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Abstract

Understanding surface erosion in tokamaks due to contact with hot plasma is
critical in designing new high power devices. The propagation of the plasma through
the scrape off layer (SOL) ultimately defines the spatio-temporal characteristics of
this erosion, hence modelling of this region is an important area of research.

Transport in the SOL is attributed to advective motions of plasma blobs,
for which the advective velocity is estimated in the literature. A new paradigm for
comparing the theory of plasma blobs with experimental data is developed, which
treats density and velocity data as sets of coherent structures via a peak detection
algorithm. The phase difference of plasma density and radial velocity peaks take
values depending on the dominating physics of the blob motion. Values of this
phase difference are predicted in the interchange and drift wave cases for a strongly
nonlinear plasma. Analysis of MAST data reveals interchange activity in the edge
and SOL, and a phase structure typical of sheath limited models in the SOL.

A further application of the paradigm examines the blob velocity-density
scaling v ∝ nα. A new sheath limited model for blob advection with divertor density
nt constant gives α = 1. Predictions in the zero parallel current case depend on the
blob nonlinearity; we examine the dependency of α on the nonlinearity by solving
the time independent equation of blob motion for a range of density profiles, finding
α ∼ 0.3 for MAST nonlinearity strength. The α parameter is estimated statistically
from MAST data, and it found to peak at α ∼ 1 near the last closed flux surface
(LCFS) and fall to zero further from the plasma. The scaling behaviour is further
examined using the TOKER code.

A numerical model, hTOKER, is developed. A subgrid model is employed
that terminates the plasma at a chosen scale with defined spectral properties, which
allows a physically accurate way to reduce resolution and computational burden. We
examine sheath potential drop (SPD) and finite ion temperature (FTI) effects on
SOL transport in the cases of constant (CTI) and flute (SI) nt boundary conditions.
For the advection of individual blobs, SPD effects that are stable in the SI case are
found to be unstable in the CTI case, and FTI effects are found to be stabilising in
all cases. SOL plasma simulations are used to examine the differences in particle-
energy flux and peak phase difference using floating or plasma potential. Floating
potential overestimates flux by a factor 2, and shifts phase differences from 0◦ to
∼ −30◦. FTI effects are without cancellation from the gyro-viscous counterparts.
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Chapter 1

Introduction

Since the industrial revolution mankind has searched for increasingly effective ways

to supply the energy needed by increasingly effective machines, and toward the

end of the 20th century the focus has progressively shifted toward machines that

are economical and sources of power that are clean; it has become clear that the

resources our environment provides are finite and will not be available in the future.

In this context, nuclear fusion has become a holy grail of power sources as the

abundance and efficiency of the fuel is orders of magnitude greater than any other

known source, and the environmental impact comparatively small.

There are many approaches to achieve nuclear fusion, all of which rely on

different ways to accelerate nuclei to high enough velocities, so that their stopping

distance is within the range of influence of the strong nuclear force. It is thermonu-

clear fusion, in which the nuclei achieve a high relative velocity by virtue of being

part of a high temperature gas that this thesis pertains to.

The principle reaction in question is between a deuterium and tritium nu-

cleus; with enough relative velocity, the nuclei will be able to overcome the electro-

static repulsion of their positive charges and the strong nuclear force will invoke the

following reaction:

D2
1 + T 3

1 → He42(3.5MeV ) + n1
0(14.1MeV ). (1.1)

Deuterium is naturally occurring in sea water, and tritium may be bred for example

via the reaction

Li63 + n1
0 → T 3

1 +He42. (1.2)

One litre of sea water contains 0.033g of deuterium or ∼ 1022 deuterium atoms

accounting for 0.015% of the water, which when fused equates to an energy released
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in the form of neutrons of 22.6GJ , compared to the energy stored in a looter of

crude oil which is ∼ 0.38GJ .

The reaction (1.1) is selected in the context of thermonuclear fusion because

it achieves the highest peak cross-section of nuclear reactions. In a plasma, collision-

ality is not a monotonic function of temperature and has a maximum peak value,

and will reduce for higher temperatures, due to Landau damping [Wesson, 1987;

Landau, 1946].

1.1 Plasma and the Tokamak

At the temperatures needed to achieve thermonuclear fusion, electrons will have too

much energy to be bound to their ions (nuclei) and a new state of matter known as a

plasma, distinguished by the new electromagnetic properties acquired as compared

to the atomic state, is created. In order to reach, and sustain these temperatures the

plasma must be well isolated from the local ambient temperature since any contact

will quickly dissipate these temperatures. One approach would be to fuse most of the

nuclear fuel in a time shorter than the thermal transfer rate to the environment, as

is the approach in inertial confinement fusion and some nuclear weapons. Another

approach to confinement takes advantage of the electromagnetic response of the

plasma, by confining the plasma in a magnetic field so that the Lorentz force

~FL = qs ~E + qs~vs × ~B, (1.3)

with subscript s denoting species (proton,electron,ion...) causes individual particle

trajectories to become orbital in the plane perpendicular to the magnetic field ~B.

This significantly reduces the collision rates in the perpendicular direction compared

to the unmagnetised case, and by constructing the magnetic field that closes on

itself the system becomes effectively confined. The simplest structure of isolated

magnetic fields that can be constructed is the torus; a device that uses this type of

magnetic field to confine plasma is called a tokamak an acronym given to it by the

Soviet inventors Igor Tamm and Andrei Sakharov. Practical tokamaks are of course

much more complicated than the above description, and in particular there must be

magnetic field pointing in both of the angular directions of the torus, however, this

description will serve until expanded upon later in this thesis.
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1.1.1 Quasi-neutrality

The high mobility of electrons in a plasma allow them to respond to any electric

field, which makes plasmas highly conductive and act to maintain a state of volume

neutrality. More precisely, if we consider a plasma of electrons and protons (a

hydrogen plasma), we may write the Poisson equation as

~∇2φ =
e

ǫ0
(ne − ni) , (1.4)

which informs us of the potential given number densities of electrons ne and protons

ni. Electrons have a high mobility due to their small mass, and their density will

be governed by

ne = n0 exp

(

eφ

kBTe

)

, (1.5)

a result of the unmagnetised electron momentum equation in the inertia-less limit,

which shall be derived in section 1.2.2. Then, equation (1.4) becomes the non-liner

relation

~∇2φ =
en0

ǫ0

(

exp

(

eφ

kBTe

)

− 1

)

, (1.6)

where the protons are relatively immobile and retain the background density distri-

bution n0. Equation (1.6) can be simplified in the limit of high temperature so that

for eφ ≪ kBTe

~∇2φ =
en0

ǫ0

(

eφ

kBTe

)

, (1.7)

where the solution for φ is exponential with the length scale known as the Debye

length

λD =

√

ǫ0kBTe

n0e2
, (1.8)

which gives the e-folding length at which electrostatic potential due to charge density

dies away. Scales much larger than this length can be considered neutral plasmas -

this is quasi-neutrality.

1.1.2 Particle Drifts

Charged particles with finite velocity in the presence of a magnetic field follow a

circular trajectory, which is easily shown by taking the Lorentz force in the limit of

zero electric field [Miyamoto, 2007], and the magnetic field in the ẑ direction,

dvx
dt

=
q

m
vyBz, (1.9)
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dvy
dt

= − q

m
vxBz, (1.10)

and via substitution,
d2vy
dt2

= −
(

qBz

m

)2

vy, (1.11)

d2vx
dt2

= −
(

qBz

m

)2

vx, (1.12)

which defines a harmonic motion, taking an arbitrary phase with vx = v0 sin(ωt),

we find vy = v0 cos(ωt) with ω = qBz

m
, where the solution is not related to an initial

condition in x or y. In cylindrical coordinates with r the radial coordinate,

dr

dt
=

d

dt

√

cos2 ωt+ sin2 ωt = 0, (1.13)

and equations (1.9) and (1.10) become

r
d2 cos θ

dt2
= rω

d sin θ

dt
, (1.14)

r
d2 sin θ

dt2
= −rω

d cos θ

dt
, (1.15)

so that we find
dθ

dt
=

d

dt
ωt = ω. (1.16)

This frequency is known as the cyclotron frequency, and is usually labelled ωc.

Consider the dynamics of a charged particle under Lorentz force and an

external force ~Fext

m
d~v

dt
= q

(

~v × ~B
)

+ ~Fext, (1.17)

and averaging over the fast gyro motion, with ~Fext constant in time

m

〈

d~v

dt

〉

≈ 0 = q
(

< ~v > × ~B
)

+ ~<Fext >, (1.18)

The time derivative has been set to zero by assuming that ~Fext causes an increase in

velocity while ~v · ~Fext > 0, which is equal to the decrease in velocity while ~v · ~Fext < 0

in the direction of the force. Then < ~v > is the (time constant) guiding centre

velocity, which we will label ~vg, which may be solved for by taking the cross product

with ~B

~vg =
~<Fext > × ~B

qB2
; (1.19)

such a velocity is known as a drift velocity, and when the force in question is due
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to an electric field, ~Fext = q ~E, this drift velocity is known as the ”E cross B drift”,

and ~vE is not a function of charge. When the external force is a function of time,

setting the time derivative to zero in (1.18) is of course invalid. In this context, the

guiding centre approximation requires that the order of
〈

d~Fext
dt

〉

is the same as the

order of
〈

d~v
dt

〉

in time, so that if

~Fext ∈ O(t) (1.20)

then the LHS of (1.18), which is a derivative in t, is a constant (O(1)), meaning we

find another drift velocity

~vg =
~Fext × ~B

qB2
− m

qB2

d~vg
dt

× ~B, (1.21)

which is known as an inertial drift, and when the force is due to an electric field , the

polarisation drift. This hierarchy continues for each order in time the external force

possesses. A particular force to consider is the force due to gradients in magnetic

field. Clearly, there will be a force directed down the slope of the magnetic field

on the average of the gyro-period due to the imbalance of the Lorentz force on the

approximately circular orbit. With

~B(x) = B0ẑ +
∂B

∂x
xẑ (1.22)

the perpendicular components of the Lorentz force are

~Fx = q~vy

(

B0 +
∂B

∂x
x

)

(1.23)

~Fy = −q~vx

(

B0 +
∂B

∂x
x

)

(1.24)

and we have expressions for the (circular) gyration, so that

Fx = qv0 cosωt

(

B0 −
v0
ω

∂B

∂x
cosωt

)

(1.25)

Fy = −qv0 sinωt

(

B0 +
v0
ω

∂B

∂x
cosωt

)

(1.26)

given the period averages of the harmonic functions, we conclude that on time scales

larger than the gyro-period there is zero net force in the y direction, and a net force
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in the x direction of

〈Fx〉ω = −qv20
2ω

∂B

∂x
(1.27)

which is typically written in terms of the thermal velocity v0 = vth =
√

γT
m
,

〈Fx〉ω = −γT

2B

∂B

∂x
. (1.28)

This force, along with a force due to any gradient in magnetic field in the y direction

will result in a guiding centre drift of the form specified in (1.19), which can be

written as

~v∇B =
T

qB

~B × ~∇B

B2
(1.29)

with γ = 1 + 2/f = 2 for a system with two degrees of freedom f .

Another type of drift velocity, closely linked to 1.29, arises from a charged

particle moving along a curved magnetic field. Such a particle will experience a

centrifugal force of

~Fc =
mv2‖
Rc

r̂, (1.30)

where Rc is the radius of curvature. In conjunction with the pattern (1.19), the

drift velocity due to curved magnetic fields (or simply curvature drift) is found as

~vc =
mv2‖
qRc

r̂ × ~B

B2
. (1.31)

Under the approximation that the magnetic field is cylindrically symmetric, there

is a common unification of magnetic gradient and curvature drifts. We consider

a magnetic field of the form ~B = Bθ(r)θ̂, and an electrostatic vacuum Ohm’s law

giving ~∇× ~B = 0, giving

~∇× ~B =
1

r

∂

∂r
rBθ(r) = 0, (1.32)

meaning that rBθ(r) is a constant, or Bθ =
BRc

r
. Since this gives

~∇ ~B = − B

Rc
r̂, (1.33)

the curvature drift (1.31), under these conditions, becomes

~vc =
T

qB

~B × ~∇ ~B

B2
, (1.34)
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with the assumption of isotropic thermal velocities so that T =
〈

1
2mv2⊥

〉

=
〈

mv2‖

〉

.

1.2 Collective Description

A collective description of plasma is required in order to study the behaviour of the

large numbers of particles present in fusion plasmas and their collective behaviours.

The governing equations for single particles are the Lorentz force

ms
d~vs
dt

= qs

(

~vs × ~B + ~E
)

, (1.35)

which governs the position and velocity of the particle, and Maxwell’s equations,

~∇ · ~E =
ρ

ǫ0
, (1.36)

~∇ · ~B = 0, (1.37)

~∇× ~E = −∂ ~B

∂t
, (1.38)

~∇× ~B = µ0
~J + µ0ǫ0

∂ ~E

∂t
, (1.39)

which govern the fields ~E and ~B generated by the charges and currents. To describe

a multitude of particles each with a distinct ~Vi(t) and ~Xi(t) (a total of 6 dimensions

of freedom for each particle), we write the contribution to a density distribution in

this space as

Ni(~x,~v, t) = δ(~x − ~Xi(t))δ(~v − ~Vi(t)), (1.40)

where δ() is the Dirac delta function, and for a plasma species s (distinct mass and

charge) the total density distribution is written

Ns(~x,~v, t) =

N0s
∑

i=0

Ni(~x,~v, t), (1.41)

so that the charge and current densities may be written as

ρ =
∑

s

qs

∫

Ns(~x,~v, t)d
3v, (1.42)

~J =
∑

s

qs

∫

Ns(~x,~v, t)~vd
3v. (1.43)
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1.2.1 Kinetic

A kinetic description of plasma describes the system using distribution functions in

position space and time, and statistical approximations to describe effects generally

called ”collisions” due to their short range nature. Evaluating the time derivative

of the particle density distribution,

∂Ns

∂t
=

N0s
∑

i=0

δ(~x − ~Xi(t))
∂

∂t
δ(~v − ~Vi(t)) +

N0s
∑

i=0

δ(~v − ~Vi(t))
∂

∂t
δ(~x − ~Xi(t)), (1.44)

where we may write

∂

∂t
δ(~x− ~Xi(t)) =

(

∂δ(~x − ~Xi(t))

∂~x

)

(−∂Xi(t)

∂t

)

, (1.45)

∂

∂t
δ(~v − ~Vi(t)) =

(

∂δ(~v − ~Vi(t))

∂~v

)

(−∂Vi(t)

∂t

)

, (1.46)

which combined with the property of the delta function

δ(A−B)A = δ(A −B)B, (1.47)

allows us to write (1.44) as

∂Ns

∂t
+ ~v · ∂Ns

∂~x
+

qs
ms

(

~E + ~v × ~B
)

· ∂Ns

∂~v
= 0, (1.48)

which is the Klimontovich equation, describing the plasma down to the microscopic

scale for the quantities Ns, ~E, ~B, which amounts to a kinetic description of the many

body particle problem, and is completely intractable. We can write

Ns = fs + δNs, (1.49)

~E = ~E + ~δE, (1.50)

~B = ~B + ~δB, (1.51)

where the quantities have had the microscopic parts due to short range interactions

moved into a new term denoted by δ (not to be confused with the Dirac delta

function). We define also an ensemble average 〈〉e which is sufficient to remove this

8



microscopic part from these quantities,

〈δNs〉e =
〈

~δE
〉

e
=
〈

~δB
〉

e
= 0, (1.52)

and apply it to the Klimontovich equation, obtaining

∂fs
∂t

+~v · ∂fs
∂~x

+
qs
ms

(

~E + ~v × ~B
)

· ∂fs
∂~v

= −
〈

qs
ms

(

~δE + ~v × ~δB
)

· ∂δNs

∂~v

〉

e

. (1.53)

Equation (1.53) is often referred to as the Boltzmann equation for a plasma, in which

the RHS represents the microscopic particle behaviour (often referred to simply

as ”collisions”), the treatment of which not only is highly difficult to classify and

describe but also highly dependent on the specific physical system being described.

Many statistical approximations must be made for a solution to be tractable leading

to many forms of the collision term, each valid for a different type of plasma. When

the RHS of (1.53) is set to zero, this is known as the Vlasov equation.

1.2.2 Two-Fluid

The description of a plasma in (1.53) may be dimensionally reduced by describing

averaged values, known as moments, of the Boltzmann distribution fs in (1.53),

starting by rewriting as

∂fs
∂t

+
∂

∂~x
· ~vfs +

qs
ms

∂

∂~v
·
(

~E + ~v × ~B
)

fs = Cs(fs) (1.54)

where velocity and force terms have been moved inside derivatives, and the micro-

scopic fluctuations are written in the Boltzmann form Cs(fs) =
∑

s′ Css′ where only

binary collisions are considered. In this it is assumed that x and v are independent

variables, and the electromagnetic force is incompressible in velocity space. The

process of writing the kinetic equation in terms of moments may be thought of as

a more efficient representation of the distribution function. As an example, con-

sider that fs was Maxwelliean in each dimension; only 6 scalars as opposed to a 6

dimensional function are required to describe fs. Intrinsic to this approach is the

fact that for a truly general fs, an infinite number of such moments will be required

to fully expand fs, which is an introduction to the problem of closure that will be

expanded upon soon. Typically four moments of fs are defined that have simple

physical interpretations,

ns =

∫

fsd~v, (1.55)
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~Vs =
1

ns

∫

~vfsd~v, (1.56)

P s =

∫

ms~v ⊗ ~vfsd~v, (1.57)

~Qs =

∫

1

2
msv

2~vfsd~v, (1.58)

which are the particle density, mean particle velocity, stress tensor (describing the

mean momentum flux) and energy density flux (describing the mean energy flux),

respectively. Now we look for equations that govern these moment quantities, and in

doing so we will assume that the distribution function is close to the maxwelliean,

that is fs ∝ e−v2 such that
∫∞
-∞

∂
∂~v
fs = 0. The zeroth moment equation is then

generated by integrating (1.54) over the velocity coordinates ~v giving

∂ns

∂t
+

∂

∂~x
·
(

ns
~Vs

)

=

∫

Csd~v. (1.59)

We see that the evolution equation for the zeroth moment depends on the value of

the first moment. The first moment equation is generated by multiplying (1.54) by

ms~v and integrating over ~v

∂

∂t
msns

~Vs +
∂

∂~x
· P s − qsns

(

~E + ~Vs × ~B
)

=

∫

ms~vCsd~v, (1.60)

again we see that the evolution equation for the first moment depends on the value

of the second moment, this pattern continues for all moment equations, and the final

moment evolution equation we consider is for the second moment, which will require

the value of the third moment, and is obtained by integrating (1.54) by 1
2msv

2
s

∂

∂t

∫

1

2
msv

2
sfsd~v + ~∇ · ~Qs − qsns

~E · ~Vs =

∫

1

2
msv

2
sCsd~v. (1.61)

The first term in (1.61) is left unintegrated, because we do not have a definition for it

at present. We define the velocity in the reference frame of the particle, ~ws = ~v− ~Vs,

as it is relative to the mean particle velocity (i.e. the fluid velocity). Then, the stress

and energy fluxes measured in this frame are

ps =

∫

ms ~ws ⊗ ~wsfsd~v, (1.62)

~hs =

∫

msw
2
s ~wsfsd~v, (1.63)
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which are called the pressure tensor and heat flux, respectively, and the velocity

~ws(~v) is a random thermal motion so that
∫

~wsfsd~v = 0. The diagonal part of ps

are the ordinary 1D gas pressures, so that the scalar pressure is

ps =
1

3
Tr(ps), (1.64)

and taking the inner product instead of the outer product in (1.62) yields an ex-

pression for the scalar pressure, which is related to the kinetic energy density

3

2
ps =

∫

1

2
msw

2
sfsd~v, (1.65)

and as such, (1.61) is written as

∂

∂t

(

3

2
ps +

1

2
msnsV

2
s

)

+ ~∇ · ~Qs − qsns
~E · ~Vs =

∫

1

2
msv

2
sCsd~v. (1.66)

The billinear collision integrals define the quantities

∫

Csd~v = 0, (1.67)

∫

ms~vCsd~v = ~Fs, (1.68)

∫

1

2
msv

2
sCsd~v = Ws + ~Vs · ~Fs, (1.69)

which arise from conservation of particles, momentum and energy and Fs is the

frictional force due to collisions, Ws the frictional heating. Using these relations,

writing the stress tensor and energy flux density in terms of ps and
~hs and splitting

the pressure tensor into scalar pressure ps and a general viscosity tensor πs (which

governs the damping of velocity shear) equations (1.59),(1.60) and (1.66) are written

∂ns

∂t
+ ~∇ ·

(

ns
~Vs

)

= 0, (1.70)

msns

(

∂

∂t
+ ~Vs · ~∇

)

~Vs + ~∇ps + ~∇ · πs − qsns

(

~E + ~Vs × ~B
)

= ~Fs, (1.71)

∂
∂t

(

3
2ps +

1
2msnsV

2
s

)

+ ~∇ ·
(

[

5
2ps +

1
2msnsV

2
s

]

~Vs

)

+~∇ · ~hs + ~∇ ·
(

πs · ~Vs

)

− qsns
~E · ~Vs = Ws + ~Fs · ~Vs, (1.72)
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which are the continuity equation, momentum equation and energy equation respec-

tively. We may write (1.72) in terms of temperature rather than energy using (1.70)

and (1.71), since the time derivative of the kinetic energy density may be written as

∂
∂t

1
2msnsV

2
s = −~∇ps · ~Vs −

(

~∇ · πs

)

· ~Vs + qsns
~E · ~Vs

+~Fs · ~Vs −
[

msns

(

~Vs · ~∇
)

~Vs

]

· ~Vs − 1
2msV

2
s

(

~∇ · ns
~Vs

)

, (1.73)

which transforms (1.72), with another substitution of (1.70) into

3

2
ns

(

∂

∂t
+ ~Vs · ~∇

)

Ts + ps~∇ · ~Vs + π : ~∇~Vs + ~∇ · ~hs = Ws, (1.74)

where we have made use of a definition of kinetic temperature ps = nsTs, and the

operator : represents the tensor inner product. The equations (1.70),(1.71) and

(1.74) are the Braginskii equations for transport in a simple plasma [Braginskii,

1965], which further assume that the collisional mean free path is much smaller

than the macroscopic length scale.

The problem of closure is still present in equation (1.74), since we do not

have a fluid description of the quantity ~hs, only a kinetic one. Also, we do not have

a description for the collisional terms Ws and Fs, or the components of the viscosity

tensor πs; these forms are summarised in [Braginskii, 1965] for a strongly magne-

tised plasma where the collision rate is lower than the ion cyclotron frequency. The

heat fluxes contain terms that redistribute the temperatures along their gradients

and are proportional to ν∇T (ν is the collision rate), with a reduction dependent

on |B| perpendicular to ~B, and the electron heat flux has an additional component

dependent on ν∇(~Vi − ~Ve) due to the thermal force felt by the relatively light elec-

trons. The friction terms have a resistive part, which is due to the drag felt by the

electrons in collisions with ions, and a thermal part due to an imbalance of thermal

force felt in ion electron collisions when not in isothermal conditions. Resistivity

of plasma is larger in the perpendicular direction, and the effect of the magnetic

field on the thermal force is to generate a force perpendicular to both ~B and the

temperature gradient due to the gyro motion of electrons. The frictional heating

transfers heat from the hotter fluid to the colder one due to collisions, and the elec-

tron frictional heating term contains heating due to dissipation of currents, again

in the limit of small electron mass. The viscosity tensor takes a specific form in

strongly magnetised plasmas, with specific coefficients given in [Braginskii, 1965],

and generally, acts to reduce gradients of velocity perpendicular to the direction of

the velocity - the energy dissipated by this viscosity becomes thermal energy, and
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appears as the viscous heating term in the temperature equation (1.74).

We present a brief summary of the MHD equations, that will introduce the

concept of magnetic confinement of plasma pressure in an equilibrium magnetic

field. Multiplying (1.70) by the species mass and summing over species we find

∂ρ

∂t
+ ~∇ · ρ~u = 0 (1.75)

where ρ =
∑

smsns, and centre of mass velocity ~u =
∑

s nsmsVs/ρ. Summing the

velocity equations, using neutrality to write ni ∼ ne ∼ n and using the continuity

equations to write the convective derivatives in their alternative form we find

∑

s

(

∂nsmsVs

∂t
+ ~∇ · nsms

~Vs ⊗ ~Vs

)

+~∇n(Ti+Te)+~∇·(πi+πe)−en
(

~Vi − ~Ve

)

× ~B = 0,

(1.76)

which is, under the MHD assumption Vi ∼ Ve,

(

∂ρ~u

∂t
+ ~∇ · ρ~u⊗ ~u

)

+ ~∇n(Ti + Te)+ ~∇ · (πi +πe)− en
(

~Vi − ~Ve

)

× ~B = 0, (1.77)

and in addition, the plasma is assumed collisional enough to neglect the divergence

of viscosity tensor. Total gas pressure p = pi + pe, and the flow of mass is given by

the ion velocity, leaving

ρ

(

∂

∂t
+ ~u · ~∇

)

~u = −~∇p+ ~J × ~B. (1.78)

For completeness, the heat equations sum to

(

∂

∂t
+ ~u · ~∇

)

p

ρ
= −2

3

p

ρ
~∇ · ~u. (1.79)

In the equilibrium limit, we assume that the convective derivative goes to zero,

leaving the momentum equation as

~∇p = ~J × ~B, (1.80)

which is the equation defining magnetostatic configurations, which via the use of

Ampere’s law may be written as

~∇p =
1

µ0

(

~B · ~∇ ~B −
~∇B2

2

)

. (1.81)
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From these equations we can glean a few important points; first, for a plasma to be

confined there must be current perpendicular to the magnetic field, and second, the

equation is nonlinear in the components of the magnetic field B, so that solutions for

a general plasma pressure may not exist and are unlikely to be unique. In the case

of a tokamak, any current by the plasma alone will be insufficient for confinement,

since this very current will tend to violate the force balance or another way, no

solution for B can be found for a torus in (1.81) when the constant of integration is

set to zero. A simplified tokamak configuration is shown in (1.1) that qualitatively

describes the equilibrium magnetic field and general plasma quantities.

−6 −4 −2 0 2 4 6
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2

4

6
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0

2

Figure 1.1: Schematic drawings of a tokamak, showing 3D equilibrium, closed and
open flux surfaces, 2D cross section and region names. (left) Schematic equilibrium
of closed field lines, in which to first approximation, plasma is only able to move
along the field lines and, hence, is confined. (right) Collisional and anomalous
transport violate this approximation, and plasma may move into the unconfined
scrape off layer (SOL) where its journey along field lines terminates with the walls
of the machine at the target plates.

1.3 Stability, Transport and Turbulence

Global stability of plasmas comes from MHD theory, and has progressed to the point

that we are able to control the global equilibrium parameters very well. Ideal MHD

equations are collisionless, so that there will be, in any real equilibrium, transport

of heat and particles out of the equilibrium. Classical theory estimates the size of

the transport coefficient using collisions as the sole reason for particle transport. A
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better estimate can be obtained by considering mirror effects, producing, so called

banana orbits, and this approach is termed neoclassical. Neoclassical theory, and

MHD, do not treat the effects of fluctuating plasma parameters caused by electron

and ion motions that are inherently distinct (violating the MHD assumptions), and

these fluctuations can correlate in velocity and pressure to cause so called ”anoma-

lous transport”. Turbulence is observed as a chaotic behaviour in the fluid velocity,

which retains a number of universal characteristics. These are, a cascade of energy

from large scales to a small scale defined by Kolmogorov as the respective combi-

nation of viscosity and energy dissipation rate of
(

µ3

ǫ

)
1

4

, with an energy spectrum

proportional to E(k) = Cǫ
2

3 k
-5

3 , and, the mixing and rotating properties. This leads

to a wide range of scales resulting from deterministic yet chaotic equations of motion

that can occur in any advective system. In particular, we might write a generalised

equation of (fluid) motion

(

∂

∂t
+ ~v · ~∇

)

~v = ~F + µ∇2~v, (1.82)

where particular forces characteristic of the system in question are absorbed into

the term F , and we retain an explicit viscosity with coefficient µ. Ignoring the force

term, we may write the equation as a toy model

v̇ = −v2 +
µ

l2
v, (1.83)

and employ a simple Euler forward model for v̇

vn+1 = −τv2n + τµ∇2vn + vn (1.84)

to study a single harmonic mode v = ae−ikx with wavenumber k of the system. In

the spirit of the toy model, neglecting the fact that in reality modes cannot interact

non-linearly with themselves, we obtain, denoting the single mode vk = x,

xn+1 = −τx2n − τµk2xn + xn (1.85)

which may be written with τ =
(

1− µτk2
)

as

xn+1 = rxn (1− xn) . (1.86)

This is a well studied logistic map [Frisch, 1995] (rescaled to v ∈ [0, 1] and τ ∈ [0, 4])

for turbulence; although it does not produce the specific features of turbulence,
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Figure 1.2: Logistic map of the system (1.86).

it demonstrates the onset of chaos from deterministic equations with a nonlinear

term. The limit τ = 1 (corresponding to τ = 4 in the rescaled version) corresponds

to zero viscosity, or alternatively, infinite Reynolds number. There are always two

equilibrium values for the system at zero and τ−1
τ

, and in figure 1.2 we can see that

for τ < 2 how the value might approach either equilibrium. When τ > 2, it is clear

that the value of x may begin to oscillate between disjoint high and low values of v

and indeed there are purely orbital solutions to the system that never reach either

equilibrium, but move through a repeated pattern of x values, evolution of x for

the range of τ is shown in figure 1.3 for a chosen initial value. For sufficiently large

τ , it becomes impossible to determine the orbit of x and the sequence of values

followed becomes incredibly sensitive upon the initial value of x chosen - this is

the essence of chaos. Of course, this is a nonphysical version of 1D incompressible

flow with zero pressure variations, however turbulence onset occurs above a critical

value of Reynolds number just as it does in real turbulence problems; there are

no known solutions to determine the value of the critical Reynolds number for a

particular system although rough estimates are known. The nature of the force

term ~F has a distinct impact upon the type of turbulent path the velocity will

take, and distinctions can be made between some of these different types of forces

that result in turbulence with the same universal characteristics, but with different

statistical scalings. Accurate estimates of ”anomalous transport” require numerical

modelling due to the nonlinear, turbulent nature of the fluctuations that drive it

and a lack, in general, of analytical solutions to the nonlinear equations of motion.

Indeed any purely analytical prediction of transport involving turbulent motions

must be verified by either real data, or more commonly, numerical models; the

impact of necessary analytical assumptions for nonlinear equations is often unclear.
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Figure 1.3: Series of initial values evolved with (1.86) mapped for a range of r show-
ing the progress of the final state of x from equilibrium to orbital then bifurcating
into turbulence. Time series for r = 4 shown at bottom.

The turbulent motion, laminar flows and collisional processes active in tokamak

plasmas must all be taken into account if questions of stability and transport are

to be addressed; in order for fusion machines to enter into the realms of practical

energy sources, stability, keeping the global state of the plasma in equilibrium, must

be maximised and transport, causing loss of heat and particles, minimised. The heat

and particle loads experienced by the material surfaces of the device are of particular

interest to engineers attempting to build the next generation of tokamaks [Loarte

et al., 2007], and, the focus of this thesis is upon the transport of plasma through

the SOL that will inevitably reach these surfaces. We will draw the introductory

chapter to a close now by introducing two mechanisms that are responsible for such

transport.

1.4 Drift Waves and Instability

Drift waves are a particular feature of electrostatic quasi-neutral plasmas, for which

a short qualitative introduction is presented. The physics of drift waves can be found
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in many plasma theory books e.g. Miyamoto [2007]; Weiland [2000]. There are a

very large number of assumptions made implicitly in this section in the interest

of providing a brief and easy to understand picture of the basic physics. Fuller

descriptions may be found in chapter 2 and in the referenced plasma physics books.

To begin, consider the situation of an unmagnetised, 1D hydrogen plasma

with

ni = n0 + ñ exp

(

-z2

2l2z

)

, (1.87)

where lz ≫ λd: This plasma is also quasi-neutral, and therefore the electrostatic

force will act upon the electrons (since the ions are far less mobile) to make ne = ni

very quickly. Assume there is no friction acting upon the electron motion, and that

the electron temperature is a constant. Then, in a very short time (compared to

the movement of ions) of t = lz/vth,e where vth, e is the electron thermal speed, the

equilibrium

Te∂zne = ene∂zφ, (1.88)

will be reached. This means that we have

ne = ni ≈ n0 exp

(

eφ

Te

)

, (1.89)

which is the source of the equilibrium used in the derivation of the Debye length

in (1.5); this is the electric potential generated by the collective behaviour of the

plasma that keeps the electrons in balance with the ions, and thus preserves quasi-

neutrality. As a consequence, now consider that there is a constant magnetic field

in the z direction, and that the ion density varies in the plane perpendicular to the

magnetic field as

ni = n0 + ñ exp

(

− z2

2l2z
− x2 + y2

2l2xy

)

, (1.90)

where all the length scales are large compared to the Debye length. As a result of the

perturbation with characteristic lengths in all three of these directions, the potential

in the perpendicular plane will vary according to the variation in the density, i.e

φ =
Te

e

{

1 +
ñ

n0
n exp

(

−x2 + y2

2l2xy

)}

. (1.91)

Since the plasma moves with the ~E× ~B drift, this constitutes a rotating vortex. Now

consider that there is a gradient of the quantity n0 in the x direction. The rotating

vortex will cause a positive ~v · ~∇n0 flux on one side and a symmetric, negative flux on

the other leading to the conservative propagation of the structure in the y direction,

18



with leading edge on the side where the velocity is in the positive x direction. This

is the drift wave. Of course, such a structure is likely to change shape due to

dispersion. There are, however, many dispersionless density fluctuations: from the

mundane harmonic oscillation to the more exotic soliton.

Now consider that there is some resistance to the electron parallel motion,

so that the time taken to reach the equilibrium (1.89) becomes comparable, but still

less than the timescale of the drift wave. In this case, the potential will tend to lag

behind the density as the electrons struggle to maintain the equilibrium 1.89. This

leads both to an increment of the fluctuation magnitude and a total flux in the x

direction. This is most easily visualised by considering a fluctuation that only varies

in the y and z directions and is singularly harmonic about n0 in the y direction. In

the zero resistivity or ”adiabatic” case, vx remains anti-symmetric about the density

maxima leading to the dispersionless advection and conservation of fluctuation level.

However, in the resistive case, vx maxima moves closer to the density maxima and

the amplitude of the fluctuation increases by drawing extra density to the fluctuation

maxima from up the n0 slope, and conversely to the density minima. This increases

the magnitude of the potential gradients, and the process becomes self-sustaining.

This is the drift wave instability. The instability will continue until the onset of

turbulence, which can finally put a stop to the exponential growth of the fluctuation

by destroying the regular structure.

Two things have been left out of the resistive discussion that must now be

addressed: what form does turbulence resulting from ~E × ~B velocity take, and

what happened to quasi-neutrality if the electrons mobility has been reduced by the

resistivity? The answers to these questions are intimately linked. Consider that the

initial values of ne and ni were equal, then we are forced by quasi-neutrality to state

∂ρ

∂t
= 0 (1.92)

where ρ is the charge density. If we then take the difference of the continuity

equations and write in terms of charge density and volume currents J = en (Vi − Ve)

we find

~∇ · J = 0. (1.93)

Therefore, any volume currents must satisfy this relation in order to conserve charge

neutrality. This result may also be obtained from Maxwell’s equations,

~∇ · ~D = ρ, (1.94)
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~∇× ~H = ~J +
∂ ~D

∂t
. (1.95)

Taking the partial time derivative of 1.94 and the divergence of 1.95 allows the two

equations to be combined as

0 = ~∇ · ~J +
∂ρ

∂t
, (1.96)

which again, under the quasi-neutrality of 1.92 arrives at the conclusion of 1.4. In

the case of the resistive drift wave, we have

Te∂zne = ene∂zφ− ηe2n2
e
~Ve · ẑ (1.97)

so that the divergence of the current,Jz = −eneVe, in the z direction is

∂Jz
∂z

=
Te

ηe
∂2
z

(

lnne −
eφ

Te

)

. (1.98)

Parallel electron dynamics alone, therefore, cannot preserve quasi-neutrality in the

resistive case, and so the plasma will resort to other collective effects to enforce the

quasi-neutral state. This can be sketched with the particle drift picture: ~E× ~B drifts

can carry no current, and the general force drift will only result in a divergence of J

when the magnetic field is nonuniform, and in the electrostatic case, magnetic fields

do not vary with time. This leaves the inertial drifts, the strongest of which tends

to be the polarisation drift, leading to the current:

~Jp =
nmi

eB2

(

∂

∂t
+

~∇φ× ẑ

B
· ~∇
)

~∇φ (1.99)

where the electron contribution to the current is neglected, as their inertia is much

smaller. This current acts in x, y plane, and must have a divergence that matches

the one in the z direction to preserve the charge neutrality. We will make use of the

relation

~∇×
~∇φ× ẑ

B
=

∂2
xφ+ ∂2

yφ

B
ẑ =

∇2
⊥φ

B
ẑ (1.100)

to write the divergence of 1.99 in terms of the ~E × ~B velocity (~vE) as much as

possible and we assume ~∇⊥φ · ~∇n ≪ ~∇2
⊥φ,

nmi

(

∂

∂t
+ ~vE · ~∇

)

~∇× ~vE · ẑ =
BTe

η
∂2
z

(

eφ

Te
− lnn

)

. (1.101)

We see that collective electric fields, giving rise to convective changes in the curl of

the ~E× ~B drift (known as ~E× ~B vorticity) will act to balance the number densities
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of ions and electrons in the plasma - this is nothing more than the collective field

in the ẑ direction that arises to preserve quasi neutrality in equilibrium, only in

this case the timescales of the parallel motion of electrons are small enough so that

processes in the x̂, ŷ plane have time to to react and play a role in the preservation of

quasi-neutrality. Indeed, this equation describes the lag experienced by the poten-

tial due to the resistivity; the LHS is an advection term for the vorticity, which can

be slowed down by the resistive term on the RHS, leading to the unstable growth

of the perturbation when there is a gradient of n0 in the x̂ direction as described.

This is also a nonlinear advection equation, and as discussed will descend into a

class of turbulent motion for ~vE when the velocity grows large enough (note there

is essentially zero viscosity in this equation). Thus the ion inertia is responsible for

collective electric fields that maintain quasi-neutrality, which can, and usually does,

result in turbulent motions for the velocity ~vE - this type of turbulence is known as

electrostatic plasma turbulence. Upon descent into turbulence, all fluctuating quan-

tities are affected since they are advected by the turbulent velocity, and this leads

to wild dispersion of the initial harmonic structure described; the characteristics of

the non-turbulent phase (often called the linear phase) usually persist qualitatively

in the turbulent (or nonlinear) phase but differ in an unpredictable manner quanti-

tatively - this type of scenario is called drift wave turbulence [Weiland, 2000], which

causes an amount of transport that can be difficult to predict.

1.5 Plasma Interchange and Instability

Plasma interchange is a particular feature of electrostatic quasi-neutral plasmas,

for which a short qualitative introduction is presented. The physics of the plasma

interchange can be found in many plasma theory books e.g. Miyamoto [2007];

Weiland [2000]. There are a very large number of assumptions made implicitly in

this section in the interest of providing a brief and easy to understand picture of the

basic physics. Fuller descriptions may be found in chapter 2 and in the referenced

plasma physics books.

Consider a plasma that has no gradients in the ẑ direction, but there is a

constant gradient of the magnetic field in the −x̂ direction. Similar to the preceding

section, the assumption ~∇⊥φ · ~∇ 1
B

≪ ~∇2
⊥φ will be used. Consider a plasma with a

uniform gradient in magnetic field ~∇B = −gx̂, and with cold ions as a simplification,

so that there is an addition to the divergence of volume current due to the electron

21



drift in nonuniform magnetic field

~∇ · ~J∇B = ~∇ ·
(

n
Te

B2
gŷ

)

. (1.102)

With the assumption of isothermal electrons and assuming that gradients in density

are bigger than gradients in magnetic field 1.102 becomes

~∇ · ~J∇B =
gTe

B2

∂n

∂y
. (1.103)

Including the effects of curvature drifts, that are identical to the gradient drift to

first approximation of a cylindrically symmetric magnetic field configuration, we

may write

~∇ · ~J∇B =
2gTe

B2

∂n

∂y
. (1.104)

In balance with the divergence of the ion polarisation current we find

nmi

(

∂

∂t
+ ~vE · ~∇

)

~∇× ~vE · ẑ = −2gTe

B2

∂n

∂y
, (1.105)

which is the vorticity equation for the ideal electrostatic interchange, named for it’s

tendency to directly drive out positive density maxima while simultaneously driving

in density minima, interchanging the low density plasma with the high density one

[Weiland, 2000].

The ideal interchange flute mode (~k‖ = 0) is unstable for any density per-

turbation and is one of the most dangerous plasma instabilities which is capable of

ejecting the entirety of the plasma from its confined state. This is still true when

we include the parallel current 1.98 for a tokamak that has a purely torodial field,

since the mode of disruption affecting the entire plasma due to interchange will not

exhibit any potential variations or, of course, density variations along the field line,

and quasi-neutrality will still be enforced by ion inertia alone. This is the reason that

tokamak equilibrium configurations can not be made from purely torodial field, and

instead, there must be a component of polodial field, connecting regions of opposing

pressure gradients, and therefore of potentials with opposite sign. This allows the

electrons to react to a flute mode interchange disruption and avert the collapse of

the plasma. The polodial component of the parallel current in this case is called the

Pfirsch-Schlter current, and stabilises the interchange instability for the low mode

numbers of the order of the safety factor, but is less effective for the smaller size

perturbations which will continue to cause transport on a less dramatic scale. The

22



system of currents

nmi

(

∂

∂t
+ ~vE · ~∇

)

~∇× ~vE · ẑ = −2gTe

B2

∂n

∂y
+

BTe

η
∂2
z

(

eφ

Te
− lnn

)

(1.106)

is known as the drift-interchange system, where the interchange component can have

an enhancing effect on the drift wave turbulence.

In the tokamak edge region, following the field line the the z direction will,

given an angle between z and the torodial direction, arrive back at the initial point,

in one of two ways: After completing n laps of the torus when the polodial angle

travelled in one lap is a rational fraction of 360◦, or after an unspecified number n

when this is not the case; the locations in the radial direction where such a rational

fraction exists are called rational flux surfaces while the gaps in-between are known

as ergodic layers and the distance travelled is known as the connection length. In

either case, an estimate of the z gradients in potential and density may be made

in terms of periodic harmonic perturbations with a fixed connection length. In the

scrape off layer, such perturbations are not periodic and the plasma will be bounded

in potential and density by the conditions of the surface the magnetic field intersects,

although the connection length is more clearly defined in this case.
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Chapter 2

Two Fluid Electrostatic Plasma

Turbulence Theory

Some of the results of this section have been published at [Higgins et al., 2012]. The

characteristic temporal and spatial scales of SOL and edge turbulence are l > ρi

and τ -1 > ωc,i, the ion gyro-radius and gyro-frequency, respectively. This is referred

to as the ”low-frequency” part of the plasma turbulence, and in this context we use

a technique known as drift ordering, which expands the fluid plasma equations in a

power series of these scales so that we can choose to retain only the low order terms.

This method is useful since it expresses the fluid equations in terms that may be

considered more theoretically intuitive; a picture similar to the guiding centre drifts

is obtained and the impact of each of these terms on the dynamics of the system

can often be spotted from the structure of the equations alone.

2.1 Drift Ordering

The Braginskii equations introduced in section 1.2.2,

∂tns + ~∇ · (ns~vs) = 0 (2.1)

msns
ds~vs
dt

= −~∇ps − ~∇ · πs + qsns

(

~E + ~vs ×B
)

+ ~Rs (2.2)

3

2
ns

dsTs

dt
+ ps~∇ · ~vs = −~∇ · ~hs − πsαβ

∂vsα
∂xβ

+Qs (2.3)

are to be ordered with respect to the ion gyro-frequency, which gives a manageable

analytic and numerical representation of the low-frequency drift-interchange turbu-

lence. We begin with the simplest case where stress and collisionality are neglected,
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ion temperature is assumed to be zero and electron temperature to be isothermal.

The ordering is realised by first looking for an equilibrium solution to the

momentum equation by setting the material derivative to zero. The momentum

equation under the restrictions discussed becomes,

msns

(

∂

∂t
+ ~vs · ∇

)

~vs = −~∇ps + qsns

(

~E + ~vs × ~B
)

. (2.4)

The ordering begins by finding the equilibrium velocity of the system. This is found

by setting the rate of change of the velocity to zero, and rearranging for the velocity

term that remains in the Lorentz force term,

Ts
~∇ns = qsns

~E + qsns~vs × ~B. (2.5)

Then taking the cross product with ~B we find,

Ts

qsns

(

~∇ns

)

× ~B = ~E × ~B +
(

~vs × ~B
)

× ~B, (2.6)

which by using the vector identity [Huba, 2006]

~A×
(

~B × ~C
)

=
(

~A · ~C
)

~B −
(

~A · ~B
)

~C, (2.7)

becomes, with b̂ the unit vector in the direction of the magnetic field,

(

~vs × ~B
)

× ~B = −
(

~B · ~B
)

vs +
(

~vs · ~B
)

~B, (2.8)

= −
(

B2~vs −B2vs‖ b̂
)

= −B2~vs⊥ .

We are then left with equilibrium velocities perpendicular to the magnetic field,

~v⊥1
=

~E × ~B

B2
+

Ts

qsB2

~B × ~∇ns

ns
. (2.9)

Using the equilibrium velocities in the material derivative of the momentum equation

allows us to find their inertial corrections, v⊥2
,

msns

(

∂

∂t
+ ~v⊥1

· ∇
)

~v⊥1
= −~∇ps + qsns

(

~E + ~vs × ~B
)

, (2.10)
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defining d
dt

= ∂
∂t

+ ~v⊥1
· ~∇,

msns
d

dt

(

~E × ~B

B2
+

Ts

qsB2

~B × ~∇ns

ns

)

= −~∇ps + qsns

(

~E + ~vs × ~B
)

, (2.11)

where we again take the cross product with ~B to arrive at

~v⊥2
= ~v⊥1

− ms

qsB2

(

d

dt

[

~E × ~B

B2
+

Ts

qsB2

~B × ~∇ns

ns

])

× ~B. (2.12)

It must be noted that drifts associated with the stress tensor π need to be included

within the material derivative as they result in significant ”diamagnetic cancellation”

in combination with term 2 on the RHS of (2.9), discussed in e.g Chang and Callen

[1992]; Weiland [2000]. Taking the × ~B inside the time derivative results in

(

~E × ~B
)

× ~B = −
(

~B · ~B
)

~E +
(

~B · ~E
)

~B

= −B2
(

~E − ~E · b̂
)

= −B2 ~E⊥, (2.13)
(

~B × ~∇ns

)

× ~B = −
(

~B · ~∇ns

)

~B +
(

~B · ~B
)

~∇ns

= B2
(

~∇ns − ~∇‖nsb̂
)

= B2~∇⊥ns, (2.14)

so that including inertial corrections the perpendicular velocity becomes

~v⊥ =
~E × ~B

B2
− Ts

qsB2

~∇ns

ns
× ~B +

ms

qsB2

dE⊥
dt

− msTs

q2sB
2

d

dt

∇⊥ns

ns
. (2.15)

This treats the perpendicular direction only since b̂× ẑ = 0. Equation (2.15) can be

viewed as an expansion in the gyro-frequency. Indeed writing (2.15) as

~v⊥ =
~E × b̂

|B| − Ts

qs|B|
~∇ns

ns
× b̂+

1

|B|ω
-1
c

dE⊥
dt

− Ts

qs|B|ω
-1
c

d

dt

∇⊥ns

ns
, (2.16)

we see that the rate of change of the density and electric field are being compared

to the cyclotron frequency wherever they appear. In fact, if we had continued the

series with further substitutions of this velocity into (2.4) we would obtain a series

of the form

~v⊥ ≈
∞
∑

o=0

(

1

ωc

)o do

dto
f ≈

∞
∑

o=0

(

ωf

ωc

)o

(2.17)

where f represents a general plasma quantity (in this case, density, density gradients

and perpendicular electric fields), and ω some rate of change in these parameters.
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From this it is clear that for ωf > ωc, the value of each term increases with the

order o and hence the series is divergent. Thus we must have ωf < ωc for the series

to be a valid expansion at all. The limit of (2.15) where o > 2 are excluded becomes

valid for ωf orders of magnitude less than ωc, so we say it is valid for ωf ≪ ωc.

This ordering is known as drift ordering, since it implies that the plasma is moving

with velocities close to the familiar drift velocities. Typically the diamagnetic drift

is assumed to be smaller than the ~E × ~B drift so that the perpendicular model is

defined by,

~v⊥ =
~E × ~B

B2
− Ts

qsB2

~∇ns

ns
× ~B +

ms

qsB2

dE⊥
dt

. (2.18)

The particle drifts resulting from gradients and curvature in the magnetic

field (1.29) and (1.34) arise in the collective picture of (2.18) when considering the

divergence of the term (second on the RHS) Garcia [2003]. Since the curvature

and gradient drifts are approximately equal, and, curvature effects are not explicitly

included in the simple geometries used in this thesis, we approximate any gradient

in magnetic field with a factor 2 to include the curvature effects; often implicitly.

The polarisation drift, term 3 on the RHS of (2.18), is often simplified using me ≪
mi, Ti = 0 and ~v‖ · ~∇ ≪ ~v⊥ · ~∇.

2.2 Parallel Current Boundary Conditions

The preceding section dealt with dynamics perpendicular to the magnetic field.

Dynamics parallel to the magnetic field must be accounted for in the theory, since,

the evolution equations for the plasma quantities look like

∂tns + ~∇ · (ns~vs⊥) + ~∇ ·
(

ns~vs‖
)

= 0. (2.19)

Clearly, an equation for v‖, or as suggested in the title, J‖ = env‖ is required in order

to evaluate the evolution of the plasma quantities. In this thesis, the equations are

made two dimensional by making particular assumptions about the third term of

2.19. In particular, edge plasmas are assumed to have periodic boundary conditions

in v‖, with a time constant harmonic representation of any gradients in the parallel

direction. The SOL on the other hand is bounded by specific values for the parallel

current where the magnetic field lines terminate with the walls of the device, these

are specified by conducting surface sheath physics which will be discussed in this

chapter, and any gradients are assumed to be linear with respect to these boundary

conditions.
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2.2.1 Edge Plasma

With a finite resistivity in the parallel direction, quasi-neutral electric fields will be

generated in the presence of pressure gradients in the parallel direction. Assuming

a simple collisional model for the resistivity, the parallel electron motion may be

written, assuming ions do not carry significant parallel currents, as

0 = −T ~∇‖n+ ne~∇‖φ− ηe2n2ve‖ , (2.20)

given some resistivity η felt by the electrons during their parallel motion. The

parallel electron current can then be written,

~Je‖ = −enve‖ =
T

ηe

(

~∇‖n

n
−

e~∇‖φ

T

)

. (2.21)

The quantity of interest for equation 2.19 is the divergence of 2.21,

~∇ · ~Je‖ =
T

ηe
~∇‖ ·

(

~∇‖n

n
−

e~∇‖φ

T

)

. (2.22)

This can be made two dimensional by applying a local approximation, which in this

case assumes the variance of the density due to gradients (ñ) is much smaller than

it’s value, and, there is a constant gradient, in the x-direction in the background

quantity (n0) which represents the equilibrium pressure gradient of the Tokamak,

n = n0(x) + ñ(x, y, z);n0(x) ≫ ñ(x, y, z). (2.23)

For the parallel current divergence 2.22, this simply gives

~∇ · ~Je‖ =
T

ηe

(

~∇2
‖ñ

n0
−

e~∇2
‖φ

T

)

, (2.24)

in which the dependence on the z coordinate is removed by assuming that density

and potential are in phase in the z direction and obey a simple harmonic function

∝ exp(ikzz), giving

~∇ · ~Je‖ = −k2zT

ηe

(

ñ

n0
− eφ

T

)

. (2.25)

This simple description of edge parallel dynamics produces good qualitative results

of edge physics Horton [1999]; Dewhurst et al. [2009]. However, the assumption

(2.23) is often questionable in the plasma edge and SOL, where fluctuations are

often large. Also, the reduction of the parallel structure to a single mode is not
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compatible with ~E× ~B advection in the perpendicular plane since they may interact

non-linearly.

2.2.2 Scrape Off Layer Plasma

In the scrape off layer, boundary conditions for the parallel currents are specified

by consideration of the existence of a plasma sheath at two boundary points (con-

ducting walls, often called divertors or limiters, or just target plates) in the parallel

(z) direction and quasi-neutrality. The target plates are assumed to be negatively

charged due the high mobility of electrons, and therefore a region of positive space

charge exists in front of the wall. In order for quasi-neutrality to be enforced, this

space charge must have an extent of the order of the Debye length, and, this condi-

tion places limits on some of the plasma quantities at the sheath edge.

Bohm’s criterion gives the condition for a stationary plasma sheath at the

conducting target plates, which may be derived using equations for ion continuity,

energy conservation, electron density (Boltzmann) and Poisson’s equation,

niy
- 1
2 = y

- 1
2

0 (2.26)

y = y0 + ξ (2.27)

ne = exp (−ξ) (2.28)

∂2ξ

∂z2
= ni − ne (2.29)

i which are in normalised form of density normalised to a background n0, kinetic

energy y is normalised to the thermal energy kbTe, space to the Debye length and

potential ξ normalised to the thermal potential −e/kbTe. We may evaluate the ion

density from 2.26 and 2.27 as

ni =

(

1− ξ

y0

)- 1
2

, (2.30)

and then, multiplying 2.29 by ∂z
∂ξ
, we find

(

∂ξ

∂z

)2

= 4y0

[

(

1− ξ

y0

) 1

2

− 1

]

+ 2 [exp (−ξ)− 1] (2.31)
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with the boundary condition ξ = 0 as z → −∞. Expanding about the point ξ = 0,

(

∂ξ

∂z

)2

=

(

1− 1

2y0

)

ξ2 +O
(

ξ3
)

(2.32)

we see that unless y0 ≥ 0.5, the boundary condition specifying a decaying potential

is violated, resulting in a contradiction. This condition can be written

v0 ≥
√

kbTe

mi
, (2.33)

specifying that ions must at least enter the sheath region with the sound speed

in order to maintain a stationary sheath - this is Bohm’s criterion [Bohm, 1949;

Riemann, 1991]. In a situation where the ion velocity is sub-sonic, a potential

known as the ”pre-sheath” will develop in order to accelerate the ions to the sound

speed when they reach the sheath entrance.

Considering the current flowing into the plasma sheath, taking 2.33 in the

marginal form, we find

Ji = en

√

Te + Ti

mi
. (2.34)

The electron current to the material surface may be found by evaluating the aver-

age electron velocity through the potential difference of the sheath [Wesson, 1987].

Electrons that are too slow will simply be repelled, therefore the current is due to

electrons with more kinetic energy than the potential energy of the sheath. We

again assume that electrons are Boltzmann distributed

f(ve) ∝ exp

(−mev
2
e

2Te

)

, (2.35)

and define a cut-off velocity for the electrons

ve0 =

√

2e∆φ

me
(2.36)

from which we may define the average velocity of electrons that make it through the

sheath

〈ve〉 =
∫∞
ve0

vef(ve)
∫∞
−∞ f(ve)

. (2.37)

Using the Gaussian integrals

∫

xe−cx2

dx = − 1

2c
e−cx2

, (2.38)
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∫ ∞

−∞
e−ax2

dx =

√

π

a
(a > 0), (2.39)

the integral 2.37 may be evaluated,

〈ve〉 =
√

Te

2πme
exp

(−e∆φ

Te

)

, (2.40)

which therefore gives the electron current through the sheath,

Je = −en

√

Te

2πme
exp

(−e∆φ

Te

)

. (2.41)

From 2.41 and 2.34, assuming quasi-neutrality, we can find the difference in potential

between the sheath entrance and target plate,

e∆φ

Te
= 0.5 ln

(

mi/me

2π (1.0 + Ti/Te)

)

, (2.42)

which for normal plasma values reduces to the approximate form,

Λ = ∆φ ≈ 3.0
Te

e
. (2.43)

This is commonly known as the sheath potential drop Λ, giving the potential drop

from the sheath to the wall. The quasi-neutral assumption is altered when there are

perpendicular currents involved. Here we will assume that the electrons react adi-

abatically in the plasma to communicate any potential down to the plasma sheath,

and, that the conducting target plate sits at a constant potential in the perpendicu-

lar direction. Then, when the plasma potential varies in the perpendicular direction,

electrons will be conducted in order to restore the sheath potential drop Λ. In this

two-dimensional approach, we define the averaging operator

〈f(z)〉‖ =
1

2l‖

∫ l‖

−l‖

f(z)dz, (2.44)

so that equation (2.19) can be written as

∂tns + ~∇ · (ns~vs⊥) +
1

qs
∂zJs‖ = 0, (2.45)

which is operated on by the averaging operator (2.44) to give

〈∂tns〉‖ = −
〈

~∇ · ns~vs⊥
〉

‖
− 1

qs

〈

∂zJs‖

〉

‖
. (2.46)
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The parallel current is then assumed to vary linearly between the two target plates

at ±l‖, so that only the boundary conditions J±l‖ are needed to specify the parallel

dynamics of 2.46. Taking again the equations 2.34 and 2.41 we find

J±l‖ = ±en

√

Te + γTi

mi

(

1−
√

Temi

2π (Te + γTi)me
exp

(

−eφ

Te

)

)

, (2.47)

in which, potential difference across the sheath has been written in terms of the

plasma potential, assuming a reference potential of zero at the surface. Finally,

the factor in front of the exponential can be recognised as the equilibrium sheath

potential drop, and the averaged divergence can be then written as

〈

∂zJ‖
〉

‖ =
en
√

Te+γTi

mi

l‖

{

1− exp

(

e (Λ− φ)

T

)}

. (2.48)

In the isothermal regime, this term damps any potential disturbance in the bulk

plasma, caused by any
〈

~∇ · J⊥
〉

‖
toward the equilibrium Λ. The values of the divertor quantities

may be allowed to vary in a simple way so that they take time-constant values,

nt, Tt. In doing so, we may retain the simplicity of our models if the perpendicular

averages are written

〈

~∇⊥ · ~f
〉

‖
= ~∇⊥ · ~fb, (2.49)

so that a model with a constant-value target density (and spatio-constant temper-

ature) could be

〈

∂zJ‖
〉

‖ =
ent

√

Te+γTi

mi

l‖

{

1− exp

(

e (Λ− φ)

T

)}

. (2.50)

If electron temperature is allowed to vary transverse to the magnetic field, the sheath

potential drop has another effect on the perpendicular turbulence, as reported by

[Myra et al., 2004], since the parallel currents can now drive the potential toward

the equilibrium

φ =
T

e
(3.0− ln(1)) (2.51)

The electric fields created by this mechanism produce a torque on blob-like structures

that spins them up, and mixes the electric field generated by the ideal interchange

mechanism, which reduces this ideal radial transport.
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Considering this boundary condition in more detail, we will allow both den-

sity (as in (2.73)) and temperature to take unique values at the sheath boundary. In

particular we split ion and electron temperatures up into perpendicular and parallel

values. Assuming Te‖ = Ti‖ = Te⊥ at the mid-plane, Te‖ = Te⊥ 6= Ti‖ at the sheath

and Ti⊥ = 0 everywhere. We will call Ti‖ at the sheath Tt, and all the other temper-

atures T (they are all equal). The ion temperature must become one dimensionally

adiabatic at the sheath edge (γ = 3) if a fluid approach is consistent [Riemann,

1991], which leads to a modification of (2.48) to

〈

∂zJ‖
〉

‖ =

√

T + 3Tt

mi

ent

l‖

{

1.0 − exp

(

3.0− eφ

T

)}

. (2.52)

The boundary condition in (2.52) will alter the torque applied by the mechanism that

causes the filaments to spin compared to (2.48). In particular, the rotation generated

in (2.48) stabilises the shear flow instabilities associated with the filament advection

in the radial direction via mixing, but, introduces a new rotational instability [Myra

et al., 2004]. The rotation generation and damping with respect to the sheath

potential in (2.52) is increased toward the edges of the filament, and reduced in the

centre which may alter the rotational stability properties and the magnitude of the

mixing of interchange associated vorticity.

2.2.3 Limitations due to parallel averaging

There are 2 very notable limitations of the model 2.50. Firstly,for convenience we

imply that < v‖ >< n >=< nv‖ >, since the gradient < ∂‖(nv‖) > is taken as

the difference between the mid-plane nv‖ (=0) and the nv‖ at the target. Secondly,

the model implies density gradient in the parallel direction. This means that there

may be an additional potential gradient in the parallel direction to support quasi-

neutrality under such disparate pressure forces for electrons and ions, and would

bear similarities to the treatment of drift waves thus far, resembling some k0‖ of

(1.89). These are neglected in this thesis, which limits itself to the study to the

simplest effects of the boundary conditions on the mid-plane plasma. This simplicity

leads to the necessity to make ad-hoc assumptions about temperatures, e.g, that

electron and ion temperature may be different at the sheath boundary yet ions

have no thermal perpendicular motions. Linearising the parallel direction to ± ~Js‖
also neglects nonlinear motions in the parallel flows and consequently nonlinear

interactions of nonlinear parallel flows and nonlinear perpendicular advection.

33



2.3 Theoretical Modelling of Plasma Filaments

Due to the vortical nature of the plasma velocity during drift wave and interchange

motions, and, the tendency of the drift wave and interchange instabilities to strongly

enhance the magnitude of these rotating density inhomogeneities, in edge and SOL

plasma, coherent structures commonly form in the plane perpendicular to the mag-

netic field, known as blobs. These structures typically have an elongated character

along the magnetic field line, due to the faster motions in this direction. This three-

dimensional structure is known as a filament. Models of fast convective transport by

plasma filaments have been developed [Krasheninnikov, 2001; Garcia et al., 2005]

and some of their predictions have been supported by observations [Ayed et al.,

2009; Rozhansky and Kirk, 2008]. A simple particle guiding centre picture of these

qualitative models arises from the polarisation of a region of enhanced SOL density

due to an inhomogeneous magnetic field. This produces an electric field which is

in phase with the blob density, and causes an advection opposite to ~∇B as shown

in figure 2.1. In the mid-plane of a tokamak, this is perpendicular to and directed

at the first wall. This is the basic principle behind the electrostatic interchange.

The current produced by particle gyrations in an inhomogeneous magnetic field are

B

∇B

j
∇B

E
∇B

vE∇B x B

Figure 2.1: Schematic model of filament E × B advection, from a guiding centre
drift perspective.

identically represented by the diamagnetic current in a velocity-averaged fluid de-

scription [Garcia, 2003], and indeed the diamagnetic term in equation (2.18) will be

where the electrostatic interchange arises from. The qualitative models are derived

using drift-ordering in the plane perpendicular to the confining magnetic field and
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a closure for the parallel transport, which may be specific to a region of interest.

Firstly, the polarisation term for the perpendicular electron motion is removed due

to the small electron mass, the diamagnetic term for ions is removed within the

cold ion approximation and the electric field is assumed to be electrostatic so that

~E = −~∇φ. This leads to continuity equations for ions and electrons,

∂tne +∇ ·
(

ne

~B × ~∇φ

B2
+

Te

eB2
~∇ns × ~B

)

+∇‖ne~ve‖ = 0, (2.53)

∂tni +∇ ·
(

ni

~B × ~∇φ

B2
− mini

eB2

d~∇⊥φ
dt

)

+∇‖ni~vi‖ = 0. (2.54)

Three further assumptions are made: magnetic field is assumed as ~B = B(x)ẑ so

that curvature is neglected, it is assumed that ∇n ≫ ∇B
B

and finally the so called

Boisonique approximation is used so that ~∇ · n
B2

d~∇⊥φ
dt

≈ n
B2

d~∇2

⊥φ

dt
. The equations

then become,

(∂t + ~vE · ∇)ne =
1

e
~∇‖Je‖ +

Te

e

∂B−1

∂x

∂ne

∂y
, (2.55)

(∂t + ~vE · ∇)ni = −1

e
~∇‖Ji‖ +

nimi

e
(∂t + ~vE · ∇)

~∇2
⊥φ

B2
, (2.56)

where ŷ represents the polodial direction and x̂ represents the radial direction, and

the parallel velocities have be written in terms of the volume currents. The quasi

neutrality condition (ne = ni = n) then leads to an equation for plasma density n

and vorticity Ω = ~∇2
⊥φ/B

2 ≈ ~∇× ~vE [Krasheninnikov, 2001],

(∂t + ~vE · ∇)n = 0, (2.57)

(∂t + ~vE · ∇)Ω =
1

nmi

~∇‖
(

Je‖ + Ji‖

)

+
Te

nmi

∂B−1

∂x

∂n

∂y
. (2.58)

The diamagnetic drift and the polarisation drift are dropped in equation (2.57) due

to the ordering in ωc. Parallel currents are also dropped in equation (2.57) since the

instantaneous response of a plasma density blob to the potential perturbation is of

interest. At this point we discuss two limiting cases of equation (2.58), dominant

and negligible parallel currents.

2.3.1 Dominant Parallel Currents

Parallel currents in the mid-plane may be governed by the Bohm criterion at the

sheath boundary near the divertor plates [Riemann, 1991; Bohm, 1949]. The av-
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eraged parallel current can therefore be described, starting from equation (2.48),

as
〈

∇‖J‖
〉

‖ =
entCs

l‖

(

1− exp
-eφ

T

)

≈ entCs

l‖

(

eφ

T

)

, (2.59)

with eφ < T , where nt, l‖, Cs are the target density, parallel length and sound speed

respectively. By averaging equations (2.56),(2.58) in the parallel direction the sheath

currents (2.59) can be included in the model,

(∂t + ~vE · ∇)nb = 0, (2.60)

(∂t + ~vE · ∇) Ωb =
1

nbmi

entCs

l‖

(

eφb

Te

)

+
Te

nbmi

∂B−1

∂x

∂nb

∂y
, (2.61)

with nb, φb,Ωb representing the average blob density, potential and vorticity in the

parallel direction. Since the scale of the divertor sheath is of the order of the Debye

length, most of the average in the quantities nb, φb,Ωb comes from the presheath

variation; this will be very close to the mid-plane values. We assume that perpen-

dicular gradients do not vary in the parallel direction. Note that the ~E × ~B drift

becomes vE = (b×∇⊥φb)/B. Terms unaffected by the averaging are the magnetic

field B and electron temperature Te. In this work the assumption ∂x ln(B) = R−1
0

is used, where R0 is the tokamak major radius.

Assuming constant vorticity in the filament (due to dominating parallel cur-

rents, and the lack of time variation in the parallel currents), (2.61) can be rear-

ranged to find the electrostatic potential φ which can then be substituted into (2.57)

to give

∂tnb +
T l‖ρi
eBR0

{[

∂x

(

1

nt
∂ynb

)]

(∂ynb)−
[

∂y

(

1

nt
∂ynb

)]

(∂xnb)

}

= 0. (2.62)

In [Krasheninnikov, 2001], a separable solution nb(x, y, t) = nb(x, t)nb(y) has been

found assuming nb/nt = ξ = const and nb(y) = exp(−y2/2l2⊥). The continuity

equations then becomes

∂tnb +
T l‖ρi

eBR0l2⊥ξ
∂xnb = ∂tnb + 2Cs

ρ2i
l2⊥

l‖
R0

1

ξ
∂xnb = 0. (2.63)

Equation (2.63) represents a radial advection of blob density nb with velocity

~vE
Cs

=
ρ2i
l2⊥

l‖
R0

1

ξ
x̂, (2.64)

as given in [Krasheninnikov, 2001], where Cs is the sound speed. Note that in (2.65)
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and (2.64), δ is the plasma magnetisation which must be ≪ 1 for this fluid model

to be valid.

ρi/l⊥ ≈ δ (2.65)

2.3.2 Negligible Parallel Currents

With J‖ ≈ 0, the diamagnetic currents are closed by plasma vorticity (in the ⊥
plane) from ion polarisation currents. In this case the scaling of filament radial

velocity can be found by dimensional analysis of (2.58) under the flute approximation

(since parallel transport is negligible) and a vorticity which is only constant in time,

~vE · ∇Ω = − Te

nmi

1

BR0

∂n

∂y
. (2.66)

The approximation

~∇× ~vE = ∂x

(

∂xφẑ

B

)

+ ∂y

(

∂yφẑ

B

)

≈ ∇2
⊥φ

B
ẑ = Ωẑ (2.67)

is used to write (2.66) as

~vE · ~∇
∣

∣

∣

~∇× ~vE

∣

∣

∣
= −C2

s

n

1

R0

∂n

∂y
. (2.68)

Finally, the local non-linearity approximation

n = n0 + ñ, |n0| ≫ |ñ|, n0 = f(x) (2.69)

with n0, ñ the background and fluctuating density respectively, is used to write

(2.68) as

~vE · ~∇
∣

∣

∣

~∇× ~vE

∣

∣

∣
= −C2

s

n0

1

R0

∂ñ

∂y
, (2.70)

which has the dimensional scaling (found by replacing all perpendicular derivatives

with 1/l⊥) in vE/Cs of

vE
Cs

∼
(

l⊥
R0

ñ

n0

)
1

2

, (2.71)

as given in [Garcia et al., 2005], valid only in the case of small density fluctuations.

When the local approximation (2.69) is not valid, the scaling (2.71) is incor-

rect and the dimensional analysis of the fully nonlinear equation (2.68) is

vE
Cs

∼
(

l⊥
R0

)
1

2

. (2.72)
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2.3.3 Dominant Parallel Currents with Constant Target Density

Here, we would like to relax the assumption nb/nt = ξ = const that leads to

(2.64). This would allow the target density nt to be independent from that of a

filament and we will consider nt to be constant. Physically, such a condition could

be approximately realised if the target density was an average over some number

of filaments that crossed a given radial location in some window of time. This

assumption leads to a modified continuity equation,

∂nb

∂t
+

T l‖ρi
eBR0nt

{[

∂

∂x

(

∂

∂y
nb

)]

∂nb

∂y
−
[

∂

∂y

(

∂

∂y
nb

)]

∂nb

∂x

}

= 0. (2.73)

This will advect regions of negative curvature, like the peaks associated with fila-

ments. For a function of nb =
−y2

2l⊥
we find the solution.

~vE
Cs

=
ρ2i
l2⊥

l‖
R0

nb

nt
x̂. (2.74)

The equation (2.73) describes the radial (x̂) advection of structures with a density

that has negative curvature in the polodial (ŷ) direction; the scaling (2.74) describes

the advection of a region of such negative curvature. A density that has a variation

of polodial curvature will have variations in the resulting radial velocity. Regions

with negative polodial curvature (e.g. peaks) in density will move radially outward,

and regions with positive polodial curvature (e.g. troughs) will move radially inward.

2.4 Numerical Modelling of SOL and edge turbulence

In this section we derive and discuss systems of equations that form the basis for

numerical models employed in this thesis. They all take advantage of the drift or-

dering framework, which significantly reduces the computational effort with respect

to the Braginskii equations (even before you take into account the loss of the stress,

collision and conduction terms). Three models have been developed that use varying

levels of assumptions about the perpendicular and parallel dynamics.

2.5 HW Model

Perhaps the simplest of these, is the Hasegawa Wakatani model [Hasegawa and

Wakatani, 1983] which differs from the present discussion since it is usually appli-

cable to the edge plasma. SOL models usually do not include resistivity in the

parallel current term that gives rise to the drift instability that characterises the
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model, although this has been identified as a significant dissipation mechanism for

SOL filaments [Angus et al., 2012]. The model is build upon (2.55) and (2.56),

(∂t + ~vE · ∇)ne =
1

e
~∇‖Je‖ +

Te

e

∂B−1

∂x

∂ne

∂y
, (2.75)

(∂t + ~vE · ∇)ni = −1

e
~∇‖Ji‖ +

nimi

e
(∂t + ~vE · ∇)

~∇2
⊥φ

B2
, (2.76)

In this case the electron equation is chosen for the continuity equation,

(∂t + ~vE · ∇)n =
1

e
~∇‖Je‖ +

T

e

∂B−1

∂x

∂n

∂y
, (2.77)

and quasi-neutrality requires that

(∂t + ~vE · ∇)
~∇2

⊥φ

B2
=

1

nmi

~∇‖Je‖ +
T

nmi

∂B−1

∂x

∂n

∂y
. (2.78)

Substituting in the parallel current divergence result 2.25, for which we must apply

the local model

n = n0 + ñ, |n0| ≫ |ñ|, n0 = f(x), (2.79)

the equations become,

(∂t + ~vE · ∇) ñ− 1

B

∂φ

∂y

∂n0

∂x
= −k2T

ηe2

(

ñ

n0
− eφ

T

)

− T

eB2

∂B

∂x

∂ñ

∂y
, (2.80)

(∂t + ~vE · ∇) ~∇2
⊥φ = − k2B2T

ηen0mi

(

ñ

n0
− eφ

T

)

− T

n0mi

∂B

∂x

∂ñ

∂y
. (2.81)

Normalising t → tωc for time, x → x
ρi

for space, φ → eφ
T

for potential and n → n
n0

for density we obtain dimensionless versions of (2.80) and (2.81) that read:

(∂t + ẑ ×∇φ · ∇) ñ− 1

n0

∂φ

∂y

∂n0

∂x
= − k2T

ηe2n0ωc
(ñ− φ)− 1

B

∂B

∂x

∂ñ

∂y
, (2.82)

(∂t + ẑ ×∇φ · ∇) ~∇2
⊥φ = − Tk2

e2ηωcn0
(ñ− φ)− 1

B

∂B

∂x

∂ñ

∂y
. (2.83)

We define the constants κ = −∂ lnn0

∂x
, C = −∂ lnB

∂x
and α = k2T

n0e2ηωc
, rename n = ñ

and write the advective terms as ẑ ×∇φ · ∇f = [φ, f ],
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∂n

∂t
= [n, φ]− κ

∂φ

∂y
− α (n− φ) + C

∂n

∂y
, (2.84)

∂~∇2
⊥φ

∂t
=
[

~∇2
⊥φ, φ

]

− α (n− φ) + C
∂n

∂y
. (2.85)

these are the normalised model equations. ~E × ~B compression has been neglected.

Attention should be drawn to the assumption of a single harmonic mode in the z

direction via ∂zn = ikzn.

2.6 TOKER Model

We have created a numerical model based on the TOKAM 2D [Sarazin and Ghen-

drih, 1998] simulation to assess the accuracy of our data analysis methods and

also to study the role of parallel currents, which we will call TOKER. The parallel

boundary conditions are changed so that they can either take the usual flute model

assumptions ~∇‖(T, n) = 0, or one where density is set to an independent value at

the parallel target boundary. The model is built on the perpendicular drift ordered

velocities,

~v⊥s =
~E × ~B

B2
− Ts

qsB2

~∇ns

ns
× ~B +

ms

qsB2

d

dt
~E⊥, (2.86)

and the continuity equation for particle density,

∂ns

∂t
+ ~∇ · (ns~vs⊥) +

~∇ ·
(

ns~vs‖

)

= 0 (2.87)

Now we will determine the quantity ∇ · (vsns). We assume the electric field is

described by the potential φ such that E = −∇φ, and that the magnetic field B is

constant and in the ẑ direction. Poisson brackets are used for convenience and these

are defined as:

[A,B] = ∂xA∂yB − ∂yA∂xB, (2.88)

[A, ·] = ∂xA∂y − ∂yA∂x, (2.89)
[

~A, ~B
]

= ∂x ~A · ∂y ~B − ∂y ~A · ∂x ~B. (2.90)

We will commonly make use of the following relations, often implicitly,

ẑ × ~∇f · ~∇g = [f, g] , (2.91)

~∇ · ẑ × ~∇f = 0. (2.92)
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The perpendicular velocities 2.86 can therefore be written as

~v⊥ =
ẑ × ~∇⊥φ

B
+

Tsẑ × ~∇⊥ns

qsnsB
− msn

qsB2

(

∂t +
1

B
[φ, ·] + Ts

qsnsB
[ns, ·]

)

~∇⊥φ, (2.93)

from which a calculation of ~∇ · (~vsns) yields

∇ · (vsns) =
[

φ, n
B

]

+ Ts

qs

[

ns,
1
B

]

− msns

qsB2

(

∂t~∇2
⊥φ+ 1

B

[

φ, ~∇2
⊥φ
])

−msTs

q2sB
3

([

~∇⊥ns, ~∇⊥φ
]

+
[

ns, ~∇2
⊥φ
])

−ms

qs

(

∂t~∇⊥φ · ~∇⊥
n
B2 +

[

φ, ~∇⊥φ
]

· ~∇⊥
n
B3 + Ts

qs

[

ns, ~∇⊥φ
]

· ~∇⊥
1
B3

)

. (2.94)

We have neglected drifts due to the stress tensor π, which contains the gyro-viscous

stress that must be included in a model with Ti 6= 0 since it results in significant

”diamagnetic cancellation” Chang and Callen [1992]. We consider a simplified form

by reducing (2.94) to

∇ · (vsns) =
1
B
[φ, ns] +

Ts

qs

[

ns,
1
B

]

−nsms

qsB2

(

∂t~∇2
⊥φ+ 1

B

[

φ, ~∇2
⊥φ
]

+ Ts

qs

([

~∇⊥ns, ~∇⊥φ
]

+
[

ns, ~∇2
⊥φ
]))

. (2.95)

The terms

ns

[

φ,B-1
]

+
nsms

qs





3∂t~∇⊥φ
B3

+
4
[

φ, ~∇⊥φ
]

B4
+

4Ts

[

ns, ~∇⊥φ
]

nsqsB4



 · ~∇⊥B (2.96)

were neglected since they are curvature terms expected to be small compared to term

2 on the RHS of (2.95) within the constant temperature hypothesis. However, in a

model with non-constant temperature, these terms are expected to be significant.

The terms

−ms

qs

(

1

B2
∂t~∇⊥φ · ~∇⊥ns +

1

B3

[

φ, ~∇⊥φ
]

· ~∇⊥ns

)

(2.97)

are neglected since they are of comparable nonlinear structure to terms kept in

(2.95) and not expected to add much depth to the model, while increasing the

complexity of a numerical investigation; these are the same assumptions as those

used in [Sarazin and Ghendrih, 1998]. Assuming cold ions, isothermal electrons and

inertia-less electrons the continuity equations are

∂tne =
1

B
[ne, φ] +

1

e
~∇‖Je‖ −

Te

e

[

B-1, ne

]

, (2.98)
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∂tni =
1

B
[ni, φ]−

1

e
~∇‖Ji‖ −

mini

eB2
∂t∇2

⊥φ+
mini

eB3

[

~∇2
⊥φ, φ

]

. (2.99)

In order to find the vorticity equation we subtract equations (2.98),(2.99) and invoke

quasi-neutrality by setting ne = ni,

min

eB2
∂t∇2

⊥φ =
1

e
~∇‖
(

Je‖ + Ji‖

)

+
min

eB3

[

~∇2
⊥φ, φ

]

− Te

e

[

B-1, n
]

. (2.100)

We choose to follow the ion continuity equation;

∂tn =
1

B
[n, φ] +

1

e
~∇‖Ji‖ , (2.101)

The averaged divergence of the parallel current is given by (2.50), so that

∂tn =
1

B
[n, φ] +

ntCs

l‖
, (2.102)

min

eB2
∂t∇2

⊥φ =
ntCs

l‖

(

e−
eφ

T − 1
)

+
min

eB3

[

~∇2
⊥φ, φ

]

− Te

e

[

B-1, n
]

, (2.103)

with eφ ≪ T . Normalisations are ωc = eB/mi for time, ρi =
√
Tmi/eB for space,

T/e for potential and nt for density. Including ad-hoc diffusion (for numerical sta-

bility, and the validity of the strongly collisional Braginskii model), viscosity and

density source terms, the normalised model equations are

(

∂

∂t
−D∇2

⊥

)

n = [n, φ]− σe-φ + S (2.104)

(

∂

∂t
− ν∇2

⊥

)

∇2
⊥φ =

[

∇2
⊥φ, φ

]

+
σ

n

(

1− e-φ
)

− g

n

∂n

∂y
. (2.105)

with g = ρi
Rc

, Rc the radius of curvature of the tokamak and σ = ρi
l‖
.

2.7 hTOKER Model

We have developed an electrostatic interchange model incorporating the effects of

the parallel current density (2.52) and (2.48), based on the TOKER model. We

begin again from equation (2.87),

∂ns

∂t
+ ~∇ · (ns~vs⊥) +

~∇ ·
(

ns~vs‖

)

= 0 (2.106)
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and the perpendicular velocity model (2.86), where temperature remains inside the

derivative for the diamagnetic term,

v⊥ =
E ×B

B2
− ∇ps ×B

qsnsB2
+

ms

qsB2

(

∂t +
E ×B

B2
· ∇ − ∇ps ×B

qsnsB2
· ∇
)

E⊥. (2.107)

Again, it is assumed that E = −∇φ, and that the magnetic field B is constant and

in the ẑ direction. The quantities ∇ · nsvs⊥ and ∇ · vs⊥ must be known. We have,

~v⊥ =
ẑ × ~∇⊥φ

B
+

ẑ × ~∇⊥ps
qsnsB

− ms

qsB2

(

∂t +
1

B
[φ, ·] + 1

qsnsB
[ps, ·]

)

~∇⊥φ (2.108)

which yields

∇ · (vsns) =
[

φ, n
B

]

+ 1
qs

[

ps,
1
B

]

− msns

qsB2

(

∂t~∇2
⊥φ+ 1

B

[

φ, ~∇2
⊥φ
])

− ms

q2sB
3

([

~∇⊥ps, ~∇⊥φ
]

+
[

ps, ~∇2
⊥φ
])

−ms

qs

(

∂t~∇⊥φ · ~∇⊥
n
B2 +

[

φ, ~∇⊥φ
]

· ~∇⊥
n
B3 + 1

qs

[

ps, ~∇⊥φ
]

· ~∇⊥
1
B3

)

, (2.109)

and similarly,

∇ · (vs) =
[

φ, 1
B

]

+ 1
qs

[

ps,
1

nsB

]

− ms

qsB2

(

∂t~∇2
⊥φ+ 1

B

[

φ, ~∇2
⊥φ
])

(2.110)

− ms

nsq2sB
3

([

~∇⊥ps, ~∇⊥φ
]

+
[

ps, ~∇2
⊥φ
])

−ms

qs

(

∂t~∇⊥φ · ~∇⊥
1
B2 +

[

φ, ~∇⊥φ
]

· ~∇⊥
1
B3 + 1

qs

[

ps, ~∇⊥φ
]

· ~∇⊥
1

nsB3

)

. (2.111)

We have neglected drifts due to the stress tensor π, which contains the gyro-viscous

stress that must be included in a model with Ti 6= 0 since it results in significant

”diamagnetic cancellation” Chang and Callen [1992].

The final three terms of equations (2.109) and (2.111) are neglected for the

same reasons given in the previous section for the TOKER model. Although these

terms become more important for the ballooning structure of interchange turbulence

in the non-isothermal limit [Sarazin and Ghendrih, 1998], we neglect them to reduce

the numerical effort. Terms 5 and 6 are neglected within the cold ion limit. Parallel

currents of the form 2.52 are used. We follow the ion continuity equation,

∂tn =
[ n

B
, φ
]

− nt

l‖

√

T + 3Tt

mi
(2.112)

neglecting terms of order ωp
c for p > 0. Using Ct =

√

T+3Tt

mi
, the continuity equations
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for each species are

∂tni =
[ni

B
,φ
]

+
mini

eB2

(

∂t~∇2
⊥φ+

1

B

[

φ, ~∇2
⊥φ
]

)

− ntCt

l‖
(2.113)

and

∂tne =
[ne

B
,φ
]

− 1

B2e
[B, pe]−

ntCt

l‖
exp

(

3.0− eφ

T

)

. (2.114)

Subtracting and invoking quasi-neutrality we find

0 = mini

eB2

(

∂t~∇2
⊥φ+ 1

B

[

φ, ~∇2
⊥φ
])

(2.115)

−ntCt

l‖
+ 1

B2e
[B, pe] +

ntCt

l‖
exp

(

3.0− eφ
T

)

which, rearranged in terms of vorticity gives

∂t∇2
⊥φ =

1

nimi
[pe, B] +

1

B

[

∇2
⊥φ, φ

]

+
eB2

nimi

ntCt

l‖

(

1− exp

(

3.0− eφ

Te

))

(2.116)

The heat equation is

3

2
ns

(

∂t +
z ×∇φ

B
· ∇+

z ×∇ps
qsnsB

· ∇
)

Ts = −ps∇ · vs. (2.117)

Ion perpendicular temperature is zero. The electron heat equation is

∂tT =
1

B
[T, φ] +

2T

3B2
[φ,B]− 2T

3l‖

√

T + 3Tt

mi
, (2.118)

neglecting terms of order ω-1
c or greater. Collisional transport needs to be repre-

sented, the pertinent collision times as given by [Braginskii, 1965; Helander and

Sigmar, 2002] are

τei =
12π

3

2√
2

√
meT

3

2
e ε2

0

ne4 ln (Λ)
(2.119)

τii =
12π

3

2

√
2

√
miT

3

2

i ε2
0

ne4 ln (Λ)
. (2.120)
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The classical perpendicular diffusivities are

Dn = (1 + Ti/Te) ρ
2
eνei (2.121)

DT = 2ρ2i νii (2.122)

DΩ ≈ 3

8
DTi

=
6

8
ρ2i νii (2.123)

Neoclassical Pfirsch Schulter fluxes in the radial direction are approximated by the

diffusivities

DPS
n = 1.3q2

95
Dn (2.124)

DPS
T = 1.6q2

95
DT (2.125)

DPS
Ω = 1.6q2

95
DΩ (2.126)

from [Fundamenski et al., 2007]. For normalisation B0, T0 and n0 are chosen as

reference values, followed by the definitions

C0 =

√

T0

mi
, ω0 =

eB0

mi
, ρ0 =

C0

w0
. (2.127)

Time is normalised to 1/ω0, potential to T0/e, space to ρ0 and velocity to C0.

Vorticity is defined as Ω = ∇2
⊥φ. We write the normalised collision related terms as

Dn = Cnεe
ρ2en

T
3

2

, DT = CT εi
ρ2in

T
3

2

, DΩ = CΩεi
ρ2in

T
3

2

, (2.128)

where we have defined the constants

Cn = 0.212, CT = 0.699, CΩ = 0.159, (2.129)

εe =
n0e

4

√
meT

3

2

0 ω
0
ε2
0

, εi =
n0e

4

√
miT

3

2

0 ω
0
ε2
0

. (2.130)

The diffusive terms are written

Rn = ∇⊥ · (Dn∇⊥ +Dps
n ∂r r̂)n (2.131)

RΩ = ∇⊥ ·
(

DΩ∇⊥ +Dps
Ω ∂r r̂

)

Ω (2.132)

RT = ∇⊥ ·
(

DT∇⊥ +Dps
T ∂r r̂

)

T (2.133)
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Normalised model equations are

∂tn =
1

B
[n, φ]− n

B2
[B,φ]− nt

l‖

√

T + 3Tt +Rn + Sn, (2.134)

∂t∇2
⊥φ =

1

n
[p,B] +

1

B

[

∇2
⊥φ, φ

]

+
B2

n

nt

l‖

√

T + 3Tt

(

1.0− exp

(

3.0− eφ

T

))

+ RΩ + SΩ, (2.135)

∂tT =
1

B
[T, φ] +

2T

3B2
[φ,B]− 2T

3l‖

√

T + 3Tt +RT + ST . (2.136)

2.7.1 Warm Ions

The effects of warm ions may be rudimentarily included in the model. Returning to

equation (2.109),

∇ · (vsns) =
[

φ, n
B

]

+ 1
qs

[

ps,
1
B

]

− msns

qsB2

(

∂t~∇2
⊥φ+ 1

B

[

φ, ~∇2
⊥φ
])

− ms

q2sB
3

([

~∇⊥ps, ~∇⊥φ
]

+
[

ps, ~∇2
⊥φ
])

−ms

qs

(

∂t~∇⊥φ · ~∇⊥
n
B2 +

[

φ, ~∇⊥φ
]

· ~∇⊥
n
B3 + 1

qs

[

ps, ~∇⊥φ
]

· ~∇⊥
1
B3

)

, (2.137)

we may retain the term − ms

q2sB
3

([

~∇⊥ps, ~∇⊥φ
]

+
[

ps, ~∇2
⊥φ
])

relatively simply, under

the assumption that ion and electron temperatures are equal, giving a change in the

normalised vorticity equation that reads

∂t∇2
⊥φ =

2

n
[p,B] +

1

B

[

∇2
⊥φ, φ

]

+
B2

n

nt

l‖

√

T + 3Tt

(

1.0− exp

(

3.0− eφ

T

))

+
1

nB

(

[

∇2
⊥φ, nT

]

+
[

~∇⊥φ, ~∇⊥(nT )
])

+RΩ + SΩ. (2.138)

Of course, these equations are only a valid combination where the scale of

interest is larger than the ion Larmor radius, which, in the warm ion case is of course

nonzero. When this scale assumption is violated, the electric fields associated with

φ and the densities associated with n become defined differently for ions, and the

entire fluid approach must be altered, for example [Madsen et al., 2011].

2.7.2 Inconsistencies in the hTOKER model

There are a number of inconsistencies in the model.

The parallel model is extremely simplified, neglecting many of the effects

that removing the flute mode assumption (∂zn, ∂zT = 0) would imply as discussed
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at 2.2.3.

We have also neglected the gyro-viscous stresses by not including the stress

tensor in the drift model 2.1. This is of particular importance in the warm ion model,

because it will lead to so called ”gyro-viscous cancellation”. The classic form of this

cancellation is to completely cancel the total time derivative of the diamagnetic part

of the plasma polarisation, however, other models restate the effect such that the

advection of plasma vorticity with the diamagnetic velocity is cancelled Chang and

Callen [1992]. Therefore the warm ion effects added in (2.138) are not consistent

without the addition of the drifts due to the gyro-viscous forces. For example, the

divergence of the (ion) gyro-viscous part of the Braginskii stress tensor,

∇ · Π = (∂xΠxx + ∂yΠxy) x̂+ (∂xΠyx + ∂yΠyy) ŷ, (2.139)

with η = pi
ωi
,

(−∂xη (∂xvy + ∂yvx) + ∂yη (∂xvx − ∂yvy)) x̂

(∂xη (∂xvx − ∂yvy) + ∂yη (∂xvy + ∂yvx)) ŷ, (2.140)

which may be written

∇ · Π = η
(

∂2
x + ∂2

y

)

(vxŷ − vyx̂) (2.141)

+ (∂xvyx̂+ ∂yvxx̂+ ∂xvxŷ − ∂yvy ŷ) ∂xη

+ (∂xvy ŷ + ∂yvxŷ + ∂xvxx̂− ∂yvyx̂) ∂yη,

which can be identified as the compact form

∇ · Π = η
(

ẑ × ~∇2~v
)

+
(

ẑ × ~∇vx − ~∇vy

)

∂xη +
(

ẑ × ~∇vy + ~∇vx

)

∂yη. (2.142)

A drift velocity ~vΠ = 1
enB

∇·Π may be identified from the gyro-viscous stress, which

gives

~vΠ =
1

2
ρ
{(

~∇vx + ẑ × ~∇vy

)

∂xΞ +
(

~∇vy − ẑ × ~∇vx

)

∂yΞ− ~∇2
⊥~v
}

(2.143)

with

Ξ = lnB + ln ρ2 − lnn, (2.144)

and ρ the ion gyro-radius. The cancellation will occur in the quasi-neutrality con-

dition ~∇ · ~J for the currents caused by vΠ and the advection of the plasma vorticity
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with diamagnetic velocity,

~∇ · n (~vΠ + ~vpd) , (2.145)

where

~vpd =
m

eB2
~vd · ∇ (ẑ × ~v) = ρ2

(

ẑ × ~∇ ln(nT )
)

· ~∇ (ẑ × ~v) . (2.146)

Such a calculation is very long indeed, however, the general result is that as with

plasma density, vorticity may not be advected with the diamagnetic velocity in a

plasma with uniform magnetic field. Corrections due to curvature are second order,

yet hTOKER keeps some first order terms from ~vpd which should be cancelled with

terms originating from ~vΠ. In addition, the neglection of the stress tensor means

that there is no viscous heating present in the heat equation. The warm ion effects

are therefore not presented in the correct form in the hTOKER model.

Also, the dissipation term for temperature is not realistic. Firstly, parallel

electron thermal conduction may be large, yet has been neglected. Secondly, average

electron velocity through the sheath should be modified by the Boltzmann factor, so

that electron temperature would be more strongly dissipated in regions with lower

potential (due to higher electron loss through the now lowered, non-equilibrium

sheath potential drop). In the interest of including finite ion temperature effects in

a simplistic way, these terms have been neglected so that the assumption Ti = Te

may be made. The spirit of the model is therefore to test the effects of the con-

stant divertor density/temperature model on the plasma vorticity equation. Note,

however, that in most cases the spatial average of the plasma potential will be

quite close to the equilibrium sheath potential drop, and therefore the dissipation

model for temperature may be considered approximately correct over a large enough

spatio-temporal scale.

As such, the model should not be considered exact or even accurate, but

rather a qualitative tool in the study of SOL plasma turbulence.

2.8 Summary

In this chapter we have discussed the contemporary advective theory of blobs using

drift ordering, and, demonstrated its application to the advective theory of plasma

blobs. Present sheath limited and polarisation limited results for blob advective

velocity are shown, and the sheath limited case is extended to include the case of in-

dependent plasma density and temperature at the sheath boundary (located at the

wall-plasma intersection along the magnetic field line). This model predicts a blob
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velocity that is proportional to the blob density. The theoretical basis of the numer-

ical models TOKER and hTOKER is presented, and a particular configuration of

parallel and perpendicular temperatures is employed that simplifies the models in

both the cold and warm ion cases. The warm ion model is very approximate, and

should only be considered for qualitative studies in the best case.
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Chapter 3

Scaling of filament velocity with

density

Some of the results of this section have been published in [Higgins et al., 2012]. In

chapter 2, we have reviewed solutions and scaling of radial velocity for interchange

motions. These scalings can predict order of magnitude velocities that agree with

experimental values of velocity, however for different values of the parameters. The

model scalings are, with explicit factor of 2 to account for curvature effects,

~vE
Cs

= 2
ρ2i
l2⊥

l‖
R0

1

ξ
x̂, (3.1)

for sheath limited filament advection assuming an invariant parallel gradient of

density,

vE
Cs

∼ 2

(

l⊥
R0

ñ

n0

)
1

2

, (3.2)

for filament advection in the absence of limiting parallel currents assuming ñ
n0

≪ 1

and

vE
Cs

∼ 2

(

l⊥
R0

)
1

2

(3.3)

in the case of ñ
n0

≥ 1. We also find a new solution for the sheath limited case

assuming an invariant target density,

~vE
Cs

= 2
ρ2i
l2⊥

l‖
R0

nb

nt
x̂, (3.4)
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exact assuming dominant parallel currents for regions of constant negative curvature.

In each case, the advective velocity of a filament vE in the radial direction is given in

terms of the sound speed Cs =
√

Te

mi
, the ion Larmor radius ρi, perpendicular blob

size l⊥, length along magnetic field between divertor plates l‖, radius of curvature of

the tokamak R0, blob density nb, target density nt, ratio of target and blob density

ξ = nt/nb and a filament density perturbation ñ on a density background n0.

Filament sizes are of the order few to tens of ion Larmor radius, temperature

is of order tens of electron volts and the advective velocity of order kilometres

per second [D’Ippolito et al., 2011]. Given fairly similar combinations of these

parameters, any of the advective models (3.1), (3.2), (3.3) or (3.4) can show a

favourable agreement with the observations, for example, taking Te = 30eV , ~vE
Cs

∼
1kms-1

50kms-1
= 0.02, ρi = 2mm, l‖ = 15m, R0 = 0.85m, 1/η = nb/nt ∼ 5, ñ/n0 ∼ 1 we

find

l⊥ =

√

2
4e − 6

0.02
∗ 15

0.85
∗ 5 = 18.3cm, (3.5)

for the sheath limited case and,

l⊥ = 0.0004 ∗ 0.85 = 0.17mm (3.6)

without sheath limiting. For these estimates, the sheath limited case seems more

applicable, however, taking different estimates of Te = 10eV , ~vE
Cs

∼ 5kms-1

30kms-1
= 0.17,

ρi = 1.2mm, l‖ = 15m, R0 = 0.85m, 1/η = nb/nt ∼ 5, ñ/n0 ∼ 0.5 we find

l⊥ =

√

2
1.4e − 6

0.17
∗ 15

0.85
∗ 5 = 1.0mm, (3.7)

for the sheath limited case and,

l⊥ =
0.028

0.5
∗ 0.85/2 = 2.4cm (3.8)

without sheath limiting. These estimates appear more favourable to the interpreta-

tion without sheath currents.

There are numerous complicating effects to this interpretation of blob dynam-

ics that should be noted: only laminar blob dynamics are considered, background

turbulence is ignored, blob birth properties are untreated, parallel blob structure

in J‖ neglected, interactions between blobs are not considered, temperature profiles

are ignored and a Gaussian blob shape is likely an oversimplification.

This demonstrates that an accurate discrimination between models, based
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on predicted values of radial velocity alone, is at best problematic. Another way

to discriminate between these models, besides estimating velocities, can come from

examining the scaling of the velocity of experimentally measured filaments with

parameters such as l⊥ and ρi, scalings of these parameters vary strongly between

models, however experimentally measuring temperature to an adequate resolution

can be problematic, as can the measurement of filament size which for single point

measurements, the most readily available source of data, depends heavily on the

plasma flow structure which again is problematic to measure at adequate resolutions

and accuracy. We focus therefore on the scaling of (3.1), (3.2), (3.3) and (3.4) with

plasma density. These solutions can be combined in a single expression, vE ∝
F (ρi, l‖, l⊥)n

α. Four scenarios can be identified; each with a particular value of α:

1. the sheath case with nt = ξnb, where vr is not dependent on the filaments

density and is large for small filaments, α = 0 (3.1)

2. the sheath case with nt = const, for which small and dense filaments are also

the fastest, α = 1 (2.74)

3. no sheath, small fluctuations model predicts large vr for large filaments with

density deviating strongly from the background, α = 0.5 (3.2)

4. no sheath fully nonlinear model gives radial velocity proportional to the size,

but independent of the filament density, α = 0 (3.3).

The scaling exponent α will be determined directly from the experimental data.

3.1 Candidate Data Sets

To perform this study of the scaling of filament advection velocities, data are taken

historically from experiments performed on the MAST tokamak. MAST is a spher-

ical tokamak, in which a low aspect ratio equilibrium magnetic field is achieved by

constructing the primary field coils inside the vacuum vessel, attached to a central

column which acts as the main transformer. Such designs are highly compact, and

have an inherently high variance of magnetic field strength with radius compared to

conventional designs. The MAST vacuum vessel is 4.4m tall and 4m in diameter,

with a plasma boundary, where closed fields lines transition to open ones, at a typ-

ically radius of ∼ 1.4m. The principal diagnostic utilised is the Gundestrup probe,

comprising a number of biased and unbiased Langmuir probes, which is mounted

on the reciprocating probe system. This system is fixed to the mid-plane, that is,

the plain which the magnetic axis resides upon. Fixed to an unimportant (for our
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purposes) angle about the central column of the tokamak, the reciprocating system

is capable of measurement across most of the SOL (r >∼ 1.4m) and may reach a

few cm inside the plasma boundary, limited by the maximum acceptable heat and

particle fluxes to the probe head itself, which of course increase further inside the

plasma boundary in an operating scenario.

Data from the Gundestrup reciprocating probe system on the MAST toka-

mak, schematically shown in figure 3.1, is used to evaluate the polodial electric field

and density of filaments in discharge numbers 21712, 21856 and 21860. These dis-

charges were chosen with the intention of investigating the scaling of the velocities

predicted in section 2.3 with density while keeping the remaining plasma parameters

the same. In summary these are: plasma current Ip = 400kA, torodial magnetic

field at 1m BT = 0.4T and core electron temperature Tecore = 700eV .

Figure 3.2 shows the profiles of electron density and temperature for the

discharges, figure 3.3 shows the line integrated density and target densities. The

magnetisation for MAST approaches a maximal value of 0.3, so that the models

in section 2.3 are not violated in (2.65). Electric field is calculated from float-

Figure 3.1: This is a diagram of the layout and pinouts of the Gundestrup probe
system used on MAST [MacLatchy et al., 1992]. Pins 1 to 8 measure Isat while pins
9 to 11 measure Vf .

ing potential measurements Vf , and density is inferred via ion saturation current
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Figure 3.2: Electron density and temperature profiles from the Ruby Thompson
Scattering system [Walsh et al., 2003]. 21712(black), 21856(red), 21860(blue).
Dashed line gives LCFS position approximately.
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Figure 3.3: Line integrated electron density from the CO2 interferometer sys-
tem, Target electron density around 0.29s, 0.31s (lower target, outer strike point).
21712(black), 21856(red), 21860(blue).

measurements Isat [Tamain et al., 2010],

Vf = Vp +
Te

2e
ln

[

2π
me

mi

(

1 +
Ti

Te

)]

(3.9)

Isat = ene

√

kb
(Te + ZγiTi)

mi
, (3.10)

where γi is a constant which depends on the ion equation of state. In figure 3.4, the

raw Vf signals are shown.
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3.1.1 Pre-processing of Experimental Data

The reciprocating probe system allows measurement of the probe data across a

radial range, signals are pre-processed as follows:

1. Smoothing LCFS distance data – Probe distance to LCFS vs time is given

from EFIT [Uesugi et al., 1985] and RP systems. This data is multivalued on

small scales; in order use the data to interpolate between radial position and

distance from the LCFS, the data is smoothed over 0.04s.

2. Vf mean trend removal – There is a mean trend in floating potential data due

to (at least) the radial electric field and radial temperature profiles. This is

removed using a piecewise linear detrend with a time window of 1.6̇ × 10−4s

(larger than the timescale associated with blobs).

3. Vf response correction – The floating potential signal from pin 11 has a dif-

ferent response in amplitude. This is due to the difference in surface areas.

To correct this, the signal is multiplied by a constant such that the standard

deviation over a scale of 0.02s for both signals are equal.
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−50

0

50

Time (s)

φ f (
V

)

c) Pin 11

−100

−50

0

50

φ f (
V

)

a) Pin 9

0.2 0.22 0.24 0.26 0.28 0.3
Time (s)

d) Pin 11 Preprocessed

b) Pin 9 Preprocessed

Figure 3.4: Traces of floating potential before (left) and after (right) pre-processing.

The polodial electric field Eθ (corresponding to the ~E× ~B drift) is calculated

between pins 11 and 9 (see figure 3.1). Figure (3.5) shows traces of the Isat derived

electron density, and electric field data after pre-processing. The intermittent bursts

in the two signals are interpreted as signatures of filamentary transport.

The electric fields are not obviously correlated with the density; this is no

surprise given the phase distribution in figure 4.6 for the SOL using this probe.

This may purely be due to strong electron temperature gradients, as discussed in

chapter 3. The magnitudes of the electric fields give radial velocities on the order of
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Figure 3.5: Peaks in electric field (left) and ion saturation current (right) are inter-
preted as signatures of filaments. Temperature of 20eV assumed to find ne from the
Isat.

kms−1, which is approximately the expected value for MAST L-Mode [Ayed et al.,

2009]. It is clear that an indirect method will be needed if we are to examine any

scaling with filament density, since it would be problematic to match filaments on

a one to one basis from each signal. Also, a direct method would be likely to fail

since it is difficult to determine if a variation in Isat is a variation in ne or
√
T ,

and to determine by how much each electric field is altered by electron temperature

gradients. The indirect approach we choose will make use of two datasets, in which

the plasma density is marginally altered. In this case, we will be able to use average

methods to determine on average the effect of the change in density, under the

assumption that any changes in velocity are purely due to this change in density.

3.1.2 The Strength of Fluctuations in MAST

At this point, we would like to address the validity the local approximation

n = n0 + ñ, |n0| ≫ |ñ|, n0 = f(x) (3.11)

with respect to the strength of the nonlinearity ñ/n0, since it will determine which

solution (3.2) or (3.3) is most valid. Often its application is split into two parts that

can be generalised as

∂yn = ∂y (n0 + ñ) = ∂yñ, (3.12)

n = (n0 + ñ) = n0. (3.13)

Actually, (3.12) is simply a change of reference value. One can subtract any con-

stant value n0 from any function to represent it about another mean value, without
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changing the gradients in any way. (3.13) however, should only be applied if n0 ≫ ñ

is satisfied to a few orders of magnitude; even for ñ/n0 ∼ 0.1 this would misrepresent

the data by 10%. We address the approximation applied to the equation (3.2),

~vE · ~∇
∣

∣

∣

~∇× ~vE

∣

∣

∣
= −2

C2
s

n

1

R0

∂n

∂y
. (3.14)

Now decomposing the density into two parts and writing gradients as length scales,

vE
Cs

= 2

√

l⊥
R0

ñ

ñ+ n0
. (3.15)

We are interested in the proportionality to density, so we simply write

v ∝
√

ñ

ñ+ n0
, (3.16)

and evaluate

α =
∂v

∂ñ

ñ

v
(3.17)

for n0 = 1, ñ = 0.01..10 to find the scaling exponent as a function of the density

fluctuation strength Fn = ñ/n0; figure 3.6.
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Figure 3.6: Change in velocity w.r.t. density for (3.16), giving the density exponent
(α).

We see that for small Fn, a scaling with density of 0.5 is found as in (3.2). This

decreases rapidly towards the index predicted by (3.3) as Fn increases. The question

arises as to how to quantify Fn: For a single filament fluctuation above a density

background, one might quantify Fn as the ratio of peak height to background level,

max(n)/min(n)− 1. Or, an average Fn may be used such as the ratio of standard

deviation to average value. An understanding of the functional dependence of the
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density scaling with these types of measurements of Fn is required, as the methods

take extremely different values as shown in figures (3.7) and (3.8).
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Figure 3.7: Strength of ñ w.r.t. n0, measured by the ratio of standard deviation to
mean value. Calculated from #21712 data, subintervals of 4e− 4s.
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Figure 3.8: Strength of ñ w.r.t. n0, measured by the ratio of maximum value to
modal average value. Calculated from #21712 data, subintervals of 4e− 4s.

In order to determine the mapping of these methods to the plot in (3.6), a

method must be used that determines velocity from a density profile, that these

methods may be applied to. Equation (3.14) is a two dimensional nonlinear bound-

ary value problem and as such would be particularly expensive to solve numerically,

to the point that the explicit evolution of the initial value problem specified by

(2.57) and (2.58) (with ∇‖J‖ = 0) becomes a more attractive approach to solve the

problem. Since only the scaling of vE with particular density profiles in n are of

interest, we approximate (3.14) as

vx
∂2vx
∂y2

∝ 1

n

∂n

∂y
, (3.18)
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and, given given particular profiles of f(y), solve for the velocity profile vx(y) using

an over-relaxed finite difference (Gauss-Seidel) iteration scheme [Press, 1992] with

the ith discretised point in the y direction written as i and grid spacing ∆,

vx(i) = (ω − 1.0) vx(i) +
1

2

√

vx(i) [vx(i+ 1) + vx(i− 1)] − 1

2
∆ ln

(

n(i+ 1)

n(i− 1)

)

,

(3.19)

which is found to converge to the principal root for ny = n0 + ñ exp
(

−y2
)

with

ω = 1.9. Solutions are dipolar in velocity, max value is selected as advection velocity.

No structure except boundary values is enforced on solution in y. We scan values of

Fn by finding the peak value of the converged velocity profiles vc for n0 = 1.0 and

a range of ñ of 0.1 to 20, as shown in figure 3.9.
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Figure 3.9: Converged velocity values vc plotted as a function of ñ (n0 = 1 fixed).

Fitted to k
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for k = 2.041, c = 6.854.
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Figure 3.10: α scaling index calculated from (3.17) for vc, against Fn(σ) and
Fn(max).

There are small jumps in the velocity profile at some thresholds in ñ, evident

when calculating (3.17); figure 3.10 shows the result of calculating the scaling index
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(3.17), which we will denote α, in which there are a few points that do not fall

onto the curve due to the small jumps in the velocity profile, these are likely due to

changing accuracy conditions in the method that are difficult to constrain; a large

fixed number of iterations, 1×108 was used to converge on the velocity solution, this

however, does not fix the accuracy although the error is very small after this number

of iterations. The curves are plotted with the σ/µ measure denoted Fn(σ) and the

max/min − 1 measure denoted Fn(max), and we find that the two methods do

indeed quantify the expected scaling very differently, with an expected α for MAST

in the region of 0.25 as shown in figure 3.10, taking into consideration figures (3.7)

and (3.8).

3.2 Methodology use to find the Velocity/Density Scal-

ing

In order to study the advection mechanisms we investigate the scaling of radial

~E× ~B velocity with filament density. We have chosen a statistical method in which

the signals are windowed (split into sections) and the average properties of these

windows are used as average properties of the filaments inside the window. Such a

method does not rely on both signals (Isat, Eθ) containing the same set of filaments,

and is valid as long as the separation of the Vf pins used to calculate Eθ is smaller

than the polodial size of the filaments measured. The validity of this assumption

is supported by fast camera measurements in [Ayed et al., 2009], where the most

likely filament width was found to be ≈ 10cm, compared to the pin separation of

≈ 2.4cm in the polodial direction. The auto correlation time of the Isat signal is

around 50 − 100µs, which assuming a conservative filament velocity magnitude of

1kms−1 gives a filament size of ≈ 5 − 10cm, in agreement with the fast camera

measurements.

A generalised model is given in (3.20), where F is a function that depends

on the advective model. The subscripts high and low refer to the pair of discharges

being compared, where the ”high” discharge has a larger density profile in the SOL

than the ”low” discharge.

〈vE,high〉
〈vE,low〉

=

〈

Fhigh

(

ρi, l‖, l⊥
)

nα
high

〉

〈

Flow

(

ρi, l‖, l⊥
)

nα
low

〉 , (3.20)

where 〈·〉 indicates averages over all times in a window. We will assume that all the

arguments of F are independent (including ρi and n) so that for example,
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〈

ρil‖
l⊥R0

〉

=
〈ρi〉

〈

l‖
〉

〈l⊥〉 〈R0〉
. (3.21)

Examining the co-dependence of B,T, n in plasma filaments would be a good subject

for future work. Thus we write equation (3.20) as

〈vE,high〉
〈vE,low〉

=
Fhigh

(

〈ρi〉 ,
〈

l‖
〉

, 〈l⊥〉
)

Flow

(

〈ρi〉 ,
〈

l‖
〉

, 〈l⊥〉
)

〈

nα
high

〉

〈

nα
low

〉 . (3.22)

We assume that phase of density and temperature fluctuations in (3.10) satisfies

Isat ∝ n. The parameters specified by F in (3.22) for all analysed plasmas are:

ρi = 1.5mm, Cs = 43.8kms−1, R0 = 0.85m, l⊥ = 5 − 10cm and l‖ = 15m. Hence

equation (3.22) simplifies to read

〈vr,high〉
〈vr,low〉

−

〈

nα
high

〉

〈

nα
low

〉 = 0. (3.23)

The average value for the signal dominated by large events (filaments) is not rep-

resentative of the data. We use a peak detection algorithm to identify the peak

value of filaments and then use only these values in each window. Peak values for

each window are obtained by taking the maximum value for each section of the

signal that rises above the mean value in the window. Since the high density and

low density discharges have differing density profiles in the SOL, the radial profiles

< nhigh > and < nlow > will differ in a similar manner. Averages 〈·〉, now taken

as the average over all peaks in a window, do not take into account any correlation

between density and velocity; it is not assumed that such correlation can be found,

making the method very simple and having an error that depends on the number of

peaks averaged over.

In order to find α we calculate the LHS of (3.23) in each window as a function

of α using only the peak values as described. α is then given as the value that most

closely satisfies (3.23). The equality is tested between α = 3.0 and α = −3.0 with

a step of 0.01. Errors for the average peak values in each window are estimated by

σpeaks/
√

Npeaks from central limit theorem, and the error in α is then interpolated

using these errors in the previously calculated function of α.

We stress, that this method does not eliminate a possibility of erroneous Eθ

calculations or the presence of unknown scaling of ~vE with unmeasured quantities,

which would also effect a single filament method. The filaments with a polodial size

less than the pin separation measuring Vf will give erroneous field measurements
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unrelated to a blob advection velocity. This problem may be expected to worsen

toward the far SOL, since filamentary structures are known to fragment into smaller

filaments as they propagate (especially in the case of a vortically dominated advec-

tion) [Garcia et al., 2005]. In the sheath case, the smaller filaments propagate faster,

so that one may expect to find a large population of small filaments in the far SOL.

3.3 Determined Scaling

Results for the radial velocity and Isat window-averaged peak detections are shown

in figure 3.11, and magnitudes of the measured radial velocities are in qualitative

agreement with using fast camera measurements [Ayed et al., 2009]. The variation

in peak Isat between the candidate data sets is clear, and the averaged radial velocity

peaks do also show a variation so that a finite profile for the α scaling parameter is to

be expected after comparison of the datasets using (3.23). To be clear, the process

does not amount to the division and comparison of the profiles displayed in figure

3.11, since raising the peak density values to α must be done before the averaging

operation. We do not assume that the power and average operators commute, as

discussed in the previous section.

Figure 3.12 shows α computed from (3.23) as a function of distance from

the last closed flux surface for the entire range of spatial locations experienced by

the reciprocating probe. However, it is clear that this method fails when the probe

plunges into the bulk plasma. In this case, the estimated α index decreases rapidly

and assumes negative values. Figure 3.11 shows that the falling trend of α inside the

LCFS is due to a crossing of the average electric field peak values at ≈ −0.01m. In

[Sánchez et al., 2000] the same trends for vE inside the LCFS are found on different

machines, and were attributed to shear flows; the methodology discussed here is not

applicable to such situations. The interaction of blobs and shear flows is discussed

for example in [Xu et al., 2009].

Temporal window sizes are chosen to have equal spatial widths using probe

time-position data from EFIT. We have tested the method against various window

sizes as shown in figure 3.12, where width of 0.005m was chosen as a compromise

between resolving changes in the α parameter in the SOL and having windows large

enough to contain enough data for satisfactory statistical averaging.

Figure 3.13 contains the main results of our analysis. It shows the scaling

exponent α, derived from window averages of Vf and Iαsat, as a function of radial

distance from the LCFS. The result does not imply a single mechanism to be re-

sponsible for the transport in the SOL of MAST, but suggests that the filaments
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Figure 3.11: Isat and radial vE peak averages. Inside the LCFS, the electric field
trends do not match (and in-fact cross) causing negative results for the scaling
exponent α, plotted in figure 3.12. Given for window width of 0.005m.

experience different mechanisms in different SOL regions.

We find the general trend of α ≈ 0.5 at 0.0m to α ≈ 1.0 at 0.007m fol-

lowed by a trend of α ≈ 0.5 to α ≈ 0.0 from 0.01m to 0.025m. Beyond 0.025m

α assumes negative values; mildly for 21712/21856 and strongly for 21712/21856.

Scaling trends show disparity for the two comparisons beyond 0.01m. Further out

at ≈ 0.03m scalings become difficult to interpret due to the proximity of the Isat

window peak averages to each other.

From figure 3.10 we suggest that solutions of type (2.71) and (2.72) are
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Figure 3.12: α parameter for various window sizes demonstrating the convergence
of the method, given for shot 21712 compared to 21856. A window size must be
chosen that allows for spatial variation of the parameter in the SOL, and that
contains enough data to provide a good statistical average.

both extremes, and the expected α will, for Fn typical of MAST, take a value

of approximately 0.25. Each window may contain filaments that are propagating

under different mechanisms, therefore intermediate values of α should be interpreted

to reflect this fact.

It may not be clear how filaments can be controlled by sheath currents near

to the LCFS, since the time to set up a connection to the sheath at the target plates

might go as l‖/Cs = t‖i ≈ 3.1× 10−4s which is large compared to the perpendicular

transport time l⊥/vr = t⊥ ≈ 5×10−5. However if we consider the parallel transport

time with the electron sound speed we find t‖e ≈ 7.3 × 10−6, small enough to

be a possible cause of sheath connected perpendicular transport. Indeed, we find

a maxima of α at 0.007m which is comparable to v⊥t‖e ≈ 103 × 7.3 × 10−6 =

0.0073m. A discussion of kinetic parallel electron transport in the SOL can be

found in [Tskhakaya et al., 2008].

3.4 Summary

We have tested four possible mechanisms leading to fast radial filament transport

using MAST probe data. The mechanisms are parametrised by a single scaling
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Figure 3.13: The α scaling parameter as a function of radial distance from the
LCFS. A peak value of α ∼ 1 is reached at ∼ 0.007m, indicative of sheath limited
blob advection under constant target boundary conditions (3.4). In general, a range
of the blob advection mechanisms discussed in chapter 2 appear to govern the blob
advection, depending at least on the radial distance from the plasma LCFS.

exponent α which in ideal cases can assume values of 0, 0.5 or 1. The statistical

approach developed here is particularly useful for the analysis of the large Langmuir

probe datasets which are readily available on many fusion devices. This study com-

plements that presented in [Ayed et al., 2009] where visible light camera datasets

were used to perform a similar scaling analysis. Our main result is an estimate of

the scaling exponent α for MAST datasets as a function of distance from the LCFS.

Strong variability of α across the entire range of measured distances indicates that

no single model can be invoked when describing radial blob advection. Instead,

we interpret our result as a competition between one sheath dominated model (α

= 1) and either a model given by fully nonlinear dynamics with neglected parallel

dynamics or a second sheath dominated model (α = 0). Detailed analysis of the

models that balance the advection of plasma vorticity with the plasma interchange

term, leading in extreme cases to an α of 0 or 0.5, reveals that for the fluctuation

strength associated with blobs on MAST, an intermediate value of α = 0.25 may

be the most appropriate. In the region where sheath dynamics appear to domi-

nate (about 0.75cm from the bulk plasma), our observations imply that the plasma

density on the target is approximately constant; not related directly to the plasma
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density inside the filament. We conclude that the parallel plasma behaviour must be

much more dynamic than previously thought, if such a connection between plasma

density at the divertor sheath and mid-plane in filaments can be so strongly nulli-

fied. We also conclude that the nature of the sheath connection of the filament via

parallel currents may be kinetic, since the communication of potential appears to

happen on the electron thermal timescale.

The statistical method used here is limited to examining a pair of datasets

with variance in only one parameter (density). In reality, such a variance is hard

to come by without altering other parameters, severely limiting the methods appli-

cability. The models examined are also very basic models for blob advection that

assume equilibrium laminar flow to the first order, and competing effects such as

blob acceleration , interactions, parallel structure, to name a few may also damage

the methods applicability.
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Chapter 4

Blob Phase Analysis

Steep density and temperature gradients are key features of magnetically confined

plasma (MCF) in a tokamak configuration. In the presence of a strong confining

magnetic field, these gradients lead to a nonlinear transport of plasma across the

magnetic field, towards the edge of the confinement region. There is a substantial

body of evidence, from a variety of numerical simulations, analytical models and

experimental observations, that this transport is dominated by nonlinear advection

of filamentary structures; for a recent review of the field see [Krasheninnikov et al.,

2008]. This applies to parts of edge pedestal as well as to a vacuum region just

outside the last closed flux surface (LCFS) known as the Scrape-Off Layer in a

tokamak. Drift instability is believed to be the main generation mechanism for large

density and potential fluctuations in the edge pedestal and the drift-like dynamics

is often taken as the main ingredient of cross-field transport in this region. In the

SOL region it is the interchange transport, driven by the gradient in the magnetic

field strength, that appears to be a dominant feature. In principle, however, both

mechanisms would contribute to radial convection of filamentary structures in both

regions of plasma and here we use Mega Amp Spherical Tokamak (MAST) [Lloyd

et al., 2003] probe measurements to investigate the relative importance of these

two mechanisms, and some additional transport scenarios, considering the relative

generalised phase difference, θnv, between density and radial velocity fluctuations.

The phase difference is a standard quantity used in linear analysis, however, when

strong nonlinearities produce filaments, the velocity and density fluctuations are

often functionally different, leading to a failure of the linear predictions. In this

chapter, we develop techniques that robustly measure the phase difference in the

nonlinear regime. We note that the phase difference between density and radial

velocity fluctuations is not only a useful characteristic of transport mechanisms, but
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is also key to estimates of particle flux (and assuming a high coherence of plasma

density and temperature, heat flux), since θnv is used to estimate the statistical

correlations [Carreras et al., 1996]. However, our primary goal is to determine

which mechanism, drift or interchange, is responsible for the transport of the blobs.

4.1 Introduction

The prototypical description of strongly magnetised plasma transport is usually

given in terms of vorticity equation [Garcia et al., 2006a, 2005, 2006b; Kube and

Garcia, 2011; Krasheninnikov, 2001; Yu et al., 2006; Furno et al., 2011; Sugita et al.,

2012; Higgins et al., 2012; Angus et al., 2012], which reads:

∂∇2
⊥φ

∂t
+

(

ẑ × ~∇⊥φ
B

· ~∇⊥

)

∇2
⊥φ = −2

B2

nmi

∂B−1

∂x

∂(nT )

∂y
+

eB2

nmi
∇‖J‖. (4.1)

Here, vorticity defined as ~Ω = ~∇ × ~v is expressed in terms of electrostatic plasma

potential as ∇2
⊥φẑ, x and y axis corresponds to radial and polodial directions in

cylindrical geometry, respectively. Two terms on the right hand side of (4.5) reflect

two distinct physical process which govern any relation between density and poten-

tial fluctuations. The first term, representing a drift due to magnetic field curvature

is often referred to as ballooning or interchange term. The second term, related to

parallel current, is known as a drift term for edge plasma with flux surfaces (closed

magnetic field lines), or sheath term when magnetic field lines connect to material

surfaces, although a sheath term does not necessarily dominate the parallel cur-

rent and may compete with a drift term in this region [Angus et al., 2012]. Thus

parallel dynamics requires a closure that must be based on physics applicable in var-

ious plasma regions. We will now examine the theoretical phase difference θnv for

the drift and interchange mechanisms in the presence of both linear and nonlinear

fluctuations.

4.1.1 Linear fluctuations

In the case of the linear interchange fluctuations, parallel currents are generally

neglected or approximated in the SOL by

∇‖J‖ = en
Cs

l‖

(

1− exp
eφ

Te

)

(4.2)
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where the parallel velocity is bounded at the ion sound speed at the material surfaces

intersected by the magnetic field, and the electrons are treated adiabatically.

There are two relevant limits of the interchange dynamics, as given by (4.1)

which minimally describe the relation between density and electrostatic potential.

In the absence of parallel currents, there is an approximate relation of

CASE I: ∂2
yφ ∝ − 1

n

∂n

∂y
, (4.3)

assuming no variance in the x-direction, since growth rate will remain proportional

to value in this case. When sheath currents dominate, a scenario which may be

applicable to SOL transport, and assuming eφ
T

≪ 1, we have

CASE II: φ ∝ 1

n

∂n

∂y
. (4.4)

We will refer to these limits, that is equations (4.3) and (4.4) as Case I and Case II

respectively. Equation (4.3) is obtained by balancing terms 2 and 3 of equation 4.1

in a limit where terms ∝ ∂xφ may be neglected, whereas equation (4.4) is obtained

by balancing terms 3 and 4 of equation 4.1, where ~J‖ is described by the sheath

boundary conditions 4.2 in the limit of eφ ≪ Te.

Linear theory predicts no phase difference between ~vr ∝ −∂yφr̂ and n for

the interchange, given sinusoidal profile of density. This is evident on substituting

n = n0+ñsin(y) into (4.3) or (4.4), taking n0 which has no polodial dependence and

assuming small fluctuations so that ñ/n0 ≪ 1, known as the local approximation of

turbulence.

In the edge pedestal a resistive current, arising from ion-electron collisions,

is used in the form

∇‖J‖ = ∇‖
T

η‖e

(∇‖n

n
−

e∇‖φ

T

)

. (4.5)

For the pure drift system, the interchange term of (4.1) is neglected, and, for a

pure drift wave with adiabatic electron response, that is when n ≈ φ, the phase

θnv is 90 degrees. The relative phase between n and φ is, however, modified by the

inclusion of parallel resistivity, which leads to equation (4.5) and in such case this

this phase difference fall in the region of 30−45 degrees [Horton, 1999], correspond-

ing to a range of 60 − 45 degrees for θnv. In both cases, density fluctuations lead

potential perturbations and the direction of propagation coincides with the electron

diamagnetic drift. This is important for correct interpretation of experimental re-

sults: polodial flow direction must be known to place the relative phase shift of n

and φ at positive or negative range of angles.

69



4.1.2 Full Nonlinearity

Since drift waves and linear interchange fluctuations exhibit phase differences that

occupy a different range of values, θnv offers a robust way to discriminate between

these mechanisms. The local approximation however, is not a typical scenario for a

tokamak SOL plasma. For MAST, 〈ñ/n0〉 ∼ 1 [Higgins et al., 2012] and a density

filament may be described by n = n0 + ñ exp
(

−x2/2l2⊥
)

. High ñ/n0 modifies re-

sulting potential profiles in such way that the concept of a linear phase difference is

no longer applicable. Particular solutions for the simplistic cases I and II for radial

velocity as a function of the y direction, vr(y), are given in figure 4.1. It must be

noted that the solution in case I appears to be a unique case; in many studies e.g.

[Garcia et al., 2006a] the velocity profiles vr(y) in the absence of sheath currents are,

in fact, found to more closely resemble the profile given by case II in figure 4.1. Any

such signature should be taken to be characteristic of the electrostatic interchange,

and not unique to a sheath driven case or otherwise. The reason for this unique

solution without local minima for case I shown in figure 4.1 is due to a complication

arising from the assumptions of the equation (4.3); the vorticity, parametrised by the

density gradient, is zero far from the blob. This yields a solution for potential that

has a constant gradient far from the blob, thus a constant velocity in the negative r̂

direction (n.b. the profile in figure 4.1 is valid up to a constant). In reality, velocity

will be viciously damped far from the blob, however this effect is not included in

our simple model, and, such an effect will yield a similar minima-maxima-minima

structure of velocity about the density blob, for one example.
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Figure 4.1: Density and velocity profiles for ñ/n0 = 5.00 and n = n0 +
ñ exp

(

−x2/2l2⊥
)

given for cases I and II.

It is apparent from figure 4.1, that the correlation between the density and

potential of filaments will remain most coherent near the peak, and their proximity
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may be taken as a proxy of the linear phase. We will examine the validity of this

statement in further detail in the following sections.

Simple approximate relations in the fully nonlinear scenario between poten-

tial and density, such as (4.3) and (4.4) are not as readily available for the drift wave

case. However, we note that qualitatively the sign of θnv will still be fixed relative

to the direction of propagation of the drift wave, and, for the drift wave instability

to be a significant potential producing mechanism, the magnitude of the phase must

be greater than zero, since the potential is always ”produced” by the mechanism at

a phase of 90 degrees.

4.1.3 Floating Potential

We finish with a short comment regarding an additional complication in establishing

the relative phase between density and radial velocity, which applies equally to mod-

elling and experimental observations. Standard tokamak Langmuir probes provide

ion saturation current (Isat), and floating potential (φf ) measurements. The Isat is

proportional to density and will preserve its profile, providing temperature profiles

are not radically different from those of density. Floating potential measurements,

however, are given by φf ∼ φ− 2.5Te/e [Wesson, 1987], with the last term modify-

ing the velocity profiles by a factor of 2.5∂yTe. This effect will shift the phase angle

away from predicted values, as we will show later.

4.2 Method

A typical method of estimating the phase difference between two signals uses the

first order coherence:

ϕ = cos−1

(

〈nv〉
〈n2〉

1

2 〈v2〉
1

2

)

, (4.6)

Applying this estimator numerically for the Gaussian density function shown and

a range of ñ/n0 from 0.01 to 10, we find that case II gives an RMS phase far from

zero, and case I gives an RMS phase that grows from zero as ñ/n0 increases.

Using the same method for a conditional selection of the data where vr > 0,

which we will refer to this as thresholded RMS or tRMS, in both cases the phase

begins at zero for small ñ/n0 and increases smoothly to 10 degrees for a ñ/n0 of 5,

and onto 20 degrees for a ñ/n0 of 10.

We would prefer to identify the interchange type behaviour with a zero phase,

as we do with the linearised counterpart in order to distinguish it from other mecha-

nisms therefore this is an improvement upon (4.6). The reason for this improvement
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is that the positive part of the velocity profile behaves closer to the linear regime

than the negative parts - a trend that continues as the threshold is set to higher val-

ues, however resulting in increasing data loss. We note that for sinusoidal profiles,

thresholding has no effect on the phase measurement, at all thresholds.

A more accurate measure of this central coherence is a relative position of

density peak pkn with respect to velocity peak, pkv, that is δy = pkn−pkv, expressed

as a fraction of the width of the density peak pkw. Peaks are identified by using a

threshold-based method. We set the threshold value to the mean of the signal and

compute a local maximum for each section that exceeds the threshold value. These

maxima provide the location of each density and velocity peak. The signed relative

position between density and the nearest velocity peak is then calculated. A good

estimate for pkw is

pkw =

√

−∂2n

∂y2
|−1
pkn

× (n|pkn), (4.7)

which is exact assuming Gaussian density profiles, and allows error estimation by

comparing second and fourth order approximations to the curvature and in the

method, the phase is then approximated by

θ =
δy

pkw
, (4.8)

measured in radians. This holds simply because the phase shift in a harmonic setting

sin(ky(y + δy)) = sin(kyy + θnv), (4.9)

gives the phase difference trivially as θnv = kyδy, with the width estimate pkw

simply related to the wave vector ky by

pkw =

√

−∂2 sin(ky(y + δy))

∂y2

−1

(sin(ky(y + δy))) =
√

((k2y)
−1) =

1

ky
. (4.10)

Figure (4.2) shows the shift of the−∂yφf/B peak away from the density peak,

due to temperature gradients, for nominal radial blob velocity of 1km/s mapped

out against the blob size and peak blob temperature for cases I and II. We see that

the phase shift including temperature profiles is likely to be in the region of 5 to

40 degrees, given moderate blob sizes and temperatures. For drift wave generated

potentials, the phase shift due to temperature profiles will be zero in the case of

an adiabatic response, and conservatively, a shift in the same direction by a similar

amount for finite parallel conductivity; a diagram of these phase shifts is shown in
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figure 4.3.
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Figure 4.2: Phase shift found with the detection methods for test blobs parametrised
by pressure width and peak temperature, given a blob radial velocity of 1km/s. Peak
refers to the peak detection phase method, and tRMS refers to the thresholded RMS
method with an inclusive threshold of vr > 0. For MAST, the phase shift θnv is
estimated to, in general, contain a population in the range 5-40 degrees due to the
effect of temperature gradients influencing the measurements. Results are displayed
for: the peak method applied to data generated from CASE I (top-left) and CASE
II (top-right); the tRMS method applied to data generated from CASE I (bottom-
left) and CASE II (bottom-right). Broken white lines indicate the blob size as a
factor of the ion Larmor radius ρi. Each phase value for parameter pair blob size and
temperature is generated by a Gaussian profile, solved for φ for cases I and II, then
the floating potential φf is computed from which ~E × ~B velocity is computed and
the Peak or tRMS method used on this density (amplitude irrelevant) and velocity
profile to find the displayed phase differences.

Before applying the peak detection phase technique to MAST data sets,

there are likely sources of error that must be understood. Firstly, there will be

quantisation error in the peak separation of order 1/fs where fs is the sampling

frequency. Errors in the peak width are estimated by comparing the difference

between second and fourth order finite difference computations of equation (4.7).

Finally, there is an error associated with the angle of attack that the filament makes
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in the radial-polodial plane on the probe. Assuming peak locations in the y direction

separated by some positive value and peak locations in the x direction are coincident,

and defining the angle of attack as ξ = sin−1 (vp/vr) so that no polodial detection

can be made at all for ξ = 0, the fractional error in the peak separation will be

ǫatk =

√

1 + v2p/v
2
r

vp/vr
− 1, (4.11)

where vp is the polodial velocity, and vr is the radial velocity
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Figure 4.3: Diagram of the direction of the phase shifts of drift and interchange
velocity peaks due to temperature gradient effects, and the direction of the polodial
flow, so that interchange peaks would be detected earlier than the density peaks,
and drift peaks later than the density peaks. ”Drift” and ”interchange” peak means
the location of the velocity peak relative to the density for each mechanism. The
reason for this ordering is that the plasma rotates in the ion diamagnetic direction
[Ayed et al., 2009], typically with greater velocity than the blob advection.

74



4.3 Results and Discussion

Data is taken from the Gundestrup [MacLatchy et al., 1992] and mach probe heads

(discharges 21712 and 23768) that have been installed on MAST, from which down-

stream (first contact with the plasma flow) measurements are selected by choosing

appropriately located probe outputs on the probe head; this minimises the the flow

disruptions due to the presence of the probe.

Beginning with the thresholded RMS method, we take data sets for density

and apparent velocity and window into sections of length comparable to the esti-

mated upper bound for filament temporal width (4× 10−4s), then for each section

calculate the RMS phase for velocity a number of velocity thresholds. Figure (4.4)

shows us that with increasing velocity threshold, the apparent phase angle descends

toward zero. This may be theoretically expected in the interchange case since the

radial velocity profiles shown in figure 4.1 become increasingly coherent as data

below an increasing velocity threshold is excluded. At a threshold of zero, we find

qualitative agreement with the predicted phase shift due to the interchange in figure

4.2 which was estimated also at a threshold of zero.

The results of the peak detection method are shown in figure 4.6 and (4.7), in

the form of the distribution of the detected phase differences. For SOL measurements

in the 21712 we find a shift of the phase pdf toward values of -20 to -40 degrees,

in agreement with predictions. The sign negative of the angle shift, which means

that velocity peaks are being detected before density peaks is in agreement with

interchange velocity peaking shown in figure 4.3. However the SOL measurements

in the dataset 23768 give a a strongly peaked value at zero degrees, appearing to be

indicative of a measurement of interchange activity not corrupted by temperature

gradients when using the floating potential. We expect the range to find a phase shift

due to drift wave transport to be approximately 5 to 55 degrees; taking into account

first the shift from the adiabatic case to the resistive case due to finite parallel

resistivity, and then the shift due to the temperature gradient effects. However for

both SOL data-sets, we do not find significant probability of phase in this range

compared to the range ∼ 0 to −40; the phase distributions in the SOL agree with

predictions made by electrostatic interchange models, and disagree with predictions

characteristic of drift-wave models.

A numerical study of the action of drift waves on SOL filaments [Angus et al.,

2012] reports that there is a timescale, dependent on the filament size, after which

a filament propagating under the interchange will be destroyed by drift-wave insta-

bilities that grow in the strong gradient region in the filament edge; this timescale
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may be also overestimated since the filaments begin with no parallel gradients. Typ-

ically, this timescale is 2.5 × 10-5s for the simulated plasmas, and a filament size of

δ = 0.1m, although it should also be noted that the parameters result in filaments

with a higher drift-instability growth rate as noted by the reporters; the rate in nor-

malised units is γdw =
√

Rc

δ
where Rc is the radius of curvature, taking a value of

150cm as opposed to the 85cm found on MAST, and δ is the filament perpendicular

size. For a typical MAST filament velocity of 1kms-1, the time to propagate through

our region of measurement, ∼ 0.06m in length, from the LCFS is then 6 × 10-5s,

approximately twice as long as the reported destabilisation time – however γdw is

approximately ten times slower in going from the simulated Rc = 150cm to the

Rc = 85cm appropriate for MAST.

We additionally compare displacements of negative velocity peaks, since an

interesting behaviour is found in the 23768 data; there is a drop in the probability

near zero phase, and local maxima further from zero in both directions shown in

figure 4.8, reminiscent of the negative peaks seen in the limiting cases displayed in

figure (4.1) for case II, however these trends are either not resolved well or not found

in the 21712 data. This is further evidence for interchange driven blob propagation

in these datasets.

In the 21712 data-set the reciprocation range puts the probe inside the plasma

at ∼ 2cm for ∼ 0.05s, repeating the measurement in this range we find the distribu-

tion function peaked very close to zero at ∼ 1.2◦, with little breading compared to

the SOL measurements – this is expected due to the smaller temperature gradients

associated with filaments found inside the LCFS. Interpreting this phase distribution

to be mostly unaltered by temperature gradient effects, we find that the electrostatic

interchange is dominating the transport of filaments inside the LCFS, given the ab-

sence of any strong distribution of phase in the 5 − 55◦ region. Using the linear

prediction of phase difference between density and potential in the drift-interchange

system of [Dewhurst et al., 2009],

θ = tan-1

(

− 1

B

dB

dR

2π

λy

1

α

)

, (4.12)

where the radial coordinate R, λy is the transverse wavelength in the spectral

analysis, B is the magnetic field and α the adiabatically parameter that includes the

effects of parallel resistivity. Length scales are normalised to the hybrid Larmor

radius, and taking typical MAST parameters of 1
B

dB
dR

∼ 1m−1 and the measured

phase difference of ∼ 90◦ we find
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α ∼ 0.007

λy
. (4.13)

This may be interpreted in one of two ways: Firstly, given reasonable λy

of > 1, we find the adiabaticity parameter is very low, much smaller than the

value in the literature [Horton, 1999], so that here interchange is producing the

low θnv measurement because the drift wave dynamics are very slow in comparison,

which may be due to small parallel gradients, strong parallel resistivity or any other

deduction that can be made from the quantities in this parameter, or secondly,

that this prediction is simply failing in a strongly nonlinear regime in which the

interchange becomes the dominant potential producing process. It is possible for

the drift interchange system to be unstable to drift waves on some small scales, which

couple via inverse cascade to large enough scales for the interchange to destabilise

[Angus et al., 2012]; the system may exhibit characteristics typical to the interchange

on observed scales while ultimately relying on the drift wave instability to drive the

cascade at smaller scales and it would be incorrect to draw the conclusion that drift

waves do not play a role in this case.

4.4 Summary

We have shown that for tailored measurements of phase, signatures of electrostatic

interchange dynamics, modified by the application of floating potential measure-

ments can be found that are rarely discussed in the literature. These are, the zero

phase of plasma density and velocity when using peak separations as an approxi-

mate for phase, and the negative velocity lobes either side of the density peak; it

estimated from recent numerical work that the SOL drift wave instability may be

acting too slowly to be detected in the radial coverage region of the probe. Mea-

suring 2cm inside the plasma, the phase measurements are still characteristic of an

electrostatic interchange, and as expected effects due to temperature gradients are

much less visible; this suggests that the electrostatic interchange continues to be re-

sponsible for the propagation of positive density fluctuations away from the plasma

in this region.
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Figure 4.4: Traces of windowed tRMS evaluations of θnv for both datasets
(top:#21721, bottom:#23768), with incremental changes to the chosen threshold
where -1 represents a threshold at the minimum velocity of the dataset, 0 a thresh-
old of zero velocity and 1 a threshold at the maximum of the dataset (i.e, a threshold
of 1 excludes all data, and a threshold of 1 includes all data). For a reference of
probe location with respect to time, see figure 4.5.

78



0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4

0

0.05

0.1

Time (s)

LC
F

S
 D

is
ta

nc
e 

(m
)

 

 
21712
23768

Figure 4.5: The location of the reciprocating probe with respect to time for dis-
charges #21712 and #23768.
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Figure 4.6: (top) Distribution of detected phase differences evaluated by the peak
method, for a temporal range specified in the legend; discharge #21712. Each point
describes the average probability for the range (of θnv) covered. Bin widths are
chosen such that each bin contains 50 data points; fractional error in distribution is
estimated as 1√

N
where N is the bin count, hence fractional errors are uniform. Error

in the source data (discussed in section 2) is interpreted by uniformly redistributing
each value across the number of bins corresponding to the error. (bottom) The
same phase difference distribution is unfolded in time, and normalised such that
the maximum probability at each temporal location is unity in order to display a
relative probability density plot. Distributions are interpolated to regular values of
θnv. At times earlier than ∼ 0.24s, the probe is outside the LCFS (blue crosses) and
at later times the probe is inside the LCFS (red squares). SOL measurements peak
at approximately −25◦ (n lagging v), which may be attributed to blobs with inter-
change phase difference and a shifted phase due to electron temperature gradients.
For times later than 0.24s, the phase difference peaks approximately between ±10◦,
a value that is difficult to attribute to drift wave activity, it is however more readily
explained by interchange activity. In the unfolded distribution (bottom), there is
a clear transition of the peak phase difference from ∼ −25◦ to ∼ 0◦ in the region
0.24s to 0.26s. For a reference of probe location with respect to time, see figure 4.5.
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Figure 4.7: (top) Distribution of detected phase differences evaluated by the peak
method, for a temporal range specified in the legend; discharge #23768. Each point
describes the average probability for the range (of θnv) covered. Bin widths are
chosen such that each bin contains 50 data points; fractional error in distribution is
estimated as 1√

N
where N is the bin count, hence fractional errors are uniform. Error

in the source data (discussed in section 2) is interpreted by uniformly redistributing
each value across the number of bins corresponding to the error. (bottom) The
same phase difference distribution is unfolded in time, and normalised such that
the maximum probability at each temporal location is unity in order to display a
relative probability density plot. Distributions are interpolated to regular values of
θnv. In the phase distribution plots (top), the data is split into two sections we will
call the near and far SOL, where the probe is in the far SOL at early times, and
the near SOL at later times. For both regions, this dataset clearly shows a phase
difference that peaks at 0◦, which is strongly indicative of interchange activity where
the measurements are relatively unaffected by electron temperature gradient effects.
There is very little variance with radial position of the probe. For a reference of
probe location with respect to time, see figure 4.5.
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Figure 4.8: (top) Distribution of detected phase differences evaluated by the peak
method, for negative (or inwardly moving) velocity peaks, for a temporal range spec-
ified in the legend; discharge #23768. Each point describes the average probability
for the range (of θnv) covered. Bin widths are chosen such that each bin contains 50
data points; fractional error in distribution is estimated as 1√

N
where N is the bin

count, hence fractional errors are uniform. Error in the source data (discussed in
section 2) is interpreted by uniformly redistributing each value across the number
of bins corresponding to the error. (bottom) The same phase difference distri-
bution is unfolded in time, and normalised such that the maximum probability at
each temporal location is unity in order to display a relative probability density
plot. Distributions are interpolated to regular values of θnv. Regions are defined
in the same was as figure 4.7. We find for the near SOL a double peak structure
with maxima at ∼ ±50◦; such a structure is very typical of the velocity structure
produced by the sheath limited vorticity equation (CASE II), easily visible in the
displacement of negative velocity peaks relative to the density peak in figure 4.1.
This is further evidence of interchange driven blob dynamics in these datasets. For
a reference of probe location with respect to time, see figure 4.5.
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Chapter 5

Numerical modelling of scaling

behaviour

Some of the results of this section have been published at [Higgins et al., 2012].

In this chapter the feasibility of finding filaments travelling under the mechanism

(2.74) in a fully turbulent plasma is tested by numerical evolution of the governing

dynamical equations,

(

∂

∂t
−D∇2

⊥

)

n = [n, φ]− σe-φ + S (5.1)

(

∂

∂t
− ν∇2

⊥

)

∇2
⊥φ =

[

∇2
⊥φ, φ

]

+
σ

n

(

1− e-φ
)

− g

n

∂n

∂y
, (5.2)

which are the equations leading to the result (2.74) including dissipation and a

source of particle density, where the aim is to test the velocity scaling without the

assumption of a constant vorticity and zero dissipation.

Equation (5.1) describes the evolution of the plasma density n. The second

term on the LHS of (5.1) describes the change in density due to collisional diffusion

and provides a dissipation scale for turbulent density structures. The first term on

the RHS of (5.1) gives the advection of plasma density with the ~E × ~B drift, while

the third term is a density sink due to parallel plasma transport and the fourth a

density source due to transport across the LCFS into the simulation domain.

Equation (5.2) describes the evolution of plasma ( ~E× ~B) vorticity ∇2
⊥φ. The

second term on the LHS of (5.2) describes the change in vorticity due to collisional

viscosity and provides a dissipation scale for turbulent vorticity structures. The first

term on the RHS of (5.2) gives the nonlinear advection of plasma vorticity with the

~E × ~B drift, the second term on the RHS of (5.2) is the change in plasma vorticity
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due to the parallel electron and ion sheath currents and the final term is the current

arising from the electron diamagnetic drift, containing gradients of the magnetic

field which provides the interchange drive due to curvature and gradient B currents,

destabilising regions with ∂yn.

The diffusion and viscosity coefficients D, ν, and the source term S must

be estimated. The parallel sheath resistivity is σ = ρi/L‖, and the magnetic field

curvature by g = ρi/R0 where R0 is the tokamak major radius.

Spatial dimensions are normalised to the ion Larmor radius ρi, temporal

dimensions to the ion cyclotron frequency ωci, potential is normalised to the ther-

modynamic potential Te/e and density to the target density nt.

In this model we have allowed the density of the filament to vary with respect

to the target density nt, however the parallel model [Riemann, 1991] used insists

at the very least that there is an exponentially decreasing density profile in the

parallel direction toward the sheath. We therefore restrict the simulated values of

normalised density n to be greater or equal to unity, ensuring the parallel model

remains approximately consistent. This is achieved by altering the form of the

sheath dissipation in the continuity equation for 1 < n < 2 by multiplication with

(n − 1), allowing a smooth transition to n = 1 in this region. While this is an

arbitrary choice, we note that it has no effect on the large fluctuations associated

with filaments.

5.1 Numerical Implementation

Equations (5.1) and (5.2) are evaluated by second order centred finite differencing

on a grid with NX×NY points using the classical 4th order Runge-Kutta scheme to

integrate the initial values of n and φ in time [Press, 1992]. The Laplace boundary

problem of finding φ at the new timestep from ∇2
⊥φ given by equation ((5.2)) is

integrated spectrally using the eigenvalues of the Laplace operator and FFTW [Frigo

and Johnson, 2005]. Boundary conditions for all simulated quantities are periodic,

with a damping region at a given radial distance and range from the source of the

interchange flux. Initial conditions are

φ = 0; n =

NY
∑

i

S0 +
S0

100
sin (kiy + ϕ) (5.3)

in order to destabilise the plasma as quickly and with as little spectral bias

as possible, with the random phase 0 < ϕ < 2π (uni-formally distributed).

Convergence for performed simulations is reached at a timestep of 0.2/ωci
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and a resolution of 1024×1024 grid points. Total simulation time is typically 5×104

timesteps. The code is parallelised in the polodial direction using MPI [MPI Forum]

(Message Passing Interface) also using the parallel FFTW3.3 alpha MPI [Frigo and

Johnson, 2005] implementation and run typically on 16 or 32 processes (with a

speedup from 1 process of 13 and 21 respectively).

5.2 Parameter Estimation

The source term is modelled as

S = S0 exp

(−(x− 0.5lx)
2

2S2
w

)

, (5.4)

where S0 is the amplitude of the source, Sw is the width of the source and lx, ly are

the radial and polodial extents of the simulation domain, respectively.

The radii explored by the probe in figure 3.13 corresponds to a radius of

1.48m to 1.445m. Mean values of quantities for this region are given in table (5.1).

Parameter Value Parameter Value

|Te| 20eV |nsol| 1× 1019m−3

|nt| 1× 1017m−3 |B| 0.3T
|l‖| 15.0m |q| 4

R0 0.85m Sw 3ρi
lx 120ρi ly 120ρi
H 4.4m |θp| 27◦

Table 5.1: Averages of particular values and other parameters used in the TOKER
simulation. q is the safety factor, |nsol| is the average SOL density, H is the height
of the MAST vacuum vessel, and |θp| is the average magnetic field pitch angle.

In order to estimate the source strength S0 we estimate the rate of particles

crossing an area of simulated LCFS at the classical Bohm rate [Helander and Sig-

mar, 2002] which we then set equal to equation (5.4) integrated over the simulation

domain. This gives a normalised source strength of

S̄0 =

(

(∂xnped)Tped

16eBped

√
2πSw

)

(

1

ωcint

)

, (5.5)

where the subscripts ped denote pedestal vales, which for the discharges anal-

ysed in section 3.2 are ∂xnped ≈ 1020, Tped ≈ 100eV and Bped ≈ 0.35T . From

equation (5.5) we find a value of S0 = 5.5 × 10−3 to S0 = 1.1 × 10−2 gives rough
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agreement between TOKER and estimated MAST particle flux across the LCFS,

given a range of 1× 1018m−3 > nt > 5× 1017m−3.

Diffusion and viscosity coefficients are estimated from collision rates and the

Pfirsch-Schlter neoclassical collisional transport regime as described in [Helander and

Sigmar, 2002; Fundamenski et al., 2007], where we use the electron temperature as

an effective ion temperature in determining the viscosity coefficient. This results in

D ≈ 1.7× 10−3, ν ≈ 2.4× 10−3.

5.3 Numerical Results

We have performed 7 simulations to span the possible values suggested for nt.

These simulations designated TOKER01 to TOKER07 have source strengths of

(15, 9, 10, 6, 5, 3, 18) × 10−3 respectively.

We use the same technique described in section 3.2 of chapter 3 to evaluate

the α scaling parameter with these exceptions:

1. Signal pre-processing of the simulation data is not required since the model

does not produce a radial trend in potential, has direct measurement of plasma

potential and radial positions are known precisely.

2. Time series of quantities are taken once the simulation has reached a quasi-

stationary state after initial destabilisation of the plasma between times 0.5ms

to 1.7ms for a selection of radial and polodial locations. Peak averages are

taken from this entire range at each of these selected locations, and the average

at a given radial position includes all peak detections for each polodial location

of that radial position.

3. Electric field is measured on two scales given by the scale that the Gundestrup

probe on MAST measures the polodial electric field, and the smallest scale

electric field corresponding to 23.9mm and 3.0mm respectively. This is to

assess the impact that measuring Eθ on a particular scale has. Results for the

α scaling parameter are given using these two scale lengths.

Figure (5.1) shows a snapshot of simulation TOKER01 at a time t = 0.7ms.

Notably there is a high degree of mixing in density while the plasma potential retains

mainly large scale features; plasma filaments appear to have a complex internal

transport with strongly varying densities, with an overarching radial transport of

this structure. In figure 5.2 we see the elongated radial velocity bursts set up by the

plasma vorticity model, characteristic of this type of SOL model.
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Figure 5.1: (left) Density and (right) potential snapshots of simulation TOKER01
at time t = 0.7ms. The scale of the potential fluctuations is much greater than
that of the density fluctuations - these “filaments” have a large degree of internal
structure, with an overarching general drift.

The strength of density fluctuations is given for the simulated plasmas in

figure 5.3, and it appears that for the lower source strength simulations the scaling

(2.71) could play a role. It should be noted however that this measure of fluctuation

strength gives an average picture, and also is a conservative estimate. An alternative

measure of average fluctuation strength might be to take nt as the background n0,

in which case simulated plasmas would have a fluctuation strength always ≥ 1.

Complications and correct interpretation of this measurement are given in figure

3.10.

The simulation domain is relatively small compared to the entire MAST SOL,

we only simulate a domain large enough to be comparable to the probe reciprocation

distance in section 3.2. Due to the sheath dissipation (second term in equation

(5.1)) not being proportional to plasma density in this model, it cannot contribute

to an exponential SOL density profile and we may expect that SOL widths are
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Figure 5.2: (left) Radial and (right) Vertical ~E × ~B drift velocities for simulation
TOKER01.

not reproduced self consistently in this model. In figure 5.4 the averaged density

profile does exhibit an exponential profile, while the density peak averages in figure

5.5 have a linear profile. The profile in (5.4) may be due to the nature of sheath

dissipation near to nb/nt ≈ 1 which as discussed is modified toward (nb − 1)σe−φ

near this limit. In addition, the nt ≈ const model becomes questionable in this

region (since nt should be allowed to vary as this limit is approached), so that we

limit our discussion to filaments with high nb/nt where the nt = const assumption

is most valid.

Figures (5.6) and (5.7) give the averaged peak detections of radial ~E × ~B

velocity for simulated plasmas, at smallest and probe scales respectively. The small

scale velocities are consistently larger than the probe scale velocities by 200ms−1 to

400ms−1, indicating that the “internal structure” of the filament is mildly moving

ahead of the “surrounding filament” (it becomes difficult to define the plasma fila-

ment with this degree of mixing). The dominant structures appear to be streamer

like with kx = 0. It is important to remember that the error bars correspond to
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Figure 5.3: The strength of density fluctuations relative to ambient density for
TOKER data (each with different source strength S0, indicated in the legend),
where σn and µn are the standard deviation and mean of n respectively.

0 0.01 0.02 0.03 0.04 0.05 0.06

2

3

4

5

6

7

Distance from source centre (m)

M
ea

n 
D

en
si

ty
 P

ro
fil

e 
(n

b/n
t)

 

 
18× 10−3

15× 10−3

10× 10−3

9× 10−3

6× 10−3

5× 10−3

3× 10−3

Figure 5.4: Averaged radial density profiles for simulated plasmas (each with differ-
ent source strength S0, indicated in the legend).
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Figure 5.5: Average peak density radial profile for simulated plasmas (each with
different source strength S0, indicated in the legend).

the confidence on the mean, not simply the variance of the measurement which is of

course much larger. Early (small radii) < vE > peak profiles appear to correspond

to an acceleration phase where the plasma potential grows to the limits governed

by plasma vorticity and parallel currents, and since the parallel currents are in-

versely proportional to nb in our model this saturation limit occurs at larger radii

for discharges with higher S0.

Figure (5.8) gives the α scaling parameter for selected comparisons of the

simulated plasmas. In terms of the two selected Eθ scales, α does not vary signif-

icantly in general (this makes sense, since we would expect the same scaling in nb

for a given scale). It should also be noted that an inverse scaling of vE with l⊥ is

consistent with sheath models.

Considering that saturation of vE is reached at greater radii for higher S0

simulations, we see in figure 5.8(e) a sheath scaling at r ≈ 0.3m, in (5.8)(d) (higher

S0) at r ≈ 0.41 and in (5.8)(c) (higher S0 again) at r ≈ 0.52. For these comparisons

the balance of perpendicular currents is clearly resulting in an eventual sheath scal-

ing. In figures (5.8)(a,b), we can see that the sheath currents are becoming more

limited by the high density filaments (see equation (5.2)), pulling scalings down

from unity toward zero. Finally figure 5.8(f) (which perhaps has a small fluctua-

tion strength) shows the biggest difference in α between Eθ measurement scales of
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Figure 5.6: Average peak radial vE radial profile for simulated plasmas (3.0mm
scale) (each with different source strength S0, indicated in the legend).
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Figure 5.7: Average peak radial vE radial profile for simulated plasmas (24.9mm
scale) (each with different source strength S0, indicated in the legend).

around 0.4 and is the most difficult to interpret. The small scale α result in figure

5.8f may indicate the presence of the scaling in equation (2.71) when combined with
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figure 5.3, however since these fluctuation strength measurements are conservative it

is the authors opinion that this is another mode of competition between the scalings

in equations (2.72) and (2.74).
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Figure 5.8: The α scaling parameters for selected comparisons of TOKER simula-
tions at different source strengths. Results indicate a competition between (2.74)
at α = 1, interchange balanced by sheath current at constant target density, and
(2.72) at α = 0 , interchange balanced by advection of vorticity. The TOKER model
cannot scale with (2.64). A scaling of (2.71) is also unlikely due to the high strength
of density fluctuations (see figure 5.3). Given the strength of nonlinearity, we may
expect an α in the range of ∼ 0.35 to ∼ 0.22, referring to figure 3.10 and 5.3 for a
blob advection with interchange balanced by advection of vorticity, as opposed to
the extreme given by 2.72 of α = 0.
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We suggest that the reason we do not find α ≈ 1 until larger radii in figure

5.8 is due to an unrealistic LCFS source treatment; in reality it is a source of flux not

just density. This means that in the simulation we have to wait until these filaments

pick up their saturated velocities (if a stationary saturation is indeed ever reached),

a more complete treatment may be to include an edge plasma and boundary region

as in ESEL [Garcia, 2009].

5.4 Summary

These investigations demonstrate that in general, it is possible to find filaments

with a high scaling index as found experimentally in figure 3.13, however, in the

transition from the laminar model of (2.74) to the investigation of the dynamics in

the turbulent scenario, with driving and damping terms, the alpha index is far from

stationary, and in all cases the scaling 2.74 is in competition with the nonlinear

advection of vorticity which drives a scaling as discussed in figure 3.10.
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Chapter 6

Numerical modelling of warm

SOL effects

In this chapter we adopt the governing equations of 6.1 to study the plasma in the

presence of warm electrons and ions with an effective parallel temperature at the

sheath boundary. The shapes of the density, velocity, flux and phase PDFs are

analysed in each case, and, the difference in the velocity,flux and phase pdfs is given

when probes measure floating potential as opposed to the real plasma potential.

Consequences of the boundary conditions for blob evolution are evaluated. We

begin, first, with the numerical implementation of the model equations which were

derived in chapter 2,

∂tn =
1

B
[n, φ]− n

B2
[B,φ]− nt

l‖

√

T + 3Tt +Rn + Sn, (6.1)

∂t∇2
⊥φ =

1

n
[p,B] +

1

B

[

∇2
⊥φ, φ

]

+
B2

n

nt

l‖

√

T + 3Tt

(

1.0 − exp

(

FΛ − eφ

T

))

+
1

nB

(

[

∇2
⊥φ, nT

]

+
[

~∇⊥φ, ~∇⊥(nT )
])

+RΩ + SΩ, (6.2)

∂tT =
1

B
[T, φ] +

2T

3B2
[φ,B]− 2T

3l‖

√

T + 3Tt +RT + ST . (6.3)

As usual, the t subscript refers to the target quantity at the sheath entrance

to the divertor plates. FΛ typically takes values in the range ∼ 2.5 − 3, depend-

ing on the details of the sheath transition modeling. Compared to the TOKER

model discussed in chapter 5, the hTOKER model evolves a plasma temperature

which typically has gradients of similar magnitude to the plasma density. The term

driving the interchange retains the temperature inside the derivative, leading to a
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stronger force driving the structures and generating vorticity; the SOL modelled by

hTOKER typically features even more violent dynamics than the TOKER model.

As discussed in chapter 2, ion continuity is followed such that the ion forms for

the sheath dissipation of temperature and density are kept, so that when operating

with finite ion temperature the system can be evolved with one temperature for

both electrons and ions. With finite ion temperature, there are the additional terms

5 and 6 on the RHS of the vorticity equation that provide additional effects on SOL

structures.

There are two notable limitations of the parallel model used in hTOKER

(2.50). These are, the assumption of < nv‖ >=< n >< v‖ >, and the neglection

of zero parallel wavenumber drift-wave structures which are implied to exist by the

scenario which as ∂‖n 6= 0, as discussed at 2.2.3. Parallel particle flows, heat fluxes

and in particular the treatment of warm ion effects without any treatment of the

gyro-viscous stresses lead to a severely idealised model as discussed in chapter 2. It

is not consistent to treat warm ions without the gyro-viscous stress.

6.1 Numerical Implementation

A summary of the techniques used to evolve the system (6.1) follows,

• Fixed quantities, L‖, nt, Tt, B, do not vary with time or the polodial direc-

tion, and are set up during the initialisation phase and do not change. These

are the parallel length, target density, target temperature and magnetic field,

respectively.

• Time evolution is performed with an explicit predictor corrector method using

the Adams-Moulton-Bashforth scheme [Press, 1992]. The timestep is a fixed

constant value, boundary conditions are periodic.

• The scheme is parallelised in MPI [MPI Forum] for execution on the distributed

memory parallel computers, with the domain distributed in the x (radial)

direction.

• The boundary value problem of finding φ = ∇-2Ω, is solved spectrally with

the MPI enabled FFTW 3.3.1 library Frigo and Johnson [2005], and the eigen-

values of the centred second order finite difference method. The undefined

constant value of integration, due to the boundary conditions, is selected by

assuming that the plasma furthest from the LCFS source is in equilibrium

with the Bohm sheath potential.
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• Ambient values for N,T are defined, and after each step of evolution, these

values are enforced as the smallest values allowed. For the simulations per-

formed in this chapter these ambient limits take the values of Nbg = 1017m-3

and Tbg = 1eV .

• Poisson brackets are solved using the method [Arakawa, 1966], which ensures

a high order of conservation.

Normalising quantities used in the simulations of this chapter are B0 = 1Tesla,

T0 = 1eV and N0 = 1019m-3.

6.1.1 Blob Source

Plasma LCFS source is modelled by injection of filaments with Gaussian spatial

profiles and properties drawn from predefined distribution functions for density,

temperature, velocity, size and waiting time per metre. The blobs enter the domain

at the LCFS with the Gaussian envelope, Env(t) = exp
(

(t−t0)2

2τ2

)

, applied to density,

temperature and radial velocity. The envelope, Env(t), has a temporal width defined

by the time scale τ = ℓ/v, where ℓ is the blob size and v is the radial velocity of

the blob. The amplitude of the temporal envelope is defined by
∫ t+∆t

t
Env(t) at

each timestep to ensure that
∑

∆tEnv(t) = 1 over the temporal discretisation of

the simulation. These blobs are added to a linked list (and to the simulation) when

the waiting time expires, and removed from the list when the time passes 9σ from

the peak of the temporal envelope. Each timestep, the source terms Sn, ST , SΩ are

calculated based on the items in the blob list.

The distributions used in the simulation come from MAST probe measure-

ments, using the same techniques as chapters 3 and 4; peak values are used to

calculate the distribution functions shown in figure 6.1. Density and temperature

are inferred by finding the distribution function of Isat, normalising it so that it has

a mean value of unity, then multiplying by the mean values of density or tempera-

ture as measured by the Nd:YAG [Walsh et al., 2003] system around the LCFS to

get the blob temperature or density distribution. Waiting times are estimated by

the distance between peaks in Isat, and, the polodial extent of the probe is used to

estimate the waiting time per metre. Preliminary simulations show that the floating

potential measurements of particle-energy flux ΓE = −nT∂yφ

B
overestimate the real

flux by a factor of 2, therefore, a factor of 0.5 is introduced for the blob velocity

distribution.
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Figure 6.1: Blob distribution functions used in the hTOKER simulations. A factor

of 0.5 is applied to the velocity source in light of preliminary simulations showing

that the floating potential measurements overestimate the particle-energy flux ΓE =

−nT∂yφ

B
.

Simulations of SOL turbulence including parallel currents associated with

sheath boundary conditions are prone to an artificial steady state solution when

implemented with steady-state particle density and temperature sources that favours

the production of radially elongated streamers. The reason for this may be sought

in a steady-state solution solution to linearised interchange equations of motion.

~∇ · ~J = e~∇ · n
(

~vp + ~vgi − ~vge − ~v‖e + ~v‖i
)

= 0 (6.4)

gives the quasineutrality condition for the system, with vp the ion polarisation ve-

locity and vgi,ge the ion and electron drifts due to gravity. Following a linearisation

n = n0 + ñ, we have

n0
~∇ · ~vp + n0

~∇ ·
(

~v‖i − ~v‖e
)

+ (~vgi − ~vge) ∂yñ, (6.5)

since n0 only has a gradient in the x̂ direction but n0 ≫ ñ. The electron continuity

equation, neglecting the motions due to drifts associated with the gravity is

∂ñ

∂t
+ ~vE · ~∇n0 + n0σ

eφ

Te
= 0, (6.6)

with σ the sheath dissipation rate. After a Fourier transform this becomes

ñ

n0
=

1

ω

(

ky
κTe

eB0
− σ

)

eφ

Te
, (6.7)
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in which we can identify the electron drift frequency ωd = kyvd = ky
κTe

eB0
, with

κ = − 1
n0

∂n0

∂x
, giving

ñ

n0
=

eφ

Te

(

ωd − σ

ω

)

. (6.8)

Equation (6.8) may be substituted into the Fourier transform of (6.5) to find

k⊥~vp + k‖
(

~v‖i − ~v‖e
)

+ ky (~vgi − ~vge)
eφ

Te

(

ωd − σ

ω

)

, (6.9)

which in the steady-state limit ω = 0 becomes the greatly simplified balance between

sheath and diamagnetic rates

ωd = σ. (6.10)

This describes the balance between gravity and sheath currents leading to a well

defined size of perturbation

ky =
eσB0

κTe
=
(

ρiκl‖
)-1

. (6.11)

The problem with a model that has such a well defined unstable mode number, and

source terms supplying density and temperature at a constant rate is that a standing

wave approximately this wavenumber will form in potential, and the density and

temperature will be channelled along these streamlines in the x-direction further

reinforcing the standing wave. In the real world, a LCFS will have turbulent fluxes

crossing it and in particular, there will certainly be non steady-state sources of

plasma potential emanating from processes inside the LCFS. The blob source terms

used in hTOKER, which naturally vary in space and in time and provide a source of

vorticity, are an attempt not only to realistically model the fluxes across the LCFS

but to mitigate this unrealistic steady-state streamer class of behaviour.

6.1.2 Subgrid Model

The natural dissipative scale of the hTOKER system can be very small, smaller than

the ion gyro-radius typically is. In the interests of preserving some of the validity of

the drift-fluid model, and keeping down the numerical effort, a subgrid dissipation

model is employed, based on the model used in [Smith and Hammett, 1997] which

pertains to spectral gyro-fluid simulations of drift wave turbulence. Defining the
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RMS shear parameter

S =

√

√

√

√

〈

(

∂vx
∂x

)2

+

(

∂vy
∂y

)2

+
1

2

(

∂vx
∂y

+
∂vy
∂x

)2
〉

, (6.12)

and the average large-scale wavenumber

kav = S
〈

v2x + v2y
〉

-1

2 , (6.13)

along with a cutoff wavenumber, which we set to the Nyquist limit kc = 2/δ, the

dissipation has spectral eigenvalues of

γh = −M

[(

kx
kc

)p

+

(

ky
kc

)p]

, (6.14)

which in real space (for comparison) is closely related to the operator

∂f

∂t
=

−ip

|−ip|
M

kpc
∇p, (6.15)

which are the well known diffusive operators for even powers. The eigenvalue 6.14 is

a generalisation of the diffusive operator to arbitrary power, known as hyperviscosity,

which allows control over the spectral index of the dissipation scale via the parameter

p in addition to the parameter M . Since the real dissipation scale is not in the

simulation domain, a spectral index characteristic of the true dissipation physics

scaled up to the grid scale of the domain would be incorrect. The correct index

would instead be a part of the turbulent cascade. Values for M and p are tested to

find the ones that best reproduce the spectral index at the grid scale.

The investigation [Smith and Hammett, 1997] finds that values of p ∼ 1.7 kc
kav

+

2.4 and M ∼ 0.1S kc
kav

reproduce the correct spectral amplitudes across a range of

grid resolutions, compared with a fully resolved simulation. We find that these val-

ues are insufficient to dissipate the turbulence in our simulations at the grid scale.

In order to introduce a dissipation range near the ion Larmor radius, we simulate

at a resolution of 4mm and modify the magnitude to M ∼ 20S kc
kav

. Instead of the

average values S and kav , we use maximum values, since the SOL features a wide

range of shear and transient events. The selected value of M is much larger than

the values in [Smith and Hammett, 1997], although they did find this parameter

more difficult to assess a scaling for, compared to the index p. We have selected

this value in a best effort to retain viable physics at the dissipation scale, and kept

the same specification for the index p under the assumption that this parameter is
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of principle importance in the dissipation model, as it showed such robust scaling

in [Smith and Hammett, 1997]. A possible reason for needing such high values of

M in this work compared to [Smith and Hammett, 1997], may be that M should

depend on the power input from the turbulent cascade toward the grid scale, which

for our case is certainly greater.

A treatment that resolves all scales down to the collisional scale of this type

of plasma would require an entirely different approach, such as the gyro-fluid model

[Madsen et al., 2011].

6.2 Model Equation Reference

We provide a list of simulated models for reference. Each model is a set of conditions

on either the cold ion (6.16) or warm ion (6.17) models.

∂tn =
1

B
[n, φ]− n

B2
[B,φ]− nt

l‖

√

T + 3Tt +Rn + Sn, (6.16)

∂t∇2
⊥φ =

1

n
[nT,B] +

1

B

[

∇2
⊥φ, φ

]

+
B2

n

nt

l‖

√

T + 3Tt

(

1.0− exp

(

FΛ − eφ

T

))

+ RΩ + SΩ,

∂tT =
1

B
[T, φ] +

2T

3B2
[φ,B]− 2T

3l‖

√

T + 3Tt +RT + ST .

∂tn =
1

B
[n, φ]− n

B2
[B,φ]− nt

l‖

√

T + 3Tt +Rn + Sn, (6.17)

∂t∇2
⊥φ =

1

n
[2nT,B] +

1

B

[

∇2
⊥φ, φ

]

+
B2

n

nt

l‖

√

T + 3Tt

(

1.0− exp

(

FΛ − eφ

T

))

+
1

nB

(

[

∇2
⊥φ, nT

]

+
[

~∇⊥φ, ~∇⊥(nT )
])

+RΩ + SΩ,

∂tT =
1

B
[T, φ] +

2T

3B2
[φ,B]− 2T

3l‖

√

T + 3Tt +RT + ST .

In the following, RC are the collision terms with no neoclassical corrections while

RPS represents the terms that include them. We define the reference target values,

that were used in constant target simulations e.g. (6.19) as nt0, Tt0.
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6.2.1 Single Blob Simulation Conditions

The first model examined, called standard interchange (SI) for reference, is defined

by the cold ion model 6.16 and the additional conditions,

nt = n, Tt = T, FΛ = 0, R = RC . (6.18)

Const-taget interchange (CTI) is 6.16 under the conditions

nt = nt, Tt = Tt, FΛ = 0, R = RC . (6.19)

Const-target interchange with neo-classical collissions (CTI-PS) is 6.16 under the

conditions

nt = nt, Tt = Tt, FΛ = 0, R = RPS (6.20)

Standard interchange with sheath potential drop (SI-FP3) is 6.16 under the condi-

tions

nt = n, Tt = T, FΛ = 3.0, R = RC (6.21)

Const-target interchange with sheath potential drop (CTI-FP3) is 6.16 under the

conditions

nt = nt, Tt = Tt, FΛ = 3.0, R = RC (6.22)

Standard interchange with neo-classical collisions and sheath potential drop is (SI-

PS-FP3) is 6.16 under the conditions

nt = n, Tt = T, FΛ = 3.0, R = RPS (6.23)

Standard interchange with warm ion effects is 6.17 under the conditions

nt = n, Tt = T, FΛ = 0, R = RC (6.24)

Standard interchange with warm ion effects and sheath potential drop is 6.17 under

the conditions

nt = n, Tt = T, FΛ = 3.0, R = RC (6.25)
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Const-target interchange with warm ion effects and sheath potential drop is 6.17

under the conditions

nt = nt, Tt = Tt, FΛ = 3.0, R = RC (6.26)

Const-target interchange with averaged divertor values is 6.16 under the conditions

nt = 〈n(x, y)〉(x,y) , Tt = 〈T (x, y)〉(x,y) , FΛ = 0, R = RC (6.27)

Const-target interchange with averaged divertor values and sheath potential drop is

6.16 under the conditions

nt = 〈n(x, y)〉(x,y) , Tt = 〈T (x, y)〉(x,y) , FΛ = 3.0, R = RC (6.28)

Const-target interchange with averaged divertor values, warm ion effects and sheath

potential drop is 6.17 under the conditions

nt = 〈n(x, y)〉(x,y) , Tt = 〈T (x, y)〉(x,y) , FΛ = 3.0, R = RC (6.29)

Standard interchange with divertor values kept as a fixed fraction of the simulated

values is 6.16 under the conditions

nt = n
〈nt0(x, y)〉(x,y)
〈n(x, y)〉(x,y)

, Tt = T
〈Tt0(x, y)〉(x,y)
〈T (x, y)〉(x,y)

, FΛ = 0, R = RC (6.30)

Standard interchange with divertor values kept as a fixed fraction of the simulated

values with sheath potential drop is 6.16 under the conditions

nt = n
〈nt0(x, y)〉(x,y)
〈n(x, y)〉(x,y)

, Tt = T
〈Tt0(x, y)〉(x,y)
〈T (x, y)〉(x,y)

, FΛ = 3.0, R = RC (6.31)

Standard interchange with divertor values kept as a fixed fraction of the simulated

values, warm ion effects and sheath potential drop is 6.17 under the conditions

nt = n
〈nt0(x, y)〉(x,y)
〈n(x, y)〉(x,y)

, Tt = T
〈Tt0(x, y)〉(x,y)
〈T (x, y)〉(x,y)

, FΛ = 3.0, R = RC (6.32)
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6.2.2 SOL Simulation Conditions

The first SOL model examined, called standard interchange (SOL-SI-PS) is defined

by the cold ion model 6.16 and the additional conditions,

nt = n, Tt = T, FΛ = 0, R = RPS. (6.33)

Standard interchange (SOL-SI-PS-FTI) is 6.17 under the conditions

nt = n, Tt = T, FΛ = 0, R = RPS. (6.34)

Const-target interchange with neo-PS collissions (SOL-CTI-PS-FTI) is 6.17 under

the conditions

nt = nt, Tt = Tt, FΛ = 0, R = RPS (6.35)

Standard interchange with sheath potential drop (SOL-SI-PS-FP3-FTI) is 6.17 un-

der the conditions

nt = n, Tt = T, FΛ = 3.0, R = RPS (6.36)

Const-target interchange with sheath potential drop (SOL-CTI-PS-FP3-FTI) is 6.17

under the conditions

nt = nt, Tt = Tt, FΛ = 3.0, R = RPS (6.37)

6.3 Single blob behaviour

In order to examine the behaviour of filaments in the regimes hTOKER can simulate,

we perform a number of simulations with combinations of effects turned on or off.

The const-target boundary conditions were set to MAST values, which are about an

order of magnitude less than the mid-plane values. This means that in addition to

providing homogeneity to the parallel terms, the magnitude is also greatly reduced.

These simulations were run for 2 × 103ω-1
0 , with a timestep 0.1ω-1

0 . Source terms

Sn, SΩ, ST were set to zero.

6.3.1 Const-Target and PS Effects on Standard Interchange

We begin by investigating the effect of the constant target boundary conditions

upon the standard sheath driven interchange, with no sheath potential drop at
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the target plates, for comparison with these effects switched on. We examine the

standard sheath interchange, the effect of the const target conditions, and the effects

of including the neoclassical Pfirsch Schulter diffusion.
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Figure 6.2: Simulation Designation: SI (6.18), Blob Size = 0.02m, Background =

1018m−3, 10eV , Blob Peak = 5×1018m−3, 50eV , Parallel Model = Flute, Collisions

= Classical, Sheath Potential Drop = 0, Ion Temperature = 0. Streamlines of

velocity shown in green (kms−1), plasma pressure shown in red-yellow (pA).

The standard interchange scenario, provided for reference, consists of the

generation of vorticity leading to the radial advection of he blob.
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Const-Target Interchange
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Figure 6.3: Simulation Designation: CTI (6.19), Blob Size = 0.02m, Background

= 1018m−3, 10eV , Blob Peak = 5 × 1018m−3, 50eV , Parallel Model = Constant

Target (MAST Profiles), Collisions = Classical, Sheath Potential Drop = 0, Ion

Temperature = 0. Streamlines of velocity shown in green (kms−1), plasma pressure

shown in red-yellow (pA).

Under constant target boundary conditions, set to the experimentally mea-

sured values on MAST, there is an increased radial velocity at early times accom-

panied by an increased disruption of the structure and a reduced travel distance of

the filament at later times. This may be due to the reduction in sheath current

magnitude as opposed to its structure.
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Const-Target with Pfirsch Schlter Diffusion
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Figure 6.4: Simulation Designation: CTI-PS (6.20), Blob Size = 0.02m, Background

= 1018m−3, 10eV , Blob Peak = 5 × 1018m−3, 50eV , Parallel Model = Constant

Target (MAST Profiles), Collisions = Neo-Classical, Sheath Potential Drop = 0,

Ion Temperature = 0. Streamlines of velocity shown in green (kms−1), plasma

pressure shown in red-yellow (pA).

Including the neoclassical diffusion, we find a reduction in the radial velocity,

which must be linked to the two dimensional structure of the blob vorticity since

the neoclassical diffusion acts in the radial direction.
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6.3.2 Const-Target and PS Effects on Sheath Potential Interchange

The effect of the Bohm sheath potential drop on the plasma filaments, as discussed,

is to generate a spin centred on the centre of the blob. This leads, as already

reported Myra et al. [2004], to a reduction in the radial velocity and the generation

of a polodial velocity for the blob. This blob also becomes far more stable, replacing

flow-shear instabilities for centrifugal instabilities.

Standard Interchange with FPV=3.0
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Figure 6.5: Simulation Designation: SI-FP3 (6.21), Blob Size = 0.02m, Background

= 1018m−3, 10eV , Blob Peak = 5× 1018m−3, 50eV , Parallel Model = Flute, Colli-

sions = Classical, Sheath Potential Drop = 3.0Te

e
, Ion Temperature = 0. Streamlines

of velocity shown in green (kms−1), plasma pressure shown in red-yellow (pA).
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The standard case of blob advection with the action of a Bohm sheath poten-

tial drop in the vorticity equation is given for reference. The blob size and amplitude

chosen is stable to the centrifugal instability, remaining a coherent structure for a

long period.

Const-Target Interchange with FPV=3.0
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Figure 6.6: Simulation Designation: CTI-FP3 (6.22), Blob Size = 0.02m, Back-

ground = 1018m−3, 10eV , Blob Peak = 5 × 1018m−3, 50eV , Parallel Model =

Constant Target (MAST Profiles), Collisions = Classical, Sheath Potential Drop

= 3.0Te

e
, Ion Temperature = 0. Streamlines of velocity shown in green (kms−1),

plasma pressure shown in red-yellow (pA).

Under constant target boundary conditions, the stability of the blob is re-
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duced, due to an increase of interchange potential generated in the blob. Again, this

may be primarily due to the drop in sheath current magnitude by one order over

the standard case, as opposed to any spatial changes in the sheath currents.

Standard Interchange with PS Diffusion and FPV=3.0
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Figure 6.7: Simulation Designation: SI-PS-FP3 (6.23), Blob Size = 0.02m, Back-

ground = 1018m−3, 10eV , Blob Peak = 5×1018m−3, 50eV , Parallel Model = Flute,

Collisions = Neo-Classical, Sheath Potential Drop = 3.0Te

e
, Ion Temperature = 0.

Streamlines of velocity shown in green (kms−1), plasma pressure shown in red-yellow

(pA).

Pfirsch Schulter diffusion also appears to destabilise the rotational stability

of the blob, causing a breakdown compared to the base case at late times.
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6.3.3 Warm Ion Effects and Interaction with Const-Target, Pfirsch-

Schulter Diffusion and Bohm potential Interchange

The approximate inclusion of the warm ion effects in the vorticity equation, given by

(6.17) compared to (6.16), leads to the rotation of the interchange potential into the

polodial direction. This, to first order, can be considered as a secondary interchange

generated by the gradient of vorticity in the polodial direction that was generated

by the initial interchange, comparing terms 1 and 4 of (6.17).
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Standard Interchange with Warm Ion Effects
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Figure 6.8: Simulation Designation: SI-FTI (6.24), Blob Size = 0.02m, Background

= 1018m−3, 10eV , Blob Peak = 5 × 1018m−3, 50eV , Parallel Model = Flute, Col-

lisions = Classical, Sheath Potential Drop = 0, Ion Temperature = Electron Tem-

perature. Streamlines of velocity shown in green (kms−1), plasma pressure shown

in red-yellow (pA).

The base case including the warm ion effects leads to advection of the blob

in the polodial direction, which is an inherently dynamic process since this polodial

velocity depends explicitly on the radial velocity generated by the interchange due

to the term proportional to [∇2
⊥φ, nT ]. Also, the effects have stabilised the blob, and

it remains a coherent structure for a long period, with a very large displacement.
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Standard Interchange with Warm Ion Effects and FPV=3.0
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Figure 6.9: Simulation Designation: SI-FP3-FTI (6.25), Blob Size = 0.02m, Back-

ground = 1018m−3, 10eV , Blob Peak = 5×1018m−3, 50eV , Parallel Model = Flute,

Collisions = Classical, Sheath Potential Drop = 3.0Te

e
, Ion Temperature = Electron

Temperature. Streamlines of velocity shown in green (kms−1), plasma pressure

shown in red-yellow (pA).

The interaction of the warm ion effects and the Bohm sheath potential does

not appear to destabilise the blob. Indeed, the structure of the blob appears if

anything more stabilised in the presence of warm ions.
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Const-Target Interchange with Warm Ion Effects and FPV=3.0
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Figure 6.10: Simulation Designation: CTI-FP3-FTI (6.26), Blob Size = 0.02m,

Background = 1018m−3, 10eV , Blob Peak = 5× 1018m−3, 50eV , Parallel Model =

Constant Target (MAST Profiles), Collisions = Classical, Sheath Potential Drop =

3.0Te

e
, Ion Temperature = Electron Temperature. Streamlines of velocity shown in

green (kms−1), plasma pressure shown in red-yellow (pA).

The const target case with Bohm sheath effects was unstable for our blob

parameter choice with cold ions, and since the warm ions were predicted to add to

the stability of rotation blobs, we might expect to see an increased stability with

their inclusion to the blob dynamics. The blob shows increased stability, however,

the velocity field does not seems as regular as compared to SI-FP3-FTI.
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6.3.4 Const-Target Interchange with equivalent target values

The const-target blob simulations from the previous section are computed again with

the modification that the divertor quantities are completely uniform and take for

each timestep the averaged values of the simulated values, so that spatial structure

is removed from the simulations while preserving the approximate magnitude of the

sheath current in the standard case. This is in order to examine the effect of the

spatial invariance of the target quantities in the sheath currents on the blob stability,

compared to the standard case. To clarify, we set
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Const-Target Interchange
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Figure 6.11: Simulation Designation: aCTI (6.27), Blob Size = 0.02m, Background

= 1018m−3, 10eV , Blob Peak = 5 × 1018m−3, 50eV , Parallel Model = Constant

Target (Mean of Plasma), Collisions = Classical, Sheath Potential Drop = 0, Ion

Temperature = 0. Streamlines of velocity shown in green (kms−1), plasma pressure

shown in red-yellow (pA).

There is a relatively small change the radial velocity as a result of the in-

creased sheath current strength, however, the disruption of the blob structure, and

the propagation distance are almost identical when compared to CTI (6.19).
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Const-Target Interchange with FPV=3.0
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Figure 6.12: Simulation Designation: aCTI-FP3 (6.28), Blob Size = 0.02m, Back-

ground = 1018m−3, 10eV , Blob Peak = 5 × 1018m−3, 50eV , Parallel Model =

Constant Target (Mean of Plasma), Collisions = Classical, Sheath Potential Drop

= 3.0Te

e
, Ion Temperature = 0. Streamlines of velocity shown in green (kms−1),

plasma pressure shown in red-yellow (pA).

For target quantities with spatial structure comparable to CTI-FP3 (6.22)

and the magnitude in SI-FP3 (6.21), the blob is destabilised at late times as it is in

CTI-FP3 (6.22), implying that the structure of the target quantities is a key factor

in the stability of blobs with vorticity affected by a sheath potential drop.
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Const-Target Interchange with Warm Ion Effects and FPV=3.0
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Figure 6.13: Simulation Designation: aCTI-FP3-FTI (6.29), Blob Size = 0.02m,

Background = 1018m−3, 10eV , Blob Peak = 5× 1018m−3, 50eV , Parallel Model =

Constant Target (Mean of Plasma), Collisions = Classical, Sheath Potential Drop

= 3.0Te

e
, Ion Temperature = Electron Temperature. Streamlines of velocity shown

in green (kms−1), plasma pressure shown in red-yellow (pA).

With sheath current magnitude comparable to SI-FP3 (6.21) and spatial

structure comparable to CTI-FP3 (6.22), stability is increased relative to aCTI-FP3

leading to an evolution more similar to SI-FP3. Whatever destabilising effect present

in CTI-FP3 (6.22) and aCTI-FP3 (6.28), perhaps due to sheath current structure,

is stabilised in both cases CTI-FP3-FTI (6.26) and aCTI-FP3-FTI (6.29) by finite

ion temperature effects.
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6.3.5 Standard Interchange with equivalent target values

It appears the spatial structure of the target quantities is a large factor in the

stability of the simulated blobs. We therefore additionally check the standard cases

(SI-FP3,SI-FP3-FTI), which appear to have a stabilising structure, in the case where

target values are equal to a fraction of the bulk plasma values, to approximate the

measured target values in MAST.

The fraction used was calculated at each timestep, so that the mean of the

divertor density was equal to the mean in the constant target cases. The velocity

fields created were substantially larger than the previous simulations, therefore the

simulation domain was doubled in size.
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Standard Interchange
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Figure 6.14: Simulation Designation: rtSI (6.30), Blob Size = 0.02m, Background =

1018m−3, 10eV , Blob Peak = 5×1018m−3, 50eV , Parallel Model = Flute, Collisions

= Classical, Sheath Potential Drop = 0, Ion Temperature = 0. Streamlines of

velocity shown in green (kms−1), plasma pressure shown in red-yellow (pA).

Similar to the counterparts SI (6.18) and CTI (6.19) in terms of propagation

distance, excepting that there is a dominant dipolar vorticity structure in this case.

This dipole splits into two separate blobs at late times.
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Standard Interchange with FPV=3.0
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Figure 6.15: Simulation Designation: rtSI-FP3 (6.31), Blob Size = 0.02m, Back-

ground = 1018m−3, 10eV , Blob Peak = 5 × 1018m−3, 50eV , Parallel Model =

Flute, Collisions = Classical, Sheath Potential Drop = 3.0Te

e
, Ion Temperature = 0.

Streamlines of velocity shown in green (kms−1), plasma pressure shown in red-yellow

(pA).

Compared to CTI-FP3 (6.22) and aCTI-FP3 (6.28), structure is far more

stable. The evolution is very similar to the case with no sheath potential drop

(6.30). It seems that a uniform structure sheath current can interfere with the

effects of the sheath potential drop, while even a weak sheath current with the flute

like structure of SI-FP3 (6.21) may not.
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Standard Interchange with Warm Ion Effects and FPV=3.0
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Figure 6.16: Simulation Designation: rtSI-FP3-FTI (6.32), Blob Size = 0.02m,

Background = 1018m−3, 10eV , Blob Peak = 5 × 1018m−3, 50eV , Parallel Model

= Flute, Collisions = Classical, Sheath Potential Drop = 3.0Te

e
, Ion Temperature

= Electron Temperature. Streamlines of velocity shown in green (kms−1), plasma

pressure shown in red-yellow (pA).

This blob is similarly stable compared to both CTI-FP3-FTI (6.26) and

aCTI-FP3-FTI (6.29), however, it has a larger spatial scale of the velocity field.

It appears that the finite ion temperature effects are acting to improve the blob

stability in all cases.
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6.4 Sheath model and floating potential effects on SOL

turbulence

Evidently, the differences between flute and const-target modelling of the parallel

current lead to differences in blob advection. Additionally, consideration of the

sheath potential drop leads to stabilised blobs with reduced radial advection that

may or may not retain stability depending upon the model chosen for the target

quantities. A SOL plasma simulation will therefore have power deposition charac-

teristics that depend on these modelling considerations. We simulate 5 long-term

SOL plasmas, using the MAST blob-source distributions and parameters in the in-

terest of exploring the differences between the models. The SOL simulations have

source and damping terms in the form of blobs picked from the distributions 6.1 and

sheath dissipation of density and temperature. The dissipation terms for density

and temperature always take the form n∇‖v‖ and T∇‖v‖, regardless of the parallel

model so that purely the effects of the vorticity model are considered. Tables of

parameters for the simulated plasmas are given in tables 6.1 and 6.2; characteristic

snapshots of each simulation are shown in figures 6.17 to 6.21.

lx 1.024m ly 0.256m
NX 512 NY 128
l‖ 15m σt 0.15m

Ant 7.3× 1017m-3 ATt 13eV
tsim 5× 104ω-1

0 ∆t 0.1ω-1
0

Table 6.1: Parameters used in the hTOKER SOL simulations. The values
lx, ly, NX,NY define the grid length and number of grid points in the x (radial)
and y (polodial) directions respectively. The parallel length l‖ was approximated
as a constant, while the target values of temperature and density approximated as
Gaussian functions centred about the LCFS, which itself is located at x = NX/2.
The values Ant and ATt are the amplitude of the Gaussian for target density and
target temperature respectively. The width of the Gaussian is given by the length
σt. Finally, with ω0 =

eB0

mi
, the parameter tsim gives the run time of the simulation

and ∆t the time step.
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Designation Parallel Model Λ Ti⊥
SOL-SI-PS Flute 0 0

SOL-SI-PS-FTI Flute 0 Te

SOL-SI-PS-FP3-FTI Flute 3.0Te

e
Te

SOL-CTI-PS-FTI Constant Target 0 Te

SOL-CTI-PS-FP3-FTI Constant Target 3.0Te

e
Te

Table 6.2: Simulations and designations. Flute model gives target quantities (tem-
perature and density) equal to bulk plasma quantities, while constant target model
has independent target quantities, given by measured target quantities on MAST.
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Figure 6.17: Snapshot of simulation SOL-SI-PS (6.33). Streamlines of velocity

shown in green (kms−1), plasma pressure shown in red-yellow (pA).
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Figure 6.18: Snapshot of simulation SOL-SI-PS-FTI (6.34). Streamlines of velocity

shown in green (kms−1), plasma pressure shown in red-yellow (pA).
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Figure 6.19: Snapshot of simulation SOL-SI-PS-FP3-FTI (6.36). Streamlines of

velocity shown in green (kms−1), plasma pressure shown in red-yellow (pA).
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Figure 6.20: Snapshot of simulation SOL-CTI-PS-FTI (6.35). Streamlines of veloc-

ity shown in green (kms−1), plasma pressure shown in red-yellow (pA).
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Figure 6.21: Snapshot of simulation SOL-CTI-PS-FP3-FTI (6.37). Streamlines of

velocity shown in green (kms−1), plasma pressure shown in red-yellow (pA).

6.4.1 SOL Widths

We may examine the effect of the parallel boundary conditions by looking at the

plasma density and temperature of the simulation, averaged over the polodial direc-

tion and the duration of the simulation. From 6.22 it is evident that the finite ion

temperature effects cause an increase in the radial transport, while the sheath poten-

tial drop causes a reduction in the radial transport. The constant target boundary

conditions were seen to destabilise single blob structures in section 6.3, and, it was

identified that the structure of the target quantities was more important than their

magnitude, for determining the stability properties of the blob advection, however

in all cases, finite ion temperature effects stabilised the blob. A single blob size was

chosen in these investigations, whereas a wide range of structure sizes are present in

the SOL simulations, and, the finite ion temperature stabilisation may be a function

of the blob size.

Simulation SOL-CTI-PS-FTI (6.35) shows a much larger SOL width (wsol)

than SOL-SI-PS-FTI (6.34), and, SOL-CTI-PS-FP3-FTI (6.37) shows very little

difference to SOL-CTI-PS-FTI (6.35), implying that the vortexes characteristic of

the sheath potential drop are not being formed, or that they do not have enough
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stability to affect wsol. Whereas the simulation SOL-SI-PS-FP3-FTI (6.36) shows

a decrease in wsol over SOL-SI-PS-FTI, indicative of reduction of radial transport

due to the sheath potential drop.

It is not obvious if the invariance of wsol, due to the suppression of sheath

potential drop effects on wsol between simulations SOL-CTI-PS-FTI (6.35) and SOL-

CTI-PS-FP3-FTI (6.37) is due to the magnitude or structure of the target quan-

tities. The spatial structure of SOL turbulence is not necessarily the same as it

is for individual blobs, hence, the observed invariance may be simply due to the

ideal interchange dominating over the sheath potential drop effects, as opposed to a

destabilisation of individual blobs due to the spatial structure of the sheath current.
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Figure 6.22: Averaged SOL profiles of density and temperature, showing the SOL

width wsol. Finite ion temperature effects increase wsol, while the sheath poten-

tial drop decreases wsol. SOL widths increase as target quantities are reduced as

expected, and, sheath potential drop has little effect in the transition SOL-CTI-PS-

FTI (6.35) to SOL-CTI-PS-FP3-FTI (6.37).
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6.4.2 Flux and Phase Distributions

Here we examine the differences between the energy-particle flux, ΓE , and the phase

difference between density and velocity estimated by the peak-phase method 4.2

when floating potential φf = φp − Λ is used to calculate the radial velocity instead

of the plasma potential φp.

For all simulated SOL plasmas, there are three quantities that do not change,

these are, an over-estimation of the radial flux as measured using floating potential

by a factor of approximately two, a phase difference θnv measured using floating po-

tential that peaks at approximately −30◦ and a real phase difference θnv that peaks

at approximately 0◦. These measurements of phase difference are approximately in

agreement with the predictions of chapter 4.
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Simulation SOL-SI-PS
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Figure 6.23: Simulation Designation: SOL-SI-PS (6.33), Parallel Model = Flute,

Sheath Potential Drop = 0, Ion Temperature = 0. Red lined distributions are

averaged over the near SOL (0m to 0.128m), blue lined distributions are averaged

over the far SOL (0.128m to 0.256m).
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Simulation SOL-SI-PS-FTI
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Figure 6.24: Simulation Designation: SOL-SI-PS-FTI (6.34), Parallel Model =

Flute, Sheath Potential Drop = 0, Ion Temperature = Electron Temperature. Red

lined distributions are averaged over the near SOL (0m to 0.128m), blue lined dis-

tributions are averaged over the far SOL (0.128m to 0.256m).
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Simulation SOL-SI-PS-FP3-FTI
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Figure 6.25: Simulation Designation: SOL-SI-PS-FP3-FTI (6.36), Parallel Model =

Flute, Sheath Potential Drop = 3.0Te

e
, Ion Temperature = Electron Temperature.

Red lined distributions are averaged over the near SOL (0m to 0.128m), blue lined

distributions are averaged over the far SOL (0.128m to 0.256m).
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Simulation SOL-CTI-PS-FTI
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Figure 6.26: Simulation Designation: SOL-CTI-PS-FTI (6.35), Parallel Model =

Constant Target, Sheath Potential Drop = 0, Ion Temperature = Electron Temper-

ature. Red lined distributions are averaged over the near SOL (0m to 0.128m), blue

lined distributions are averaged over the far SOL (0.128m to 0.256m).
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Simulation SOL-CTI-PS-FP3-FTI
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Figure 6.27: Simulation Designation: SOL-CTI-PS-FP3-FTI (6.37), Parallel Model

= Constant Target, Sheath Potential Drop = 3.0Te

e
, Ion Temperature = Electron

Temperature. Red lined distributions are averaged over the near SOL (0m to

0.128m), blue lined distributions are averaged over the far SOL (0.128m to 0.256m).

6.4.3 HAWK Simulations of edge θnv

As a comparison to SOL phase differences simulated by the hTOKER code, data

from the Hasegawa-Wakatani model HAWK Dewhurst et al. [2009], model equations

(2.84) and (2.85), where the reader is reminded that C = −∂ lnB
∂x

is the curvature
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parameter. is taken with the effect of curvature included and neglected, and, RMS

and peak phase distributions are then determined. The two measures of the phase

difference of density and velocity give quite different results, however, it is clear

that for the peak phase method, there is detected a very large swing toward zero

θnv activity when the effect of curvature is included. While the structure of the

θnv distribution is very different to the experimentally measured ones of 4.3, it

does demonstrate the increased and indeed dominant zero phase activity visible in

the peak phase results when curvature effects are included. Similar results are not

recovered in the RMS method, and although it is not clear what the reason for this

is, it could be due to the exclusive nature of the peak phase method, which weights

heavily any peaked activity, which, the RMS method does not.
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Figure 6.28: (left) Distribution of RMS phase in HAWK data with interchange term

on or off. Phase calculated in the polodial y direction, and binned for each timestep.

Distribution moved toward zero when curvature effects were included. (right) Peak

phase distribution of HAWK data with interchange term of or off. Phase calculated

from time series at a single point.

6.5 Summary

In this chapter we have used the hTOKER numerical model, derived in chapter 2,

to evaluate the effects of the sheath potential drop and finite ion temperature, on

the vorticity generated by both individual blobs, and by full SOL simulations. A

subgrid model is employed based on the parametrised eddy viscosity of [Smith and

Hammett, 1997], allowing the simulation to run at a grid spacing above the ion

Larmor radius (which it must in order to preserve the validity of the model), while

retaining a physical realisation of the turbulent cascade through the wavenumber
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associated with the grid spacing.

We examine the differences between the constant target (CT) and flute mode

(SI) boundary conditions (6.18) to (6.32). The CT conditions remove spatial struc-

ture and reduce the magnitude by a factor ∼ 10 of the sheath terms in the vorticity

equation, compared to the SI conditions. The CT conditions tend to destabilise in-

dividual blobs compared to the SI conditions, in the case of cold ions and an active

sheath potential drop. Warm ions in all cases are found to be stabilising to the blob

structure, and to produce a polodial velocity in the structure; these effects are also

observed in gyro-fluid simulations of blob interchange [Madsen et al., 2011]. Al-

though the most obvious effect of the CT conditions, since sheath currents generally

act to reduce vorticity to values set by the sheath potential drop, is to increase the

strength of the plasma interchange and associated turbulence, the destabilisation in

the CT case of blobs rotating with the sheath potential drop is found to be primarily

due to the spatial structure of the sheath term.

SOL simulations (6.33) to (6.37) show that the stabilising effect of finite ion

temperature effects leads to an increase SOL width in the SI case, and the sheath

potential drop leads to a reduction of SOL width in the SI case. In the CT case,

SOL widths are significantly larger, and, no change in SOL width is observed due

to the sheath potential drop. We find that measurements of the radial flux using

floating potential measurements tends to overestimate the values by a factor of ∼ 2

for the simulated cases. Phase differences between density and radial velocity are

evaluated in each case and found to peak strongly at 0◦, while in the case of a

radial velocity approximated by the floating potential, the peak is found at ∼ −30◦;

these phase measurements agrees with the results of chapter 3. Since the effort of

chapter 3 was to differentiate between drift and interchange activity in the analysed

datasets, we provide measurements using the standard RMS phase method 4.6 and

the peak phase method 4.8 for the HAWK code [Dewhurst et al., 2009]. We find that

without curvature terms, the phase difference peaks very broadly at 50◦. The sign

has been reversed since the flow is in the electron diamagnetic direction in the code,

but it is in the ion diamagnetic direction in the analysed MAST data of chapter 3.

However, when activating the interchange effects in the HAWK code, results for the

peak phase are extremely strongly peaked at 0◦, which is again in agreement with

the results of chapter 3.
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Chapter 7

Conclusions

Determining the causes of wear to plasma facing devices during tokamak plasma

discharges is a key physics challenge for understanding, and optimising, the perfor-

mance of future devices [Loarte et al., 2007]. Any plasma impinging on the material

surfaces of a tokamak must first travel through the scrape off layer, and, there

is a considerable body of evidence to support the idea that coherent filaments of

plasma, with density and temperature considerably larger than their surroundings

in the plane perpendicular to the magnetic field and elongated along the magnetic

field, are responsible for the bulk of the wear [D’Ippolito et al., 2011]. This wear

occurs in two distinct dimensions, firstly, dissipative flows along the to the material

surfaces known as ”divertors” or ”limiters” (or often, ”target plate”) along filament

axis, and secondly, advective flows of the filament structure away from the core

plasma toward the material surface known as the ”first wall”. The advective trans-

port toward the first wall in the plane perpendicular to the magnetic field is often

refereed to a ”blob” transport, and, the advective properties of these structures has

a direct impact on the fluxes that cause wear to the material surfaces; this thesis is

concerned with these advective properties.

7.1 Results

Linear theory of plasma interchange and drift waves give distinct predictions for the

phase difference between density and radial velocity fluctuations, which if measur-

able, offers an ideal measure to discriminate between the active physics at play. The

use of such measurements of this phase are complicated by violations of the local ap-

proximation used in the linear theory and further obscured when using the typically

available floating potential diagnostic to determine the plasma velocity. In chapter
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3 we tackle these issues by quantifying the effects using simple predictive modelling,

and, developing peak detection methodology that makes best use of the predictive

models and the available data from the MAST tokamak. Ideal interchange activity

is detected in the SOL in two cases, one of which appears with the a predicted shift

due to floating potential measurements, while another appears to have no shift at

all. Interchange activity is also strongly indicated in the edge region. Examining in-

ward velocity pulses reveals a phase structure that is characteristic of sheath limited

blob advection mechanisms.

Blob advection mechanisms give differing predictions for the radial velocity

based on the parameters of the blob. We take advantage of the parametric differences

in plasma density of the advective models of chapter 2. For two plasma discharges

with differing density, we determine the statistical change in the blob velocity relative

to the blob density, using the peak detection method developed in chapter 3 which is

most appropriate for comparing the blob models to the data. Results give the scaling

index α as a function of the radial direction. The index appears in terms of the

advective models as v = nα from which each model takes a distinct value of α, and,

the results give α corresponding to different models depending on the radial distance.

In particular, the sheath limited model with constant target density developed in

chapter 2, giving α = 1 is found in the scaling results for radii in the SOL very near

the LCFS. MAST plasmas are simulated in chapter 5 using the TOKER equations

that treat the constant target density case for a variety of plasma powers, in order

to investigate the effect of measuring the α index with the pin separation of the

probe used on MAST. Values of α are found to differ very weakly between the ideal

pin separation and the one used on MAST. For the range of simulations the α index

is found to strongly depend on the input plasma power, however, the experimental

scaling result is reproduced for some parameters. These results are published in

[Higgins et al., 2012].

The hTOKER model developed in chapter 2 is numerically implemented in

chapter 6. Unlike the isothermal counterpart TOKER, dissipation scales are gener-

ally smaller than the ion Larmor radius. Electric field and gyro-centre density are

assumed to be the same concept for both electrons and ions in the two-fluid theory

developed in chapter 2, which is only valid when collisional dissipation occurs at

scales larger than the ion Larmor radius. This problem is tackled by employing a

subgrid model that terminates the simulated fluctuations at a scale larger than the

ion Larmor radius, while retaining a spectral characteristic identical to the fully re-

solved counterpart. The spectral index for the dissipation, as well as the basis for the

model, is taken from the investigation [Smith and Hammett, 1997] which addresses
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finite Larmor radius drift-wave turbulence, which we find to be sufficient to stabilise

simulations run with grid spacing of the order of the ion Larmor radius. Effects

of neoclassical diffusion, sheath potential drop and finite ion temperature effects,

and, their interactions with the constant target plasma model are investigated. It

is found that the constant target plasma boundary condition may destabilise blobs

that are otherwise stable under flute mode boundary conditions, and, that the desta-

bilisation occurs as a result of the change in structure of the target quantities as

opposed to the change in magnitude. However, finite ion temperature effects are

able to stabilise these blobs in all of the investigated cases. Long term simulations of

SOL plasmas are performed for a range of the same effects, and, we take advantage

of the evolved electron temperature to study the effect of measuring the plasma

fluxes and the phase difference of density and velocity using the floating potential

(which, is affected by electron temperature as well as plasma potential). Fluxes are

found to be overestimated by floating potential measurements by a factor of two in

the simulated plasmas. Phase differences are found to vary only slightly between

models, and, for floating potential derived phases to give a peak at approximately

−40◦, while the real phase peaks at approximately 0◦. Phase measurements are

additionally made using the HAWK model [Dewhurst et al., 2009] with interchange

enabled/disabled, and, with enabled interchange terms the phase is found to peak

strongly at 0◦, indicative of strong interchange activity.
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B. van Milligen, C. Riccardi, G. Chiodini, J. Bleuel, M. Endler, B. A. Carreras,

and D. E. Newman. Statistical characterization of fluctuation wave forms in the

boundary region of fusion and nonfusion plasmas. Physics of Plasmas, 7(5):1408–

1416, 2000. doi: 10.1063/1.873958.

Y. Sarazin and Ph. Ghendrih. Intermittent particle transport in two-

dimensional edge turbulence. Physics of Plasmas, 5(12):4214–4228, 1998. doi:

10.1063/1.873157.

143



S. A. Smith and G. W. Hammett. Eddy viscosity and hyperviscosity in spectral

simulations of 2d drift wave turbulence. Physics of Plasmas, 4(4):978–990, 1997.

doi: 10.1063/1.872210.

Satoru Sugita, Masatoshi Yagi, Sanae-I. Itoh, and Kimitaka Itoh. Bohm-like depen-

dence of transport in scrape-off layer plasmas. J. Phys. Soc. Japan, 81(4):044501,

2012. doi: 10.1143/JPSJ.81.044501.

P Tamain, A Kirk, E Nardon, B Dudson, B Hnat, and the MAST team. Edge

turbulence and flows in the presence of resonant magnetic perturbations on mast.

Plasma Physics and Controlled Fusion, 52(7):075017, 2010. doi: 10.1088/0741-

3335/52/7/075017.

D. Tskhakaya, F. Subba, X. Bonnin, D. P. Coster, W. Fundamenski, R. A.

Pitts, and JET EFDA Contributors. On kinetic effects during parallel trans-

port in the sol. Contributions to Plasma Physics, 48(1-3):89–93, 2008. doi:

10.1002/ctpp.200810015.

Y. Uesugi, K. Hoshino, T. Yamamoto, H. Kawashima, S. Kasai, T. Kawakami,

M. Maeno, T. Matoba, T. Matsuda, H. Matsumoto, Y. Miura, M. Mori, K. Oda-

jima, H. Ogawa, T. Ogawa, K. Ota, H. Ohtsuka, S. Sengoku, T. Shoji, N. Suzuki,

H. Tamai, S. Yamamoto, T. Yamauchi, and I. Yanagisawa. Control of plasma

current during lower hybrid current drive in the jft-2m tokamak. Nuclear Fusion,

25(11):1611, 1985. doi: 10.1088/0029-5515/25/11/008.

M. J. Walsh, E. R. Arends, P. G. Carolan, M. R. Dunstan, M. J. Forrest, S. K.

Nielsen, and R. O’Gorman. Combined visible and infrared thomson scattering

on the mast experiment. Review of Scientific Instruments, 74(3):1663, 2003. doi:

10.1063/1.1537882.

J. Weiland. Collective Modes in Inhomogeneous Plasma: Kinetic and Advanced

Fluid Theory. Plasma Physics Series. Inst. of Physics Publ., 2000. ISBN

9780750305891.

J Wesson. Tokamaks. Oxford University Press,New York, NY, 1987.

G.S. Xu, V. Naulin, W. Fundamenski, C. Hidalgo, J.A. Alonso, C. Silva, B. Go-

nalves, A.H. Nielsen, J. Juul Rasmussen, S.I. Krasheninnikov, B.N. Wan,

M. Stamp, and JET EFDA Contributors. Blob/hole formation and zonal-flow

generation in the edge plasma of the jet tokamak. Nuclear Fusion, 49(9):092002,

2009. doi: 10.1088/0029-5515/49/9/092002.

144



G. Q. Yu, S. I. Krasheninnikov, and P. N. Guzdar. Two-dimensional modelling of

blob dynamics in tokamak edge plasmas. Phys. Plasmas, 13(4):042508, 2006. doi:

10.1063/1.2193087.

145


	coverhiggins.pdf
	University of Warwick institutional repository: http://go.warwick.ac.uk/wrap


