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Abstract 

This paper derives a micro-founded gravity equation based on a translog demand system that 

allows for flexible substitution patterns across goods. In contrast to the standard CES-based 

gravity equation, translog gravity generates an endogenous trade cost elasticity. Trade is more 

sensitive to trade costs if the exporting country only provides a small share of the destination 

country’s imports. As a result, trade costs have a heterogeneous impact across country pairs, with 

some trade flows predicted to be zero. I test the translog gravity equation and find empirical 

evidence that is in many ways consistent with its predictions.  
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1. Introduction 

For decades, gravity equations have been used as a workhorse model of international 

trade. They relate bilateral trade flows to country-specific characteristics of the trading partners 

such as economic size, and to bilateral characteristics such as trade frictions between exporters 

and importers. A large body of empirical literature is devoted to understanding the impact of 

trade frictions on international trade. The impact of distance and geography, currency unions, 

free trade agreements and WTO membership have all been studied in great detail with the help of 

gravity equations. 

Theoretical foundations for gravity equations are manifold. In fact, various prominent 

trade models of recent years predict gravity equations in equilibrium. These models include the 

Ricardian framework by Eaton and Kortum (2002), the multilateral resistance framework by 

Anderson and van Wincoop (2003), as well as the model with heterogeneous firms by Chaney 

(2008). Likewise, Deardorff (1998) argues that a gravity equation also arises from a Heckscher-

Ohlin framework where trade is driven by relative resource endowments.
1
 

The above trade models all result in gravity equations with a constant elasticity of trade 

with respect to trade costs. This feature means that all else being equal, a reduction in trade costs 

– for instance a uniform tariff cut – has the same proportionate effect on bilateral trade regardless 

of whether tariffs were initially high or low or whether a country pair traded a little or a lot. This 

is true when the supply side is modeled as a Ricardian framework (Eaton and Kortum, 2002), as 

a framework with heterogeneous firms (Chaney, 2008) or simply as an endowment economy 

(Anderson and van Wincoop, 2003). 

Recent research has drawn attention to the idea that a reduction in trade costs, for 

example through a free trade agreement or falling transportation costs, may lead to an increase in 

competition. Melitz and Ottaviano (2008) and Behrens and Murata (2012) demonstrate this 

effect theoretically. Feenstra and Weinstein (2010) provide theory as well as evidence for the 

US. Badinger (2007) as well as Chen, Imbs and Scott (2009) provide evidence for European 

countries. This line of research emphasizes more flexible demand systems that respond to 

changes in the competitive environment. 

                                                 
1
 Also see Bergstrand (1985). Feenstra, Markusen and Rose (2001) as well as Evenett and Keller (2002) also show 

that various competing trade models lead to gravity equations. 
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In this paper, I adopt such a demand system and argue that it is fundamental to 

understanding the trade cost elasticity. In particular, in section 2 I depart from the constant 

elasticity gravity model and derive a gravity equation from homothetic translog preferences in a 

general equilibrium framework.
2
 Translog preferences were introduced by Christensen, 

Jorgenson and Lau (1975) in a closed-economy study of consumer demand.
3
 In contrast to CES, 

translog preferences are more flexible in that they allow for richer substitution patterns across 

varieties. This flexibility breaks the constant link between trade flows and trade costs.
4
 Instead, 

the resulting translog gravity equation features an endogenous elasticity of trade with respect to 

trade costs. The effect of trade costs on trade flows varies depending on how intensely two 

countries trade with each other. Specifically, the less the destination country imports from a 

particular exporter, the more sensitive are its bilateral imports to trade costs. Trade costs 

therefore have a heterogeneous trade-impeding impact across country pairs. Despite this increase 

in complexity, the translog gravity equation is parsimonious and easy to implement with data. 

In section 3, I attempt to empirically contrast translog gravity with the traditional constant 

elasticity specification. Based on trade flows amongst OECD countries, I find evidence that 

seems inconsistent with the constant elasticity specification. The results demonstrate that ‘one-

size-fits-all’ trade cost elasticities as implied by standard gravity models are typically not 

supported by the data. Instead, consistent with translog gravity, in many applications I find that 

the trade cost elasticity increases in absolute size, the less trade there is between two countries. 

To be precise, all else being equal bilateral trade is more sensitive to trade costs if the exporting 

country provides a smaller share of the destination country’s imports. An implication is that a 

given trade cost change, for instance a reduction of trade barriers through a free trade agreement, 

has a heterogeneous impact across country pairs. The translog gravity framework can therefore 

                                                 
2
 An online appendix that accompanies this paper provides further details both on the theory and the empirics. 

3
 Recent applications of translog preferences include Feenstra and Weinstein (2010) who are concerned with 

estimating the welfare gains from increased variety through globalization, Feenstra and Kee (2008) who estimate the 

effect of expanding export variety on productivity, as well as Bergin and Feenstra (2009) who estimate exchange 

rate pass-through. More generally, the translog functional form has been used widely in other fields, for example in 

the productivity literature. See Christensen, Jorgenson and Lau (1971) for an early reference. 
4
 Although Melitz and Ottaviano (2008) work with quadratic preferences at the individual product level, their 

preferences have CES-like characteristics at the aggregate level in the sense that their gravity equation also features 

a constant trade cost elasticity. It has a zero income elasticity although population can be a demand shifter. Also see 

Behrens, Mion, Murata and Südekum (2009) for a model with non-homothetic preferences and variable markups but 

a constant trade cost elasticity. The constant trade cost elasticity is also a feature of the ‘generalized gravity 

equation’ based on the nested Cobb-Douglas/CES/Stone-Geary utility function in Bergstrand (1989). See Markusen 

(1986) for an additional specification with non-homothetic preferences. 
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shed new light on the effect of institutional arrangements such as free trade agreements or WTO 

membership on international trade. For example, it can help explain why trade liberalizations 

often lead to relatively larger trade creation amongst country pairs that previously traded 

relatively little.
5
 

Although not explored in this paper, another potentially useful feature of the translog 

demand system is that it is in principle consistent with zero demand. It is well-known that zeroes 

are widespread in large samples of aggregate bilateral trade, and even more so in samples at the 

disaggregated level. If bilateral trade costs are sufficiently high, the corresponding import share 

in translog gravity is zero.
6
 This feature is a straightforward implication of the fact that the price 

elasticity of demand is increasing in price and thus increasing in variable trade costs. In contrast, 

a CES-based demand system is not consistent with zero trade flows unless fixed costs of 

exporting are assumed on the supply side (see Helpman, Melitz and Rubinstein, 2008). 

The paper builds on the gravity framework by Anderson and van Wincoop (2003), but 

instead of CES it relies on the homothetic translog demand system employed by Feenstra (2003). 

Another related paper in the literature is by Gohin and Féménia (2009) who develop a demand 

equation based on Deaton and Muellbauer’s (1980) almost ideal demand system and estimate it 

with data on intra-European Union trade in cheese products. They also find evidence against the 

restrictive assumptions underlying the CES-based gravity approach and stress the role of variable 

price elasticities. But in contrast to my paper, they adopt a partial equilibrium approach and 

abstract from trade costs. Volpe Martincus and Estevadeordal (2009) use a translog revenue 

function to study specialization patterns in Latin American manufacturing industries in response 

to trade liberalization policies, but they do not consider gravity equations. Lo (1990) models 

shopping travel behavior in a partial equilibrium spatial translog model with variable elasticities 

of substitution across destination pairs. But her approach does not lead to a gravity equation. 

The theoretical note by Arkolakis, Costinot and Rodríguez-Clare (2010) examines the 

relationship between translog gravity and gains from trade based on the continuous translog 

expenditure function by Rodríguez-López (2011). They assume that firm productivity follows a 

                                                 
5
 Komorovska, Kuiper and van Tongeren (2007) refer to the ‘small shares stay small’ problem as the inability of 

CES-based demand systems to generate substantial trade creation in response to significant trade liberalization if 

initial trade flows are small. In contrast, translog demand predicts large trade responses if initial flows are small. 

Kehoe and Ruhl (2009) find evidence consistent with this prediction in an analysis of trade growth at the four-digit 

industry level in the wake of the North American Free Trade Agreement and other major trade liberalizations. 
6
 The translog demand system allows for choke prices beyond which demand is zero. See Melitz and Ottaviano 

(2008) for a specification with choke prices in a linear demand system. 
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Pareto distribution. This parametric assumption is crucial in generating a log-linear gravity 

equation with the standard constant trade cost elasticity. In contrast, my translog gravity equation 

gives rise to variable and endogenous trade cost elasticities. 

 

2. Translog preferences and trade costs 

This section outlines the general equilibrium translog model and derives the theoretical 

gravity equation based on an endowment economy framework.
7
 Following Diewert (1976) and 

Feenstra (2003), I assume a translog expenditure function. As Bergin and Feenstra (2000) note, 

the translog demand structure employed here is more concave than the CES. It can be 

rationalized as a second-order approximation to an arbitrary expenditure system (see Diewert, 

1976). 

I assume there are J countries in the world with j=1,…,J  and J ≥2. Each country is 

endowed with at least one differentiated good but may have arbitrarily many, and the number of 

goods may vary across countries.
8
 Let [Nj-1+1,Nj] denote the range of goods of country j, with  

Nj-1<Nj and N0≡0. NJ≡N denotes the total number of goods in the world. The translog 

expenditure function is given by  

0

1 1 1

1
(1) ln( ) ln( ) ln( ) ln( ) ln( ),

2

N N N

j j j m mj km mj kj

m m k

E U p p p  
  

      

where Uj is the utility level of country j with m and k indexing goods and γkm=γmk. The price of 

good m when delivered in country j is denoted by pmj. I assume trade frictions such that 

pmj=tmjpm, where pm denotes the net price for good m and tmj≥1 ∀ m,j is the variable trade cost 

factor. I furthermore assume symmetry across goods from the same origin country i in the sense 

that pm=pi if m ϵ [Ni-1+1,Ni], and that trade costs to country j are the same for all the goods from 

origin country i, i.e., tmj=tij if m ϵ [Ni-1+1,Ni]. But I allow trade costs tij to be asymmetric for a 

given country pair such that tij≠tji is possible. 

As in Feenstra (2003), to ensure an expenditure function with homogeneity of degree one 

I impose the conditions: 

                                                 
7
 I follow Anderson and van Wincoop (2003) in calling this framework general equilibrium (also see section 3.5). 

8
 CES can be rationalized as an aggregator for a set of underlying goods so that the assumption of one differentiated 

good per country as in Anderson and van Wincoop (2003) is reasonable. However, that assumption would not be 

harmless with translog demand. The number of goods is therefore allowed to vary across countries. 
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1 1

(2) 1, and 0.
N N

m km

m k

 
 

    

In addition, I let all goods enter ‘symmetrically’ in the γkm coefficients. Following Feenstra 

(2003), I therefore impose the additional restrictions: 

 (3) ( 1) and with 0.mm kmN m k m
N N

 
           

It can be easily verified that these additional restrictions satisfy the homogeneity conditions in 

(2).
9
 

The expenditure share smj of country j for good m can be obtained by differentiating the 

expenditure function (1) with respect to ln(pmj): 

1

(4) ln( ).
N

mj m km kj

k

s p 


   

This share must be non-negative, of course. Let xij denote the value of trade from country i to 

country j, and yj is the income of country j equal to expenditure Ej. The import share xij/yj is then 

the sum of expenditure shares smj over the range of goods that originate from country i: 

1 11 1 1

(5) ln( ) .
i i

i i

N N N
ij

mj m km kj

m N m N kj

x
s p

y
 

     

 
   

 
    

To close the model, I impose market clearing: 

 
1

(6) .
J

i ij

j

y x i


   

 

2.1. The translog gravity equation 

To obtain the gravity equation, I substitute the import shares from equation (5) into the 

market-clearing condition (6) to solve for the general equilibrium. Using pkj=tkjpk, I then solve 

for the net prices pk and substitute them back into the import share (5). This solution procedure is 

similar to the one adopted by Anderson and van Wincoop (2003) for their CES-based model. 

Appendix A, which can be found in an online appendix that accompanies this paper, provides a 

detailed derivation. 

As the final result, I obtain a translog ‘gravity’ equation for import shares as 

                                                 
9
 The assumption of γ>0 ensures that the price elasticity of demand exceeds unity. The estimation results below 

confirm this assumption. The elasticity is also increasing in price (see Feenstra, 2003). 
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












J

s s

is

W

s

ijiijiW

i

j

ij

T

t

y

y
nTntn

y

y

y

x

1

,ln)ln()ln()7(   

where 
Wy denotes world income, defined as 

1

JW

jj
y y


 , and 1i i in N N   denotes the 

number of goods of country i. The variable ln( )jT  is a weighted average of (logarithmic) trade 

costs over the trading partners of country j akin to inward multilateral resistance in Anderson and 

van Wincoop (2003). As Appendix A shows, it is given by 

1 1

1
(8) ln( ) ln( ) ln( ).

N J
s

j kj sj

k s

n
T t t

N N 

    

Note that the last term on the right-hand side of equation (7) only varies across the exporting 

countries i but not across the importing countries j. However, the third term on the right-hand 

side of equation (7),  lni jn T , varies across both. 

To be clear, I refer to expression (7) as a ‘gravity’ equation although its appearance 

differs from traditional gravity equations in two respects. First, the left-hand side variable is the 

import share xij/yj and not the bilateral trade flow xij. Second, the right-hand side variables are not 

multiplicatively linked. However, expression (7) and traditional gravity equations have in 

common that they relate the extent of bilateral trade to both bilateral variables such as trade costs 

as well as to country-specific variables such as the exporter’s and importer’s incomes and 

multilateral resistance. 

  

2.2. A comparison to gravity equations with a constant trade cost elasticity 

The important feature of the translog gravity equation is that the import share on the left-

hand side of equation (7) is specified in levels, while logarithmic trade costs appear on the right-

hand side. This stands in contrast to ‘traditional’ gravity equations. For example, Anderson and 

van Wincoop (2003) derive the following gravity equation: 

,)9(

1 


















ji

ij

W

ji

ij
P

t

y

yy
x  



8 

 

where Πi and Pj are outward and inward multilateral resistance variables, respectively, and σ is 

the elasticity of substitution from the CES utility function on which their model is based.
10

 To be 

more easily comparable to the translog gravity equation (7), I divide the standard gravity 

equation (9) by yj and take logarithms to arrive at 

).ln()1()ln()1()ln()1(lnln)10( jiijW

i

j

ij
Pt

y

y

y

x
























  

Although the dependent variable of gravity equations in the literature is typically ln(xij) as 

opposed to the logarithmic import share ln(xij/yj), I will nevertheless refer to the CES-based 

gravity equation (10) as the ‘standard’ or ‘traditional’ specification as opposed to the translog 

specification in equation (7). 

The log-linear form of equation (10) is the key difference to the translog gravity equation 

(7). The log-linear form is also a feature of the Ricardian model by Eaton and Kortum (2002) as 

well as the heterogeneous firms model by Chaney (2008).
11

 It implies a trade cost elasticity η 

that is constant, where η is defined as
12

 

.
)ln(d

)/ln(d
)11(

ij

jij

t

yx
  

Thus, the traditional gravity equation (10) implies η
CES

=-(σ-1).
13

  

However, translog gravity breaks this constant link between trade flows and trade costs. 

The translog (TL) trade cost elasticity follows from equation (7) as 

 ).//()12( jiji

TL

ij yxn   

It thus varies across observations. Specifically, ceteris paribus the absolute value of the elasticity, 

TL

ij , decreases as the import share grows larger. Intuitively, given the size yj of the importing 

                                                 
10

 Note that in the absence of trade costs (tij=1∀i,j), the CES and translog gravity equations coincide as xij/yj=yi/y
W

. 

With positive trade costs the models are non-nested (see section 3.3.3 for a discussion). 
11

 The trade cost coefficient in Eaton and Kortum (2002) is governed by the technology parameter θ, which is the 

shape parameter from the underlying Fréchet distribution. The trade cost elasticities in Chaney (2008) and Melitz 

and Ottaviano (2008) are governed by the parameter that determines the degree of firm heterogeneity, drawn from a 

Pareto distribution. Other differences include, for instance, the presence of bilateral fixed trade costs in the Chaney 

gravity equation. 
12

 The elasticity η as defined here focuses on the direct effect of tij on xij/yj. It abstracts from the indirect effect of tij 

on xij/yj through the multilateral resistance terms. These are general equilibrium effects that operate in both the CES 

and the translog frameworks. See section 3.5 for a discussion. 
13

 The gravity equation by Eaton and Kortum (2002) implies η
EK

=-θ. Likewise, the gravity equations by Chaney 

(2008) and Melitz and Ottaviano (2008) also imply a constant trade cost elasticity, given by the Pareto shape 

parameter. 
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country and the number of exported goods ni, a large trade flow xij means that the exporting 

country enjoys a relatively powerful market position. Demand for the exporter’s goods is 

buoyant, and consumers do not react strongly to price changes induced by changes in trade costs. 

On the contrary, a small trade flow xij means that demand for an exporting country’s goods is 

weak, and consumers are sensitive to price changes. As a result, small exporters are hit harder by 

rising trade costs and find it more difficult to defend their market share. 

 

3. Estimation  

In this section, I first estimate a translog gravity regression as derived in equation (7), and 

separately I also estimate a traditional gravity regression as in equation (10). I then proceed by 

examining whether the trade cost elasticity is constant (as predicted by the traditional gravity 

model) or variable (as predicted by the translog gravity model). 

 

3.1. Data 

I use exports amongst 28 OECD countries for the year 2000, sourced from the IMF 

Direction of Trade Statistics and denominated in US dollars. These include all OECD countries 

except for the Czech Republic and Turkey. The maximum number of bilateral observations is 

28*27=756, but seven are missing so that the sample includes 749 observations in total.
14

 

Income data for the year 2000 are taken from the IMF International Financial Statistics. 

I follow the gravity literature by modeling the trade cost factor tij as a log-linear function 

of observable trade cost proxies (see Anderson and van Wincoop, 2003 and 2004). For the 

baseline specification, I use bilateral great-circle distance distij between capital cities as the sole 

trade cost proxy, taken from www.indo.com/distance. For other specifications I add an adjacency 

dummy adjij that takes on the value 1 if countries i and j share a land border. The trade cost 

function can thus be written as 

,)ln()ln()13( ijijij adjdistt    

where ρ denotes the distance elasticity of trade costs and δ is the adjacency coefficient. 

                                                 
14

 The countries are Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Hungary, 

Iceland, Ireland, Italy, Japan, Korea, Luxembourg, Mexico, the Netherlands, New Zealand, Norway, Poland, 

Portugal, the Slovak Republic, Spain, Sweden, Switzerland, the United Kingdom and the United States. As some 

data for the Czech Republic and Turkey were missing, these countries were dropped from the sample. 
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 To estimate translog gravity equation (7), I also require data on ni, the number of goods 

that originate from country i. Naturally, such data are not easy to obtain and the theory does not 

provide guidance as to how it should be measured. However, Hummels and Klenow (2005) 

construct a measure of the extensive margin across countries based on shipments in more than 

5,000 six-digit product categories from 126 exporting countries to 59 importing countries for the 

year 1995. The extensive margin is measured by weighting categories of goods by their overall 

importance in exports, consistent with the methodology developed by Feenstra (1994). Their 

Table A1 reports the extensive margin of country i relative to the rest of the world. I use this 

fraction as a proxy for ni. Hummels and Klenow (2005) document that the extensive margin 

tends to be larger for big countries. For example, the extensive margin measure is 0.91 for the 

United States, 0.79 for Germany and 0.72 for Japan but only 0.05 for Iceland. I will also go 

through a number of robustness checks to ensure that my results do not solely depend on this 

particular extensive margin measure. 

 

3.2. Estimating translog gravity 

The first and last terms on the right-hand side of equation (7) can be captured by an 

exporter fixed effect Si since they do not vary over the importing country j: 

.ln
1









 

 s

is
J

s
W

s

iW

i

i
T

t

y

y
n

y

y
S   

I substitute this exporter fixed effect into equation (7) to obtain 

,)ln()ln()14( ijijiiji

j

ij
STntn

y

x
   

where I also add a mean-zero error term εij. Then I substitute the trade cost function (13) into the 

multilateral resistance term (8). This yields 

,)ln()ln( adj

j

dist

jj TTT    

where the terms on the right-hand side are defined as 

.and)ln()ln()15(
11





J

s

sj

sadj

j

J

s

sj

sdist

j adj
N

n
Tdist

N

n
T  

Using the trade cost function (13) once again for ln(tij), the translog estimating equation follows 

as 
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.)ln()ln()16( iji

adj

jiiji

dist

jiiji

j

ij
STnadjnTndistn

y

x
   

I construct the explanatory variables ln( )i ijn dist  and i ijn adj  by multiplying the underlying trade 

cost variables by the extensive margin proxy ni taken from Hummels and Klenow (2005). The 

)ln( dist

jT  and adj

jT  terms are constructed for each country j according to equation (15) and then 

multiplied by the extensive margin proxy ni. 

Table 1 presents the regression results. Column 1 estimates equation (16) with bilateral 

distance as the only trade cost proxy.
15

 As one would expect, import shares tend to be 

significantly lower for more distant country pairs. Column 2 adds the adjacency dummy. As 

typically found in gravity estimations, this coefficient is positive and significant. The coefficients 

of the individual regressors and the corresponding multilateral resistance regressors are similar in 

magnitude as predicted by estimating equation (16). For example, the distance coefficient in 

column 1 is estimated at -0.0296, whereas the corresponding trade cost index term is 0.0207. 

These two values are reasonably close in absolute magnitude, although a formal test of their 

equality is rejected (p-value=0.00). However, for the two adjacency regressors in column 2 a test 

of their equality in absolute magnitude cannot be rejected (p-value=0.81). 

As an alternative to the Hummels and Klenow (2005) measure, I devise an unweighted 

count of six-digit product categories to account for the extensive margin. The correlation 

between the two measures stands at 77 percent.
16

 I use this alternative measure as a robustness 

check to re-estimate columns 1 and 2 of Table 2, finding qualitatively very similar results. 

Furthermore, in Appendix B.1 in the online appendix I estimate equation (16) non-parametrically 

in order to provide further robustness checks that do not rely on the Hummels and Klenow 

(2005) measure. Overall, I yield results that are consistent with the translog model. 

As an additional specification, I adopt a related estimating equation where the dependent 

variable is the import share xij/yj divided by the extensive margin measure ni for the exporting 

                                                 
15

 I cluster around bilateral country pairs. For example, one joint cluster is formed for the trade flows between the 

United States and Canada, regardless of the direction.  
16

 I use UN Comtrade bilateral export data at the six-digit level for the year 2000 (HS 1996 classification). I exclude 

very small bilateral trade flows (those with values below 10,000 US dollars) since those tend to disappear frequently 

from one year to the next. Following Hummels and Klenow (2005), I normalize the extensive margin measure by 

constructing it relative to the total number of six-digit product categories that exist across all countries (5130 

categories). This alternative measure is 0.99 for the US, 0.95 for Germany, 0.89 for Japan and 0.10 for Iceland. 
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country. The resulting variable can be interpreted as the average import share per good of the 

exporting country. From equation (16) I obtain 

,ˆˆ)ln(
/

)17( ijjiijij

i

jij
SSadjdist

n

yx
   

where ij  denotes the error term. The exporter fixed effect iii nSS /ˆ   now absorbs the extensive 

margin measure ni, and the multilateral resistance terms associated with distance and adjacency 

can be captured by an importer fixed effect jŜ  given by 

.)ln(ˆ adj

j
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I prefer specification (17) to (16) because any possible measurement error surrounding ni is 

passed on to the left-hand side and estimation can be carried out with both exporter and importer 

fixed effects, as is frequently done in the gravity literature. 

The regression results are reported in columns 3 and 4. As before, distance enters with 

the expected negative coefficient and adjacency with a positive coefficient.
17

 As an additional 

check, I refer to Appendix B.2 in the online appendix where I estimate specifications similar to 

equations (16) and (17) but with a multiplicative error term instead of the additive error term. 

That estimation is carried out with nonlinear least squares. 

As a final check, in columns 5 and 6 I make the simplifying assumption that each country 

is endowed with only one good (ni=1 ∀ i).
18

 Naturally, the magnitudes of the coefficients shift 

but they retain their signs and significance. Overall, given an R-squared of 50 percent or more, I 

conclude that the translog gravity equation passes its first test of being reasonable. 

Apart from translog gravity, I also estimate the standard gravity specification. I substitute 

the trade cost function (13) into equation (10) to arrive at the estimating equation for traditional 

gravity: 
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 As an additional robustness check, I re-estimate columns 1-4 of Table 1 with an alternative measure of the 

extensive margin. In particular, I use both yi and ln(yi) as measures of ni. The results are qualitatively similar and 

therefore not reported here. 
18

 Alternatively, I could also set ni=n where n is any arbitrary positive integer. Since the regression is linear, the 

estimated coefficients would simply be scaled by the factor 1/n. 
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where I add an error term ξij.
19
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The logarithmic form of the dependent variable is the key difference to the translog specification. 

Regression results for equation (18) are presented in columns 1 and 2 of Table 2. As 

usual, bilateral distance is negatively related to import shares with a coefficient in the vicinity of 

-1, whereas adjacency is associated with higher shares.
20

 Consistent with the gravity literature, 

the log-linear regressions in Table 2 have a high explanatory power with R-squareds close to 90 

percent.  

Although the R-squareds associated with the regressions in Table 1 are around 55 percent 

and thus lower, they are not directly comparable to those in Table 2 because the dependent 

variables are not the same. It is therefore useful to get a visual impression of the fit of the two 

models. For that purpose, I plot the fitted values against the actual values of import shares for 

each model. For the translog specification, I use column 3 of Table 1. For the standard 

specification, I use a regression that corresponds to column 1 of Table 2 but with ln((xij/yj)/ni) as 

the dependent variable (see footnote 20). These two specifications are similar in the sense that 

apart from various fixed effects, the log of distance is the only regressor. The dependent variable 

of the translog specification is (xij/yj)/ni. To generate visual impressions of the two models that 

are more easily comparable, I exponentiate the fitted and actual values for the standard model. I 

thus obtain import shares expressed in the same units for both specifications, that is, in units of 

(xij/yj)/ni. 

The results can be seen in Figure 1. The left panel is based on the translog model, and the 

right panel is based on the standard model. Both models do fairly well in fitting small import 

shares. For intermediate import shares in the range from 0.05 to 0.15 the translog model still 

generates a reasonably good fit, whereas the residuals for the standard model tend to grow. For 

                                                 
19

 An estimating equation based on the Eaton and Kortum (2002) model would merely replace σ-1 by θ. Here, the 

crucial feature is that the trade cost elasticity is constant. This feature would also arise for the other gravity models 

mentioned above. 
20

 For completeness, I rerun the regressions in columns 1 and 2 of Table 2 with the logarithmic import share per 

good of the exporting country, ln((xij/yj)/ni)), as the dependent variable. The measure for ni is entirely absorbed by 

the exporter fixed effects so that the coefficients of interests and their standard errors remain the same. However, the 

R-squareds are reduced to 85 percent. 
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large import shares both models produce larger residuals, and the translog model in particular 

underpredicts the actual import shares. 

Those large residuals can in part be explained by the nature of the dependent variable, 

(xij/yj)/ni. Using xij/yj instead as in column 1 of Table 1 and column 1 of Table 2 implies a smaller 

range of values for the dependent variable so that the residuals would be smaller. The reason is 

that Hummels and Klenow (2005) express the extensive margin measure ni relative to the rest of 

the world so that 0<ni<1, pushing up values for (xij/yj)/ni compared to xij/yj. For example, the 

largest value for (xij/yj)/ni is 0.41 for imports to Luxembourg from Belgium but the 

corresponding value for xij/yj would only be 0.19. 

 

3.3. Comparing traditional and translog gravity  

 The next objective is to examine how the data relate to different aspects of the traditional 

gravity model on the one hand and translog gravity on the other. The difficulty is that the two 

competing models are non-nested. This problem arises because the traditional gravity model has 

the logarithmic trade share as the dependent variable, whereas the dependent variable of the 

translog model has the trade share in levels. Before I compare the performance of the two models 

more directly at the end of this section, I first turn towards more informal checks that center on 

the question of whether the trade cost elasticity is constant. 

  

3.3.1. Does the trade cost elasticity vary? 

As equation (12) shows, translog gravity implies that the absolute value of the trade cost 

elasticity decreases in the import share per good, i.e., 
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In contrast, standard gravity equations imply a constant trade cost elasticity. I form two 

hypotheses, A and B, to test whether the elasticity is indeed constant under the maintained 

assumption of the log-linear trade cost function (13). Hypothesis A is based on the standard 

gravity estimation as in equation (18), while hypothesis B is based on the translog gravity 

estimation as in equation (17). 
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The premise of hypothesis A is that the standard gravity model is correct and that trade 

cost elasticities should not vary systematically. To implement this test, I allow the trade cost 

coefficients in the traditional specification (18) to vary across import shares per good. Since 

estimating a separate distance coefficient for each observation would leave no degrees of 

freedom, I allow the distance coefficient to vary over intervals of import shares per good. That is, 

I set the distance coefficient for observation ij equal to λh if this observation falls in the hth 

interval with h=1,...,H. H denotes the interval with the largest import shares per good, and the 

number of intervals is sufficiently small to leave enough degrees of freedom in the estimation. I 

also add interval fixed effects. For simplicity, I drop the adjacency dummy from the notation so 

that the estimating equation becomes 
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where hS
~

 denotes the interval fixed effect and ωij is an error term. Hypothesis A states – as 

predicted by the traditional gravity model – that the λh distance coefficients should not vary 

across import share intervals, i.e., λ1= λ2=...=λH. The alternative is – consistent with the translog 

gravity model – that the λh distance coefficients should vary systematically across intervals as 

implied by equation (12). Specifically, the absolute elasticity should decrease across the 

intervals, i.e., λ1> λ2>...> λH.
21

 

How exactly should the intervals be chosen? If the intervals were chosen based on 

observed values for import shares, this selection would be based on the dependent variable and 

would lead to an endogeneity bias in the coefficients of interest, λh. More specifically, I carried 

out Monte Carlo simulations demonstrating that this selection procedure would lead to an 

upward bias in the distance coefficients (i.e., λh coefficients closer to zero) since both the 

dependent variable and the interval classification would be positively correlated with the error 

term.
22

  

                                                 
21

 To be clear, equation (19) does not represent a formal test of non-nested hypotheses. 
22

 I simulated import shares under the assumption that the Anderson and van Wincoop (2003) gravity equation (10) 

is the true model, using distance as the trade cost proxy based on the trade cost function (13) and assuming various 

arbitrary parameter values for the distance elasticity ρ and the elasticity of substitution σ. The variance of the log-

normal error term was chosen to match the R-squared of around 90 percent as in Table 2. I then divided the sample 

into intervals based on the simulated import shares and ran regression (19) with OLS, replicating this procedure 

1000 times. The resulting bias can be severe, in some cases halving the magnitudes of coefficients compared to their 

true values.  
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The endogeneity bias can be avoided if intervals are chosen based on predicted import 

shares. In particular, I first estimate equation (18) and obtain trade cost coefficients that are 

common across all observations. Based on those regression results I then predict import shares 

and divide the sample into H intervals of predicted import shares. By construction, this interval 

classification is uncorrelated with the residuals of regression (18). Indeed, Monte Carlo 

simulations confirm that with this two-stage procedure, estimating equation (19) no longer 

imparts a bias on the λh coefficients.
23

 

Table 3 presents regression results for equation (19) under the assumption of H=5, i.e., 

with five import share intervals. Consistent with equation (12), the intervals in columns 1 and 2 

are chosen based on predicted import shares per good, (xij/yj)/ni. As a robustness check, the 

intervals in columns 3 and 4 are chosen based on predicted import shares only, xij/yj. 

Columns 1 and 3 report results with distance as the only trade cost regressor. A clear 

pattern arises: the λh distance coefficients decline in absolute value for intervals with larger 

import shares, as consistent with the translog model. For example, in column 1 the distance 

elasticity for the smallest import shares is -1.4960 whereas it shrinks in magnitude to -1.0790 for 

the largest import shares. Hypothesis A, which states that the distance coefficients are equal to 

each other, can be clearly rejected (p-value=0.01 in column 1, p-value=0.00 in column 3). 

Columns 2 and 4 add adjacency. Since no adjacent country pair in the sample falls into 

the interval capturing the smallest predicted import shares, the corresponding regressor drops 

out. The addition of the adjacency dummies does not alter the pattern of distance coefficients. 

Those still decline monotonically in magnitude across all specifications and their equality can be 

rejected (p-values=0.00). There is no such monotonic pattern for the adjacency coefficients, but 

their point estimates for intervals 2 and 3 are substantially larger than those for intervals 4 and 

5.
24

 Overall, their equality can be clearly rejected in column 2 (p-value=0.00) although not in 

column 4 (p-value=0.34). But the specification in column 2 is preferable since it is based on 

intervals of predicted import shares per good, as warranted by equation (12). 

I also experimented with different interval numbers, in particular H=3 and H=10 (not 

reported here). The results are not qualitatively affected and the same coefficient patterns arise as 

                                                 
23

 In Appendix B.3 in the online appendix I present an alternative stratification procedure in terms of right-hand side 

variables, not in terms of predicted import shares. 
24

 A clear monotonic pattern for the adjacency coefficients does emerge in column 2 of Table 3 if the alternative, 

unweighted measure is used for the extensive margin ni. 
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in Table 3. This suggests that the systematic inequality of trade cost elasticities across import 

share intervals is a robust feature of the data. In summary, therefore, the results seem inconsistent 

with the constant elasticity gravity specification, at least in combination with the log-linear trade 

cost function (13).
25

  

Hypothesis B is based on the translog gravity estimating equation (17). Its premise is that 

the translog specification is correct and that the trade cost coefficients in that estimation should 

not vary systematically across import shares. I adopt the same strategy as above in that I allow 

the trade cost coefficients to vary across intervals. A more detailed description and the results 

can be found in Appendix B.4 in the online appendix. I show that distance coefficients are 

typically more stable in the translog specification although in most cases the hypothesis of 

constant coefficients can be rejected at conventional levels of significance. But at least 

qualitatively, those results seem in line with the predictions of the translog gravity model under 

the maintained assumption of a log-linear trade cost function. 

 

3.3.2. Comparing the goodness of fit 

I now turn towards comparing the performance of the two models more directly. As their 

dependent variables differ, their associated R-squareds are not directly comparable. To facilitate 

a comparison I estimate the standard gravity equation in levels as opposed to logarithms. The 

left-hand side variable then becomes the same as for the translog specification.  

Specifically, I take the standard gravity equation (9), divide it by yj on both sides so that 

the left-hand side variable becomes xij/yj. I carry out the estimation with nonlinear least squares, 

using (exponentiated) exporter and importer fixed effects to absorb yi and the multilateral 

resistance terms and using distance as the only trade cost regressor (based on the exponentiated 

version of trade cost function 13). 

I estimate two specifications. The first uses a multiplicative error term ije


 where ij  is 

assumed normally distributed. As this specification is the levels analog of the logarithmic 

regression in equation (18), it yields exactly the same results as reported in column 1 of Table 2. 

In particular, this specification yields an R-squared of 0.89. The second specification is also 

                                                 
25

 As I further discuss in section 3.6, a specification as in equation (19) combines two restrictions that are difficult to 

separate: the log-linearized standard gravity equation on the one hand and a constant elasticity of trade costs with 

respect to trade costs on the other. 
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estimated in levels but with an additive error term. This makes it comparable to the translog 

estimations reported in Table 1, which are also based on an additive error term. The result is a 

slightly larger distance coefficient in absolute value (-1.4258 instead of -1.2390 in column 1 of 

Table 2) but a similar R-squared of 0.88. In summary, the levels specification is characterized by 

essentially the same degree of explanatory power as the logarithmic specification, regardless of 

whether it is estimated with a multiplicative or an additive error term. 

Which translog specifications are the relevant points of comparison? The relevant 

comparison for the first specification is a translog regression with xij/yj as the dependent variable 

and a multiplicative error term. This regression is reported in column 1 of Table B2 (see 

Appendix B.2 for details). The associated R-squared is 0.91 and thus in the same ballpark as 

0.89. The relevant comparison for the second specification is the translog regression in column 1 

of Table 1 since it is also estimated with an additive error term. The R-squared there is only 0.52 

and thus lower than 0.88. Overall, I therefore conclude that in terms of explanatory power, the 

translog model performs worse with an additive error term but equally well as the standard 

model when a multiplicative error term is used.  

 

3.3.3. A Box-Cox transformation of the dependent variable 

The difficulty in distinguishing the two models econometrically in a more formal way is 

that they are non-nested with different functional forms of the left-hand side variable. 

Specifically, as in equation (17) the translog model can be expressed with (xij/yj)/ni as the 

dependent variable. Akin to equation (18) the standard model can be rewritten with ln((xij/yj)/ni) 

as the dependent variable, in which case the exporter fixed effect absorbs the ni term. The two 

specifications share the same right-hand side regressors in the estimation, i.e., logarithmic 

distance as well as exporter and importer fixed effects (the adjacency dummy is dropped for 

simplicity). Thus, they only differ on the left-hand side in terms of their functional form.  

I adopt the popular Box-Cox transformation of the dependent variable according to 
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The case of θ=1 corresponds to the linear (translog) case, and θ=0 corresponds to log-linearity as 
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The right-hand side variables are not transformed. A regression with the Box-Cox transform as 

the dependent variable and an additive error structure yields a point estimate of 0.1201 for θ with 

a standard error of 0.0108. This result means that θ is significantly different from 1 and 0, and 

both the linear and log-linear cases are rejected (p-values=0.00).
26

 The coefficient on logarithmic 

distance follows as -0.6871 and is thus roughly in the middle of the corresponding coefficients 

for the translog model in column 3 of Table 1 (equal to -0.0250) and the standard model in 

column 1 of Table 2 (equal to -1.2390). 

Overall, from a purely statistical point of view the Box-Cox procedure therefore produces 

an inconclusive outcome. Such outcomes often occur with non-nested tests as well as in Box-

Cox applications (see the discussion in Pesaran and Weeks, 2007). The reason is that these tests 

typically involve two different null hypotheses that can each be rejected, in this case the 

hypotheses θ=1 and θ=0. 

However, from an economic point of view a common sense conclusion is that the 

standard specification seems favored. The intuition is that the standard form with an additive 

error term yields an R-squared in the region of 90 percent (see Table 2), whereas the translog 

form with an additive term yields an R-squared in the region of only 50 percent (see Table 1). 

My overall interpretation is that whilst the results certainly cannot be seen as an 

endorsement of the translog model, they still highlight weaknesses of the standard log-linear 

gravity model. While some features of the data are suggestive of the standard form, others are 

more consistent with the variable elasticity specification implied by the translog functional form. 

There are bound to be models that fit the data even better than the one-parameter translog model 

developed in this paper. But nevertheless, the translog specification indicates the direction in 

which the demand side of trade models could be sensibly modified to yield gravity equations 

with variable trade cost elasticities. 

 

                                                 
26

 Sanso, Cuairan and Sanz (1993) also estimate a generalized functional form of the gravity equation defined by a 

Box-Cox transformation with transformed regressors. Consistent with my results, they find evidence against the 

standard log-linear specification based on trade flows amongst 16 OECD countries over the period from 1964 to 

1987. However, they do not provide a theory that might justify the non-loglinear functional form. 
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3.4. Illustration: some numbers for trade cost elasticities 

The crucial result from the preceding gravity estimations is that a constant ‘one-size-fits-

all’ trade cost elasticity is inconsistent with the data. Instead, the trade cost elasticities vary with 

the import share, as predicted by translog gravity. What are the implied values for these 

elasticities? This question can be answered by considering the elasticity expression in equation 

(12). The elasticities ηij depend on the translog parameter γ, the import share xij/yj and the number 

of goods of the exporting country ni. 

The values for xij/yj and ni are given by the data, and the translog parameter γ can be 

retrieved from the estimated distance coefficient in a translog regression. As the translog 

estimating equation (16) shows, the coefficient on the variable ni ln(distij) corresponds to the 

negative product of the translog parameter γ and the distance elasticity of trade costs ρ. As an 

illustration, I take 0.0296 from column 1 of Table 1 as an absolute value for this coefficient, i.e., 

γρ=0.0296. To be comparable to the gravity literature, I choose a value of ρ that is consistent 

with typical estimates, ρ=0.177.
27

 The value of the translog parameter then follows as 

γ=0.0296/ρ=0.167.
28

 To be clear, I only choose a value of ρ for illustrative purposes. The 

analysis below does not qualitatively depend on this particular value. 

The trade cost elasticities can now be calculated across different import shares. I first 

calculate the trade cost elasticity evaluated at the average import share in the sample. This 

average share is xij/yj=0.01. The average of the extensive margin measure is ni=0.50. The trade 

cost elasticity therefore follows as ηij =-γni /(xij/yj)=-0.167*0.50/0.01=-8.4.
29

 Thus, if trade costs 

go down by one percent, ceteris paribus the average import share is expected to increase by 8.4 

                                                 
27

 I obtain this value as follows. In standard gravity equations such as equation (18), the distance coefficient 

corresponds to the parameter combination -(σ-1)ρ. It is typically estimated to be around -1 (see Disdier and Head, 

2008), and in column 1 of Table 2 I obtain a reasonably close estimate of -1.239 for my sample of OECD countries. 

Under the assumption of an elasticity of substitution equal to σ=8, the distance coefficient estimate implies 

ρ=1.239/(8-1)=0.177. But one does not have to rely on a standard gravity regression to obtain a parameter value for 

ρ. Limão and Venables (2001, Table 2) report values for ρ in the range of 0.21-0.38 based on regressions of 

logarithmic c.i.f./f.o.b. ratios on logarithmic distance. See Anderson and van Wincoop (2004, Figure 1) for further 

evidence that ρ=0.177 is a reasonable value. 
28

 Based on an estimation of supply and demand systems at the 4-digit industry level, Feenstra and Weinstein (2010) 

yield a median translog coefficient of γ=0.19. My value of γ=0.167 is reasonably close and would match Feenstra 

and Weinstein’s (2010) estimate exactly in the case of ρ=0.156. 
29

 The extensive margin measure taken from Hummels and Klenow (2005) more closely corresponds to the fraction 

ni/N since they report the extensive margin of country i relative to the rest of the world. However, this does not 

affect the implied trade cost elasticities. The reason is that the elasticities as expressed in equation (12) depend on 

the product γni. If ni is multiplied by a constant (1/N), the linear estimation in regression (16) leads to a point 

estimate of γ that is scaled up by the inverse of the constant (i.e., scaled up by N) so that their product is not affected 

(Nγ*ni /N = γni). 
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percent. Under the assumption of an elasticity of substitution equal to σ=8, which falls 

approximately in the middle of the range [5,10] as surveyed by Anderson and van Wincoop 

(2004), this value would be close to the CES-based trade cost elasticity, η
CES

=-(σ-1), which 

equals 7.
30

 

However, in contrast to the CES specification, the trade cost elasticities based on the 

translog gravity estimation vary across import shares. A given trade cost reduction therefore has 

a heterogeneous impact on import shares. As an example, I illustrate this heterogeneity with 

import shares that involve New Zealand as the importing country. I choose New Zealand because 

its import shares vary across a relatively broad range so that the heterogeneity of trade cost 

elasticities can be demonstrated succinctly. Of course, the analysis would be qualitatively similar 

for other importing countries.  

Specifically, the Australian share of New Zealand’s imports is the biggest (7.2 percent), 

followed by the US share (3.8 percent), the Japanese share (2.4 percent) and the UK share (0.9 

percent). The corresponding trade cost elasticities, computed in the same way as before, are -1.3 

for Australia, -4.0 for the US, -5.0 for Japan and -14.4 for the UK. Figure 2 plots these trade cost 

elasticities in absolute value against the import shares, adding various additional countries that 

export to New Zealand.
31

 Dashed lines represent 95 percent confidence intervals computed with 

the delta method based on the regression in column 1 of Table 1. The figure shows that trade 

flows are more sensitive to trade costs if import shares are small. The impact of a given trade 

cost change is therefore heterogeneous across country pairs. This key feature stands in contrast to 

the trade cost elasticity in the standard CES-based gravity model, which is simply a constant  

(σ-1=7 in this case). 

 

3.5. General equilibrium effects  

If bilateral trade costs tij change, this has a direct effect on the corresponding import share 

xij/yj. But the change in tij also has an indirect effect on xij/yj through a change in price indices, 

which is the famous multilateral resistance effect highlighted by Anderson and van Wincoop 

                                                 
30

 Based on the above way of calculating ρ, for alternative values of σ it would also be true that the translog trade 

cost elasticity evaluated at the average import share is close to the underlying CES-based trade cost elasticity. For 

instance, under the assumption of σ=5, it follows ρ=0.31 and γ=0.095 so that the trade cost elasticity evaluated at the 

average import share is -4.8. Under the assumption of σ=10, it follows ρ=0.138 and γ=0.214 so that the trade cost 

elasticity is -10.7. 
31

 In order of declining import shares, the other countries are Germany, Italy, Korea and France. 
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(2003). Another indirect effect is through a change in income shares. I refer to the indirect effects 

as general equilibrium effects. 

The trade cost elasticity η as defined in equation (11) only captures the direct effect of a 

change in tij on xij/yj. To illustrate the role of general equilibrium, I decompose how import 

shares are affected by the direct and indirect effects and how this decomposition varies across 

import share intervals. But as I clarify further below, general equilibrium effects are not able to 

explain the pattern of declining distance coefficients as found in Table 3. 

I demonstrate the role of general equilibrium effects based on the constant elasticity 

gravity model in equation (10). As a simplification I assume trade cost symmetry such that 

outward and inward multilateral resistance terms are equal (Πi = Pi ∀ i). As a counterfactual 

experiment, I will assume a reduction in trade costs tij for a specific country pair. To understand 

the effect on the import share, I take the first difference of equation (10) to arrive at 
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The left-hand side of equation (20) indicates the percentage change of the import share. It can be 

decomposed into three components. The first term on the right-hand side is the direct effect of 

the change in bilateral trade costs scaled by (1-σ). The second and third terms are the general 

equilibrium effects, i.e., the change in the exporting country’s income share and the change in 

multilateral resistance terms scaled by (σ-1). 

 I am interested in how the decomposition in equation (20) varies across import shares. To 

that end, I first compute an initial equilibrium of trade flows based on the income data and 

bilateral distance data for the 28 countries in the sample. Then, for each of the 28*27=756 

bilateral observations I compute a counterfactual equilibrium under the assumption that all else 

being equal, bilateral trade costs for the observation have decreased by one percent, i.e., 

Δln(tij)=-0.01, assuming an elasticity of substitution of σ=8. I use the trade cost function (13) 

with distance as the only trade cost variable, assuming a distance elasticity of ρ =1/7.
32
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 The counterfactual equilibria are computed in the same way as in Anderson and van Wincoop (2003, Appendix 

B). The required domestic distance data are taken from the CEPII, see 

http://www.cepii.fr/anglaisgraph/bdd/distances.htm. The distance elasticity is close to the value chosen in section 3.4 

for illustrative purposes. The results are qualitatively not sensitive to alternative values. I also experimented with 

alternative parameter assumptions for the substitution elasticity (σ=5 and σ=10) and different trade cost declines (5 

percent and 10 percent). The overall results are qualitatively very similar. 
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Table 4 presents the decomposition results that correspond to equation (20). The rows 

report the average changes for each import share interval. Given the parameter assumption of 

σ=8, the direct effect of a one percent drop in bilateral trade costs is an increase in the import 

share of seven percent across all intervals (see column 2). While changes in the income shares in 

column 3 do not vary systematically across import shares, the multilateral resistance effects in 

column 4 are largest in absolute size for the interval capturing the largest import shares. In total, 

the general equilibrium effects dampen the direct effect for larger import shares (see the total 

effect in column 1). Intuitively, large countries like Japan and the US are less dependent on 

international trade such that changes in bilateral trade costs have little effect on multilateral 

resistance. As large countries are typically associated with small bilateral import shares (they 

mainly import from themselves), the indirect general equilibrium effects are often negligible for 

small import shares. However, for small countries like Iceland and Luxembourg a given change 

in bilateral trade costs shifts multilateral resistance relatively strongly. As those countries are 

typically associated with larger import shares, general equilibrium effects tend to be stronger in 

that case so that the total effect is dampened. The trade cost elasticities in columns 5a and 5b 

summarize these effects. Columns 6a and 6b report the implied distance elasticities. From 

equation (18) the direct distance elasticity is simply given by -(σ-1)ρ, which equals -1 in this 

case.  

It is important to stress that the distance elasticities in Tables 2 and 3 only represent the 

direct elasticities. General equilibrium effects work in addition to the direct effect and are 

absorbed by exporter and importer fixed effects. To verify this claim, I conduct Monte Carlo 

simulations as in section 3.3.1 for the constant elasticity model. The simulations are now based 

on the counterfactual scenario that all bilateral trade costs decline by one percent, leaving 

domestic distances unchanged. Thus, the simulated import shares are shifted by both direct and 

indirect effects. I then re-estimate gravity regression (19), dividing the sample into five import 

share intervals and allowing the distance elasticities to vary across these intervals. The results 

show that the distance coefficients are consistently estimated as the parameter combination -(σ-

1)ρ across all five intervals. They do not reflect general equilibrium effects. Thus, general 

equilibrium effects cannot account for the systematic pattern of distance elasticities reported in 

Table 3. 
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3.6. Alternative trade cost specifications 

The log-linear trade cost function (13) is the standard specification in the gravity 

literature. However, I also examine other specifications to ensure that the coefficient patterns in 

the regression tables do not hinge on this particular functional form. 

In Table 5 I add more trade cost variables apart from distance and adjacency. In 

particular, I add three variables that are commonplace in the gravity literature: a common 

language dummy, a currency union dummy and a dummy capturing a common colonial 

history.
33

 The purpose is to check whether the distance coefficient patterns in Table 3 are driven 

by the omission of these trade cost variables. I therefore add them to those regressions. 

In particular, for the standard gravity case I rerun the regression in column 1 of Table 3 

with the added variables. The result is reported in column 1 of Table 5. Clearly, the pattern of 

declining absolute distance coefficients is still in place. The distance coefficients monotonically 

decline in absolute value from 1.4463 to 0.8155. Their equality is rejected (p-value=0.00). The 

added trade cost regressors have the expected (positive) signs but are not always significant. For 

the translog gravity case, the result is reported in column 2 of Table 5. There is no clear pattern 

of distance coefficients. For example, the distance coefficient in the second interval (equal to 

-0.0473) is larger in absolute value than the one in the first interval (equal to -0.0398) but smaller 

than those in the third, fourth and fifth intervals (equal to -0.0464, -0.0460 and -0.0447). The fact 

that there is no trend in the coefficients is consistent with the translog gravity prediction (see 

Appendix B.4 in the online appendix for a more detailed discussion of this aspect). 

Table 6 attempts to address a more fundamental identification problem. The elasticity of 

trade with respect to distance is the combination of the elasticity of trade with respect to trade 

costs and the elasticity of trade costs with respect to distance. That is, 

 .
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 The language dummy takes on the value 1 if two countries have at least one official language in common 

according to the CIA World Factbook. Given the countries listed in section 3.1 the currency union dummy only 

captures the Euro, whose member countries irrevocably fixed their exchange rates in 1999. The colonial dummy 

captures relationships between the United Kingdom as the colonizer and Australia, Canada, Ireland, New Zealand 

and the United States. 
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It is challenging to distinguish a standard constant elasticity gravity model with a more flexible 

trade cost function on the one hand from a translog gravity model with a variable trade cost 

elasticity on the other. Both these models could be observationally equivalent.
34

  

The standard gravity case yields ).1()ln(d/)/ln(d  ijjij tyx  The basic trade cost 

function (13) implies a constant distance elasticity, .)ln(d/)ln(d ijij distt  But as can be seen in 

equation (18), estimation only yields an estimate of their product, .)1(    To separately 

identify variation in )ln(d/)/ln(d ijjij tyx  and )ln(d/)ln(d ijij distt  when I allowed for 

heterogeneous distance coefficients in Table 3, some structure needed to be imposed on the trade 

cost function. For that purpose I maintained the assumption that trade cost function (13) is 

correct. That is, I held ρ constant. Due to this identifying assumption all variation in the distance 

coefficients was attributed to variation in )ln(d/)/ln(d ijjij tyx . A similar reasoning applies to the 

translog case. Running regression (17) yields an estimate of .  Given trade cost function (13) 

all the variation across distance coefficients would therefore be attributed to variation in γ. 

Of course, this identification procedure is only valid to the extent that trade cost function 

(13) is correct. The purpose of Table 6 is to substitute an alternative, more flexible trade cost 

function. Apart from logarithmic distance I add a quadratic in logarithmic distance: 

   .)ln(~)ln()ln()21(
2

ijijij distdistt    

The distance elasticity of trade costs follows as )ln(~2)ln(d/)ln(d ijijij distdistt    and is thus 

no longer constant (a non-CES transport technology). For the standard gravity case the elasticity 

of trade with respect to distance is therefore equal to  .)ln(~2)1( ijdist   

Methodologically, I want to be clear that equation (21) represents only one specific trade cost 

function (albeit arguably a reasonable one) out of an infinite number of potential possibilities. 

Since gravity estimates only yield products of structural elasticity parameters and trade cost 

parameters, identification in this context inevitably has to rely on a particular assumed functional 

form. 

Column 1 of Table 6 reports a standard gravity regression as in equation (18) but with the 

additional quadratic distance term based on trade cost function (21). The estimate for  )1(   
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 As an extreme example, it would always be possible to choose a matrix of trade costs such that the standard model 

fits the data perfectly with an R-squared of 1. 
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is negative at -0.2677 but not significant. The estimate for  ~)1(   is -0.0644 and significant 

at the five percent level. 

Then, as in section 3.3.1, I allow the distance coefficients to vary across import share 

intervals. The intervals are given by predicted import shares based on the results in column 1. As 

before, the identifying assumption is that the trade cost function is correct. In the context of 

specification (21) this means that I have to hold ρ and ~  constant. Of course, I do not know the 

values for ρ and ~  as column 1 of Table 6 only reveals their products with ).1(    However, 

based on the point estimates I can calculate their ratio as  ~/ =-0.2677/-0.0644=4.16.
35

 To be 

consistent with the identifying assumption of a constant ρ and a constant ~ , I constrain the ratio 

of the two distance regressors in each interval to this particular value. All variation in the 

elasticity of trade with respect to distance is therefore attributed to )ln(d/)/ln(d ijjij tyx . If 

standard gravity is the true model, the coefficients on )ln( ijdist  and  2)ln( ijdist  should not vary 

across intervals. 

Column 2 of Table 6 reports the results. To reduce the number of parameters to be 

estimated, I only adopt three intervals instead of five. The )ln( ijdist  coefficients are -0.3216, 

-0.2942 and -0.2542, and the  2)ln( ijdist  coefficients are -0.0773, -0.0707 and -0.0611. Thus, 

their absolute values exhibit the same declining pattern as already found in section 3.3.1, and the 

differences are statistically significant (p-value=0.00). As before, this result casts doubt on the 

standard gravity specification but it is consistent with the translog model. 

The remaining two columns of Table 6 go through the same procedure for the translog 

specification as in equation (17) with the additional quadratic distance term. Based on the results 

in column 3 the estimates for   and ~  are -0.0933 and 0.0045, respectively. Their ratio 

follows as  ~/ =-20.73. Column 4 allows the coefficients to vary across import share intervals, 

with the ratio of the two distance regressors constrained to the value of -20.73. The )ln( ijdist  

coefficients are -0.1182, -0.1407 and -0.1355, and the  2)ln( ijdist  coefficients are 0.0057, 

0.0068 and 0.0066. Although the differences are significant (p-values=0.00) as the coefficients 
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 As ρ in particular is imprecisely estimated, a concern might be that the true ratio could be different. The 95 

percent confidence interval for the ratio is given by the values -12.91 and 20.42. The results are qualitatively the 

same based on either of those two values. 
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are tightly estimated, there is no monotonic pattern. This finding is consistent with the translog 

model. 

  

4. Conclusion 

Leading trade models from the current literature imply a gravity equation that is 

characterized by a constant elasticity of trade flows with respect to trade costs. This paper adopts 

an alternative demand system – translog preferences – and derives the corresponding gravity 

equation. Due to more flexible substitution patterns across goods, translog gravity breaks the 

constant trade cost elasticity that is the hallmark of traditional gravity equations. Instead, the 

elasticity becomes endogenous and depends on the intensity of trade flows between two 

countries. 

In particular, all else being equal, the less two countries trade with each other and the 

smaller their bilateral import shares, the more sensitive they are to bilateral trade costs. I test the 

translog gravity specification and find evidence that tends to support this prediction. That is, 

trade cost elasticities appear heterogeneous across import shares under the standard assumption 

of a log-linear trade cost function.  

The empirical results presented in this paper are based on aggregate trade flows. A 

natural extension would be an application to more disaggregated data. In that regard, I have 

obtained some preliminary results based on import shares between OECD countries at the level 

of 3-digit industries. When I allow gravity distance coefficients for individual industries to vary 

across import shares in CES-based gravity equations, their absolute values are characterized by 

the same declining pattern as in Table 3 for industries as diverse as food products, plastic 

products and electric machinery. This additional evidence suggests that variable trade cost 

elasticities might be a distinct feature of international trade data also at the industry level. 

Exploring industry-level data in more detail along those lines is thus an important topic for future 

research. 
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Table 1: Translog gravity 
     

       

 
Multiple goods per country One good per country (ni=1) 

Dependent variable xij/yj xij/yj (xij/yj)/ni (xij/yj)/ni xij/yj xij/yj 

  (1) (2) (3) (4) (5) (6) 

    
  

  ni ln(distij) -0.0296*** -0.0190*** 
 

  
  

 
(0.0041) (0.0029) 

 
  

  ni ln(Tj
dist) 0.0207*** 0.0105*** 

 
  

  

 
(0.0049) (0.0034) 

 
  

  ni adjij 
 

0.0510*** 
 

  
  

  
(0.0117) 

 
  

  ni Tj
adj 

 
-0.0471** 

 
  

  

  
(0.0192) 

 
  

  ln(distij) 
  

-0.0250*** -0.0159*** -0.0149*** -0.0094*** 

   
(0.0033) (0.0021) (0.0022) (0.0016) 

adjij 
   

0.0450*** 
 

0.0273*** 

    
(0.0090) 

 
(0.0053) 

    
  

  R-squared 0.52 0.59 0.50 0.57 0.50 0.56 

Observations 749 749 749 749 749 749 
Notes: Robust standard errors clustered around country pairs (378 clusters) reported in parentheses, OLS 
estimation. Columns 1 and 2: exporter fixed effects not reported. Columns 3-6: exporter and importer fixed effects 
not reported. ** significant at 5% level. *** significant at 1% level. 
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Table 2: Constant elasticity gravity 
 

   Dependent variable ln(xij/yj) ln(xij/yj) 

  (1) (2) 

   ln(distij) -1.2390*** -1.1697*** 

 
(0.0625) (0.0713) 

adjij 
 

0.3440** 

  
(0.1720) 

   R-squared 0.89 0.89 

Observations 749 749 
Notes: Robust standard errors clustered around country 
pairs (378 clusters) reported in parentheses, OLS 
estimation. Exporter and importer fixed effects not 
reported. ** significant at 5% level. *** significant at 1% 
level. 
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Table 3: Testing constant elasticity gravity (Hypothesis A) 

     

 
Intervals based on (xij/yj)/ni Intervals based on (xij/yj) 

Dependent variable ln(xij/yj) ln(xij/yj) ln(xij/yj) ln(xij/yj) 

  (1) (2) (3) (4) 

  
  

  ln(distij), h=1 -1.4960*** -1.4490*** -1.6523*** -1.5970*** 

 
(0.1377) (0.1313) (0.1080) (0.1044) 

ln(distij), h=2 -1.4636*** -1.3405*** -1.3936*** -1.3190*** 

 
(0.1223) (0.1117) (0.1180) (0.1140) 

ln(distij), h=3 -1.3668*** -1.2502*** -1.3369*** -1.2131*** 

 
(0.1092) (0.1043) (0.1123) (0.1017) 

ln(distij), h=4 -1.2235*** -1.0662*** -1.3311*** -1.1551*** 

 
(0.1024) (0.0968) (0.0947) (0.0946) 

ln(distij), h=5 -1.0790*** -0.8297*** -1.0662*** -0.8251*** 

 
(0.1000) (0.1045) (0.0910) (0.0972) 

adjij, h=2 
 

1.9499*** 
 

1.1283* 

  
(0.2279) 

 
(0.6657) 

adjij, h=3 
 

2.3218*** 
 

1.6318*** 

  
(0.2150) 

 
(0.5925) 

adjij, h=4 
 

0.7333*** 
 

0.5197*** 

  
(0.2345) 

 
(0.1910) 

adjij, h=5 
 

0.6221*** 
 

0.6359*** 

  
(0.1500) 

 
(0.1556) 

  
  

  R-squared 0.90 0.90 0.89 0.90 

Observations 749 749 749 749 
Notes: The index h denotes intervals in order of ascending predicted import shares. The 
intervals in columns 1 and 2 are based on predicted import shares divided by n i. The intervals in 
columns 3 and 4 are based on predicted import shares only. The adjij regressor for interval h=1 
drops out since no adjacent country pair falls into this interval. Robust standard errors clustered 
around country pairs (378 clusters) reported in parentheses, OLS estimation. Exporter and 
importer fixed effects and interval fixed effects not reported. * significant at 10% level. *** 
significant at 1% level. 
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Table 4: General equilibrium effects in response to a counterfactual decline in trade costs 
       

               

 
Total effect 

 
Direct effect 

 
Indirect GE effect   

 
Trade cost elasticity 

 
Distance elasticity 

Import share interval Δ ln(xij/yj) = (1-σ) Δ ln(tij) + Δ ln(yi/yW) + (σ-1) Δ ln(PiPj)   
 

Total Direct 
 

Total Direct 

  (1)   (2)   (3)   (4)     (5a) (5b)   (6a) (6b) 

        
  

      h=1 0.0702 = 0.07 + -0.0007 + 0.0009   
 

-7.02 -7 
 

-1.00 -1 

h=2 0.0699 = 0.07 + -0.0007 + 0.0007   
 

-6.99 -7 
 

-1.00 -1 

h=3 0.0696 = 0.07 + -0.0008 + 0.0003   
 

-6.96 -7 
 

-0.99 -1 

h=4 0.0690 = 0.07 + -0.0006 + -0.0003   
 

-6.90 -7 
 

-0.99 -1 

h=5 0.0637 = 0.07 + -0.0007 + -0.0056   
 

-6.37 -7 
 

-0.91 -1 

     
        

      Notes: This table reports logarithmic differences of variables between the initial equilibrium and the counterfactual equilibrium. The initial equilibrium is based 
on country income shares yi/y

W
 for the year 2000 and bilateral distance data for the 28 countries in the sample (28*27=756 bilateral observations). For each 

bilateral observation a counterfactual equilibrium is computed under the assumption that bilateral trade costs tij for this observation have decreased by one 
percent all else being equal, yielding 756 counterfactual scenarios. The table reports the logarithmic differences between the initial and the counterfactual 
equilibria averaged across five import share intervals denoted by h. Import share intervals are in ascending order and based on the initial equilibrium. Assumed 
parameter values: σ=8 and ρ=1/7. Column 1: change in the import share; column 2: change in bilateral trade costs scaled by the substitution elasticity; column 
3: change in the exporting country's income share; column 4: change in multilateral resistance scaled by the substitution elasticity; columns 5a and 5b: implied 
trade cost elasticities based on total effect and direct effect (=1-σ); columns 6a and 6b: implied distance elasticities based on total effect and direct effect (=(1-
σ)*ρ). 
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Table 5: Additional trade cost variables 
 

   

 
Constant elasticity gravity Translog gravity 

Dependent variable ln(xij/yj) (xij/yj)/ni 

  (1) (2) 

  
  

ln(distij), h=1 -1.4463*** -0.0398*** 

 
(0.1369) (0.0061) 

ln(distij), h=2 -1.3789*** -0.0473*** 

 
(0.1168) (0.0068) 

ln(distij), h=3 -1.2841*** -0.0464*** 

 
(0.1030) (0.0068) 

ln(distij), h=4 -1.0150*** -0.0460*** 

 
(0.0992) (0.0068) 

ln(distij), h=5 -0.8155*** -0.0447*** 

 
(0.1060) (0.0072) 

adjij 0.5859*** 0.0292*** 

 
(0.1711) (0.0071) 

common languageij 0.1999 0.0091** 

 
(0.1356) (0.0045) 

currency unionij 0.0159 0.0073** 

 
(0.1128) (0.0034) 

colonialij 0.6286** 0.0146 

 
(0.2509) (0.0159) 

  
  

R-squared 0.90 0.69 

Observations 749 749 
Notes: The index h denotes intervals in order of ascending predicted import shares. The 
adjij, common languageij, currency unionij and colonialij regressors do not vary across 
intervals. Robust standard errors clustered around country pairs (378 clusters) reported in 
parentheses, OLS estimation. Exporter and importer fixed effects and interval fixed effects 
not reported. ** significant at 5% level. *** significant at 1% level. 
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Table 6: Alternative distance specification 
  

     

 
Constant elasticity gravity Translog gravity 

Dependent variable ln(xij/yj) ln(xij/yj) (xij/yj)/ni (xij/yj)/ni 

  (1) (2) (3) (4) 

  
  

  ln(distij) -0.2677   -0.0933** 
 

 
(0.4176)   (0.0442) 

 (ln(distij))2 -0.0644**   0.0045 
 

 
(0.0278)   (0.0028) 

 ln(distij), h=1 
 

-0.3216*** 
 

-0.1182*** 

  
(0.0191) 

 
(0.0209) 

ln(distij), h=2 
 

-0.2942*** 
 

-0.1407*** 

  
(0.0196) 

 
(0.0231) 

ln(distij), h=3 
 

-0.2542*** 
 

-0.1355*** 

  
(0.0184) 

 
(0.0284) 

(ln(distij))2, h=1 

 
-0.0773*** 

 
0.0057*** 

  
(0.0046) 

 
(0.0010) 

(ln(distij))2, h=2 

 
-0.0707*** 

 
0.0068*** 

  
(0.0047) 

 
(0.0011) 

(ln(distij))2, h=3 

 
-0.0611*** 

 
0.0066*** 

  
(0.0044) 

 
(0.0014) 

  
  

  R-squared 0.89 0.89 0.52 0.59 

Observations 749 749 749 749 
Notes: The index h denotes intervals in order of ascending predicted import shares. Robust standard errors 
clustered around country pairs (378 clusters) reported in parentheses, OLS estimation. Exporter and importer 
fixed effects and interval fixed effects not reported. ** significant at 5% level. *** significant at 1% level. 
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Figure 1: Fitted import shares plotted against actual import shares. The left panel is based on the 

translog gravity model, and the right panel is based on the standard gravity model. 
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Figure 2: Trade cost elasticities (in absolute value) plotted against import shares for the case of 

New Zealand. The dashed lines represent 95 percent confidence intervals. 

 


