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Summary

There is a consensus that the development of successful Integrated Pest Management

strategies requires a detailed understanding of pest biology. In the case of the currant

lettuce aphid (Nasonovia ribisnigri), an economically important pest aphid of

lettuce, sources of such information are limited. This study considers key aspects of

N. ribisnigri biology which influence its control. In particular, it makes comparisons

between biotypes which succumb to (wild-type) or overcome (resistance-breaking),

the host plant resistance (Nr-gene) in commercial lettuce cultivars.

Experiments on the effects of temperature and photoperiod on the development of N.

ribisnigri showed no differences between wild-type and resistance-breaking

biotypes. At low temperatures (5, 10 and 15ºC), wild-type biotypes developed to

adulthood on resistant cultivars, indicating that the Nr-gene is temperature sensitive.

A linear regression between development rate and temperature estimated a lower

developmental threshold of around 4.7ºC.

Nasonovia ribisnigri usually overwinters as a diapausing egg but overwintering

nymphs/adults have been observed. In the laboratory eggs were obtained at 12ºC

13L:11D. Sequential sampling of eggs from the field suggested that diapause ended

between late January and early February. Post-diapause development was estimated

to take <50 day-degrees using a LDT of 4.7°C.

Nasonovia ribisnigri survived the winter as nymphs/adults on Veronica arvensis in

the Midlands. Other weed species were suitable hosts in the laboratory: Chichorium

intybus, Crepis capillaris, Lapsana communis, Hieracium aurantiacum, Hieracium

pilosella, Veronica spicata and Veronica officinalis.

Field trials, using sequentially planted plots of lettuce, and applying ‘exclusion’ and

pesticidal treatments indicated that natural enemies and emigration regulate aphid

populations in the summer and contribute to the mid-summer crash.

A large-scale screen of 96 cultivars and wild relatives of lettuce identified new

sources of resistance against wild-type and resistance-breaking biotypes.

Results from this study can be used to inform further development of an Integrated

Pest Management strategy for this pest.
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Chapter 1: Introduction

Aphids as pests

Aphids are small phytophagous phloem-feeding insects which collectively infest a

wide range of plant species including over 100 economically important types of

crop. While the implications of aphid infestations are not always significant, on

certain crops they can considerably reduce crop yield and quality, as a result of direct

feeding and indirect damage through vectoring plant pathogens (Blackman and

Eastop, 1984).

This research focuses on the currant lettuce aphid, Nasonovia ribisnigri (Hemiptera,

Aphididae) which is an important arthropod pest of lettuce crops. Nasonovia

ribisnigri is one of four significant species of pest aphid infesting lettuce, and is the

most important due to its preference to feed in the centre of lettuce heads where the

infestation is often difficult to control with foliar insecticides, resulting in

unmarketable produce and therefore financial losses for growers (Parker, et al.,

2002). Rapid population development of N. ribisnigri can also lead to stunted plant

growth and affect the palatability of harvested lettuce (RIS, No date-a).

Nasonovia ribisnigri is known to transmit gooseberry vein-banding virus on its

winter host Ribes species and the mosaic diseases of cauliflower and cucumber

(Blackman and Eastop, 1984). However, Nasonovia ribisnigri appears to be unable

to transmit lettuce mosaic virus (Keep and Briggs, 1971; Nebreda, et al., 2004;

Moreno, et al., 2007) although one report from the USA contradicts this assumption

(Davis, 1997).

Like all aphids, N. ribisnigri feed using their stylets which penetrate the plant tissue

through an intercellular pathway to allow direct ingestion of phloem sap from the

sieve elements (Tjallingii and Esch, 1993). As a result of this removal of cell

contents, plants display a range of species-specific symptoms affecting yield and

quality (Pettersson, et al., 2007). Aphids also produce honey dew which remains on

the leaf surface and can promote the development of unsightly black moulds (Lamb,

1959; Cox, 2004).

Historically, aphids have been controlled by farmers and growers through the

application of pesticides. Due however, to recent concerns about potential chemical
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residues and the imposition of high selective pressures for insecticide resistance,

there have been increased demands for farmers and growers to adopt Integrated Pest

Management (IPM) practices (Cuthbertson, et al., 2007). For N. ribisnigri, resistant

lettuce cultivars are also available but now that these are grown widely, the increased

selection pressure appears to have resulted in a new resistance-breaking biotype of

N. ribisnigri which has overcome the resistance provided by these cultivars (van der

Arend, 2003; Smilde, et al., 2009).

Recent research on N. ribisnigri has focused on its development, insecticide

resistance and its response to resistant cultivars. Therefore, there is little information

available on its basic biology which is vital for creating new and informed control

strategies.

Biology and behaviour

Classification and identification

Nasonovia ribisnigri (Mosley) is a small soft bodied insect belonging to the family

Aphididae which is one of the three families of the super-family Aphidoidea (Table

1.1). The Aphididae family contains approximately 4700 species which utilise a

wide range of host plants and display a range of specialised life-cycles (Blackman

and Eastop, 2007). Economically important aphid species such as N. ribisnigri, are

usually found in the sub-family Aphidinae, where in temperate climatic zones it is

estimated that one plant species in four is infested by members of this sub-family

(Dixon, 1998).

Table 1.1 The classification of Nasonovia ribisnigri.

Order Sub-order Super-

Family

Family Sub-family

Hemiptera Sternorrhyncha Aphidoidea Aphididae Aphidinae

Aphids possess various features which allow identification to species, of which the

main ones include the cauda, siphunculi, head and specific abdominal markings.
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Various keys are available to help with the identification of aphids and two were

used throughout this research (Tatchell, 2004; Blackman, 2010).

Adults of N. ribisnigri can be alate or apterous. Usually, their body colour ranges

from several shades of green to yellow and red. Adults also possess conspicuous

black dorsal markings which aid their identification. Alate and apterous adults range

from 1.5-2.5 mm and 1.3-2.7 mm in body length respectively (Blackman and Eastop,

1984). When looking at the siphunculi, apterae possesses dark tips whilst the

siphunculi of alates are all darker (RIS, No date-a). Adult N. ribisnigri also possess a

prominent central tubercle on their head, between the antennal tubercles (Tatchell,

2004). Figure 1.2 illustrates the key points described for identifying apterous and

alate N. ribisnigri.

Figure 1.2 Nasonovia ribisnigri aptera (left) and an alate parthenogenetic

female (right) from the secondary host.

Life-cycle

Aphids display various different types of life-cycles and these are usually adapted

specifically to the host plants they infest, ensuring that they are always in synchrony

with them and can utilise their resources effectively. Nasonovia ribisnigri is a

heteroecious holocyclic aphid, meaning it alternates between two host plants during

the year and undergoes both asexual and sexual reproduction.

Siphunculi

Head and central

tubercle

Cauda

Abdominal

markings
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Nasonovia ribisnigri colonises lettuce crops and other species of Asteraceae during

the summer, where it reproduces parthenogenetically to produce viviparous offspring

(which can develop into apterous or alate adults) to continue exploiting nearby host

plants or to found new colonies.

During autumn, in response to decreasing temperatures and shortening photoperiods,

the production of alate males and alate gynoparae is stimulated. These migrate to the

primary host, Ribes species, in particularly blackcurrant (Ribes nigrum) and

gooseberry (Ribes grossularia).

On returning to their primary host, the gynoparae produce egg laying females known

as oviparae, with which the males mate. Fertilised eggs are then laid around the bud

apex and these spend the winter in diapause, hatching in the spring to produce a

fundatrix. The fundatrix is a highly fecund morph which reproduces

parthenogenetically and colonises the primary host before producing spring

migrants, which move back to the secondary host to begin the summer phase of the

life-cycle.

Some species of aphid however, such as Myzus persicae and Rhopalosiphum padi,

possess clones which fail to produce sexual forms and remain as parthenogenetic

aphids (anholocyclic clones) reproducing throughout mild winters (Blackman, 1974;

Pons, et al., 1995). The occurrence of anholocyclic clones can be the result of

environmental change where warmer climates allow for the continuation of asexual

reproduction by holocyclic forms (facultative asexual reproduction), or due to

genetic change where the aphids are no longer capable of responding to the stimuli

which initiate the sexual reproductive process (obligate asexual reproduction)

(Moran, 1992). Like M. persicae and R. padi, anholocyclic clones of N. ribisnigri

have been identified in Spain and in the South of Britain (Nebreda, et al., 2005; RIS,

No date-a).

Aphid polyphenisms and polymorphisms

Aphids occur in a range of different morphs which have specific roles and occur in

response to various species-specific and morph-specific environmental cues

(Wellings, et al., 1980). It is the aphids’ short reproductive generation time which
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allows them to ‘monitor’ seasonal changes and adapt quickly to ensure they are

utilising their environment effectively.

Known as polyphenisms, these different aphid morphs occur in genetically identical

individuals (clones) and display a range of phenotypes varying in morphology,

potential fecundity, development time, host plant associations and physiology

(Moran, 1992). Evidence also exists for polymorphisms, which are when genetic

factors are also involved in determining the phenotype. For example, while the

environment stimulates the production of sexual morphs, in the pea aphid

Acyrthosiphon pisum, whether the male is alate or apterous is determined by a single

locus, named aphicarus (api) (Braendle, et al., 2006). Interestingly, this locus has

also been found to be involved in determining the female alate polyphenism

(Braendle, et al., 2005).

The polyphenisms exhibited by N. ribisnigri include the fundatrix, summer alate and

apterous parthenogenetic females, the gynoparae and sexual morphs (including

males and oviparae). The induction of alate parthenogenetic females is suggested to

be in response to changes in nutrition, host plant, temperature, predation and

crowding (tactile stimulation) combined with maternal age, which can be sensed

either pre-natally or post-natally depending on the species (Sutherland, 1969;

MacKay and Wellington, 1977; Müller, et al., 2001; Hatano, et al., 2010). Some of

these factors, such as poor plant nutrition, predation and temperature can, however,

cause insect movement and therefore tactile stimulation, so their independence as a

factor alone is difficult to determine (Kunert, et al., 2005). In comparison with the

alate parthenogenetic aphid, the sexual morphs and gynoparae are usually produced

in response to decreasing temperature, short day length and poor nutritional quality,

depending on the species (Dixon, 1977).

As well as being adapted to respond to different environmental cues, each morph is

also adapted to different environmental conditions, for example the fundatrix is

usually the most fecund of all the morphs, being able to exploit the favourable

condition on the primary host in the spring, but its morphology differs from the

summer apterous parthenogenetic females, by having reduced antennal sensoriation,

shorter legs, cauda and siphunculi and a more rounded body (Hille Ris Lambers,

1966). The high reproductive success of the fundatrix demonstrates a trade-off with
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the negative cost of reduced mobility, which could impact on survival in adverse

conditions (Moran, 1992). The opposite is true of alate morphs, where for wing

development to occur, energy is diverted from other physiological processes such as

reproduction and development, resulting in the alate form being less fecund and

having a longer developmental time compared to that of the apterous form (Zera and

Denno, 1997; Finlay and Luck, 2011). Dixon and Wratten (1971) observed that alate

Aphis fabae had a 30% lower net reproductive rate compared to apterae.

Clonal variation

Throughout the literature, the term clone is used to describe asexual lineages and

implies that individuals are genetically identical to their mothers, although Loxdale

(2009) indicates that there is little evidence to support this. If there were true clones,

one would expect to see no genetic variation between parent and offspring, but intra-

clonal variation does exist, expressing itself through for example, the number of

offspring and their longevity (Loxdale and Lushai, 2003). Other studies have shown

individuals from a single clone of alate A. fabae have differing numbers of ovarioles

(Dixon, 1987b) while individuals from a clone of Sitobion avenae display

differences in colour (Alkhedir, et al., 2010).

The development of molecular markers has revolutionised the study of clonal

lineages, allowing investigation of genetic variation in addition to the above

phenotypic variation. For example, polyphenisms are intra-clonal, inter-morphic

differences that occur within a clonal lineage of an aphid, and studies have shown

that different morphs of some anholocyclic S. avenae and holoyclic R. padi clones

can be identified by the presence or absence of one or more randomly amplified

polymorphic DNA-polymerase chain reaction bands (Lushai, et al., 1997).

Naturally it is not surprising that with the existence of intra-clonal variation, inter-

clonal variation also exists. Inter-clonal variation refers to the differences seen

between clones and this can be seen through differences in body colour, propensity

to become alate, competitive ability, off-plant survival and the number of offspring

produced, in response to the same environmental cues, as seen in A. pisum

(Wolfgang and Braendle, 2001; Hazell, et al., 2005;). Variation has also been

identified in A. pisum in their levels of defence to natural enemies (Ferrari, et al.,
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2001; Gwynn, et al., 2005). At a genetic level, DNA fingerprints obtained from

several clones of S. avenae provided evidence for inter-clonal differences (Carvalho,

et al., 1991).

Various hypotheses have been suggested to explain the variation seen within and

between asexual lineages, with the earliest proposed by Cognetti, who rejected the

hypothesis that parthenogenesis in aphids was a meiotic process and instead

proposed a method of endomeiosis, which provides genetic variability to offspring

through the formation of homologous chromosomes and chromosomal crossing

(Cognetti, 1961). However, on-going research has shown that in the short term, no

major genetic rearrangements occur in aphid clonal lineages and they are stable,

therefore making endomeiosis unlikely (Blackman, 1971; Carvalho, et al., 1991).

Researchers have now determined that the most likely cause for the observed

variation is through mutations, as even a conservative mutation rate, combined with

high reproductive rates, overlapping generations and short generation times, can

result in thousands of mutations per generation (Loxdale, 2008). The use of

molecular techniques has confirmed the occurrence of these mutations and their

somatic and germ line origin, meaning that some of these mutations could be

adaptive (Lushai, et al., 1998).

Genotype by environment interactions have also been proposed to be responsible for

some of the observed variation in certain traits. For example in the pea aphid, a study

determined that at the api locus, female parthenogenetic clones with different api

genotypes displayed different propensities to become winged, in response to

different environmental cues (Braendle, et al., 2005).

Understanding the intra-clonal and inter-clonal genetic variation which occurs in

aphid clonal lineages is important for understanding the diversity of aphids. It is also

important to have measures of the extremes of this variation so that it can be

accounted for in forecasting (i.e. variation in development) and predator/prey models

(i.e. variations in response to predators) to improve their accuracy.
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Dispersal and distribution

According to the CABI distribution maps of plant pests (CABI/EPPO, 2003), N.

ribisnigri is most commonly found throughout Europe and has also been identified

in North America, South America and Oceania. Additions to this distribution have

since been made, including the Middle East and Central Asia (Blackman and Eastop,

1984; Blackman and Eastop, 2006b).

Collectively aphids display a wide distribution and for the majority of described

species this distribution is localised to the temperate regions, where low floral

diversity is thought to provide highly abundant host plants which can support aphid

species and their large populations (Dixon, 1987c). Their wide distribution can also

be attributed to the alate morphs and their ability to migrate long distances (hundreds

of kilometres) using air movement, with average flight speeds from 0.8 to 3.3km per

hour (Taylor, 1977; Robert, 1987). Accidental introductions have also occurred in

some locations such as the introduction of N. ribisnigri to California, and its

introduction and dispersal throughout New Zealand through the transportation of

infested lettuce and seedlings for transplanting (Stufkens and Teulon, 2003; Bugg, et

al., 2008).

When considering migratory N. ribisnigri, there are two kinds, those that migrate to

and from their primary and secondary host plants, and those that are produced

throughout the summer in response to certain stimuli, as discussed previously. The

most economically important of these is the summer alate which can be separated

into non-migratory and migratory morphs, which carry out either trivial low level

flights locally (often not taking flight) or undergo significant journeys to colonise

new locations respectively (Kring, 1972). It is the migratory aphids which are the

most important, due to their potential to distribute plant viruses (not significant for

N. ribisnigri) and found new colonies on aphid-free crops. When considering the

factors which cause high mortality during aphid migration, it is surprising that aphids

are considered as successful colonisers.

Colonising a suitable host plant is challenging for alates, as many aphid species

exhibit host plant specificity and alates can only control their flight direction and

speed in low winds, which can extend the searching time considerably, resulting in

desiccation (Powell, et al., 2006). Furthermore, aphid take-off and continued flight
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is restricted by temperature, for example when observing the take-off of several

aphid species, Dry and Taylor (1970) observed no flight below 14°C, with the

majority requiring 20-30°C. However, temperature thresholds for continued flight

have been determined to be lower and are essentially the temperatures which allow

the continuation of wing movement (Taylor, 1963). It is likely that the limiting

factors described above also contribute to the restricted localisation of the majority

of aphid species to the temperate regions.

During the summer, dispersal can also occur on a smaller scale through inter-plant

movement which can be carried out by non-migratory and apterous aphids. Apterous

Macrosiphum euphorbiae have been reported to reach speeds of 35 cm per minute

(Phelan, et al., 1976). When compared with alates, in the glasshouse, apterous N.

ribisnigri have been reported to have a higher ability to spread to neighbouring

plants during the first week of infestation compared to alates (Diaz, et al., 2012).

While, generally, apterous movement is considered to be limited compared to the

alate, these studies suggest both morphs can provide effective long and short

distance dispersal.

Following dispersal, aphids can exhibit a particular distribution which can be

important when considering virus transmission, natural enemies and their control.

When considering the in-field distribution of N. ribisnigri, it has been reported to

infest host plants in a scattered manner, but initially colonising plants near field

margins (Mackenzie and Vernon, 1988). Investigations into the distribution of N.

ribisnigri on iceberg lettuce confirmed that when populations were small they

preferred to be within the developing heads, and as populations increased they

moved towards the outer leaves (Liu, 2004).

Understanding the dispersal patterns of aphids can help to identify the factors which

determine their distribution, which is important information for IPM strategies.

Studies on the spatial dynamics of M. persicae have indicated that summer migration

shows a consistent pattern each year, where the distribution of alates is determined

by the location of the main host plants (Taylor, 1977). Incorporation of new

technologies, such as molecular markers into these studies can provide value-added

information. For example, discrimination of clones at a genetic level can help to

monitor their geographical locations and movements which can be vital when
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monitoring insecticide resistant clones, as shown for M. persicae (Malloch, et al.,

2006).

Aphid monitoring and population dynamics

Developing effective methods to monitor aphid populations is important as it can

provide information on seasonal variation and identify periods that regularly display

high infestations, which when combined with other variables, can be used to

optimise decision making on what, where and when control measures should be

applied (Harrington, et al., 2007).

To monitor aphids, crop and aerial sampling methods are implemented to capture

information about numbers of both apterae and alates. Crop sampling methods

include in situ counts, destructive sampling, vacuuming and beating, while aerial

sampling involves the use of water traps, sticky traps, pheromones and suction traps

(Harrington, et al., 2007). Much research has been carried out to improve these

sampling methods for aphids on different crops to provide accurate measures of field

infestation levels, including the effect of trap colour, shape and spatial positioning

(Broadbent, 1948a; 1948b; Dewar, et al., 1982; Trumble, 1982; Idris, et al., 2002;

Klueken, et al., 2008;).

One of the most important uses of crop sampling is when it is combined with

economic action thresholds, which are developed by quantifying the relationship

between aphid densities and yield loss, to estimate the minimum number of aphids

required before control measures should be applied (Ragsdale, et al., 2007). This

kind of sampling is usually carried out in the field by growers and therefore it is

important to remember that, for them to be effective, the sampling techniques

developed by researchers need to be altered for use by growers, so that they are

simple to use, low cost and the output is easily interpretable (Dent, 2000).

One of the most effective aerial sampling methods providing data on aphid

abundance, species distribution and annual flight patterns is provided by a series of

12.2 m suction traps operated by The Rothamsted Insect Survey (Woiwod, et al.,

1984). This network has provided vital information, such as the relationship of

earlier spring migration of aphids, particularly for anholocyclic clones, with higher

winter temperatures, and how these earlier spring migrations by aphids result in
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larger spring and early summer populations (Harrington and Woiwod, 2007). Data

from this network have been used to provide indicative warnings on likely spring

migration to crops and numbers that will be present in the traps until late June (HDC,

No date; RIS, No date-b). Unfortunately, N. ribisnigri is described as being ‘trap

shy’ as very few aerial N. ribisnigri are caught by the suction trap network or in

water traps (Collier, et al., 1999).

Current control strategies

Historically, insecticides have been used to control aphid infestations, but due to

increasing concerns about insecticide safety and insecticide resistance there is now a

demand for alternative control methods and/or safer chemicals (Dewar, 2007). The

Pesticide Usage Survey Report for 2007and 2011 for crops including lettuce, endive,

radicchio, and Chinese cabbage, indicates that there are, on average, three insecticide

applications per crop. In 2007, 71% of these applications were made for the control

of aphids, while in 2011 only 34% were made (Garthwaite, et al., 2007; 2011). Since

2007, total insecticide applications over all vegetable crops have reduced, with

12,653 less hectares being treated by 2011 (Garthwaite, et al., 2011).

For N. ribisnigri particularly, its specific behaviour of developing in the centre of

lettuce heads makes its control with insecticides challenging, as the aphids are often

protected from foliar insecticide sprays (Parker, et al., 2002). Furthermore, varying

levels of insecticide resistance have been identified in N. ribisnigri, to pirimicarb,

pyrethroids and organophosphates (Rufingier, et al., 1999; Barber, et al., 1999;

2002; Kift, et al., 2004). Currently, two insecticides are particularly effective against

N. ribisnigri, the first being a systemic seed treatment using imidacloprid, which is

effective for the first few weeks of a crop’s life (PSD, 2003). The second is a newer

insecticide called spirotetramat, which is also systemic and provides a new mode of

action with no cross-resistance to other insecticides at this time (Brück, et al., 2009).

Until recently, the most effective control method was the use of resistant cultivars of

lettuce which provided absolute control against susceptible N. ribisnigri biotypes,

while being safe for humans and the environment. These are cultivated widely, but

the selection pressure induced by these monocultures has now resulted in a new

resistance-breaking biotype of N. ribisnigri (van der Arend, 2003; Smilde, et al.,
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2009). Therefore, the development of new resistant cultivars with a new mechanism

of resistance is required urgently.

Currently, augmentative and classical biological control is not considered a suitable

control method for N. ribisnigri in the field in the UK. This is because targeting

control of N. ribisnigri with biological control agents is challenging, as the life-

cycles of the natural enemies need to be in synchrony with the pest and crop life-

cycle, establishing control before the lettuce heads develop around the aphids, where

they then become protected (Bugg, et al., 2008). Furthermore, growers rely on

insecticides to control other pests and the use of biological control agents would not

complement this (Smith, et al., 2008). For glasshouse crops of Romaine lettuce

grown in California, control has been achieved through the use of parasitioids

(Smith, et al., 2008), but until recently the absence of a known parasitoid in the UK

has been a problem. However, investigations into a parasitoid relatively new to the

UK, Aphidius hieraciorum (Stary), has shown that it has the potential to be a

successful biological control agent for N. ribisnigri in the glasshouse (DEFRA,

2005).

The only biological control option available for use in the field is through

conservation biological control, which aims to enhance natural enemy numbers

through habitat management (Dedryver, et al., 2010). It is recognised that syrphid

larvae are some of the most effective predators of aphids and they have been found

to be important in regulating aphid populations in the field and laboratory,

particularly for organic production (Chambers, et al., 1983; Hopper, et al., 2011).

Growers are therefore encouraged to increase their natural enemy numbers around

agricultural fields to assist aphid control. Various studies have indicated that

establishing flower strips and field margins are good methods to increase natural

enemy numbers, fecundity and longevity (Wäckers, 2001; Winkler, et al., 2006;

Bianchi and Wäckers, 2008). A more recent study has suggested that the presence of

wildflower strips resulted in lower numbers of lettuce aphids on adjacent crops, but

this effect decreased with distance, where beyond 10 m there was little effect

(Skirvin, et al., 2011). Alyssum maritimum (sweet alyssum) has also been shown to

improve the biological control of N. ribisnigri in organic field grown lettuce in

California (Gillespie, et al., 2011). These studies highlight the need for on-going
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research to determine where these flower strips should be planted and in what

quantity.

Cultural management practices are also available against aphids and in lettuce this

includes the use of row covers to prevent aphid introductions during the vulnerable

stage of crop development (Rekika, et al., 2009) and the removal of crop residues,

which could act as a refuge, following harvest (McDougall, et al., 2004). Post-

harvest control methods are also being investigated, including the use of ultra-low

oxygen treatment for the export of lettuce to countries where N. ribisnigri is a

quarantine pest (Liu, 2005).

While various control measures exist for N. ribisnigri, establishing the most effective

IPM strategy requires a thorough understanding of the biology and behaviour of the

pest. For N. ribisnigri this information is limited, and further information would

support the development of new, and refinement of existing, control measures. This

is particularly with regard to supporting decision making by growers on the most

effective timing of their treatment applications.

Project aims

The overall aim of this project is to quantify aspects of the life-cycle of both wild-

type and resistance-breaking N. ribisnigri to inform the development of a more

effective and targeted control strategy. The specific objectives are to:

1) Investigate the effects of photoperiod and temperature on the development of

parthenogenetic summer aphids.

2) Investigate the conditions required to stimulate development of sexual

morphs, egg production, termination of egg diapause and egg hatching.

3) Investigate alternative host plants (to lettuce) and confirm whether N.

ribisnigri can use them as overwintering hosts.

4) Investigate the population dynamics of N. ribisnigri in response to natural

enemies and entomopathogenic fungi.

5) Investigate the potential of Lactuca species and their relatives to provide new

sources of resistance genes which could be used to develop resistant cultivars

with new mechanisms of resistance.
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Chapter 2: General techniques

This chapter describes the general techniques and aphid rearing methods used in this

research. All of the experimental work was undertaken at Warwick Crop Centre,

Wellesbourne, which is part of the School of Life Sciences in the University of

Warwick.

Aphid biotypes

Four clones and two populations of either wild-type (WT) or host plant-resistance-

breaking (abbreviated as Rb in this study) N. ribisnigri biotypes were used

throughout this research (Table 2.1).

Table 2.1 Aphid biotype name, lineage and known history.

Biotype name Lineage History

WT4850a WT Clone Collected in September 2003 from a lettuce field

in Lincolnshire. Field spray history includes

Dovetail® (lambda-cyhalothrin and pirimicarb),

Plenum® (pymetrozine), Aphox® (pirimicarb),

Nico soap® (nicotine sulphate) and Toppel®

(cypermethrin). Clonal line established in the

laboratory from a single founding mother.

WTKent10Pop WT Population Received on 12 November 2010 from an

infested lettuce field in Kent. Maintained as a

population.

RbKentPop Rb Population Received on 16 October 2009 from an infested

lettuce field in Kent on resistant (Nr-gene)

cultivars. Maintained as a population.

RbKent Rb Clone A clonal line established in the laboratory from a

single founding mother taken from RbKentPop.

Insecticide screening carried out by Rothamsted

Research found no resistance to imidacloprid,
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pirimicarb, lambda-cyhalothrin and pymetrozine

when compared with a susceptible standard

clone (S. Foster, Personal Communication).

RbUK631 Rb Clone Received on 3 December 2009. UK geographical

location unknown. Clonal line established in the

laboratory from a single founding mother.

Insect rearing

Each of the aphid biotypes described in Table 2.1 were reared as continuous cultures

to ensure a regular supply of N. ribisnigri of all life stages. The WT biotypes were

kept in controlled environment (CE) Room 3 (20°C 16L:8D, light:dark) in the Insect

Rearing Unit (IRU) at Warwick Crop Centre, while the Rb biotypes were kept in CE

Room 6 (16L:8D, 20°C) to reduce any potential cross contamination.

Nasonovia ribisnigri biotype WT4850a was the most utilised culture and therefore a

large culture was maintained in Perspex cages with a Velcro mesh front (See Figure

2.2a). Aphid biotypes WTKent10 and RbKentPop were also maintained in Perspex

cages as the infested lettuce originally received was transferred into cages to allow a

large population to develop to maintain the variation within the population. The

remaining biotypes were each cultured on two individual plants which were covered

with micro-perforated polypropylene bags (200mm x 500mm; Cryovac®) and kept

in Perspex cages (see Figure 2.2b) which reduced potential cross contamination.

Cultures were refreshed every three weeks. Clean plants were provided for the aphid

biotypes maintained in Perspex cages. For the remaining biotypes, five aphids from

each of the two plants were inoculated, using a fine paint brush, onto two new plants.

One of the old plants, the one in the best condition, was also kept as a reserve. WT

biotypes were kept on susceptible lettuce plants cv. Saladin (Tozer Seeds Ltd) or cv.

Pinokio (Enza Zaden Ltd) and the Rb biotypes were kept on a combination of

resistant (Nr-gene) lettuce plants cv. Rotary and cv. Eluarde (Elsoms Seeds Ltd)

which provided a consistent selection pressure for the biotypes to maintain their

resistance-breaking phenotype.
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a) b)

Figure 2.2 a-b a) Caged cultures b) Cultures in micro-perforated polypropylene

bags.

The following methods of good practice were implemented to avoid cross

contamination of the aphid biotypes:

 WT aphid biotypes were always handled first when starting experiments or

refreshing the cultures. In this way, should cross contamination occur from

the WT biotypes to the Rb biotype cultures, the WT biotype would not be

able to survive on the resistant cultivars. The WT biotypes were also

regularly tested for cross contamination by screening for colonisation of cv.

Rotary or cv. Eluarde.

 A one hour interval was left between handling different aphid biotypes.

Lettuce cultivars (Latuca sativa)

Three main lettuce cultivars were used in the experiments. An Iceberg type cv.

Saladin was used as the susceptible cultivar (Figure 2.3). To confirm its

susceptibility, a preliminary experiment was carried on 15 February 2010 to

determine whether Saladin could support the development of WT (4850a) and Rb

(RbKentPop) biotypes. Five of each aphid biotype were inoculated onto 8 Saladin

plants (40 aphids in total) and placed at 20°C, 16L:8D (CE Room 9). The percentage

surviving to adult was determined to be 70% for the WT biotype and 85% for the Rb

biotype, indicating that cv. Saladin can support both biotypes.

Two cultivars resistant to WT N. ribisnigri were also used (Figure 2.3). Eluarde was

a red Oakleaf with Bremia lactucae (BL) and Nr-gene resistance, while Rotary was

an outdoor Butterhead with BL and Nr-gene resistance (Elsoms, 2011).
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Figure 2.3 Cultivars Rotary, Eluarde and Saladin (left to right).

Plant rearing

All lettuce cultivars used in this research were sown in vermiculite and left for one

week in CE Room 4 (18°C 16L:8D) to germinate. Seedlings were then transplanted

into 400ml square plant pots containing Levington© Seed and Modular Plus Sand

compost and left to continue their development in CE Room 4 which was an insect-

free room. All cultures and plants were watered bi-weekly.

Blackcurrant plants (Ribes nigrum)

On 28 October 2010, blackcurrant cuttings (cv. Ben Alder, supplied by Welsh Fruit

Stocks, Hereford) were taken from six year old established blackcurrants at Warwick

Crop Centre, Wellesbourne in a field known as Long Meadow Centre (National Grid

reference SP 27146 56846). Forty five cuttings of approximately 25cm were taken

from healthy ripened stems from just below the bud. These were then planted into

the soil of an old Dutch light at Warwick Crop Centre, Wellesbourne (GardenAction,

2010). On 1 November 2011, all the cuttings were transplanted into pots. Prior to

this transplanting date, cuttings had been transplanted into pots when required.

Plant disposal

Following each experiment, plants were placed into paper bags and put in a freezer

for at least one week before being composted. Plants used in the field trials were also

destroyed and composted.

Data recording and statistics

All data recording took place in the IRU main laboratory unless otherwise specified.

All data were analysed using Genstat for Windows 14th edition (VSN international

Ltd.) and Microsoft Excel 2010. Interpretations of analyses were made using 95%

confidence intervals.
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Chapter 3: The effect of temperature and photoperiod on the development of N.

ribisnigri

Introduction

Generally, insects are considered to be ectothermic, meaning that their life history is

closely determined by the environmental ambient temperature, where the control of

their body temperature depends on the balance between their heat gain and heat loss

(Casey, 1992). However, some species have been observed to exhibit some form of

thermoregulation through changes in behaviour. For example, many flying insects

such as moths vibrate their wings to warm their muscles, which enables flight

(Krogh and Zeuthen, 1941), while bees crowd together in the brood area and vibrate

their thoracic muscles to maintain a hive temperature of 33-36°C (Kleinhenz, et al.,

2003).

Temperature is the most significant factor controlling insect development,

particularly due to the effects that it has on enzymes (Damos and Savopoulou-

Soultani, 2012). Enzymes are temperature-dependent biological catalysts which

enable the metabolism of substrates to occur, providing energy for insect cell growth,

development and reproduction (Chown and Nicolson, 2004). Changes in temperature

can alter enzymes by changing their conformation (affecting availability of the

enzyme), substrate binding (affecting availability of the substrate) and influencing

the rate of the reactions they catalyse (Higley, et al., 1986; Neven, 2000). In

response to increasing temperatures, enzyme activity increases up until an optimum

temperature, beyond which, activity decreases and the enzymes begin to denature

(Stoker, 2009). At lower temperatures metabolism slows and the insect becomes

inactive (Mellanby, 1939). Various studies have described the specific temperatures

at which these changes in growth, development and reproduction occur in numerous

insects of economic significance, including aphids, as this information can be used to

predict insect presence in the field (Awmack and Leather, 2007; Damos and

Savopoulou-Soultani, 2012).

Aphids demonstrate a sigmoidal relationship between development rate and

temperature, where within an optimum temperature range, development increases

with increasing temperature until an upper temperature is reached, where it then
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begins to slow (Dixon and Hopkins, 2010). Monitoring insect oxygen consumption

as a measure of metabolic rate demonstrates this, as respiration increases with

increasing temperature, until the upper developmental threshold (UDT) is reached

(Lamb, 1961; Neven, 2000). Similarly, at low temperatures a lower developmental

threshold (LDT) exists where development also begins to slow (Dixon and Hopkins,

2010).

As temperatures exceed these thresholds an insect’s survival depends on their

physiological adaptations such as regulation of water loss and the suspension, or

slowing, of metabolic reactions (Abdullah, 1961). As temperatures continue to

increase or decrease, lethal temperatures are reached where insects are described to

undergo stupor, prolonged coma, irreversible trauma, followed by death (Chown and

Nicolson, 2004). Therefore, depending on an insect’s adaptability, temperature can

significantly determine its distribution and survival (Mellanby, 1939).

Various methods have been used to record insect growth and development which

provide indicators of changes in performance in response to varying temperatures

and other environmental factors under which they develop. By using measurements

of aphid weight over a period of time, mean relative growth rates (MRGR) and

relative growth rates (RGR) can be calculated, which are often used to evaluate

aphid performance, as strong correlations between fecundity and growth rates have

been observed for some aphid species (Dixon and Wratten, 1971; Lowe, 1974;

Leather and Dixon, 1984). However, this relationship is not always observed and

other factors, particularly host plant quality, can significantly influence aphid size

(Awmack and Leather, 2002; Gwynn, et al., 2005)

Recording developmental time (D) is also a common approach, where the time

between selected developmental stages is recorded (i.e. from birth to final adult

moult) and often expressed as a rate, by using the reciprocal (1/D) (Awmack and

Leather, 2007). Developmental time can then be used to calculate the intrinsic rates

of increase (rm), as an estimate of population growth, by relating fecundity to

developmental time, rather than undergoing labour-intensive field counts (Awmack

and Leather, 2007): rm = (ln Md x 0.738) /D, where ln is the natural logarithm, D is

the pre-reproductive time (nymph to final adult moult) in days and Md is the

reproductive output of an individual aphid following the adult moult for a number of
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days equal to D. However, it is important to remember that when using an rm

calculated in the laboratory, a stable age distribution within the population is

assumed, which is rarely observed in field populations (Dean, 1974).

The effects of temperature on development have been described for various aphid

species including Rhopalosiphum maidis, Schizaphis graminum, Aphis gossypii and

M. persicae (Kuo, et al., 2006; Satar, et al., 2008; Tofangsazi, et al., 2010).

Comparisons of the temperature responses of different aphid species under similar

climatic rearing regimes have identified variation in their development times,

optimum ranges, thresholds and reproductive parameters (Campbell, et al., 1974;

Dean, 1974; de Conti, et al., 2010). When clones from the pea aphid, A. pisum were

compared, there was a larger variation in development parameters between clones

from the same population, than among populations (Lamb, et al., 1987). Similarly,

significant differences in development time and fecundity have been recorded

between four biotypes of A. pisum collected from four geographically-defined

populations (Kilian and Nielson, 1971). It has been suggested that these observed

differences, within and between species, could be the result of adaptation to

geographic variations in temperature.

Campbell et al. (1974) found that the development times of A. pisum and

Brevicoryne brassicae, when kept at 10°C, were longer for individuals collected

from warmer climates, indicating their temperature requirements may have been

adapted to local rearing regimes. Similarly, the LDT for A. pisum populations

collected from different latitudes across North America decreased as the climate

became cooler (Hutchison and Hogg, 1984). However, other studies have shown no

evidence that variation in development rates, developmental thresholds and aphid

weight is related to adaptation to the climate at different latitudes from which the

aphids were collected (Lamb, et al., 1987; Lamb and Mackay, 1988). As a result of

this ambiguity, caution should be used when using temperature parameters for aphid

species collected from one geographic location, to predict the activity of the same

aphid species collected elsewhere.

Determining the temperature requirements and development parameters for insects is

usually achieved by measuring development time in the laboratory at various

constant temperatures, such as every 2°C, over a 20°C range (Collier and Finch,
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1985). However, the accuracy of using laboratory-collected data to represent field

populations is considered to be limiting as the optimum rearing regimes used usually

provide minimum development times (Higley, et al., 1986). Furthermore, laboratory

experiments cannot include in their predictions, the influence of other factors only

found in the field environment such as variable weather, predation and plant-aphid

interactions (Bommarco and Ekbom, 1996). Estimations of the development rates of

Metapolophium dirhodum obtained from field observations showed that while they

developed more slowly at lower temperatures, the estimated lower development

thresholds were similar to those determined in the laboratory at constant

temperatures (Cannon, 1984). For A. pisum, apterae and alates exposed to constant

temperatures in the laboratory and fluctuating temperatures in the field had similar

development times for the mean of the first three instar periods (Hutchison and

Hogg, 1984). Similarly, apterous A. pisum kept under both constant and field

temperatures provided a similar value for the average day-degree requirement for

complete development from nymphs to adult (Campbell and Mackauer, 1977). A

study on B. brassicae, however, found the mean temperature for the maximum rate

of population increase was lower in the field, at 16.7°C, than in laboratory

experiments at 22°C (Lamb, 1961).

In the laboratory, fluctuating temperatures (providing daily means) are often used to

simulate field rearing regimes, which are then compared to constant temperature

data. For the sowthistle aphid, Hyperomyzus lactucae, development rates, life span

and age-specific survival, reproduction and temperature coefficients did not vary

between constant and fluctuating temperatures, but fluctuating temperatures did

affect their lethal high and low temperature limits which varied with the pattern and

amplitude of the fluctuations (Shu-sheng and Hughes, 1987). Campbell et al. (1974)

also recorded no differences in development rate between constant and fluctuating

temperatures. However, a study on M. persicae found that fluctuating temperatures

resulted in higher UDT and optimal temperatures, combined with improved survival,

compared to recordings at constant temperatures (Davis, et al., 2006). Collectively,

these observations indicate that caution should be employed when using constant

temperature data, as they could underestimate thresholds and development at higher

temperatures, meaning that temperature-based forecasts could be unreliable.
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Generally, aphids develop through four nymphal instars, undergoing ecdysis at the

end of each stage, before reaching their adult form, although five nymphal instars

have been recorded for some aphid species (Rohitha and Penman, 1983). For

development from one stage to the next, insects require specific amounts of ‘heat

accumulation’, which remain constant for that species. This thermal requirement

over time is referred to as physiological time and can be expressed in day-degree

units (D°), where one day-degree is accumulated for each degree that the average

temperature remains above the LDT for a 24 hour period (Herms, 2004). Therefore,

insects require a specific number of day-degrees (a thermal constant) to complete

each developmental stage.

Determining the number of day-degrees allows researchers to make estimates of

when development will be completed in a field situation by determining the

accumulation of day-degrees from a set ‘biofix’ date (UCIPM, 2003). In the UK, the

biofix date used is often 1 February, which is when temperatures begin to rise in the

spring and insects are ready to begin post-diapause development (Collier and Finch,

2001). The following equation is the accepted method for calculating day-degrees

(Herms, 2004):

Day-degrees = (max temperature + min temperature)/2 – LDT

Various adaptations of this method exist which aim to improve its accuracy. These

include the sine and triangle methods where the effects of the UDT on day-degree

accumulations are considered in addition to the LDT (UCIPM, 2003). On reaching

the UDT, various ‘cut-off’ methods can be implemented where one can assume; a)

no more development occurs (vertical cut-off); b) development continues slowly

(intermediate cut-off) or c) development occurs at a constant rate (horizontal cut-off)

(Baskerville and Emin, 1969; UCIPM, 2003). More recent refinement, as a result of

the increasing numbers of growers using their own on-site meteorological stations,

include calculating separately, morning and afternoon day-degree estimates and

using hourly temperature data to improve accuracy (Roltsch, et al., 1999).

Day-degree models have often been used successfully in predicting insect activity, as

temperature is generally the main determinant of growth. These include models for
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Delia radicum and Plutella xylostella (Butts and McEwen, 1981; Collier and Finch,

1985; Eckenrode and Chapman, 1972). In the UK, the thermal requirements for N.

ribisnigri are unknown, but a day-degree model, using the LDT of Pemphigus

bursarious (4.4°C) as an estimate, has been evaluated, which showed that the dates

when the first N. ribisnigri was captured and the dates when peak numbers were

found on plants, were strongly correlated with the accumulated day-degrees from 1

February each year (Collier and Harrington, 2001).

While day-degree forecasts have been made for a number of pests, there are various

factors which limit the accuracy of their predictions. For example, they do not take

into consideration the variation between individuals in a population, and they also

assume that the relationship between development rate and temperature is linear

(Finch, et al., 1996). Many stochastic mathematical models have been developed to

improve accuracy of these forecasts, such as the Monte Carlo Simulation model for

cabbage root fly (D. radicum), carrot fly (Psila rosae) and bronzed blossom beetle

(Meligethes spp.), which accommodates variability within insect populations, resting

phases (diapause and aestivation) and the passage through different development

stages (Phelps, et al., 1993; Collier and Finch, 2001). Such models, however, do not

consider other non-temperature variables influencing development, particularly

photoperiod and host plant nutrition (McMaster and Wilhelm, 1997).

The effects of photoperiod on aphid development have been studied extensively with

regard to requirements for the production of sexual forms and egg diapause, yet

effects on developmental and reproductive parameters of parthenogenetic aphid

forms have been overlooked. Should photoperiod have an influence on development

time, this could impact the reliability of all temperature-based forecasts. This has

been observed for other pest insects where for example, the development time of the

fifth larval instar of the black lyre leafroller (Cnephasia jactatana) was similar at

12L:12D and 6L:18D, but lengthened under complete light, complete dark and

18L:6D (Ochieng-Odero, 1991). Higley et al. (1986) suggested that as genetics and

photoperiod are linked with regulating insect hormones, which in turn regulate

development through changes in enzyme concentrations, it would therefore not be

surprising if photoperiod did have an effect on development.
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For N. ribisnigri, there is no information on the effects of photoperiod on

development, but a study on H. lactucae, reported little effect of photoperiod in the

range of 12L:12D to 16L:8D on development rates, survival and fecundity when

temperature was kept constant (Shu-sheng and Hughes, 1987). However,

investigations into A. gossypii on Cucurbita pepo found that the rm and finite rates of

increase significantly increased with increasing day length, and nymphs developed

faster at 18L:6D compared with 12L:12D and 6L:18D when kept at 25°C (Aldyhim

and Khalil, 1993).

While it is unclear whether photoperiod has its own ‘separate’ effect on

development, it has been shown to be involved in complex interactions with other

factors such as light intensity and temperature, which is likely to be the cause of the

difficulty in isolating any ’separate’ effects. A study by Wyatt and Brown (1977)

compared the development of four species of aphids (all greenhouse pests) in

response to different day lengths, light intensities and temperatures and found that

the pre-reproductive time was shortest during long warm days, but delayed during

short warm days, with high light intensity delaying it further. Sometimes, however,

responses were species-specific. For example, A. gossypii developed faster during

long cool days compared with M. persicae, Brachycaudus helichrysi and

Macrosiphoniella sanborni, whose development slowed. This study not only

emphasises the importance of day length but also light intensity as factors affecting

development. A recent study confirmed that, independently, high light intensity

increased the fresh weight and the number of offspring of ten clones of S. avenae,

while lower light intensities increased the propensity to become alate (Alkhedir, et

al., 2010).

In addition to the abiotic factors discussed, studies also support the effects of biotic

factors, particularly host plants, in influencing aphid performance and development,

both between and within aphid species. For example, day-degree estimates, and the

LDT estimated for R. maidis in Taiwan on corn leaf, differ from those estimated in

the United States for R. maidis on barley leaves. It was suggested that a combination

of low temperatures and host plant could be causing the variation (Kuo, et al., 2006).

Similarly, at a constant temperature of 10°C N. ribisnigri showed longer

developmental times, shorter reproductive periods and lower total fecundity on L.
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sativa cv. Cuatro Estaciones than on cvs. Divina and Criolla Blanca (Vasicek, et al.,

2000). In a study on the effect of host plant growth stage and feeding site, M.

persicae and A. gossypii displayed different feeding site preferences and

development times. However, both species demonstrated shorter development times

on young chrysanthemum plants compared with flowering plants (Guldemond, et al.,

1998). Sitobion avenae also exhibits higher development rates, MRGR and rm on the

ear of wheat, where the relationship of temperature and development rates is linear,

compared with development on flag leaves, where the relationship is non-linear

(Acreman and Dixon, 1989).

In the present study, the effects of temperature and photoperiod on the development

of WT and Rb N. ribisnigri on resistant and susceptible lettuce cultivars were

determined, through measurements of development time/rates and estimation of the

rm. Lower developmental thresholds and thermal requirements were also estimated

with the aim of producing a more reliable day-degree model. This would provide

growers with better predictions of the timing of N. ribisnigri colonisation, help them

to identify lettuce plantings at risk and indicate when control measures should be

applied, all of which are vital for effective control of this pest (Parker, et al., 2002).

Materials and Methods

3.1 Effects of temperature on the development of WT and Rb N. ribisnigri

reared on susceptible and resistant lettuce cultivars

The effects of five different temperatures (5, 10, 15, 20 and 25°C) on the

development of WT and Rb N. ribisnigri were determined. For each temperature, the

experiment was replicated on three occasions, except at 5°C where there were only

two replications due to the long development times required by the aphids.

Replications at each temperature were carried out at different times due to the

intense monitoring required for each experiment and the limitations imposed by the

availability of CE rooms.

The experiment consisted of six treatments. WT and Rb N. ribisnigri were reared on

three cultivars of lettuce, cvs. Saladin (susceptible), Eluarde (resistant), Rotary

(resistant), with each treatment consisting of ten lettuce plants (60 plants per
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experiment). WT N. ribisnigri reared on cv. Saladin was used as a control. Twenty

plants of each cultivar were grown as described in Chapter 2. The plants were

approximately 21 days old. This is the stage at which their 4th true leaf had unfolded,

which is designated as growth stage 14 when using the BBCH

(Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie)

identification key for leafy vegetables (forming heads) (Feller et al., 1995).

The N. ribisnigri biotypes used in the experiment included the WT clone designated

WT4850a and the Rb population designated RbKentPop (See Chapter 2 for biotype

details). New-born nymphs of each of these biotypes were used in each experiment.

These were obtained by releasing 45 alate adults into a cage containing three lettuce

plants cv. Saladin, where they were left for 24 hours at 20°C 16L:8D to produce

nymphs (repeated individually for Rb and WT biotypes). After 24 hours, 10 plants of

each of the lettuce cultivars were inoculated with one new born nymph of the WT N.

ribisnigri clone and the remaining plants were inoculated with one nymph of the Rb

clone, using a fine paintbrush.

The 60 inoculated plants were then covered individually with micro-perforated

polypropylene bags (200mm x 500mm; Cryovac®), which were secured with an

elastic band. At 10°C (CE Room 5) and 20°C (CE Room 6) the experimental design

was arranged over two shelves (Figure 3.1.1b) while at 15° (CE Room 9) and 25°C

(CE Room 10) the design was arranged over a single shelf (Figure 3.1.1c). Plants

were arranged in a randomised block design with ten blocks over four rows and 15

columns. The CE rooms could not operate at 5°C, so a Sanyo (MLR-351) plant

growth chamber was used and the plants were arranged over five shelves (two blocks

per shelf) (Figure 3.1.1a). The photoperiod was kept at 16L: 8D in all replications.

Relative humidity ranged between 67-75% at 5°C, 84-93% at 10°C, 66-93% at 15°C,

84-94% at 20°C and 53-73% at 25°C.

Collecting the data at 5°C was challenging and required several restarts as the

incubator malfunctioned due to operating at the limits of its temperature range. Tiny

Tags© were used to record the temperature in each CE room and were placed in the

centre of each shelf, where readings were taken every 30 minutes
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a) b)

c)

Figure 3.1.1 a-c a) Sanyo (MLR-351) plant growth chamber used to rear aphids at

5°C b) Large CE room used at 10 and 20°C c) Small CE room

used at 15 and 25°C.

The following data were collected for the individual aphids in each treatment:

 Development time to adult - The number of days it took each individual aphid

to reach adulthood was recorded. Aphids were checked from day 29, 13, 8, 5

and 4 onwards at 5, 10, 15, 20 and 25°C respectively, until all the surviving

aphids had reached adulthood. This schedule was developed using

previously-determined development times as a guide (Diaz and Fereres,

2005).

 Adult morph - whether the adults were apterous or alate.

 Mortality - the number of nymphs which died before reaching adulthood.

 Intrinsic rate of increase - rm = (ln Md x 0.738) /D (Wyatt and White, 1977).
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 Achieved fecundity - the total number of nymphs produced by each aphid was

recorded until death. The nymphs were counted and removed to ensure only

the original adult aphid remained on the plant.

When making data recordings, any plants where aphids were found to be missing

after two consecutive recordings, or were dead, were removed from the experiment.

Plants were also changed during each experiment, as they grew to an unmanageable

size and were replaced with approximately 21 day old plants. This took place

approximately every two weeks but the period was increased to six weeks at 5°C due

to slower plant development. Measurements of growth rates were attempted but the

microbalances available could not accurately weigh individual aphids, which can

weigh as little as 30µg (Dixon, 1998). Table 3.1.2 shows the dates each experiment

was started.

Table 3.1.2 Start dates of each temperature experiment.

Temperature (°C) Replication Date

5 1

2

24 September 2010

29 January 2011

10 1

2

3

17 March 2010

3 September 2010

5 April 2011

15 1

2

3

28 May 2010

29 July 2010

8 October 2010

20 1

2

3

7 July 2010

17 September 2010

26 October 2010

25 1

2

3

19 March 2010

28 May 2010

11 August 2010
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3.2 Effects of temperature on WT N. ribisnigri

Due to the relatively low number of replicates and high numbers of treatments

present in Experiment 3.1, an experiment was designed to determine the effects of

exposure to 10, 15, 20 and 25°C on 60 individual aphids of the control treatment

only (WT + Saladin). This larger data set could then be used to determine the LDT

and thermal requirements more accurately. The 5°C treatment was excluded because

of the longer development time required, combined with the time constraints and

incubator malfunctions.

The experiment was carried out in the same way as Experiment 3.1 and 60 replicates

were used and arranged on a single shelf (4 x 15). A blocking structure was not used

as there was only one treatment. Data recorded included development times, rm and

the aphid morph. The experiments were repeated once per temperature and were

concluded once the rm could be estimated. The 25°C experiment began on 19

November 2011, the 20°C experiment on 15 November 2011, the 15°C experiment

on 3 February 2012 and the 10°C on 5 January 2012.

3.3 Effects of aphid biotype on the propensity to become alate

Differences in the propensity to become alate were determined at 20°C 16L:8D for

WT and Rb N. ribisnigri biotypes. The experiment consisted of three treatments. WT

N. ribisnigri were reared on cv. Saladin and Rb N. ribisnigri was reared on cv.

Saladin and cv. Rotary, with each treatment consisting of 32 lettuce plants (96 plants

per experiment). New born nymphs of WT and Rb N. ribisnigri were obtained and

plants were grown as per Experiment 3.1. Individual aphids were inoculated onto

each lettuce cultivar according to the treatments and covered individually with

micro-perforated polypropylene bags (200mm x 500mm; Cryovac®) and secured

with an elastic band. Plants were arranged in a randomised block design with 4

blocks over 8 rows and 12 columns on a single shelf in CE Room 6 (20°C 16L:8D).

Aphids were then left to develop to adulthood, when their adult morph (alate or

apterous) was recorded.
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3.4 Effects of photoperiod on the development of different aphid biotypes

The effects of two different photoperiods (14L:10D and 16L:8D) on aphid

development were determined for five biotypes of N. ribisnigri on cvs. Saladin and

Rotary (Table 3.4.1). In addition, the shorter photoperiod was tested at 15 and 20°C,

while the longer photoperiod was tested at 15°C to give three rearing regimes. For

each rearing regime (photoperiod x temperature combination), three replications

were conducted to give nine experiments in total. Each experiment contained 60

plants (6 replicates per treatment) and was carried out at different times due to the

intense monitoring required and the availability of the CE rooms.

Table 3.4.1 The 10 treatments (five aphid biotypes on cv. Saladin and cv.

Rotary) tested under three rearing regimes (20°C 14L:10D, 15°C

14L:10D and 15°C 16L:8D) to determine the effects of

photoperiod on the development of N. ribisnigri.

Treatment (aphid biotype and

lettuce cultivar)

WT4850a + Saladin

WTKent10Pop + Saladin

RbKent + Saladin

RbUK631 + Saladin

RbKentPop + Saladin

WT4850a + Rotary

WTKent10Pop + Rotary

RbKent + Rotary

RbUK631 + Rotary

RbKentPop + Rotary

Plants were grown as described in Chapter 2 and used at approximately 21 days.

This is the stage at which their 4th true leaf had unfolded (BBCH growth stage 14).

New born nymphs of each aphid biotype were obtained by releasing 30 alate adults

into a cage containing two lettuce plants cv. Saladin (repeated for each aphid

biotype). After 24 hours, individual new-born aphids were inoculated onto the test
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plants of each lettuce cultivar according to the treatment list and covered individually

with micro-perforated polypropylene bags (200mm x 500mm; Cryovac®) which

were secured with an elastic band. Plants were arranged in a randomised block

design consisting of six blocks over 4 rows and 15 columns on a single shelf in a

small CE room (CE Rooms 8 or 9). The lighting levels in CE room 8 (100 watt

lamps) ranged between 4060-4710lux and in CE room 9 (100 watt lamps) between

3600-4500lux.

The data collected included development time to adult, adult morph and rm. Missing

and dead aphids were treated in the same way as in Experiment 3.1. Once the rm

value could be calculated the experiment was concluded. Table 3.4.2 shows the dates

each experiment was started.

Table 3.4.2 Start dates of each photoperiod experiment.

Condition Replication Experiment start date

14L:10D 15°C 1 23 February 2012

2 16 March 2012

3 18 May 2012

14L:10D 20°C 1 & 2 24 May 2011

3 15 July 2011

16L:8D 20°C 1 24 February 2011

2 26 October 2011

3 15 November 2011

Statistical analysis

3.1 Effects of temperature on the development of WT and Rb N. ribisnigri

reared on susceptible and resistant lettuce cultivars

Analyses of the development time, rm and total fecundity at each temperature, and

for each treatment, were performed using ANOVA. A log10 data transformation was

carried out to normalise the development time data. Achieved fecundity did not
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require transformation. The rm data were not transformed, as there were more

observations for the larger fitted values, which resulted in small SED/LSD values

which would over-emphasise the differences between treatments with higher means.

This also means that when using the untransformed data the LSDs may be too large

to detect differences between treatments with relatively low means, so care must be

taken.

The treatment factors used in the ANOVA included treatment*temperature. Aphid

biotype and lettuce cultivar were combined to form the treatment factor to simplify

the data, as there were too many missing values leading to a significant number of

missing treatment factor combinations for aphid biotype*lettuce cultivar*

temperature, when aphid biotype and lettuce cultivar were used as individual factors.

Also, due to the small amount of data available, the WT Eluarde and WT Rotary

treatments were not included in the ANOVA, as when estimates of the missing

values were made by the statistical software, they were significantly erroneous when

compared to the calculated means from the raw data.

The blocking structure used in the ANOVA included Occasion.Temperature which

accounted for any variation observed between the development parameters at each

temperature within each occasion. Interpretation of the data was made using both

treatment means and 5% LSD values. Analyses were carried out combining both

apterae and alates and also with the alates excluded. To exclude the alates, the data

for them was replaced with missing values as the complete removal of the data

resulted in an unbalanced design, which cannot be analysed by ANOVA.

Survival to adulthood was analysed using ANOVA. The number of aphids surviving

to adulthood for each treatment at each temperature was determined, and a

proportion was calculated out of a total of 30. The treatment factors used in the

ANOVA included Temperature*Treatment. The blocking structure used included

Occasion.

To analyse the differences in the proportion of alate morphs between treatments, a

general linear model was used to model binomial proportions (logistic regression).

The treatments WT+Eluarde and WT+Rotary were excluded from the analysis as

there were too many missing values. The proportions used were the number of alates



34

observed out of the total observations for each treatment. The fitted terms of the

model used were:

Occasion+Temperature+Occasion.Temperature+Treatment+Temperature.Treatment.

Model terms were fitted individually. Predictions from the regression model were

used to provide means for the effect of temperature and treatment individually on the

proportion of alates produced.

3.2 Effects of temperature on WT N. ribisnigri

To determine the LDT, development rates were determined using the reciprocal of

development time (1/development time) at each temperature (10, 15, 20 and 25°C)

collected for the WT4850a biotype on cv. Saladin in Experiment 3.2. A two-sample

bionomial test (two-tailed) was also performed to determine the equality of the

proportions of alates between the four temperatures with a 95% confidence interval.

The reciprocals were also determined from the data collected at 5, 10, 15, 20 and

25°C for the WT4850a and RbKent biotypes on cv. Saladin in Experiment 3.1.

Linear regressions were then applied to the three data sets of the reciprocals, where

the relationship between mean rate of development (y dependent variable) and

temperature (x independent variable) were described using linear regression

(Campbell and Mackauer, 1977):

Y = a +bx

Where Y is the development rate, a is the intercept, b is the slope of the line and x is

the temperature.

The LDTs were extrapolated for the three treatments using the x-intercept method

(where the value of x is determined when y equals zero) (Arnold, 1959):

x = - a

b

Day-degrees for the three treatments were calculated using the formula DD= 1/b

(Campbell, et al., 1974; Tofangsazi, et al., 2010).
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3.3 Effects of aphid biotype on the propensity to become alate

A two-sample bionomial test (two-tailed) was performed to determine the equality of

the proportions of alates between the three treatments with a 95% confidence

interval. The control (WT+Saladin) data were compared with Rb + Saladin and Rb +

Rotary. Rb + Saladin data were compared with Rb + Rotary.

3.4 Effects of photoperiod on the development of different aphid biotypes

An ANOVA was carried out on the untransformed means for development time to

adult and the rm. The blocking structure used included Occasion/Blocking to account

for any variance between occasions and the differences between the blocks within

each occasion. The treatment factors included rearing regime*aphid*lettuce. No data

were available for WT+Eluarde and WT+Rotary treatments, which were left in the

data set as missing values. Analysis of the data was carried out combining both

apterae and alates, as little effect was seen in analysing them separately as observed

in the analysis of Experiment 3.1. Interpretations of the data were made using both

treatment means and 5% LSD values.

Results

3.1 Effects of temperature on the development of WT and Rb N. ribisnigri

reared on susceptible and resistant lettuce cultivars

Temperature recordings were made during each experiment using Tiny Tags© to

determine the deviation from the temperatures at which the rooms/growth chamber

were set (5, 10, 15, 20 and 25°C). As significant variation was observed from these

set temperatures, the mean temperature recorded during each experiment was used as

the treatment temperature to improve the accuracy and estimates of the development

data. The revised treatment temperatures were 5.5, 12.5, 15.9, 21.4 and 26.4°C.

Development time

Figure 3.1.3 illustrates the development time to adult at each temperature for each of

the six treatments. As expected, development time to adult was greatest at lower



36

temperatures, while higher temperatures resulted in reduced development times. The

highest temperature of 26.4°C produced the shortest mean development time for the

control treatment (WT + Saladin) of 6.25 days, followed by 8 days at 21.4°C, 11.48

days at 15.9°C, 16.76 days at 12.5°C and 41.54 days at 5.5°C. Development times

for the control treatment and treatments including the Rb N. ribisnigri biotype were

very similar at each temperature.

Unexpectedly, at the lower temperatures of 5.5, 12.5 and 15.9°C a small number of

the WT biotype reared on the resistant cvs. Eluarde and Rotary survived to

adulthood, where 100% mortality would have been expected. For these treatments

the development time was not as consistent as for the other treatments. It was also

observed that at the lower temperature of 5.5 and 12.5°C the aphids became larger

and darker in colour compared with 15.9, 21.4 and 26.4 °C, where they were light

orange and often smaller.

Figure 3.1.3 Development time (days) to adult for each treatment at five

constant temperatures (5.5, 12.5, 15.9, 21.4 and 26.4°C) including

the standard error (SE).

An ANOVA was performed on the pooled data for apterous and alate aphid morphs

(excluding WT + Eluarde and WT + Rotary treatments) and this described a

significant overall effect of temperature on development time (F(4,9)= 937.95, p
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<0.001). There were no individual effects of the treatments and therefore the Rb N.

ribisnigri biotype displayed similar development times to the WT biotype at each

temperature. An interaction between temperature and treatment was observed

(F(12,440)=2.30, p =0.008) as each treatment had significantly different

development times at each temperature as demonstrated in Table 3.1.4.

When using the LSDs to make comparisons between treatments at the same

temperature, only at 5.5°C were any differences found, indicating there is more

variation between treatments in development time at this temperature (Table 3.1.5).
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Table 3.1.4 LOG10 transformed (t) and back transformed (bt) mean

development times (days) to adult from the ANOVA analysis for

each treatment at 5.5, 12.5, 15.9, 21.4 and 26.4°C; n = number of

observations; Tn= total number of possible observations.

Transformed treatment means with different letters in a column are

significantly different between temperatures.
T

re
at

m
en

t

W
T

S
al

ad
in

(C
on

tr
ol

)

R
b

S
al

ad
in

R
b

E
lu

ar
d

e
R

b
R

ot
ar

y

°C
n

t
bt

n
t

bt
n

t
bt

n
t

bt
T

n

5.
5

13
1.

61
44

a
41

.1
5

17
1.

64
81

a
44

.4
7

14
1.

61
82

a
41

.5
1

14
1.

67
34

a
47

.1
4

20
*

12
.5

25
1.

22
38

b
16

.7
4

26
1.

23
63

b
17

.2
3

27
1.

24
82

b
17

.7
1

28
1.

24
75

b
17

.6
8

30
^

15
.9

25
1.

05
87

c
11

.4
5

30
1.

04
82

c
11

.1
7

30
1.

04
27

c
11

.0
3

29
1.

05
19

c
11

.2
7

30
^

21
.4

21
0.

90
25

d
7.

99
24

0.
87

96
d

7.
58

27
0.

87
83

d
7.

56
26

08
78

4d
7.

58
30

^

26
.4

12
0.

80
14

e
6.

33
29

0.
80

48
e

6.
38

27
0.

81
11

e
6.

47
25

0.
80

37
e

6.
36

30
^

*
L

S
D

u
se

d
fo

r
co

m
p

ar
is

o
ns

w
it

hi
n

a
tr

ea
tm

en
t

b
et

w
ee

n
te

m
p

er
at

u
re

s
w

it
h

m
in

im
u

m
an

d
m

ax
im

u
m

o
b

se
rv

at
io

ns
e.

g.
5

.5
an

d
12

.5
(T

n
2

0
-3

0
)

=
0

.0
4

0
7

0

^
L

S
D

u
se

d
fo

r
co

m
p

ar
is

o
ns

w
it

hi
n

a
tr

ea
tm

en
t

b
et

w
ee

n
te

m
p

er
at

u
re

s
w

it
h

m
ax

im
u

m
o

b
se

rv
at

io
ns

i.
e.

1
2

.5
an

d
1

5
.9

(T
n

3
0

-3
0

)
=

0
.0

3
6

4
0



39

Table 3.1.5 LOG10 transformed (t) and back transformed (bt) mean

development times (days) to adult from the ANOVA analysis for

each treatment at 5.5, 12.5, 15.9, 21.4 and 26.4°C; n = number of

observations; Tn= total number of possible observations.

Transformed treatment means with different letters in a row are

significantly different at that temperature.
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When the data were re-analysed after converting the alate data to missing values, the

ANOVA produced a similar output, with a significant effect overall of temperature

(F(4,9)=761.50, p =0.001), no effect of treatment and a significant treatment and

temperature interaction (F(12,402)=2.59, p =0.003). This increase in significance for

the interaction is due to an increase in the variation between the treatments and a

reduction in the between-replicate variation.

Survival

An ANOVA was performed on the proportion of aphids reaching adulthood for each

treatment at each temperature. Overall there was a significant effect of temperature

on the proportion of aphids reaching adulthood (F(4,52)=3.40, p=0.015), with the

highest proportion surviving to adulthood observed at 15.9°C (Figure 3.1.6). Overall

survival to adulthood at 5.5, 21.4 and 26.4°C was significantly lower than at 15.9°C.

Generally, survival decreased as temperatures increased and decreased from 15.9°C,

suggesting that 15.9°C is the optimum temperature for survival of both N. ribisnigri

biotypes.

Table 3.1.6 Mean proportion of aphids surviving to adulthood at each

temperature (LSD = 0.0995).

°C

Proportion surviving to

adulthood

5.5 0.5563ab

12.5 0.6389bc

15.9 0.6667c

21.4 0.5444ab

26.4 0.5167a

A significant effect of treatment was observed (F(5,52)=98.97, p=<0.001), with all

the Rb biotype treatments having a higher proportion of aphids surviving to

adulthood compared with the control (Figure 3.1.7). This suggests that the Rb

biotype has better survival on all of the cultivars. As previously discussed, at 5.5,

12.5 and 15.9 °C, a small proportion of WT N. ribisnigri survived on the resistant

cvs. Rotary and Eluarde, where 100% mortality was expected.
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Table 3.1.7 Mean proportion of aphids surviving to adulthood for each

treatment (LSD = 0.1090).

Treatment
Mean proportion surviving

to adulthood

WT + Saladin (control) 0.6796b

Rb + Saladin 0.8929c

Rb + Eluarde 0.8763c

Rb + Rotary 0.8563c

WT + Eluarde 0.1163a

WT + Rotary 0.0863a

Table 3.1.8 illustrates the proportion of aphids surviving to adulthood for each

treatment at 5.5, 12.5, 15.9, 21.4 and 26.4°C generated from the ANOVA. A

significant interaction between treatment and temperature was observed

(F(20,52)=1.90, p=0.033).

For the control, survival was significantly lower at 26.4°C compared to 12.5, 15.9

and 21.4°C. Survival was also low at 5.5°C suggesting that these temperatures were

negatively affecting survival of the WT biotype. For the Rb biotypes low survival

such as this was only observed at 5.5°C.

Table 3.1.8 Mean proportion of aphids surviving to adulthood for each

treatment at 5.5, 12.5, 15.9, 21.4 and 26.4°C (LSD = 0.2438).

Treatments

°C

WT +

Saladin

(control)

Rb +

Saladin

Rb +

Eluarde

Rb +

Rotary

WT +

Eluarde

WT +

Rotary

5.5 0.631ef 0.831fgh 0.681fg 0.681fg 0.281acd 0.231abcd

12.5 0.833fgh 0.867fgh 0.900fgh 0.933gh 0.100abc 0.200abcd

15.9 0.833fgh 1.000h 1.000h 0.967gh 0.200abcd 0.000a

21.4 0.700fg 0.800fgh 0.900fgh 0.867fgh 0.000a 0.000a

26.4 0.400de 0.967gh 0.900fgh 0.833fgh 0.000ab 0.000ab
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Achieved fecundity

Figure 3.1.9 illustrates the mean achieved fecundity at each temperature for each of

the six treatments.

The highest mean achieved fecundity for the control was observed at 12.5°C with a

mean of 25.84 nymphs, followed by 19.81 nymphs at 21.4°C, 17.69 nymphs at

5.5°C, 16.25 nymphs at 26.4°C and 15.52 nymphs at 15.9°C. The Rb biotype on the

cvs. Saladin and Rotary also had the highest achieved fecundity at 12.5°C with 65.23

and 44.50 nymphs respectively, suggesting that this could be the optimum

temperature for reproduction for both WT and Rb biotypes. At 12.5, 15.9 and 21.4°C

the control had a much lower mean fecundity than the three Rb biotype treatments.

The highest achieved fecundity recorded for a single female was 111 nymphs at

15.9°C by the Rb + Eluarde treatment.

Out of the 26 aphids which survived in the WT + Eluarde and WT + Rotary

treatments, eight did not reproduce, 17 produced between one and nine nymphs and

one produced 57 nymphs.

Figure 3.1.9 Mean achieved fecundity at five constant temperatures (5.5, 12.5,

15.9, 21.4 and 26.4°C) for each treatment including the SE.

An ANOVA was performed on the pooled data for apterous and alate aphid morphs

(excluding WT + Eluarde and WT + Rotary treatments) and this described a

significant overall effect of temperature on fecundity (F(4,9)=11.13, p=0.002).
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There was also a significant effect of treatment (F(3,440)=43.14, p<0.001) and a

significant interaction between temperature and treatment (F(12,440)=7.55,

p<0.001).

As demonstrated in Table 3.1.10, the mean number of nymphs produced by the

control treatment was significantly different to the Rb N. ribisnigri biotype on cv.

Saladin at all temperatures except 26.4°C. When comparing the control to the Rb

biotype on cvs. Eluarde and Rotary, the numbers of nymphs produced were

significantly different at all temperatures except 5.5 and 26.4°C. At 26.4°C all

treatments produced similar numbers of offspring. Rb + Saladin appeared to be the

superior aphid biotype and lettuce cultivar combination as it produced more nymphs

compared to the same biotype on Rotary at 5.5 and 12.5°C, and on Eluarde at 5.5,

12.5 and 15.9°C.

As presented in Table 3.1.11, the achieved fecundity recorded for the control did not

differ significantly between temperatures. However, significantly more variation was

observed between temperatures for each of the Rb biotype treatments. At 5.5 and

26.4°C, Rb biotypes demonstrated the lowest fecundity.
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Table 3.1.10 Mean achieved fecundity provided by the ANOVA analysis for

each treatment at 5.5, 12.5, 15.9, 21.4 and 26.4°C; n= the number

of observations; Tn= total number of possible observations.

Treatment means with different letters in a row are significantly

different at that temperature.

Treatments

°C n

WT +

Saladin

(control) n

Rb +

Saladin n

Rb +

Eluarde n

Rb +

Rotary Tn

5.5 13 17.48a 17 32.71b 14 11.56a 14 12.15a 20*

12.5 25 25.08a 26 66.09c 27 47.52b 28 43.70b 30^

15.9 25 15.79a 30 38.57b 30 50.87c 29 42.41bc 30^

21.4 21 18.43a 24 43.24b 27 41.67b 26 34.76b 30^

26.4 12 15.70a 29 21.89a 27 14.76a 25 20.96a 30^

* LSD used for comparisons between different treatments at the same temperature which

have minimum number of observations e.g. 5.5 (Tn20-20) = 0.04070

^ LSD used for comparisons between different treatments at the same temperature which

have minimum number of observations e.g. 12.5 (Tn30-30) = 0.03640
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Table 3.1.11 Mean achieved fecundity provided by the ANOVA analysis for

each treatment at 5.5, 12.5, 15.9, 21.4 and 26.4°C; n= the number

of observations; Tn= total number of possible observations.

Treatment means with different letters in a column are

significantly different between temperatures.

Treatments

°C n

WT +

Saladin

(control) n

Rb +

Saladin n

Rb +

Eluarde n

Rb +

Rotary Tn

5.5 13 17.48a 17 32.71acde 14 11.56a 14 12.15a 20*

12.5 25 25.08a 26 66.09b 27 47.52be 28 43.70be 30^

15.9 25 15.79a 30 38.57a 30 50.87ce 29 42.41ce 30^

21.4 21 18.43a 24 43.24a 27 41.67de 26 34.76de 30^

26.4 12 15.70a 29 21.89cde 27 14.76a 25 20.96a 30^

* LSD used for comparisons within a treatment between temperatures with minimum and

maximum observations e.g. 5.5 and 12.5° (Tn20-30)= 10.620

^ LSD used for comparisons within a treatment between temperatures with maximum

observations i.e. 12.5 and 15.9 (Tn30-30) = 8.671

When re-analysing the data after the alate data has been converted to missing values,

the ANOVA produced a similar output, showing that, overall, there was a significant

effect of temperature on fecundity (F(4,9)=12.69, p<0.001). There was also a

significant effect of treatment (F(3,402)= 47.31, p<0.001), and a significant

interaction between temperature and treatment (F(12,402)=7.91, p=<0.001). The

increase in significance for the overall effect of temperature is due to an increase in

the variation between the treatments and a reduction in the between-replicate

variation.

Intrinsic rate of increase (rm)

Figure 3.1.12 illustrates the mean rm at each temperature for each of the six

treatments. The mean rm for the control treatment at 5.5, 12.5, 15.9, 21.4 and 26.4°C

is 0.063, 0.156, 0.213, 0.304 and 0.279 respectively. For all treatments (excluding
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WT + Eluarde and WT + Rotary) the rm value increased with increasing temperature

up to 26.4°C. At 26.4°C, there was more variation in the rm value compared with the

other temperatures and only one treatment (Rb + Rotary) showed an increase in the

rm value.

While several aphids survived to adulthood in the WT + Eluarde and Rotary

treatments as shown in Table 3.1.7, only one WT biotype at 12.5°C on cv. Eluarde

survived long enough for the rm to be determined. This was calculated as 0.087

which is similar to the mean rm recorded at 5.5°C rather than 12.5°C.

Figure 3.1.12 Mean intrinsic rate of increase (rm) for each treatment at five

constant temperatures (5.5, 12.5, 15.9, 21.4 and 26.4°C) with SE.

An ANOVA was performed on the pooled data for apterous and alate aphids

(excluding WT + Eluarde and WT + Rotary treatments). This displayed a significant

overall effect of temperature (F(4,9)=80.76, p<0.001) and treatment (F(3,316)=2.77,

p=0.042) on the rm. A significant interaction between temperature and treatment

(F(12,316)=2.89, p<0.001) was also observed.

When using the LSD to compare rm values between treatments at the same

temperature, the control only differed from Rb + Saladin at 21.4°C, where the Rb

biotype had a significantly higher rm value (Table 3.1.13). At 5.5 and 12.5°C there

were no differences between any of the treatments. As temperatures increased from

12.5°C, variation between the control and Rb biotype treatments occurred, with the
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Rb biotypes having higher rm values compared with the control except for the Rb +

Eluarde treatment at 26.4°C. From 5.5 to 21.4°C the Rb biotype treatments did not

significantly differ from each other, but more variation between treatments occurred

at 26.4°C.

Table 3.1.13 Mean rm provided by the ANOVA analysis for each treatment at

5.5, 12.5, 15.9, 21.4 and 26.4°C; n= the number of observations;

Tn= total number of possible observations. Treatment means with

different letters in a row are significantly different at that

temperature.

Treatments

°C n

WT +

Saladin

(control) n

Rb +

Saladin n

Rb +

Eluarde n

Rb +

Rotary Tn

5.5 4 0.064a 12 0.056a 8 0.046a 4 0.056a 20*

12.5 15 0.155a 24 0.158a 22 0.142a 27 0.145a 30^

15.9 9 0.207a 20 0.227ab 27 0.234b 23 0.226ab 30^

21.4 10 0.298a 21 0.319b 22 0.320b 16 0.315ab 30^

26.4 10 0.304a 28 0.309acd 23 0.275b 20 0.327cd 30^

*LSD used for comparisons between treatments at the same temperature which has minimum

observations e.g. 5.5 (Tn20-20) = 0.0256

^LSD used for comparisons between treatments at the same temperature with maximum

observations e.g. 12.5 (Tn30-30) = 0.0209

When comparing the effect of temperature within each treatment (Table 3.1.14), at

5.5, 12.5 and 15.9°C, each temperature had a significantly different rm value to the

neighbouring temperature. However, at 21.4°C, for the control, Rb + Saladin and Rb

+ Rotary treatments the rm was similar to those at 26.4°C, and for Rb + Saladin and

Rb + Eluarde the rm was lower at 26.4 than 21.4°C.

It should also be noted that in addition to the control exhibiting poor survival to

adulthood as displayed in Table 3.1.7, aphids continued to die before their rm could
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be calculated, reducing the number of observations further, suggesting the control

also had poor survival during the reproductive period.

Table 3.1.14 Mean rm provided by the ANOVA analysis for each treatment at

5.5, 12.5, 15.9, 21.4 and 26.4°C; n= the number of observations;

Tn= total number of possible observations. Treatment means with

different letters in a column are significantly different between

temperatures.

Treatments

°C n

WT +

Saladin

(control) n

Rb +

Saladin n

Rb +

Eluarde n

Rb +

Rotary Tn

5.5 4 0.064a 12 0.056a 8 0.046a 4 0.056a 20*

12.5 15 0.155b 24 0.158b 22 0.142b 27 0.145b 30^

15.9 9 0.207c 20 0.227c 27 0.234c 23 0.226c 30^

21.4 10 0.298de 21 0.319de 22 0.320d 16 0.315de 30^

26.4 10 0.304e 28 0.309e 23 0.275e 20 0.327e 30^

*LSD used for comparisons within a treatment between temperatures with minimum and

maximum number of observations e.g. 5.5 and 12.5°C (Tn20-30) = 0.0425

^LSD used for comparisons within a treatment between temperatures with maximum

number of observations i.e. 12.5 and 15.9 (Tn30-30) = 0.0380

When re-analysing the data converting the alate counts to missing values, the

ANOVA produced a similar output, showing that overall, temperature

(F(4,9)=79.55, p<0.001), and treatment (F(3,289)=3.58, p0.014), had a significant

effect on rm. There was also a significant interaction between temperature and

treatment (F(12,289)=3.44, p<0.001). Excluding the alate data resulted in a more

significant effect of treatment on the rm, due to an increase in the variation between

the treatments and a reduction in the between-replicate variation.
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Aphid morph

The numbers of alate forms produced by each treatment were recorded (Table

3.1.15). Although the number of aphids (n) that the data were based on was low for

some treatments, a general linear model (GLM) was used to model binomial

proportions (e.g. logistic regression) which suggested that there was a significant

effect of temperature (F(4,7)=7.48, p=0.011), but not treatment, on the number of

alates produced.

Table 3.1.15 Number of alates produced by each treatment and the number of

observations (n).

Treatments

WT+Saladin Rb+Saladin Rb+Eluarde Rb+Rotary

°C n

No. of

alates n

No. of

alates n

No. of

alates n

No. of

alates

5.5 13 0 17 2 14 1 14 3

12.5 25 3 26 5 27 5 28 5

15.9 25 0 30 2 30 2 30 0

21.4 21 2 24 1 27 2 26 0

26.4 12 0 29 1 27 2 25 2

Figure 3.1.16 illustrates the significant effect of temperature, using the predicted

means calculated from the logistic regression. A temperature of 12.5°C resulted in

the highest number of alates. Using 5% LSDs to make comparisons between the

means indicated that significantly more alates were produced at 12.5°C than at 15.9,

21.4 or 26.4°C.
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Figure 3.1.16 Predicted mean proportion of nymphs becoming alate for each

temperature (5.5, 12.5, 15.9, 21.4 and 26.4°C) with SE. Treatment

means with the same letter are not significantly different.

Figure 3.1.17 demonstrates that the WT and Rb N. ribisnigri biotypes performed

similarly in terms of the proportion of alates produced.

Figure 3.1.17 Predicted mean proportion of nymphs becoming alate for each of

the four treatments with SE. Treatment rearing regimes with the

same letter are not significantly different.
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3.2 Effects of temperature on WT N. ribisnigri

Temperature recordings were made during each development experiment using Tiny

Tags© to determine the deviation from the temperatures at which the rooms were set

(10, 15, 20 and 25°C). The mean temperature recorded during each experiment was

used as the treatment temperature to improve estimations from the development data.

The revised treatment temperatures were 12.3, 15.7, 20.3 and 25°C.

Development time, rm and number of alates

Data collected from Experiment 3.2 for the WT N. ribisnigri biotype on cv. Saladin

are summarised in Table 3.2.1. Mean development times and the rm were similar to

those recorded in Experiment 3.1. The largest variation was observed for the rm value

at 25°C, which is likely to be because only 12 aphids provided the data in

Experiment 3.1 compared with the 58 aphids in Experiment 3.2.

The number of alates occurring at each temperature was also recorded. The highest

number of alates was recorded at 20.3°C, followed by 15.7°C. A two-sample

binomial test showed a significant difference only between 25°C (proportion alate

0.017) and 20.3°C (proportion alate 0.121, p=0.028), and 25°C and 15.7°C

(proportion alate 0.107, p=0.046).

Table 3.2.1 Mean development time (±SE), mean rm (±SE) and the number of

WT+Saladin alates at 12.3, 15.7, 20.3 and 25°C. n= number of

observations.

Temperature

(°C)

Mean

development

time (days)
n Mean rm n

Num. of

alates

12.3 16.14 ±0.201 59 0.153 ±0.002 58 3

15.7 11.21±0.146 56 0.192 ±0.009 37 6

20.3 7.57 ±0.089 58 0.301 ±0.005 51 7

25.0 6.02 ±0.039 58 0.332 ±0.005 58 1
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Developmental thresholds and day-degrees

The linear regression of development rates (1/development time) to adulthood in

relation to temperature for the above data was determined (Figure 3.2.2a). Linear

regressions were also performed on the data for the WT and Rb N. ribisnigri

biotypes on cv. Saladin at 5.5, 12.5, 15.9, 21.4 and 26.4°C, which were extracted

from Experiment 3.1 (Figure 3.2.2b-c). These three data sets provided three

estimates of the LDT and day-degree estimates for WT and Rb N. ribisnigri (Table

3.2.3).

a)

b)
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c)

Figure 3.2.2 a-c Development rates (1/development time) to adulthood at different

temperatures with the estimated LDT and 95% confidence limits a)

WT + Saladin development rate data at 12.3, 15.7, 20.3 and 25°C

from experiment 3.2 b) WT + Saladin development rate data at 5.5,

12.5, 15.9, 21.4 and 26.4°C from Experiment 3.1 c) Rb + Saladin

development rate data at 5.5, 12.5, 15.9, 21.4 and 26.4°C from

Experiment 3.1.

Table 3.2.3 Linear regression model, LDT (±SE), upper and lower 95%

confidence limits (CL) and day-degree (DD) estimates for the

linear regressions displayed in Figure 3.2.2 a-c.

Treatment

LDT

(°C)

Upper

CL

Lower

CL

Linear regression

model

DD

WT+Saladin

(12.3-25°C)

4.724

±0.21
5.140 4.308 Y= -0.03927+0.008312x 120.31

WT+Saladin

(5.5-26.4°C)

2.777

±0.36
3.488 2.066 Y= -0.01867+0.006722x 148.77

Rb+Saladin

(5.5-26.4°C)

2.751

±0.36
3.464 2.039 Y= -0.01860+0.006760x 147.93
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3.3 Effects of aphid biotype on the propensity to become alate

The numbers of alate and apterous adults were recorded for WT N. ribisnigri biotype

on cv. Saladin, and the Rb N. ribisnigri biotype on cv. Saladin and cv. Rotary (Table

3.3.1). A two-sample binomial (two-tailed) test was used to determine whether or not

the proportions of alates in one treatment were equal to another treatment.

Table 3.3.1 Number of alate and apterous adult morphs recorded for each

treatment and the number of observations (n).

Treatment Alate Apterous n

WT + Saladin 0 30 30

Rb + Saladin 7 24 31

Rb + Rotary 7 25 32

When comparing the proportion of alates produced by the WT N. ribisnigri biotype

on cv. Saladin (proportion 0.00) to those of the Rb N. ribisnigri biotype on cv.

Saladin (proportion 0.23, p=0.006) and cv. Rotary (proportion 0.22, p=0.007) a

significant difference in the proportions was observed. This suggests that the Rb

biotype has a higher propensity to produce alate forms compared with the WT

biotype. When the proportions of alates produced by the Rb N. ribisnigri biotypes on

cv. Saladin and Rotary were compared, no differences were identified, suggesting

that the type of cultivar has no influence on the propensity to become alate.

3.4 Effect of photoperiod on the development of different aphid biotypes

Development time

Figure 3.4.3 illustrates the mean development time to adult under each of the three

rearing regimes (20°C 14L:10D, 20°C 16L:8D and 15°C 14L:10D) for each of the

10 treatments. As expected, development time to adult took the greatest number of

days at 15°C compared with 20°C. None of the WT N. ribisnigri biotypes survived

to adulthood on the resistant cv. Rotary. The control (WT+Saladin) had a mean
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development time of 7.76 days at 20°C 14L:10D, 7.25 at 20°C 16L:8D and 11.73 at

15°C 14L:10D.

Figure 3.4.3 Mean development time to adult in days for the 10 aphid biotype

and lettuce cultivar treatments under three rearing regimes (20°C

14L:10D, 20°C 16L:8D and 15°C 14L:10D). 5% LSDs are shown

for (a) comparisons between lettuce cultivar and aphid biotype

treatments at different rearing regimes (b) comparison between

lettuce cultivar and aphid biotype treatments within the same

rearing regime.

An ANOVA was performed on the pooled data for apterous and alate aphid morphs.

This indicated a significant overall effect of rearing regime on the development time

(F(2,6)=99.60, p<0.001). There was also a significant effect of aphid biotype

(F(4,317)=31.81, p<0.001). Interactions were observed between aphid biotype and

rearing regime (F(8,317)=4.22, p<0.001), lettuce cultivar and rearing regime

(F(2,317)=4.63, p=0.01) and aphid biotype and lettuce cultivar (F(2,317)=3.48,

p=0.032). Lettuce cultivar did not have an effect on development time.

When using the LSDs to compare development times between the same treatments at

20°C 14L:10D and 20°C 16L:8D, there was no significant difference, suggesting that

photoperiod does not have an effect on development time. Variation in development
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time was observed when comparing the 10 treatments under the same rearing

regime.

At 20°C 14L:10D, the control was significantly different to the RbUK631 biotype on

cv. Rotary. At 16L:8D 20°C, the control was significantly different to aphid

biotypes RbUK631 and RbKentPop on both cultivars. At 15°C 14L:10D, the control

was significantly different to all the Rb biotypes on both cultivars. The two WT N.

ribisnigri biotypes performed similarly at each rearing regime.

When comparing the development times of the RbKent biotype on cv. Saladin

against the other Rb aphid biotypes, variation was also observed. At 20°C 16L:8D

and 20°C 14L:10D, RbKent on cv. Saladin was significantly different to RbUK631

and RbKentPop on both cultivars. At 15°C 14L:10D, RbKent on cv. Saladin was

significantly different to RbUK631 on both cultivars, RbKentPop on Saladin and

RbKent on Rotary. This indicates that there was variation between the Rb N.

ribisnigri biotypes under each rearing regime.

Intrinsic rate of increase (rm)

Figure 3.4.4 illustrates the mean rm under each light and temperature rearing regime

for each of the 10 treatments. The control (WT+Saladin) had a mean rm of 0.316 at

20°C 14L:10D, 0.334 at 20°C 16L:8D and 0.183 at 15°C 14L:10D.
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Figure 3.4.4 Mean rm for the 10 aphid biotype and lettuce cultivar treatments

under three rearing regimes (20°C 14L:10D, 20°C 16L:8D and

15°C 14L:10D). 5% LSDs are shown for (a) comparisons between

lettuce cultivar and aphid biotype treatments under different

rearing regimes (b) comparison between lettuce cultivar and aphid

biotype treatments within the same rearing regime.

An ANOVA was performed on the pooled data for apterous and alate aphid morphs.

This indicated a significant overall effect of rearing regime on the rm (F(2,6)=122.05,

p<0.001). There was also a significant effect of aphid biotype (F(4,245)=10.70,

p<0.001), and the interaction between aphid biotype and rearing regime

(F(8,245)=6.33, p<0.001). Lettuce cultivar did not have an effect on rm.

When using the LSDs to compare the rm between the same treatments at 20°C

14L:10D: and 20°C 16L:8D there was no significant difference. Variation in rm was

observed when comparing the 10 treatments under the same rearing regimes,

indicating that the different aphid biotypes respond differently under each rearing

regime. At 20°C 14L:10D, the control was significantly different to the RbUK631

and RbKentPop biotypes on cv. Rotary. At 20°C 16L:8D, the control was

significantly different to the aphid biotypes RbUK631 and RbKentPop on both

cultivars. At 15°C 14L:10D, the control was not significantly different from any of

the other treatments and overall much less variation was seen between treatments
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under this rearing regime. Under each rearing regime, the control performed

similarly to the other WT N. ribisnigri biotype (WTKent10) and also to the RbKent

biotype on both cultivars. The RbUK631 and RbKentPop aphid biotypes were

responsible for most of the variation between treatments under each rearing regime

in 20°C 14L:10D and 20°C 16L:8D, which when compared with the control had

lower rm values.

When comparing the rm of RbKent on Saladin against the other Rb aphid biotypes,

variation was also observed. At 20°C 16L:8D and 20°C 14L:10D, the biotype was

significantly different to RbUK631 and RbKentPop on both cultivars. At 15°C

14L:10D, no differences were observed. This indicates that there was variation in the

rm between the Rb N. ribisnigri biotypes, but only at 20°C.

Aphid morph

The numbers of alate forms produced under each rearing regime for each treatment

were recorded (Table 3.4.5).

Table 3.4.5 Number of alates produced at each treatment and the number of

observations (n).

Rearing regime

20°C

14L:10D

20°C

16L:8D

15°C

14L:10D

Treatment n

Num.

of alate n

Num.

of alate n

Num.

of alate

WT4850a + Saladin 16 0 16 0 14 0

WTKent10pop + Saladin 16 4 18 0 15 6

RbKent + Saladin 18 0 16 1 17 1

RbUK631 + Saladin 17 1 16 3 12 1

RbKentPop + Saladin 17 1 17 0 15 0

RbKent + Rotary 16 2 18 2 16 3

RbUK631 + Rotary 18 3 17 5 16 1

RbKentPop + Rotary 16 3 18 0 16 1
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Although the total number of aphids (n) was low for some treatments, a general

linear model was used to model binomial proportions (e.g. logistic regression). No

effect of rearing regime on the proportion becoming alate was observed

(F(2,4)=1.21, p=0.388). However, a significant effect of treatment (aphid biotype

and lettuce cultivar) was observed (F(7,42)=3.46, p=0.005) as illustrated in Figure

3.4.6.

The control treatment (WT + 4850a) did not produce any alates, while the

WTKent10pop biotype produced the most alates. Alate aphids occurred in all the Rb

aphid treatments, with RbUK631 producing the most alates on both lettuce cultivars

with more alates occurring on cv. Rotary. The most variation was observed between

the Rb biotypes on cv. Saladin.

Figure 3.4.6 Predicted mean proportion of nymphs becoming alate under each

rearing regime with SE. Rearing regimes with different letters are

significantly different.

Discussion

The effects of temperature on the developmental parameters of N. ribisnigri were

first investigated by Diaz and Fereres (2005), using nymphs collected in Spain. Diaz

and Fereres (2005) recorded mean development times of 31.5, 15.8, 11.5, 8, 6.5, 6.3,

and 7 days at 8, 12, 16, 20, 24, 26 and 28°C (14L:10D) respectively. They also
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determined that the optimum temperature for population increase was between 20

and 24°C through calculation of the rm.

In this study, the optimum temperature for population increase identified for UK WT

N. ribisnigri was 21.4°C, which is within the range identified by Diaz and Fereres

(2005). The mean development times recorded by Diaz and Fereres at 12, 16, 20 and

26°C also closely reflected those recorded in this study at 12.5, 15.9, 21.4 and

26.4°C at 16L: 8D, suggesting that the different photoperiods used in the two studies

did not influence development time. The lack of effect of photoperiod was also

observed within this study, where no effects of different photoperiods (14L: 10D and

16L: 8D) were observed on the development time or rm.

Characteristically, and as described for many aphid species, in this study the

development time of N. ribisnigri decreased with increasing temperature. However,

at 26.4°C the size of this decrease was much smaller than the successive differences

between the lower temperatures, suggesting that 26.4°C is approaching the UDT.

This was also observed for the rate of population increase where at temperatures

lower than 26.4°C the rm had been increasing with temperature, but decreased at

26.4°C. This was also observed by Diaz and Fereres (2005), where their estimates of

rm at 8, 12, 16, 20, 24 and 26°C (14L:10D) were 0.074, 0.127, 0.224,0.332, 0.372

and 0.173 respectively, with a reduction in the rm at 26°C. It is likely that the

inclusion of an even higher temperature treatment in the present study would,

compared with 26°C, have resulted in an increase in development time, increased

mortality and halted/reduced reproductive output as observed by Diaz and Fereres

(2005) with a treatment at 28°C. Deleterious effects of high temperatures such as

these have been observed for other aphid species (Kenten, 1955; Dixon, 1989;

Acreman and; Barlow, 1962;).

At 5.5°C, which was the lowest temperature used in this study, aphids demonstrated

the longest development times and lowest rm values, which varied widely between

individuals. Furthermore, at this temperature aphids exposed to all treatments had

low survival (between 43.3% and 56.7%), indicating that this temperature is nearing

the LDT. The variability between individuals at this temperature could be due to the

natural variation in the ability of individuals within a population to survive at lower

temperatures (Griffiths and Wratten, 1979).
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Although the rm values estimated in this study were similar to those determined by

Diaz and Fereres (2005), it is uncertain whether the estimates are comparable, as, in

the present study, the D value representing the pre-reproductive period was

calculated from birth to the final adult moult (Awmack and Leather, 2007), while

other studies, including Diaz and Fereres (2005), use the time from birth to the onset

of reproduction (Wyatt and White, 1977). The latter approach takes into account that

there can be delay in the birth of the first nymph following the final adult moult in

aphids (Dixon and Wratten, 1971).

The data in this study indicated that the onset of reproduction was delayed at 5, 10,

15 and 20°C, while at 25°C newly-moulted adults were usually found with nymphs.

Reproduction was delayed for approximately one day at 15 and 20°C and two days

at 10°C. At 5°C the delay was variable and as the aphids were not monitored after

they had reached adulthood, an estimate of the reproductive delay could not be

determined. Recalculating the rm by extending the D time to include the estimated

reproductive delays did not provide better estimates when compared to the Diaz and

Fereres (2005) study, which is likely to be due to undercounting the offspring as data

were not available to determine the number of nymphs produced for the period

equivalent to the estimated D. As the reproductive delays were only small at 10, 15

and 20°C it is thought that the original rm estimates are likely to be only marginally

different from what they would have been if the alternative method had been used.

In this study the control treatment (WT biotype on cv. Saladin) demonstrated

consistently poor survival at all the temperatures considered when compared to the

Rb biotype treatments. Therefore it is proposed that cv. Saladin could possess partial

resistance to the WT N. ribisnigri biotype.

All plants have adapted various defensive strategies to respond to insect attack and

demonstrate a range of antibiotic and antixenotic mechanisms (see Chapter 7) which

can include cell wall modifications, defensive proteins and secondary metabolites

(Goggin, 2007). As a result, host plants have a range of susceptibilities and cv.

Saladin may be a less suitable host plant for the WT biotype compared with the other

cultivars screened. Possible reasons for this could be due to cv. Saladin having a low

nitrogen content which has been observed in other studies to result in poor

development, fecundity and survival of aphids (Prosser and Douglas, 1992; Awmack
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and Leather, 2002). Furthermore, response to low nitrogen can vary between clones.

For example, some clones of A. fabae had depressed performance when fed on diets

lacking certain amino acids while others were unaffected (Wilkinson and Douglas,

2003).

Previous host plant experience can also influence the performance of an aphid on

another host. For example, five A. pisum clones were found to display varying levels

of performance when transferred to a different host plant to the one they were

collected from, suggesting they were better physiologically/behaviourally adapted to

their original host plant (Sandström and Pettersson, 1994). In the present study, N.

ribisnigri did not have a choice of host plant. In future work, it would be interesting

to perform a preference test to determine whether cv. Saladin is a less preferred host

plant compared with a more susceptible line.

One of the most interesting observations from this study was the survival of WT

biotypes on Nr-gene lettuce cultivars at 5.5, 12.5, and 15.9°C where 100% mortality

would have been expected. While the aphids survived, their fecundity, development

times and survival were adversely affected, indicating that cross-contamination of

the cultures had not occurred, as an Rb biotype would have displayed development

parameters comparable to the control. Therefore, at lower temperatures, it appears

that the Nr-gene in the resistant cultivars fails to provide complete resistance against

N. ribisnigri. This suggests that the Nr-gene could be temperature sensitive, and

similar observations have been made for genes involved in plant-virus resistance. For

example, L genes (L1, L2, L3 and L4) providing resistance to Tobamovirus pathotypes

P0 in peppers are temperature-sensitive and fail to provide resistance at higher

temperatures (e.g. 30°C) (Matsumoto, et al., 2008). More recently, Matsumoto et al.

(2008) identified a new L gene (L1a) which when expressed homozygously provides

resistance to P1 classified Tobamoviruses at 24°C but not 26 and 28°C. This

reference to plant-virus interactions is relevant as it has been suggested that the gene-

for-gene interaction described for plants and pathogens, could also be applied to the

aphid-plant interactions where plant resistance genes recognise the avirulence gene

in the insect (Kaloshian, 2004).

The Rb biotype demonstrated similar development times and rm values, irrespective

of host plant when compared to the control, indicating that it is unaffected by the
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resistance mechanism controlled by the Nr-gene. However, as already discussed cv.

Saladin may not have been a suitable control host plant if it was providing partial

resistance to the WT biotype, and had a more susceptible cultivar been used,

differences in performance may have been observed between the WT and Rb

biotypes. Other studies on non-UK Rb biotypes have shown depressed performance

compared to the WT biotype when the aphids are reared on susceptible cultivars,

suggesting that there is a trade-off between being able to overcome the resistance

provided by the Nr-gene and development on susceptible lettuce cultivars (Smilde, et

al., 2009).

Trade-offs have been discussed extensively in the literature with regard to the cost of

insecticide resistance. For example, studies have shown that insecticide-resistant

clones of M. persicae may have increased susceptibility to parasitism due to a

reduced response to aphid alarm pheromone and a reduced ability to overwinter

(Foster, et al., 1996; 1997; 2007; 2011). Therefore it is possible that the Rb biotypes

which overcame Nr-gene host plant resistance could have their fitness reduced in

other respects. Such fitness trade-offs could be beneficial in constraining the spread

of the Rb biotype, particularly if it had reduced fitness in the winter and it was

confirmed that this biotype overwintered as live aphid where it would be susceptible

to low temperatures. Despite this, little research has addressed the trade-offs when

aphids overcome host plant resistance.

In both Experiments 3.1 and 3.3, the Rb biotype produced more alate aphids

compared to the WT biotype, which could have important implications for the

dispersal potential of this new biotype. Many factors may influence the induction of

alates including crowding, host plant nutrition, interaction with natural enemies and

temperature (Müller, et al., 2001).

In these experiments, nymphs were obtained by releasing a number of alates into a

cage of lettuce plants for 24 hours to produce offspring, which were then reared

individually to adulthood on lettuce plants. Therefore, variation in the propensity of

the WT and Rb biotypes to produce alates could be the result of differences in pre-

natal crowding, as the crowding history of the parent is unknown.

Furthermore, as the Rb biotype in Experiment 3.1 demonstrated higher fecundity

compared to the WT biotype, variation in early post-natal crowding (<24 hours)
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could have occurred also, as the Rb offspring may have been surrounded by more

sisters than the WT biotype. To clarify this, further experiments would need to be

carried out to take account of the possible effect of variation in pre-natal and early

post-natal crowding.

Investigations into the propensity to produce alates have indicated that there is both

within and between clonal genetic variation in response to the same environmental

cues (Braendle, et al., 2005; Hazell, et al., 2005), which in the pea aphid has been

related to aphid colour with red clones producing more alates compared to green

clones (Weisser and Braendle, 2001). Sutherland (1969) also observed that the type

of host plant could influence the proportion of alates produced by the pea aphid.

During Experiment 3.4, the numbers of alates produced by the four Rb N. ribisnigri

biotypes varied and were also influenced by the host plant, with cv. Rotary resulting

in more alates compared to those on cv. Saladin.

In this study, temperature had the most significant influence on the production of

alates by both WT and Rb biotypes, but the results were inconsistent between

experiments. During Experiment 3.1, the most alates were produced by WT and Rb

N. ribisnigri at 12.5°C, while in Experiment 3.2 the most alates were produced by

WT N. ribisnigri at 20.3°C. While this could suggest that other factors apart from

temperature were influencing alate induction and varied between the studies, it is

also possible that the small sample size in Experiment 3.1 resulted in the

inconsistency. Therefore more replicates would be required to confirm this

observation. Similar work on N. ribisnigri also observed a strong effect of

temperature on the proportion of alate aphids produced, but found that temperatures

lower than 16°C led to the production of mainly apterous aphids (Diaz and Fereres,

2005). While one might expect that higher temperatures would result in more alates

as a result of increased activity causing more tactile stimulation, many studies

including this one, have shown that high temperatures are more likely to result in

apterous morphs, with lower temperatures favouring alate induction (Müller, et al.,

2001). It has been proposed that this strategy acts to maximise dispersal efficiency

during periods when other alate induction factors such as crowding or poor host

plant quality are not predominant (Liu, 1994).



65

Analysing the developmental parameters of alate and apterous morphs separately or

together in Experiment 3.1 did not affect the outcome of the statistical analysis,

which can be attributed to the low number of alates analysed. If data based on larger

numbers of alates were available, a significant difference might have been observed,

as it is well documented in the literature that the development of wings results in

negative effects on development and reproduction due to some of the energy being

diverted for the development of wings (Dixon, et al., 1993a; Zhang, et al., 2009).

When estimating the LDT and DD from birth to adulthood for the WT biotype, it

was concluded that Experiment 3.2 would have provided the most reliable estimates,

as the data set provided by Experiment 3.1 was too small to represent variation

between individuals. It was estimated that WT N. ribisnigri (apterous and alates

combined) had a LDT of 4.7°C (lower confidence limit of 4.31°C and upper

confidence limit of 5.14°C) and that development from birth to adulthood required

120.31 DD. Using the same method, Diaz et al. (2007) estimated an LDT of 3.6°C

for apterae, 4.1°C for alates and 3.14 combined, with DD of 125, 143 and 143

respectively. Therefore there is over a 1°C difference in the estimates between the

two studies.

Differences between the studies could be the result of different aphid genotypes

(inter-clonal variation) and host plant rearing procedures (Campbell and Mackauer,

1977), which as discussed in the Introduction can influence development thresholds,

particularly when clones are collected from different geographic origins and are

adapted to different climates. While this may explain some of the differences when

comparing the two studies, it is also possible that that an overestimation of the LDT

and DD occurred in the current study due to the extrapolation of the LDT being

based on data from only four temperatures. In contrast, Diaz et al (2007) used data

from every 3°C change, which would have provided a more accurate linear

estimation of the LDT. Furthermore, the linear extrapolation in this study was

derived from mainly moderate to high temperatures, and while this is common when

using this extrapolation method, as determining development rates at lower

temperatures is confounded by time (Liu and Meng, 1999), it has been exacerbated

in these estimates as development rates between 5 and 10°C were not investigated.

To refine the LDT and DD estimates further, development rates should be

determined for additional temperatures between 5-20°C. Future work, could also
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determine whether the estimates between Rb and WT N. ribisnigri biotypes differ

and whether they are influenced by the geographic origin of the clones.

When investigating the effects of photoperiod (14L:10D and 16L:8D) on the four Rb

biotypes and two WT biotypes, no differences were observed at 20°C. However,

within each rearing regime variation between the clones was observed. Most of this

variation resulted from the RbUK631 and RbKentPop biotypes, which had

significantly different development times and rm values to the WT4850a and/or

RbKent biotype. This suggests that inter-clonal variation can exist between biotypes.

A similar observation was also been made by Kilian and Nielson (1971) who

observed variation in the development times and rm values between populations of A.

pisum collected from different geographical areas. Similarly, variation in

survivorship and mean relative growth rates were observed in Aphis craccivora and

Acyrthosiphon kondoi clones (populations raised from a single female) collected

from a range of host plants and geographic areas when reared on several suitable

host plants (Edwards, 2001). Therefore these studies also support variation exists and

aphids from different environments often perform differently.

In conclusion, this study has provided information on the basic developmental

parameters of the UK WT4850a and RbKent N. ribisnigri biotypes in response to

temperature and photoperiod, with consideration of other influencing factors such as

the host plant and photoperiod. It has provided LDT and DD estimates for the

WT4850a biotype which could be used to refine current forecasts or refine the

direction of future work. More importantly, this study has highlighted the need to

analyse a range of clonal lines in future studies to capture the inter-/intra-clonal

variation present within an aphid species to provide more representative population

data.



67

Conclusion

 This study confirms that temperature is a significant factor affecting the

developmental time, developmental rate, intrinsic rate of increase, fecundity

and the propensity to become alate of both WT and Rb N. ribisnigri.

 Between 5.5 and 26.4°C, development time decreased with increasing

temperature and only at 5.5°C did variation in development times occur with

the control (WT4850a on cv. Saladin) being significantly different to Rb cv.

Saladin and Rb cv. Rotary.

 At lower temperatures, some aphids from the WT4850a biotype survived on

Nr-gene cultivars, although their longevity, fecundity and development time

were compromised.

 The rm increased with increasing temperature up to 26.4°C, where then rm

decreased or did not significantly increase further.

 The WT4850a and RbKent biotypes had similar development times and rm

values.

 The control treatment exhibited poor survival when compared to the Rb

biotype, demonstrating poor pre-reproductive survival and continued poor

survival during the reproductive phase, particularly at 5.5 and 26.4°C. The Rb

biotype experienced comparable poor longevity only at 5.5°C. The optimum

temperature for longevity was at 15°C.

 The control treatment exhibited consistent poor achieved fecundity.

However, RbKent biotypes had significantly higher achieved fecundity than

the control between 12.5 and 21.4°C. Achieved fecundity was reduced for the

Rb biotype at 5.5 and 26.4 °C. Overall, the optimum temperature for

reproduction was 12°C.

 Collectively, these responses suggest that 5.5 and 26.4°C are close to the

UDT and LDT, where aphid performance is negatively affected, meaning that

the temperature range leading to optimum aphid performance is between

12.5-21.4°C.

 More alates were produced at lower temperatures and the RbKent biotype

appeared to produce more alates compared to the WT45850a biotype, but not

the WTKent10Pop biotype.
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 Photoperiod did not influence development time or the rm value. However,

inter-clonal variation was observed, particularly between the control

treatment and RbUK631 and RbKentPop biotypes. This occurred at each

rearing regime for development times, but only at 20°C 14L:10D and 20°C

16L:8D for the rm value.

 Estimates of the LDT and DD suggest that the WT4850a N. ribisnigri

biotype has a LDT of 4.7°C and requires 120.31 day-degrees to reach

adulthood.
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Chapter 4: Overwintering Biology

Introduction

Insects have evolved a range of effective strategies to survive the unpredictable and

unfavourable conditions which occur during the winter months. These strategies are

designed to promote survival through a period which threatens damage from low

temperatures and potential starvation (Leather, et al., 1993).

Depending on the species, insects overwinter in various developmental stages (egg,

pupa, larva/nymph or adult) and for aphids, this can consist of more than one stage.

Aphids which exhibit an anholocyclic life-cycle, and therefore lack a sexual phase,

overwinter as live parthenogenetic nymphs and adults, developing and reproducing

slowly throughout the winter, while holocyclic species, which undergo a sexual

phase, produce overwintering eggs that diapause on the winter host plant (Williams

and Dixon, 2007). The overwintering success of these stages is critical as this

determines the size and phenology of insect populations occurring in the following

spring and summer (Leather, et al., 1993).

Producing overwintering eggs is considered the ‘safest’ strategy since they are more

resistant to cold temperatures compared with active stages. For example, the eggs of

a temperate specie such as R. padi have been reported to resist temperatures of -30ºC

for up to one month (Strathdee, et al., 1995). Furthermore, the sexual production of

eggs provides an opportunity for genetic recombination to occur, providing new

genotypes that will be subject to natural selection in the spring (Dixon, 1998). While

eggs do suffer high natural mortality resulting from predation and unfavourable

conditions leading to waterlogging and desiccation (Leather, 1981; Leather, et al.,

1993), overwintering adults and nymphs are subject to significant mortality during

the winter as they are less cold-hardy. Following a mild winter, however,

anholocyclic species can benefit from their ability to begin development and

reproduction as soon as conditions are favourable in the spring (Powell and Bale,

2008). Therefore, it is not surprising that some aphid species, such as M. persicae,

adopt both strategies in locations where winters can be mild (Vorburger, 2004).
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Nasonovia ribisnigri has a holocyclic life-cycle and therefore overwinters as an egg,

although there is evidence for the occurrence of anholocyclic clones (see Chapter 1).

In response to deteriorating conditions in autumn, N. ribisnigri produces alate

gynoparae and males which migrate to the winter host (Ribes species). The

gynoparae then viviparously produce sexual egg laying females called oviparae,

which mate with the males and lay eggs close to the dormant buds of the winter host.

Research into the cues which stimulate the production of the sexual forms of various

aphid species, has confirmed that temperature, and particularly photoperiod, are the

main factors which, when experienced by the mother (as an embryo up to two days

before her own birth), result in the ‘switch’ (Lees, 1959; Lees, 1963; Lamb and

Pointing, 1972). For some species additional factors contribute to the ‘switch’, for

example, P. bursarius produces sexual morphs in response to the cessation of plant

growth as well as decreases in temperature, but is not influenced by photoperiod

(Williams and Dixon, 2007). By determining the requirements for production of

sexual morphs and subsequent egg laying, researchers can carry out crosses between

aphids and investigate their genetics (Komazaki, 1998). The information can also be

used for the purposes of plant protection, through the development of forecasts of the

timing of egg hatch in the spring (Graf, et al., 2006).

Research into the effects of photoperiod has shown that it is the length of the

scotophase which is the important stimulus for the production of sexual morphs,

rather than the length of the photophase (Lees, 1973). As a result, various researchers

have now determined the critical night lengths (CNL) required for various aphid

species. These studies have demonstrated differences in the CNL between sexual

morphs (Matsuka and Mittler, 1979; Harrington, 1984) and between aphid species

and clones (Via, 1992; Vaz Nunes and Hardie, 2000b; Vaz Nunes and Hardie,

2000a). It has also been recognised that, for an aphid to be able to respond to

changes in photoperiod, there must be a clock-counter system to sense night length

and record information each day. While hour-glass and various circadian oscillatory

based mechanisms have been proposed, currently none have been demonstrated

(Lees, 1986; Hardie, 2009).

Through investigations of the effects of temperature on the production of sexual

morphs, various influences on the photoperiodic responses have been observed.
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When studying Megoura viciae, Lees (1959) observed that high temperatures

suppressed male production, while low temperatures suppressed them partially. He

observed that for non-feeding aphids, the CNL for production of oviparae was

temperature-compensated (possessing a mechanism to compensate for changes in

temperature so that the response to photoperiod remains ‘accurate’) between 6-20ºC

(Lees, 1986), while starvation at 15°C for 4 hours at the beginning and end of the

scotophase and photophase resulted in the CNL shortening, suggesting adequate

nutrition could be required for the photoperiodic timer to function correctly (Lees,

1986). A difference in the accuracy of temperature-compensation mechanisms has

also been observed between fasting and feeding aphids (Lees, 1963; Lees, 1986).

For A. fabae the CNL for production of gynoparae did not appear to be compensated

well, changing by 1 h per 5ºC change in temperature, while for males, compensation

was better changing only 0.5 h per 5ºC change, indicating that variation in

temperature sensitivity exists between sexual morphs as well as species (Vaz Nunes

and Hardie, 2000b). Therefore, it is not surprising that studies have also shown

variation between clones in temperature sensitivity. For example, in Scottish clones

of M. viciae, temperature compensation on the CNL for production of oviparae was

less pronounced (increasing 2 h per 5ºC change) than in English clones (increasing

15 min per 5ºC change) (Vaz Nunes and Hardie, 2000a). This confirms that

photoperiod, temperature, and possibly nutrition, play a role in production of sexual

morphs, but the intra- and inter-specific responses of aphids to these factors indicate

that the relationship is complex and often difficult to interpret. Therefore, no single

condition can be used to induce sexual morphs under laboratory conditions for all

aphid species.

Following the production of sexual morphs, mating occurs and eggs are produced.

This is the stage during which the majority of temperate aphids enter diapause and,

once again, studies have shown that photoperiod and temperature regulate this period

(Tauber and Tauber, 1976).

Tauber et al. (1986) defines diapause as a ‘neurohormonally mediated, dynamic state

of low metabolic activity’ which ‘occurs during a genetically determined stage(s) of

metamorphosis’ and is ‘usually in response to a number of environmental stimuli

that precede unfavourable conditions’. It is widely accepted that diapause is an
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alternative pathway to morphogenesis with its own metabolic demands (Hahn and

Denlinger, 2011), and is made up of three phases known as pre-diapause, diapause

and post-diapause (Koštál, 2006). The progression through each of these phases will

be referred to as diapause development in this study.

Pre-diapause describes the induction phase where insects respond to certain

diapause-inducing stimuli (Koštál, 2006), which for aphids, includes the response to

changes in temperature and photoperiod to produce sexual morphs as previously

discussed. Following this, the diapause phase begins which includes the sub phases

of initiation, maintenance and termination (Koštál, 2006). For aphids the initiation

phase is easily distinguished by the production of an overwintering egg which is

maintained in diapause so that the state persists until certain physiological processes

have occurred, even if favourable environmental conditions return. Therefore, once

egg laying commences, the eggs are in diapause and are maintained in this state for

an extended period, so that even if conditions favourable for egg development occur,

the insect does not respond until winter has passed. Tauber et al. (1986)

hypothesised that diapause is probably maintained via changes in thermal thresholds

and/or remaining sensitive to the diapause-inducing stimuli, particularly

photoperiod.

Eventually diapause is no longer maintained and is terminated, which generally in

insects can occur spontaneously or through decreases in ‘diapause intensity’ via

gradual changes in response to the diapause maintaining stimuli (Tauber and Tauber,

1976). In the field, diapause has often terminated for many insects during January.

However, low ambient temperatures, below their developmental threshold, prevents

post-diapause development from occurring as they remain in a quiescence

(Denlinger, 2002).

Observations of sexually-produced A. pisum embryos have provided evidence of

slow continuous morphological development during diapause development,

suggesting that diapause is maintained in aphids by strict regulation of development

rate, possibly through an inhibitory factor (Shingleton, et al., 2003). The study

demonstrated that the early stages of diapause up until the katatrepsis stage (where

the embryo re-orientates in the egg) were temperature-independent with no

differences between those embryos kept at 4 ºC days and 0 ºC nights (13L:11D)
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compared with those held constantly at 10ºC (13L:11D). However, after reaching

katatrepsis, diapause development becomes temperature-dependent, with the

embryos held at 10ºC completing diapause first.

Studies investigating diapause development in aphids have shown that temperature

plays a significant role in influencing the time from egg deposition to hatching,

hatching success and, for some species, diapause termination. For example,

Wipperfűrth & Mittler (1986) found that when they kept eggs of S. graminum at

16ºC in complete darkness, only 19% of the eggs hatched, with a development time

of approximately 81.1 days. However, hatching success increased to 45% and

development time was reduced to 71 days when the eggs were transferred, after 10

days, from 16ºC to 6ºC, where they were kept for a further 40 days. Similarly, two

host races of Aphis spiraecole displayed low hatch rates at 16ºC but, following a

cold treatment, hatch rates increased, and continued to increase as the cold treatment

was prolonged (Komazaki, 1998). Other studies have also shown a beneficial effect

of chilling on successful egg hatch and the development time of various species of

aphid (Puterka and Slosser, 1986; Newton and Dixon, 1987; Via, 1992; Wang and

Furuta, 2002).

While some species, like S. graminum, can hatch without chilling, others including

R. padi and S. avenae require chilling to terminate diapause i.e. before the eggs can

respond to suitable hatching conditions and begin post-diapause development (Hand,

1983; Lushai, et al., 1996). This indicates that the requirement of chilling for

diapause development and successful hatching varies between aphid species.

A number of researchers have estimated the thermal requirements and developmental

thresholds for the egg stage of various species of aphid by exposing eggs to different

constant temperatures, following a suitable period of chilling thought to terminate

diapause, and measuring their development time (Wang and Furuta, 2002). For

example, Dysaphis plantaginea (rosy apple aphid) has a lower developmental

threshold of 4ºC and requires 140 day-degrees above this temperature before egg

hatch will occur (Graf, et al., 2006). Furthermore, such estimates appear to explain

field observations, which is not unexpected, as other studies have shown that

‘temperature’ explains the differences between yearly egg hatch patterns (Dixon,

1976).
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While the point at which diapause is terminated in the winter is unknown for many

species, it can be determined easily through periodic sampling of eggs from the field

and subsequent testing of their responses to egg-hatching conditions (Tauber and

Tauber, 1976). As discussed, the ability of some aphid species to hatch in the

absence of low temperatures and in complete darkness indicates that some other

stimulus, apart from temperature and photoperiod, may terminate diapause.

However, studies on natural insect populations have failed to identify any specific

stimuli such as long day lengths, temperature or a period of chilling (Tauber and

Tauber, 1976).

A limited number of studies have considered the effects of photoperiod on diapause

development. A study by Wipperfűrth & Mittler (1986) which considered both

temperature and photoperiod, showed that when a 12L:12D light regime was

introduced following a period of chilling in dark conditions, hatching success

improved marginally and development time was reduced. Furthermore, when

Rhopalosiphum insertum eggs were collected from the field, hatching success was

increased under a 16L:8D regime compared with eggs kept in the dark during

incubation (James and Luff, 1982). These studies suggest, therefore, that

photoperiod, in addition to temperature, could play a role.

Understanding the effects of temperature and photoperiod on the winter stages of N.

ribisnigri will provide valuable information towards the development of a forecast to

predict egg hatch in the spring. The present study aims to determine for N. ribisnigri

(WT4850a) the requirements for sexual morph production, chilling and egg hatch in

both the field and in a laboratory environment. The techniques developed can then be

used in future studies on overwintering.

Methods

Experiment 4.1 Obtaining and monitoring eggs from the field

Year 2010- To enable monitoring and collection of N. ribisnigri eggs laid under

natural field conditions, blackcurrant bushes (R. nigrum, See Chapter 2 General

Techniques) and infested lettuce plants were caged together, using one of two types

of enclosure. During July 2010, seven enclosures were erected at Warwick Crop
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Centre, Wellesbourne in a field known as Long Meadow Centre (National Grid

reference SP 27146 56846). Each enclosure consisted of four metal frames (each 40-

50cm wide x 70-80cm high) which were covered with insect-proof netting

(Enviromesh® 1.35mm mesh size to exclude aphids) as shown in Figure 4.1.1a. Three

blackcurrant bushes were then planted within the enclosure and MyPex® was laid over

the soil to suppress weed growth.

At the same time, two walk-in cages (3m long x 2m wide x 2m high) were also

placed in Long Meadow Centre. These contained three blackcurrant bushes as shown

in Figure 4.1.1b. This method has been successfully used previously by Collier

(2007a).

a) b)

c)

Figure 4.1.1 a-c a) Seven enclosures covered with insect proof netting b) Walk-in

cages c) Plastic planting troughs containing lettuce plants, all

used to monitor and collect N. ribisnigri eggs laid under natural

field conditions.

On 18 August 2010, 80 seeds of lettuce cv. Saladin were sown in vermiculite and

were transplanted individually into 400ml square plant pots one week later, where

they were then grown for a further three weeks.

On 15 September 2010, the lettuce plants were infested with N. ribisnigri (clone

WT4850a) by inoculating each plant with 20 aphids, consisting of a mixture of
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developmental stages. These were transplanted into the enclosures. Six lettuce plants

were planted through the MyPex® in each of the seven enclosures and the remainder

were divided between the two large cages. Fresh infested lettuce plants were added

to the enclosures as required and irrigation was applied using a sprinkler system.

Once planting had taken place, the blackcurrant bushes in each enclosure were

monitored weekly for the arrival of sexual morphs and the deposition of eggs. The

small enclosures were numbered 1-7 and each of the three small blackcurrant bushes

was monitored. In the two larger walk-in cages, six branches of each of the three

blackcurrant bushes in each cage were tagged and these were checked each week.

Due to other experimental commitments, sampling did not commence until 1

November 2010 and continued until 6 December 2010. When necessary, specimens

of the aphids were collected and taken to the laboratory for identification. Weekly

monitoring for egg hatch commenced on 6 January 2011 and continued until

fundatrices emerged.

Year 2011- During 2011, the method used in 2010 was repeated but the use of the

large cages was abandoned as during monitoring in 2010, H. lactucae was found

depositing eggs on the blackcurrants inside the cages, indicating that they were not

excluding other aphid species. Furthermore, once eggs had been laid it was

impossible to identify them until they had hatched in the following spring.

The plant raising and infestation process was repeated for the seven enclosures as per

2010. Plants were sown on 13 June 2011 and were infested with N. ribisnigri and

planted on 13 July 2011. Instead of planting infested lettuce plants through the

MyPex®, six lettuce plants were planted into plastic trough planters, which were

then placed inside the enclosures as shown in Figure 4.1.1c. New troughs were added

as required and irrigation was applied using sprinklers.

Weekly monitoring for sexual morphs and egg deposition commenced on 5

September 2011 until 17 December 2011. Weekly monitoring for egg hatch

commenced on 6 January 2012 until fundatrices emerged. The small enclosures were

numbered 1-7 and each of the three small blackcurrant bushes was monitored. When

necessary, specimens of the aphids were collected and taken to the laboratory for

identification.
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Experiment 4.2 Induction of sexual morphs

To induce sexual morph production, the natural conditions that N. ribisnigri would

experience in September were determined. Using the 2009 records from the

University of Warwick, Wellesbourne meteorological station, the mean maximum

and minimum temperatures for September were calculated, which gave a mean

maximum temperature of 19.3°C and a minimum of 10°C. These values gave a mean

of 14.7°C, which was the temperature used in the experiment. The ‘typical’

photoperiod for September (13L:11D) was also determined using the daylight hours

recorded in Coventry during 2009 (Timeanddate, 2010).

The effect on sexual morph production of a lower temperature (12°C) and longer

photoperiods (14L:10D, 16L:8D) was also investigated. The longer photoperiods

were included to determine which day lengths in excess of 13 hours were suitable for

inducing sexual morph production following confirmation that 13L:11D induced

sexual morphs.

The conditions used in this experiment are shown in Table 4.2.1, the photoperiod of

16L:8D was not paired with 15°C as this condition was used in other experiments

(Chapter 3) and did not result in production of any sexual morphs.

Table 4.2.1 Rearing regimes (temperature (°C) and photoperiod) and the

experiment start dates to determine the conditions required for the

induction of sexual morphs.

Treatment

num.

Temperature

(°C)

Photoperiod Experiment start date

1 12 16L:8D 27 February 2012

2 15 14L:10D 13 May 2012

3 15 13L:11D 24 March 2011

4 12 13L:11D 26 October 2011

5 12 14L:10D 8 May 2012
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Samples of N. ribisnigri were exposed to each of the conditions shown in Table 4.2.1

using the following method, which was adapted from methods used by Lamb and

Pointing (1972) and MacKay (1987).

Initially ten third instar nymphs (G0) of WT N. ribisnigri (clone 4850a) were

obtained from the stock culture. In later experiments, 15 aphids were used to

compensate for any mortality and the reduced reproduction at the lower treatment

temperature. The aphids were then grown on lettuce plants (cv. Saladin) under one of

the five treatment regimes until they began to reproduce (G0), which provided pre-

natal conditioning of the embryos. The lettuce plants used were at BBCH growth

stage 14 (4th true leaf unfolded).

The G0 aphids were then moved to new lettuce plants (growth stage 14) and left for

either 24 hours or 48 hours under the same treatment regime to provide G1 nymphs

of a similar age. Aphids kept at 15°C were left for 24 hours and those at 12°C for 48

hours because reproduction was slower at the lower temperature. Aphids were

divided between several plants to avoid the development of alate parthenogenetic

aphids as a result of crowding.

The G0 aphids were then discarded and the G1 nymphs were left to develop to

adulthood under the treatment regime used to provide post-natal conditioning. The

nymphs were divided between two lettuce plants (cv. Saladin, BBCH growth stage

14) to avoid a crowding stimulus. Once the G1 nymphs reached adulthood they were

transferred to individual lettuce plants and kept under the same treatment regime,

where they began to produce G2 offspring.

At 15°C, on days 2 and 4, and every three days thereafter, the G1 adults were moved

to a new plant (BBCH growth stage 14). The G2 nymphs were allowed to remain on

the natal plant to develop to adulthood. The type of adult morph was then recorded.

At 12°C, G1 adults were moved to a new plant every four days as their development

and reproduction were slower. This method provided batches of offspring from the

reproductive sequence.

The morphs produced were apterous parthenogenetic females, alate parthenogenetic

females, males or gynoparae. Males were easily identified by their genitalia as

shown in Figure 4.2.2, but gynoparae and alate parthenogenetic females were very
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similar in appearance. Therefore, to distinguish between these two morphs, the alates

were kept on a lettuce plant and if nymphs were produced they were identified as

parthenogenetic females and if no nymphs were produced they were identified as

gynoparae. This approach made the assumption that gynoparae were only able to

produce oviparae on blackcurrant.

When a treatment regime resulted in production of sexual morphs, Experiment 4.3

was undertaken to confirm the type of sexual morph produced, as the production of

eggs would confirm the production of males and gynoparae.

Figure 4.2.2 Male N. ribisnigri (left) and alate parthenogenetic female (right).

Experiment 4.3 Obtaining eggs in the laboratory

Preliminary experiment- Once Experiment 4.2 had identified conditions which

stimulated production of sexual morphs, aphids were kept under these conditions for

several generations to see if eggs were produced.

During April 2011, Experiment 4.2 indicated that rearing conditions of 15°C with

13L:11D stimulated the production of males. Therefore, on 20 July 2011,

blackcurrant cuttings were paired with infested lettuce plants (cv. Saladin, BBCH

growth stage 14) (N. ribisnigri (clone 4850a), as shown in Figure 4.3.1a, and placed

in an incubator at 15°C with 13L:11D to see whether the production of gynoparae
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and males was stimulated. The pairs of blackcurrant cuttings and lettuce plants were

enclosed using a micro-perforated polypropylene bag to confine the aphids.

Once the males and gynoparae had been produced it was thought that they would

move onto the blackcurrant cuttings and continue the rest of the winter lifecycle. By

24 September 2011 no eggs had been deposited, so the temperature was lowered to

12°C which reflected the ‘October’ temperature. Once eggs had been produced they

were transferred outside to experience natural conditions to see if the eggs were

‘viable’ (no visible signs of dessication or fungal growth) and would hatch during

the following spring.

This method was also adapted later for small blackcurrant plants where the infested

lettuce plants were transplanted into the soil around the base of each small

blackcurrant plant as shown in Figure 4.3.1b. Prior to use, the blackcurrant cuttings

and plants were washed to remove all other insects.

Main experiment- Following successful production of eggs from the preliminary

experiment, four blackcurrant plants were prepared and the experiment was repeated

on 25 November 2011. Aphids were kept at 15°C with 13L:11D for 56 days and then

the temperature was reduced to 12°C on 20 January 2012. The production of eggs

was also screened at 15°C 13L:11D only for a longer period of time (63 days), which

was initiated on 28 September 2012.

To determine whether the temperature change from 15 to 12°C was necessary, or

whether being kept continuously 12°C could induce egg production, a new

blackcurrant plant was prepared on 8 June 2012 and placed in an incubator at 12°C

with 13L:11D.

Other regimes which were screened for induction of egg production included 15°C

with 14L:10D which was initiated in an incubator on 28 September 2012 and 12°C

14L:10D which was initiated on 27 July 2012 in CE Room 5. Table 4.3.2

summarises the experiments performed.
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a) b)

Figure 4.3.1 a-b a) Blackcurrant cuttings paired with infested lettuce b) Small

blackcurrant bushes paired with infested lettuce to obtain eggs

under conditions inducing production of sexual morphs.

Table 4.3.2 Summary of the rearing regimes, the number of replicates and the

start dates for experiments to obtain eggs in the laboratory.

Rearing regime Replicate

number

Experiment start

date

15°C 13L:11D transferred to 12°C 13L:11D 1 20 July 2011

2 25 November 2011

15°C 13L:11D 1 28 September 2012

12°C 13L:11D 1 8 June 2012

15°C 14L:10D 1 28 September 2012

12°C 14L:10D 1 27 July 2012

Experiment 4.4 The development and host plants of the fundatrix

A preliminary experiment was carried out using the fundatrices which emerged from

the eggs obtained from Experiment 4.3 (preliminary experiment) to investigate the

developmental time and suitable host plants of the fundatrix.

Fundatrices were observed hatching from the eggs on 13 February 2012. On 8 March

2012, several of the fundatrices were collected and placed on leafy blackcurrant
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cutting at 12 and 16°C 16L:8D (CE Room 5 and Sanyo incubator respectively) to

determine how long it took them to reach adulthood.

On 13 March 2012 five more fundatrices were placed on lettuce plants (cv. Pinokio)

which produced alate offspring. Some of the alate offspring were transferred to a

blackcurrant plant where they were confined on a leaf using micro-perforated

polypropylene bag (200mm x 500mm) (Figure 4.4.1). Eight alate/apterous

parthenogenetic N. ribisnigri from the WT4850a cultures were also confined to a

blackcurrant leaf.

Figure 4.4.1 Experimental set-up used to enclose alate offspring produced by

fundatrices on lettuce and alate/apterous parthenogenetic N.

ribisnigri from the 4850a culture on the leaves of a blackcurrant

plant.

Experiment 4.5 Diapause termination

Preliminary experiment Year 2011-A preliminary experiment was conducted using

the small number of eggs (approximately 60 eggs) obtained in the field from

Experiment 4.1 during 2010. Commencing on 6 January 2011, approximately ten

eggs were sampled by taking cuttings from several of the blackcurrant bushes
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contained in enclosure 1-7 located in Long Meadow Centre. Samples were also taken

on 20 January, 1, 17 and 25 February and 4 March 2011. Eggs were only sampled

from the seven small enclosures due to the occurrence of H. lactucae in the large

cages during the period of egg deposition.

Sampled cuttings were stood in a piece of domestic foamed plastic polymer sponge

in a lidded container (15 x 30 cm) and transferred to an incubator at 16°C 16L:8D as

shown in Figure 4.5.1a. A preliminary trial on N. ribisnigri showed that these

conditions induced egg hatch (Collier, 2007a). The eggs were checked at

approximately 2-day intervals to see if they had hatched.

The cuttings were watered twice a week by adding water to the container, which the

sponge absorbed. A closed system ensured high humidity to avoid egg desiccation.

Tiny Tag® loggers were placed inside the container to record humidity and

temperature.

a)

b)

Figure 4.5.1a-b a) The method used during 2011 to hatch field-sampled eggs in an

incubator b) The method used during 2012 to hatch field-sampled

and laboratory-produced eggs in an incubator.
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Main experiment 2012- Eggs produced during 2011 under natural field conditions in

Experiment 4.1 were used. Eggs were also obtained from the laboratory, by

transferring the sexual morphs produced during the preliminary experiment of

Experiment 4.3 to four newly-prepared blackcurrant plants on 2 November 2011. On

8 November 2011, the four blackcurrant plants supporting the sexual morphs (which

had commenced depositing eggs) were moved outside to expose them to natural

conditions comparable with those experienced by the field-produced eggs. The

blackcurrant plants were covered with micro-perforated polypropylene bags to

protect the sexual morphs from predators and were left outside for more eggs to be

deposited.

Once the eggs had been obtained, sampling of eggs from the seven field enclosures,

and of eggs produced in the laboratory, began on 26 November 2011 with

approximately 30 eggs being removed from each location. Samples were also taken

on 9 and 16 December 2011, 6, 20 and 30 January and 13 and 24 February 2012.

Sampled cuttings were stood in Oasis® floral foam which was then placed into a

container (7.5 x 15 cm) and transferred to an incubator at 16°C 16L:8D as shown in

Figure 4.5.1b. On average, eggs were checked three times a week to see if they had

hatched. Eggs which were infected with fungus or had desiccated were removed. The

cuttings were watered twice a week by adding water to the container, which the

Oasis® absorbed. The container could not be sealed with a lid as the cuttings were

too tall.

Experiment 4.6 Egg chilling requirements and thermal requirements for

hatching

Preliminary experiment- A preliminary experiment was carried out to determine the

best methods for determining the chilling requirements of N. ribisnigri eggs. Eggs

were obtained on four blackcurrant plants from Experiment 4.3 (second repeat of the

temperature transfer experiment from 15°C transfer to 12°C 13L:11D started on 25

November 2011), which provided eggs by 2 February 2012.

On 15 February 2012, three of the small blackcurrant bushes were removed from the

incubator and all of the leaves were removed, together with the sexual morphs. Each
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small blackcurrant bush was covered with a labelled brown paper bag as shown in

Figure 4.6.1a and a single blackcurrant bush was then exposed to each of three

treatment regimes i.e. 0, 5 or 10°C D:D. The experimental conditions were provided

by an incubator (0°C) a cold store (5°C) and CE Room 1 in the IRU (10°C).

Environments were kept in complete darkness. A Tiny Tag® logger was placed in

each environment to monitor the temperature and humidity.

On 24 February 2012, egg sampling commenced. Each week, approximately 20 eggs

were removed from each treatment regime by taking cuttings, which were then

labelled with the sampling date and treatment temperature. Sampling continued until

no eggs remained. The cuttings were stood in Oasis® floral foam held in a container

(7.5 x 15 cm) of water and transferred to an incubator at 16°C 16L:8D. Two to three

times a week the eggs were checked to see if they had hatched and eggs which were

infected with fungus or had desiccated were removed. A closed system was not used

as the cuttings were too tall to be covered with a lid to maintain a high humidity

a) b)

Figure 4.6.1 a-b a) Potted small blackcurrant bushes covered with brown paper

bags b) Cuttings stood in Oasis® floral foam.

Main experiment -On 6 March 2012, four small blackcurrant bushes were prepared

to acquire eggs as per the method described in Experiment 4.3 (at 15°C 13L:11D

(preliminary experiment). By 5 April, no eggs had been produced and the

temperature was lowered to 12°C. On 12 May, oviparae and males were observed

copulating and on 25 May, eggs were found on three of the four small blackcurrant

bushes.

On 8 June 2012, once the number of the eggs had increased, the blackcurrant bushes

were removed from the incubator and the branches of the small bushes were cut to
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provide twelve cuttings supporting various numbers of eggs. All the leaves were

removed, together with the sexual morphs.

Six cuttings, supporting 303 eggs, were placed in an incubator at 0ºC D:D while the

remaining cuttings, supporting 297 eggs, were placed in an incubator at -5ºC D:D.

Each cutting was placed in a re-sealable zipped plastic bag to maintain high

humidity. A Tiny Tag® logger was placed in one of the bags at each temperature to

monitor the temperature and humidity

On 28 June 2012, egg sampling began and this continued until egg hatch occurred.

Each week, approximately 25 eggs were removed from each incubator by taking

cuttings. The cuttings were stood in Oasis® floral foam, labelled with the sampling

date and temperature, and placed in a container which was transferred to an

incubator at 16°C 16L:8D as shown in Figure 4.6.1b. A Tiny Tag® logger was

placed in the incubator to monitor the temperature and humidity.

Each week, the eggs were checked to see if they had hatched and eggs which were

infected with fungus or had desiccated were removed. The cuttings were too large to

use a closed system to maintain high humidity, so a large tray of water was placed in

the incubator and refilled regularly to try and raise the humidity.

Results

Experiment 4.1 Obtaining and monitoring eggs from the field

Year 2010- When monitoring of the blackcurrant bushes began in November 2010,

several aphid eggs had already been deposited in both the large cages and small

enclosures. The eggs had been deposited mainly in the angle between a stem and a

bud and were initially green in colour, before turning black. The eggs which

remained green were unfertilised (Leather, 1980).

Unfortunately, individuals of a species of aphid other than N. ribisnigri were

observed depositing eggs on the blackcurrant bushes in one of the large cages.

Specimens were collected and sent to Rothamsted Research where they were

identified as H. lactucae. As a result, the large cages were no longer monitored as it
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was impossible to distinguish between eggs of N. ribisnigri and H. lactucae until

they hatched in the following spring.

Weekly monitoring of the blackcurrant bushes to record egg hatch began on 6

January 2011, and on 17 February, 20 nymphs were observed on a blackcurrant bush

inside Enclosure 2.

Year 2011- In 2011, monitoring for sexual morphs and eggs began earlier, on 5

September 2011. Of the seven enclosures set up, only five had N. ribisnigri

remaining on the lettuce plants. On 7 October, the first alate N. ribisnigri were

observed on the blackcurrant bushes in the enclosures and these were assumed to be

gynoparae as they were not males. As there were no oviparae nymphs present, they

could, however, have been alate parthenogenetic aphids. An unknown aphid was also

present in high numbers on the blackcurrant bushes and on the netting of Enclosures

1 and 2. Specimens of the aphid were collected and sent to Rothamsted Research

where they were identified as Eriosoma ulmi. Fortunately, this aphid does not lay

eggs on Ribes species and was migrating back to its winter host (elm) for the winter.

On 14 October, alate N. ribisnigri were observed producing nymphs and were

therefore assumed to be gynoparae. On 21 October 2011, N. ribisnigri males and

gynoparae were observed on the blackcurrant bushes. Following this, the first eggs

were observed on 28 October, with one egg in Enclosure 4 and two eggs in

Enclosure 5, both of which were accompanied by an ovipara. By 11 November, four

of the five enclosures contained eggs and many gynoparae and oviparae were

depositing nymphs and eggs. On 5 December, approximately 320 eggs were

observed on the blackcurrant bushes present in each enclosure (3 bushes per

enclosure), with Enclosure 5 containing the most eggs (Figure 4.1.2). At this time,

large numbers of oviparae were still present on the blackcurrant bushes.
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Figure 4.1.2 Number of eggs on blackcurrant bushes in each enclosure.

On 6 January 2012, monitoring for egg hatch began. Nymphs were first observed on

24 February and these had hatched since the previous sampling date of 17 February.

The buds of the blackcurrant bushes had not started to open by the time the first

nymphs hatched and the fundatrices died. It was not until 8 March that the buds were

opening. At this time, three nymphs were observed in Enclosure 1 and one in

Enclosure 5. The nymphs were, however, not present on subsequent monitoring

dates. No fundatrices had established on the blackcurrant bushes by 29 March.

Experiment 4.2 Induction of sexual morphs

Following pre-natal and post-natal conditioning under a range of temperatures and

photoperiod regimes, adult morphs were recorded as shown in Table 4.2.3 a-e.

The only treatment regime which did not lead to production of a sexual morph was

12°C 16L:8D where only apterous and parthenogenetic alate N. ribisnigri were

observed. Apterous forms were common to all treatments and occurred in the same

batches of offspring as gynoparae (Table 4.2.3d and e) and males (Table 4.2.3a, b

and d).

Males occurred at 15°C 14L:10D, 15°C 13L:11D and 12°C 14L:10D where they

were observed from Batches 3, 4 and 2 respectively. Parthenogenetic alate N.

ribisnigri occurred in the same batches as the males.
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Gynoparae occurred under two rearing regimes. As Table 4.2.3e and Figure 4.2.4

illustrate, a considerable number of gynoparae were produced from Batch 1 through

to Batch 7 at 12°C 13L:11D, while no males were observed. Conditioning at 12°C

14L:10D (Table 4.2.3d) also resulted in the production of gynoparae in Batches 1

and 2 but no more than three individuals were observed. Males were also produced

in Batch 2. Neither of the regimes at 15°C produced gynoparae, but they did produce

males.

As different numbers of aphids were used to produce G0 offspring for each treatment

regime, the differences between each treatment in the numbers produced per batch

were not meaningful. Also, the alates which occurred at the rearing regime 15°C

13L:11D were not screened to see if they produced nymphs on lettuce and therefore

were not determined as gynoparae or parthenogenetic alates in this experiment.

Table 4.2.3a-e Percentage (%), total (T) and numbers of apterae, alate, gynoparae

(Gynop) and male aphids produced during the reproductive life of

N. ribisnigri adults kept at a) 15°C 14L:10D, b) 15°C 13L:11D c)

12°C 16L:8D d) 12°C 14L:10D and e) 12°C 13L:11D.

a) 15°C

14L:10D

Batch number

1 2 3 4 5 6 7 8 9 10 11 12 T %

Apterae 102 69 56 88 49 55 48 14 9 2 0 5 497 75

Alates 2 4 2 8 10 9 8 4 2 0 0 4 53 8

Gynop* 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Males 0 0 8 26 23 10 12 13 11 8 4 0 115 17

*Alates were screened to see if they produced nymphs on lettuce
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b) 15°C

13L:11D
Batch number

1 2 3 4 5 6 7 T %

Apterae 55 76 72 62 20 3 10 298 84

Alates 3 0 1 7 2 0 1 14 4

Gynop* 0 0 0 0 0 0 0 0 0

Males 0 0 0 10 17 7 8 42 12

*Alates were not screened on lettuce to determine if they produced nymphs on

lettuce

c) 12°C

16L:8D
Batch number

1 2 3 4 5 6 7 8 T %

Apterae 16 2 1 5 3 0 2 0 29 14

Alates 36 46 48 27 13 10 1 2 183 86

Gynop* 0 0 0 0 0 0 0 0 0 0

Males 0 0 0 0 0 0 0 0 0 0

*Alates were screened to see if they produced nymphs on lettuce.

d) 12°C

14L:10D
Batch number

1 2 3 4 5 6 7 8 9 10 11 T %

Apterae 74 33 35 27 42 23 3 0 3 5 0 245 57

Alates 5 2 12 20 6 2 0 0 2 2 0 51 12

Gynop* 2 1 0 0 0 0 0 0 0 0 0 3 0.7

Males 0 5 31 18 28 26 13 1 4 4 1 131 30

*Alates were screened to see if they produced nymphs on lettuce
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e) 12°C

13L:11D
Batch number

1 2 3 4 5 6 7 8 9 T %

Apterae 7 6 1 0 0 0 1 0 2 17 30

Alates 0 0 0 0 0 0 0 0 0 0 0

Gynop* 6 13 4 7 4 3 2 0 0 39 70

Males 0 0 0 0 0 0 0 0 0 0 0

*Alates were screened to see if they produced nymphs on lettuce

Figure 4.2.4 Percentage morphs produced under each rearing regime.

Experiment 4.3 Obtaining eggs in the laboratory

Preliminary experiment- On 25 October 2011, eggs were obtained by exposing

blackcurrant cuttings paired with lettuce plants infested with N. ribisnigri to 15°C

13L:11D from 20 July 2011 and then to 12°C 13L:11D from 24 September 2011.

However, it was unclear whether it was the 31 days at 12°C from 24 September to 25

October which resulted in the production of eggs or the change from 15°C to 12°C,
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as no eggs had been produced prior to the temperature change. Figure 4.3.3a-c shows

the blackcurrant cutting supporting eggs deposited during the experiment, which

were moved outside to experience natural conditions to see if the eggs were ‘viable’

and would hatch during the following spring in Experiment 4.5 (diapause

termination).

a) b)

c)

Figure 4.3.3 a-c a) Gynoparae, oviparae and males on blackcurrant leaf b) Sexual

morphs and eggs c) Oviparae and eggs.

Main experiment- On 25 November 2011 four potted blackcurrant plants were

prepared and the preliminary experiment was repeated. On 20 January 2012, when

the temperature was reduced to 12 °C, two eggs were observed on a blackcurrant

bush. On 2 February 2012, following the temperature decrease, considerably more

eggs were observed on three of the four blackcurrant plants. Thus, whilst a few eggs
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were produced by Day 56, egg numbers had increased considerably by day 69, once

the temperature had been lowered.

As the preliminary experiment suggested that 15°C 13L:11D alone did not result in

egg production, while the second repeat did (although only a low number of eggs

were observed), this condition was tested without the temperature change to 12°C.

This showed that after 63 days at 15°C 13L:11D no eggs were produced.

On 8 June 2012 a small blackcurrant bush was placed at 12°C 13L:11D to see if this

regime alone would result in the production of eggs. By 27 July, several eggs had

been produced and more eggs were observed on 2 August. Thus eggs were produced

between 41-49 days. Unfortunately, it was not possible to determine whether eggs

were produced at 12°C 14L:10D, as when infested lettuce plants were paired with a

small blackcurrant bush, an individual aphid, which was not N. ribisnigri, was found

to be laying eggs. This aphid must have been missed when the blackcurrant was

prepared and extraneous insects were removed. Table 4.3.4 summarises the

outcomes from Experiment 4.3.

Table 4.3.4 Outcome of the rearing regimes used to screen for the induction of

egg production when lettuce plants infested with N. ribisnigri were

paired with small blackcurrant bushes or cuttings.

Temperature

(°C)

Photoperiod Eggs

produced

Days exposed to regime

and in some cases when

eggs were produced

15 14L:10D No 63

15 transferred

to 12

13L:11D No

Yes

66 at 15°C

31 at 12°C

15 transferred

to 12

13L:11D Yes

Yes

56 at 15°C

13 at 12°C

15 13L:11D No 63

12 14L:10D Un-

determined

12 13L:11D Yes 49
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Experiment 4.4 The development and host plants of the fundatrix

When the fundatrices were placed onto blackcurrant leaves at 12 and 16°C 16L:8D,

the leaves curled quickly and the fundatrices died, meaning that development time to

adulthood could not be determined.

On 24 March 2012 the fundatrices placed on a lettuce plant developed to adulthood

and had produced alate offspring, which were themselves producing nymphs.

On 11 April 2012, the four alates produced by the fundatrices and the eight

alate/apterous parthenogenetic N. ribisnigri from the culture placed on a currant leaf

were dead and had not produced any offspring. The alates produced by the

fundatrices which were left on the lettuce plant continued to develop and produce

offspring.

Experiment 4.5 Diapause termination

Preliminary experiment – To determine when diapause had ended naturally in the

field, sampling of the small number of eggs deposited in the field in 2010 was

carried out approximately every two weeks which began on 6 January 2011. Table

4.5.2 shows the numbers of eggs which had hatched by each monitoring date for

eggs which has been sampled over six dates.

On 9 February 2011 the first nymph was observed on a cutting which had been

sampled from the field enclosures on 1 February, thus taking approximately eight

days to hatch (Figure 4.5.3). By the end of the monitoring period, two nymphs out of

13 eggs had hatched on this cutting.

On 21 February 2011, one nymph was observed on one of the cuttings which were

sampled on 17 February, taking approximately four days to hatch. Following this, a

total of four nymphs hatched on this cutting out of the 14 eggs sampled.

When cuttings were sampled from the field on 25 February 2011, one nymph was

already present. Following transfer to 16°C 16L:8D, a further nymph was observed

on 1 March, hatching within two days. Two of the four eggs on this cutting hatched.
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On the final sampling date in March, three eggs hatched three days after being

transferred 16°C 16L:8D. The highest number of eggs which hatched were sampled

from the field on 17 February.

Egg mortality was relatively high and appeared to be due to desiccation and fungal

infection, particularly when eggs were at the base of the cuttings and close to the

sponge. Tinytag® recordings indicated that the mean temperature in the containers

held at 16°C 16L:8D was 16.64°C. Recordings of humidity were very variable

between 6 January and 1 February 2011 and following replacement of the logger the

rest of the experiment was exposed to a relative humidity with a mean value of

73.42%.

Table 4.5.2 Number of field-produced eggs which hatched following sampling

on six occasions. The total number of eggs sampled is also shown.

Sampling date

6/1/11 20/1/11 1/2/11 17/2/11 25/2/11 4/3/11

Monitoring

date

10/1/11 0

11/1/11 0

12/1/11 0

13/1/11 0

14/1/11 0

17/1/11 0

18/1/11 0

19/1/11 0

20/1/11 0

24/1/11 0 0

25/1/11 0 0

26/1/11 0 0

27/1/11 0 0

30/1/11 0 0
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1/2/11 0 0

6/2/11 0 0 0

7/2/11 0 0 0

8/2/11 0 0 0

9/2/11 0 0 1

10/2/11 0 0 0

11/2/11 0 0 0

14/2/11 0 0 0

15/2/11 0 0 0

21/2/11 0 0 1 1

22/2/11 0 0 0 1

23/2/11 0 0 0 0

25/2/11 0 0 0 1

28/2/11 0 0 0 0 1

1/3/11 0 0 0 0 1

2/3/11 0 0 0 1 0

3/3/11 0 0 0 0 0

4/3/11 0 0 0 0 0 0

7/3/11 0 0 0 0 0 3

Total

hatched

0 0 2 4 2 3

Total eggs

sampled

14 10 13 14 4 4
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Figure 4.5.3 Newly-hatched N. ribisnigri fundatrix.

Main experiment- Sampling began on 26 November 2011. Table 4.5.4 shows the

number of eggs which hatched for eggs sampled on five sampling dates. Eggs were

produced under field conditions (Field) or in the laboratory and then transferred to

the field (Laboratory).

On transferring the eggs to 16°C 16L:8D, the first fundatrix hatched by 23 January

2012, having being sampled from eggs produced in the laboratory on 6 January

2012. From this sampling date onwards, at least one fundatrix hatched from each

sample of eggs, whether produced in the field or the laboratory. After 13 February,

all the laboratory-produced eggs had been used and only field-produced eggs were

sampled on 24 February.

Field-produced eggs did not commence hatching until 1 February on blackcurrant

plants sampled from the field on 20 January 2012. On later sampling occasions,

more field-produced eggs hatched compared with laboratory-produced eggs.

As shown in Table 4.5.4, percentage hatch was generally low. In addition, a

considerable number of eggs were removed because of fungal infection or

desiccation, although losses were reduced following the later sampling dates, when

the eggs were not monitored for as long. Because eggs were lost, egg hatch is

expressed as a percentage of the number of eggs which appeared ‘viable’ rather than

the total sampled. The greatest proportion of eggs hatched from field-produced
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samples taken on 24 February, where 45.8% of ‘viable’ eggs hatched by 27

February.

Table 4.5.4 Number of eggs which hatched after being sampled on five

occasions. Eggs were field-produced (Field) or produced in the

laboratory (Lab). The total number of eggs sampled and the

number of eggs removed because of fungus infection or

desiccation are also shown, as is the percentage of ‘viable’ eggs

which hatched.

Sampling date and egg origin

06/01/2012 20/01/2012 30/01/2012 13/02/2012 24/02/2012

Field Lab Field Lab Field Lab Field Lab Field

Monitoring

date

13/1/2012 0 0

16/1/2012 0 0

20/1/2012 0 0

23/1/2012 0 1 0 0

24/1/2012 0 0 0 0

26/1/2012 0 0 0 2

30/1/2012 0 0 0 0

01/2/2012 0 1 1 1 0 0

03/2/2012 0 0 0 0 1 0

11/2/2012 0 0 1 0 3 0

15/2/2012 0 0 0 0 0 1

17/2/2012 0 0 0 0 1 1 1 0

20/2/2012 0 0 0 0 0 0 4 1

23/2/2012 0 0 0 0 0 0 2 0

27/2/2012 0 0 0 0 0 0 1 0 11

29/2/2012 0 0 0 0 0 0 0 0 0
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Total no.

hatched

0 2 2 3 5 2 8 1 11

Total no.

eggs

sampled

27 27 29 33 33 29 28 10 27

Total no.

eggs

removed

18 21 19 13 6 9 5 2 3

Percentage

hatch of

‘viable’

eggs (%)

0 33 20 20 18.5 10 34.8 12.5 45.8

For field-produced eggs the time required for 50% of the eggs to hatch decreased as

the sampling dates became later (Figure 4.5.5). For example, only approximately 2

days were required for 50% of the field-produced eggs to hatch when kept at 16°C

16L:8D following sampling on 24 February 2012. While this relationship is less

distinct for laboratory-produced eggs due to the lack of data, the trend line is similar

to that of the field-produced eggs.

Cumulative hatching curves for both field-produced and lab- produced eggs sampled

from the field on different dates and maintained at 16°C 16L:8D are shown in Figure

4.5.6. Similarly to Figure 4.5.5 it shows that eggs collected from the field at later

sampling dates compared with earlier sampling dates, required less time at 16°C

16L:8D before they hatched but also had a higher percentage of eggs hatching

sooner. None of the field-produced eggs collected at the earliest sampling date (6

January) hatched when kept for 54 days at 16°C 16L:8D.
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Figure 4.5.5 Estimated time (days) until fifty per cent of the field-produced (R2

= 0.9708, Y= -0.2416 + 9901x) and lab-produced (R2 = 0.3416, Y=

-0.2124 + 8705.6x) eggs collected from the field (2012) at each

sampling date hatched when kept at 16°C 16L:8D. Field-

produced eggs, lab-produced eggs, Linear (field) and

Linear (Lab).

Figure 4.5.6 Percentage of fundatrices hatching from field-produced and lab-

produced eggs collected from the field at each sampling date and

kept at 16°C 16L:8D for up to 54 weeks (2012).
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Experiment 4.6 Egg chilling requirements and thermal requirements for

hatching

Preliminary experiment – Weekly sampling began on 24 February 2012 for eggs that

were chilled at 0, 5 and 10°C. Actual mean temperatures were 0.62, 5.45 and

11.24°C respectively. Relative humidity was recorded only for the 10°C treatment,

with a mean of 93.7%. Sampling from the eggs kept at 5 and 10°C continued until 23

April and until 29 May for the eggs kept at 0°C. Unfortunately none of the eggs

hatched. A large amount of fungal infection was observed on the blackcurrant plants

and the eggs as time progressed. Fungal growth also occurred quickly on the cuttings

once they were transferred to the incubator.

Main experiment- Eggs were chilled at 0°C (actual mean -0.09°C and 89.9% RH) or

-5°C (actual mean -4.64°C and 84.9% RH) from 8 June 2012 and were then sampled

at weekly intervals from 28 June and placed at 16°C 16L:8D (actual mean 16.2°C

and 83.8%RH). Few eggs hatched overall. On 24 August, however, a single nymph

was observed on blackcurrant cuttings sampled from the 0°C D:D regime and placed

at 16°C 16L:8D on 2 August (i.e. observed 22 days after being placed at 16°C).

On 2 September, one nymph hatched from eggs kept at 0°C and one nymph from

eggs kept at -5°C, all of which were placed at 16°C 16L:8D on 24 August (i.e.

nymphs observed 9 days after being placed at 16°C).

Discussion

Conditions required for sexual morph induction and egg production

In this study, induction of the sexual morph and egg laying were consistently

induced in the laboratory using conditions which simulated the average field

temperature and photoperiod for September (12°C 13L:11D). This condition

corresponded well with field observations where sexual morphs of N. ribisnigri were

identified on blackcurrants in early October. The observed time interval of

approximately 4-5 weeks between induction of the sexual morph on the secondary

host and presence of the sexual morph on the winter host is likely to be due to the

time needed for development and migration. This estimation was made using a date

of sexual morph induction of 10 September (13L:11D photoperiod observed on this
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date in 2009) and 14 October as the date they were present on the winter host (as

observed in Experiment 4.1).

Table 4.7 summarises the outcomes from Experiment 4.2 and 4.3. Experiment 4.2

determined which morphs were produced when subjecting the embryos of an adult to

pre-natal conditioning, and then following their birth, post-natal conditioning, at a

range of rearing regimes (outcome from only one generation was observed). Where

these rearing regimes resulted in the production of sexual morphs, Experiment 4.3

then maintained N. ribisnigri on lettuce plants paired with a blackcurrant cutting or

plant to confirm whether eggs were produced over a longer period of time (outcome

from several generations observed).

Table 4.7 A summary of the outcomes of Experiments 4.2 and 4.3 at each

rearing regime. The natural conditions that each rearing regime is

intended to represent are also described.

Rearing regime Natural

conditions

Exp. 4.2- which

morphs were

produced

Exp. 4.3- whether

eggs were produced

15°C 14L:10D Mid/late august Males + apterae +

alates

No

15°C 13L:11D Late august to

early September

Males + apterae +

alates

No

12°C 16L:8D Not a natural

condition

Apterae + alates Not included

12°C 14L:10D Not a natural

condition

Gynoparae + males

+ apterae + alates

Un-determined

12°C 13L:11D September Apterae + gynoparae Yes

15°C 13L:11D

transferred to

12°C 13L:11D

Late august and

September

Not included No - 66 days at 15°C

Yes - 31 days at 12°C

15°C 13L:11D

transferred to

12°C 13L:11D

Late august and

September

Not included Yes - 56 days at 15°C

Yes - 13 days at 12°C
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When reviewing the range of conditions which induced males and gynoparae in

Experiment 4.2, males were induced prior to the gynoparae at 15°C 14L:10D and

15°C 13L:11D. They were produced at the same time as the gynoparae at 12°C

14L:10D. Gynoparae were produced alone at 12°C 13L:11D. However, when these

outcomes are combined with the additional information provided by Experiment 4.3,

various additional observations and contradictions occur:

1) Firstly, egg production was not confirmed at 12°C 14L:10D and it is

therefore difficult to determine whether the three gynoparae recorded during

the first two days of reproduction under these conditions (Table 4.2.3d) were

not just parthenogenetic aphids which had failed to reproduce. While the

induction of gynoparae is feasible at a 10 hr scotophase, as observed for M.

persicae (Matsuka and Mittler, 1979), in this study it cannot be confirmed

whether males and gynoparae were produced together under these conditions.

2) Secondly, it is uncertain whether eggs were produced at 15°C 13L:11D as

two contradictory results were obtained in Experiment 4.3 (discussed further

later). If eggs were produced it would indicate that gynoparae are produced

under these conditions but that it took more than one generation for them to

occur.

3) Finally, at 12°C 13L:11D eggs were obtained consistently in Experiment 4.3,

which indicates that males were produced under these conditions, although

this was not observed in Experiment 4.2. This suggests males occur in

subsequent generations.

Using this information, Table 4.8 summarises the observations that can be made with

confidence about the production of males and gynoparae under each set of conditions

using the outcomes from both Experiments 4.2 and 4.3.
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Table 4.8 The rearing regimes under which induction of males and

gynoparae can be confirmed from this study.

Rearing regime Males

produced

Gynoparae

produced

15°C 14L:10D Yes No

15°C 13L:11D Yes Unknown

12°C 16L:8D No No

12°C 14L:10D Yes Unknown

12°C 13L:11D Yes Yes

This study therefore supports the hypothesis that under natural field conditions,

males are produced first in response to conditions which represent mid/late August

and early September (15°C 14L:10D and 15°C 13L:11D respectively). It is likely

that males continue to be induced at shorter scotophases/CNL than 10 h. This has

been observed for males of M. persicae and H. lactucae which are induced at

scotophases of 9 hr 26 min and 8 hr respectively (Matsuka and Mittler, 1979;

Harrington, 1984). It is thought that the process of producing males first ensures that

they are abundant on the winter host, so they are available to mate and fertilise the

eggs of the oviparae after the gynoparae arrive (Matsuka and Mittler, 1979).

In September, the gynoparae are then induced in response to a longer CNL and lower

temperatures (12°C 13L:11D). Similarly, studies on other species have shown that

induction of gynoparae and oviparae requires a longer CNL than for males, which

for M. persicae is 30 minutes longer at 18-19°C (Matsuka and Mittler, 1979) and >1

hour longer for A. pisum at 20°C (Lamb and Pointing, 1972). In this study, eggs were

produced at 12°C 13L:11D and therefore males are produced together with the

gynoparae at the same CNL. Similarly, this has been observed for other species of

holocyclic aphid, where gynoparae and males of A. fabae and R. padi were induced

at a similar CNL (Vaz Nunes and Hardie, 2000b). The present study suggests that

gynoparae are produced in the first generation and males are produced in subsequent

generations, as while eggs were produced in Experiment 4.3 (which allowed the
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outcome for more than one generation to be observed), only males were observed in

the first generation (Experiment 4.2). In other aphid species, males are usually

produced after females, but during the same reproductive sequence (Dixon and

Dewar, 1974; Lamb and Pointing, 1975; MacKay, 1987). Lamb and Pointing (1975)

did show that sometimes the odd female does not produce males even under suitable

conditions for their production, but in the present study none of the females produced

males. No other investigations of sexual morph induction suggest differences in

sexual morph production between generations and Mackay (1987) reported that by

the G2 generation (as used in this study) the effects of photoperiod on sexual morph

production of A. pisum were fully developed and no changes occurred in successive

generations. Therefore, this anomaly could be attributed to the lack of replication in

Experiment 4.2 where by chance no gynoparae were produced. Further replications

would be required to confirm this.

This study supports the findings of earlier studies in showing that photoperiod, more

specifically the scotophase, as determined by Lees (1973), is the dominant factor

controlling the induction of sexual morphs, since a low temperature and short

scotophase regime (12°C 16L:8D) did not induce any sexual morphs. Vaz Nunes and

Hardie (2000a) also found that male A. fabae were not produced at 12°C when the

photoperiod was longer than 15 hours. Kenten (1955) also observed that no males or

oviparae were produced by A. pisum kept at 11-13°C 16L:8D. However, the

conditions which represent short day effects appear to be very different between

species, with oviparae of M. viciae being produced at 12°C 16L:8D (Lees, 1959; Vaz

Nunes and Hardie, 2000a). Other studies on M. viciae have recorded the production

of 100% parthenogenetic aphids at 12°C 16L:8D which suggest that different clones

of a species may express different responses (Hardie, 1990).

The use of both temperature and photoperiodic cues to detect changes in seasons,

allows aphids to time their switch to a sexual life-cycle carefully, so the advantages

of asexual reproduction are not lost prematurely and enough time remains for

overwintering eggs to be deposited (Ward, et al., 1984). However, it is possible that

global climate change could lead to asynchrony between the sexual morph inducing

cues. For example, at higher latitudes insects usually have a shorter CNL as winter

occurs earlier, but as temperatures continue to increase as a result of climate change,
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the CNL may no longer be an accurate indicator of seasonal changes in temperature

(Bale and Hayward, 2010). Depending on the species, and the influence of higher

temperatures on the CNL cue, this could result in aphids being unable to produce

sexual morphs to enter the diapause process, or alternatively entering the diapause

process too early.

Research into the effect of temperature on the CNL has shown that higher

temperatures increase the CNL. This would postpone the induction of sexual morphs

so that asexual reproduction continues for longer, potentially contributing to a larger

overwintering population (Lamb and Pointing, 1972). Lees (1963) observed that

higher temperatures (e.g. 25°C) could suppress the induction of sexual morphs. The

effects of high temperatures have not been evaluated for N. ribisnigri as the higher

temperature (15°C) used in this study was not unusually high compared with

temperatures that would be experienced in the field during the period of induction of

sexual morphs.

Further work could readily resolve the contradictions observed in determination of

the requirements for sexual morph induction in this study. Precise CNLs could also

be determined for each sexual morph by using treatments where the test scotophase

is increased by short time intervals until sexual morphs are no longer produced. This

could also be expanded to include other clones of N. ribisnigri, as there is evidence

that the CNL can vary with the geographic origin of a clone, particularly related to

latitude, so that clones from the north have shorter CNLs (Tauber and Tauber, 1972;

Vaz Nunes and Hardie, 2000b). This would provide more specific information on the

conditions required for sexual morph induction in N. ribisnigri.

Pairing infested lettuce plants and currant cuttings/plants at 12°C 13L:11D provided

an effective method for obtaining eggs of N. ribisnigri and future studies can use this

method to obtain eggs in approximately 49 days. During Experiment 4.3, when a

regime of 15°C 13L:11D was evaluated, several eggs were observed after 56 days

exposure, before the temperature was lowered to 12°C, which suggests that both

males and females were produced under this rearing regime. However, no eggs were

produced on another occasion using the same regime and, furthermore, when aphids

were exposed to 15°C 13L:11D continuously, no eggs were produced after 63 days.
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The results of Experiment 4.2 also suggest that only males were produced under this

rearing regime. Together, the evidence suggests that it is unlikely that eggs were

produced at 15°C 13L:11D. It is possible that the eggs which were observed were

present on the blackcurrant plant when it was collected from the field and were not

observed, and therefore removed, during its preparation for the experiment. Further

experiments using this rearing regime would be required to clarify the short day

effect of 15°C 13L:11D.

Once eggs had been produced, 16°C 16L:8D was a suitable hatching condition.

During the egg hatch experiments, however, survival and viability were low.

Relatively high humidity is vital for successful egg hatch, by preventing desiccation

(Hand, 1983). Unfortunately, attempts to maintain a high humidity during this study

were unsuccessful, with currant cuttings transferred to 16°C 16L:8D experiencing a

mean humidity of 73.42% , where desiccation still occurred. A high humidity was

maintained when eggs were conditioned at chilling temperatures (Experiment 4.6)

and stored in sealed zipper plastic bags, using the method deployed by Lushai et al.

(1996). Using this method, a mean humidity of 89.9% was maintained and the eggs

appeared viable on transfer to 16°C 16L:8D.

The majority of previous studies on aphid eggs have maintained high humidity

through the use of closed systems such as Petri dishes, the consistent addition of

water and the use of controlled environments, which have all provided high rates of

hatching (Newton and Dixon, 1987; Via, 1992; Wang and Furuta, 2002; Graf, et al.,

2006). Fungal infection was commonly observed in the present study, suggesting

that in future, a procedure for egg sterilisation should be implemented. This has

been very effective in reducing fungal infection and increasing the proportion of

eggs hatching successfully (Wipperfűrth and Mittler, 1986; Via, 1992).  However, 

regardless of these improvements in technique, eggs can still fail to hatch, even if

they have developed fully and conditions are favourable, as observed for A. fabae

(Way and Banks, 1964).

Egg monitoring and diapause termination

In the field, egg deposition by N. ribisnigri commenced during late October. This

was followed by egg hatch by 17 and 24 February during 2011 and 2012
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respectively. When eggs were sampled from the field on 1 February 2011 and 20

January 2012 and transferred to suitable hatching conditions throughout the winter,

they hatched earlier, by 9 and 1 February during 2011 and 2012 respectively. This is

similar for many other species where in the field, hatching of R. insertum and Cinara

pilicornis eggs were delayed by temperatures too low for development (known as

quiescence) even though diapause had terminated (McLeod and Beck, 1963; James

and Luff, 1982). Therefore, if climate change results in spring conditions becoming

more favourable, N. ribisnigri may commence hatching earlier in the field than

currently observed. Earlier hatching will provide the aphids with more time to

develop and reproduce, potentially leading to higher summer populations.

When comparing field-produced and laboratory-produced eggs used during

2011/2012 in Experiment 4.5, the laboratory-produced eggs hatched earlier. With the

only difference between the eggs being the time of oviposition, this suggests that the

timing of egg deposition influences the length of the diapause and therefore the

timing of diapause termination and subsequent hatching (Leather, et al., 1993). This

might also explain the differences in the timing of egg hatch in the field during 2011

and 2012. This needs to be considered in future studies.

When sampling eggs from the field and transferring them to 16°C 16L:8D, the first

field-produced eggs hatched in 2010/2011 after a period of 96 days in the field and

7-8 days at 16°C 16L:8D following sampling on 1 February 2011 (Table 4.9- 28

October was used as the oviposition date as this is the date eggs were first observed

in the field during 2011). Following the first hatch, eggs transferred on 17 February,

25 February and 4 March 2011 took 4, 3 and 3 days respectively to hatch at 16°C

16L:8D. During 2011/2012, the first egg hatch was recorded after 84 days in the

field and 11-12 days at 16°C 16L:8D following sampling on 20 January 2012 (Table

4.9). Following the first egg hatch, eggs transferred on 30 January, 13 February and

24 February 2012 hatched after 4, 4 and 3 days at 16°C 16L:8D.
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Table 4.9 Summary of the time (days) eggs were kept in treatment conditions

(0, -5 °C or the field), the date they were transferred to 16°C

16L:8D and the duration of incubation before the first egg hatched

(Experiment 4.5 and 4.6).

Treatment and date of

transfer to 16°C 16L:8D

Time (days) eggs

kept in treatment

conditions

Time (days) eggs kept

at 16°C 16L:8D*

Exp.

Field-produced eggs

2010/2011

96 7-8 4.5

Field-produced eggs

2011/2012

84 11-12 4.5

Laboratory-produced eggs

2011/2012

70 14-17 4.5

0°C (transferred on 2

August 2012)

55 17-22 4.6

0°C (transferred on 24

August 2012)

77 6-9 4.6

-5°C (transferred on 24

August 2012)

77 6-9 4.6

*Estimates of incubation time at 16°C 16L:8D took into account the time period between

when egg hatch was recorded and the prior sampling date, as egg hatch could have occurred

between these two dates where no monitoring took place.

It is clear, for the field-produced eggs, that the longer the eggs remained in the field,

a shorter period was required subsequently at 16°C 16L:8D before they hatched,

with the shortest incubation time being three days. Due to temperature variation in

the field, fluctuating above and below development thresholds, the exact point at

which diapause terminated cannot be determined, as while the eggs hatched

following transfer to 16°C 16L:8D, it cannot be assumed that diapause had

terminated prior to their transfer. Therefore, it can only be confidently concluded that
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diapause terminated within 104 days (time until egg hatch) during 2010/2011 and

within 96 days during 2011/2012.

Although the point at which diapause terminated cannot be determined from this

study, an estimate of the number of DD required for post-diapause development can

still be made using the period of time between the sampling date and date of egg

hatch. Day-degrees accumulated between the sampling date and date of egg hatch for

field-produced eggs in 2010/2011 and 2011/2012 and also laboratory-produced eggs

during 2011/2012 are shown in Figure 4.10. The estimates were calculated using the

LDT at 4.7°C, as determined for adult N. ribisnigri in Chapter 3, and the DD

measured from the 1 December during 2010/2011 and 2011/2012 (using minimum

and maximum temperatures collected from the University of Warwick,

Wellesbourne meteorological station). Day-degrees were calculated from the

sampling date as eggs might have terminated diapause in the field and accumulated

day-degrees prior to incubation. Therefore, this estimate in some cases may be an

overestimation.

Figure 4.10 Day-degrees accumulated between the sampling date and date of

egg hatch for field-produced eggs in 2010/2011 and 2011/2012 and

laboratory-produced eggs during 2011/2012.
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When looking at the data for the field-produced eggs during 2010/2011 and

2011/2012, Figure 4.10 shows that the time required until egg hatch at 16°C 16L:8D

is becoming constant at approximately 50DD. Therefore, it can be estimated that

post-diapause development takes just under 50 DD using a LDT of 4.7°C at 16°C,

and that diapause terminates sometime in late January – early February.

Unlike the field-produced eggs, the data for the laboratory-produced eggs were more

variable. The first egg hatched after 70 days in the field and 14-17 days at 16°C

16L:8D following sampling on 6 January 2012 (Table 4.9). Following this, eggs

transferred on 20 January, 30 January and 13 February took 6, 16 and 7 days to hatch

at 16°C. Therefore, this does not indicate that the longer the eggs were in the field

before they were transferred to 16°C 16L:8D, the shorter the amount of time they

then required before they hatched. The cause of this anomaly cannot be determined

as the data in this study is based on a very small sample and low number of these

eggs hatched. Studies have shown that intra-population variation in the timing of egg

hatch does exist, with early and late hatching aphid phenotypes being observed for

the sycamore aphid for example (Dixon, 1976; Tauber, et al., 1986). While this

could explain the variation observed in these results, the lack of data meant that

intra-population variation could not be observed.

To determine the diapause termination and egg hatch requirements more precisely

for N. ribisnigri, eggs need to be kept at a constant temperature below the threshold

for development. Batches of eggs should then be removed at intervals to higher

temperatures that support post-diapause development so that the time until egg hatch

can be measured. Once the time to egg hatch becomes constant (i.e. all eggs take 5

days to hatch) it can be confirmed that diapause has terminated and therefore the

time to egg hatch represents the egg development time at that temperature. Wang and

Furuta (2002) define egg development time (days) as the number of days to hatching

following transfer to warmer temperatures.

In this study, a similar method was used where eggs were chilled at 0 and -5°C from

8 June 2012 (assumed to be below the egg developmental threshold) and transferred

to 16°C 16L:8D at weekly intervals (Experiment 4.6). Table 4.9 summarises the time

kept at the chilling condition and at 16°C 16L:8D. For eggs transferred from 0°C to

16°C 16L:8D on 2 August 2012 diapause took no longer than 77 days at 0°C to
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terminate (8 June 2012 used as the start date of diapause). For eggs transferred from

0 and -5°C to 16°C 16L:8D on 24 August 2012 diapause took no longer than 86

days to terminate.

Unfortunately, egg hatch was only observed from these two sampling dates as there

were insufficient eggs available to continue sampling. Therefore, a constant

emergence time at 16°C 16L:8D was not observed. Thus it could not be confirmed

that diapause had terminated prior to transfer to the incubator and as a result, egg

development time could not be determined. If these data had been obtained, the

development times could have been converted into day-degrees to provide a

prediction of N. ribisnigri emergence in the spring using the LDT estimate of 4.7°C.

Future work should consider repeating this experiment, and also adapting it to

determine the LDT specifically for egg development, as using the LDT for the adult

stage may not be appropriate for the egg stage. This was observed by Graf et al.

(2006) who found a 0.5ºC difference between the LDT of nymphs and eggs of

Dysaphis plantaginea.

The LDT for egg development could be determined by introducing a range of

incubating temperatures, in addition to 16°C, to determine the effect of temperature

on egg development time. The development times could then be converted to a

development rate and plotted against temperature, so that the LDT could be

extrapolated using the x-intercept method as used in Chapter 3, and as demonstrated

by Wang and Furata (2002) for the eggs of Periphyllus califoriensis and Graf et al.

(2006) for the eggs of D. plantaginea.

Studies which have compared egg hatch patterns between years have found that

temperature has a significant influence for many insects (Dixon, 1976; Wang and

Furuta, 2002). It is hypothesised for aphids that the effect of temperature is related to

their chilling requirements, as discussed in the Introduction, which subsequently

affects the timing of diapause termination. This study shows that diapause

development in N. ribisnigri is influenced by temperature, with differences between

field temperatures and experimental chilling conditions being observed. However,

studies on R. insertum and P. califoriensis have found that eggs will not hatch until

after mid-January or 35-41 days respectively, regardless of whether the eggs were

kept in the field or chilled in the laboratory, suggesting that temperature may affect
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diapause differently in some species (James and Luff, 1982; Wang and Furuta,

2002).

While Experiment 4.6 only provided a small amount of data, the study did show that

diapause development progressed more quickly for eggs chilled at 0°C compared to

those chilled at -5ºC and sampled from the field (Table 4.9). This could suggest that

the rate of diapause development changes with temperature.

Temperature has been found to regulate diapause development for various aphid

species where for example, eggs of A. fabae required 48-52 days below 8ºC to hatch

(Newton and Dixon, 1987) and eggs of S. avenae failed to hatch when maintained

above 10ºC (Hand, 1983). Studies have also suggested that temperature regulates

the rate of insect diapause development, with low temperatures in particular,

resulting in the most rapid completion of diapause. For example, the western cherry

fruit fly (Rhagoletis indifferens) has an optimum temperature of 3ºC for diapause

development (Vankirk and AliNiazee, 1982), and the diapause development of Delia

radicum pupae progressed most rapidly when temperatures were lower within a 0-

10ºC range (Collier and Finch, 1983).

As N. ribisnigri eggs under natural field conditions would not be exposed to a single

chilling temperature of 0ºC during the winter for 55 days, it suggests that a range of

temperatures must be facilitating diapause development as observed for the examples

above. While for some species, subzero temperatures do not facilitate diapause

development, in this study a -5°C condition did, although it was not the optimum

temperature for diapause development (James and Luff, 1982; Hand, 1983; Lushai,

et al., 1996; Wang and Furuta, 2002).

A low temperature threshold mechanism such as this would explain why diapause

development of N. ribisnigri eggs progressed faster when eggs were kept at 0°C

compared with -5°C or under field conditions. To confirm that lower temperatures

regulate and determine the rate of diapause development in N. ribisnigri, the chilling

experiments would need to be repeated including a range of low and high

temperatures. It is also important to determine whether the optimum and effective

temperature ranges rise as diapause development proceeds, as this has been

suggested by Tauber and Tauber (1976) to be a diapause terminating mechanism.
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Data from Experiment 4.6 also suggested that chilling reduced egg development

time. Eggs chilled at 0°C required 22 days to hatch when transferred to 16°C 16L:8D

while eggs chilled for 77 days only required 9 days to hatch. While this conclusion

is drawn from two sampling dates only, similar observations have been made for

other species (Wipperfűrth and Mittler, 1986; Komazaki, 1998; Wang and Furuta, 

2002; Chuche and Thiéry, 2009). In addition, more detailed studies might record

improvements in hatching success in response to longer chilling periods, as observed

in other studies on aphids (Hand, 1983; Lushai, et al., 1996; Wang and Furuta,

2002).

Unfortunately, this study cannot confirm that chilling temperatures acted to

terminate diapause as it is unknown whether N. ribisnigri eggs can hatch when

maintained at higher temperatures. While future work could determine this,

observations of hatching at higher temperatures may be difficult to interpret, as in

some insect populations, a small number (3%) of non-diapausing genotypes have

been observed (Vankirk and AliNiazee, 1982; Thomas, et al., 2012;). The occurrence

of non-diapausing genotypes could explain why some studies on aphid eggs have

reported hatching at constant high temperatures such as 16ºC (Wipperfűrth and 

Mittler, 1986).

Following egg hatch in the field during 2012, N. ribisnigri did not establish

successfully on blackcurrant plants, and it was clear that egg hatch was not

synchronised with bud burst and that the aphids had hatched too early. The reason

for this asynchrony could be due to climate change, leading to an increasing

frequency of milder winters, which are resulting in delayed blackcurrant bud break.

This is due to a lack of bud chilling, which is a requirement for bud burst (Jones, et

al., 2012). Jones et al. (2012) expressed these concerns particularly in relation to

Ribes nigrum L. (blackcurrant).

Insects have been observed to implement ‘risk-spreading strategies’ where the

existence of early and late hatching phenotypes helps them to contend with early and

delayed bud opening, or temporarily unfavourable conditions (Hopper, 1999;

Tauber, et al., 1986). Drepanosiphum platanoidis (sycamore aphid) is an example of

an aphid which adopts this strategy (Dixon, 1976). However, an extreme delay in

bud hatch can reduce survival (Dixon, 1976). Fundatrices hatching before bud burst
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have been reported to suffer high mortality as they feed on the bud scales where they

are vulnerable to predators (particularly birds and other arthropods) and rain (Dunn

and Wright, 1955; Dixon, 1976; Gange and Llewellyn, 1988).

The survival of fundatrices is also influenced by the age and quality of the leaves.

Dixon (1976) observed that fundatrices of the sycamore aphid emerging and feeding

on unfurling and young leaves had a superior weight and reproductive rate,

compared to fundatrices feeding on older mature leaves of the sycamore tree. In the

present study, fundatrices placed on unfurling leaves of blackcurrant cuttings (to

determine development time) died within a few days, as their subsequent feeding

resulted in leaf curling and discolouration resulting in a poor quality food source.

Similar influences of plant age and quality have been shown for R. padi where they

survived less than four days on mature and senescent leaves of bird cherry (Leather,

1980).

In a changing climate, the adaptability of a species’ life-cycle can be important for

its survival. Following the observations in this study that hatching of N. ribisnigri

eggs can be asynchronous with bud development of its primary host, investigations

were carried out to determine how adaptable its life-cycle could be. Originally, it

was hypothesised that specialisation of the fundatrix to the primary host restricted

the transfer of an aphid’s lifecycle from holocyclic to autoecious (Dixon, 1998).

However, various holocyclic aphid species have been reared successfully on their

secondary host plant following hatching, confirming that they are not as restricted to

the primary host plant as originally thought (Dixon and Kundu, 1994). Furthermore,

research on Cavariella aegopodii has demonstrated that, under experimental

conditions, it can complete its entire life-cycle on its secondary host, with both the

sexual morphs and fundatrices accepting the secondary host (Kundu and Dixon,

1995).

In the laboratory, the fundatrices of N. ribisnigri developed and reproduced

successfully on lettuce and continued to produce offspring, which also continued to

develop and reproduce on lettuce. When these offspring were transferred to the

primary host they no longer reproduced, and died within a couple of days, suggesting

no feeding occurred. Apterous and alate parthenogenetic N. ribisnigri females also

did not accept the primary host plant when transferred from lettuce. In the case of the
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primary host, apterous and alate parthenogenetic females of C. aegopodii survived

on willow which highlights that there are differences in morph specialism between

aphid species (Kundu and Dixon, 1995).

As it was not determined whether the males and gynoparae of N. ribisnigri could

mate and lay eggs on the secondary host plant, it cannot be confirmed whether the

life-cycle could be completed on lettuce (or other secondary hosts) alone. However,

if this was confirmed then this could provide N. ribisnigri with the opportunity to

become autoecious and shift its entire lifecycle to the secondary host, which has been

observed for other members of the Nasonovia genus which became disconnected

from Ribes species (Moran, 1992). As some aphid species which are not constrained

to being holocyclic continue to remain so, host alternation must result in benefits,

such as population increases, which outweigh the costs incurred when migrating

between the hosts (Dixon and Kundu, 1994).

This study has made primary investigations into the overwintering phase of the life-

cycle of N. ribisnigri, providing information on the timing of key events, as

summarised in Figure 4.11, and has also attempted to provide explanations for the

mechanisms controlling them. Techniques have been developed to induce sexual

morphs, obtain eggs and hatch them successfully in the laboratory. These will be

valuable tools for future studies, particularly the development of a forecast for egg

hatch. Future work should aim to determine the requirements for diapause

termination and egg hatch and also determine the LDT for eggs. On gaining this

information, a day-degree forecast for spring emergence can be developed.

Figure 4.11 Nasonovia ribisnigri overwintering life-cycle.
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Conclusion

 Diapause terminates in the field during mid-late January but temperature

below the LDT prolonged post-diapause development and hatching until

early February.

 12°C 13L:11D can induce males and gynoparae of N. ribisnigri which

produce eggs after approximately 49 days.

 It was estimated that post-diapause development takes just under 50DD using

a LDT of 4.7°C at 16°C.

 It is hypothesised that diapause development is regulated by low

temperatures. Diapause development progressed faster at 0ºC.

 A prolonged chilling period at 0°C reduced egg development time.

 N. ribisnigri fundatrices can survive and reproduce on lettuce but their

offspring can no longer colonise R. nigrum. Parthenogentic summer alates

and apterous N. ribisnigri cannot colonise blackcurrant.
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Chapter 5: Alternative Host Plants

Introduction

The host plants aphids utilise complement their complex reproductive strategies

(Moran, 1988). For holocyclic aphids, which carry out sexual and asexual

reproduction, the primary woody winter host is vital for supporting overwintering

eggs resulting from sexual reproduction, and the secondary herbaceous summer

hosts provide a better nutritional source to support asexual colonization (Moran,

1992).

Host plant selection by aphids is a complex process involving; host plant location,

plant contact and assessment, epidermal probing, stylet pathway activity, sieve

element entry and salivation, concluding with phloem acceptance and ingestion

(Powell, et al., 2006). At the beginning of this process, aphids are known to locate

plants via visual cues (Kennedy, et al., 1961), but growing evidence suggests that

olfactory cues also play a role in host plant location, where aphids have been

attracted to and altered their flight paths in response to host plant odours/volatiles

(Pickett, et al., 1992; Webster, et al., 2008). Following host plant location, aphids

alight on the leaf and recognise that the host plant is appropriate via responses to

physical and chemical properties of the leaf surface (Dixon, 1998; Powell, et al.,

1999) and/or following epidermal penetration (Powell and Hardie, 2000; Vargas, et

al., 2005). At this point some aphids accept the host plant, and evidence for this pre-

phloem acceptance is strongly supported by the induction of reproduction before the

sieve elements are reached, which has been recorded for R. padi and A. fabae (Nam

and Hardie, 2012; Tosh, et al., 2002).

Collectively aphids utilise a wide range of host plants, but the majority are host-

specific with a genetically determined preference for one, or several closely related,

species (Dixon, 1998). This limited range of host plants makes locating food sources

challenging and this is exacerbated by the difficulties experienced by aphids in

achieving directed flight in strong winds and the high risks of desiccation during off-

plant activity (Nam and Hardie, 2012).
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When utilising plants, aphids can be monoecious, where they remain on one host

plant species, or heteroecious, remaining on several host species (Wöhrmann and

Tomiuk, 1988). The species studied most are the heteroecious host alternating

species, as their herbaceous secondary host is often an important agricultural crop,

which is the case for N. ribisnigri (Williams and Dixon, 2007).

Nasonovia ribisnigri is a host-alternating holocyclic aphid and its main secondary

host plants are from the Asteraceae, particularly Lactuca species, which includes

economically important commercial lettuce cultivars. In addition, N. ribisnigri has

been recorded on other plant families including Brassicaceae, Scrophulariaceae and

Solanaceae (Blackman and Eastop, 2006b).

Increasing host plant range is beneficial for aphids as they have the opportunity to

survive when their preferred host plants are limited. This is particularly important for

anholocyclic aphids which reproduce asexually all year round, surviving as live

stages in the winter (Williams and Dixon, 2007). This is advantageous when

primary hosts are absent, or the original secondary hosts are sparse (Phillips, et al.,

1999). Myzus persicae, for example, is holocyclic and undertakes sexual

reproduction to lay overwintering eggs on peach trees, Prunus persica. However, in

regions where there is an absence of peach trees, Blackwell (1974) identified

selection for anholocylic clones, which overwinter on alternative herbaceous plants,

weeds and winter crops (Blackman, 1974; Margaritopoulos, et al., 2002). In

addition, regions which exhibit increasingly milder winters may also be selecting

against sexual reproduction, indicating that climatic variation between geographical

locations plays an important role in determining the overwintering life-cycle of

aphids (Blackman, 1974; Powell and Bale, 2004).

The advantage to aphids of the existence of both sexual and parthenogenetic

reproduction has been discussed extensively. It is widely accepted that there is a two-

fold cost of sex, where due to the production of males, only half of a sexually-

reproducing population can produce offspring, compared with an asexual population

where all individuals are capable (Smith, 1971). For aphids, the cost of sex far

exceeds a two-fold cost as asexual aphids can pass through several generations in the

time required for one generation to be produced during a sexual phase (Newton and

Dixon, 1988; Simon, et al., 2002). Apart from the advantages of maintaining genetic
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variation (Dixon, 1977), selection for sexual reproduction is maintained for the

production of cold resistant eggs, which ensures their winter survival and presence in

spring (Vorburger, 2004). For anholocyclic clones, overwintering survival is not

guaranteed and the number of migrants is often low in spring due to high mortality

throughout the winter (Powell and Bale, 2008).

Interestingly, to avoid this risk of mortality in varying climates, some anholocyclic

lineages of S. avenae, in addition to producing parthenogenetic females, have

retained their ability to produce all of the sexual morphs, earning them the title of

‘intermediate’ aphids (Simon, et al., 2002). In addition, some clones may produce

only males and parthenogenetic offspring and are termed androcyclic (Simon, et al.,

1999). These varying commitments to sexual reproduction are advantageous to the

species, as their subsequent mating allows gene flow to occur, and protects their

genes in less favourable environments through the production of an overwintering

egg (Rispe and Pierre, 1998). Therefore, the existence of these different lineages

indicates that the change in the life-cycle is under genetic control, regulated by the

environment (Wöhrmann and Tomiuk, 1988).

Over the past few years there have been an increasing number of reports that in some

temperate regions with mild winters, including the south of England, that N.

ribisnigri has survived through the winter as active stages on alternative hosts to

Ribes species (RIS, No date-a). This is a cause for concern, especially during very

mild winters, since development of large populations can occur earlier in the spring

as reproduction continues throughout the winter (Wales, et al., 2008).

The aim of this study was to investigate and confirm potential alternative host plants,

including relatives of lettuce and other wild species, which are suitable hosts for UK

populations of N. ribisnigri. A selection of these hosts was then assessed to

determine if they could overwinter and support the development of N. ribisnigri.
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Methods

5.1 Host plant screening

Plants to be screened were selected firstly by focusing on broad leaved weeds which

are considered very important in field vegetable crops and could potentially provide

refuges for N. ribisnigri (HDC, 2009). Other plants were chosen by using published

information on aphid-host associations and confirming that these plants inhabit areas

close to agricultural environments (Blackman and Eastop, 2006a; Blackman and

Eastop, 2006b). All the plants chosen were eudicots covering five orders and seven

families. Table 5.1.1 lists the plants selected. Seeds were acquired from Nicky’s

Nursery Ltd (Kent), Herbiseed (Twyford) and Chiltern Seeds Ltd (Wallingford).

More plant species were identified, but seeds could not be sourced.

Preliminary work was carried out to determine the best method to germinate each

host plant and the plant age most suitable for the screening experiments. Seeds were

stratified in a fridge prior to use. Various methods were then used to stimulate

germination; 1) sowing in soil (3 seeds per pot), 2) sowing in soil and covering the

seeds, 3) germinating in vermiculite and transplanting into soil and 4) treatment of

the seeds with gibberellin (GA) to stimulate germination prior to sowing in soil

(seeds were immersed in 2.5% bleach followed by rinsing in sterile water, each seed

was then treated with 7l of GA). The most suitable plant age (days when grown at

18°C 16L:8D) was selected by visually determining when the plant could support an

aphid colony based on previous experience.
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Table 5.1.1 Selected plants including binomen name, vernacular name and

plant family.

Binomen name Vernacular name Plant family

Agrostemma githago Corn cockle Caryophyllaceae

Capsella bursa-pastoris Shepherd’s Purse Brassicaceae

Chenopodium album Fat Hen Amaranthaceae

Chichorium intybus Chicory Asteraceae

Cirsium arvense Creeping Thistle Asteraceae

Crepis capillaris Smooth Hawksbeard Asteraceae

Euphrasia nemorosa Eyebright Scrophulariaceae

Lapsana communis Nipplewort Asteraceae

Galium aparine Clevers Rubiaceae

Hieracium aurantiacum Orange Hawkweed Asteraceae

Hieracium pilosella Mouse-ear Hawkweed Asteraceae

Persicaria maculosa Redshank Polygonaceae

Polygonum aviculare Common Knotgrass Polygonaceae

Senecio vulgaris Common Groundsel Asteraceae

Sinapsis arvensis Wild Charlock Mustard Brassicaceae

Sonchus arvensis Field Sowthistle Asteraceae

Sonchus asper Prickly Sowthistle Asteraceae

Sonchus oleraceus Smooth Sowthistle Asteraceae

Stellaria media Common Chickweed Caryophyllaceae

Veronica arvensis Wall Speedwell Scrophulariaceae

Veronica hederifolia Ivy-leaved Speedwell Scrophulariaceae

Veronica spicata Spiked Speedwell Scrophulariaceae

Veronica officinalis Common Speedwell Scrophulariaceae

Veronica persica Common Field

Speedwell

Scrophulariaceae
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Sixteen host plants germinated successfully and were used in the screens. Veronica

persica, V. hederifolia, P. aviculare, E. nemorosa, C. album and G. aparine failed to

germinate despite using all germination methods and were not included in the

screens. Cirsium arvense and P. maculosa had very poor germination rates and did

not produce enough plants to be used in the screen, but a preliminary screen was

carried out for these species. The effective germination methods and appropriate

plant ages for testing can be seen in Table 5.1.2.

Table 5.1.2 Germination method and appropriate plant age from sowing

Host plant Optimum germination method Plant Age

A. githago Germinate in vermiculite 18°C 16L:8D 83 days

C. bursa-pastoris Sow in soil and cover at 18°C 16L:8D 59 days

C. capillaris Sow in soil at 18°C 16L:8D 27 days

C. intybus Sow in soil and cover at 18°C 16L:8D 27 days

C. arvense Germinate in vermiculite 18°C 16L:8D (poor

germination)

27 days

H. aurantiacum Sow in soil and cover at 18°C 16L:8D 30 days

H. pilosella Sow in soil at 18°C 16L:8D 27 days

L. communis Germinate in vermiculite 18°C 16L:8D 30 days

P. maculosa Germinate in vermiculite 18°C 16L:8D (poor

germination)

27 days

S. asper Sow in soil at 18°C 16L:8D 27 days

S. media Sow in soil and cover at 18°C 16L:8D 59 days

S. oleraceus Sow in soil and cover at 18°C 16L:8D 40 days

S. vulgaris Sow in soil at 18°C 16L:8D 70 days

Sinapsis arvensis Sow in soil and cover at 18°C 16L:8D 59 days

Sonchus arvensis Sow in soil and cover at 18°C 16L:8D 30 days

V. arvensis Sow in soil at 18°C 16L:8D 45 days

V. officinalis Sow in soil and cover at 18°C 16L:8D 30 days

V. Spicata Sow in soil and cover at 18°C 16L:8D 30 days
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Host plants were screened in three batches on 4 August 2011 (Batch 2), 6th October

2011 (Batch 3) and 14th November 2011 (Batch 1 – had to be repeated as S.

oleraceus failed to germinate). Each batch consisted of six potential host plant

species (including the control C. intybus) which were screened with both WT

(4850a) and Rb N. ribisnigri (RbKent) biotypes, giving 12 treatments. Plants were

arranged in a randomised complete block design with 12 treatments, 5 blocks and 60

plants in total. Plants were divided into batches to make data collection manageable

and C. intybus was used as the control due to it being a relative of lettuce and a

confirmed alternative host for N. ribisnigri (Blackman and Eastop, 2006a; RIS, No

date-a) .

The plants were infested with new born nymphs of both WT and Rb N. ribisnigri

which were obtained by inoculating 70 alates from each clone into separate cages

containing five lettuce plants (cv. Saladin). These were left for 24 hours at 20°C

16L:8D to produce nymphs of similar ages.

Five plants of each species were then each inoculated with five new born WT N.

ribisnigri nymphs and the remaining five were inoculated with Rb nymphs using a

fine paint brush. The plants were then covered with micro-perforated polypropylene

bags (200mm x500mm; Cryovac®) secured with an elastic band and kept at 20°C

16L:8D (IRU Room 3). The plants were left for three weeks, after which they were

sampled destructively, and the numbers of N. ribisnigri were recorded, being

separated into the number of alate aphids and the number of other aphids (apterous

adults and nymphs).

Cirsium arvense and P. maculosa had very poor germination rates and only four of

each of these species germinated. On 1st November 2011, a preliminary experiment

was carried out with these plants. Two plants were each inoculated with five WT N.

ribisnigri biotypes and the remaining two were each inoculated with five Rb biotype

aphids. These were then left for three weeks as above.

5.2 Overwintering host plant experiment

Cichorium intybus, C. capillaris, V. arvensis and L. communis were planted outside

on 29th and 30th November 2011 and inoculated with the WT N. ribisnigri biotype
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(clone 4850a) to confirm whether the plants could survive the winter and whether N.

ribisnigri could overwinter on them. These plant species were selected as they were

suitable host plants for N. ribisnigri (as determined in Experiment 5.1), and provided

a good representation of the morphological variation present in the family of

Asteraceae and Scrophulariaceae (V. officinalis representing the family

Plantaginaceae was not used as it had a poor germination rate).

Fifty two plants of V. arvensis and L. communis, and 76 of C. intybus and C.

capillaris were grown from seed as described in Table 5.1.2. Veronica arvensis was

sown on 12 October 2011, L. communis on 22 October 2011 and C. intybus and C.

capillaris on 26 October 2011.

On 29 November 2011, 52 of each of these plants were transplanted in a split plot

design into an unsheltered soil bed of an old Dutch Light at The University of

Warwick, Wellesbourne campus (Figure 5.2.1a). Three days prior to transplanting,

the plants were moved to IRU Room 5 at 10°C 16L:8D to acclimatise to a lower

temperature and harden off. When used, C. intybus and C. capillaris were 33 days, L.

communis 45 days and V. arvensis 38 days old. Plants were given a longer growing

period than in Experiment 5.1 so they were more established and less vulnerable to

winter conditions. Twenty six plants each of C. intybus and C. capillaris were also

planted in two sheltered cages (2m x 3m) to determine the effects of shelter on aphid

overwintering (Figure 5.2.1b).

WT N. ribisnigri, which had been kept outside in a cage for four days to acclimatise,

were used. A total of 260 Eppendorf tubes were each filled with eight 4th instar

nymphs and apterous adults, which were inoculated onto each of the host plants

following transplanting.

Every week, four plants of each species were destructively sampled from the

unsheltered sites and two of each species from the sheltered site, over a 13 week

period beginning on 6 December 2011 (there was a two-week sampling interval

between 20 December 2011 and 12 January 2012) and ending on 8 March 2012.

Sampling was random, as directed by the design, and the numbers of N. ribisnigri

were recorded, noting the numbers of alates, apterous adults and nymphs.
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a) b)

Figure 5.2.1 a-b a) Unsheltered soil bed b) Sheltered cage.

Tiny Tag© loggers were used to record the temperature in both the sheltered and

unsheltered sites to determine whether there were any differences in conditions, due

to the presence of the cages, which could influence aphid development and survival.

Readings were taken every 30 minutes from 30 November 2011 to 7 March 2012.

Results

5.1 Host plant screening

Analysis of the number of alates and the total number of N. ribisnigri (all stages) in

batches one and two were performed separately using ANOVA, as the experiments

were independent of each other. Due to the presence of zero value treatment means

in the data set, two ANOVAs were carried out. Both used a LOG10 data

transformation, but one of these added the value of one to the data set which ensured

that treatments with zero values were included, while the LOG10 transformation

alone considered the zero value treatments as missing data and created predicted

values, which were not included in the analysis. An interpretation of the data was

made using both treatment means and 5% LSD values. The two ANOVAs were

carried out because including zeros does not meet the criteria for ANOVA, where the

variances of grouped data should be the same. By comparing the two analyses with

and without zeros, it can be determined whether including zero treatment means
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results in significant overestimations of the differences between treatments. If no

significant overestimations occur, the zero values can be analysed with the other

treatments.

Batch one analysis

Batch one consisted of the host plants: C. intybus, S. arvensis, H. pilosella, L.

communis, V. officinalis and S. oleraceus. The ANOVA, taking into account the zero

values, showed that there was no effect of aphid biotype on the numbers of N.

ribisnigri (all stages) per plant, but a statistically significant effect was seen for host

plant (F(5,44)= 589, p<0.001), and the interaction between host plant and aphid

biotype (F(5,44)= 4.02, p=0.004). When considering the number of alate N.

ribisnigri, a statistically significant effect was seen only for host plant (F(5,44)=

60.90, p<0.001).

Figure 5.1.3 shows the transformed means and back-transformed means for the

numbers of alates and all stages of WT and Rb N. ribisnigri per plant on each

treatment after three weeks. Zero back-transformed values are not presented as they

cannot be plotted on a LOG scale. Transformed values were used to interpret the

analysis.

When analysing the number of N. ribisnigri (all stages) per plant, the control (WT

biotype and C. intybus) was the best performing treatment, with the most N.

ribisnigri (all stages) per plant, and was significantly different to all other treatment

combinations screened, apart from the Rb biotype also on C. intybus.

WT N. ribisnigri survived on all host plants except S. oleraeus and S. arvensis,

where only a small number of Rb N. ribisnigri were recorded on both, indicating

they are unsuitable host plants for the WT biotype in particular. The analysis

suggests that overall, WT and Rb biotypes performed similarly on each of the host

plants screened; except that the Rb biotype had significantly more individuals (all

stages) per plant than the WT biotype on S. arvensis.

When looking at the number of alate N. ribisnigri per plant, the Rb biotype on C.

intybus had the highest number of alates, followed by the WT biotype (control). The

control treatment was significantly different to all other treatment combinations

except for its Rb counterpart and both aphid biotypes on L. communis. No
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differences in alate numbers were observed between the Rb and WT aphid biotypes

on each host plant, meaning they performed similarly. The least number of alates

was found on S. oleraceus, with zero counts of Rb and WT alates, while a small

number of Rb alates were found on S. arvensis. Sonchus oleraceus and S. arvensis

were therefore unsuitable host plants, for the WT N. ribisnigri biotype in particular.

Figure 5.1.3 Transformed and back-transformed mean numbers of alate and all

stages of WT and Rb N. ribisnigri present after three weeks in

Batch one.

For the ANOVA which excluded the zero values and generated predicted values, a

significant effect of aphid biotype (F(1,30)= 7.48, p=0.010) and host plant (F(5,30)=

772.16, p<0.001) were observed for the number of all stages of N. ribisnigri per

plant, but not for their interaction. For alate N. ribisnigri a significant effect was seen

for host plant only (F(4,24)= 45, p<0.001). This ANOVA did not include the

generated predicted values in the analysis, therefore the WT biotype treatment on S.

arvensis and S. oleraceus were excluded.

As with the previous ANOVA, when considering the number of N. ribisnigri (all

stages) per plant, the control treatment performed the best with the highest numbers

of aphids, and was significantly different to all other hosts except its Rb counterpart.
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The only difference resulting from this alternate analysis was that the WT biotype

performed significantly better than the Rb biotype on H. pilosella, due to the

exclusion of S. arvensis from the data set.

When considering the counts of alate N. ribisnigri, WT S. arvensis, WT S. oleraceus

and Rb S. oleraceus treatments were excluded due to zero values. This alternative

analysis indicated that the Rb alate biotype on V. officinalis had slightly significantly

more Rb alates than S. arvensis, shown by the predicted means.

Batch two analysis

Batch two consisted of the host plants: C. intybus, V. arvensis, C. capillaris, V.

spicata, S. asper and H. aurantiacum. Figure 5.1.4 shows the transformed means and

back-transformed means for the number of alates and all stages of WT and Rb N.

ribisnigri per plant for each treatment after three weeks. Zero back-transformed

values are not presented as they cannot be plotted on a LOG scale.

The ANOVA which took into account the zero values showed that there was no

effect of aphid biotype on the number of alates and all stages of N. ribisnigri, but

there was a significant effect of host plant on both alates (F(5,20)= 133.85, p<0.001)

and all stages (F(5,44)= 114.82, p<0.001). No interactions were identified between

aphid and host plant for either aphid biotype.

When analysing the number of N. ribisnigri (all stages), the Rb biotype on C. intybus

was the best performing treatment with the most aphids per plant, followed by the

control treatment. The control treatment was significantly different to Rb and WT

biotype treatments on S. asper, V. spicata and V. arvensis.

WT and Rb N. ribisnigri survived on all host plants except S. asper which was

identified as an unsuitable host plant with zero aphids recorded. Veronica spicata

could also be considered as an unsuitable host plant as its performance was not

significantly different to S. asper and it supported very low numbers of both the WT

and Rb N. ribisnigri biotypes. The analysis suggests that the WT and Rb biotypes

performed similarly on each of the host plants screened.

When looking at the number of alate N. ribisnigri, the Rb biotype on C. intybus had

the highest number of alates per plant followed by the WT biotype (control). The
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control treatment was significant different to all treatment combinations except the

Rb biotype on C. capillaris. No differences in recorded alate numbers were observed

between the Rb and WT aphid biotypes on each host plant, meaning they performed

similarly. No alates were found on S. asper for both aphid biotypes and also for the

WT biotype on V. spicata.

Figure 5.1.4 Transformed and back-transformed mean numbers of alate and all

stages of WT and Rb N. ribisnigri present after three weeks in

Batch two.

For the ANOVA which excluded the zero values and generated predicted values, a

significant effect of host plant was identified for alate (F(4,20)= 53.66, p<0.001) and

all stages (F(4,28)= 33.41, p<0.001) of N. ribisnigri per plant. A significant effect of

‘aphid’ was seen only for total N. ribisnigri (F(1,28)= 8.63, p=0.007) and no

interactions were observed between aphid biotype and host plant for alate or all

stages of N. ribisnigri. This ANOVA did not include the generated predicted means

in the analysis for treatments with zero values, therefore the WT and Rb biotype

treatments for S. asper were excluded.

The only differences resulting from this alternate analysis was that the control was

no longer significantly different from the WT biotype on H. aurantiacum and the Rb

biotype on C. intybus was no longer different to the WT biotype on C. capillaris.
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Furthermore, as a result of the removal of the data set on S. asper, the Rb aphid

biotype on V. spicata became significantly different to both aphid biotypes on V.

arvensis.

Batch 3 analysis

The data from Batch three did not meet the criteria acceptable for analysis by

ANOVA. The mean values are shown in Table 5.1.5. These data confirm that both

WT and Rb N. ribisnigri cannot survive on S. arvensis, A. githago, S. vulgaris, C.

bursa-pastoris and S. media.

Table 5.1.5 Means numbers of total, alate and non-alate (including nymphs and

apterae) N. ribisnigri per plant from screening Batch 3 including

SE.

Host plant Aphid Total N.

ribisnigri

Alate N.

ribisnigri

Non-alate N.

ribisnigri

C. intybus WT 352.8 ±

94.5

26.4±

7.7

326.4±

87.3

S. arvensis WT 0 0 0

A. githago WT 0 0 0

S. vulgaris WT 0 0 0

C. bursa-pastoris WT 0 0 0

S. media WT 0 0 0

C. intybus Rb 562.6±

96.6

40.8±

6.2

521.8±

91.1

S. arvensis Rb 0 0 0

A. githago Rb 0 0 0

S. vulgaris Rb 0 0 0

C. bursa-pastoris Rb 0 0 0

S. media Rb 0 0 0
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Cirsium arvense and P. maculosa had very poor germination rates, so a small

preliminary screen was carried out. No aphids of either biotype were recorded on

either host plant after three weeks.

5.2. Overwintering host plant experiment

Records were made of the numbers of N. ribisnigri and square root transformations

were performed, followed by a REML analysis. The fixed model used was

date*site*host plant. Predicted means and LSDs could not be calculated for the

entire fixed model because some of the host plants used in the sheltered site were not

used in the unsheltered sites and there was also a different number of replicates at

each site.

The REML indicated a significant effect on the number of N. ribisnigri per plant for

all fixed terms, which included date (ndf 12, ddf 168, p<0.001), site (ndf 1, ddf 11,

p<0.001), host plant (ndf 3, ddf 10, p=0.001), dates*site (ndf 12, ddf 168, p<0.001),

dates*host plant (ndf 36, ddf, 168, p=0.026), site*host plant (ndf 1, ddf 10, p=0.004)

and dates*site*host plant (ndf 12, ddf 168, p=0.021). No effect of the blocking

design was observed.

Figure 5.2.2 shows the back-transformed mean number of N. ribisnigri per plant

present on each sampling date for the host plants sampled from the sheltered and

unsheltered sites. WT N. ribisnigri survived throughout the winter and were still

present in March, with unsheltered V. arvensis and sheltered C. intybus supporting a

mean of 1 and 3.5 aphids per plant respectively on the last sampling date. While

these means were small, this study confirms the ability of N. ribisnigri to overwinter

successfully.

The mean numbers of N. ribisnigri per plant recorded throughout the winter varied

depending on sampling date. When comparing Figure 5.2.2 with the temperature

recordings illustrated in Figure 5.2.3, peak numbers of aphids coincided with peaks

in temperature, particularly for N. ribisnigri on unsheltered V. arvensis. For example,

a period of warmer weather occurred from 18 December 2011 until 8 January 2012

and this coincided with an increase in numbers of N. ribisnigri on the host plants.

These numbers remained high on some weeds until a period of colder weather

occurred at the beginning of February, resulting in a sharp decline in aphid numbers.
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They then began to increase again but numbers fluctuated with variations in

temperature.

Temperature was recorded at the two sites and the box plot in Figure 5.2.4 illustrates

the variation in temperature recorded at each site. The unsheltered site experienced

the widest variation in temperature and also suffered the lowest temperature. The

inter-quartile range for the sheltered site had a smaller range than the unsheltered

site, and contains outliers (represented by the green crosses) indicating that the

sheltered site experienced higher temperatures compared to the unsheltered site. As

the second quartile was not in the centre of the inter-quartile range it suggests that

the data required normalisation prior to analysis.

A paired t-test on the mean temperature per day confirmed there was a highly

significant difference between the temperatures at the two sites (T= 4.84, df 99, p=

<0.001). The lowest temperatures recorded were observed on 4 February 2012 at

-6.381°C at the sheltered site and -8.365°C at the unsheltered site at 05:11 h and

05:12 h respectively.

Figure 5.2.2 Back-transformed mean number of WT N. ribisnigri for

unsheltered C. intybus, C. capillaris, V. arvensis and, L. communis

and sheltered C. intybus and C. capillaris.
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Figure 5.2.3 Mean daily temperatures and lowest recorded daily temperatures

(°C) from 30 November 2011 to 7 March 2012 at both sheltered

and unsheltered sites.

Figure 5.2.4 A box plot to show the temperatures at the sheltered and

unsheltered sites. Outlying results are identified by the green

crosses.
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Both sheltered C. intybus and C. capillaris supported significantly more aphids per

plant than their unsheltered counterparts as shown in Figure 5.2.5. Chicorium intybus

was the better host plant out of the two and performed better than both the sheltered

and unsheltered C. capillaris. Observations during the experiment showed there were

considerable differences between the quality of sheltered and unsheltered plants,

with the sheltered plants growing larger, with superior vigour and healthy green

leaves, while the unsheltered plants remained small with drooping dark green foliage

and displayed evidence of herbivory.

When comparing the unsheltered host plants, V. arvensis was the most suitable

overwintering host and was significantly different from all other host plants.

Chicorium intybus, L. communis and C. capillaris performed similarly. Chicorium

intybus was the poorest overwintering host plant and observations indicated it was a

target for other herbivores during the winter, as little plant material was left.

Figure 5.2.5 Predicted transformed means for the number of N. ribisnigri using

the REML analysis of site*host plant interaction. N.B. Sheltered

weeds were only compared with their unsheltered counterparts and

not all host plants. Bars with different letters indicate there is a

significant difference between mean numbers of N. ribisnigri per

plant.
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Discussion

This study confirmed eight viable host plants for both UK WT and Rb N. ribisnigri

including C. intybus, C. capillaris, L. communis, H. aurantiacum, H. pilosella, V.

arvensis, V. spicata and V. officinalis. WT and Rb N. ribisnigri biotypes

demonstrated similar performance on the host plants screened, suggesting that being

resistant to Nr-gene lettuce cultivars has had no influence on the Rb biotypes

performance on these host plants.

Prior to this study, Blackman and Eastop (2006b) had reported that S. oleraceus and

Sonchus arvensis were suitable hosts for N. ribisnigri, but this study does not support

this assertion for either WT or Rb N. ribisnigri. It was also reported that records

existed to support the association of N. ribisnigri with A. githago, C. bursa-pastoris

and C. arvense, although low confidence was expressed with regard to the accuracy

of these reports (Blackman and Eastop, 2006a). The present study suggests that the

aphids found on these host plants were probably misidentified, as they were not

suitable hosts. Other unsuitable host plants screened included all the species

considered to be very important pest weeds in field vegetable crops (S. media, C.

arvense and S. vulgaris) (HDC, 2009). While this study has identified various

unsuitable hosts for N. ribisnigri, this may be true only for the vegetative stage of the

host plant and not for the flowering stage. For example, research on B. brassicae has

shown that while it is unable to survive and reproduce on C. bursa-pastoris in its

vegetative stage, it can do so on flowering heads (Lamb, 1961).

Of all the plant families screened, only those from Scrophulariaceae and Asteraceae

contained suitable host plants for N. ribisnigri. These two families did, however, also

contain species which were unsuitable. Therefore, if several plant species from one

family are unsuitable hosts for N. ribisnigri, it cannot be assumed that the remaining

family members are also unsuitable.

When referring to the orders and families of angiosperms developed by the

Angiosperm Phylogeny Group, the Asteraceae (order: Asterales) and

Scrophulariaceae (Order: Lamiales) share the same clade, known as asterids, where

they are grouped into two further clades known as lamiids and campanulids (APG,

2009). The asterid clade also contains the genus Lactuca (Family: Asteraceae),

which is the main secondary host of N. ribisnigri. It is possible that all other suitable
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secondary host plants of N. ribisnigri are within the asterid clade. This restriction of

host plant choice to particular plant families which are closely-related is a

characteristic of many aphid species. However, some highly polyphagous aphids

such as M. persicae have a much wider host plant range, making N. ribisnigri appear

quite specialised (Blackman and Eastop, 1984).

Published information on the host plant families of N. ribisnigri include the

Asteraceae and Scrophulariaceae, as confirmed in this study, but it also includes the

Solanaceae (Order: Lamiales), examples of which were not screened (Blackman and

Eastop, 2000). As the Solanaceae are members of the lamiid clade of the asterids, it

is not surprising that they would provide suitable host plants, being closely

taxonomically-related to both the Scrophulariaceae and Asteraceae. This differs from

some other insect species which choose plant species which are chemically similar,

whilst sometimes being distantly related (Jaenike, 1990). It has been suggested by

Peccoud et al. (2010) that the restriction of suitable host plants to sets of related

plants, as observed for N. ribisnigri, demonstrates the strong evolutionary

commitment by aphids with regard to their host plant choice.

It is widely accepted that aphids and their host plants have co-evolved throughout

history, so that some aphids now utilise a specific range of host plants. There are

many hypotheses concerning the factors that have selected for these narrow diet

ranges, with the majority focusing on the adaptation of aphid species to particular

host plant chemistries, which maximise the performance of their offspring (Levins

and MacArthur, 1969; Dixon, 1998;). For example, aphid species do display varying

responses to secondary plant compounds (Schoonhoven and Derksen-Koppers, 1976;

Niemeyer, 1991) and polysaccharides (Campbell, et al., 1986). The occurrence of

host alternation between two often distantly-related plant species, with different

secondary compounds and morphology, makes it unlikely that host chemistry is

responsible exclusively for plant specialisation (Peccoud, et al., 2010). Furthermore,

instances of insects, such as butterflies, not using chemically-suitable host plants,

even though they are available, suggests that other factors must be involved (Smiley,

1978).

Often these other factors unrelated to the aphids, such as community structure, act to

restrict an aphid’s host plant range. It has been hypothesised that insects may adapt
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to avoid host plants where their offspring would suffer heavy predation or

competition with other species, and therefore adapt to colonise low risk hosts where

pressure from natural enemies and competition is low (Smiley, 1978; Jaenike, 1990).

For example, white fly (Bemisia tabaci) have been observed to learn from past

experiences and avoid host plants where offspring have suffered high predation

(Nomikou, et al., 2003), and the Peruvian butterfly (Oleria onega) selects to lay its

eggs in enemy free space away from its host plant to reduce predation (De-silva, et

al., 2011). Therefore, while various weed species were suitable host plants for N.

ribisnigri in this study under laboratory conditions, these results may be different in

a field environment as other factors will influence host plant selection i.e. the plant

may be avoided due to a high risk of predation. It has also been suggested that host

plant chemical composition can have a significant influence on long term aphid-plant

associations, with evidence existing to suggest that insects utilise chemically similar

host plants which maintains host plant specialisation (Becerra, 1997; Becerra and

Venable, 1999).

The role of insect genetics in host plant adaption and preference has been inferred for

many years, for instance, where insect populations in the same region express

different host plant preferences, although they have access to the same species

(Weber, 1985; Schoonhoven, et al., 2005). Host alternation is also thought to be

controlled genetically as for some aphid species the alternation is not correlated with

patterns in changes of host quality and is thought to be ‘programmed’ for the

selection of the best host plant for mating and oviposition - ‘the rendezvous host

hypothesis’ (Moran, 1983; Dixon, 1998). Following the development of molecular

markers, the involvement of insect genetics in host plant selection has now been

confirmed by the comparison of aphid host plant races, which adapt through

selection to a specific host plant they have utilised for a long period of time, often as

a result of geographic variation (Loxdale and Lushai, 2007). For example, the host

plant races of A. pisum which are adapted to different legume species display

different genotypes, with the loci under divergent selection having high genetic

variation and being situated close to olfactory receptors and salivary proteins

(Jaquiéry, et al., 2012). Ward (1991) suggests that the sympatric divergence of

aphids into host races is due to the reproductive isolation resulting from self-

fertilisation and anholocycly, rather than assortative mating where mating is more
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frequent between aphids with similar genotypes. Specialised adaptations by aphids to

specific host plants might include improvements in their ability to manipulate the

host and enhance nutritional quality, as observed for Diuraphis noxia, S. graminum

and A. pisum (Telang, et al., 1999; Sandström, et al., 2000; Girousse, et al., 2005).

During the present study, the performance of N. ribisnigri varied between host

plants, indicating that some were more suitable than others. It has been proposed that

this could be because such species become less adapted to some host plants as they

become more specialised to others (trade-off hypothesis), although evidence

supporting this is not consistent (Rausher, 1984; Jaenike, 1990; Mackenzie, 1996;

Dixon, 1998). Alternatively, Kindlmann and Dixon (1994) suggested, that if the

majority of aphids are located on the host plant that supports optimum performance,

then most genetic change and selection would take place on this host, resulting in

further adaption and specialisation compared with less preferred hosts. This

hypothesis could explain why N. ribisnigri appears to be better adapted to utilising

suitable host plants belonging to the Asteraceae compared with others as the most

genetic change would have taken place on Lactuca species (Family: Asteraceae). To

support this hypothesis further, it would need to be determined whether N. ribisnigri

has a preference for Lactuca sativa and demonstrates superior performance on this

species compared with the other host plants, as while N. ribisnigri is observed to

colonise lettuce widely in the summer, it has not been confirmed whether they have a

preference for lettuce or whether preference for another host is ‘concealed’ because

it is less abundant.

Over the past few years there have been increasing reports that in some temperate

regions with mild winters, N. ribisnigri has overwintered as a parthenogenetic form.

This form may have a selective advantage in areas where the severity of the winter

varies and/or there is an absence of the primary host, as with M. persicae in Australia

(Vorburger, 2004) and N. ribisnigri in Central Spain (Nebreda, et al., 2005).

The present study has confirmed that N. ribisnigri living on S. arvensis in an

unsheltered site can survive and reproduce during a winter in central England. The

mean temperature was 4.81°C, with a lowest recorded temperature of -8.37°C. This

does not mean parthenogenetic forms of N. ribisnigri could survive every winter in



140

this region; the MET Office described the winter of 2011/12 as much milder than the

preceding three winters, with temperatures above average (METOffice, 2012).

As expected, the abundance of N. ribisnigri in both sheltered and unsheltered sites

was closely associated with the changes in temperature during the winter. This type

of association has been observed for several species of aphid with anholocyclic life-

cycles, where the severity of the winter influences the number of aphids which occur

the following year (Harrington and XiaNian, 1984; Knight and Bale, 1986;

Messina,1993). This is firstly because low temperatures can result in significant

mortality, but also because when temperatures are above their lower temperature

threshold, aphids can continue to develop, and even reproduce, so that the aphids

found in the spring are the descendants of the aphids which entered the winter

(Powell and Bale, 2008). In the present study there was a significant effect of

sampling date on aphid numbers, where warmer periods led to increases in the

numbers of N. ribisnigri per plant. While the numbers of aphids per plant were often

low in the unsheltered plots, particularly towards the end of the sampling period, it is

important to remember that only one fecund aphid survivor is required to found a

colony (Powell, et al., 2006).

To survive the winter successfully, aphids can use their ability to cold-harden rapidly

and increase their cold tolerance with each generation (Powell and Bale, 2004;

Powell and Bale, 2008). Apart from temperature, other factors may influence aphid

survival, including leaf wetness, which has been observed to affect the overwintering

success of M. persicae (Harrington and XiaNian, 1984).

In the sheltered sites where C. intybus and C. capilliaris were planted, only C.

intybus was a good host for N. ribisnigri. When comparing the performance of this

host plant in sheltered and unsheltered sites, there was a significant difference in the

size and vigour of C. intybus, with exposed plants being small in size with wilted

leaves and evidence of herbivore attack. It could be inferred that the ability of the

host plant to survive and tolerate adverse conditions due to abiotic and biotic factors

such as temperature, wind, snow, rain and herbivory may influence the

overwintering success of N. ribisnigri. For example, in the case of S. avenae

continued feeding on healthy plant tissue throughout the winter determines
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supercooling ability and subsequent survival at freezing temperatures (Knight and

Bale, 1986).

While C. intybus was the most successful host plant in the laboratory experiments,

its poor survival during the winter led to V. arvensis becoming a ‘better’

overwintering host. Veronica arvensis was the only exposed weed which maintained

N. ribisnigri until the final monitoring date in March. This may be due to its

capacity to overwinter, particularly when compared with the other host plants and

also to its morphology, since its dense foliage and complex branching structure

undoubtedly provided shelter for N. ribisnigri, as illustrated in Figure 5.3.

It is likely that the microclimate within the foliage of V. arvensis varied from

ambient conditions and that the leaf boundary layer provided more favourable

conditions in terms of temperature and humidity (Schoonhoven, et al., 2005). Similar

advantages of certain overwintering sites were observed in a study on D. noxia,

where survival was longest on wheatgrass, where the compact tussocks were thought

to provide shelter from cold injury and desiccation (Messina, 1993). Sitobian avenae

crawls into the centre of hedgerows and grass tussocks (Leather, et al., 1993).When

compared with V. arvensis, the other host plants in the present study had less foliage

and a greater surface area was exposed to the winter elements. It was also clear

during monitoring that herbivores utilised almost all of the host plants, with the

exception of V. arvensis and the plant did not have to respond to this additional

stress.

Figure 5.3 Veronica arvensis (left) and N. ribisnigri within its branching

structure (right).
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In conclusion, this study has identified host plants which are potential sources of

overwintering N. ribisnigri in sheltered and unsheltered environments. It has

confirmed that N. ribisnigri can overwinter as adults/nymphs, and with the

occurrence of very cold winters expected to become increasingly rare as a result of

climate change, selection for anholocyclic clones of N. ribisnigri is likely to increase

(Collier, 2007b). As a result, this could lead to higher numbers of N. ribisnigri

infesting lettuce earlier in the summer, as the number of aphids leaving

overwintering hosts is no longer restricted to the number of eggs laid in the previous

autumn; parthenogenetic aphids can begin reproducing as soon as spring

temperatures are suitable for development (Leather, et al., 1993).

Thus if warmer winters were to favour the overwintering of active stages, weed

management during the winter might be one option for control. However, the

environmental impact of the destruction of these weed hosts would need to be

investigated. Other future work could consider overwintering success on other host

plants, in addition to C. intybus and C. capillaris, in a range of sheltered

environments. In addition, an investigation on overwintering survival on more

established and older host plants might provide different results.

Conclusion

 This study confirmed that eight species of plant (mainly wild species) are

suitable hosts for both UK WT and Rb N. ribisnigri. This includes C. intybus,

C. capillaris, L. communis, H. aurantiacum, H. pilosella, V. arvensis, V.

spicata and V. officinalis.

 The performance of WT and Rb N. ribisnigri biotypes was similar regardless

of the host plant.

 Nasonovia ribisnigri (WT4850a) survived and reproduced during a winter in

central England. The results indicate that abundance will be determined by

the suitability of the host plant and the severity of the winter.
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Chapter 6: Population Dynamics

Introduction

Aphids display strong seasonal cycles of abundance, consisting of rapid outbreaks

and local extinctions, which are regulated by both extrinsic (host plant availability,

predation, weather) and intrinsic factors (competitive ability, emigration, resistance

to predation and development rates) (Karley, et al., 2004; Schowalter, 2006).

The long term population dynamics of pest aphids, such as N. ribisnigri, on

agricultural crops, such as lettuce, are challenging to study due to the short growing

season of their host plants and the variation in both abundance and distribution of the

crop each year (Kindlmann, et al., 2007). As a result, the majority of studies have

concentrated on tree-dwelling aphids which can be studied continuously over a

period of several years (Dixon, 1998). Collectively, these studies have outlined the

main characteristics of aphid development and population dynamics throughout the

year.

Generally, in response to the high levels of nutrition provided by spring host plants,

aphids display an increase in population size, which is followed by a sharp decline

during summer, and for some species a period of recovery resulting in a second peak

during autumn (Kindlmann, et al., 2007). Aphids then survive the winter in lower

numbers in the form of a diapausing egg or as an anholocylic clone (Phillips, et al.,

2000).

For some researchers, the most interesting observation is the mid-summer decline,

which has been observed in various aphid species including the A. pisum, M.

persicae and M. euphorbiae (Losey and Denno, 1999). In the UK, this occurs in

mid-July and is referred to as the ‘mid-summer crash’, where populations decline

rapidly, remaining low for up to six-eight weeks (Tatchell, et al., 1998; Karley, et

al., 2004). As it is also observed in non-crop aphid/host plant systems, such as

Myzocallis boerneri on Turkey oak trees (Jarosik and Dixon, 1999), this decline is

not restricted solely to agricultural crops and their related cropping practices such as

harvesting and insecticide application (Karley, et al., 2003). Between 1994 and 1996,

work carried out at Warwick HRI (now Warwick Crop Centre) showed that N.
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ribisnigri populations declined during mid-July to early September, with aphids

being abundant both before and after this period, with the second peak being the

largest (Collier, et al., 1999).

Considerable research has been carried out to try to understand the factors which

cause the mid-summer crash since manipulation of environmental or other conditions

within a crop could provide potential new methods of aphid control. For population

declines such as this to occur, one would expect to see either 1) an increase in

mortality, 2) decreased fecundity or 3) mass emigration, all of which can be caused

by a multitude of intrinsic and extrinsic factors, including weather, host plant quality

and natural enemies (Karley, et al., 2003).

Weather conditions

Temperature has a significant effect on the development and reproduction of aphids

as discussed in Chapter 3, and weather conditions will naturally influence population

growth. Lowe (1966) provided evidence of this through observations of B. brassicae,

where seasonal population changes mirrored changes in temperature. Other studies

have shown that when temperatures have been unusually high, population crashes

have occurred subsequently (Palumbo, 2000a; Palumbo, 2000b), even when other

factors regulating populations, such as aphid predators, have been excluded (Basky,

1993). This suggests that high temperatures could be regulating aphid populations,

either alone or in combination with other factors.

When considering other weather variables, differences between years in autumn and

spring survival rates of R. padi have been negatively correlated with rainfall (Lowe,

1966), and aphid populations on other crops have been wiped out by heavy

precipitation and strong winds (Jones, 1979; Hughes, 1963). A study on the Turkey

oak aphid, however, showed that when aphid populations are large like they are prior

to the mid-summer crash, weather conditions such as temperature, wind and

precipitation do not regulate population size significantly (Jarosik and Dixon, 1999).

With regard to the mid-summer crash, periods of high temperature and severe

rainfall do not provide a consistent explanation for the yearly occurrence of the crash

in different localities (Karley, et al., 2004). Therefore, this suggests that weather

variables are more likely to be interacting and influencing other factors than being
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the major cause of the mid-summer crash, including effects on natural enemies and

host plant quality. Recent field observations on three species of potato aphid

indicated that populations were regulated by weather factors only through their

indirect influence on natural enemies (Alyokhin, et al., 2011).

Host plant quality

The quality of a host plant can be affected by a range of factors which can indirectly

influence the performance, distribution and abundance of an aphid infestation by

altering the suitability of the host plant through changes in plant nutrients and

metabolites (Douglas, 2003). In response to the change in the seasons, plants

naturally vary in their nutritional content (amino acid composition), water content

and allelochemicals, and aphid abundance is known to reflect this, with aphids

generally being present in high numbers on plants in spring when their nutritional

value is higher, compared with mature crops which are less favourable nutritionally

(Dixon, 1987a; Dixon, et al., 1993b; Karley, et al., 2002; Schoonhoven, et al., 2005).

For example, B. brassicae populations were observed to increase on new host plants

until the host plant condition deteriorated, where a decline in the population then

occurred, which is often exacerbated by other extrinsic factors (Hughes, 1963).

Various studies have shown changes in aphid performance and abundance in

response to changes in phloem nutrients, but studies investigating these changes at a

chemical level, specifically in relation to the mid-summer crash, are limited. A single

study by Karley et al. (2003), found that the changes in amino acid composition in

the phloem of potato leaflets (decline in glutamine) during development consistently

coincided each year with the beginning of the crash. However, these changes could

not be confirmed as being exclusively accountable.

In addition to seasonal changes, other extrinsic stress factors can influence host plant

quality, including the presence of other herbivores, water availability and humidity,

all of which can indirectly affect aphid populations. For example, prolonged drought

can reduce aphid feeding through reduced plant turgor and increased sap viscosity,

while intermittent drought may make plants more suitable by increasing the

availability of amino acids and reducing plant defences which would favour insect

development (Crawley, 1983; Mattson and Haack, 1987). Furthermore, different
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aphid species display varying responses to drought, where for example, water-

stressed barley resulted in higher densities of D. noxia, while R. maidis densities

were lower (Oswald and Brewer, 1997).

When considering the influence of herbivores on their host plant, prior to the mid-

summer crash, aphid populations are at their peak and intra-specific competition for

nutrients is high, therefore affecting plant quality. As a result, aphid performance is

affected, with longer development times, reduced fecundity, smaller aphids and an

increase in the number of alate morphs to colonize new resources (Dixon, 1998).

With reduced reproduction and increased emigration this would assist and intensify

the observed mid-summer decline. Therefore, factors influencing host plant quality

should not be overlooked, as while their influences may not be present during every

mid-summer crash, they could be a contributing factor in some years.

Natural enemies

Natural enemies are responsible for the top down control of aphid populations and

various studies have reported significant regulation of aphids by natural enemies and

fungal disease (Nielsen and Hajek, 2005; Hirose, 2006; Alyokhin, et al., 2011).

Aphids are infected by various entomopathogenic fungi of which the majority are

Entomophthorales (Zygomycota), with the most common species being Pandora

neoaphidis, Neozygites fresenii and Entomophthora planchoniana (Steinkraus,

2006). Key obligatory predatory and parasitic insects include ladybird adults and

their larvae (Coleoptera: Coccinellidae), lacewing adults and their larvae

(Neuroptera: Chrysopidae and Hemerobiidae), hoverfly larvae (Diptera: Syrphidae),

parasitoid wasps and predatory bugs such as flowerbugs (Hemiptera: Anthocoridae)

(Rotheray, 1989). Other facultative predators include earwigs (Dermaptera:

Forficulidae), ground beetles and rove beetles (Coleoptera: Carabidae and

Staphylinidae).

A vast number of studies have been carried out on the natural predation of aphids

and these have recognised the Coccinellidae as one of the most important insect

families in controlling aphids (Obrycki and Kring, 1998; Wyss, et al., 1999;

Rutledge, et al., 2004). As predator communities vary between years, it is more

likely that a combination of predators from more than one family contribute to the
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control of aphids (Alyokhin, et al., 2011). For example, parasitoids have also been

identified to be important natural enemies in regulating aphid populations, as they

have been observed to display peaks in numbers followed by a decline in aphid

numbers (Müller, et al., 1999). Furthermore, there is evidence that maximum pest

suppression results from a number of species of natural enemy and not just one, as

pest suppression is lower when the predicted summed effects of each natural enemy

alone are calculated (Cardinale, et al., 2003).

Generally, determining the effect of predators on aphid populations is difficult to

assess as they do not always leave traces of the prey, in contrast to the mummies and

infection left by parasitoids and pathogens (Tamaki and Weeks, 1973). As a result,

predator exclusion experiments are often performed to compare aphid populations in

the presence and absence of predators. However, these results need to be interpreted

carefully as various studies have identified changes in the microclimate (humidity,

temperature, light intensity and wind) and predator/prey behaviour in caged

experiments when compared to un-caged areas (Luck, et al., 1988). Various

researchers have tried to improve exclusion techniques by using varying mesh sizes

and cage structures, while others have opted for other methods such direct field

observation or predator removal (Costamagna and Landis, 2007; Meihls, et al.,

2010). Luck et al. (1988) have provided a detailed review of the different methods

which can be used for evaluating the impact of natural enemies.

During the period of the mid-summer crash, exclusion studies have shown declines

in aphid numbers which coincide with an increase in predator numbers, leading the

authors to propose that predators are the most important factor reducing aphid

populations (Nunnenmacher and Goldbach, 1996). Generally, predator exclusion

studies report higher rates of increase and total numbers of aphids when natural

enemies are excluded; indicating they play a significant role in reducing or

regulating populations (Meihls, et al., 2010).

When considering the potential role of fungal diseases in the mid-summer crash,

various studies have shown declines in aphid populations with the increase and

presence of entomopathogenic fungi (McLeod, et al., 1998; Plantegenest, et al.,

2001). Populations of Aphis glycine have been observed to crash following an

epizootic, and infection levels were density dependent being more prevalent when
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aphid populations were higher (Nielsen and Hajek, 2005). Investigations into the use

of entomopathogenic fungi as biological control agents for the control of aphids have

been undertaken, with the inoculation of Pandora neoaphidis and Neozygites fresenii

causing early season crashes in A. fabae in two of the four years of trials (Wilding,

1981). However, many other release attempts have been relatively unsuccessful

(Powell and Pell, 2007).

While natural enemies and entomopathogenic fungi do appear to have a significant

effect on aphid populations, their success is again indirectly affected by other factors,

particularly the host plant. Various studies have recognised the importance of plant

genotypes in indirectly influencing the distribution and abundance of natural enemy

populations by directly affecting aphid population growth rates (Johnson, 2008;

Schädler, et al., 2010). Furthermore, differences in plant morphology can determine

the success of predation by differentially affecting searching by predators and

parasitoids. A study comparing predation success between normal and leafless peas,

showed that coccinellids were more effective on leafless varieties (Kareiva and

Sahakian, 1990), while a more recent study showed more effective predation by lady

beetles and lacewings on highly-branched pea varieties (Reynolds and Cuddington,

2012). For entomopathogenic fungi, the presence of leaf waxes has been shown to

affect the level of infection, with infection of A. pisum by P. neoaphidis being

greater on a variety with reduced surface wax bloom (Duetting, et al., 2003). With

regard to lettuce morphology, the formation of heads can protect lettuce aphids from

natural enemies and alter the microclimate, influencing the behaviour of pathogens

and possibly making the aphids more vulnerable to fungal infection (Nunnenmacher

and Goldbach, 1996).

This effect of the microclimate again demonstrates the influence that weather

conditions could have on natural enemies, by not only favouring their development,

but by improving their predation and reproduction efficiency, as observed for

coccinellids in warmer climates (Frazer, et al., 1981a). Temperature, humidity and

light also influence the oviposition behaviour of hover flies which influences the

success of their progeny as predators (Tenhumberg and Poehling, 1995). For fungi,

the indirect effects of precipitation, and the resulting increase in humidity, could

influence incidence, particularly as different species have varying temperature
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optima and humidity requirements (Steinkraus, 2006; Alyokhin, et al., 2011).

However, some studies have found no relationship between infection and weather

conditions (Wilding and Perry, 1980).

Mass emigration

Aphids move between host plants and also migrate in response to overcrowding and

hosts that are deteriorating nutritionally (Groeters, 1989). As aphid numbers

increase, the production of alate forms also increases, and this is well demonstrated

by A. pisum, where the density of migrants in suction traps is positively related to the

size of crop infestations (McVean, et al., 1999). The development of a mechanistic

model has suggested that density dependent dispersal could be the sole cause of the

decline for the alder aphid (Pterocallis alni) and other species (Mashanova, et al.,

2008).

Stimulation of alate production can also occur in response to predation, through

detection of alarm pheromone or subsequent movement and crowding (Le Ralec, et

al., 2010). Therefore, it is reasonable to consider increased emigration as a cause of

the mid-summer crash, in response to high numbers of aphids and natural enemies.

However, field studies often indicate that numbers of alates are low (<10%) prior to

a crash, and if aphids were emigrating from deteriorating plants, or escaping

predation, one would expect re-colonisation of nearby host plants, which has not

been observed (Karley, et al., 2003).

Thus, the results of previous studies demonstrate the complexity of aphid population

dynamics which can be influenced by a range of density dependent and density

independent factors. This study aims to determine the role of natural enemies and

entomopathogenic fungi in regulating N. ribisnigri populations with a particular

focus on the mid-summer crash.
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Methods

6.1 Field trial 2010

This preliminary experiment took place between June and October 2010 at Warwick

Crop Centre, Wellesbourne in a field known as Sheep Pens (National Grid Reference

SP 26919 56652). The purpose of this experiment was to develop techniques to

determine the effects of entomopathogenic fungi and arthropod predators on the

development of N. ribisnigri populations in the field, with a particular focus on the

mid-summer crash.

The field trial consisted of nine treatments which combined various fungicide,

insecticide and netting regimes (see Table 6.1.1). There were two replicates of each

treatment (18 plots in total) in each trial and the trial was repeated on three occasions

during the summer to allow continuous observation of N. ribisnigri populations.

The fungicide, insecticide and netting treatments were used in combination or

individually to reduce/exclude aphid natural enemies and/or entomopathogenic

fungi. Netted treatments (Enviromesh® 1.35mm) were used to allow aphids to

develop undisturbed by restricting predator access. A broad spectrum pyrethroid

insecticide with contact and residual activity was applied at 0.3L/ha (Decis®-

deltamethrin) to reduce the occurrence of aphid natural enemies. This was reported

to have low toxicity to predatory ground beetles, lacewings, parasitized aphids, low

residual toxicity to parasitic wasps, moderate toxicity to ladybirds, and high toxicity

to hoverfly larvae (Bayer, 2011). A broad spectrum fungicide was applied at

0.4kg/ha (Nativo®- trifloxystrobin + tebuconazole) to reduce the occurrence of

entomopathogenic fungi. These active ingredients were selected following a

literature review of fungicides which negatively affected entomophthorales.

One study which was reviewed showed a significant reduction in epizootics of P.

neaoaphidis on A. glycines from strobilurin and triazole mixes (including

tebuconazole and pyraclostrobin; pyraclostrobin and trifloxystrobin) (Koch, et al.,

2010). A second study screening 20 fungicides, showed that chlorothalonil,

fenipropimorph, spiroxamine and tebuconazole inhibited Erynia neoaphidis

infectivity (Latteur and Jansen, 2002). Of these potential candidates to be used in the

present study, chlorothalonil was excluded, as a study by Wells et al. (2000) found
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it did not stop infection of A. gossypii by N. fresenii . As a result of this review,

tebuconazole was selected as a suitable active ingredient to be used in this study. A

product was sought which contained tebuconazle and either fenipropimorph,

spiroxamine or a strobilurin (preferably pyraclostrobin and trifloxystrobin) which

also appeared to have the desired effect. The product Nativo® was selected as

suitable candidate as it contained both trifloxystrobin + tebuconazole with no

concerns about phytotoxic effects on lettuce.

Table 6.1.1 Nine treatments included in the 2010 field trial with various

fungicide, insecticide and netting regimes (F = fungicide; I =

insecticide).

Treat.

num.

Treat.

name

Netting F

treatment

I

treatment

Infested

artificially

1 Netted Yes No No Yes

2 Open No No No Yes

3 Control Control No No No No

4 Netted+F Yes Yes No Yes

5 Open+F No Yes No Yes

6 Netted+I Yes No Yes Yes

7 Open+I No No Yes Yes

8 Open+F+I No Yes Yes Yes

9 Netted+F+I Yes Yes Yes Yes

Eight hundred seeds (cv. Saladin Supreme (untreated) were sown in peat blocks on

11 May, 16 June and 20 July. The lettuce plants were grown in a glasshouse and

transplanted after approximately four weeks of growth when their 4th – 5th true leaf

had unfolded (BBCH growth stage 14 or 15). One week before transplanting, plants

were transferred to a cold frame to harden off. The lettuce plants were scheduled to

be transplanted on 9 June, 15 July and 18 August respectively into plots (one bed=

1.83 x 3.5m) containing 40 plants (4 x 10 @ 35cm spacing). However, the

transplanting scheduled for 15 July took place on 19 July because high winds

prevented spraying, and the transplanting due on 18 August took place on 31 August

following a significant period of rainfall, which made conditions too wet for ground
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preparation. These two batches of lettuce plants were transferred to lower

temperatures prior to transplanting to delay growth.

Fungicide, insecticide and netting (Enviromesh® 1.35mm) treatments were applied

on the same day as transplanting. Treatments with no netting were protected from

birds using wider mesh netting. The treatments were arranged in a 3 x 3 randomised

split plot design which was different on each of the three field trial occasions. The

control was always situated in the centre of the design, with the open treatments in

each corner, to limit movement of N. ribisnigri from untreated plots into the control.

Figure 6.1.2 shows the layout of the field trials.

Figure 6.1.2 Image taken of 2010 field trial (June occasion).

The day after transplanting, 15 plants in each plot (except the control treatments)

were inoculated with five wingless adult (or 4th instar) aphids of clone WT4850a

(See Figure 6.1.3). The aphids had been placed in Eppendorf® tubes over the two

preceding days and were stored in a refrigerator to prolong their survival. Although it

would have been preferable to monitor a natural infestation of N. ribisnigri in all of

the field trials, their occurrence could not be relied upon.
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Figure 6.1.3 Field plot (1.83 x 3.5m) containing 40 plants (4 x 10 @ 35 cm

spacing). Closed circles indicate plants inoculated with five adult

(or 4th instar) N. ribisnigri (WT4850a).

Each week, over a period of five-six weeks, four plants were sampled from each

bed/treatment (72 plants per week). Samples were removed from alternate ends of

each bed each week to maintain bed integrity and were stored in labelled paper bags

in a cold store at 5°C D:D. Whole plants were sampled and examined until they grew

to an unmanageable size and then only half of each lettuce plant was examined.

Weekly sampling dates varied depending on weather conditions. Plants from

occasion one were sampled on 18, 25 June, 5, 12, 19 and 27 July. Plants from

occasion two were sampled on 28 July, 3, 11, 18, 24 and 31 August. Plants from

occasion three were sampled on 8, 15, 21, 28 September and 7 October.

Plants were sampled destructively and the numbers of aphids and natural enemies

were recorded including Coccinellidae, Araneae, Anthocoridae, Neuroptera, syrphid

larvae and parasitized aphids. All insects were identified to family, and where

possible to species except for syrphid larvae. The level of parasitism was estimated

through the number of parasitized aphids but because the aphid species which were

parasitized were not identified, the data only represented overall aphid parasitism.
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Due to the amount of data collection involved in this experiment, entomopathogenic

fungi were not assessed. All insects were stored in 70% ethanol in case further

identification was required.

6.2 Field trial 2011

Experimental plot

This experiment took place during two weeks of each month from May-September

2011 (five occasions) at Warwick Crop Centre, Wellesbourne in a field known as

Big Cherry (National Grid Reference SP 27354 56153). As outlined in Table 6.2.1,

the field trial consisted of nine treatments, which included fungicide or insecticide

treatments combined with three netting regimes. There were two replicates of each

treatment (18 plots in total).

As with the field trial in 2010, fungicide and insecticide applications were used to

reduce the numbers of natural enemies and/or entomopathogenic fungi. The

treatment where insecticide and fungicide were combined was removed, as no effect

was seen during the trial in 2010. Instead, the following three netting regimes were

introduced:

 Open - beds open for the entire two week experimental period allowing the

movement of natural enemies in and out of the plots.

 Permanently netted - beds permanently netted for entire two week

experimental period to exclude natural enemies.

 Temporarily netted - beds netted for the first week of experimental period

and then uncovered to allow natural enemies to move into the plots.

It was assumed that, after one week, the populations of N. ribisnigri in the

permanently netted plots would be equal to those in the temporarily netted plots,

since both had been covered for one week. By uncovering the temporarily netted

beds after one week, the effect of introducing natural enemies could be determined

by comparing the numbers of N. ribisnigri at the end of the two week experimental

period with the numbers present in the permanently netted and open plots.
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Table 6.2.1 Nine treatments included in the 2011 field trial including fungicide or

insecticide application combined with different periods of netting (F=

fungicide and I= insecticide).

When compared with the field trial in 2010, shortening the trial period to two weeks

provided a snap shot of the effect of natural enemies in each month and also ensured

that the insecticide and fungicide treatments remained more effective over the two

week period. Furthermore, shorter sampling periods made data collection more

manageable since the plants were smaller.

During the 2010 trial, there were no observed effects of either the Decis® or

Nativo® applications. As a result in 2011, the broad spectrum fungicide Amistar®

was applied (1L/ha) instead of Nativo. This is a systemic, translaminar and

protectant strobilurin fungicide (Azoxystrobin). Decis was used again (0.3L/ha.),

since a greater effect might be observed by having a shorter trial period.

Four hundred seeds (cv. Saladin Supreme (untreated)) were sown in peat blocks on

12 April, 16 May, 13 June, 18 July and 15 August and these were scheduled for

transplanting on 9 May, 14 June, 12 July, 15 August and 12 September respectively.

However, the September transplanting was delayed until 15 September to fit around

other experimental commitments.

Treat.

num.

Treatment name Period netted

for

F application I application

1 (Control) Open Never No No

2 Open+F Never Yes No

3 Open+I Never No Yes

4 Temp netted 1 week No No

5 Temp netted+F 1 week Yes No

6 Temp netted+I 1 week No Yes

7 Perm netted 2 weeks No No

8 Perm netted+F 2 weeks Yes No

9 Perm netted+I 2 weeks No Yes
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The plants were grown in a glasshouse and transplanted after approximately four

weeks of growth when their 4th - 5th true leaf had unfolded. Plants were transplanted

into 18 plots (one plot= 1.83 x 3.5m) of 20 plants (4 x 5 @ 35cm spacing). One week

before transplanting, plants were moved to a cold frame to harden off. Fungicide,

insecticide and netting treatments were applied on the same day as transplanting. The

treatments were arranged in a 3 x 3 block design which was randomised for each

occasion. Treatments which were open were protected from bird damage with wide

mesh netting. The experiment was located close to hedgerows containing wild

flowers to increase the proximity of natural enemies. Figure 6.2.2 shows the trial

planted on 9 May.

Figure 6.2.2 Field trial in 2011 (planted 9 May 2011).

The day after transplanting, ten plants in each bed were inoculated with five wingless

adult (or 4th instar) aphids of clone WT4850a. These were placed in Eppendorf®

tubes during the preceding two days and stored in a refrigerator to prolong their

survival. Figure 6.2.3 identifies the lettuce plants which were inoculated.

Figure 6.2.3 Field plot (1.83 x 1.75m) containing 20 plants (4 x 5 @ 35cm

spacing). Closed green circles indicate plants inoculated with five

adult (or 4th instar) N. ribisnigri (WT4850a).
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One week later, the netting was removed from six of the temporarily netted plots

(treatments 4-6 in Table 6.2.1 for both replicates) and the plots were protected with

bird netting. This was done on 17 May, 22 June, 19 July, 23 August and 23

September. One week later, eight plants were sampled from each plot. These were

chosen at random by selecting eight numbers between 1-20 which corresponded to

the plants in the plot. Figure 6.2.4 indicates the eight plants sampled from each plot,

of which half were infested artificially with N. ribisnigri. Sampling took place on 24

May, 29 June+1 July, 26 July, 30 August and 29-30 September, which was usually

over a period of one day, weather permitting.

Figure 6.2.4 Field plot (1.83 x 1.75m) containing 20 plants (4 x 5 @ 35cm

spacing). Closed green circles indicate the plants sampled from

each plot.

Whole plants were sampled destructively and aphids and natural enemies were

identified, counted and recorded. Natural enemies were recorded and stored as in

2010. Aphids infected with entomopathgenic fungi (Figure 6.2.5) were also counted,

and recorded as either an early-middle infection (fungal mycelia/branching emerging

from the aphid body) or late infection (swelling and discoloration of the body (often

described as ‘creamy’ and ‘snotty’). The species of aphid infected by

entomopathogenic fungi were not determined but the sampling did show the general

level of infection by entomopathogenic fungi.
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Figure 6.2.5 Early-middle (left) and late (right) stage entomopathogenic fungal

infections of N. ribisnigri.

Tinytag© loggers were used to record the ambient temperature and humidity every

30 minutes. A logger was placed in the centre of a permanently netted and an open

plot to determine the effect of netting. Yellow water traps were placed in the empty

beds between plots for the two week trial period to sample aerial insects and were

emptied approximately once a week.

Monitoring plot

In addition to the monthly trials, a monitoring plot was established in a separate area

of the same field to allow the build-up of a N. ribisnigri infestation (infested

artificially) where the development of an infestation and the timing of the mid-

summer crash could be monitored. One hundred seeds (cv. Saladin Supreme

(untreated)) were sown in peat blocks on 12 April, 5 May, 23 May, 13 June, 4 July,

25 July and 15 August and transplanted on 10 May, 31 May, 20 June, 12 July, 1

August, 22 August, 15 September respectively. Plants were grown in the glasshouse

and after approximately four weeks of growth, they were transplanted into the field

in two plots (one plot= 1.83 x 3.5m) containing 40 plants (4 x 10 @ 35cm spacing).

Every three weeks, a further pair of plots was added behind the existing plots until

12 September, to provide ‘temporally overlapping’ plots containing plants of a range

of ages. The monitoring plot was surrounded with an electric fence. Figure 6.2.6

shows the monitoring plot planted on 9 May.

The day after transplanting, 15 plants in each plot were inoculated with five wingless

adult (or 4th instar) aphids of clone WT4850a as per Figure 6.1.3. These had been
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placed in Eppendorf® tubes over the preceding two days and stored in a refrigerator

to prolong survival. Four plants were sampled from each bed on 25 May, 8, 14, 20

June, 9, 14, 22, 29 July, 16, 23, 30 August, 5, 15, 23 September, 4, 12, 19 and 26

October. Each bed was sampled for up to five weeks depending on plant quality, and

samples were removed from alternate ends of each bed to maintain bed integrity.

Sampled lettuce plants were stored in labelled paper bags in a cold store at 5°C D:D.

Whole plants were sampled destructively and the numbers of aphids, natural enemies

and aphids infected were identified, recorded and stored as per the previous field

trials. Yellow water traps were placed in between the plots and sampled every week.

Figure 6.2.6 Monitoring plot in 2011 (9 May 2011).

Statistical analysis

6.1 Field trial 2010

The total number of aphid stages and natural enemies recorded on the lettuces

sampled from each plot was determined. A mean per plant was then calculated by

dividing the totals by the number of lettuces sampled.

An ANOVA was performed on the numbers of alate, non-alate (including nymphs

and apterae) and all stages of N. ribisnigri and natural enemies including;

Coccinellidae, Araneae, syrphid larvae, parasitized aphids, Anthocoridae and

Neuroptera. As natural enemy numbers were low, the counts of larvae and adults
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were combined for Coccinellidae and Neuroptera (Chrysopidae and Hemerobiidae).

Data on some of the aphid-specific natural enemies were also combined to analyse

the effect of treatments on total predator numbers (including: Anthocoridae,

Coccinellidae, Neuroptera, parasitized aphids and syrphid larvae).

The ANOVA was performed using the blocking structure:

occasion/replication/sampling_week, where occasion represented the three field

trials (planting date), replication represented the two replications of each of the

treatments and sampling week represented the five sampling weeks on each trial.

The treatment structure used included:

sampling_week*(netting*fungicide*insecticide) which contrasted the means for the

netting, fungicide and insecticide treatments for each sampling week. The control

treatment was not included in the ANOVA as these aphids were from a natural

infestation making this treatment unsuitable for comparison with those treatments

which were inoculated. Therefore, when interpreting the results, all treatments were

compared to the open plot with no insecticide/fungicide treatment, which was

essentially the inoculated control.

Due to the large number of zero values present in the dataset, a value of one was

added to all data and LOG values were used to normalise the data. The LOG value

was then divided by the number of plants sampled from that treatment, to provide a

proportion of the data variable per plant. This was because different numbers of

plants were sampled from each treatment with sometimes only half a plant being

destructively sampled.

In addition to the ANOVA, the relationships between the recorded variables (natural

enemies, N. ribisnigri (alate, apterous and nymphs) were determined using scatter

plots. Where linear relationships were observed, Pearson R correlations and linear

regressions were also performed for each sampling date during the mid-summer

crash with the data grouped into netted and open (i.e. combining fungicide,

insecticide treatment data) to determine any relationship which might explain the

aphid decline.
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6.2 Field trial 2011

Only data collected from plants which were infested artificially with N. ribisnigri

were included in the analysis as plants that were not infested artificially had

significantly lower numbers of aphids. Only data from the experimental plots were

analysed with the ANOVA (not the monitoring plot).

An ANOVA was performed on the numbers of alate and all stages of N. ribisnigri,

parasitized aphids and aphids infected with entomopathogenic fungi. Coccinellidae,

Anthocoridae and syrphid larvae were present in very low numbers (not exceeding a

mean of one), resulting in zero values for the majority of the treatments and no

Neuroptera were recorded. Therefore, ANOVAs were not performed on these

variables due to the lack of data. Anthocoridae, Coccinellidae, parasitized aphids and

syrphid larvae were, however, summed together to analyse the total number of

natural enemies.

The ANOVA took into account the blocking structure: field trial/replication, where

field trial represented the five field trial occasions (planting date) and replication

represented the two replications of each of the treatments. The treatment structure

included planting date*netting*treatment. Due to the numbers of zero values present

in the dataset, a value of one was added to all data and a LOG transformation was

made to normalise the data.

Relationships between the recorded variables were determined using scatter plots. As

described for Field Trial 2010, Pearson R correlations and linear regressions were

performed when linear relationships were observed. This process was performed on

the data from the artificially infested plants only, for each individual field trial, with

the data grouped by netting treatment.
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Results

6.1 Field trial 2010

Aphids

Figure 6.1.4a and b shows the back-transformed mean number of N. ribisnigri (all

stages) recorded per plant for netted treatments and open plots at each sampling date

over the three field trial occasions. Netted treatments had significantly higher

numbers of N. ribisnigri compared with open and control treatments, particularly for

Occasions 1 and 2. During Occasion 1 and 2, aphid numbers per plant on the netted

treatments were initially low following inoculation and then continued to increase

rapidly up to the last sampling date for that occasion. Aphid numbers were higher on

the first occasion than the second. During Occasion 3, numbers of N. ribisnigri

remained low. During sampling a high number of alates N. ribisnigri were observed

on the underside of the nets.

When considering the open plots, aphid numbers during Occasion 1 increased from

18 June until 5 July (Figure 6.1.4b). By 12 July a dramatic decrease in aphid

numbers had occurred. Numbers decreased in the Open+F+I treatment from 198.17

aphids per plant to 25.50 per plant, on the Open+I treatment from 88.50 per plant to

2 per plant, on the Open+F treatment from 41.83 per plant to 0 per plant and on the

open control plot (non-inoculated) from 115.67 to 7.25 per plant. Unfortunately, data

for a fifth sampling week on Occasion 1 plots were not collected as severe rainfall

made the plants too wet to sample. Therefore, it is not known whether this decline

continued. This population crash was not observed on the netted plots.

A similar, but smaller, decrease was also observed on Occasion 2 where an increase

in numbers of N. ribisnigri was observed on 28 July and 3 August for the open and

control plots, which was then followed by a decline on 11 August, after which aphid

numbers remained low for the remainder of the sampling occasions. Aphid numbers

on plants in the netted plots peaked later than those in open treatments in Occasions

1 and 2. Aphid numbers also peaked on Occasion 3 in the netted plots, but no clear

peak was identified for the open plots.
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The back-transformed mean numbers of N. ribisnigri on the control plants

throughout Occasion 1, 2 and 3 that had not been infested artificially generally

remained low, peaking at only 24 aphids per plant on 3 August (Figure 6.1.4b).

a)

b)

Figure 6.1.4a-b Back-transformed mean number of N. ribisnigri (all stages) per

plant recorded on a) netted treatments and b) open plots, at each

sampling date during three field trials (Occasions 1-3).

The numbers of alate N. ribisnigri recorded on each of the netted plots (Figure

6.1.5), show a similar pattern when compared with the mean number of non-alate N.

ribisnigri (includes apterae and nymphs) in Figure 6.1.6. Both alate and non-alate N.
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ribisnigri displayed population peaks on 12 July and 31 August for Occasions 1 and

2, but the numbers of alates per plant were much lower than for the numbers of non-

alate stages per plant. Whether a further increase in numbers of alate and non-alate

N. ribisnigri would have been observed for netted treatments following 12 July is

again unknown as a fifth sampling date was not possible. Those treatments with the

highest number of non-alate aphids per plant did not always result in the highest

number of alates per plant.

Figure 6.1.5 Back-transformed mean number of alate N. ribisnigri per plant for

the four netted plots at each sampling date during three field trials.

Figure 6.1.6 Back-transformed mean number of non-alate N. ribisnigri

(including apterae and nymphs) per plant for the nine treatments at

each sampling date during three field trials.
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Figure 6.1.7a shows the relationship between the numbers of alate and non-alate N.

ribisnigri for the netted plots for each of the field trial occasions. In the case of

Occasion 1 and 2, as the numbers of non-alate forms increased, the numbers of alates

also increased. The data for Occasion 3 do not show such a strong relationship as

numbers of non-alate and alate aphids remained low.

Performing Pearson R correlations between the numbers of non-alate and alate

aphids for each occasion demonstrated a strong and positive correlation coefficient

(r) for Occasions 1 (r= 0.83, d.f. 30, p<0.001) and 2 (r= 0.93, d.f. 40, p=0.000) with

highly significant probabilities of there being a relationship between them. The

coefficient for Occasion 3 was lower, as expected, (r= 0.76, d.f. 40, p<0.001) but

still demonstrated a relationship. Figure 6.1.7b shows the data and fitted lines for

Occasions 1 and 2 with both X and Y variables transformed using LOG (data+1).
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a)

b)

Figure 6.1.7 a-b a) Scatter graph of untransformed counts of alate and non-alate N.

ribisnigri for each of the three field trial occasions for the netted

plots b) Linear regression of the number of alates and non-alate

N. ribisnigri (LOG(data+1) for Occasions 1 (Y= -2.367+0.9482x)

and 2 (Y= -2.324+0.9351x) for the netted plots.

Figure 6.1.8 shows the mean percentage of the total population per plant which were

alates at each sampling date during the three field trial occasions in the netted

treatments. Generally, during Occasion 1 and 2 the percentage of alates increased at
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each sampling date, except on 31 August 2010 (Occasion 2) where the percentage of

alates decreased by 16%. During Occasion 3 no clear trend was observed and the

percentage of alates fluctuated. The percentage of alates in the total population never

exceeded 20%.

Figure 6.1.8 Mean percentage of the total population per plant which were

alates at each sampling date during three field trials for the netted

treatments.

With the open plots, similar patterns were observed when comparing non-alate and

alate N. ribisnigri (Figure 6.1.6 and 6.1.9). Unlike the netted plots, peak numbers

occurred on 5 July and a decline was observed by 12 July.

Figure 6.1.9 Back-transformed mean number of alate N. ribisnigri per plant for

the four open plots at each sampling date during the three field

trials.
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Figure 6.1.10a shows the relationship between alate and non-alate N. ribisnigri for

the open plots for each of the field trials. This is similar to the netted plots, but not as

strong. When Pearson R correlations were performed, a high positive correlation was

observed between the number of alate and non-alate N. ribisnigri for Occasion 1 (r=

0.79, d.f. 32, p<0.001) but the relationship was weaker for Occasions 2 (r= 0.44, d.f.

40, p=0.004) and 3 (r= 0.40, d.f. 40, p=0.01). Figure 6.1.10b shows the fitted lines

for Occasions 1 and 2 with both X and Y variables transformed using (LOG(data+1).
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a)

b)

Figure 6.1.10 a-b a) Scatter graph of untransformed counts of alate and non-alate

N. ribisnigri for each of the three field trial occasions for the

open plots b) Linear regression of the number of alates versus

non-alate N. ribisnigri for Occasions 1 (Y= -0.486+0.4453x)

and 2 (Y= -0.018+0.1665x) for the open plots.

Figure 6.1.11 shows the mean percentage of the total population per plant which

were alates at each sampling date during the three field trial occasions in the open

plots. During Occasion 1 the percentage of alates in all treatments increased until 5

July 2010. Following this the percentage alates in two treatments (Open+I and Open)

continued to increase while the other treatments decreased (Open+F+I and Open+F).

During Occasion 2, two treatments (Open and Open+F) increased to a peak on 18

2

1

4

3.0

3

2.0

2

1.0

1

0.0

0-1

2.5

0.5

1.5

5

-0.5

A
la

te
N

.
ri

bi
sn

ig
ri

pe
r

pl
an

t

Non-alate N. ribisnigri per plant



170

August 2010, while few alates were observed in the other treatments. During

Occasion 3, the percentage of alates only exceeded 3% on 7 October 2010 when

100% alates were observed. This was because only one aphid (an alate) was found.

Figure 6.1.11 Mean percentage of the total population per plant which were

alates at each sampling date during three field trials in the open

plots.

An ANOVA was performed on the numbers of alate and all stages of N. ribisnigri

recorded. A significant effect of sampling week was observed for both alate

(F(4,18)= 7.40, p=0.001) and all stages of N. ribisnigri per plant (F(4,18)= 8.77,
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alates and all stages of N. ribisnigri respectively. Later sampling weeks had

significantly more aphids than Sampling Week 1.

0

20

40

60

80

100

120

18 Jun 25 Jun 05 Jul 12 Jul 28 Jul 03 Aug 11 Aug 18 Aug 31 Aug 08 Sep 15 Sep 21 Sep 28 Sep 07 Oct

Ocassion1 Occasion 2 Occasion 3

M
ea

n
p

er
ce

n
ta

ge
of

al
at

es
in

th
e

to
ta

l
p

o
p

u
la

ti
on

(p
er

p
la

n
t)

Fiedl trial ocassion and Sampling date

Open+F+I Open+I Open+F Open



171

a)

b)

Figure 6.1.12 a-b Transformed mean number of a) alates b) all stages of N.

ribisnigri per plant from the ANOVA for the effect of sampling

week.

A significant effect of netting treatment was observed for both alate (F(1,159)=

140.98, p<0.001) and all stages of N. ribisnigri (F(1,159)= 286.77, p<0.001). Figure

6.1.13a and b shows the effect of netting treatment on the numbers of alate and all

stages of N. ribisnigri respectively where netted plots always have higher numbers of

aphids than open plots.
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a)

b)

Figure 6.1.13 a-b Transformed mean number of a) alate b) all stages of N.

ribisnigri per plant from the ANOVA for the effect of netting

treatment.

An interaction was observed between netting treatment and sampling week for both

alate (F(4,159)= 34.90, p<0.001) and all stages of N. ribisnigri (F(4,159)= 43.02,
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netted and open plots increased each week, with the numbers of aphids increasing on

plants in netted plots but not in open plots. No effects of fungicide or insecticide

application were observed.

Figure 6.1.14 Transformed mean number of alate N. ribisnigri per plant from the

ANOVA for the interaction between sampling week and netting

treatment. LSD (a) used for comparison between treatments in the

same sampling week and LSD (b) used for comparison between

means in different sampling weeks.

Figure 6.1.15 Transformed mean number of all stages of N. ribisnigri per plant

from the ANOVA for the interaction between sampling week and

netting treatment. LSD (a) used for comparison between treatments

in the same sampling week and LSD (b) used for comparison

between means in different sampling weeks.
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An ANOVA was also performed on the number of natural enemies recorded to

determine whether there was an effect of netting or fungicide or insecticide

treatment.

Parasitized aphids

There was a significant effect of netting treatment (F(1,159)= 8.50, p=0.004) on the

mean number of parasitized aphids per plant. As shown in Table 6.1.16, significantly

more parasitized aphids per plant were found in open plots.

Table 6.1.16 Transformed mean number of parasitized aphids per plant from the

ANOVA for the effect of netting treatment.

Treatment Mean

Netted 0.247

Open 0.432

LSD 0.1259

d.f. 159

There was an interaction between netting treatment and sampling week on the

number of parasitized aphids per plant (F(4,159)= 9.67, p<0.001). Figure 6.1.17

shows the interaction, where significantly more parasitized aphids were found on

open plots compared with netted plots in Sampling Weeks 1-4. In Sampling Weeks 4

and 5, the number of parasitized aphids in netted treatments increased, indicating that

they were present in treatments where they were supposed to be excluded. In

Sampling Week 5 more parasitized aphids per plant were observed in netted plots.
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Figure 6.1.17 Transformed mean number of parasitized aphids per plant from the

ANOVA for the interaction between sampling week and netting

treatment. LSD (a) used for comparison between treatments in the

same sampling week and LSD (b) used for comparison between

means in different sampling weeks.

The ANOVA indicated that there was a significant interaction between fungicide and
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Figure 6.1.18 Transformed mean number of parasitized aphids per plant from the

ANOVA for the interaction between fungicide and insecticide.

An interaction between netting, fungicide and insecticide treatments on the number

of parasitized aphids per plant was observed (F(1,159)= 9.45, p=0.002). As shown in

Figure 6.1.19, netted plots with neither or both fungicide and insecticide applications

had significantly less parasitized aphids than those treated with either fungicide or

insecticide. The numbers of parasitized aphids in open plots were similar regardless

of the insecticide or fungicide treatment.

Figure 6.1.19 Transformed mean number of parasitized aphids per plant from the

ANOVA for the interaction between netting, fungicide and

insecticide treatments.
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Syrphid larvae

A significant effect of netting treatment on the number of syrphid larvae per plant

(F(1,159)= 56.88, p<0.001) was observed. As shown in Table 6.1.20, significantly

more syrphid larvae per plant were observed in open plots.

Table 6.1.20 Transformed mean number of syrphid larvae per plant from the

ANOVA for the effect of netting treatment.

Treatment Mean

Netted 0.027

Open 0.315

LSD 0.0755

d.f. 159

An interaction between netting treatment and sampling week was also observed

(F(4,159)= 7.34, p=0.001). As shown in Figure 6.1.21, significantly more syrphid

larvae were observed per plant in open plots in Sampling Weeks 3-5, while

significantly fewer syrphid larvae were present in Sampling Weeks 1 and 2 than in

Sampling Weeks 3-5.

Figure 6.1.21 Transformed mean number of syrphid larvae per plant from the

ANOVA for the interaction between sampling week and netting

treatment. LSD (a) used for comparison between treatments in the

same sampling week and LSD (b) used for comparison between

means in different sampling weeks.
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Anthocoridae

A significant effect of netting (Table 6.1.22) was observed, with more Anthocoridae

found per plant in open plots (F(1,159)= 35.31, p<.001).

Table 6.1.22 Transformed mean number of Anthocoridae per plant from the

ANOVA for the effect of netting treatment.

Treatment Mean

Netted 0.002

Open 0.157

LSD 0.0515

d.f. 159

An interaction was observed between netting treatment and sampling week

(F(4,159)= 4.52, p=0.002). As shown in Figure 6.1.23, more Anthocoridae were

observed on open plots, particularly during Sampling Weeks 3-5. For open plots,

significantly less Anthocoridae were present in Sampling Weeks 1 and 2 compared

with Sampling Weeks 3-5. Negative estimated mean values were observed for this

interaction, indicating there were too many zero values in the data set and the

ANOVA analysis could not provide good estimates for these zero values based on

the data available.
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Figure 6.1.23 Transformed mean number of Anthocoridae per plant from the

ANOVA for the interaction between sampling week and netting.

LSD (a) used for comparison between treatments in the same

sampling week and LSD (b) used for comparison between means

in different sampling weeks.

A significant effect of fungicide on the numbers of Anthocoridae was observed

(F(1,159)= 4.96, p=0.027); more were present on plants from fungicide treated plots

(Table 6.1.24).

Table 6.1.24 Transformed mean number of Anthocoridae per plant from the

ANOVA for the effect of fungicide.

Treatment Mean
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LSD 0.0515

d.f. 159

As shown in Figure 6.1.25, there was an interaction between fungicide and

insecticide (F(1,159)= 4.36, p=0.038). There were fewer Anthocoridae per plant

from plots which were treated with insecticide only, or from untreated plots, than

from plots treated with both insecticide and fungicide treatments.
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Figure 6.1.25 Transformed mean number of Anthocoridae per plant from the

ANOVA for the interaction of insecticide and fungicide.

Neuroptera

The numbers of Neuroptera were very low during the trial, resulting in negative
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output should be interpreted with caution. There was a significant effect of netting
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weeks (Figure 6.1.27). Again, negative estimates of mean values indicate a lack of

data.

Figure 6.1.27 Transformed mean number of Neuroptera per plant from the

ANOVA for the interaction between sampling week and netting

treatment. LSD (a) used for comparison between treatments in the

same sampling week and LSD (b) used for comparison between

means in different sampling weeks.

A significant effect of the interaction between sampling week, fungicide and
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Araneae

There was a significant effect of sampling week (F(4,18)= 10.42, p<0.001) on the

numbers of spiders. Significantly more spiders were found in Sampling Weeks 3-5

(Table 6.1.28).

Table 6.1.28 Transformed mean number of Araneae per plant from the ANOVA

for the effect of sampling week.

Sampling Week Mean

1 0.060

2 0.089

3 0.347

4 0.425

5 0.473

LSD 0.1770

d.f. 18

There was a significant effect of netting treatment (F(1,159)= 41.68, p<0.001) and

more spiders were found in plants from open plots (Table 6.1.29).

Table 6.1.29 Transformed mean number of Araneae per plant from the ANOVA

for the effect of netting treatment.

Treatment Mean

Netted 0.159

Open 0.398

LSD 0.0730

d.f. 159

There was an interaction between sampling week and netting treatment (F(4,159)=

4.42, p=0.002). With the exception of Sampling Week 1, significantly more spiders

were found on plants from open plots (Figure 6.1.30), and the difference increased

from Sampling Week 2-4. There were more spiders on plants from open plots in
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Sampling Weeks 3, 4 and 5 compared with Sampling Week 1. For plants from netted

plots, there were more spiders in Sampling Week 5 than in Sampling Week 1.

Figure 6.1.30 Transformed mean number of Araneae per plant from the ANOVA

for the interaction between sampling week and netting. LSD (a)

used for comparison between treatments in the same sampling

week and LSD (b) used for comparison between means in different

sampling weeks.

Total number of natural enemies

When the numbers of Anthocoridae, Coccinellidae, Neuroptera, parasitized aphids

and syrphid larvae were summed, there was an overall effect of sampling date

(F(4,18)= 4.94, p=0.007). Table 6.1.31 shows that there were significantly more

natural enemies in Sampling Weeks 3-5 compared with Sampling Week 1.

Table 6.1.31 Transformed mean number of total natural enemies per plant from

the ANOVA for the effect of sampling week.

Sampling Week Mean

1 0.130

2 0.280

3 0.649

4 0.779

5 0.701

LSD 0.3814

d.f. 18
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When considering the effect of netting treatment, significantly more natural enemies

were observed per plant from open plots (F(1,159)= 49.86, p<0.001) (Table 6.1.32).

Table 6.1.32 Transformed mean total number of natural enemies per plant from

the ANOVA for the effect of netting treatment.

Treatment Mean

Netted 0.268

Open 0.748

LSD 0.1342

d.f. 159

There was an interaction between sampling week and netting treatment (F(4,159)=

8.31, p<0.001). There were significantly more natural enemies in Sampling Weeks 2,

3 and 4 in plants from open plots (Figure 6.1.33). Between sampling weeks, plants

from open plots contained significantly more natural enemies in Sampling Weeks 3,

4 and 5 than in Sampling Week 1. Significantly more natural enemies were found in

plants from netted plots in Sampling Week 5 than in Sampling Week 1.

Figure 6.1.33 Transformed mean total number of natural enemies per plant from

the ANOVA for the interaction between sampling week and

netting. LSD (a) used for comparison between treatments in the

same sampling week and LSD (b) used for comparison between

means in different sampling weeks.
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Figure 6.1.34 shows the slight interaction between insecticide and fungicide

treatments (F(1,159)= 4.01, p=0.047) where the number of natural enemies found in

plants taken from plots with no application of fungicide and insecticide were

significantly different to those taken from plots where only fungicide was applied.

Figure 6.1.34 Transformed mean number of natural enemies per plant from the

ANOVA analysis for the interaction of insecticide and fungicide.

Finally, an interaction between netting treatment, insecticide and fungicide

(F(1,159)= 9.42, p=0.003) was observed which again confirms that numbers of

natural enemies were generally higher in open plots (Table 6.1.35). When compared

with one another, plants from open treatments had similar numbers of predators

regardless of the application of, or absence of, fungicide and/or insecticide.

However, netted plots had a lower number of natural enemies when fungicide and

insecticide were combined or when they were both absent.
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Figure 6.1.35 Transformed mean number of natural enemies from the ANOVA

for the interaction of netting, insecticide and fungicide.

When analysing the data on the presence of natural enemies, the main focus was

their presence around 5 and 12 July, where a decline in aphid numbers had been

identified in open plots. When plotting the back-transformed numbers of N.

ribisnigri (all stages) per plant and the numbers of Anthocoridae, Neuroptera,

parasitized aphids, Araneae and syrphid larvae per plant, only a relationship between

parasitized aphids and N. ribisnigri (all stages) per plant was observed on 5 July

(Figure 6.1.36). The relationship shows that the number of parasitized aphids per

plant increased with the number of N. ribisnigri (all stages) per plant. However, two

extreme responses can be observed in this relationship. One occurs in one of the

replicate plots for treatment Open+I, where extremely high numbers of parasitized

aphids compared with other treatments occurred, when N. ribisnigri numbers were

also high. The other anomaly occurs in one of the replicate plots for treatment

Open+F+I where no parasitized aphids were observed when N. ribisnigri numbers

were high.
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Figure 6.1.36 Back-transformed mean number of N. ribisnigri (all stages) per

plant and mean number of parasitized aphids per plant on 5 July

2010 sampling date.

As each of these observations is based on the destructive sampling of approximately

four plants, these anomalies could be explained by parasitoids parasitizing or not

parasitizing aphids more on these lettuce plants by chance, compared to other lettuce

plants in other treatment plots. When removing these anomalies and performing a

linear regression, it indicated a relationship of 1 parasitized aphid per 30 N. ribisnigri

(Figure 6.1.37). A strong and positive correlation coefficient was calculated (r=0.10,

observations 6, p<0.001).
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Figure 6.1.37 Linear regression of the back-transformed mean number of N.

ribisnigri and parasitized aphids per plant on 5 July 2010 sampling

date (Y= 0.068+0.03452x).

When looking at the number of natural enemies recorded at each sampling date,

parasitic wasps (evaluated through the number of parasitized lettuce aphids) and

syrphid larvae were the most prevalent natural enemies in the open plots. The

numbers of parasitized aphids were higher than the numbers of syrphid larvae, but

both peaked on 5 July when the numbers of N. ribisnigri also peaked (Figure 6.1.38a

and b). On 12 July, however, aphid numbers had declined considerably whilst the

parasitized aphids and syrphid larvae were still present but in lower numbers than

those seen on 5 July. Whether these parasitized aphids were N. ribisnigri is

unknown.

Other predators associated with aphids, such as the Anthocoridae, were recorded in

lower numbers, as illustrated in Figure 6.1.38c, where Anthocoris nemorum was the

most prevalent species. The Hemerobiidae and Chrysopidae (Neuroptera) were also

present in low numbers as shown in Figure 6.1.38d; the majority of these were

identified as Micromus variegatus (Chrysopidae).

When considering the activity of generalist predators such as the Araneae, they were

present throughout the three field trials, but displayed one of their two population
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peaks on 12 July, as the number of all stages of N. ribisnigri decreased (Figure

6.1.38e). Throughout the trial, some natural enemies were rarely observed,

particularly mobile natural enemies such as the Coccinellidae, Hemerobiidae and

Chrysopidae.
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d)

e)

Figure 6.1.38a-e Back-transformed mean number per plant of N. ribisnigri and a)

parasitized aphids b) syrphid larvae c) Anthocoridae d) Neuroptera

and e) Araneae per plant on each of the open treatments.

Weather

Temperature, humidity and rainfall records were obtained from the University of

Warwick, Wellesbourne meteorological station. Figure 6.1.39 shows the mean

maximum and minimum temperatures and mean relative humidity recorded during

each month. The maximum mean temperature was 23.2ºC (for July) and the

minimum mean temperature was 9.8ºC (for June). Mean relative humidity increased

gradually through the summer, from 65.86 to 78.70 %.

The highest mean monthly rainfall occurred in August (4.14mm) and the least in

July (0.66mm) (Figure 6.1.40).
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Figure 6.1.39 Mean maximum and minimum temperatures (ºC±SE) and mean

relative humidity (%RH±SE) recorded during each month.

Figure 6.1.40 Mean rainfall (mm±SE) recorded during each month.
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6.2 Field trial 2011

Monitoring plots

Aphids

Figure 6.2.7a shows the mean number of N. ribisnigri (all stages) per plant on each

sampling date for the seven monitoring plots. The largest numbers of N. ribisnigri

occurred late in the season on 26 October 2011 with a second, smaller, peak on 9

July 2011. Very low numbers of aphids were found between these peaks, following a

decline starting on 14 July 2011. Numbers began to increase again from 23

September 2011. This suggests that the mid-summer crash occurred between 14-29

July 2011. The numbers of alates per plant followed a similar pattern (Figure 6.2.7b).

Figure 6.2.7c shows the mean percentage of the total population per plant which

were alates at each sampling date. This shows that the percentage of alates in the

population increased to up to 13% by 14 July 2011 and then up to 60% by 29 July

2011. Following this the percentage of alates decreased to 0% and continued to

fluctuate below 13%.
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a)

b)

c)

Figure 6.2.7 a-c Back-transformed mean a) number of N. ribisnigri (all stages) b)

alate N. ribisnigri c) percentage of alates in the total population,

recorded per plant on each sampling date from May to October

2011 in the seven monitoring plots.
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Macrosiphum euphorbiae was present in much higher numbers than N. ribisnigri,

but it also displayed a mid-summer crash following a peak in numbers on 14 July

(Figure 6.2.8).

Figure 6.2.8 Back-transformed mean numbers of M. eurphorbiae recorded on

each sampling date from May to October 2011 in the seven

monitoring plots.

Myzus persicae was present in similar numbers to N. ribisnigri but displayed erratic

changes in abundance, with peaks on 20 June, 14 and 29 July in Plots 2, 3 and 4

respectively (Figure 6.2.9). Like N. ribisnigri, numbers also increased from 23

September.

Figure 6.2.9 Back-transformed mean numbers of M. persicae recorded on each

sampling date from May to October 2011 in the seven monitoring

plots.
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Natural enemies

Parasitized aphids were the most prevalent natural enemies with a mean of 14.5

parasitized aphids per plant on 9 and 14 July (Figure 6.2.10a). Following this peak in

numbers, the mean number of parasitized aphids per plant decreased and remained

low for the remaining sampling dates.

Syrphid larvae were observed from 20 June onwards, peaking on 22 July with a

mean of 1.14 syrphid larvae per plant (Figure 6.2.10b). The numbers of syrphid

larvae were very low and there were no clear fluctuations in numbers.

Aphids infected with entomopathogenic fungi were also counted and the mean

number of infections peaked on 14 July, with five infected aphids per plant (Figure

6.2.10c). Infection by entomopathogenic fungi was observed only between 20 June

and 29 July. Numbers of Coccinellidae, Anthocoridae and Neuroptera were very

low and have not been presented.
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a)

b)

c)

Figure 6.2.10 a-c Back-transformed mean number of a) parasitized aphids per plant

b) syrphid larvae per plant and c) aphids infected with

entomopathogenic fungi per plant on each sampling date from

May to October in the seven monitoring plots.

Water traps

Figure 6.2.11 shows the total numbers of natural enemies found in the water traps

near the monitoring plot. Syrphid adults were the most numerous, with a maximum

of 80 recorded on 4 August. Maximum counts of Coccinellidae and Anthocoridae

were much lower, with 11 Coccinellidae on 29 July and six Anthocoridae on 16
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August. Counts of Neuroptera never exceeded one on any sampling date and have

not been shown.

Figure 6.2.11 Counts of Syrphid adults, Coccinellidae and Anthocoridae

recorded in monitoring plot water traps.

Field trial 2011- Trial plots

Aphids

Figure 6.2.12a-e shows the back transformed mean number of N. ribisnigri (all

stages) per plant on the nine treatments at the end of each field trial carried out in

May, June, July, August and September. Only data for lettuce plants inoculated with

N. ribisnigri were included, as aphid numbers were significantly lower on those

plants which had not been inoculated.

Each trial provides an indication of the impact on N. ribisnigri from the introduction

of natural enemies and entomopathogenic fungi by comparing the numbers of aphids

at the end of the trial in temporarily netted plots, with those in permanently netted

and open plots.

As shown in Figure 6.2.12 b and e, the highest numbers of aphids were found in the

June and September trials, reaching 93.7 and 113.30 aphids per plant respectively in

netted plots. Unfortunately, the trial during May was severely damaged by hares and

the numbers recorded are likely to be lower than from undamaged plants. The lowest

number of aphids observed occurred during the trials in July and August which were
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infested with means of 3.3 and 1 N. ribisnigri per plant respectively, in the open

treatments.

The trial in July had the lowest mean numbers of N. ribisnigri per plant in

temporarily netted plots. The largest differences between permanently netted and

temporarily netted treatments was a decrease of 25 aphids per plant between the

Temp Netted+F and Perm Netted+F treatments. The monitoring plots indicated that

the mid-summer crash occurred around 14 July and this period was covered by the

trial in July.
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b)

c)
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d)

e)

Figure 6.2.12 a-e Back-transformed mean number of N. ribisnigri (all stages)

sampled per plant at the end of each field trial on a) 24 May b) 29

June c) 26 July d) 30 August and e) 30 September 2011.
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An ANOVA was performed on all stages of N. ribisnigri per plant in each field trial.

As shown in Table 6.2.13 there was an overall effect of field trial month, with June

and September having significantly more aphids per plant (F(4,5)= 111.59,

p<0.001). The netting treatment had an effect on the number of N. ribisnigri with

open plots having significantly less aphids per plant than both temporarily netted and

permanently netted plots (Table 6.2.14) (F(2,40)= 31.30, p<0.001). There were also

significantly less aphids in the temporarily netted plots compared to the permanently

netted plots.

Table 6.2.13 Transformed mean of N. ribisnigri (all stages) per plant from the

ANOVA for the effect of field trial month.

Field trial month Mean

May 2.573

June 3.867

July 2.208

August 1.863

September 3.772

LSD 0.2890

d.f. 40

Table 6.2.14 Transformed mean total number of N. ribisnigri (all stages) per

plant from the ANOVA for the effect of netting treatment.

Treatment Mean

Permanently Netted 3.383

Temporarily Netted 2.927

Open 2.259

LSD 0.2890

d.f. 40



202

As shown in Figure 6.2.15, there was an interaction between field trial month and

netting on the number of N. ribisnigri (all stages) per plant (F(8,40)= 4.22, p<0.001).

Only in July and August was there a significant difference between permanently

netted plots and both temporarily netted and open plots. Aphid numbers per plant

from permanently netted plots were significantly different to those from open plots

in July, August and September. No significant effects of fungicide or insecticide

application were observed.

Figure 6.2.15 Transformed mean number of N. ribisnigri (all stages) per plant

from the ANOVA for the interaction between field trial month and

netting treatment. LSD (a) used for comparison between treatments

in the same field trial month and LSD (b) used for comparison

between means in different field trial months.

When analysing the mean number of alate N. ribisnigri per plant, only an effect of

field trial month was observed (F(4,5)= 30.11, p=0.001) (Figure 6.2.16). Alate
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Table 6.2.16 Transformed mean number of alate N. ribisnigri per plant from the

ANOVA for the effect of field trial month.

Field trial month Mean

May 0.170

June 0.501

July 0.125

August 0.193

September 0.496

LSD 0.1228

d.f. 5

Natural enemies

When considering the numbers of natural enemies found on plants from each of the

nine treatments in each field trial month (data on inoculated lettuce plants only) most

‘types’ of natural enemy were present in very low numbers for all the treatments

(mean less than one).

Figure 6.2.17 shows the mean number of parasitized aphids per plant and aphids

infected with entomopathogenic fungi per plant which were present in the June-

September field trials. No natural enemies or aphids infected with entomopathogenic

fungi were recorded during the May field trial. In the June trial (Figure 6.2.17a),

more infected and parasitized aphids were observed in the temporarily netted and

open plots compared to any other field trial month, whilst in the July trial there were

more infected and parasitized aphids in the permanently netted plots. In August and

September there were fewer infected and parasitized aphids and they were not

present in all of the treatments.
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c)

d)

Figure 6.2.17 a-d Transformed mean number of parasitized aphids and aphids

infected with entomopathogenic fungi per plant sampled from

inoculated lettuce plants on a) 29 June b) 26 July c) 30 August

and d) 30 September 2011.
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While the numbers of natural enemies were generally low, an ANOVA was

performed on the numbers of parasitized aphids, infected aphids and total natural

enemies recorded in each field trial month. Other families of natural enemies

recorded, including Anthocoridae, Coccinellidae, syrphid larvae and Araneae, were

not analysed individually as the means were less than one due to numerous zero

values. No clear relationships were observed between any of the natural enemies and

numbers of N. ribisnigri.

Parasitized aphids

There was a significant effect of field trial month (F(4,5)= 20.41, p=0.003) on the

number of parasitized aphids per plant (Figure 6.2.18). Significantly more

parasitized aphids were observed in June and July.

Table 6.2.18 Transformed mean number of parasitized aphids per plant from the

ANOVA for the effect of field trial month.

Field trial month Mean

May 0

June 0.405

July 0.500

August 0.030

September 0.059

LSD 0.1890

d.f. 5

There was an interaction between field trial month and netting treatment (F(8,40)=

9.19, p<0.00)) (Figure 6.2.19). The June trial saw significantly more parasitized

aphids on temporarily netted and open plots compared with the permanently netted

plots, while in July there were significantly more parasitized aphids in permanently

netted plots. The May, August and September trials produced fewer parasitized

aphids from all netting treatments.
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Figure 6.2.19 Transformed mean number of parasitized aphids per plant from the

ANOVA for the interaction between field trial month and netting.

LSD (a) used for comparison between treatments in the same field

trial month and LSD (b) used for comparison between means in

different field trial months.

Entomopathogenic fungi

There was a significant effect of field trial month (F(4,5)= 121.27, p<0.001) on the

number of infected aphids per plant (Figure 6.2.20).

Figure 6.2.20 Transformed mean number of aphids infected with

entomopathogenic fungi per plant from the ANOVA for the effect

of field trial month.
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There was an interaction between field trial month and netting treatment on the

number of infected aphids per plant (F(8,40)= 13.86, p<0.001) (Figure 6.2.21). The

June trial produced significantly more infected aphids per plant on temporarily

netted and open plots compared with the permanently netted plots, while in July

there were significantly more in permanently netted plots. The May, August and

September trials produced fewer infected aphids from all netting treatments. No

effect of insecticide or fungicide was observed

Figure 6.2.21 Transformed mean number of aphids infected with

entomopathogenic fungi per plant from the ANOVA for the

interaction between field trial month and netting treatment. LSD

(a) used for comparison between treatments in the same field trial

month and LSD (b) used for comparison between means in

different field trial months.
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plots as (Table 6.2.23) and there were significantly less natural enemies in plants

from insecticide-treated plots than from the control or from fungicide-treated plots

(Table 6.2.24).

Table 6.2.22 Transformed mean number of natural enemies from the ANOVA

for the effect of field trial month.

Field trial month Mean

May 0.000

June 0.413

July 0.604

August 0.082

September 0.226

LSD 0.1839

d.f. 5

Table 6.2.23 Transformed mean number of natural enemies from the ANOVA

for the effect of netting treatment.

Netting treatment Mean

Permanently Netted 0.181

Temporarily netted 0.258

Open 0.357

LSD 0.0869

d.f. 40

Table 6.2.24 Transformed mean number of natural enemies from the ANOVA

for the effect of treatment.

Spray treatment Mean

Control 0.303

Fungicide 0.294

Insecticide 0.198

LSD 0.0869

d.f. 40
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Interactions were observed between netting treatment and field trial month (F(8,40)=

8.53, p<0.001) and treatment and field trial month (F(8,40)=2.87, p=0.013). Figure

6.2.25 shows the interaction between field trial month and netting treatment. In all

months except July the highest numbers of natural enemies per plant were found in

the open plots. During July there were significantly more natural enemies in

permanently netted plots. In June, there was a significant difference in the numbers

of natural enemies per plant between all the netting treatments in that month.

Figure 6.2.25 Transformed mean total number of natural enemies per plant from

the ANOVA for the interaction between field trial month and

netting treatment. LSD (a) used for comparison between treatments

in the same field trial month and LSD (b) used for comparison

between means in different field trial months.

Figure 6.2.26 shows the interaction between field trial month and spray treatment.

During July and September, the control plots contained significantly more natural

enemies than those sprayed with insecticide. In June the opposite effect was

observed, with the control having significantly less natural enemies than the plots

treated with insecticide. Numbers of natural enemies in the control plots never

differed from the plots sprayed with fungicide. Only during July was there a

significant difference between fungicide and insecticide treatments.
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Figure 6.2.26 Transformed mean total number of natural enemies per plant from

the ANOVA for the interaction between field trial month and spray

treatment. LSD (a) used for comparison between treatments in the

same field trial month and LSD (b) used for comparison between

means in different field trial months.

Water traps

Figure 6.2.27 shows the total numbers of natural enemies in water traps located near

to the field trial. Peak numbers of syrphid larvae occurred around the 29 July (21).

Coccinellidae and Anthcoridae were the only other natural enemies captured, but

they never exceeded more than 1 or 2 at each sampling date.

Figure 6.2.27 Total numbers of syrphid larvae, Coccinellidae and Anthocoridae

captured in water traps.
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When combining data from water traps near to both the monitoring and field trial

plots, Syrphus ribesii was the most common syrphid species, followed by what was

thought to be Eupeaodes corolla. Sphaerophoria scripta and Episyrphus balteatus

were also common. Only two coccinellid species were recorded which were

Coccinella 7-punctata and Propylea 14-punctata.

Temperature

Figure 6.2.28 shows the mean temperature recorded from the field trials in June,

July, August and September for netted and open plots. The data for the May field

trial month has not been included as the Tinytags© malfunctioned.

Higher temperatures were consistently recorded in netted plots compared to open

plots with the largest observed difference of 1.18°C in July. The highest mean

temperature of 17.27°C was recorded in netted plots during the July trial. The lowest

mean temperature (15.49°C) was recorded during the September trial.

Humidity increased gradually each month in both the netted and open plots, with

September having the highest humidity. Except for the June trial, humidity was

higher in netted plots compared to open plots, with the largest observed difference

occurring during August (3.77%).

Figure 6.2.28 Mean temperature (°C ±SE) and humidity (%RH ±SE) recorded

during each field trial for open and netted plots.
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Rainfall

Rainfall records were collected from the University of Warwick, Wellesbourne

meteorological station. Figure 6.2.29 shows the mean rainfall and the maximum

daily rainfall during each field trial. The highest mean monthly rainfall occurred in

August (2.91mm). The maximum rainfall for one day during each field trial month

was 10.5, 6.3, 16.7 and 7.3mm on 24 June, 16 July, 24 August and 16 September

2011 respectively.

Figure 6.2.29 Mean rainfall (mm ±SE) and the maximum daily rainfall (mm)

recorded during each field trial.
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The hypothesis tested during the 2010 field trial, was that if natural enemies play a

significant role in regulating aphid populations, then when aphid numbers decline

they should do so in the presence of high natural enemy numbers.

Aphid numbers
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plantings did not overlap sufficiently to allow the aphids to naturally distribute and

colonise the newly-planted open plots. The control treatment in this experiment also

highlighted the need to inoculate future trials with N. ribisnigri as uninoculated plots

had the lowest number of aphids (Figure 6.1.4b). During field trials Occasion 1 and

3, aphid numbers did not exceed a mean of 2.5 aphids per plant in the control plots.

During Occasion 2, aphid numbers peaked on 3 August 2010 with a mean of 24

aphids per plant. This peak may be a result of aphids migrating into the control

treatment from the open plots where N. ribisnigri numbers were also at their peak.

The use of the open and netted plots was effective in allowing for comparison of

aphid populations with natural enemy pressure and populations with reduced natural

enemy pressure. The netted plots reduced the numbers of natural enemies, but did

not completely exclude them, but the lower natural enemy pressure allowed aphid

numbers to continue to increase at each sampling date in each of the Occasions as

shown in Figure 6.1.4a. Field trial Occasion 1 was the period of the trial where the rm

was at its peak, as aphids reached their highest numbers, followed closely by

Occasion 2 and then Occasion 3. Differences in the numbers of aphids between

occasions could be due to temperature where Occasions 1, 2 and 3 had mean

temperatures of 16.6, 16.5 and 14.1°C respectively.

The use of netting resulted in ‘unrealistically’ high counts of alate aphids, and

therefore total aphids, as emigration was restricted (Basky, 2003), but it did

demonstrate that, generally, the number of alates increased as the total population

increased (Figure 6.1.5 and 6.1.6). Considering the percentage of alates in the total

population (Figure 6.1.8), generally, during Occasion 1, the percentage of alates in

the total population increased as the size of the total population increased. The

increase in the number of alates is likely to be due to the effect of population

crowding (Müller, et al., 2001) and in later sampling weeks, to a response to the

deteriorating condition of the host plant (Karley, et al., 2003). Occasion 2 showed a

similar pattern, although some declines in the percentage of alates occurred, even

though they were restricted from emigrating. This can be explained by the high

number of alates which were observed on the underside of the nets, rather than on

the lettuce plants and which dispersed when the nets were removed for sampling,

also meaning that the numbers of alates per plant were underestimated. Again

Occasion 3 displayed similar fluctuations in the percentage of alates.
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In open plots, the positive relationship between alates and non-alate N. ribisnigri was

not as distinct, as the alates could emigrate and the population was more heavily

predated. More variation was also observed for the percentage of alates in the total

population (Figure 6.1.11).

Unlike the netted plots, aphid populations in open plots were lower and did not

continue to increase with each sampling date, as population declines were observed.

The most significant of these declines occurred between the 5 and 12 July 2010, as

on 12 July 2010 aphid numbers were much lower than at the previous sampling date,

which coincided with the expected timing of the mid-summer crash as observed in

other studies (Tatchell, et al., 1998; Collier, et al., 1999; Collier and Harrington,

2001; Karley, et al., 2003). The crash was not observed in netted plots which

suggests that netting excluded natural enemies, prevented emigration or altered other

factors which are important in causing the decline in aphid numbers. The possible

factors causing this decline in open plots will now be discussed.

Emigration

In contrast to the netted plots, mass emigration of alates could have occurred in the

open plots. Unfortunately, at the time of the crash, newly transplanted lettuce plants

were not available in the field to determine whether colonisation of new plants by

emigrating alate N. ribisnigri occurred. For emigration to be the cause of the decline,

it would need to explain the ‘disappearance’ of 94% of the population (equivalent to

108 aphids as observed in the open treatment). It would also have to be determined

whether it is possible that majority of the 86% of the nymphal population (separated

from apterae) recorded on 5 July 2010 could develop into alate adults before the next

sampling date on 12 July 2010.

In this study, the percentages of alates in the total population increased up to 5 July

2010 and for some treatments continued to increase to 12 July, becoming 25% of the

total population. Therefore, the potential for emigration was increasing prior to the

mid-summer crash possibly due to crowding and the deteriorating condition of the

host plant as previously discussed. Furthermore, increased alate production can also

be induced in aphids following exposure to the aphid alarm pheromone which is

released in response to natural enemy attack (Kunert et al., 2005).
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From evaluation of the literature, a study on A. pisum observed that population

declines resulted from nearly all the nymphs produced at high densities developing

into alates and emigrating (McVean, et al., 1999). Investigations into the population

crash of Elatobium abietinum also indicated it was the result of alate emigrants with

little influence from natural enemies (Leather and Owuor, 1996).

Various researchers have tried to model the population dynamics of aphid species to

explain the causes of population declines, but few have been successful due to the

many intrinsic and extrinsic factors which can rapidly influence an aphid population

(Kindlmann and Dixon, 2010). However, Kindlmann and Dixon (2010) have

recently reviewed the existing models of aphid population dynamics and propose

that emigration is the most important factor causing declines in aphid populations, as

natural enemies are only effective at reducing aphid populations when populations

are small and not at their peak. Another model using the alder aphid as the case

organism, showed that density-dependent dispersal could explain the mid-summer

crash without including the effects of natural enemies and plant quality (Mashanova,

et al., 2008). It is certainly feasible that emigration could be contributing to the

decline observed in July.

Natural enemy presence

When considering the effect of natural enemies in the open plots, peaks in the

number of syrphid larvae and parasitized aphids coincided with the peak in the

number of aphids, which was then followed by the aphid crash. A strong positive

relationship was observed between the number of N. ribisnigri (all stages) per plant

and the number of parasitized aphids per plant on 5 July 2010. The relationship

suggested that the number of parasitized aphids increased with an increasing

population of N. ribisnigri.

In California, syrphid larvae composed over 85% of the total number of predators

recorded in various studies and have been determined as one of the most important

natural enemies suppressing N. ribisnigri populations in organic lettuce production

(Smith and Chaney, 2007; Smith, et al., 2008; Hopper, et al., 2011). Previous

research has also identified a range of parasitoids for which N. ribisingri is the

primary host. In Spain this includes braconid wasp species: Aphidius hieraciorum,

Aphidius ervi, and Aphidius colemani (Nebreda, et al., 2005). In the UK, Aphidius
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ribis, Aphidius matricariae and Aphelinus asychis have been recorded to parasitise

N. ribisinigri, as well as other species of lettuce aphid, while Monoctonys paludum

specifically parasitized N. ribisnigri (Griffiths, 1960). In the present study, only total

parasitism (all aphid species) was recorded and therefore the numbers of parasitized

N. ribisnigri are unknown. Thus the ‘importance’ of parasitoids in regulating N.

ribisnigri may be overestimated.

It is likely that syrphid larvae and parasitized aphids peaked at the same time as the

aphid population because natural enemies (hoverfly adults and parasitoids) are

attracted to the high densities of prey, which has been observed in other studies on

Coccinellids and natural enemy communities (Ives, et al., 1993; Donaldson, et al.,

2007; Chacón and Heimpel, 2010). This demonstrates the dynamic relationship

between predator and prey, where aphid numbers are determined by, and determine,

the numbers of natural enemies.

The present study also indicated that generalist predators such as spiders could also

have an important role in regulating aphid numbers, in addition to more specialised

predators, as they were generally present throughout the entire trial period in all

plots. Other studies have recognised the importance of generalist predators, including

spiders and ground beetles, in reducing aphid populations (Edwards, et al., 1979;

Lang, 2003; Schmidt, et al., 2004). Predators such as Neuroptera and Anthocoridae

were present later in the summer following the aphid crash, indicating that they were

unlikely to have contributed significantly to the decrease in the N. ribisnigri

population during July.

In this study, the destructive sampling method used to determine the presence of

mobile predators could have resulted in an underestimation of their activity, as they

could have escaped during the sampling process or when awaiting sampling in the

cold store. Schmidt (2008) also noted that destructive sampling and field counts

underestimated the numbers of mobile predators and highlighted the need to

implement other monitoring methods such as sticky traps and water traps.

While experimental evidence from predator cage exclusion experiments supports the

suppression of aphid populations by natural enemies (Frazer, et al., 1981b; Basky,

2003; Brosius, et al., 2007a), the issues surrounding the use of cages (e.g. altering

microclimate and emigration) has led some researchers to conclude that they are
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unsuitable for the assessment of predation, which then leaves little empirical

evidence (Kindlmann and Dixon, 2010; Ameixa and Kindlmann, 2011).

Furthermore, while modelling and meta-analysis studies have also supported the role

of natural enemies in suppressing aphid populations (Tamaki and Long, 1978;

Skirvin, et al., 1997; Diehl, et al., 2013), other models have observed little effect, as

discussed. A study combining both field observations of predator consumption and

estimations of aphid loss from a demographic model also suggested that the natural

enemy complex of the mealy plum aphid (Hyalopterus pruni) was unable to cause

the mid-summer crash (Mills and Latham, 2009). Therefore, the role of natural

enemies is tentative.

Weather

While temperatures were not recorded specifically within the netted and open plots,

the data collected from a nearby meteorological station did not indicate any extreme

temperature or rainfall events which might have resulted in the aphid decline. Mean

minimum and maximum temperatures were between 9.8 and 23.2 °C, with a relative

humidity of approximately 70 %. July also saw the lowest maximum daily rainfall

and the lowest mean monthly amount of rainfall compared to the values for June,

August and September, where no population declines were observed. As no rainfall

was recorded between 5 and 12 July 2010, the duration and intensity of rainfall can

also be ruled out as a contributing factor towards the population crash, which other

studies have observed to result in aphids being lost from host plants (Mann, et al.,

1995). Mann et al. (1995) also observed that wind duration, in addition to rainfall,

could also dislodge aphids from a plant and as this was not measured in this study it

cannot be ruled out as a possible factor. If weather events were responsible for the

mid-summer crash, the absence of a crash in the netted treatments can be explained

by the covers protecting the crops.

Spray treatments

While the use of netting was effective in reducing natural enemy pressure, the use of

insecticide and fungicide did not reduce natural enemy numbers or the number of

aphids infected with entomopathogenic fungi as planned. Furthermore, the effects of

these pesticide applications were not consistent between treatments and were

sometimes impossible to explain. For example, the lowest numbers of total natural

enemies and parasitized aphids were observed when no spray treatments were used
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or when they were combined, but only in netted plots, suggesting that an application

of either the insecticide or a fungicide alone were beneficial. Smith et al. (2008) also

attempted to use an insecticide to specifically suppress numbers of syrphid larvae,

again this approach was ‘ineffective’ but did suppress other predators including

minute pirate bugs (Orius sp.), ladybird beetles (Coccinellidae), dwarf spiders

(Linyphiidae), brown lacewings (Hemerobiidae) and rove beetles (Staphylinidae) in

two of the five trials.

This preliminary study indicated possible refinements of the methodology to be used

for the 2011 field trial.

Field trial 2011

The hypothesis tested in the 2011 trial, was that if natural enemies and infection by

entomopathogenic fungi played a significant role in regulating aphid populations,

then the month where the largest decrease was observed between numbers in

permanently netted treatments and temporarily netted plots (once the latter were

uncovered) would occur during the same period as the mid-summer crash as

determined in the monitoring plot, in synchrony with high natural enemy numbers.

Aphid numbers

Only field trial months July and August displayed a significant difference between

permanently netted plots and temporarily netted and open plots (Figure 6.3-

reproduced from the Results section), where aphids were reduced to very low

numbers. This suggests that the factors which were excluded/prevented by netting

were effective again as soon as the netting was removed and provided natural aphid

control. The largest reduction in aphids in the temporarily netted plots, when

compared with the netted plots, occurred in July, coinciding with the mid-summer

crash as identified in the monitoring plots (between 14- 22 July 2011). A large

decrease was also observed in September, although aphid numbers still remained

high.

The decrease observed between netted plots and temporarily netted plots does not

take into account the fact that the aphids in the netted plots could not emigrate

throughout the trial period. Therefore, the observed decrease may be slightly
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overestimated, as numbers in the netted plot may have been lower if emigration

could have occurred.

The possible factors causing the mid-summer crash during July will now be

discussed.

Figure 6.3 Transformed mean number of N. ribisnigri (all stages) per plant

from the ANOVA for the interaction between field trial month and

netting treatment. LSD (a) used for comparison between treatments

in the same field trial month and LSD (b) used for comparison

between means in different field trial months.

Emigration

Prior to the mid-summer crash which occurred between 14- 29 July 2011, the

percentage of alates in the total population on the monitoring plots was increasing

and reached 13% on 14 July 2011 (Figure 6.2.7c). Therefore as with the 2010 trial,

the potential for emigration was increasing prior to the crash, which is likely to be in

response to the crowding effect as discussed. It is less likely that emigration occurred

in response to poor host plant quality in this trial, as the decline was observed on all

plots which contained plants of different ages.

Alate numbers in the July field trial plot reached a maximum of 4, 11 and 9% of the

total population in netted, open and temporarily netted plots respectively. While the

numbers of aphids were much lower during this trial year, studies investigating the
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thresholds from crowding have observed that as little as two crowded aphids over a

one-minute duration can result in the production of alate offspring (Johnson, 1965;

Lees, 1967). This demonstrates that emigration can be triggered by very low

numbers of aphids per plant.

During July, the crash represented an 87% decrease in aphid numbers in open plots

compared to netted plots in the field trial. As aphid numbers were generally lower,

this percentage decrease was equivalent to a reduction of only 24 aphids per plant.

While this number of aphids could have disappeared as a result of emigration it

cannot be confirmed using data from this study. Future experiments should

implement methods to predict future emigration, for example by counting the

number of 4th instar nymphs with wing buds. For some aphid species aerial sampling

can also be used to monitor alate numbers but unfortunately N. ribisnigri is ‘trap

shy’ (Collier, et al., 1999) and relatively few are captured in water traps and suction

traps.

During the study no increases in aphid numbers were observed in the monitoring

plots to suggest that re-colonisation by emigrating aphids occurred.

Natural enemy presence

In the monitoring plots, destructive assessment of the lettuce plants around the time

of the mid-summer crash showed that parasitism (of all aphid species) was at its

peak, as was the number of aphids infected with fungus. Data from water traps

indicated that ladybirds and hover flies were present but did not reach peak numbers

until late July/early August, following the aphid decline.

When comparing the numbers of syrphid larvae per plant in monitoring plots (during

destructive sampling), with the numbers of syrphid adults captured in water traps at

each sampling date, the pattern of syrphid larvae activity on the plants can be

explained (Figure 6.4). At the beginning of July, the numbers of syrphid larvae per

plant increased in the monitoring plots as they fed on aphids and other prey. The

larvae then pupated and in early August and adult syrphids emerged from the pupae.

The syrphid adults then laid eggs near colonies of prey, which hatched to produce

more larvae, which were then observed on the plants in the monitoring plots around

mid-August. The relationship between the counts of Coccinellidae and Anthocoridae
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in water traps and those on plants in the monitoring plot could not be determined as

less than one per plant was recorded in the monitoring plots.

Figure 6.4 The number of syrphid larvae per plant recorded in the seven

monitoring plots (M1-M7) and the numbers of syrphid adults

captured in water traps at each sampling date.

When considering the role of the natural enemies identified in the field trials in

contributing to the population decline, the number of parasitized aphids (Figure

6.2.19), total natural enemies (Figure 6.2.25) and infection by entomopathogenic

fungi (Figure 6.2.21) were highest in the field trials during June and July when

compared to May, August and September. While natural aphid control was observed

in July when the mid-summer crash was observed, little control was observed in

June, although natural enemy numbers were also high, which cannot be explained

(Figure 6.3).

When aphid numbers declined during the July trial, the temporarily netted plots had

only been uncovered for one week, providing natural enemies with only a short

period of time to suppress aphid numbers. When considering which natural enemies

could respond in this time period, it was concluded that only mobile predators which

consume aphids would result in immediate suppression, for example Coccinellidae,

Anthocoridae and syrphid larvae. While water traps indicated that Coccinellidae and

Anthocoridae were present, very low numbers were recorded on the plants sampled,
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suggesting they did not play a significant role in regulating aphids in the trial during

the mid-summer crash. Syrphid larvae were also present but at even lower numbers

on the plants.

Underestimations of the influence of natural enemies may have resulted from the

short trial period used. It has been suggested that crops, such as lettuce, with short

growing season may provide insufficient time for natural enemies to increase

sufficiently to provide high levels of control (Nunnenmacher and Goldbach, 1996).

Therefore, when considering the field trial, the short trial period of two weeks used

in this study, may not have provided enough time for natural enemies to build up and

achieve control which is why natural enemy numbers appeared to be higher in the

monitoring plots on 14 July 2011 (which had been in the field for longer) with up to

14.5 parasitized aphids per plant and 5 fungus-infected aphids per plant, compared

with the field trial plots where 2 parasitized aphids per plant and 3.5 fungus-infected

aphids per plant were recorded.

Parasitoids appeared to be one of the most prevalent natural enemies during 2011

and it is likely that their influence was also underestimated as the larvae of

parasitoids require >1 week to develop before mummies occur (Gutiérrez-Ibáñez, et

al., 2007). Therefore, some aphids may have been parasitized during the assessment

but were not counted as they had not yet developed into mummies. Underestimations

and overestimations may have also been made with the regard to the influence of

predators, as this study assumes that when predators are present they predate and

suppress aphid populations, which may not be the case. It is also possible that due to

the low number of plants sampled in the trial that the numbers of natural enemies

were underestimated by their simply not being present on the plants which were

assessed. It is therefore important, that future work develops new methods to

monitor and measure the influence that natural enemies have in suppressing aphid

populations in the field.

When looking at data from water traps situated around the field trial, counts of

natural enemies were low around the time of the mid-summer crash in the

experimental plots. The only observed peak was the 21 syrphid adults (non-predatory

stage) recorded on 29 July 2011. While this cannot be compared directly with the

presence of syrphid larvae on the plants in the field trial, because few syrphid larvae
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were observed, it does coincide with the peak observed in the water traps in the

monitoring plot as shown in Figure 6.4. While in both the monitoring and field trial

plots, numbers of hoverfly adults peaked following the aphid decline, only a small

number of their larvae (maximum of 1.1 per plant) were observed in 2011 compared

to the numbers observed during 2010 (maximum of 4.75 per plant) meaning their

effect on the aphid population could not be theorised. These observations could

suggest that the plants during the 2011 trial were not suitable for oviposition, due to

the low number of aphids present. Previous studies have shown that the size of an

aphid infestation can influence the level of oviposition by syrphid females, with

different species having a different preferred size of aphid infestation (Chandler,

2008). In this study S. ribesii was the most common species and Chandler (2008)

found that this species preferred to oviposit on brassica crops with infestations of

approximately 2000 B. brassicae per plant. As aphid numbers were much lower in

the present trial, S. ribesii, while present, may have chosen to oviposit elsewhere.

Determining the density of N. ribisnigri infestations that would be chosen for

oviposition by common syrphid species would be valuable for interpreting data from

field trials such as these.

Unexpectedly, during July, the highest levels of parasitism, numbers of natural

enemies and aphids infected by entomopathogenic fungi were observed in the

permanently netted treatments (Figure, 6.2.19, 6.2.21 and 6.2.25), indicating that

netting did not completely exclude natural enemies during the trial and may have

also promoted the development of entomopathogenic fungi. It is possible that natural

enemies and parasitic wasps were enclosed in these plots when they were covered. A

study by Basky (2003) showed that predator exclusion techniques prevented

emigration of natural enemies and resulted in higher numbers of natural enemies in

caged plots compared to open plots. As in the present study, Basky observed that

aphid numbers were still higher in the netted plots despite the higher numbers of

natural enemies, which suggests that the rate of aphid reproduction must have been

higher than the rate at which aphids were consumed or parasitized by natural

enemies.

The higher levels of infection by entomopathogenic fungi in netted plots during the

July trial could be due to the effect of netting, which resulted in a 1°C increase in

temperature and a 2.9% increase in humidity, which may have been optimal
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conditions for the development of entomopathogenic fungi compared to the open

plots. As aphids infected with entomopathogenic fungi were observed at low levels

on the plants in the open plots, temporarily netted plots and monitoring plots it

suggests that entomopathogenic fungi did not have a major role in suppressing aphid

numbers in the trial but did contribute. Their low occurrence could be due to the low

relative humidity during July which was below the 90-93% required for

entomopthoralean fungi to be effective (Völkl, et al., 2007).

Weather

The average temperature during July in open plots was 16°C with a humidity of

79%, both lower than the recordings during June. The July trial received an average

of 1.3 mm of rainfall and had the lowest recorded maximum daily rainfall of 6.3 mm.

Therefore, no extreme weather events occurred during the trial which could explain

the aphid crash. However, as previously discussed, the duration and intensity of

rainfall and wind was not recorded and cannot be ruled out as a possible contributing

factor towards the population crash.

Spray treatment

While insecticide and fungicide treatments during 2010 were ineffective and

provided unexplained effects, during 2011 pesticides provided a more consistent

effect in reducing the numbers of natural enemies per plant (Figure 6.2.26). During

July, August and September the total number of natural enemies were lower on

pesticide-treated plots than the control and fungicide-treated plots. As there was no

effect of insecticide treatment on individual species of natural enemy it suggests that

the insecticide treatment had a small effect on each, or several, natural enemies

which was only observed once they were combined. The effectiveness during this

trial could be a result of the shorter trial period where the insecticide would have

remained effective. Insecticides could be a useful tool in predator exclusion

experiments. Unfortunately, there was no effect of fungicide treatment on regulating

the number of aphids infected by entomopathogenic fungi.

Comparison between field trial years

During 2011, the numbers of aphids and natural enemies recorded on plants were

much lower than in 2010. When comparing the pattern of aphid numbers in the open
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plot of the 2010 trial (6.1.4b) with the monitoring plots in 2011 (Figure 6.27a), the

2010 field trial appears to display three peaks (July, August and September) in aphid

numbers, while the 2011 monitoring plots only display two (July and September).

The occurrence of a third peak could be due to the crash occurring earlier during

2010, which would give the aphids more time to build up their population again in

August. Furthermore, if emigration is the main factor contributing to an aphid

population crash then this would also facilitate the faster population recovery during

2010, as the high numbers of emigrating aphids could recolonise the field trial plots.

Differences were observed in the most abundant type of natural enemy between 2010

and 2011, with 2010 seeing a relatively great presence of syrphid larvae and

parasitoids, and 2011 seeing a relatively great presence of parasitoids and

entomopathogenic fungi. Similar observations were made by Varenhorst and O’Neal

(2012) who showed that Harmonia axyridis was the key predator of A. glycines in

one year but that Orius insidiosus was more abundant in another year

As natural enemy communities appear to vary from year to year, with some years

seeing a greater presence of one species compared to another, it seems likely that the

aphid crash is a result of a community of natural enemies aggregating in response to

high aphid numbers, rather than the specific effects of one or two natural enemies

alone (Donaldson, et al., 2007; Alyokhin, et al., 2011). To confirm this effect for N.

ribisnigri, it might be possible, as undertaken in other studies, to measure the effects

of different individual predators by using partial exclusion methodology, where the

use of different sized meshes would restrict different species of natural enemy and

walls/raised cages would restrict or allow access to ground dwelling predators

(Brosius, et al., 2007b; Kidd and Jervis, 2007). This might indicate the most

important community of complementary (no intraguild predation) generalist and

specific predators, which one could then release into the field to see if the mid-

summer crash could be manipulated to occur when required, which depending on the

cost, could be implemented by growers. Alternatively, one could provide floral

resources and mulches to increase the presence of these particular predators. For

example, the provision of sweet alyssum has been shown to be successful in

improving biological control by hoverflies and parasitic wasps in field-grown lettuce
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(Johanowicz and Mitchell, 2000; Skirvin, et al., 2011) and particularly for the

control of N. ribisnigri (Gillespie, et al., 2011).

Annual differences in the relative numbers of certain types of natural enemy could

also be the result of intraguild predation, where natural enemies predate upon each

other, therefore altering the presence and influence of members of the natural enemy

community For example, the introduction of predators including Coccinellidae and

Carabidae can reduce levels of parasitism of aphids by predation of mummies

(Ferguson and Stiling, 1996; Snyder and Ives, 2001).

This study has evaluated the factors influencing the mid-summer crash of N.

ribisnigri during 2010 and 2011. It is suggested that, of the factors discussed, natural

enemies and emigration are the two key factors likely to be influencing aphid

abundance and these are likely to be acting together to reduce aphid infestations.

Future work is required to determine the level of influence that they both have.

Determining the causes of the mid-summer crash may allow researchers to predict

when it is going occur, so that growers can allow nature to reduce aphid populations

instead of applying unnecessary insecticides. On understanding the factors which

cause the midsummer crash, researchers may also be able to create the conditions

where natural control of aphid populations is facilitated. However, because

agroecosystems undergo frequent disturbances, which can interrupt control by

natural enemies this could make the creation of these environmental conditions

challenging. This is also why the development of a control strategy for N. ribisnigri

on lettuce using biological control agents continues to be challenging to implement

(Landis, et al., 2000).

Conclusion

 The mid-summer crash was observed during both trial years occurring

between the 5-12 July 2010 and 14-29 July 2011.

 Netting treatments reduced the number of natural enemies in plots but did not

completely exclude them. Netting treatments also influenced the

microclimate and could have resulted in more aphids infected with

entomopathogenic fungi during 2011.
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 Fungicide and/or insecticide treatments did not reduce the numbers of natural

enemies or aphids infected with entomopathogenic fungi during the 2010

trial. However, during 2011 the insecticide treatment was observed to reduce

natural enemies in each trial month except June.

 Data on temperature and rainfall could not explain the decline in aphid

numbers in 2010 or 2011. However, the intensity and duration of the wind

and rain could not be excluded as a possible contributing factor.

 While alate numbers were low prior to the mid-summer crash, the increase in

their percentage of the total population suggested emigration could be a

significant contributing factor to the mid-summer crash, but further work is

required to determine to what extent. During 2011 emigration resulting in

poor plant quality was considered unlikely as the aphid decline still occurred

in monitoring plots which contained lettuce plants of various ages.

 Natural enemies in both years increased prior to the mid-summer crash

indicating they play a role in supressing aphid populations. Further work is

required to determine the level of suppression natural enemies can achieve.

 Due to the variation in the species of natural enemies present each year, this

study suggests that it is a community of natural enemies which contribute to

the mid-summer crash rather than the activity of one or two key natural

enemies.

 Emigration and natural enemies were the two main factors which could have

influenced aphid populations in this study.
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Chapter 7: Host Plant Resistance

Introduction

Host plant resistance is an alternative ‘environmentally-friendly’ method of control

for certain pests and diseases, often providing absolute control. Originally the range

and consequent use of resistant vegetable cultivars was limited but their value has

increased following changes to pesticide regulations, continuing insecticide

resistance issues and new technologies revolutionising plant breeding and GM

approaches (Eigenbrode and Trumble, 1994). Resistant cultivars are now available

for various ‘vegetable’ crops including potato, tomato, corn, brassicas and lettuce

and can be used as part of IPM strategies to reduce insecticide applications and

provide better control of pests overall. Particularly for a pest such as N. ribisnigri,

which resides in the hearts of lettuce heads, resistant cultivars can provide a more

effective control measure compared with foliar sprays of insecticide which may not

reach the pest (Aarts, et al., 1999).

Due to variations in genetics, plants can range from being completely resistant to

susceptible to the damage caused by insect pests (Kogan, 1994). All plants exhibit

some form of response to aphid feeding, although more ‘resistant’ plants have more

effective antibiotic and/or antixenotic effects on insects (Kogan, 1994). Antixenosis

resistance deters insects from colonising the plant, while antibiosis exerts an

antibiotic/adverse effect on the pest, both of which can be due to plant structure (e.g.

hard cell walls) and/or chemical composition (Caldwell, et al., 2005). Plants can also

express tolerance to insect pests by having the ability to withstand or repair damage

inflicted by a pest, and this is also classed as a form of plant resistance (Reese, et al.,

1994). Crops such as lettuce, however, need to be pest-free and therefore the

development of insect resistant cultivars with antixenosis and antibiosis is required.

However, plants can express all three ‘mechanisms of resistance’ in their defence

strategy (Gao, et al., 2008).

In response to aphid feeding it is hypothesised that the different modes of resistance

to aphid feeding are initiated through two processes. The first occurs in both

susceptible and resistant plants where, in response to aphid feeding, changes in plant

chemistry initiate a general stress response; while the second process involves
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specific responses by plant resistance genes (R genes) on recognition of specific

insect-induced elicitors (gene for gene interaction) (Smith and Boyko, 2007). The

latter mechanisms are only present in resistant plants and the identification and

exploitation of these R genes has led to the development of completely resistant

cultivars providing pest-specific resistance.

Various insect R genes have been cloned, and structural similarities have been

identified, such as leucine-rich-repeats (Kaloshian, 2004). This structural

information is valuable as it can help to identify other R genes by screening for these

repeats in germplasms. Currently, the largest number of R genes have been identified

and characterized for the hessian fly, Mayetiola destructor (Anderson and Harris,

2006). Various R genes for aphids have been identified in cultivated vegetables

including the Mi-1gene in tomato which confers resistance to the potato aphid, M.

euphorbiae (Vos, et al., 1998) and the Vat gene in melon which confers resistance to

A. gossypii (Lombaert, et al., 2009).

Cultivars resistant to N. ribisnigri are also available. The resistance was identified

and developed over a period of 15 years and the first cultivar was released in 1999

(van der Arend, 2003). These resistant lettuce cultivars have since been widely

cultivated throughout Europe (van der Arend, 2003). The resistance was originally

sourced from the Institute for Horticultural Plant Breeding (IVT) Lactuca gene bank

where some accessions of Lactuca virosa provided nearly complete resistance to N.

ribisnigri (Eenink, et al., 1982b). Inter-specific crosses were used to transfer this

resistance into L. sativa. A bridging species (Lactuca serriola) was used, as offspring

resulting from L. sativa and L. virosa crosses died (Eenink, et al., 1982b). Breeding

lines were supplied to private plant breeders to introgress the resistance into their

own cultivars.

Since the development of these resistant host plants, several studies have attempted

to understand the underlying resistance mechanisms. Investigation into the

inheritance of the resistance in L. sativa confirmed that resistance is controlled by

one dominant gene, known as the Nr-gene, with a 3:1 Mendelian segregation in F2

plants and with the potential existence of minor resistance genes (Eenink, et al.,

1982a). When making comparisons of several parameters (including mean relative

growth rate, larval development/mortality, reproduction, honeydew production and
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rm) for WT N. ribisnigri on resistant and susceptible (near isogenic) lettuce lines, the

absence of weight gain and honeydew production suggested that feeding is

suppressed, if not absent, on the resistant line (van Helden, et al., 1993). Other

studies have also confirmed the effectiveness of the control of N. ribisnigri provided

by these resistant lettuce cultivars (Liu and McCreight, 2006; Palumbo, 2002).

Studies on the effect of the Nr-gene on other species of lettuce aphid indicated

complete susceptibility to M. euphorbiae, but partial resistance to M. persicae.

However, reproduction of M. persicae varied significantly between the three

homozygous resistant lettuce lines tested, suggesting that additional genes,

interacting with the Nr-gene, are responsible and not the Nr-gene alone (Reinink and

Dieleman, 1989). Therefore, the resistance mechanism associated with the Nr-gene

is unlikely to be mechanical or due to a general change in plant quality, as it is likely

that other aphid species would be affected in these circumstances, so the resistance is

more species-specific (Tjallingii and Esch, 1993).

Advances in technology have since allowed researchers to associate the resistance

mechanism with the phloem sieve elements using Electrical Penetration Graphs

(EPG), where the near absence of the food uptake phase (E2 pattern) has been

recorded on resistant lettuce lines (van Helden, 1993; van Helden and Tjallingii,

1993; ten Broeke, et al., 2010). Further studies comparing the chemical composition

of phloem sap from susceptible and resistant lines have shown that phloem samples

collected from susceptible lines, by Ethylenediaminetetraacetic acid (EDTA)

facilitated exudation, were preferred to phloem samples from resistant lines,

indicating the presence of a feeding deterrent (van Helden, et al., 1994; van Helden,

et al., 1995). The feeding deterrent could also be mobile, as the use of excised leaves

results in a loss of resistance (Liu and McCreight, 2006); although this could also be

due to the changes in metabolism resulting from the excision (Gao, et al., 2008). It

has also been confirmed that the deterrent is not toxic, as normal feeding and growth

is resumed on transfer of aphids to susceptible lettuce cultivars (van Helden, et al.,

1993). Currently, the precise mechanism still remains unknown.

While the development of host plant resistant cultivars is an effective method of

control against various pest insects, the possibility of selection for resistance-

breaking biotypes has been considered, because of the increased selection pressure
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provided by monocultures of resistant lettuce and the monogenic nature of the

resistant genes (van der Arend, 2003). Furthermore, evidence for the occurrence of

resistance-breaking biotypes has already been reported for other crops, such as

Amphorophora agathonica which overcame the Ag1 gene in raspberry (Dogimont, et

al., 2010). Therefore, it came as no surprise that, in 2007, a new biotype of N.

ribisnigri was identified, which was able to develop and reproduce on resistant

lettuce cultivars in Germany and France. Unfortunately, it was confirmed during

2009 that this new resistance-breaking biotype (Rb as assigned in this study) had

reached the United Kingdom and samples were collected from a resistant lettuce

crop in Kent and sent to Warwick Crop Centre.

Preliminary investigations into the new biotype(s), collected from Germany and

France, on resistant and susceptible lettuce, confirmed that these aphids could

develop on both types of cultivar, but the rate of population increase by resistance-

breaking aphids was halved compared with the wild-type (WT) aphids on susceptible

lettuce cultivars (Smilde, et al., 2009). Use of the EPG technique showed that the Rb

biotype expressed the same feeding characteristics when feeding on resistant

cultivars as the WT biotype displayed when feeding on susceptible cultivars,

indicating that Rb aphids are insensitive to the resistance mechanism affecting WT

aphids (ten Broeke, et al., 2010). How Rb aphids overcome the resistance provided

by the Nr-gene remains unknown.

With the development of this new resistance-breaking N. ribisnigri biotype, the

future effectiveness of the current Nr-gene cultivars in the control of this pest is

uncertain, and the development of new resistant cultivars with new mechanisms of

resistance is necessary. This study aims to identify sources of novel resistance to N.

ribisnigri by screening lettuce cultivars and their wild relatives using WT and Rb N.

ribisnigri. Successful plants will be sources of genetic material for the development

of new resistant cultivars.
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Methods

7.1 Preliminary screen to confirm resistance

Six Butterhead cultivars were obtained from different breeding companies and

screened with either WT (4850a) or Rb (RbKentPop) N. ribisnigri to give 12

treatments in total. Susceptible cultivars, Clarion and Charles, were sourced from

Enza zaden and Nunhems respectively, and four resistant cultivars (Nr-gene),

Aljeva, Malfalda, Skyphos and Rotary were obtained from Enza zaden, Nunhems,

Rijk Zwann and Elsoms respectively.

The Butterhead cultivars were sown in vermiculite on 5 April 2010. On 12 April, ten

seedlings of each cultivar were transferred into individual pots and placed in CE

Room 4 at 18°C 16L:8D. The plants were used two weeks later when their 4th true

leaf had unfolded (BBCH growth stage 14).

New born nymphs of WT and Rb N. ribisnigri were obtained by releasing 180 alates

of each biotype into separate cages containing six lettuce plants (cv. Saladin). These

were left for 24 hours to produce nymphs of similar age.

After 24 hours, eight new born WT nymphs were inoculated onto five plants of each

Butterhead cultivar and eight new born Rb nymphs were inoculated onto the

remaining plants. The plants were then covered with micro-perforated

polypropylene bags (200mm x 500mm; Cryovac®), which were secured with an

elastic band and kept at 20°C 16L:8D in CE Room 6. The plants were left for nine

days, after which the numbers of N. ribisnigri surviving were recorded. Plants were

arranged on a single shelf in a randomised row and column design (4 x15 plants)

with 12 treatments, five blocks and 60 plants in total.

7.2 Screening a lettuce genetic diversity set with WT and Rb N. ribisnigri for

new sources of resistance

A lettuce diversity set consisting of 96 lines (see Appendix Table A2) was obtained

from the Vegetable Genetic Improvement Network (VeGIN) at The Warwick Crop

Centre at The University of Warwick. The lettuce diversity set represents a range of
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morphological and genetic variation in domesticated L. sativa accessions and wild

Lactuca species. Table 7.2.1 displays the types and numbers of lines comprising the

set and Figure 7.2.2 illustrates this variation.

Table 7.2.1 Crop types and numbers of lines comprising the genetic diversity

set.

Crop Type Number

Butterhead 25

Cos 17

Wild 17

Crisp 10

Cutting 10

Latin 7

Batavian 4

Stem 2

Iceberg 1

Leaf 1

Oilseed 1

Stalk 1

Figure 7.2.2 The 96 lines comprising the lettuce diversity set.
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For each of the 96 lines, four seeds were sown together in a single pot and kept in

CE Room 4 (18°C 16L:8D). After two weeks, the seedlings were transplanted into

individual pots. Depending on the germination success of the seeds, 1-4 plants were

available for each lettuce line. This process was repeated five times on 1 February, 9

March, 4 April, 4 May and 16 June 2011. Any lines identified as being poor at

germinating after the initial sowing occasion had extra seed sown in vermiculite

thereafter.

The screening experiments were repeated ten times and each replication of the WT

N. ribisnigri screening experiment was designed to screen all the 96 lines with WT

(4850a biotype) N. ribisnigri. However, due to poor germination, this was not

always achievable and some screens would have several lines missing. As a result

tests on each lettuce line were replicated between four and ten times depending on

germination success. The lines used for the WT N. ribisnigri screen were arranged in

an alpha design (leaving spaces for any lettuce lines which did not germinate).

When there were too few remaining plants to carry out a further screen with WT N.

ribisnigri, they were used to screen Rb N. ribisnigri (RbKent biotype). Such plants

were used from sowing occasions on 4 April, 4 May and 16 June. Further seeds were

sown on 29 July 2011 to screen further Rb N. ribisnigri. The screening experiment

for the Rb N. ribisnigri was repeated five times and each line had one to seven

replicates. A list randomiser program was used to create a randomised design for the

Rb N. ribisnigri screen (Haahr, 1998).

The lines which germinated successfully for the WT N. ribisnigri screen were used

between 23 days (4th - 5th true leaf unfolded depending on the line) and 42 days old

(when grown at 18°C 16L:8D), as the replications were staggered to make data

collection manageable. Lines used to screen Rb N. ribisnigri were used between 34

and 43 days day old.

New born nymphs were used in the experiments; these were obtained by inoculating

15 WT or Rb N. ribisnigri alate and apterous adults per 20 plants (cv. Pinokio).

These were then left for 48 hours at 20°C 16L:8D in CE Room 3 to produce 1-2 day

old nymphs. Five nymphs were then transferred to each lettuce line using a fine paint
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brush. The inoculated plants were covered individually with micro-perforated

polypropylene bags (200mm x 500mm; Cryovac®) which were secured with an

elastic band and left for three weeks. Both screens were arranged on a single shelf in

CE Rooms 3 or 6, at 20°C 16L:8D.

After approximately 3-4 weeks (ranging from 20 to 29 days for WT N. ribisnigri and

21-26 days for Rb N. ribisnigri - varying due to the time required to count the

aphids), the aphids on each lettuce line were counted, recording the number of alate

and non-alate (apterous and nymphs) N. ribisnigri present. Data collection was

carried out over a two day period.

7.3 Screening mapping parents with WT and Rb N. ribisnigri for new sources of

resistance

An additional screen was carried out to investigate the phenotype for resistance to

WT and Rb N. ribisnigri in six mapping parent lines, compared with two susceptible

lines. Some of these lines (2, 20, 87, 94 and 96) had been screened previously in

Experiment 7.2 but had low replication numbers. Saladin (Line 1) was also included

as it was absent in Experiment 7.2. Other lines were re-screened because they had

shown good resistance levels previously. The additional lines included a parent of a

Saladin cv. TILLING (Targeted Local Lesions IN Genomes) population (LJ09003),

and a new Salinas mapping parent line (LJ10221). Screening these eight lines would

allow more informed decisions about the mapping parents that should be used in

future crosses, through knowing their phenotype for resistance to WT and Rb N.

ribisnigri.

A screen of these eight lines with Rb and WT N. ribisnigri resulted in 16 treatments.

Originally the design was created for five replications per treatment (80 plants in

total) but poor germination of lines 16, 18 and 19 meant that only four replications

were carried out (64 plants in total). These screens were carried out as per

Experiment 7.2 and were repeated twice (20 and 21 December 2011).

Twenty seeds were sown per line as described in Experiment 7.2 and kept in CE

Room 4 (18°C 16L:8D). Plants were used when their 4th - 5th true leaf had unfolded

which varied between lines. Both screens were carried out in CE Room 6 (20°C
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16L8D). Each replication was arranged on a single shelf in a randomised row and

column design (4 x 16). Five new born nymphs were inoculated per plant and were

obtained as per Experiment 7.2. Treatments were left for three weeks (21 and 22

days), and the aphids on each lettuce line were counted, recording the number of

alate and non-alate (apterous and nymphs) N. ribisnigri present. Data collection was

carried out during one day.

7.4 Screening wild relatives of lettuce with Rb N. ribisnigri for new sources of

resistance

A selection of wild relatives of lettuce, including 14 Cichorium intybus and 18

Cichorium endivia accessions (see Appendix Table A3), were screened using Rb N.

ribisnigri. Seeds were sown on 10 November 2011 in a glasshouse, and plants were

transferred to CE Room 3 (20° 16L:8D) on 16 December 2012 and left to

acclimatise whilst arranged in an alpha design on a single shelf.

On 18 December 2011, the plants (were each inoculated with five new born Rb N.

ribisinigri nymphs. The new born nymphs were obtained as per Experiment 7.2.

Plants were 38 days old when screening began which was at the growth stage when

their 4th - 5th true leaf had unfolded (which varied between lines).

A total of 32 accessions were screened and four replicates of each accession were

tested at the same time. Data collection was carried out over a period of two days on

9 and 10 January 2012, 22 days from inoculation. The numbers of alate and non-

alate (apterous and nymphs) were recorded.

Results

7.1 Preliminary screen to confirm resistance

Analyses of the mean percentage of WT and Rb N. ribisnigri surviving (out of eight

inoculated) per plant on Day 9 were performed using ANOVA. An angular

transformation was carried out on the percentages to normalise the data. Due to the

zero values present in the data set, the ANOVA was carried out including the zero

values, and also excluding the zero values by removing them from the data set.
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Figure 7.1.1 shows the back-transformed means of the proportion of N. ribisnigri

surviving per plant after 9 days on each of the treatments. The WT N. ribisnigri

biotype survived on both susceptible cvs. Clarion and Charles but could not survive

on the resistant cvs. Aljeva, Skyphos and Rotary. Only one WT aphid was still alive

on Malfalda.

The WT biotype on cv. Clarion and the Rb biotype on cv. Skyphos equally had the

highest proportions of aphids surviving per plant after nine days, each with a

proportion of 0.975 aphids surviving per plant. Out of all of the treatments with high

survival, the Rb N. ribisnigri biotype on cv. Malfalda had the lowest number of

surviving aphids. Rb N. ribisnigri survived on both resistant and susceptible

cultivars.

Figure 7.1.1 Back-transformed mean proportion of WT and Rb N. ribisnigri

biotypes surviving per plant on two susceptible (cvs. Clarion and

Charles) and four resistant Butterhead (cvs. Aljeva, Malfalda,

Skyphos and Rotary) cultivars after nine days.

Table 7.1.2 shows the treatment means and LSD values used to determine

significance between the treatments when the analysis included the zero values.

Treatment had a significant effect on the mean percentage of aphids surviving per

plant on Day 9 (F (11,48)=54.06, p<0.001). The numbers of aphids of the WT N.

ribisnigri biotype on the two susceptible cvs. Clarion and Charles were significantly

different to the numbers of aphids of the WT biotype on the resistant cultivars.
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The WT biotype on cvs. Charles and Clarion performed similarly to all the Rb

treatments, with the exception that the WT biotype on cv. Clarion was significantly

different to the Rb biotype on cv. Malfalda. All the treatments with high numbers of

aphids surviving at Day 9 were significantly different from the WT N. ribisnigri

biotype on cvs. Aljeva, Malfalda, Skyphos and Rotary, where 100% mortality was

observed and expected.

Table 7.1.2 Angular transformed treatment means of the percentage of WT and

Rb N. ribisnigri surviving per plant on Day 9, degrees of freedom

and 5% LSD from the ANOVA analysis including the zero values.

Means with different letters are significantly different.

Treatment Mean d.f. LSD

WT + Clarion 85.9a 48 14.64

WT + Charles 79.9ac

WT + Aljeva 0b

WT + Malfalda 4.1b

WT + Skyphos 0b

WT + Rotary 0b

Rb + Clarion 71.6ac

Rb + Charles 78.0ac

Rb + Aljeva 74.2ac

Rb + Malfalda 70.8c

Rb + Skyphos 85.9a

Rb + Rotary 71.6ac

Table 7.1.3 shows the treatment means and LSD values (two values are present for

the comparison of treatments with different numbers of replicates) used to determine

significance between the treatments means which had a value above zero. Therefore,

treatments with WT aphids on cvs. Aljeva, Skyphos and Rotary were excluded.

Treatment had a significant effect on the percentage of aphids surviving per plant on

Day 9 (F (8,32)=2.97, p<0.013). This analysis showed all the treatments performed

similarly and were only significantly different to the WT biotype on cv. Malfalda,
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where 100% mortality was expected. Little difference was observed between this

analysis and the previous analysis which included the zero values.

Table 7.1.3 Angular transformed treatment means of the percentage of WT and

Rb N. ribisnigri surviving per plant on Day 9, numbers of

replicates, degrees of freedom and 5% LSD for the ANOVA

analysis, excluding the zero values. Means with different letters are

significantly different.

Treatment Mean Rep d.f. LSD

WT + Clarion 85.9a 5 32 17.66 Max-max rep

WT + Charles 79.9a 5 30.60 Max-min rep

WT + Aljeva

WT + Malfalda 4.1b 1

WT + Skyphos

WT + Rotary

Rb + Clarion 71.6a 5

Rb + Charles 78.0a 5

Rb + Aljeva 74.2a 5

Rb + Malfalda 70.8a 5

Rb + Skyphos 85.9a 5

Rb + Rotary 71.6a 5

7.2 Screening a lettuce genetic diversity set with WT and Rb N. ribisnigri for

new sources of resistance

The mean number of aphids counted per plant from Experiment 7.2 on the WT and

Rb N. ribisnigri biotypes (alate and all stages) were analysed using a Restricted

Maximum Likelihood Analysis (REML). The WT and Rb N. ribisnigri data were

analysed separately as the experiments were designed independently. A LOG10

transformation was carried out to normalise the count data and a value of one was

added to the data due to presence of zero values within the replicates. Data

interpretations were made using the predicted mean and 5% LSD values. While the
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REML output provided individual LSDs for all comparisons between all of the 96

lines, alternative LSDs were calculated to simplify the analysis of the data. A single

LSD was calculated for the numbers of all stages and alates by multiplying the t

value (calculated from the probability and degrees of freedom) by the maximum

standard error of the difference.

In the analysis of the number of WT N. ribisnigri, the plant lines were used as the

fixed model to determine whether they had an effect on the numbers of aphids

recorded. In addition, a random model was used to determine the effects of replicate,

block and plot according to the alpha design.

The output of the REML showed that there was little effect of replicate, block and

plot on either the number of all stages or alates of N. ribisnigri recorded on each line.

There was a statistically significant effect of line on the numbers of all stages

recorded (ndf 95, ddf 647, p<0.001) and on the numbers of alates (ndf 95, ddf 647,

p<0.001) for the WT N. ribisnigri biotype. The numerator degrees of freedom (ndf)

represents the variance due to the effect and the denominator degrees of freedom

(ddf) represents the variance within treatments (Weinberg and Abramowitz, 2008).

Figure 7.2.3 shows the predicted transformed means calculated for all stages and

alates of WT N. ribisnigri per plant on each line screened. Line 95 was the most

resistant line and had the lowest number of all stages and alate aphids (0.25 and 0.05

per plant respectively). These means were significantly different from the means for

all other lines including Line 1 (Saladin) and Line 2 (Iceberg), which are commercial

cultivars. Line 65 was the most susceptible line with the highest number of all stages

and alate aphids per plant (1.83 and 2.49 respectively) and was significantly more

susceptible to N. ribisnigri than Lines 1 and 2.

When analysing the data on Rb N. ribisnigri, the lettuce lines were included as the

fixed model to determine whether they had an effect on the numbers of aphids

recorded (total number and number of alates). In addition, a random model was used,

which showed the effects of replication.

There was little effect of replication on the numbers of aphids recorded per plant (all

stages and alates). However, there was a statistically significant effect of plant line
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on the number of all stages recorded (ndf 90, ddf 224, p<0.001) and on the number

of alates (ndf 90, ddf 224, p<0.001).

Figure 7.2.4 shows the predicted means estimated for the numbers of all stages and

alates of Rb N. ribisnigri per plant on each line. Line 95 was the most resistant line

and had the lowest total number of all stages and alates per plant (0.02 and 0.21 per

plant respectively). Line 85 was the second most resistant line.

When using the LSDs to compare means, the numbers of all stages on Line 95 were

significantly different from Line 93 and upwards, and numbers of alates were

significantly different from line 96 and upwards. When compared to Line 2 (Line 1

not screened), Line 95 was significantly more resistant. Line 52 was the most

susceptible line with the highest numbers of all stages and alate aphids per plant

(2.12 and 2.87 per plant respectively). When compared with Line 2, Line 52 was

significantly more susceptible when considering both the total number of aphids and

the number of alates.
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Figure 7.2.3 Transformed predicted mean numbers of WT N. ribisnigri per plant (all stages and alate) from the REML analysis.
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Figure 7.2.4 Transformed predicted mean numbers of Rb N. ribisnigri per plant (all stages and alate) from the REML analysis.
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7.3 Screening mapping parents with WT and Rb N. ribisnigri for new sources of

resistance

Analyses of the number of N. ribisnigri (alate and all stages) recorded per plant on

the mapping parents were performed using ANOVA, following a LOG10

transformation to normalise the data. An ANOVA was performed separately for the

number of alates and all stages. A value of one was added to all the data as some

values were zero and could not be transformed. Interpretations of the data were made

using treatment means and 5% LSD values.

The ANOVA showed a significant effect for plant line for alates (F(7,102)=6.21,

p<0.001) and all stages of N. ribisnigri (F(7,102)=8.43, p<0.001). There was also an

interaction between plant line and aphid biotype for alates (F(7,102)=2.67, p<0.014)

and all stages (F(7,102)=2.27, p<0.035).

Figure 7.3.1 shows transformed means for both the number of all stages and alates

per plant of WT and Rb N. ribisnigri recorded on five mapping parents (LJ09001,

LJ09002, LJ10220 and LJ10222), one TILLING line (LJ09003) and two susceptible

lines (LJ10336 and LJ10410). LSD (0.05) values are shown to allow comparisons

between transformed means.

LJ10220 was the most resistant line for both alates and all stages of the Rb biotype

with 0.67 and 1.38 mean aphids per plant respectively. Line LJ09003 was the most

resistant line for both alates and all stages of the WT biotype with 0.966 and 1.582

mean aphids per plant respectively. However, no significant difference in

performance was observed when the best performing treatments for Rb and WT N.

ribisnigri were compared.

When using the LSD to compare means, performance of the WT biotype on the two

susceptible lines was significantly higher when compared to the line which was most

resistant (LJ09003) and also LJ09001, LJ09002, LJ0220 and LJ10221. This was also

observed for the Rb biotype on its most resistant line (LJ10220) when compared to

both the susceptible lines. The performance of the Rb biotype on the susceptible line

LJ10336 was also significantly different to its performance on LJ9002 and LJ9003.

The two aphid biotypes performed similarly on each line except for line LJ10221
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where the Rb biotype produced significantly more aphids in total than the WT

biotype.

Significantly more alate aphids were produced by Rb biotypes on lines LJ09003 and

LJ10221 compared with the WT biotype. Numbers of alates of both WT and Rb N.

ribisnigri were similar on the two susceptible lines. The WT biotype had

significantly less alates on line LJ09001, LJ09002, LJ09003, LJ10220 and LJ10221

compared to the susceptible line LJ10336 and there were significantly less alates on

line LJ09003 compared with susceptible line LJ10410. The Rb biotype had

significantly less alates on line LJ10220 when compared to both the susceptible

lines.

Figure 7.3.1 Transformed mean numbers of WT and Rb N. ribisnigri biotypes

(all stages and alates) recorded per plant after three weeks on

lettuce lines consisting of five mapping parents, one parent of a

TILLING line and two susceptible (sus) cultivars. LSDs (5%) are

shown for all stages and alates.

0

0.5

1

1.5

2

2.5

3

WT Rb WT Rb WT Rb WT Rb WT Rb WT Rb WT Rb WT Rb All
stages

Alate

Saladin
LJ09001

Iceberg
LJ09002

Saladin
LJ09003

L. virosa
LJ10220

Salinas
LJ10221

L. serriola
LJ10222

L. saligna
LJ10336

(sus)

L. serriola
LJ10410

(sus)

LSD
(0.05)

LSD
(0.05)

T
ra

n
sf

or
m

ed
m

ea
n

n
u

m
er

of
N

.r
ib

is
n

ig
ri

(a
ll

st
ag

es
an

d
al

at
e)

p
er

p
la

n
t

Line and aphid biotype

All stages Alate



247

7.4 Screening wild relatives of lettuce with Rb N. ribisnigri for new sources of

resistance

Analyses on all stages and alates of the Rb N. ribisnigri biotype were performed

using a REML analysis. The data were normalised using a LOG10 transformation

and a value of one was added to all data due to the presence of zeros in the data set.

The fixed model included the lines screened, and the random terms which could

affect the fixed model included replication, row and column. Interpretations of the

data were made using the F statistic, predicted treatment means and 5% LSDs

provided by the REML analysis. Individual LSDs are provided in Figure 7.4.1 for

the number of all stages and number of alate N. ribisnigri, which was calculated by

multiplying the t value (calculated from the probability and degrees of freedom) by

the maximum standard error of the difference. This was done because the large

number of LSDs provided from the REML output could not be displayed.

The REML suggested there was only a small amount of variation due to the effect of

the random terms (replication, row or column) on the total numbers and numbers of

alate Rb N. ribisnigri recorded, suggesting that there was no effect of plant position

in the design. A significant effect between the lines was found when analysing both

the number of all stages of N. ribisnigri (ndf 31, ddf 75, p<0.001) and the number of

alates (ndf 31, ddf 76, p=0.005).

When analysing the transformed predicted means in Figure 7.4.1, adjusted for the

effects caused by the random terms (for all stages of N. ribisnigri recorded), the most

resistant and least resistant lines were C. intybus species Lines 50 and 10 with means

of 0.41 and 2.82 per plant respectively. Using differences between predicted means

and LSD values for all stages of N. ribisnigri showed that Line 50 was significantly

different to all other treatments, including Line 37, which was the next most resistant

line with a predicted mean of 1.63 per plant. Line 13 was the first line which was

significantly different from Line 37 in ascending order.

When analysing the predicted means for alate N. ribisnigri, Line 50 had the least

alates and Line 10 had the most, with means of 0.24 and 1.61 per plant respectively.

Both were C. intybus species. When looking at the LSD values, Line 26 with a
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predicted mean of 1.17 per plant was the first line which was significantly different

from Line 50 in ascending order.

Figure 7.4.1 Transformed predicted means from a REML analysis of Rb N.

ribisnigri (all stages and alate) per plant on each line screened.

LSDs (5%) are shown for the numbers of alates and all stages.
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2012). Partial resistance in L. virosa is controlled by a recessive allele at the same

locus as the (incomplete) dominant allele governing complete resistance (Eenink and

Dieleman, 1983). It is thought that minor resistance genes could also exist and would

explain the variations observed between a susceptible group of F2 L. sativa plants

(Eenink, et al., 1982a). Even different L. virosa accessions providing complete

resistance have been reported to vary in the level of resistance they provide. Again,

minor resistance genes influencing the Nr-gene could explain this, but also the

existence of different Nr alleles has yet to be confirmed (Eenink and Dieleman,

1983). Variation between the lines could also be due to the age of the plant or foliage

at the feeding site, which have been identified as factors influencing host plant

resistance (Eenink and Dieleman, 1980; Kaloshian, et al., 1995; Le Roux, et al.,

2008).

When screening the diversity set, Line 95, L. virosa (LJ 10411), was the most

resistant line for both WT and Rb N. ribisnigri and is the original wild donor species

of the Nr-gene used to develop current resistant cultivars. As the line also provides

resistance to the Rb aphids it indicates that L. virosa (LJ 10411) must contain ‘novel’

resistance genes determining a different type of resistance mechanism to the Nr-gene

in the host plant. The existence of other novel resistance genes in L. virosa is also

supported by EPG recordings where both WT and Rb biotypes displayed strong

reductions in phloem sap ingestion when feeding (ten Broeke, et al., 2010).

Line 96 was the second most resistant line to WT N. ribisnigri, but other lines

provided enhanced resistance to the Rb biotype. For example, Lines 84, 85 and 92

were more resistant than Line 96 and appeared to show greater resistance to Rb N.

ribisnigri than to the WT biotype. While the data for Lines 84, 85 and 92 were based

on a low number of replicates, this could suggest that the genetically-determined

mechanism of resistance in these lines which may be either, or a mixture of,

antibiosis and antixenosis, is more effective against the Rb biotype, and therefore not

the same mechanism as the Nr-gene.

Evaluation of different N. ribisnigri Rb populations through EPG recordings has

shown variation in the phase associated with food uptake, with some populations

feeding more easily than others on a resistant line (ten Broeke, et al., 2011). This

suggests that there may be genetic variation in the response of aphids to the same
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plant species and future work should evaluate different aphid populations of both

WT and Rb biotypes.

The majority of the lines which displayed superior resistance to WT and Rb N.

ribisnigri were wild species, indicating that they are probably the most important

source of useful resistance traits. A dendrogram was created to summarise the

genetic relationships between the 96 accessions (lines) (Figure 7.5). The lines were

separated by morphological grouping into two clusters which separated the wild

species (Cluster 1) from the domesticated cultivars (Cluster 2), illustrating the

distinct genetic differences between the two groups (Walley, et al., In preperation).

Within Cluster 2, there was further separation into three sub-clusters, where Cluster

2a formed a clade that was distinct from Clusters 2b and 2c. This indicated that

Cluster 2a was more closely related to the wild species in Cluster 1 than Cluster 2b

and 2c were, which suggests that it contains species that were domesticated at an

early stage from the wild species. Clusters 2b and c are more distantly related to the

wild species and represent the more domesticated species. Analysis of the genetic

relationships of the domesticated cultivars resulted in Butterhead and Cos crop types

being grouped into Cluster 2b and 2c respectively.

When considering the resistance levels of each of these clusters to WT N. ribisnigri,

the groupings support the hypothesis that wild species contain more genetic

variation, and therefore a wider range of phenotypes resistant to WT N. ribisnigri,

than more domesticated cultivars. An overall mean for the numbers of all stages of

WT N. ribisnigri per plant was calculated for the lines within each cluster. Cluster 1

was the most resistant cluster with the lowest mean number of WT N. ribisnigri per

plant (120.73 aphids per plant), and this represented the wild species. This was

followed by Cluster 2a (125.4 aphids per plant), which was most closely related to

the wild species and therefore likely to have more genetic variation and potential

resistance compared with Cluster 2b (145.15 aphids per plant) and Cluster 2c

(169.90 aphids per plant). A similar pattern was observed using overall means for the

Rb biotype, where Cluster 1 was the most resistant (105.21 aphids per plant)

followed again by Cluster 2a (160.38 aphids per plant), Cluster 2b (210.94 aphids

per plant) and Cluster 2c (268.61 aphids per plant). This suggests that early in the

domestication process, traits such as improved taste, delayed bolting, increased seed
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size, head appearance and non-shattering seeds (de Vries, 1997) were selected

preferentially, which may have resulted in the loss of genetic diversity and variation

for other beneficial traits such as resistance to N. ribisnigri. This emphasises the

importance of wild species and their relatives in providing new sources of genetic

variability for beneficial traits such as resistance to insects (el Bouhssini and Nachit,

2000; McCreight and Liu, 2012). Similarly, the screen of C. intybus and C. endive

accessions in the present study identified a line (Line 50) with superior resistance to

Rb N. ribisnigri.

Unfortunately, breeding traits identified in wild species and distant relatives into

commercial cultivars can be challenging, with their genetic compatibility

determining the viability and length of the breeding process (Dogimont, et al., 2010).

For example, crossing L. virosa and commercial lettuce cv. L. sativa results in non-

viable offspring, even though they belong to the same genus, Scariola, in the seriolla

group (Lindqvist, 1960). As a result, a bridging species L. serriola (which is the

closest relative of L. sativa) was required (Eenink, et al., 1982b). This

incompatibility can be explained by chromosome morphology, since L. virosa is

very different to L. sativa, whilst L. sativa and L. serriola are very similar and more

closely related (Lindqvist, 1960). Therefore, useful traits associated with candidate

genes from other species, such as L. serriola, would be preferred, as it would remove

the need for a bridging species and reduce the time required to produce new

cultivars. Unfortunately, in this study, the lines expressing high resistance were both

L. virosa species. Other researchers have since been successful in identifying an

accession of L. serriola which is resistant to WT N. ribisnigri (McCreight and Liu,

2012).
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Figure 7.5 Genetic relationships in the VeGIN lettuce diversity set. The

bootstrap value indicates the level of confidence in the

relationships which is determined by assessing the repeatability of

the results via a method known as bootstrap (Felsenstein, 1985).

Red lines represent relationships where there is a high level of

confidence in their accuracy.

Research has shown that resistance to insects in plants can be monogenic, but more

usually, resistance is a quantitative trait, which varies in degree due to the action of

two or more genes and is responsible for controlling partial resistance (Yencho, et

al., 2000). The Nr-gene is an example of monogenic resistance which following

introgression into L. sativa is inherited dominantly, so that plants show complete

resistance. In contrast, plants expressing partial resistance have continuously-varying

levels of resistance which are controlled by one or more genes (polygenic) (Singh

Cluster 2c

Cluster 2b

Cluster 2a

Cluster 1
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and Singh, 2005). A comprehensive review of the monogenic and polygenic genes

involved in aphid resistance in a range of crops has recently been generated by

Dogimont et al. (2010).

With the development of molecular tools, scientists are increasingly able to identify

the regions of DNA containing genes involved in quantitative traits (polygenic

genes), which are designated as quantitative trait loci (QTL). For example, recent

work on P. persicae has shown that the QTLs involved in resistance to M. persicae

co-locate with QTLs involved in feeding behaviour (Sauge, et al., 2012). While in

soybean, two QTLs associated with resistance to A. glycines are linked to high

isoflavone content, resulting in antibiosis resistance (Meng, et al., 2011). These

studies indicate that the mechanisms of host plant resistance to aphid species could

vary greatly.

Mapping of QTL regions and other resistance genes requires a mapping population

for that species. This is a population created from crossing two parent plants that

have highly contrasting phenotypes for the trait being investigated, and also have

DNA polymorphisms which can be used as molecular markers. The segregation

patterns of the molecular markers in the offspring can then be analysed by

genotyping the individual lines. Mapping software can be used to place the

molecular markers in order, indicating relative genetic distances between the

markers (Prasanna, 2007). The approximate location of the gene controlling the trait

can then be determined, as any molecular markers which are continually inherited

with the trait are likely to be closely located to the gene/genes controlling that trait

(Lodge, et al., 2007). Therefore, accessions with associated mapping populations

have valuable genetic information which can be used for mapping genes involved in

resistance.

Due to the convenience of working with candidate plants which already have

mapping populations available, an additional screen of selected mapping parents was

carried out in this study. This included re-screening some of the 96 lines but also

included a Salanis (LJ10221) mapping parent and a Saladin TILLING population

parent. While none of the lines provided complete resistance to Rb and WT N.

ribisnigri, Line 96 was the most resistant line against Rb N. ribisnigri, and the

TILLING parent was the most resistant line against WT N. ribisnigri, although not
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significantly different from Line 96. The screen also confirmed previous

observations, that Salanis was susceptible to N. ribisnigri (McCreight, 2008).

The present study has identified potential sources of resistance to Rb and WT N.

ribisnigri, which could be investigated further. It also emphasises the importance of

maintaining germplasm, as access to the genetic variation in wild species is crucial

for discovering novel resistance. With the development of molecular technology,

research should focus on introducing polygenic resistance, which would be more

resilient, as it would be more challenging for the aphids to overcome. This is in

contrast to monogenic resistance, where the development of new aphid biotypes has

already been observed (Dreyer and Campbell, 1987). Furthermore, as TILLING

populations are often used to create genetic variation in domestic crops, particularly

where much of the wild variation has been lost (Slade and Knauf, 2005), it would be

useful to screen the mutagenised seeds of this parent to see if any mutations resulted

in superior resistance to WT or Rb N. ribisnigri.

Conclusion

 The Rb biotype collected from Kent survived on Nr-gene cultivars of lettuce and

the WT biotype did not.

 The 96 lines of lettuce and wild species evaluated showed a range of

susceptibility to WT and Rb N. ribisnigri confirming genetic variation exists for

the resistance trait between lines.

 Line 95, L. virosa (LJ 10411), was the most resistant to both WT and Rb N.

ribisnigri and is the original wild donor species of the Nr-gene. Therefore, as

Line 95 provided resistance to the Rb biotype, it must contain ‘novel’ resistance

genes, in addition to the Nr-gene. These additional genes must determine a

different type of resistance mechanism in the host plant compared to the Nr-gene.

 Line 96 was the second most resistant line to WT N. ribisnigri, but other lines

were more resistant to the Rb biotype.

 Screening of C. intybus and C. endive accessions identified Line 50 which

showed resistance to Rb N. ribisnigri confirming that relatives of lettuce are a

source of genetic variation for resistance traits.
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 Screening of mapping parents did not identify any lines which provided complete

resistance to Rb and WT N. ribisnigri but confirmed that Line 96 was still one of

the most resistant lines. The parent of the Saladin TILLING population also

provided resistance against the WT biotype and screening the subsequent

population of this parent could provide offspring with genetic variability for the

resistance trait.

 Wild species and relatives are an important source of genetic variability for

beneficial traits such as resistance to insects.



256

Chapter 8: General Discussion

Nasonovia ribisnigri is a serious pest of lettuce, where its presence can lead to

unmarketable produce and financial losses for growers. Its significance as a pest is

exacerbated by its preference to feed in the centre of lettuce heads, which protects it

from the effects of certain insecticides and natural enemies. Furthermore, the

effectiveness of current control measures are threatened by the continuous reduction

in the number of active ingredients available for insect control, and the development

of insecticide resistant and host plant resistance-breaking biotypes, meaning that the

need for new methods of control has never been more important.

Prior to this study, little information was available on the biology and behaviour of

N. ribisnigri, which is essential for the development of control measures and the

effective timing of their application. Therefore, the specific objectives of this study

set out to provide some of this essential knowledge to aid the development of an

integrated pest management strategy and to refine some of the components within it.

The objectives set out were as followed:

1) Investigate the effects of photoperiod and temperature on the development of

parthenogenetic aphids (Chapter 3).

2) Investigate the conditions required to stimulate development of sexual

morphs, egg production, termination of egg diapause and egg hatching

(Chapter 4).

3) Investigate alternative host plants (to lettuce) and confirm whether N.

ribisnigri can use them as overwintering hosts (Chapter 5).

4) Investigate the population dynamics of N. ribisnigri in response to natural

enemies and entomopathogenic fungi (Chapter 6).

5) Investigate the potential of Lactuca species and their relatives to provide new

sources of resistance genes which could be used to develop resistant cultivars

with new mechanisms of resistance (Chapter 7).

The outcomes of this study and achievement of these objectives will now be

addressed in turn:
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Investigate the effects of photoperiod and temperature on the development of

parthenogenetic summer aphids (Chapter 3).

In Chapter 3, the effects of temperature and photoperiod on the developmental

parameters of WT N. ribisnigri were described. This included optimum temperatures

and lower and upper developmental thresholds (agreeing with those determined in a

similar study by Diaz and Fereres (2005). These were determined by using the data

collected in this study, which described a linear relationship between development

rate and temperature, allowing for the estimation of the day-degree requirements for

development from nymph to the final adult moult (which was again similar to those

determined by Diaz and Fereres (2007).

Prior to this study, the method used for predicting the population development of N.

ribisnigri in the UK was based on a day-degree model, using the lower

developmental threshold for P. bursarius (Collier, et al., 1994). However, this

forecast can now be refined, using the values determined specifically for N.

ribisnigri, to provide a more accurate forecast of its activity.

As this study was constrained by labour and time resources, future work could

continue to improve the accuracy of the forecast by increasing the data set used to

determine the linear relationship. Investigations could also be made into the use of

non-linear models which may describe the relationship better and provide a more

accurate forecast. In addition, this study showed that photoperiod did not influence

development, and estimates were similar between Rb and WT N. ribisnigri, meaning

that these factors do not need to be considered in the development of the forecast.

Finally, this study raised questions about the effectiveness of aphid-resistant

cultivars at lower temperatures, where the control provided by the Nr-gene appeared

to fail. However, as the ambient temperature fluctuates in the field, and is likely to be

above 15ºC for at least some of the period during which lettuce crops are grown,

resistance will still be provided against WT N. ribisnigri. As a breakdown in

resistance was not observed in the field prior to the ‘arrival’ of the new resistance-

breaking biotype, it seems likely that the temperature sensitivity of the Nr-gene is

unlikely to threaten the control of WT N. ribisnigri. Despite this, the effects of

temperature, particularly fluctuating temperatures, on the performance of new

resistant cultivars should be analysed to clarify this.
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Investigate the conditions required to stimulate development of sexual morphs, egg

production, termination of egg diapause and egg hatching (Chapter 4).

A phenological forecast of egg development and hatching in the spring would

provide important information on the activity of N. ribisnigri and indicate when it is

likely to migrate to lettuce crops. This information would support growers in

deciding when to apply preventative control measures such as crop covers and

possibly the use of seed treatments or resistant cultivars, depending on how far in

advance N. ribisnigri activity can be predicted. The forecast would also be useful if

effective control of N. ribisnigri could be achieved by controlling developing N.

ribisnigri fundatrices and offspring on the winter host; whether this would be

worthwhile requires further research.

Unfortunately, the data collected during this study were insufficient to support the

development of a forecast for egg hatch. However, the study has provided methods

to initiate sexual morph production and produce eggs in the laboratory, which were

unavailable prior to this study. These methods can now be used in the future to

determine the relationship between egg development and temperature, which can be

used in turn to estimate the LDT and develop a forecast (Graf, et al., 2006).

Monitoring of the winter lifecycle in this study also provided basic information on

the overwintering biology of N. ribisnigri, confirming the timings of key events such

as migration, egg laying and egg hatch.

Investigate alternative host plants (to lettuce) and confirm whether N. ribisnigri can

use them as overwintering hosts (Chapter 5).

Various weeds can provide alternative sources of refuge for pests, in addition to their

host crop. The data collected in this study confirmed that there are several alternative

hosts that WT and Rb N. ribisnigri can utilise in the summer. Furthermore, a

selection of these host plants also supported overwintering parthenogenetic N.

ribisnigri between November and March.

The study also confirmed that, should N. ribisnigri overwinter as nymphs/adults in

the Midlands, as observed in the South of England, they could overwinter

successfully, at least in some years. This could have important implications for the
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timing of their spring migration to other hosts, with aphids overwintering in the

active stages continuing development as soon as temperatures exceed the LDT. It is

likely that they would migrate to lettuce crops ‘sooner’ and develop larger summer

populations than those overwintering as eggs. Removal of potential winter host

plants would remove possible refuges for N. ribisnigri but consideration must be

given to their ‘other’ roles, for example, as a nectar source for natural enemies

during the summer.

Finally, this study confirmed that temperature and host plant location were the key

factors determining aphid survival during the winter, with a combination of sheltered

plants and mild winters resulting in enhanced survival and potentially larger spring

populations.

Investigate the population dynamics of N. ribisnigri in response to natural enemies

and entomopathogenic fungi (Chapter 6).

The monitoring of N. ribisnigri populations during 2010 and 2011 recorded the

occurrence of the mid-summer crash, which has been described for various aphid

species. In this study, in both years, high natural enemy numbers were observed prior

to the decline, suggesting that this was one of the most important regulating factors

for N. ribisnigri populations. While entomopathogenic fungi, syrphid larvae and

parasitoids were present in the highest numbers during these trials, future work

should focus on determining the effects of individual predator species through the

methods discussed in Chapter 6.

Emigration was also determined to be an important factor regulating aphid

population as the numbers of alate aphids were observed to increase prior to the mid-

summer crash in both field trial years. As this study only analysed the potential for

emigration to occur, future work should implement methods to monitor ‘real time’

emigration to confirm its role in the mid-summer crash.

As data collection in this project was only performed by one researcher, there were

limitations and, unfortunately, the species of parasitoids and fungus specifically

affecting N. ribisnigri were not recorded. Future work should aim to identify these



260

natural enemies, as effective biological control agents might be identified which

could be introduced or enhanced as part of an IPM strategy.

Like various other studies, this study has failed to identify a single factor which

resulted in the mid-summer crash, but it has identified significant factors involved.

Due to its complex nature it is uncertain whether the mid-summer crash will ever be

understood fully, but achieving this would allow researchers to predict when aphids

will decline naturally, therefore avoiding unnecessary insecticide applications.

Idealistically, identifying the factors responsible could facilitate the re-creation of

these conditions in the field to induce an aphid decline when required.

Investigate the potential of Lactuca species and their relatives to provide new

sources of resistance genes which could be used to develop resistant cultivars with

new mechanisms of resistance (Chapter 7).

Resistant cultivars are an ‘environmentally friendly’ method of controlling pest

insects and can be used effectively within an integrated pest management

programme. Based on a single resistance gene (Nr-gene), conferring complete

resistance, the resistance in commercial lettuce cultivars has provided effective

control of N. ribisnigri until recently. The development of a new resistance-breaking

biotype of N. ribisnigri has threatened their future.

In October 2009, a sample of N. ribisnigri, that had colonised a crop of a resistant

variety of lettuce in Kent, was sent to Warwick Crop Centre. This study confirmed

that these aphids were the ‘new’ resistance-breaking biotype, demonstrating, as have

previous studies on other pest insects (Buntin, et al., 1990; Eigenbrode, 2002;

Kumar, 2005) that single gene ‘complete’ resistance can be overcome in time and

may therefore be only a ‘short term’ solution. Currently the spread of this new

biotype within the UK and its impact on the management of N. ribisnigri have not

been determined, probably because field infestations of N. ribisnigri have been low

over the past three years (possibly as a result of unfavourable weather conditions).

Interestingly, the insecticide resistant clones of N. ribisnigri identified in earlier

studies in the UK (Barber, et al., 1999), do not appear to have become more

abundant over the last few years, which may again be merely a reflection of
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generally low levels of infestation or because the insecticide regimes used in recent

times have not provided a high selection pressure for these forms of resistance. .

The potentially short life span of the aphid-resistant cultivars available currently

indicates that a ‘new’ approach is required. One component would be the

identification of new sources of resistance that will provide different mechanisms of

resistance, this could either be complete resistance or partial resistance that could be

used in combination with other methods of control as part of an IPM strategy. This

study confirmed that new sources of resistance to both WT and Rb N. ribisnigri can

be found in wild lettuce and its relatives and these could be exploited to develop new

resistant cultivars. This will be particularly important for the development of an IPM

strategy to control the new resistance-breaking biotype, should it become

widespread. However, as discussed in Chapter 7, future research should focus on

encompassing polygenic resistance, which would be more stable and ‘challenging’

for the aphid to overcome than single gene resistance (Dreyer and Campbell, 1987).

Recently, a patent has been filed for the development of new cultivars with

resistance to the Rb biotype, originating from L. serriola (Teekens, et al., 2010).

This resistance has, however, been described as monogenic and therefore is likely to

only be a short term solution when used as the main control method, as there would

be high selective pressure for the development of resistance-breaking biotypes. If

these cultivars were used within an IPM programme in alternation with susceptible

lettuce and other control methods, this would reduce the selective pressure and could

prolong their life span as an effective control measure.

Life- cycle

Until now, the lifecycle of N. ribisnigri has always been described generally with

details of its primary and secondary host plants and the timing of its migration

between them. By using the information collected in this study a more detailed life-

cycle can be provided:

Nasonovia ribisnigri asexually reproduces throughout the summer months on

Lactuca spp. and other broad leave weeds including C. intybus, C. capillaris, L.

communis, H. aurantiacum, H. pilosella, V. arvensis, V. spicata and V. officinalis.
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Development occurs at temperatures above the estimated lower development

threshold of 4.7°C, where development from nymph to the final adult moult takes

approximately 120 day-degrees with temperatures exceeding 26°C becoming

deleterious to development.

As temperature and day length decrease in autumn, alate males are produced

initially, followed by alate gynoparaes (observed to be produced together at 12°C

13L:11D), which migrate around mid-October to the winter host (Ribes species). The

gynoparae then produce female oviparae which lay eggs after mating with males

found on the winter host.

Once the eggs have been deposited, usually in the angle between a stem and a bud,

they enter a state of diapause, which terminates naturally in the field between late-

January and early-February. However, the preponderance of temperatures below the

lower developmental threshold for egg development delays hatching until late

February.

Once the eggs have hatched, the fundatrices develop and begin reproduction, feeding

from the nutrient rich buds of the primary host plant. Once the offspring develop into

alate adults, migration to the secondary host occurs and the primary host plant is no

longer accepted as a suitable host for colonisation (no nymphs are produced).

It has also been confirmed that in the South of England and the Midlands N.

ribisnigri can overwinter as active aphids (adults and nymphs) on ‘alternative’ host

plants to lettuce, particularly V. arvensis.
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Appendix

Chapter: General techniques

Table A1 Abbreviation used in this study and their meaning.

Abbreviation Meaning

BBCH Biologische Bundesanstalt, Bundessorte

namt und Chemische Industrie

CE Controlled Environment

CL Confidence Limit

Cv. or Cvs. Cultivar or Cultivars

DD Day-degree

Exp. Experiment

IPM Integrated Pest Management

IRU Insect Rearing Unit

LDT Lower Developmental Threshold

LOG Logarithm

LSD Least Significant difference

n Number of Observations

Rb Resistance-breaking

RH Relative Humidity

rm Intrinsic Rate of Increase

SE Standard Error

Sp. or Sp. Species

T Total

Tn Number of Possible Observations

Treat. Treatment

UDT Upper Developmental Threshold

WT Wild-type
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Chapter: Host Plant Resistance

Table A2 Line number, name, accession code and crop type of the 96 lines

screened from the Vegetable Genetic Improvement Network

(VeGIN) at The Warwick Crop Centre, The University of

Warwick.

Line

Number Line Name Accession Crop type

1 Saladin LJ 10317 Iceberg

2 Iceberg LJ 10318 Batavian

3 Michelmore mapping parent LJ 10319 Wild

4 Stoke LJ 10320 Cos

5 Batavia Blonde de Paris LJ 10321 Batavian

6 Lobjoits Green Cos LJ 10322 Cos

7 Ambassador LJ 10323 Butterhead

8 Red Granoble LJ 10324 Batavian

9 Merville de Quatre Saisons LJ 10325 Butterhead

10 Bloody Warrior LJ 10326 Cos

11 New Chicken LJ 10327 Stem

12 Romain de Benicardo LJ 10328 Cos

13 Lilian LJ 10329 Butterhead

14 Batavia Tezier LJ 10330 Batavian

15 Wunder von Stuttgart LJ 10331 Butterhead

16 Adriatica 2 LJ 10332 Butterhead

17 Webbs Wonderful LJ 10333 Crisp

18 Waldermann's Dark Green LJ 10334 Leaf

19 Chinese Stem Lettuce LJ 10335 Stem

20 L. saligna LJ 10336 Wild

21 L. saligna LJ 10145 (parent) Wild

22 L. saligna LJ 10338 Wild

23 Moskovskij Parnikovyi LJ 10339 Butterhead

24 Smaragd LJ 10340 Butterhead

25 Teli Vajfej LJ 10341 Butterhead
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26 Tardisix LJ 10342 Butterhead

27 Grosse Brune Tetue; Bruine

Trotskop

LJ 10343 Butterhead

28 Hilde LJ 10344 Butterhead

29 Verdatre LJ 10345 Butterhead

30 Verte de Cobham; Cobham Green LJ 10346 Butterhead

31 Wayahead LJ 10347 Butterhead

32 Kordaat LJ 10348 Butterhead

33 Joy of the Village LJ 10349 Butterhead

34 Butterking LJ 10350 Butterhead

35 Capitan; 541 LJ 10351 Butterhead

36 Cagraner Sommer LJ 10352 Butterhead

37 Kral Maje I LJ 10353 Butterhead

38 Bronowicka LJ 10354 Butterhead

39 Outdoor lettuce LJ 10355 Butterhead

40 Proftuins Blackpool LJ 10356 Butterhead

41 Alface (butterhead) LJ 10357 Butterhead

42 Rudolfs Liebling LJ 10358 Butterhead

43 L. sativa (no name) LJ 10359 Cos

44 Forellenschluss LJ 10360 Cos

45 Floricos 83 LJ 10361 Cos

46 L. sativa (no name) LJ 10362 Cos

47 L. sativa (no name) LJ 10363 Cos

48 Kahu LJ 10364 Cos

49 Romana Larga Catalana LJ 10365 Cos

50 Yedicule Yagli Marul LJ 10366 Cos

51 Kaiser Selbstschluss LJ 10367 Cos

52 Kakichisha White LJ 10368 Cos

53 L. sativa (no name) LJ 10369 Cos

54 Pallone; Ballon LJ 10370 Cos

55 Romaine Verte LJ 10371 Cos

56 Frisee de Beauregard LJ 10372 Crisp

57 Great Lakes LJ 10181 (parent) Crisp
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58 L. sativa (no name) LJ 10374 Crisp

59 Alface (crisp) LJ 10375 Crisp

60 Aspen; RS822560 LJ 10184 (parent) Crisp

61 Shladha LJ 10377 Crisp

62 Prazan LJ 10378 Crisp

63 Gloire du Dauphine LJ 10379 Crisp

64 L. sativa (no name) LJ 10380 Crisp

65 White Lettuce LJ 10381 Cutting

66 Monet; RS867531 LJ 10382 Cutting

67 L. sativa (no name) LJ 10383 Cutting

68 L. sativa (no name) LJ 10384 Cutting

69 L. sativa (no name) LJ 10385 Cutting

70 Amerikanische Brauner LJ 10386 Cutting

71 Hohlblattringer Butter LJ 10387 Cutting

72 Krauser Gelber LJ 10388 Cutting

73 Oak Leaf LJ 10389 Cutting

74 Simpson LJ 10390 Cutting

75 Sucrine; Little Gem LJ 10391 Latin

76 Mestnyi LJ 10392 Latin

77 Bibb LJ 10393 Latin

78 Alface Repolho LJ 10394 Latin

79 Okayama Salad LJ 10395 Latin

80 Deer Tongue LJ 10396 Latin

81 Midget Cos LJ 10397 Latin

82 Balady LJ 10398 Oilseed

83 L. sativa (no name) LJ 10399 Stalk

84 L. serriola LJ 10400 Wild

85 L. serriola LJ 10401 Wild

86 L. serriola LJ 10210 (parent) Wild

87 L. serriola LJ 10211 (parent) Wild

88 L. serriola LJ 10404 Wild

89 L. serriola LJ 10405 Wild

90 L. serriola LJ 10214 (parent) Wild
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91 L. serriola LJ 10215 (parent) Wild

92 L. serriola LJ 10408 Wild

93 L. serriola LJ 10409 Wild

94 L. serriola LJ 10410 Wild

95 L. virosa LJ 10411 Wild

96 L. virosa LJ 10220 (parent) Wild

Table A3 Line number, name, species and accession code of Cichorium

intybus (14) and Cichorium endivia (18) lines screened.

Line

Num. Line Name Species

Accession

code

3 Di verona (Red) C. intybus 3225

6 Cicoria O Radicchio selvatica da campo C. intybus 5216

7 Cicoria O Radicchio da taglio a foglia C. intybus 5217

9 Cicoria pan di zucchero C. intybus 5219

10 Indivia romanesca da taglio C. endivia 5221

13 Indivia ricciuta di pancalieri C. endivia 5224

16 Di verona rossa a palla C. intybus 5242

19 Breedblad volhart winter brevo Rs C. endivia 5605

20 Malan C. endivia 5606

22 De ruffec rocco C. endivia 5608

25 Kwarosa C. intybus 5968

26 Varigata di sottomarina C. intybus 6529

27 Cicoria rossa di treviso C. intybus 6530

30 No name C. intybus 7223

31 Chicori C. intybus 12117

32 Amelioree pain de sucre race elmo C. intybus 12721

33 Marly C. endivia 12722

35 Diva C. intybus 12941

36 Vilmorin No 5 C. intybus 12979

37 Tosca C. endivia 12981



268

38 Traviata C. endivia 12980

39 Atria C. endivia 12998

40 Cornelia C. endivia 12999

41 Sacha C. endivia 13000

43 Ariga C. endivia 13002

44 Dorana C. endivia 13003

45 Sally C. endivia 13004

46 Glory C. endivia 13006

47 Gilda C. endivia 13007

48 Minerva C. endivia 13008

49 Lea C. endivia 13010

50 Bea (F1) C. intybus 13019
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