 

qualitative measure of amounts of ligand and complex present. Indeed multiple 

preparations of complex 199 using the procedure detailed in Scheme 82 at 90°C each 

achieve a consistent ratio of 4:1 ligand:complex after 5 hours at 90°C. It was also 

possible to observe whether complex 202 formed under each set of conditions with 

presence of a signal at m/z 765.2 for [M+H-Cl]
+
. The results show that the use of 1 

equivalent of Ca(OH)2 was the most beneficial to the reaction, allowing increased 

formation of the desired complex with a ligand:complex ratio of 3:2 (Figure 58) 

which is an improvement on the ratio achieved in the absence of base. 

 

Figure 58. Mass spectrum for addition of 1 equiv. Ca(OH)2 to formation of 199 by aryl substitution. 

 

The use of two equivalents of Ca(OH)2 relative to ligand however gave a ratio of 

only 3:1, an improvement upon the absence of base, but a reduction in conversion 

compared to the use of 1 equivalent. It is likely that the extra equivalent of Ca(OH)2 

is encouraging formation of the unreactive 202 complex or formation of the calcium 

salt of the ligand. The addition of NaHCO3, K2CO3 and Mg(OH)2 was either 
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detrimental to the amount of complex present or had no effect, possibly these bases 

were too strong allowing formation of complex 202,  too weak to prevent formation 

of the salt of the ligand or were allowing formation of metal salts of the ligand. The 

use of NaOH, a strong base, showed some improvement to the conversion to 

complex, however significant levels of complex 202 were formed with a large signal 

at m/z 765.2 [M+H-Cl]
+
 (Figure 59). 

 

Figure 59. Mass spectrum for addition of NaOH to formation of 199 by aryl substitution. 

 

2.6.3 Application of aryl substitution methodology to the preparation of novel 

tethered ruthenium complexes and their application to the 

hydrogenation of ketones. 

Through optimisation of the synthesis and mechanistic studies, the preparation of p-

methoxy substituted complex 199 was now well understood. The preparation of 

further methoxy substituted catalysts by aryl substitution methodology was 

investigated with the catalysts prepared being applied to the APH of ketones. 

Initially the meta-substituted 3,5-dimethoxy catalyst 209 shown in scheme 85 was 

prepared. In the case of this catalyst, unlike with the p-methoxy catalyst, the required 
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alcohol for the TsDPEN coupling reaction is not commercially available and so it 

was synthesised in three steps prior to complex formation as shown in Scheme 85. 

 
Scheme 85. Preparation of 3,5-dimethoxy substituted catalyst 209 by aryl substitution. 

 

Purification of complex 209 by column chromatography and recrystallisation gave 

material of sufficient purity for use in hydrogenation reactions and also for an X-ray 

crystallographic structure to be obtained (Figure 60). 
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Figure 60. X-ray crystallographic structure of catalyst 209. 

The X-ray structure of 209 is consistent with that reported for complex 97.
99

 The X-

ray structure shows 209 to have formed as a single diastereomer with π/π-stacking 

between the tosyl group and neighbouring phenyl ring on TsDPEN. The tosyl group 

is also shown to be oriented away from the chloride ligand. The methoxy arene 

substituent groups show a degree of planarity with the aryl ring. 

Further studies focused on the preparation of an alternative tethered p-methoxy 

substituted catalyst derived from a DPEN-based rather than TsDPEN-based ligand to 

establish the effect of the absence of a sulfonamide substituted diamine on the aryl 

substitution process. It has been shown that with an alkylated amine, such as the 

alkylated TsDPEN ligand used in preparation of the conventional tethered catalyst 

97, the NH functionality is retained upon complexation to the ruthenium, forming a 

coordinative HN-Ru bond.
74

 The tosylated nitrogen however loses the proton upon 

complexation to ruthenium forming a covalent N-Ru bond.
74
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The reaction of (R,R)-DPEN with excess 3-(4’-methoxyphenyl)-propan-1-ol via the 

triflate gave di-substituted ligand 210 which readily underwent complexation by aryl 

substitution in only 1 hour at 90°C in chlorobenzene to give 211 (Scheme 86). 

 

Scheme 86. Synthesis of cationic methoxy substituted tethered catalyst 211. 

 

Complex 211 was obtained as a cationic complex. As expected, in the absence of an 

electron withdrawing sulfonamide group on the diamine the N-H bond is less acidic 

and the proton is retained by the nitrogen during complexation. In complex 211 the 

ruthenium is in its 2+ oxidation state and is thus bound to both nitrogens via 

coordinative bonds leaving the chloride as the only negative ligand in the complex 

giving an overall positive charge for the complex. 

Mass spectrometry analysis of the reaction after 1 hour at 90°C in chlorobenzene 

shows retention of both NH functionalities and the chloride by the complex with a 

[M
+
+ H] peak at m/z 645.2 and no ligand present at m/z 509.3 [M

+
+H] (Figure 61). 
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Figure 61. Mass spectrum of formation of complex 211. 

 

Purification of complex 211 was achieved by column chromatography although 

silica gel was required rather than florisil which was used for the purification of 199 

and 209 as complex 211 was found to decompose on florisil. The complex was 

isolated as an orange/yellow solid with a silica column, but with use of florisil the 

orange/yellow band for complex 211 rapidly become red in colour as it moved 

through the column. Mass spectrometric analysis of the obtained red product showed 

no evidence of the complex. 

With three methoxy substituted tethered catalysts in hand, (199, 209 and 211), each 

was applied to the APH of acetophenone (Table 32). 
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Table 32. Application of complexes 199, 209 and 211 to APH and ATH of acetophenone. 

 

 

Conditions 

   

 
Conv.

a
 

(%) 

Ee.
a 

(%) 

Conv.
a
 

(%) 

Ee.
a 

(%) 

Conv.
a 

(%) 

Ee.
a 

(%) 

H2 (30 atm.), 

MeOH, 60°C, 

S/C 500/1, 16 

hours 

99.9
b 

94.0 (R)
b 

99.8
b 

83.5 (R)
b 

0.4 ND 

H2 (30 atm.), 

MeOH, 60°C, 

S/C 100/1, 16 

hours 

Not attempted Not attempted 2 17% (R) 

Formic acid/Et3N 

60°C, S/C 

1000/1, 4 hours 

99.8  96.3 (R)  99.9   88.8 (R) Not attempted 

Formic acid/Et3N 

60°C, S/C 100/1, 

24 hours 

Not attempted Not attempted 1.6    13% (R) 

aDetermined by GC analysis. b Reactions carried out by Dr. Soni. 

Complexes 199 and 209 were found to show high activity for ATH by Dr. Soni and 

also for APH by myself with both complexes achieving excellent conversions and 

high enantioselectivities. The enantioselectivity of complex 209 was found to be 

lower than that of 199 and it is thought that this may be due to the increased sterics 

of the arene ring reducing the ability of the ketone to co-ordinate in a favourable 

manner as shown below in Figure 62. 
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Figure 62. Model for the interaction of acetophenone with catalyst 209 showing the effect of steric 

hindrance on enantioselectivity. 

 

The cationic complex 211 was found to be inactive to hydrogenation both under 

ATH and APH conditions with high catalyst loadings and temperatures. As a 

cationic complex, it may be that substitution of the chloride ligand for a hydride to 

give the active catalytic species is not possible due to the strong retention of the 

chloride by the ruthenium. Indeed in mass spectrometry analysis (Figure 61) the 

chloride was not lost during the ionisation of the complex and it is known that for 

APH to occur the chloride must be lost through an ionisation process to allow the 

complex to interact with hydrogen.  

Cationic half-sandwich ruthenium complexes are known to have biological 

applications, particularly in the area of cancer treatments. Indeed Sadler et al. have 

recently reported photoactivatable cationic pyridyl ruthenium(II) arene complexes to 

be active against cancer cell lines and also the ability of similar complexes to bind to 

DNA.
160 

Work continues within our group to establish the scope for biological 

applications of complex 211 and complexes analogous to it. 

With complexes 199 and 209 demonstrating high activity for APH of acetophenone, 

their application to the APH of a range of ketones was investigated and results are 

shown in Table 33. 
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,Table 33. Application of catalysts 199 and 209 to APH of a range of ketones. 

 

 

Ketone 
Time 

(hr.) 
  

  
Conv.

a
 

(%) 

E.e.
a
 

(%) 

Conv.
a
 

(%) 

E.e.
a
 

(%) 

 

48 99.3 
37.1 

(S) 
40.0 

81.4 

(S) 

 

16 99.9 
93.7 

(R) 
99.9 

79.5 

(R) 

 

16 98.2 
92.4 

(R) 
99.2 

73.5 

(R) 

 

24 >99 
81.8 

(R) 
>99.9 

53.6 

(R) 

 

16 69.6 
84.3 

(R) 
18.8 

72.8 

(R) 

 

48 36.4 
83.3 

(R) 
26.8 

77.6 

(R) 

 

24 99.6
b 94.5

b
 

(S) 
>99.9

b 81.4
b
 

(S) 

 

24 99.7 
90.7 

(S) 
94.2 87.8(S) 

 

48 95.0 
97.7 

(R) 
71.7 

95.2 

(R) 

 

48 99.6 
98.6 

(R) 
59.7 

98.6 

(R) 

 

24 97.6
b 99.6

b
 

(R) 
99.9

b >98.8
b
 

(R) 

aDetermined by GC analysis. bDetermined by HPLC analysis. 
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In most cases the p-OMe substituted catalyst 199 performed equally to the 

unsubstituted catalyst 97 both in terms of conversion and ee. With more sterically 

demanding substrates such as cyclcohexylmethyl ketone and 2,2-

dimethylpropiophenone however conversions and or ee.’s were lower than with the 

unsubstituted catalyst. This may be due to the increased steric hindrance of the 

aromatic ring of the complex disfavouring co-ordination of the complex to the 

ketone for hydrogen transfer as shown in Figure 63. 

 
 

Figure 63. Favoured transition states for APH of acetophenone with catalyst 97 (left) and 199 (right). 

 

With the 3,5-di-OMe substituted complex 209, conversions and ee.’s were reduced 

compared to the unsubstituted complex 97 and p-OMe complex 199 in most cases. 

The main exception to this is with hydrogenation of cyclohexylmethyl ketone for 

which complex 209 gave a significantly higher ee. than complexes 97 and 199. This 

is likely to be due to the increased steric effect of the aromatic ring on the complex 

generating a greater energy difference between transition states for formation of the 

possible enantiomers of product than the unsubstituted catalyst (Figure 64). 
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Figure 64. Transition states for APH of cyclohexylmethyl ketone with catalyst 209 (top) and 97. 

 

2.6.4 Attempted synthesis of further tethered ruthenium complexes by aryl 

substitution methodology. 

In order to assess the scope of the aryl substitution method for the synthesis of 

tethered complexes, the synthesis of a range of further complexes was attempted. 

Dr. Soni achieved the synthesis of the following complexes 212-214, 99 and 100 

using the developed aryl substitution methodology and applied them to the ATH of 

acetophenone as shown in Figure 65. 
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% refers to % conversion to phenyl ethanol and % ee. obtained. 
 

Figure 65. Application of further catalysts prepared by aryl substitution to ATH of acetophenone. 

 
 

Compounds 212-214 are novel, but were found to be less active to hydrogenation 

than the unsubstituted 3C tethered TsDPEN RuCl complex 97.
99

 Complexes 99 and 

100 are known
 
and are reported to be less active than complex 97.

100-102 

My own studies into the scope of the aryl substitution methodology are outlined 

below. Initially the preparation of the pentamethyl substituted 3C tethered complex 

was attempted, as previous attempts within our group to prepare similarly highly 

substituted tethered catalysts via the conventional synthesis akin to that in Scheme 

20 were unsuccessful as formation of the required diene ligand was not achieved. 

With the aryl substitution process formation of a diene is not necessary, hence this 

alternative synthesis of the pentamethyl substituted complex was attempted as shown 

in Scheme 87 
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Scheme 87. Attempted synthesis of pentamethyl substituted tethered catalyst 218 by aryl substitution. 

 

The desired ligand 217 was prepared, however attempts to prepare the desired 

complex 218 via an aryl substitution process were unsuccessful, both using the 

original 90°C 49 hr. DCM method and also the shorter process using chlorobenzene. 

Mass spectrometry showed only ligand and no evidence of the desired complex or 

pentamethyl derivative of complex 195 was seen. Presumably the high degree of 

substitution on the aryl ring is detrimental to the aryl substitution process.  

We were also interested in the scope for preparation of complexes containing 

alternative tethering motifs via the aryl substitution process.  Previously I had 

attempted the synthesis of a complex containing a triazole tether using variations of 

the conventional syntheses of tethered complexes from dienes and ruthenium dimers, 

however no product was obtained (Scheme 88). 
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Scheme 88. Attempted syntheses of triazole tethered catalysts using conventional complexation 

procedures. 

 

The prepared triazole containing diene ligand 224 was found not to undergo 

complexation with RuCl3.xH2O to form dimer 227 or monomer 226 through in situ 

dimer formation. Preparation of an azide-containing Ru dimer 220 was also found 

not to undergo complexation with N-alkyne substituted TsDPEN 223 to form a 

Noyori type complex 221 which could then have undergone Click coupling to form 

the desired complex 226. We therefore applied the optimised aryl substitution 
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methodology to the synthesis of the related complex 229 to see if it could be formed 

in this way, however again the desired complex was not obtained (Scheme 89). 

 
Scheme 89. Attempted synthesis of triazole tethered catalyst 229 by aryl substitution. 

 

Also of interest to us was the incorporation of substituent groups on the tether of the 

complex to create an additional chiral centre within the complex as shown in Scheme 

90, however again, the desired complex 234 was not formed. 

Scheme 90. Attempted synthesis of OMe substituted tethered catalyst 234 by aryl substitution. 

In both cases with an alternative tether (complexes 229 and 234), the aryl 

substitution methodology was unable to generate the desired complex. It is thought 

that the geometry of the tether may be important for the substitution to occur.  
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Previous studies published within our group have found differences in the geometry 

between the 3C and 4C tethered catalyst.
102

 Both complexes exhibit similar geometry 

around the ruthenium centre, however with the 4C tethered catalyst 101, the tether is 

oriented towards the chlorine increasing the sterics. With the 3C tethered catalyst 97 

the tether is oriented away from the chlorine reducing the steric constraints. The 

increased sterics within 4C complex 101 may not be compatible with its formation 

via aryl substitution. This would also suggest why preparation of the OMe and 

triazole containing tethered complexes was also unsuccessful via the aryl substitution 

process, with both tethering motifs giving an increase in steric hindrance.  

 

2.6.5 Preparation of achiral tethered ruthenium catalysts by aryl substitution. 

Also of interest to us was the use of the aryl substitution methodology to make an 

achiral tethered catalyst. Initial attempts to form the p-OMe-substituted achiral 

tethered ligand 235 from N-tosylethylenediamine were unsuccessful with double 

alkylation taking place to give 236 as shown in Scheme 91. 

 
Scheme 91. Attempted synthesis of p-OMe substituted achiral tosylated diamine ligand 235. 

 
Even with the use of reduced equivalents of 3-(4-methoxybenzene)propanol, only 

the di-alkylated diamine and un-alkylated diamine were obtained. The lack of 

aromatic substituent groups on the ethyl chain enhances the nucleophilicity of the 

nitrogen towards reaction with the in situ formed triflate of the starting alcohol. It is 

also likely that once the first alkylation has taken place, the nitrogen becomes more 
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active towards an additional alkylation, this would explain why even with 1:1 

triflate:diamine the product obtained is a 1:1 mixture of unalkylated diamine 235 and 

di-alkylated diamine 236; the mono alkylated diamine being more reactive towards a 

second alkylation than the unalkylated diamine to initial alkylation. Subsequent 

reactions found the di-alkylated diamine 236 ligand not to undergo the aryl 

substitution to give the desired tethered complex 237 as shown in Scheme 92. 

 
Scheme 92. Attempted synthesis of achiral complex 237 by aryl substitution. 

 

The preparation of N-((naphthalene-2-ylsulfonyl)methyl)ethane-1,2-diamine was 

also attempted (Scheme 93) as it was thought that the presence of a large aromatic 

group and hence increased steric hindrance may improve isolation of the ligand and 

complexes derived from it. However, again only di-alkylated product 236b was 

obtained.  

 
Scheme 93. Attempted synthesis of N-((napthalene-2-ylsulfonyl)methyl)ethane-1,2-diamine. 

 

Further attempts to prepare an achiral ligand continued with preparation of N-(2-

(biphenyl-2-yl)methylamino)ethyl)-4-methylbenzenesulfonamide 238 as shown 

below. A reductive amination synthesis would give only the mono-alkylated product 
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and also the additional aromatic ring as part of the tether should help with isolation 

of the ligand and complex by reducing the polarity of the compound. The 

asymmetric 3C tethered catalyst containing an aromatic ring within the tether (99) 

has previously been reported by our group as an active catalyst for ATH of 

ketones.
100

 It was therefore felt that the achiral derivative 239 would also be a good 

candidate as a hydrogenation catalyst (Scheme 94). 

 
Scheme 94. Synthesis of achiral catalyst 239 by aryl substitution. 

 

An increased temperature of 140°C was required to allow complex formation. Initial 

attempts at 90°C showed only complex 240 (Figure 66) by mass spectrometry.  

 

Figure 66. Structure of complex 240. 

 

Increasing the temperature to 120°C showed only a trace amount of complex by 

mass spectrometry after 3 hours and little improvement after leaving the reaction at 

this temperature overnight. Stirring in DCM at 90°C for 49 hours showed only a 

trace amount of complex by mass spectrometry. At 140°C in chlorobenzene, mass 

spectrometry showed a 1:1 ratio of 239:240 after 5 hours and no improvement to this 

after 7 hours so the reaction was cooled and the crude product purified by column 
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chromatography using florisil. The isolated compound was shown to contain the 

desired complex but also impurities by mass spectrometry. Upon recrystallisation 

from hot MeOH and DCM, the small amount of solid obtained was not the desired 

product, with mass spectrometry and TLC analysis showing the product to be in the 

filtrate along with impurities. Further attempts at purification and recrystallisation 

did not show any improvement to the purity of the compound. It is thought that the 

complex remains too polar to allow effective isolation and purification. 

In order to reduce the polarity of the complex, again by incorporating more 

aromaticity and steric bulk to the ligand, the N-((naphthalene-2-

ylsulfonyl)methyl)ethane-1,2-diamine derivative 241 was prepared and 

complexation attempted as shown in Scheme 95. In this case only a trace amount of 

complex 242 was seen to have formed by mass spectrometry. 

 
Scheme 95. Synthesis of achiral complex 242 by aryl substitution. 

 

Despite still containing impurities, complex 239 was applied to the ATH of 

acetophenone. Previous work shows that tethered complexes are slightly less active 

to APH of ketones than ATH. For example, comparison of Table 22, entry 3 with 

Scheme 63 shows that APH required a longer reaction time to achieve full 

conversion than ATH at the same temperature and catalyst loading. We have also 
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found that the purity level of catalyst required for APH is higher than for ATH. With 

some impurities still present in the isolated complex 239 by TLC, ATH of 

acetophenone was carried out to assess its potential activity. For comparison the 

achiral 3C tethered ruthenium monomer 190 (supplied by Johnson Matthey) and 

dimer 243 (prepared according to the synthesis detailed in Scheme 66) were also 

used. The conversion of acetophenone to phenyl ethanol was monitored by GC with 

the results shown in Table 34. The 3C-tethered achiral dimer 243 was stirred at 40°C 

for 3 hours prior to addition of acetophenone to allow in situ monomer formation. 

Table 34. ATH results using achiral dimer 243 and catalysts 190 and 239. 

 

Entry 
Time 

(hr.) 

   

  Conv. (%)
a 

Conv. (%)
a 

Conv. (%)
a 

1 1 12.1 7.5 0.2 

2 2 31.2 18.3 0.6 

3 3 44.7 - - 

4 3.5 - 77.0 0.8 

5 5 83.2 98.3 - 

6 6 - 99.9 - 

7 7 98.0 - - 

8 20 99.9 99.9 - 

9 24 - - 7.6 

aDetermined by GC analysis. 
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Figure 67. Conversion over time for ATH of acetophenone using achiral catalysts. 

Table 34 and Figure 67 show the difference in activity between the conventional 

achiral 3C tethered monomer 190 and monomer 239, showing the latter to be 

inactive to hydrogenation. Figure 67 also shows the similarity in activity of the 

conventional achiral dimer 243 and monomer 190, both achieving full conversion to 

the racemic alcohol in 7 hours, with the reaction proceeding at comparable rates.  

Work continues within the Wills group to develop novel achiral tethered ruthenium 

catalysts that are highly active for ATH and APH processes and are advantageous 

over complex 190 through improved accessibility by use of convenient aryl 

substitution methodology in their preparation. 
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2.6.6 Preparation of polymer supported ruthenium catalysts by aryl 

substitution and application to asymmetric hydrogenation of ketones. 

Within the Wills group there have been many studies into the development of 

polymer supports for tethered ruthenium catalysts in order to establish a catalytic 

system that would allow for improved recovery of the catalyst after reactions and 

allow for recycling of the catalyst, as well as the potential to carry out 

hydrogenations in water through the use of water-soluble polymers. Previously work 

within our group has looked at linking the catalyst to methacrylate based polymer via 

a Click coupling with an alkyne substituted TsDPEN ligand.
161

 With the 

development of the aryl substitution process for tethered catalyst preparation it was 

thought that the catalysts could be linked to the polymer through the aromatic ring, 

again with a Click coupling approach being most appealing due to its robust nature. 

Poly(glycidyl methacrylate), as a well studied and readily available polymer, was 

selected as a basis for further studies. The epoxide functionality could easily be 

converted to an azide group through ring opening of the epoxide with an azide 

nucleophile giving a polymeric substrate for Click coupling to a ligand prior to 

complexation by aryl substitution.
162, 163 

A potential ligand with TsDPEN coupled to an aromatic ring with a 3C tether was 

prepared, with the aromatic ring containing an alkoxy substituent with a terminal 

alkyne for Click coupling (248 in Scheme 96). 
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Scheme 96. Preparation of asymmetric ligand 248 as a substrate for Click coupling. 

Initial small scale scouting reactions found the ligand to undergo complexation by 

aryl substitution to give a tethered complex 249 as shown in Scheme 97. 

 

 

 
Scheme 97. Formation of complex 249 by aryl substitution as a model for polymer supported 

complexation. 

The crude complex 249 was found to show some activity for the ATH of 

acetophenone giving 21.5% conversion to phenyl ethanol with a high ee. of 97.1% 

(R) at a catalyst loading of 1 mol% in formic acid/Et3N at room temperature for 24 

hours. 

Studies also found ligand 248 to undergo successful Click coupling with benzyl 

azide. Further small scale scouting reactions found this product to successfully 

undergo complexation by aryl substitution as shown in Scheme 98. 
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Scheme 98. Formation of complex 251 by aryl substitution as a model for polymer supported 

complexation. 

 

The long alkyl chain between the aromatic ring and alkyne should allow the triazole 

group to be far enough from the complex after Click coupling to not affect the 

activity of the complex. A polymer supported ligand and complex was then prepared 

as shown in Scheme 99. 

 

Scheme 99. Preparation of polymer supported tethered ruthenium catalyst 254. 
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Compound 252 was soluble in THF and DMSO allowing characterisation data to be 

obtained. However compounds 253 and 254 were found to be insoluble in a range of 

solvents tested including THF, DMF, DCM, CHCl3, MeOH, hexane, EtOAc and 

DMSO. Full characterisation data therefore could not be obtained for 253 and 234. 

These compounds were analysed by Infrared Spectroscopy. The azide in 252 gives a 

characteristic absorbance at 2096 cm
-1

 shown in Figure 68, and reduction of this 

signal was taken as an indication of a successful Click coupling having occurred 

(Figure 69). 

 

Figure 68. IR spectrum of azide opened polymer 252. 

 

OH 

CH 

N3 

C=O 
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Figure 69. IR spectrum of polymer supported triazole-linked ligand 253. 

 

After complexation, the reaction mixture was washed with DCM to remove any 

unreacted dimer and this left an orange/brown insoluble solid which was later used 

in hydrogenation reactions to test for catalytic activity (Table 35 and 36). 

The clicked ligand 253 prior to complexation, and indeed the product obtained after 

complexation, were insoluble. In order to reduce the catalyst loading on the polymer 

and increase the solubility and flexibility of the polymer, a 10 mol% loading of 

ligand 248 was used in an initial click reaction followed by a sequential reaction with 

90 mol% hexyne to give complex 256. A second complex (258) was also prepared 

using 30 mol% ligand and 70 mol% hexyne. An even distribution of hexyne and 

ligand is assumed along the polymer backbone (Scheme 100). 

Reduced N3 

Aromatic 
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Scheme 100. Synthesis of polymer supported tethered ruthenium catalysts 256 and 258.  

 

The solubility of the polymer supported ligands and complexes was not improved so 

again, infrared spectroscopy was used to confirm successful Click coupling of the 

ligand and polymer.  

Alternative functionalities were explored for ring opening of the epoxide. It was 

hoped that the epoxide could be opened with the p-OH derivative of the prepared 

ligand, however initial attempts to ring open the epoxide with phenol proved 

unsuccessful. A further survey of the literature showed that epoxides on analogous 

polymer chains had been ring opened with amines.
164

 This approach was therefore 

applied to the preparation of our polymer supported complexes. Hence 90% of the 

epoxide was first opened with diethylamine whilst 10% was opened with sodium 

azide as before to give 260 which was then converted to polymer supported complex 

262 as shown in Scheme 101. It is hoped that the use of diethylamine instead of an 
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additional 90% of clicked alkane chain will help improve the solubility of the 

supported ligands and hence complexes. Diethylamine was chosen as a small and 

available secondary amine that would mean there was no NH functionality in the 

polymer supported ligand to compete with the TsDPEN for complexation to 

ruthenium (Scheme 101). 

 

Scheme 101. Preparation of diethylamine functionalised polymer supported ruthenium tethered 

catalyst 262. 

The addition of diethylamine and reduction in the loading of azide on the polymer 

did not improve the solubility of the polymer supported complex. Compounds 260-

262 remained insoluble allowing only minimal characterization data to be obtained 

for each. The 10% azide functionality of 259 was confirmed by 
1
HNMR analysis as 

shown in Figure 70. 
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Figure 70. 
1H NMR analysis of 259 (300 MHz, d8-THF). 

 

Comparison of the 
1
H NMR of 259 to poly(glycidyl methacrylate) and 252 

confirmed the presence of a 10% loading of azide. The major peaks in the spectrum 

compare well with the spectrum of poly(glycidyl methacrylate) and the smaller set of 

peaks match well with 252. Analysis of the integration of the peaks shows a ratio of 

epoxide:azide of 9:1 as expected. 

The 
1
H NMR spectrum confirms the 10% opening of the epoxide with N3 in 

compound 259. Comparison to the 
1
H NMR spectra for the starting material and 

fully ring opened product shows a 1:9 ratio of epoxide:azide peaks in compound 

259. Infrared spectroscopy also helped confirm the formation of 259 (Figure 71) and 

also 260 (Figure 72). 

THF 

259 

252 

Poly(glycidyl methacrylate) 
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Figure 71. Infrared spectrum of 259. 

 

The small OH and N3 absorbance at 3435 and 2102 cm
-1

 respectively show the 

presence of a small amount of azide opened epoxide in the compound. The weakness 

of the absorbances comply with the expected 10% loading of azide. 

 

Figure 72. Infrared spectrum of 260. 

OH 

CH 

N3 

C=O 

C=O in ring opened 
epoxide 

HC=O in DMF 

N3 

CH 

OH 
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After ring opening the remainder of the epoxide with diethylamine to give 260 the 

size of the OH absorbance relative to that of the N3 has increased suggesting the 

presence of more alcohol in 260 than in 259. The CH signals at 2963-2874 cm
-1

 have 

also increased in intensity, presumably due to the presence of the diethylamine. 

With a variety of polymer supported tethered ruthenium complexes having been 

prepared, a series of hydrogenations of acetophenone were carried out to establish 

the activity of the compounds. ATH and APH conditions were investigated and the 

results are shown in Table 35. 

 
Table 35. ATH and APH of acetophenone using polymer supported tethered catalysts. 

 

 

Entry Catalyst H2 source 
Temp. 

(°C) 

Conv. 

(%)
a Ee. (%)

a,b 

1 254 
Formic 

acid:Et3N 5:2 
28°C 1.3 ND 

2 254 IPA/KOH 28°C 0.4 ND 

3 254 
Water/sodium 

formate 
60°C 6.5 68.3 (R) 

4 256 
Formic 

acid:Et3N 5:2 
28°C 0.61 ND 

5 256 IPA/KOH 28°C 0.71 ND 

6 256 
Water/sodium 

formate 
60°C 32.0 92.7 (R) 

7 

Recovered 

256 from 

entry 6 

Water/sodium 

formate 
60°C 4.3 

Only 1 

enantiomer 

seen by GC 

8 256 H2 , MeOH 60°C 13.1 Racemic 
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9 258 
Water/sodium 

formate 
60°C 16.2 50.2 (R) 

10 258 H2, MeOH 60°C 34.5 Racemic 

11 262 
Formic 

acid:Et3N 5:2 
28°C 6.9 93.0 (R) 

12 262 IPA/KOH 28°C 0.45 ND 

13 262 
Water/sodium 

formate 
60°C 26.3 37.9 (R) 

14 262 H2, MeOH 60°C 79.4 2.7 (R) 

aDetermined by GC analysis. bFor conversions less than 2% the ee. was not determined. 

 

Use of polymer supported ligand 261 and dimer 197 in place of the catalyst under all 

reaction conditions investigated gave no conversion to product. It was also found 

that use of formic acid/Et3N as the hydrogen source caused leaching of the 

ruthenium from the polymer support in all cases with strong colouration of the 

reaction solution occurring. This explains the low activity of all complexes with use 

of formic acid as the hydrogen source. 

Initial reactions using polymer supported complex 254 showed low conversion. 

Improvements to conversion were seen with use of water/sodium formate when 

polymer supported catalyst 256 was used giving 32% conversion, and an ee. of 92.7 

(R) (Table 35, entry 6). Polymer 256 has only a 10% loading of ruthenium complex 

and it is thought that the reduced level of complexation leads to a more flexible 

polymer and also a reduction in steric hindrance allowing for improved conversion. 

The reaction solution was removed from the reaction for Table 35, entry 6 and 

further acetophenone and water/sodium formate mixture added in order to determine 

whether the polymer supported catalyst could undergo reaction cycles. In the second 
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reaction however, only 4.3% conversion to product was obtained over 24 hours 

showing a loss of activity of the catalyst (Table 35, entry 7). Catalyst 256 also 

demonstrated activity for APH of acetophenone (Table 35, entry 8) however to a 

lesser extent than in ATH with water/sodium formate and with no enantioselectivity. 

Polymer supported catalyst 258 was applied to ATH with water/sodium formate and 

APH as these conditions seemed most conducive to hydrogenation occurring. The 

results obtained showed a reduction in conversion with the water/formic acid system, 

but an increase in conversion for APH of acetophenone with hydrogen, although the 

product obtained was racemic.  

Use of polymer supported catalyst 262 showed conversion to product with ATH in 

water/sodium formate and achieved the highest conversion of all at 79.4% with APH 

conditions although again the product obtained was racemic.  

Further ATH reactions were carried out using formic acid/triethylamine and 

IPA/KOH at increased temperatures with those polymer supported catalysts found to 

be most active (256, 258 and 262) (Table 36). 
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Table 36. ATH of acetophenone using polymer supported ruthenium complexes. 

 

 

Entry Catalyst H2 source 
Temp. 

(°C) 

Conv. 

(%)
a Ee. (%)

a 

1 256 
Formic 

acid:Et3N 5:2 
60°C 10.8 87.0 (R) 

2 256 IPA/KOH 80°C 11.3 2.8 (R) 

3 258 
Formic 

acid:Et3N 5:2 
60°C 17.9 82.7 (R) 

4 258 IPA/KOH 80°C 35.2 Racemic 

5 262 
Formic 

acid:Et3N 5:2 
60°C 5.6 82.8 (R) 

6 262 IPA/KOH 80°C 4.6 14.4 (R) 
a
Determined by GC analysis. 

 

The conversions and enantioselectivities achieved were improved compared to the 

equivalent reactions at room temperature reported in Table 35, however the use of 

256 with water/sodium formate (Table 35, entry 6) remains the best ATH result 

when both conversion and the enantiomeric excess of the product obtained are 

considered. 

No conversion was achieved with use of only ruthenium dimer 197 or ligand 261 

under each of the reaction conditions investigated. This confirms that the polymer 

supported catalysts themselves are the source of the hydrogenation taking place and 

that active complexes have successfully been linked to the polymer. 
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Due to the low solubility of all the prepared polymer supported catalysts, 

characterisation was difficult. It therefore cannot be determined whether the desired 

complexes were being formed. It may be the case that the desired complexation of 

ruthenium to the supported ligand by aryl substitution is not occurring in its entirety. 

For example it may be that the nitrogens of the TsDPEN coordinate to the ruthenium 

to give a derivative of complex 195 with aryl substitution and displacement of the 

ethylbenzoate not occurring to give complexes such as 263 in Figure 73 which may 

not be highly active or enantioselective for the hydrogenation of ketones. 

 

Figure 73. Potential polymer supported complex obtained from incomplete aryl substitution process. 

 

Work continues within the Wills group to establish more effective polymer 

supported catalysts for ATH and APH applications using aryl substitution 

methodology to achieve complexation. 
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3. Conclusions. 

The application of tetradentate bis-hydroxydiamine ligands derived from 

norephedrine to the KO
t
Bu-catalysed hydrogenation of benzophenone has been 

investigated. Hydrogenation was found to occur via a transfer hydrogenation process 

rather than via interaction of the catalyst and substrate with hydrogen gas. The 

ligands were found to act as hydrogen donors to afford the alcohol product. Although 

hydrogenation of benzophenone was achieved, the transfer hydrogenation process is 

not appropriate for further development due to the low conversions of ketone to 

alcohol achieved and the necessary synthesis of the ligands. 

A series of aminophosphine ligands derived from proline have been prepared and 

applied to the iron-catalysed ATH of acetophenone using [Et3NH][HFe3(CO)11] as 

the catalyst precursor, however no conversion to phenyl ethanol was achieved. This 

was attributed to a lack of Fe-H functionality in the catalyst precursor. The ligands 

were also applied to rhodium and ruthenium-catalysed ATH of acetophenone using 

[Rh(COD)Cl]2, [RuCl2(DMSO)4] and [Ru(benzene)Cl2]2 precursors as well as a 

series of proline based aminoalcohol, aminosilyl and amido ligands. Use of N-

Benzyl-(S)-2-((diphenylphosphino) methylpyrrolidine (163) with [Rh(COD)Cl]2 

gave the most active system giving 79% conversion to phenyl alcohol although the 

reaction was not enantioselective. Dimainodiphosphine ligands reported by Gao
61-64, 

128
 and Morris

 129-135
 with NH functionality and exhibiting asymmetry in their 

diamine components rather than the phosphine exhibit superior activity and 

enantioselectivity for iron, ruthenium and rhodium-catalysed ATH of ketones.  

A series of tethered ruthenium complexes consisting of a tethered aryl-asymmetric 

diamine ligand have been applied to the APH of a range of ketones.
145

 The 3C-
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tethered TsDEPN RuCl catalyst 97 was found to be more active and enantioselective 

than the MsDEPN, iodo and 4C derivatives 180, 181 and 101 respectively.  

The achiral 3C-tethered RuCl catalyst 190 was applied to the hydrogenation of 

aldehydes.
145

 Addition of 10% water to the MeOH reaction solvent was required to 

prevent formation of di-methoxy adducts of the desired alcohol products. The 

hydrogenation was found to proceed with excellent chemoselectivity for 

hydrogenation of the C=O bond over C=C and NO2 functionalities. 

The development and optimisation of a novel synthesis of p-methoxy substituted 

tethered ruthenium catalysts using aryl substitution methodology has been discussed. 

Reaction of N-((1R,2R)-2-(3-(4-methoxyphenyl)propylamino)-1,2-diphenylethyl) 

toluenesulfonamide (198) or N-((1R,2R)-2-(3-(3.5-dimethoxyphenyl)propylamino)-

1,2-(diphenylethyl)toluenesulfonamide (208) with ethylbenzoate ruthenium(II) 

chloride dimer (197) gave the resulting tethered complexes 199 and 209. Application 

of 199 and 209 to the APH of a range of ketones gave excellent conversions to the 

alcohol products with high enantioselectivities. 

A series of poly(methyl methacrylate) supported tethered ruthenium complexes have 

been prepared with a triazole link between the ligand and polymer and using aryl 

substitution methodology for complexation. The activity for ATH and APH of 

acetophenone of such catalysts was generally found to be low. The highest 

conversion (79.4%) was achieved for APH with supported complex 262 although the 

product was racemic (Table 35). The highest ee. of 92.7% (R) was achieved with a 

conversion of 32% for ATH with supported complex 256 (Table 35). The results 

demonstrate potential for the preparation of more active and enantioselective 

supported catalysts for APH and ATH of ketones by the same methodology. 
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4. Future Work. 

The use of aryl substitution methodology has been show to be applicable to the 

synthesis of a range of three carbon tethered ruthenium catalysts, however attempts 

carried out by Dr. Soni and myself to prepare catalysts with four carbon (101), 

triazole (229) and methoxy substituted (234) tethers were unsuccessful. The further 

development of the aryl substitution reaction conditions to allow synthesis of such 

complexes is of interest in order to identify and develop catalysts with improved 

activity for hydrogenation reactions. The 4C tethered catalyst 101 for example is 

known to be more active for ATH of ketones than the 3C catalyst 199.
101, 102, 104

  

Also of interest is the development of the aryl substitution methodology to allow the 

synthesis of a range of achiral tethered ruthenium catalysts. Further studies into the 

aryl substitution reaction conditions, such as the use of weak inorganic bases to 

promote complexation may allow access to such achiral complexes. Further 

investigations to fine tune the electronics of both the ruthenium dimer and 

coordinating ligand may also allow more efficient complexation. 

Although the polymer supported ruthenium complexes reported in this thesis have 

shown limited activity for ATH and APH of ketones, their convenient preparation 

using aryl substitution methodology demonstrates potential for the synthesis of 

further derivatives that may show increased activity and recyclability.  

Modifications that could be made to improve the activity and recyclability of 

polymer supported catalysts include varying the polymer support used. For example, 

the use of co-polymers such as poly(glycidyl methacrylate)/hydroxyethyl 
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methacrylate, which has been shown to be form active supported hydrogenation 

catalysts
116

 could be investigated.  

The use of a range nucleophiles to ring open the epoxide could also be investigated 

and expanded beyond triazole and diamine functionalities as discussed in this thesis. 

Of particular interest is the development of methodology whereby the epoxide can be 

opened with an alcohol such as phenol thus allowing a different mode of attachment 

for the tethered ligand of the catalyst as shown in Figure 74. Studies reported in this 

thesis have shown methoxy substituted tethered catalysts (199 and 209) to be highly 

active for APH of ketones, thus it is proposed that an ether linked supported ligand 

such as 264 may also demonstrate activity for asymmetric hydrogenation of ketones. 

 

Figure 74. Example of potential polymer supported ligand using a phenol link. 

 

The ability to ring-open the epoxide of poly(gylcidyl methacrylate) with an amine 

offers potential for the formation of supported Noyori-type complexes such as that 

shown in Figure 75, through reaction of the epoxide with TsDPEN. During the 

course of my studies, the in situ formation of a polymer supported untethered 

ruthenium catalyst from reaction of supported ligand 261 with [Ru(benzene)Cl2] 

showed potential for ATH of ketones achieving 18.8% conversion with 93.5% ee. 

(R) in 24 hours as shown in Figure 75. 
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Figure 75. Example reaction showing potential for application of such complexes to ATH of ketones 

(right) and proposed structure of supported Noyori-type ruthenium complexes (right). 

 

The successful preparation of cationic tethered ruthenium complex 211 by aryl 

substitution methodology offers potential for investigation into the use of such 

complexes in biological applications. In recent publications, Sadler has reported the 

application of cationic untethered ruthenium complexes to show anti-cancer and 

other biological activities.
160, 165

 The chloride ligand of the complex can be 

substituted for OH2 to allow further substitution for pyridine or a nucleo-base to 

allow interaction with cancer cell lines and DNA.
160, 166

 Ru-OH2 cationic complexes 

have also been shown to be active for reduction of NAD
+
 in the NAD/NADH 

enzymatic pathway.
167 

 The use of aryl substitution methodology could allow access 

to a greater range of cationic ruthenium half sandwich complexes for further 

investigations into the development of these biological applications. 
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5. Experimental. 

5.1 Chemicals.  

All chemicals used in this project were obtained from Sigma Aldrich, Acros 

Organics, Alfa Aesar, TCI and Fischer Scientific. 

5.2 Instrumentation.  

NMR analysis: NMR analysis was carried out on a DPX-300 (300 MHz), DPX-400 

(400 MHz), DRX-500 (500 MHz), AV III-600 (600 MHz) or AV II-700 (700 MHz) 

instrument using deuterated solvents including CDCl3, d6-DMSO, d4-MeOD, d8-

THF, d2-DCM or d6-benzene. 

Mass Spectrometry: All low resolution mass spectrometry data was acquired using a 

Bruker Esquire 2000 (ESI) spectrometer or Bruker HCT + (Ultra)  (ESI) 

spectrometer coupled to an Agilent 1100 HPLC system for sample injection, or an 

Agilent 6130B ESI (quad) mass spectrometer coupled to an Agilent Technologies 

1260 Infinity HPLC system. GC/MS analysis was carried out on a Varian 4000 

GC/MS with chemical ionisation. All high resolution mass spectrometry data was 

obtained using a Bruker micro TOF spectrometer. Methanol was used as the solvent 

for LC/MS and high resolution mass spectrometry, and chloroform for GC/MS.  

 Infrared: Infrared spectroscopy data was acquired using a Perkin Elmer Spectrum 

One, Nicolet Avatar 320 or a Bruker ALPHA FT-IR spectrometer. 

Gas Chromatography: All gas chromatography analysis was carried out using a 

Hewlett Packard 5890 Gas Chromatograph or a Perkin-Elmer 8500 Gas 

Chromatograph. Integration was carried out with a Hewlett Packard HP3396A 

Integrator or a PC running DataApex Clarity software.  
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High Pressure Liquid Chromatography: All HPLC analysis was carried out using a 

Hewlett Packard 1050 Series with a quaternary pump, autosampler and variable 

wavelength detector with integration carried out on a PC running DataApex Clarity 

software or a Gilson HPLC with 805 manometric module, 811b dynamic mixer, 

305/306 pump modules and a Merck Hitachi L-4000 UV detector with integration 

carried out on a Hewlett Packard HP3396A Integrator.  

Polarimetry: All polarimetry was carried out using an Optical Activity Ltd. AA-1000 

Polarimeter with a 2 dm cell using spectrophotemetric grade solvent. 

Melting point analysis: Melting point analysis was carried out on Stuart Melting 

Point SMP10 apparatus. 

5.3  Synthetic and catalytic procedures.  

5.3.1 Synthetic procedures for section 2.1. 

 

N,N-[1,2-Ethanediylbis[imino[(1R, 2R)-1,2-diphenyl-2,1-ethanediyl]]]bis[4-

methylbenzenesulfonamide] (148).  

 

This compound is known in literature and has previously been fully characterised.
36

  

To a nitrogen purged, 2-necked round bottom flask containing (1R,2R)-(-)-N-p-tosyl-

1,2-diphenylethylenediamine ((1R,2R)-(-)-TsDPEN) (1.5 g, 4.1 mmol) was added 

1,2-dibromoethane (0.17 cm
3
, 2.0 mmol). The resulting mixture was then stirred at 

130°C for 6 hours (monitored by TLC: 1:3 hexane:ethylacetate, visualisation by 

UV). The reaction mixture was dissolved in chloroform (30 cm
3
) and washed with 

1M sodium hydroxide solution (20 cm
3
). The product was extracted with chloroform 
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(3 x 40 cm
3
). The chloroform phases were collected and combined, dried over 

MgSO4, filtered and the solvent removed under reduced pressure to give the crude 

product as a white solid. The crude was purified by column chromatography (silica 

gel, 0-100% EtOAc in hexane, TLC: silica plates, 75% EtOAc in hexane, 

visualisation by UV and ninhydrin, product Rf = 0.89) to give the product as a white 

solid (753 mg, 0.996 mmol, 49%). Mp 169-171°C; [α]D
27

 +18.4° (c 0.5, CHCl3) 

(R,R) (lit.
36

 [α]D
20

 +22 (c 0.5 in CHCl3) (R,R)); found (ESI) [M+H]
+
, 759.3055. 

C44H47N4O4S2 requires M, 759.3033; υmax 3271, 3029, 15.98, 14.94, 1453, 1329, 

1149, 1055, 937, 809, 696, 670 cm
-1

; δH (300 MHz; CDCl3) 7.24-6.83 (28H, m, 

CHAr); 4.38 (2H, d, J 8.6 Hz, CHNHSO2); 3.71 (2H, d J 8.6 Hz, CHNH); 2.59-2.31 

(10H, dd and s overlapping, 2 x CH2 and 2 x CH3 overlapping); δC (75 MHz, CDCl3) 

142.05 (2 CAr), 138.81 (2 CAr), 137.43 (2 CAr), 136.87 (2 CAr), 128.45 (2 CHAr), 

127.63 (2 CHAr 127.29 (2 CHAr), 127.20 (2 CHAr), 126.84 (2 CHAr), 126.53 (2 

CHAr), 126.35 (2 CHAr), 125.91 (2 CHAr), 67.40 (2 CH), 63.11 (2 CH), 45.74 (2 

CH2), 20.79 (2 CH3); m/z (ESI) 759.2 (M
+
 + 1). Data matches that previously 

reported for this compound.
36

 

 

(1R,2R)-N, N’-Bissalicyl-1,2-diamino-1,2-diphenylethane (150).  

 

This compound is known in the literature but has not previously been fully 

characterised.
137, 138 

 

A solution of (1R,2R)-diphenylethylenediamine (250 mg, 1.17 mmol) dissolved in 

ethanol (1 cm
3
) was slowly added to a stirred solution of salicylaldehyde (440 mg, 
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3.60 mmol) in ethanol (2 cm
3
) in a nitrogen purged, 2-necked round bottom flask. 

The resulting solution was stirred under reflux for 3 hours. After this the solution 

was allowed to cool to room temperature and a yellow precipitate formed which was 

then collected by filtration. The precipitate was dissolved in methanol (3 cm
3
) and 

sodium borohydride (95 mg, 2.5 mmol) was added. The solution was stirred for 2 

hours at room temperature. The solvent was then removed under reduced pressure to 

leave a yellow solid. This was dissolved in dichloromethane (10 cm
3
) and washed 

with saturated sodium carbonate solution (3 x 10 cm
3
). The organic phases were 

collected and combined, dried over MgSO4, filtered and the solvent removed under 

reduced pressure to give the crude product as a yellow solid. The crude was purified 

by column chromatography (silica gel, 1:1 EtOAc:hexane, TLC: silica plate, 1:1 

EtOAc:hexane, visualisation by UV, product Rf = 0.49) to give the product as a 

white solid (260 mg, 0.613 mmol, 52%). Mp 160-163°C; [α]D
22

 + 10.2° (c 0.5, 

CH2Cl2) (R,R) (lit.
138

 [α]D
25

 +48.6 (c 0.01 in CH2Cl2) (R,R)); found (ESI) [M+H]
+
, 

425.2216. C28H29N2O2 requires M, 425.2224; υmax 3250, 3026, 2851, 1587, 1489, 

1454, 1249, 1101, 753, 698 cm
-1

; δH (300 MHz, CDCl3) 7.27-7.23 (6H, m, 

CHAr),7.20-7.14 (2H, m, CHAr) 6.95-6.92 (4H, m, CHAr), 6.89-6.86 (2H, m, 

CHAr), 6.79-6.70 (4H, m, CHAr), 4.02 (2H, s, 2 x CH), 3.85 (2H, d, J 13.5 Hz, 2 x 

CH
a
H

b
), 3.59 (2H, d, J 13.5 Hz, 2 x CH

a
H

b
); δC (75 MHz, CDCl3) 157.20 (2 CAr), 

136.71 (2 CAr), 128.37 (2 CHAr), 128.01 (2 CHAr), 127.93 (4 CHAr), 127.49 (4 

CHAr), 127.46 (2 CHAr), 121.56 (2 CHAr), 118.69 (2 CHAr), 115.84 (2 CHAr), 

65.74 (2 CH), 49.54 (2 CH2); m/z (ESI) 425.2 (M
+
 + 1). Data matches that previously 

reported for this compound.
137, 138  
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(1R,2R)-N,N’-Bissalicyl-1,2-diaminocyclohexane (151). 

 

This compound is known in the literature but has not previously been fully 

characterised.
138, 139

  

This compound was prepared as for compound 150 using (1R,2R)-

cyclohexanediamine (250 mg, 2.19 mmol), salicylaldehyde (806 mg, 6.60 mmol), 

ethanol (5 cm
3
), sodium borohydride (91 mg, 2.4 mmol) and methanol (3 cm

3
). The 

crude was purified by column chromatography (silica gel, 0-100% EtOAc in hexane, 

TLC: silica plate, 75% EtOAc in hexane, visualisation by UV, product Rf = 0.46) to 

give the product as an orange solid (255 mg, 0.782 mmol, 36%). Mp 94-96°C; [α]D
22

 

– 37.3° (c 0.5, CH2Cl2) (R,R) (lit.
138

 [α]D
25

-26.6 (c 0.01 in CH2Cl2) (R,R)); found 

(ESI) [M+H]
+
, 327.2069, C20H26N2O2 requires M, 327.2067; υmax 3302, 3147, 2929, 

2852, 1592, 1447, 1403, 1254, 1096, 854, 750, 725 cm
-1

; δH (300 MHz, CDCl3) 

7.63–7.57 (2H, m, CHAr), 7.42-7.40 (2H, m, CHAr), 7.26-7.19 (4H, m, CHAr), 4.41 

(4H, dd, J, 13.9 and 23.1 Hz, 2 x CH
a
H

b
), 2.89 – 2.86 (2H, m, C6H10), 2.60-2.56 

(2H, m, C6H10), 2.16-2.12 (2H, m, C4H10), 1.71-1.57 (4H, m, C6H10); δC (75 MHz, 

CDCl3) 157.34 (2 CAr), 128.22 (2 CHAr), 127.69 (2 CHA), 122.28 (2 CAr) 118.62 

(2 CHAr), 115.82 (2 CHA), 59.09 (2 CH), 49.06 (2 CH2), 29.82 (2 CH2), 23.54 (2 

CH2); m/z (ESI) 327.2 (M
+
 + 1).  Data matches that previously reported for this 

compound.
138, 139  

 

 



Development of catalysts for asymmetric hydrogenation                                                    Experimental 

190 

 

N,N’-Bis[(1R,2S)-2-hydroxy-1-methyl-2-phenylethyl]-1,2-diaminoethane (152).  

 

This compound is known in the literature but has not previously been fully 

characterised.
140, 141

  

(1R,2S)-Norephedrine (1.0 g, 6.6 mmol) in a nitrogen purged 2-necked round bottom 

flask was stirred at 100°C until it had completely melted. To this was then added 1,2-

dibromoethane (413 mg, 2.20 mmol) and the resulting mixture was connected to a 

condenser and stirred at 100°C overnight. It should be noted that the reaction 

mixture solidified within approx. 15 mins. After 2 hours, the reaction was cooled to 

room temperature and the reaction solid was dissolved in water (10 cm
3
) with 

heating. The aqueous solution was washed with chloroform (15 cm
3
), and then the 

aqueous phase was basified with the addition of 2M sodium hydroxide solution. The 

product was then extracted with chloroform (4 x 15 cm
3
). The organic phases were 

collected, combined and dried over MgSO4 before being filtered and then the solvent 

removed under reduced pressure to give the crude product as an off white solid. 
1
H 

NMR (CDCl3, 300MHz) analysis showed the desired product to be present at a 

conversion of 55%. Further purification was achieved by dissolving the crude in 

dichloromethane and adding 5 cm
3
 1M hydrochloric acid. The product was extracted 

into the aqueous layer (3 x 15 cm
3
 1M hydrochloric acid). The aqueous layer phases 

were combined and basified with saturated NaHCO3 solution. The product was then 

extracted into DCM (3 x 15 cm
3
). The organic phases were combined, dried over 

MgSO4, filtered and the solvent removed under reduced pressure to give the product 

as a white solid (186 mg, 0.567 mmol, 26%). Mp 108-110°C; [α]D
36 

+10° (c 0.7, 

EtOH) (1R,2S) (lit.
141

 [α]D
25

 +6.9 (c 0.72 in EtOH) (1R,2S)); found (ESI) [M+H]
+
, 
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329.2221, C20H29N2O2 requires M, 329.2224; υmax 3266, 3081, 2963, 2920, 2828, 

1447, 1284, 1120, 1005, 739, 698 cm
-1

;
 
δH (300 MHz, CDCl3) 7.29-7.15 (12H, m, 

CHAr and 2 x NH overlapping), 4.64 (2H, d, J 3.9 Hz, 2 x CH(C6H5)), 2.82-2.78 

(4H, m, 2 x CHCH3 and 2 x OH overlapping), 2.66-2.60 (4H, m, 2 x CH2NH), 0.79 

(6H, d, J 6.5 Hz, 2 x CH3); δC (75 MHz, CDCl3) 141.53 (2 CAr), 128.12 (4 CHAr), 

127.15 (2 CHAr), 126.18 (4 CHAr), 73.88 (2 CH), 58.53 (2 CH), 46.90 (4 CH2), 

14.74 (2 CH3); m/z (ESI) 329.2 (M
+
 + 1). Data matches that previously reported for 

this compound.
140, 141

  

 

N,N’-Bis[(1R,2S)-2-hydroxy-1-methyl-2-phenylethyl]-1,2-diaminopropane (153).  

 
This compound is novel.  

Prepared as for ligand 152 using (1R,2S)-Norephedrine (1.0 g, 6.6 mmol) and  1,3-

dibromopropane (666 mg, 3.30 mmol) instead of 1,2- dibromoethane. The purified 

product was obtained as a white solid (404 mg, 1.18 mmol, 36%). Mp 98- 100°C; 

[α]D
36

 + 5.0 (c 0.5, EtOH); found (ESI) [M+H]
+
, 343.2379, C21H31N2O2 requires M, 

343.2380; υmax 3065, 2969, 2871, 1488, 1449, 1200, 1144, 1102, 1089, 996, 897, 

748, 698 cm
-1

; δH (300 MHz, CDCl3) 7.24-7.14 (10H, m, CHAr), 4.86 (2H, d, J 3.4 

Hz, 2 x CHOH), 3.43 (4H, br s, 2 x NH and 2 x OH overlapping), 2.89-2.72 (6H, m, 

2 x CH2CH2 and 2 x CHNH overlapping), 1.68 (2H, quin, J 6.3 Hz, CH2CH2CH2), 

0.78 (6H, d, J 6.5 Hz, 2 x CH3); δC (75 MHz, CDCl3) 140.72 (2 CAr), 127.49 (4 

CHAr), 126.44 (2 CHAr), 125.44 (4 CHAr), 72.45 (2 CH), 58.24 (2 CH), 45.36 (2 

CH2), 28.59 ( 2 CH2), 12.83 (2 CH3); m/z (ESI) 343.2 (M
+
 + 1).  
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N,N’-Bis[(1R,2S)-2-hydroxy-1-methyl-2-phenylethyl]-1,2-dimethylaminoethane 

(154).  

 

This compound is known in the literature but has not previously been fully 

characterised.
142

  

This was prepared as for ligand 152 (1R,2S)-ephedrine (1.0 g, 6.1 mmol) instead of 

(1R,2S)-norephedrine and 1, 2-dibromoethane (564 mg, 3.00 mmol).. The purified 

product was achieved as a white solid (247 mg, 0.694 mmol, 23%). Mp 68-71°C; 

[α]D
34

 +59.4 (c 1, CHCl3) (1R,2S) (lit.
142

 [α]D
34

 +16.9 (c 1.0 in CHCl3) (1R,2S)); 

found (ESI) [M+H]
+
, 357.2541, C22H33N2O2 requires M, 357.2537; υmax 2965, 2856, 

2806, 1448, 1335, 1194, 1047, 758, 701, 638 cm
-1

; δH (300 MHz, CDCl3) 7.26-7.19 

(8H, m, CHAr), 7.13-7.08 (2H, m, CHAr), 5.12 (2H, d, J 3.1 Hz, 2 x CHOH), 3.20 

(2H, d, J 11.3, 2 x CH
a
H

b
), 2.81-2.73 (2H, m, 2 x CHNCH3), 2.38 (6H, s, 2 x 

CH3N), 2.07 (2H, d, J 11.3, 2 x CH
a
H

b
), 0.68 (6H, d, J 6.7 Hz, 2 x CH3); δC (75 

MHz, CDCl3) 141.87 (2 CAr), 128.03 (4 CHAr), 126.67 (2 CHAr), 125.81 (4 

CHAr), 76.72 (2 CH), 64.17 (2 CH), 51.43 (4 CH2), 43.83 (2 CH3), 6.04 (2 CH3); 

m/z (ESI) 357.2 (M
+
 + 1). Data matches that previously reported for this 

compound.
142 

 

General procedure 1: hydrogenation of benzophenone using 20 mol% KO
t
Bu 

and 20 mol% ligand and hydrogen gas.  

To benzophenone (164 mg, 0.901 mmol) in a small pyrex test tube was added 

KO
t
Bu (20 mg, 0.18 mmol), ligand (0.18 mmol) and solvent (either 

t
BuOH or 2-

methyl-2-butanol) (2.25 cm
3
). A micro stirrer was added to the test tube which was 

then placed inside the Parr Reactor. The reactor was purged with hydrogen gas and 



Development of catalysts for asymmetric hydrogenation                                                    Experimental 

193 

 

then charged to the desired pressure. The reaction was then stirred at the required 

temperature for the required time (approx. 5 days).  

When multiple ligands were tested in the same experiment, a bulk solution of 

benzophenone, KOtBu and solvent was prepared and divided into equal aliquots 

(2.25 cm
3
) in separate pyrex test tubes and 1 ligand (0.18 mmol) was added to each.  

The reaction solution was filtered through silica with EtOAc and the filtrate analysed 

by GC. 

 

5.3.2 Synthetic procedures for section 2.2. 

 

(1S,2S)-N,N-Bis(2-(diphenylphosphino)benzyl)cyclohexane-1,2-diamine (45). 

 

This compound is known in the literature but has not previously been fully 

characterised.
63

 

To (S,S)-1,2-diaminocyclohexane (19 mg, 0.17 mmol) and Na2SO4 (142 mg, 1.00 

mmol) was added anhydrous DCM (1.5cm
3
). To the resulting solution was then 

added σ-(diphenylphosphino)benzaldehyde (100 mg, 0.344 mmol). The solution was 

then stirred at room temperature for 24 hours. After this the reaction was filtered and 

the solvent removed under reduced pressure to leave an orange solid. To this was 

then added anhydrous THF (2 cm
3
) and the solution cooled to 0°C. To the cooled 

solution was then added 2M LiAlH4 solution in THF (1.0 mmol, 0.50 cm
3
). The 

reaction was stirred overnight. After this, water was slowly added to the reaction and 
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the THF was removed under reduced pressure. The product was then extracted with 

Et2O (3 x 15 cm
3
). The Et2O phases were combined, dried over Na2SO4 and filtered. 

The solvent was then removed under reduced pressure to leave the crude product as a 

yellow oil (59 mg, 0.08 mmol, 47%). Further purification was not necessary. [α]D
32

 + 

6.4° (c 0.25 in CHCl3) (S,S); (found (EI): M
+
 + H + O2, 695.2959 C44H45N2O2P2 

requires M,695.2951); υmax 3051, 2925, 2853, 1710, 1433, 1357, 1180, 1090, 1026, 

878, 741. 694 cm
1
; δH (300 MHz, CDCl3) 7.52-7.48 (2H, m, CHAr), 7.33-7.18 (24H, 

m, CHAr), 6.91-6.81 (2H, m, CHAr), 4.02 (2H, dd, J 1.5 and 13.4 Hz, CH
a
H

b
N), 

3.83 (2H, dd, J 1.5 and 13.4 Hz, CH
a
H

b
N), 2.29 (2H, br s, NH), 2.15-2.12 (2H, m, 

CH), 2.02-1.96 (2H, m, CH2), 1.62-1.57 (2H, m, CH2), 1.11-1.04 (2H, m, CH2), 

0.92-0.85 (2H, m, CH2); δC (75 MHz, CDCl3) 136.30 (2 CAr, d, JCP 4.6 Hz), 136.17 

(2 CAr, d, JCP 4.6 Hz), 135.49 (2 CAr), 134.85 (2 CAr, d, JCP 13.4 Hz), 133.42 (4 

CHAr), 133.15 (4 CHAr), 132.75 (2 CHAr), 128.65 (CHAr), 128.41 (2 CHAr), 

128.33 (2 CAr), 128.10 (2 CHAr), 128.03 (4 CHAr), 127.98 (4 CHAr), 127.88 (2 

CHAr), 126.41 (2 CHAr), 60.35 (2 CH), 48.26 (2 CH2), 30.65 (2 CH2), 24.29 (2 

CH2); δp (300MHz, CDCl3) -17.0; m/z (ESI) 663.2 (M
+
 + 1). Data matches that 

previously reported for this compound.
63 

 

(1S,2S)-N,N-Bis(2-(diphenylphosphino)benzyl)-1,2-diphenylethane-1,2-diamine 

(159). 

 

This compound is known in the literature but has not previously been fully 

characterised.
62 
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This compound was prepared as for compound 45 using (S,S)-DPEN (53 mg, 0.25 

mmol), Na2SO4 (213 mg, 1.50 mmol), anhydrous DCM (2 cm
3
), σ-

(diphenylphosphino)benzaldehyde (145 mg, 0.500 mmol), anhydrous THF (3 cm
3
) 

and 2M LiAlH4 solution in THF (0.75 cm
3
, 1.5 mmol). Purification of the crude 

product by recrystallisation was attempted but gave no improvement to the purity of 

the products. [α]D
32

 + 0.9 (c 0.5 in CHCl3) (S,S); HRMS not obtained due to purity of 

product achieved; υmax 3053, 2905, 1708, 1586, 1434, 1179, 1118, 1027, 742, 693 

cm
1
; δH (300MHz, CDCl3) 7.48-7.44 (2H, m, CHAr), 7.30-7.13 (34H, m, CHAr), 

6.85-6.79 (2H, m, CHAr), 4.00 (2H, s, CH), 3.67-3.66 (2H, m, CH
a
H

b
), 3.59-3.57 

(2H, m, CH
a
H

b
), 2.09 (2H, br s, NH); δC (75MHz, CDCl3) 144.15 (2 CAr), 139.78 (2 

CAr), 136.28 (2 CAr), 136.04 (2 CAr), 135.19 (2 CAr), 133.41 (4 CHAr), 133.29 (2 

CHAr, s), 133.14 (4 CHAr), 131.74 (2 CHAr), 131.40 (4 CHAr), 131.26 (4 CHAr), 

128.27 (2 CHAr), 128.15 (2 CAr), 127.94 (4 CHAr), 127.85 (4 CHAr), 127.53 (2 

CHAr), 126.48 (2 CHAr), 66.89 (2 CH), 52.64 (2 CH2); δp (300MHz, CDCl3) -16.6; 

m/z (ESI) 777.1 (M
+
 + 17). (For procedure see reference 155). Data matches that 

previously reported for this compound.
62 

 

Boc-(L)-prolinol (160). 

 

This compound is known in the literature and has previously been fully 

characterised.
168, 169 

A solution of N-Boc-(L)-proline (900 mg, 4.18 mmol) in anhydrous THF (8 cm
3
) 

was cooled to 0°C with an ice bath. To the cooled solution was then added dropwise 

borane dimethyl sulfide complex 2M in THF (4.2 cm
3
, 8.4 mmol). The solution was 
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stirred at 0°C for 5 hours and then at room temperature overnight. The reaction was 

followed by TLC (1:1 EtOAc:petroleum ether, visualisation by KMnO4, product Rf 

0.59). After this, water was slowly added to the reaction followed by EtOAc (15 

cm
3
). The organic phase was separated and the aqueous phase washed with further 

EtOAc (2 x 15 cm
3
). The organic phases were combined and washed with brine, 

saturated Na2HCO3 solution and finally water. The organic phase was dried over 

Na2SO4, filtered and the solvent removed under reduced pressure to leave the 

product as a white solid (756 mg, 3.76 mmol, 90%). Further purification was not 

necessary. Mp 61-63°C, [α]D
25

 -67.5 (c 0.5 in CHCl3) (S) (lit.
168

 [α]D
26

 -52.7 (c 1.05 

in CHCl3) (S)); (found (EI): M
+
+Na, 224.1261 C10H19NNaO3 requires M, 224.1257); 

υmax 3432, 2979, 2932, 2872, 1656, 1392, 1478, 1455, 1392, 1365, 1161, 1127, 1054, 

907, 864, 775 cm
-1

 ; δH (300MHz, CDCl3) 4.78 (1H, br s, OH), 3.91 (1H, br s, 

CHN), 3.60-3.48 (2H, br m, CH2OH ), 3.42-3.34 (1H, br m, NCH
a
H

b
), 3.28-3.20 

(1H, br m, NCH
a
H

b
), 1.97-1.88 (1H, m, CH2), 1.80-1.71 (2H, m, CH2), 1.53-1.46 

(1H, m, CH2), 1.42 (9H, s, (CH3)3); δC (75 MHz, CDCl3) 164.16 (1 C=O), 79.57 (1 

C), 67.03 (1 CH2), 59.54 (1 CH), 46.91 (1 CH2), 28.06 (1 CH2), 27.82 (3 CH3), 23.42 

(1 CH2); m/z (ESI) 224.1 (M
+
 + 23) and 425.0 (M2

+
 + 1). Data matches that 

previously reported for this compound.
168, 169

 

Boc-(S)-2-Methylsulfonyloxymethylpyrrolidine (161). 

 

This compound is known in the literature but has not previously been fully 

characterised.
170, 171

 For procedure see reference 172. 
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To a solution of N-Boc-(L)-prolinol 160 (756 mg, 3.76 mmol) was added anhydrous 

DCM (19 cm
3
) and triethylamine (577 mg, 5.70 mmol). The resulting solution was 

stirred and to it was slowly added methanesulfonyl chloride (653 mg, 5.70 mmol). 

The reaction was stirred at room temperature and monitored by TLC (silica gel 

plates, 1:1 EtOAc:petroleum ether, visualisation by KMnO4, product Rf 0.65). Once 

complete, the solvent was removed under reduced pressure. To the residue was 

added EtOAc (15 cm
3
) and water (10 cm

3
). The organic phase was separated and the 

aqueous phase washed with further EtOAc (2 x 15 cm
3
). The organic phases were 

combined and then washed with brine and saturated NaHCO3 solution. The organic 

phases was then dried over Na2SO4, filtered and the solvent removed under reduced 

pressure to leave the crude product  as a pale yellow oil (703 mg, 2.52 mmol, 67%). 

Further purification was not necessary. [α]D
25

 -47.1 (c 0.5 in CHCl3) (S); (found (EI): 

M
+
 - C5H8O2 + H, 180.0688 C16H14NO3S requires M, 180.0689); υmax 2973, 1752, 

1686, 1391, 1353, 1167, 1109, 956, 907, 814, 772 cm
-1

 ; δH (100 MHz, CDCl3)  

4.29-4.20 (1H, br m, CHN), 4.18-4.03 (2H, br s, CH2N), 3.36 (2H, br s, CH2OSO2), 

3.01 (3H, s, CH3SO2 ), 2.10-1.77 (4H, m, CH2), 1.47 (9H, s, (CH3)3);  δC (400MHz, 

CDCl3) 164.10 (1 C=O), 79.15 (0.5 C), 79.56 (0.5 C), 68.93 (0.5 CH2), 68.88 (0.5 

CH2), 55.09 (1 CH3), 46.36 (1 CH2), 46.02 (0.5 CH2), 36.75 (0.5 CH), 36.31 (0.5 

CH) 27.80 (3 CH3), 27.14 (0.5 CH2), 23.10 (0.5 CH2), 22.23 (0.5 CH2); m/z (ESI) 

180.1 (M
+
 - 100, + 1) and 302.1 (M

+
 + 23). Data matches that previously reported for 

this compound.
170, 171
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Boc-(S)-2-((diphenylphosphino)methyl)pyrrolidine borane complex (162). 

 

This compound is novel. 

To Boc-(S)-2-Methylsulfonyloxymethylpyrrolidine 161 (2.31 g, 8.27 mmol) was 

added anhydrous, degassed THF (40 cm
3
). The resulting solution was cooled to -

25°C with an ice/NaCl bath and stirred. Potassium diphenylphosphide solution 0.5M 

in THF (33.2 cm
3
, 16.6 mmol) was added to the solution dropwise. To the resulting 

vivid orange solution was then added borane dimethyl sulfide complex 2M in THF 

(8.3 cm
3
, 16.6 mmol). The reaction was allowed to warm to room temperature and 

stirred overnight. After this the reaction solution was filtered through celite and the 

solvent removed under reduced pressure to leave the crude as a cloudy oil. The crude 

was purified by column chromatography (silica gel, 0-50% EtOAc in petroleum 

ether, TLC: silica plate, 20% EtOAc in petroleum ether, visualisation by KMnO4, Rf 

product = 0.55) to give the pure product as a white solid (2.03 g, 5.30 mmol, 64%). 

Mp 83-84°C; [α]D
26

 -19.8  (c 0.5 in CHCl3) (S); (found (EI): M
+
 +Na, 406.2084 

C22H31BNNaO2P requires M, 406.2082); υmax 2973, 2378, 1679, 1393, 1363, 1170, 

1107, 1061, 734, 692 cm
-1

 ; δH (500 MHz, CDCl3) mixture of rotomers 7.98-7.88 

(1H, m, CHAr), 7.77-7.73 (1H, m, CHAr), 7.69-7.63 (2H, m, CHAr), 7.51-7.37 (6H, 

m, CHAr), 4.18 (0.5H, br s, CHN), 4.03 (0.5H, br s, CHN), 3.42-3.37 (0.5H, m, 

CH2PPh2), 3.34-3.19 (2H, m, CH2N), 2.88-2.82 (0.5H, m, CH2PPh2), 2.35-2.25 

(0.5H, m, CH2PPh2), 2.12-2.06 (0.5H, m, CH2PPh2), 1.96-1.87 (1H, m, CH2), 1.85-

1.81 (1H, m, CH2), 1.77-1.68 (1.5H, m, CH2), 1.60 (0.5H, br s, CH2), 1.48-1.42 (9H, 

m, C(CH3)3), 1.24-0.72 (3H, br s, BH3); δC (75 MHz, CDCl3) 153.58 (1 C=O), 
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132.24 (CHAr), 131.99 (CHAr), 131.51 (CHAr), 131.27 (CHAr), 130.62 (CHAr), 

130.32 (CHAr), 128.91 (2 CAr), 128.33 (2 CHAr), 128.20 (2 CHAr), 53.15 (CH), 

45.65 (CH2, d JCP, 42 Hz), 30.52 (C), 30.20 (CH2), 29.16 (CH2, d, JCP, 31 Hz), 28.00 

(3 CH3), 23.71 (CH2, d, JCP, 65 Hz); δp 10.6 (br s); m/z (ESI) 406.2 (M
+
 + 23). (For 

procedure see reference 173) 

 

(S)-2-((Diphenylphosphino)methyl)pyrrolidine (163). 

 

This compound is known in the literature and has not previously been fully 

characterised.
169, 174, 175 

To Boc-(S)-2-((diphenylphosphino)methyl)pyrrolidine borane complex 162 (600 mg, 

1.57 mmol) at 0°C was added degassed TFA (19 cm
3
, 250 mmol). The resulting 

clear, brown solution was stirred at 0°C for 2 hours. After this, the reaction was 

quenched at 0°C by the slow addition of saturated K2CO3 solution until 

effervescence ceased. After this the solution was brought to pH 7 by addition of 1M 

HCl solution. The product was then extracted with DCM (3 x 20 cm
3
) to give the 

crude product as a pale yellow viscous oil (416 mg, 1.54 mmol, 98%). Further 

purification was not necessary. [α]D
26

 - 5.4  (c 0.5 in CHCl3) (lit.
175

 [α]D
25

 -13.0 (c 

1.0 in CHCl3) (S)); (found (EI): M
+
 +H, 270.1402 C17H21NP requires M, 270.1406); 

υmax 2974, 2760, 1670, 1434, 1173, 1124, 831, 798, 740, 720 694 cm
-1

; δH (300MHz, 

CDCl3) 8.17 (1H, br s, NH), 7.36-7.21 (10H, m, CHAr), 3.33-3.06 (3H, m, CH2N 

and CHN overlapping), 2.67 (1H, dd, J 13.5 and 6.1 Hz, CH
a
H

b
), 2.34 (1H, dd, J 

13.5 and 9.0 Hz, CH
a
H

b
), 2.13-2.04 (1H, m, CH2), 2.01-1.92 (1H, m, CH2), 1.86-

1.62 (2H, m, CH2);  δC (100MHz, CDCl3) 136.79 (CAr, d, JCP  11.3 Hz), 136.11 
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(CAr, d, JCP 11.3 Hz), 132.87 (2 CHAr, d, JCP 19.3 Hz), 132.51 (2 CHAr, d, JCP 

19.3Hz), 130.99 (CHAr, d, JCP 9.7 Hz), 130.55 (CHAr, d JCP 9.7 Hz), 129.22 (2 

CHAr, d, JCP 9.5 Hz), 128.75 (2 CHAr, t, JCP 6.3 Hz), 116.64 (CH2, d, JCP 293.9 

Hz), 58.32 (CH, d, JCP 20.3 Hz), 44.71 (CH2), 31.27 (CH2) 23.67 (CH2); δp (121 

MHz, CDCl3) -22.40 (s); m/z (ESI) 270.1 (M
+
 + 1). Data matches that previously 

reported for this compound.
169, 174, 175

 

N-Benzyl-(S)-2-((diphenylphosphino)methylpyrrolidine (164). 

 

This compound is known in the literature
176, 177

 but has not previously been fully 

characterised.
 

NaH (60% in mineral oil) (76 mg, 1.9 mmol) was washed in anhydrous hexane (3 

cm
3
) to remove the oil. The hexane was removed via a needle and syringe with 

cotton wool and filter paper secured to the end of the needle. Any residual hexane 

was then removed under vacuum and the flask cooled to 0°C with an ice bath. 

Anhydrous THF (6 cm
3
) was added and the resulting solution stirred. To it was then 

added (S)-2-((diphenylphosphino)methyl)pyrrolidine 163 (135 mg, 0.501 mmol) and 

the reaction stirred for 40 min at 0°C. After this benzyl bromide (64 mg, 0.37 mmol) 

was added and the reaction solution heated and stirred at reflux for 2.5 hours. After 

this the reaction was cooled to room temperature and water and EtOAc were added. 

The product was extracted with EtOAc (3 x 10 cm
3
). The EtOAc phases were 

combined, dried over Na2SO4, filtered and the solvent removed under reduced 

pressure to leave the crude as an orange oil. The crude was purified by column 

chromatography (silica gel, 0-75% EtOAc in petroleum ether, TLC: silica plate, 1:1 
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EtOAc:petroleum ether, visualisation by KMnO4, Rf product = 0.60) to give the 

product as a colourless oil (68 mg, 0.19 mmol, 51%). [α]D
30

 -94.9  (c 1 in CHCl3) 

(S); (found (EI): M
+
 + H, 360.1873 C24H27NP requires M, 360.1876); υmax 3054, 

2936, 2787, 1433, 1117, 738, 694 cm
-1

 ; δH (300MHz, CDCl3) 7.50-7.42 (4H, m, 

CHAr), 7.35-7.29 (6H, m, CHAr), 7.27-7.22 (5H, m, CHAr), 4.04 (1H, d, J 12.8 Hz, 

CH
a
H

b
), 3.17 (1H, d, J 12.8 Hz, CH

a
H

b
), 2.90 (1H, t, J 7.7 Hz, CH2N), 2.62 (1H, dt, 

J 13.1 and  3.4 Hz, CH2N), 2.46 (1H, m, CHN), 2.07 (3H, m, CH2), 1.67 (3H, m, 

CH2); δC (100MHz, CDCl3) 139.41 (2 CAr, d, JCP 12.8 Hz), 138.18 (CAr), 138.64 

(CAr, d, JCP 12.8 Hz), 133.12 (2 CHAr, d, JCP 19.1 Hz), 132. 59 (2 CHAr, d, JCP 

19.1 Hz), 129.04 (2 CHAr), 128.76 (CHAr), 128.54 (CHAr), 128.36 (2 CHAr, d, JCP 

3.0 Hz), 128.41 (2 CHAr, d, JCP 3.0 Hz), 128.18 (CHAr), 126.84 (CHAr), 61.64 

(CH, d, JCP 18.7 Hz), 58.22 (CH2), 53.84 (CH2), 34.10 (CH2, d, JCP 13.3 Hz), 31.90 

(CH2, d, JCP 7.8 Hz), 22.15 (CH2); δp (300MHz, CDCl3) -21.8; m/z (ESI) 360.1 (M
+
 

+ 1) and 376.1 (M
+
 + 17).  

 

1,3-Bis-((S)-2-((Diphenylphosphino)methylpyrrolidin-1-yl)methyl)benzene 

(165). 

 

This compound is novel. 

This compound was prepared as for 164 using NaH (60% in mineral oil) (120 mg, 

3.00 mmol), anhydrous THF (9 cm
3
), (S)-2-((diphenylphosphino)methyl)pyrrolidine 

163 (200 mg, 0.742 mmol) and α,α-dibromo-m-xylene (79 mg, 0.30 mmol). The 

crude was purified by column chromatography (silica gel, 0-100% EtOAc in 
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petroleum ether, TLC: silica plate, 1:1 EtOAc:petroleum ether, visualisation by 

KMnO4, Rf product = 0.1) to give the product as a yellow oil (24 mg, 0.038 mmol, 

13%). [α]D
30

 – 24.6  (c 0.5 in CHCl3) (S); (found (EI): M
+
 + H, 641.3211 C42H47N2P2 

requires 641.3209; υmax 2922, 2791, 1655, 1434, 1159, 1118, 906, 798, 738, 694 cm
-

1
 ; δH (300MHz, CDCl3) 7.47-7.39 (9H, m, CHAr), 7.33-7.28 (11H, m, CHAr), 7.16-

7.14 (2H, m, CHAr), 7.10-7.04 (2H, m, CHAr),  4.00 (2H, d, J 12.8Hz, CH
a
H

b
Ph), 

3.09 (2H, d, J 12.8Hz, CH
a
H

b
Ph

 
), 2.88-2.83 (2H, m, CH

a
H

b
PPh2), 2.64-2.58 (2H, m, 

CH
a
H

b
PPh2), 2.47-2.39 (2H, m, CHN), 2.10-1.93 (6H, m, CH2), 1.63 (6H, m, CH2);  

δC (75 MHz, CDCl3) 138.52 (2 CAr), 137.88 (2 CAr), 132.59 (CHAr), 132.33 

(CHAr), 132.06 (CHAr), 131.82 (CHAr), 129.10 (2 CAr), 128.99 (CHAr), 128.14 (2 

CHAr), 127.91 (2 CHAr), 127.81 (4 CHAr), 127.76 (4C), 127.71 (CHAr), 127.38 

(CHAr), 126.99 (2 CHAr), 61.24 (2 CH), 57.69 (2 CH2), 53.25 (2 CH2), 33.42 (2 

CH2, d, JCP 13.2 Hz), 31.25 (2 CH2, d, JCP 7.6 Hz), 21.47 (CH2); δP (300MHz, 

CDCl3) -21.6; m/z (ESI) 641.2 (M
+
 + 1). 

 

Tetraethylammonium undecacarbonylhydridotriferrate (166). 

[Et3NH] [HFe3(CO)11]. 

This compound is known in the literature.
128, 136

 Full characterisation is difficult due 

to the air sensitive nature of the compound, but NMR data has been previously 

reported.
136 

To degassed water (1 cm
3
, 18 mmol) and degassed triethylamine (349 μL, 2.5 

mmol). To this was then added Fe(CO)5 (460 μL, 3.5 mmol). The reaction was 

connected to a reflux condenser and stirred vigorously at 80°C for 20 hours. After 

this the reaction was cooled to room temperature. The reaction was filtered under 

nitrogen and washed with degassed, distilled water. The residue was then dried under 
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vacuum. The product, a red dark red solid was stored under nitrogen. δH (300MHz, 

C6D6) 1.90 (1H, br s, NH), 1.40 (2H, br q, CH2), 0.00 (3H, br t, CH3) and -15.25 

(0.2H, s, FeH). Data matches that previously reported for this compound although 

the integral of the FeH signal was expected to be 1.
136 

 

General procedure 2: asymmetric transfer hydrogenation with [Et3NH] 

[HFe3(CO)11].
128, 129

 

The reaction was carried out under an argon atmosphere. To [Et3NH] [HFe3(CO)11] 

166 (3 mg, 0.005 mmol), KOH (1.6 mg, 0.03 mmol), acetophenone (60 mg, 0.5 

mmol) and anhydrous, degassed iso-propanol (1 cm
3
) all taken from a freshly 

prepared stock solution, was added the required ligand (3mol% for a tetradentate 

ligand, 6mol% for a bidentate ligand). The resulting solution was stirred under argon 

at 45°C. The reaction solution was filtered through silica with 1:1 EtOAc:petroleum 

ether 40-60°C. The filtrate was analysed by GC. 

 

(S)-(2-(Hydroxymethyl)pyrrolidine)-N-2,2-dimethylpropan-1-one (167). 

 

This compound is known in the literature but has not previously been fully 

characterised.
178

 

To a nitrogen purged, dried flask was added (L)-prolinol (202 mg, 2.00 mmol) in 

chloroform (1.5 cm
3
) that had been dried over molecular sieves. The resulting 

solution was cooled to 0°C and to it was added Et3N (405 mg, 4.00 mmol) followed 

by the dropwise addition of trimethylacetyl chloride (265 mg, 2.20 mmol). The 

resulting solution was allowed to warm to room temperature and stirred overnight. 
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Chloroform (10 cm
3
) and saturated NaHCO3 aq. (10 cm

3
) was added. The 

chloroform phase was collected and washed with further NaHCO3 (aq.) followed by 

saturated NaCl (aq.) before being dried over MgSO4, filtered and the solvent 

removed under reduced pressure to give the crude product as an orange oil. The 

crude was purified by column chromatography (silica gel, 0-100% EtOAc in 

petroleum ether, TLC: silica plate, 1:1 EtOAc:petroleum ether, visualisation by 

KMnO4, product Rf = 0.12) to give the product as a white solid (191 mg, 1.0 mmol, 

50%). Mp 78-79°C; [α]D
34

 -55.5 (c 1 in CHCl3) (S); (found (ESI): M
+
 + H, 208.1304. 

C10H19NNaO2 requires M, 208.1308); υmax 3388, 2956, 2872, 1589, 1410, 1365, 

1225, 1155, 1053, 752 cm
-1

; δH (300 MHz, CDCl3) 5.02 (1H, br s, OH), 4.14-4.06 

(1H, m, CHN), 3.68-3.60 (1H, m, CH2N), 3.42-3.38 (2H, m, CH2OH), 3.33-3.25 

(1H, m, CH2N), 1.98-1.70 (2H, m, CH2), 1.65-1.53 (1H, m, CH2), 1.43-1.35 (1H, m, 

CH2), 1.26 (9H, s, (CH3)3); δC (75 MHz, CDCl3) 178.08 (1C=O), 66.11 (CH), 61.40 

(CH2), 47.77 (CH2), 38.39 (C(CH3)3), 26.83 (3 CH3), 26.4 (CH2), 24.6 (CH2); m/z 

(ESI) 186.2 (M
+
 + 1), 208.1 (M

+
 + 23). Data matches that previously reported for 

this compound.
178 

 

(S)-2-((tert-Butyldimethylsilyloxy)methylpyrrolidine (168). 

 

This compound is known in the literature but has not previously been fully 

characterised.
179 

To (L)-prolinol (303 mg, 2.99 mmol) was added triethylamine (405 mg, 4.00 mmol). 

To this was then added anhydrous Et2O (5 cm
3
), anhydrous THF (5 cm

3
) and the 
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solution cooled to 0°C. TBDMSCl (603 mg, 4.00 mmol) was then added. The 

resulting solution was allowed to warm to room temperature and stirred overnight. 

After this 5 cm
3
 of 50% K2CO3 solution (aq.) was slowly added to the reaction. The 

organic phase was separated and washed with saturated NaHCO3 solution (aq.) and 

brine. The organic phase was dried over Na2SO4, filtered and the solvent removed 

under reduced pressure to leave the crude product (179) as an orange oil. (634 mg, 

2.94 mmol, 98%). Further purification was not necessary. [α]D
20

 – 1.8  (c 0.25 in 

CHCl3) (S); (found (EI): M
+
 + H, 216.1779 C11H26NOSi requires 216.1778; υmax 

2953, 2927, 2855, 1462, 1406, 1252, 1090, 832, 771, 664 cm
-1

; δH (300MHz, CDCl3) 

3.59-3.45 (2H, m, CH2OSi), 3.14-3.06 (1H, m, CHN), 2.98-2.90 (1H, m, CH2N), 

2.82-2.74 (1H, m, CH2N), 2.64 (1H, br s, NH), 1.76-1.64 (3H, m, CH2), 1.46-1.38 

(1H, m, CH2), 0.87 (9H, s, (CH3)3), 0.3 (6H, s, 2 x CH3);  δC (75 MHz, CDCl3) 65.34 

(CH2), 59.85 (CH), 46.36 (CH2), 27.35 (CH2), 25.88 (3 CH3), 25.40 (2 CH2), 18.27 

(C), -5.42 (CH3); m/z (ESI) 216.2 (M
+
 + H). Data matches that previously reported 

for this compound.
179

 

 

(S)-1-Benzyl-2-((tert-butyldimethylsilyloxy)methyl)pyrrolidine (169). 

 

This compound is known in the literature but has not previously been fully 

characterised.
179

 

This compound was prepared as for compound 175 using NaH (60% in mineral oil) 

(88 mg, 2.20 mmol) anhydrous THF (8 cm
3
), O-(tert-butyldimethylsilyl)prolinol 168 

(120 mg, 0.557 mmol) and benzyl bromide (89 mg, 0.56 mmol) The crude product 
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was purified by column chromatography (silica gel, 0-20% EtOAc in petroleum 

ether, TLC: silica plate, 1:1 EtOAc:petroleum ether, visualisation by KMnO4, 

product Rf = 0.81) to give the product as a colourless oil (80 mg, 0.26 mmol, 46%). 

[α]D
30

 -26.5° (c 0.5 in CHCl3) (S); (found (EI): M
+
 + H, 306.2249 C18H32NOSi 

requires M, 306.2248); υmax 2955, 2927, 2856, 2787, 2361, 1461, 1252, 1076, 834, 

774, 735, 697 cm
-1

; δH (300MHz, CDCl3)7.24-7.14 (5H, m, CHAr), 4.04 (1H, d, J 

13.3 Hz, CH
a
H

b
Ar), 3.57 (1H, dd, J 9.9 and 5.4 Hz, CH

a
H

b
OSi), 3.42-3.32 (2H, m 

(dd and d overlapping), CH
a
H

b
Ar and CH

a
H

b
OSi overlapping), 2.87-2.81 (1H, m, 

CH2N), 2.65-2.56 (1H, m, CHN), 2.19-2.10 (1H, m, CH2N), 1.86-1.77 (1H, m, CH2), 

1.64-1.51 (3H, m, CH2), 0.81 (9H, s, (CH3)3), 0.04 (6H, s, CH3);  δC (75MHz, 

CDCl3) 139.25 (CAr), 128.40 (2 CHAr), 127.53 (2 CHAr), 126.14 (CHAr), 66.56 

(CH2), 64.46 (CH), 59.39 (CH2), 54.21 (CH2), 27.82 (CH2), 25.36 (3 CH3), 22.22 

(CH2), 17.71 (C), -5.95 (2 CH3); m/z (ESI) 306.2 (M
+
 + 1). Data matched that 

previously reported for this compound.
179 

 

1,3-Bis-((S)-2-((tert-butyldimethylsilyloxy)methyl)pyrrolidine)methyl)benzene 

(170). 

 

This compound is novel. 

Prepared as for 169 using NaH (60% in mineral oil) (112 mg, 2.80 mmol), 

anhydrous THF (9 cm
3
), O-(tert-butyldimethylsilyl)prolinol 168 (150 mg, 0.696 

mmol) and α,α-dibromo-m-xylene (46 mg, 0.28 mmol). The crude product was 

purified by column chromatography (silica gel, 0-20% EtOAc in petroleum ether, 

TLC: silica plate, 1:1 EtOAc:petroleum ether, visualisation by KMnO4, product Rf = 



Development of catalysts for asymmetric hydrogenation                                                    Experimental 

207 

 

0.56) to give the product as a colourless oil (54 mg, 0.10 mmol, 36%). [α]D
32

 -22.3° 

(c 0.3 in CHCl3) (S); (found (EI): M
+
 + H, 533.3967 C30H57N2O2Si2 requires M, 

533.3953); υmax 2953, 2927, 2855, 2784, 1461, 1360, 1251, 1083, 834, 774, 704, 665 

cm
-1

; δH (300MHz, CDCl3) 7.24 (1H, s, CHAr), 7.20-7.15 (3H, m, CHAr), 4.06 (2H, 

d, J 12.8 Hz, 2 x CH
a
H

b
Ar

 
), 3.62 (2H, dd, J 10.0 and 5.3 Hz, 2 x CH

a
H

b
OSi), 3.46-

3.36 (4H, m (d and dd overlapping), 2 x CH
a
H

b
Ar and 2 x CH

a
H

b
OSi overlapping),  

2.90-2.85 (2H, m, CH2N), 2.68-2.60 (2H, m, CHN), 2.20 (2H, q, J 8 Hz, CH2N), 

1.94-1.82 (2H, m, CH2), 1.71-1.52 (6H, m, CH2), 0.87 (18H, s, 2 x (CH3)3), 0.02 

(12H, s, 4 x CH3); δC (75 MHz, CDCl3) 139.06 (2 CAr), 128.96 (1 CHAr), 127.31 

(CHAr), 126.89 (2 CHAr), 66.56 (2 CH2), 64.48 (2 CH), 59.39 (2 CH2), 54.20 (2 

CH2), 27.87 (2 CH2), 25.36 (6 CH3), 22.23 (2 CH2), 17.71 (2 C), -5.9 (4 CH3); m/z 

(ESI) 533.3 (M
+
 + 1). (For procedure see reference 169-171). 

 

(S)-(1-benzylpyrrolidin-2-yl)methanol (171). 

 

This compound is known and has previously been fully characterised.
180

 

To a nitrogen purged flask, dried by heating under vacuum was added(S)-1-benzyl-2-

(tert-butyldimethylsilyloxy)methylpyrroliodine 169 (76 mg, 0.25 mmol) and 

anhydrous THF (4 cm
3
). The solution was cooled to 0°C and TBAF 1M solution in 

THF (0.4 cm
3
, 0.4 mmol) was added. The solution was stirred at O°C and monitored 

by TLC (1:1 EtOAc:pet ether, visualisation by KMnO4, product Rf = 0.51). 

Additional TBAF (0.2 cm
3
, 0.2 mmol) was added after 2 hours and the solution was 

allowed to warm to room temperature and stirred for an hour. Once complete by 

TLC the reaction was quenched by the slow addition of saturated Na2HCO3 solution 
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(aq.). The reaction was washed with water (10 cm
3
) and extracted with Et2O (3 x 10 

cm
3
). The Et2O phases were combined, dried over Na2SO4, filtered and the solvent 

removed under reduced pressure to leave the crude product as an orange oil. The 

crude was purified by column chromatography (silica gel, 0-100% EtOAc in 

petroleum ether, TLC: as above) to give the pure product as a yellow oil, (33 mg, 

0.17 mmol, 68%). [α]D
34

 -43.3 (c 0.8 in CHCl3) (S) (lit.
180

 [α]D
20

 -24 (c 0.4 in CHCl3) 

(S));  (found (ESI): M
+
 + H, 192.1384. C12H18NO requires M, 192.1383); υmax 3330, 

2956, 2872, 2791, 1452, 1074, 1028, 737, 698 cm
-1

; δH (400 MHz, CDCl3) 7.33-7.26 

(5H, m, CHAr), 4.02 (1H, d, J 13.0 Hz, CH
a
H

b
Ar), 3.68 (1H, dd, J 11.0 and 3.4 Hz, 

CH
a
H

b
OH), 3.49-3.43 (2H, m, CH

a
H

b
Ar and CH

a
H

b
OH overlapping), 3.06-3.01 (1H, 

m, CH
a
H

b
N), 2.96-2.64 (2H, br s and m overlapping, CHN and OH overlapping), 

2.39-2.33 (1H, m, CH
a
H

b
N), 1.98-1.81 (2H, m, CH2), 1.77-1.69 (2H, m, CH2); δC 

(100 MHz, CDCl3) 139.24 (CAr), 128.98 (2 CHAr), 128.46 (2 CHAr), 127.38 

(CHAr), 64.71 (CH), 61.67 (CH2), 58.64 (CH2), 54.39 (CH2), 27.65 (CH2), 23.48 

(CH2); m/z (ESI) 192.1 (M
+
 + 1). Data matches that previously reported for this 

compound.
180

 

 

1,3-Bis-((S)-2-((pyrrolidin-1-yl)methanol)methyl)benzene (172). 

 

This compound is novel. 

The compound was prepared as for (S)-(1-benzylpyrrolidin-2-yl)methanol 171 using  

(S)-1-((1,2R)-3-(((2R)-2-((tert-butyldimethylsilyloxy)methyl)cyclopentyl)methyl)- 
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benzyl)-2-((tert-butyldimethylsilyloxy)methyl)pyrrolidine 170 (512 mg, 0.96 mmol), 

anhydrous THF (3 cm
3
) and TBAF 1M solution in THF (2.9 cm

3
, 2.9 mmol). The 

crude product was purified by column chromatography (silica gel, 0-50% MeOH in 

DCM followed by flushing with 100% MeOH, TLC: silica plate, 20% MeOH in 

DCM, visualisation by KMnO4, product Rf = 0) to give the pure product as an 

orange/yellow oil (64 mg, 0.21 mmol, 22%). [α]D
34

 -47.8 (c 0.5 in CHCl3) (S); 

(found (ESI): M
+
 + H, 305.2220. C18H29N2O2 requires M, 305.2224); υmax 3323, 

2948, 2871, 2793, 1443, 1351, 1079, 1038, 905, 753, 704 cm
-1

; δH (300 MHz, 

CDCl3) 7.27-7.16 (4H, m, CHAr), 3.89 (2H, d, J 13.0 Hz, CH
a
H

b
Ar), 3.57 (2H, dd, J 

10.7 and 3.6 Hz, CH
a
H

b
OH), 3.40-3.35 (4H, m, CH

a
H

b
Ar and CH

a
H

b
OH 

overlapping), 2.99-2.93 (2H, m, CH
a
H

b
N), 2.84-2.44 (4H, m and br s overlapping, 

CHN and OH overlapping), 2.33-2.25 (2H, m, CH
a
H

b
N), 1.95-1.75 (4H, m, CH2), 

1.72-1.64 (4H, m, CH2); δC (100 MHz, CDCl3) 139.35 (2 CAr), 129.15 (1 CHAr), 

128.40 (1 CHAr), 127.63 (2 CHAr), 64.49 (2 CH), 61.93 (2 CH2), 58.73 (2 CH2), 

54.67 (2 CH2), 27.84 (2 CH2), 23.51 (2 CH2); m/z (ESI) 305.2 (M
+
 + 1), 327.2 (M

+
 + 

23). 

 

2-N-Tosylbenzaldehyde (173). 

 

This compound is known in the literature and has previously been fully 

characterised.
181, 182

 

To 2-aminobenzyl alcohol (1 g, 8 mmol) was added anhydrous chloroform (8 cm
3
), 

pyridine (800 μL, 9.89 mmol) and p-toluenesulfonyl chloride (1.6 g, 8.4 mmol). The 

resulting solution was stirred for 3 hours at room temperature. After this the solvent 
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was removed under reduced pressure to give a brown solid. This was dissolved in 

EtOAc and washed with saturated NH4Cl solution (aq.). The EtOAc phases were 

combined, dried over Na2SO4, filtered and the solvent removed under reduced 

pressure to give an off-white solid. This was then purged with nitrogen and to it was 

added anhydrous DCM (40 cm
3
) and MnO2 (5.6 g, 64 mmol). The resulting black 

solution was stirred at room temperature for 1.5 hours before being filtered through 

celite and the solvent removed from the filtrate under reduced pressure to leave the 

crude product as an off-white solid. This was purified by column chromatography 

(silica gel, 3:1 petroleum ether:EtOAc, TLC: silica plate, 25% EtOAc in petroleum 

ether, visualisation by KMnO4, product Rf = 0.50) to give the product as a white 

solid (430 mg, 1.56 mmol, 20%). Mp 135°C; (found (EI): M
+
 + Na, 298.0509 

C14H13N2NaO3S requires M, 298.0508); υmax 3119, 2849, 2766, 1662, 1581, 1493, 

1455, 1404, 1337, 1291, 1150, 1087, 929, 811, 758, 657 cm
-1

; δH (300 MHz, CDCl3) 

10.80 (1H, s, NH), 9.82 (1H, s, COH), 7.77 (2H, d, J 8.3 Hz, CHArSO2), 7.70 (1H, 

d, J 8.0 Hz, CHAr), 7.59 (1H, dd, J 7.5 Hz and 1.7 Hz, CHAr), 7.51 (1H, t, J 8.0 Hz 

and 1.7 Hz, CHAr), 7.24 (2H, d, J 8.3 Hz, CHArSO2), 7.16 (1H, td, J 7.5 and 0.75 

Hz, CHAr), 2.36 (3H, s, CH3).  δC (75MHz, CDCl3) 195.10 (C=O), 146.89 (CAr), 

144.25 (CAr), 139.90 (CAr), 136.32 (CAr), 136.18 (CHAr), 135.84 (CHAr), 129.79 

(2 CHAr), 127.27 (2 CHAr), 123.00 (CHAr), 117.70 (CHAr), 21.6 (CH3); m/z (ESI) 

276.0 (M
+
 + 1) and 298.0 (M

+
 + 23). Data matches that previously reported for this 

compound.
 181, 182 
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(1S,2S)-N, N-Bis(2-N-tosylbenzyl)-1,2-diphenylethane-1,2-diamine (174). 

 

This compound is novel. 

To 2-N-tosylbenzaldehyde 173 (430 mg, 1.56 mmol) was added Na2SO4 (680 mg, 

4.79 mmol) and anhydrous DCM (7 cm
3
). To this was then added (S,S)-DPEN (170 

mg, 0.801 mmol). The resulting bright yellow solution was stirred at room 

temperature for 24 hours. After this, the reaction solution was filtered and the solvent 

removed under reduced pressure to leave a bright yellow solid. The solid was 

dissolved in anhydrous THF (8 cm
3
) and cooled to 0°C. LiAlH4 solution 2M in THF 

(2.4 cm
3
, 4.8 mmol) was then added dropwise. The solution was stirred overnight 

and allowed to warm to room temperature. After this the reaction was cooled to 0°C 

and water was slowly added. The THF was removed under reduced pressure. The 

aqueous residue was then extracted with Et2O (4 x 20 cm
3
). The Et2O phases were 

combined, dried over Na2SO4, filtered and the solvent removed under reduced 

pressure to leave the product as a pale yellow, viscous oil (198 mg, 0.27 mmol, 

59%). Further purification was not necessary. Mp 87°C; [α]D
32

 + 13.2° (c 0.5 in 

CHCl3) (S, S); (found (EI): M
+
 + H, 731.2740 C42H43N4O4S2 requires M, 731.2734); 

υmax 2970, 2901, 1707, 1586, 1493, 1330, 1155, 1090, 931, 812, 756, 700, 656 cm
-1

; 

δH (700MHz, CDCl3) 7.49-7.46 (6H, m, CHArSO2 and CHAr overlapping), 7.25-

7.19 (10H, m, CHAr in DPEN, NHTs and CHAr), 7.10 (4H, d, J 7.7 Hz, CHArCH3), 

6.99 (4H, d, J 6.8 Hz, CHAr in DPEN), 6.94 (2H, t, J 7.0 Hz, CHAr), 6.81 (2H, d, J 

7.0 Hz, CHAr), 3.78 (2H, s, CH), 3.33 (2H, d, J 13.0 Hz, CH
a
H

b
), 3.23 (2H, d, J 13.0 

Hz, CH
a
H

b
), 2.32 (6H, s, CH3) ; δC (175 MHz, CDCl3) 143.29 (2 CAr), 138.60 (2 
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CAr, s), 137.62 (2 CAr), 137.43 (2 CAr), 129.77 (2 CHAr), 129.49 (4 CHAr), 

128.63 (2 CHAr), 128.57 (4 CHAr), 128.50 (2 CAr), 128.99 (4 CHAr), 127.74 (2 

CHAr), 126.90 (4 CHAr, s), 124.40 (2 CHAr), 121.76 (2 CHAr), 67.61 (2 CH), 

50.44 (2 CH2), 21.48 (2 CH3); m/z (ESI) 731.1 (M
+
 + 1) and 753.0 (M

+
 + 23).  

 

General procedure 3: rhodium and ruthenium-catalysed transfer 

hydrogenation of acetophenone.
 

To a nitrogen purged, dried test tube containing the desired ligand (0.002 mmol, 1 

mol% for tetradentate ligands and 0.004 mmol, 2 mol% for bidentate ligands) was 

added from a stock solution, acetophenone (24 mg, 0.2 mmol), anhydrous IPA (2 

cm
3
), KOH (0.11 mg, 0.0020 mmol) and either [Rh(COD)Cl]2 (0.99 mg, 0.002 

mmol) or [Ru(benzene)Cl2]2 (1.0 mg, 0.002 mmol). The resulting solution stirred 

under nitrogen at 82°C. The reaction solution was filtered through silica with 1:1 

EtOAc:petroleum ether 40-60°C. The filtrate was analysed by GC. 

 

5.3.3 Synthetic procedures for Section 2.3 

  

2-morpholino-1-phenylethanone. 

 

This compound is known in the literature and has previously been fully 

characterised. 
183

 

To a dried, nitrogen purged flask was added 2-bromoacetophenone (1.0 g, 5.0 

mmol). To this was then added anhydrous DCM (20 cm
3
) and the resulting solution 

was stirred and Et3N (1.01 g, 10 mmol) was added followed by morpholine (436 mg, 

5 mmol). The reaction was stirred at room temperature overnight. The reaction was 
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washed with saturated NaHCO3 solution and brine. The organic phase was dried 

over Na2SO4, filtered and the solvent removed under reduced pressure to give the 

crude product as a yellow oil. The crude was purified by column chromatography 

(silica gel, 0-100% EtOAc in petroleum ether, TLC: silica gel, 1:1 EtOAc:petroleum 

ether, visualisation by KMnO4, product Rf = 0.36) to give the product as a yellow oil  

(556 mg, 2.7 mmol, 54%). The product was unstable at room temperature and 

decomposed to its enamine over time. (Found (ESI): M
+
 + H, 206.1181 C12H16NO2 

requires M, 206.1176); υmax 2968, 2906, 2814, 1691, 1451, 1278, 1215, 1112, 971, 

864, 759, 691 cm
-1

; δH (400 MHz, CDCl3) 8.04-8.01 (2H, m, CHAr), 7.63-7.57 (1H, 

m, CHAr), 7.51-7.46 (2H, m, CHAr), 3.85 (2H, s, CH2CO), 3.82-3.79 (4H, m, 2 x 

CH2CH2N), 2.65-2.62 (4H, m, 2 x OCH2CH2); δC (75 MHz, CDCl3) 196.09 (C=O), 

135.94 (CAr), 133.35 (CHAr), 128.59 (2 CHAr), 128.07 (2 CHAr), 66.81 (2 CH2), 

64.69 (CH2), 53.88 (2 CH2); m/z (ESI) (M
+
 + 1), (M

+
 + 23). Data matches that 

previously reported for this compound.
183

 

 

1-Benzylpiperidine-2,6-dione. 

 

This compound is known in the literature and has previously been fully 

characterised.
184 

To a dried, nitrogen purged flask was added glutaric anhydride (571 mg, 5.00 mmol) 

and anhydrous THF (10 cm
3
). The resulting solution was stirred and to it was added 

benzylamine (643 mg, 6.00 mmol). The reaction was stirred for 30 min at room 

temperature. The solvent was removed under reduced pressure. The residue was 

dissolved in EtOAc (10 cm
3
) and the solution was washed with 1 M HCl (aq.) (10 
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cm
3
). The EtOAc phase was collected and the aqueous phase washed with a further 2 

portions of EtOAc. The EtOAc phases were combined and washed with brine before 

being dried over MgSO4, filtered and the solvent removed under reduced pressure to 

leave the crude intermediate. To the intermediate, at room temperature and under 

nitrogen was then added Et3N (759 mg, 7.50 mmol) and acetic anhydride (5 cm
3
). 

The reaction was then connected to a reflux condenser and stirred at 80°C for 1 hour. 

The reaction was then cooled to room temperature and dried under reduced pressure. 

The residue was dissolved in EtOAc (10 cm
3
) and the resulting solution was washed 

with 1 M HCl (aq.) and brine. The EtOAc phase was dried over MgSO4, filtered and 

the solvent removed by evaporation to leave the crude product as an orange oil. The 

crude was purified by column chromatography (silica gel, 0-100% EtOAc in 

petroleum ether 40-60, TLC: 1:1 EtOAc:petroleum ether, visualisation by KMnO4, 

product Rf = 0.53) to give the product as a white solid (596 mg, 2.9 mmol, 58%). 

Mp 54°C; (found (ESI): M
+
 + H, 204.1015 C12H14NO2 requires M, 204.1019); υmax 

2964, 1668, 1422, 1354, 1228, 1168, 1133, 1013, 717, 703 cm
-1

; δH (400 MHz, 

CDCl3) 7.35-7.33 (2H, m, CHAr), 7.29-7.22 (3H, m, CHAr), 4.93 (2H, s, NCH2), 

2.64 (4H, t, J 6.5 Hz, 2 x CH2CH2), 1.94-1.87 (2H, quin, J 6.5 Hz,CH2CH2CH2); δC 

(100 MHz, CDCl3) 172.54 (2 C=O), 137.44 (CAr), 128.54 (2 CHAr), 128.35 (2 

CHAr), 127.31 (CHAr), 42.56 (CH2), 32.72 (2 CH2), 16.98 (CH2); m/z (ESI) 204.1 

(M
+
 + 1), 226.1 (M

+
 + 23). Data matches that previously reported for this 

compound.
184 
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General procedure 4: pressure hydrogenation of ketones catalysed by tethered 

ruthenium catalysts (S/C 500/1). 

To an oven dried test tube was added the catalyst (1.2 mg, 0.002 mmol) and ketone 

(1 mmol). To the test tube was then added anhydrous MeOH (2 cm
3
) and the tube 

was transferred to the Parr reactor which was then sealed and purged with H2 before 

being charged with H2 to 30 bar. The reactor was then heated to 60°C and the 

reactions stirred at this temperature and pressure for the required time. The reactions 

were cooled, the pressure released and the reaction mixture filtered through silica 

with 1:1 EtOAc:petroleum ether 40-60. The filtrate was then analysed by GC. The 

remainder of the filtrate was concentrated under vacuum to leave the alcohol product 

which was then analysed by 
1
H and 

13
C NMR and its optical rotation obtained. 

Where necessary the product was purified by column chromatography (silica gel, 0-

50% EtOAc in petroleum ether 40-60) to remove residual starting material. 

5.3.4 Synthetic procedures for Sections 2.4 and 2.5. 
 

 

N-[(1S, 2S)-1, 2-Diphenyl-2-(3-phenypropylamino)ethyl)-4-

methylbenzenesulfonamide)ruthenium(II)iodide monomer (181). 

 

This compound is novel. 

To an argon purged flask was added (S,S)TsDPEN 3C tethered RuCl 97 catalyst (40 

mg, 0.060 mmol) and KI (25 mg, 0.15 mmol). To this was then added 50% v/v 

EtOH/H2O (4 cm
3
). The resulting orange solution was stirred under reflux at 80°C 

for 2 hours. After this the reaction solution which had become a red/purple colour 

was cooled to room temperature and filtered. The collected precipitate was dried to 
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give a red/purple solid (42 mg, 0.059 mmol, 98%). Purification was not necessary. 

Mp 170°C (decomposed); [α]D
28

 +565 (c 0.1 in CHCl3) (S, S); (found (ESI): M
+
 - I 

+H, 585.1161 C30H32N2O2RuS requires M, 585.1151); υmax 3495, 3212, 2940, 1455, 

1263, 1128, 1084, 936, 905, 806, 701, 659 cm
-1

; δH (400 MHz, CDCl3) 7.17 (2H, d, J 

7.6 Hz, CHAr in tosyl), 7.12-7.07 (3H, m, CHAr), 6.82-6.76 (5H, m, CHAr), 6.66 

(H, t, J 7.5 Hz, CHAr), 6.59 (2H, d, J 7.6 Hz, CHAr in tosyl), 6.48 (1H, t, J 5.6 Hz, 

CHAr-Ru), 6.25 (1H, t J, 5.6 Hz, CHAr-Ru), 6.10 (1H, t J 5.6 Hz, CHAr-Ru), 5.60 

(1H, d, J 5.6 Hz, CHAr-Ru), 5.05 (1H, d, J 5.6 Hz, CHAr-Ru), 4.81-4.78 (1H, m, 

NH), 4.09 (1H, d, J 11.0 Hz, CHNTs), 3.69 (1H, t, J 11.0 Hz, CHNH), 2.80-2.74 

(1H, m, CH2NH), 2.64-2.52 (2H, m, CH2CH2NH), 2.29-2.24 (4H, m and s 

overlapping, CH in CH2NH and CH3 overlapping), 2.19-2.10 (1H, m, CH2ArRu), 

1.99-1.93 (1H, m, CH2ArRu); δC (100 MHz, CDCl3) 142.40 (CAr), 139.16 (CAr), 

138.50 (CAr), 136.51 (CAr), 129.20 (2 CHAr), 128.68 (CHAr), 128.26 (2 CHAr), 

128.03 (4 CHAr), 127.19 (2 CHAr), 126.81 (2 CHAr), 126.27 (CHAr), 98.87 (CAr-

Ru), 93.44 (CHAr-Ru), 89.61 (CHAr-Ru), 81.98 (CHAr-Ru), 79.36 (CHAr-Ru), 

77.44 (CHAr-Ru), 77.20 (CH), 70.00 (CH), 48.57 (CH2), 29.59 (CH2), 26.08 (CH2), 

21.25 (CH3); m/z (ESI) 585.0 (M
+
 + 1); X-ray crystallography data is given in 

Appendix 2. For procedure see reference 185. 

 

N-[(1R,2R)-2-(Amino)-1,2-diphenylethyl]-4-methylbenzenesulfonamide(p-

cymene)ruthenium(II)chloride monomer (57a). 

 

This compound is known and has previously been fully characterised.
74 
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To a nitrogen purged, dried round bottom flask, was added [(p-cymene)RuCl2]2 (50 

mg, 0.080 mmol) was added (R,R)TsDPEN (59 mg, 0.16 mmol). To this was then 

added Et3N (32 mg, 0.32 mmol) and degassed anhydrous IPA (5 cm
3
). The resulting 

orange solution was stirred at reflux (80°C) for 1 hour. After this the reaction was 

cooled to room temperature, and the solvent removed under reduced pressure to 

leave an orange solid. The solid was washed with water and filtered. The solid was 

dried and then recrystallised from hot MeOH to give the product as an orange solid 

(75 mg, 0.12 mmol, 75%).  Mp 182-184°C; [α]D
27 

-45 (c 0.01 in CHCl3) (R,R) (lit.
186

 

[α]D
29

 -80.5 (c 1.05 in CHCl3) (R,R)); (found (ESI): M
+
 + H, 601.1468. 

C31H35N2O2RuS requires M, 601.1465); υmax 3216, 1452, 1265, 1126, 1083, 913, 

806, 696, 572 cm
-1

; δH (400 MHz, CDCl3) 6.98-6.96 (5H, m, CHAr), 6.72-6.68 (5H, 

m, CHAr), 6.56 (2H, t J 7.7 Hz, CHAr), 6.38-6.37 (2H, m, CHAr), 5.90 (1H, br s, 

CHAr-Ru), 5.80 (1H, br s, CHAr-Ru), 5.73-5.70 (2H, m, CHAr-Ru), 3.73 (1H, d J 

10.5 Hz, CHNTs), 3.61-3.56 (1H, m, CHNH2), 3.24-3.11 (1H, m, NH2), 3.11-3.09 

(1H, m, CH(CH3)2), 2.31 (3H, s, p-CH3(C6H4)SO2), 2.21 (3H, s, 
i
Pr(C6H4)CH3), 1.63 

(1H, br s, NH2), 1.20 (6H, d J 6.0 Hz, (CH3)2CH); δC (100 MHz, CDCl3) 143.34 

(CAr), 139.74 (CAr), 138.89 (CAr), 138.67 (CAr), 129.03 (CHAr), 127.83 (2 

CHAr), 127.78 (2 CHAr), 127.30 (4 CHAr), 126.70 (2 CHAr), 126.56 (2 CHAr), 

125.87 (CHAr), 93.89 (CAr-Ru), 85.63 (CHAr-Ru), 82.00 (CHAr-Ru), 80.11 

(CHAr-Ru), 71.60 (CHAr-Ru), 69.39 (CHAr-Ru), 46.18 (CH), 30.54 (2 CH3), 22.15 

(CH3), 18.84 (CH3); m/z (ESI) 601 (M
+
 -35 + 1,). Data matches that previously 

reported for this compound.
74

 

 

 

 



Development of catalysts for asymmetric hydrogenation                                                    Experimental 

218 

 

N-[(1R,2R)-2-(Amino)-1,2-diphenylethyl]-4-methylbenzenesulfonamide(p-

cymene)ruthenium(II)iodide monomer (183). 

 

This compound is novel. 

Method A: 

To an argon purged flask was added [Ru(p-cymene)Cl2]2 182 (50 mg, 0.080 mmol) 

was added KI (133 mg, 0.80 mmol) followed by 50% v/v EtOH/H2O. The resulting 

red solution was then stirred under reflux at 80°C for 2 hours. The reaction solution 

which had become purple, was cooled to room temperature and filtered. The 

collected precipitate was dried to give a purple solid [Ru(p-cymene)I2]2 (184) (68 

mg, 0.070 mmol). To the purple solid (60 mg, 0.060 mmol) in an argon purged, dried 

flask was then added (R,R)TsDPEN (44 mg, 0.12 mmol), followed by Et3N (24 mg, 

0.24 mmol) and anhydrous IPA (5 cm
3
). The resulting purple solution was stirred 

under reflux at 80°C for 1 hour. After this the reaction was cooled to room 

temperature and the solvent removed under reduced pressure. The residue was then 

washed with 1 cm
3
 of water before again being dried to leave the crude as a purple 

solid. The solid was recrystallised from hot MeOH to leave the purified product as a 

purple/red solid (26 mg, 0.035 mmol, 29% based on mmol Ru). For procedure see 

reference 185. 

Method B: 

To Noyori RuCl complex 57a (130 mg, 0.216 mmol) was added KI (83 mg, 0.50 

mmol) and anhydrous IPA (10 cm
3
). The reaction was stirred at reflux (80°C) for 2 

hours and then cooled to room temperature. The solid was collected by filtration to 
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give the product as a red solid (67 mg, 0.10 mmol, 46%). For procedure see 

reference TT. Mp 198°C (decomposed); [α]D
28

 +13 (c 0.05 in CHCl3) (R,R); (found 

(ESI): M
+
 - I + H, 601.1466. C31H36N2O2RuS requires M, 601.1465); υmax 3494, 

3213,2935, 1455, 1263, 1128, 1084, 1059, 937, 906, 806, 701, 659 cm
-1

; δH (400 

MHz, MeOD) 7.14-7.11 (5H, m, CHAr), 6.93-6.90 (2H, m, CHAr), 6.86-6.79 (3H, 

m, CHAr), 6.69-6.61 (4H, m, CHAr), 5.74-5.72 (1H, m, CHAr-Ru), 5.68-5.65 (2H, 

m, CHAr-Ru), 5.57 (1H, br s, CHAr-Ru), 4.61 (1H, br s, NH2), 4.01-3.98 (1H, m, 

CHNTs), 3.78-3.75 (1H, m, CHNH2), 3.34 (2H, br s, MeOH, CH(CH3)2 and NH2 

overlapping), 2.56 (3H, s, p-CH3(C6H4)SO2), 2.27 (3H, s, 
i
Pr-(C6H4)-CH3), 1.42 (6H, 

d  J, 6.8 Hz, CH(CH3)2); δC (150 MHz, d6-DMSO) δC (150 MHz, DMSO) 140.35 

(CAr), 139.79 (CAr), 138.99 (CAr), 135.03 (CAr), 129.45 (2 CHAr), 129.28 

(CHAr), 128.63 (4 CHAr), 128.12 (2 CHAr), 127.32 (2 CHAr), 126.83 (2 CHAr), 

126.56 (CHAr), 88.25 (CHAr-Ru), 86.45 (CHAr-Ru), 73.77 (CHAr-Ru), 72.04 

(CHAr-Ru), 55.39 (CAr-Ru), 40.53 (CAr-Ru), 40.42 (CH), 40.39 (CH), 33.46 (2 

CH3), 24.46 (CH), 23.63 (CH3), 21.21 (CH3); m/z (ESI) 601.0 (M
+
 + 1); X-ray 

crystallographic data given in Appendix 2. For procedure see reference 185.
 

4-(Cyclohexa-1,4-diphenyl)butan-1-ol (185). 

 

This compound is known in the literature and has previously been fully 

characterised.
101 

A 1L, 3-necked round bottom flask was connected to a condenser and pressure 

equalising dropping funnel. The flask and condenser were then cooled to -78°C with 

a dry ice/acetone mixture and maintained at this temperature throughout the reaction. 
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The system was purged with nitrogen and then to the addition funnel was added 4-

phenyl-1-butanol (10g, 66.7 mmol) and anhydrous EtOH (30 cm
3
). To the round 

bottom flask was then added ammonia gas which condensed to a volume of 250cm
3
. 

The ethanolic solution of 4-phenyl-1-butanol was added to the flask dropwise with 

stirring. During the addition a white precipitate began to form in the reaction 

solution, additional EtOH was added in 2-3 cm
3
 portions to help maintain stirring 

and dissipate the precipitate. A total of 20 cm
3
 of additional EtOH was added in this 

way during the course of the 4-phenyl-1-butanol addition. Once all of the alcohol 

had been added, sodium was added to the reaction slowly. Upon addition of sodium, 

blue flecks appeared in the reaction solution and copper coloured droplets formed on 

the reaction surface. Sodium was added until the reaction solution was a 

homogenous intense, dark blue colour. Stirring was continued and when the blue 

colour faded (initially quickly over 2-5 mins) additional sodium was added, now in 

larger pieces (500 mg) until the blue colour persisted. A total of 10g of sodium was 

added. The reaction was then slowly warmed to room and stirred overnight. 

Saturated NaHCO3 solution (200 cm
3
) was slowly added to the reaction, initially 

dropwise in case of any unreacted sodium. The resulting solution was then extracted 

with DCM (4 x 50 cm
3
). The DCM layers were collected, combined and dried over 

MgSO4 before being filtered and the DCM then removed under reduced pressure to 

leave the product as a colourless oil (9.92g, 65 mmol, 98%). υmax 3318, 2932, 2859, 

2820, 1632, 1428, 1053, 957, 959 cm
-1

δH (400 MHz, CDCl3) 5.75-5.68 (2H, m, 

HC=CH), 5.44-5.43 (1H, m, HC=CCH2), 3.66-3.63 (2H, m, CH2), 2.72-2.67 (2H, m, 

CH2), 2.62-2.57 (2H, m, CH2), 2.02-1.95 (3H, m, CH2 and OH), 1.61-1.46 (4H, m, 2 

x CH2); δC (75 MHz, CDCl3) 134.10 (CC=C), 123.70 (HC=C) 123.68 (HC=C), 

117.88 (HC=C), 62.22 (CH2), 36.54 (CH2), 31.79 (CH2), 28.23 (CH2), 26.12 (CH2), 
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22.80 (CH2); m/z (CI) 153.2 (M
+
 + 1). Data matches that previously reported for this 

compound.
101

 The compound was stored under nitrogen at < 0°C. 

 

4-(Cyclohexa-1,4-dien-1-yl)buty-4-methylbenzenesulfonate (186). 

 

This compound is novel. 

To a nitrogen purged, oven dried 2-necked round bottom flask was added 4-

(cyclohexa-1,4-diphenyl)butan-1-ol 185 (456 mg, 3 mmol) and anhydrous toluene (5 

cm
3
). To this was then added triethylamine (455 mg, 4.5 mmol), 1-methylimidazole 

(369 mg, 4.5 mmol). The reaction solution was then degassed and stirred. To the 

reaction solution, under a flow of nitrogen was added 4-methylbenzenesulfonyl 

chloride (858 mg, 4.5 mmol). The reaction was then stirred overnight. Once deemed 

complete by TLC (silica plate, 25% EtOAc in petroleum ether, visualisation by 

KMnO4, product Rf = 0.6) 2M HCl aq. solution (4 cm
3
) was added to the reaction 

solution which was then stirred. The product was extracted with DCM (3 x 10 cm
3
) 

and the DCM phase washed with brine (10 cm
3
) and water (10 cm

3
), dried over 

MgSO4, filtered and the solvent removed under reduced pressure to leave the crude 

as a yellow oil. The crude product was purified by column chromatography (silica 

gel, 0-25% EtOAc in petroleum ether, TLC: as above) to give the product as a 

colourless oil (768 mg, 2.5 mmol, 83%). (found (ESI): M
+
 + Na, 329.1175 

C17H22NaO3S requires M, 329.1182); υmax 2972, 1356, 1173, 1097, 955, 918, 813, 

774, 660, 579, 555, 520 cm
-1

; δH (400 MHz, CDCl3) 7.72-7.70 (2H, d, J 8.0 Hz, 

CHAr), 7.28-7.26 (2H, d, J 8.0 Hz, CHAr), 5.61 (2H, s, HC=CH), 5.27 (1H, s, 

CH2C=CH), 3.97-3.94 (2H, t, J 6.4 Hz, CH2OTs), 2.61-2.55 (2H, m, CH=CHCH-
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2CH), 2.46-2.41 (2H, m, CH2C=CH), 2.37 (3H, s, CH3), 1.85-1.81 (2H, m, 

CH=CCH2(CH2)3), 1.59-1.52 (2H, m, CH2CH2OTs), 1.39-1.31 (2H, m, 

CH=CCH2CH2); δC (100 MHz, CDCl3) 144.68 (CAr), 134.08 (CC=C), 133.23 

(CAr), 129.83 (2 CHAr), 127.89 (2 CHAr ), 124.26 (HC=C), 124.20 (HC=C), 

118.93 (HC=C), 70.55 (CH2), 36.60 (CH2), 28.75 (CH2), 28.38 (CH2), 26.73 (CH2), 

22.97 (CH2), 21.65 (CH3); m/z (ESI) 328.9 (M
+
 + 23), 306.9 (M

+
 + 1). 

 

N-(1R,2R)-(2-(4-(Cyclohexa-1,4-dienyl)butyl)-1,2-diphenylethyl)-4-

methylbenzenesulfonamide (187). 

 

This compound is known in the literature and has previously been fully 

characterised.
101

 

To a nitrogen purged, oven dried flask connected to a reflux condenser was added 

the 4-(cyclohexa-1,4-dien-1-yl)buty-4-methylbenzenesulfonate 186 (306 mg, 1.00 

mmol) and anhydrous toluene (5 cm
3
). To this was then added N,N-

diisopropylethylamine (194 mg, 1.50 mmol) and (R,R)-TsDPEN (403 mg, 1.10 

mmol). The resulting solution was degassed and then stirred at 135°C overnight. 

After this the reaction solution was concentrated under reduced pressure to leave the 

crude product as a yellow/orange oil. The crude product was purified by column 

chromatography (silica gel, 0-50% EtOAc in petroleum ether 40-60, TLC: silica 

plate, 25% EtOAc in petroleum ether, visualisation by KMnO4, product Rf = 0.55) to 

give the product as a viscous colourless oil (441 mg, 0.88 mmol, 88%). [α]D
26

 -12.1 

(c 1.0 in CHCl3) (R, R) (lit.
101

 [α]D
25

 -15.6 (c 0.5 in CHCl3) (R,R)); (δH (400 MHz, 

CDCl3) 7.38-7.36 (2H, d, J 8.0 Hz, CHAr), 7.15-7.12 (3H, m, CHAr), 7.07-7.01 (5H, 
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m, CHAr), 6.95-6.90 (4H, m, CHAr), 6.32 (1H, br s, NH), 5.71-5.69 (2H, m, 

HC=CH), 5.36 (1H, br s, C=CH), 4.24-4.22 (1H, d, J 8.0, CHNHTs), 3.61-3.59 (1H, 

d, J 8.0, CHNH) 2.70-2.66 (2H, m, CHCH2CH=CH), 2.56-2.51 (2H, m, CH2C=CH), 

2.42-2.36 (1H, m, CH2), 2.34 (3H, s, CH3), 2.29-2.26 (1H, m, CH2) 1.90-1.87 (2H, 

m, CH2), 1.40-1.32 (4H, m, 2 x CH2); δC (100 MHz, CDCl3) 142.68 (CAr), 139.40 

(CAr), 138.40 (CAr), 137.09 (CAr), 134.70 (CC=C), 129.09 (2 CHAr), 128.30 (2 

CHAr), 127.90 (2 CHAr), 127.59 (2 CHAr), 127.44 (CHAr), 127.39 (2 CHAr), 

127.25 (CHAr), 127.15 (2 CHAr), 124.35 (HC=C), 124.32 (HC=C), 118.50 (HC=C), 

67.86 (CH), 63.08 (CH), 47.04 (CH2), 37.20 (CH2), 29.64 (CH2), 28.87 (CH2), 26.77 

(CH2), 24.76 (CH2), 21.45 (CH3);m/z (ESI) 501.2 (M
+
 + 1). Data matches that 

previously reported for this compound.
101

 

 

N-[(R,R)-1,2-Diphenyl-2-(4-phenylbutylamino)-ethyl]-4-

methylbenzenephonamide ammonium chloride ruthenium dimer (188). 

 

This compound is known in the literature and has previously been fully 

characterised.
101

 

To a nitrogen purged, oven dried flask connected to a reflux condenser was added 

(R,R)-N-(4-(cyclohexa-1,4-dienyl)butyl)-1,2-diphenyl-N’-tosylethane-diamine 187 

(1.00 g, 2.00 mmol) and anhydrous DCM (30 cm
3
). The resulting solution was then 

stirred and cooled to 0°C with an ice/water bath. To the cooled solution was then 

added dropwise 2M HCl in Et2O solution (3 cm
3
, 6 mmol). The reaction solution 

was then stirred at room temperature for 30 min and became a yellow colour. 
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Volatile material was removed under reduced pressure to leave the HCl salt as an off 

white solid. To the salt was then added RuCl3.xH2O (418 mg, 1.60 mmol assuming 

RuCl3.3H2O) and EtOH (40 cm
3
). The resulting brown/black solution was stirred at 

reflux overnight. After this the reaction was cooled to room temperature and filtered 

to collect a brown/black precipitate. The precipitate was washed with Et2O and dried 

to give the clean product as a brown/black solid (1.05 g, 0.74 mmol, 93%). Mp 

247°C (decomposed); δH (400 MHz, d6-DMSO) 9.59 (2H, br s, NHH), 9.10 (2H, br 

s, NHH), 8.77 (2H, d, J 9 Hz, NHH), 7.20 (8H, d, J 8 Hz, CHAr), 7.13-7.11 (6H, m, 

CHAr), 6.90 (4H, d, J 8 Hz, CHAr), 6.80-6.78 (2H, m, CHAr), 6.72-6.70 (8H, m, 

CHAr), 5.91 (4H, t, J 5.0 Hz, CHAr-Ru), 5.67-5.64 (6H, m, CHAr-Ru), 4.69 (2H, t, 

J, 9.0 Hz, CH), 4.45 (2H, t, J 9.0 Hz, CH), 2.64-2.61 (4H, m, CH2), 2.34-2.31 (4H, 

m, CH2), 2.12 (6H, s, CH3), 1.70-1.56 (4H, m, CH2), 1.47-1.41 (4H, m, CH2); δH 

(100 MHz, d6-DMSO) 142.00 (2 CAr), 137.88 (2 CAr), 135.66 (2 CAr), 131.58 (2 

CAr), 129.15 (4 CHAr), 128.81 (4 CHAr), 128.63 (4 CHAr), 128.28 (2 CHAr), 

127.78 (4 CHAr), 127.54 (4 CHAr), 127.12 (2 CHAr), 126.26 (4 CHAr), 107. 15 

(CAr-Ru), 88.91 (4 CHAr-Ru), 84.91 (4 CHAr-Ru), 83.15 (2 CHAr-Ru), 64.27 (2 

CH), 60.64 (2 CH), 45.21 (2 CH2), 31.75 (2 CH2), 25.66 (2 CH2), 24.41 (2 CH2), 

20.85 (2 CH3). Data matches that previously reported for this compound.
101 

 

N-[(R,R)-1,2-Diphenyl-2-(4-phenylbutylamino)-ethyl]-4-

methylbenzenesulfonamide)ruthenium(II)chloride (101). 

 

This compound is known in the literature and has previously been fully 

characterised.
101
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To a nitrogen purged, oven dried flask connected to a reflux condenser was added N-

[(R,R)-1,2-diphenyl-2-(4-phenylbutylamino)-ethyl]-4-methylbenzenesulfonamide 

ammonium chloride ruthenium dimer 188 (1.00 g, 0.90 mmol). To this was then 

added anhydrous IPA (40 cm
3
) and triethylamine (425 mg, 4.20 mmol). The solution 

was stirred at reflux for 90 min. The reaction was cooled to room temperature and 

volatile material was removed under reduced pressure to leave a brown/beige solid. 

The solid was dissolved in DCM and washed with brine. The DCM phase was dried 

over MgSO4, filtered and the solvent removed under reduced pressure to leave the 

crude product as a brown solid (849 mg, 1.3 mmol, 72%). [α]D
26

 -250 (c 0.01 in 

CHCl3) (R,R) (lit.
101

 [α]D
27

 -333 (c 0.0096 in CHCl3) (R,R)); found (ESI): [M
+
 - Cl + 

H], 599.1308 C31H33N2O2RuS requires M, 599.1308); υmax 3204, 3025, 2922, 1453, 

1270, 1125, 1082, 970, 904, 807, 697, 655 cm
-1

; δH (400 MHz, CDCl3) 7.17 (2H, d, J 

8 Hz, CHAr) 7.03-6.99 (3H, m, CHAr), 6.75 (3H, d, J 8.0 Hz, CHAr), 6.63 (4H, d, J 

8.0 Hz, CHAr), 6.49 (2H, d, J 7.0 Hz, CHAr), 6.21 (1H, t, J 5.0 Hz, CHAr-Ru), 

6.02-5.94 (2H, m, CHAr-Ru), 5.41 (1H, d, J 5.0 Hz, CHAr-Ru), 5.33 (1H, d, J, 5.0 

Hz, CHAr-Ru), 4.21-4.16 (1H, m, NH), 3.93 (1H, d, J 11.0 Hz, CHNHTs), 3.68-3.63 

(1H, m, CHNH), 3.27-3.22 (1H, m, CH2), 3.3.13-3.10 (1H, m, CH2), 2.60-2.58 (2H, 

m, CH2), 2.23-2.17 (4H, m, CH3 and CH2), 2.01-1.99 (1H, m, CH2), 1.81-1.78 (1H, 

m, CH2), 1.71-1.67 (1H, m, CH2); δC (100 MHz, CDCl3) 141.35 (CAr), 138.31 

(CAr), 138.18 (CAr), 135.68 (CAr), 127.92 (2 CHAr), 127.48 (2 CHAr), 127.06 (2 

CHAr), 126.93 (2 CHAr), 126.46 (1 CHAr), 126.24 (2 CHAr), 125.81 (2 CHAr), 

125.19 (CHAr), 97.56 (CAr-Ru), 86.31 (CHAr-Ru), 84.71 (CHAr-Ru), 83.87 (1C 

CHAr-Ru), 83.37 (CHAr-Ru), 78.89 (CHAr-Ru), 78.00 (CH), 68.62 (CH), 50.85 

(CH2), 29.06 (CH2), 24.63 (CH2), 23.24 (CH2), 20.21 (CH3); m/z (ESI) 599.1 (M
+
 + 

1 - 35). Data matches that previously reported for this compound.
101 
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Pressure hydrogenation of ketones and aldehydes catalysed by tethered 

ruthenium catalysts (S/C 500/1). 

This was carried out according to General procedure 4. 

 

5.3.5 Synthetic procedures for Section 2.6. 

Methoxybenzene ruthenium(II)chloride dimer (192). 

 

This compound is known in the literature but has not previously been fully 

characterised.
152, 153

 

To a nitrogen purged flask was added RuCl.3H2O (261 mg, 1 mmol) and MeOH 

(13.5 cm
3
). To this was then added 1-methyl-1,4-cyclohexadiene (1.22 g, 11 mmol) 

and the reaction was stirred at reflux for 6 hours. The reaction solution was cooled to 

room temperature and filtered to give a black solid (138 mg, 0.25 mmol, 50%).  δH 

(400 MHz, d6-DMSO) 6.21 (2H, t, J 6 Hz, CHAr-Ru), 5.59 (2H, d, J 6.0 Hz, CHAr-

Ru), 5.42 (1H, t, J 6.0 Hz, CHAr-Ru), 3.97 (3H, s, CH3); δC (100 MHz, DCMSO) 

140.43 (2 CAr-Ru), 94.10 (4 CHAr-Ru), 74.39 (2 CHAr-Ru), 65.19 (4 CHAr-Ru), 

57.20 (2 CH3). 

 

N-[(1R,2R)-2-(Amino)-1,2-diphenylethyl]-4-methylbenzenesulfonamide 

methoxybenzene ruthenium(II)iodide monomer (193). 

 

This compound is novel. 
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To a nitrogen purged, dried flask was added methoxybenzene ruthenium(II)chloride 

dimer 192 (100 mg, 0.180 mmol) was added (R,R)TsDPEN (147 mg, 0.400 mmol) 

and triethylamine (152 mg, 1.50 mmol). To this was then added anhydrous IPA (5 

cm
3
) and the reaction was stirred at 80°C for 1 hour. The reaction was cooled to 

room temperature. The solvent was removed under reduced pressure and the residue 

washed with water before being dried to leave the crude product. The crude was 

recrystallised from MeOH to give the pure product as an orange solid (72 mg, 0.12 

mmol, 33%). Mp decomposed 240°C; [α]D
25 

+1220 (c 0.0025 in CHCl3) (R,R); 

(found (ESI): M
+
 + H, 575.0962 C28H29N2O3RuS requires M, 575.0943); υmax 3289, 

3229, 3058, 3029, 1524, 1454, 1273, 1262, 1039, 924, 809, 759, 698, 674, 657 cm
-1

; 

δH (400 MHz, d6-DMSO) weak spectrum, some impurities present. 7.13-7.11 (2H, 

m, CHAr), 6.86-6.81 (3H, m, CHAr), 6.69-6.57 (5H, m, CHAr), 6.10-6.06 (1H, m, 

CHAr-Ru), 5.86-5.77 (1H, m, CHAr-Ru), 5.50-5.48 (1H, m, CHAr-Ru), 5.33-5.31 

(1H, m, CHAr-Ru), 5.15-5.14 (1H, m, CHAr-Ru), 4.06 (2H, br s, NH2), 3.97 (3H, s, 

CH3), 3.93-3.91 (1H, m, CH), 3.76-3.73 (1H, m, CH), 2.23 (3H, s, CH3); δC (150 

MHz, DMSO) weak spectrum, quaternary carbons not observed, some impurities 

present. 128.09 (2 CHAr), 127.65 (CHAr), 127.51 (2 CHAr), 127.05 (2 CHAr), 

126.64 (CHAr), 126.36 (2 CHAr), 114.22 (CAr-Ru), 108.54 (CHAr-Ru), 104.75 

(CHAr-Ru), 101.73 (CHAr-Ru), 97.28 (CAr-Ru), 68.12 (CH), 64.87 (CH), 62.11 

(CH3), 20.75 (CH3); m/z (ESI) 575.0 (M
+
 + 1 – 35). 
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Cyclohexa-2,5-dienecarboxylic acid (200a).  

 

This compound is known in the literature but has not previously been fully 

characterised.
158

  

A dried, nitrogen purged flask was connected to a condenser which was cooled to -

78°C with dry ice and acetone. The flask was then also cooled to -78°C. To the 

cooled flask was added ammonia gas which condensed to give liquid ammonia (120 

cm
3
). To the ammonia was then added dropwise via needle and syringe benzoic acid 

(8.0 g, 0.065 mol) in dry EtOH (40 cm
3
). After addition was complete sodium was 

added to the reaction slowly in small portions. Initially the reaction solution became 

a dark blue colour upon addition of sodium but the colour then faded. Addition of 

sodium was continued until the dark colour persisted. In total 15 g, 0.65 mol sodium 

was added to the reaction. Additional EtOH was also added to the reaction 

periodically to help maintain stirring. Once the dark colour persisted the reaction was 

stirred at -78°C for a further 3 hours and was then allowed to warm to room 

temperature overnight. Chilled, distilled water was slowly added to the reaction until 

all of the white solid had dissolved. The solution was acidified to pH 1 with HCl 

(aq.). The product was then extracted with Et2O (4 x 20 cm
3
). The Et2O phases were 

combined, dried over MgSO4, filtered and the solvent removed under reduced 

pressure to leave the product as an orange oil (6.02 g, 0.049 mol, 75%). δH (400 

MHz, CDCl3) 5.95-5.91 (2H, m, HC=CHCH2), 5.86-5.82 (2H, m, CH=CHCH2), 

3.83-3.76 (1H, m, CHCOOH), 2.74-2.68 (2H, m, CH2). The product was seen to 

rapidly decompose by 
1
H NMR and also unexpected isomers of product were 

obtained from subsequent preparation of the product (Figure 76). Further 
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characterisation was not carried out and a more robust synthesis of the product was 

sought. 

 

Figure 76. 1. 1H NMR for obtained product after 24 hours at room temperature in air. 2. 1H NMR of 

expected product. 3. 1H NMR of unexpected product. 

 

Cyclohexa-1,4-dienecarboxylic acid (200b). 

 

Method A: A pre-weighed round bottom flask was purged with N2 and cooled to -

78°C with a dry ice/acetone bath. To a 300 cm
3
 glass Parr reactor insert was added 

propiolic acid (8.6 g, 123 mmol) and the insert was then also cooled to -78°C. To a 

100 g cylinder of 1,3-butadiene was fitted a brass hose adapter and to the adapter 

was fitted a suba seal through which a cannula was inserted. All joints were wrapped 

with parafilm to avoid leaks. 1,3-Butadiene gas was then added to the cooled round 

bottom flask in which it condensed. The flask was weighed periodically until the 

Decomposed  product 
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required amount of liquid 1,3-butadiene had been collected (10 g, 185 mmol). The 

1,3-butadiene was then quickly poured into the glass insert containing the propiolic 

acid. The insert was then sealed in the Parr reactor. The reaction was stirred and 

allowed to warm to room temperature over 30 min. After this the reaction 

temperature was increased by 10°C every 30 min until a temperature of 110°C was 

reached. The pressure change was carefully monitored during this time. The reaction 

was stirred at 110°C overnight. After this the reaction was allowed to cool to room 

temperature and the pressure released. The reaction was then removed from the 

reactor and the product was present as a yellow crystalline solid (12.5 g, 101 mmol, 

82%). Purification was not necessary. The reaction gave only the expected isomer A 

of the product. For procedure see reference 159. 

Method B: To a dried, nitrogen purged flask was added butadiene sulfone (1.77g, 

15.0 mmol), propiolic acid (701 mg, 10.0 mmol) and anhydrous xylene (3 cm
3
). The 

mixture was stirred at reflux for 3 hours. After this the reaction was cooled and 

distilled by kugelrohr distillation (0.2 torr, 35°C) to give a colourless oil (400 mg) 

and a yellow solid (300 mg). The solid was found to be the desired product (2.4 

mmol, 24%). 

Method A is considered the most appropriate synthesis as it gives a high yield 

without the need for purification and gave only the expected isomer of product. 

Mp 108-109°C; υmax 2972, 2631, 2531, 1686, 1655, 1424, 1286, 1081, 931, 911, 641 

cm
-1

; δH (300 MHz, CDCl3) 9.15 (1H, br s, OH),  7.08 (1H, s, CH=CCOOH), 5.78-

5.74 (1H, m, =CHCH2CCOOH), 5.65-5.61 (1H, m, CH=CHCCOOH), 2.88 (4H, s, 

2CH2); δC (75 MHz, CDCl3) 171.86 (C=O), 138.58 (CC=C), 126.55 (HC=C), 123.67 

(HC=C), 121.47 (HC=C), 26.58 (CH2), 24.12 (CH2). Data matches that previously 
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reported for this compound.
159

 The product was directly converted to the more stable 

ethyl ester (201) for storage. 

Ethyl cyclohexa-1, 4-dienecarboxylate (201). 

 

This compound is known in the literature but has not previously been fully 

characterised.
187 

To cyclohexa-1, 4-dienecarboxylic acid 200b (6 g, 48 mmol) in a dried, nitrogen 

purged flask connected to a condenser, was added dry EtOH (42 cm
3
) and 95% 

sulfuric acid (2.8 cm
3
). The solution was stirred at reflux for 18 hours before being 

cooled to room temperature. The pH of the solution was adjusted to pH 8 with 

NaOH (aq.). DCM (20 cm
3
) was then added to the solution along with saturated 

NaCl solution (aq.) (20 cm
3
). The DCM phase was removed and the aqueous phase 

washed with a further DCM (3 x 20 cm
3
). The DCM phases were combined, dried 

over Na2SO4, filtered and the solvent removed under reduced pressure to give the 

product as an orange oil (4.6 g, 30 mmol, 62%). Purification was not necessary. 

(Found (ESI): M
+
 + H, 153.0905 C9H12O2 requires M, 153.0910); υmax 3034, 2982, 

1709, 1679, 1641, 1430, 1394, 1243, 1080, 1049, 967, 742, 651 cm
-1

; δH (300 MHz, 

CDCl3) 6.96-6.95 (1H, m, CH=CCOOH), 5.79-5.62 (2H, m, CH=CH), 4.20 (2H, q, J 

7.1 Hz, CH2CH3), 2.91-2.85 (4H, m, CH2), 1.29 (3H, t, J 7.1 Hz, CH2CH3); δC (75 

MHz, CDCl3) 166.30 (C=O), 135.47 (CH), 127.18 (C), 123.73 (CH), 121.60 (CH), 

59.61 (CH2), 26.33 (CH2), 24.45 (CH2), 13.59 (CH2). The compound was stored 

under nitrogen at <0°C. 
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Ethylbenzoate ruthenium(II)chloride dimer (197). 

 

This compound is known in the literature but has not previously been fully 

characterised.
156, 157 

To ethyl cyclohexa-1, 4-dienecarboxylate 212 (1.60 g, 10.5 mmol) in a dried, 

nitrogen purged flask connected to a condenser, was added RuCl3.xH2O (679 mg, 

2.60 mmol assuming 3 H2O). Dry EtOH (40 cm
3
) was then added and the reaction 

was stirred at reflux for 18 hours. After this the reaction was cooled and filtered. The 

solid was washed with hexane and Et2O to leave the product as an orange solid (735 

mg, 1.1 mmol, 42%). υmax 3079, 1721, 1513, 1469, 1397, 1286, 1268, 1105, 1021, 

977, 864, 770, 677 cm
-1

;
 
δH (300 MHz, d6-DMSO) 7.69 (2H, d, J 6.0Hz, CHAr-Ru), 

6.29 (1H, t, J 6.0Hz, CHAr-Ru) 6.04 (2H, t, J 6.0 Hz, CHAr-Ru), 4.34 (2H, q, J 7.0 

Hz, CH2), 1.31 (3H, t, J 7.0 Hz, CH3); δC (100 MHz, d6-DMSO) 163.85 (C=O), 

92.45 (CHAr-Ru), 91.81 (CHAr-Ru), 85.20 (CHAr-Ru), 82.47 (C), 62.09 (CH2), 

14.24 (CH3). Data matches that previously reported for this compound.
156, 157 

5.3.5.1 Synthesis of primary alcohol precursors for tethered ligands. 

3-(3,5-dimethoxyphenyl)-prop-2-enoic acid (205). 

 

This compound is known in the literature but has not previously been fully 

characterised.
188 
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To a dried, nitrogen purged flask was added 3,5-dimethoxybenzaldehyde (1.00 g, 

6.00 mmol) was added malonic acid (3.06 g, 29.4 mmol), piperidine (2.5 cm
3
) and 

anhydrous pyridine (11 cm
3
). The solution was stirred at reflux (90°C) for 18 hours. 

After this the reaction was allowed to cool to room temperature before being poured 

into chilled distilled water (10 cm
3
) and acidified with addition of 6M HCl (aq.) 

whilst stirring until a white precipitate formed. The white solid was collected by 

filtration to give the product (860 mg, 4.10 mmol, 68%). Mp 178°C; (found (ESI): 

M
+
 + Na, 231.0630 C11H12NaO4 requires M, 231.0628); υmax 3670, 2971, 2901, 

2360, 1683, 1631, 1592, 1431, 1283, 1206, 1161, 1056, 926, 837, 807 and 669 cm
-1

; 

δH (400 MHz, DMSO-d6) 12.41 (1 H, br s, OH), 7.52 (1 H, d J, 16 Hz, CH=CH), 

6.87 (2H, d J, 2.3 Hz, CHAr), 6.59-6.55 (2H, m, CH=CH and CHAr overlapping), 

3.78 (6H, s, 2 x CH3); δC (100 MHz, DMSO-d6) 167.55 (C=O), 160.66 (2 CAr), 

143.94 (HC=), 136.19 (CAr), 119.81 (HC=), 106.01 (2 CHAr), 102.38 (CAr), 55.33 

(2 CH3); m/z (ESI) 208.8 (M
+
 + 1), 230.7 (M

+
 + 23). 

 

3-(3,5-Dimethoxyphenyl)propanoic acid (206). 

 

This compound is known in the literature and has previously been fully 

characterised.
189, 190 

To a dried, nitrogen flask was added 3-(3,5-dimethoxyphenyl)-prop-2-enoic acid 205 

(840 mg, 4.00 mmol) and 10% palladium on carbon (218 mg, 0.200 mmol). To this 

was then added methanol (40 cm
3
). A balloon of hydrogen was connected to the 

reaction flask and the flask purged with hydrogen. The reaction was then stirred at 



Development of catalysts for asymmetric hydrogenation                                                    Experimental 

234 

 

room temperature under 1 atm. hydrogen overnight. After this the reaction was 

filtered over celite and the solvent removed under reduced pressure to leave the 

product as an orange oil (657 mg, 3.10 mmol, 78%). (found (ESI): M
+
 + Na, 

233.0783. C11H14NaO4 requires M, 233.0781); υmax 2936, 2838, 1705, 1594, 1458, 

1429, 1351, 1291, 1204, 1147, 1066, 922, 831 and 691 cm
-1

; δH (300 MHz, CDCl3) 

9.99 (1H, br s, OH), 6.43-6.30 (3H, m, CHAr), 3.75 (6H, s, OCH3), 2.88 (2H, t, J 7.7 

Hz, CH2COOH), 2.64 (2H, t, J 7.7 Hz, ArCH2); δC (75 MHz, CDCl3) 178.43 (C=O), 

160.24 (2 CAr), 142.04 (CAr), 105.71 (CHAr), 97.63 (CHAr), 54.65 (2 CH3), 35.07 

(CH2), 30.34 (CH2); m/z (ESI) 210.8 (M
+
 + 1), 232.7 (M

+
 + 23). Data matches that 

previously reported for this compound.
189, 190 

 

3-(3,5-Dimethoxylphenyl)propan-1-ol (207). 

 

 

 

 

This compound is known in the literature but has not previously been 

characterised.
191 

To a dried, nitrogen purged flask was added 3-(3,5-dimethoxyphenyl)propanoic acid 

206 (627 mg, 3.00 mmol) and anhydrous THF (7.5 cm
3
). The solution was stirred 

and cooled to 0°C. To the cooled solution was added dropwise LiAlH4 (1M in THF) 

(7.5 cm
3
, 7.5 mmol). The reaction was allowed to warm to room temperature and 

monitored by TLC (silica plate, 20% EtOAc in petroleum ether 40-60°, product Rf = 

0.2, starting material Rf = 0.1, visualisation by UV). Once complete (after 3.5 

hours), the reaction was cooled to 0°C and water was slowly and carefully added to 

quench the reaction. THF was then removed under reduced pressure to leave a 
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cloudy white solution. The product was then extracted with Et2O (3 x 15 cm
3
) and 

the Et2O phases were combined, dried over Na2SO4, filtered and the solvent removed 

under reduced pressure to leave the crude product as a pale yellow oil (501 mg). The 

crude was purified by column chromatography (silica gel, 0-50% EtOAc in 

petroleum ether, TLC: as above) to give the product as a colourless oil (456 mg, 

77%). (found (ESI): M
+
 + Na, 219.0097. C11H16NaO3 requires M, 219.0989); υmax 

3320, 2936, 2837, 1593, 1458, 1427, 1345, 1291, 1203, 1146, 1041, 926, 829 and 

694 cm
-1

; δH (400 MHz, CDCl3) 6.37 (2H, s, CHAr), 6.31 (1H, s, CHAr), 3.78 (6H, 

s, CH3), 3.68 (2H, t, J 6.3 Hz, CH2OH), 2.67-2.63 (2H, m, ArCH2), 1.92-1.85 (2H, 

m, CH2CH2), 1.41 (1H, br s, OH); δC (100 MHz, CDCl3) 160.82 (CAr), 144.29 

(CAr), 106.52 (2 CHAr), 97.83 (CHAr), 62.29 (CH2), 55.27 (CH2), 34.01 (CH2), 

32.44 (CH2); m/z (ESI) 196.8 (M
+
 + 1), 218.8 (M

+
 + 23). 

 

(Pentamethylbenzylidene)propanedioic acid (215).  

 

This compound is known but has not previously been published in the literature.
 

Prepared as for 3-(3,5-dimethoxyphenyl)-prop-2-enoic acid 205 using 

pentamethylbenzaldehyde (530 mg, 3.00 mmol), malonic acid (1.54 g, 14.8 mmol), 

pyridine (5.5 cm
3
) and piperidine (1.2 cm

3
). The desired product was obtained in 

quantitative yield (785 mg, 3.00 mmol, 100%). Mp 158°C; (found (ESI): M
+
 + Na, 

285.1093. C15H18NaO4 requires M, 285.1097); υmax 3330, 2973, 2883, 2643, 2362, 

1671, 1561, 1425, 1243, 1047, 880 and 704 cm
-1

; δH (400 MHz, DMSO) 7.69 (1H, s, 

CH), 2.17 (3H, s, ArCH3), 2.14 (6H, s, 2 x ArCH3), 2.07 (6H, s, 2 x ArCH3); δC (100 
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MHz, DMSO) 166.49 (C=O), 166.83 (C=O), 143.44 (CAr) 134.05 (CAr), 132.03 

(CAr), 131.52 (CAr), 131.06 (CAr), 129.70 (CAr), 17.58 (2 CH3), 16.42 (CH3), 

15.98 (2 CH3); m/z (ESI) 262.8 (M
+
 + 1), 284.9 (M

+
 + 23). 

 

3-(Pentamethylphenyl)propan-1-ol (216). 

 

This compound is known in the literature but has not previously been fully 

characterised.
192, 193 

To a dried, nitrogen purged flask was added (pentamethylbenzylidene)propanedioic 

acid 215  (1.0 g, 3.8 mmol), 10% palladium on carbon (202 mg, 0.190 mmol) and 

methanol (38 cm
3
). A balloon of hydrogen was connected to the reaction flask and 

the flask purged with hydrogen. The reaction was then stirred at room temperature 

under 1 atm. hydrogen overnight. After this the reaction was filtered over celite and 

the solvent removed under reduced pressure to leave the saturated product as a white 

solid (956 mg, 3.60 mmol). δH (400 MHz, CDCl3) 3.25-3.19 (3H, m, CH and CH2 

overlapping), 2.17 (6H, s, 2 x CH3), 2.15 (3H, s, CH3), 2.13 (6H, s, 2 x CH3); δC (100 

MHz, CDCl3) 170.99 (2C, s), 132.37 (1C, s), 132.28 (1C, s), 131.87 (1C, s), 131.71 

(2C, s), 131.69 (2C, s), 52.24 (1C, s), 29.21 (1C, s), 16.66 (2C, s), 16.61 (1C, s), 

16.50 (2C, s); m/z (ESI) 286.9 (M
+
 + 23). This solid was then transferred to a flask 

connected to a bubbler. The flask was heated at 180°C to remove CO2 until bubbling 

ceased. The flask was then cooled to leave the mono-acid product as a beige solid 

(740 mg, 3.40 mmol). δH (300 MHz, CDCl3) 10.67 (1H, br s, OH), 3.14-3.11 (2H, m, 

CH2COOH), 2.60-2.49 (2H, m, CH2CH2), 2.34 (6H, s, 2 x CH3), 2.29 (9H, s, 3 x 

CH3); δC (75 MHz, CDCl3) 178.94 (C=O), 133.43 (CAr), 132.68 (CAr), 132.24 (2 
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CAr), 131.21 (2 CAr), 33.79 (CH2), 25.55 (CH2), 16.36 (CH3), 16.29 (2 CH3), 15.77 

(2 CH3); m/z (ESI) 242.9 (M
+
 + 23). To the solid was then added anhydrous THF 

(6.6 cm
3
). The solution was stirred and cooled to 0°C and to it was added dropwise 

LiAlH4 solution (1M in THF) (6.6 cm
3
, 6.6 mmol). The reaction was allowed to 

warm to room temperature and was monitored by TLC (silica plate, 25% EtOAc in 

petroleum ether, visualisation by KMnO4, product Rf = 0.48). Once complete, the 

reaction was cooled to 0°C and water was slowly added to quench the reaction. The 

THF was then removed under reduced pressure to leave a cloudy white solution. The 

product was then extracted with Et2O (3 x 15 cm
3
). The Et2O phases were combined 

and dried over Na2SO4, filtered and the solvent removed under reduced pressure to 

leave the crude product as a pale yellow solid. The crude product was purified by 

column chromatography (silica gel, 0-50% EtOAc in petroleum ether, TLC: as 

above) to give the product as a white solid (246 mg, 31% over 3 steps). Mp 111-

112°C; (found (ESI): M
+
 + Na, 229.1564 C14H22NaO requires M, 229.1563); υmax 

3252, 2921, 2859, 1442, 1363, 1158, 1048, 994, 729 cm
-1

; δH (300 MHz, CDCl3) 

3.77 (2H, t, J 6.3 Hz, CH2), 2.82-2.76 (2H, m, CH2OH), 2.28 (6H, s, 2 x CH3), 2.26 

(3H, s, ArCH3), 2.25 (6H, s, 2 x CH3), 1.81-1.72 (2H, m, CH2CH2), 1.68 (1H, br s, 

OH); δC (75 MHz, CDCl3) 135.12 (CAr), 132.06 (CAr), 132.03 (2 CAr), 131.12 (2 

CAr), 62.53 (CH2), 32.36 (CH2), 26.34 (CH2), 16.29 (CH2), 16.26 (2 CH2), 15.82 (2 

CH2); m/z (ESI) 229.1 (M
+
 + 23). Data matches that previously reported for this 

compound.
192, 193
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(R)-Ethyl-3-hydroxy-3-(4-methoxyphenyl)propanoate (230). 

 

This compound is known in the literature but has not previously been fully 

characterised.
194, 195 

Ethyl-4-methoxybenzoylacetate (666 mg, 3.00 mmol) was added to a nitrogen 

purged, dry schlenk tube. To it was added (R,R) TsDPEN 3C tethered RuCl 

monomer (9 mg, 0.015 mmol) and degassed formic acid:triethylamine 5:2 complex 

(1.5 cm
3
). The reaction was stirred at 28°C for 5 hours. After this the reaction 

solution was filtered through silica with 1:1 EtOAc:petroleum ether 40-60 solution to 

remove the catalyst. The filtrate was dried under reduced pressure to leave the 

product as a colourless oil (647 mg, 2.9 mmol, 97%). Purification was not necessary. 

[α]D
30

 + 41.1 (c 1.0 in CHCl3) >99.0% (R,R,R) (lit.
194

 [α]D
25

 + 25.7 (c 1.4 in CHCl3) 

>99% (R,R,R)); (found (ESI): M
+
 + H, 247.0947 C12H16NaO4 requires M, 247.0941); 

υmax 3439, 2982, 2838, 1727, 1613, 1514, 1465, 1372, 1302, 1244, 1172, 1111, 1030, 

831 cm
-1

; δH (400 MHz, CDCl3) 7.29 (2H, d, J 8.7 Hz, CHAr), 6.88 (2H, d, J 8.7 Hz, 

CHAr), 5.09-5.05 (1H, m, CH), 4.17 (2H, q, J 7.2 Hz, CH2CH3), 3.79 (3H, s, CH3), 

3.25 (1H, d, J 3.3 Hz, OH), 2.78-2.64 (2H, m, CH2CH), 1.26 (3H, t, J 7.2 Hz, 

CH3CH2); δC (100 MHz, CDCl3) 172.43 (C=O), 159.20 (CAr), 134.78 (CAr), 126.99 

(2 CHAr), 113.92 (2 CHAr), 69.98 (CH), 60.84 (CH), 55.29 (CH3), 43.38 (CH2), 

14.17 (CH3); m/z (ESI) 247.1 (M
+
 + 23). Data matches that previously reported for 

this compound.
194, 195
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(R)-Ethyl-3-methoxy-3-(4-methoxyphenyl)propanoate (231). 

 

This compound is novel. 

To (R)-ethyl-3-hydroxy-3-(4-methoxyphenyl)propanoate 230 (530 mg, 2.40 mmol) 

in a dried, nitrogen purged flask was added anhydrous DCM (5 cm
3
). To this was 

then added MeI (1.69 g, 12.0 mmol). The solution was stirred for 15 min at room 

temperature before Ag2O (2.78 g, 12.0 mmol) was added. The reaction was then 

stirred at room temperature overnight. After this further MeI (1.69 g, 12.0 mmol) 

was added to the reaction which was then stirred at room temperature for a further 

hour. Et2O (10 cm
3
) was then added to the reaction. The organic phase was washed 

with saturated NH4Cl aq. solution, dried over MgSO4, filtered and the solvent 

removed under reduced pressure to give the crude as a colourless oil. The crude 

product was purified by column chromatography (silica gel, 0-30% EtOAc in 

petroleum ether, TLC: silica plate, 30% EtOAc in petroleum ether, visualisation by 

KMnO4, product Rf = 0.66) to give the product as a colourless oil (279 mg, 1.2 

mmol. 50%). [α]D
23

 +57.2 (c 1.0 in CHCl3) (R); (found (ESI): M
+
 + H, 261.1102 

C13H18NaO4 requires M, 261.1097); υmax 2937, 2825, 1732, 1612, 1512, 1465, 1373, 

1304, 1244, 1155, 1096, 1030, 831 cm
-1

; δH (400 MHz, CDCl3) 7.65 (2H, d, J 8.6 

Hz, CHAr), 6.89 (2H, d, J 8.6 Hz, CHAr), 4.60-4.56 (1H, m, CHOCH3), 4.14 (2H, q, 

J 7.0 Hz, CH2CH3), 3.81 (3H, s, p-CH3(C6H4)SO2), 3.19 (3H, s, OCH3), 2.80 (1H, dd 

J, 15.2 and 9.0 Hz, CHCH
a
H

b
), 2.55 (1H, dd, J 15.2 and 5.0 Hz, CHCH

a
H

b
), 1.23 

(3H, t, J 7.2 Hz, CH3CH2); δC (100 MHz, CDCl3) 171.04 (C=O), 159.41 (CAr), 

132.57 (CAr), 127.91 (2 CHAr), 113.92 (2 CHAr), 79.62 (CH), 60.50 (CH2), 56.56 

(CH3), 55.26 (CH3), 43.51 (CH2), 14.18 (CH3); m/z (ESI) 261.1 (M
+
 + 23). 
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(R)-3-methoxy-3-(4-methoxyphenyl)propan-1-ol (232). 

 

This compound is novel. 

To (R)-ethyl-3-methoxy-3-(4-methoxyphenyl)propanoate 231 (259 mg, 1.1 mmol) in 

a dried, nitrogen purged flask was added anhydrous THF (2.2 cm
3
). The solution was 

then cooled to 0°C with an ice bath and to it was added dropwise LiAlH4 solution 

(1M in THF) (2.2 cm
3
, 2.2 mmol). The reaction was then stirred at room temperature 

overnight. After this the reaction was cooled to 0°C and water was added dropwise 

to quench the reaction. The THF was then removed under reduced pressure and to 

the residue was added water. The product was extracted in EtOAc (3 x 10 cm
3
). The 

EtOAc phases were combined, dried over Na2SO4, filtered and the solvent removed 

under reduced pressure to leave the product as a colourless oil (212 mg, 1.08 mmol, 

98%). Purification was not necessary. [α]D
26

 +112.1 (c 0.5 in CHCl3) (R); (found 

(ESI): M
+
 + H, 219.0993 C11H16NaO3 requires M, 219.0992); υmax 3295, 2935, 1611, 

1511, 1455, 1424, 1246, 1173, 1098, 1031, 893, 829, 808, 699, 668, 637 cm
-1

; δH 

(400 MHz, CDCl3) 7.23 (2H, d, J 8.7 Hz, CHAr), 6.90 (2H, d, J 8.7 Hz, CHAr), 

4.35-4.32 (1H, m, CHOCH3), 3.81 (p-CH3(C6H4)SO2), 3.76-3.74 (2H, m, CH2OH), 

3.20 (3H, s, OCH3), 2.70 (1H, br s, OH), 2.09-2.00 (2H, ArCH2), 1.87-1.78 (2H, m, 

CH2CH2OH); δC (100 MHz, CDCl3) 159.23 (CAr), 133.46 (CAr), 127.76 (2 CHAr), 

113.92 (2 CHAr), 83.32 (CH), 61.14 (CH2), 56.37 (CH3) 55.28 (CH3), 40.34 (CH2); 

m/z (ESI) 219.1 (M
+
 + 23).  
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5.3.5.2 Synthesis of tethered aryl-diamine ligands. 

 

General procedure 5: preparation of tethered aryl-diamine ligands. 

To a dried, nitrogen purged flask was added the required aryl-3C-primary alcohol 

(1.6 eq.), anhydrous DCM (5cm
3
 per mmol sulfonated diamine) and 2,6-lutidine (2.1 

eq.). The solution was cooled to 0°C and to it was added dropwise a solution of 

trifluoromethanesulfonic anhydride (1.7 equiv.) in anhydrous DCM (1 cm
3
 per mmol 

of sulfonated diamine). The reaction became pink in colour and was stirred for 30 

min at 0°C and then at room temperature for 60 min. After this the reaction was 

cooled to 0°C and to it was added dropwise a solution of sulfonated diamine (1 eq.), 

triethylamine (2.4 eq.) and anhydrous DCM (1 cm
3
 per mmol of sulfonated diamine). 

The reaction became yellow/orange and was stirred at 0°C for 30 min and then at 

room temperature overnight. The reaction was diluted with DCM and saturated 

NaHCO3 (aq.) solution was added. The product was then extracted with DCM (3 x 

20 cm
3
). The DCM phases were washed with saturated NaHCO3 (aq.) solution, brine 

and water sequentially. The DCM phase was dried over MgSO4, filtered and the 

solvent removed under reduced pressure to give the crude as a yellow oil. The crude 

was purified by column chromatography (silica gel, 0-100% EtOAc in petroleum 

ether) to give the clean ligand products for complex formation. For procedure see 

reference 145. 

N-((1R,2R)-2-(3-(4-Methoxyphenyl)propylamino)-1,2-diphenylethyl)-4-

methylbenzenesulfonamide (198). 

 

This compound is novel.  
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This compound was prepared according to general procedure 5 using 3-(4-

methoxyphenyl)propan-1-ol (500 mg, 3.00 mmol), 2,6-lutidine (418 mg, 3.90 

mmol), trifluoromethanesulfonic anhydride (900 mg, 3.20 mmol), (R,R)-TsDPEN 

(606 mg, 1.90 mmol), Et3N (455 mg, 4.50 mmol) and DCM (2 cm
3
 followed by 2 

cm
3
). The product was purified by column chromatography as in the general 

procedure. TLC: silica plate, 30% EtOAc in petroleum ether, product Rf = 0.57 with 

visualisation by UV and KMnO4, 2,6-lutidine Rf = 0.40 with visualisation by UV 

only, 2,6-lutidine elutes with the product. The fractions containing the product were 

collected and dried under reduced pressure to give a white solid. The solid was 

washed with pentane and filtered to remove 2,6-lutidine and leave the product as a 

white solid (962 mg, 1.87 mmol, 98% based on 696 mg, 1.9 mmol (1R,2R)-N-p-

tosyl-1,2-diphenylethylenediamine). Mp 101°C; [α]D
30

 -21.0 (c 1.0 in CHCl3) (R,R); 

(found (ESI): M
+
 + H, 515.2369 C31H35N2O3S requires M, 515.2363); υmax 3303, 

2928, 1511, 1454, 1327, 1243, 1158, 1035, 916, 808, 698, 669 cm
-1

; δH (400 MHz, 

CDCl3) 7.37 (2H, d, J 8.4 Hz, CHAr), 7.12-7.11 (3H, m, CHAr), 7.04-6.98 (7H, m, 

CHAr), 6.94-6.88 (4H, m, CHAr), 6.89 (2H, d, J 8.4 Hz, CHAr), 6.29 (1H, br s, 

NH), 4.25 (1H, d, J 7.8 Hz, CH), 3.77 (3H, s, CH3), 3.59 (1H, d, J 7.8 Hz, CH), 2.50-

2.38 (3H, m, CH2), 2.31-2.25 (4H, m, CH3 and CH2 overlapping), 1.68-1.63 (2H, m, 

CH2); δC (100 MHz, CDCl3) 157.79 (CAr), 142.72 (CAr), 139.34 (CAr), 138.40 

(CAr), 137.11 (CAr), 133.86 (CAr), 129.24 (2 CHAr), 129.12 (2 CHAr), 128.32 (2 

CHAr), 127.94 (2 CHAr), 127.58 (2 CHAr), 127.47 (CHAr) 127.44 (2 CHAr), 

127.28 (CHAr), 127.14 (2 CHAr), 113.80 (2 CHAr), 67.79 (CH), 63.12 (CH), 55.29 

(CH3), 46.47 (CH2), 32.38 (CH2), 31.72 (CH2), 21.46 (CH3); m/z (ESI) 515.1 (M
+
 + 

1). 
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N-((1R,2R)-2-(3-(3.5-Dimethoxyphenyl)propylamino)-1,2-diphenylethyl)-4-

methylbenzeneulphonamide (208). 

 

This compound is novel.  

This compound was prepared according to general procedure 5 using 3-(3,5-

dimethoxyphenyl)propan-1-ol 207 (400 mg, 2.00 mmol), 2,6-lutidine (279 mg, 2.60 

mmol), trifluoromethanesulfonic anhydride (590 mg, 2.10 mmol), (R,R)-TsDPEN 

(458 mg, 1.25 mmol), Et3N (304 mg, 3.00 mmol) and DCM (1.3 cm
3
 followed by 

1.3 cm
3
). The product was purified by column chromatography as in the general 

procedure. TLC: silica gel, 1:1 EtOAc:petroleum ether, product Rf = 0.68 with 

visualisation by UV and KMnO4, 2,6-lutidine Rf = 0.36 with visualisation by UV 

only. 2,6-lutidine elutes with the product. The fractions containing the product were 

collected and dried under reduced pressure to give a colourless oil. Pentane was 

added and the mixture stirred. The pentane was then decanted and residual pentane 

removed under reduced pressure to leave the clean product as a colourless oil (377 

mg, 0.69 mmol, 55% based on 458 mg, 1.25 mmol (1R,2R)-N-p-tosyl-1,2-

diphenylethylenediamine). [α]D
30

 -14.8 (c 1.0 in CHCl3) (R, R); (found (ESI): M
+
 + 

H, 545.2471 C32H37N2O4S requires M, 545.2469); υmax 3259, 2937, 1595, 1455, 

1324, 1204, 1147, 1055. 924, 813, 760, 697cm
-1

; δH (400 MHz, CDCl3) 7.37 (2H, d, 

J 8.3 Hz, CHAr), 7.13-7.12 (3H, m, CHAr), 7.04-7.01 (5H, m, CHAr), 6.94-6.88 

(4H, m, CHAr), 6.30-6.29 (1H, m, CHAr), 4.25 (1H, d, J 8.1 Hz, CH), 3.77 (6H, s, 

CH3), 3.60 (1H, d, J 8.1 Hz, CH), 2.52-2.41 (3H, m, CH2), 2.32-2.30 (4H, m, CH3 

and CH2 overlapping), 1.73-1.65 (2H, m, CH2); δC (100 MHz, CDCl3) 160.8 (2 

CAr), 144.3 (CAr), 142.7 (CAr), 139.3 (CAr), 138.3 (CAr), 137.1 (CAr), 129.1 (2 
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CHAr), 128.3 (2 CHAr), 127.9 (2 CHAr), 127.6 (2 CHAr), 127.5 (2 CHAr), 127.4 

(CHAr), 127.3 (CHAr), 127.1 (2 CHAr), 106.4 (2 CHAr), 97.9 (CHAr), 67.7 (CH), 

63.1 (CH), 55.3 (CH3), 46.60 (CH2), 33.70 (CH2), 31.3 (CH2), 21.4 (CH3); m/z (ESI) 

545.2 (M
+
 + 1). 

(1R,2R)-N,N-Bis(3-(4-methoxyphenyl)propyl)-1,2-diphenylethane-1,2-diamine 

(210). 

 

This compound is novel. 

To a nitrogen purged, dried flask was added 3-(4-methoxyphenyl)propan-1-ol (416 

mg, 2.50 mmol) was added 2,6-lutinine (321 mg, 3.00 mmol) and anhydrous DCM 

(5 cm
3
). The solution was cooled to 0°C and to it as added a solution of Tf2O (759 

mg, 2.70 mmol) in anhydrous DCM (1 cm
3
). The reaction was stirred at 0°C for 30 

min and then at room temperature for 60 min. After this the reaction was again 

cooled to 0°C and to it was added a solution of (R,R)-DPEN (212 mg, 1.00 mmol) 

and Et3N (354 mg, 3.5 mmol) in anhydrous DCM (1 cm
3
). The reaction was stirred 

at 0°C for 30 min and then at room temperature overnight. After this DCM was 

added and the reaction washed with saturated NaHCO3 solution (aq.). (3 x 10 cm
3
). 

The organic phase was dried over Na2SO4, filtered and the solvent removed under 

reduced pressure to leave the crude as a yellow oil. The crude product was purified 

by column chromatography (silica gel, 0-50% EtOAc in petroleum ether, TLC: silica 

gel, 30% EtOAc in petroleum ether, product Rf = 0.18 visualisation by UV and 

KMnO4, 2,6-lutidine Rf = 0.38 visualisation by UV, 2,6-lutidine elutes before 

product) to give the product as a white solid (326 mg, 0.64 mmol, 64% based on 

(R,R)-DPEN). [α]D
26

+4.4 (c 0.5 in CHCl3) (R,R); (found (ESI): M
+
 + H, 509.3164 
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C34H41N2O2 requires M, 509.3163); υmax 2931, 2834, 1510, 1452, 1243, 1035, 830, 

810, 731, 698, cm
-1

; δH (300 MHz, CDCl3) 7.17-7.12 (6H, m, CHAr), 7.07-7.02 (8H, 

m, CHAr), 3.77 (6H, s, CH3), 3.63 (2H, s, CHN), 2.57-2.36 (8H, m, ArCH2 and 

CH2NH overlapping), 1.79-1.69 (4H, m, CH2CH2CH2N); δC (75 MHz, CDCl3) 

157.06 (2 CAr), 141.00 (2 CAr), 133.76 (2 CAr), 128.67 (4 CHAr), 127.32 (4 

CHAr), 127.28 (4 CHAr), 126.22 (2 CHAr), 113.09 (4 CHAr), 68.66 (2 CH), 54.65 

(2 CH3), 46.45 (2 CH2), 31.97 (2 CH2), 31.44 (2 CH2); m/z (ESI) 509.3 (M
+
 + 1). 

 

4-Methyl-N-((1R,2R)-2-(3-(2,3,4,5,6-pentamethylphenyl)propylamino)-1,2-

diphenylethyl)benzenesulfonamide (217). 

 

This compound is novel. 

This compound was prepared according to general procedure 5 using 3-

(pentamethylphenyl)propan-1-ol 216 (106 mg, 0.50 mmol), 2,6-lutidine (75 mg, 0.70 

mmol), trifluoromethanesulfonic anhydride (141 mg, 0.50 mmol), (R,R)-TsDPEN 

(110 mg, 0.30 mmol), Et3N (81 mg, 0.80 mmol) and DCM (0.3 cm
3
 followed by 1 

cm
3
). The product was purified by column chromatography as in the general 

procedure. TLC: silica gel, 30% EtOAc in petroleum ether, product Rf = 0.58 with 

visualisation by UV and KMnO4, 2,6-lutidine Rf = 0.30 with visualisation by UV 

only, 2,6-lutidine elutes with the product. The fractions containing the product were 

collected and dried under reduced pressure to give a colourless oil. Pentane was 

added and the mixture stirred. A white solid precipitated out and was collected by 

filtration to give the product as a white solid (77 mg, 47% based on 110 mg, 0.3 

mmol (1R,2R)-N-p-tosyl-1,2-diphenylethylenediamine).). Mp 152-153°C; [α]D
26

 -19 
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(c 0.5 in CHCl3) (R,R); (found (ESI): M
+
 + H, 555.3049. C35H43N2O2S requires M, 

555.3040); υmax 2988, 2901, 1452, 1331, 1154, 1066, 1055, 906, 804, 767, 696 cm
-1

; 

δH (400 MHz, CDCl3) 7.38 (2H, d, J 8.3 Hz, CHAr), 7.14-7.13 (3H, m, CHAr), 7.03-

7.01 (5H, m, CHAr), 6.94-6.92 (4H, m, CHAr), 4.27 (1H, d, J 8.1 Hz, CH), 3.68 

(1H, d, J 8.1 Hz, CH), 2.62-2.51 (4H, m, CH2), 2.31 (3H, s, CH3), 2.22 (3H, s, CH3), 

2.21 (6H, s, 2 x CH3), 2.19 (6H, s, 2 x CH3), 1.57-1.51 (2H, m, CH2); δC (100 MHz, 

CDCl3) 142.74 (CAr), 142.34 (CAr), 137.08 (CAr), 135.68 (CAr), 132.66 (CAr), 

132.58 (2 CAr), 131.58 (2 CAr), 129.12 (2 CHAr), 128.43 (CHAr), 127.95 (CHAr), 

127.71 (CHAr), 127.62 (4 CHAr), 127.31 (CHAr), 127.13 (2 CHAr), 67.66 (CH), 

62.98 (CH), 47.36 (CH2), 29.87 (CH2), 28.25 (CH2), 21.45 (CH3), 16.90 (CH3), 

16.86 (2 CH3), 16.45 (2 CH3); m/z (ESI) 555.3 (M
+
 + 1). 

 

N-((1R,2R)-2-((R)-3-methoxy-3-(4-methoxyphenyl)propylamino)-1,2-

diphenylethyl)-4-methylbenzeneaulfonamide (233).  

 

This compound is novel. 

This compound was prepared according to general procedure 5 using (R)-3-methoxy-

3-(4-methoxyphenyl)propan-1-ol 232 (196 mg, 1.00 mmol), 2,6-lutidine (139 mg, 

2.10 mmol), trifluoromethanesulfonic anhydride (309 mg, 1.10 mmol), (R,R)-

TsDPEN (231 mg, 0.63 mmol), Et3N (152 mg, 2.40 mmol) and DCM (0.67 cm
3
 

followed by 0.67 cm
3
). The product was purified by column chromatography as in 

the general procedure. TLC: silica gel, 30% EtOAc in petroleum ether , product Rf = 

0.62 with visualisation by UV and KMnO4, 2,6-lutidine Rf = 0.36 with visualisation 

by UV only, 2,6-lutidine elutes with the product. The fractions containing the 
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product were collected and dried under reduced pressure to give a colourless oil. 

Pentane was added and the mixture stirred. The pentane was decanted and residual 

pentane was removed under reduced pressure to leave the clean product as an orange 

oil (270 mg, 0.5 mmol, 79% based on 231 mg, 0.63 mmol N-(2-aminoethyl)-4-

methylbenzenesulfonamide). Mp 125-126°C; [α]D
28

 +7.6 (c 1.0 in CHCl3) (R, R, R); 

(found (ESI): M
+
 + H, 545.2480. C32H37N2O4S requires M, 545.2469); υmax 3279, 

2923, 1452, 1330, 1246, 1153, 1074, 1027, 826, 698, 666 cm
-1

; δH (400 MHz, 

CDCl3) 7.38 (2 H, d, J 7.5 Hz, CHAr), 7.13-7.01 (10 H, m, CHAr) 6.96-6.94 (2 H, 

m, CHAr), 6.89-6.83 (4H, m, CHAr), 4.22 (1 H, d, J 8 Hz, CHNTs), 4.02 (1H, dd, J 

8 and 5 Hz, CHOCH3), 3.80 (3 H, s, ArOCH3), 3.55 (1H, d, J 8 Hz, CHNH), 3.09 (3 

H, s, CHOCH3), 2.49-2.41 (1 H, m, CH2), 2.37-2.31 (4 H, m, SO2ArCH3 and 

CH2NH overlapping), 1.91-1.82 (1 H, m, CH2CHOCH3), 1.73-1.67 (1 H, m, 

CH2CHOMe); δC (100 MHz, CDCl3) 142.63 (CAr), 139.36 (CAr), 138.42 (CAr), 

137.10 (CAr), 133.71 (2 CAr), 129.10 (2 CHAr), 128.26 (2 CHAr), 127.87 (2 

CHAr), 127.75 (2 CHAr), 127.66 (2 CHAr), 127.42 (2 CHAr), 127.40 (CHAr), 

127.25 (CHAr), 127.16 (2 CHAr), 113.83 (2 CHAr), 82.56 (CH3), 67.94 (CH), 63.18 

(CH), 56.31 (CH), 55.27 (CH3), 44.59 (CH2), 37.96 (CH2), 21.45 (CH3); m/z (ESI) 

545.3 (M
+
 + 1). 

 

Attempted synthesis of N-(2-(3-(4-methoxyphenyl)propylamino))ethyl)-4-

methylbenzenesulfonamide (235). 

 

This compound would be novel. 

Attempts to prepare this compound were carried out according to general procedure 

5 using 3-(4-methoxyphenyl)propan-1-ol (500 mg, 3.00 mmol), 2,6-lutidine (418 
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mg, 3.90 mmol), trifluoromethanesulfonic anhydride (900 mg, 3.20 mmol), N-(2-

aminoethyl)-4-methylbenzenesulfonamide (407 mg, 1.90 mmol), Et3N (455 mg, 4.50 

mmol) and DCM (13.6 cm
3
). The product was purified by column chromatography 

as in the general procedure. TLC: silica gel, 30% EtOAc in petroleum ether, product 

Rf = 0.36 with visualisation by UV and KMnO4, 2,6-lutidine Rf = 0.42 with 

visualisation by UV only. The product elutes after 2,6-lutidine, no pentane wash is 

necessary. The product was obtained as a yellow oil but was found to be the di-

alkylated product shown below rather than the expected mono-alkylated product. 

(123 mg, 0.24 mmol, 24% base on 279 mg, 1.30 mmol N-(2-aminoethyl)-4-

methylbenzenesulfonamide).  

Reducing the number of equivalents of 3-(4-methoxyphenyl)propan-1-ol to 1 

equivalent relative to N-(2-aminoethyl)-4-methylbenzenesulfonamide gave no 

improvement with the di-alkylated N-(2-(bis(3-(4-methoxyphenyl)propylamino)) 

ethyl)-4-methylbenzenesulfonamide still being the major product formed in the 

reaction. 

 

N-(2-(bis(3-(4-methoxyphenyl)propylamino))ethyl)-4-

methylbenzenesulfonamide (236).  

 

(Found (ESI): M
+
 + H, 511.2627 C29H38N2O4S requires M, 511.2625); υmax 2936, 

1510, 1463, 1324, 1242, 1158, 1091, 1033, 812, 660 cm
-1

; δH (300 MHz, CDCl3) 

7.72 (2H, d, J 8.1 Hz, CHArSO2), 7.23 (2H, d, J 8.1 Hz, CHArCH3), 7.03 (4H, d, J 

8.7 Hz, CHArOCH3), 6.82 (4H, d, J 8.7 Hz, CHArCH2), 3.78 (6H, s, OCH3), 2.91 
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(2H, t, J 5.8 Hz, SO2NCH2), 2.45-2.38 (9H, m, CH3ArSO2, CH2CH2CH2NH and 

SO2NCH2CH2N overlapping), 2.31-2.26 (CH2Ar), 1.62-1.51 (CH2CH2CH2); δC (75 

MHz, CDCl3) 177.17 (2 CAr), 142.71 (CAr), 136.08 (CAr), 133.31 (2 CAr), 129.08 

(CHAr), 128.55 (4 CHAr ), 126.53 (2 CHAr), 113.18 (4 CHAr), 54.65 (2 CH3), 

52.41 (2 CH2), 51.78 (CH2), 39.79 (2 CH2), 32.06 (CH2), 28.15 (2 CH2), 20.91 (2 

CH3); m/z (ESI) 511.3 (M
+
 + 1). 

 

N-((Naphthalene-2-ylsulfonyl)methyl)ethane-1, 2-diamine. 

 

This compound is known in the literature but has not previously been fully 

characterised.
196 

To ethylene diamine (1.2 g, 20 mmol) in anhydrous DCM (5 cm
3
) was added a 

solution of 2-napthalenesulfonyl chloride (453 mg, 2.00 mmol) in anhydrous DCM 

(5 cm
3
). The resulting solution was stirred at room temperature for 30 min. Water 

was added to the reaction and the organic phase was separated and washed with 

further water. The aqueous washings were then combined and washed with DCM. 

The organic phases were combined, dried over Na2SO4, filtered and the solvent 

removed under reduced pressure to give the product as a white solid (270 mg, 1.1 

mmol, 55%). Purification was not necessary. Mp 129-131°C; (found (ESI): M
+
 + H, 

251.0851 C12H15N2O2S requires M, 251.0849); υmax 3363, 2849, 1594, 1314, 1151, 

1125, 960, 746, 654 cm
-1

; δH (400 MHz, CDCl3) 8.44 (1H, s, CHAr), 7.96-7.93 (2H, 

m, CHAr), 7.90-7.83 (2H, m, CHAr), 7.65-7.57 (2H, m, CHAr), 3.02-2.99 (2H, m, 

CH2), 2.80-2.77 (5H, m, CH2 and NH2 and NH overlapping); δC (100 MHz, CDCl3) 
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136.78 (CAr), 134.78 (CAr), 132.17 (CAr), 129.55 (CHAr), 129.24 (CHAr), 128.76 

(CHAr), 128.37 (CHAr), 127.91 (CHAr), 127.56 (CHAr), 122.31 (CHAr), 45.43 

(CH2), 40.98 (CH2); m/z (ESI) 251.0 (M
+
 + 1). This compound is known in the 

literature but has not previously been fully characterised.
196 

 

 

N-(2-(Bis(3-(4-methoxyphenyl)propyl)amino)ethyl)naphthalene-2-sulfonamide 

(236b). 

 

This compound is novel.  

This compound was prepared according to general procedure 5 using 3-(4-

methoxyphenyl)propan-1-ol (266 mg, 1.60 mmol), 2,6-lutidine (225 mg, 2.10 

mmol), trifluoromethanesulfonic anhydride (478 mg, 1.70 mmol), N-((naphthalene-

2-ylsulfonyl)methyl)ethane-1, 2-diamine (250 mg, 1.00 mmol), Et3N (243 mg, 2.40 

mmol) and DCM (7.3 cm
3
). The product was purified by column chromatography as 

in the general procedure. TLC: 30% EtOAc in petroleum ether, product Rf = 0.21 

with visualisation by UV and KMnO4, 2,6-lutidine Rf = 0.31 with visualisation by 

UV. Product elutes after 2,6-lutidine, no pentane wash required. Product obtained as 

a yellow oil (110 mg, 0.2 mmol, 25% based on 250 mg, 1 mmol sulfonated diamine). 

Mp 53°C; (found (ESI): M
+
 + H, 547.2624 C32H39N2O4S requires M, 547.2625); υmax 

2949, 2909, 2850, 2833, 1510, 1326, 1241, 1157, 1031, 810, 746, 657 cm
-1

; δH (400 

MHz, CDCl3) 8.43 (1H, br s, CHAr), 7.93-7.87 (3H, m, CHAr), 7.82-7.80 (1H, m, 

CHAr), 7.65-7.57 (2H, m, CHAr), 6.96 (4H, d, J 8.4 Hz, CHArOCH3), 6.78 (4H, d, J 

8.4 Hz, CHArCH2), 5.30 (1H, br s, NH), 3.77 (6H, s, CH3), 2.96 (2H, t, J 5.6 Hz, 
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CH2NHSO2), 2.44 (2H, t, J 5.6 Hz, SO2HNCH2CH2N), 2.36 (4H, t, J 7.6 Hz, 

CH2CH2CH2N), 2.28-2.25 (4H, m, ArCH2), 1.55 (4H, quin, J 7.6 Hz, CH-

2CH2CH2N); δC (100 MHz, CDCl3) 157.80 (2 CAr), 136.54 (CAr), 134.79 (CAr), 

133.82 (2 CAr), 132.18 (CAr), 129.49 (CHAr), 129.26 (CHAr), 129.15 (4 CHAr), 

128.78 (CHAr), 128.45 (CHAr), 127.95 (CHAr), 127.59 (CHAr), 122.44 (CHAr), 

113.80 (4 CHAr), 55.28 (2 CH3), 53.00 (CH2), 52.46 (CH2), 40.42 (2 CH2), 32.63 (2 

CH2), 28.67 (2 CH2); m/z (ESI) 547.3 (M
+
 + 1). 

 

N-(2-(Biphenyl-2-yl)methylamino)ethyl)-4-methylbenzenesulfonamide (238). 

 

This compound is novel. 

To biphenylcarboxaldehyde (182 mg, 1.00 mmol) was added activated molecular 

sieves (1 g) and anhydrous MeOH (6 cm
3
). To this was added TsEN (246 mg, 1.10 

mmol) and acetic acid (50 μL). The reaction was stirred at room temperature for 5 

hours and then NaBH3CN (251 mg, 4.00 mmol) was added and the reaction stirred at 

room temperature overnight. After this the reaction was filtered and the solid washed 

with DCM. The filtrate and DCM washings were combined and dried under reduced 

pressure. The residue was then dissolved in anhydrous DCM and washed with 1M 

NaOH (aq.) solution. The DCM phase was separated, dried over Na2SO4, filtered and 

the solvent removed under reduced pressure to give the product as a pale yellow 

viscous oil (134 mg, 0.35 mmol, 70%). Purification was not necessary. (found (ESI): 

M
+
 + H, 381.1632 C22H25N2O2S requires M, 381.1631); υmax 3272, 2858, 1477, 

1450, 1322, 1155, 1091, 814, 775, 750, 703 cm
-1

; δH (300 MHz, CDCl3) 7.67 (2H, d, 
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J 8.1 Hz, SO2CHAr), 7.43-7.11 (13H, m, CHAr and NH overlapping), 3.58 (2H, s, 

ArCH2N), 2.84 (2H, dd, J 6.5 and 4.8 Hz, CH2NHSO2), 2.50 (2H, dd, J 6.5 and 4.8 

Hz, CH2NH), 2.40 (3H, s, CH3); δC (75 MHz, CDCl3) 142.64 (CAr), 141.24 (CAr), 

140.53 (CAr), 136.39 (CAr), 136.22 (CAr), 129.57 (CHAr), 129.04 (2 CHAr), 

128.50 (CHAr), 128.27 (2 CHAr), 127.68 (2 CHAr), 126.95 (CHAr), 126.62 (CHAr 

), 126.55 (CHAr), 126.49 (2 CHAr), 50.06 (CH2), 46.65 (CH2), 41.60 (CH2), 20.92 

(CH3); m/z (ESI) 381.0 (M
+
 + 1). 

 

N-(2-(Biphenyl-2-yl)methylamino)ethyl)naphthalene-2-sulfonamide (241). 

 

This compound is novel. 

To biphenylcarboxaldehyde (91 mg, 0.5 mmol) was added activated molecular 

sieves (500 mg ) and anhydrous MeOH (3 cm
3
). To this was added N-((naphthalene-

2-ylsulfonyl)methyl)ethane-1,2-diamine (138 mg, 0.55 mmol) and acetic acid (50 

μL). The reaction was stirred at room temperature for 5 hours and then NaBH3CN 

(126 mg, 2 mmol) was added and the reaction stirred at room temperature overnight. 

The reaction was filtered and the solid washed with DCM. The filtrate and DCM 

washings were combined and dried under reduced pressure. The residue was then 

dissolved in anhydrous DCM and washed with 1M NaOH (aq.) solution. The DCM 

phase was separated, dried over Na2SO4, filtered and the solvent removed under 

reduced pressure to give the product as a pale yellow oil (134 mg, 0.350 mmol, 
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70%). Purification was not necessary. (found (ESI): M
+
 + H, 417.1635 C25H25N2O2S 

requires M, 417.1631); υmax 3286, 2912, 1451, 1435, 1320, 1154, 1074, 747, 702, 

656 cm
-1

; δH (300 MHz, CDCl3) 8.38-8.37 (1H, , m, CHAr), 7.92-7.86 (3H, m, 

CHAr), 7.75-7.71 (1H, m, CHAr), 7.65-7.55 (2H, m, CHAr), 7.37-7.17 (11H, m, 

CHAr and NH overlapping), 3.55 (2H, s, CH2), 2.87 (2H, dd, J 6.4 and 4.7 Hz, 

CH2NSO2), 2.48 (2H, dd, J 6.4 and 4.7 Hz, CH2NH); δC (75 MHz, CDCl3) 141.84 

(CAr), 141.12 (CAr), 136.97 (CAr), 136.59 (CAr), 134.76 (CAr), 132.15 (CAr), 

130.18 (CHAr), 129.47 (CHAr), 129.24 (CHAr), 129.09 (CHAr), 128.86 (2 CHAr), 

128.77 (CHAr), 128.43 (CHAr), 128.28 (2 CHAr), 127.93 (CHAr), 127.57 (2 

CHAr), 127.21 (CHAr), 127.17 (CHAr), 122.37 (CHAr), 50.63 (CH2), 47.23 (CH2), 

42.27 (CH2); m/z (ESI) 417.1 (M
+
 + 1). 

 

5.3.5.3 Synthesis of tethered ruthenium complexes by aryl substitution 

methodology. 

 

General procedure 6 and 7: preparation of tethered ruthenium complexes by 

aryl substitution methodology. 

General procedure 6: 

To a pressure tube was added the required aryl-3C-TsDPEN ligand (2eq.), 

ethylbenzoate ruthenium(II)chloride dimer (1 eq.) and anhydrous DCM (4.5 cm
3
 per 

mmol of ligand). The tube was then flushed with N2 and then sealed. The reaction 

was stirred for 30 min. at room temperature and then at 90°C for 48 hours. The 

reaction was allowed to cool to room temperature and the solvent was removed 

under reduced pressure to give the crude as a dark brown solid. The crude was 

purified by column chromatography and then recrystallised from minimal hot 

methanol with DCM.  
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General procedure 7: 

To a nitrogen purged round bottom flask was added the required aryl-3C-TsDPEN 

ligand (2 eq.), ruthenium dimer (1 eq.) and dry DCM (1.3 cm
3
 per 0.05 mmol 

ligand). The solution was stirred at room temperature for 1 hour. The DCM was 

removed under reduced pressure to give an orange/red solid. Chlorobenzene (3.3 cm
3
 

per 0.05 mmol ligand) was then added. The reaction was connected to a reflux 

condenser, purged with nitrogen and stirred at 90°C until deemed complete by TLC. 

Once complete the reaction was cooled and the chlrorbenzene removed under 

reduced pressure to give the crude as an orange/brown solid. The crude product was 

purified by column chromatography and recrystallisation from minimal hot methanol 

and DCM. 

N-((1R,2R)-2-(3-(4-methoxyphenyl)propylamino)-1,2-diphenyl)-4-methyl 

benzenesulfonamide) ruthenium chloride (199). 

 

This compound is novel. 

The compound was prepared according to general procedures 6 and 7 using N-

((1R,2R)-2-(3-(4-methoxyphenyl)propylamino)-1,2-diphenylethyl)-4-

methylbenzenesulfonamide 198 (300 mg, 0.58 mmol), ethylbenzoate 

ruthenium(II)chloride dimer 197 (187 mg, 0.29 mmol) and anhydrous DCM (9 cm
3
) 

for general procedure 6, and  N-((1R,2R)-2-(3-(4-methoxyphenyl)propylamino)-1,2-

diphenylethyl)-4-methylbenzene sulfonamide 198 (100 mg, 0.20 mmol), 

ethylbenzoate ruthenium(II)chloride dimer 197 (64 mg, 0.10 mmol) and anhydrous 

DCM (5.2 cm
3
), chlorobenzene (13.2 cm

3
) for general procedure 7. In each case the 
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crude product was purified by column chromatography (florisil 200 mesh, 0-10% 

MeOH in DCM, TLC: silica plate, 5% MeOH in DCM, visualisation in natural light, 

product Rf = 0.40 orange) to give the product was an orange solid. This was then 

further purified by recrystallisation from the minimal hot MeOH and DCM to give 

the product as orange crystals. 

General procedure 6: 150 mg, 40% after column chromatography, 16 mg, 0.025 

mmol, 6% from 2 recrystallisations. 

General procedure 7: 103 mg, 80% after column chromatography, 31 mg, 0.05 

mmol, 25% from 2 recrystallisations. 

Mp 261°C (decomposed); [α]D
30

 -670 (c 0.01 in CHCl3) (R,R); (found (ESI): [M
+
 + 

H – Cl], 615.1255 C31H33N2O3RuS requires M, 615.1257); υmax 3194, 3027, 3938, 

1534, 1495, 1466, 1454, 1270, 1256, 1128, 1082, 1039, 1012, 938,  905, 812, 69, 

656 cm
-1

; δH (400 MHz, CDCl3) 7.29-7.27 (2H, m, CHAr), 7.16-7.11 (3H, m, 

CHAr), 6.85-6.77 (2H, m, CHAr), 6.75-6.73 (3H, d, J 8.3 Hz, CHAr), 6.64-6.60 (2H, 

t, J 7.5 Hz, CHAr), 6.55-6.53 (2H, m, CHAr), 5.57 (1H, d, J 6.0 Hz, CHAr-Ru), 5.47 

(1H, 6.0 Hz, CHA-Ru), 5.35 (1H, d, J 6.0 Hz, CHAr-Ru), 5.22 (1H, d, J 6.0 Hz, 

CHAr-Ru), 4.33 (1H, d, J 11.2 Hz, CHNTs), 4.08-4.03 (1H, br m, NH(CH2)3), 3.99 

(3H, s, OCH3), 3.56 (1H, t, J 11.2 Hz, CHNH), 2.81-2.75 (1H, m, NCH2CH2CH2), 

2.49-2.39 (2H, m, NCH2CH2CH2Ar), 2.32-2.25 (1H, m, NCH2CH2CH2), 2.21 (3H, s, 

SO2ArCH3), 2.12-2.00 (2H, m, NCH2CH2CH2); δC (100 MHz, CDCl3) 143.83 (CAr), 

138.67 (CAr), 138.42 (CAr), 136.40 (CAr), 134.69 (CAr), 128.72 (2 CHAr), 128.68 

(2 CHAr), 128.34 (CHAr), 127.73 (4 CHAr), 127.06 (2 CHAr), 126.88 (2 CHAr), 

126.01 (CHAr), 91.20 (CAr-Ru), 84.72 (CHAr-Ru), 81.46 (CHAr-Ru), 78.77 

(CHAr-Ru), 72.17 (CHAr-Ru), 68.94 (CH3), 65.49 (CH), 56.84 (CH), 49.41 (CH2), 

30.32 (CH2), 27.32 (CH2), 21.16 (CH3); m/z (ESI) 615.1 (M
+
 + 1 – 35). 
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Addition of inorganic base to aryl substitution complexation:  

To a nitrogen purged, dried flask was added N-((1R,2R)-2-(3-(4-

methoxyphenyl)propylamino)-1,2-diphenylethyl)-4-methylbenzenesulfonamide 198 

(100 mg, 0.2 mmol) and ethylbenzoate ruthenium(III)chloride dimer 197 (64 mg, 0.1 

mmol). To this was then added Ca(OH)2 (15 mg, 0.2 mmol) and anhydrous DCM 

(5.2 cm
3
). The resulting solution was then stirred at room temperature for 30 min 

before the DCM was removed under reduced pressure and replaced with 

chlorobenzene (13.2 cm
3
).  The reaction was stirred at 90°C for 5 hours. The reaction 

was cooled and the solvent removed under vacuum. The residue was washed with 

water and dried to leave the crude product as a black solid. The crude product was 

purified by column chromatography and recrystallisation as above, however only 1 

recrystallisation was required, to give the product (199) as an orange solid (118 mg, 

91% after column chromatography, 43 mg, 0.066 mmol, 33% from 1 

recrystallisation). Data matched that reported above. 

 

N-((1R,2R)-2-(3-(3,5-Dimethoxyphenyl)propylamino)-1,2-diphenylethyl)-4-

methylbenzenesulfonamide) ruthenium chloride (209). 

 

This compound is novel.  

The compound was prepared according to the general procedures using N-((1R,2R)-

2-(3-(3.5-dimethoxyphenyl)propylamino)-1,2-diphenylethyl)-4-

methylbenzeneulphonamide 208 (220 mg, 0.40 mmol), ethylbenzoate 

ruthenium(II)chloride dimer  197 (130 mg, 0.20 mmol) and anhydrous DCM (6 cm
3
) 
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for general procedure 6, and  N-((1R,2R)-2-(3-(3.5-dimethoxyphenyl)propylamino)-

1,2-diphenylethyl)-4-methylbenzeneulphonamide 208 (200 mg, 0.36 mmol), 

ethylbenzoate ruthenium(II)chloride dimer 197 (116 mg, 0.18 mmol) and anhydrous 

DCM (9 cm
3
) and chlorobenzene (23 cm

3
) for general procedure 7. In each case the 

crude product was purified by column chromatography (florisil 200 mesh, 0-10% 

MeOH in DCM, TLC: silica plate, 5% MeOH in DCM, visualisation in natural light, 

product Rf = 0.43 orange) to give the product as an orange solid. This was then 

further purified by recrystallisation from minimal hot MeOH and DCM to give the 

product as orange crystals.  

General procedure 6: 220 mg ligand, 238 mg after column chromatography, 16 mg, 

0.06 mmol, 15% from 2 recrystallisations. 

General procedure 7: 200 mg ligand, 130 mg after column chromatography, 96 mg, 

0.14 mmol, 39% from 1 recrystallisation. 

 

Mp 672°C (decomposed); [α]D
30

 -10.3 (c 0.02 in CHCl3) (R,R); (found (ESI): M
+
 + 

H - Cl, 645.1357 C32H35N2O4RuS requires M, 645.1363); υmax 3676, 2988, 2901, 

1542, 1407, 1394, 1265, 1125, 1078, 1066, 1056, 895, 833, 691 cm
-1

; δH (400 MHz, 

CDCl3) 7.46 (2H, d, J 8.3 Hz, CHAr), 7.14-7.06 (3H, m, CHAr), 6.85 (3H, d, J 8.0 

Hz, CHAr), 6.78-6.72 (4H, m, CHAr), 6.65 (2H, d, J 7.3 Hz, CHAr), 5.89 (1H, s, 

CHAr-Ru), 4.77 (2H, d, J 15.2 Hz, CHAr), 4.41-4.38 (1H, m, NH (CH2)3), 4.17 (3H, 

s, OCH3), 4.16 (3H, s, OCH3), 4.07 (1H, d, J 10.8 Hz, CHNTs), 3.76 (1H, t, J 11.7 

Hz, CHNH(CH2)3), 2.71-2.58 (3H, m, CH2), 2.25 (3H, s, SO2ArCH3), 2.21-2.04 (2H, 

m, CH2), 1.90-1.86 (1H, m, CH2); δC (100 MHz, CD2Cl2) 143.57 (CAr), 140.15 

(CAr), 139.32 (CAr), 137.23 (CAr), 136.16 (CAr), 135.61 (CAr), 129.46 (2 CHAr), 

128.94 (2 CHAr), 128.51 (CHAr), 127.97 (4 CHAr), 127.82 (2 CHAr), 127.26 (2 

CHAr), 126.57 (CHAr), 96.96 (CAr-Ru), 78.74 (CHAr-Ru), 69.55 (CHAr-Ru), 
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65.39 (CHAr-Ru), 57.50 (CH3), 57.47 (CH3), 56.46 (CH) 53.94 (CH), 48.35 (CH2), 

29.92 (CH2), 25.86 (CH2), 21.27 (CH3); m/z (ESI) 645.1 (M
+
 + 1 - 35). X-ray 

crystallography data is given in Appendix 2. 

 

Cationic tethered ruthenium complex (211). 

 

This compound is novel. 

This compound was prepared according to general procedure 7 using (1R,2R)-N,N-

Bis(3-(4-methoxyphenyl)propyl)-1,2-diphenylethane-1,2-diamine 210 (200 mg, 0.40 

mmol), ethylbenzoate ruthenium(II)chloride dimer 197 (129 mg, 0.20 mmol), DCM 

(10.3 cm
3
) and chlorobenzene (26.7 cm

3
). It was only necessary to stir the reaction in 

chlorobenzene at 90°C for 1 hour before complete consumption of the ligand was 

observed by TLC. The crude product was purified by column chromatography (silica 

gel, 0-30% MeOH in DCM, TLC: silica plate, 5% MeOH in DCM, visualisation in 

natural light, product Rf = 0.48 yellow) to give the product as a yellow/orange solid 

(158 mg, 0.24 mmol, 60%). Mp 85°C; [α]D
28

 +210 (c 0.01 in CHCl3) (R, R); (found 

(ESI): M
+
, 645.1820. C34H40ClN2O2Ru requires M, 645.1822); υmax 3059, 2928, 

1511, 1454, 1244, 1177, 1029, 1005,  805, 763, 701 cm
-1

; δH (400 MHz, CDCl3) 8.72 

(1H, br s, NH), 7.96 (1H, br s, NH), 7.12-7.06 (6H, m, CHAr), 6.86-6.81 (4H, m, 

CHAr), 6.75-6.68 (4H, m, CHAr), 5.69-5.67 (1H, m, CHAr-Ru), 5.45-5.43 (1H, m, 

CHAr-Ru), 5.18-5.16 (1H, m, CHAr-Ru), 5.10-5.09 (1H, m, CHAr-Ru), 4.39 (1H, br 

s, CHNH), 3.95-3.86 (1H, m, CHNH), 3.60 (3H, s, CH3OAr-Ru), 3.05-3.02 (2H, m, 
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CH2), 2.87 (2H, br s, CH2), 2.33-2.30 (4H, m, CH2), 2.17 (3H, s, CH3OAr(CH2)3N), 

1.91 (1H, br s, CH2), 1.72-1.59 (3H, m, CH2); δC (100 MHz, CDCl3) 157.67 (CAr), 

137.78 (CAr), 136.34 (CAr), 135.04 (CAr), 134.73 (CAr), 132.78 (CAr), 129.07 (2 

CHAr), 129.00 (2 CHAr), 128.93 (2 CHAr), 128.76 (CHAr), 128.56 (2 CHAr), 

128.26 (2 CHAr), 127.52 (CHAr), 113.65 (2 CHAr), 100.47 (CAr-Ru), 86.98 (CAr-

Ru), 86.75 (CHAr-Ru), 75.53 (CHAr-Ru), 71.31 (CHAr-Ru), 70.10 (CHAr-Ru), 

66.97 (CH), 56.69 (CH), 55.24 (CH3), 53.38 (CH2), 32.31 (CH2), 31.82 (CH2), 30.12 

(CH2), 30.09 (CH3), 29.14 (CH2), 27.74 (1C, s); m/z (ESI) 645.2 (M
+
). 

 

Achiral 3C-tethered dimer 243. 

 

This compound is known in the literature and has been fully characterised.
145 

The batch of dimer 252 used in this thesis had been prepared previously in our group 

according to literature procedures and was fully characterised in agreement with the 

literature.
145

 

 

Achiral tethered ruthenium complex (239). 

 

This compound is novel. 

This compound was prepared according to general procedure 7 using N-(2-

(Biphenyl-2-yl)methylamino)ethyl)-4-methylbenzenesulfonamide 238 (100 mg, 0.28 

mmol), ethylbenzoate ruthenium(II)chloride dimer 197 (84 mg, 0.14 mmol), DCM 
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(6.5 cm
3
) and chlorobenzene (17 cm

3
). It was necessary to stir the reaction at 140°C 

in chlorobenzene for 7 hours after the initial 30 min in anhydrous DCM. The crude 

product was purified by column chromatography (floristic 200 mesh, 0-10% MeOH 

in DCM, TLC: silica plate, 5% MeOH in DCM, visualisation in natural light, 

product Rf = 0.65) to give the product as a brown/orange solid (50 mg). Mass 

spectrometry showed 2:1 complex:ligand. Attempts were made to recrystallise the 

product from hot MeOH and DCM however the product was found to remain in 

solution. The solid was removed by filtration and the filtrate dried under reduced 

pressure to give the product as a brown solid (27 mg, 0.055 mmol, 20%). The 

product contained impurities and minimal data was obtained. 
1
H NMR analysis 

showed the presence of resonances expected in the product although the peaks were 

broad and impurities were present: δH (400 MHz, CDCl3) 7.64-7.22 (CHAr and 

impurities), 6.33 (1H, s, CHAr-Ru), 6.13 (1H, s, CHAr-Ru), 5.39 (1H, s, CHAr-Ru), 

2.41 (2H, br s, NCH2), 2.41 (2H, br s, NCH2), 1.26 (3H, s, CH3); m/z (ESI) 481.1  

(M
+
+H-Cl). 

 

N-((1R,2R)-2-(3-(4-methoxyphenyl)propylamino)-1,2-diphenylehtyl)-4-

methylbenzenesulfonamide)-η
6
-(ethyl benzoate) ruthenium chloride (p-OMe-

202). 

 

This compound is novel.  

To a nitrogen purged, dried flask was added ligand N-((1R,2R)-2-(3-(4-

methoyphenyl)propylamino)-1,2-diphenylethyl)-4-methylbenzenesulfonamide  198 

(50 mg, 0.1 mmol) and ethylbenzoate ruthenium(II)chloride dimer 197 (32 mg, 0.05 
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mmol). To this was then added triethylamine (20 mg, 0.2 mmol) and anhydrous iso-

propanol (4 cm
3
). The resulting solution was stirred at reflux under nitrogen for 2 

hours. The reaction was cooled to room temperature and the solvent and 

triethylamine were removed under reduced pressure to leave an orange/brown solid. 

The solid was purified by column chromatography (florisil 200 mesh, 0-5% MeOH 

in DCM, TLC: 5% MeOH in DCM, visualisation in natural light, product Rf = 0.35) 

to give a red solid (33 mg, 0.04 mmol, 40%). Mp 210°C (decomposed 170°C); [α]D
28

 

-30 (c 0.005 in CHCl3) (R,R); (found (ESI): M
+
 + H, 765.1944 C40H43N2O5RuS 

requires M, 765.1942); υmax 3028, 2923, 1729, 1512, 1454, 1268, 1125,1103, 1082, 

903, 817, 806, 697, 576 cm
-1

; δH (400 MHz, CDCl3) 7.18 (2H, d, J 8.0 Hz, CHAr), 

7.04-6.92 (6H, m, 5 x CHAr and CHAr-Ru ); 6.75-6.65 (6H, m, CHAr), 6.60 (1H, br 

s, CHAr), 6.54 (2H, t, J 7.5 Hz, CHAr), 6.39 (2H, d, J 7.5 Hz, CHAr), 6.29 (1H, t, J 

5.8 Hz, CHAr-Ru), 6.11-6.09 (1H, m, CHAr-Ru), 5.86 (1H, d, J 5.8 Hz, CHAr-Ru), 

5.10 (1H, t, J 5.8 Hz, CHAr-Ru), 4.59-4.51 (1H, m, CH2CH3), 4.41-4.34 (1H, m, 

CH2CH3), 4.01 (1H, d, J 11.0 Hz, CH), 3.82 (1H, t, J 11.0 Hz, NH), 3.70 (3H, s, 

OCH3), 3.55-3.49 (1H, m, CH), 3.31-3.22 (1H, m, CH2), 2.75-2.67 (1H, m, CH2), 

2.64-2.57 (1H, m, CH2), 2.24-2.16 (1H, m, CH2), 2.13 (3H, s, S(O2)CH3), 2.02-1.97 

(1H, m, CH2), 1.86-1.79 (1H, m, CH2), 1.45 (3H, t, J 7.2 Hz, CH2CH3); δC (100 

MHz, CDCl3) 166.50 (C=O), 158.22 (CAr), 142.04 (CAr), 139.35 (CAr), 138.30 

(CAr), 136.60 (CAr), 132.79 (CAr), 129.53 (2 CHAr), 128.87 (2 CHAr), 128.63 

(CHAr), 128.33 (CHAr), 127.84 (2 CHAr), 127.50 (4 CHAr), 126.86 (2 CHAr), 

126.28 (2 CHAr), 114.08 (2 CHAr), 94.96 (CHAr-Ru), 93.73 (CHAr-Ru), 89.25 

(CHAr-Ru), 81.08 (CHAr-Ru), 79.21 (CHAr-Ru), 79.13 (CHAr-Ru), 75.38 (CAr-

Ru), 69.69 (CH), 62.76 (CH2), 55.35 (CH3), 53.48 (CH2), 32.08 (CH2 ), 30.56 (CH2), 

21.20 (CH3), 14.44 (CH3); m/z (ESI) 765.2 (M
+
 + 1). 
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5.3.5.4 Attempted syntheses of triazole tethered ruthenium complexes. 

 

[(1R,2R)-1,2-Diphenyl-N-(prop-2-ynylamino)ethyl]-4-

methylbenzenesulfonamide (223) 

 

This compound is known in the literature and has previously been fully 

characterised.
54 

To a dried, argon purged flask was added (R,R)TsDPEN (733 mg, 2.00 mmol) and 

anhydrous K2CO3 (719 mg, 5.20 mmol). To this was then added anhydrous MeCN 

(15 cm
3
) and finally propargyl bromide solution (80% in toluene) (327 mg, 2.20 

mmol). The reactions was stirred at room temperature overnight. The reaction 

solution was filtered and the acetonitrile was removed under reduced pressure. The 

residue was dissolved in chloroform and washed with water. The organic phase was 

then dried over MgSO4, filtered and the solvent removed under reduced pressure to 

leave the crude product as an off-white solid. The crude was purified by column 

chromatography (silica gel, 0-50% EtOAc in petroleum ether, TLC: silica plate, 1:1 

EtOAc:petroleum ether, visualisation by KMnO4, product Rf = 0.7) to give the pure 

product as a white solid (457 mg, 1.13 mmol, 57%). Mp 128-129°C; [α]D
28

 -70.7 (c 

0.5 in CHCl3) (R,R) (lit.
54

 [α]D
27

 -66.7 (c 0.5 in CHCl3) (R,R)); (found (ESI): M
+
 + H, 

405.1633 C24H25N2O2S requires M, 405.1631); υmax 3676, 3193, 2987, 2901, 1439, 

1331, 1153, 1076, 916, 810, 697, 670 cm
-1

; δH (400 MHz, CDCl3) 7.39 (2H, d, J 8.3 

Hz, CHArSO2), 7.11-7.09 (3H, m, CHAr) 7.04-6.94 (7H, m, CHAr) 6.90-6.87 (2H, 

m, CHAr), 6.17-6.15 (1H, m, NHTs), 4.37 (1H, t, J 7.0 Hz, CHNHTs), 4.04 (1H, d, J 

7.5 Hz, CHNHCH2), 3.38 (1H, dd, J 17.0 and 2.5 Hz, CH
a
H

b
CCH), 3.02 (1H, dd, J 

17.0 and 2.5 Hz, CH
a
H

b
CCH), 2.27 (3H, s, CH3), 2.22 (1H, t, J 2.4 Hz, CH2CCH), 
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2.07 (1H, br s, NHCH2); δC (100 MHz, CDCl3) 142.17 (CAr), 137.56 (2 CAr 136.37 

(CAr), 128.53 (2 CHAr), 127.67 (2 CHAr), 127.38 (4 CHAr), 127.02 (CHAr), 

126.65 (2 CHAr), 126.61 (1 CHAr), 126.44 (2 CHAr), 80.86 (C), 71.40 (CH), 65.23 

(CH), 62.67 (CH), 34.98 (CH2), 20.80 (CH3); m/z (ESI) 405.1 (M
+
 + 1), 427.0 (M

+
 + 

23). Data matches that previously reported for this compound.
54 

 

3-(Azidomethyl)-6-methylcyclohexa-1,4-diene (225). 

 

This compound is novel. 

To an argon purged, dried flask was added (4-methylcyclohexa-1,4-dien-1-

yl)methanol previously prepared in our group (248 mg, 2.00 mmol) and anhydrous 

THF (8 cm
3
). The solution was cooled to 0°C and to it was added 

diphenylphosphoryl azide (660 mg, 2.40 mmol) and, dropwise, DBU (364 mg, 2.40 

mmol). The reaction was stirred at 0°C for 1 hour and then at room temperature 

overnight. The reaction was heated to 40°C for 3 hours before being allowed to cool 

to room temperature. Et2O (10 cm
3
) and H2O (5 cm

3
) were then added to the 

reaction. The aqueous phase was extracted with Et2O (2 x 10 cm
3

). The Et2O extracts 

were collected and combined before being dried over Na2SO4, filtered and the 

solvent removed under reduced pressure to leave the crude as a pale yellow oil. The 

crude was purified by column chromatography using a short silica gel column to 

minimise decomposition of the azide on the silica (silica gel, 0-10% EtOAc in 

petroleum ether, TLC: silica plate, 1:1 EtOAc:petroleum ether, visualisation by 

KMnO4, product Rf = 0.89) to give the purified product as a pale yellow oil (151 mg, 

1 mmol, 51%). υmax 3675, 2969, 2901, 2358, 2342, 2090, 1441, 1242, 1065, 950, 
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783, 668 cm
-1

; δH (400 MHz, CDCl3) 5.74-5.73 (1H, s, CH), 5.44-5.43 (1H, s, CH), 

3.69 (2H, s, CH2), 2.66 (4H, s, 2 x CH2), 1.69 (3H, s, CH3) ; δC (100 MHz, CDCl3) 

130.86 ( C), 192.87 (C), 123.96 (CH), 117.94 (CH), 57.15 (CH2), 31.37 (CH2), 28.32 

(CH2), 22.94 (CH3); m/z (CI) 107.2 (M
+
 - 42) weak spectrum, compound does not 

ionise readily, HRMS data could not be obtained.  

  

N-((1-((4-Methylcyclohexa-1,4-dienyl)methyl)-1H-1,2,3-triazol-4-

yl)methylamino)-1,2-diphenyl)-4-methylbenzenesulfonamide (224). 

 

This compound is novel. 

To an argon purged dried flask was added the ([(1R,2R)-1,2-diphenyl-N-(prop-2-

ynylamino)ethyl]-4-methylbenzenesulfonamide 223 (113 mg, 0.280 mmol) and 

degassed anhydrous THF (4 cm
3
) and degassed distilled water (4 cm

3
). Under a flow 

of argon the 3-(azidomethyl)-6-methylcyclohexa-1,4-diene 225 (50 mg, 0.34 mmol), 

Cu(OAc)2 (11 mg, 0.060 mmol) and sodium-(L)-ascorbate (22 mg, 0.11 mmol). The 

reaction turned from blue to cloudy white and was stirred at room temperature for 48 

hours.  EtOAc was then added to the reaction followed by ammonium hydroxide 

(36%) solution (aq.). The EtOAc phase was collected and washed with further 

ammonium hydroxide solution (3 x 10 cm
3
).  The ammonium hydroxide solution 

was then extracted with EtOAc (3 x 10 cm
3
). The EtOAc phases were combined, 

dried over Na2SO4, filtered and the solvent removed under reduced pressure to leave 

the crude product as a pale blue oil. The crude product was purified by column 

chromatography (silica gel, 0-5% MeOH in DCM, TLC: silica plate, 5% MeOH in 
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DCM, visualisation by KMnO4, product Rf = 0.49) to give the product as a white 

solid (100 mg, 0.18 mmol, 64%). Mp 160-161°C; [α]D
29

 -25.8 (c 0.25 in CHCl3) 

(R,R); (found (ESI): M
+
 + H, 554.2592. C32H36N5O2S requires M, 554.2584 error -

1.4 ppm); υmax 3331, 3028, 2817, 2360, 2342, 1453, 1325, 1152, 1052, 911, 813, 

697, 666 cm
-1

; δH (400 MHz, CDCl3) 7.35 (2H, d, J 7.5 Hz, CHArSO2), 7.13-7.11 

(3H, m, CHAr), 7.04-6.98 (7H, m, CHAr), 6.90 (2H, d, J 7.5 Hz, CHArSO2), 6.29 

(1H, br s, NHTs), 5.73 (1H, s, NCH2C=CH), 5.38 (1H, s, H3CC=CH), 4.82 (2H, s, 

NNCH2CH=CH), 4.32 (1H, d, J 7.8, CH
a
H

b
NHCH), 3.76 (2H, d, J 7.8 Hz, 

CH
a
H

b
NHCH), 3.72 (1H, d J, 13.8 Hz, CHNHTs), 3.59 (1H, d J, 13.8, CHNHCH2), 

2.68-2.64 (2H, m, CH2CH=CCH3), 2.49-2.43 (2H, m, H3CCCH2), 2.31 (3H, s, 

ArCH3), 1.68 (3H, s, CH3C=CH); δC (100 MHz, CDCl3) 146.51 (CAr), 142.74 

(CAr), 138.71 (CAr), 138.23 (CAr), 137.02 (CAr), 130.78 (CAr), 129.68 (CAr), 

129.12 (2 CHAr), 128.37 (2 CHAr), 127.94 (2 CHAr), 127.67 (2 CHAr), 127.61 

(CHAr), 127.49 (2 CHAr), 127.28 (CHAr), 127.06 (2 CHAr), 124.95 (HC=), 121.42 

(HC=), 117.64 (HC=), 67.15 (CH), 63.09 (CH), 56.10 (CH2), 42.31 (CH2), 31.46 

(CH2), 27.74 (CH2), 22.91 (CH3), 21.43 (CH3); m/z (ESI) 554.1 (M
+
 + 1), 576.2 (M

+
 

+ 23). 

 

Attempted synthesis of N-((1R, 2R)-2-((1-(4-methylbenzyl)-1H-1, 2, 3-triazol-4-

yl)methylamino)-1,2-diphenyl)-4-methylbenzenesulfonamide 

ruthenium(II)chloride dimer, hydrochloride salt (227). 

 

This compound would be is novel.  
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To an argon purged, dried flask at 0°C was added N-((1-((4-methylcyclohexa-1, 4-

dienyl)methyl)-1H-1, 2, 3-triazol-4-yl)methyl)-1, 2-diphenylethane-1, 2-diamine 224 

(50 mg, 0.090 mmol) and EtOH (1.7 cm
3
) and concentrated HCl (aq.) (36%) (12 

μL). The resulting solution was stirred at 60°C for 30 min. A solution of RuCl3.xH2O 

(18 mg, 0.070 mmol) in EtOH (1.7 cm
3
) and water (56 μL) was added to the 

reaction. The reaction was then stirred at 75°C overnight. After this the reaction was 

cooled to room temperature and hexane was added and the solution stirred for 5 min 

before being filtered.  The solid was washed with additional hexane before being 

dried to give the product as a brown solid (27 mg), however no evidence of the 

desired complex was seen by mass spectrometry or NMR.  

 

4-Methylbenzylazide ruthenium(II)chloride dimer (220). 

 

This compound is novel. 

To an argon purged, dried flask was added 4-methylbenzylbromide 

ruthenium(II)chloride dimer previously prepared in our group (100 mg, 0.140 mmol) 

and NaN3 (27 mg, 0.42 mmol). To this was then added anhydrous, degassed DCM (6 

mL). The reaction was cooled at room temperature for 48 hours. After this the 

reaction was filtered and the solid washed with water and then further DCM before 

being dried under vacuum to leave the solid as a red/brown solid (67 mg,  0.11 

mmol, 79%). The product was found to be unstable in air and sensitive to shocks 

with agitation using a spatula causing the compound to violently decompose. It was 
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stored therefore used directly in subsequent reactions without purification. Minimal 

characterisation data was obtained. υmax 3676, 2987, 2901, 2362, 2050, 1406, 1380, 

1250, 1229, 1066, 1057, 889 cm
-1

; δH (400 MHz, DMSO) 6.23-6.20 (3H, m, CHAr-

Ru), 5.90-5.88 (2H, m, CHAr-Ru), 4.43 (2H, s, CH2), 2.20 (3H, s, CH3). 

 

Attempted synthesis of N-((1R, 2R)-2-((1-(4-methylbenzyl)-1H-1, 2, 3-triazol-4-

yl)methylamino)-1,2-diphenyl)-4-methylbenzenesulfonamide 

ruthenium(II)chloride dimer (222). 

 

This compound would be novel. 

To a nitrogen purged, dried flask containing 4-methylbenzylazide 

ruthenium(II)chloride dimer (55 mg, 0.085 mmol) was added N-((1-((4-

methylcyclohexa-1,4-dienyl)methyl)-1H-1,2,3-triazol-4-yl)methyl)-1,2-

diphenylethane-1,2-diamine 224 (69 mg, 0.17 mmol), Cu(OAc)2 (6 mg, 0.035 mmol) 

and sodium (L) ascorbate (14 mg, 0.070 mmol). To this was then added degassed 

THF/water 1/1 (4 mL) and the reaction stirred at room temperature for 48 hours. 

After this EtOAc (10 mL) was added followed by ammonium hydroxide (aq.) (35%) 

(10 mL). The EtOAc phase was separated and washed with further ammonium 

hydroxide (aq.) (35%) (10 mL). The ammonium hydroxide phases were combined 

and washed with EtOAc. The EtOAc phases were combined, dried over Na2SO4, 

filtered and the solvent removed under reduced pressure to give a black solid (101 

mg) however the desired product was not observed by mass spectrometry or NMR. 
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Attempted synthesis of N-[(1R, 2R)-1, 2-diphenyl-2-(prop-2-ynylamino)ethyl)]-

4-methylbenzenesulfonamide-(4-methylbenzylazide)ruthenium(II)chloride 

(221). 

 

This compound would be novel. 

To 4-methylbenzylazide ruthenium(II)chloride dimer 220 (6 mg, 0.09 mmol) was 

added [(1R,2R)-1,2-diphenyl-N-(prop-2-ynylamino)ethyl]-4-methylbenzene 

sulfonamide 223 (73 mg, 0.18 mmol) and anhydrous, degassed IPA (10 mL). To this 

was then added triethylamine (36 mg, 0.36 mmol) and the reaction was stirred at 

reflux for 1 hour. After this the reaction was cooled to room temperature and the 

solvent removed under reduced pressure. The residue was washed with water and 

dried under vacuum to leave the crude product as a black solid (123 mg, 0.18 mmol). 

No evidence of the desired complex was seen by mass spectrometry or NMR 

analysis. 

 

Attempted synthesis of N-((1R,2R)-2-((1-(4-methylbenzyl)-1H-1, 2, 3-triazol-4-

yl)methylamino)-1,2-diphenyl)-4-methylbenzenesulfonamide 

ruthenium(II)chloride monomer (226). 

 

This compound would be novel. 

To a nitrogen purged, dried schlenk tube was added N-((1-((4-methylcyclohexa-1,4-

dienyl)methyl)-1H-1,2,3-triazol-4-yl)methylamino)-1,2-diphenyl)-4-

methylbenzenesulfonamide 224 (110 mg, 0.200 mmol) and anhydrous toluene (0.6 
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cm
3
). To the stirred solution at 50°C was added HCl (aq.) (37%) (25 μL). The 

solution was heated to 75°C and RuCl3.3H2O (44 mg, 0.16 mmol) in water (50 μL) 

was added followed by IPA (0.3 cm
3
). The reaction was stirred at 75°C overnight. 

After this the reaction was cooled to 0°C and toluene (0.9 cm
3
) and N,N-

diisopropylethylamine (145 μL, 0.83 mmol) was added with stirring. The reaction 

was allowed to warm to room temperature and was then heated at 80°C for 30 min 

before being again cooled to room temperature. DCM (1.5 mL) was added and the 

reaction solution was filtered over neutral alumina which was then washed with 

DCM. The filtrate was dried under reduced pressure. IPA (1.5 mL) was then added 

and the solution stirred at room temperature for 1 hour after which it was filtered and 

the solid dried to give a black solid (85 mg). No evidence of the desired product was 

seen by mass spectrometry or NMR analysis.  

 

Benzyl azide. 

 

This compound is known in the literature and has been fully characterised.
197

 

To a nitrogen purged flask was added sodium azide (215 mg, 3.30 mmol) in DMSO 

(5 cm
3
). To this was then added a solution of benzyl bromide (513 mg, 3.00 mmol) 

in DMSO (2.5 cm
3
). The reaction was stirred at room temperature overnight. After 

this water was added to the reaction and the product extracted into Et2O (3 x 15 

cm
3
). The Et2O phases were combined, dried over MgSO4, filtered and the solvent 

removed under reduced pressure to leave the product as a colourless oil (303 mg, 

2.30 mmol, 77%). Purification was not necessary. υmax 2090, 1496, 1454, 1253, 

1201, 876, 735, 694 cm
-1

; δH (400 MHz, CDCl3) 7.41-7.31 (5H, m, CHAr), 4.33 (2H, 
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s, CH2); δC (100 MHz, CDCl3) 135.39 (CAr), 128.87 (2 CHAr), 128.34 (CHAr), 

128.25 (2 CHAr), 54.84 (CH2); m/z (CI) 91.0 (M
+
 - 42). Data matches that reported 

for this compound.
197

 

 

N-((1R,2R)-2-((1-benzyl-1H-1,2,3-triazol-4-yl)methylamino)-1,2-diphenyl)-4-

methylbenzenesulfonamide (228). 

 

 

This compound is known in the literature and has previously been fully 

characterised.
54

 

To a nitrogen purged, dried flask was added [(1R,2R)-1,2-diphenyl-N-(prop-2-

ynylamino)ethyl]-4-methylbenzene sulfonamide 223 (202 mg, 0.5 mmol), degassed 

dry THF (6.5 cm
3
) and degassed water (6.5 cm

3
). To the stirred solution was then 

added Cu(OAc)2 (18 mg, 0.10 mmol), sodium ascorbate (40 mg, 0.20 mmol) and 

benzyl azide (80 mg, 0.60 mmol). The reaction was stirred at room temperature for 

48 hours. During this time, the reaction solution turned from blue to cloudy white in 

colour. After 48 hours, EtOAc was added to the reaction followed by ammonium 

hydroxide (35% aq.). The EtOAc phase was collected and washed with further 

ammonium hydroxide. The EtOAc phase was dried over Na2SO4, filtered and the 

solvent removed under reduced pressure to give the crude product as an off white 

solid. The crude product was purified by column chromatography (silica gel, 0-10% 

MeOH in DCM, TLC: silica plate, 5% MeOH in DCM, visualisation by KMNO4, 

product Rf = 0.52) to give the product as a white solid (60 mg, 0.11 mmol, 22%). 

Mp 190°C; [α]D
30

 -26.4 (c 0.5 in CHCl3) (R,R) (lit.
54

 [α]D
29

 -21.3 (c 0.5 in CHCl3) 
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(R,R)); (found (ESI): M
+
 + H, 538.2272 C31H32N5O2S requires M, 538.2271); υmax 

3345, 2976, 1454, 1433, 1323, 1151, 1077, 1051, 933, 812, 714, 694, 662 cm
-1

; δH 

(400 MHz, CDCl3) 7.38-7.33 (5 H, m, CHAr), 7.27-7.25 (2 H, m, CHAr), 7.23 (1H, 

s, NH), 7.11-7.09 (3H, m, CHAr), 7.04-6.94 (7H, m, CHAr), 6.89-6.87 (2H, m, 

CHAr), 6.25 (1H, br s, NH), 5.50-5.42 (2H, m, CH2), 4.31 (1H, d, J 7.7 Hz, CH
a
H

b
), 

3.74 (1H, d, J 7.7 Hz, CH
a
H

b
), 3.70 (1H, d, J 14.2 Hz, CH

a
H

b
), 3.56 (1H, d, J 14.2 

Hz, CH
a
H

b
), 2.30 (3H, s, CH3); δC (100 MHz, CDCl3) 146.75 (CAr), 142.74 (CAr), 

138.68 (CAr), 138.25 (CAr), 137.01 (CAr), 129.13 (4 CHAr), 128.74 (CHAr), 

128.37 (2 CHAr), 128.10 (2 CHAr), 127.94 (2 CHAr), 127.66 (2 CHAr), 127.61 

(CHAr), 127.47 (2 CHAr), 127.29 (CHAr), 127.05 (2 CHAr), 121.59 (CHAr), 71.83 

(C), 67.12 (CH), 65.93 (CH), 63.08 (CH), 54.10 (CH2), 42.26 (CH2), 21.44 (CH3); 

m/z (ESI) 538.2 (M
+
 + 1). Data matches that previously reported.

54 

Attempted synthesis of triazole tethered monomer 229 using aryl substitution. 

 

This compound would be novel. 

The attempted preparation of this compound was carried out according to the general 

procedure 7 using N-((1R,2R)-2-((1-benzyl-1H-1,2,3-triazol-4-yl)methylamino)-1,2-

diphenyl)-4-methylbenzenesulfonamide 228 (28 mg, 0.05 mmol), ethylbenzoate 

ruthenium(II)chloride dimer 197 (16 mg, 0.025 mmol), DCM (1.3 cm
3
) and 

chlorobenzene (3.3 cm
3
). After 5 hours at 90°C no evidence of the formation of the 

desired monomer 229 was seen by mass spectrometry. 
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5.3.5.5 Synthesis of polymer supported ligands and ruthenium complexes. 

 

Hex-5-ynyl-4-methylbenzenesulfonate (244). 

 

This compound is known in the literature but has not previously been fully 

characterised.
198 

To a dried, nitrogen purged flask was added 5-hexyn-1-ol (392 mg, 4.00 mmol) was 

added anhydrous DCM (24 cm
3
). The solution was then cooled to 0°C and to it was 

added DMAP (49 mg, 0.4 mmol), tosyl chloride (915 mg, 4.8 mmol) and 

triethylamine (486 mg, 4.8 mmol). The resulting colourless solution was then 

allowed to warm to room temperature and stirred overnight. Saturated NH4Cl (aq.) 

solution was added to quench the reaction and the mixture extracted with EtOAc (3 x 

15 cm
3
), dried over Na2SO4, filtered and the solvent removed under reduced pressure 

to leave the product as a faint yellow oil (790 mg, 3.10 mmol, 78%). Purification 

was not necessary. (found (ESI): M
+
 + Na, 275.0713 C13H16NaO3S requires M, 

275.0712); υmax 3289, 2958, 1354, 1172, 1097, 1009, 930, 814, 661 cm
-1

; δH (300 

MHz, CDCl3) 7.80 (2H, d, J 8.0, CHAr), 7.35 (2H, d, J 8.0 Hz, CHAr), 4.06 (2H, t, J 

6.2 Hz, CH2OSO2Ar), 2.45 (3H, s, CH3), 2.17 (2H, td, J 6.9 and 2.7 Hz, HCCCH2), 

1.93 (1H, t, J 2.6 Hz, HCCCH2), 1.83-1.73 (2H, m, CH2CH2OSO2), 1.61-1.51 (2H, 

m, HCCH2CH2CH2); δC (100 MHz, CDCl3) 144.79 (CAr), 133.08 (CAr), 129.87 (2 

CHAr), 127.88 (2 CHAr), 83 40 (CH), 69.94 (CH2), 68.99 (C), 27.76 (CH2), 24.22 

(CH2), 21.64 (CH3), 17.73 (CH2); m/z (ESI) 275.0 (M
+
 + 23). Data matches that 

previously reported for this compound.
198 
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Ethyl-3-(4’-hydroxyphenyl)propanoate (245). 

 

This compound is known in the literature and has previously been fully 

characterised.
199 

To 3-(4-hydroxyphenyl)propionic acid (664 mg, 4.00 mmol) was added ethanol (4 

cm
3
) and catalytic H2SO4 (98%) (22μL). The solution was stirred at room 

temperature overnight. The ethanol was removed under reduced pressure and water 

was added to the residue which was then extracted with EtOAc (3 x 10 cm
3
), dried 

over Na2SO4, filtered and the solvent removed under reduced pressure to leave the 

product as a colourless oil (625 mg, 3.2mmol, 80%). Purification was not necessary. 

(found (ESI): M
+
 + Na, 217.0843. C11H14NaO3 requires M, 217.0835); υmax 3368, 

2981, 1703, 1514, 1445, 1372, 1205, 1101, 1035, 828 cm
-1

; δH (400 MHz, CDCl3) 

7.02 (2H, d, J 8.3 Hz, CHAr), 6.74 (2H, d, J 8.3 Hz, CHAr), 6.45 (1H, br s, OH), 

4.12 (2H, q, J 7.0 Hz, OCH2), 2.86 (2H, t, J 7.7 Hz, CH2CH2CO), 2.58 (2H, t, J 7.7 

Hz, CH2CH2CO), 1.22 (3H, t, J 7.0 Hz, CH3); δC (100 MHz,CDCl3) 173.88 (C=O), 

154.38 (CAr), 132.18 (CAr), 129.39 (2 CHAr), 115.41 (2 CHAr), 60.78 (CH2), 36.37 

(CH2), 30.15 (CH2), 14.16 (CH3); m/z (ESI) 217.1 (M
+
 + 23). Data matches that 

previously reported for this compound.
199 

 

Ethyl-3-(4-(hex-5-ynyloxy)phenyl)propanoate (246). 

 

This compound is novel. 
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To a nitrogen purged, dried flask was added ethyl-3-(4-hydroxyphenyl)propanoate 

245 (543 mg, 2.80 mmol), K2CO3 (1.16 g, 8.40 mmol), NaI (42 mg, 0.28 mmol) and 

anhydrous acetonitrile (17 cm
3
). To this was then added hex-5-ynyl-4-

methylbenzenesulfonate 244 (857 mg, 3.40 mmol). The reaction was stirred at reflux 

(80°C) overnight. After this the reaction was cooled to room temperature and the 

acetonitrile was removed under reduced pressure. Water was added to the residue 

and the mixture was extracted with EtOAc (3 x 15 cm
3
). The EtOAc was dried over 

Na2SO4, filtered and the solvent removed under reduced pressure to leave the crude 

product as an orange oil. The crude product was purified by column chromatography 

(silica gel, 0-50% EtOAc in petroleum ether, TLC: 30% EtOAc in petroleum ether, 

visualisation by KMnO4, product Rf 0.70) to give the product as a white solid (788 

mg, 2.90 mmol, 85%). (Found (ESI): M
+
 + H, 275.1644 C17H23O3 requires M, 

275.1642); υmax 3291, 2938, 1729, 1511, 1240, 1176, 1038, 826, 636 cm
-1

; δH (300 

MHz, CDCl3) 7.09 (2H, d, J 8.6 Hz, CHAr), 6.79 (2H, d, J 8.6 Hz, CHAr), 4.10 (2H, 

q, J 7.1 Hz, CH2CH3), 3.93 (2H, t, J 6.2 Hz, CH2OAr), 2.89-2.84 (2H, m, 

CH2COEt), 2.58-2.53 (2H, m, CH2CH2CO2Et), 2.25 (2H, td, J 7.0 and 2.6 Hz, 

HCCCH2), 1.95 (1H, t, J 2.6 Hz, HCCCH2), 1.90-1.83 (2H, m, CH2CH2CH2OAr ), 

1.74-1.64 (2H, m, HCCCH2CH2), 1.21 (3H, t, J 7.1 Hz, OCH2CH3); δC (75 MHz, 

CDCl3) 172.38 (C=O), 156.84 (CAr), 131.98 (CAr), 128.62 (2 CHAr), 113.83 (2 

CHAr), 83.50 (CH), 68.03 (C), 66.62 (CH2), 59.75 (CH2), 29.52 (CH2), 27.70 (CH2), 

24.44 (CH2), 17.54 (CH2), 13.62 (CH3); m/z (ESI) 275.1 (M
+
 + 1), 297.1 (M

+
 + 23). 

For procedure see reference 200. 
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Ethyl-3-(4-(hex-5-ynyloxy)phenyl)propan-1-ol (247). 

 

This compound is novel. 

To ethyl-3-(4-(hex-5-ynyloxy)phenyl)propanoate 246 (590 mg, 2.15 mmol) was 

added anhydrous THF (4.3 cm
3
) and the solution cooled to 0°C. LiAlH4 (1M in 

THF) (4.3 cm
3
, 4.3 mmol) was then added dropwise. The reaction was stirred at 

room temperature and monitored by TLC (1:1 EtOAc:petroleum ether 40-60, Rf 

product = 0.42) until complete (2 hr). At this point the reaction was again cooled to 

0°C and water was added dropwise to quench the reaction. The THF was removed 

under reduced pressure and the product extracted from the residue with EtOAc (3 x 

15 cm
3
). The EtOAc phases were combined, dried over Na2SO4, filtered and the 

solvent removed under rotary evaporation to leave the crude as a colourless oil (408 

mg, 1.76 mmol, 70%). Purification was not necessary. Mp 28-29°C; (found (ESI): 

M
+
 + Na, 255.1359 C15H20NaO2 requires M, 255.1356); υmax 3284, 2942, 2870, 

1510, 1242, 1175, 1053, 1032, 1006, 817, 634 cm
-1

; δH (400 MHz, CDCl3) 7.09 (2H, 

d, J 8.5 Hz, CHAr), 6.81 (2H, d, J 8.5 Hz, CHAr), 3.95 (2H, t, J 6.3 Hz, CH2OAr), 

3.65 (2H, t, J 6.4 Hz, CH2OH), 2.64 (2H, t, J 7.5 Hz, ArCH2), 2.27 (2H, td, J 7.0 and 

2.5 Hz, HCCCH2), 1.97 (1H, t, J 2.6 Hz, HCCCH2), 1.93-1.81 (4H, m, 

CH2CH2CH2OAr and CH2CH2OH overlapping), 1.75-1.67 (2H, m, HCCCH2CH2), 

1.59 (1H, br s, OH); δC (100 MHz, CDCl3) 157.24 (CAr), 133.83 (CAr), 129.31 (2 

CHAr), 114.46 (2 CHAr), 84.18 (CH), 68.66 (C), 67.32 (CH2), 62.26 (CH2), 34.45 

(CH2), 31.16 (CH2), 28.36 (CH2), 25.09 (CH2), 18.18 (CH2); m/z (ESI) 255.1 (M
+
 + 

23). 
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N-((1R, 2R)-2-(3-(4-(Hex-5-ynyloxy)phenyl)propylamino)-1, 2-diphenylethyl)-4-

methylbenzenesulfonamide (248). 

 

This compound is novel. 

This compound was prepared according to general procedure 5 using 3 ethyl-3-(4-

(hex-5-ynyloxy)phenyl)propan-1-ol 247 (400 mg, 1.72 mmol), 2,6-lutidine (353 mg, 

3.30 mmol), trifluoromethanesulfonic anhydride (787 mg, 2.80 mmol), (R,R)-

TsDPEN (403 mg, 1.10 mmol), Et3N (263 mg, 2.60 mmol) and DCM (8 cm
3
). The 

product was purified by column chromatography as in the general procedure. TLC: 

silica gel, 30% EtOAc in petroleum ether, product Rf = 0.36 with visualisation by 

UV and KMnO4, 2,6-lutidine Rf = 0.29 with visualisation by UV, 2,6-lutidine elutes 

with the product). The fractions containing the product were collected, combined and 

dried under reduced pressure to give a white solid. The solid was then washed with 

pentane to remove residual 2,6-lutidine. The mixture was filtered and the solid dried 

to give the product as a white solid (524 mg, 0.900 mmol, 82% based on 403 mg, 1.1 

mmol N-(2-aminoethyl)-4-methylbenzenesulfonamide)). Mp 123-124°C; [α]D
27

 -25.2 

(c 0.25 in CHCl3) (R,R); (found (ESI): M
+
 + H, 581.2833 C36H41N2O3S requires M, 

581.2832); υmax 3286, 3248, 2915, 1510, 1454, 1434, 1316, 1242, 1160, 1031, 808, 

700 cm
-1

; δH (400 MHz, CDCl3) 7.37 (2H, d, J 8.5 Hz, CHArSO2), 7.13-7.11 (3H, m, 

CHAr), 7.05-6.88 (12H, m, CHAr and NHSO2 overlapping), 6.78 (2H, d, J 8.5 Hz, 

CHArSO2), 6.28 (1H, br s, NH), 4.25 (1H, d, J 7.8 Hz, CHNSO2), 3.95 (2H, t, J 5.0 

Hz, CH2OAr), 3.59 (1H, d, J 7.8 Hz, CHN), 2.51-2.38 (3H, m, ArCH2 and CH2N 
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overlapping), 2.31 (3H, s, CH3), 2.29-2.24 (3H, m, HCCCH2 and CH2N 

overlapping), 1.96 (1H, t, J 2.6 Hz, HCCCH2), 1.92-1,85 (2H, m, CH2CH2CH2OAr), 

1.75-1.61 (4H, m, CH2CH2N and HCCCH2CH2); δC (100 MHz, CDCl3) 157.20 

(CAr), 142.70 (CAr), 139.33 (CAr), 138.39 (CAr), 137.09 (CAr), 133.79 (CAr), 

129.21 (2 CHAr), 129.10 (2 CHAr), 128.31 (2 CHAr), 127.93 (2 CHAr), 127.58 (2 

CHAr), 127.46 (CHAr), 127.41 (2 CHAr), 127.29 (CHAr), 127.13 (2 CHAr), 114.39 

(2 CHAr) 84.18 (C), 68.64 (CH), 67.77 (CH), 67.29 (CH2), 63.09 (CH), 46.45 (CH2), 

32.37 (CH2), 31.71 (CH2), 28.37 (CH2), 25.11 (CH2), 21.46 (CH3), 18.19 (CH2); m/z 

(ESI) 581.3 (M
+
 + 1). 

(R,R)-3C-tethered monomer with o-hexyne substituent (249) 

 
 

This compound is novel. 

This compound was prepared as for general procedure 7 using N-((1R, 2R)-2-(3-(4-

(hex-5-ynyloxy)phenyl)propylamino)-1,2-diphenylethyl)-4-methylbenzene 

sulfonamide 248 (116 mg, 0.2 mmol), ethylbenzoate ruthenium(II)chloride dimer 

197 (64 mg, 0.1 mmol), DCM (5 cm
3
) and chlorobenzene (13.4 cm

3
). After 5 hours 

at 90°C mass spectrometry analysis showed the desired monomer 248:249 2:1 (m/z  

681.2 [M
+
 + H - Cl]). Due to the small scale of the reaction, the product was not 

purified. The reaction was carried out as proof of concept for aryl substitution with 

this ligand structure prior to preparing the polymer supported derivative 253. 
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N-((1R,2R)-2-(3-(4-(4-(3-Benzyl-3H-1,2,3-triazol-4-yl)butoxy)phenyl) 

propylamino)-1,2-diphenylethyl)-4-methylbenzenesulfonamide (250). 

 

This compound is novel. 

To a nitrogen purged flask was added the N-((1R,2R)-2-(3-(4-(hex-5-

ynyloxy)phenyl)propylamino)-1,2-diphenylethyl)-4-methylbenzenesulfonamide 248 

(116 mg, 0.200 mmol), Cu(OAc)2 (7 mg, 0.04 mmol) and sodium-(L)-ascorbate (16 

mg, 0.08 mmol) and degassed solution of 1/1 THF/water (5 cm
3
). To the stirred 

solution was then added benzyl azide (32 mg, 0.24 mmol). The reaction became a 

blue colour when stirred and then became cloudy white. The reaction was stirred at 

room temperature for 48 hours. After this EtOAc (10 cm
3
) was added followed by 

ammonium hydroxide (35%) solution. The EtOAc was separated and aqueous phase 

extracted with further EtOAc (2 x 10 cm
3
). The EtOAc phases were combined and 

washed with further ammonium hydroxide (35%) solution. The EtOAc phases were 

dried over Na2SO4, filtered and the solvent removed under reduced pressure to leave 

the product as a white solid (140 mg, 0.19 mmol, 95%). Purification was not 

necessary. Mp 123-124°C; [α]D
27

 -25.2 (c 0.25 in CHCl3) (R,R); (found (ESI): M
+
 + 

H, 714.3481 C43H48N5O3S requires M, 714.3472); υmax 2925, 1510, 1454, 1324, 

1241, 1155, 1047, 811, 698 cm
-1

; δH (400 MHz, CDCl3) 7.38-7.34 (4H, m, CHAr), 

7.25-7.21 (3H, m, CHAr), 7.13-7.10 (3H, m, CHAr), 7.04-7.00 (5H, m, CHAr), 

6.97-6.88 (6H, m, CHAr), 6.75 (2H, d, J 8.5 Hz, CHAr), 6.30 (1H, br s, NH), 5.46 

(2H, s, ArCH2NNN), 4.25 (1H, d, J 7.9 Hz, CHNHSO2), 3.93 (2H, t, J 5.7 Hz, 
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CH2OAr), 3.59 (1H, d, J 7.9 Hz, CHNH), 2.76 (2H, t, J 7.0 Hz, CH2CNNN), 2.49-

2.38 (3H, m, CH2Ar and CHHNH), 2.31-2.24 (4H, m, CH3 and CHHNH 

overlapping), 1.84-1.81 (4H, m, CH2CH2CH2CH2OAr), 1.69-1.61 (2H, m, 

CH2CH2NH); δC (100 MHz, CDCl3) 157.18 (CAr), 148.42 (CAr), 142.72 (CAr), 

139.31 (CAr), 138.40 (CAr), 137.09 (CAr), 133.76 (CAr), 129.21 (2 CHAr), 129.12 

(2 CHAr), 129.09 (2 CHAr), 128.64 (CHAr), 128.31 (2 CHAr), 128.01 (2 CHAr), 

127.93 (2 CHAr), 127.58 (2 CHAr), 127.45 (2 CHAr), 127.28 (CHAr), 127.11 (2 

CHAr), 120.72 (CHAr), 114.37 (2 CHAr), 82.82 (CH), 67.76 (CH), 67.52 (CH2), 

65.19 (C), 63.14 (CH), 62.18 (C), 54.01 (CH2), 46.44 (CH2), 32.37 (CH2), 31.70 

(CH2), 28.88 (CH2), 25.98 (CH2), 25.46 (CH2), 21.46 (CH3); m/z (ESI) 714.3 (M
+
 + 

1).  

 

(R,R)-3C-tethered ruthenium monomer with triazole linker (251). 

 

This compound is novel. 

This compound was prepared as for general procedure 7 using N-((1R,2R)-2-(3-(4-

(4-(3-benzyl-3H-1,2,3-triazol-4-yl)butoxy)phenyl)propylamino)-1,2-diphenylethyl)-

4-methylbenzenesulfonamide 250 (36 mg, 0.05 mmol), ethylbenzoate 

ruthenium(II)chloride dimer 197 (16 mg, 0.025 mmol), DCM (1.3 cm
3
) and 

chlorobenzene (3.3 cm
3
). After 5 hours mass spectrometry analysis showed the 

desired monomer 251:250 3:1 (m/z 814.2 [M
+
 + H - Cl]). Due to the small scale of 
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the reaction, the product was not isolated. The reaction was carried out as proof of 

concept for aryl substitution with this ligand structure prior to preparing the polymer 

supported derivative 253.  

Azido opened polymer (252). 

 

This compound is known in the literature and has previously been fully 

characterised.
201 

To poly(glycidyl methacrylate) Mn~20,000 (568 mg, 4 mmol epoxide) was added 

NaN3 (780 mg, 12 mmol) and NH4Cl (636 mg, 12 mmol). To this was then added 

anhydrous DMF (40 cm
3
). The reaction was stirred at 50°C for 24 hours. The 

reaction was cooled to room temperature and water was added until a white 

precipitate formed. The precipitate was collected by filtration and dried to give the 

product as a white solid (565 mg, 3.3 mmol repeat units, 83%). Mp 250°C 

(decomposed); υmax 3427, 2987, 2096, 1720, 1251, 1149, 1089, 747 cm
-1

; δH (300 

MHz, THF) 4.71 (1H, br s, OH), 3.87-3.84 (3H, m, COOCH2 and CH overlapping), 

3.25 (2H, br s, CH2N3), 1.86-1.78 (2H, m, CH2CCH3), 0.99-0.83 (3H, m, CH2CCH3); 

δC (75 MHz, THF) 176.71 (C=O), 68.29 (CH), 66.11 (CH2), 53.79 (CH2), 44.71 

(CH2), 16.78 (CH3). 
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Ligand functionalised polymer (253). 

 

This compound is novel. 

To a nitrogen purged flask was added the azido opened polymer 252 (45 mg, 0.20 

mmol N3) and N-((1R,2R)-2-(3-(4-(hex-5-ynyloxy)phenyl)propylamino)-1,2-

diphenylethyl)-4-methylbenzenesulfonamide 248 (113 mg, 0.20 mmol). To this was 

then added Cu(OAc)2 (7 mg, 0.04 mmol) and sodium-(L)-ascorbate 16 mg, 0.08 

mmol followed by degassed THF/water 1/1 (5 cm
3
). The reaction was stirred at room 

temperature for 48 hours. A blue precipitate formed and was collected by filtration. 

This was washed with ammonium hydroxide (aq.) and dried to give the product as a 

blue/green insoluble gel (147 mg, 0.19 mmol clicked ligand). υmax 3375, 2987, 2901, 

2103 (weak N3 signal), 1726, 1241, 1152, 1077, 1056, 810, 698, 665, 548 cm
-1

. 

 

 

Polymer supported (R,R)-3C-tethered Ru complex (254). 

 

This compound is novel. 

To a nitrogen purged flask was added the ligand functionalised polymer 253 (100 

mg, 0.13 mmol ligand) was added the ethylbenzoate ruthenium(II)chloride dimer 

197 (42 mg, 0.065 mmol). To this was then added anhydrous DCM (3.4 cm
3
) and the 

solution was stirred at room temperature for 30 min. The DCM was removed under 
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reduced pressure and was replaced with chlorobenzene (8.6 cm
3
) and the reaction 

was stirred at 90°C for 5 hours. The chlorobenzene was removed under vacuum to 

leave the product as a red/brown insoluble solid. This was washed with further DCM 

to remove unreacted ethylbenzoate ruthenium(II)chloride dimer to give the product 

(97 mg, 0.11 mmol Ru catalyst, 85%). MP 234°C (decomposed); υmax 3406, 2931, 

1720, 1510, 1445, 1269, 1156, 1106, 1049, 810, 744, 699 cm
-1

; 

 

1:9 ligand:hexyne functionalised polymer (255). 

 

This compound is novel. 

To a nitrogen purged flask was added the azido opened polymer (97 mg, 0.50 mmol 

N3) and N-((1R,2R)-2-(3-(4-(hex-5-ynyloxy)phenyl)propylamino)-1,2-diphenylethyl) 

-4-methylbenzenesulfonamide 253 (29 mg, 0.05 mmol) and hexyne (37 mg, 0.45 

mmol). To this was then added Cu(OAc)2 (18 mg, 0.1 mmol) and sodium-(L)-

ascorbate (40 mg, 0.2 mmol) and THF/water 4/1 (10 cm
3
). The reaction was stirred 

at room temperature for 48 hours. After this the product had separated from solution 

as a blue/green jelly. This was removed, washed with ammonium hydroxide (aq.) 

(35%) and dried to give the product as an insoluble blue gel (103 mg, 0.035 mmol 

ligand/0.32 mmol clicked hexyne, 70%). υmax 3265, 2954, 2931, 2871, 1728, 1453, 

1149, 1058, 809, 701, 665, 549 cm
-1

. 
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1:9 (R,R)-3C-tethered Ru complex:hexyne functionalised polymer (256). 

 

 

This compound is novel. 

To a nitrogen purged flask was added 1:9 ligand:hexyne functionalised polymer 255 

(100 mg, 0.034 mmol ligand) was added ethylbenzoate ruthenium(II)chloride dimer 

197 (11 mg, 0.017 mmol) and anhydrous DCM (0.9 cm
3
). The reaction was stirred at 

room temperature for 30 min before the DCM was removed under reduced pressure. 

Chlorobenzene (2.2 cm
3
) was added and the reaction stirred at 90°C for 5 hours. 

After this the reaction was cooled to room temperature, filtered and the solid dried to 

give the product as a red/brown solid. This was washed with further DCM to remove 

unreacted ethylbenzoate ruthenium(II)chloride dimer to give the product (70 mg, 

0.021 mmol Ru catalyst, 62%). υmax 3230, 3079, 2930, 1722, 1443, 1396, 1367, 

1288, 1268, 1149, 1105, 1054, 771, 746, 700, 665 cm
-1

. 
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3:7 ligand:hexyne functionalised polymer (257). 

 

This compound is novel. 

To a nitrogen purged flask was added the azido opened polymer (93 mg, 0.5 mmol 

N3) and N-((1R,2R)-2-(3-(4-(hex-5-ynyloxy)phenyl)propylamino)-1,2-diphenylethyl) 

-4-methylbenzenesulfonamide 248 (87 mg, 0.15 mmol) and hexyne (29 mg, 0.35 

mmol). To this was then added Cu(OAc)2 (18 mg, 0.1 mmol) and sodium-(L)-

ascorbate (40 mg, 0.2 mmol) and THF/water 4/1 (10 cm
3
). The reaction was stirred 

at room temperature for 48 hours. After this the product had separated from solution 

as a blue/green jelly. This was removed, washed with ammonium hydroxide (aq.) 

(35%) and dried to give the product as an insoluble blue gel (180 mg, 0.13 mmol 

ligand/0.30 mmol clicked hexyne, 87%). υmax 3272, 2930, 2869, 1727, 1454, 1242, 

1152, 1055, 810, 699, 665, 548 cm
-1

. 
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3:7 (R, R)-3C-tethered Ru complex:hexyne functionalised polymer (258). 

 

This compound is novel. 

This compound was prepared as for 256 using 3:7 ligand:hexyne functionalised 

polymer 257 (180 mg, 0.13 mmol ligand), ethylbenzoate ruthenium(II)chloride 

dimer 197 (42 mg, 0.065 mmol), anhydrous DCM (1.2 cm
3
) and chlorobenzene (2.8 

cm
3
) to give the product (189 mg, 0.12 mmol Ru catalyst, 92%). υmax 3687, 3674, 

2972, 2901, 1723, 1394, 1251, 1056, 861, 679, 565 cm
-1

. 

 

10% azido opened poly(glycidyl methacrylate) (259). 

 

This compound is novel. 

To a nitrogen purged flask was added poly (glycidyl methacrylate) Mn 20,000 (568 

mg, 4 mmol epoxide) was added NaN3 (26 mg, 0.4 mmol) and NH4Cl (21 mg, 0.4 

mmol). To this was then added anhydrous DMF (40 cm
3
). The reaction was stirred at 

50°C overnight. The reaction was cooled to room temperature and DMF removed 

under vacuum. The residue was then washed with water and dried to leave a viscous, 

sparingly soluble colourless gel (330 mg, 0.23 mmol N3/2.0 mmol epoxide, 58%). 
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υmax 3435 (weak), 2932, 2102 (weak), 1728 (weak), 1665, 1386, 1255, 1148, 1091, 

658 cm
-1

; δH (400 MHz, THF) 4.61 (0.1H, br s, OH), 4.17 (0.9H, br s, COOCH
a
H

b
), 

3.89-3.84 (0.3H, m, COOCH2 and CHOH overlapping), 3.70 (0.9H, br s, 

COOCH
a
H

b
), 3.24 (0.2H, br s, CH2N3), 3.10 (0.9H, br s, COOCH2CH ), 2.66 (0.9H, 

br s, CH
a
H

b
O in epoxide), 2.51 (0.9H, br s, CH

a
H

b
O in epoxide), 1.91-1.81 (2H, 

CH2CCH3), 1.00-0.84 (3H, m, CH3); δC (100 MHz, DMSO) quaternary carbon 

CC=O not observed 162.28 (1C, s), 143.17 (1C, s), 65.70 (1C, s), 65.45 (1C, s), 

48.57 (1C, s), 48.49 (1C, s), 43.79 (1C, s), 39.96 (1C, s), 35.75 (1C, s), 30.67 (1C, s). 

 

1:9 azido:diethylamine functionalised poly(glycidyl methacrylate) (260). 

 

This compound is novel. 

To a nitrogen purged flask connected to a condenser was added 10% azide opened 

poly (glycidyl methacrylate) 259 (230 mg, 1.44 mmol epoxide/0.16 mmol N3) was 

added DMSO (2.5 cm
3
) and diethylamine (124 mg, 1.7 mmol). The reaction was 

stirred at 60°C overnight. After this the reaction was cooled to room temperature and 

the DMSO removed under vacuum with gentle heating to leave the product as a 

straw coloured, insoluble, viscous gel (280 mg, 0.15 mmol N3/1.4 mmol 

diethylamine, 97%). υmax 3386, 2965, 2931, 2101, 1724, 1438, 1385, 1269, 1152, 

1020, 952 cm
-1

. For procedure see reference 164.
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1:9 ligand:diethylamine functionalised polymer (261). 

 

This compound is novel. 

To a nitrogen purged flask was added 1:9 azide:diethylamine opened poly (glycidyl 

methacrylate) 260 (280 mg, 0.15 mmol N3/1.4 mmol diethylamine) and N-((1R, 2R)-

2-(3-(4-(hex-5-ynyloxy)phenyl)propylamino)-1,2-diphenylethyl)-4-

methylbenzenesulfonamide 248 (87 mg, 0.15 mmol). To this was then added 

Cu(OAc)2 (5.5 mg, 0.03 mmol) and sodium-(L)-ascorbate (12 mg, 0.06 mmol) 

followed by THF/water 4/1 (3 cm
3
). The reaction was stirred at room temperature for 

48 hours. The reaction was filtered and the solid was washed with ammonium 

hydroxide (aq.) (35 %) and dried to leave a blue/green insoluble solid (250 mg, 0.09 

mmol clicked ligand/0.81 mmol diethylamine, 75%). υmax 3344, 2968, 2936, 1726, 

1453, 1386, 1374, 1241, 1151, 1060, 811, 700 cm
-1

. 
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1:9 (R,R)-3C-tethered Ru complex:diethylamine functionalised polymer (262). 

 

This compound is novel. 

This compound was prepared as for 256 using 1:9 ligand:diethylamine 

functionalised polymer 261 (250 mg, 0.09 mmol clicked ligand), ethylbenzoate 

ruthenium(II)chloride dimer 197 (29 mg, 0.045 mmol), anhydrous DCM (0.8 cm
3
) 

and chlorobenzene (2 cm
3
) to give the product (141 mg, 0.05 mmol Ru/0.45 mmol 

diethylamine, 56%). υmax 3374, 2967, 1724, 1665, 1453, 1386, 1266, 1151, 1084, 

997, 746, 700 cm
-1

. 

 

5.3.6 Analysis of reduction products. 

All products are known in the literature and have previously been fully characterised. 

All data matches that reported for each compound.  

GC Sample preparation: A small amount of the reaction solution was removed by 

syringe and filtered through a narrow column of silica with 1:1 EtOAc:petroleum 

ether 40-60. The filtrate was dried under reduced pressure. 2 mg of the residue was 

then dissolved in EtOAc (1 cm
3
) and 1 μL of this solution was injected on the GC. 
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HPLC Sample preparation: A small amount of the reaction solution was removed by 

syringe and filtered through a narrow column of silica with 1:1 EtOAc:petroleum 

ether 40-60. The filtrate was dried under reduced pressure. 2 mg of the residue was 

then dissolved in 90:10 Hexane:IPA (1 cm
3
) and 20 μL of this was injected on the 

HPLC system. 

 

Benzhydrol. 

 

GC analysis : BP20 (WAX) polyethylene glycol 25m x 0.22mm x 0.25μm, helium 

carrier gas, P=15 psi; T=190°C; ketone 11.4 min., alcohol 23.6 min. 

δH (300 MHz, CDCl3) 7.41-7.31 (8H, m, CHAr), 7.29-7.26 (2H, m, CHAr), 5.86 

(1H, d, J 3.6 Hz, OH), 2.21 (1H, d, J 3.6 Hz, CH). Data matches that previously 

reported for this compound.
202, 203 

 

(R)-1-Phenylethanol. 

 

Enantiomeric excess and conversion determined by GC analysis: Chrompac 

cyclodextrin-β-236M-19 50m x 0.25 mm x 0.25 μm, T = 115°C, P = 15psi H2, det = 

FID 220°C, inj = 220°C, ketone 9.2 min., R isomer 14.2 min., S isomer 15.6 min. 

[α]D
24

 +64.5 (c 1.0 in CHCl3) 96.7% ee. (R) (lit.
96

 [α]D
27

 +54.9 (c 1.0 in CHCl3) 96% 

ee. (R)); δH (400 MHz, CDCl3) 7.37-7.31 (4H, m, CHAr), 7.28-7.24 (1H, m, CHAr), 

4.87 (1H, q, J 6.5 Hz, CH), 2.00 (1H, br s, OH), 1.48 (3H, d, J 6.5 Hz, CH3). 
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(R)-1-(4’-Methoxyphenyl)ethanol. 

 

Enantiomeric excess and conversion determined by GC analysis: Chrompac 

cyclodextrin-β-236M-19 50m x 0.25 mm x 0.25 μm, T = 130°C, P = 15psi H2, det = 

FID 220°C, inj = 220°C, ketone 12.6 min., R isomer 30.8 min., S isomer 33.0 min. 

[α]D
30

 +46.6 (c 1.0 in CHCl3) 91.7% ee. (R) (lit.
96

 [α]D
27

 +32.3 (c 1.0 in CHCl3) 90% 

ee. (R)); δH (400 MHz, CDCl3) 7.32-7.30 (2H, m, CHAr), 6.91-6.89 (2H, m, CHAr), 

4.85 (1H, q, J 6.4 Hz, CH), 3.82 (3H, s, OCH3), 2.28 (1H, br s, OH), 1.49 (3H, d, J 

6.3 Hz, CH3). 

 

(R)-1-(4’-Trifluoromethylphenyl)ethanol. 

 

Enantiomeric excess and conversion determined by GC analysis: Chrompac 

cyclodextrin-β-236M-19 50m x 0.25 mm x 0.25 μm, T = 130°C, P = 15psi H2, det = 

FID 220°C, inj = 220°C, ketone 6.9 min., R isomer 13.4 min., S isomer 14.8 min. 

[α]D
28

 +33.5 (c 1.0 in CHCl3) 92.4% ee. (R) (lit.
204

 [α]D
22

 +29.3 (c 1.0 in CHCl3) 

>99% ee. (R));δH (400 MHz, CDCl3) 7.62-7.60 (2H, m, CHAr), 7.48-7.46 (2H, m, 

CHAr), 4.93 (1H, q, J 6.5 Hz, CH), 2.97 (1H, br s, OH), 1.49 (3H, d, J 6.5 Hz, CH3). 
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(R)-1-Phenylpropan-1-ol. 

 

Enantiomeric excess and conversion determined by GC analysis: Chrompac 

cyclodextrin-β-236M-19 50m x 0.25 mm x 0.25 μm, T = 115°C, P = 15psi H2, det = 

FID 220°C, inj = 220°C, ketone 15.7 min., R isomer 25.0 min., S isomer 26.8 min. 

[α]D
26

 +47.6 (c 1.0 in CHCl3) 89.7% ee. (R) (lit.
99

 [α]D
20

 +47.0 (c 1.4 in CHCl3) 95% 

ee. (R)); δH (300 MHz, CDCl3) 7.37-7.25 (5H, m, CHAr), 4.57 (1H, t, J 6.6 Hz, CH), 

2.03 (1H, br s, OH), 1.86-1.66 (2H, m, CH2), 0.90 (3H, t, J 7.4 Hz, CH3). 

 

(R)-1-(3’,5’-Bis(trifluoromethyl)phenyl)ethanol. 

 

Enantiomeric excess and conversion determined by GC analysis: Chrompac 

cyclodextrin-β-236M-19 50m x 0.25 mm x 0.25 μm, T = 120°C, P = 15psi H2, det = 

FID 220°C, inj = 220°C, ketone 4.8 min., R isomer 12.8 min., S isomer 12.2 min. 

[α]D
31

 +16.5 (c 1.0 in CHCl3) 81.8% ee. (R) (lit.
105

 [α]D
28

 +11.9 (c 1.0 in CHCl3) 

96% ee. (R)); δH (300 MHz, CDCl3) 7.81-7.78 (3H, m, CHAr), 5.00 (1H, q, J 6.3 Hz, 

CH), 2.92 (1H, br s, OH), 1.51 (3H, d, J 6.6 Hz, CH3). 
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(S)-2-phenoxy-1-phenylethanol. 

 

Enantiomeric excess and conversion determined by HPLC analysis: IB column, 0.46 

x 25 cm, 0.7 cm
3
/min, 95:5 Hexane:2-propanol, RT, ketone 14.2 min, R isomer 17.1 

min, S isomer 22.4 min. Ketone UV response is 12.35 times greater than for the 

alcohol. [α]D
29

 +52.2 (c 1.0 in CHCl3) 94.5% ee. (S) (lit.
105

 [α]D
30

 +58.8 (c 1.0 in 

CHCl3) 95% ee. (S)); δH (300 MHz, CDCl3) 7.45-7.24 (7H, m, CHAr), 6.98-6.89 

(3H, m, CHAr), 5.10 (1H, dd, J 8.8 and 3.3 Hz, CH), 4.10-4.07 (1H, m, CH2), 4.02-

3.96 (1H, m, CH2), 2.90 (1H, br s, OH). 

 

(S)-1-phenylethane-1,2-diol. 

 

Enantiomeric excess and conversion determined by GC analysis: CP-ChiraSil-DEX 

CB 25 m x 0.25 mm x 0.25 μm, T = 140°C, P = 18psi He, det = FID 220°C, inj = 

220°C, ketone 8.6 min, S isomer 31.3 min, R isomer 33.3 min. [α]D
27

 +64.5 (c 0.5 in 

CHCl3) 90.3% ee. (S) (lit.
104

 [α]
20

 +63 (c 1.0 in CHCl3) 96% ee. (S)); δH (300 MHz, 

CDCl3) 7.31-7.25 (5H, m, CHAr),4.74-4.70 (1H, m, CH), 3.96 (1H, br s, OH), 3.68-

3.53 (3H, m, CH2 + OH). 
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1-Phenyl-2,2-dimethyl-1-propanol. 

 

Enantiomeric excess and conversion determined by GC analysis: Chrompac 

cyclodextrin-β-236M-19 50m x 0.25 mm x 0.25 μm, T = 125°C, P = 15psi H2, det = 

FID 220°C, inj = 220°C, ketone 13.9 min., R isomer 29.4 min., S isomer 30.0 min. 

[α]D
29

 +12.7 (c 1.0 in CHCl3) 75.9% ee. (R) (lit.
204

 [α]D
20

 +12.2 (c 1.0 in CHCl3) 

45% ee. (R)); δH (300 MHz, CDCl3)  7.31-7.25 (5H, m, CHAr), 4.39 (1H, s, CH), 

1.86 (1H, br s, OH), 0.92 (9H, s, (CH3)3). 

 

1-Tetralol. 

 

Enantiomeric excess and conversion determined by GC analysis: Chrompac 

cyclodextrin-β-236M-19 50m x 0.25 mm x 0.25 μm, T = 120°C, P = 15psi H2, det = 

FID 220°C, inj = 220°C, ketone 41.3 min., R isomer 54.3 min., S isomer 54.6 min. 

[α]D
26

 -34.2 (c 0.5 in CHCl3) 99.0% ee. (R) (lit.
96

 [α]D
27

 -32.3 (c 1.0 in CHCl3) 98% 

ee. (R)); δH (300 MHz, CDCl3) 7.43-7.39 (1H, m, CHAr), 7.23-7.17 (2H, m, CHAr), 

7.10-7.07 (1H, m, CHAr), 4.75-7.74 (1H, m, CH), 2.86-2.65 (2H, m, CH2 + OH), 

2.02-1.70 (5H, m, CH2). 
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(R)-2,3-dihydroinden-1-ol. 

 

Enantiomeric excess and conversion determined by GC analysis: Chrompac 

cyclodextrin-β-236M-19 50m x 0.25 mm x 0.25 μm, T = 100°C, P = 15psi H2, det = 

FID 220°C, inj = 220°C, ketone 66.9 min., R isomer 84.8 min., S isomer 84.0 min. 

[α]D
26

 -31.6 (c 1.0 in CHCl3) 97.5% ee. (R) (lit.
96

 [α]D
27

 -30.5 (c 1.0 in CHCl3) 84% 

ee. (R)); δH (300 MHz, CDCl3) 7.41-7.39 (1H, m, CHAr), 7.25-7.21 (3H, m, CHAr), 

5.21 (1H, m, CH), 3.08-2.98 (1H, m, CH2), 2.85-2.74 (1H, m, CH2), 2.51-2.40 (1H, 

m, CH2), 1.97-1.86 (2H, m, OH + CH2). 

 

 

(R)-3,4-Dihydrochromen-4-ol. 

 

Enantiomeric excess and conversion determined by HPLC analysis: IB column, 0.46 

x 25 cm, 1 cm
3
/min, 95:5 Hexane:2-propanol, RT, ketone 6.6 min, S isomer 8.6 min, 

R isomer 9.4 min. Ketone UV response is 20.12 times greater than for the alcohol. 

[α]D
27

 +66.5 (c 1.0 in CHCl3) 99.0% ee. (R) (lit.
205

 [α]D
31

 +60.1 (c 0.2 in CHCl3) 

96% ee. (R)); δH (300 MHz, CDCl3) 7.27-7.24 (1H, m, CHAr), 7.19-7.13 (1H, m, 

CHAr), 6.90-6.85 (1H, m, CHAr), 6.81-6.78 (1H, m, CHAr), 4.67 (1H, t, J 4.1 Hz, 

CH), 4.21-4.15 (2H, m, CH2), 2.76 (1H, br s, OH), 2.13 (1H, s, CH), 2.09-1.90 (2H, 

m, CH2). 
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(S)-2-(morpholin-4-yl)-1-phenylethanol. 

 

Conversion determined by 
1
H NMR. Enantiomeric excess determined by Mosher’s 

method
146 

>95% (S). [α]D
24

 +48.2 (c 0.3 in MeOH) >95% ee. (S) (lit.
206 

[α]D
26

 +41.8 

(c 5.07 in MeOH) 89% ee. (S))
 
; δH (400 MHz, CDCl3) 7.38-7.26 (5H, m, CHAr), 

4.76 (1H, dd J, 10.4 and 3.4 Hz, CH), 3.76 (5H, m, CH2OCH2 and OH overlapping), 

2.75 (2H, m, CH2), 2.54-2.45 (4H, m, -CH2NCH2-). 

 

Figure 77. Mosher's ester derivatives and configuration model. 

 

Mosher’s ester of (S)-2-(morpholin-4-yl)-1-phenylethanol. 

 

To a solution of (S)-2-(morpholin-4-yl)-1-phenylethanol) (5 mg, 0.024 mmol) in 

anhydrous DCM (1 cm
3
) was added triethylamine (5 mg, 0.048 mmol) and DMAP 

(0.3 mg, 0.0024 mmol). To the solution and at 0˚C was then added (S)-(+)-MTPA-Cl 

(8 mg, 0.03 mmol). The reaction was then stirred overnight at room temperature. 

After this volatile material was removed under reduced pressure to leave the crude 

which was then analysed by 
1
H NMR. 
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1
H NMR key peaks for ee. determination: Major isomer δH (400 MHz, CDCl3) L

3
: 

2.83 (1H, dd, J 13.7 and 9.9 Hz, CH2CHOH), 2.65-2.61 (2H, m, NCH2CH2O), 2.55 

(1H, dd, J 13.6 and 3.0 Hz, CH2CHOH), 2.38-2.33 (1H, m, NCH2CH2O). 

Determination of ee.: Only 1 enantiomer visible by NMR so ee. > 95%. 

Determination of configuration: Product is the (S) enantiomer. Comparison to the 

Mosher’s esters of the racemic alcohol and asymmetric reduction product shows that 

in the 
1
H NMR of the

 
asymmetric product the L

3
 signals present are upfield. 

 

Mosher’s ester of racemic 2-(morpholin-4-yl)-1-phenylethanol.  

The racemic alcohol was prepared by NaBH4 reduction of the ketone. The Mosher’s 

ester was then prepared as above. 
1
H NMR key peaks: δH (400 MHz, CDCl3) L

3
: 

2.93-2.81 (1H, m, CH2-CHOH), 2.74-2.71 (1H, m, N-CH2CH2O),  2.65-2.61 (1H, m, 

N-CH2CH2O), 2.57-2.54 (1H, m, CH2-CHOH), 2.48-2.43 (1H, m, N-CH2CH2O), 

2.38-2.33 (1H, m, N-CH2CH2O). 

 

 

 

 

 

 

 

Figure 78. 
1H NMR spectra for Mosher's esters of 2-(morpholin-4-yl)-1-phenylethanol. 

Racemic 

Asymmetric 
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(S)-1-Cyclohexylethanol. 

 

Conversion determined by GC analysis: Chrompac cyclodextrin-β-236M-19 50m x 

0.25 mm x 0.25 μm, T = 75°C, P = 15psi H2, det = FID 220°C, inj = 220°C, ketone 

40 min., alcohol 80 min. [α]D
26

 +3.7 (c 1.0 in CHCl3) 81.4% ee. (S) (lit.
207

 [α]D
22

 

+2.7 (c 0.5 in CHCl3) 75% ee. (R)); δH (300 MHz, CDCl3) 3.54 (1H, q, J 6.2 Hz, 

CH), 1.87-1.83 (1H, m, CH), 1.79-1.73 (2H, m, CH2), 1.69-1.65 (3H, m, CH + CH2), 

1.32-1.14 (7H, m, CH2 + OH), 1.07-0.93 (2H, m, CH2). 

Enantiomeric excess determined by GC for the acetate derivative of reduction 

product: Chrompac cyclodextrin-β-236M-19 50m x 0.25 mm x 0.25 μm, T = 115°C, 

P = 15psi H2, det = FID 220°C, inj = 220°C, R isomer 14.5 min., S isomer 13.3 min. 

Preparation of acetate derivative: The reduction product (10 mg) was dissolved in 1 

cm
3
 of DCM. To this was then added acetic anhydride (20 μL) and DMAP (3 

crystals). The reaction was stirred over night and then volatiles were removed under 

reduced pressure. A small amount of the residue was diluted in EtOAc and then 

injected on the GC. 

 

4-Phenylbut-3-en-2-ol. 

 

Conversion determined by 
1
H NMR. δH (300 MHz, CDCl3) 7.38-7.17 (5H, m, 

CHAr), 6.55 (1H, d J, 15.9 Hz, CH=CHCHOH), 6.25 (1H, dd, J 15.9 and 6.4 Hz, 
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CH=CHCHOH), 4.51-4.42 (1H, m, CHOH), 1.94 (1H, br s, OH), 1.36 (3H, d, J 13.0 

Hz, CH3). 

Enantiomeric excess determined by conversion of the unsaturated/saturated alcohol 

product mixture into 4-phenylbutan-2-ol and analysis by HPLC as detailed below. 

4-Phenylbutan-2-ol. 

 

To 4-phenylbut-3-en-2-ol: 4-phenylbutan-2-ol 1:1 mixture (45 mg, 0.30 mmol) was 

added anhydrous MeOH (1 cm
3
) and 10% Pd/C (18 mg, 0.015 mmol Pd). The flask 

was connected to a balloon of hydrogen (1 atm.), purged with hydrogen and stirred at 

room temperature overnight. The reaction was filtered through celite with EtOAc 

and the filtrate dried under reduced pressure to give the product as a colourless oil 

(29 mg, 0.2 mmol, 67%). Enantiomeric excess determined by HPLC analysis: IB 

column, 0.46 x 25 cm, 0.8 cm
3
/min, 95:5 Hexane:2-propanol, RT, ketone 7.0 min, R 

isomer 8.9 min, S isomer 10.9 min. [α]D
28

 +0.67 (c 0.3 in CHCl3) 4.7% ee. (S) (lit.
208

 

[α]
25

 +7.9 (c 1.0 in CHCl3) 33% ee. (S); δH (400 MHz, CDCl3) 7.30 – 7.25 (2H, m, 

CHAr), 7.21-7.16 (3H, m, CHAr), 3.87-3.79 (1H, m, CHOH), 2.80-2.63 (2H, m, 

CH2CHOH), 1.80-1.74 (2H, m, CH2CH2CHOH), 1.40 (1H, br s, OH), 1.23 (3H, d, J 

6.3 Hz, CH3). 
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Benzyl alcohol. 

 

Conversion determined by GC analysis: Chrompac cyclodextrin-β-236M-19 50m x 

0.25 mm x 0.25 μm, T = 100°C, P = 15psi H2, det = FID 220°C, inj = 220°C, 

benzaldehyde 9.6 min., (dimethoxymethyl)benzene 15.6 min., benzyl alcohol 27.1 

min. δH (300 MHz, CDCl3) 7.33-7.22 (5H, m, CHAr), 4.55 (2H, s, CH2), 3.04 (1H, 

br s, OH). 

 

(Dimethoxymethyl)benzene. 

 

Conversion determined by GC analysis: Chrompac cyclodextrin-β-236M-19 50m x 

0.25 mm x 0.25 μm, T = 100°C, P = 15psi H2, det = FID 220°C, inj = 220°C, 

(dimethoxymethyl)benzene 15.6 min. δH (400 MHz, CDCl3) 7.46-7.44 (2H, m, 

CHAr), 7.38-7.32 (3H, m, CHAr), 5.39 (1H, s, CH), 3.33 (6H, s, OCH3) 

 

(4-Methoxyphenyl)methanol. 

 

Conversion determined by GC analysis: Chrompac cyclodextrin-β-236M-19 50m x 

0.25 mm x 0.25 μm, T = 135°C, P = 15psi H2, det = FID 220°C, inj = 220°C, 4-

methoxybenzaldehyde 10.1 min., (4-methoxyphenyl)methanol 21.9 min. δH (400 



Development of catalysts for asymmetric hydrogenation                                                    Experimental 

300 

 

MHz, CDCl3) 7.30-7.28 (2H, m, CHAr), 6.90-6.89 (2H, m, CHAr), 4.62 (2H, s, 

CH2), 3.81 (3H, s, CH3), 1.62 (1H, br s, OH). 

 

(4-Bromophenyl)methanol. 

 

Conversion determined by GC analysis: Chrompac cyclodextrin-β-236M-19 50m x 

0.25 mm x 0.25 μm, T = 150°C, P = 15psi H2, det = FID 220°C, inj = 220°C, 4-

bromobenzaldehyde 9.5 min., (4-bromophenyl)methanol 18.5 min. δH (400 MHz, 

CDCl3) 7.50-7.46 (2H, m, CHAr), 7.25-7.22 (2H, m, CHAr), 4.65 (2H, s, CH2), 1.78 

(1H, br s, OH). 

 

(4-Nitrophenyl)methanol. 

 

Conversion determined by GC analysis: Chrompac cyclodextrin-β-236M-19 50m x 

0.25 mm x 0.25 μm, T = 180°C, P = 15psi H2, det = FID 220°C, inj = 220°C, 4-

nitrobenzaldehyde 7.9 min., (4-aminophenyl)methanol 9.7 min., (4-

nitrophenyl)methanol 23.2 min. δH (300 MHz, CDCl3) 8.23-8.20 (2H, m, CHAr), 

7.55-7.52 (2H, m, CHAr), 4.84 (2H, s, CH2), 2.00 (1H, br s, OH). 

 

3-Phenylprop-2-en-1-ol. 

 

Conversion determined by GC analysis: Chrompac cyclodextrin-β-236M-19 50m x 

0.25 mm x 0.25 μm, T = 130°C, P = 15psi H2, det = FID 220°C, inj = 220°C, 

cinnamaldehyde 21.8 min., 3-phenylprop-2-enal 11.2 min, 3-phenylpropan-1-ol 20.4 
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min., (3,3-dimethoxyprop-1-en-1-yl)benzene 26.2 min., 3-phenylprop-2-en-1-ol 31.6 

min. δH (400 MHz, CDCl3) 7.38-7.23 (5H, m, CHAr), 6.60 (1H, d, J 16.1 Hz, CH), 

6.38-6.31 (1H, m, CH), 4.30 (2H, d, J 5.5 Hz, CH2), 1.85 (1H, br s, OH). 

 

 

(3,3-Dimethoxyprop-1-en-1-yl)benzene. 

 

Conversion determined by GC analysis: Chrompac cyclodextrin-β-236M-19 50m x 

0.25 mm x 0.25 μm, T = 130°C, P = 15psi H2, det = FID 220°C, inj = 220°C, (3,3-

dimethoxyprop-1-en-1-yl)benzene 26.2 min. δH (400 MHz, CDCl3) 7.46-7.38 (2H, 

m, CHAr), 7.34-7.25 (3H, m, CHAr), 6.72 (1H, d, J 16.0 Hz, CH), 6.15 (1H, dd, J 

16.0 and 4.9 Hz, CH), 4.96 (1H, d, J 4.9 Hz, CH), 3.38 (6H, s, OCH3). 
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7. Appendix 1-Hydrogenation of imines using Frustrated 

Lewis Pair catalysts. 

7.1 Introduction: Frustrated Lewis Pairs. 

 

Several systems have been reported for non-metal catalysed hydrogenation reactions. 

MacMillan has developed a series of imidazolidinone catalysts which have been 

applied to ATH of α,β-unsaturated carbonyl compounds 
209, 210

 reactions as well as 

many other transformations.
211-214

 Corey, Bakshi and Shibata have reported the ATH 

of ketones using an oxaborolidine catalyst and stoichiometric borane.
215

  

More recently, the non-metal-catalysed pressure hydrogenation of imines has been 

reported by Stephan 
217-218

 using Frustrated Lewis Pairs (FLPs) as the catalytic 

species. FLPs are combinations of Lewis acids and bases that are sterically prevented 

from forming a Lewis acid-base adduct meaning that the Lewis acid and base 

components remain available to interact with other molecules.
219

 Conventionally the 

interaction of a Lewis acidic borane and Lewis basic phosphine would result in 

formation of a dative bond between the lone pair of electrons on the phosphorus and 

the empty p-orbital of the boron, with FLPs this interaction is prevented due to steric 

hindrance.  

 
Scheme 102. Reactivity of 'classical' (A) and 'frustrated' (B) Lewis pairs. 

 

Scheme 102 A shows the classical interaction of a borane with a non-sterically 

hindered tertiary phosphine. The THF group on the boron is replaced with the 

phosphine which joins to the boron via a dative bond. Scheme 102 B shows a 
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‘frustrated’ interaction where, due to steric hindrance, direct interaction between the 

phosphorus and boron atoms is prevented. Instead, nucleophilic substitution occurs 

on the borane species at the carbon para to the boron and the displaced fluorine 

migrates to the boron to give the zwitterionic phosphonium borate product. Due to 

the charges on the phosphorus and boron, they each retain their respective Lewis 

basicity and acidity, allowing interaction with other molecules. 

Stephan has reported the application of FLPs to hydrogen activation.
220 

Phosphinoborane 265 readily cleaves hydrogen to form phosphonium borate 266. 

Upon heating hydrogen is reformed and liberated as illustrated in Scheme 103. 

 
 

 

 

 

Scheme 103. Activation of hydrogen by phosphine-borane. 

 

The process was thought to involve activation of molecular hydrogen by the boron 

Lewis acid and protonation of the phosphorus Lewis base. The mechanism of 

hydrogen activation was investigated by Guo and Li
221

 who report the process to 

involve the formation of an ‘encounter complex’ (Scheme 104) between two 

phosphinoborane molecules held together by hydrogen bonding. The hydrogen 

molecule inserts between the boron and phosphorus at one end of the encounter 

complex and cleaves to form an ion pair complex. The process repeats with the other 

boron-phosphorus pair in the complex interacting with a second molecule of 

hydrogen. Final dissociation of the complex leads to the formation of two 

phosphonium borate complexes. 
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Scheme 104. 'Encounter complex' mechanism of hydrogen activation by FLPs. 

 

Papai and co-workers also investigated the method of hydrogen activation by 

FLPs.
222

 Investigations into the mechanism found no dative P-B bond  but a weakly 

bound, non-covalent [R3P]...[B(C6F5)3] complex was observed. It was thought that 

this complex was a reactive intermediate in the activation process and also that it 

may provide a pre-organised active centre for H-H bond activation. The group 

suggested that the complex represented an energetically strained species which 

lowered the barrier to hydrogen activation. 

The ability of the FLP system to activate hydrogen lead to its application to metal-

free catalysed hydrogenation of imines via proton and hydride transfer from the 

phosphonium borate to the polar C=N bond of the imine.
216-220, 223

 A mechanism for 

the reaction has been proposed and is shown in Scheme 105.
218-221, 223 
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Scheme 105. Mechanism of imine hydrogenation with phosphinoborane FLPs. 

 

Initially the phosphinoborane interacts with hydrogen to form the phosphonium 

borate species. A proton is then transferred from the phosphorus to the nitrogen of 

the imine. Hydride transfer from the boron to the imino carbon atom followed by 

coordination of the nitrogen to the boron then occurs before the amine product is 

released to reform the phosphinoborane. 

Phosphinoborane FLP catalysts have been successfully applied to the Pressure 

hydrogenation of a series of imines as shown in Table 37.
218 

Table 37. Application of FLP phosphinoborane catalysts 267 and 268 to pressure hydrogenaiton of 

imines. 

 

Entry R
1

 R
2
 Catalyst 

Temp. 

(°C) 

Time 

(hours) 

Yield 

(%) 

1 Ph 
t
Bu 267 80 1 79 

2 Ph 
t
Bu 268 80 1 98 

3 Ph SO2Ph 267 120 10.5 97 

4 Ph SO2Ph 268 120 16 87 

5 Ph CHPh2 267 140 1 88 

6 Ph CH2Ph 267 120 48 5 

7 Ph CH2Ph(B(C6F5)3) 267 120 46 57 

8 PhCHCHPhNPh 267 120 1.5 98 
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A sterically hindered imine could itself act as the Lewis base, removing the need for 

the phosphine.
220

 The imine acts in the same way as the hindered phosphine in 

Scheme 105. Acting as a Lewis base, the imine is able to accept a proton from the 

cleaved hydrogen molecule. This is followed, as before, by hydride transfer from the 

borate to give the hydrogenated product. 

In similar work Repo and co-workers reported the activation of hydrogen by amines 

and B(C6F5)3.
224 

Reaction of 2,2,6,6-tetramethylpiperidine with B(C6F5)3 under 

atmospheric hydrogen afforded 95% yield of  ammonium borate 259. The process 

proceeds via a 6-membered transition state 260 shown in Figure 79. 

 
Figure 79. Cleavage of hydrogen by amines and B(C6F5)3. 

Soos has reported the use of amine  Lewis bases in the FLP-catalysed hydrogenation 

of imines finding DABCO to be particularly successful (Scheme 106).
225 

  
Scheme 106. Hydrogenation of imines with DABCO and hindered borane. 

 

FLPs were successfully applied to catalytic hydrogenation of imines, nitriles and 

aziridines, however aldehydes were found to only react stoichiometrically. Both 

Stephan
218

 and Repo
224

 have reported hydrogenation of benzaldehyde with 

phosphinoborane and amine/borane FLP systems respectively. In both cases, 

benzaldehyde underwent hydride attack to form an alkoxide bound to the boron as 
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shown in Scheme 107,  however due to the reduced basicity of oxygen compared to 

nitrogen, protonation of oxygen to yield the alcohol product was not achieved. 

 
Scheme 107. Attempted hydrogenation of benzaldehyde with FLPs. 

 

7.1.1.1 Asymmetric hydrogenation of imines with FLP catalysts. 

The first example of asymmetric hydrogenation of imines using FLP catalysts was 

reported by Klankermayer.
226

 Chiral borane 156 (Figure 80) derived from (+)-α-

pinene was applied to the asymmetric hydrogenation of N-(1-

phenylethylidene)aniline. The reaction gave complete conversion to product with an 

ee. of 13%, thus illustrating the scope for APH of imines with this system.  

 
Figure 80. Chiral borane derived from (+)-α-pinene. 

 

More recently, Klankermayer has reported the use of other asymmetric boranes for 

asymmetric hydrosilylylation
227

 and APH of imines as shown in Scheme 

108
228

achieving increased enantioselectivity. 

 

Scheme 108. APH of N-(1-phenylethylidene)aniline using FLP catalst 262
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7.2 Results and Discussion. 

 

The development of metal free catalysts for hydrogenation and asymmetric 

hydrogenation was also investigated during the course of my studies. The initial 

synthesis of asymmetric boranes focused on the condensation of diols with boronic 

acids to give dioxaborolanes (Scheme 109).
229, 230

 An asymmetric derivative was 

prepared by asymmetric Sharpless dihydroxylation of stilbene followed by in situ 

coupling with the boronic acid (Schemes 110).
231

 

 

Scheme 109. Preparation of achiral dioxaborolane 263 

 

 

Scheme 110. Preparation of asymmetric dioxaborolane 264. 

 

Application of boranes 263 and 264 to the hydrogenation of imines was found to be 

unsuccessful with no significant formation of amine achieved. Attempts to repeat 

literature reactions using commercially available tris(pentafluorophenyl)borane were 

also unsuccessful with NMR analysis of reaction solutions showing hydrolysis of the 

imine substrates to be occurring preferentially to hydrogenation (Tabel 38). 
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Table 38. APH of imines using boron catalysts. 

 

 

Entry R R’ Catalyst 
H2 

(bar) 

Temp. 

(°C) 

Time 

(hr) 

Conv. to 

amine
a
 (%) 

1
b
 Me Ph B(C6F5)3 10 mol% 10 80 15 99 

2 Me Ph B(C6F5)3 10 mol% 10 80 26 None 

3 Me Ph B(C6F5)3 10 mol% 15 100 48 None 

4
c Me Ph B(C6F5)3 10 mol% 10 80 23 None 

5 Me Ph 263 10 mol% 5 80 26 Trace 

6 Me Ph 263 10 mol% 5 80 64 None 

7 Me Ph 26410 mol% 5 80 26 Trace 

8 Me Ph  264 10 mol% 5 80 64 None 

9 H Ts B(C6F5)3 10 mol% 20 80 24 None 

10 H Ph 
B(C6F5)3 10 mol%, 

DABCO 10 mol% 
5 RT 24 None 

11
d
 H tBu 

B(C6F5)2Mes 10 mol%, 

DABCO 10 mol% 
4 RT 42 100 

12
e
 Me Ph B(C6F5)3 20 mol% 20 80 24 15.3 

aDetermined by 1H NMR. bReaction reported in literature.226  c4Ǻ molecular sieves used in reaction 

dReaction reported in literature.225. e4Ǻ molecular sieves used, reaction set up and sealed under argon. 

Initial hydrogenations were carried out on Phenyl-(1-phenylethylidene)amine (Table 

38 entries 2-8) as a comparison to the literature result for the same imine (entry 1).
226

 

Repetition of the literature reaction (entry 2) and also the use of increased H2 

pressure, temperature and reaction time (entry 3) showed no conversion of imine to 

its amine prodict. The addition of 4Ǻ molecular sieves to remove water from the 

reaction also showed no improvement (entry 4). Application of boranes 263 and 264 

to the reaction showed no improvement with only a trace of the desired amine 

product seen by GC analysis of the reaction solution (entries 5-8). Use of less 

sterically encumbered imines as substrates and also the addition of DABCO which 
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has been shown in the literature to promote hydrogenation if imines (entry 11)
225

 

also showed no improvement to the conversion to amine product (entries 9-10). 

Despite attempts to exclude water from the reaction solutions and reagents it was 

necessary for the reaction solutions to be open to the air briefly whilst the Parr 

reactor was sealed before being purged with hydrogen. This brief exposure may 

allow sufficient moisture into the reaction to allow imine hydrolysis rather than 

hydrogenation. Only in one case (Table 38, entry 12), where the reaction solution 

was prepared with rigorous exclusion of water and set up under a flow of argon, was 

hydrogenation of the imine achieved. The conversion to amine was low at only 

15.3% and 
1
H NMR analysis also showed evidence of hydrolysis of the imine. The 

aim of this work was to develop an active, robust, metal free catalyst that is 

accessible and convenient to use for asymmetric hydrogenation of imines, the need 

for stringent moisture and air exclusion does not fit with this criteria and so work on 

the development of this type of catalyst was halted at this point. 



Development of catalysts for asymmetric hydrogenation                                                       Appendix 2 

323 

 

8. Appendix 2-X-ray crystallography data. 
 

X-ray crystallography data of N-[(1S, 2S)-1, 2-Diphenyl-2-(3-phenypropyl 

amino)ethyl)-4-methylbenzenesulfonamide)ruthenium(II)iodide monomer 181. 

 

Crystal data: C31H35IN2O3RuS, M = 743.64,  Monoclinic, space group P2(1), a = 

11.7063(2), b = 9.65672(16), c = 13.5915(3) A , α = 90°, β = 98.9689(17)°, γ = 90°, 

U = 1517.66(5) A
3
 (by least squares refinement on 8297 reflection positions), T 

=298(2)K, λ = 0.71073 A, Z =  2, D(cal) = 1.627 Mg/m
3
, F(000) = 744.  mu(MoK-α) 

= 1.636 mm
-1

. Crystal character: brown block. Crystal dimensions 0.24 x 0.12 x 0.12 

mm. 
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X-ray crystallography data of N-[(1R,2R)-2-(Amino)-1,2-diphenylethyl]-4-

methylbenzenesulfonamide(p-cymene)ruthenium(II)iodide monomer 183. 

 

Crystal data: C31H35IN2O2RuS, M = 727.64, Orthorhombic, space group 

P2(1)2(1)2(1), a = 8.8762(6), b = 13.4321(7), c = 26.712(3) A , α = 90°, β = 90°, γ = 

90°, U = 3184.7(4) A
3
 (by least squares refinement on 9388 reflection positions), T 

=298(2)K, λ = 0.71073 A, Z =  4, D(cal) = 1.518 Mg/m
3
, F(000) = 1456. mu(MoK-

α) =  1.555 mm
-1

. Crystal character: brown block. Crystal dimensions 0.24 x 0.12 x 

0.04 mm. 
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X-ray crystallography data of N-((1R,2R)-2-(3-(4-methoxyphenyl)propylamino)-

1,2-diphenyl)-4-methylbenzenesulfonamide) ruthenium chloride 209. 

 

Crystal Data: C32 H35 Cl N2 O4 Ru S, M = 680.20,  Orthorhombic, space group 

P2(1)2(1)2(1), a = 7.58370(10), b = 10.22300(10), c = 38.6764(3) A, α = 90°,β = 

90°, γ = 90°, U = 2998.51(5) A
3
 (by least squares refinement on 12912 reflection 

positions), T =150(2)K, λ = 1.54178 A, Z =  4, D(cal) = 1.507 Mg/m
3
, F(000) = 

1400.  mu(MoK-α) = 6.026 mm
-1

. Crystal character: orange plate. Crystal 

dimensions 0.40 x 0.10 x 0.01 mm. 
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