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Abstract

We classify all CG(t)-signalizers, where G is a finite group of Lie type and t is an automorphism

of G of prime order s > 3. Our results extend existing work by Korchagina ([Ko], [Ko2]).
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Notation

Throughout this work, we adopt the following notation. Let G and H be finite groups, let

m and n be integers and let p be a prime.

H ◦G Central product of H and G

H.G Extension of H by G

H : G Split extension of H by G
1
nG Normal subgroup of index n in G

n or Cn Cyclic group of order n

pn or Epn Elementary abelian group of order pn

pn+m Extension of pn by pm

[n] Arbitrary group of order n

Z(G) Center of G

G# Set of nonidentity elements of G

mp(G) p-rank of G
∧H For H ≤ G, the homomorphic image of H in G/Z(G)

(m,n) Greatest common divisor of m and n
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Chapter 1

Introduction

1.1 Motivation

In the articles 2-signalizers in almost simple groups [Ko2] and 3-signalizers in almost

simple groups [Ko], Korchagina classifies the 2 and 3-signalizers that occur in the finite

simple K -groups. The result is relevant to the revised proof of the Classification Theorem

of Finite Simple Groups. We aim to extend this work by classifying s-signalizers in Groups

of Lie Type, where s will be an odd prime greater than 3. Thus, the objects we wish to

study are the following.

Definition 1.1. Fix a prime s. Let G be a finite group, take t ∈ Aut(G) of order s, and

X a p-subgroup of G with p prime and p 6= s. Suppose that

(i) [X, t] = X,

(ii) CG(t) ≤ NG(X)

Then we say (G, t,X) is a triple of type (Hs), and we call X a CG(t)-signalizer.

We wish to classify triples (G, t,X) of type (Hs) for G ∈ Lie(r) and s > 3. We will show

below, in Lemma 2.15, it suffices to consider the cases of t being inner-diagonal and t

being a field automorphism.

1.2 Statement of Results

We are now ready to state the main result of this thesis.

Theorem 1.2. Let G ∈ Lie(r). Suppose that G admits a nontrivial automorphism t of

order s, where s is a prime greater than 3. Suppose that X is a CG(t)-signalizer. Then

either X = 1 or one of the following holds.
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(1) r 6= s, p = r, t ∈ Inndiag(G) and there exists a parabolic subgroup P ≤ G such that

X is contained in the unipotent radical Or(P ) of P , CG(t) ≤ P , CG(t) ∩ Or(P ) = 1 and

CG(t) is isomorphic to a subgroup of a Levi complement L of P ,

(2) G ∼= SU4(3), t ∈ Inn(G), s = 5, p = 2, CG(t) ∼= C4 × C5 and X ∼= 21+4
− ,

(3) G is isomorphic to a quotient of SU4(3) by its central subgroup of order 2, s = 5,

CG(t) ∼= C2 × C5 and X ∼= E24.

(4) G ∼= PSU4(3), t ∈ Inn(G), s = 5, p = 2, CG(t) ∼= C5 and X ∼= E24,

(5) G ∼= Sp2m(3) (for m ≥ 2), t ∈ Inn(G), s = 5, p = 2, CG(t) ∼= Sp2m−4(3) × C2 × C5

and X ∼= 21+4
− ,

(6) G ∼= PSp2m(3) (for m ≥ 3), t ∈ Inn(G), s = 5, p = 2, CG(t) ∼= Sp2m−4(3)× C5 and

X ∼= 21+4
−

(7) G ∼= PSp4(3), t ∈ Inn(G), s = 5, p = 2, CG(t) ∼= C5 and X ∼= E24,

(8) G ∼= G2(3), t ∈ Inn(G), s = 7, p = 2, CG(t) ∼= C7 and X ∼= E23,

(9) G ∼= 2G2(3), t ∈ Inn(G), s = 7, p = 2, CG(t) ∼= C7 and X ∼= E23,

(10) G ∼= F4(2), t ∈ Inn(G), s = 13, p = 3, CG(t) ∼= C13 and X ∼= E33,

(11) G ∼= 2E6(2), t ∈ Inn(G), s = 13, p = 3, CG(t) ∼= C13 and X ∼= E33,

(12) G ∼= 2E6(2), t ∈ Inn(G), s = 13, p = 3, CG(t) ∼= C13 and X ∼= 33+3,

(13) G ∼= A1(2s), t is a field automorphism whose order s divides p− 1, CG(t) ∼= A1(2), 3

divides 2s + 1 and X is a cyclic group whose order pn also divides 2s + 1,

(14) G ∼= 2B2(2s), t is a field automorphism whose order s divides p− 1, CG(t) ∼= 2B2(2),

5 divides one of 2s ± 2(s+1)/2 + 1 and X is a cyclic group whose order pn also divides

2s ± 2(s+1)/2 + 1.

Furthermore, the triples (G, t,X) given in (1)-(14) do indeed exist.

1.3 Structure of Argument

We will prove Theorem 1.2 as follows. Chapter 2 introduces the necessary background

group theory, paying particular attention to the finite groups of Lie type. Chapter 3 is

concerned with preliminary results addressing the possibility that the characteristic r of G

is equal to the order s of t. The main result of Chapter 3 is that all such CG(t)-signalizers

are trivial. Thus we divide the remainder of the proof into 2 cases; the case p = r and

the case p 6= r. Chapter 4 discusses the former case and shows that signalizers with p = r

display the uniform behaviour described in Theorem 1.2 (1). Thereafter we begin the

analysis in the totally ‘coprime’ case r 6= p 6= s. We divide the proof of this case into the
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subcases in which t is either an inner-diagonal or a field automorphism. Chapter 5 deals

with the former case using inductive arguments on rank(G), whilst Chapter 6 deals with

the field automorphisms and concludes the proof.
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Chapter 2

Group Theoretic Background

2.1 The Finite Groups Of Lie Type

We dedicate this section to a brief introduction to the main objects of study - the finite

groups of Lie type. Our treatment agrees with [GLS3] and with Section 5.1 [KL].

2.1.1 Definitions and Preliminaries

In this section we take it as understood that for an algebraically closed field Fp of char-

acteristic p, an Fp-algebraic group is a closed subgroup K of GLn(Fp), for some n, with

respect to the Zariski topology on GLn(Fp) (the topology given by the condition that the

closed sets are the solution sets of systems of polynomial equations in the matrix entries

and the function d : A→ det(A)−1). Further, a connected algebraic group K is said to be

semisimple if R(K) = 1, where R(K) is the radical of K, that is the largest normal sub-

group of K that is closed, connected (with respect to the topology inherited from GLn(Fp))
and solvable; and K is said to be simple if [K,K] 6= 1 and the only proper closed normal

subgroups of K are finite (cf Definition 1.7.1 and Proposition 1.1.6 (b) [GLS3]). Accepting

these definitions we may now define our main objects of study, the Finite Groups of Lie

type.

Definition 2.1. (1) If K is a finite group, then a σ-setup for K over Fp (an algebraically

closed field of characteristic p) is a pair (K,σ) such that

• K is a semisimple algebraic group over Fp,

• σ is a Steinberg endomorphism of K (a surjective endomorphism of K such that

CK(σ) is finite),

• K is isomorphic to Op
′
(CK(σ)), the subgroup of CK(σ) generated by its p-elements.
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(2) A finite group of Lie type in characteristic p is a finite group K possessing a σ-setup

(K,σ) over Fp such that K is simple.

We now record an alternative description of Steinberg endomorphisms that clarifies the

definition of the finite groups of Lie type. This appears as Definition 2.1.9 and Theorem

2.1.11 [GLS3].

Definition 2.2. Let q be a power of p. For x ∈ GLn(Fp), write x(q) for the matrix

obtained by raising each entry of x to the power q, and let σq(x) = x(q) for all x.

An endomorphism σ of an algebraic group K is called a Frobenius endomorphism if

there is a power τ = σm of σ, a power q of p and an algebraic group identification of K

with a closed subgroup of GLn(Fp) for some n, such that τ = σq|K. In this case, we say

that σ has level q1/m.

Theorem 2.3. Let K be an algebraic group. If σ is a Frobenius endomorphism of K then

σ is a Steinberg endomorphism. Conversely, if σ is a Steinberg endomorphism and K is

simple, then σ is a Frobenius endomorphism.

Now Definition 2.1 (2) and Theorem 2.3 show that, roughly speaking, a finite group of

Lie type is a subgroup of fixed points of a Frobenius endomorphism of a simple algebraic

group. Thus a classification of the finite groups of Lie type follows from the classification

of simple algebraic groups. The classification of simple algebraic groups is achieved by

means of classifying irreducible Root systems (Theorem 1.10.4 [GLS3]). We pause now to

briefly discuss this concept.

Definition 2.4. (1) A Root System is a nonempty subset Σ of nonzero vectors in a

Euclidean Space V with inner product ( , ), such that the following hold.

• Σ spans V ;

• If r, s ∈ Σ, then s− 2(r,s)
(r,r) r ∈ Σ;

• If r, s ∈ Σ, then 2(r,s)
(r,r) ∈ Z;

• If r, λ · r ∈ Σ then λ = ±1.

(2) A Fundamental System Π for Σ is a linearly independent subset of Σ such that every

element of Σ can be expressed as a linear combination of elements of Π with coefficients

that are either all positive or all negative.

(3) A root system Σ is said to be irreducible if it admits no partition into mutually

orthogonal subsets.
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Now irreducible root systems are classified (up to isomorphism, which we do not discuss

here) by Theorem 1.8.7 [GLS3]. Each irreducible root system Σ has a label Σl, where l

denotes the dimension of the span of Σ. A list of irreducible root systems is: Am (m ≥ 1),

Bm (m ≥ 1), Cm (m ≥ 1), Dm (m ≥ 3), Em (m = 6, 7, 8), F4, G2. Among these, we have

equalities A1 = B1 = C1, and D3 = A3.

To each simple algebraic group G we may associate one of the above irreducible root

systems. For each root α ∈ Σ there exists a root subgroup Xα, which is parametrised by

Fp so that one may write Xα = 〈xα(t) : t ∈ Fp〉. By Theorem 1.10.1 (a) [GLS3], the root

subgroups generate G.

This association gives rise to certain isomorphisms of G. If ρ is an isometry of the fun-

damental system Π, then, by Theorem 1.15.2 (a) [GLS3], there is an automorphism γρ

such that γρ(xα(t)) = xρ(α)(t) for all α ∈ ±Π and all t ∈ Fp. Furthermore, if Σ = B2, F4

or G2 with p = 2, 2, 3 respectively, then by Theorem 1.15.4 (b) [GLS3], there is an angle

preserving and length changing bijection ρ : Σ → Σ, and an automorphism ψ of G such

that ψ(xα(t)) = xρ(α)(t) or ψ(xα(t)) = xρ(α)(t
p), depending on whether α is a long or

short root (in the sense that in the fundamental systems for B2 and G2, one element has

greater length than the other, and in the fundamental system for F4 there are two longer

roots and two shorter roots).

Now if we have a σ-setup (K,σ), then, by Theorem 2.2.3 [GLS3], we may assume that

one of the following situations holds.

(1) σ = γρϕq (where ϕq(xα(t)) = xα(tq)), for some power q = pa of p. In this case, σ has

level q.

(2) σ = ψϕq for some power q = pa of p. In this case σ has level pa+ 1
2 .

The finite groups of Lie type may thus be classified as follows.

• The untwisted groups of Lie type: Am(q), Bm(q) (m ≥ 2), Cm(q) (m ≥ 2), Dm(q)

(m ≥ 3), G2(q), F4(q), E6(q), E7(q), E8(q) arise from case (1) above, taking ρ to be

trivial.

• The Steinberg (or twisted) groups: 2Am(q) (m > 1), 2Dm(q) (m ≥ 3), 3D4(q), 2E6(q)

arise from case (1) above with ρ having order d > 1.

• The Suzuki-Ree groups: 2B2(22a+1), 2F4(22a+1), 2G2(32a+1) arise from case (2)

above.

So the finite groups of Lie type are indexed by the symbols dΣl(q) where Σl is an irreducible

root system, d is the order of ρ, and q is the level of σ, a power of p. We may now make

the following crucial definition.
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Definition 2.5. Let G = dΣl(q) be a finite group of Lie type. Then the (Untwisted)

Rank of G, written rank(G) is

rank(G) = l = dim(Span(Σ)).

This list of finite groups of Lie type above is also subject to the additional complication

that each symbol dΣl(q) can represent more than one nonisomorphic group (version). By

Theorem 2.2.6 (a) [GLS3], for each symbol K = dΣ(q), there is up to isomorphism a

unique largest group Ku (called the universal version) and a unique smallest group Ka

(called the adjoint version). In some cases these are the same, but for the symbols Am(q),

Bm(q), Cm(q), Dm(q), E6(q), E7(q), 2Am(q), 2Dm(q) and 2E6(q) we must always specify

which version we are talking about. In all cases we have the following helpful result, which

is parts (b) and (c) of Theorem 2.2.6 [GLS3].

Theorem 2.6. For any version K of a symbol dΣl(q), there are surjective homomorphisms

Ku → K → Ka whose kernels are central. In particular if K is simple, then K ∼= Ka.

Furthermore, Z(Ka) = 1 and K/Z(K) ∼= Ku/Z(Ku) ∼= Ka.

We conclude this section with a description of the simple groups of Lie type, which is

exactly Theorem 2.2.7 (a) [GLS3].

Theorem 2.7. Let K be a finite group of Lie type. If K is adjoint, then K is a nonabelian

simple group with the following exceptions: K = A1(2), A1(3), 2A2(2), 2B2(2), B2(2),

G2(2), 2F4(2), 2G2(3). The first four of these are Frobenius groups of respective orders

3·2, 4·3, 9·8 and 5·4, and for each of the last four, there is a unique proper normal subgroup,

namely the commutator subgroup [K,K], which is nonabelian simple with |K : [K,K]| = p.

2.1.2 Identifications with some Classical Groups

The symbols Am(q), 2Am(q), Bm(q), Cm(q), Dm(q) and 2Dm(q) are naturally identified

with certain classical matrix groups, as follows (compare section 2.7 [GLS3]).

• Am(q) has universal version isomorphic to the special linear group SLm+1(q) and

adjoint version isomorphic to the projective special linear group PSLm+1(q);

• The twisted group 2Am(q) has universal and adjoint versions isomorphic to the

unitary and projective unitary groups SUm+1(q) and PSUm+1(q) respectively;

• Bm(q) has adjoint version isomorphic to the (2m+ 1)-dimensional orthogonal group

Ω2m+1(q);

• Cm(q) has universal and adjoint versions isomorphic to the symplectic and projective

symplectic groups Sp2m(q) and PSp2m(q) respectively;
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• Dm(q) has adjoint version isomorphic to the 2m-dimensional projective orthogonal

group PΩ2m(q);

• The twisted group 2Dm(q) has adjoint version isomorphic to the 2m-dimensional

orthogonal group PΩ−2m(q).

Henceforth we regard the groups Am(q), 2Am(q), Bm(q), Cm(q), Dm(q) and 2Dm(q) as

Classical Groups of Lie type and the remaining groups of Lie type as Exceptional Groups

of Lie type.

We will adopt the following standard notation for discussing classical groups.

Notation 2.8. We sometimes write A±l (q) = (P )SL±l+1(q) to refer to Al(q) = (P )SLl+1(q)

and 2Al(q) = (P )SUl+1(q) respectively.

We pause here to state a very useful result on the Sylow subgroups of PSL2(q). This can

be found as Chapter 5, Lemma 1.1 [G].

Lemma 2.9. Let G = PSL2(q), with q = ra, r a prime. Then we have

(a) A Sylow r-subgroup R of G is elementary abelian of order ra, R is disjoint from its

conjugates and NG(R) is a Frobenius group with a cyclic complement which acts irreducibly

on R;

(b) If p is a prime distinct from r or 2, then a Sylow p-subgroup of G is cyclic;

(c) If r is odd, then a Sylow 2-subgroup of G is dihedral and has order 4 if and only if

q ≡ 3, 5 mod 8;

(d) If Q is a nontrivial subgroup of G of odd prime power order, then NG(Q) does not

contain a subgroup isomorphic to A4.

We close this section by defining some important subgroups of certain classical groups.

Definition 2.10. A Singer cyclic subgroup of GLn(q) is a cyclic subgroup of GLn(q)

of order qn − 1.

A Singer cyclic subgroup of SLn(q) is a cyclic subgroup of SLn(q) of order qn−1
q−1 .

A Singer cyclic subgroup of GUn(q) (for n odd) is a cyclic subgroup of GUn(q) of order

qn + 1.

A Singer cyclic subgroup of SUn(q) (for n odd) is a cyclic subgroup of SUn(q) of order
qn+1
q+1 .

A Singer cyclic subgroup of Sp2n(q) is a cyclic subgroup of Sp2n(q) of order qn + 1.

A Singer cyclic subgroup of GO−2n(q) is a cyclic subgroup of GO−2n(q) of order qn + 1.

8



A Singer cyclic subgroup of SO−2n(q) is a cyclic subgroup of SO−2n(q) of order qn + 1.

A Singer cyclic subgroup of Ω−2n(q) is a cyclic subgroup of Sp2n(q) of order (qn+1)/(2, q+1).

All such subgroups exist by Table 1 [B].

2.1.3 Automorphisms

We now describe the automorphism groups of the finite groups of Lie type. We begin by

recording a definition from [GLS3].

Definition 2.11. (1) Let Fp be an algebraically closed field of characteristic p. A Torus

is an algebraic group which is isomorphic, as an algebraic group, to the direct product of

finitely many copies of GL1(Fp). A subtorus of an algebraic group K is a closed subgroup

of K which is a torus. A maximal torus of K is a subtorus of K not contained in any

other subtorus of K.

(2) Let (K,σ) be a sigma setup for the finite group of Lie type K. Then a maximal torus

of K is a subgroup of K of the form T ∩K, where T is a maximal torus of K.

We now follow Theorem 2.5.1 [GLS3] to describe the automorphism groups.

Theorem 2.12. Let K be a group of Lie type over Fq, where q = ra, and let (K,σ) be a

σ-setup for K. Then every automorphism of K is a product idfg, where

(a) i ∈ Inn(K),

(b) d is a ‘diagonal automorphism’ of K, that is d is induced by conjugation by an element

h ∈ NT (K), where T is a maximal torus of K,

(c) f is a ‘field automorphism’ of K, that is f arises from an automorphism ϕ of Fq and

takes each xα(t) to xα(ϕ(t)),

(d) g is a ‘graph automorphism’ of K, that is g = 1 unless K is untwisted, and one of the

following holds.

• Σ has one root length and for some isometry ρ of Σ carrying Π to Π, g takes each

xα(t) to xρ(α)(εα · t), where the εα are signs, and εα = 1 when ±α ∈ Π, or

• Σ = B2, F4 or G2 with r = 2, 2, 3 respectively and g takes xα(t) to xρ(α)(t) if α is

long, and xα(t) to xρ(α)(t
r) if α is short, where ρ is the unique angle-preserving and

length changing bijection from Σ to Σ carrying Π to Π.

The following lemma gives us some extra information on inner-diagonal and graph auto-

morphisms that will be useful in what follows. It may be obtained by combining Theorem

2.5.14 [GLS3] and Lemma 4.1.1 [GLS3].
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Lemma 2.13. Let K ∈ Lie(r) and let x ∈ Aut(K) be an inner-diagonal or graph

automorphism of prime order r1 6= r. The there exists a σ-setup (K,σ) of K and

overlinex ∈ Aut0(K) (the group of automorphisms of K as an algebraic group) com-

muting with σ such that x induces x on K. Moreover, in this case x is unique and has

order r1.

Remark 2.14. We remark that inner-diagonal automorphisms of a group K of Lie

type are further divided into two types, so-called equal rank type and parabolic type.

Roughly speaking, if x is an automorphism of the algebraic group K which induces x on

K as in Lemma 2.13, then x having equal rank type means that the Dynkin diagram of

[CK(x)0, CK(x)0] has the same number of nodes as that of K. If x has parabolic type this

means that the Dynkin diagram of [CK(x)0, CK(x)0] has fewer nodes than that of K (see

Definition 4.1.8 [GLS3]).

We close this section with some observations that limit the possibilities for automorphisms

of prime order s > 3.

Lemma 2.15. Let K ∈ Lie(r) and let t be an automorphism of prime order s, where

s 6= r and s > 3. Then either t is inner-diagonal (a product of an inner automorphism

and a diagonal automorphism) or t is conjugate to a field automorphism.

Proof. By Lemma 2.12, t is a product ifg, where i is inner-diagonal, f is a field automor-

phism and g is a graph automorphism. In fact, by Theorem 2.5.12 [GLS3], Aut(K) is a

split extension of the group Inndiag(K) of inner-diagonal automorphisms by the group

ΦKΓK generated by the graph and field automorphisms. Since t has order s we have

(ifg)s = ts = 1. If g 6= 1, then since it is a graph automorphism, it has order divisible by

2 or 3. This is a contradiction and so g = 1. Hence (if)s = 1 This can be rewritten as

i(fif−1)(f2if−2)...(f s−1if−(s−1))fs = 1

Moving the last f s over to the other side gives

i(fif−1)(f2if−2)...(f s−1if−(s−1)) = f−s

Now the left-hand side of this equation is contained in Inndiag(K) whilst the right-hand

side is in ΦK . Since Inndiag(K) and ΦK intersect trivially, each side is in fact trivial. In

particular, fs = 1. If f = 1, then t = i and so t is inner-diagonal as required. So assume

f 6= 1. Then certainly t ∈ Inndiag(K)f . So we are in the conditions of Proposition 4.9.1

(d) [GLS3], which asserts exactly that t is Inndiag(K)-conjugate to f .
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Lemma 2.15 tells us that we may divide our analysis into two cases, that of t being inner-

diagonal or of t being a field automorphism. Theorem 2.5.12 (c) [GLS3] will simplify our

analysis even further by giving the order of Outdiag(K) := Inndiag(K)/Inn(K). We

record this result below.

Lemma 2.16. Let K be a group of Lie type. Then the order of O := Outdiag(K) is given

in the following table (or is 1 if K does not appear in the table).

K A±m(q) Bm(q),Cm(q),D−2m(q) D2m(q) D±2m+1(q) E±6 (q) E7(q)

|O| (m+ 1, q ∓ 1) (2, q − 1) (2, q − 1)2 (4, q ∓ 1) (3, q ∓ 1) (2, q − 1)

2.2 Further Background Information

In this section we introduce two topics that need to be understood for the analysis to

follow.

2.2.1 The Frattini Subgroup

The first topic to address in this section is that of a very important characteristic subgroup

of a finite group G, namely the Frattini Subgroup Φ(G).

Definition 2.17. Let G be a finite group. The Frattini Subgroup Φ(G) of G is the

intersection of all the maximal subgroups of G.

The following Lemma is part of Lemma 3.15 [GLS2].

Lemma 2.18. Let X be a finite group and N /X. Then Φ(N) ≤ Φ(X).

We will mainly work with the Frattini subgroup Φ(G) in the context where G is a p-group.

We therefore introduce a standard Lemma, which can be found as Chapter 5, Theorems

1.3 and 1.4 [G] to this end.

Lemma 2.19. Let P be a finite p-group.

(i) The Frattini factor group P/Φ(P ) is elementary abelian;

(ii) Φ(P ) = 1 if and only if P is elementary abelian;

(iii) If φ is a p′-automorphism of P inducing the identity on P/Φ(P ), then φ is the identity

automorphism of P .
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2.2.2 Extra-Special Groups

We are now in a position to discuss a very important class of groups known as Extra-Special

Groups. Our treatment follows [GLS2].

Definition 2.20. The p-group P is called special if either P is elementary abelian or P is

nonabelian with Z(P ) = Φ(P ) = [P, P ] elementary abelian; and P is called extra-special

if P is nonabelian, special and |Z(P )| = p.

The extra-special groups are well-understood and we now list some standard results about

them, beginning with the following structure theorem, Proposition 10.4 [GLS2].

Theorem 2.21. Any nonabelian group of order p3 is extra-special. Conversely, if p is

extra-special, then the following conditions hold for some integer n.

(i) P is a central product of extra-special groups P1, P2, ... ,Pn of order p3;

(ii) P/Z(P ) ∼= Ep2n;

(iii) If |P | = p3, then either p = 2 and P ∼= D8 or Q8; or p is odd, P has exponent p or

p2 and P is uniquely determined up to isomorphism by its exponent;

(iv) D8 ◦D8
∼= Q8 ◦Q8 � D8 ◦Q8.

Write 21+2k
+ to denote the central product D8 ◦D8 ◦ ... ◦D8 of k copies of D8 and 21+2k

−

to denote the product D8 ◦D8 ◦ ... ◦D8 ◦Q8 of k − 1 copies of D8 with 1 copy of Q8.

Lemma 2.22. Let Q be an extra-special p-group of order p1+2k. Then the smallest di-

mension of a faithful representation of Q over a field of order coprime to p is pk.

Proof. This follows from Proposition 4.6.3 (i), (ii) [KL].

Lemma 2.23. Let p be a prime and suppose that P is an extra-special group of order

p1+2n.

(i) If p is odd and P is of exponent p, then the subgroup of Aut(P )/Inn(P ) consisting of

the elements acting trivially on Z(P ) is isomorphic to Sp2n(p).

(ii) If P ∼= 21+2n
± , then Aut(P )/Inn(P ) ∼= O±2n(2).

Proof. This is exactly Proposition 10.5 (iii) and Proposition 10.6 (iv) [GLS2].
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Chapter 3

The Case r = s

The purpose of this chapter is to show that if G ∈ Lie(r) with (G, t,X) a triple of type

(Hs) such that X 6= 1, then r 6= s. If p = r, then since p 6= s by assumption we

certainly have r 6= s. Therefore we will assume that p 6= r in what follows. We begin

the chapter with some technical results. We first recall some theory on the Generalized

Fitting Subgroup F ∗(X) of a finite group X, that we will use extensively in what follows.

The following definition is exactly Definition 3.4 [GLS2]

Definition 3.1. Let X be a finite group.

(i) A Component of X is a quasisimple subnormal subgroup of X;

(ii) The Layer of X is the subgroup E(X) generated by all the components of X;

(iii) The Fitting subgroup F (X) of X is the largest normal nilpotent subgroup of X;

(iv) The generalized Fitting subgroup F ∗(X) of X is given by F ∗(X) = F (X)E(X).

The generalized Fitting subgroup F ∗(X) is a characteristic subgroup of X and the follow-

ing result gives two further useful properties.

Proposition 3.2. Let X be a finite group. Then

(i) The subgroup F ∗(X) contains its centralizer, that is CX(F ∗(X)) = Z(F (X));

(ii) If N /X, then F ∗(N) ≤ F ∗(X).

Proof. Part (i) is a Theorem of Bender, 3.6 [GLS2]. Part (ii) can be found as Lemma 3.10

(i) [GLS2].

The next result we will need is a corollary of a well known Theorem of Borel and Tits.

Here we state both the theorem and its corollary, as both will be needed further later.

The following appear as Theorem 3.1.3 (a) and Corollary 3.1.4 [GLS3] respectively.
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Theorem 3.3. Let G ∈ Lie(r) and let R be a nonidentity r-subgroup of G. Then there is

a parabolic subgroup P of G such that R ≤ Or(P ) and NK(R) ≤ P .

Corollary 3.4. Let G ∈ Lie(r). If X is a subgroup of Aut(G) containing Inn(G) and R is

an r-subgroup of G with R � Z(G), then NX(R) and NG(R) are r-constrained. Moreover

F ∗(NX(R)) = Or(NX(R)) and F ∗(NG(R)) = Or(NG(R))Z(G).

Our next result is a standard statement that appears as Chapter 5, Theorem 3.16 [G].

Theorem 3.5. Let Z be a noncyclic abelian p′-group of automorphisms of a p-group X.

Then

X = 〈CX(u) : u ∈ Z#〉.

Lemma 3.6. Suppose G ∈ Lie(r). Suppose that (G, t,X) is a triple of type (Hs) with

X 6= 1 and p 6= r. For u ∈ G, write Xu := CX(u).

(a) If there exists a subgroup U ≤ CG(t) with U ∼= Er2, then there exists u ∈ U# such that

[Xu, t] 6= 1,

(b) Given an r-element u of CG(t) with [Xu, t] 6= 1, we have that F ∗(CG(u)) = Or(CG(u))

and that Xu〈t〉 acts faithfully on F ∗(CG(u)).

Proof. Since U ≤ CG(t) ≤ NG(X), U acts on X. Since p 6= r, Theorem 3.5 gives X =

〈Xu : u ∈ U#〉. Now if [Xu, t] = 1 for every u, then X = [X, t] = 1 which is a contradiction,

proving (a).

We now focus on the first part of (b). We use Corollary 3.4. Since 〈u〉 is an r-subgroup

of G, we have F ∗(NG(〈u〉)) = Or(NG(〈u〉)). Now CG(u) / NG(〈u〉), and so F ∗(CG(u)) ≤
F ∗(NG(〈u〉)) by Proposition 3.2 (ii). Hence F ∗(CG(u)) ≤ Or(NG(〈u〉)). NowOr(NG(〈u〉)) ≤
Or(CG(u)) since Or(NG(〈u〉)) is an r-group normalizing 〈u〉 and 〈u〉 does not admit a

nontrivial r-automorphism. So we have shown that F ∗(CG(u)) ≤ Or(CG(u)). For the

opposite inclusion, we note that Or(CG(u)) is nilpotent since it is a finite r-group. Thus,

Or(CG(u)) ≤ F ∗(CG(u)), giving the conclusion.

The second claim in (b) follows directly from the first claim and Proposition 3.2 (i). We

have an r′-group Xu〈t〉 ≤ CG(u). Further,

CXu〈t〉(F
∗(CG(u))) ≤ CCG(u)(F

∗(CG(u))) ≤ F ∗(CG(u)) = Or(CG(u))

and Or(CG(u)) is of course an r-group. Hence CXu〈t〉(F
∗(CG(u))) = 1, proving the result.
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Lemma 3.7. Let p, r, s be primes with p 6= r, p 6= s. Let X be a nontrivial p-group and t

an order s automorphism of X such that [X, t] = X. Suppose that X〈t〉 acts faithfully on

an r-group R and that (RX〈t〉, t,X) has type (Hs). Then r 6= s.

Proof. This is just Lemma 1.8 [Ko] with 3 replaced by a general s. The proof is exactly

analogous.

We are now in a position to prove our first main result.

Proposition 3.8. Let G ∈ Lie(r). Suppose that (G, t,X) is a triple of type (Hs) with

X 6= 1. Then r 6= s.

Proof. The proof is analogous to Proposition 2.1 [Ko]. Suppose r = s. Then G ∈ Lie(s).
We aim to show that there exists U ≤ CG(t) such that U ∼= Es2 . Since s > 3, t cannot be

a graph automorphism. So we treat the cases of t being inner, innerdiagonal or field.

Case 1: t ∈ Inn(G).

We may suppose that the action of t is given by conjugation by an order s element of G

which, by abuse of notation, we also label t. Then t ∈ S for some S ∈ Syls(G). Suppose

t ∈ Z(S). Then S ≤ CG(t). Look at ms(S) = ms(G). Table 3.3.1 [GLS3] gives us that

ms(G) ≥ 2, as required, unless G ∼= A1(s).

So suppose G ∼= A1(s). If p 6= 2, then X is cyclic by Lemma 2.9 (b). So if X has order

pn, then Aut(X) has order pn−1(p − 1). Now t cannot act trivially on X (since if it did,

then X = [X, t] = 1) and has prime order s 6= p, so s divides p− 1. But on the other hand

|G| = 1
2s(s− 1)(s+ 1), so either p divides s− 1 or p divides s+ 1. Either way this leads to

a contradiction. Suppose now that p = 2. If G ∼= PSL2(s), then Lemma 2.9 (c) gives that

X is either cyclic or dihedral. If on the other hand G ∼= SL2(s), then X is either cyclic or

generalised quaternion. In both cases, the only possible non-trivial automorphism of odd

order of X would have order 3. Since s > 3, t must act trivially on X, which is again a

contradiction.

Finally, suppose t /∈ Z(S). Then Z(S) contains some element t1 6= t of order s. Then we

may take U = 〈t, t1〉 ∼= Es2 , as required.

Case 2: t ∈ Inndiag(G)− Inn(G).

In this case the order of t must be coprime to s (by Lemma 2.16), giving a contradiction.

Case 3: t is a field automorphism.

Again using Table 3.3.1 [GLS3], we obtain the required ms(CG(t)) ≥ 2, unless CG(t) ∼=
A1(s).

Suppose CG(t) ∼= A1(s). In this case G ∼= A1(ss). But A1(s) is maximal in A1(ss) by

Theorem 6.5.1 [GLS3]. Since CG(t) normalises X, CG(t) ≤ XCG(t) ≤ G. Thus because of
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maximality either CG(t) = XCG(t) and so X ≤ CG(t) which is an obvious contradiction

as t acts non-trivially on X, or XCG(t) = G and so X / G which is also a contradiction

as G is quasisimple and [t, Z(G)] = 1.

So by Cases 1-3, we may assume that there exists U ≤ CG(t) such that U ∼= Es2 . Now

we proceed as in [Ko]. U acts on X and so by Theorem 3.5, if we write Xu := CX(u),

then X = 〈Xu ∈ U#〉. Now by Lemma 3.6 we may choose u ∈ U# so that [Xu, t] 6= 1 and

that Xu〈t〉 acts faithfully on F ∗(CG(u)) = Os(CG(u)). As this contradicts Lemma 3.7,

we have proved the result.

16



Chapter 4

The Case p = r

We now deal with triples (G, t,X) of type (Hs) such that G ∈ Lie(r) and p = r. We prove

the following result, similar to Proposition 2.2 [Ko].

Proposition 4.1. Let G ∈ Lie(r), t ∈ Aut(G) and 1 6= X ≤ G be such that (G, t,X)

is a triple of type (Hs) with p = r and s ≥ 5. Then t ∈ Inndiag(G) and there exists a

parabolic subgroup P ≤ G such that X is contained in the unipotent radical Or(P ) of P ,

CG(t) ≤ P , CG(t)∩Or(P ) = 1 and CG(t) is conjugate to a subgroup of a Levi complement

L of P .

Proof. Since X is an r-group, Theorem 3.3 tells us that there exists a parabolic subgroup

P ≤ G such that X ≤ Or(P ) and CG(t) ≤ NG(X) ≤ P . As we discussed earlier, since

s ≥ 5, either t ∈ Inndiag(G) or t induces a field automorphism on G.

We first deal with the latter case. Thus assume that t induces a field automorphism on

G. Since G = dΣ(q) for some d, Σ and q, by Proposition 4.9.1(a) of [GLS3], Or
′
(CG(t)) =

dΣ(q
1
s ) and CG(t)/Or

′
(CG(t)) induces diagonal automorphisms on Or

′
(CG(t)). Moreover,

invoking Theorem 1 of [BGL] we conclude that CG(t) is a maximal subgroup of G unless

CG(t) ∈ {A1(2), A1(3), 2B2(2)}. Suppose first that CG(t) 6∈ {A1(2), A1(3), 2B2(2)}. Then

as CG(t) normalises X, X ≤ CG(t). But then X / CG(t) and so X ≤ Or(CG(t)) which

clearly contradicts the structure of CG(t). Therefore CG(t) ∈ {A1(2), A1(3), 2B2(2)} and

so G is one of the following groups: A1(2s), A1(3s), 2B2(2s). Thus p = r = 2. In

all the cases the only parabolic subgroup is a Borel subgroup B of G. Without loss of

generality we may assume that P = B and so X ≤ O2(B). Since CG(t) ≤ P = B,

O2(B) ∩ CG(t) ≤ O2(CG(t)) = 1. Hence, O2(B) ∩ CG(t) = 1 and so the image of CG(t)

in B/O2(B) is isomorphic to CG(t). This is an obvious contradiction as B/O2(B) is

abelian while CG(t) is not. Therefore t cannot induce a field automorphism on G and so

t ∈ Inndiag(G).

By Theorem 4.1.9 of [GLS3], either t is of equal rank type or of parabolic type. Now,
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CG(t) ≤ P . Denote by U := Or(P ). If CU (t) 6= 1, then CU (t) ≤ Or(CG(t)) 6= 1 which

contradicts Theorem 4.2.2 of [GLS3]. Therefore CU (t) = 1, and in particular, CX(t) = 1 as

X ≤ U . Since P is a parabolic subgroup of G, P = U oL, where L is a Levi complement.

By applying the Schur-Zassenhaus Theorem, we may see that CG(t) is conjugate to a

subgroup of L.
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Chapter 5

The Case p 6= r, t an

Inner-Diagonal Automorphism

By the results of Chapters 3 and 4, we may assume from this point forward that if (G, t,X)

is a triple of type (Hs) with G ∈ Lie(r), then the primes p, r, s are pairwise distinct.

5.1 Preliminary Lemmas

We first record some results that will be used repeatedly in the analysis to follow. The

following theorem will be employed extensively. It can be found as Chapter 5, Theorems

2.3, 3.5 and 3.6 [G].

Theorem 5.1. Let X be a p-group and let A be a p′-group of automorphisms of X. Then

(i) [[X,A], A] = [X,A];

(ii) X = CX(A)[X,A];

(iii) If X is abelian, then X = CX(A)× [X,A].

In dealing with the groups of Lie type, we will need to work with the different versions

of each group G ∈ Lie(r) simultaneously. Therefore it will be necessary to first establish

when we may pass between versions. We denote the universal version of G by Gu and

the adjoint version by Ga. In the following, one of the two things happen: either H is a

subgroup of G and then H denotes the image of H in Ga, or H is a subgroup of Gu and

then H denotes the image of H in G. Similarly if g ∈ G (correspondingly Gu), we write

g to denote the image of g in Ga (correspondingly G). Finally, since every automorphism

of G ”lifts” to unique automorphisms of Ga and Gu (cf. Theorem 2.5.14 of [GLS3]) if ϕ
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is an automorphism of G, then following the notation of [GLS3] we write ϕa and ϕu for

the corresponding automorphisms of Ga and Gu.

Lemma 5.2. Let G ∈ Lie(r).

(i) Let (G, t,X) be a triple of type (Hs). Let u be an automorphism of Gu such that u = tu

and let Y be the largest p-subgroup of Gu such that Y = X. Then (Gu, u, [Y, u]) is also a

triple of type (Hs).

(ii) Let (G, t,X) be a triple of type (Hs). Suppose that s does not divide |Z(G)|. Then

(Ga, t,X) is a triple of type (Hs).

Proof. (i) Note that o(u) = o(t). By Theorem 5.1 (i), we have [Y, u] = [[Y, u], u]. It

remains to show that CGu(u) ≤ NGu([Y, u]). Take g ∈ CGu(u). Since Y = [Y, u]CY (u)

(by Theorem 5.1 (iii)), it suffices to show that g ∈ NGu(Y ). Take y ∈ Y . Then, since

y ∈ X and g ∈ CG(t) ≤ NG(X), we have gyg−1 ∈ X. So there exists y1 ∈ Y such that

gyg−1 = y1. Hence gyg−1 = y1z for some z ∈ Z(Gu). So y−1
1 commutes with gyg−1. Since

y, y1 are both p-elements, so is gyg−1y−1
1 = z. So in fact z ∈ Y . Hence gyg−1 = y1z ∈ Y

and so g ∈ NGu(Y ), as required.

(ii) Take x ∈ X (where x ∈ X). As x ∈ [X, t], x ∈ [X, t] = [X, t]. Thus X = [X, t]. Now

take g ∈ CGa(t). Then g = h for some h ∈ G. We have hth−1 = t. Hence, [h, t] ∈ Z(G).

Thus t commutes with hth−1. Hence, [h, t] is an s-element. Since s does not divide |Z(G)|,
we have [h, t] = 1. So h ∈ CG(t) ≤ NG(X). So g = h ∈ NGa(X) and so (Ga, t,X) is a

triple of type (Hs).

The consequence of Lemma 5.2 is that we may always start by assuming that G is the

universal version, since any triple of type (Hs) in the adjoint version also gives rise to a

triple in the universal version. If we wish to assume that G is adjoint, we have to respect

the conditions of (ii) above.

We now introduce further preliminary results that will be useful in the analysis to follow.

The following appears as Theorem 4.2.2 (a), (b), (d)-(g) [GLS3]. In the statement, x

is the automorphism of the algebraic group G which induces x on G, which exists by

Lemma 2.13.

Theorem 5.3. Let G ∈ Lie(r) with G = dΣ(q) and let G∗ = Inndiag(G). Let x be an

inner-diagonal automorphism of G of prime order r1 6= r. Let ∆ be the Dynkin diagram

of G and ∆x be the Dynkin diagram of CG(x). Then there exist subgroups T ≤ CG(x) and

T ∗ ≤ CG∗(x) such that the following hold.

(a) L := Or
′
(CG(x)) is a central product L1 ◦L2 ◦ ... ◦Lj of groups Li ∈ Lie(r). Similarly,

L∗ := Or
′
(CG∗(x)) is a central product L∗1 ◦L∗2 ◦ ... ◦L∗j of groups L∗i ∈ Lie(r), where each

L∗i is the image of Li in G∗.
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(b) T and T ∗ are abelian r′-groups inducing inner-diagonal automorphisms on each Li

(respectively L∗i ).

(c) CG(x)/LT is an elementary abelian r1-group and is isomorphic to a subgroup of the

kernel K of the covering map Gu → G, where Gu is the universal version of G. Also

CG∗(x)/L∗T ∗ is an elementary abelian r1-group which is isomorphic to a subgroup of the

center of Gu.

(d) We have Li = diΣi(q
mi) and L∗i = diΣi(q

mi) where

(i) The mi’s are positive integers, and

(ii) ∆x is the disjoint union of the ∆x,i for i = 1, 2, ..., j, where each ∆x,i is in turn the

disjoint union of mi copies of the Dynkin diagram of Σi.

(e) If x is of parabolic type, then

(i) ∆x is a subdiagram of ∆, and

(ii) If G is the universal version, then L = L1 × L2 × ...× Lj (the direct product)

(f) If x is of equal rank type, then ∆x = ∆ ∪ {α∗} − {α}, that is the extended Dynkin

diagram of G with one node erased.

We will employ this result whenever we have some element z ∈ G or automorphism z ∈ G∗

which centralizes both X and t. Then we have X〈t〉 ≤ CG∗(z) and we may use the above

results to analyse CG(z). If z is an inner automorphism, we will try to choose z ∈ Z(X),

which gives r1 = p, but this is not always possible.

The next statement highlights a commonly occurring situation that will allow the appli-

cation of Theorem 5.3.

Lemma 5.4. Let G be a finite group and let t ∈ Aut(G). Suppose that every triple (G, t, Y )

of type (Hs) with Y 6= 1 has Y nonabelian. Fix a particular triple (G, t,X) of type (Hs)

(so that in particular X is nonabelian). Then for all z ∈ Z(X) we have X〈t〉 ≤ CG〈t〉(z)

Proof. Suppose that [Z(X), t] 6= 1. We want to show that (G, t, [Z(X), t]) is a triple of

type (Hs). Take X0 = [Z(X), t]. We have X0 = [X0, t] by Theorem 5.1 (i). Furthermore,

since CG(t) ≤ NG(X) and Z(X) is characteristic in X, X0 = [Z(X), t] is normalized by

CG(t). So (G, t,X0) is a triple of type (Hs) as required. This is a contradiction since

X0 = [Z(X), t] is abelian. So we must have Z(X) ≤ CG(t) and thus we see that if

z ∈ Z(X), X〈t〉 ≤ CG〈t〉(z).
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5.1.1 Some Reductions

In this subsection we will work under the following hypotheses:

(H1) (G, t,X) is a triple of type (Hs) with G ∈ Lie(r),

(H2) There exists z ∈ G such that the following conditions hold:

1. z is of prime order r1 6= r,

2. z /∈ Z(G), and

3. X〈t〉 ≤ CG∗(z).

First let us suppose that s does not divide |Z(Gu)|. Then we may assume that t ∈ Inn(G)

by Lemma 2.16. So we may write X〈t〉 ≤ CG(z). Since z /∈ Z(G), z induces a nontrivial

inner automorphism on G. We may now apply Theorem 5.3 above to z. We will use

the notation of this theorem (i.e., T and L, etc. are as in Theorem 5.3 with z instead of

x). By part (c ), CG(z)/LT is an elementary abelian r1-group which is isomorphic to a

subgroup of the kernel K of the covering map Gu → G. Since CG(z)/LT is abelian, we

have X = [X, t] ≤ [CG(z), CG(z)] ≤ LT . Further, t ∈ LT since CG(z)/LT is isomorphic to

a subgroup of K and t has order s. If L = 1, then X〈t〉 ≤ T and so X = [X, t] ≤ [T, T ] = 1.

Thus suppose that L 6= 1. Then X = [X, t] ≤ [LT,LT ] ≤ L. By part (a), we have that

L = L1 ◦ L2 ◦ ... ◦ Lj and by part (b), t induces an inner-diagonal automorphism on each

Li. Write Xi for the projection of X into Li, i = 1, . . . , j. Then X ≤ X1 ◦X2 ◦ ... ◦Xj ,

each Xi is a p-group and since t acts on each factor Li of L, we have Xi = [Xi, t] for each

i. Finally we have CLi(t) = Li ∩ CG(t) ≤ Li ∩ NG(X) = NLi(X) ≤ NLi(Xi) for each i.

Hence we may conclude that each (Li, t,Xi) is a triple of type (Hs).

Suppose now that we are in the situation where s does divide |Z(Gu)|. We need to be a

little more careful: now we may have t ∈ Inndiag(G) − Inn(G) and so we may only say

that X〈t〉 ≤ CG∗(z). But we may use the results of Theorem 5.3 for G∗. Since we still

have that CG∗(z)/L
∗T ∗ is an elementary abelian r1-group, we may make exactly analogous

conclusions provided s 6= r1. If z is an s-element and s does divide |Z(Gu)|, then we are

unable to make any such statements.

In light of the above discussion we may now state the following result.

Lemma 5.5. Let G ∈ Lie(r), t ∈ G∗ = Inndiag(G) and suppose that (G, t,X) is a triple

of type (Hs). Further suppose that there exists z ∈ G of prime order r1 6= r such that

z /∈ Z(G) and X〈t〉 ≤ CG∗(z). Suppose that either s does not divide |Z(Gu)|, or that

r1 6= s (or both). Then

(a) X may be embedded inside a central product L = L1 ◦L2 ◦ ...◦Lj of groups Li ∈ Lie(r)
(where L = Or

′
(CG(z)) or Or

′
(CG∗(z))), whose possible isomorphism types may be calcu-

lated explicitly by Theorem 5.3 (d)-(f), such that t acts as an inner-diagonal automorphism
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on each Li.

(b) If we write Xi for the projection of X into Li, then for each i, either (Li, t,Xi) is a

triple of type (Hs), or Xi = 1

We should also note that if r1 = 2, then Tables 4.5.1, 4.5.2 and 4.5.3 [GLS3] give explicit

lists of all the possible isomorphism types of CG∗(z) and in particular, L for us!

5.1.2 Further Lemmas

The following result appears as Proposition 11.11 [GLS2].

Lemma 5.6. Let X be a p-group. Then there exists a subgroup Y of X with the following

properties.

(i) Y is critical in X, that is, Y char X and every p′-group of automorphisms of X acts

faithfully on Y ;

(ii) Y has nilpotence class at most 2;

(iii) Y ′ = Φ(Y ) is elementary abelian;

(iv) If Y is not abelian, then it has exponent p or 4 according as p is odd or 2.

Remark 5.7. Suppose again that (G, t,X) is a triple of type (Hs) with G ∈ Lie(r). Later

we will use Lemma 5.6 for the following common trick: take a subgroup Y ≤ X described

above (which we know to be nontrivial provided X 6= 1) and switch to a new triple of type

(Hs), the one involving Y . We will now outline the details.

First of all notice that part (i) of the above lemma implies that t acts nontrivially on Y .

Here are two cases to consider.

(1) First suppose that X is abelian. We have CY (t) ≤ CX(t), and so CY (t) = 1 by

Theorem 5.1 (iii). Thus Y = [Y, t] by that same result. We also observe that CG(t) ≤
NG(Y ) since Y is characteristic in X and hence (G, t, Y ) is a triple of type (Hs). Now

Lemma 5.6 (iii) tells us that Φ(Y ) = 1 and hence Y is elementary abelian. Therefore we

have Y ∼= Epn for some n and so Aut(Y ) ∼= GLn(p). So we will be able to analyse the

situation using the fact that s divides |Aut(Y )| and that n is bounded by mp(G), the p-rank

of G.

(2) If X is nonabelian, take R = [Y, t]. Then R = [R, t] by Theorem 5.1 (i). Furthermore,

since CG(t) ≤ NG(X) and Y is characteristic in X, R is normalized by CG(t). Hence,

(G, t,R) is a triple of type (Hs).

We now state a technical lemma which will be used when we are in the situation of the

above remark with p = 2.
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Lemma 5.8. Let X be a 2-group and Y be a subgroup of X satisfying conditions (i)-(iv)

of Lemma 5.6. Let t be an automorphism of X of prime order s, s ≥ 5, and let R = [Y, t].

Suppose further that R is nonabelian and Z(R) contains a unique involution α.

Then R is extraspecial.

Proof. We have R′ ≤ Φ(R) ≤ Φ(Y ) by Lemma 2.18 as R / Y . Since R ≤ Y and R is

non-abelian while cl(Y ) ≤ 2, cl(Y ) = 2. Hence, cl(R) = 2 and both R′ and Φ(R) are

elementary abelian since R′ ≤ Φ(R) ≤ Φ(Y ). Further Z(R) contains a unique involution

and R is nonabelian, so |R′| = 2. Moreover, Ω1(Z(R)) = 〈α〉 and so t acts trivially on it.

Now Lemma 11.2(iii) of [GLS2] gives us that [Z(R), t] = 1.

Assume now that we have β ∈ Z(R) such that β2 = α. Then as Φ(R) is elementary

abelian, passing to the Frattini factor group R = R/Φ(R) we have 1 6= β ∈ CR(t). Since

R is elementary abelian (as the Frattini factor group of a 2-group) and R = [R, t], we

have CR(t) = 1 by Theorem 5.1 (iii), which is a contradiction. Hence Z(R) has order 2,

so R′ = Z(R). If Φ(R) > Z(R), then as Φ(R) ≤ Z(Y ), we get an obvious contradiction.

Hence, R′ = Φ(R) = Z(R) and and R is indeed extraspecial.

In light of the above result, it will prove necessary to have some information on signalizers

which are extra-special groups. We may make use of Lemmas 2.22 and 2.23 as follows to

obtain the required information.

Lemma 5.9. Let s be an odd prime and let l ∈ N be such that s = 2l+c where 0 < c < 2l.

Let R be an extraspecial 2-group represented faithfully in n < 2l+1 dimensions and suppose

that R has an outer automorphism of order s.

Then c = 1, s = 2l + 1 and R ∼= 21+2l
− . Moreover, (

|O−2l(2)|
s , s) = 1.

Proof. Since R is extraspecial, we have R ∼= 21+2k
+ or R ∼= 21+2k

− for some k. By

Lemma 2.22, 2k ≤ n and so k ≤ l. Since Out(R) contains an element of order s, the

order |Out(R)| must be divisible by s. By Lemma 2.23, |Out(R)| is equal to

|O±2k(2)| = 2k
2−k+1 · (22 − 1) · (24 − 1) · ... · (22k−2 − 1) · (2k ∓ 1)

So |Out(R)| factorizes as

2k
2−k+1 · (2− 1) · (2 + 1) · (22 − 1) · (22 + 1) · ... · (2k−1 − 1) · (2k−1 + 1) · (2k ∓ 1)

Since s is prime, s divides one of the factors in this product. Now s = 2l + c where

k ≤ l and so s is larger than all of these factors except possibly the last one. So the only

possibility is c = 1, s = 2l + 1 and Out(R) ∼= O−2k(2), where k = l so that R ∼= 21+2l
− . It

also follows that (
|O−2l(2)|

s , s) = 1.
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Lemma 5.10. Let G = Lie(r), let s be a prime of the form s = 2l + 1 for some l ∈ N,

and let R ∼= 21+2l
− be such that Z(R) contains the unique involution in Z(G). Suppose that

(G, t,R) is a triple of type (Hs). Then CG(t)/CCG(t)(R) ∼= Cs.

Proof. Since CG(t) ≤ NG(R), the group CG(t)/CCG(t)(R) embeds into Out(R) ∼= O−2l(2)

and contains a central element of order s = 2l + 1, namely the image t of t. So we look at

the centralizer of t in O−2l(2). By Table 1 [B], a Singer cyclic group C of O−2l(2) has order

2l + 1 = s. Since s = 2l + 1, Lemma 5.9 gives us that s divides |O−2l(2)| only once. So

we may assume that t is contained in C. Furthermore by the discussion in [B], O−2l(2) is

contained in GL2l(2) and C is the intersection of O−2l(2) with a Singer cycle of GL2l(2).

Now Proposition 2.8 [CR] says that a Singer cycle of GL2l(2) is self-centralizing. Hence

C is also self-centralizing. We conclude that the centralizer of t in O−2l(2) is isomorphic

to Cs. Observe that, by Schur’s Lemma, the group CCG(t)(R) consists entirely of scalar

matrices. Hence CG(t)/CCG(t)(R) ∼= Cs.

We observed above that it will often be useful to know the p1-rank mp1(G) of G for some

prime p1. The following argument of Section 4.10 [GLS3] allows us to calculate mp1(G)

for p1 odd if G is a group of Lie type. If G ∈ Lie(r), then |Gu| factorizes as qN
∏
i Φi(q)

ni

where Φi(q) denotes the cyclotomic polynomial for the ith roots of unity. We define m0

to be the multiplicative order of q modulo p1. Then the following holds.

Theorem 5.11. If G ∈ Lie(r) and p1 is an odd prime, then

(a) mp1(Gu) = nm0; the exponent of Φm0 in the factorization of Gu,

(b) mp1(Ga) = nm0 or nm0 − 1,

(c) Suppose that p1 is a good prime for G (meaning p1 > 3 for all exceptional G and

further that p1 > 5 if G = E8). Suppose further that the kernel of the natural map Gu → G

is a p′1-group. Then any elementary abelian p1-subgroup of G lies in an elementary abelian

p1-subgroup of G of maximal rank.

Proof. This is just parts (a), (b) and (e) of Theorem 4.10.3 [GLS3].

This theorem has the following vital consequence.

Corollary 5.12. Let G ∈ Lie(r), t ∈ Inn(G) has prime order s, where s ≥ 5, and s is a

good prime for G. Suppose that the kernel of the natural map Gu → G is an s′-group. If

ms(G) ≥ 2, then CG(t) has a subgroup Z = 〈t, t1〉 ∼= Es2.

Proof. This follows directly from Theorem 5.11 (c).

Let us discuss the implications this corollary might have for our investigation.
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Remark 5.13. Let (G, t,X) be a triple of type (Hs) with G ∈ Lie(r). Now if we have

ms(CG(t)) ≥ 2, then there exists a subgroup Z ∼= Es2 acting on X. Hence, by Theorem 3.5,

we have X = 〈CX(u) : u ∈ Z#〉.

Then for u ∈ Z#, we have CX(u)〈t〉 ≤ CG(u). We may now study CG(u) by means

of Lemma 5.5 to find out the possibilities for the CX(u) and hence for X. Note that

Theorem 3.5 does not require for Z to be an s-group; for example if CG(t) contains a

subgroup isomorphic to C2
p1 for any p1 6= p we may apply the theorem.

If mp1(CG)(t) = 1 for all primes p1 6= p (including s), then we will have to use different

methods.

We have already seen hints that the cases in which the subgroup X is abelian will require

different techniques to when it is nonabelian. We will now reproduce some standard results

that will help us to understand what restrictions there are on each of these cases. The

following statement is Lemma 9.12 (ii) and (iv) [GLS2].

Lemma 5.14. Let G = KB be a Frobenius group with Frobenius kernel K and complement

B. Suppose that (r, |K|) = 1 and let V be a faithful FG-module with F of characteristic r.

Then dimF(V ) ≥ |B|, and CK(CV (B)) = 1.

The following result, which is Theorem 9.2 [I], will also be used repeatedly in what follows.

Lemma 5.15. Let G be a finite group and let γ : G → GLn(F) be an irreducible F-

representation of G. Then the following are equivalent.

(a) γ is absolutely irreducible. That is, for every field E ≥ F, γ is irreducible when viewed

as an E-representation of G.

(b) The centralizer of γ(G) in the ring Mn(F) of n× n matrices over F consists of scalar

matrices.

Lemma 5.16. Let G ∈ Lie(r) and suppose that (G, t,X) is a triple of type (Hs) with

t ∈ Inndiag(G) and X 6= 1 abelian. Suppose that G has a faithful n-dimensional repre-

sentation over a field of characteristic r. Then n ≥ s.

Proof. We have X = [X, t]×CX(t) by Theorem 5.1 (iii). Hence CX(t) = 1 since X = [X, t].

Thus X〈t〉 is a Frobenius group. Now X〈t〉 has an n-dimensional faithful representation

over a field of characteristic r. Since (|X|, r) = 1, Lemma 5.14 gives n ≥ |〈t〉| = s as

required.

It will turn out that Lemma 5.16 can be combined with the following result to deal with

a much more general situation.
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Lemma 5.17. Let p, r and s be three distinct prime numbers. Assume further that p

and s are odd and let q = ra for some a ≥ 1. Let X o 〈t〉 be a group such that X is a

p-group, |〈t〉| = s and [X, t] = X. Suppose further that X〈t〉 has an n-dimensional faithful

Fq-module V with n < s. Then X = 1.

Proof. Since p is odd, applying Lemma 5.6 gives us that X contains a characteristic

subgroup Y of class at most 2, exponent p, with Y ′ = Φ(Y ) and such that t acts faithfully

on Y . Moreover, we may assume that Y = [Y, t] and Y is the smallest non-trivial subgroup

of X satisfying all those conditions.

If Y is abelian, then since n < s, we may apply Lemma 5.16 to obtain Y = 1 and we have a

contradiction unless X = 1. Therefore we may assume that Y is nonabelian. In particular,

both Y ′ and Z(Y ) are non-trivial elementary abelian subgroups of Y of exponent p and

[Y ′, t] = [Z(Y ), t] = 1 (for otherwise we could apply Lemma 5.16 to Y ′〈t〉 or Z(Y )〈t〉).

Assume first that Z(Y ) is noncyclic. Since Y 〈t〉 acts faithfully on V , so does Z(Y ). Thus

using Theorem 3.5 we obtain

V = 〈CV (y) : y ∈ Z(Y )− {1}〉

Choose an element y0 ∈ Z(Y ) − {1} such that V0 := CV (y0) 6= 1 and t acts non-trivially

on V0. Then dim(V0) := n0 < n and since y0 ∈ Z(Y ) and [y0, t] = 1, it follows that

V0 is Y 〈t〉 - invariant. Clearly, Y 〈t〉 does not act faithfully on V0. So, let us factor out

the kernel of this action. Denote by Y 〈t〉 the image of Y 〈t〉. Then Y 〈t〉 ∼= Y 〈t〉 where

Y = Y/CY (V0) 6= 1 and 〈t〉 ∼= 〈t〉. The minimal choice of Y implies that Y = [Y , t], and

as n0 < n < s, we are done by induction on n.

So we may assume that Z(Y ) is cyclic. Since Y is of class 2, it follows that Y ′ = Z(Y ). And

as Φ(Y ) = Y ′ and Y has exponent p, we obtain that Y is extra-special. Thus |Y | = p1+2m

for some m ∈ N and by Lemma 2.22, we have that n ≥ pm. Furthermore, since [Y ′, t] = 1

we obtain that t embeds into the subgroup of Aut(Y )/Inn(Y ) consisting of elements that

act trivially on Z(Y ) which, by Lemma 2.23, is isomorphic to Sp2m(p). Since t has order

s, this implies that s divides

|Sp2m(p)| = pm
2 · (p2 − 1) · (p4 − 1) · ... · (p2m − 1)

Since s is prime, it divides some factor in this product. Since s 6= p, it must divide pi ± 1

for some i ≤ m. Since pm + 1 is even, it follows that s < pm = n, which is a contradiction.

Hence Y = 1 and so X = 1, as required.

We now obtain the following lemma as a direct consequence of Lemma 5.17.
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Lemma 5.18. Let G be a group of Lie type over Fq (q = ra), and suppose that G has an

n-dimensional faithful Fq-module V with n < s. Let X be a p-subgroup of G with p an odd

prime and let t ∈ Inndiag(G) such that (G, t,X) is a triple of type (Hs). Then X = 1.

Taking Lemmas 5.16 and 5.18 together we obtain a very powerful consequence.

Corollary 5.19. Let G ∈ Lie(r), and suppose that G has an n-dimensional faithful rep-

resentation with n < s. Let X 6= 1 be a p-subgroup of G and let t ∈ Inndiag(G) such that

(G, t,X) is a triple of type (Hs). Then p = 2 and X is nonabelian.

We close this section with a series of results which are mostly generalizations of results

found in [Ko]. We will need these in order to deal with groups of large Lie rank (in a sense

that will become clear) to complete our inductive proof.

Lemma 5.20. (Analogous to Lemma 1.7 [Ko]) Let K = X〈t〉 be a Frobenius group with

kernel X, a 2-group, and complement t, where ts = 1 6= t. Let R be an r-group with r odd

and r 6= s. Suppose K acts by automorphisms on R and that (RK, t,X) is a triple of type

(Hs). Then the action of K on R is not faithful.

Proof. (Lemma 1.7 [Ko]) Assume for contradiction that the action is faithful. Now define

R0 = [R,X] ≤ R and V = [R0/Φ(R0), X] ≤ R0/Φ(R0). Note that since R0/Φ(R0) is

the Frattini factor group of an r-group we may apply Lemma 2.19 (i) to see that V is

elementary abelian. Now Φ(R0) is a characteristic subgroup of R0 and so K acts on V .

We claim that this action is also faithful. Suppose there is a kernel K0 / K of the action

on V . Now suppose there is a 2-element z ∈ K0. Then since X is a Sylow 2-subgroup

of K, some conjugate y = kzk−1 of z is in X. Clearly y ∈ K0 since K0 is normal in K.

Now we have R/Φ(R0) = V × CR0/Φ(R0)(X) by Theorem 5.1 (iii). Since y acts trivially

on both factors, we see that y acts trivially on the whole of R0/Φ(R0). So y acts trivially

on R0 by Theorem 2.19 (iii). Using the same argument as before we have R = R0CR(X)

by Theorem 5.1 (ii) and hence y acts trivially on R. Now since this action is faithful we

have y = 1 and so z = 1. Hence there are no nontrivial 2-elements contained in K0. Thus

either |K0| = 1 or |K0| = s. If |K0| = 1, then since 〈t〉 is a Sylow s-subgroup of K, we see

that K0 is a conjugate of 〈t〉. Now K0 is normal in K which is a contradiction since K is

a Frobenius group with complement 〈t〉. Thus K0 = 1 and the action of K on V is indeed

faithful.

Since the action is faithful, we have CV (t) 6= 1 by Lemma 5.14. Hence CR0/Φ(R0)(t) 6= 1.

Now if we write R0 = R0/Φ(R0), then we have CR0(t) 6= 1 by Lemma 11.3 [GLS2] and

hence CR0(t) 6= 1. Now CR0(t) ≤ CRK(t) ≤ NRK(X) and so [CR0(t), X] ≤ X. Since we

also have [CR0(t), X] ≤ R0 ≤ R we in fact have [CR0(t), X] = 1. Hence [CV (t), X] = 1

and thus CX(CV (t)) = X which contradicts Lemma 5.14. So the action on V cannot be

faithful.
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Lemma 5.21. (Analogous to Lemma 1.9 [Ko]) Let G be a group such that F ∗(N) = Or(N)

for every r-local subgroup N of G. Suppose (G, t,X) is a triple of type (Hs) with p odd and

r, s, p pairwise distinct and let P be a t-invariant r-local subgroup of G. Then [X∩P, t] = 1.

Proof. (Lemma 1.9 [Ko]) Let X0 = X ∩ P . Then X0 is t-invariant. For contradiction,

assume that [X0, t] 6= 1. We have [X0, t] = [[X0, t], t] by Theorem 5.1 (i) and so without

loss of generality we may assume that X0 = [X0, t]. Now we claim that X0 acts nontrivially

on Or(P ). Now Or(P ) = F ∗(P ) and so if the action is trivial we have X0 ≤ CP (F ∗(P )) ≤
F ∗(P ) by Proposition 3.2 (i). Hence X ≤ Or(P ) and so X0 is an r-group. This is a

contradiction and so the action is indeed nontrivial.

Hence we have COr(P )(t) 6= 1 by Lemma 11.14 (i) [GLS2]. Now COr(P )(t) ≤ CG(t) ∩ P ≤
NG(X0). Thus [COr(P )(t), X0] ≤ Or(P ) ∩X = 1. So s = r by Lemma 11.14 (ii) [GLS2].

This is a contradiction and so [X0, t] = 1 as required.

Corollary 5.22. (Analogous to Cor 1.10 [Ko]) Let G ∈ Lie(r) and suppose (G, t,X) is

a triple of type (Hs). Suppose there exists a subgroup Z ≤ CG(t) such that Z ∼= Cr × Cr.
Then p = 2 and X is nonabelian.

Proof. We have Z ≤ CG(t) ≤ NG(X) so Z acts on X. So we have

〈CX(u)|u ∈ Z#〉

by Theorem 3.5. Now there exists u ∈ Z# such that [Xu, t] 6= 1 by Lemma 3.6 (a), and

by part (b) of that result we have Xu〈t〉 acts faithfully on the group R = Or(NG〈t〉(〈u〉)).

We first show that p = 2. Suppose for contradiction that p is odd. Now NG〈t〉(〈u〉) is

a t-invariant r-local subgroup of G〈t〉 and so we have [X ∩ NG〈t〉(〈u〉), t] = 1 by Lemma

5.21. Now clearly Xu ≤ X and X ≤ NG〈t〉(〈u〉) and hence [Xu, t] = 1. This contradicts

Lemma 3.6 (a) and so we must have p = 2.

It remains to show that X is nonabelian. Suppose that it is abelian. Then X〈t〉 is

a Frobenius group and hence so is Xu〈t〉. Now the faithful action on Or(NG〈t〉(〈u〉))
contradicts Lemma 5.20 and hence we must have X nonabelian.

Remark 5.23. Suppose that (G, t,X) is of type (Hs) and we are in the situation where we

may assume that X is a nonabelian 2-group, whatever the version of G. Then we cannot

be in the situation where G = Gu, X is nonabelian, but the image of X in Ga is abelian.

Therefore, we may assume that G = Ga.
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5.1.3 Calculations in Algebraic Groups and their consequences

We now prove a statement about the centralisers of semisimple elements of simple algebraic

groups. We will then quickly discuss the consequences of those calculations.

Proposition 5.24. Let G be a simple algebraic group over Fr (r prime, r 6= s) with

fundamental root system Π = {α1, ..., αl} (where the enumeration comes from the diagrams

on page 12 of [GLS3]) and corresponding Dynkin diagram ∆G. Let t be a nontrivial inner

automorphism of G of order s and suppose t is of parabolic type. Write C = CG(t) and

S = [C
0
, C

0
]. Let ∆0 be the Dynkin diagram of S. Then the following hold:

(i) If G ∼= Al, then ∆0 can be obtained by erasing at most s− 1 nodes from ∆G;

(ii) If G ∼= Bl or G ∼= Cl, then ∆0 can be obtained by erasing at most s−1
2 nodes from ∆G;

(iii) If G ∼= Dl, then ∆0 can be obtained by erasing at most s+1
2 nodes from ∆G;

If we further assume that s = 5, then the following hold:

(iv) G ∼= E6, G ∼= E7 or G ∼= E8, then ∆0 can be obtained by erasing at most 4 nodes

from ∆G;

(v) If G ∼= F4, then ∆0 can be obtained by erasing at most 3 nodes from ∆G;

(vi) If G ∼= G2, then ∆0 can be obtained by erasing exactly 1 node from ∆G.

Proof. (i) Let Π0 be the fundamental root system of S. As in Proposition 1.1 [Ko], we

may assume that Π0 is a subset of Π. Let LG be the Lie algebra of G. Given α ∈ Π and

the corresponding eα ∈ LG we have, since t has order s,

t.eα = ωεαeα with εα ∈ {0, 1, 2, ..., s− 1}

where ω ∈ F is an s-th root of unity. We suppose for contradiction that we cannot obtain

∆0 by erasing fewer than s nodes from ∆G. Then we must have some set {β1, β2, ..., βs} ⊆
Π−Π0. We assume that, for each i, βi = αji with αji ∈ Π, and j1 < j2 < ... < js. Without

loss of generality, we may assume that if ∆ is the smallest connected subdiagram of ∆G

containing the βi’s for i = 1, 2, ..., s, then every node of ∆ other than the βi’s is contained

in Π0. As in Lemma 1.3 [Ko], we see that

t.eβi 6= eβi for i = 1, 2, ..., s

t.eα = eα for all α ∈ Π0.

Thus we have t.eβi = ωεieβi with εi ∈ {1, 2, ..., s − 1} for i = 1, 2, ..., s. Since Π0 is the

fundamental root system of S, we will obtain a contradiction if we find some root which

is not contained in the span of Π0 but whose corresponding element of LG is fixed by t.

To achieve this we will make the following easy calculation.
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Lemma 5.25. Consider the finite sequence ε1, ε2, ..., εs where each εi ∈ {1, 2, ..., s − 1}.
Then there exist j, k with 1 ≤ j < k ≤ s such that

k∑
i=j

εi ≡ 0 mod s.

That is, some sum of consecutive terms of the sequence is congruent to 0 mod s.

Proof. We suppose no such list exists. Then in particular we may suppose θk =
∑k

i=1 εi �
0 ( mod s) for all 1 ≤ k ≤ s. The θk account for s nonzero numbers ( mod s) and

so two of these sums must be equal. Thus θk = θj ( mod s) for some k < j. Now

θj − θk =
∑j

i=k+1 εi
∼= 0 ( mod s). This contradiction proves the result.

By the above, we may now assume we have found j, k with 1 ≤ j < k ≤ s such that∑k
i=j εi ≡ 0 mod s. Let ∆jk be the smallest connected subdiagram of ∆G containing

βj and βk. We have the following.

∆jk is of type An for some n, and ∆jk is a subdiagram of ∆,

βi ∈ ∆jk for j ≤ i ≤ k,

βi /∈ ∆jk for i < j, i > k.

Let Π̃ = {α̃1, ..., α̃n} be a fundamental root system for ∆jk. Let α̃ = α̃1 + α̃2 + ...+ α̃n ∈
Σ(Π̃), the full root system of Π̃. Then t.eα̃ = ωf(α̃)eα̃. Now

f(α̃) =

k∑
i=j

εi ≡ 0 mod s.

Hence ωf(α̃) = 1 and t fixes eα̃. But α̃ is clearly not contained in the span of Π0, giving

the required contradiction.

(ii) Continue with all the notation of (i). This time assume for contradiction that we cannot

obtain ∆0 by erasing fewer than s+1
2 nodes from ∆Ḡ. Then we have {β1, β2, ..., β s+1

2
} ⊆

Π−Π0. Let Π̃ = {α̃1, α̃2, ...α̃n} be a fundamental system for ∆, where βi = α̃mi for each

i. Then m1 = 1, m s+1
2

= n. There are now three cases.

Case 1: ∆ has type Bn.

In this case we may proceed immediately with the following Lemma.

Lemma 5.26. Consider the finite sequence ε1, ε2, ..., ε s+1
2

where each εi ∈ {1, 2, ..., s− 1}.
Then at least one of the expressions of the forms (1)-(3) below is congruent to 0 mod s.

(1) Sums εi + εi+1 + ...εi+k (with 1 ≤ i < s+1
2 , 0 < k ≤ s+1

2 − i) of consecutive terms in

the sequence,
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(2) Any sum εi+εi+1 + ...+εi+k +2εi+k+1 + ...+2ε s−1
2

+2ε s+1
2

(with 1 ≤ i < s−1
2 , k ≥ 0),

(3) Sums 2εi + ...+ 2ε s−1
2

+ 2ε s+1
2

(with 1 ≤ i ≤ s−1
2 ).

Proof. Suppose that in fact none of the above sums are congruent to 0 mod s. Then,

taking everything modulo s, we have that ε1 may not be congruent to any −(ε2 + ...ε2+k)

with 0 ≤ k ≤ s−3
2 , nor to any −(ε2 + ... + ε2+k + 2ε2+k+1 + ... + 2ε s−1

2
+ 2ε s+1

2
with

0 ≤ k ≤ s−5
2 . Furthermore, there are s− 1 of these expressions and, by our assumptions,

they are all nonzero and distinct. Now this is a contradiction since we are working modulo

s.

By the lemma, one of the expressions of type (1)-(3) is congruent to 0 mod s. For each

possibility, the following expressions in the α̃i are roots of G which do not lie in the span

of Π0 but whose corresponding element of LḠ is fixed by t̄ (see the list of roots in Remark

1.8.8 [GLS3]).

(1) α̃mi + α̃mi+1...+ α̃mi+k ,

(2) α̃mi + α̃mi+1 + ...+ α̃mi+k + 2α̃mi+k+1 + ...+ 2α̃n−1 + 2α̃n,

(3) 2α̃mi + ...+ 2α̃n−1 + 2α̃n.

Case 2: ∆ has type Cn.

In this case we need the following lemma.

Lemma 5.27. Consider the finite sequence ε1, ε2, ..., ε s+1
2

where each εi ∈ {1, 2, ..., s− 1}.
Then at least one of the expressions of the forms (1) or (2) below is congruent to 0 mod s.

(1) Sums εi + εi+1 + ...εi+k (with 1 ≤ i < s+1
2 , 0 < k ≤ s+1

2 − i) of consecutive terms in

the sequence,

(2) Sums εi + εi+1 + ...+ εi+k + 2εi+k+1 + ...+ 2ε s−1
2

+ ε s+1
2

. (with 1 ≤ i < s−1
2 , k ≥ 0),

(3) Sums 2εi + ...+ 2ε s−1
2

+ ε s+1
2

(with 1 ≤ i ≤ s−1
2 ).

Proof. This is analogous to Lemma 5.26.

Again one of the expressions of type (1)-(3) is congruent to 0 mod s. For each possibility,

the following expressions in the α̃i are roots of G which do not lie in the span of Π0 but

whose corresponding element of LḠ is fixed by t̄.

(1) α̃mi + α̃mi+1 + ...+ α̃mi+k ,

(2) α̃mi + α̃mi+1 + ...+ α̃mi+k + 2α̃mi+k+1 + ...+ 2α̃n−1 + α̃n,

(3) 2α̃mi + ...+ 2α̃n−1 + α̃n.

Case 3: ∆ has type An.
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In this case we define ∆1 to be the subdiagram of ∆Ḡ consisting of β1 and all nodes to

the right of it on ∆Ḡ. Then ∆1 is a not necessarily proper subdiagram of ∆Ḡ of type Ck

where s+1
2 ≤ n < k. We may assume that every node of ∆1 other than the βi is contained

in Π0. Let Π1 = {γ1, ...γk} be a fundamental system for ∆1. Write βi = γsi . Then s1 = 1.

Now we make the following calculation.

Lemma 5.28. Consider the finite sequence ε1, ε2, ..., ε s+1
2

where each εi ∈ {1, 2, ..., s− 1}.
Then at least one of the expressions of the form (1) or (2) below is equal to 0 mod s.

(1) Sums εi + εi+1 + ...εi+j (with 1 ≤ i < s+1
2 , 0 < j ≤ s+1

2 − i) of consecutive terms in

the sequence,

(2) Sums εi+εi+1 + ...+εi+j+2εi+j+1 +2εi+j+2 + ...+2εi+j+c (with 1 ≤ i < s−1
2 , j, c ≥ 1).

Proof. Assume none of the expressions are 0 mod s. As before, this gives s− 1 nonzero,

distinct values that ε1 cannot be equal to modulo s. This is a contradiction.

By the lemma, one of the expressions of type (1) and (2) is congruent to 0 mod s. For

each possibility, the following expressions in the α̃i are roots of G which do not lie in the

span of Π0 but whose corresponding element of LḠ is fixed by t̄.

(1) γsi + γsi+1 + ...+ γsi+j ,

(2) γsi + γsi+1...+ γsi+j + 2γsi+j+1 + 2γsi+j+2 + ...+ 2γk−1 + γk.

Now since we obtained the required contradiction in all three cases, we must have that

Π−Π0 can contain at most s−1
2 simple roots, as required.

(iii) Continue with all the notation of (i). This time assume that we cannot obtain ∆0 by

erasing less than s+3
2 nodes from ∆Ḡ. Now we have {β1, β2, ..., β s+3

2
} ⊆ Π−Π0. There are

again 2 cases.

Case 1: ∆ has type Dn.

We have the following lemma.

Lemma 5.29. Consider the finite sequence ε1, ε2, ..., ε s+3
2

where each εi ∈ {1, 2, ..., s− 1}.
Then at least one of the expressions of the forms (1) or (2) below is congruent to 0 mod s.

(1) Sums εi + εi+1 + ...εi+k (with 1 ≤ i < s+1
2 , 0 < k ≤ s+1

2 − i) of consecutive terms in

the sequence,

(2) Sums εi + εi+1 + ... + εi+k + 2εi+k+1 + ... + 2ε s−1
2

+ ε s+1
2

+ ε s+3
2

(with 1 ≤ i < s−1
2 ,

k ≥ 0),

(3) Sums 2εi+k+1 + ...+ 2ε s−1
2

+ ε s+1
2

+ ε s+3
2

(with 1 ≤ i ≤ s−1
2 ).

Proof. This is analogous to Lemma 5.26.
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As usual, one of the expressions of type (1)-(3) is congruent to 0 mod s. For each pos-

sibility, the following expressions in the α̃i are roots of G which do not lie in the span of

Π0 but whose corresponding element of LḠ is fixed by t̄ (see the list of roots in Remark

1.8.8 [GLS3]).

(1) α̃mi + α̃mi+1...+ α̃mi+k ,

(2) α̃mi + α̃mi+1 + ...+ α̃mi+k + 2α̃mi+k+1 + ...+ 2α̃n−2 + α̃n−1 + α̃n,

(3) 2α̃mi + ...+ 2α̃n−2 + α̃n−1 + α̃n.

Case 2: ∆ has type An.

As in part (b) we define ∆1 to be the subdiagram of ∆Ḡ consisting of β1 and all nodes

to the right of it on ∆Ḡ. Then ∆1 has type Dk where s+3
2 ≤ n < k. We may assume

that every node of ∆1 other than the βi is contained in Π0. Let Π1 = {γ1, ...γk} be a

fundamental system for ∆1. Write βi = γsi . Then s1 = 1. Now we make our usual

calculation.

Lemma 5.30. Consider the finite sequence ε1, ε2, ..., ε s+1
2

where each εi ∈ {1, 2, ..., s− 1}.
Then at least one of the expressions of the form (1) or (2) below is congruent to 0 mod s.

(1) Sums εi + εi+1 + ...εi+j (with j ≥ 1) of consecutive terms in the sequence.

(2) Sums εi + εi+1 + ... + εi+j + 2εi+j+1 + 2εi+j+2 + ... + 2εi+j+c. (with i, j, c ≥ 1 and

i+ j + c ≤ s−1
2 )

Proof. Assume none of the expressions are congruent to 0 mod s. As before, this gives s−
1 nonzero, distinct values that ε1 cannot be congruent to modulo s. This is a contradiction.

By the lemma, one of the expressions of type (1) and (2) is congruent to 0 mod s. For

each possibility, the following expressions in the α̃i are roots of G which do not lie in the

span of Π0 but whose corresponding element of LḠ is fixed by t̄ (see the list of roots in

Remark 1.8.8 [GLS3]).

(1) γsi + γsi+1 + ...+ γsi+j ,

(2) γsi + γsi+1...+ γsi+j + 2γsi+j+1 + 2γsi+j+2 + ...+ 2γk−2 + γk−1 + γk.

Since we obtained the required contradiction in both cases, we must have that Π−Π0 can

contain at most s+1
2 simple roots, as required.

(iv) Again continue with the notation of (i). We now assume that s = 5. This time we

suppose for contradiction that we cannot obtain ∆0 by erasing less than 5 nodes from ∆Ḡ.

Then we must have {β1, β2, β3, β4, β5} ⊆ Π − Π0. By Lemma 5.25, we may assume we
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have found j, k with 1 ≤ j < k ≤ 5 such that
∑k

i=j εi ≡ 0 mod 5. As in (a), let ∆jk be

the smallest connected subdiagram of ∆Ḡ containing all the βi with j ≤ i ≤ k. We have

the following.

The type of ∆jk is one of {An, Dn, E6, E7, E8} (for n ≥ 5), and ∆jk is a subdiagram of ∆,

βi ∈ ∆jk for j ≤ i ≤ k,

βi /∈ ∆jk for i < j, i > k

Let Π̃ = {α̃1, ..., α̃n} be a fundamental root system for ∆jk. Let α̃ = α̃1+α̃2+...α̃n ∈ Σ(Π̃),

the full root system of Π̃. Then t̄.eα̃ = ωf(α̃)eα̃. But

f(α̃) =

k∑
i=j

εi ≡ 0 mod 5

Hence ωf(α̃) = 1 and t̄ fixes eα̃. But α̃ is clearly not in the span of Π0, giving the required

contradiction.

(v) This time we assume that we cannot obtain ∆0 by erasing less than 4 nodes from ∆Ḡ.

So we have Π−Π0 = {α, β, γ, δ}, the full fundamental system of Ḡ = F4. Again we want

to find a root which is which is not in the span of Π0 but whose corresponding element of

LḠ is fixed by t̄. We will use the following calculation.

Lemma 5.31. Consider the finite sequence ε1, ε2, ε3, ε4 where each εi ∈ {±1,±2}. Then

at least one of the following expressions is congruent 0 mod 5.

(a) ε1 + ε2 + 2ε3 + 2ε4,

(b) ε1 + 2ε2 + 2ε3 + 2ε4,

(c) ε1 + ε2 + ε3 + ε4,

(d) ε1 + ε2,

(e) ε2 + 2ε3 + 2ε4,

(f) ε2 + ε3 + ε4,

(g) ε1 + ε2 + 2ε3 + 2ε4,

(h) ε3 + ε4.

Proof. Suppose none of (a)-(h) are congruent to 0 mod 5. Then (a)-(d) give four inequal-

ities for ε1 and (e)-(h) show that the right hand sides of these are all nonzero and distinct,

giving the usual contradiction.

35



By the lemma, one of the expressions (a)-(h) is congruent to 0 mod 5. For each possibility,

the following expressions in are roots of G which do not lie in the span of Π0 but whose

corresponding element of LḠ is fixed by t̄ (see the list of roots in Remark 1.8.8 [GLS3]).

(a) α+ β + 2γ + 2δ,

(b) α+ 2β + 2γ + 2δ,

(c) α+ β + γ + δ,

(d) α+ β,

(e) β + 2γ + 2δ,

(f) β + γ + δ,

(g) α+ β + 2γ + 2δ,

(h) γ + δ.

(vi) This time suppose that we cannot obtain ∆0 by erasing less than 2 nodes from ∆Ḡ.

Then we have {β1, β2} ⊆ Π − Π0. That is, the full fundamental system {α, β}. Making

the usual calculation, it is easily seen that if ε1, ε2 ∈ {±1,±2}, then one of the following

expressions is congruent to 0 modulo 5.

(a) ε1 + ε2,

(b) 2ε1 + ε2,

(c) 3ε1 + ε2,

(d) 3ε1 + 2ε2.

Then in each case we may easily give a root which is not in the span of Π0 but whose

corresponding element of LḠ is fixed by t̄, giving the required contradiction.

(a) α+ β,

(b) 2α+ β,

(c) 3α+ β,

(d) 3α+ 2β.

Proposition 5.24 has the following important corollaries.

Corollary 5.32. (Analogous to Corollary 1.5 [Ko]) Let r be a prime, r 6= s and let

q = ra. Let G be one of the following groups: A±m(q) (m ≥ s + 1), Bm(q) (m ≥ s+3
2 ),

Cm(q) (m ≥ s+3
2 ) or D±m(q) (m ≥ s+5

2 ). If t is an inner-diagonal automorphism of G of

order s, then there exists Z ≤ CG(t) such that Z ∼= Cr × Cr.
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Proof. We may apply Lemma 2.13 to find a σ-setup (G, σ) of G and the unique t ∈ Aut(G)

which induces t on G. We have that t is inner and has order s. Now we look at L :=

Or
′
(CG(t)). We may analyse L by means of Theorem 5.3 (a),(e) [GLS3]. We see that L is

a central product L1 ◦L2 ◦ ... ◦Lj of groups Li = dΣmi(q
ai) ∈ Lie(r). Further, the Dynkin

diagram of CG(t) is the disjoint union of diagrams ∆i for i = 1, 2, ..., j where each ∆i is

in turn a disjoint union of ai copies of the Dynkin diagram of Li. By Proposition 5.24 we

obtain the Dynkin diagram of S = [CG(t), CG(t)] by erasing at most s− 1 nodes from the

diagram of G, and hence that diagram has at least two nodes. In particular, j ≥ 1. If

j ≥ 2, then certainly mr(L) ≥ 2. If j = 1, then mr(L) ≥ 2 by Table 3.3.1 [GLS3], unless

L ∼= A±1 (r). Then by our earlier observation we must have S = A1 which contradicts the

fact that the Dynkin diagram of S has at least 2 nodes.

Corollary 5.33. Let q = ra, where r 6= 5 and suppose that G ∼= El(q) for l = 6, 7, 8 or

G ∼= 2E6(q). If t is an inner-diagonal automorphism of G of order 5, then there exists

Z ≤ CG(t) such that Z ∼= Cr × Cr

Proof. This is exactly analogous to Corollary 5.32.
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5.2 The Case G = A±m(q)

In this section, we address the case G = A±m(q) with q = ra. Recall that the primes p,r,s

are assumed to be pairwise distinct and that s ≥ 5. We begin with a general result about

inner-diagonal automorphisms of G.

Lemma 5.34. Let G = Am(q) and let x be an inner-diagonal automorphism of G of prime

order r1 6= r. Then x is not of equal rank type.

Proof. Let x be the automorphism of the algebraic group G = Am inducing x on G and

let ∆x be the Dynkin diagram of CG(x). If x is of equal rank type, then by Theorem 5.3

(f), ∆x has type Am. This is a contradiction since x is a nontrivial automorphism.

We now obtain our main results.

Lemma 5.35. Let G ∼= A±1 (q). Let X be a p-subgroup of G and let t ∈ Inndiag(G) be

such that (G, t,X) is a triple of type (Hs). Then X = 1.

Proof. By Lemma 5.2, we may assume that G is universal. Corollary 5.19 tells us that

X must be a nonabelian 2-group. Hence r 6= 2. Since SU2(q) ∼= SL2(q), we may assume

G ∼= SL2(q). For contradiction, suppose X 6= 1.

The subgroup X is contained in some Y ∈ Syl2(G). The Sylow subgroup Y is a generalized

quaternion group. Hence X is either cyclic or is also generalized quaternion group. This

is a contradiction since no such 2-group admits a non-trivial action of an automorphism

of order s > 3. Hence X = 1.

Lemma 5.36. Let G ∼= A±m(q), where m < s − 2. Let X be a p-subgroup of G and let

t ∈ Inndiag(G) be such that (G, t,X) is a triple of type (Hs). Then X = 1.

Proof. We work by induction on m, taking Lemma 5.35 as the basis case of our induction.

So we assume that if (G, t, Y ) is a triple of type (Hs) with G ∼= A±m′(q
′) for some m′ < m

and some q′ (q′ being a power of r), then Y = 1.

Suppose that X 6= 1. By Lemma 5.2, we may assume G ∼= SLn(q) or G ∼= SUn(q), where

n = m+ 1. We see that X must be a nonabelian 2-group by Corollary 5.19. Furthermore,

as s > n, we may use Lemma 2.16 to conclude that t induces an inner automorphism on

G. Since |Z(G)| = (n, q ± 1), by abuse of notation, we assume that t is an element of G.

By Lemma 5.6, X contains a critical subgroup Y such that Y has class at most 2, Y ′ =

Φ(Y ) is elementary abelian and Y has exponent 2 or 4. Set R = [Y, t]. Then, as noted in

Remark 5.7 (2), (G, t,R) is a triple of type (Hs). We know R 6= 1 since Y is critical in X.
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If R is abelian, then we have a contradiction with Lemma 5.16. So we may assume that

R is nonabelian.

First suppose that Z(R) contains an involution z which is not contained in Z(G). Then,

by Lemmas 5.4 and 5.5, we obtain R ≤ L = L1 ◦L2 ◦ ◦Lj , where Li ∼= A±mi(q
ai) and each

(Li, t, Ri) is a triple of type (Hs), where Ri denotes the projection of R onto Li. Further,

by Theorem 5.6 (d)-(f) and Lemma 5.34, each Li has Lie rank mi < m, since z /∈ Z(G).

So by the inductive hypothesis, we obtain Ri = 1 for each i. Then R = 1 which is a

contradiction. Therefore we may assume that Z(R) contains a unique involution, namely

the unique order 2 element α of Z(G).

By Lemma 5.8, R is extra-special. So either R ∼= 21+2k
+ or R ∼= 21+2k

− . Since CG(t)

acts on R, there is an embedding CG(t)/CCG(t)(R) ↪→ Out(R) := Aut(R)/Inn(R). Fur-

ther, by Lemma 2.23 (ii), we have Out(21+2k
± ) ∼= O±2k(2). Since there is an embedding

CG(t)/CCG(t)(R) ↪→ Out(R), R has an outer automorphism of order s. Choose l such

that s = 2l + c for 0 < c < 2l. Since G is represented in n = m + 1 < s − 1 dimensions,

we may apply Lemma 5.9. So we have c = 1 and R ∼= 21+2l
− . Hence, by Lemma 2.22,

n ≥ 2l = s − 1. So m = n − 1 ≥ s − 2 which is a contradiction. Thus R = 1 and so

X = 1.

Alternative Proof

We work by induction on m, taking Lemma 5.35 as the basis case of our induction. So we

assume that if (G, t, Y ) is a triple of type (Hs) with G ∼= A±m′(q
′) for some m′ < m and

some q′ (q′ a power of r), then Y = 1.

Suppose that X 6= 1. By Lemma 5.2, we may assume G ∼= SLn(q) or G ∼= SUn(q), where

n = m + 1. Suppose X is abelian. By Theorem 5.1 (iii), we have X = CX(t) × [X, t].

Since X = [X, t], we may conclude that CX(t) = 1. In particular, F := X〈t〉 is a

Frobenius group. Since the natural representation of G has dimension n and the Frobenius

complement of F has order s, applying Lemma 5.14 gives n ≥ s. This is a contradiction

since n = m+ 1 < s− 1.

Therefore we may assume that X is nonabelian. Applying Lemma 5.6 gives us that X

contains a characteristic subgroup Y of class at most 2, exponent p or 4, with Y ′ = Φ(Y )

and such that t acts faithfully on Y . Moreover, we may assume that Y = [Y, t] and Y is

the smallest non-trivial subgroup of X satisfying all those conditions.

If Y is abelian, then since n < s, we may apply Lemma 5.16 to obtain Y = 1 and we have

a contradiction unless X = 1. Therefore we may assume that Y is nonabelian. Then Y

is of exponent p for p odd and of exponent 4 if p = 2. Moreover, [Y ′, t] = [Z(Y ), t] = 1

for otherwise we could apply Lemma 5.16 to Y ′〈t〉 or Z(Y )〈t〉. Finally, both Y ′ and Z(Y )

are non-trivial elementary abelian subgroups of Y of exponent p. This is true for odd p
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as exp(Y ) = p. As for p = 2, Y ′ = Φ(Y ) is of exponent 2 by Lemma 5.6, while Z(Y ) is

of exponent 2 for otherwise CY/Φ(Y )(t) 6= 1 (as the image of Z(Y ) in Y/Φ(Y ) would be

non-trivial and t would centralise it) while Y/Φ(Y ) = [Y/Φ(Y ), t] (as Y = [Y, t]).

Assume first that Z(Y ) is noncyclic. Since Y 〈t〉 acts faithfully on V , so does Z(Y ). Thus

using Theorem 3.5 we obtain

V = 〈CV (y) : y ∈ Z(Y )− {1}〉

Choose an element y0 ∈ Z(Y ) − {1} such that V0 := CV (y0) 6= 1 and t acts non-trivially

on V0. Then dim(V0) := n0 < n and since y0 ∈ Z(Y ) and [y0, t] = 1, it follows that

V0 is Y 〈t〉 - invariant. Clearly, Y 〈t〉 does not act faithfully on V0. So, let us factor out

the kernel of this action. Denote by Y 〈t〉 the image of Y 〈t〉. Then Y 〈t〉 ∼= Y 〈t〉 where

Y = Y/CY (V0) 6= 1 and 〈t〉 ∼= 〈t〉. The minimal choice of Y implies that Y = [Y , t], and

as n0 < n < s, we are done by induction on n.

So we may assume that Z(Y ) is cyclic. Since Y is of class 2, it follows that Y ′ = Z(Y ).

And as Φ(Y ) = Y ′ and Y has exponent p, we obtain that Y is extra-special. Thus

|Y | = p1+2m for some m ∈ N and by Lemma 2.22, we have that n ≥ pm. Furthermore,

since [Y ′, t] = 1 we obtain that t embeds into the subgroup of Aut(Y )/Inn(Y ) consisting

of elements that act trivially on Z(Y ) which, by Lemma 5.9 , is isomorphic to Sp2m(p)

for p odd and O±2m(2) if p = 2. Let us consider the case when p is odd. Since t has order

s, this implies that s divides

|Sp2m(p)| = pm
2 · (p2 − 1) · (p4 − 1) · ... · (p2m − 1)

Since s is prime, it divides some factor in this product. Since s 6= p, it must divide pi ± 1

for some i ≤ m. Since pm + 1 is even, it follows that s < pm = n, which is a contradiction.

Hence Y = 1 and so X = 1. Therefore we may assume that p = 2. Using the factorisation

of |O±2m(2)| we obtain a similar numerical contradiction.

Lemma 5.37. Let G ∼= A±s−2(q). Let X be a p-subgroup of G and let t ∈ Inndiag(G) be

such that (G, t,X) is a triple of type (Hs). Then either X = 1 or one of the following

holds.

(i) G ∼= SU4(3), s = 5, CG(t) ∼= C4 × C5 and X ∼= 21+4
− , or

(ii) G is isomorphic to a quotient of SU4(3) by its central subgroup of order 2, s = 5,

CG(t) ∼= C2 × C5 and X ∼= E24.

(iii) G ∼= PSU4(3), s = 5, CG(t) ∼= C5 and X ∼= E24.

Furthermore, the triples (G, t,X) described in (i)-(iii) do indeed exist.
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Proof. As in the proofs of Lemmas 5.35 and 5.36, by applying Lemma 5.2 we may assume

that G is universal (so that either G ∼= SLs−1(q) or G ∼= SUs−1(q)). Since |Z(G)| =

(s − 1, q ± 1) and s > s − 1, using Lemma 2.16, we may assume that t is an element of

G. Moreover, by Corollary 5.19, X is a nonabelian 2-group. Exactly as in the proof of

Lemma 5.36, X contains the critical subgroup Y of Lemma 5.6, we take R = [Y, t] and

we may assume that R is nonabelian. Continuing with that argument, if Z(R) contains

an involution z which is not contained in Z(G), then as above we obtain, by Lemmas 5.4

and 5.5, R ≤ L = L1 ◦L2 ◦ ◦Lj , where Li ∼= A±mi(q
ai) and each (Li, t, Ri) is a triple of type

(Hs). Further, by Theorem 5.3 (d)-(f) and Lemma 5.34, mi < s − 2 for each i. Hence,

by Lemma 5.36, each Ri = 1. So we may assume that Z(R) contains a unique involution

and so, by Lemma 5.8, R is extra-special. Then R ∼= 21+2k
± for some k and there is an

embedding CG(t)/CCG(t)(R) ↪→ Out(R) ∼= O±2k(2). Choose l such that s = 2l + c where

0 < c < 2l. By Lemma 5.9, c = 1, s = 2l + 1 and R ∼= 21+2l
− . This time we do not obtain a

contradiction with Lemma 2.22 since the natural module for G has dimension s− 1 = 2l.

Instead we may apply Lemma 5.10 to see that CG(t)/CCG(t)(R) ∼= Cs.

We now obtain bounds on the order of CG(t). Certainly |CG(t)| ≤ s · |CCG(t)(R)|. Fur-

thermore CCG(t)(R) ≤ CG(R), and by definition any element of CG(R) commutes with

the irreducible subgroup R of G. So by Schur’s Lemma, CG(R) consists entirely of scalar

matrices, that is elements of Z(G), and we may conclude that it has order (q ± 1, s− 1),

according to whether G ∼= SLs−1(q) or G ∼= SUs−1(q). So certainly |CG(t)| ≤ s(s− 1).

A lower bound on |CG(t)|may be obtained as follows. By Fermat’s little theorem, s divides

qs−1 − 1 = q2l − 1 = (q − 1) · (q + 1) · (q2 + 1) · (q4 + 1) · ... · (q2l−1
+ 1).

Since s is prime, s divides one of the factors in this product.

If s divides q − 1 or s divides q2l
′

+ 1 for l′ < l − 1, then since each of these polynomial

expressions in q appears more than once in the factorization of |G| into irreducible cyclo-

tomic polynomials, Theorem 5.11 (a) gives ms(G) ≥ 2. In this case ms(CG(t)) ≥ 2 by

Corollary 5.12. This is a contradiction since we showed above that |CG(t)| ≤ s(s− 1). So

in fact s must divide q2l−1
+ 1.

Now a Singer cyclic subgroup of SLs−1(q) has order c+ = (qs−1 − 1)/(q − 1). Further, by

Theorem 2.2 [BG], SUs−1(q) has a cyclic subgroup of order c− = (qs−1− 1)/(q+ 1). Since

we also showed above that there is no element u such that us = t, we may assume that t

is contained in a cyclic subgroup S of G of order c± according to whether G = SLs−1(q)

or G = SUs−1(q). Hence S ≤ CG(t) and so (qs−1 − 1)/(q ± 1) = |S| ≤ |CG(t)| ≤ s(s− 1).

We now check whether this is possible.

Claim 5.38. (i) If n ≥ 5 and q ≥ 3, then (qn−1 − 1)/(q − 1) > n(n− 1),

(ii) If n > 5, n odd and q ≥ 3, then (qn−1 − 1)/(q + 1) > n(n− 1),

41



(iii) If q > 3 then (q4 − 1)/(q + 1) > 20.

Proof. (i) We work by induction on n. Certainly (34 − 1)/2 = 40 > 20 = 5 · 4, which

proves the result for n = 5. Now suppose the result holds for n = k. Then q(k+1)−1 − 1 =

qk− 1 = q(qk−1− 1) + q− 1 > q · k(k− 1)(q− 1) + q− 1 by the inductive hypothesis. Since

q ≥ 3, we have q · k(k − 1) + 1 > k(k + 1) which proves the result for n = k + 1.

(ii) Again we work by induction on n. Certainly (36 − 1)/2 > 42 which gives the result

for n = 7. Suppose the result holds for n = k. Then q(k+2)−1 − 1 = qk+1 − 1 = q2(qk−1 −
1) + q2 − 1 > q2 · k(k + 1)(q − 1) + q2 − 1 by the inductive hypothesis. Since q ≥ 3, we

have q2 · n(n+ 1)(q − 1) + q2 − 1 > (n+ 2)(n+ 1) which proves the result for n = k + 2.

(iii) Certainly (44 − 1)/(4 + 1) = 51 > 20 which gives the result for q = 4. Since (q4 −
1)/(q + 1) is an increasing function of q, the full result now follows.

Recall that p = 2 so q ≥ 3. If s > 5, then |S| = (qs−1−1)/(q±1) > s(s−1) by Claim 5.38.

This is a contradiction since we showed above that |S| ≤ s(s− 1). Hence we may assume

that s = 5. If G = SL4(q) then |S| = (q4 − 1)/(q − 1). By Claim 5.38 (i), |S| > 20 and

this is a contradiction as before. So we may assume that G = SU4(q). If q > 3 then

|S| = (q4 − 1)/(q + 1) > 20 by Claim 5.38 (iii) and we again have a contradiction. Hence

q = 3. Recall that 5 = s = 2l + 1, so l = 2. Hence R ∼= 21+4
− . So a priori we may

have a triple (G, t,R) of type (Hs) with G ∼= SU4(3), s = 5 and R ∼= 21+4
− . In this case,

looking at the list of maximal subgroups given in Chapter 5 [K3] gives that NG(X) must

be contained in a maximal subgroup M ∼= 21+4
− .Sp4(2) ∼= NG(R) of G. So we have X = R.

It remains to show that such triples do indeed exist. By the lists in Chapter 5 [K3],

G = SU4(3) has a maximal subgroup M ∼= 21+4
− .Sp4(2). Thus G has a subgroup X ∼= 21+4

−

which is normalized by a 5-element t. By [ATLAS], an order 5 element of PSU4(3)

has centralizer isomorphic to C5. Hence CG(t) ∼= C4 × C5. Since we certainly have

Z(G) ≤ NG(X) we see that CG(t) ≤ NG(X). Finally the only elements of X which are

centralized by t lie in Z(X), so X = [X, t] and we have a triple (SU4(3), t,X) of type

(H5). Passing to the relevant quotient groups we obtain triples of the types given in parts

(ii), (iii) of the statement.

We now discuss the case m ≥ s− 1. Since we found triples of type (H5) in A−3 (3) we will

now separate the cases (s, q) 6= (5, 3) and (s, q) = (5, 3).

Lemma 5.39. Let G ∼= A±s−1(q), where (s, q) 6= (5, 3). Let X be a p-subgroup of G and

let t ∈ Inndiag(G) be such that (G, t,X) is a triple of type (Hs). Then X = 1.

Proof. By Lemma 5.2, we may assume that G is universal. We have G = SLεs(q), with

ε = 1 if G ∼= SLs(q) and ε = −1 if G ∼= SUs(q). Note that, by Lemma 2.16, the group
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Outdiag(G) of outer-diagonal automorphisms of G has order (s, q − ε), so t does not

necessarily induce an inner automorphism on G.

There are two cases to consider.

Case 1: X is abelian.

Assume first that t is induced by a genuine element of order s. Then by abuse of notation

we may assume that t ∈ GLεs(q). Consider the group K := X o 〈t〉. By using Lemma 5.6

if needed we may reduce to the case when X is an elementary abelian subgroup. Since

X = [X, t], Theorem 5.1 implies that CX(t) = 1 and so K is a Frobenius group with kernel

X and complement 〈t〉. As K ≤ G, K acts faithfully on the natural module V of G. Since

Frobenius complement of K has order s while dimF(V ) = s, K must act irreducibly on V .

We may now use Clifford’s Theorem (cf. Theorem 9.7 of [GLS2]) to conclude that X acts

completely reducibly on V . Moreover, V = V1 ⊕ . . .⊕ Vf where each Vi is a Wedderburn

component of the FX-module V , K transitively permutes Vi’s and XCK(X) = X is

contained in the kernel of this permutation action. Since K/X ∼= 〈t〉 ∼= Cs, it follows

immediately that either f = s, dimF(Vi) = 1 for i = 1, . . . , s and t transitively permutes

Vi’s, or f = 1 and so X acts irreducibly on V .

In the former case it follows immediately that K is contained in the setwise stabiliser N

of a frame {V1, . . . , Vs} in V . In fact X is contained in a pointwise stabiliser of the frame,

and so NG(X) ≤ N . Recall that N is isomorphic to the monomial subgroup of G, i.e., N

contains a normal subgroup N0
∼= Es−1

q−ε and N/N0
∼= Ss, a permutation group on s letters.

In particular it follows that t ∈ G and since CG(t) ≤ NG(X), CG(t)/CCG(t)(X) ∼= Cs while

CCG(t)(X) ≤ Z(G). Thus |CG(t)| ≤ s2.

Now, if s divides q − ε, t is diagonalisable and so CG(t) contains a subgroup C ∼= Cs−1
q−ε .

In particular, s2 ≥ (q − ε)s−1. We will now prove the following statement.

Claim 5.40. If q ≥ 4 and n ≥ 5, then (q − 1)n−1 > n2.

Proof. Since q ≥ 4, we certainly have (q−1)n−1 ≥ 3n−1. Therefore it suffices to prove that

3n−1 ≥ n2 for all n ≥ 5. We prove this by induction on n. Certainly 35−1 = 81 ≥ 25 = 52

and so the result holds for n = 5. Now suppose the result holds for n = k and look at the

case n = k + 1. Then by the inductive hypothesis we have

3n−1 = 3k = 3 · 3k−1 ≥ 3k2

Since k ≥ 5 we certainly have 3k2 ≥ (k + 1)2 = n2 and so the result holds for n = k + 1.

This completes the proof.

Since s ≥ 5 and s divides q − ε, we must have q ≥ 4. Hence the above claim leads to an

obvious contradiction with our earlier evaluation of |CG(t)|. Thus s does not divide q− ε.
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In particular, t ∈ G.

If ms(CG(t)) ≥ 2, then there exists Z = 〈t, t1〉 ∼= C2
s acting on X. Then, by Theo-

rem 3.5, X = 〈CX(u)|u ∈ Z#〉. Choose CX(u) as large as possible for u ∈ Z#. Certainly

CX(u)〈t〉 ≤ CG(u). Then by Lemma 5.5 we obtain CX(u) ≤ L = L1 ◦ L2 ◦ ◦ Lj , where

Li ∼= A±mi(q
ai), and each projection (Li, t, CX(u)i) is of type (Hs). Further, by Theo-

rem 5.3 (d) -(f) and Lemma 5.34, each Li has Lie rank mi < s− 1. Hence we may apply

Lemmas 5.36 and 5.37 to conclude that each CX(u)i = 1. Hence CX(u) = 1. Since we

chose CX(u) as large as possible, we must have X = 1. Therefore we may assume that

ms(CG(t)) = 1.

Now s divides qs−1 − 1 by Fermat’s little theorem. Since s is prime, s divides one of the

irreducible cyclotomic polynomials Φi(q), where i divides s− 1.

Suppose first that G = SLs(q). If i < s−1, then Φi(q) has exponent greater than 1 in the

factorization of |G| and so by Theorem 5.11 (a), we have ms(G) ≥ 2. Hence ms(CG(t)) ≥ 2

by Corollary 5.12. This is a contradiction since we showed above that ms(CG(t)) = 1.

Hence s must divide Φs−1(q). We may conclude that t is contained in a Singer cycle

S+
∼= Cm+ of a subgroup H ∼= SLs−1(q) of G, where m+ = (qs−1 − 1)/(q − 1).

The situation for G = SUs(q) is a little more complicated. Write s − 1 = 2k so that

qs−1 − 1 = (qk − 1) · (qk + 1). Suppose first that k is even. If s divides qk − 1, then

an argument analogous to the SLs(q) case shows that ms(CG(t)) ≥ 2, which is again a

contradiction. If s divides qk + 1, then s divides Φ2j(q) for some factor j of k. Then we

see that s divides q2j − 1 and so, if j < k, we may again see that ms(CG(t)) ≥ 2. So s

must divide Φs−1(q). Now suppose k is odd. If s divides qk + 1, then we may immediately

conclude that ms(CG(t)) ≥ 2. So s divides qk − 1 and hence divides some Φi(q) such that

i divides k. Then s divides q2i − 1. Hence, if i < k we have 2i < s− 1 and so we may see

again that ms(CG(t)) ≥ 2, which is a contradiction as before. So in this case we require

that s divides Φk(q) = Φ s−1
2

(q). In either case, we may use Theorem 2.2 [BG] to conclude

that t is contained in a cyclic subgroup S− ∼= Cm− of order m− = (qs−1 − 1)/(q + 1).

It follows that s2 ≥ (qs−1 − 1)/(q − ε). Since q ≥ 4 and s ≥ 5, the following statement

gives us an immediate contradiction.

Claim 5.41. If q ≥ 4 and n is odd, n ≥ 5, we have (qn − ε)/(q − ε) > n2.

Proof. We use induction on n. Assume first ε = 1. Certainly q5 − 1 > 25(q − 1) for

q ≥ 4 which proves the result for n = 5. Now assume the result holds for n = k. Then

qk+2−1 = q2(qk−1)+q2−1 > q2 ·k2(q−1)+q2−1 by the inductive hypothesis. Factorizing,

this quantity this is equal to (q−1)(q2k2+q+1). Then since q2k2+q+1 > 16k2+3 > (k+2)2

for q ≥ 4, k ≥ 5, the required result holds. If ε = −1 the proof is analogous.

Therefore we are reduced to the case when f = 1, i.e., X acts faithfully and irreducibly
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on V . It follows that X is a cyclic group of order p and p does not divide qi − ε for

i < s. Thus X is contained in a Singer cyclic subgroup S of G and CG(X) = S. Since

t ∈ NG(X) of order s, from the structure of the normaliser of a Singer cyclic subgroup,

it follows that t acts on S as a field automorphism and NG(X) = S〈t〉. In particular,

|CG(t) ∩ CG(X)| ≤ (q − ε). Therefore |CG(t)| ≤ s(q − ε). Again using the numerical

evaluations for |CG(t)| that we used above, we easily get a numerical contradiction.

Therefore we are reduced to the case when the automorphism t of G is induced by an

element t0 ∈ GLεs(q) of order s2 such that ts0 ∈ Z(G). In particular, |Z(G)| = s and

〈ts0〉 = Z(G). In this case take K0 = Xo 〈t0〉. Since (ps, r) = 1, V is completely reducible.

Assume that there exists an FK0 submodule V0 ≤ V with dimF V0 < dimFV . Now ts0
acts by scalars on V and hence on V0. It follows that K0 is isomorphic to a subgroup of

GLε(V0) which is a contradiction as n0 < s. Thus K0 acts irreducibly on V . We may now

apply Clifford’s Theorem to the action of K0 on V . This time it follows that either K

stabilises a frame as before (in particular, X〈ts0〉 stabilises the frame point wise) or X acts

irreducibly on V .

In the former case arguing as before we obtain that |CG(t0)| ≤ s2. If s2 | (q − ε), then t0

is diagonalisable and we may apply the same argument as before. Hence assume that s2

does not divide (q − ε). Since q − ε appears with exponent s − 1 in the factorization of

|G| = |SLεs(q)| into irreducible polynomials in q, Theorem 5.11 (a) gives ms(G) = s − 1.

Now suppose s divides (qk− (ε)k)/(q− ε) for some k < s. Then s divides some cyclotomic

polynomial Φi(q) that appears with exponent smaller than s − 1 in the factorization of

|G|. Theorem 5.11 (a) would then give ms(G) < s− 1, which is a contradiction. So s does

not divide (qk − (ε)k)/(q− ε) for k < s. Since s2 does not divide q− ε, s2 does not divide

(qk − (ε)k) for k < s. By Table 1 [B], a Singer cyclic subgroup of GLεs(q) has order qs− ε.
Since we showed above that s2 does not divide (qk − εk) for k < s, we may assume that

t0 is contained in a Singer cyclic subgroup C of GLεs(q). Take C0 = C ∩G ≤ CG(t). Then

C0 has order (qs − ε)/(q − ε). It follows that s2 ≥ (qs − ε)/(q − ε) which as we saw is a

contradiction for s ≥ 5.

Thus we are in the latter case and so as before we may assume that X ∼= Cp acts irreducibly

on V . Arguing as before we obtain that |CG(t0)| ≤ s(q − ε). Again using the numerical

evaluations for |CG(t0)| that we used above, we easily get a numerical contradiction.

Case 2: X is nonabelian.

Since (p, s) = 1, X ∩ Z(G) = 1. We may now apply Lemmas 5.4 and 5.5, to obtain that

X〈t〉 ≤ CG(z) for some z ∈ Z(X) and so X ≤ L = L1 ◦ L2 ◦ ◦ Lj , where Li ∼= A±mi(q
ai).

By Theorem 5.3 (d)-(f) and Lemma 5.34, each Li has Lie rank mi < s − 1. So applying

Lemmas 5.36 and 5.37, we obtain X = 1. This finishes the proof.

Before deriving results for the remaining linear and unitary groups, we pause to prove the
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following general claim.

Claim 5.42. Let G be a group of Lie type over Fq where q = ra and suppose that G has

a faithful representation in dimension n < rs. Suppose that (G, t,X) is of type (Hs) with

X 6= 1 (where p, r and s are pairwise coprime) and that Or
′
(CG(t)) ∼= A1(r). Then X is

nonabelian.

Proof. Assume for contradiction that X is abelian. Then by Theorem 5.1 (iii), X〈t〉 is

a Frobenius group. Take u ∈ CG(t) of order r. Since CG(t) ≤ NG(X), u acts on X. If

CX(u) 6= 1, then K = CX(u)〈t〉 is a Frobenius group. By Lemma 3.6 (b), K acts faithfully

on Or(CG(u)). If p = 2, this contradicts Lemma 5.20. If p is odd, then by Lemma 5.21 we

obtain [CX(u), t] = [X ∩ CG(u), t] ≤ [X ∩ NG(〈u〉), t] = 1, which is also a contradiction,

since CX(u)〈t〉 is supposed to be a Frobenius group. Hence we must have CX(u) = 1. So

X〈tu〉 is a Frobenius group with a complement of order rs. This contradicts Lemma 5.14.

Therefore X is nonabelian.

Lemma 5.43. Let G ∼= A±s (q), where (s, q) 6= (5, 3). Let X be a p-subgroup of G and let

t ∈ Inndiag(G) such that (G, t,X) is a triple of type (Hs). Then X = 1.

Proof. By Lemma 2.16, we may assume that t acts as an inner automorphism on G.

We argue as in the proof of Lemma 2.11 [Ko]. By Lemma 2.13, there exists an order

s automorphism t of the algebraic group G ∼= As over Fr which induces t on G. The

Dynkin diagram of G has s nodes. By Theorem 5.3, L = Or
′
(CG(t)) is a central product

L1 ◦ L2 ◦ ... ◦ Lj of groups Li ∼= A±mi(q
ai) such that the Dynkin diagram of CG(t) is the

disjoint union of diagrams ∆i for i = 1, 2, ..., j where each ∆i is in turn a disjoint union of

ai copies of the Dynkin diagram of Li. By Proposition 5.24 (i), the Dynkin diagram for

CG(t) has at least 1 node, and hence L 6= 1. In particular mr(L) ≥ 1.

Ifmr(L) ≥ 2, then by Corollary 5.22, X is a nonabelian 2-group. In particular, as discussed

in Remark 5.23, we may assume that G = Ga. Then by Lemmas 5.4 and 5.5, we have

X〈t〉 ≤ M1 ◦ M2 ◦ ... ◦ Mj , where each Mi
∼= A±mi(q

ai) and each projection (Mi, t,Xi)

has type (Hs). By Lemma 5.34, each Mi has rank mi < s and we obtain X = 1 by

Lemmas 5.35- 5.39.

So we may assume that mr(L) = 1. By Table 3.3.1 [GLS3], we obtain q = r and L = A1(r).

In particular, G ∼= A±s (r). By Lemma 5.2, we may assume thatG = Gu. SoG has a natural

module of dimension n = s+ 1. Since s+ 1 < rs, we are in the conditions of Claim 5.42.

Therefore X is nonabelian.

Suppose that p is odd. Applying Lemma 5.6 gives us that X contains a characteristic

subgroup Y of class at most 2, exponent p, with Y ′ = Φ(Y ) and such that t acts faithfully

on Y . Moreover, we may assume that Y = [Y, t] and Y is the smallest non-trivial subgroup
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of X satisfying all those conditions. Furthermore, as Y is a characteristic subgroup, all of

this implies that (G, t, Y ) is a triple of type (Hs).

If Y is abelian, then since Y is a characteristic subgroup of X and Y = [Y, t], we may

apply Claim 5.42 to obtain Y = 1 and we have a contradiction unless X = 1. Therefore we

may assume that Y is nonabelian. Further, both Y ′ and Z(Y ) are non-trivial elementary

abelian subgroups of Y of exponent p and [Y ′, t] = [Z(Y ), t] = 1 (for otherwise, since Y

is a characteristic subgroup of X, and Y ′, Z(Y ) are characteristic in Y , we would be able

to apply Claim 5.42 to (G, t, Y ′) or (G, t, Z(Y ))).

Assume first that Z(Y ) is noncyclic. Then since Z(G) is cyclic, Z(Y ) contains a p-element

z not contained in Z(G). So we have Y 〈t〉 ≤ CG(z) and we may apply Lemmas 5.5,

and 5.35-5.39 to obtain Y = 1.

So we may assume that Z(Y ) is cyclic. Since Y is of class 2 and exponent p, it follows

that Y ′ = Z(Y ). As Φ(Y ) = Y ′ and Y has exponent p, we obtain that Y is extra-

special. Thus |Y | = p1+2m for some m ∈ N and by Lemma 2.22, we have that n =

s+ 1 ≥ pm. Furthermore, since [Y ′, t] = 1, we obtain that t embeds into the subgroup of

Aut(Y )/Inn(Y ) consisting of elements that act trivially on Z(Y ) which, by Lemma 5.9

(i), is isomorphic to Sp2m(p). Since t has order s, this implies that s divides

|Sp2m(p)| = pm
2 · (p2 − 1) · (p4 − 1) · ... · (p2m − 1)

Since s is a prime, it divides some factor in this product. Since s 6= p, it must divide

pi ± 1 for some i ≤ m. Since s ≥ pm − 1, we have s = pm − 1 or s = pm + 1. This is a

contradiction since s and p are both odd.

Therefore we may assume that p = 2. By Lemma 5.6, X contains a critical subgroup

Y . Let R = [Y, t]. As discussed in Remark 5.7, (G, t,R) is a triple of type (Hs). By

Claim 5.42, R is nonabelian. If Z(R) contains an involution not contained in Z(G), then

R〈t〉 ≤ CG(z) and we may apply Lemmas 5.5 and 5.35- 5.39 to obtain Y = 1. So we may

assume that Z(R) contains a unique involution and by Lemma 5.8, R is extra-special.

Choose l such that s = 2l + c, where 0 < c < 2l. Suppose first that c + 1 < 2l. Then

G has a faithful representation in n = s + 1 < 2l+1 dimensions. Since R admits an

order s automorphism and has a faithful representation in dimension smaller than 2l+1,

Lemma 5.9 gives c = 1 and R ∼= 21+2l
− . Hence s = 2l + 1. So by Lemma 5.10, we

have CG(t)/CCG(t)(R) ∼= Cs. However, we have Or
′
(CG(t)) ∼= A1(r). Since A1(r) does

not contain a central element of order s, the whole of Or
′
(CG(t)) centralizes R. Hence

R〈t〉 ≤ CG(z) for some involution z (passing to the quotient group Ḡ = G/Z(G) to avoid

the case z ∈ Z(G) if necessary). Then we apply Lemmas 5.5 and 5.35- 5.39 to obtain

R = 1, which is a contradiction.
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So we may assume that c+1 = 2l. In this case the natural faithful representation of G has

dimension s+1 = 2l+1. Since either R ∼= 21+2k
+ or R ∼= 21+2k

− , where k ≤ l+1, and R admits

an automorphism of order s = 2l+1 − 1, we obtain R ∼= 2
1+2(l+1)
+ , Aut(R) ∼= O+

2l+2(2) and

hence CG(t)/CCG(t)(R) ∼= Cs. Then may again apply Lemmas 5.5 and 5.35- 5.39 to obtain

R = 1, which is a contradiction.

Lemma 5.44. Let G ∼= A±m(q), where m ≥ s and (s, q) 6= (5, 3). Let X be a p-subgroup

of G and let t ∈ Inndiag(G) such that (G, t,X) is a triple of type (Hs). Then X = 1.

Proof. We work by induction on m, taking Lemma 5.43 as the basis case of our induction.

So we assume that m ≥ s+1 and that if (G, t,X) is a triple of type (Hs) with G ∼= A±m′(q
′)

for m′ < m and q′ 6= 3, then X = 1.

By Corollary 5.32, there exists Z ≤ CG(t) such that Z ∼= Cr×Cr. Hence X is a nonabelian

2-group by Corollary 5.22. In particular, as we observed in Remark 5.23, we may assume

that G = Ga. So by Lemmas 5.4 and 5.5 we have X〈t〉 ≤ CG(z) for some involution

z ∈ Z(X) and so X ≤ L = L1 ◦ L2 ◦ ... ◦ Lj , where Li = A±mi(q
ai) and each projection

(Li, t,Xi) is of type (Hs). By Theorem 5.3 (d)-(e) and Lemma 5.34, each Li has Lie rank

mi < m. Since (s, q) 6= (5, 3), we clearly have (s, qai) 6= (5, 3). Applying Lemmas 5.36- 5.43

and the inductive hypothesis, we obtain Xi = 1 for each i. Hence X = 1.

We conclude our discussion by considering the remaining cases (s, q) = (5, 3).

Lemma 5.45. Let G ∼= GU4(3), let t be an inner-diagonal automorphism of G of order

5. Suppose that (G, t,X) is a triple of type (H5). Then X = 1

Proof. Since |G| = 4 · |SU4(3)|, we may assume that t ∈ SU4(3). Also X = [X, t] ≤ G′ ∼=
SU4(3). So by Lemma 5.37, either X = 1 or X ∼= 21+4

− . If X ∼= 21+4
− , then there exists an

element g ∈ G−SU4(3) of order 4 with g ∈ CG(t) but g /∈ NG(X). This is a contradiction

and hence X = 1.

Lemma 5.46. Let G ∼= A±m(3) with m ≥ 4 and let t be an inner-diagonal automorphism

of G of order 5 such that (G, t,X) is a triple of type (H5). Then X = 1.

Proof. We may assume that G is universal by Lemma 5.2. We work by induction on m.

If m = 4 we argue as follows. If X is abelian, then the argument of case 1b of Lemma 5.39

applies to give X = 1. Hence we may assume that X is nonabelian.

By Lemmas 5.4 and 5.5, we have X ≤ L, where L is a direct product of linear or unitary

groups Li. Further, by Lemma 5.34, each Li has Lie rank smaller than 4. By Table 4.5.2

[GLS3] and Lemmas 5.36 and 5.37 we obtain either X = 1 or L ∼= SU4(3). In the latter
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case, we may see by Table 4.5.2 [GLS3] and Lemma 5.4 that in fact L = Or
′
(CG(z)),

where z is an involution, CG(z) ∼= GU4(3) and X〈t〉 ≤ CG(z). Then since (CG(z), t,X) is

a triple of type (H5), we have X = 1 by Lemma 5.45.

Now suppose the result holds for m < l and take m = l. Then by Corollaries 5.22 and 5.32

and the argument of Lemma 5.43, we may assume that X is a nonabelian 2-group. Hence

by Lemmas 5.4 and 5.5 we have X ≤ L = O3′(CG(z)) = L1◦L2◦ ...◦Lj , where z ∈ Z(X) is

an involution, each Li is a linear or unitary group and each projection (Li, t,Xi) is of type

(Hs). By Theorem 5.34, each Li has Lie rank smaller than m. So by Lemmas 5.36- 5.43

and our inductive hypothesis we have, for each i, either Xi = 1 or Li ∼= A−3 (3).

In the latter case we may see by Tables 4.5.1 and 4.5.2 [GLS3] that the corresponding

projection Xi of X may in fact be embedded into H ∼= GU4(3) or PGU4(3) such that

(H, t,Xi) is a triple of type (Hs). Hence X = 1 by Lemma 5.45.

By combining the above lemmas, we obtain the main result of this section.

Proposition 5.47. Let G ∼= A±m(q) where m ≥ 1. Let X be a p-subgroup of G and let

t ∈ Inndiag(G) such that (G, t,X) is a triple of type (Hs). Then either X = 1 or

(i) G ∼= SU4(3), s = 5, CG(t) ∼= C4 × C5 and X ∼= 21+4
− , or

(ii) G is isomorphic to a quotient of SU4(3) by its central subgroup of order 2, s = 5,

CG(t) ∼= C2 × C5 and X ∼= E24.

(iii) G ∼= PSU4(3), s = 5, CG(t) ∼= C5 and X ∼= E24.

Furthermore, the triples given in (i)-(iii) do indeed exist.
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5.3 The Case G = Cm(q)

In this section we discuss the case G = Cm(q). We work in analogue with the discussion

of G = A±m(q). Hence, we begin with a general result on automorphisms of G.

Lemma 5.48. Let G = Cm(q) and let x be an inner-diagonal automorphism of G of prime

order r1 6= r. Let x be the automorphism of the algebraic group G = Cm inducing x on G

and let ∆x be the Dynkin diagram of CG(x). If x is of equal rank type, then ∆x has type

A1 ∪ Cm−1 or type Ck ∪ Cm−k for some 2 ≤ k ≤ m− 2.

Proof. If x is of equal rank type, then by Theorem 5.3 (f), ∆x has type Cm, or type

A1 ∪ Cm−1, or type Ck ∪ Cm−k. If ∆x has type Cm, we get a contradiction since x

is a nontrivial automorphism. Hence ∆x has type A1 ∪ Cm−1 or type Ck ∪ Cm−k, as

required.

We now obtain our main results. Recall that q = ra, s ≥ 5 and p, r, s are pairwise distinct.

Lemma 5.49. Let G ∼= Cm(q) with m < s−1
2 . Let X be a p-subgroup of G and let

t ∈ Inndiag(G) be such that (G, t,X) is a triple of type (Hs). Then X = 1.

Proof. We argue in analogue with the proof of Lemma 5.36. By Lemma 5.19, X must be a

nonabelian 2-group. We may assume G ∼= Sp2m(q) by Lemma 5.2. Also, by Lemma 2.16,

we may assume that t induces an inner automorphism on G.

We work by induction on m. Since Sp2(q) ∼= SL2(q), we take Lemma 5.35 as the basis

case of our induction. Now assume that m ≥ 2 and that if (G, t,X) is a triple of type

(Hs) with G ∼= Cm′(q
′) for m′ < m and some q′, then X = 1.

By Lemma 5.6, X contains a critical subgroup Y . Take R = [Y, t]. Combining Remark 5.7

and Lemma 5.16, (G, t,R) is a triple of type (Hs) and R is nonabelian. If Z(R) contains

an involution z which is not contained in Z(G), then by Lemmas 5.4 and 5.5, R ≤ L =

L1 × L2 × ... × Lj , where, for each i, either Li ∼= A±mi(q
ai) or Li ∼= Cmi(q

ai), and each

(Li, t, Ri) is a triple of type (Hs). Further, if Li ∼= Cmi(q
ai), then by Theorem 5.3 (d)-(f)

and Lemma 5.48, mi < m. Hence, by the inductive hypothesis and Lemma 5.36, each

Ri = 1 and so R = 1, which is a contradiction. So we may assume that Z(R) contains a

unique involution and so, by Lemma 5.8, R is extra-special.

Choose l such that s = 2l + c where 0 < c < 2l. Then we have 2m < s − 1 < 2l+1. So

by Lemma 5.9, we obtain c = 1 and R ∼= 21+2l
− . Hence s = 2l + 1. In particular, by

Lemma 2.22, 2m ≥ 2l = s − 1. This is a contradiction since we assumed that m < s−1
2 .

Hence R = 1 and so X = 1.
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We now consider the case m = s−1
2 , which is the analogue of the case A±s−2(q) of Section

5.2.

Lemma 5.50. Let G ∼= C s−1
2

(q). Let X be a p-subgroup of G and let t ∈ Inndiag(G) be

such that (G, t,X) is a triple of type (Hs). Then either X = 1, or one of the following

holds.

(i) G ∼= Sp4(3), s = 5, CG(t) ∼= C2 × C5 and X ∼= 21+4
−

(ii) G ∼= PSp4(3), s = 5, CG(t) ∼= C5 and X ∼= E24.

Furthermore, the triples (G, t,X) described in (i), (ii) do indeed exist.

Proof. The proof is analogous to that of Lemma 5.37. By applying Lemma 5.2 we may

assume that G = Sps−1(q). By Lemma 2.16, we may assume that t is an element of G

and by Corollary 5.19, X is a nonabelian 2-group.

By Lemma 5.6, X contains a critical subgroup Y . Take R = [Y, t]. Combining Remark 5.7

and Lemma 5.16, (G, t,R) is a triple of type (Hs) and R is nonabelian. If Z(R) contains

an involution z which is not contained in Z(G), then by Lemmas 5.4 and 5.5, R ≤ L =

L1 × L2 × ... × Lj , where, for each i, either Li ∼= A±mi(q
ai) or Li ∼= Cmi(q

ai), and each

(Li, t, Ri) is a triple of type (Hs). Further, if Li ∼= Cmi(q
ai), then by Theorem 5.3 (d)-

(f) and Lemma 5.48, mi < m. Hence, by Lemmas 5.36 and 5.49, each Ri = 1. So we

may assume that Z(R) contains a unique involution. Therefore R is extra-special by

Lemma 5.8.

Choose l such that s = 2l + c, where 0 < c < 2l. Since R has a faithful representation in

s−1 < 2l+1 dimensions, Lemma 5.9 gives c = 1, s = 2l+1 and R ∼= 21+2l
− . By Lemma 5.10,

we obtain CG(t)/CCG(t)(R) ∼= Cs.

Suppose that CG(t) contains an involution z which is not contained in Z(G). Since

CG(t)/CCG(t)(R) ∼= Cs, we have R〈t〉 ≤ CG(z). Then by Lemma 5.5, we obtain R ≤
L = L1 × L2 × ... × Lj , where for each i, either Li ∼= A±mi(q

ai) or Li ∼= Cmi(q
ai), and

each (Li, t, Ri) is a triple of type (Hs). Further, if Li ∼= Cmi(q
ai), then by Theorem 5.3

(d)-(f) and Lemma 5.48, mi <
s−1

2 . So by Lemmas 5.36 and 5.49, each Ri = 1. Hence

R = 1, which is a contradiction. So CG(t) contains a unique involution, namely the unique

involution α ∈ Z(G).

Furthermore, exactly the same argument shows that CG(t) cannot contain any element

having odd order coprime to s and r, and cannot contain any order s-element except for

the powers of t. So in particular ms(CG(t)) = 1. Similarly, if CG(t) contains an element

y which is not contained in Z(G) but such that y2 ∈ Z(G), then we may apply the above

argument to the images R̄ of R and t̄ of t in the quotient group Ḡ = G/Z(G) to show

that R̄ = 1. So CG(t) contains no such element. Finally, if CG(t) contains an element u
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such that us = t, then u ∈ CCG(t)(R) and so [R, u] = 1. Then [R, t] = 1 which is also a

contradiction. We conclude that CG(t) has order 2 · s · rb for some b.

By Fermat’s little theorem, s divides

qs−1 − 1 = q2l − 1 = (q − 1) · (q + 1) · (q2 + 1) · (q4 + 1) · ... · (q2l−1
+ 1)

Since s is prime, s divides one of the factors in the product. If s divides q− 1 or s divides

q2l
′

+ 1 for l′ < l − 1, then, since those polynomials in q appear with exponent greater

than 1 in the factorization of |G|, we apply Theorem 5.11 and Corollary 5.12 to obtain

ms(CG(t)) ≥ 2, which is a contradiction. Hence s must divide q2l−1
+ 1. By Table 1 [B],

we may assume that t is contained in a Singer cyclic subgroup S of G, which has order

exactly q2l−1
+ 1 = q

s−1
2 + 1. Hence S ≤ CG(t).

Since S ≤ CG(t) and S contains no r-elements, |S| ≤ 2s. We now check whether this can

occur.

Claim 5.51. (i) If n is odd, n > 5 and q ≥ 3, then q
n−1
2 + 1 > 2n,

(ii) If q > 3, then q2 + 1 > 10.

Proof. (i) We work by induction on n. Certainly q3 + 1 > 14 for q ≥ 3, which proves the

result for n = 7. Now suppose the result is true for n = k. Then q
(k+2)−1

2 + 1 = q(q
k−1
2 +

1)− q+ 1 > 2kq− q+ 1 by the inductive hypothesis. Since certainly 2kq− q+ 1 > 2(k+ 1)

for q ≥ 3, the result holds for n = k + 2.

(ii) This is trivial.

Suppose that s > 5. Since p = 2, we have q ≥ 3. Then since q
s−1
2 + 1 = |S| ≤ 2s, we have

a contradiction with Claim 5.51 (i). So we may assume that s = 5. If q > 3, then since

q2 + 1 = |S| ≤ 10, we have a contradiction with Claim 5.51 (ii). So we may assume that

q = 3. Hence G = Sp4(3). Since 5 = s = 2l + 1, we have l = 2 so that R ∼= 21+4
− . So a

priori we may have a triple (G, t,R) of type (Hs) with G ∼= Sp4(3), s = 5 and R ∼= 21+4
− .

In this case, looking at the list of maximal subgroups in Chapter 5 [K3] shows that NG(X)

must be contained in a maximal subgroup M ∼= 21+4
− .O−4 (2) ∼= NG(R) of G. So we have

X = R.

It remains to show that such triples do indeed exist. By the lists in Chapter 5 [K3],

G = Sp4(3) has a maximal subgroup M ∼= 21+4
− .O−4 (2). Thus G has a subgroup X ∼= 21+4

−

which is normalized by a 5-element t. By [ATLAS], any order 5 element of PSp4(3)

has centralizer isomorphic to C5. Hence CG(t) ∼= C2 × C5. Since we certainly have

Z(G) ≤ NG(X) we see that CG(t) ≤ NG(X). Finally the only elements of X which are

centralized by t lie in Z(X), so X = [X, t] and we have a triple (Sp4(3), t,X) of type (H5).
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Passing to the adjoint group PSp4(3) we find a triple (G, t0, X0) of type (Hs) satisfying

CG(t0) ∼= C5 and X0
∼= E24 .

We now discuss the case m ≥ s+1
2 . Since we found triples of type (H5) in C2(3) we will

separate the cases (s, q) 6= (5, 3) and (s, q) = (5, 3).

Lemma 5.52. Let G ∼= C s+1
2

(q), where (s, q) 6= (5, 3). Let X be a p-subgroup of G and

let t ∈ Inndiag(G) be such that (G, t,X) is a triple of type (Hs). Then X = 1.

Proof. By Lemma 2.16, we may assume that t induces an inner automorphism on G.

We argue in analogue with Lemma 5.43. By Lemma 2.13, there exists an order s auto-

morphism t of the algebraic group G ∼= C s+1
2

over Fr which induces t on G. The Dynkin

diagram of G has s+1
2 nodes. By Theorem 5.3, L = Or

′
(CG(t)) is a central product

L1 ◦L2 ◦ ... ◦Lj of groups Li such that the Dynkin diagram of CG(t) is the disjoint union

of diagrams ∆i for i = 1, 2, ..., j where each ∆i is in turn a disjoint union of ai copies of

the Dynkin diagram of Li. By Proposition 5.24 (ii), the Dynkin diagram for CG(t) has at

least 1 node, and hence L 6= 1. In particular mr(L) ≥ 1.

If mr(L) ≥ 2, then X is a nonabelian 2-group by Corollary 5.22. As discussed in Re-

mark 5.23 we may assume that G = Ga. Then by Lemmas 5.4 and 5.5, we have

X〈t〉 ≤ M1 ◦M2 ◦ ... ◦Mj , where for each i, either Mi
∼= A±mi(q

ai) or Mi
∼= Cmi(q

ai),

and each (Mi, t,Xi) is a triple of type (Hs). Further, if Mi
∼= Cmi(q

ai), then by Theo-

rem 5.3 (d)-(f) and Lemma 5.48, mi <
s+1

2 . Then we apply Lemmas 5.49 and 5.50 and

Proposition 5.47 to conclude that X = 1.

So we may assume that mr(L) = 1, and by Table 3.3.1 [GLS3] we obtain q = r and

L = A1(r). In particular G ∼= C s+1
2

(r). By Lemma 5.2, we may assume that G = Sps+1(r).

We are now in the conditions of Claim 5.42, so we may assume that X is nonabelian.

Suppose that p is odd. Then since |Z(G)| = (2, q − 1), Z(X) contains a p-element z

not contained in Z(G). By Lemma 5.4, we have X〈t〉 ≤ CG(z) and we may apply Lem-

mas 5.5, 5.49 and 5.50 and Proposition 5.47 to conclude that X = 1.

Therefore we may assume that p = 2. By Lemma 5.6, X contains a critical subgroup

Y . Let R = [Y, t]. As discussed in Remark 5.7, (G, t,R) is a triple of type (Hs). By

Claim 5.42, R is nonabelian. If Z(R) contains an involution not contained in Z(G), then

R〈t〉 ≤ CG(z) and we may apply Lemmas 5.5, 5.49 and 5.50 and Proposition 5.47 to obtain

Y = 1. So we may assume that Z(R) contains a unique involution and by Lemma 5.8, R

is extra-special.

Choose l such that s = 2l + c, where 0 < c < 2l. Suppose first that c + 1 < 2l. Then

G has a faithful representation in n = s + 1 < 2l+1 dimensions. Since R admits an

order s automorphism and has a faithful representation in dimension smaller than 2l+1,
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Lemma 5.9 gives c = 1 and R ∼= 21+2l
− . Hence s = 2l + 1. So by Lemma 5.10, we

have CG(t)/CCG(t)(R) ∼= Cs. However, we have Or
′
(CG(t)) ∼= A1(r). Since A1(r) does

not contain a central element of order s, the whole of Or
′
(CG(t)) centralizes R. Hence

R〈t〉 ≤ CG(z) for some involution z (passing to the quotient group Ḡ = G/Z(G) to

avoid the case z ∈ Z(G) if necessary). Then we apply Lemmas 5.5, 5.49 and 5.50 and

Proposition 5.47 to obtain R = 1, which is a contradiction.

So we may assume that c+1 = 2l. In this case the natural faithful representation of G has

dimension s+1 = 2l+1. Since either R ∼= 21+2k
+ or R ∼= 21+2k

− , where k ≤ l+1, and R admits

an automorphism of order s = 2l+1 − 1, we obtain R ∼= 2
1+2(l+1)
+ , Aut(R) ∼= O+

2l+2(2) and

hence CG(t)/CCG(t)(R) ∼= Cs. Then may again apply Lemmas 5.5, 5.49 and 5.50 and

Proposition 5.47 to obtain R = 1, which is a contradiction.

Lemma 5.53. Let G ∼= Cm(q) where m ≥ s+1
2 and (s, q) 6= (5, 3). Let X be a p-subgroup

of G and let t ∈ Inndiag(G) be such that (G, t,X) is a triple of type (Hs). Then X = 1.

Proof. We work by induction on m, taking Lemma 5.52 as the basis case of our induction.

So we assume that m ≥ s+3
2 and that if (G, t,X) is a triple of type (Hs) with G ∼= Cm′(q

′)

for m′ < m and q′ 6= 3, then X = 1.

By Corollary 5.32, there exists Z ≤ CG(t) such that Z ∼= Cr×Cr. Hence X is a nonabelian

2-group by Corollary 5.22. So as we observed in Remark 5.23, we may assume thatG = Ga.

By Lemmas 5.4 and 5.5, we have X〈t〉 ≤ CG(z) for some involution z ∈ Z(X) and so

X ≤ L = L1 ◦ L2 ◦ ... ◦ Lj , where for each i, either Li ∼= A±mi(q
ai) or Li ∼= Cmi(q

ai), and

each (Li, t, Ri) is a triple of type (Hs). Further, if Li ∼= Cmi(q
ai), then by Theorem 5.3

(d)-(f) and Lemma 5.48, mi <
s−1

2 . Since (s, q) 6= (5, 3), we clearly have (s, qai) 6= (5, 3).

So by Proposition 5.47 and the inductive hypothesis we conclude that X = 1.

As in the A±m(q) case, we conclude the discussion with the exceptional case (s, q) = (5, 3).

Lemma 5.54. Let G = C3(3). Let X be a p-subgroup of G and let t ∈ Inndiag(G) be

such that (G, t,X) is a triple of type (H5). Then either X = 1 or one of the following

holds.

(i) G ∼= Sp6(3), X ∼= 21+4
− and t ∈ G with CG(t) ∼= Sp2(3)× C2 × C5.

(ii) G ∼= PSp6(3), X ∼= 21+4
− and t ∈ G with CG(t) ∼= Sp2(3)× C5.

Furthermore, the triples described in (i), (ii) do indeed exist.

Proof. Suppose first that m3(O3′(CG(t))) ≥ 2. Then X is a nonabelian 2-group by Corol-

lary 5.22. As discussed in Remark 5.23 we may assume that G = Ga. Then by Lemmas 5.4

and 5.5, we have X ≤ L = O3′(CG(z)), where z ∈ Z(X) is an involution. Since m = 3 is

odd and q ≡ −1 mod 4, Table 4.5.1 [GLS3] tells us that L ∼= Sp2(3)◦Sp4(3) or L ∼= A−2 (3).
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First suppose that L ∼= A±2 (3). By Lemma 5.5, (L, t,X) is a triple of type (H5). So by

Lemma 5.36, X = 1.

So we may assume that L ∼= L1 ◦L2, where L1 = Sp2(3) and L2 = Sp4(3). By Lemma 5.5,

each projection (Li, t,Xi) for i = 1, 2 is a triple of type (H5). By Lemma 5.35, X1 = 1

and by Lemma 5.50, either X2 = 1 or X2
∼= 21+4

− . So either X = 1 or X ∼= 21+4
− and a

priori, we may have a triple (G, t,X) of type (H5) with X ∼= 21+4
− .

The only remaining possibility is that m3(O3′(CG(t))) = 1. Applying Proposition 5.24

(ii), Theorem 5.3 and Table 3.3.1 [GLS3], we obtain O3′(CG(t)) = A1(3). By Lemma 5.2,

we may assume that G = Sp6(q). We are now in the conditions of Claim 5.42, so we may

assume that p = 2 and that X is a 2-group with an extraspecial subgroup R such that

(G, t,R) is of type (Hs). Since R admits an order 5 automorphism and has a faithful

representation in dimension 6, we may apply Lemma 5.9 to obtain R ∼= 21+4
− . So again we

may have a triple (G, t,R) of type (H5) with R ∼= 21+4
− .

It remains to show that such triples do indeed exist. By the lists in Chapter 5 [K3],

G = Sp6(3) has a maximal subgroup M ∼= L1 × L2, where L1 = Sp2(3) and L2 = Sp4(3).

By Lemma 5.50, there is a triple (L2, t2, X2) of type (H5) such that X2
∼= 21+4

− and

CL2(t2) ∼= C2 × C5. In particular, there is a subgroup X ∼= 21+4
− of M which projects

trivially onto L1 and an element t ∈ M of order 5 which acts trivially on L1 and acts as

an inner automorphism on L2.

We want to calculate the full centralizer CG(t) of t in G. Since 5 divides |G| exactly

once, there is only a single isomorphism type for the centralizer of a 5-element. Certainly

CG(t) is contained in some maximal subgroup M0 of G. Since t ∈ M0, the order |M0| is

divisible by 5. By the list of maximal subgroups of Sp6(q) in Chapter 5 [K3], the only

possibilities are M0
∼= A5 or M0

∼= Sp2(3) × Sp4(3). If M0
∼= A5, then CG(t) ∼= C5. If

M0
∼= Sp2(3)×Sp4(3), then by the observations of Lemma 5.37, CG(t) ∼= Sp2(3)×C2×C5.

So by Lemma 5.50, X = [X, t] and CG(t) = CM (t) ≤ NM (X) ≤ NG(X). Hence (G, t,X) is

a triple of type (H5) with the required properties. Passing to the adjoint group PSp6(3),

we obtain a triple (G, t0, X0) with X0
∼= 21+4

− and CG(t0) ∼= Sp2(3)× C5.

Lemma 5.55. Let G ∼= Cm(3) with m ≥ 3 and suppose (G, t,X) is a triple of type (H5)

with t ∈ Inndiag(G). Then either X = 1 or one of the following holds.

(a) G ∼= Sp2m(3), X ∼= 21+4
− and t ∈ G with CG(t) ∼= Sp2m−4(3)× C2 × C5,

(b)G ∼= PSp2m(3), X ∼= 21+4
− and t ∈ G with CG(t) ∼= Sp2m−4(3)× C5

Proof. We work by induction on m, taking Lemma 5.54 as our basis case.

By Corollary 5.32, CG(t) contains a subgroup Z ∼= Cr × Cr. So by Corollary 5.22, X is a

nonabelian 2-group. So as discussed in Remark 5.23, we may assume that G = Ga. Then
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by Lemmas 5.4 and 5.5, we obtain X ≤ L = O3′(CG(z)) where z ∈ Z(X) is an involution.

The group L is a central product of groups Li ∈ Lie(3). By Table 4.5.1 [GLS3], one of

the following holds.

(a) L ∼= Sp2j(3) ◦ Sp2m−2j(3) (for some 1 ≤ j < m/2),

(a1) L ∼= Spm(3) ◦ Spm(3) (only if m is even),

(b) L ∼= PSpm(9) (only if m is even),

(c) L is a quotient of PSUm(3) by a central subgroup of order (2,m).

By Lemma 5.5, each projection (Li, t,Xi) is a triple of type (H5). So in case (b) we

apply Lemmas 5.49 - 5.53 to immediately obtain X = 1. In case (c), if m > 4 we apply

Proposition 5.47 to obtain X = 1, whilst if m = 4, then we apply the description of CG(z)

in Table 4.5.1 [GLS3] to see that in fact X〈t〉 can be embedded in some central quotient

of GU4(3). Then Lemma 5.45 gives X = 1.

It remains to address cases (a) and (a1). Label the components of L by L1 = Sp2j(3)

and L2 = Sp2m−2j(3) and write ti for i = 1, 2 to denote the action of t on Li. By

the inductive hypothesis and Lemma 5.50, we have either X1 = 1, or X1
∼= 21+4

− and

CL1(t1) ∼= Sp2j−4(3) × C2 × C5. Similarly either X2 = 1, or X2
∼= 21+4

− and CL2(t2) ∼=
Sp2m−2j−4(3)× C2 × C5.

Suppose first that both X1 and X2 are nontrivial. We now consider the action of z on

CG(t). Since Z(X) is a characteristic subgroup of X, we obtain [CG(t), z] ≤ Z(X)∩CG(t).

Since for i = 1, 2, we have Xi
∼= 21+4

− , either Z(X) ∼= C2 or Z(X) ∼= C2 × C2. In the

former case it is easily seen that [CG(t), z] = 1. In the latter case, since CG(t) induces an

automorphism of Z(X), we have a homomorphism φ : CG(t) → Aut(Z(X)) ∼= S3. Since

the kernel of φ is a normal subgroup, and by Theorem 5.3, O3′(CG(t)) is a central product

of quasisimple groups, we must have ker(φ) = CG(t) and so [CG(t), z] = 1.

By Lemma 2.13, there exists an order 5 automorphism t of the algebraic group G = Cm

which induces t on G. Since O3′(CG(t)) ≤ L, CL1(t1) ∼= Sp2j−4(3)×C2×C5 and CL2(t2) ∼=
Sp2m−2j−4(3) × C2 × C5, we apply Theorem 5.3 (d)-(f) to see that would have to erase

more than 2 nodes from the Dynkin diagram for G to obtain the Dynkin diagram for

CG(t). This contradicts Proposition 5.24 (ii). So we may assume that at least one of X1

or X2 is trivial.

Furthermore, by the same argument on Dynkin diagrams as above we have that if X1 6= 1

then t acts trivially on L2 and vice versa. So either CL1(t)
∼= Sp2j−4(3) × C2 × C5 and

CL2(t) ∼= Sp2m−2j(3), or CL1(t) ∼= Sp2j(3) and CL2(t) ∼= Sp2m−2j−4(3)×C2×C5. So either

CL(t) ∼= (Sp2j−4(3)×C2×C5)◦Sp2m−2j(3) or CL(t) ∼= Sp2j(3)◦(Sp2m−2j−4(3)×C2×C5).

In either case we have CG(t) ∼= Sp2m−4(3) ◦ (C2 × C5) = Sp2m−4(3) × C5 and X is

a group projecting trivially onto at least one of the Li, and so X ∼= 21+4
− . Lifting to
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the universal group G = Sp2m(q), we still have X ∼= 21+4
− and now we have CG(t) ∼=

Sp2m−4(3)× C2 × C5.

We now combine Lemmas 5.49- 5.55 to obtain the main result of this section.

Proposition 5.56. Let G ∼= Cm(q) where m ≥ 2. Let X be a p-subgroup of G and let

t ∈ Inndiag(G) such that (G, t,X) is a triple of type (Hs). Then either X = 1 or

(i) G ∼= Sp2m(3), s = 5, X ∼= 21+4
− and t ∈ G with CG(t) ∼= Sp2m−4(3)× C2 × C5,

(ii)G ∼= PSp2m(3), s = 5, X ∼= 21+4
− and t ∈ G with CG(t) ∼= Sp2m−4(3)× C5
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5.4 The Cases G = Bm(q), G = D±m(q), G = 2B2(2
1+2a) and

G = 3D4(q)

In this section we deal with the orthogonal groups Bm(q), D±m(q) and the related twisted

groups 2B2(21+2a) and 3D4(q). We begin with a general observation about automorphisms

of these groups.

Lemma 5.57. Let G ∈ Lie(r) and let x be an inner-diagonal automorphism of G of prime

order r1 6= r. Let x be the automorphism of the algebraic group G inducing x on G and

let ∆x be the Dynkin diagram of CG(x). Suppose that x is of equal rank type. Then the

following hold.

(a) If G = Bm, then ∆x has type A1 ∪A1 ∪Bm−2, or A3 ∪Bm−3, or Dm, or Dk ∪Bm−k
for some 4 ≤ k ≤ m− 1.

(b) If G = Dm, then ∆x has type A1 ∪A1 ∪Dm−2, or A3 ∪Dm−3, or Dk ∪Dm−k for some

4 ≤ k ≤ m− 4.

Proof. (a) If x is of equal rank type, then by Theorem 5.3 (f), ∆x has type Bm, or

A1 ∪ A1 ∪ Bm−2, or A3 ∪ Bm−3, or Dm, or Dk ∪ Bm−k. If ∆x has type Bm, we get a

contradiction since x is a nontrivial automorphism. Hence ∆x has one of the other types,

as required.

(b) This is exactly analogous to part (a).

We now obtain the main results of this section. Recall that q = ra and that p, r, s are

assumed to be pairwise distinct.

We first deal with the twisted groups 2B2(21+2a) and G = 3D4(q).

Lemma 5.58. Let G ∼= 2B2(21+2a). Let X be a p-subgroup of G and let t ∈ Inndiag(G)

be such that (G, t,X) is a triple of type (Hs). Then X = 1.

Proof. The group G has a faithful 4-dimensional representation. Since 4 < s, we may

apply Corollary 5.19 to obtain that X is a nonabelian 2-group. In particular, p = 2. This

is a contradiction since p 6= r by assumption.

Lemma 5.59. Let G ∼= 3D4(q). Let X be a p-subgroup of G and let t ∈ Inndiag(G) be

such that (G, t,X) is a triple of type (Hs). Then X = 1.

Proof. By Lemma 2.16, we may assume that t induces an inner automorphism on G.

Suppose first that X is abelian. Observe that |G| factorizes as

|G| = q12 · (q − 1)2 · (q + 1)2 · (q2 + q + 1)2 · (q2 − q + 1)2 · (q4 − q2 + 1)
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If Φi(q) denotes the ith cyclotomic polynomial, then

|G| = q12 · Φ1(q)2 · Φ2(q)2 · Φ3(q)2 · Φ6(q)2 · Φ12(q)

Since s is prime, s 6= r, s must divide some Φi(q). Suppose that s divides Φi(q) for some

i ∈ {1, 2, 3, 6}. Then since each such Φi(q) appears with exponent larger than 1 in the

factorization of |G|, we may apply Theorem 5.11 to obtain ms(G) ≥ 2. By Corollary 5.12,

ms(CG(t)) ≥ 2. So CG(t) has a subgroup Z = 〈t, t1〉 ∼= C2
s . By Theorem 3.5, X = 〈CX(u) :

u ∈ Z#〉. Choose u ∈ Z# such that CX(u) is as large as possible. By Theorem 5.1 (iii), we

have CX(t) = 1, so we may assume that u is not a power of t. Certainly CX(u)〈t〉 ≤ CG(u).

Since u has order s 6= r, we are in the conditions of Lemma 5.5. So CX(u) ≤ L = L1 ◦L2 ◦
...◦Lj , where each Li ∈ Lie(r) and each projection (Li, t, CX(u)i) is a triple of type (Hs).

Further, by Theorem 5.3 (d)-(f) and Lemma 5.57, each Li ∼= A±mi(q
ai) with mi ≤ 3. So by

Proposition 5.47, each CX(u)i = 1 unless (s, q) = (5, 3) and L = L1
∼= A−3 (3). However, 5

does not divide |3D4(3)| so this would give a contradiction. Hence each CX(u)i = 1 and

so CX(u) = 1. We chose CX(u) to be as large as possible and so X = 1.

Hence we may assume that s divides Φ12(q) = q4 − q2 + 1. Since X is abelian and G has

a faithful 8-dimensional representation, we may apply Lemma 5.16 to obtain s < 8. So

either s = 5 or s = 7. Since r 6= s we have that either q4 − q2 + 1 ≡ 1 or q4 − q2 + 1 ≡ 3

mod 5 and that q4−q2 +1 ≡ 1, q4−q2 +1 ≡ 3 or q4−q2 +1 ≡ 1 mod 7. This contradicts

the fact that s divides Φ12(q).

So we may assume that X is nonabelian. By Lemmas 5.4 and 5.5, we have X ≤ L =

Or
′
(CG(z)) = L1 ◦ L2 ◦ ... ◦ Lj for some z ∈ Z(X) of order p, where each Li ∈ Lie(r) and

each projection (Li, t,Xi) is a triple of type (Hs). Further, by Theorem 5.3 (d)-(f) and

Lemma 5.57, each Li ∼= A±mi(q
ai) with mi ≤ 3. So by Proposition 5.47, each Xi = 1 unless

(s, q) = (5, 3) and L = L1
∼= A−3 (3). As we observed above, 5 does not divide |3D4(3)| so

this would give a contradiction. Hence each Xi = 1 and so X = 1.

For the remainder of this section we will be looking at triples (G, t,X) of type (Hs) in the

groups G = Bm(q) and G = D±m(q). By Proposition 2.9.1 [KL], we have B2(q) = C2(q),

D+
2 (q) = A1(q) × A1(q), D−2 (q) = A1(q2) and D±3 (q) = A±3 (q). Hence if G = Bm(q), we

may assume that m ≥ 3 and if G = D±m(q), we may assume that m ≥ 4.

Remark 5.60. Table 2.2 [GLS3] gives that |Z(Gu)| is a power of 2. So in the case

G = Bm(q), we may apply Lemma 5.2 (ii) to assume that G = Ω2m+1(q). In the case

G = D±m(q), applying arguments analogous to Lemma 5.2 (i) and (ii) shows that there is

a triple of type (Hs) in the classical version Ω±2m(q) of G if and only if there is such a

triple in the universal version, if and only if there is such a triple in the adjoint version.
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Therefore we may assume that G = Ω±2m(q). Further, by Lemma 2.16, we may assume

throughout that t induces an inner automorphism on G.

Lemma 5.61. Let s be a prime and let 6 ≤ n < s. Suppose that either

(1) G = Bm(q), where n = 2m+ 1 or

(2) G = D±m(q), where n = 2m.

Let X be a p-subgroup of G and let t ∈ Inndiag(G) be such that (G, t,X) is a triple of

type (Hs). Then X = 1.

Proof. As discussed in Remark 5.60, we may assume that G = Ωn(q) if n is odd and that

G = Ω±n (q) if n is even. We will work by induction on the dimension n of the natural

module for G. As we observed above, D±3 (q) = A±3 (q). Certainly s > 5, so we may take

the m = 3 case of Lemma 5.36 as the basis case for our induction.

So we will assume that if (G, t,X) is a triple of type (Hs) whereG = Ωn′(q
′) orG = Ω±n′(q

′),

with the natural module of dimension n′ < n, then X = 1.

By Lemma 5.19, X is a nonabelian 2-group. So by Lemma 5.6, X contains a critical

subgroup Y . Take R = [Y, t]. Combining Remark 5.7 and Lemma 5.16, (G, t,R) is a

triple of type (Hs) and R is nonabelian. If Z(R) contains an involution z which is not

contained in Z(G), then by Lemmas 5.4 and 5.5, R ≤ L = L1 × L2 × ...× Lj , where, for

each i, Li ∼= A±mi(q
ai) or Li ∼= Bmi(q

ai), or Li ∼= D±mi(q
ai), and each (Li, t, Ri) is a triple

of type (Hs). Further, by Theorem 5.3 (d)-(f) and Lemma 5.57, if Li ∼= Bmi(q
ai), then

the natural module for Li has dimension 2mi + 1 < n and if Li ∼= D±mi(q
ai), then the

natural module for Li has dimension 2mi < n. Hence, by the inductive hypothesis and

Lemma 5.36, each Ri = 1 and so R = 1, which is a contradiction. So we may assume that

any involution in Z(R) is also contained in Z(G). If n odd and G = Ωn(q), then Z(G) = 1

by Table 2.1.D [KL]. Hence Z(R) = 1, which is a contradiction since R is a 2-group. So

we may assume that n is even and that G = Ω±n (q).

In particular, we may assume that Z(R) contains a unique involution, namely the unique

order 2 element α of Z(G). By Lemma 5.8, R is extra-special. Choose l such that s = 2l+c

where 0 < c < 2l. Then since R has a representation in n < s < 2l+1 dimensions, we may

apply Lemma 5.9 to obtain c = 1 and R ∼= 21+2l
− . Hence s = 2l + 1. In particular, by

Lemma 2.22, n ≥ 2l = s − 1. Since also n < s, we have n = s − 1 = 2l. So G = Ω±
2l

(q).

Furthermore, we are in the conditions of Lemma 5.10, so we have CG(t)/CCG(t)(R) ∼= Cs.

Suppose that CG(t) contains an involution z which is not contained in Z(G). Since

CG(t)/CCG(t)(R) ∼= Cs, we have R〈t〉 ≤ CG(z). Then by Lemma 5.5, we obtain R ≤
L = L1 ×L2 × ...×Lj , where for each i, either Li ∼= A±mi(q

ai) or Li ∼= D±mi(q
ai), and each

(Li, t, Ri) is a triple of type (Hs). Further, by Theorem 5.6 (d)-(f) and Lemma 5.57, if

Li ∼= D±mi(q
ai), then the natural module for Li has dimension 2mi < n. Hence, by the
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inductive hypothesis and Lemma 5.36, each Ri = 1 and so R = 1, which is a contradiction.

So CG(t) contains a unique involution, namely the involution α ∈ Z(G).

Furthermore, exactly the same argument shows that CG(t) cannot contain any element

having odd order coprime to s and r, and cannot contain any order s-element except for

the powers of t. So in particular ms(CG(t)) = 1. Similarly, if CG(t) contains an element

y which is not contained in Z(G) but such that y2 ∈ Z(G), then we may apply the above

argument to the images R̄ of R and t̄ of t in the quotient group Ḡ = G/Z(G) to show

that R̄ = 1. So CG(t) contains no such element. Finally, if CG(t) contains an element u

such that us = t, then u ∈ CCG(t)(R) and so [R, u] = 1. Then [R, t] = 1 which is also a

contradiction. We conclude that CG(t) has order 2 · s · rb for some b.

By Fermat’s little theorem, s divides

qs−1 − 1 = q2l − 1 = (q − 1) · (q + 1) · (q2 + 1) · (q4 + 1) · ... · (q2l−1
+ 1)

Since s is prime, s divides one of the factors in the product.

Suppose that G = Ω+
2l

(q). If s divides q − 1 or s divides q2l
′

+ 1 for l′ < l − 1, then

since these polynomials in q appear with exponent greater than 1 in the factorization of

|G|, we may apply Theorem 5.11 and Corollary 5.12 to obtain ms(CG(t)) ≥ 2. This is a

contradiction since we showed above that ms(CG(t)) = 1. Hence s must divide (q2l−1
+1).

This is a contradiction since this polynomial does not appear in the factorization of |G|.

Therefore G = Ω−
2l

(q). If s divides q−1 or s divides q2l
′
+1 for l′ < l−2 then we may apply

Theorem 5.11 and Corollary 5.12 exactly as above to obtain ms(CG(t)) ≥ 2, which is a

contradiction. So either s divides q2l−2
+ 1 or s divides q2l−1

+ 1. In the latter case, since s

does not divide any of the other cyclotomic polynomials in the above factorization, we may

assume that t is contained in a Singer cyclic subgroup S2 of order 1
2(q2l−1

+1) = 1
2(q

s−1
2 +1)

in G. Hence S2 ≤ CG(t). In the former case, since s divides q2l−2
+ 1 but does not divide

any of the other cyclotomic polynomials in the above factorization, we may assume that

t is contained in a subgroup H ∼= Ω−
2l−1(q) of G. In fact, by the same argument, we may

assume that t is contained in a Singer cyclic subgroup S1 of order 1
2(q2l−2

+1) = 1
2(q

s−1
4 +1)

in H. Hence S1 ≤ CG(t).

In either case, Si contains no r-elements. Since Si ≤ CG(t) in each case, we have |Si| ≤ 2s.

Further, since s > 5 and s has the form 2l + 1, we have s ≥ 17. We now check whether

this situation can occur.

Claim 5.62. If n odd, n ≥ 17 and q ≥ 3, then q
n−1
4 + 1 > 4n.

Proof. We work by induction on n. Certainly q4 + 1 > 68 for q ≥ 3 which proves the

result for n = 17. Now suppose the result is true for n = k. Then q
k+1
4 + 1 = q

1
2 (q

k−1
2 +

1)− q
1
2 + 1 > 4q

1
2k − q

1
2 + 1 by the inductive hypothesis. Now 4q

1
2k − q

1
2 + 1 > 4(k + 1)
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which proves the result for n = k + 2.

Since p = 2 we have q ≥ 3. Then since s is odd and s ≥ 17 and |S1| ≤ |S2| ≤ 2s, we have

an immediate contradiction with Claim 5.62.

We now discuss the orthogonal group G = B s−1
2

(q) of dimension s. If s = 5, then

G = B2(q) = C2(q) and Lemma 5.50 tells us what can happen. So we may assume that

s > 5. Furthermore, by Theorem 2.2.10, we have Bm(2a) ∼= Cm(2a) for all a and m and

so we may assume that q is odd.

Lemma 5.63. Let s be a prime, s > 5, q odd and G = B s−1
2

(q). Let X be a p-subgroup

of G and let t ∈ Inndiag(G) be such that (G, t,X) is a triple of type (Hs). Then X = 1.

Proof. As discussed in Remark 5.60, we may assume that G = Ωs(q).

First suppose that X is abelian. By Fermat’s little theorem, s divides qs−1 − 1. Hence s

divides Φi(q) for some i dividing s−1, where Φi(q) denotes the ith cyclotomic polynomial

in q. Observe that if i is odd, then since s− 1 is even, i divides 1
2(s− 1).

First assume that either i is odd and i < 1
2(s− 1), or that i is even and i < s− 1. Then

since Φi(q) appears with exponent greater than 1 in the factorization of |G|, we may apply

Theorem 5.11 and Corollary 5.12 to obtain ms(CG(t)) ≥ 2. Hence there exists a subgroup

Z := 〈t, t1〉 ∼= C2
s of CG(t). By Theorem 3.5 X = 〈CX(u)|u ∈ Z#〉.

Choose u ∈ Z# such that CX(u) is as large as possible. By Theorem 5.1 (iii), we have

CX(t) = 1, so u is not a power of t. Certainly CX(u)〈t〉 ≤ CG(u). Since u has order s 6= r,

we are in the conditions of Lemma 5.5. So we obtain CX(u) ≤ L = L1×L2×...×Lj , where,

for each i, Li ∼= A±mi(q
ai) or Li ∼= Bmi(q

ai), or Li ∼= D±mi(q
ai), and each (Li, t, CX(u)i) is

a triple of type (Hs). Further, by Theorem 5.3 (d)-(f) and Lemma 5.57, if Li ∼= Bmi(q
ai),

then the natural module for Li has dimension 2mi + 1 < s and if Li ∼= D±mi(q
ai), then the

natural module for Li has dimension 2mi < s. So by Proposition 5.47 and Lemma 5.61,

each CX(u)i = 1. Hence CX(u) = 1. As we chose CX(u) to be as large as possible, we

must have X = 1.

So we may assume that either i = 1
2(s−1) or i = s−1. In either case, since Φi(q) appears

with exponent 1 in the factorization of |G|, we apply Theorem 5.11 and Corollary 5.12 to

obtain ms(CG(t)) = 1.

Now we investigate CG(t) more closely. Suppose that there exists a nontrivial h ∈ CG(t)

of prime order coprime to s. If CX(h) = 1, then X〈th〉 is a Frobenius group represented

faithfully in s dimensions but whose complement has order greater than s. By Lemma 5.14,

this is impossible. Hence CX(h) 6= 1 and we consider the group CX(h)〈t〉. By Lemma 5.14,

this group acts absolutely irreducibly on the natural module of G. So by Lemma 5.15 we
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obtain h ∈ Z(G). Hence h = 1. Since h was a general element of prime order coprime to

s, we may assume that CG(t) is an s-group.

Furthermore, there can be no element u ∈ G such that us = t, since that would give

rise to a Frobenius group X〈u〉 with a complement of order s2. We may conclude that

|CG(t)| = s.

Recall that either i = 1
2(s−1) or i = s−1. Suppose first that i = 1

2(s−1). Since s divides

Φ 1
2

(s−1)(q) and does not divide any of the other cyclotomic polynomials in the factorization

of qs−1− 1, we may assume that t is contained in a subgroup H+
∼= Ω+

s−1(q) of G. In fact,

by the same argument, we may assume that t is contained inside a cyclic subgroup C+

of order q
1
2 (s−1)−1

2 of H+ (namely, if we treat H+ as a subgroup of GLs−1(q), then C+ is

the intersection of H+ with a Singer cyclic subgroup of GLs−1(q)). Since C+ ≤ CG(t), we

have |C+| = s.

If instead i = s− 1, then in analogue with the above, we may assume that t is contained

in a subgroup H− ∼= Ω−s−1(q) of G. In fact, we may assume that t is contained inside a

Singer cyclic subgroup C− of order q
1
2 (s−1)+1

2 of H−. Since C− ≤ CG(t), we have |C−| = s.

We now check whether these possibilities can occur.

Claim 5.64. If n odd, n ≥ 7 and q ≥ 3, then q
1
2

(n−1) − 1 > 2n.

Proof. We work by induction on n. Certainly q3 − 1 > 14 for q ≥ 3, which proves

the result for n = 7. Now suppose the result is true for n = k. Then q
1
2

(k+1) − 1 =

q(q
1
2

(k−1)−1)+q−1 > 2qk+q−1 by the inductive hypothesis. Since 2qk+q−1 > 2(k+2),

the result holds for n = k + 2.

Since q is odd, certainly q ≥ 3. Also s ≥ 7 and s = |C±| ≥ q
1
2 (s−1)−1

2 , so we have a

contradiction with Claim 5.64 (ii).

Therefore X is nonabelian. By Lemmas 5.4 and 5.5, we have X〈t〉 ≤ CG(z) for some

z ∈ Z(X) and so X ≤ L = L1 ·L2 ·...·Lj , where for each i, Li ∼= A±mi(q
ai) or Li ∼= Bmi(q

ai),

or Li ∼= D±mi(q
ai), and each (Li, t,Xi) is a triple of type (Hs). Further, by Theorem 5.6

(d)-(f) and Lemma 5.57, if Li ∼= Bmi(q
ai), then the natural module for Li has dimension

2mi + 1 < s and if Li ∼= D±mi(q
ai), then the natural module for Li has dimension 2mi < s.

So by Proposition 5.47 and Lemma 5.61, each Xi = 1. Hence X = 1.

We next discuss the groups G = D±s+1
2

(q) of dimension s + 1. Recall that if s = 5, then

G = D±3 (q) ∼= A±3 (q) and Lemma 5.37 tells us what can happen. So we may assume that

s > 5.

Lemma 5.65. Let s be a prime, s > 5. Let G = D±s+1
2

(q). Let X be a p-subgroup of G

and let t ∈ Inndiag(G) be such that (G, t,X) is a triple of type (Hs). Then X = 1.
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Proof. As discussed in Remark 5.60, we may assume that G = Ω±s+1(q). We argue in

analogue with Lemma 5.63. Suppose that X is abelian. By Fermat’s little theorem, s

divides qs−1 − 1. Hence s divides Φi(q) for some i dividing s− 1.

First assume that either i is odd and i < 1
2(s− 1), or that i is even and i < s− 1. Then

since Φi(q) appears with exponent greater than 1 in the factorization of |G|, we may apply

Theorem 5.11 and Corollary 5.12 to obtain ms(CG(t)) ≥ 2. Hence there exists a subgroup

Z := 〈t, t1〉 ∼= C2
s of CG(t). By Theorem 3.5 X = 〈CX(u)|u ∈ Z#〉.

Choose u ∈ Z# such that CX(u) is as large as possible. By Theorem 5.1 (iii), we have

CX(t) = 1, so u is not a power of t. Certainly CX(u)〈t〉 ≤ CG(u). Since u has order s 6= r,

we are in the conditions of Lemma 5.5. So we obtain CX(u) ≤ L = L1×L2×...×Lj , where,

for each i, Li ∼= A±mi(q
ai) or Li ∼= Bmi(q

ai), or Li ∼= D±mi(q
ai), and each (Li, t, CX(u)i) is

a triple of type (Hs). Further, by Theorem 5.3 (d)-(f) and Lemma 5.57, if Li ∼= Bmi(q
ai),

then the natural module for Li has dimension 2mi + 1 < s + 1 and if Li ∼= D±mi(q
ai),

then the natural module for Li has dimension 2mi < s + 1. So by Proposition 5.47 and

Lemmas 5.61 and 5.63, each CX(u)i = 1. Hence CX(u) = 1. As we chose CX(u) to be as

large as possible, we must have X = 1.

So we may assume that either i = 1
2(s−1) or i = s−1. In either case, since Φi(q) appears

with exponent 1 in the factorization of |G|, we apply Theorem 5.11 and Corollary 5.12 to

obtain ms(CG(t)) = 1.

Now we investigate CG(t) more closely. Suppose that there exists a nontrivial h ∈ CG(t)

of prime order coprime to s. If CX(h) = 1, then X〈th〉 is a Frobenius group represented

faithfully in s dimensions but whose complement has order greater than s. By Lemma 5.14,

this is impossible. Hence CX(h) 6= 1 and we consider the group CX(h)〈t〉. By Lemma 5.14,

this group acts absolutely irreducibly on the natural module of G. So by Lemma 5.15 we

obtain h ∈ Z(G).

Furthermore, there can be no element u ∈ G such that us = t, since that would give

rise to a Frobenius group X〈u〉 with a complement of order s2. We may conclude that

|CG(t)| ≤ (2, q − 1) · s.

Recall that either i = 1
2(s − 1) or i = s − 1. Suppose first that i = 1

2(s − 1). Since s

divides Φ 1
2

(s−1)(q) and does not divide any of the other cyclotomic polynomials in the

factorization of qs−1 − 1, we may assume that t is contained in a subgroup H+
∼= Ω+

s−1(q)

of G. In fact, by the same argument, we may assume that t is contained inside a cyclic

subgroup C+ of order q
1
2 (s−1)−1
(2,q−1) of H+. Since C+ ≤ CG(t), we have |C+| ≤ (2, q − 1) · s.

If instead i = s−1, then in analogue with the above, we may assume that t is contained in

a subgroup H− ∼= Ω−s−1(q) of G. In fact, we may assume that t is contained inside a Singer

cyclic subgroup C− of order q
1
2 (s−1)+1
(2,q−1) ofH−. Since C− ≤ CG(t), we have |C−| ≤ (2, q−1)·s.

We now check whether this situation can occur.
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Claim 5.66. (i) If n odd, n ≥ 9 and q ≥ 3, then q
1
2

(n−1) − 1 > 4n,

(ii) If q > 3, then q3 − 1 > 28,

(iii) If n odd, n ≥ 9 and q ≥ 2, then q
1
2

(n−1) − 1 > n,

(iv) If q > 2, then q3 − 1 > 7.

Proof. (i) We work by induction on n. Certainly q4 − 1 > 36 for q ≥ 3 which proves

the result for n = 9. Now assume the result is true for n = k. Then q
1
2

(k+1) − 1 =

q(q
1
2

(k−1)−1)+q−1 > 4kq+q−1 by the inductive hypothesis. Further 4kq+q−1 > 4(k+2)

which proves the result for n = k + 2.

(ii) This is trivial.

(iii) This is analogous to (i).

(iv) This is trivial.

Suppose that q is even. If q > 2, then since s ≥ 7 and q
1
2

(s−1) − 1 ≤ |C±| ≤ s, we have a

contradiction with Claim 5.66 (iii), (iv). So q = 2. If s > 7, we again have a contradiction

with Claim 5.66 (iii). So s = 7 and G = D±4 (2).

The orders of these groups are |D+
4 (2)| = 212 · 35 · 52 · 7 and |D−4 (2)| = 212 · 34 · 5 · 7 · 17

respectively. Since p 6= 2 and p 6= 7, we have p ∈ {3, 5, 17}. If p = 17, then X ∼= C17. This

is a contradiction since a group of order 17 does not admit a nontrivial automorphism of

order 7. Similarly if p = 5, then X ∼= C5, or X ∼= C5 × C5, or X ∼= C25. This is again

a contradiction since no such group admits a nontrivial order 7 automorphism. Hence

p = 3. By Lemma 5.6, X has an elementary abelian critical subgroup Y on which t acts

nontrivially. Since 3 divides q + 1, we may apply Theorem 5.11 (a) to obtain m3(G) = 3.

This is a contradiction since no elementary abelian 3-group of rank 3 or smaller can admit

a nontrivial automorphism of order 7.

Therefore q is odd. If q > 3, then since s ≥ 7 and 1
2(q

1
2

(s−1) − 1) ≤ |C±| ≤ 2s, we have a

contradiction with Claim 5.66 (i), (ii). So q = 3. If s > 7, we again have a contradiction

with Claim 5.66 (i). So s = 7 and G = D±4 (3) = Ω±8 (3).

If G ∼= Ω−8 (3), then Table 2.2 [GLS3] gives that, in fact Z(G) = 1. Hence |C−| ≤ 7, which

contradicts Claim 5.66 (iv). If G = Ω+
8 (3), then the centralizer of an order 7 element in

G has order 56. This is a contradiction since we showed earlier that |CG(t)| ≤ 14.

So we may assume that X is nonabelian. By Lemma 5.6, X has a critical subgroup Y . Set

R = [Y, t]. By Remark 5.7 and the discussion above, (G, t,R) is a triple of type (Hs) and

we may assume that R is nonabelian. Suppose that Z(R) contains an element z of order

p which is not contained in Z(G). Then R〈t〉 ∈ CG(z). Therefore we are in the conditions

of Lemma 5.5. So we obtain R ≤ L = L1 ×L2 × ...×Lj , where, for each i, Li ∼= A±mi(q
ai)
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or Li ∼= Bmi(q
ai), or Li ∼= D±mi(q

ai), and each (Li, t, Ri) is a triple of type (Hs). Further,

by Theorem 5.3 (d)-(f) and Lemma 5.57, if Li ∼= Bmi(q
ai), then the natural module for Li

has dimension 2mi + 1 < s+ 1 and if Li ∼= D±mi(q
ai), then the natural module for Li has

dimension 2mi < s+ 1. So by Proposition 5.47 and Lemmas 5.61 and 5.63, each Ri = 1.

Hence R = 1, which is a contradiction.

Therefore, we may assume that p = 2 and that Z(R) contains a single involution z, namely

the unique involution in Z(G). By Lemma 5.8, we may assume that R is extra-special.

Choose l such that s = 2l + c, where 0 < c < 2l. There are 2 cases.

Case 1: c < 2l − 1.

Since R is represented faithfully in s+ 1 < 2l+1 dimensions, we may apply Lemma 5.9 to

obtain c = 1, s = 2l+1, G ∼= Ω±
2l+2

(q) and R ∼= 21+2l
− . By Lemma 5.10, CG(t)/CCG(t)(R) ∼=

Cs.

Suppose that CG(t) contains an involution z which is not contained in Z(G). Since

CG(t)/CCG(t)(R) ∼= Cs, we have R〈t〉 ≤ CG(z). Then by Lemma 5.5, we obtain R ≤ L =

L1×L2× ...×Lj , where for each i, Li ∼= A±mi(q
ai) or Li ∼= Bmi(q

ai), or Li ∼= D±mi(q
ai), and

each (Li, t, Ri) is a triple of type (Hs). Further, by Theorem 5.3 (d)-(f) and Lemma 5.57,

if Li ∼= Bmi(q
ai), then the natural module for Li has dimension 2mi + 1 < s + 1 and if

Li ∼= D±mi(q
ai), then the natural module for Li has dimension 2mi < s+ 1. So by Proposi-

tion 5.47 and Lemmas 5.61 and 5.63, each Ri = 1. Hence R = 1, which is a contradiction.

So CG(t) contains a unique involution, namely the unique involution α ∈ Z(G).

Furthermore, exactly the same argument shows that CG(t) cannot contain any element

having odd order coprime to s and r, and cannot contain any order s-element except for

the powers of t. So in particular ms(CG(t)) = 1. Similarly, if CG(t) contains an element

y which is not contained in Z(G) but such that y2 ∈ Z(G), then we may apply the above

argument to the images R̄ of R and t̄ of t in the quotient group Ḡ = G/Z(G) to show

that R̄ = 1. So CG(t) contains no such element. Finally, if CG(t) contains an element u

such that us = t, then u ∈ CCG(t)(R) and so [R, u] = 1. Then [R, t] = 1 which is also a

contradiction. We conclude that |CG(t)| = 2a · s · rb for a ≤ 1 and some b ≥ 0.

Since s divides qs−1 − 1 = (q2l − 1) = (q − 1) · (q + 1) · (q2 + 1) · ... · (q2l−1
+ 1) and

ms(CG(t)) = 1, s must divide q2l−1
+ 1 = q

1
2

(s−1) + 1. Then since q is odd, we have that

CG(t) has a cyclic subgroup of order 1
2(q

1
2

(s−1) + 1). By the calculation of |CG(t)| above,

we have 1
2(q

1
2

(s−1) + 1) ≤ 2s. However, since s is a Fermat prime we may assume that

s ≥ 17 and so we have a contradiction with Claim 5.62.

Case 2: c = 2l − 1.

In this case s = 2l+1−1 and G ∼= Ω±
2l+1(q). Arguing as in case 1 we see that in this case we

may only have R ∼= 2
1+2(l+1)
+ . Again CG(t) may contain only s-elements and elements of

Z(G) and again ms(CG(t)) = 1, so that |CG(t)| = 2a · s · rb for a ≤ 1 and some b ≥ 0. We
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have that s divides qs−1−1 = q2l+1−2−1 = (q2l−1−1) · (q2l−1 + 1). Then by the the same

argument as in our previous results, we may only have ms(CG(t)) = 1 if s divides Φs−1(q)

or s divides Φ s−1
2

(q). Thus CG(t) either contains a cyclic subgroup of order q
s−1
2 − 1 or a

cyclic subgroup of order q
s−1
2 − 1. We have seen before that this is a contradiction unless

s = 7 and q = 3. This gives G ∼= D±4 (3) and we have also seen before that CG(t) is too

large in all of these cases. This is a contradiction and so X = 1.

We now discuss orthogonal groups of dimension larger than s + 1. Since in previous

sections we found examples of triples (G, t,X) of type (Hs) in the case (s, q) = (5, 3), we

now separate the cases (s, q) = (5, 3) and (s, q) 6= (5, 3).

Lemma 5.67. Suppose that either G = B 1
2

(s+1)(q) or G = D±1
2

(s+3)
(q), where (s, q) 6=

(5, 3). Let X be a p-subgroup of G and let t ∈ Inndiag(G) be such that (G, t,X) is a triple

of type (Hs). Then X = 1.

Proof. The arguments for groups of type G = B 1
2

(s+1)(q) and G = D±1
2

(s+3)
(q) are analo-

gous and so we treat them in parallel.

By Lemma 2.13, there exists an order s automorphism t of the algebraic group G ∼= B 1
2

(s+1)

(resp. G ∼= D 1
2

(s+3)) over Fr which induces t on G. The Dynkin diagram of G has 1
2(s+1)

(resp. 1
2(s+3)) nodes. By Theorem 5.3, L = Or

′
(CG(t)) is a central product L1◦L2◦...◦Lj

of groups Li such that the Dynkin diagram of CG(t) is the disjoint union of diagrams ∆i

for i = 1, 2, ..., j where each ∆i is in turn a disjoint union of ai copies of the Dynkin

diagram of Li. By Proposition 5.24 (iii), (iv), the Dynkin diagram for CG(t) has at least

1 node, and hence L 6= 1. In particular mr(L) ≥ 1.

If mr(O
r′(CG(t))) ≥ 2, then X is a nonabelian 2-group by Corollary 5.22. As discussed in

Remark 5.23 we may assume that G = Ga. Then by Lemmas 5.4 and 5.5, we have X ≤
L1 ◦L2 ◦ ... ◦Lj , where for each i, Li ∼= A±mi(q

ai) or Li ∼= Bmi(q
ai), or Li ∼= D±mi(q

ai), and

each (Li, t,Xi) is a triple of type (Hs). Further, by Theorem 5.3 (d)-(f) and Lemma 5.57,

if Li ∼= Bmi(q
ai), then the natural module for Li has dimension 2mi + 1 < s + 2 and

if Li ∼= D±mi(q
ai), then the natural module for Li has dimension 2mi < s + 2. So we

may apply Proposition 5.47 and Lemmas 5.61-5.65 to obtain Xi = 1 for each i and hence

X = 1.

So we may assume that mr(O
r′(CG(t))) = 1, and by Table 3.3.1 [GLS3] we obtain q = r

and Or
′
(CG(t)) = A1(r). In particular, G = B s+1

2
(r) or G = D±1

2
(s+3)

(r) respectively. As

discussed in Remark 5.60, we may assume that G = Ωs+2(r) or G = Ω±s+3(r) respectively.

We are now in the conditions of Claim 5.42, so we may assume that X is nonabelian.
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If G = Ωs+2(r), then in fact G = Ga. Since X is nonabelian, we may apply Lemmas 5.4

and 5.5 to obtain X ≤ L1 ◦ L2 ◦ ... ◦ Lj , where for each i, Li ∼= A±mi(q
ai) or Li ∼=

Bmi(q
ai), or Li ∼= D±mi(q

ai), and each (Li, t,Xi) is a triple of type (Hs). Then by applying

Proposition 5.47 and Lemmas 5.61-5.65 we obtain X = 1.

So we may assume that G = Ω±s+3(r). Suppose that p is odd. Then since |Z(G)| is a

2-group, Z(X) contains a p-element z not contained in Z(G). By Lemma 5.4, we have

X〈t〉 ≤ CG(z) and we may apply Lemmas 5.5, and 5.61-5.65 and Proposition 5.47 to

conclude that X = 1.

Therefore we may assume that p = 2. By Lemma 5.6, X contains a critical subgroup

Y . Let R = [Y, t]. As discussed in Remark 5.7, (G, t,R) is a triple of type (Hs). By

Claim 5.42, R is nonabelian. If Z(R) contains an involution not contained in Z(G), then

R〈t〉 ≤ CG(z) and we may apply Lemmas 5.5 and 5.61-5.65 and Proposition 5.47 to obtain

Y = 1. So we may assume that Z(R) contains a unique involution and by Lemma 5.8, R

is extra-special.

Choose l such that s = 2l + c, where 0 < c < 2l. Suppose first that c + 3 < 2l. Then

G has a faithful representation in n = s + 3 < 2l+1 dimensions. Since R admits an

order s automorphism and has a faithful representation in dimension smaller than 2l+1,

Lemma 5.9 gives c = 1 and R ∼= 21+2l
− . Hence s = 2l + 1. So by Lemma 5.10, we

have CG(t)/CCG(t)(R) ∼= Cs. However, we have Or
′
(CG(t)) ∼= A1(r). Since A1(r) does

not contain a central element of order s, the whole of Or
′
(CG(t)) centralizes R. Hence

R〈t〉 ≤ CG(z) for some involution z (passing to the quotient group Ḡ = G/Z(G) to

avoid the case z ∈ Z(G) if necessary). Then we apply Lemmas 5.5, and 5.61-5.65 and

Proposition 5.47 to obtain R = 1, which is a contradiction.

So we may assume that 2l ≤ c+ 3 < 2l + 3. Since s is odd, we have either s = 2l+1 − 3 or

s = 2l+1−1. Since either R ∼= 21+2k
+ or R ∼= 21+2k

− , and R admits an automorphism of order

s = 2l+1 − 1, we obtain R ∼= 2
1+2(l+1)
+ , Aut(R) ∼= O+

2l+2(2) and hence CG(t)/CCG(t)(R) ∼=
Cs. Then may again apply Lemmas 5.5, and 5.61-5.65 and Proposition 5.47 to obtain

R = 1, which is a contradiction.

Lemma 5.68. Let s be a prime and let n ≥ s+ 2. Suppose (s, q) 6= (5, 3) and that either

(1) G = Bm(q), where n = 2m+ 1 or

(2) G = D±m(q), where n = 2m.

Let X be a p-subgroup of G and let t ∈ Inndiag(G) be such that (G, t,X) is a triple of

type (Hs). Then X = 1.

Proof. We will work by induction on the dimension n of the natural module for G. We take
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Lemma 5.67 as the basis case of our induction. So we will assume that n ≥ s+ 4 and that

if (G, t,X) is a triple of type (Hs) with G = Bm′(q
′) where q′ 6= 3 and n′ = 2m′ + 1 < n,

or G = D±m′(q
′), where q′ 6= 3 and n′ = 2m′ < n, then X = 1.

By Corollary 5.32, there exists Z ≤ CG(t) such that Z ∼= Cr×Cr. Hence X is a nonabelian

2-group by Corollary 5.22. As we observed in Remark 5.23, we may assume that G = Ga.

By Lemmas 5.4 and 5.5, we have X〈t〉 ≤ CG(z) for some involution z ∈ Z(X) and so

X ≤ L = L1 ◦ L2 ◦ ... ◦ Lj , where for each i, Li ∼= A±mi(q
ai), or Li ∼= Bmi(q

ai), or

Li ∼= D±mi(q
ai) and each (Li, t,Xi) is a triple of type (Hs). Further, by Theorem 5.3

(d)-(f) and Lemma 5.57, if Li ∼= Bmi(q
ai), then the natural module for Li has dimension

2mi+ 1 < n and if Li ∼= D±mi(q
ai), then the natural module for Li has dimension 2mi < n.

So we may apply Proposition 5.47, Lemmas 5.61 - 5.67 and the inductive hypothesis to

obtain Xi = 1 for each i and hence X = 1.

We now address the case (s, q) = (5, 3).

Lemma 5.69. Let G = B3(3) or G = D±4 (3). Let X be a p-subgroup of G and let

t ∈ Inndiag(G) be such that (G, t,X) is a triple of type (H5). Then X = 1.

Proof. We will first show that X is a nonabelian 2-group. By Proposition 5.24 (iii), (iv),

we have m3(O3′(CG(t))) ≥ 1. If m3(O3′(CG(t)) ≥ 2, then X is a nonabelian 2-group by

Corollary 5.22. If m3(O3′(CG(t))) = 1, then we are in the conditions of Claim 5.42, so

again X is a nonabelian 2-group.

As discussed in Lemma 5.2 and Remarks 5.23 and 5.60, we may assume that G = Ω7(3) or

G = PΩ±8 (3) respectively. By Lemmas 5.4 and 5.5, we have, for some involution z ∈ Z(X),

X ≤ L = O3′(CG(z)) = L1 ◦ L2 ◦ ... ◦ Lj where each Li ∈ Lie(r) and each projection

(Li, t,Xi) is a triple of type (Hs). Further, by Table 4.5.1 [GLS3], L is isomorphic to one

of the following list: C2(3), A1(3)◦A1(3)◦A1(3), A1(9)◦A1(3), A±3 (3), A1(3)◦A1(3)◦A1(9),

A1(3) ◦ A1(3) ◦ A1(3) ◦ A1(3), A1(9) ◦ A1(9) or A1(81). By Lemmas 5.35, 5.37 and 5.50

we have either X = 1 or X ∼= 21+4
− with L ∼= C2(3) or L ∼= A−3 (3).

If X ∼= 21+4
− , then Z(X) contains a unique involution z. Hence we must have NG(X) ≤

CG(z). Therefore we have CG(t) ≤ CG(z) and so O3′(CG(t)) ≤ O3′(CG(z)) = L. By

Lemmas 5.37 and 5.50, the centralizer of a 5-element in C2(3) or A−3 (3) is isomorphic to

C2×C5 or C4×C5 respectively. In particular m3(O3′(CG(t))) = 0, which is a contradiction.

Lemma 5.70. Suppose that n ≥ 7. Suppose that either

(1) G = Bm(3), where n = 2m+ 1 or

(2) G = D±m(3), where n = 2m.
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Let X be a p-subgroup of G and let t ∈ Inndiag(G) be such that (G, t,X) is a triple of

type (H5). Then X = 1.

Proof. As discussed in Remark 5.60, we may assume that G = Ωn(3) if n is odd and that

G = Ω±n (3) if n is even. We will work by induction on the dimension n of the natural

module for G. We take Lemma 5.69 as the basis case of our induction. So we will assume

that n ≥ 9 and that if (G, t,X) is a triple of type (Hs) with G = Ωn′(3) or G = Ω±n′(3),

where n′ < n, then X = 1.

By Corollary 5.32, there exists Z ≤ CG(t) such that Z ∼= Cr×Cr. Hence X is a nonabelian

2-group by Corollary 5.22. As we observed in Remark 5.23, we may now assume that

G = Ga. By Lemmas 5.4 and 5.5, we have, for some involution z ∈ Z(X), X ≤ L =

O3′(CG(z)) = L1 ◦ L2 ◦ ... ◦ Lj where each Li ∈ Lie(r) and each projection (Li, t,Xi) is a

triple of type (Hs). Further, by Table 4.5.1 [GLS3], we have either j = 1 so that L = L1

or j = 2 so that L = L1 ◦ L2, and we may list the possibilities for L as follows.

• If G = Bm(3), then L is isomorphic to one of the following list: Bm−1(3), D±i (3) ◦
Bm−i(3) for 2 ≤ i < m, or D±m(3).

• If G = D±m(3), then L is isomorphic to one of the following list: D±m−1(3), D±i (3) ◦
D±m−i(3) for 2 ≤ i < m

2 , D±m
2

(3)2 (only if m is even), D±m
2

(9) (only if m is even),

A±m−1(3), Dm
2

(3) ◦D−m
2

(3).

By Propositions 5.47 and 5.56, Lemmas 5.61 - 5.69 and the inductive hypothesis we have,

for each i, Xi = 1 unless Li ∼= A−3 (3) or Li ∼= C2(3). In the case Li ∼= A−3 (3), closer

inspection of Table 4.5.1 [GLS3] shows that in fact X can be embedded in some central

quotient of GU4(3). Then Lemma 5.45 gives Xi = 1.

So we may assume that X ≤ Xi ≤ Li ∼= C2(3). Then closer inspection of Table 4.5.1

[GLS3] shows that Li ∼= PSp4(3). Since X is nonabelian, this is a contradiction with

Lemma 5.50.

We now combine Lemmas 5.61 - 5.70 to obtain the main result of this section.

Proposition 5.71. Suppose that either

(1) G = Bm(q) = Ω2m+1(q) with m ≥ 3, or

(2) G = D±m(q) = Ω±2m(q) with m ≥ 4.

Let X be a p-subgroup of G and let t ∈ Inndiag(G) such that (G, t,X) is a triple of type

(Hs). Then X = 1.

70



5.5 The Remaining Exceptional Groups of Lie Type

Since we have previously found triples of type (H5) and we would like to have X〈t〉 ≤ L,

where L is a product of groups we have already looked at, we will take the s = 5 and

s > 5 cases separately in this section.

5.5.1 The Case s = 5

Recall that q = ra and that p, r, and 5 are assumed to be pairwise coprime.

Lemma 5.72. Let G be one of F4(q), G2(q) (where q = ra), 2F4(q) (where q = ra =

22m+1) or 2G2(q) (where q = ra = 32m+1). Let X be a p-subgroup of G and let t ∈
Inndiag(G) be such that (G, t,X) is a triple of type (H5). Then X = 1.

Proof. By Lemma 2.16, we may assume that t induces an inner automorphism on G. By

Lemma 2.13, there exists an order s automorphism t of the algebraic group G ∼= F4 or

G ∼= G2 over Fr which induces t on G. The Dynkin diagram of G has 4 (resp. 2) nodes.

Hence, by Proposition 5.24 (v), (vi), the Dynkin diagram for CG(t) has at least 1 node.

So we may assume that m(Or
′
(CG(t))) ≥ 1.

If mr(O
r′(CG(t))) ≥ 2, then X is a nonabelian 2-group by Corollary 5.22. Since p 6= r,

we have G 6= 2F4(q). By Lemmas 5.4 and 5.5, we have X〈t〉 ≤ CG(z) for some involution

z ∈ Z(X) and so X ≤ L = Or
′
(CG(z)) = L1 ◦ L2 ◦ ... ◦ Lj , where for each i, Li ∈ Lie(r)

and each projection (Li, t,Xi) is a triple of type (H5). Further, by Table 4.5.1 [GLS3], we

may list the possibilities for L as follows.

• If G = G2(q), then L ∼= A1(q) ◦A1(q);

• If G = 2G2(q), then L ∼= A1(q2);

• If G = F4(q), then either L ∼= A1(q) ◦ C3(q) or L ∼= B4(q).

By Lemmas 5.35 and 5.69 and Proposition 5.56, we have X = 1 unless G = F4(3) and

L = L1 ◦ L2, where L1
∼= A1(3) and L2

∼= C3(3). In this case X1 = 1 by Lemma 5.35 and

either X2 = 1 or X2
∼= 21+4

− by Proposition 5.56. If X2
∼= 21+4

− , then since X ≤ X1 ◦X2,

Z(X) contains a unique involution. Hence NG(X) ≤ CG(z) and so CG(t) ≤ CG(z). Then

closer inspection of Table 4.5.1 [GLS3] shows that 5 divides CG(z) only once. Since, by

Table 2.2 [GLS3], we have |G| = 215 · 324 · 52 · 72 · 132 · 41 · 73, we see that 5 must divide

CG(t) twice, which is a contradiction.

Hence mr(O
r′(CG(t))) = 1. By Table 3.3.1 [GLS3] we may assume that q = r and that L ∼=

A1(r). By Table 5.4.C [KL], F4(r) and 2F4(r) have faithful 26-dimensional representations

and G2(r) and 2G2(r) have faithful 7-dimensional representations. Suppose that X is

abelian. Then we may apply Lemma 5.42 to obtain either
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(a) G = G2(r) or G = 2G2(r) and 7 ≥ 5r, or

(b) G = F4(r) or G = 2F4(r) and 26 ≥ 5r.

Since r ≥ 2, case (a) gives an immediate contradiction. Hence we are in case (b). Since

26 ≥ 5r and r 6= 5, we have r = 2 or r = 3 and so G = F4(2), G = F4(3) or G = 2F4(2).

If G ∼= F4(2), then by Table 2.2 [GLS3] we have |G| = 224 ·36 ·52 ·72 ·13 ·17. If p ∈ {13, 17},
then either X = 1 or X is cyclic of order p. Since 5 does not divide p − 1 = |Aut(Cp)|,
X does not admit a nontrivial automorphism of order 5. So X = [X, t] = 1. So we may

assume that p ∈ {3, 7}. Since X is abelian, if X 6= 1 we may apply Lemma 5.6 to see that

there exists an elementary abelian subgroup 1 6= Y ≤ X such that t acts nontrivially on

Y and CG(t) ≤ NG(Y ). Since no elementary abelian group of order 7 or 72 can admit a

nontrivial order 5 automorphism, we may assume that p = 3. Since 3 = 2+1 = Φ2(r) and

Φ2(r) appears with exponent 4 in the factorization of |G|, we may apply Theorem 5.11

to obtain m3(G) = 4. So Y ∼= E3n for n ≤ 4 and so Aut(Y ) ∼= GLn(3). If n ≤ 3,

then 5 does not divide |Aut(Y )|. Hence n = 4 and so Aut(Y ) ∼= GL4(3). In particular,

5 divides |Aut(Y )| exactly once. Since 5 = 22 + 1 = Φ4(r) and Φ4(r) appears with

exponent 2 in the factorization of |G|, we may apply Theorem 5.11 and Corollary 5.12 to

obtain m5(CG(t)) = 2. Since 5 divides |Aut(Y )| only once, there is an order 5 element

z ∈ CG(t) which centralizes Y . Then we have Y 〈t〉 ≤ CG(z). Applying Lemma 5.5, we

have Y ≤ L = L1 ◦L2 ◦ ...◦Lj , where, for each i, Li ∼= A±mi(q
ai) or Li ∼= Cmi(q

ai), and each

(Li, t, Yi) is a triple of type (H5). Since p = 3, we may apply Propositions 5.47 and 5.56

to obtain Y = 1, which is a contradiction.

If G ∼= F4(3), then by Table 2.2 [GLS3] we have |G| = 215 · 324 · 52 · 72 · 132 · 41 · 73. If

p ∈ {41, 73}, then either X = 1 or X is cyclic of order p. If p = 73, then since 5 does not

divide p−1, X does not admit a nontrivial automorphism of order 5. So X = [X, t] = 1. If

p = 41, then 5 divides p−1 exactly once. Since 5 divides 32 +1 = Φ4(r) and Φ4(r) appears

with exponent 2 in the factorization of G, we apply Theorem 5.11 and Corollary 5.12 to

obtain m5(CG(t)) = 2. So there is an order 5 element z ∈ CG(t) which centralizes X.

Then X〈t〉 ≤ CG(z). Applying Lemma 5.5, we have X ≤ L = L1 ◦ L2 ◦ ... ◦ Lj , where,

for each i, Li ∼= A±mi(q
ai) or Li ∼= Cmi(q

ai), and each (Li, t,Xi) is a triple of type (Hs).

Since p = 41, we may apply Propositions 5.47 and 5.56 to obtain X = 1. Thus we may

assume that p ∈ {2, 7, 13}. We may apply Lemma 5.6 as before to find an elementary

abelian subgroup 1 6= Y ≤ X on such that CG(t) ≤ NG(Y ) and t acts nontrivially on Y .

Since no elementary abelian group of order 7, 72, 13 or 132 can admit a nontrivial order

5 automorphism, we may assume that p = 2. By Corollary [CS], m2(G) = 5. So Y ∼= E2n

for n ≤ 5 and Aut(Y ) ∼= GLn(2). Since |Aut(Y )| is divisible by 5 at most once, we may

find z ∈ CG(t) of order 5 such that Y 〈t〉 ≤ CG(z) and, by applying Lemma 5.5 as before,

we obtain Y = 1, which is a contradiction.

If G ∼= 2F4(2), then by Table 2.2 [GLS3] we have |G| = 212 · 33 · 52 · 13. Since p 6= r and
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p 6= s, we have p ∈ {3, 13}. By Lemma 5.6, there exists an elementary abelian subgroup

1 6= Y ≤ X on which t acts nontrivially. Since no elementary abelian group of order 3,

32, 33 or 13 can admit a nontrivial order 5 automorphism we have Y = 1, which is a

contradiction.

Therefore X is nonabelian. By Lemmas 5.4 and 5.5, we have X〈t〉 ≤ CG(z) for some

z ∈ Z(X) of order p and so X ≤ L = Or
′
(CG(z)) = L1 ◦ L2 ◦ ... ◦ Lj , where for each i,

Li ∼= A±mi(q
ai) or Li ∼= Cmi(q

ai) and each projection (Li, t,Xi) is a triple of type (H5). By

Lemmas 5.35 and 5.69 and Proposition 5.56, we have X = 1 unless G = F4(3), p = 2 and

L = L1 ◦ L2, where L1
∼= A1(3) and L2

∼= C3(3). In this case X1 = 1 by Lemma 5.35 and

either X2 = 1 or X2
∼= 21+4

− by Proposition 5.56. If X2
∼= 21+4

− , then since X ≤ X1 ◦X2,

Z(X) contains a unique involution. Hence NG(X) ≤ CG(z) and so CG(t) ≤ CG(z). Then

closer inspection of Table 4.5.1 [GLS3] shows that 5 divides CG(z) only once. Since, by

Table 2.2 [GLS3], we have |G| = 215 · 324 · 52 · 72 · 132 · 41 · 73, we see that 5 must divide

CG(t) twice, which is a contradiction.

Lemma 5.73. Let G be one of the groups E6(q), 2E6(q), E7(q) or E8(q). Let t be an

inner-diagonal automorphism of G and suppose that (G, t,X) is a triple of type (H5).

Then X = 1.

Proof. By Corollary 5.33, CG(t) has a subgroup Z ∼= Cr ×Cr. So by Corollary 5.22, X is

a nonabelian 2-group. Then as discussed in Remark 5.23, we may assume that G = Ga.

Suppose first that G = E6(q) or G = 2E6(q). Then by Lemmas 5.4 and 5.5 we have

X〈t〉 ≤ CG(z) for some involution z ∈ Z(X), and so X ≤ L = L1 ◦ L2 ◦ ... ◦ Lj where, for

each i, Li ∈ Lie(r) and each (Li, t,Xi) is a triple of type (H5). Further, by Table 4.5.1

[GLS3], we have L ∼= D±5 (q) or L = A1(q) ◦ A±5 (q). Now we may apply Proposition 5.47

and Lemma 5.71 to obtain Xi = 1 for each i and so X = 1.

The proof for G = E7(q) is exactly analogous; by Lemmas 5.4 and 5.5 and Table 4.5.1

[GLS3] we obtain X ≤ L, where L is one of A1(q) ◦D6(q), A±7 (q), E6(q) or E6(q). So by

Proposition 5.47 and Lemma 5.71 and the result for E6(q) and 2E6(q) we get X = 1.

The E8(q) case follows from the E7(q) case since, by Lemmas 5.4 and 5.5 and Table 4.5.1

[GLS3] we obtain X ≤ L, where L is one of D8(q) or A1(q) ◦ E7(q).

5.5.2 The Case s > 5

Throughout this subsection we assume that s > 5. Recall that q = ra and that p, r, s

are assumed to be pairwise coprime. We begin with some general observations about the

groups in question in this section.
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Lemma 5.74. Let q = ra and let G be one of G2(q), 2G2(q), F4(q), 2F4(q), E6(q), 2E6(q),

E7(q) or E8(q). Let Φi(q) be a cyclotomic polynomial appearing with multiplicity 1 in the

factorization of |G| into irreducible polynomials in q. Then G has a cyclic subgroup of

order Φi(q).

Proof. This follows directly from looking at the lists of the cyclic structure of maximal

tori of each of these groups, for example in Sections 2.2, 2.3 and 2.5-2.10 [KS].

Lemma 5.75. Let q = ra and let G be one of G2(q), 2G2(q), F4(q), 2F4(q), E6(q),
2E6(q), E7(q) or E8(q). Let n be the smallest dimension of a faithful module M of G

in characteristic r. Let X be a p-subgroup of G and let t ∈ Inndiag(G) be such that

(G, t,X) is a triple of type (Hs). Suppose that s divides Φi(q), where Φi(q) appears with

multiplicity 1 in the factorization of |G| into irreducible polynomials in q. If X is abelian,

then Φi(q) ≤ n.

Proof. By Lemma 5.74, G has a cyclic subgroup C of order Φq. By Theorem 5.11 and

Corollary 5.12, we may assume that t ∈ C. Since C is abelian, we have C ≤ CG(t). Hence

C acts on X. Write C = 〈u〉. Then t = uk for some k. If x ∈ CX(u), then x ∈ CX(t) and

we may apply Theorem 5.1 (iii) to conclude that x = 1. Hence CX(u) = 1 and so XC is

a Frobenius group with kernel X and complement C. Since C has order Φi(q), the result

now follows from Lemma 5.14.

We now proceed to derive the main results of this section.

Lemma 5.76. Let G ∼= G2(q). Let X be a p-subgroup of G and let t ∈ Inndiag(G) be

such that (G, t,X) is a triple of type (Hs). Then either X = 1 or s = 7, q = 3, X ∼= E23

and CG(t) ∼= C7. Furthermore, such a triple (G, t,X) does indeed exist.

Proof. Suppose first that X is abelian. By Table 2.2 [GLS3], the order of G factorizes into

a product of cyclotomic polynomials as

|G| = q6 · (q − 1)2 · (q + 1)2 · (q2 + q + 1) · (q2 − q + 1)

Since s is prime, s divides one of the factors in this product. Suppose that s divides q− 1

or divides q + 1. Since q − 1 and q + 1 each appear with exponent 2 in the factorization

of |G|, we may apply Theorem 5.11 and Corollary 5.12 to see that there is a subgroup

Z = 〈t, t1〉 ∼= C2
s of CG(t). Since CG(t) ≤ NG(X), Z acts on X. So by Theorem 3.5,

X = 〈CX(u) : u ∈ Z#〉. Choose u ∈ Z# such that CX(u) as large as possible. Note

that u is not a power of t since CX(t) = 1. Certainly CX(u)〈t〉 ≤ CG(u). Then we are

in the conditions of Lemma 5.5. Hence CX(u) ≤ L1 × L2 × ... × Lj where, for each i,

Li ∼= A±mi(q
ai) for mi ≤ 2 and each projection (Li, t, CX(u)i) is of type (Hs). Then we
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may apply Proposition 5.47 to see that CX(u)i = 1 for each i and so CX(u) = 1. Now

since we chose CX(u) as large as possible we must have X = 1.

So we may assume that either s divides q2 +q+1 or divides q2−q+1. By Table 5.4.C [KL],

the smallest dimension of a faithful representation of G in characteristic r is 6 if r = 2

and 7 otherwise. Suppose that s divides q2 + q + 1. If r = 2 then we apply Lemma 5.75

to obtain q2 + q + 1 ≤ 6. This is a contradiction since q ≥ 2. If r 6= 2 then Lemma 5.75

gives q2 + q + 1 ≤ 7. This is a contradiction since q ≥ 3. Therefore s divides q2 − q + 1.

If r = 2, then Lemma 5.75 gives q2 − q + 1 ≤ 6 and so q = 2. So s divides 22 − 2 + 1 = 3.

This is a contradiction since s > 5. If r 6= 2, then Lemma 5.75 gives q2− q+ 1 ≤ 7 and so

q = 3. So G = G2(3) and s divides 32 − 3 + 1 = 7, which implies that s = 7.

By Table 2.2 [GLS3], |G2(3)| = 26 · 36 · 7 · 13. Since p 6= r and p 6= s, we may only have

p ∈ {2, 13}. If p = 13, then since 13 divides |G| exactly once, either X = 1 or X ∼= C13.

Since C13 does not admit a nontrivial automorphism of order 7, we have X = 1. So

we may assume that p = 2. By Lemma 5.6, there exists an elementary abelian subgroup

1 6= Y ≤ X on which t acts nontrivially. By Corollary [CS], m2(G) = 3 and so Y ∼= E2n for

n ≤ 3. Since Y admits a nontrivial automorphism of order 7, we must have Y ∼= E23 . So a

priori we may have a triple (G, t, Y ) of type (H7) such that Y ∼= E23 . It remains to show

that such triples do indeed exist. By [ATLAS], an order 7 element of G has centralizer

isomorphic to C7. Further, G has a subgroup H which is isomorphic to PSL2(8). Now H

has a maximal parabolic subgroup P with unipotent radical U ∼= E8 and Levi complement

L ∼= C7. Taking Y = U and t a generator of L gives a triple (G, t, Y ) of type (H7).

We may now assume that X is nonabelian. Arguing as in the proof of Lemma 5.4, we

may see that X0 = [Z(X), t] is an abelian CG(t)-signalizer. By the analysis above, if

X0 6= 1, then G ∼= G2(3) and X0
∼= E23 . In particular this means that m2(X) > 3 and

this contradicts the fact that m2(G2(3)) = 3. So we may assume that X0 = 1. Hence

Z(X) ≤ CG(t) and so X〈t〉 ≤ CG(z) for some z ∈ Z(X) of order p. Applying Lemma 5.5

gives X ≤ L1 × L2 × ... × Lj where, for each i, Li ∼= A±mi(q
ai) with mi ≤ 2 and each

projection (Li, t,Xi) is a triple of type (Hs). Then we may apply Proposition 5.47 to

obtain Xi = 1 for each i and so X = 1.

Lemma 5.77. Let G ∼= 2G2(q) with q = 31+2a. Let X be a p-subgroup of G and let

t ∈ Inndiag(G) be such that (G, t,X) is a triple of type (Hs). Then either X = 1 or

s = 7, q = 3, X ∼= E23 and CG(t) ∼= C7. Furthermore, such a triple (G, t,X) does indeed

exist.

Proof. Suppose first that X is abelian. By Table 2.2 [GLS3], the order of G factorizes into

a product of cyclotomic polynomials as

|G| = q3 · (q − 1) · (q + 1) · (q2 − q + 1)
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Since s is prime, s divides one of the factors in this product. By Table 5.4.C [KL], the

smallest dimension of a faithful representation of G in characteristic r is 7.

Suppose that either s divides q− 1 or s divides q+ 1. Then we may apply Lemma 5.75 to

obtain q − 1 ≤ 7 or q + 1 ≤ 7 respectively. Since q is a power of 3, we must have q = 3.

So q − 1 = 2 and q + 1 = 4. Since s divides q − 1 or q + 1 we have s = 2. This is a

contradiction since s ≥ 7.

Hence s divides q2 − q + 1. By Lemma 5.75, q2 − q + 1 ≤ 7. Hence q = 3. So G = 2G2(3)

and s = 7. Further, by Table 2.2 [GLS3], we have |G| = 23 · 33 · 7. Since p 6= s and p 6= r

we have p = 2. Now G has a subgroup H ∼= PSL2(8), which has a parabolic subgroup P

with unipotent radical U ∼= E8 and Levi complement L ∼= C7. Then taking X = U and t

a generator of L gives a triple (G, t,X) of type (H7).

We may now assume that X is nonabelian. Arguing as in the proof of Lemma 5.4, we may

see that X0 = [Z(X), t] is an abelian CG(t)-signalizer. By the analysis above, if X0 6= 1,

then G ∼= 2G2(3) and X0
∼= E23 . Since 3 is the largest power of 2 that divides |2G2(3)|, we

must have X = X0 and this is a contradiction as X is supposed to be nonabelian. So we

may assume that X0 = 1. Hence Z(X) ≤ CG(t) and so X〈t〉 ≤ CG(z) for some z ∈ Z(X)

of order p. We now apply Lemma 5.5 to obtain X ≤ L1 × L2 × ...× Lj where, for each i,

Li ∼= A±mi(q
ai) with mi ≤ 2 and each projection (Li, t,Xi) is a triple of type (Hs). Then

we may apply Proposition 5.47 to obtain Xi = 1 for each i and so X = 1.

Lemma 5.78. Let G ∼= F4(q). Let X be a p-subgroup of G and let t ∈ Inndiag(G) be

such that (G, t,X) is a triple of type (Hs). Then either X = 1 or s = 13, q = 2 and

X ∼= E33. Furthermore, such a triple (G, t,X) does indeed exist.

Proof. First suppose that X is abelian. The order of G factorizes into a product of

cyclotomic polynomials as

|G| = (q − 1)4 · (q + 1)4 · (q2 + q + 1)2 · (q2 + 1)2 · (q2 − q + 1)2 · (q4 + 1) · (q4 − q2 + 1)

If s divides one of q − 1, q + 1, q2 + q + 1, q2 + 1 or q2 − q + 1, then since each of these

polynomials appears with exponent greater than 1 in the factorization of |G|, we may

apply Theorem 5.11 and Corollary 5.12 to see that there is a subgroup Z = 〈t, t1〉 ∼= C2
s of

CG(t). Since CG(t) ≤ NG(X), Z acts on X. So by Theorem 3.5, X = 〈CX(u) : u ∈ Z#〉.
Choose u ∈ Z# such that CX(u) as large as possible. Note that u is not a power of t since

CX(t) = 1. Certainly CX(u)〈t〉 ≤ CG(u). Then we are in the conditions of Lemma 5.5.

Hence CX(u) ≤ L1 × L2 × ... × Lj where, for each i, Li ∼= A±mi(q
ai), or Li ∼= Bmi(q

ai),

or Li ∼= Cmi(q
ai) and each projection (Li, t, CX(u)i) is of type (Hs). Then we may apply

Propositions 5.47, 5.56 and 5.71 to see that CX(u)i = 1 for each i and so CX(u) = 1. Now

since we chose CX(u) as large as possible we must have X = 1.
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Thus we may assume that either s divides q4 + 1 = Φ8(q) or that s divides q4 − q2 +

1 = Φ12(q). By Table 5.4.C, the smallest dimension of a faithful representation of G in

characteristic r is 25 if r = 3 and 26 otherwise. If s divides q4 + 1, then Lemma 5.75 gives

q4 + 1 ≤ 26 and so q = 2 and s = 17. If s divides q4− q2 + 1, then Lemma 5.75 gives s = 2

and q = 13. In either case, G = F4(2).

By Table 2.2 [GLS3], |G| = 224 ·36 ·52 ·72 ·13 ·17. Since p 6= r, we have p ∈ {3, 5, 7, 13, 17}.
Suppose that X 6= 1. By Lemma 5.6, X has an elementary abelian subgroup Y 6= 1.

on which t acts nontrivially. If p = 13, then since p 6= s we have s = 17. Further

we must have Y = C13. This is a contradiction since C13 does not admit an order 17

automorphism. If p = 17, then s = 13 and we obtain the analogous contradiction. If p = 5

or p = 7, then since 5 = 22 + 1 = Φ4(q) and 7 = 22 + 2 + 1 = Φ3(q), and these cyclotomic

polynomials appear with exponent 2 in the factorization of G, we may apply Theorem 5.11

to obtain mp(G) = 2. Hence Y ∼= E5n or Y ∼= E7n with n ≤ 2. So Aut(Y ) ∼= GLn(5)

or Aut(Y ) ∼= GLn(7) respectively. Then we have a contradiction since neither 17 nor 13

divides Aut(Y ). So we may assume that p = 3. Since 3 = 2 + 1, Theorem 5.11 gives

m3(G) = 4. So Y ∼= E3n for n ≤ 4 and Aut(Y ) ∼= GLn(3). So 17 does not divide Aut(Y )

and hence we have s = 13. Since 13 divides Aut(Y ), we have n = 3 or n = 4. As discussed

in Remark 5.7, we have Y = [Y, t] so n = 3. So a priori we do have a triple (G, t, Y ) of

type (Hs) with s = 13 and Y ∼= E33 .

It remains to show that such triples do indeed exist. By [ATLAS], G has a subgroup

H ∼= PSL4(3). The group H has a maximal parabolic subgroup P with unipotent radical

U ∼= E33 and Levi complement L ∼= GL3(3). Now taking Y = U and t an element of L of

order 13 gives a triple (G, t, Y ) of type (H13).

We may now assume that X is nonabelian. Arguing as in the proof of Lemma 5.4, we may

see that X0 = [Z(X), t] is an abelian CG(t)-signalizer. By the analysis above, if X0 6= 1,

then G ∼= F4(2), s = 13 and X0
∼= E33 . Since X is nonabelian, there exists an element of X

outside Z(X). Since this element commutes with Z(X), we have m3(X) = 4. In particular,

since X is nonabelian, we have |X| = 35 or |X| = 36. Now since XCG(t) ≤ NG(X), we

certainly have that XCG(t) is contained in a maximal local subgroup of G. A list of such

subgroups of F4(2) can be found in [ATLAS] and it is easily seen from our previous results

that no such subgroup can admit a signalizer X with |X| = 35 or |X| = 36. This is a

contradiction and so we may assume that X0 = 1.

[Alternatively: the following MAGMA code and output shows that no subgroup of G is

normalized by an order 13 element of G.

> G := ChevalleyGroup("F",4,2);

> S := Sylow(G,3);

A:=Subgroups(S: OrderEqual:=3^5);

for i in [1..#A] do
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for> Ni:=Normalizer(G,A[i]‘subgroup);

for> i, Factorization(#Ni);

for> end for;

1 [ <2, 3>, <3, 6> ]

2 [ <2, 4>, <3, 6> ]

3 [ <2, 7>, <3, 6> ]

4 [ <2, 4>, <3, 6> ]

5 [ <2, 2>, <3, 6> ]

6 [ <2, 2>, <3, 6> ]

7 [ <2, 2>, <3, 6> ]

8 [ <2, 1>, <3, 6> ]

9 [ <2, 3>, <3, 6> ]

10 [ <2, 1>, <3, 6> ]

11 [ <2, 2>, <3, 6> ]

12 [ <2, 1>, <3, 6> ]

13 [ <2, 1>, <3, 6> ]

Furthermore the following MAGMA code and output shows that no subgroup of G of

order 36 is normalized by an order 13 element of G.

> Factorization(#Normalizer(G,S));

[ <2, 3>, <3, 6> ]

So we again see that we may assume that X0 = 1.]

Hence Z(X) ≤ CG(t) and so X〈t〉 ≤ CG(z) for some z ∈ Z(X) of order p. Then we may

apply Lemma 5.5 to obtain X ≤ L1 × L2 × ... × Lj where, for each i, Li ∼= A±mi(q
ai), or

Li ∼= Bmi(q
ai), or Li ∼= Cmi(q

ai) and each projection (Li, t,Xi) is a triple of type (Hs).

Then we may apply Propositions 5.47, 5.56 and 5.71 to obtain Xi = 1 for each i and so

X = 1.

Lemma 5.79. Let G ∼= 2F4(q) where q = 21+2a. Let X be a p-subgroup of G and let

t ∈ Inndiag(G) such that (G, t,X) is a triple of type (Hs). Then X = 1.

Proof. Suppose first that X is abelian. The order of G factorizes into a product of cyclo-

tomic polynomials as

|G| = q12 · (q − 1)2 · (q + 1)2 · (q2 + 1)2 · (q2 − q + 1) · (q4 − q2 + 1)

Since s is prime, s divides one of the factors in this product. If s divides one of q−1, q+1

or q2 +1, then since each of these polynomials appears with exponent 2 in the factorization
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of |G|, we may apply Theorem 5.11 and Corollary 5.12 to see that there is a subgroup

Z = 〈t, t1〉 ∼= C2
s of CG(t). Since CG(t) ≤ NG(X), Z acts on X. So by Theorem 3.5,

X = 〈CX(u) : u ∈ Z#〉. Choose u ∈ Z# such that CX(u) as large as possible. Note

that u is not a power of t since CX(t) = 1. Certainly CX(u)〈t〉 ≤ CG(u). Then we are

in the conditions of Lemma 5.5. Hence CX(u) ≤ L1 × L2 × ... × Lj where, for each i,

Li ∼= A±mi(q
ai), or Li ∼= Bmi(q

ai), or Li ∼= Cmi(q
ai) and each projection (Li, t, CX(u)i) is

of type (Hs). Then we may apply Propositions 5.47, 5.56 and 5.71 to see that CX(u)i = 1

for each i and so CX(u) = 1. Now since we chose CX(u) as large as possible we must have

X = 1.

Thus we may assume that either s divides q2−q+1 = Φ6(q) or that s divides q4−q2 +1 =

Φ12(q). By Table 5.4.C, the smallest dimension of a faithful representation of G is 26. If

s divides q2 − q + 1, then Lemma 5.75 gives q2 − q + 1 ≤ 26. Since q is an odd power of 2

we must have q = 2. So s divides 22 − 2 + 1 = 3, which is a contradiction since s > 5. So

s divides q4 − q2 + 1. Then Lemma 5.75 gives q4 − q2 + 1 ≤ 26, so q = 2 and G = 2F4(2).

Since s divides 24 − 22 + 1, we have s = 13.

By Table 2.2 [GLS3], |G| = 212 · 33 · 52 · 13. Since p 6= s and p 6= r, we have p ∈ {3, 5}.
Suppose X 6= 1. By Lemma 5.6, X has an elementary abelian subgroup Y on which t

acts nontrivially. Since 3 = 2 + 1 = Φ2(q) and 5 = 22 + 1 = Φ4(q) and these polynomials

each appear with exponent 2 in the factorization of G, we may apply Theorem 5.11 to

obtain mp(G) = 2. Hence Y ∼= E3n or Y ∼= E5n with n ≤ 2 and so Aut(Y ) ∼= GLn(3) or

Aut(Y ) ∼= GLn(5) respectively. This is a contradiction since 13 does not divide Aut(Y ).

So we may assume that X is nonabelian. Then we may apply Lemmas 5.4 and 5.5 to

obtain X〈t〉 ≤ CG(z) for some z ∈ Z(X) of order p and so X ≤ L1 × L2 × ... × Lj

where, for each i, Li ∼= A±mi(q
ai), or Li ∼= Bmi(q

ai), or Li ∼= Cmi(q
ai) and each projection

(Li, t,Xi) is a triple of type (Hs). Then we may apply Propositions 5.47, 5.56 and 5.71

to obtain Xi = 1 for each i and so X = 1.

Lemma 5.80. Let G ∼= E±6 (q). Let X be a p-subgroup of G and let t ∈ Inndiag(G) be

such that (G, t,X) is a triple of type (Hs). Then either X = 1 or one of the following

holds

(a) G = E−6 (q), s = 13, q = 2 and X ∼= E33;

(b) G = E−6 (q), s = 13, q = 2 and X ∼= 33+3.

Further, triples of type (Hs) described in (a) and (b) do indeed exist.

Proof. By Lemma 5.2, we may assume that G is universal. Suppose first that X is abelian.

The order of G factorizes into a product of cyclotomic polynomials as follows.

|E6(q)| = q36 · (q− 1)6 · (q+ 1)4 · (q2 + q+ 1)3 · (q2 + 1)2 · (q2 − q+ 1)2 · (q4 + q3 + q2 + q+

1) · (q4 + 1) · (q6 + q3 + 1) · (q4 − q2 + 1)
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|E−6 (q)| = q36 · (q − 1)4 · (q + 1)6 · (q2 + q + 1)2 · (q2 + 1)2 · (q2 − q + 1)3 · (q4 + 1) · (q4 −
q3 + q2 − q + 1) · (q4 − q2 + 1) · (q6 − q3 + 1)

Since s is prime, s divides one of the factors of |G|. Suppose that s divides one of q−1, q+1,

q2 +q+1, q2 +1 or q2−q+1. Then since each of these polynomials appears with exponent

greater than 1 in the factorization of |G|, we may apply Theorem 5.11 and Corollary 5.12

to see that there is a subgroup Z = 〈t, t1〉 ∼= C2
s of CG(t). Since CG(t) ≤ NG(X), Z acts on

X. So by Theorem 3.5, X = 〈CX(u) : u ∈ Z#〉. Choose u ∈ Z# such that CX(u) as large

as possible. Note that u is not a power of t since CX(t) = 1. Certainly CX(u)〈t〉 ≤ CG(u).

Then we are in the conditions of Lemma 5.5. Hence CX(u) ≤ L1 × L2 × ... × Lj where,

for each i, Li ∼= A±mi(q
ai) or Li ∼= D±mi(q

ai) and each projection (Li, t, CX(u)i) is of type

(Hs). Then we may apply Propositions 5.47 and 5.71 to see that CX(u)i = 1 for each i

and so CX(u) = 1. Now since we chose CX(u) as large as possible we must have X = 1.

So we may assume that s divides one of q4 + q3 + q2 + q + 1 = Φ5(q) (only if G =

E6(q)), q4 + 1 = Φ8(q), q6 + q3 + 1 = Φ9(q) (only if G = E6(q)), q4 − q2 + 1 = Φ12(q),

q4 − q3 + q2 − q + 1 = Φ10(q) (only if G = E−6 (q)) or q6 − q3 + 1 = Φ18(q) (only if

G = E−6 (q)). By Table 5.4.C, the smallest dimension of a faithful representation of G is

27. Now we may apply Lemma 5.75 to see that if s divides Φi(q), then Φi(q) ≤ 27. Thus

the possibilities for (q, s) are as follows.

• If G = E6(q), then (q, s) is one of (2, 13) or (2, 17).

• If G = E−6 (q), then (q, s) is one of (2, 11), (2, 13), (2, 17).

In all cases, we have q = 2. Suppose first that G = E6(2).

Suppose that s = 13. By Table 2.2 [GLS3], |G| = 236 · 36 · 52 · 73 · 13 · 17 · 31 · 73. The

following MAGMA code shows that CG(t) contains an element v of order 7.

> G := ChevalleyGroup("E",6,2);

> T := Sylow(G,13);

> C := Centralizer(G,T);

> Factorization(#C);

Suppose that X 6= 1. By Lemma 5.6, X has an elementary abelian subgroup Y 6= 1 on

which t acts nontrivially. No elementary abelian group of order 5, 52, 7, 72, 73, 17, 31

or 73 admits an automorphism of order 13. Hence p = 3. By applying Theorem 5.11

we obtain m3(G) = 4 and so Y ∼= E33 or Y ∼= E34 . In particular, v acts trivially on Y .

Thus Y 〈t〉 ≤ CG(v) and we may apply Lemmas 5.4 and 5.5 to obtain Y = 1 which is a

contradiction.

Therefore s = 17. Again X has an elementary abelian subgroup Y 6= 1 on which t

acts nontrivially. No elementary abelian group of order 5, 52, 7, 72, 73, 13, 31 or 73

admits an automorphism of order 17. Therefore p = 3. By applying Theorem 5.11 we
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obtain m3(G) = 4 and so no elementary abelian 3-subgroup of G admits an order 17

automorphism either. This is a contradiction and so X = 1.

So we may assume that G = E−6 (2). By Table 2.2 [GLS3], |G| = 236 ·39 ·52 ·72 ·11·13·17·19.

Suppose that s = 11. Assume that X 6= 1. By Lemma 5.6, X has an elementary

abelian Y 6= 1 on which t acts nontrivially. Since no elementary abelian group of order

5, 5, 2, 7, 72, 13, 17 or 19 can admit an order 11 automorphism, we must have p = 3.

Since 3 = 2 + 1 = Φ2(q), we may apply Theorem 5.11 to obtain m3(G) = 6. Since

Y = [Y, t] we must have Y ∼= E35 . Further, by Theorem 5.1 (iii), we have CY (t) = 1 and

hence Z(G) ∩ Y = 1. So by Lemma 5.2, we may assume that G = Ga. By [ATLAS],

CG(t) ∼= C11 × C3 × C2. Since CY (t) = 1, there is a 3-element z ∈ CG(t) acting on Y

but not contained in Y . Since Y is a 3-group we have CY (z) 6= 1. Now t acts on CY (z).

If CY (z) 6= Y , then CY (z) has order 3n for n < 5 so t must fix some y ∈ CY (z). This

is a contradiction so z must fix all of Y . By [ATLAS], G has a subgroup H ∼= Fi22

and furthermore, any Sylow 3-subgroup of H is also a Sylow 3-subgroup of G. However

m3(Fi22) = 5 by Table 5.6.1 [GLS3]. This contradicts the fact that we have a subgroup

Y ∼= E35 which is centralized by another 3-element. Hence X = 1.

Now suppose that s = 13. Assume that X 6= 1. By Lemma 5.6, X has an elementary

abelian Y 6= 1 on which t acts nontrivially. Since no elementary abelian group of order

5, 5, 2, 7, 72, 11, 17 or 19 can admit an order 13 automorphism, we must have p = 3.

Since Y = [Y, t], we have Y ∼= E33 or Y ∼= E36 . If Y ∼= E36 , then since m3(G) = 6, Y

must contain Z(G) which contradicts the fact that CY (t) = 1. So Y ∼= E33 . Further, by

Lemma 5.2, we may assume that G = Ga. By [ATLAS], CG(t) ∼= C13. Furthermore, G

has a subgroup H ∼= F4(2). By Lemma 5.78, there is a triple (H, t, Y ) of type (H13) with

Y ∼= E33 . Since CG(t) consists only of the powers of t, (G, t, Y ) is of type (H13) as well.

Now suppose that s = 17. By Lemma 5.6, X has an elementary abelian subgroup Y 6= 1

on which t acts nontrivially. This is a contradiction since no elementary abelian group of

order 3n (for n ≤ 6), 5, 5, 2, 7, 72, 11, 13 or 19 can admit an order 17 automorphism.

We may now assume that X is nonabelian. Lemma 5.6 gives us that X contains a charac-

teristic subgroup Y of class at most 2, exponent p, with Y ′ = Φ(Y ) and such that t acts

faithfully on Y . Further, by Remark 5.7, if we set R = [R, t], then (G, t,R) is a triple of

type (Hs). Arguing as in the proof of Lemma 5.4, we may see that R0 = [Z(R), t] is an

abelian CG(t)-signalizer. By the analysis above, if R0 6= 1, then G ∼= E−6 (2), s = 13 and

R0
∼= E33 .

By Theorem 5.1 (iii) we have Z(R) ∼= R0 × CZ(R)(t). So if there exists z ∈ Z(R) − R0

then we may assume that z ∈ CZ(R)(t). So R〈t〉 ≤ CG(z). Then we may apply Lemma 5.5

to obtain R ≤ L1 × L2 × ...× Lj where, for each i, Li ∼= A±mi(2
ai) or Li ∼= D±mi(2

ai), and

each projection (Li, t,Xi) is a triple of type (H13). Then we may apply Propositions 5.47

and 5.71 to obtain Ri = 1 for each i and so R = 1. This would contradict the fact that Y
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is critical and so we would have X = 1. Therefore we may assume that no such z exists,

and so Z(R) = R0
∼= E33 .

Since R / Y , applying Lemma 2.18 and using the fact that Y has class 2 gives Φ(R) ≤
Φ(Y ) = Y ′ ≤ Z(Y ). So Φ(R) ≤ Z(R) ∼= E33 . By Lemma 2.19, R/Φ(R) is elementary

abelian and hence so is R/Z(R). Further, since R = [R, t], we have R/Z(R) = [R/Z(R), t].

Since 39 is the largest power of G dividing G, we must have R/Z(R) ∼= E33 or E36 . So

R ∼= 33+3 or 33+6.

If R ∼= 33+6, then R is a Sylow 3-subgroup of G. In particular, we may assume that R is

contained in a subgroup H ∼= O7(3) of G. Then the following MAGMA code and output

demonstrates that Z(R) = 1.

> G := SO(7,3);

> S := Sylow(G,3);

> Z := Center(S);

> Factorization(#Z);

[ <3, 1> ]

This is a contradiction since we should have |Z(R)| = 33. Therefore we must have R ∼=
33+3. It remains to show that this situation really can occur. Now Theorem 4.8.10 (d)

[GLS3] tells us exactly that there exists a special subgroup Q of G of order 36 with center

Z(Q) elementary abelian of order 33, such that NG(Q)/Q ∼= SL3(3) and [Q, g] = Q for

any order 13 element g of NG(Q). Taking R = Q and t one such order 13 element gives

the required triple (G, t,R) of type (H13).

In all other cases of X being nonabelian, we may assume that [Z(X), t] = 1. Hence Z(X) ≤
CG(t) and so X〈t〉 ≤ CG(z) for some z ∈ Z(X) of order p. Then we may apply Lemma 5.5

to obtain X〈t〉 ≤ CG(z) for some z ∈ Z(X) of order p and so X ≤ L1×L2× ...×Lj where,

for each i, Li ∼= A±mi(q
ai) or Li ∼= D±mi(q

ai), and each projection (Li, t,Xi) is a triple of

type (Hs). Then we may apply Propositions 5.47 and 5.71 to obtain Xi = 1 for each i

and so X = 1.

Lemma 5.81. Let G ∼= E7(q). Let X be a p-subgroup of G and let t ∈ Inndiag(G) be

such that (G, t,X) is a triple of type (Hs). Then X = 1.

Proof. By Lemma 5.2, we may assume that G is universal. Suppose first that X is abelian.

The order of G factorizes into a product of cyclotomic polynomials as follows.

|G| = q63 · (q− 1)7 · (q+ 1)7 · (q2 + q+ 1)3 · (q2 + 1)2 · (q4 + q3 + q2 + q+ 1) · (q2 − q+ 1)3 ·
(q6 + q5 + q4 + q3 + q2 + q + 1) · (q4 + 1) · (q6 + q3 + 1) · (q4 − q3 + q2 − q + 1) · (q4 − q2 +

1) · (q6 − q5 + q4 − q3 + q2 − q + 1) · (q6 − q3 + 1)
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Since s is prime, s divides one of the factors of |G|. Suppose that s divides one of q − 1,

q + 1, q2 + q + 1, q2 + 1 or q2 − q + 1. Then since each of these polynomials appears

with exponent greater than 1 in the factorization of |G|, we may apply Theorem 5.11

and Corollary 5.12 to see that there is a subgroup Z = 〈t, t1〉 ∼= C2
s of CG(t). Since

CG(t) ≤ NG(X), Z acts on X. So by Theorem 3.5, X = 〈CX(u) : u ∈ Z#〉. Choose

u ∈ Z# such that CX(u) as large as possible. Note that u is not a power of t since

CX(t) = 1. Certainly CX(u)〈t〉 ≤ CG(u). Then we are in the conditions of Lemma 5.5.

Hence CX(u) ≤ L1 × L2 × ... × Lj where, for each i, Li ∼= A±mi(q
ai), or Li ∼= D±mi(q

ai),

or Li ∼= E±6 (qai) and each projection (Li, t, CX(u)i) is of type (Hs). Then we may apply

Propositions 5.47 and 5.71 and Lemma 5.80 to see that CX(u)i = 1 for each i and so

CX(u) = 1. Now since we chose CX(u) as large as possible we must have X = 1.

So we may assume that s divides one of q4 + q3 + q2 + q + 1 = Φ5(q), q6 + q5 + q4 +

q3 + q2 + q + 1 = Φ7(q), q4 + 1 = Φ8(q), q6 + q3 + 1 = Φ9(q), q4 − q2 + 1 = Φ12(q),

q4− q3 + q2− q+1 = Φ10(q), q6− q5 + q4− q3 + q2− q+1 = Φ14(q) or q6− q3 +1 = Φ18(q).

By Table 5.4.C, the smallest dimension of a faithful representation of G is 56. Now we may

apply Lemma 5.75 to see that if s divides Φi(q), then Φi(q) ≤ 56. Thus the possibilities for

(q, s) are (2, 11), (2, 13), (2, 17), (2, 31), (2, 43) or (3, 41). In particular, we have G = E7(2)

unless s = 41, in which case G = E7(3). By Table 2.2 [GLS3], the orders of these groups

are

|E7(2)| = 263 · 311 · 52 · 73 · 11 · 13 · 17 · 19 · 31 · 43 · 73 · 127

|E7(3)| = 224 · 363 · 52 · 73 · 112 · 133 · 19 · 37 · 41 · 61 · 73 · 547 · 757 · 1093

We now examine the possibilities for (q, s) case by case.

(i) (q, s) = (2, 11). Suppose X 6= 1. By Lemma 5.6 X has an elementary abelian critical

subgroup Y 6= 1 on which t acts nontrivially. Since no elementary abelian group of order

5, 52, 7, 72, 73, 13, 17, 19, 31, 43, 73 or 127 admits an order 11 automorphism, we may

only have p = 3. Furthermore, Theorem 5.11 gives m3(G) = 7. By Theorem 5.1 (iii),

CY (t) = 1 and hence Y ∼= E35 . By [ATLAS], G has a subgroup H ∼= S3 × O+
12(2).

Since 11 divides |H|, we may assume that t ∈ H. So CG(t) contains a 3-element z. By

Lemma 5.6 (i), z acts on Y . Certainly CY (z)〈t〉 ≤ CG(z) and so we are in the situation of

Lemma 5.5. Hence CY (z) ≤ L = O2′(CG(z)). Further, Table 4.7.3 [GLS3] gives a list of

possibilities for L, namely D6(2), A−2 (2) ◦A−5 (2), A−6 (2), D−6 (2) ◦A1(2) or E6(2). Now we

may apply Propositions 5.47 and 5.71 and Lemma 5.80 to conclude that CY (z) = 1. This

is a contradiction since z is a 3-element acting on a 3-group Y .

(ii) (q, s) = (2, 13). Suppose that X 6= 1. Again X has an elementary abelian subgroup

Y 6= 1 on which t acts nontrivially. Since no elementary abelian group of order 5, 52,

83



7, 72, 73, 11, 17, 19, 31, 43, 73 or 127 admits an order 13 automorphism, we again have

p = 3. By [ATLAS], G has a subgroup H ∼= L2(8) × 3D4(2). Since 13 divides |H|, we

may assume that t ∈ H. So there exists a 3-element z ≤ CG(t). Since z acts on Y we

have CY (z)〈t〉 ≤ CG(z). Then we obtain CY (z) = 1 exactly as in (i) and this is again a

contradiction.

(iii) (q, s) = (2, 17). Suppose X 6= 1. Again X has an elementary abelian subgroup Y 6= 1

on which t acts nontrivially. Since no elementary abelian group of order 5, 52, 7, 72, 73,

11, 13, 19, 31, 43, 73 or 127 admits an order 17 automorphism, we again have p = 3.

Furthermore, since 3 = 2 + 1 = Φ2(q), Theorem 5.11 gives m3(G) = 7. Since 17 does

not divide |GL3(7)|, Aut(Y ) cannot contain an element of order 17 and this is also a

contradiction.

(iv) (q, s) = (2, 31). Suppose X 6= 1. Again X has an elementary abelian subgroup Y 6= 1

on which t acts nontrivially. This is a contradiction since no elementary abelian group of

order 3n (for n ≤ 7), 5, 52, 7, 72, 73, 11, 13, 17, 19, 43, 73 or 127 admits an order 31

automorphism.

(v) (q, s) = (2, 43). Suppose X 6= 1. Again X has an elementary abelian subgroup Y 6= 1

on which t acts nontrivially. This is a contradiction since no elementary abelian group of

order 3n (for n ≤ 7), 5, 52, 7, 72, 73, 11, 13, 17, 19, 31, 73 or 127 admits an order 43

automorphism.

(vi) (q, s) = (3, 41). Suppose X 6= 1. Again X has an elementary abelian subgroup Y 6= 1

on which t acts nontrivially. Since no elementary abelian group of order 5, 52, 7, 72, 73,

11, 112, 13, 132, 133, 19, 37, 61, 73, 547, 757 or 1093 admits an order 41 automorphism,

we must have p = 2. Further, by Corollary [CS], m2(G) = 7. Since 41 does not divide

|GL7(2)|, Aut(Y ) does not contain an element of order 41, which is a contradiction.

Therefore we may assume that X is nonabelian. Then we may apply Lemmas 5.4 and 5.5

to obtain X〈t〉 ≤ CG(z) for some z ∈ Z(X) of order p and so X ≤ L1 × L2 × ... × Lj
where, for each i, Li ∼= A±mi(q

ai), or Li ∼= D±mi(q
ai), or Li ∼= E±6 (qai), and each projection

(Li, t,Xi) is a triple of type (Hs). Then we may apply Propositions 5.47 and 5.71 and

Lemma 5.80 to conclude that, for each i, either Xi = 1, or Li ∼= E−6 (2) and Xi
∼= 33+3. In

the latter case p = 3 and so Table 4.7.3A [GLS3] gives exactly the possibilities for the Li.

In particular we cannot have Li ∼= E−6 (q). Hence Xi = 1 in all cases and so X = 1.

Lemma 5.82. Let G ∼= E8(q). Let X be a p-subgroup of G and let t ∈ Inndiag(G) be

such that (G, t,X) is a triple of type (Hs). Then X = 1.

Proof. Suppose first that X is abelian. The order of G factorizes into a product of cyclo-

tomic polynomials as follows.
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|G| = q120 · Φ1(q)8 · Φ2(q)8 · Φ3(q)4 · Φ4(q)4 · Φ5(q)2 · Φ6(q)4 · Φ7(q) · Φ2
8 · Φ9(q) · Φ10(q)2 ·

Φ12(q)2 · Φ14(q) · Φ15(q) · Φ18(q) · Φ20(q) · Φ24(q) · Φ30(q)

where the cyclotomic polynomials are given by the following list.

Φ1(q) = q − 1

Φ2(q) = q + 1

Φ3(q) = q2 + q + 1

Φ4(q) = q2 + 1

Φ5(q) = q4 + q3 + q2 + q + 1

Φ6(q) = q2 − q + 1

Φ7(q) = q6 + q5 + q4 + q3 + q2 + q + 1

Φ8(q) = q4 + 1

Φ9(q) = q6 + q3 + 1

Φ10(q) = q4 − q3 + q2 − q + 1

Φ12(q) = q4 − q2 + 1

Φ14(q) = q6 − q5 + q4 − q3 + q2 − q + 1

Φ15(q) = q8 − q7 + q5 − q4 + q3 − q + 1

Φ18(q) = q6 − q3 + 1

Φ20(q) = q8 − q6 + q4 − q2 + 1

Φ24(q) = q8 − q4 + 1

Φ30(q) = q8 + q7 − q5 − q4 − q3 + q + 1

Since s is prime, s divides one of the factors of |G|. Suppose that s divides Φi, for

i ∈ {1, 2, 3, 4, 5, 6, 8, 10, 12}. Then since each of these polynomials appears with exponent

greater than 1 in the factorization of |G|, we may apply Theorem 5.11 and Corollary 5.12

to see that there is a subgroup Z = 〈t, t1〉 ∼= C2
s of CG(t). Since CG(t) ≤ NG(X), Z acts on

X. So by Theorem 3.5, X = 〈CX(u) : u ∈ Z#〉. Choose u ∈ Z# such that CX(u) as large

as possible. Note that u is not a power of t since CX(t) = 1. Certainly CX(u)〈t〉 ≤ CG(u).

Then we are in the conditions of Lemma 5.5. Hence CX(u) ≤ L1 × L2 × ... × Lj where,

for each i, Li ∼= A±mi(q
ai), or Li ∼= D±mi(q

ai), or Li ∼= E±6 (qai), or Li ∼= E7(qai), and each

projection (Li, t, CX(u)i) is of type (Hs). Then we may apply Propositions 5.47 and 5.71

and Lemmas 5.80 and 5.81 to see that CX(u)i = 1 for each i and so CX(u) = 1. Now

since we chose CX(u) as large as possible we must have X = 1.
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So we may assume that s divides Φi(q) where i ∈ {7, 9, 14, 15, 18, 20, 24, 30}. By Table

5.4.C, the smallest dimension of a faithful representation of G is 248. Now we may apply

Lemma 5.75 to see that if s divides Φi(q), then Φi(q) ≤ 248. Thus the possibilities for (q, s)

are (2, 19), (2, 41), (2, 43), (2, 73), (2, 127), (2, 151) or (2, 241). In particular, G = E8(2),

so

|G| = 2120 · 313 · 55 · 74 · 112 · 132 · 172 · 19 · 312 · 41 · 43 · 73 · 127 · 151 · 241 · 331

Suppose that X 6= 1. Since X is abelian, we may apply Lemma 5.6 to see that X has

an elementary abelian subgroup Y on which t acts nontrivially. Say Y ∼= Epn . Then

Aut(Y ) ∼= GLn(p). The rank n of Y is bounded above by the p-rank mp(G) of G. We

obtain the following results on p-rank directly from Theorem 5.11.

m3(G) = 8,

m5(G) = m7(G) = 4,

m11(G) = m13(G) = m17(G) = m31(G) = 2,

and all other odd p-ranks equal to 1. We now list the relevant values of |GLn(p)|.

|GL8(3)| = 219 · 328 · 52 · 7 · 112 · 132 · 41 · 1093

|GL4(5)| = 211 · 32 · 56 · 13 · 31

|GL4(7)| = 211 · 35 · 52 · 76 · 19

|GL2(11)| = 24 · 3 · 52 · 11

|GL2(13)| = 25 · 32 · 7 · 13

|GL2(17)| = 29 · 32 · 17

|GL1(19)| = 2 · 32

|GL2(31)| = 27 · 32 · 52 · 31

|GL1(41)| = 23 · 5

|GL1(43)| = 2 · 3 · 7

|GL1(73)| = 23 · 32

|GL1(127)| = 2 · 32 · 7

|GL1(151)| = 2 · 3 · 52

|GL1(241)| = 24 · 3 · 5

|GL1(331)| = 2 · 3 · 5 · 11
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Since none of the above are divisible by 43, 73, 127, 151 or 241, no elementary abelian

p-subgroup of G can admit an automorphism of order 43, 73, 127, 151 or 241. Hence

s = 19 or s = 41. Furthermore, of the above list, only |GL8(3)| is divisible by 41 and only

|GL4(7)| is divisible by 19. So if s = 19, then p = 7, whilst if s = 41, then p = 3.

We address the case s = 19, p = 7 first. By Theorem 5.1 (iii), CY (t) = 1. Hence

Y ∼= E73 . Let us consider CG(t). By Table 4.7.3 [GLS3], G has a 3-element z such that

O2′(CG(z)) ∼= PSU9(2). Furthermore, since 19 divides |PSU9(2)|, we may assume that

t ∈ CG(z). Since 19 divides 29 +1, we may assume that t is contained in a cyclic subgroup

C29+1 of PSU9(2). In particular, since 29 + 1 = 33 · 19, CG(t) contains a 3-element z1 6= z.

So CG(t) has a subgroup Z = 〈z, z1〉 ∼= C2
3 . Since CG(t) ≤ NG(Y ), Z acts on Y and so, by

Theorem 3.5, Y = 〈CY (u) : u ∈ Z#〉 . Then for each u ∈ Z# we have CY (u)〈t〉 ≤ CG(u).

So we are in the conditions of Lemma 5.5. Hence CX(u) ≤ L1 × L2 × ... × Lj where, for

each i, Li ∼= A±mi(q
ai), or Li ∼= D±mi(q

ai), or Li ∼= E±6 (qai), or Li ∼= E7(qai), and each

projection (Li, t, CX(u)i) is of type (Hs). Then we may apply Propositions 5.47 and 5.71

and Lemmas 5.80 and 5.81 to see that CX(u)i = 1 for each i and so CX(u) = 1. Now

since we chose CX(u) as large as possible we must have X = 1.

We now deal with the case s = 41, p = 3. By Theorem 5.1 (iii), CY (t) = 1. Hence

Y ∼= E38 . Then Y ∼= C8
q+1 and so Y is a maximal torus in G. By Theorem 7.2.2 [Ca] and

Section 3.6 [Ca], we have |NG(Y )|/|Y | = |WE8 | = 214 · 35 · 52 · 7. In particular, 41 does not

divide |NG(Y )|, which is a contradiction.

Therefore we may assume that X is nonabelian. Then we may apply Lemmas 5.4 and 5.5

to obtain X〈t〉 ≤ CG(z) for some z ∈ Z(X) of order p and so X ≤ L1 × L2 × ... × Lj
where, for each i, Li ∼= A±mi(q

ai), or Li ∼= D±mi(q
ai), or Li ∼= E±6 (qai), or Li ∼= E7(qai) and

each projection (Li, t,Xi) is a triple of type (Hs). Then we may apply Propositions 5.47

and 5.71 and Lemmas 5.80 and 5.81 to conclude that for each i, either Xi = 1 or Li ∼=
E−6 (2) and Xi

∼= 33+3. In the latter case p = 3 and so Table 4.7.3A [GLS3] gives exactly

the possibilities for the Li. In particular, we have X ≤ L1 ◦ L2 where L1
∼= E−6 (2) and

L2
∼= A−2 (2). So if X 6= 1 we have X = X1

∼= 33+3. This means that Z(X) and Z(L1)

intersect nontrivially, which contradicts the findings of Lemma 5.80. Hence Xi = 1 for all

i and so X = 1.
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Chapter 6

The Case p 6= r, t a Field

Automorphism

In this Chapter, we consider the triples (G, t,X) of type (Hs) where t is a field au-

tomorphism of G ∈ Lie(r). As in Proposition 2.5 [Ko] we observe that if CG(t) /∈
{A1(2), A1(3), 2B2(2)}, then CG(t) is a maximal subgroup of G by Theorem 1 [BGL].

In particular this means that either CG(t) = NG(X) so that X = [X, t] = 1, or that X /G

so that again X = 1. So we may assume that CG(t) ∈ {A1(2), A1(3), 2B2(2)}

Lemma 6.1. Suppose t is a field automorphism of prime order s > 3 of the finite group

G ∈ Lie(r). We suppose that CG(t) ∼= A1(2) = SL2(2) ∼= S3. Let X be a p-subgroup of

G with p prime, p 6= s, p 6= 2 and suppose that (G, t,X) is a triple of type (Hs). Then

G ∼= A1(2s) and either X = 1 or X ≤ CG(u), where u ∈ CG(t) has order 3. In this case 3

divides 2s + 1, X is a cyclic group whose order pn also divides 2s + 1, and s divides p− 1.

Furthermore, triples (G, t,X) of this type do indeed exist.

Proof. By Lemma 2.9 (b), X is cyclic. Since CG(t) ≤ NG(X) we have an action ϕ of

CG(t) on X. If ϕ is faithful, then we have an injection S3
∼= CG(t) ↪→ Aut(X). Since

X ∼= Cpn , we have Aut(X) ∼= C(p−1)pn−1 . So since CG(t) is noncyclic, it cannot be mapped

injectively into Aut(X), which is a contradiction. Hence ker(ϕ) is nontrivial. Since ker(ϕ)

is normal in CG(t) ∼= S3, it is either of order 6 or order 3.

Case 1: |ker(ϕ)| = 6.

In this case ker(ϕ) = CG(t). This means that the action is trivial. Write CG(t) = 〈u, v〉,
where u is of order 3 and v of order 2. Then X ≤ CG(v). Since CG(v) is a group of order

2s, we have p = 2 which contradicts the hypothesis.

Case 2: |ker(ϕ)| = 3.

Again write CG(t) = 〈u, v〉. Then ker(ϕ) = 〈u〉, so X ≤ CG(u). Since s is odd, 3 divides
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2s+1 and so CG(u) ∼= C2s+1. Hence X is cyclic and pn divides 2s+1, as required. Further,

the group 〈t〉 acts on X and has prime order s, so the kernel of this action has order either

1 or s. If the kernel is order s, then t acts trivially on X and hence X = [X, t] = 1. If it

has order 1, then we see that s divides p− 1 since again Aut(X) ∼= C(p−1)pn−1 , and p 6= s.

It remains to show that if we take an element u ∈ CG(t) of order 3 and X to be any

p-subgroup of CG(u) ∼= C2s+1 such that s divides p − 1, then we do indeed have a triple

(G, t,X) of type (Hs). Since t acts on the cyclic group CG(u), t also acts on its subgroupX.

Now a priori we have X = [X, t]×CX(t) by Theorem 5.1 (iii). Since CX(t) ≤ CG(t) ∼= S3

and CX(t) is a cyclic group, CX(t) has order 1, 2 or 3. If it has order 2 or 3, then p = 2 or

p = 3, which contradicts the assumption that s divides p− 1. Hence CX(t) is trivial and

so X = [X, t]. Further, an order 2 element v ∈ CG(t) acts on CG(u) and so also acts on

X. Hence CG(t) ≤ NG(X). So we have a triple (G, t,X) of type (Hs) (and this situation

does indeed occur, for example when s = 5, p = 11).

Lemma 6.2. Let G ∼= A1(3s). Assume p 6= s, p 6= 3 and otherwise adopt the same

conditions on X, t as in Lemma 6.1, so that CG(t) ∼= A1(3). Then X = 1.

Proof. By Lemma 5.2, we may assume that G ∼= PSL2(3s) and that CG(t) ∼= PSL2(3) ∼=
A4.

Assume p is odd. If X 6= 1, then it is a nontrivial subgroup of G of odd prime power

order. So by Lemma 2.9 (d), NG(X) does not contain a subgroup isomorphic to A4. This

contradicts the assumption that CG(t) ≤ NG(X). Hence X = 1.

Now assume p = 2. Then since X is a 2-group, it is contained in some Y ∈ Syl2(G).

Since 3s ≡ 3 (mod 8) (which is in fact true if s were any odd natural number), we have

Y ∼= C2×C2 by Lemma 2.9 (c). Hence X is isomorphic to one of {1, C2, Y } and so Aut(X)

is isomorphic to one of {1, S3}. So Aut(X) contains only elements of order 1, 2 or 3. Since

t has prime order s > 3, it must act trivially on X. So X = [X, t] = 1.

Lemma 6.3. Take G ∼= 2B2(2s). Again, adopt the conditions of Lemma 6.1 on X and t,

so that CG(t) ∼= 2B2(2) ∼= C5oC4 (A Frobenius group of order 20). Then either X = 1 or

X ≤ CG(y), where y ∈ CG(t) has order 5. In this case 5 divides one of 2s ± 2(s+1)/2 + 1,

X is a cyclic group whose order pn also divides 2s ± 2(s+1)/2 + 1, and s divides p − 1.

Furthermore, triples (G, t,X) of this type do indeed exist.

Proof. By Theorem 9 [S], NG(X) is conjugate to a subgroup of G of one of the following

isomorphism types.

(i) A group 2B2(2b), where b is a proper divisor of s.

(ii) A Dihedral group of order 2(2s − 1).
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(iii) A Frobenius group of order 22s(2s − 1).

(iv) A Frobenius group of order either 4(2s + 2(s+1)/2 + 1) or 4(2s − 2(s+1)/2 + 1).

In case (i), since s is prime, b = 1. Hence CG(t) = NG(X) and so X = [X, t] = 1.

In cases (ii) and (iii), since C5oC4
∼= CG(t) ≤ NG(X), we must have that 5 divides 2s−1.

This can only occur if s is even, which is a contradiction.

Hence we are in case (iv). By Theorem 9 [S], the Frobenius kernel of such a group

is cyclic of order 2s ± 2(s+1)/2 + 1. Hence X ≤ NG(X) is a cyclic group whose order

pn divides this. Note that s divides p − 1 as in Proposition 1. Further, since again

CG(t) ≤ NG(X), there is an action ϕ of CG(t) ∼= C5 o C4 on X. If ϕ is faithful, then

we have an injection 2B2(2) ∼= CG(t) ↪→ Aut(X) ∼= Cpn−1(p−1), which is a contradiction

since 2B2(2) is noncyclic. Hence ker(ϕ) is nontrivial. Further, ker(ϕ) is normal in CG(t).

Since CG(t) is a Frobenius group of order 20, |ker(ϕ)| is not equal to 2 or to 4, and so is

divisible by 5. Hence there is an element y ∈ CG(t) of order 5 which acts trivially on X,

and so X ≤ CG(y), as required.

It remains to show that if we take an element y ∈ CG(t) of order 5 and take X to be a

p-subgroup of CG(y) such that s divides p−1, then we do indeed have a triple (G, t,X) of

type (Hs). Write CG(t) = 〈y, z〉 where z has order 4. As discussed in the proof of Theorem

9 [S], CG(y) is conjugate to a subgroup of a cyclic group of order 2s ± 2(s+1)/2 + 1. So

some conjugate of y is contained in this cyclic group. Then Proposition 16 [S] says that

in fact CG(y) is a conjugate of the entire cyclic group of order 2s ± 2(s+1)/2 + 1. The

automorphism t acts on the cyclic group CG(y) so it also acts on its subgroup X. A priori

we have X = [X, t]× CX(t) by Theorem 5.1 (iii). Since CX(t) ≤ CG(t) and CX(t) is a p-

group with p 6= 2, we have CX(t) ∈ {1, C5}. If CX(t) = C5, then p = 5, which contradicts

the assumption that s divides p− 1. So CX(t) = 1, and X = [X, t] as required. But it is

clear that also z acts on CG(y), so it also acts on X. So CG(t) ≤ NG(X) as required.

6.1 Conclusion

Now we obtain the results of Theorem 1.2 by combining Propositions 3.8, 4.1, 5.47, 5.56,

5.71 and Lemmas 5.72, 5.73, 5.76, 5.78, 5.79, 5.80, 5.81 and 5.82.
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