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Chapter 1

Motivation and

introduction

1.1 Motivation

The motivation of this project is synchronisation at the network level. The

emerging behaviour of synchronisation is ubiquitous in science, nature and en-

gineering. It is found in systems as diverse as clocks, flashing fireflies, cardiac

pacemakers, bursting neurons and applauding audiences (PRK01).

This phenomenon has received much attention from many generations of re-

searchers dating as far back as 1665 when Christiaan Huygens recognised it in

his clocks. However, possibly the earliest record of synchronisation may be found

in the book of Joshua in the Bible when the Israelites besieged the ancient city

of Jericho around 1200 B.C. In brief, the Israelite army was ordered to surround

the city wall and at a trumpet signal, shouted out in unison. It is possible that

the soldiers synchronised with their nearest neighbours to produce a powerful

output of synchronised sound, which forced the wall to crumble down and the

city was subsequently captured. It is unlikely that the ancient generation knew

or understood synchronisation to the extent that they would have been able to

exploit it.

The beauty of this phenomenon is that it is very easily recognised by the hu-

man mind and yet it is immensely puzzling. It is certainly not obvious how

the network with no leader can self-organise into coherence. Insight into this

phenomenon is highly important to scientific and technological progress.

For example the Pre–Bötzinger complex, a unit in our brain containing roughly
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300 neurons, works rhythmically helping us to breathe subconsciously in a ro-

bust and controllable way. However, there can be neuronal dysfunctions such

as in sleep apnoea and possibly sudden infant death syndrome (FN06). Thus to

be able to understand and control this dysfunction would be highly beneficial

to humanity.

The Millennium Bridge in London has shown an undesirable effect termed Syn-

chronous Lateral Excitation where, as the number of walkers on the bridge

increases, the bridge reaches a critical mass and starts to sway causing danger

to the walkers (Mil). It was due to subsequent research taken that a sensible

solution was found and modification of the bridge was made by placing lateral

dampers under the bridge deck.

The advancement of computer technology has provided us valuable tools to

observe what happens at the network level. For example, we can take a very

complicated neuron model and wire many of them together using a computer

program to see what properties can arise (BRS99). However, to gain real un-

derstanding we need to tackle the problem using analytical tools (Str01). This

is a highly difficult task and simplification is inevitable. Reducing the network

to just two oscillators is a natural first step. However, for the case of many

oscillators, major advancement was made by Kuramoto when he considered a

simplified phase model with all-to-all autonomous coupling (Kur84). The sys-

tem was shown to synchronise as it passes a critical mass which provides greater

understanding for the Millennium bridge problem.

However, the Kuramoto phase model is too simplistic and a more realistic ap-

proach can be taken which includes the change in amplitude. This motivated

my thesis project and led me to consider aperiodically forced oscillators. This is

of great interest because the oscillator can receive inputs from other oscillators

in the network with unknown architecture and these inputs are unlikely to be

periodic and can be treated as time–dependent. This will be very useful for the

study of synchronisation of non–autonomous oscillators at the network level.

1.2 Introduction

Oscillations are ubiquitous in nature (Str04, Win80) and the theory of nonlinear

oscillators is very useful in the study of these phenomena (GH83, HS74). Au-

tonomous systems of ordinary differential equations that possess a limit cycle are

commonly employed to model the individual oscillator. In reality, these systems

are invariably subjected to time-dependent influences. The case of time-periodic

forcing has been extensively studied giving rise to the phenomenon of Arnol’d
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tongues (PRK01). However, periodic forcing is a poor representation of many

real situations and relatively little attention has been paid to the case of general

bounded time-dependent forcing.

For weak time-dependent forcing, not necessarily periodic, the response of a

hyperbolic limit cycle oscillator is clear from the theory of normal hyperbolicity

(HPS77, Fen71). In the time–extended space, the limit cycle becomes a nor-

mally hyperbolic cylinder which persists when weakly forced.

To be more specific let us first take the following phase coordinate system based

at the unperturbed limit cycle of period, T , say. For every point γ on the cy-

cle we give it an angle θ ∈ R/TZ which is the time it takes for the trajectory

to reach γ from a reference point on the cycle. To extend this away from the

cycle we can take a tubular neighbourhood of any transverse bundle (a possible

choice is the vector bundle defined by taking the tangent space to the invariant

foliation, a.k.a “isochron”, at the base point on the cycle). Then any point that

lies on the transverse fibre based at γ can be assigned the same angle as that of

γ and we can take its relative position r ∈ Rn from γ to complete the coordinate

system, where the dimension of the system is n+1. The unperturbed limit cycle

is given by r = 0 and we can write the perturbed system in the neighbourhood

of the unperturbed limit cycle as

θ̇ = Θ(θ, r, t)

ṙ = R(θ, r, t). (1.1)

In the unperturbed case, Θ and R are independent of t, Θ(θ, 0, t) = ω = 1/T

and R(θ, 0, t) = 0. We assume that Θ and R are C1. The unperturbed limit

cycle is hyperbolic if the time-T map of the linearised unperturbed dynamics

ξ̇ = Rr(ωt, 0, t)ξ, ξ ∈ Rn (1.2)

has no eigenvalue on the unit circle. The application here will be to stable oscil-

lators, thus the case of interest is when the spectrum is inside the unit circle but

the theory applies equally well even if there is some spectrum outside too. Since

we are studying non-autonomous systems it is convenient to extend the state

space to include time, t, as an additional coordinate. As a result the straight

cylinder, r = 0, in the time–extended space, which represents the product of the

unperturbed limit cycle with time, is normally hyperbolic. By (HPS77, Fen71)

it follows that the straight cylinder persists to a C1– nearby normally hyper-

bolic invariant submanifold r = ρ(θ, t) under bounded C1 perturbation, i.e. the

perturbed system has the invariant submanifold given by ρ. The vector field

on the perturbed cylinder is C1– close to θ̇ = ω, ṫ = 1. Strictly speaking, a
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non–compact version of (HPS77, Fen71) is required.

This is fine as theory, but in practice one would like to know how close the

cylinder is to the unperturbed one and to what extent the dynamics on the

cylinder change. To achieve realistic estimates, I shall present an path–wise

approach to computing the perturbed invariant manifold which has the advan-

tage that there is no graph transform involved and the operator it uses can be

made an arbitrarily strong contraction if coordinates are chosen appropriately,

see Theorem 3.2.2. It could be a persistence theory in itself, however this would

require a result on smoothness which is not shown here. A hybrid approach is

also proposed here in a conjecture which has a graph transform that is poten-

tially a strong contraction if coordinates are chosen appropriately.

The outline of the thesis is as follows. In Chapter 2 we include the theory of

uniform hyperbolicity which captures the behaviour of the dynamic transverse

to the submanifold. We will see that a set of uniformly hyperbolic trajectories is

robust to perturbation of the vector field that generate these trajectories. This

will be used to prove invertibility for a Newton step in Chapter 3, which outlines

the path–wise approach to computing the normally hyperbolic invariant man-

ifold and the hybrid approach. The graph transform method due to (HPS77)

will also be briefly covered and a comparison between their method and ours

is given. Given that the invariant manifold can be approximated the next step

is to investigate the dynamics on it, for example synchronisation, which is the

subject of Chapter 4. Pseudo–codes and C++ header files based on the theo-

ries of Chapter 3 will be given in Chapter 5 for attracting systems. These are

implemented for a simple aperiodically forced oscillator with numerical results

for both methods. These methods are also tested on a physiologically relevant

oscillator described in Chapter 6 where periodic, two–frequency and Poisson

spike train forcing were explored. Finally the thesis ends with Chapter 7 which

summarises each chapter with conclusions and discussions.
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Chapter 2

Uniform hyperbolicity

We are primarily interested in normal hyperbolicity of invariant manifolds,

whose analysis includes the dynamics in the centre direction as well as the

transverse direction to the manifold. This will require the theory of uniform hy-

perbolicity, which restricts attention to the transverse direction only. Uniform

hyperbolicity can be stated in a functional form, in particular the invertibility

of the associated linear operator (BM03). This is equivalent to the concept of

exponential dichotomies which gives the existence of splittings of exponentially

contracting and expanding complementary linear spaces through time (Cop78).

Viewing Uniform Hyperbolicity in terms of exponential dichotomy is more intu-

itive as it can be used to describe the linearised transverse direction of nonlinear

systems. However, the functional form is useful to us as it provides invertibility

of an operator which will be employed in a Newton operator as seen in Chapter

3. We will show one direction of the equivalence, in particular, invertibility

implies exponential dichotomy. See (Cop78) for more details on the subject

of exponential dichotomy where exponential on “half” lines, R− and R+, were

dealt with individually. Here we deal with the entire real line R.

Uniformly hyperbolic sets of system arising from a time dependent vector field

u in the centre direction is developed here which is not studied in (Cop78).

Each system in the set is given by a matrix evaluated at a trajectory of u which

has initial value y0 at t0. It is shown that the projections, thus the splittings,

in the exponential dichotomy vary Hölder continuously with the initial value

y0. Moreover, a perturbation result is also achieved here where if ũ is a small

enough perturbation of u, the set of systems arising from ũ is also a uniformly

hyperbolic set.
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2.1 Preliminaries

The following two lemmas are applied to general linear operators which I include

without proof. They concern the invertibility of perturbed linear operators and

their bounds, which can be useful here. See (Kat76) for details. We denote the

space of bounded linear operators from Banach space X to Banach space Y by

B(X,Y ).

Lemma 2.1.1 Assume the linear operator P ∈ B(X,Y ) is such that ||P || < 1.

Then the Neumann series Q = (I − P )−1 =
∑∞
n=0 P

n is well defined and we

have the following bounds

||Q|| ≤ (1− ||P ||)−1, ||Q− I|| ≤ ||P ||
1− ||P ||

. (2.1)

Lemma 2.1.2 Consider the linear operators T, µ ∈ B(X,Y ) and assume T−1 ∈
B(Y,X) exists and µ is T -bounded, i.e. |µu| ≤ a|u| + b|Tu| for all u with

constants a, b ≥ 0. If we have a||T−1|| + b < 1 then a perturbation of T given

by S = T + µ is invertible and we have the following bounds

||S−1|| ≤ ||T−1||
1− a||T−1|| − b

, ||S−1 − T−1|| ≤ ||T
−1||(a||T−1||+ b)

1− a||T−1|| − b
. (2.2)

We will make use of the special case b = 0.

2.2 Linear non–autonomous systems

Take the following free (unforced) system,

ẋ = A(t)x for t ∈ R and x ∈ V (2.3)

where V is an n–dimensional vector space and A(t) a bounded n × n matrix

function. This system has a matrix solution X(t, s) with X(s, s) = I for all

s ∈ R, i.e. it satisfies

∂1X(t, s) = A(t)X(t, s). (2.4)

Note that by differentiating the identity X(t, s)X(s, t) = I with respect to s,

∂2X(t, s)X(s, t) = −X(t, s)∂1X(s, t), (2.5)

and thus X(t, s) also satisfies ∂2X(t, s) = −X(t, s)A(s).
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We will be considering the forced system

ẋ = A(t)x+ f(t) (2.6)

with the forcing, f , lying in the space of bounded continuous functions

C0 = {f : R→ V
∣∣ |f |0 <∞} (2.7)

where |f |0 := sups∈R |f(s)|. We will take the space of response to a forcing to

be the space of continuously differentiable functions

C1 = {x : R→ V | |x|1 <∞} (2.8)

where |x|1 := max{|x|0, τ |ẋ|0}. A timescale τ > 0 is included to make the

norm scalable with respect to changes in time unit and typically will be chosen

to satisfy τ |A| ≤ 1, which is chosen to simplify estimates.

The matrix function A in the free system (2.3) has an associated linear operator

given by

L : C1 → C0 (2.9)

ξ 7→ ξ̇ −A(t)ξ.

Note that the operator L is invertible if and only if the forced system (2.6) has

a unique bounded response for each forcing f ∈ C0.

A simple example is given by A(t) = vy(y(t), t), vy denoting the partial deriva-

tive, which gives the linearised dynamics around a solution, y(), of a vector field,

ẏ = v(y, t), thus typically, A belongs to a set of matrix functions defined by the

set of solutions y().

We will work with the set of bounded continuous matrix functions F . Since

every matrix A ∈ F has an associated linear operator L as described above we

can view F to be the set of those linear operators.

Definition 2.2.1 (Uniformly hyperbolic linear system) The free linear

system (2.3) given by a bounded matrix function A is uniformly hyperbolic with

bound K > 0 if the associated operator, L, is invertible with ||L−1||−1 ≥ K

using the operator norm.

Note that since τ is used to define the norm of the range of L−1, K depends

on the choice of τ . Due to invertibility, a small perturbation of a uniformly

hyperbolic system has a bounded inverse. This is the case for any general

invertible linear operator from one Banach space to another as seen in Lemma
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2.1.2. The following special case is useful.

Lemma 2.2.1 Assume L is uniformly hyperbolic and ||∆L|| < ||L−1||−1. Then

L′ = L−∆L is invertible and ||L′−1||−1 ≥ ||L−1||−1 − ||∆L||.

Definition 2.2.2 (Uniformly hyperbolic set) A set F of bounded matrix

functions is a uniformly hyperbolic set with bound K > 0 if for each member

A ∈ F the associated operator L is invertible with ||L−1||−1 ≥ K using the

operator norm.

2.3 Functional analysis and exponential dichotomy

2.3.1 Exponential dichotomy

Here we will see that invertibility of the linear operator L implies exponential

dichotomy. In fact the reverse is also true (Cop78).

Definition 2.3.1 A matrix P is a projection if P 2 = P . The range and kernel

of P are denoted by R(P ) and N (P ) respectively.

Definition 2.3.2 (Exponential Dichotomy) The free linear system (2.3) has

an exponential dichotomy if there are complementary invariant projections P±(s),

exponent µ > 0 and constant C(µ, τ) such that for x±(s) ∈ R(P±(s))∣∣X(t, s)x+(s)
∣∣ ≤ Ce−µ(t−s)|x+(s)| for s ≤ t,∣∣X(t, s)x−(s)
∣∣ ≤ Ce−µ|t−s||x−(s)| for t ≤ s. (2.10)

for every s ∈ R.

Let us now state and prove a theorem which states that uniform hyperbolicity

implies exponential dichotomy.

Theorem 2.3.1 If the free linear system (2.3) is uniformly hyperbolic then it

has an exponential dichotomy.

The proof is adapted from (Cop78) where the major change is that we are

dealing with the entire real line R and not just the half line R+ = [0,∞).

Proof: Given the associated linear operator L is invertible with ||L−1||−1 ≥ K
we will show that there are complementary projections P± at each point s ∈ R,

bounded uniformly in s. Moreover, for any µ ∈ [0,K) there is C(µ, τ) ∈ R, such

that for x(s) ∈ E±(s) = R(P±(s)) the trajectory of x(t) satisfies

|x(t)| ≤ Ce−µ|t−s||x(s)| for s ≶ t, respectively.
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Figure 2.1: A sketch of the tent map φ and its integral Φ.

Obtaining P±

Choose timescale τ > 0 such that |A| ≤ 1/τ . Given time s ∈ R, for any vector

x0 at s we wish to split x0 into two components, one with a bounded forward

orbit and the other with bounded backward orbit. Let x be the unbounded

solution of the free linear system (2.3) from the initial condition x(s) = x0 6= 0.

Without loss of generality, we take s = 0. Now consider the tent map and its

integral as follows

φ(t) =

{
1− |t|/τ for |t| < τ

0 otherwise

Φ(t) =

∫ t

0

φ(t) =

{
t− sgn(t) t

2

2τ for |t| < τ

sgn(t) τ2 otherwise

For a sketch of φ and Φ see figure 2.1. Let ζ = Φx and η = φx, then differ-

entiation ζ with respect to time we have ζ̇ = A(t)ζ + η. By the definition of

uniform hyperbolicity there is a unique bounded solution β = L−1η. Now let

x+ = (β − ζ)/τ +
1

2
x

x− = (β − ζ)/τ − 1

2
x (2.11)

and note that x+ satisfies ẋ+ = Ax+ and equals β/τ for t > τ , so is bounded

for t ≥ s = 0. Similarly, x− satisfies ẋ− = Ax− and equals β/τ for t < −τ , so

is bounded for t ≤ s = 0. See figure 2.2 for a sketch of x±(s) and their forward

and backward orbit respectively. Then x = x+ − x− and we define

P+x0 = x+(0)

P−x0 = −x−(0).

15



Figure 2.2: A sketch showing the vector spaces E±(s) as the range of the re-
spective projections P±(s) varying through time. The arrows from the origin
at time s on E±(s) indicate the respective vector space contracts forward and
backward in time respectively. Also shown, at time s, the point x is projected
to x±(s) by P±(s) respectively.

By construction, since L−1 is linear, P± are linear and sum to the identity.

The ranges of P± have intersection {0} since the free linear system has no

non–trivial bounded solution on the whole of R. To see they are projections,

take P+x0 = x+(0) as new initial condition and define η+, ζ+, β+ to be the

corresponding functions above. Then (β+−ζ+)/τ− 1
2x+ is bounded not only for

t < 0 but also for t > 0 since each of its terms is bounded for t > 0. But the free

linear system has no non–trivial bounded solution, thus (β+−ζ+)/τ − 1
2x+ = 0,

i.e. P−P+x0 = 0. From P+ + P− = I we deduce that P 2
± = P±. To obtain

uniform bounds for P±, note that from the choice of τ , |x(t)| ≤ e|t|/τ |x0|,

|β(0)| ≤ |β|0 ≤ |β|1 ≤ K−1|η|0 = K−1 sup
|t|<τ

(1− |t|
τ

)|x(t)| ≤ K−1|x0| (2.12)

since (1− |t|τ )e|t|/τ is a decreasing function of |t|. Also noting ζ(0) = 0 we have

|x+(0)| = |(β(0)− ζ(0))/τ +
1

2
x(0)| ≤ (

1

Kτ
+

1

2
)|x0| (2.13)

Thus |P+| ≤ 1
Kτ + 1

2 and similarly |P−| ≤ 1
τK + 1

2 .

To show invariance of P± under the linear flow, let P̃±(t) = X(t, 0)P±(0)X(0, t).

They are complementary projections at t and the forward orbits from R(P̃+(t))
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Figure 2.3: A sketch of the “switch” map ψ and its integral Ψ.

are bounded while the backward orbits from R(P̃−(t)) are bounded. The latter

condition determines P±(t) uniquely, so P±(t) = P̃±(t). Hence, the invariance

condition P±(t)X(t, 0) = X(t, 0)P±(0).

Obtaining C(µ, τ)

To obtain the exponentially decaying bounds for x± we make use of the “switch”

map and its integral, see figure 2.3 for a sketch,

ψ(t) =

{
t
τ for |t| < τ

sign(t) otherwise

Ψ(t) =

∫ t

0

ψ(u)du =

{
t2

2τ for |t| < τ

|t| − τ
2 otherwise.

(2.14)

Consider the following perturbed linear operator

Lµ : C1 → C0 (2.15)

ζ 7→ ζ̇ −Aζ − µψζ.

For µ ∈ [0,K), Lµ is invertible with ||L−1
µ ||−1 ≥ K − µ (applying Lemma 2.2.1

with b = 0). Let x̃ = xeµΨ, β̃ = βeµΨ and η̃ = φx̃. Then

Lµβ̃ = η̃ ⇒ |β̃|1 ≤
1

K − µ
|η̃|0. (2.16)

We show that |η̃|0 = |x0|. Note that K−1 ≥ τ (otherwise by Lemma 2.1.2

L + A = ∂t would be invertible, which is not the case) so µ < 1/τ since K ≤

17



|A| ≤ 1/τ. We have

|η̃|0 ≤ sup
|t|<τ

|φ(t)x(t)eµΨ(t)| = sup
|t|<τ

(1− |t|/τ)|x0|e
|t|
τ e

t2

2τ2 ≤ |x0| (2.17)

since (1 − |t|/τ)e
|t|
τ e

t2

2τ2 is a decreasing function of |t|. But η̃(0) = x0, so we

have the required equality. Then |β̃|1 ≤ 1
K−µ |x0| and so

|β(t)| ≤ 1

K − µ
|x0|e−µΨ(t). (2.18)

Now if x0 ∈ R(P+) then x+ = β
τ + ( 1

2 −
Φ
τ )x+, so

x+ =
β

Φ + τ/2
(2.19)

and thus

|x+(t)| ≤ e−µΨ|x0|
(K − µ)(Φ + τ/2)

. (2.20)

So

|x+(t)| ≤ C ′(t)e−µt|x0| with C ′(t) =
eµ(t−Ψ)

(K − µ)(Φ + τ/2)
. (2.21)

For t ≥ 0, t−Ψ(t) = Φ(t) and C ′ is non–increasing so we have the bound

C(µ, τ) ≤ 2

(K − µ)τ
for t ≥ 0. (2.22)

Proceed similarly for x0 ∈ R(P−) and negative time.

Note that this bound can be improved to

C(µ, τ) ≤ eµτ/2

(K − µ)τ
for t ≥ τ. (2.23)

�

Remarks 1

(i) One can optimise the decay estimate (2.21) over µ by using the bound

(2.23). The optimum over µ is at µ = K − 1
t−τ/2 which is valid for

t ≥ 3
2K if we set τ > 1/K. Then the following bound can be obtained

|x+(t)| ≤ (
t

τ
− 1

2
)e1−K(t−τ/2)|x0| for t ≥ 3

2K
. (2.24)
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(ii) The functions φ and ψ could be chosen asymmetrically, and different val-

ues of µ could be used for positive and negative time; if the resulting oper-

ator (call it Lµ+,µ−) happens to remain invertible for larger values of one

or both of µ± then stronger decay estimates follow. In particular, in the

attracting case, P− = 0.

2.3.2 Green functions and bounds on response for certain

types of forcing

The following definition can be found in (Cop78).

Definition 2.3.3 The Green’s function for a uniformly hyperbolic linear system

is the matrix on R2 defined by

G(t, s) =

{
X(t, s)P+(s) for s < t

−X(t, s)P−(s) for t < s.

Fixing s, G(t, s) is the unique bounded solution of ẋ(t) = A(t)x(t) for t 6= s with

G(s+, s)−G(s−, s) = I. Note that by invariance of the projections, G(t, s) can

also be written as

G(t, s) =

{
P+(t)X(t, s) for s < t

−P−(t)X(t, s) for t < s

and that ∂2G(t, s) = −G(t, s)A(s) for s 6= t,

G(t, t+)−G(t, t−) = I (2.25)

Theorem 2.3.2 If the linear system (2.3) is uniformly hyperbolic then it has

the following properties.

(i) The unique bounded response x = L−1[f ] of (2.6) to the forcing, f , can be

written as

x(t) =

∫ +∞

−∞
G(t, s)f(s)ds. (2.26)

(ii) For any µ ∈ [0,K) there exists D(µ) such that |G(t, s)| ≤ De−µ|t−s|.

(iii) If |f(s)| ≤ εeµ|s| for some µ ∈ [0,K) then |x(t)| ≤ εeµ|t|

(K−µ) .

(iv) If T > 0 and f is a bounded function with f(s) = 0 for all s ∈ (−T, T )

then |x(t)| ≤ e−µ(T−|t|)

K−µ |f |; optimising over µ ∈ [0,K) yields

|x(t)| ≤ (T − |t|)e1−K(T−|t|)|f | for |t| ≤ T − 1/K. (2.27)

19



Proof:

(i) We can verify this by differentiating (2.26) w.r.t. t, taking care to first

split the integral at s = t where the integral is not differentiable:

ẋ(t) =

∫ +∞

−∞
A(t)G(t, s)f(s)ds+ P+(t)f(t) + P−(t)f(t)

=A(t)x(t) + f(t). (2.28)

But L−1[f ] is the unique bounded solution of ẋ = Ax+ f , thus it is given

by (2.26).

(ii) A bound on |G(t, s)| can already be obtained by composition of those

of the previous theorem for the projections and the evolution of vectors

in their ranges, but it will be useful to sharpen the estimate as follows.

Repeat the estimates using Lµ as in the proof of the previous theorem to

obtain (2.18). Then x+ = β
τ + ( 1

2 −
Φ
τ )x implies

eµt|x+(t)| ≤
(
eµ(t−Ψ(t))

τ(K − µ)
+ (

1

2
− Φ(t)

τ
)eµtet/τ

)
|x0| for t ≥ 0. (2.29)

Note that for t ≥ 0, t − Ψ(t) attains its sup value of τ
2 at t ≥ τ ; ( 1

2 −
Φ(t)
τ )e(µ+ 1

τ )t attains its sup value of 1
2 at t = 0 since it is a decreasing

function on t ≥ 0. Thus

|x+(t)| ≤ De−µt|x0| (2.30)

for t ≥ 0 with D = eµτ/2

(K−µ)τ + 1
2 . Similarly |x−(t)| ≤ De−µt|x0| for t ≤ 0.

This result could be optimised over µ if desired.

(iii) If |f(s)| ≤ εeµ|s| then Lx = f is equivalent to L−µx̃ = f̃ with x̃ = e−µΨx

and f̃ = e−µΨf , where L−µ is as defined in (2.15) but using the opposite

sign of µ and Ψ is as defined in (2.14) except now we allow its value of

τ to differ from that in the definition of the norm | · |1 in (2.8). Then

||L−1
−µ||−1 ≥ K − µ for µ ∈ [0,K), so

|x̃| ≤ |f̃ |
K − µ

. (2.31)

This gives

|x(t)e−µΨ(t)| = |x̃(t)| ≤ |f̃ |
K − µ

≤ ε

K − µ
. (2.32)

This holds true for all τ > 0 so we can take τ to 0 to obtain the result.
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(iv) If f is a bounded function with f(s) = 0 for all s ∈ (−T, T ) then again

(2.31) with τ → 0 gives

|x(t)| ≤ e−µ(T−|t|)|f |
K − µ

. (2.33)

The minimum over µ ∈ [0,K) is achieved at µ = K − 1
|t|−T which is in

[0,K) for |t| ≤ T − 1/K, giving the optimised result.

�

Theorem 2.3.3 If 0 ≤ α < K ≤ ||L−1||−1, |f(s)| ≤ F , |f(s)| ≤ εeα|s| for

s ∈ (−T, T ), x = L−1[f ], |t| ≤ T − 1/K, then

|x(t)| ≤ ε

K − α
eα|t| + (T − |t|)e1−K(T−|t|)F. (2.34)

Proof: Consider

f1(t) =


f(t) for |t| < T

(t+ T + 1)f(−T ) for −T − 1 < t < −T
(T + 1− t)f(T ) for T < t < T + 1

0 for |t| > T + 1

and

f2(t) =


0 for |t| < T

f(t)− (t+ T + 1)f(−T ) for −T − 1 < t < −T
f(t)− (T + 1− t)f(T ) for T < t < T + 1

f(t) for |t| > T + 1.

Note that f = f1 + f2, so we have

|x(t)| ≤ |L−1[f1](t)|+ |L−1[f2](t)| (2.35)

By Theorem 2.3.2 (iii) and (iv), we have |L−1[f1](t)| ≤ εeα|t|

K−α and |L−1[f2](t)| ≤
(T − |t|)e1−K(T−|t|)F for |t| ≤ T − 1/K. Adding the two gives the result. �

The use of this result is to suppose that ε is small and that we can take T =
1
γ log F

ε for some γ ∈ (α,K). Then roughly speaking the first term of (2.34)

dominates for |t|/T < K−γ
K−α . T goes to infinity as ε → 0. We put this into

Corollary 2.3.1.

Corollary 2.3.1 Let T = 1
γ log F

ε then for |t|/T < K−γ
K−α we have

|x(t)| ≤ ε+O(ε)

K − α
eα|t|.
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Hence |x(t)| ≤ ε+O(ε)
K−α eα|t|, uniformly on any bounded interval of t.

Proof: Consider the ratio ρ = ye1−yx of the second term of (2.34) to the first

where y = (K − α)(T − |t|) and x = F
εeαT

. So ρ ≤ 1 when y ≥ g(x) where g is

the inverse function to ey−1/y on y ≥ 1.

We will show that g is bounded above by the function ḡ(x) = log(2ex log(ex)).

Consider the equation x = ey−1/y which, after some manipulation, gives

log(2ex(log xe)) = y + log(2(1− log y
y )). But log y

y has maximum at y = e1 with

largest value e−1, so 2(1− log y
y ) ≥ 1 giving us ḡ ≥ g.

So y ≥ ḡ(x) implies the second term (2.34) is at most the first. Now log x =

log F
ε − αT = (γ − α)T if we take T = 1

γ log F
ε with γ ∈ (α,K). Thus

the second term is at most the first when y ≥ log x + log(2e(1 + log x)) i.e

(K − α)(T − |t|) ≥ (γ − α)T + log(2e(1 + (γ − α)T )) which gives

|t| ≤T − 1

K − α
((γ − α)T + log(2e(1 + (γ − α)T )))

≤K − γ
K − α

T − 1

K − α
log(2e(1 + (γ − α)T )). (2.36)

Similarly, for any p > 0, we obtain ρ ≤ p if y ≥ g(x/p), which is true if

|t| ≤ K − γ
K − α

T − 1

K − α
log(

2e

p
(1 + (γ − α)T ) + log(1/p)).

≤ K − γ
K − α

T. (2.37)

�

2.3.3 Continuity of the splitting

Let F be a uniformly hyperbolic set, then it can be useful to know how the

projections P±(t) vary across the members of the set. With some Lipschitz

conditions on how the set is generated it can be shown that the projections vary

Hölder continuously. This is stated more precisely in the following theorem.

Definition 2.3.4 Let A be a matrix function evaluated on the time–extended

state space. Take F to be the set of those matrix functions that are given by

A(t) = A(y(t), t) where y(·) is an orbit of some vector field ẏ = u(y, t). We say

F is generated by A and u.

Theorem 2.3.4 Assume A (bounded) and u are Lipschitz and let F be a uni-

formly hyperbolic set generated by A and u, then the projections P±(t) vary

Hölder continuously with the initial condition y0 at time t = 0.
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The difficulty here is that the trajectories from nearby y0 at t = 0 may separate

arbitrarily far and the bound

|∆A| ≤ Var(A) = sup
y1,y2,t

|A(y1, t)−A(y2, t)| (2.38)

is in general insufficient to apply the perturbation Lemma 2.2.1 and in any case

is insensitive to |∆y0|. Thus we will need to work harder.

Before we state the proof, we note one simple consequence of the continuity

of P± in the finite-dimensional case – their ranks are constant on connected

components, which can be easily argued by contradiction: Let P and P ′ be

projections based at y0 and y′0 respectively where |y0 − y′0| is arbitrarily small.

Assume P ′ has greater rank than P , then by counting dimensions N (P )∩R(P ′)

is non–trivial. Thus it contains a non-zero v that satisfies Pv = 0 and P ′v = v,

so |P − P ′| ≥ 1, which contradicts continuity.

Proof: Unless stated otherwise, all integrals are definite integrals over R. First,

we note the difference between the inverses of two invertible linear operators is

given by

L−1
1 − L

−1
0 = L−1

1 (L0 − L1)L−1
0 . (2.39)

In our case L0 − L1 = ∆A = A1 − A0, so if we denote ∆G(t, u) := G1(t, u) −
G0(t, u), we have∫

∆G(t, u)f(u)du =(L−1
1 − L

−1
0 )[f ](t)

=

∫
G1(t, s)∆A(s)

(∫
G0(s, u)f(u)du

)
ds

=

∫ (∫
G1(t, s)∆A(s)G0(s, u)ds

)
f(u)du

(2.40)

which gives

∆G(t, u) =

∫
G1(t, s)∆A(s)G0(s, u)ds.

Thus we have

∆P+(t) = ∆G(t+, t) =

∫
G1(t+, s)∆A(s)G0(s, t)ds. (2.41)

Now |∆A| ≤ V = V ar(A) ≤ 2|A| gives a crude estimate but for s near 0 we can

do better. Specifically, if λ = Lipyu and α = LipyA then we get the Gronwall’s
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estimate |∆y(t)| ≤ eλ|t||∆y0|, so |∆A(t)| ≤ αeλ|t||∆y0|.

Using the estimate of |G(t, s)| ≤ De−µ|t−s| of Theorem 2.3.2 (ii) we obtain

|∆P+(t)| ≤
∫
D2e−2µ|t−s|min{αeλ|s||∆y0|, V }ds. (2.42)

Supposing |∆y0| ≤ V/α, let s∗ ≥ 0 be the value such that αeλs
∗ |∆y0| = V ,

so eλs
∗

= V
α|∆y0| . Taking |∆y0| small enough so that −s∗ < t and assuming

without loss of generality that t < 0,

|∆P+(t)| ≤
∫ −s∗
−∞

D2V e−2µ|s−t|ds+

∫ t

−s∗
+

∫ 0

t

+

∫ s∗

0

D2e−2µ|s−t|αeλ|s||∆y0|ds

+

∫ ∞
s∗

D2V e−2µ|s−t|ds. (2.43)

See Figure 2.4 for a sketch of the exponential bounds and the five regions of

Figure 2.4: A sketch of e−2µ|t−s| and min{eλ|s|, V } with t fixed and s varying.
Note the five integration regions of (2.43) are [−∞,−s∗], [−s∗, t], [t, 0], [0, s∗] and
[s∗,∞].
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integration. Putting ξ = α|∆y(0)|/V ≤ 1, each integral evaluates as follows

1st integral ≤
∫ −s∗
−∞

V D2e2µ(s−t)ds

≤V D
2

2µ
e2µ(s∗−t)

≤V D
2

2µ
e2µ|t|ξ2µ/λ,

2nd integral ≤
∫ t

−s∗
V D2ξe(2µ−λ)s−λtds

≤ V D2

2µ− λ
ξ

(
eλ|t| − ξ2µ/λe

2µ
λ |t|ξ−1

)
≤ V D2

2µ− λ
eλ|t|

(
ξ − ξ2µ/λe(2µ−λ)|t|

)
,

Note that if λ = 2µ this term is interpreted as V D2

λ e−2µtξ log ξ−1.

3rd integral ≤
∫ 0

t

V D2ξe−2µ(s−t)e−λtds

≤ V D2

−2µ− λ
ξ

(
e2µt − e−λt

)
,

4th integral ≤
∫ s∗

0

V D2e−2µ(s−t)eλtds

≤ V D2

2µ− λ
e−2µ|t|

(
ξ − ξ2µ/λ

)
≤ V D2

2µ− λ
e−2µ|t|

(
ξ − ξ2µ/λe4µ|t|

)
,

5th integral ≤
∫ ∞
s∗

V D2e−2µ(s−t)ds

≤V D
2

2µ
e−2µ|t|ξ2µ/λ.

Thus for small enough |∆y0| we have |∆P+(t)| = O(|∆y0|δ) for some 0 < δ

(although not uniformly over t) hence P+ is Hölder continuous with respect to

y0. Note that if 2µ > λ then P+ is Lipschitz with respect to y0. We can see this
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as follows:

1st + 5th integral ≤ V D2

µ
e2µ|t|ξ2µ/λ

2nd + 4th integral ≤ V D2

2µ− λ

(
eλ|t| + e−2µ|t|

)
ξ − 2V D2

2µ− λ
e2µ|t|ξ2µ/λ. (2.44)

So the sum of all four integral is bounded by

1st + 5th + 2nd + 4th ≤ V D2

2µ− λ

(
eλ|t| + e−2µ|t|

)
ξ +

(
V D2

µ
− 2V D2

2µ− λ

)
e2µ|t|ξ2µ/λ

≤ V D2

2µ− λ

(
eλ|t| + e−2µ|t|

)
ξ − λV D2

2µ− λ
e2µ|t|ξ2µ/λ

≤ V D2

2µ− λ

(
eλ|t| + e−2µ|t|

)
ξ. (2.45)

Adding the bound for the 3rd integral we have |∆P+(t)| = O(ξ) = O(|∆y0|)
hence P+ is Lipschitz with respect to y0.

The same applies to P−. �

At a later stage we will consider a perturbed set F̃ generated by A and ũ, a

perturbation of u. It will be useful to know that the Green’s function resulting

from a concatenation of truncated orbits of the perturbed and unperturbed

systems also varies Hölder continuously. The specific choice will be given on the

next page. For now, take a trajectory ỹ(·) of the perturbed system ẏ = ũ(y, t)

and consider the unperturbed trajectory y(·) that passes through (ỹ(σ), σ) for

some σ. First we calculate a time S that |∆A(t)| = |A(ỹ(t), t)−A(y(t), t)| ≤ η
remains true for |t− σ| ≤ S for some η (we will truncate ỹ at σ ± S). Now the

difference ∆y(t) between the perturbed and unperturbed trajectory starting at

(ỹ(σ), σ) evolves by

∆ẏ = ũ(ỹ, t)− u(y, t) = ∆u(ỹ, t) + (u(ỹ, t)− u(y, t)) (2.46)

starting from ∆y(σ) = 0. The second term is at most λ∆y(t) where λ is the

Lipschitz constant of u, so we have the Gronwall’s estimate

|∆y(t)| ≤
∫ t

σ

dseλ|s−σ||∆u(ỹ(s), s)|

≤ eλ|t−σ| − 1

λ
|∆u|

≤ eλ|t−σ|

λ
|∆u|. (2.47)
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Taking Lipschitz constant α for A we obtain

|∆A(t)| ≤ α|∆y(t)| ≤ α

λ
eλ|t−σ||∆u|. (2.48)

Thus |∆A(t)| ≤ η for all |t− σ| ≤ S if

e−λS =
α

λ

|∆u|
η

. (2.49)

The choice of η determines how big the perturbation |∆u| can be.

We are now ready to define, for any σ, a concatenated path as follows

yσ(t) =


ỹ(t) for |t− σ| ≤ S
y(t) for |t− σ| ≥ S + ε0

yσ−(t) for σ − S − ε0 < t < σ − S
yσ+(t) for σ + S < t < σ + S + ε0

where y is the unperturbed trajectory passing through (ỹ(σ), σ),

yσ−(t) = τσ−(t)ỹ(σ − S) + (1− τσ−(t))y(σ − S − ε0) and

yσ+(t) = τσ+(t)ỹ(σ+ S) + (1− τσ+(t))y(σ+ S + ε0) with τσ− : t 7→ t−(σ−S−ε0)
ε0

and

τσ+ : t 7→ t−(σ+S)
ε0

. So yσ is essentially a concatenation of truncation of ỹ and y

with yσ− and yσ+ (see Figure 2.5). Note that ε0 can be chosen to be as small as

we wish.

Figure 2.5: A sketch of yσ(t) for the case σ = 0 which is a concatenation of y(t)
for t ∈ [−∞,−(S + ε0)], yσ−(t) for t ∈ [−(S + ε0),−S], ỹ(t) and t ∈ [−S, S],
yσ+(t) for t ∈ [S, (S + ε0)] and y(t) for t ∈ [(S + ε0),∞]
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Corollary 2.3.2 Assume L : x 7→ ẋ−A(y(t), t)x has bound ||L−1||−1 ≥ K and

let η < K/2. Fix ε0 ≤ η/(α|u|) where α = LipyA and consider the following set

of operators parametrised by σ

Lσ : C1 → C0

x 7→ ẋ−Aσ(t)x (2.50)

with Aσ(t) = A(yσ(t), t). Then Lσ is invertible and the Green’s function Gσ is

continuous with respect to σ.

Proof: Unless stated otherwise, all integrals are definite integrals over R. Lσ

is invertible since it can be shown to be just a small perturbation of L. Firstly,

we show that |∆A(t)| := |A(yσ(t), t)−A(y(t), t)| ≤ 2η for all t.

It is clear that |∆A(t)| = 0 for |t− σ| ≥ S + ε0 and from how S was calculated

we see that |∆A(t)| ≤ η for |t− σ| ≤ S.

Now for σ − S − ε0 < t < σ − S we have

|∆A(t)| ≤ α|y−(t)− y(t)| = α|τσ−(t)(ỹ(σ − S)− y(σ − S − ε0))|

≤ α|ỹ(σ − S)− y(σ − S − ε0))|

≤ α|ỹ(σ − S)− y(σ − S))|+ α|y(σ − S)− y(σ − S − ε0)|

≤ αe
−λS

λ
|∆u|+ α|u|ε0 ≤ η + η

≤ 2η. (2.51)

Similarly for σ+S < t < σ+S+ ε0 we have |∆A(t)| ≤ 2η. Note that ε0 can be

chosen very small so that better bounds can be obtained, i.e. |∆A| ≤ (1 + ε)η

for some small ε.

So Lσ is a perturbation of L with ||∆L|| = |∆A| ≤ 2η. By Lemma 2.2.1, if

2η < K then Lσ is invertible with bound

||L−1
σ ||−1 ≥ K − 2η. (2.52)

To show the Green’s function Gσ is continuous with respect to σ we prove the

projections Pσ± are continuous with respect to σ. Let us assume without loss of

generality σ′ < σ = 0. Now consider yσ
′

which is a concatenation of truncations

of ỹ and y′ with yσ
′

+ and yσ
′

− where y′(·) is a solution of the unperturbed system

passing through (ỹ(σ′), σ′), see Figure 2.6) for a sketch of yσ and yσ
′
. Taking
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Figure 2.6: A sketch of yσ
′

and yσ

|∆Aσ| = |Aσ −Aσ′ | then just as in expression (2.41) we have

∆Pσ+(t) =

∫
Gσ(t+, s)∆Aσ(s)Gσ′(s, t)ds. (2.53)

We see that ∆Aσ(s) = ∆A(s) := A(y(s), s) − A(y′(s), s) for s < σ′ − S − ε0

and s > S + ε0 and ∆Aσ(s) = 0 for −S < s < S + σ′. Using the estimate of

|Gx(t, s)| ≤ De−µ|t−s| of Theorem 2.3.2 (ii) where x = σ, σ′ and µ ∈ [0,K − 2η)

we have the following bound

|∆Pσ+(t)| ≤
∫
D2e−2µ|t−s||∆A(s)|ds+

∫ −S
σ′−S−ε0

+

∫ S+σ′

S+ε0

D2e−2µ|t−s||∆Aσ(s)|ds.

(2.54)

We show that each integral is O(|∆σ|δ) = O(|σ′|δ) for some 0 < δ which implies

Hölder continuity. From the bound in (2.42) we saw the 1st integral is O(|∆y0|δ).
But |∆y0| = |y(0) − y′(0)| ≤ |y(0) − ỹ(σ′)| + |ỹ(σ′) − y′(0)| ≤ |ũ||σ′| + |u||σ′|
hence O(|∆y0|δ) = O(|∆σ|δ). Now let us treat the 2nd integral (by symmetry

the 3rd is the same), which can be further split into 3 integrals

2nd integral ≤
∫ −S−ε0
σ′−S−ε0

+

∫ σ′−S

−S−ε0
+

∫ −S
σ′−S

D2e−2µ|t−s||∆Aσ(s)|ds. (2.55)

Now the first and third integral of (2.55) are O(|σ′|) as they are integrals of

bounded functions over a range of length |σ′|. For the second integral of (2.55)
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we first show |∆Aσ(s)| = O(|σ′|) for s ∈ [−S − ε0, σ
′ − S] as follows

|∆Aσ(s)| ≤α|yσ−(s)− yσ
′

− (s)|

≤α
∣∣τσ−(s)ỹ(−S)− τσ

′

− (s)ỹ(σ′ − S)

+ (1− τσ−(s))y(−S − ε0)− (1− τσ
′

− (s))y′(σ′ − S − ε0)
∣∣

≤α
∣∣∣∣σ′ε0

(
ỹ(σ′ − S)− y′(σ′ − S − ε0)

)
+ τσ−(s)

(
ỹ(−S)− ỹ(σ′ − S)

)
+ (1− τσ−(s))

(
y(−S − ε0)− y′(σ′ − S − ε0)

)∣∣∣∣
≤ α
ε0
|ỹ(σ′ − S)− y′(σ′ − S − ε0)||σ′|+ α|ỹ(−S)− ỹ(σ′ − S)|

+ α|y(−S − ε0)− y′(σ′ − S − ε0)|. (2.56)

We can see the first term is O(|σ′|) and the second term is bounded by α|σ′||ũ|
hence is also O(|σ′|). Now for the third term

3rd term ≤α|y(−S − ε0)− y′(−S − ε0) + y′(−S − ε0)− y′(σ′ − S − ε0)|

≤αy(0)− y′(0)

λ
eλ|S+ε0| + α|σ′||u|

≤α (|u|+ |u′|)|σ′|
λ

eλ|S+ε0| + α|σ′||u|, (2.57)

hence it is also O(|σ′|). Thus the second integral of (2.55) is O(|σ′|) as it is

an integral of an O(|σ′|) function over a finite range. So the second integral of

(2.54) is O(|σ′|). From this we can conclude that |∆Pσ+(t)| = O(|σ′|δ) for some

0 < δ although not uniformly over t. This implies Pσ+ and hence Gσ, varies

Hölder continuously with respect to σ. �

2.3.4 Set of uniformly hyperbolic systems and pseudo–

orbits

Given a uniformly hyperbolic set F that is generated by A and u, it is useful

to know if the set F̃ generated by perturbing u remains uniformly hyperbolic.

This proves to be true for small enough perturbations as we shall see in the

following theorem.

Theorem 2.3.5 Let A (bounded) and u be Lipschitz and let F be a uniformly

hyperbolic set with bound K that is generated by A and u. Let ũ be a pertur-

bation. If |∆u| = |ũ − u|0 is small enough, the set F̃ generated by A and ũ

remains uniformly hyperbolic with bound K̃ slightly smaller than K.
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In other words, given the assumptions of the above theorem there is a K̃

such that for all orbits ỹ(·) of ẏ = ũ(ỹ, t), the linear operator L̃ associated

to Ã(t) = A(ỹ(t), t) is invertible and it satisfies the bound ||L̃−1||−1 ≥ K̃.

There are various approaches to show the invertibility of L̃. A nice one which

is similar to (Pal00), involves constructing approximate right and left inverses

T and U in the sense that ||I − L̃T || = εT < 1, ||I − UL̃|| = εU < 1, so that

L̃T and UL̃ are invertible with norms at most 1/(1− εT ) and 1/(1− εU ). Then

T (L̃T )−1 is a true right inverse to L̃ and (UL̃)−1U is a true left inverse, so

L̃ is invertible. Finally, one should show that T or U is bounded and then

||L̃−1|| ≤ ||T ||/(1− εT ) or ≤ ||U ||/(1− εU ).

Even with this approach there are various possible choices for the approximate

inverses. The difficulty is in constructing the left inverse since UL̃ is a map-

ping from C1 to C1 so the derivative has to be estimated too. We will give a

construction where T = U .

Proof: Take

T [f ](t) =

∫
ds

1

2a

∫ t+a

t−a
dσ Gσ(t, s)f(s) (2.58)

where Gσ is the Green’s function for Lσx(t) = ẋ(t) − Aσ(t)x(t) with Aσ(t) =

A(yσ(t), t) and yσ(t) is a concatenation of paths as given in (2.3.3), and a is

some duration of order τ . Note that it makes sense to integrate Gσ over σ

because by corollary 2.3.2 it depends continuously on σ.

Bounding ||T ||
We treat T as an operator from C0 to C1 and wish to bound it. For each σ,∫
ds Gσ(t, s)f(s) ≤ |f |/(K − 2η) because, as we saw in corollary 2.3.2, A was

changed by at most 2η along an unperturbed trajectory. Thus averaging over

an interval of σ produces |T [f ](t)| ≤ |f |/(K − 2η).

Now we bound the derivative. To take care of the jump in Gσ(t, s) at s = t,

we write T [f ](t) = (
∫ t
−∞+

∫∞
t

)ds 1
2a

∫ t+a
t−a dσ Gσ(t, s)f(s) and now differentiate

with respect to t to obtain

τ∂t(T [f ])(t) =
τ

2a

∫
(Gt+a(t, s)−Gt−a(t, s))f(s)ds

+
τ

2a

∫
dσ

(∫
Aσ(t)Gσ(t, s)f(s)ds+ f(t)

)
. (2.59)

The second term is just the average over σ of τ∂t(L
−1
σ [f ])(t) so is bounded by

|f |/(K − 2η) (because ||L−1
σ || ≤ 1/(K − 2η) as an operator from C0 to C1.
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Note interchanges of order of integration and differentiation under the inte-

gral sign and with respect to limits are all valid.

To bound the first integral in (2.59), we use the same idea as in the proof

of continuity of the splitting∫
∆G(t, s)f(s)ds =

∫
dr Gt+a(t, r)∆A(r)

∫
ds Gt−a(r, s)f(s). (2.60)

Now |
∫
ds Gt−a(r, s)f(s)| ≤ |f |/(K−2η), |∆A| ≤ V and ∆A(r) = 0 for |r−t| ≤

S − a where S = −1
λ log(α|∆u|λη ) as in (2.49), so applying Theorem 2.3.2(iv) we

obtain

|
∫

∆G(t, s)f(s) | ≤ ε|f |/(K − 2η) (2.61)

where

ε = (S − a)e1−(K−2η)(S−a)V (2.62)

provided (K − 2η)(S − a) ≥ 1, which is true if ∆u is small enough.

Combining the bounds for the two terms of (2.59), we obtain

τ |∂t(T [f ])(t)| ≤ (1 +
τ

2a
ε)|f |/(K − 2η). (2.63)

So we obtain

||T || ≤ (1 +
τ

2a
ε)/(K − 2η), (2.64)

which is only slightly larger than K−1. To optimise the result, it is useful to

choose η to depend on |∆u| in such a way as to make the corrections in the nu-

merator and denominator of roughly equal relative size. This is achieved approx-

imately by taking η ∝ |∆u|K/(K+λ). More specifically (2.62) says ε ≈ V e−KS

(on a logarithmic scale of approximation), so ε τ2a = η/K if η ≈ KV τ
2ae
−KS .

But (2.49) says η = α
λ |∆u|e

λS so eliminating S between these two equations

yields

η ≈
(
KV τ

2a

) λ
K+λ

(
α

λ
|∆u|

) K
K+λ

. (2.65)
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Estimating I − L̃T
This is an operator from C0 to C0.

(I − L̃T )[f ](t) = f(t)− (∂t − Ã(t))(

∫ t

−∞
+

∫ ∞
t

)ds
1

2a

∫ t+a

t−a
dσ Gσ(t, s)f(s).

(2.66)

This evaluates to

− 1

2a

∫
ds ∆G(t, s)f(s) +

1

2a

∫
dσ

∫
ds ∆Aσ(t)Gσ(t, s)f(s). (2.67)

But |∆Aσ(t)| = |Ã(t)−Aσ(t)| = 0 for |t− σ| ≤ S, so taking |∆u| small enough

that S > a, we have only the first term, which we bounded in (2.61), so

||I − L̃T || ≤ ε

2a(K − 2η)
. (2.68)

So if ε < 2aK, T is an approximate right inverse of L̃ for η small enough and

(L̃T )−1 exists. Then T (L̃T )−1 is a true right inverse of L̃.

Estimating I − T L̃
This is an operator from C1 to C1 so we have to bound both its value acting

on any C1 function x and the value of its derivative.

(I − T L̃)[x](t) = x(t)− 1

2a

∫ t+a

t−a
dσ(

∫ t

−∞
+

∫ ∞
t

)ds Gσ(t, s)(∂s − Ã(s))x(s).

(2.69)

Integrating by parts and using ∂sGσ(t, s) = −Gσ(t, s)Aσ(s)− Iδ(t− s) (where

the use of Dirac δ–function is a convenient encoding of the jump condition

(2.25)) transforms this to

1

2a

∫
dσ

∫
ds Gσ(t, s)∆Aσ(s)x(s), (2.70)

and ∆Aσ(s) = 0 for |s− σ| ≤ S, hence for |s− t| ≤ S − a, so it can be bounded

by ε|x| where ε is given by (2.62).
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Next we bound the derivative of (2.70).

∂t
1

2a

∫ t+a

t−a
dσ(

∫ t

−∞
+

∫ ∞
t

)ds Gσ(t, s)∆Aσ(s)x(s) =

1

2a

∫
(Gt+a(t, s)∆At+a(s)−Gt−a(t, s)∆At−a(s))x(s)ds

+
1

2a

∫
(Gσ(t, t−)−Gσ(t, t+))∆Aσ(t)x(t)dσ

+
1

2a

∫ ∫
Aσ(t)Gσ(t, s)∆Aσ(s)x(s) dsdσ. (2.71)

The second term is zero because ∆Aσ(t) = 0 for σ ∈ (t − a, t + a). The third

term has ∆Aσ(s) = 0 for |s − t| ≤ S − a, so is bounded by ε|A||x|. Similarly,

each term of the first integral is bounded by ε
2a |x|. Thus

τ |∂t(I − T L̃)[x](t)| ≤ (
τ

a
+ τ |A|)ε|x|. (2.72)

Finally we can choose τ < a and τ |A| ≤ 1, so we obtain

||I − T L̃|| ≤ 2ε. (2.73)

So if ε < 1/2, T is an approximate right inverse of L̃ and (T L̃)−1 exists. Then

(T L̃)−1T a true left inverse of L̃.

Obtaining K̃

Thus if ε = V (S − a)e1−(K−2η)(S−a) < min( 1
2 , 2aK) we have both ||I − L̃T ||

and ||I−T L̃|| < 1, so L̃ is invertible. From (2.64) and (2.73) we have the bound

||L̃−1||−1 ≥ (1− 2ε)(K − 2η)

1 + ε/2
= K̃. (2.74)

Choosing η ∝ |∆u|K/(K+λ) we obtain

||L̃−1||−1 ≥ K −O(|∆u|K/(K+λ)) (2.75)

which says that K̃ is slightly smaller than K for ∆u small. �

Constructing the Green’s function G̃

Now that we know the pseudo–orbit ỹ is uniformly hyperbolic, one can con-

struct its true Green’s function G̃ using the unperturbed set F . For each

time s, consider y(·) that solves the unperturbed equation ẏ = u(y, t) start-

ing at y(s) = ỹ(s) and let E±(·) be the exponential dichotomy splitting along

y(·). Let X̃ be the principal matrix solution of ẋ = Ã(t)x, take the subspace

Ẽ−(t) = lims→−∞ X̃(t, s)E−(s), which exists because the forwards dynamics

applied to subspaces is contracting near the unperturbed E− subspace, and
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similarly Ẽ+(t) = lims→+∞ X̃(t, s)E+(s). Then construct complementary pro-

jections P̃±(t) to have these as ranges and let G̃(t, s) = X̃(t, s)P̃+(s) for t > s,

−X̃(t, s)P̃−(s) for t < s.
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Chapter 3

Invariant manifolds and

normal hyperbolicity

3.1 Normal hyperbolicity and invariant mani-

folds

The concept of normal hyperbolicity applies to the context of nonlinear systems

that have some invariant manifold, M, in which any tangential contraction

in forward or backward time is weaker than any transverse contraction in the

same direction of time. The definition is a local statement at M, thus the

linearised dynamic at M is central to the study. As such, when considering

continuous–time dynamics normal hyperbolicity theory can employ the results

from Chapter 2 on uniform hyperbolicity. In particular, the transverse linearised

dynamic along the set of trajectories on M generates a uniformly hyperbolic

set. Thus the theory on C1 perturbation of the nonlinear system can make

use of the result on pseudo–orbits in section 2.3.4 of Chapter 2. In the context

of non–autonomous systems, M is non–compact as it is defined on the time–

extended space.

In (Fen71), the unperturbed invariant manifold M is assumed compact and

if it has a boundary it is taken to be “invariant overflowing” which means

the backward orbits remain in the manifold and the vector field through any

point on the boundary is strictly outward pointing. Under certain conditions

on the generalised Lyapunov type numbers for the flow, M persists under any

small perturbation of the system. The perturbed invariant manifold M̄ arises

from the fixed point of a graph transform G which acts on a space of Lips-

chitz graphs from a reference manifold (e.g. unperturbed M) to a transverse

bundle. If there is no transverse expansion, G is the standard graph transform
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which loosely speaking, takes each point on a candidate graph, computes their

pre–image along the tangential direction on the candidate graph, then with this

pre–image, flow forward in the transverse direction to obtain a point which is

taken to be the point on the iterated graph. If there is transverse expansion,

G is defined by solving an implicit zero equation introduced by the expansion,

and separately solving a standard graph transform equation.

The graph transform method is also used in (HPS77) in discrete–time setting

where the non–compact case was also dealt with (Theorem (6.1) in (HPS77)).

The definition of normal hyperbolicity in (HPS77) is given by spectral gap con-

ditions that reflect the dominance of the transverse contraction or expansion

rates over those in the tangential direction– which is another way of expressing

the generalised Lyapunov type numbers in (Fen71). If the unperturbed discrete

map f has no transverse expansion the treatment is identical to (Fen71). How-

ever, if there were transverse expansion, the local unstable manifold Wu
f̄

(M̄)

of the perturbed invariant manifold M̄ under the perturbed map f̄ is given by

the fixed point of the standard graph transform Gs defined as in (Fen71). Gs

has contraction rate roughly equal to the ratio of the transverse contraction

rate and the tangential contraction rate of f . Similarly W s
f̄

(M̄) is constructed

by applying the previous step to f̄−1 with a graph transform Gu which has

contraction rate roughly equal to the ratio of the transverse expansion rate and

the tangential expansion rate of f . Then M̄ is found by taking the intersection

W s
f̄

(M̄) ∩W s
f̄

(M̄).

We introduce the definition of normal hyperbolicity in our context and show

that the standard definition implies it. We note that the definition given here

is more general in the sense that it allows the hyperbolic rates to vary with

time. We will give a Theorem 3.2.2 based on Dan Henry (Hen81) that give the

invariant manifold under certain conditions and assumptions. This is a path–

wise approach which is advantageous as it avoids the graph transform. The

proof of the C1 property and the normal hyperbolicity of this invariant man-

ifold is for future development. A second approach outlined here is given in

Conjecture 1 which is a hybrid of path–wise and graph transform approach. A

brief description of the standard graph transform approach for computing the

invariant manifold will also be given in Theorem 3.2.3. A comparison between

these approaches and recent work by (BOV97, GV04, BHV03) will be given at

the end of the chapter.
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Attention will be restricted to non–autonomous systems of the form

θ̇ = Θ(θ, r, t)

ṙ = R(θ, r, t)

ṫ = 1 (3.1)

with r ∈ Rn and θ ∈M where M is some compact submanifold without bound-

ary. In the application to a non–autonomous oscillator, M = R/TZ, which

represents a limit cycle with period T . This product structure M × Rn × R is

not a great restriction, as the normal bundle to a submanifold can always be

trivialised by adding some artificial extra dimensions to the fibres cf. (Eld12)

section 2.5, 2.6 and references within.

3.2 Computing the invariant manifold

We wish to show that under certain conditions the non–autonomous system

(3.1) has a normally hyperbolic invariant submanifold.

Let us consider the space of Lipschitz graphs whose Lipschitz constant with

respect to θ is at most l > 0

G = {ρ : M × R→ U | Lipθ ρ ≤ l} (3.2)

where U = {r ∈ Rn||r| ≤ ξ}.

Note that we use the term “graph” for an element of ρ ∈ G interchangeably with

the graph of ρ given by graph(ρ) := {(θ, ρ(θ, t), t) ∈M×U×R : (θ, t) ∈M×R}.

A graph transform type approach requires the consideration of G which the

graph transform acts on – this is considered in Conjecture 1. However, a path–

wise approach will be given based on (Hen81) in Theorem 3.2.2 which does not

use a graph transform.

3.2.1 Two operators

We will consider two operators that are key to our study of invariant manifold.

The notation here is that the partial derivative of a vector field X with respect

to x is written as Xx and the sup norm over the defining domain is simply

written as |Xx|.
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Definition 3.2.1 (Pseudo–orbit) For ρ ∈ G and (θ0, t0) ∈M × R define the

corresponding pseudo orbit θρ,θ0,t0 : R→M as the solution to θ̇ = Θ(θ, ρ(θ, t), t)

starting at θ(t0) = θ0.

To simplify notation we drop the subscripts in θρ,θ0,t0(t).

Definition 3.2.2 (Operator L) For ρ ∈ G and (θ0, t0) ∈M ×R ,consider the

corresponding pseudo–orbit θ(·). Then for any C0 function r : R→ U we define

the operator Lr : C1(R,Rn)→ C0(R,Rn) by

Lr[x](t) = ẋ(t)−Rrx(t). (3.3)

with Rr evaluated on p(t) = (θ(t), r(t), t).

Note that the subscript in Lr refers to the function r(·).

Definition 3.2.3 (Operator J) Consider the definition of the operator L above.

Given in addition a C0 function σ̄ : R→ L(TM,Rn) we define

Jσ̄ : W 1,∞(R, L(TM,Rn))→W 0,∞(R, L(TM,Rn)) by

Jσ̄[σ](t) = σ̇ −Rrσ + σ(Θθ + Θrσ̄), (3.4)

with Rr,Θθ,Θr evaluated on p(t) and where W 1,∞ is the space of bounded Lip-

schitz functions and W 0,∞ the space of L∞ functions.

We enlarge the natural Jσ̄ : C1 → C0 setting here to cater for some forcing

functions that will not be continuous e.g. arising from the discontinuity in the

Green’s function for L at s = t, or from our allowing Lipschitz graphs not just

C1 graphs. By Rademacher’s theorem, see (ACP10), any function σ ∈ W 1,∞

is differentiable almost everywhere. Thus we can equip W 1,∞ with the norm

|σ|1,∞ = max{|σ|0, τ |σ̇|∞} where | · |∞ is the L∞ norm and τ chosen so that

τ |Rr|, τ |Θr|, τ |Θθ| ≤ 1.

Note that Jσ̄ is related to the slope dynamic and in particular the Ricatti equa-

tion

σ̇ = Rθ +Rrσ − σ(Θθ + Θrσ), (3.5)

which can be obtained by setting δr = σδθ for some matrix function σ and the

linearised equations of r and θ in (3.1).

Since each pair of operators (Lr, Jσ̄) is essentially defined by a θ0 ∈ M let

us make the following definition:
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Definition 3.2.4 (Set of pairs of operators) For any ρ ∈ G, let us fix t0 ∈
R and define the set of pairs of operators Fρ := {(Lr, Jσ̄) : θ0 ∈M} where each

pair (Lr, Jσ̄) is defined given (θ0, t0) as above.

Definition 3.2.5 (Uniformly Hyperbolic set) Fρ is a uniformly hyperbolic

set with bounds K0 and κ0 if each Lr and Jσ̄ are invertible with ||L−1
r ||−1 ≥ K0

and ||J−1
σ̄ ||−1 ≥ κ0.

3.2.2 Definition of Normal Hyperbolicity

We give a definition of Normal Hyperbolicity using the two operators defined

above and show that the standard definition due to (HPS77) implies it.

Let F (t; p) be the flow of the non–autonomous system (3.1) starting at p ∈
M × Rn × R with end time t.

Definition 3.2.6 (Invariant graph) Consider ρ ∈ G with M = graph(ρ) ∼=
M × R. Then ρ is an invariant graph under the non–autonomous system (3.1)

if F (t;M) =M.

If ρ ∈ G is invariant then for each (θ0, t0) ∈M×R, letting θ be the pseudo–orbit,

we take r(t) = ρ(θ(t), t) and σ̄(t) = ρθ(θ(t), t) in the definition of Fρ.

Definition 3.2.7 (Normal Hyperbolicity with two operators) An invari-

ant graph ρ ∈ G under the non–autonomous system (3.1) is normally hyperbolic

iff Fρ (using σ̄ = ρθ) is uniformly hyperbolic.

Compare this with the standard definition found in (HPS77):

Definition 3.2.8 (Standard definition of Normal Hyperbolicity) An in-

variant graph ρ ∈ G under the non–autonomous system (3.1) is normally hy-

perbolic iff the tangent bundle of M ×Rn ×R restricted to M, splits into three

Hölder continuous subbundles

TM(M × Rn × R) = V+ ⊕ TM⊕ V− (3.6)

which are invariant by the linearised flow of F , denoted by DF , such that for

all p0 = (θ0, r0, t0) ∈M, t > t0, k ∈ {0, 1},

a) ||DF (t; p0)|V+(p0)|| ≤ Cδ|t−t0|[m(DF (t; p0)|Tp0M)]k (3.7)

and for all t < t0, k ∈ {0, 1},

b) ||DF (t; p0)|V−(p0)|| ≤ Cδ|t−t0|[m(DF (t; p0)|Tp0M)]k. (3.8)
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for some constants 0 < δ < 1 and 0 < C <∞.

Recall that the “minimum norm” m(A) of a linear transformation A is defined

as m(A) = inf{|Ax| : x = 1}. Note here that V± are conventionally called the

stable and unstable subbundles respectively. We use the “±” to say forward

and backward contracting in time respectively. This definition of normal hy-

perbolicity is defined for discrete system in (HPS77) and is termed eventually

relatively 1-normally hyperbolic ( since k ≤ 1), however the invariant manifold

we are working on is non–compact and the continuity of the subbundles are

Hölder continuous.

We will show the standard Definition 3.2.8 of Normal Hyperbolicity implies

that given in Definition 3.2.7. However Definition 3.2.7 of Normal Hyperbolic-

ity allows the rates to vary with time thus it is more general in this respect.

Lemma 3.2.1 If ρ ∈ G is Normally Hyperbolic invariant according to Defini-

tion 3.2.8 then ρ is Normally Hyperbolic according to Definition 3.2.7.

Proof: For any p0 = (θ0, r0, t0) ∈ M let us write pt = F (t; p0). We wish to

show the invertibility of the two operators

L : x 7→ ẋ−Rr(pt)x and J : σ 7→ σ̇−Rr(pt)σ+σ(Θθ(pt)+Θr(pt)σ̄) with σ̄ = ρθ.

Consider the vertical subbundle E = Rn to the tangent bundle of M × Rn × R
and write V = V+ ⊕ V−. Define a projection along TM by π : V → E; v 7→ x

where x is uniquely written as x = v + η with v ∈ V = V+ ⊕ V− and η ∈ TM.

Thus there is a splitting E± = πV± with E = E− ⊕ E+. Note that π is in-

vertible since v and η are uniquely determined by x. Also, define a projection

Π : TM → TM by δθ 7→ (δθ, ρθδθ, 0) and write R = R(Π) ⊂ TM, the range of

Π.

Invertibility of L

Given any impulse y ∈ E at time t0 we wish to construct a unique bounded

solution for L[x] = yδt0 where δ is the Dirac–delta function at time t0. Now

y is uniquely given by y = x+ − x− with x± ∈ E± and there are v± ∈ V±

such that x± = πv±. Letting v±(t) = DF (t; p0)|V±v± we see that by a) and

b) in Definition 3.2.8 with k = 0, v±(t) → 0 exponentially at rate ln δ as

t → ±∞. So x±(t) = πv±(t) also decay exponentially with the same rate too.

Let x(t) = ±x±(t) for t > t0 and t < t0 respectively then Lx = yδt0 , thus L is

invertible.

Invertibility of J

Recall that the operator J is related to the linearised equation of the non–
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autonomous system (3.1),

δṙ = Rr(pt)δr +Rθ(pt)δθ

δθ̇ = Θθ(pt)δθ + Θr(pt)δr (3.9)

where the linearised tangential dynamic is given by δθ̇ = (Θθ + Θrσ̄)δθ with

σ̄ = ρθ.

Given any impulse slope h ∈ L(TM,E) at time t0, we wish to construct a

unique bounded solution for J [σ](t) = hδt0 . We split h = h+ − h− where

h± ∈ L(TM,E±). Then associate h± with σ̃± ∈ L(R, V±) by taking σ̃± =

π−1h±Π−1. Take σ̃±(t) = DF (t; p0)|V± σ̃±DF (t0; pt)|R where pt = F (t; p0).

Then by a) and b) in Definition 3.2.8 with k = 1, σ̃±(t) → 0 exponentially at

rate ln δ as t → ±∞. Now obtain σ±(t) = πσ±(t)Π and note that σ±(t) also

decay exponentially with the same rate too. Let σ(t) = ±σ±(t) for t > t0 and

t < t0 respectively then J [σ](t) = hδt0 , thus J is invertible. �

3.2.3 Assumptions and Conditions

Here we will give the assumptions and conditions for the existence of invariant

manifold. First we give a definition of the modulus of continuity of a function

which gives information about the regularity of the function. See (Leb09) and

(dlVP52) for background references.

Definition 3.2.9 ω : R → R is a module of continuity for a function g : U ⊂
X → Y from a subset of a Banach space into another if it satisfies |g(x1) −
g(x2)| ≤ ω(|x1− x2|) for all x1, x2 ∈ U and ω(s)→ 0 as s→ 0. If ω is bounded

then g is said to have a bounded module of continuity.

Unless stated otherwise, we make the following assumptions of the map R and

Θ of (3.1).

Assumption 1 Take θ ∈M , r ∈ U , t ∈ R. The following functions

Rr(θ, ·, t)|U , Rr(·, r, t)|M and Θθ(θ, ·, t)|U ,Θθ(·, r, t)|M have bounded modules of

continuity ωθ,t(·) ≤ |ωθ,t|; ωr,t(·) ≤ |ωr,t|; αθ,t(·) ≤ |αθ,t| and αr,t(·) ≤ |αr,t|
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with uniform bounds

εr := sup
θ,t
|ωθ,t|;

εθ := sup
r,t
|ωr,t|;

δr := sup
θ,t
|αθ,t|;

δθ := sup
r,t
|αr,t| (3.10)

respectively. Furthermore, assume Rr(θ, ·, t) has Lipschitz constant Lθ,t and

lr = supθ,t Lθ,t is bounded. Let τ > 0 be such that supp∈Ω τ |Rr(p)| ≤ 1.

Assumption 2 We make the following assumption on Θ. There is an V > 0

such that for any t0 ∈ R, r : R → U and any θi : R → M where i = 1, 2

with θ1(t0) = θ2(t0), we have supt |Φ(t0, t)||Φ(t, t0)| ≤ V < ∞ where Φ is the

principal matrix solution of the system δθ̇ = [Θθ]δθ starting at δθ(t0) = 0, where

[Θθ](t) =
∫ 1

0
dλΘθ(θλ(t), r, t) with θλ = λθ1 + (1− λ)θ2.

Conditions 1 Consider the zero graph ρ0 ≡ 0 and let us assume the following

conditions

C1.1: For all trajectories (θ(t), 0, t) ∈ ρ0, taking r(t) = 0 and σ̄ = 0, we have

||L−1
0 ||−1 ≥ K0 and ||J−1

0 ||−1 ≥ κ0 for some K0, κ0 > 0.

C1.2: There is a small enough η > 0 such that |R|ρ0 | ≤ η/τ ≤
(K0−εr)2

2lr
.

C1.3: K0 − (εr + εθ + τ−1) > 0.

C1.4: κ = κ0 − (εr + εθ + δθ + δr) > 0.

C1.5: 2|Rθ||Θr|V < κ2.

Assumption 3 Given Condition 1 is satisfied. Take Φ and r : R → U and t0

as in Assumptions 2. There is a γ ∈ (γ−, γ+) where γ± = 1
2κ±

√
1
2κ

2 −A with

A = |Rθ||Θr|V such that ||r||t0 := supt |Φ(t0, t)|e−γ|t−t0||r(t)| <∞ exists.

To briefly summarise, Assumption 1, 2 and 3 refers to the system vector fields R

and Θ while Condition 1 refer to a candidate manifold ρ0. Note that C1.2 essen-

tially says that ρ0 is nearly invariant and C1.1 says that ρ0 defines a uniformly

hyperbolic set. C1.3 and C1.4 are satisfied if U is a small enough neighborhood

and ρ0 is sufficiently close to being invariant. C1.5 is satisfied if the coordinate

system is chosen well enough.

Given these conditions we wish to show that there is an invariant C1 graph
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ρ nearby, which is normally hyperbolic. In particular, its derivative ρθ is the

self-consistent solution of

ρθ = J−1
σ̄ [Rθ] (3.11)

using σ̄ = ρθ, which is true if the map σ 7→ J−1
σ [Rθ] is a contraction with fixed

point ρθ. Condition 1 will be used to find the invariant manifold ρ by Theorem

3.2.2, however its C1 property will not be shown here and can be considered for

future work.

3.2.4 Continuation

Let us begin with showing a continuation result which is very important for

Theorem 3.2.2 that gives the invariant manifold.

Lemma 3.2.2 (Continuation) Let F : X → Y be a C1 map between Banach

spaces with module of continuity ω for the derivative DF . Suppose |F (0)| ≤ η

and ||DF−1|| ≤ K−1. Let Ω(h) =
∫ h

0
ω(s)ds and h() be the inverse function to

ω(h). Let q(h) = Kh − Ω(h). If η ≤ q(h(K)) then F has a locally unique zero

x and |x| ≤ ε(η), where ε is the inverse function to q on [0, h(K)].

Proof: Consider the homotopy Fλ(x) = F (x) − (1 − λ)F (0) for λ ∈ [0, 1].

F0(0) = 0 and DFλ = DF so is invertible at x = 0. By the Implicit Function

Theorem it has a C1 continuation xλ with Fλ(xλ) = 0 as long as DFλ(xλ)

remains invertible. By the chain rule

dx

dλ
= DFλ(x)−1 dFλ

dλ
= −DF (x)−1F (0). (3.12)

But from a Taylor expansion and using the module of continuity of DF at x

we have ||DF (x)−1|| ≤ 1
||DF (0)−1||−1−ω(|x|) as long as the denominator remains

positive. So

|dx
dλ
| ≤ η

K − ω(|x|)
. (3.13)

It follows by integration with respect to λ that

q(|x|) = K|x| − Ω(|x|) ≤ ηλ, (3.14)

where Ω(ξ) =
∫ ξ

0
ω(s)ds, as long as ω(|x|) remains less than K, i.e. as long

as η ≤ q(h(K)). In particular, under the hypothesis the continuation can be
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completed to λ = 1, giving a zero of F with the stated bound (q is invertible

because it is a strictly increasing function). �

If DF is Lipschitz with Lipschitz constant l, then we can take the module

of continuity to be ω(|x|) = l|x|, then the above Lemma says that for η ≤
q(h(K)) = K2

2l , F has a unique zero, x, that satisfies

|x| ≤ ε(η) =
2η

K +
√
K2 − 2lη

. (3.15)

Let us first use this to determine a locally unique r trajectory given a θ one.

Corollary 3.2.1 Assume Conditions 1, then for any fix θ(·) satisfying θ̇ =

Θ(θ, 0, t) the equation given by

ṙ = R(θ(t), r, t) (3.16)

has a unique solution r̃ with |r̃|1 ≤ ε(η) = 2η/τ

K+
√
K2−2lrη/τ

with K = K0 − εr.

Furthermore the linear operator Lr̃ is invertible with bound ||L−1
r̃ ||−1 ≥ K.

Proof: We consider F : r 7→ ṙ − R(θ(t), r, t) where r : R → U is C1 and show

that it has derivative DF (r) = Lr : x 7→ ẋ−Rr(θ(t), r(t), t)x, in particular

lim
|r2−r1|C1→0

|F (r2)− F (r1)− Lr1 [r2 − r1]|C0

|r2 − r1|C1

= 0. (3.17)

Now we see

|F (r2)− F (r1)− Lr1 [r2 − r1]|C0 = |Rr(r1)(r2 − r1)− (R(r1)−R(r2))|C0

≤ |Rr(r1)−
∫ 1

0

Rr(rλ)dλ|C0 |r2 − r1|C0

(3.18)

where rλ = (1−λ)r1+λr2. Note that for presentation purpose we have excluded

the dependence on θ and time t in the functions R and Rr. But Rr(rλ) =

Rr(r1) + λO(r2 − r1) for small |r2 − r1|C0 so∫ 1

0

Rr(rλ)dλ = Rr(r1) +O(|r2 − r1|C0). (3.19)
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Since |r2 − r1|C0 ≤ |r2 − r1|C1 we have

|F (r2)− F (r1)− Lr1 [r2 − r1]|C0

|r2 − r1|C1

≤ O(|r2 − r1|C0)

≤ O(|r2 − r1|C1) (3.20)

hence DF (r) = Lr. By Condition 1 Lr is a small perturbation of L0 with

||Lr − L0|| = |Rr(θ(·), 0, ·) − Rr(θ(·), r(·), ·)| ≤ εr, so by Lemma 2.2.1 it is

invertible and satisfies ||L−1
r ||−1 ≥ K = K0 − εr for all r. Note that DF has

Lipschitz constant lr and q(h(K)) = K2

2lr
where q and h are as in Lemma 3.2.2.

Now |F (0)| = |R(θ(t), 0, t)| ≤ η/τ so by Lemma 3.2.2 F has a locally unique

zero r̃ and by (3.14) we have

|r̃|1 ≤
2η/τ

K +
√
K2 − 2lrη/τ

=: ε(η). (3.21)

Moreover since Lr̃ is a perturbation of L0, it is invertible with bound ||L−1
r̃ ||−1 ≥

K. �

For computational purposes it would be useful to estimate r̃ by using a Newton

method which is stated as a theorem below.

Theorem 3.2.1 (Newton Map Theorem) Assume Conditions 1 and fix any

θ(·). Let L0 : x 7→ ẋ − Rr(θ(t), 0, t)x and F : r 7→ ṙ − R(θ(t), r, t) be as in the

proof of Corollary 3.2.1. Now consider the Newton map N : Bη(0) → Bη(0)

defined by

N [r](t) = r(t)− L−1
0 [F (r)](t) (3.22)

where Bη(0) ⊂ C1 is an η – ball centered at r ≡ 0. Then N is a well defined

contraction. N has a locally unique fixed point with bound given in (3.21).

Proof: To show N is a contraction it is sufficient to show that ||DN(r)|| =

||I − L−1
0 Lr|| < 1 for r ∈ Bη(0). Note that DN exists since DF exists as seen

in the proof of Corollary 3.2.1. Let us first prove that L−1
0 is an approximate

left inverse of Lr. Letting G be the Green’s function of L−1
0 we can obtain

x(t)− L−1
0 Lr[x](t) =

∫ ∞
−∞

G(t, s)[ẋ(s)−Rr(θ(s), r(s), s)x(s)]ds

=

∫ ∞
−∞

G(t, s)∆Rr(s)x(s)ds (3.23)
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where ∆Rr(s) = Rr(θ(s), r(s), s)−Rr(θ(s), 0, s). But by Assumption 1 |∆Rr| ≤
εr so using the bound ||L−1

0 ||−1 ≥ K0 from Condition 1 we have

||I − L−1
0 Lr|| ≤

εr
K0

. (3.24)

By Condition 1 we have εr/K0 < 1 hence N is a contraction.

To show N is well defined note that |F (0)| ≤ η/τ so we have

|N [0]| = |L−1
0 [F (0)]|

≤ η/(τK0).

Now for r ∈ Bη(0) we have

|N [r]| ≤ |N [r]−N [0]|+ |N [0]|

≤ ||DN(r)|||r|+ |N [0]|

≤ εrη

K0
+
ητ−1

K0

≤
(
εr + τ−1

K0

)
η. (3.25)

By Condition 1, (εr + τ−1)/K0 ≤ 1 so we have N [r] ∈ Bη(0). Thus N maps

Bη(0) to itself and since it is a contraction, N has a unique fixed point r̃ which

is also the zero of F where r̃ has bound given in (3.21).

�

The expression for N has an ṙ term within the definition of F which may not

be advantageous in numerical implementations. Thus it is desirable to find an

equivalent expression without this term. By using integration by parts and

∂2G(t, s) = −G(t, s)A(s)− Iδ(t− s), where A(s) = Rr(θ(s), 0, s), we can obtain

N [r](t) =

∫
G(t, s)[R(θ(s), r(s), s)−Rr(θ(s), 0, s)r(s)]ds. (3.26)

3.2.5 Path–wise approach to computing invariant mani-

fold

Let us go on to show that the non–autonomous system (3.1) has an invariant

manifold given Conditions 1. This will be given in Theorem 3.2.2 based on

the approach of (Hen81) Chapter 9 which has the advantage of avoiding the

graph transform and the invariant manifold is obtained path–wise. However,

in contrast to (Hen81), the approach here uses the operators defined in (3.3,

3.4) in place of the consideration of spectral gap. To show that the invariant
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manifold obtained here is normally hyperbolic according to Definition 3.2.7, it

is required that the manifold is at least Lipschitz with respect to θ0 so that the

operator (3.4) is defined. The Lipschitz property is not shown here. Let us state

the following lemmas that leads to the theorem for the invariant manifold.

Lemma 3.2.3 Assume Condition 1 then the operator J : σ 7→ σ̇−[Rr]σ+σ[Θθ]

is invertible with ||J−1||−1 ≥ κ0 − (εθ + εr + δθ + δr) and given any h ∈ W 0,∞

we have

σ(t) = J−1[h](t) =

∫ ∞
−∞

G(t, s)[h(s)]Φ(s, t)ds. (3.27)

Proof: The operator J is a small perturbation of J0 with

||J − J0|| ≤ |Rr(θ(·), 0, ·)− [Rr](·)|+ |Θr(θ(·), 0, ·)− [Θr](·)|

≤ εr + εθ + δr + δθ. (3.28)

By Condition 1 we have εr+εθ+δr+δθ < κ0 so by Lemma 2.2.1, J is invertible

with ||J−1||−1 ≥ κ := κ0− (εr +εθ +δr +δθ) and by differentiating with respect

to time the unique response σ = J−1[h] can be verified to be given by

σ(t) =

∫ ∞
−∞

G(t, s)h(s)Φ(s, t)ds (3.29)

�

Lemma 3.2.4 Take the operator J : σ 7→ σ̇−[Rr]σ+σ[Θθ]. Given any |h(s)| ≤
εeγ|s| for some γ ∈ [0, κ) then |σ(t)| ≤ εeµ|t|

κ−γ .

Proof: The proof is identical to the proof of Theorem 2.3.2 (iii). �

Theorem 3.2.2 Assume Condition 1 and fix (θ0, t0). Given any r ∈ Bε :=

{r ∈ C1 : |r|1 ≤ ε(η)} where ε is defined in (3.21), obtain θ(·) by solving

θ̇ = Θ(θ, r(t), t) starting at (θ0, t0). Then by Corollary 3.2.1 there is a unique

r̃ ∈ Bε which satisfies ˙̃r = R(θ(t), r̃(t), t). Define T̃ : Bε → Bε by r 7→ r̃ then T̃

is a contraction in the || · ||t0 norm defined in Assumption 3.

Proof: Take any ri ∈ Bε and r̃i = T̃ (ri) where i = 1, 2. Then ∆r̃ = r̃1 − r̃2

satisfies

∆ ˙̃r = R(θ1(t), r̃1(t), t)−R(θ2(t), r̃2(t), t)

= [Rθ]∆θ + [Rr]∆r̃ (3.30)
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where [Rθ](t) =
∫ 1

0
dλRθ(θλ(t), r1(t), t) and [Rr](t) =

∫ 1

0
dλRr(θ2(t), rλ(t), t)

and ∆θ = θ1 − θ2 satisfies

∆θ̇ = Θ(θ1(t), r1(t), t)−Θ(θ2(t), r2(t), t)

= [Θθ]∆θ + [Θr]∆r

where [Θθ](t) =
∫ 1

0
dλΘθ(θλ(t), r1(t), t), [Θr](t) =

∫ 1

0
dλΘr(θ2(t), rλ(t), t), ∆r =

r1 − r2 and xλ(t) = λx1(t) + (1− λ)x2(t).

Let G be the Greens function for the operator L : x 7→ ẋ − [Rr]x which ex-

ists since L is just a small perturbation of L0 with ||L− L0|| ≤ K0 − (εθ + εr).

Similarly let Φ be the principal matrix solution of δθ̇ = [Θθ]δθ starting at

δθ(t0) = 0. Then we have

∆θ(s) =

∫ s

t0

duΦ(s, u)[Θr](u)∆r(u)

= Φ(s, t)Φ(t, t0)

∫ s

t0

dueγ|u−t0|[Φ(t0, u)[Θr](u)∆r(u)e−γ|u−t0|] (3.31)

for any γ ∈ (γ−, γ+) as in Assumptions 3. So we have

∆r̃(t) =

∫ ∞
−∞

dsG(t, s)[Rθ](s)∆θ(s)

=

∫ ∞
t0

dsG(t, s)[Rθ](s)Φ(s, t)Φ(t, t0)

∫ s

t0

du eγ|u−t0|[Φ(t0, u)[Θr](u)∆r(u)e−γ|u−t0|]

+

∫ t0

−∞
dsG(t, s)[Rθ](s)Φ(s, t)Φ(t, t0)

∫ t0

s

du eγ|u−t0|[Φ(t0, u)[Θr](u)∆r(u)e−γ|u−t0|]

(3.32)

Since
∫ s
t0
du eγ|u−t0| =

∫ t0
s
du eγ|u−t0| ≤ eγ|s−t0|

γ we have by Lemma 3.2.4

|Φ(t0, t)||∆r̃(t)| ≤ |Φ(t0, t)|
∣∣∣∣∫ ∞
−∞

dsG(t, s)h(s)Φ(s, t)Φ(t, t0)

∣∣∣∣||∆r||t0
≤ |Rθ||Θr|eγ|t−t0|

γ(κ− γ)
|Φ(t0, t)||Φ(t, t0)|||∆r||t0 . (3.33)

with |h(s)| ≤ |Rθ||Θr|γ eγ|s−t0|. Thus we have

||∆r̃||t0 ≤
|Rθ||Θr|V
γ(κ− γ)

||∆r||t0 . (3.34)

By the choice of γ we have |Rθ||Θr|Vγ(κ−γ) < 1 hence T̃ is a contraction.

�
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Given (θ0, t0) let r be the fixed point of T̃ as in Theorem 3.2.2. Let θ(·) be the so-

lution of θ̇ = Θ(θ, r(t), t) starting from θ(t0) = θ0. Then r(·) and θ(·) solves the

non–autonomous system (3.1) such that θ(t0) = θ0. We define ρ̃(θ0, t0) = r(t0)

which is the invariant manifold we seek.

Note that since |Rθ||Θr| can be made arbitrarily small by appropriate choice of

coordinate system, the contraction rate of T̃ can be very small.

The application in mind of Theorem 3.2.2 is in a perturbation framework. For

example, take a normally hyperbolic autonomous system with an appropriate

time extended coordinate system such that the system is given by

ṙ = R̄(θ, r, t)

θ̇ = Θ̄(θ, r, t) (3.35)

and possesses a normally hyperbolic invariant manifold given by ρ0 ≡ 0 and

Assumptions 1, 2, 3 and Conditions 1 are satisfied by R̄ and Θ̄.The application

to perturbation is stated in the following corollary.

Corollary 3.2.2 Let R and Θ be an ε C1 small perturbation of R̄ and Θ̄ re-

spectively and assume that Θ satisfies Assumptions 2 with the same F as that

for Θ̄. Then the perturbed non–autonomous system defined by R and Θ satisfies

Assumptions 1 and Conditions 1. If Θ also satisfies Assumptions 3 then by

Theorem 3.2.2 the perturbed system possesses an invariant manifold.

Proof: Let the quantities and functions of Assumptions 1, 2, 3 and Conditions

1 related to R̄ and Θ̄ be marked by an overline, while those of R and Θ with no

overline.

Since R and Θ are ε− C1 close to R̄ and Θ̄ we have

max{|Rr − R̄r|, |Rθ − R̄θ|, |Θr − Θ̄r|, |Θθ −Θθ|} ≤ ε.

Thus, ignoring the other variables for simpliticity, we have |Rr(r) − Rr(r′)| ≤
|Rr(r)− R̄r(r′)|+ 2ε which implies that εr ≤ ε̄r + 2ε. Similar argument applies

to the other quantities in Assumptions 1.

For Conditions 1 C1.1, we see that the operator L0 : x 7→ ẋ− Rrx is a pertur-

bation of L̄0 : x 7→ ẋ − R̄rx with ||L0 − L̄0|| ≤ ε. Similarly, ||J0 − J̄0|| ≤ 2ε

hence if ε is small enough, L−1
0 and J−1

0 exists with ||L−1
0 ||−1 ≤ K0 = K̄0 − ε

and ||J−1
0 ||−1 ≤ κ0 = κ̄0 − 2ε.
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For Conditions 1 C1.2, since R is ε− C1 close to R̄ we have |R|ρ0 − R̄|ρ0 | ≤ ε.

By invariance we have R̄|ρ0 = 0 so if ε is small enough there is an η such that

|R|ρ0 | ≤ η/τ ≤ K0

2lr
. It is clear that if ε is small enough, C1.3, C1.4 and C1.5

are satisfied.

Thus the perturbed system has an invariant manifold. �

If the perturbed manifold is shown to be C1 smooth then, since the state space

in the center direction can be extended to include ε, it can be easily shown that

the perturbed manifold also depends C1 on ε.

The contrast with standard perturbation theory for normally hyperbolic sys-

tem (HPS77, Fen71) is that Corollary 3.2.2 has further restrictions on the class

of perturbation given by Assumptions 2 and 3.

Invariant manifolds for model equations will be computed in later chapters.

However due to time constraint, the method based on Theorem 3.2.2 will not

be implemented.

3.2.6 Hybrid approach to computing invariant manifold

A hybrid approach involving path–wise consideration at each graph transform to

obtain the invariant graph for the non–autonomous system (3.1) is given here.

This will be given as a conjecture and an outline of a possible proof will be

given. This method for computing invariant manifolds will be tested on model

systems in subsequent chapters.

The following lemma is a small alteration to Newton Map Theorem 3.2.1 where

the Newton step here is based at each candidate graph ρ rather than a fixed

graph ρ0. This Newton step will be implemented in later chapters. We state it

without proof as it is very similar to that of Theorem 3.2.1.

Lemma 3.2.5 Given Conditions 1 consider ρ ∈ G and (θ0, t0) and take θ which

solves θ̇ = Θ(θ, ρ, t) starting at θ(t0) = θ0. Let Lρ : x 7→ ẋ−Rr(θ(t), ρ, t)x and

F : r 7→ ṙ −R(θ(t), r, t) be as in the proof of Corollary 3.2.1. Now consider the

Newton map N : Bη(0)→ Bη(0) defined by

N [r](t) = r(t)− L−1
ρ [F (r)](t) (3.36)

where Bη(0) ⊂ C1 is an η – ball centered at r ≡ 0. Then N is a well defined

contraction. N has a locally unique fixed point with bound given in (3.21).
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As in (3.26) a practical expression for N can be given as follows

N [r](t) =

∫
G(t, s)[R(θ(s), r(s), s)−Rr(θ(s), ρ(θ(s), s), s)r(s)]ds. (3.37)

See Chapter 5 where this expression is used in the pseudo–codes.

Conjecture 1 Assume Conditions 1 and consider the map

T : G → G

ρ 7→ ρ̃ (3.38)

defined by

(Tρ)(θ0, t0) = ρ̃(θ0, t0) = r̃(t0) (3.39)

where r̃ is the Newton fixed point given ρ, θ0, t0 as in Theorem 3.2.1. T is a well

defined contraction and its fixed point ρ∗ is a C1 invariant normally hyperbolic

submanifold of the non–autonomous system (3.1).

For an illustration of T see Figure 3.1.

Figure 3.1: A sketch of Tρ = ρ̃ and the Newton fixed point r̃ depending on
ρ, θ0, t0.
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Outline of possible proof: Let us give brief ideas of the tasks involved.

Well defined

To show that T is well defined we need to show Lipθρ̃ ≤ l, which is a ques-

tion of how r̃ depends on θ0 (and t0 but let us deal with θ0 here). Now

r̃ is a zero of an implicit function problem, F (r̃) = ˙̃r − R(θ, r̃, t) = 0, so

we can apply the chain rule to deduce how it varies with respect to differ-

entiable changes in the function R resulting from changes in the path θ, i.e.

0 = DrFδr̃ +DθFδθ = δ ˙̃r −Rrδr̃ −Rθδθ. We are interested principally in the

value at t0, so

δr̃(t0) = L−1
r̃ [Rθδθ](t0). (3.40)

Now δθ is the solution of

δθ̇ = (Θθ + Θrρθ)δθ (3.41)

starting from δθ(t0) = 0. There are two problems and one is that ρθ may not

be defined everywhere along the path since it is only assumed Lipschitz. The

other is that δθ may be unbounded. If we ignore both these problems, we would

obtain that r̃(t0) depends C1 on θ0 with derivative

δr̃(t0) =

∫
G(t0, s)Rθ(s)Φ(s, t0)ds δθ0 (3.42)

where Φ is the matrix solution of (3.41) from the identity. Now if we take the

time derivative of (3.42) at a general t, using ∂tΦ(s, t) = −Φ(s, t)[Θθ + Θrρθ](t)

we would obtain

δṙ(t) = [G(t, t+)−G(t, t−)]Rθ(t)Φ(t, t)δθ0

+

∫
[∂tG(t, s)Rθ(s)Φ(s, t) +G(t, s)Rθ ∂tΦ(s, t)]dsδθ0

= Rθ(t)δθ0 +Rr(t)δr̃(t)− δr̃(t)[Θθ + Θrρθ](t) (3.43)

which implies δr̃(t0) = J−1
ρθ

[Rθ](t0)δθ0. Thus if |Rθ| is small enough we have

Lipθρ̃ ≤ ||J−1
ρθ
|||Rθ| ≤ l.

Contraction

In order to show that T is a contraction we need to show that there is a constant

c < 1 such that

|Tρ− Tρ′| ≤ c|ρ̃− ρ̃′|. (3.44)

53



This is a question of how r̃ varies with changes in ρ. Now a change δρ implies

that δθ is subjected to the forced equation

δθ̇ = (Θθ + Θrρθ)δθ + Θrδρ (3.45)

from δθ(t0) = 0 and has solution given by δθ(t) =
∫ t
t0
dsΦ(t, s)Θr(s)δρ(s). Thus

we have,

δr̃(t) = L−1
r̃ [Rθδθ](t)

=

∫
G(t, u)Rθ(u)

∫ u

t

ds Φ(u, s)Θr(s)δρ(s). (3.46)

Ignoring the two problems mentioned above, by taking the time derivative

δṙ(t) =

[
G(t, t+)Rθ(t)

∫ t+

t

ds Φ(t+, s)Θr(s)δρ(s)

−G(t, t−)Rθ(t)

∫ t−

t

ds Φ(t−, s)Θr(s)δρ(s)

]
+

∫
∂tG(t, u)Rθ(u)

∫ u

t

ds Φ(u, s)Θr(s)δρ(s)

+

∫
G(t, u)Rθ(u) ∂t

∫ u

t

ds Φ(u, s)Θr(s)δρ(s)

= Rθ(t)Θr(t)δρ(t) +Rr(t)δr̃(t)−
∫
ds G(t, u)Rθ(u)Φ(u, t)Θr(t)δρ(t)

= Rθ(t)Θr(t)δρ(t) +Rr(t)δr̃(t)− J−1
ρθ

[Rθ](t)Θr(t)δρ(t), (3.47)

we can deduce

δr(t0) = L−1
r̃

[
RθΘrδρ− J−1

ρθ
[Rθ]Θrδρ

]
(t0). (3.48)

Thus we have

|δr̃| ≤ ||L−1
r̃ ||

(
1 + ||J−1

ρθ
||
)
|Rθ||Θr||δρ| (3.49)

which implies the Lipschitz constant of T is in the order of |Rθ||Θr| which can

be made very small by choosing an appropriate coordinate system. �

The sketch proof indicates that the invariant manifold can be estimated ac-

curately through only a few iterations of T if the coordinate system is chosen

appropriately.
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3.2.7 Graph transform approach to computing invariant

manifold

The Graph Transform method for computing invariant submanifolds was devel-

oped in (HPS77) for discrete time systems and (Fen71) for continuous time sys-

tems. Let us briefly describe the method in the context for our non–autonomous

system after discretisation. Later we will numerically compare the Graph Trans-

form method and our method developed here.

We discretise the non-autonomous system (3.1) by taking the time–T map

f : M × Rn × R→M × Rn × R which is a C1 diffeomorphism.

Invariant manifolds for contracting and expanding systems

Let us first outline the Graph Transform method for contracting systems due

to (HPS77), i.e. the case where E− ≡ 0 and E+ ≡ Rn. Here we consider the

time–T map f defined by the flow of the non–autonomous system (3.1).

We assume the non–autonomous system (3.1) is a small C1 perturbation of

some normally hyperbolic system which has ρ0 ≡ 0 as its invariant normally

hyperbolic submanifold. It may be possible to simply assume Condition 1 how-

ever it is not clear that our definition of normal hyperbolicity here implies the

standard definition as in (HPS77).

Let us spell out the graph transform as follows. Given a ρ ∈ G and (θ0, t0)

we have θ(t) as in the previous subsection. Then take r̂(t0) to be the value

after time T in the forward integral of ṙ = R(θ(t), ρ(θ(t), t), t) starting from

ρ(θ(t0 − T ), t0 − T ) at time t0 − T . See figure 3.2.7.

Theorem 3.2.3 (Graph Transform) Assume we have Conditions 1 and con-

sider the map

T̂ : G → G

ρ 7→ ρ̂ (3.50)

defined by

(T̂ ρ)(θ0, t0) = ρ̂(θ0, t0) = r̂(t0). (3.51)

Then T̂ is a well defined contraction and its fixed point ρ̄ is a C1 normally

hyperbolic invariant manifold of f .

Proof: It is found in the proof of persistence of normal hyperbolicity for a

small perturbation of the diffeomorphism, see proof of Theorem 4.1 (and 6.1 for
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non–compact case) part (a) and (f) in (HPS77). �

Figure 3.2: A sketch of T̂ ρ = ρ̂ and r̂(t0).

We recall that the contraction rate of T̂ , in the sup norm, is roughly equal to

the ratio of the normal contraction rate of f (which depends on the time T ) and

the tangential contraction rate.

For expanding systems where E+ ≡ 0 and E− ≡ Rn, one can treat the sys-

tem in backward time, i.e. work with f−1 by taking the time–T map so then its

backward contracting space is equal to 0 = E+. Thus we are in the contract-

ing regime which means we can apply Theorem 3.2.7 to compute the invariant

manifold.

Invariant manifold for general systems

We now briefly outline how to compute the invariant manifold, ρ̄, for the general

case where there are both contraction and expansion, i.e. neither E− or E+ are

trivial. Given the existence of splittings E0
+ and E0

− at ρ0 ≡ 0, we consider the

space of graphs G+ whose elements are of the form ρ+ : M+ × R → E0
− where

M+ = M × E0
+. See Figure 3.2.7. Then, not including technicalities, we are

in the contracting regime and so we can obtain a fixed point ρ̄+. Similarly, by

considering G− whose elements are of the form ρ− : M− → E0
+ where M− =

M ×E0
+ this brings us to the expanding regime. So we can obtain a fixed point
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ρ̄− as above. Then the invariant manifold is given by

ρ̄ = ρ̄+ ∩ ρ̄−. (3.52)

The manifolds ρ̄+ and ρ̄− are conventionally called the stable and unstable man-

ifold of ρ̄ and are notated by W s(ρ̄) and Wu(ρ̄), respectively.

Figure 3.3: A sketch of ρ+.

3.2.8 Comparisons of methods that compute invariant man-

ifolds

The method presented in Theorem 3.2.2, Conjecture 1 and the standard Graph

Transform of Theorem 3.2.3 are suitable for systems which have a collapse of

dynamics on the invariant manifold. The contraction rate of the methods de-

veloped here depends on the coordinate and can be made arbitrarily small by

choosing an appropriate coordinate system so that |Rθ||Θr| is small. In con-

trast, the Graph Transform method has a contraction rate that can be made

arbitrarily small by choosing large T for the time–T map. However, for general
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systems where both contraction and expansion in the transverse direction ex-

ists, the method outlined for the Graph Transform involves taking intersection

at the end. In contrast, the methods developed here does not need this extra

step.

In (BOV97, BHV03), methods were developed to compute normally hyperbolic

invariant manifold based on the Graph Transform of (HPS77). In (BOV97), for

the case where there is no normal expansion, a global Newton operator which

is a contraction on an appropriate ball of function space, was used to compute

the invariant manifold. For the case where there is no normal contraction, the

same Newton operator was used. With these special cases, they obtained a

“hybrid” method to compute the invariant manifold for the general case where

both the normal contraction and expansion exists. The assumption made in

(BOV97, BHV03) is that the invariant manifold is compact. In contrast, the

method developed here does not assume compactness. In addition, the method

here does not need a combination of two steps as in the “hybrid” method for

general systems.

A method based on solving a system of quasi–linear PDEs was developed to

compute invariant manifolds in (GV04). The system of PDE comes from the

property that the vector field evaluated on any point of the invariant manifold

is orthogonal to the normal of the manifold at that point. In contrast to our

method here, this approach was used to compute the stable and unstable man-

ifold of a fixed saddle point.
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Chapter 4

Synchronisation of

non–autonomous oscillators

Synchronisation of non–autonomous systems plays an important role in the sci-

ences and engineering since most systems in real life are influenced by external

factors. See (MM10) and references within for some study of this phenomenon.

Here we will develop the theory for the synchronising of one oscillator to a

time–dependent forcing. We will give the definition of synchronisation for many

oscillators and outline how one can study synchronisation in the many oscil-

lators scenario. Note that although synchronisation is the focus of the thesis,

oscillator systems need not always be synchronised.

Take any m independent attracting normally hyperbolic oscillators, with equa-

tion of the form

θ̇ =ω

ṙ =g(θ, r)

(4.1)

where θ = [θi]
m
i=1 ∈ Sm, r = [ri]

m
i=1 ∈ U ⊂ (Rni)m, ω = [ωi]

m
i=1 and g(θ, r) =

[gi(θi, ri)]
m
i=1. When they are coupled and forced by a small external signal

f = (f1, f2) we write the equation as

θ̇ = Θ(θ, r, t, f1)

ṙ = R(θ, r, t, f2) (4.2)

Note that f is a function of the (θ, r, t)–space (or in the simplest cases only

of time) so f can be omitted in the equation above but serves as a functional
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parameter. The cross product of the limit cycles in the uncoupled system in the

time extended space is a normally hyperbolic manifold which we assume to be

ρ0 = {r = 0}. However, if the oscillators are weakly coupled and weakly forced

and their interaction depends on time, the invariant manifold theory in Chapter

3 applies and an invariant manifold, ρ, exists and is C1 close to ρ0. Thus, all the

oscillators remain “oscillating” and it is of interest to find conditions for when

they synchronise which corresponds to the collapse of dynamic on ρ. Since we

are only interested in the dynamic on ρ we restrict our attention to the higher

dimensional time–dependent coupled phase equations

θ̇ = ω + h(θ, t) (4.3)

where the vectors h = [hi]
m
i=1. The variable θi and parameter ωi corresponds

to the state and intrinsic frequency of oscillator i. We note that h depends

on ρ, but we exclude this notation for simplicity and view the time term as a

contribution of this dependency.

We will also consider the “reliability” of the unforced coupled system (4.2).

Vaguely speaking, a system is “reliable” if independent of its initial state, re-

peated presentation of a forcing produces essentially the same response after

an initial period, i.e. the response to a signal is reproducible. We will discuss

conditions for reliability in oscillator systems as studied in (LSBY09) where the

oscillators are taken to be phase oscillators. See below for a definition of relia-

bility for the m unforced coupled system (4.1) which is more general than that

given by (LSBY09) where the only the phase of the oscillators are considered.

However, we are only considering a particular forcing rather than a class of

forcings as in (LSBY09)

Definition 4.0.10 (Reliability) Take the coupled m normally hyperbolic os-

cillators system given by (4.2) with no forcing, i.e. f = 0. Consider a forcing

f and let Ψ(t; p0, f) be the flow of the forced system (4.2) in the time extended

space starting at p0 = (θ0, r0, t0) ∈ Sm×U×R with end time t. Then the coupled

system is reliable if for almost all p0, p
′
0 ∈ Sm × U we have, for all t > t0

|Ψ(t; p0, f)−Ψ(t; p′0, f)| ≤ De−λ|t−t0| (4.4)

for some 0 ≤ D <∞ and λ > 0.

Note that we use the norm defined by |(θ, r, t)| = max1≤i≤m{|θi|, |ri|}. We

remark that the definition above gives exponential convergence to the common

output which can be a desired property in applications.
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4.1 One oscillator

Here we study the one oscillator system which may give ideas for the study of

the many oscillator system.

4.1.1 Synchronisation of a forced oscillator

We define synchronisation for the system 4.3 where m = 1 as follows

Definition 4.1.1 (Synchronisation to a forcing)

For the time–dependent system (4.3), synchronisation occurs when it possesses

an attracting uniformly hyperbolic trajectory θ∗(·).

The definition above is analogous to “phase locking” (PRK01) for weak peri-

odic forcing where synchronisation is said to occur if a stable fixed point exists

for the phase difference equation. However, our definition is more general as it

applies to weak aperiodic forcings and as far as I know our definition is original.

Note that we are dealing with C1 systems hence their invariant manifolds, ρ,

are also C1. We shall see that the synchronised trajectory θ∗(·) is also C1. See

Figure 4.1 for a sketch of θ∗.

Figure 4.1: A sketch of an attracting normally hyperbolic trajectory θ∗ (shown
in red) on the invariant cylinder.

We now give sufficient conditions for synchronisation to occur for the time–

dependent system (4.3).

Conditions 2 (Synchronisation conditions) Take the time–dependent sys-

tem (4.3) and consider the following conditions

S1: Existence of an invariant strip [θ−(t), θ+(t)] i.e. there are differentiable

paths θ−(·) and θ+(·) such that |θ+ − θ−| > ε for some ε > 0. In addition
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the following holds: ω + h(θ−(t), t) > θ̇−(t) and ω + h(θ+(t), t) < θ̇+(t).

S2: Contraction in the invariant strip, i.e. hθ(θ, t) ≤ −k < 0 for all θ ∈
[θ−, θ+].

See Figure 4.2 for a sketch of these conditions.

Figure 4.2: A sketch of an invariant strip on the invariant cylinder.

Theorem 4.1.1 If the time–dependent system (4.3) has Conditions 2, then

synchronisation occurs.

Proof: We wish to show that there is a continuously differentiable attracting

normally hyperbolic trajectory θ∗(·). Consider the space C1(R,R) whose ele-

ments are paths θ(·) that lies in the invariant strip, i.e. θ(t) ∈ [θ−(t), θ+(t)].

Let ϕ(t; θ0, s) be the flow of the system (4.3) starting from θ0 at time s. Fix a

time τ > 0 and take the operator H : C1 → C1 defined by

(Hθ)(t) = ϕ(t; θ(t− τ), t− τ). (4.5)

See Figure 4.3 for a sketch of how H is defined. It is clear that θ ∈ [θ−, θ+]

implies H(θ) ∈ [θ−, θ+] and ∂H(θ)
∂t = ∂ϕ

∂θ · θ̇ which is continuous, so H is well

defined. We wish to show that H is a contraction. Note that for θ1, θ2 ∈ C1 we

have

∆ϕ̇ = hθ(θ1, t)∆ϕ

≤ −k∆ϕ (4.6)

where ∆ϕ(t) = ϕ(t; θ2(t − τ), t − τ) − ϕ(t; θ1(t − τ), t − τ) which gives us the

Gronwall’s inequality

∆ϕ(t) ≤ e−kτ∆ϕ(t− τ). (4.7)
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But (Hθ2)(t) − (Hθ1)(t) = ∆ϕ(t) ≤ e−kτ (θ2(t − τ) − θ1(t − τ)) for all t, so we

have

|H(θ2)−H(θ1)| ≤ e−kτ |θ2 − θ1|. (4.8)

Hence H is a contraction with rate e−kτ < 1. Thus it has a fixed point θ∗(·)
which solves the time–dependent system (4.3). Moreover, by S2 of Conditions

2 the linearised system δθ̇ = hθ(θ
∗(t), t)δθ is uniformly hyperbolic. So θ∗(·) is

an attracting normally hyperbolic trajectory. �

Figure 4.3: A sketch of how H is defined.

Given that synchronisation can be detected by Conditions 2, the robust region

where synchronisation persists, can be computed by applying Lemma 3.2.2. See

(BM03) for more details.

4.1.2 Reliability of one oscillator systems

We discuss here the conditions for reliability of one oscillator system, in partic-

ular we consider the type of forcing in which the system is reliable. Consider

the forced one oscillator system (4.2) which we recall below

θ̇ = Θ(θ, r, t, f1)

ṙ = R(θ, r, t, f2) (4.9)

with f = (f1, f2) where θ ∈ S1 (center variable) and r ∈ U ⊂ Rn (trans-

verse variable). Given that the unforced oscillator has an attracting normally

hyperbolic invariant cylinder ρ0 = {r = 0}, by the theory of Chapter 3, if f

is small enough, the forced system (4.9) also have an attracting normally hy-

perbolic invariant cylinder which we denote by ρ. Thus for any initial points

p0 ∈ S1×U ×R the flow Ψ(t; p0, f) in Definition 4.0.10 tends to ρ exponentially

in the transverse direction as t → ∞. Let us give the following corollary that

gives conditions for reliability.
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Corollary 4.1.1 If the forcing f produces only one uniformly attracting hyper-

bolic trajectory ξ∗(t) = (θ∗(t), r∗(t), t) on the cylinder ρ as in Definition 4.1.1,

then for almost all p0 ∈ S1 × U × R we have Ψ(t; p0, f) → ξ∗(t) exponentially

in the tangential direction.

Thus under Corollary 4.1.1 the forced system is reliable under f . However,

it is clear that if there were more than one uniformly hyperbolic attracting

trajectories on ρ the system under f is not reliable. Thus the definition of

synchronisation is more general than that of reliability in this context.

4.2 Many oscillators

4.2.1 Synchronisation of many oscillators

For m > 1, define a cylinder in the time extended space Sm× time by the graph

of a function ζ : S1 × time → Sm−1, thus the cylinder is 2 dimensional. We

define synchronisation as follows

Definition 4.2.1 (Synchronisation of many oscillators)

Synchronisation occurs when the time–dependent coupled equation (4.3) pos-

sesses an attracting normally hyperbolic invariant cylinder ζ∗.

A similar definition of synchronisation is found in (MM10) where a “diagonal–

like” submanifold at each instance of time t is defined which is equivalent to a

time t slice of the cylinder in our context.

Figure 4.4: A sketch of an attracting normally hyperbolic invariant cylinder ζ∗

(shown in red) on graph of ρ ∼= S1 × S1 × time.

See Figure 4.4 for a sketch of ζ∗ for when m = 2. Further work to find sufficient

conditions for synchronisation to occur in this case would be valuable. The

idea of an invariant region in the case of one oscillator provides an inspiration

for this, although this may not be feasible for m ≥ 3. However, (MM10) de-

veloped an alternative approach that utilises a dissipation condition “H”. This
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has an equivalent form that is amenable to their analysis for linearly coupled

systems of many oscillators. Their assumption of linear coupling is not a neces-

sity for the existence ζ∗, thus their approach may be used for nonlinear coupling.

Let us outline another approach which tackles the problem at network level

by treating synchronisation as a percolation process. This will require us to

find conditions for synchronisation of two oscillators and extend the theory of

the robust region to this scenario. However, one can adopt the approach of

(MM10) for two nonlinearly coupled oscillators which may be a natural next

step for their approach.

The idea here is that the oscillator in the network pairs up with another that

has similar characteristics. For example, their frequency difference could be

sufficiently small in which case they would form an active connection. While

they are doing this other oscillators within the network are also pairing up and

forming active connections. Then we can apply the theory from the case of

two oscillators and find that the paired oscillators synchronise to form essen-

tially one oscillator. Thus the network renormalises with fewer oscillators than

before. Then new pairing begins and the aggregation process repeats until we

obtain clusters of oscillators. The other possibility is that the process may keep

on going until one super cluster is formed where the entire network is in syn-

chrony with some outliers. Thus the network synchronises by percolation. This

approach may be more applicable in a realistic network since it is highly plau-

sible that some oscillator may fail to synchronise with the cluster. See Figure

4.5 for a schematic of this process.

4.2.2 Reliability of m oscillator systems

We saw in the beginning of the chapter that if the coupling and forcing f is

small enough in the m oscillator system (4.2) there is an attracting normally

hyperbolic invariant manifold ρ. So given any point p0 ∈ Sm × U × R the flow

Ψ(t; p0, f) in Definition 4.0.10 will tend to ρ exponentially in the transverse

direction – which is necessary for reliability. If the forcing f is such that the

coupled oscillators synchronises with an attracting normally hyperbolic invariant

cylinder ζ∗ on ρ, we are essentially in the one oscillator scenario found in Section

4.1.2. In particular, Corollary 4.1.1 gives conditions for reliability in this context.

Note then that reliability in the m oscillator system is a stronger property than

synchronisation in Definition 4.2.1 as it requires further collapse of dynamics on

the invariant cylinder ζ∗.
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......4) Renormalisation process 
repeats until.........

Figure 4.5: A diagram showing synchronisation as an aggregation process. 1)
The oscillators in the network form “active” pairs. 2) Each active pair syn-
chronises to become essentially one oscillator thus the network renormalises. 3)
Further active pairing takes place. 4) Further network renormalisation takes
place. 5) The aggregation process could stop and clustering could take place or
6) The entire network synchronises with some outliers.

66



Chapter 5

Applications

Normally hyperbolic invariant manifold theory has many applications in the

sciences and appears in many physical systems. For a list see (WHM94). It

can be used in dimension reduction for large systems where the dynamics on

the invariant manifold is the desired reduced system. Due to the persistence

property it can be used to describe many physical systems that are robust to

small changes in parameters of the governing equations.

Here, we will apply it to attracting normally hyperbolic oscillators that are

aperiodically forced. The aim is to obtain a perturbation result where the un-

forced system is the idealised unperturbed system. This result will be used here

to compute the perturbed normally hyperbolic invariant manifold of a simple

2–D model and in a physiological model presented in Chapter 6.

Pseudo–codes for the methods to compute invariant manifolds will be given.

In particular the method based on Conjecture 1 and the Graph Transform of

Theorem 3.2.3 will be implemented.

5.1 Aperiodic oscillators

The unperturbed oscillator has an invariant cylinder in the time–extended space,

which persists under time–dependent forcing. We wish to numerically compute

the perturbed cylinder and find forcing which causes further collapsing of dy-

namics on it.

Consider a normally hyperbolic limit cycle γ in the (θ, r, t)–coordinate given
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Figure 5.1: A trajectory on the attracting cylinder ρ0 ≡ 0.

by the following unperturbed equation

ṙ = g(θ, r, t)

θ̇ = ω (5.1)

with angular frequency ω ∈ R, r ∈ Rn and θ ∈ R/2πZ. Without loss of gen-

erality we assume ω = 0 because we can take a coordinate change by taking

θ → θ − ωt to obtain a system with frequency 0 in the new coordinate. Note

that g is θ–periodic and g(θ, 0, t) = 0. We assume the coordinate system is

chosen such that |gθ| is small on {r = 0}.

In the time extended space R/2πZ×Rn×R, γ is the invariant cylinder given by

the zero graph ρ0(θ, t) ≡ 0, see Figure 5.1. By the assumption of normal hyper-

bolicity, given ρ0 and any θ0, t0 we have θ(t) = θ0 and L : x 7→ ẋ−gr(θ(t), 0, t)x
is invertible with ||L−1||−1 ≥ K for some K > 0 and its Green’s function satis-

fies |G(t, s)| ≤ De−µ|t−s| for some µ > 0 and D > 1.

The constant µ and D can be related to the Floquet exponents and multipliers

of the limit cycle. For example, if γ is attracting, then for gr(θ, 0, t) independent

of time or is time periodic, we can take µ to be the smallest absolute Floquet

exponent of the linearised r equation ẋ = gr(θ0, 0, t)x. Note that the property

of normal hyperbolicity for a limit cycle can be given in terms of the constants

µ and D, e.g. Floquet exponents and multipliers. In which case K can be easily

determined by using the fact that L−1 has kernel G.
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5.1.1 Perturbed system

We wish to consider a small perturbation of (5.1) given by

ṙ = g(r, θ, t) + εR̄(r, θ, t)

θ̇ = εΘ̄(r, θ, t) (5.2)

and apply Chapter 3 to show that it has an attracting normally hyperbolic

invariant graph ρ̄ for non large ε. Let us write R = g + εR̄ and Θ = εΘ̄ and

state this in the following theorem.

Theorem 5.1.1 The perturbed equation (5.2) has a normally hyperbolic invari-

ant manifold if ε is small enough.

Proof: We are required to check that ρ0 ≡ 0 satisfies C1 and C2 of Condition

1 under the perturbed equation.

Check C1:

(i) |R| ≤ ε|R̄|; (ii)|Rθ| = |gθ + εR̄θ| and (iii)|Rθ||Θr| ≤ (|gθ + εR̄θ|)ε|Θ̄r| are

small if ε is small enough.

Check C2:

Given ρ0 and θ0, t0 we have θ(t) which solves θ̇ = Θ(θ, 0, t) from θ0 at t0. Then

L0 : x 7→ ẋ−Rr(θ(t), 0, t)x is a small perturbation of L : x 7→ ẋ− gr(θ(t), 0, t)x
with |∆L| ≤ ε|R̄r|. By lemma 2.2.1 in Chapter 2, if ε is small such that

ε < K/|R̄r|, then L0 is invertible since L is invertible.

Now J0 : σ 7→ σ̇ − Rr(θ, 0, t)σ + σΘθ(θ, 0, t) is just a small perturbation of

L with |L0 − J0| ≤ ε|Θ̄θ|. So by lemma 2.2.1 in Chapter 2, J0 is also invertible

if ε < K/|Θ̄θ|. �

Note that the perturbation can be more general than just additive.

5.1.2 Pseudo–codes for physical systems

Here we will develop numerical methods to estimate invariant manifolds on Con-

jecture 1 (operator T ) and the Graph Transform method of Theorem 3.2.3 (oper-

ator T̂ ). In particular we consider applications to attracting systems hence there

is no expansion in the transverse direction. Later, we will investigate a particu-

lar case where r ∈ R for the system given by (5.2). For presentation purposes in

this section we write R(θ, r, t) = g(θ, r, t)+εR̄(θ, r, t) and Θ(θ, r, t) = εΘ̄(θ, r, t).
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It is desirable to compute the invariant cylinder ρ̄ which simple integration in

forward time may not suffice as there could be attracting trajectories on the

cylinder. With the parameter ε and functions g, R̄ and Θ̄ fixed, I will give

pseudo–codes that computes the T–iterate of a given input surface ρ restricted

to a fixed area [tmin, tmax] × [θmin, θmax]. The output will be an array of co-

ordinates of the form (x, y, z) = (t, θ, r) which will give a surface representing

the cylinder Tρ in the lift with r = (Tρ)(θ, t). The next iterate of ρ can then

be computed by feeding the array for Tρ back into the algorithm. This could

have been automated but due to time constraint it was not carried out. How-

ever, a separate simple code (not presented here) was used to calculate the sup

norm differences between two surfaces to estimate the contraction rate of T .

The parameter ε which represents the forcing in the system, was chosen by trial

and error such that the algorithm converges. The case that the code does not

converge may indicate that the forcing was too big for an invariant surface to

exist. In subsequent examples we found that the sup norm difference between

two iterates of the given starting surface was very small which indicates that

Tρ is a good estimate for ρ̄.

Algorithm 1: Green’s function

Inputs: {θ(t), t ∈ [tmin, tmax] and ρ ∈ G.}

for (tmin − s∗ < s < tmax)

comment: s∗ > 0 is large enough to ensure G(t, t− s∗)

is very small.

x(t) = forward integrate ẋ = Rr(θ(u), ρ(θ(u), u), u)x

starting from x(s) = 1 for a time length of s∗;

store: G(t, s) = x(t) for t ∈ (max{tmin, s},min{s+ s∗, tmax});

return: G;

See Figure 5.2 for the domain of the Green’s function G. See Figure 5.3 and 5.4

for the C++ header file for Algorithm 1.
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Figure 5.2: G has the indicated trapezium as its domain.

Algorithm2: Newton fixed point.

Inputs: {θ(t), t ∈ [tmin, tmax] and ρ ∈ G.}

G =Algorithm 1: Green’s function{θ(t), t ∈ [tmin, tmax] and ρ ∈ G};

r(s) =ρ(θ(s), s) s ∈ [tmin, tmax];

while (error > ε)

comment: ε is some pre–assigned accuracy for the Newton

fixed point.

f(s) = R(θ(s), r(s), s)−Rr(θ(s), ρ(θ(s), s), s) r(s) s ∈ [tmin, tmax];

for (tmin < t < tmax) r̃(t) = Trapezium rule:

∫ t

t−s∗
G(t, s)f(s)ds;

error = |r − r̃|;

r =r̃;

return r̃;

Note that the overhead is mainly in computing G and not the while loop, which

inexpensively evaluates the Green’s function, G, and f to update r, possibly

multiple times. See Figure 5.5 - 5.8 for the C++ header file for Algorithm 2.

To practically estimate the invariant manifold we must decide on a finite domain
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of ρ.

Algorithm 3: Invariant manifold.

Inputs: {ρ(θ, t) ∈ G, t ∈ [tmin, tmax], θ ∈ [θmin, θmax]}

comment: can initialise ρ ≡ 0.

for (tmin < t0 < tmax; θmin < θ0 < θmax)

θ(t) = backward integrate θ̇ = Θ(θ, ρ(θ, t), t)

starting from θ(t0) = θ0 until it reach boundary of ρ at time tb;

r̃(t) = Algorithm 2: Newton fixed point{θ(t), t ∈ [tb, t0], ρ ∈ G};

store: ρ̃(θ(t), t) = r̃(t);

Output: ρ̃ ;

To compute the next iterate of ρ we can repeat Algorithm 3 with the updated

input or we can modify the algorithm to automate this if desired. Note that

for greater efficiency, θ(t) does not need to be computed to the boundary of

ρ as the value of ρ̃ may have already been computed near the boundary from

previous θ traces within the for loop. In addition, the method is amenable to

parallel computing as the ranges in the for loop can be split into several regions

hence split the task up. See figure 5.9 - 5.14 for the header file of Algorithm 3.

To estimate the invariant manifold using the Graph Transform method we can

replace Algorithm 2 with Algorithm 2.1 (below) in Algorithm 3.

Algorithm 2.1: Graph Transform method.

Inputs: {θ(t), t ∈ [tmin, tmax] and ρ ∈ G.}

for (tmin < t < tmax)

r(t) = ρ(θ(t− T ), t− T ) +

∫ t

t−T
R(θ(s), ρ(θ(s), s), s)ds;

comment: T is the time defining the time T–map.

return r;

Note that when comparing the contraction rates of the Graph Transform method

and our method we should take T = s∗ for a fair comparison. We refer the

algorithm based on the Newton fixed point theorem by Algorithm A and the

algorithm based on the Graph Transform by Algorithm B. The computations

below and in following chapter were performed on a MacBook Pro laptop with

Intel Core i7 2GHz processor.
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5.1.3 Discretisation details

In the following computations, we restrict the surface to a grid area given by

[tmin, tmax] × [θmin, θmax] ⊂ R ×M and the grid is separated into small cells

denoted by ∆t×∆θ each of size specified in the tables below.

For Algorithm A, recall that s∗ is the length in time where the Greens function

is truncated for each t ∈ [tmin, tmax] i.e. G(t, s) for s < t− s∗ is not included in

the computation, see the pseudo–code for Algorithm 1. The discrete time step

to compute x(t) in Algorithm 1 for the Greens function is denoted by dt while

the discrete time step to compute θ(t) in Algorithm 3 is denoted by δt. The

Newton error of Algorithm 2 are specified in the tables below along with s∗, dt

and δt.

For Algorithm B, s∗ is the length in time that we integrate the system for-

ward in time to create a time–s∗ map. The discrete time step to compute r(t)

in Algorithm 2.1 is also denoted by dt while the discrete time step to compute

θ(t) is denoted by δt. All these quantities will be detailed in the tables below.
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Figure 5.3: C++ header file for Algorithm 1 (i).
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Figure 5.4: C++ header file for Algorithm 1 (ii).
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Figure 5.5: C++ header file for Algorithm 2 (i).
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Figure 5.6: C++ header file for Algorithm 2 (ii).
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Figure 5.7: C++ header file for Algorithm 2 (iii).
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Figure 5.8: C++ header file for Algorithm 2 (iv).
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Figure 5.9: C++ header file for Algorithm 3 (i).
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Figure 5.10: C++ header file for Algorithm 3 (ii).
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Figure 5.11: C++ header file for Algorithm 3 (iii).
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Figure 5.12: C++ header file for Algorithm 3 (iv).
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Figure 5.13: C++ header file for Algorithm 3 (v).
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Figure 5.14: C++ header file for Algorithm 3 (vi).
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5.2 A simple 2–D oscillator

We will numerically study a simple 2–D linearly attracting oscillator and its

response to various time–dependent forcing. If the forcing is not too large

we can apply Theorem 5.1.1 and see that the oscillator remains oscillating in

the sense that there is an invariant cylinder in the time–extended space. We

will compute the cylinder using our method and the Graph Transform method

outlined in Chapter 3. Then by varying the parameters in the forcing, we will

investigate the type of dynamics occurring on the cylinder. Let us now give the

equation of the oscillator,

ṙ = −µr

ϕ̇ = Ω (5.3)

with Ω ∈ R, r ∈ R and ϕ ∈ M = R/2πZ. It represents a 2 − D normally

hyperbolic limit cycle with intrinsic angular frequency Ω ∈ R and attraction

rate µ > 0, i.e. the Floquet exponent is −µ. The limit cycle is given by the

cylinder ρ0 ≡ 0 in the time–extended space R/2πZ× R× R.

Let us consider the following forcing on the oscillator

ṙ = −µr + 0.1ε sin(0.1(r − ϕ+ ω1t)) (5.4)

ϕ̇ = Ω + ε cos(ϕ− r − ω2t) (5.5)

which represents an external forcing of angular frequency ω1 ∈ R in the r di-

rection and ω2 ∈ R in the ϕ direction. The forcing is quasi–periodic if ω1/ω2

is irrational, else it is periodic. To allow more interesting dynamics to occur on

the invariant surface while ensuring its existence, the amplitude of the forcing

in the ϕ direction is specifically made larger than that in the r direction (by a

factor of 10). The factor of 0.1 inside the sinusoid ensures a slower oscillation

in the r coordinate which is only for aesthetic purposes when displaying the

invariant surface and the dynamic on it which is in the ϕ direction.

Note that for weak periodic and quasi–periodic forcing the standard normally

hyperbolicity theory for compact invariant manifolds can be used to obtain the

perturbed invariant manifold. This can be done by extending the forced system

to a compact n-torus (with an appropriately n ) to obtain an autonomous sys-

tem which is a perturbation of a normally hyperbolic system. For example, the
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system (5.4) is equivalent to the following extended autonomous system

ṙ = −µr + 0.1ε sin(0.1(r − ϕ+ ϕ1))

ϕ̇ = Ω + ε cos(ϕ− r − ϕ2)

ϕ̇1 = ω1

ϕ̇2 = ω2. (5.6)

with (ϕ1, ϕ2) ∈ T2. When ε = 0, the system (5.6) possess a compact attracting

invariant manifold given by M̃ = {r = 0} ∼= S1 × S1 × S1. Thus when ε > 0

is small, then since (5.6) is a small perturbation of a normally hyperbolic sys-

tem, M̃ persists due to the standard theory of normal hyperbolicity for compact

manifolds. For the purpose of demonstration we will use our method to compute

the perturbed manifold.

For ease of implementation we shall take a coordinate system that is relative

to the intrinsic frequency of the oscillator. In particular we take θ = ϕ− Ωt so

that the forced equation is of the form

ṙ = −µr + 0.1ε sin(0.1(r − θ + (ω1 − Ω)t)) (5.7)

θ̇ = ε cos(θ − r + (Ω− ω2)t) (5.8)

which will ensure a slower deviation along the θ coordinate for small ε, i.e. the

trajectories stay within a given rectangular grid for a longer time.

We will numerically investigate how the dynamics change by varying ω2 and

fix the other parameters as follows

µ = 1, ε = 0.1, Ω = 1, ω1 = −1.02. (5.9)

Note that more complicated forcing can be considered. For example, we can

allow ε to depend on time to model the fluctuation of the amplitude of the

forcing. But we shall restrict ourselves to the simple case here to highlight the

main ideas.

5.2.1 Contraction rate of T and T̂

To investigate the contraction rates of the two methods we will take ω2 = 1.2.

To estimate the contraction rate of T of Theorem 1 we consider the following

initial surfaces ρ1 = {r = 10} and ρ2 = {r = −10} and infer its contraction rate

cT given by
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|Tρ1 − Tρ2| ≤ cT |ρ1 − ρ2|. (5.10)

Similarly for T̂ of Theorem 3.2.3 and its contraction rate cT̂ .

From the numerical results, see the 3–D Figure 5.15 (cross your eyes till the

two red dots meet), we have |Tρ1−Tρ2| = 1.5× 10−4 while |ρ1−ρ2| = 20, thus

we have an estimate of

cT = 7.5× 10−6. (5.11)

In the case of T̂ , from Figure 5.16 we can obtain a similar estimate

cT̂ = 7.5× 10−6. (5.12)

See Table 5.1 for a summary of these results where quantitative details used for

each of the Algorithms A and B are also included for reference.

T T̂

Contraction rate 7.5× 10−5 7.5× 10−5

ρ1 {r = 10} {r = 10}
ρ2 {r = −10} {r = −10}
|ρ1 − ρ2| 20 20
|Tρ1 − Tρ2| 1.5× 10−4 1.5× 10−4

grid area (t× θ) [−30, 0]× [0, 2π] [−30, 0]× [0, 2π]
grid cell = |∆t| ×
|∆θ|

0.02× 0.04 0.02× 0.04

s∗ 10.00001 10.00001
dt 0.005 0.005
δt 0.003 0.003
Newton error 0.05 –
Approx. run time
for first iterate

35 mins 33 mins

Table 5.1: Results from Algorithm A and B where two surfaces are iterated.
Quantitative details of both algorithms are also included.

5.2.2 Iterates of T and T̂

We check how close T and T̂ estimates the invariant manifold by taking just

the first iterate of ρ0 ≡ 0.
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From the numerical results, see the 3–D Figure 5.17, we have

|Tρ0 − T 2ρ0| = 3× 10−5, (5.13)

which is very good. If we were to estimate the contraction rate by using the

iterates we would obtain cT = 3 × 10−3 (since ||Tρ0 − ρ0|| = 0.01). Similar

values were obtained for T̂ as shown in Figure 5.18. Note that it is not desirable

to use successive iterates to estimate the contraction rate because the difference

between successive surfaces are so small that they are of the order of the size

of numerical noise as indicated in Figure 5.17 B and Figure 5.18 (Right). The

noise could be minimised by using a finer grid or by removing large deviations

which due to time constraint was not implemented. Thus the first iterate of ρ0

is already a good estimate for the invariant manifold.

T T̂

Contraction rate 3× 10−3 3× 10−3

ρ0 {r = 0} {r = 0}
|ρ0 − Tρ0| 0.01 0.01
|Tρ0 − T 2ρ0| 3× 10−5 3× 10−5

grid area (t× θ) [−30, 0]× [0, 2π] [−30, 0]× [0, 2π]
grid cell = |∆t| ×
|∆θ|

0.008× 0.04 0.008× 0.039

s∗ 10.00001 10.00001
dt 0.003 0.003
δt 0.002 0.002
Newton error 0.05 –
Approx. run time
in first iterate

35 mins 33 mins

Approx. run time
in second iterate

47 mins 46 mins

Table 5.2: Results from Algorithm A and B where two iterates of a surface was
investigated. Quantitative details of both algorithms are also included.
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5.2.3 Dynamics on the invariant manifold

We investigated how ω2 affects the dynamics on the invariant manifold, which,

by the previous section, is reasonably estimated by Tρ0 where ρ0 ≡ 0. By

varying ω2 we saw that the dynamic on the invariant manifold can change

dramatically. In particular, we saw in Figure 5.19 that there is no collapsing of

dynamic when |Ω− ω2| = 0.2 but we found that collapsing of dynamic appears

for |Ω−ω2| < 0.1, see Figure 5.20 for the case where ω2 = 1.01. This essentially

says that the oscillator can be slaved by the forcing if their frequency difference

is less than 0.1. See Table 5.3 for a summary of these results.

Frequency difference |Ω− ω2| Dynamics on cylinder
> 0.1 no collapse of dynamics
< 0.1 collapsing of dynamics exist

Table 5.3: Summary of results from varying ω2

5.2.4 Numerical results

To view in 3–D, hold the figures at arm’s length then cross your eyes until the

two red dots meet horizontally. Otherwise, ignore the pictures in the right col-

umn for 2–D images.
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Figure 5.15: A: red – Tρ1, blue – Tρ2. B: Difference between Tρ1 and Tρ2

where ρ1 ≡ 10 and ρ2 ≡ −10.

Figure 5.16: Numerical results from implementing the Graph Transform method
– T̂ . Left: red – T̂ ρ1, blue – T̂ ρ2. Right: Difference between T̂ ρ1 and T̂ ρ2 where
ρ1 ≡ 10 and ρ2 ≡ −10.
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Figure 5.17: A: red – Tρ0, blue – T 2ρ0. B: Difference between Tρ0 and T 2ρ0

where ρ0 ≡ 0.

Figure 5.18: Numerical results from implementing the Graph Transform method
– T̂ . Left: red – T̂ ρ0, blue – T̂ 2ρ0. Right: Difference between T̂ ρ0 and T̂ 2ρ0

where ρ0 ≡ 0.
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Figure 5.19: No synchronisation on the invariant manifold.
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Figure 5.20: Synchronisation on the invariant manifold.
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Chapter 6

The Morris–Lecar model

The aim of this section is to evaluate the methods developed in the previous

chapters in a biophysically realistic model of a single forced oscillator, namely

the Morris–Lecar oscillator. The Morris–Lecar model (ML81) was developed

to describe the voltage oscillations in giant barnacle muscle fibres. However,

there is an equivalent model which is used as a reduced neuronal model that

describes the voltage dynamic of a neuron which incorporates a fast sodium and

a slow potassium channel. The model is biophysically relevant, exhibits many

properties and since it is only 2–D it is a very popular model. As we will see, the

model can possess a linearly attracting limit cycle for certain parameter regimes.

Thus we can use the method we have developed to explore the response of the

oscillator to certain forcing. In particular we will find periodic, two–frequency–

periodic and modified Poisson spike train inputs that will enslave the oscillator

to demonstrate that synchronisation can take place. However, synchronisation

does not always take place and in a physiological setting this might be a desirable

property.

6.1 Equations and parameters

The equation we will investigate here can be found in (PKS08)

C
dV

dt
= Istim − ḡfastm∞(V )(V − ENa)− ḡslow(V − EK)w − gleak(V − Eleak) + f(t)

dw

dt
= φw

w∞(V )− w
τw(V )

(6.1)
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where

m∞(V ) =
1

2

(
1 + tanh

(
V − βm
γm

))
w∞(V ) =

1

2

(
1 + tanh

(
V − βw
γw

))
τw(V ) =

1

cosh(V−βw2γw
)

(6.2)

with parameters

C = 2µF/cm2

φw = 0.15

ḡfast = 20 mS/cm2

ḡslow = 20 mS/cm2

gleak = 2 mS/cm2

ENa = 50 mV

EK = −100 mV

Eleak = −70 mV

βm = −1.2 mV

γm = 18 mV

γw = 10 mV

The fast activation variable V represents the voltage of the neuron cell mem-

brane measured in mV while w represents some slow recovery variable which is

dimensionless. We will investigate the effect of various forcing functions f(t).

In the absence of the forcing f , varying the parameter βw gives rise to class 1, 2

and 3 excitability. These classes are based on the type of bifurcation the model

undergoes in the I−V plane where the stimulus current Istim is the bifurcation

parameter. See (Izh07). In particular, for βw = 0 the model undergoes a saddle

node on invariant circle bifurcation where there is a pair of fixed points lying on

an invariant circle, one stable and the other unstable, for Istim < 40µA/cm2.

As Istim increases to 40µA/cm2 the pair of fixed points meet and become one

saddle fixed point on the circle which disappears for Istim > 40µA/cm2 where

a linearly attracting limit cycle is formed. See Figure 2 in (PKS08). This is the

simplest nontrivial normally hyperbolic invariant manifold. This gives rise to

what is known as “tonic spiking” in physiological terminology. See Figure 6.1
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for one spike. For our numerical implementation we will take

βw = 0 mV

Istim = 70 µA/cm2

which gives a limit cycle, denoted by γ, with approximate period T = 5.59992 ms.

Since γ is normally hyperbolic it possesses invariant leaves a.k.a. isochrons

Figure 6.1: Time evolution of voltage for one cycle on γ i.e. a “spike”.

(Guc75), (Win80), that foliates a neighbourhood of γ. Specifically, a leaf based

at p ∈ γ is given by

l(p) = {x ∈ R2 : |ϕ(t; p)− ϕ(t;x)| → 0 as t→∞} (6.3)

where ϕ(t; z) denotes the trajectory of the (V,w) system (6.1) starting from

z ∈ R2 at t0 = 0. We can see that l(ϕ(t; p)) = ϕ(t; l(p)) which shows invariance.

Note that l(p) is transverse to γ at p and l varies as smoothly as equation (6.1).

For simplicity we may write the equation (6.1) as

(V̇ , ẇ) = F (V,w) = (F1(V,w), F2(V,w)), (6.4)

and may set x = (V,w).
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6.2 New coordinate system

We can use the invariant leaves to define a new coordinate system, in particular

the linearisation of the leaves at γ gives a transverse bundle to γ which can

be easily implemented by using the adjoint method which is presented next. If

desired, higher order approximation of isochrons can be obtained (SD09).

6.2.1 Adjoint method

The adjoint method simply solves an adjoint equation for a periodic solution

and then taking its orthogonal, gives the linearised isochrons. Let us explain

why the adjoint solution relates to the linearised isochrons in this way (BMH04).

Fix a point p0 ∈ γ, then we can define the phase map Φ′ : γ → R/TZ by

Φ′(p) = φ = { Time it takes for the trajectory to reach p ∈ γ starting from p0 ∈ γ}.

But this can be extended to Φ defined on a neighborhood N(γ) of γ by taking

Φ(x) := Φ′(p) for x ∈ l(p) ∩N(γ) which means x and p have the same asymp-

totic phase. So for each p ∈ γ, l(p) is the contours of Φ. More specifically,

l(p) = Φ−1(c) for some constant c. Thus the linearisation of l(p) at p ∈ γ is

orthogonal to ∇xΦ(p).

Now if γ(t) is a trajectory lying on the limit cycle, γ, then ∇xΦ(γ(t)) is T

periodic and satisfies the following adjoint equation (BMH04),

ż(t) = −[DF (γ(t))]T z(t). (6.5)

Note that ∇xΦ(γ(t)) has a constraint which is given by

∇xΦ(γ(t)) · F (γ(t)) = 1 (6.6)

which arises from the fact that φ̇ = 1. So to obtain ∇xΦ(γ(t)) we simply solve

(6.5) for a periodic solution and normalise it by the constraint (6.6) for a fixed

t = 0, say. However, we are only interested in the orthogonal of ∇xΦ(γ(t)) so

we do not need to impose this constraint. ∇xΦ(γ(t)) is commonly known as

the instantaneous Phase Response Curve or iPRC. For examples, see (BMH04),

(Izh07) and (EK84).

The adjoint equation has the opposite stability of γ, so in practice to obtain an

approximation of the periodic solution of (6.5) we start with any initial value
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then integrate backwards in time and allow a transient length of time to pass.

Then take a time length of T of the integrated solution as an approximation to

a periodic solution. Taking the orthogonal of this solution gives the linearised

isochrons at each point p ∈ γ which we denote by I(p).

See Figure 6.2 for a numerical approximation of γ and some linearised isochrons

on it given by p + I(p) where p ∈ γ. Note that there is a linearised isochron

for every point on γ and the figure only shows a subset of linearised isochrons

separated by a constant time length. It can be seen from the figure that the

oscillator is faster on the top of γ compared to the bottom left.

Figure 6.2: The limit cycle γ with some linearised isochrons at γ.

6.2.2 Coordinate change

For ease of numerical implementation, we wish to find a coordinate change

using the linearised isochrons, rather than the actual isochrons, such that any

perturbation of the time–extended (V,w) system (6.1) can be written in the

form of

ṙ = R(θ, r, t)

θ̇ = Θ(θ, r, t)

ṫ = 1.
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Take the phase map Φ′ defined above and let us extend it using the linearised

isochron, rather than the actual isochron, to Φ̄ : N(γ)→ R/TZ× R defined by

Φ̄(x) = Φ′(p) where x ∈ (p + I(p)) ∩ N(γ). Then let us define P ′ : N(γ) →
R/TZ× R by

P ′(x) = (φ, r) := (Φ̄(x), x− p) for x ∈ (p+ I(p)) ∩N(γ). (6.7)

See Figure 6.2 for a sketch of r. However, φ̇ = 1 will cause too much deviation

in the phase direction, so for ease of implementation, we take a further change

of coordinate in the time–extended space P : N(γ)×R→ R/TZ×R×R defined

by

P (x, t) = (θ, r, t) = (φ− t, r, t). (6.8)

Thus the time–extended (V,w) system (6.1) under this coordinate system is

given by

θ̇ = 0

ṙ = g(θ, r)

ṫ = 1

for some g depending on the P .

Note that unit for θ and t is ms and r is dimensionless.

6.2.3 Perturbed Morris–Lecar system in the new coordi-

nate system

Now if the time–extended (V,w) system is perturbed, for example, it is forced,

with the resulting system given by (ẋ, ṫ) = F̃ (x, t), then under the new coordi-

nate system it is of the form

θ̇ = Θ(θ, r, t)

ṙ = R(θ, r, t)

ṫ = 1,

which is given by

(θ̇, ṙ, ṫ) = [DQ(θ,r,t)P ] · F̃ (Q(θ, r, t)) (6.9)
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with Q = P−1. The linearised equation in the new coordinate system is of the

form

δθ̇ = Θθδθ + Θrδr + Θtδt

δṙ = Rθδθ +Rrδr +Rtδt

δṫ = 0, (6.10)

which is given by

(δṙ, δṙ, δṫ) = [DQ(θ,r,t)P ] · [DQ(θ,r,t)F̃ ] · [D(θ,r,t)Q](δθ, δr, δt). (6.11)

Note that only the Rr term will be required in the implementation so we do not

need to compute the whole of (6.11).

Practically, it is easier to evaluate the function Q rather than P . So to estimate

the Jacobian DP , we can make use of the relation DQ(θ,r,t)P = [D(θ,r,t)Q]−1

and it is easier to estimate DQ.

Note that since the linearised isochrons can overlap, for example, possibly at

(V,w) = (20, 0.1) see Figure 6.2, the amplitude of the forcing f in equation

(6.1) must be restricted to a certain magnitude otherwise the coordinate change

becomes singular. A trial and error method can be employed to determine the

range of valid magnitude for f . If we set f = A where A is a constant we take it

to be a valid amplitude if the perturbed limit cycle due to this constant forcing

does not lie beyond the overlaps of the linear isochrons. By increasing |A| from

0 and following the previous step we can determine a range of valid amplitude

A.

6.3 Algorithms adapted to the new coordinate

system

To numerically estimate the invariant cylinder for the forced Morris–Lecar sys-

tem we need to adapt the above algorithms to the time–extended (V,w) coor-

dinate system. In particular, we need to consider the evaluation of R(θ, r, t),

Rr(θ, r, t) and Θ(θ, r, t) in the algorithms whenever they are called. For these, we

need to computeQ(θ, r, t) and numerically estimate the Jacobian [D(θ,r,t)Q]−1 =

DQ(θ,r,t)P and then evaluate for the relevant components of (6.9) and (6.11) us-

ing the given forced equation F̃ and its derivative DF̃ .
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Thus the key step is in computing Q(θ, r, t) which is straightforward. The ad-

joint method can be used to output an array containing time (phase φ) versus

linearised isochrons, while the limit cycle can also be stored as an array con-

taining time versus the (V,w) coordinate of γ. Thus given (θ, r, t), it is easy to

work out the corresponding (V,w, t) coordinate given the two arrays of data, see

Figure 6.2. Note that the arrays can be produced in a separate algorithm and

then loaded into Algorithm 3 where the function Q and the above calculations

can be appropriately added. There should be an extra output of Algorithm 3

in the (V,W, t) coordinate (by applying Q) to give a cylinder.

6.3.1 Rescaling w

As seen in Figure 6.2, γ is squashed in the w–direction. Thus in the numerical

implementations we will rescale this variable so that width and height of the

limit cycle has similar order. We will rescale by w → 400w, i.e. use the variable

u where w = 400u and relabel u = w.

6.4 Periodic, two–frequency–periodic and mod-

ified Poisson spike train inputs

We will consider the forced Morris–Lecar neuron by a forcing, f , in the V

direction given by

V̇ = F1(V,w) + f(t)

ẇ = F2(V,w), (6.12)

where f is periodic, two–frequency–periodic or a modified Poisson spike train.

We note that the method can also deal with forcing that depends on the state

V and w which may be more realistic.

6.4.1 Periodic forcing

Here we take

f(t) = 2 + 5 sin((2π/T + ω1)t) (6.13)

where T is the period of the Morris–Lecar oscillator and ω1 = 0.1 rad/ms, rep-

resenting the frequency difference of the forcing and the neuron.
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Contraction rate of T and T̂

To estimate the contraction rate we will consider the two initial graphs ρ1 ≡ 0

and ρ2 ≡ −20. From the 3–D Figure 6.4 we have the estimates |Tρ1−Tρ2| = 0.8

and |ρ1 − ρ2| = 20. Thus the contraction rate of T has the estimate

cT = 0.04. (6.14)

In the case of T̂ , from Figure 6.5 we can obtain a similar estimate

cT̂ = 0.04. (6.15)

As we can see in Figure 6.4 A and C, there is a noticeable difference between

the invariant cylinders Tρ1 and Tρ2 in both the new coordinate system and the

time–extended (V,w) coordinate system. In some region of the cylinder Tρ2

given in blue shown in Figure 6.4 C, we can clearly see red points (from the

other cylinder Tρ1) protruding outwardly. Similar observation can be seen for

T̂ in Figure 6.5 A and C.

T T̂

Contraction rate 0.04 0.04
ρ1 {r = 0} {r = 0}
ρ2 {r = 20} {r = 20}
|ρ1 − ρ2| 20 20
|Tρ1 − Tρ2| 0.8 0.8
grid area (t× θ) [−10, 0]× [0, 2π] [−10, 0]× [0, 2π]
grid cell = |∆t| ×
|∆θ|

0.04× 0.04 0.04× 0.04

s∗ 10.00001 10.00001
dt 0.0125 0.0125
δt 0.01 0.01
Newton error 0.05 –
Approx. run time
for first iterate

3 hours 3 hours

Table 6.1: Results from Algorithm A and B where two surfaces are iterated.
Quantitative details of both algorithms are also included.

Iterates of T and T̂

We check how close T and T̂ estimate the invariant manifold by taking just the

first iterate of ρ1 ≡ 0.
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From the numerical results (see the 3–D Figure 6.6), we have

|Tρ1 − T 2ρ1| = 0.08. (6.16)

So the second iterate of ρ1 is very close to the first iterate. Furthermore, from

eye–inspection of Figure 6.6 C, we can see that the two cylinders Tρ1 and T 2ρ1

in the time–extended (V,w) coordinate system are very close to each other.

Similar numerical results were obtained for T̂ as seen in Figure 6.7. Thus the

first iterate of ρ0 is a good estimate for the invariant manifold.

T T̂

ρ1 {r = 0} {r = 0}
|Tρ1 − T 2ρ1| 0.08 0.08
grid area (t× θ) [−10, 0]× [0, 2π] [−10, 0]× [0, 2π]
grid cell = |∆t| ×
|∆θ|

0.08× 0.08 0.04× 0.04

s∗ 10.00001 10.00001
dt 0.0325 0.0125
δt 0.03 0.0041
Newton error 0.05 –
Approx. run time
for first iterate

3 hours 3 hours

Approx. run time
for second iterate

9 hours 9 hours

Table 6.2: Results from Algorithm A and B where two surfaces are iterated.
Quantitative details of both algorithms are also included.

Synchronisation

We searched for a value of ω1 which causes the collapse of dynamics on the

invariant manifold estimated by Tρ1. We found that for ω1 = 0.1 rad/ms,

synchronisation takes place as is shown in Figure 6.8. Figure 6.8A shows a

generic trajectory (purple) starting near the repeller (blue) at t = −90 ms,

which significantly deviates away by the time t = −45 ms. However, in Figure

6.8B, the generic trajectory eventually approaches the attractor (red) by the

time t = 0. In theoretical neuroscience, it may be of interest to depict this in

the (V, t) plane as the voltage time series, which is of greater relevance. This is

given in Figure 6.8C where the invariant cylinder is also shown.
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6.4.2 Two–frequency–periodic forcing

Here we take the forcing to be

f(t) = 5 sin((2π/T + ω1)t) + 3 sin((2π/T + ω2)t+ 1.5) (6.17)

which could represent a combination of two periodic forcings with a phase shift

of 1.5. Note that more complicated types of forcing can be considered, for ex-

ample the amplitudes given by 5 and 3 can be a time–dependent factor or even

depend on the states V and w for a more realistic forcing.

Fixing ω2 = −0.12 rad/ms, we found that for |ω1| = 0.02 rad/ms synchroni-

sation takes place as depicted in Figure 6.3A. However, synchronisation begins

to disappear when we increase to |ω1| = 0.1 rad/ms as shown in Figure 6.3B a

generic trajectory (purple) starts from the right hand side of a “saddle node”

(red) at time t = −90 ms, which deviates away by time t = −45 ms, which then

approaches the “saddle” attractor from the left hand side by time t = 0 ms. See

Table 6.3 for a summary of the type of dynamics on the invariant cylinder by

varying |ω1|.

Frequency difference |ω1| Dynamics on cylinder
> 0.1 no collapse of dynamics
< 0.1 collapsing of dynamics exist

Table 6.3: Summary of results from varying |ω1|
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6.4.3 Numerical results for periodic forcing

To view in 3–D, hold the figures at arm’s length then cross your eyes until

the two red dots meet horizontally. Otherwise, ignore the pictures in the right

column for 2–D images.
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Figure 6.3: A: Synchronisation on the cylinder, blue – repeller, red – attractor,
purple – generic trajectory. B: No synchronisation, red – “saddle” attractor,
purple– generic trajectory.
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Figure 6.4: A and C: red – Tρ1, blue – Tρ2 (hand drawn black circle in C is a
visual aid.) B: Difference between Tρ1 and Tρ2 where ρ1 ≡ 0 and ρ2 ≡ −20.
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Figure 6.5: Numerical results from implementing the Graph Transform method
– T̂ (hand drawn black circle in C is a visual aid).
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Figure 6.6: A and C: red – Tρ1, blue – T 2ρ1 (hand drawn black circle in C is a
visual aid.) B: Difference between Tρ1 and T 2ρ1 where ρ1 ≡ 0.
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Figure 6.7: Numerical results from implementing the Graph Transform method
– T̂ (hand drawn black circle in C is a visual aid).
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Figure 6.8: A and B: Synchronisation on the cylinder, blue – repeller, red –
attractor, purple – generic trajectory (hand drawn black circles are visual aids).
C: Voltage versus time plot depicting synchronisation.
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6.4.4 Modified Poisson spike train

A neuron can receive signals from another neuron (KS01) where the signal is

seen as the forcing and can be modelled as spikes which we model here with

shape as shown in Figure 6.4.4. One can use a Hodgkin–Huxley type model

Figure 6.9: The shape of a spike signal from other neurons.

to produce a similar spike shape. However, we generated this spike from the

following equation

S(t) = 100e−π(1+tanh(t/0.5)) sin(π(1 + tanh(t/0.2))), (6.18)

which mimics the shape quite well (KS01).

We can model the arrival of the signals as a modified Poisson process which

is essentially a train of spikes that arrives randomly with some average time

difference ∆t. The Poisson distribution is given by

P (Sk ≤ t) = 1−
k−1∑
i=0

(λt)i

i!
e−λt (6.19)

where P (Sk ≤ t) is the probability of observing the kth spike before time t ≥ 0

and λ is the frequency of the observation.

Now to obtain a train of spikes, taking k = 1 in the Poisson distribution (6.19)
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and rearranging we have

t = − 1

λ
log(1− x), (6.20)

where x = P (S1 ≤ t) and t is interpreted as the time difference between two

consecutive spikes. Then by producing a sequence of random numbers xi ∈ [0, 1]

one can produce a sequence, ti, of time differences. We wish to consider a spike

train with average time difference, between successive spikes, of

∆t = 5.6 ≈ T (6.21)

where T is the period of the Morris–Lecar neuron. Note that λ = 1/∆t. If the

spikes are too close to each other the invariant cylinder may not persist as the

perturbation may be too big. However, if the spikes are too far from each other

there will not be much change in the dynamic. So we will restrict xi ∈ [0.53, 0.7]

which would give a sequence ti ∈ [4.23, 6.74]. Let us denote the spike train by

P (t), then we take the forcing

f(t) = P (t).

Contraction rate of T and T̂

To estimate the contraction rate we will consider the two initial graphs ρ1 ≡ 0

and ρ2 ≡ −20. From the 3–D Figure 6.10 we have the estimates |Tρ1 − Tρ2| =
0.8 and |ρ1 − ρ2| = 20. Thus for the contraction rate of T we have the estimate

cT = 0.04. (6.22)

In the case of T̂ , from Figure 6.11 we can obtain a similar estimate

cT̂ = 0.04. (6.23)

As we can see in Figure 6.10 A and C, there is a noticeable difference between

the invariant cylinders Tρ1 and Tρ2 in both the new coordinate system and the

time–extended (V,w) coordinate system. In some region of the cylinder Tρ2

given in blue shown in Figure 6.10 C, we can clearly see red points (from the

other cylinder Tρ1) protruding outwardly. One can see where the input spike

caused the most perturbation of the cylinder as seen in Figure 6.10 C, i.e. the

region where the red points protrude. Similar observation can be seen for T̂ in

Figure 6.11 A and C.
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T T̂

Contraction rate 0.04 0.04
ρ1 {r = 0} {r = 0}
ρ2 {r = −20} {r = −20}
|ρ1 − ρ2| 20 20
|Tρ1 − Tρ2| 0.8 0.8
grid area (t× θ) [−10, 0]× [0, 2π] [−10, 0]× [0, 2π]
grid cell = |∆t| ×
|∆θ|

0.04× 0.04 0.04× 0.04

s∗ 10.00001 10.00001
dt 0.0125 0.0125
δt 0.01 0.01
Newton error 0.05 –
Approx. run time
for first iterate

3 hours 3 hours

Table 6.4: Results from Algorithm A and B where two surfaces are iterated.
Quantitative details of both algorithms are also included.

Iterates of T and T̂

We check how close T and T̂ estimate the invariant manifold by taking just the

first iterate of ρ0 ≡ 0.

From the numerical results (see the 3–D Figure 6.12), we have

|Tρ1 − T 2ρ1| = 0.08. (6.24)

So the second iterate of ρ1 is very close to the first iterate. Furthermore, from

eye–inspection of Figure 6.12 C, we can see that the two cylinders Tρ1 and

Tρ2 in the time–extended (V,w) coordinate system are very close to each other.

Similar numerical results were obtained for T̂ as seen in Figure 6.13. Thus the

first iterate of ρ0 is a good estimate for the invariant manifold.
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T T̂

ρ1 {r = 0} {r = 0}
|Tρ1 − T 2ρ1| 0.08 0.08
grid area (t× θ) [−10, 0]× [0, 2π] [−10, 0]× [0, 2π]
grid cell = |∆t| ×
|∆θ|

0.02× 0.02 0.02× 0.02

s∗ 10.00001 10.00001
dt 0.0325 0.0125
δt 0.03 0.0041
Newton error 0.05 –
Approx. run time
for first iterate

8 hours 8 hours

Approx. run time
for second iterate

9 hours 9 hours

Table 6.5: Results from Algorithm A and B where two surfaces are iterated.
Quantitative details of both algorithms are also included.

Synchronisation

We found that for ∆t = 5.6, synchronisation takes place as is shown in Figure

6.14. The Figure 6.14A shows a generic trajectory (purple) starting near the

repeller (blue) at t = −180 ms, which significantly deviates away by the time

t = −140 ms. Then as seen in Figure 6.14B, it begins to move towards the

attractor (red) for t ∈ [−110,−70] and then eventually approaches the attractor

by the time t = 0, as shown in Figure 6.14C. In theoretical neuroscience, it

may be of interest to depict this in the (V, t) plane as the voltage time series is

of greater relevance. This is given in Figure 6.15 where the invariant cylinder

(grey) is also shown. Note that the small indentations at the bottom of the

cylinder correspond to the arrival of spikes.

We also investigated other values of ∆t and found that for some |∆t| signif-

icantly bigger than the period T of the Morris–Lecar oscillator, synchronisation

does not take place. For those values, the Morris–Lecar oscillator does have an

invariant manifold where synchronisation appears to take place for a period of

time, but loses this property in a later period of time. This can be explained by

the randomness of the input. If the random spikes arrive at a frequency near to

that of the intrinsic frequency then the neuron tries to synchronise to the signal

for that period of time. Due to randomness, there is a period of time where the

signal arrives at frequencies that are far from the intrinsic frequency thus the

neuron could not synchronise with the signal for that period of time.
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6.4.5 Numerical results for spike train input

To view in 3–D, hold the figures at arm’s length then cross your eyes until

the two red dots meet horizontally. Otherwise, ignore the pictures in the right

column for 2–D images.
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Figure 6.10: A and C: red – Tρ1, blue – Tρ2 (hand drawn black circle in C is a
visual aid.) B: Difference between Tρ1 and Tρ2 where ρ1 ≡ 0 and ρ2 ≡ −20.
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Figure 6.11: Numerical results from implementing the Graph Transform method
– T̂ (hand drawn black circle in C is a visual aid).
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(6.25)

Figure 6.12: A and C: red – Tρ1, blue – T 2ρ1 (hand drawn black circle in C is
a visual aid.) B: Difference between Tρ1 and T 2ρ1 where ρ1 ≡ 0.
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Figure 6.13: Numerical results from implementing the Graph Transform method
– T̂ (hand drawn black circle in B is a visual aid).
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Figure 6.14: A,B and C are different time sections of the cylinder where synchro-
nisation takes place. blue – repeller, red – attractor, purple – generic trajectory.
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Figure 6.15: Voltage versus time plot of synchronisation: blue – repeller, red –
attractor, purple – generic trajectory.
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Chapter 7

Conclusions and Discussions

7.1 Uniform hyperbolicity

Given a linear time dependent system it was shown in Chapter 2 that the in-

vertibility of its associated linear operator L implies the system has exponential

dichotomy. The proof is similar to that of (Cop78) although the proof presented

here deals with the whole of R instead of the “half lines” R± as in (Cop78). The

response of the system to a forcing is the inverse of L applied to the forcing which

is given by a convolution. In addition, if the forcing is exponentially increasing

with rate not too large, the response to the system is shown to be bounded by

an exponentially increasing function with the same rate.

Uniformly hyperbolic set of systems arising from a time dependent vector field

u was studied where each system was essentially defined by an initial point y0

– the time dependent matrix for the system is evaluated on the trajectory of

u passing through y0 at time t0. It was shown that the projections in the ex-

ponential dichotomy, thus the splittings, varies Hölder continuously with the

initial point y0. Given extra conditions, in particular if the rate for the expo-

nential dichotomy is strictly greater than half the Lipschitz constant of u with

respect to y, the splittings vary Lipschitz with y0. In comparison, for hyper-

bolic autonomous systems which has a connection with exponential dichotomy,

(Pal00) showed the splittings vary continuously with the points on the compact

hyperbolic set. However, the result presented here is in the non–compact setting.

Chapter 2 was completed with a perturbation result. In particular if the vector

field ũ is a small enough perturbation of u, the set of perturbed systems arising

from ũ is also a uniformly hyperbolic set.
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7.2 Normal hyperbolicity

Normally hyperbolic non–autonomous system was studied in Chapter 3 where

the standard definition of normal hyperbolicity was shown to imply the defini-

tion given in the context of the thesis. The definition of normal hyperbolicity

given here is based on two operators that allows the hyperbolic rates to vary

with time thus is more general in this aspect.

By considering the time extended space the invariant manifold becomes non–

compact and two approaches were developed to obtain these manifolds. The

first was based on Dan Henry (Hen81) given in Theorem3.2.2 which is a path–

wise method that avoids the graph transform thus is very advantageous. The

improvement here is that the consideration of spectral gap is avoided here, how-

ever the result is based on Assumptions 2 which is restrictive and an improve-

ment on this would be constructive. The smoothness and normal hyperbolicity

of the manifold was not shown here and it would be valuable to show this in

future work. The second approach is a hybrid of path–wise and graph trans-

form which was given as Conjecture 1 and possible steps of the proof were

outlined. It would be useful to construct a complete proof for this conjecture.

This method was tested numerically with model systems in Chapter 5 and 6

which gave good results. The standard approach called the Graph Transform

based on (HPS77, Fen71) was given as Theorem 3.2.3 and was also tested in

Chapter 5 and 6 which gave similar results to the hybrid method. It would be

beneficial to run numerical tests on the path–wise approach to compare with

the other two as it could potentially be faster.

Comparisons of the approaches and recent work by (BOV97, GV04, BHV03) was

given. The main contrast is that the work here is not restricted to non–compact

invariant manifolds.

7.3 Synchronisations

Given that the invariant manifold can be obtained for a normally hyperbolic

non–autonomous system by Chapter 3, it is of great interest to study the dy-

namic on the invariant manifold which was the subject of Chapter 4. In the case

of non–autonomous oscillators the collapse of dynamic can be a desired property

such as in phase locked loops (Bre96) where the event is termed synchronisation.

By Chapter 3, to study synchronisation on the invariant manifold it is enough to

study the time dependent center system of equation. In particular for the case

of a 1 − D oscillator, synchronisation was defined and conditions were found

for synchronisation to occur and proved in Theorem 4.1.1. In contrast, Ku-
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ramoto’s phase model does not include time dependency (Kur84). Conditions

for a special form of synchronisation termed “reliability” as in (LSBY09) were

considered in the context of non–autnomous oscillators. In higher dimensional

systems such as many interacting oscillators, synchronisation was also defined.

A schematic of how these oscillators could synchronise were given which serves

as an outline for possible future approach to studying synchronisation as an ag-

gregation process. It would be beneficial to find conditions for synchronisation

to take to place in the many oscillators case.

A valuable future research direction could be to numerically verify the the-

ory of synchronisation in Chapter 4 and in particular, numerically approximate

the robustness region of synchronisation for a forced oscillator as in (BM03). It

would be worthwhile to complete the extension of this theory to the case of two

oscillators and develop the percolation idea for many oscillators.

7.4 Applications

The approaches to computing invariant manifolds given in Chapter 3 are ap-

plied to an individual normally hyperbolic oscillator in Chapter 5. In partic-

ular, assuming the unperturbed normally hyperbolic oscillator has a normally

hyperbolic manifold ρ0 ≡ 0 it was shown in Theorem 5.1.1 that the weakly

forced oscillator also has an invariant manifold. Pseudo–codes to compute the

perturbed manifold were outlined and the C++ header files of the numerical

simulations were given.

The approaches, in particular that of Conjecture 1 and the Graph Transform of

Theorem 3.2.3, were tested numerically on a 2−D attracting normally hyper-

bolic oscillator under a quasi–periodic forcing with various parameter regimes.

Note that although the quasi–periodic case can be studied with standard ap-

proaches that computes compact invariant manifold (BOV97) by appropriate

extension of coordinate system, it is used here in the non–compact setting to

demonstrate the capability of the method developed in this thesis.

In the application to the simple 2–D oscillator we found the contraction rate

of our method T and that of Graph Transform T̂ (HPS77) are very similar in

value where both are roughly 7.5 × 10−5. This is contrary to what we would

expect – that is our method has a faster contraction rate as it depends on the

coordinate system. However, the main reason for the comparable contraction

rate is because we took a long time–T map for the Graph Transform method,

i.e. as long as the time needed in the integration for the estimate of the Green’s

function for our method (see Algorithm 1). But a longer time–T map implies
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a faster contraction for the Graph Transform T̂ .

The implementation of T̂ runs marginally faster than that of T because our

method has an extra step in evaluating the Green’s function for each Newton

step (see Algorithm 2), although this is not too computationally expensive.

However, the method T̂ for general systems that also have normal expanding

directions would require extra computation in taking the intersection to obtain

the invariant manifold (see Theorem 3.2.3). In contrast, the advantage with

our method is that it directly computes the invariant manifold which could be

further explored numerically if time permitted.

We found the first iterate of the zero graph ρ0 ≡ 0 is a sufficiently good esti-

mate for the invariant manifold. We investigated the dynamic on the invariant

manifold and depending on the parameters of the forcing, no synchronisation,

“saddle node” synchronisation (onset of synchronisation) and synchronisation

can take place.

We explored the frequency difference between that of the forcing and the oscil-

lator and found that synchronisation takes place for frequency difference below

the value 0.1. We saw that for frequency difference equal to 0.2 there is no

synchronisation and the oscillator is essentially independent to the forcing.

To further test the methods in computing invariant manifolds it would be valu-

able to test it on a higher dimensional system such as two coupled oscillators.

Note that no optimisation steps were taken in any computations in this and

the next chapter. Further work to improve computational efficiency might be

beneficial. Note that the computations were performed on a MacBook Pro

laptop with Intel Core i7 2GHz processor.

7.5 Morris–Lecar oscillator

The approaches to computing invariant manifolds given in Chapter 3 was also

applied to the Morris–Lecar oscillator in Chapter 6. Under certain parameter

regimes the biophysically relevant equation exhibit an attracting limit cycle.

The adjoint method was used to compute the linear isochrons of the limit cycle

which was used to define a local coordinate system around the cycle. This was

useful in the computer coding since the methods presented in Chapter 3 assume

a coordinate system around the unperturbed manifold, the limit cycle in this

case.
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Various forcing to the Morris–Lecar oscillator were studied here. In the case of

periodic forcing, both methods of computing the invariant manifold showed sim-

ilar contraction rate of 0.04. The dynamic on the invariant manifold was studied

and in particular it was found that when the frequency difference between the

forcing and that of the oscillator was 0.1 rad/ms, the oscillator synchronises. In

the case of two–frequency–periodic forcing, under certain parameters relating

to frequency difference, a “saddle node” type synchronisation takes place where

trajectories are attracted to a “saddle node” for some time then deviates from it.

A modified Poisson spike train was applied to the Morris–Lecar oscillator and

the perturbed invariant manifold was also computed. The contraction rate of

the two methods in computing the invariant manifold was both 0.04. When the

average time difference between spikes is 5.6 ms, which is close to the oscillator

period of 5.59992 ms, the dynamic on the invariant manifold synchronises. Note

that this case of forcing, which has random feature, can not be dealt with using

standard methods that computes compact invariant manifold such as (BOV97).

As far as I know, this is the first time that an invariant cylinder is computed in

a non–compact setting.

There are several further analyses that could be carried out. For example one

can consider forcing with a noise component which can be biologically realistic.

It may be of physiological interest to investigate forcing that give rise to more

than one synchronised trajectory.
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