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Abstract

Background: Salt reduction and universal salt iodisation programmes are

implemented worldwide to prevent cardiovascular disease and iodine deficiency

disorders, respectively. Concerns have been raised regarding the potential policy

conflicts, and a programme coalition is proposed by the World Health Organization

to optimise salt and iodine intakes at population level. This study aimed 1) to

estimate population salt intake and iodine status in index countries; 2) to investigate

the association between salt and iodine intakes; 3) to assess the impact of salt intake

modification on iodine status; 4) to estimate the determinants of and potential

geographical variation in salt and iodine intakes where data are available; and 5) to

provide suggestions to policy makers.

Data and Methods: In the ecological analysis, national estimations of salt and

iodine intakes were extracted from international organisation databases and

published papers. Three case studies used population level data obtained from the

Kumasi Salt Reduction Study in Ghana, the Third United States National Health and

Nutrition Examination Survey (NHANES III) and the 2000-01 UK National Diet and

Nutrition Survey 19-64 years (NDNS). Linear regression was used in the Kumasi

analysis, and Bayesian geo-additive models were used in the other two analyses by

accounting for the spatial effect and important linear and nonlinear risk factors.

Results: Salt intake varied between countries, with Kumasi lower than the western

countries. Iodine status also varied by country, but with no consistent association

with salt intake. A moderate salt reduction programme is unlikely to have a major



xx

impact on iodine status in countries committed to universal salt iodisation, provided

that iodine concentration is titrated to actual salt intake, maximum coverage is

achieved as in China and iodised salt becomes part of food processing. At least in

Britain, high salt intake is associated with low socioeconomic status, irrespective of

geographic location.

Conclusions: Policy-makers may therefore need to adjust iodine content in salt in

accordance with each country’s context. The Bayesian geo-additive models are

useful for monitoring and evaluating salt reduction and iodine supplementation.



1

Chapter 1 Introduction and Objectives

1.1 Introduction

Salt is commonly consumed worldwide. The biological need for salt is about 1.2 g

per day (equivalent to 500 mg sodium per day). However, almost everyone eats more

salt than needed (1). High level of salt intake is associated with raised BP, or

hypertension (2-6), which is a major risk factor of non-communicable diseases, such

as heart disease, stroke, and kidney disease. In particular, about 62% and 49% of

stroke and coronary heart disease (CHD) deaths are attributable to raised BP (4).

Hypertension is the leading cause of mortality and health burden worldwide (7;8). It

is estimated that one in four adults will be hypertensive by 2025 (9). Globally, an

estimated 7 million deaths are attributable to hypertension every year (10). In

addition, high salt intake is associated with increasing risk of cardiovascular disease

(CVD) (11-13). A higher daily salt intake by 5 grams (g) in populations is associated

with a significant 17% increase in CVD risk (14).

Therefore, reducing salt intake in the general population has become the primary

strategy for the prevention of hypertension and CVD. The World Health

Organization (WHO) recommends a daily salt intake of less than 5 g per day (g/day)

in the general population (4). Different targets are set for different countries (15). For

example, Singapore aims to reduce population salt intake to 5 g/day, France and

Switzerland set target at 8 g/day, and in Belgium and Argentina, 6 g/day of salt

intake is recommended. Although the United States recommended a salt intake of
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5.75 g/day, the American Heart Association (AHA) suggests a greater reduction to

3.8 g/day (16).

Salt is also used as a major vehicle for the fortification of iodine. Iodine is an

essential trace element for brain development. Iodine deficiency is the single most

common cause of preventable cognitive impairment worldwide. There are nearly 2

billion people from 148 countries at risk of iodine deficiency, including 241 million

school-aged children (17). Insufficient iodine intake causes a wide range of serious

consequences including endemic goitre, hypothyroidism, cretinism and congenital

anomalies, known as iodine deficiency disorders (IDD).

Increasing iodine intake can effectively prevent the risk of IDD in the general

population. Salt is the most cost-effective vehicle of the available iodine fortification

options (18). It only costs a person US$0.02-0.09 a year to obtain sufficient iodine

(19). Universal salt iodisation (USI) has been adopted by many WHO Member

States and 71% of the world’s population is now covered by iodised salt (20). The

USI programme requires all food-grade salt to be adequately iodised (≥15 parts per 

million, or ppm). The median urinary iodine concentration (UIC) of the general

population in the range of 100-199 micrograms per litre (µg/L) is considered to be

the optimal iodine status. Thus the WHO recommends an iodine level of 20-40 ppm

in salt at production stage to provide 150 micrograms per day (µg/day) of iodine in

the diet (21;22). This recommendation is made upon the assumptions of an average

salt intake of 10 g/day in adults and 40% loss of iodine during production,

transportation and cooking. Since the establishment of the programme worldwide,

the household coverage of iodised salt (HCIS) has increased more than 3 fold in 10

years (23) and billions of people are now protected against the risk of IDD.
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However, salt reduction and salt iodisation programmes may conflict with each other.

On the one hand, salt reduction benefits the prevention of hypertension and CVD but

may jeopardise the iodine supplementation in the general population due to the

potential restriction on the availability of iodine. On the other hand, it is possible for

people to increase iodine intake by increasing salt intake. Thus any salt reduction

programme could be compromised. Concerns regarding the conflicts between two

health programmes have been raised recently (24;25) and there are suggestions for

the coordination of programmes (25-27) by policy adaptation to avoid conflicts and

confusions and to keep the sustainability of the programmes to improve the public

health.

Gaps of knowledge in the programme coalition have been identified (25;26). The

recommendation that current iodine fortification level needs to be reviewed and

possibly adjusted is given to all health authorities and policy-makers. However, the

existing scientific evidence is not sufficient to answer how much the impact of salt

intake modification is, although some studies have demonstrated that reduction in

salt intake to some extent can affect the population iodine status (28;29).

In addition, the assumption of 10 g/day salt intake in adults may not be tenable due

to the variation of salt intake. Salt intake varies considerably across populations and

geographical locations worldwide (21;22). Elliot and colleagues (30) reported an

obvious heterogeneity of salt intake in the world: <0.1-12 g/day in 52 populations

from 32 countries. Different levels of salt intake were observed even in different

regions within the same country (30).
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Furthermore, individuals and households usually obtain foods and salt from the

stores and markets around them. They who live close to each other tend to have high

similarity in dietary habit. These geographical characteristics could be summarised

as a geographical network of salt intake. The network, as well as other factors, may

lead to a within-country spatial variation of the salt and iodine intakes. Therefore,

investigation into the possible variation of salt intake may help policy-makers to

adapt their health strategies in the programme coalition.

What is more, the monitoring on both iodine status and salt reduction needs to be

enhanced and regulations should be carried out strictly in the coalition. For instance,

the non-iodised black market salt in some areas reduces coverage of adequately

iodised salt, increasing the geographical disparity of the iodine consumption and

further devitalising the effectiveness of the USI programme. Therefore more efforts

into the monitoring of the current salt iodisation strategy are needed.

This study is expected to assist policy-makers in the coordination of salt reduction

and salt iodisation programmes and help all stakeholders bridge the knowledge gap

of optimising the population iodine and salt intakes. Accordingly, policy-makers can

adjust their health intervention strategies, if necessary, to improve the coordination

and effectiveness of two health programmes in order to protect the general

population against risks of IDD and CVD.

As iodine and salt intakes are largely determined by dietary habit, it is reasonable to

consider the effects of some known socioeconomic, lifestyle and demographic risk

factors. However, some unobserved risk factors may also be associated with iodine

status and salt intake. As there is no evidence to identify these risk factors, their
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effects are hidden and only reflected in residual variance. Moreover, these

unobserved factors may be geographically correlated (i.e. spatially dependent).

Neglecting the potential spatial dependence may result in biased estimation and

misleading conclusions. The effect of geographical location can be regarded as a

surrogate of these factors. Therefore, it should be investigated in order to account for

the hidden effects.

The effects of geographical location and several socioeconomic and demographic

risk factors will be modelled in a Bayesian geo-additive models framework where

data allow. Compared to the conventional regression models, this recently developed

class of models is more flexible in estimating spatial effect as well as accounting for

both linear and nonlinear effects.

1.2 Definitions

This thesis refers to salt as sodium chloride (1 g sodium chloride=17.1 millimolar

(mmol) sodium or 393.4 milligrams (mg) of sodium) (4;30).

In addition, this thesis refers to iodine intake as mass amount of iodine. The unit is

microgram (µg).

1.3 Objectives

The objectives of this study are
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1) to estimate population salt intake and iodine status in three different countries and

use the estimations to examine the validity of the assumed average population salt

intake;

2) to investigate the association between salt and iodine intakes in different countries

and compare the associations in countries with different settings and policies on salt

reduction and salt iodisation;

3) to assess the impact of salt intake modification on iodine status under different

circumstances of salt reduction and salt iodisation policies;

4) to estimate the determinants of and potential geographical variation in salt and

iodine intakes where data are available; and

5) to provide suggestions to stakeholders, particularly policy-makers, to help the

programme coordination of salt reduction and iodine supplementation in each

country and improve WHO policy adaptation.

1.3.1 Outline of Thesis

This thesis is arranged in the following structure: Chapter 2 provides a literature

review of elimination of iodine deficiency and salt reduction in the world. Chapter 3

further discusses the reliability and accuracy of nutrient intake measurements,

through reviews that compare population salt and iodine intakes estimated by 24-

hour urine collection and spot urine sample methods. Salt intakes estimated by two

popular spot urine methods and 24-hour urine collection were compared to examine

the reliability and reproducibility of the spot urine methods. Chapter 4 explains the
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Bayesian geo-additive models in details. Chapter 5 has four sections. The first

section presents the results of an ecological correlation analysis of salt intake and

iodine status worldwide. The following three sections present results of the analyses

based on one population data and two population-wide surveys: the Kumasi Salt

Reduction Study, the Third United States National Health and Nutrition Examination

Survey (NHANES III) and the 2000-01 UK National Diet and Nutrition Survey 19-

64 years (NDNS). The survey data from the US and the UK are nationally

representative while the Kumasi study is a regional sample (Ashanti Region) of

Ghanaian population. Results of the Kumasi and the US analyses are used to answer

the questions of interest as both countries have implemented salt iodisation

programmes, although salt iodisation in the US is on a voluntary basis. The UK data

is used as a reference to illustrate the effect of iodine supplementation through other

dietary vehicles. This may encourage governments and international organisations to

invest more scientific and political efforts in integrating different iodine fortification

approaches to optimise both salt reduction and USI programmes. Chapter 6

discusses the association between iodine intake and salt intake on the basis of results

obtained in Chapter 5, estimates the impact of salt reduction on current iodine

fortification worldwide and gives an overall discussion on other major findings of

this study. Suggestions are expected to be derived from these findings for the current

WHO iodine supplementation and salt reduction policies to improve the coalition of

the salt reduction and USI programmes and reduce the health threat imposed by

iodine deficiency disorders and the diseases associated with high salt intake. This

thesis then ends with brief conclusions in Chapter 7.
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1.4 Summary of Chapter 1

Chapter 1 briefly introduces the background and motivations of this study. This

thesis aims to provide evidence and support to the optimisation of population iodine

and salt intakes by assessing salt intake and iodine status in different populations,

estimating their determinants, investigating their association, and evaluating the

effect of salt intake modification on iodine status. The structure of this thesis was

also illustrated in this chapter.
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Chapter 2 Literature Review

2.1 Salt Intake: An Introduction

Dietary salt is commonly consumed in almost every household throughout the year.

It contains approximately 40% sodium and 60% chloride. That is, 1 g salt≈400 mg or 

17.1 mmol sodium. Our body’s physiological need for sodium is 0.6-1.2 g/day salt

(equivalent to 10-20 mmol/day or 240-480 mg/day sodium). Most people eat salt

well above the physiological need and the average daily consumption of salt varies

hugely from location to location (e.g. 9-12 g/day in the UK, 7.5-12 g/day in the US,

15 g/day in Tianjin, China (30)), with some exceptions (e.g. <0.1 g/day in the

Yanomamo Indians in Brazil (30)).

Different sources of salt are available in our daily diet. In many industrialised

countries, processed foods are the major salt contributor. For example, in the United

States, 77% of the consumed salt is hidden in processed and restaurant foods while

only 11% is added in cooking and on the table (Figure 2.1) (31). However, in other

countries, the major contributor of salt is cooking salt and seasonings (4). In China

and Brazil, at least 70% of dietary salt is added in home cooking or at the table

(30;32;33). In Japan, the largest salt contributor is soy source (20% of total salt

intake) (32).
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Figure 2.1 Salt sources in the United States

Note: Percentages were quoted from Mattes and Donnelly (31).

2.2 Salt, Blood Pressure, and Cardiovascular Disease

Sodium is essential to cell function and the maintenance of fluid and electrolyte

balance in the body. However, high level of sodium consumption contributes to

raised BP, defined as systolic/diastolic blood pressure (SBP/DBP) ≥140/90 

millimetres of mercury (mmHg). Increased level of sodium causes the body to retain

water. This imposes more pressure on the blood vessel walls, which constricts

increasing pressure and flow, leaving the vessel smaller and at the same time

compressing the space for blood. A direct consequence is the elevation of arterial BP.

Salt and blood pressure

The scientific evidence that supports the association between salt intake and BP is

compelling. A wide range of scientific studies provide conclusive evidence of the

association between levels of sodium consumption and levels of BP (11-13;34),

including animal studies, randomised clinical trials, and population studies.
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Animal studies

Animal studies suggested that high salt intake is a causal factor of raised BP in

humans. Denton et al. (35) examined the effect of salt on BP in chimpanzees

(sharing 99% of DNA with human beings) for three years. Twenty six chimpanzees

were included in the study. Half of them were randomly allocated into an

experimental group with a high salt diet. The control and experimental groups were

age and sex matched. The salt intake in the experimental group was increased to 5,

10 and 15 g/day progressively in 20 months, while the control group maintained the

normal diet with an average salt intake of 0.6 g/day. Consequently, significant

increases in SBP and DBP were observed in the experimental group but not in the

control group.

Elliot et al. (36) further investigated the impacts of more modest modifications of

salt intake on BP in two colonies of chimpanzees. In the Gabon colony, 17 chimps

were given a diet with changed salt intake from 4.4 g/day to 2 g/day and then to 7

g/day (equivalent to 75, 35 and 120 mmol/day of sodium intake) for 3 years. In the

Bastrop colony, 110 chimps were randomly allocated into two groups: 50 in an

intervention group and 60 in a control group. Both groups were given a standard diet

with a salt intake of 14.6 g/day (250 mmol/day of sodium) for 2 years. In the

following 2 years the intervention group was given a diet with halved salt intake,

while the control group maintained the standard diet. The results appeared to be

different in the two colonies. In Gabon, changes of salt intake were significantly

associated with changes in SBP and DBP, with or without adjustment for age, sex,

and baseline weight. A reduction in salt intake by 6 g/day (100 mmol/day in sodium)
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was significantly associated with a reduction of 12.7/7.5 mmHg in SBP/DBP. In

Bastrop, both groups experienced reduced BP. The group differences of reductions

in BP were significant without age, sex and weight adjustment. However, after

taking into account the effect of age, sex and weight, the differences became non-

significant.

Clinical trials

More than 50 clinical trials have been conducted on the role of salt reduction in

reducing BP. One large trial was the DASH (Dietary Approaches to Stop

Hypertension) Sodium trial. It was a multicentre randomised clinical trial conducted

in 412 US participants. They were randomly allocated to either a DASH diet or a

control diet. The DASH diet was rich in fruits, vegetables, and low-fat dairy foods.

The control diet contained the typical foods that were commonly consumed in the

US population. During the trial, high, intermediate and low levels of sodium intake

(142, 107 and 65 mmol/day, or approximately 8.3, 6.3 and 3.8 g/day of salt intake,

respectively) were randomly assigned to participants in both diets (37). Each lasted

30 days. A sodium reduction from high to low level in the control diet was

associated with a reduction in BP by 8.3/4.4 mmHg in hypertensives and 5.6/2.8

mmHg in normotensives. Furthermore, the reduction was increased to 11.5/5.7

mmHg in SBP/DBP in hypertensives and 7.1/3.7 mmHg in normotensives with the

combination of the DASH diet (38). This association was consistent across all ethnic

and age groups and in both genders (39). However, the question remains regarding

the contribution of other dietary nutrients to the decrease in BP. The findings might

also be only applicable in the US adult population.
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Meta-analyses of randomised clinical trials further suggested the effect of salt

reduction on lowering BP (40-43). He and MacGregor (2) evaluated the effect of a

modest salt reduction on BP in their recent review of 28 randomised controlled trials,

which includes 11 trials in normotensives (n=2,220 subjects) and 17 in hypertensives

(n=734). A dose-dependent relationship was identified, suggesting that a reduction in

daily sodium intake of 100 mmol (approximately 6 g of salt) results in a significant

drop of 7.1/3.9 mmHg in SBP/DBP. Cutler, Follmann and Allender (5) conducted a

similar investigation of the effect of moderate salt reduction in 2,635 subjects from

32 trials with salt reduction duration from 2 weeks to 36 months. A dose dependency

was also found between sodium intake and BP. A reduction of 100 mmol in sodium

intake significantly lowers BP by 5.8/2.5 and 2.3/1.4 mmHg in SBP/DBP in

hypertensive and normotensive subjects, respectively. Graudal et al. (44) tested the

association of short-term salt reduction on BP in 2,161 hypertensive participants

from 58 trials and in 2,581 normotensive participants from 56 trials. The salt

reduction duration was 28 and 8 days for hyper- and normo-tensives, respectively. In

the hypertensives, an unweighted reduction in sodium intake by 129 mmol/day

(approximately 7.5 g/day in salt) was associated with a decrease in SBP/DBP by

4.5/2.3 mmHg. In the normotensives, an unweighted reduction in sodium intake by

165 mmol/day (approximately 9.6 g/day in salt) corresponded to a fall in SBP/DBP

by 1.6/0.4 mmHg. However, the effect of short-term large salt reduction may not be

sufficient to imply the benefit of long-term gradual salt reduction to the public health.

Graudal et al. in their updated meta-analysis of 167 studies suggested an inconsistent

effect of salt reduction between hypertensive and normotensive participants across

ethnic groups (45). The average salt reduction was approximately 7.3 g/day in the
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hypertensives for 28 days and 8.8 g/day in the normotensives for 7 days. The

reductions were associated with a significant fall in SBP/DBP in the white, black and

Asian hypertensives, but the changes of BP of the black and Asian normotensives

were not consistent. The findings arguably suggested that the short-term reduction in

salt intake might have deleterious effects on health. However, the analysis was

widely criticised for the small number of studies in the blacks and Asians and the

large salt reduction in a short duration (46).

In contrast, the findings of the trials of hypertension prevention phase I (TOHP I)

and phase II (TOHP II) supported the long term effect of salt reduction on BP.

Respectively, 744 and 2,382 normotensive participants aged 30-54 were randomised

to a low salt intake group or a control group. TOHP I lasted 18 months and TOHP II

lasted 36 to 48 months. In TOHP I, a reduction of sodium intake by 44 mmol/day

(approximately 2.6 g salt per day) was associated with a significant fall of 1.7/0.9

mmHg in SBP/DBP (47). In TOHP II, sodium intake was reduced by 50 and 40

mmo/day (approximately 2.9 and 2.3 g salt per day, respectively) at 6 and 36 months,

respectively (48). Correspondently, BP was lowered by 2.9/1.6 and 1.2/0.7 mmHg at

6 and 3 months, respectively. The studies also suggested that a diet with higher

potassium and lower sodium intake would be more effective in reducing BP.

He and MacGregor (49) conducted another meta-analysis in the children and

adolescents population by including 10 trials with 966 subjects aged 8-16 years. A

pooled analysis of 9 trials with urinary sodium measurement (biomarker of sodium

consumption) indicated that a median of 42% reduction in salt intake significantly
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reduces SBP/DBP by 1.2/1.3 mmHg. In the same study, a median of 54% reduction

in salt intake in infants contributes to a 2.5 mmHg drop in SBP.

Finally, a recent systematic review and multiple meta-analyses of all randomised

clinical trials of moderate salt reduction in adults and children has unequivocally

confirmed the consistent, significant and dose-dependent beneficial effects on BP

without evidence of harm in relation to cardiovascular biomarkers (43)

Population studies

Population based studies suggest positive associations between salt intake and BP.

The INTERSALT study was conducted using data collected from 10,079 subjects

aged 20-59 years coming from 52 populations around the world (50). The within-

and cross-centre associations between salt intake (measured by 24-hour urinary

sodium excretion) and BP were both examined. The within-centre association was

significant and positive, while the cross-centre association appeared to be non-

significant after excluding 4 populations with low sodium intakes.

In a revisit analysis of the INTERSALT study, Elliot and co-workers (6) suggested

that an increase of 100 mmol/day urinary sodium excretion (approximately 6 g of

salt per day) was associated with a median of 5-7/2-4 mmHg higher SBP/DBP, with

greater association in older populations.

Another study conducted in two matched villages (intervention and control) in

Portugal further suggested the effect of salt reduction on population BP (51). Both

villages had about 800 adult residents and the mean salt intake was around 21 g/day

(360 mmol sodium per day) before the intervention. The intervention village had half
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the level of salt intake than the control group during the two years of the study. Mean

BP in the intervention village fell significantly by 3.6/5.0 mmHg after one year and

by 5.0/5.1 mmHg after two years, while in the control village DBP remained

unchanged and SBP increased.

Takahashi and co-workers (52) assessed the effect of salt reduction on BP in a study

in north-eastern Japan. The study was carried out to compare the BP between two

villages (n=550, aged 40-69 years) after a one-year dietary education programme in

the intervention village. The intervention village achieved a reduction of 15

mmol/day in sodium intake after the education. Meanwhile the control village had 11

mmol/day higher sodium intake. Correspondingly, SBP was significantly reduced by

2.7 mmHg in the intervention village, and remained at the same level in the control

village. Another study in the Ashanti region of Ghana, also achieved a similar

conclusion by means of a 6-month health education programme (53).

Salt and cardiovascular disease

Hypertension is the leading global risk factor of mortality and burden of disease (8),

accounting for more than 7 million deaths every year (10). Prolonged raised BP

causes damage to heart, brain, kidney and other organs, giving rise to increased risk

of chronic diseases, such as CVD, stroke, and kidney stones, at population level. It is

suggested that suboptimal BP (SBP >115 mmHg) contributes to 62% of stroke and

49% of CHD worldwide (54). A high level of salt intake is associated with increased

risk of chronic diseases (4). Strazzullo et al. (14) included 17 studies with 19 cohort

samples (n=177,836, aged 25-79 years) in a systematic review. High salt intake was

significantly related to an increased risk of stroke. A revised pooled estimate implied
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that the risk of CVD is more likely to be higher in populations with a high salt intake

(relative risk: 1.17 with 95% confidence intervals: (1.02, 1.34), p=0.02). Evidence

from cohort studies is however considered a lower quality evidence due to several

methodological issues, like risk of reverse causality, systematic error in the

assessment of sodium intake with current methods, residual confounding, loss to

follow up, high random error in sodium intake and inadequate statistical power (43).

Therefore, their findings should be carefully reviewed when guiding policy.

Reducing salt intake lowers BP, reduces risk of CVD and eventually alleviates the

health burden in the world. Cook et al. (13) examined the association between long-

term salt reduction and risk of CVD using TOHP 10-15 years follow-up data

obtained from more than 2,000 participants. The participants with reduced sodium

intake had up to 30% lower risk of CVD than those in the control group. It is

estimated that a population-wide reduction of 3 g/day in salt intake would lead to a

drop of 2.5/1.4 mmHg in SBP/DBP, in which could lead to a fall of 12-14% in stroke

and 9-10% in CHD (55). Accordingly, in the United Kingdom (UK), for example,

6,500-8,000 stroke deaths and 7,500-12,000 CHD deaths could be prevented

annually, based on the total number of 43,539 deaths in stroke and 74,185 deaths in

CHD every year (15;56).

Nationwide campaigns of salt reduction have achieved great success in terms of

lowering BP and reducing CVD risk. In 1957 in Japan, stroke mortality was among

the highest in the world (57). A national salt reduction campaign led by the Japanese

government was implemented in the 1950s. Population salt intake was reduced 1.4

g/day (from 13.5 to 12.1 g/day) on average in 10 years (58). The northern regions
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achieved a larger reduction (4 g/day). During the same period, BP levels in the

population were also lowered and the stroke mortality fell by 80% (58). In Finland,

the SBP/DBP level of the general population was successfully lowered by more than

10 mmHg through a one-third reduction in salt intake from the 1970s, leading to a

fall of 75% to 80% in both stroke and CHD mortality and an increase in life

expectancy of 5-6 years (59).

2.3 Salt Reduction in the World

The WHO recommends that the average population salt intake be <5 g/day (4). The

High Level Meeting of the General Assembly on the Prevention and Control of Non-

communicable Diseases in 2011 endorsed the implementation of salt reduction in

foods to treat and prevent non-communicable diseases (60). In the 65th World

Health Assembly (WHA) in 2012 all WHO Member States continued to support the

adoption of the WHO recommendation of salt reduction, setting a target of a 30%

reduction in salt intake by 2025 as a contribution of the overall target of a 25%

reduction in NCD by 2025 (“25 by 25”) (61). Cappuccio and colleagues (62)

reported that 41 countries worldwide had established initiatives for salt reduction,

with the majority in Europe (66%) and the rest in the Americas (17%) and the West

Pacific region (17%).

In Europe, a framework for national salt initiatives was developed in 2008, which

was endorsed by many member states. By 2012, 11 countries had a target of a

reduction at least 16% in salt intake in 4 years compared to the 2008 levels (63).

Actions will be taken to reduce salt content in at least 5 of 12 food categories.
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Particularly, more efforts have been made on salt reduction in the UK. In 2003, the

Food Standards Agency (FSA) has set an overall target for the UK population to

reduce salt intake to 6 g/day by 2012, with various lower limits for children. The

government has also set voluntary salt reduction targets in 80 categories of foods,

and are in close partnership with the food industry to reformulate food products to

reduce salt content. On-going public awareness campaigns enhance salt reduction in

the general population. Together, these efforts have reduced the salt intake of the UK

population by 0.9 g salt to 8.6 g/day from 2001 to 2008 (64), and further to 8.1 g/day

in 2011 in England (65).

Finland started their salt reduction programme in the late 1970s. Health education of

salt reduction was promoted through mass media campaigns. Collaboration with the

food industry improved the effectiveness of voluntary salt reduction and clear

labelling in processed foods. Regular monitoring also ensured sustained success in

this programme (62). The average population salt intake was accordingly reduced by

25% (from 12 g/day to 9 g/day) (66).

In 2009 the Pan American Health Organization (PAHO) embraced the WHO salt

reduction target (67). A regional task force will be established and efforts will be

made on seeking scientific support and enhancing collaboration between

governments. Many PAHO Member States have taken actions on salt reduction. For

example, Canada has set a target of reducing average population salt intake to 5.75

g/day (2,300 mg of sodium per day) by 2016 and to 3.8 g/day (1,500 mg of sodium

per day) in the long-term (68). Argentina and Brazil have also set a target of 6 and 5

g/day, respectively (62). In the United States, current guidelines recommend the
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general population an intake of salt less than 5.75 g/day (2,300 mg sodium per day)

(69). The American Heart Association (AHA) suggested an ambitious target in 2006

to restrict the sodium in processed and restaurant foods by 50% and cut the sodium

intake to 1,500 mg/day (about 3.8 g salt per day) in next 10 years (16).

In Asia and Australasia, some countries have identified the need for salt reduction

(4;70), but few countries have set up population salt reduction targets (15). However,

the awareness of salt reduction is rising. Consultations on salt reduction are to be

held to develop salt reduction strategies in the region (71).

The Japanese government started salt reduction in the 1950s by means of long-term

nationwide health education programmes. The Japanese Hypertension Society (JHS)

recently revised recommendation of salt intake from 7 g/day to 6 g/day. As a result

of the long-term nationwide efforts, the average salt intake in the Japan population

was continuously reduced from 14.5 g/day in 1973 (72) to 11.1 g/day in 2007 (73).

In Africa, however, only Nigeria and South Africa have guidelines for salt intake

(70). Reliable data are needed for baseline measurement.

2.4 Economic Imperative of Salt Reduction

Population-wide salt reduction is cost-effective to reduce BP and prevent chronic

diseases (4). A voluntary reduction in salt intake by 15% is estimated to have averted

8.5 million deaths over 10 years and only cost less than US$0.1 per person per year

(74). It is estimated, by means of a computer-simulation model based on the U.S.

population aged 35 years and over, that a reduction of 3 g per day in salt intake leads
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to a potential annual saving of 194,000 to 392,000 quality-adjusted life years (QALY)

and $10 billion to $24 billion in healthcare costs (75). What is more, the effect of this

amount of salt reduction is equivalent to those of halving tobacco use, reducing BMI

in obese adults by 5%, or using statins in the population with low or intermediate

CHD risk (75). Given the same reduction level, 14,000 to 20,000 CVD deaths can be

averted annually in the UK (76), which translates into a gaining of 130,000 QALYs

and a saving of £350 million in healthcare costs (56). Even a small cut of 1 g/day in

salt intake (approximately 400 mg/day in sodium intake) in the uncontrolled

hypertensive U.S. population would save $2.3 billion in medical costs (77) and

achieve a potential gain of productivity by $2.5 billion (78). These findings

corroborate the results of the studies in Norway (79), Canada (80) and Denmark (81).

2.5 Policy Options for Population Salt Reduction

Several population-based policy options are available for countries to carry out salt

reduction at population level (Table 2.1).
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Table 2.1 Policy options for population salt reduction

Policy options Evidence Base Synergies
Likely salt

reduction (per
person per day)

Professional
education and
health promotion

Primary care in the UK - Negligible

Social marketing UK, New York City Politically popular 0.1 g*

Labelling
Finland, European
Community

Will also benefit fat
and sugar

0.5 g†

Product
reformulation

Finland, UK
Will also benefit fat
and sugar

1 g‡

Substitution China - Not available

Taxation Finland, New York City
Consistent with fat
and sugar tax

2 g†

Regulation and
marketing control

Finland, Belgium and
Italy (bread), New York
City

Greatest benefit in
deprived groups -
reduce inequalities

3 g†

Note: Reproduced from Cappuccio et al. (15) with permission.
*: Estimated, no data available.
†: Data from Finland.
‡: Data from Finland and Food Standards Agency of England and Wales.

Among these options, regulation and marketing control is the most effective option

according to the estimated salt reduction in the general population. It forces the food

industry legally to be compliant with salt reduction requirements so that salt hidden

in processed foods can be substantially and quickly reduced.

Social marketing uses commercial marketing strategies to influence social

behaviours so that consumers’ dietary habit and lifestyle can be improved. For

example, the UK targeted the public and different specific groups to raise consumer

awareness by TV campaigns and partner campaigns (82).

Salt tax is also proposed in some countries. For instance, in Belgium, a certain

amount of taxes is charged to food producers in order to suppress the use of salt in

food processing. Unpublished results of a recent study in 19 developing countries

suggests that a 40% increase in salt tax can reduce population salt intake by 6% (83).
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Product reformulation requires the direct engagement of government and health

authority with the food industry and food distributors. The UK FSA has set up

different voluntary targets of salt reduction for a range of processed foods. The

progress and achievements were reviewed recently and more challenging targets

were published in 2011 (84).

Mandatory labelling helps consumers to recognise the “healthy” foods. For example,

Finland implemented different salt content limits for food producers (e.g. 1.4% in

sausages and 1.3% in bread) and required that low or high salt content warnings be

labelled (85).

In China, more than 80% of salt intake is attributable to discretionary salt and soy

source that is used in home-made foods (30). Product reformulation and other

intervention approaches may be not suitable for the population to reduce their salt

intake. Therefore, sodium substitution is now being assessed in China. Briefly, it

replaces two thirds of the sodium in salt with potassium to reduce the intake of

sodium but increase the intake of potassium. Although the flavour difference is slight

(86), more data are needed to assess the acceptability of the substituted salt and the

salt reduction effect in the general population.

Each policy option requires the government to engage with different stakeholders.

Hence different policy options have different advantages and disadvantages.

Therefore, each country may select a single or a combined option to implement the

salt reduction programme according to its context.
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2.6 Iodine Deficiency: An Introduction

Millions of people have been adversely affected by iodine deficiency, suffering from

a wide range of devastating health consequences, collectively known as iodine

deficiency disorders (IDD). People over 12 years of age need a daily iodine intake of

at least 150 microgram (μg) to maintain good health. An estimated 1.9 billion people, 

including 241 million school-aged children, are currently at risk of IDD. In the 148

countries with available iodine data, 32 are still deficient in iodine (17). Eliminating

iodine deficiency has been a long term commitment of World Health Organization

(WHO) Member States.

Our body does not produce iodine. Most iodine exists in seawater and marine

organisms. The water cycling brings small amounts of iodine to soils through

precipitation with iodine concentration ranging from 1.8-8.5 µg/L (87). Iodine

content in soils is determined by geographical locations. Inland regions, particularly

mountainous areas, are commonly deficient in iodine. In areas affected by floods,

erosion and melting glaciers, soils often have a low level of Iodine content. The

Himalayas, Papua New Guinea, the European Alps, and the Andes are historically

iodine deficient regions. Foodstuffs, such as crops and grains, contain as low as 10

micrograms per kilogram (μg/kg) iodine in dry weight in iodine deficient regions and 

as high as 1 milligram per kilogram (mg/kg) in iodine sufficient areas (87).

Accordingly, human beings may have varying levels of iodine intake depending on

the dietary foods made from these foodstuffs and animal products.
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Iodine enters the thyroid gland by ingestion to synthesise thyroid hormone, thyroxine

(T4) and triiodothyronine (T3). The thyroid hormone has been recognised as one of

the most important factors for the growth of the nervous system (88). Most ingested

iodine reduces to iodide (I-) before entering the blood circulation. The thyroid gland

selectively absorbs a small amount of iodide from the plasma, while more than 90%

of the iodide is excreted in urine (89;90). The absorbed iodide is then oxidised and

incorporated into thyroglobulin1 (Tg) to generate T3 and T4. As shown in Figure 2.2,

thyroid gland breaks down Tg to release thyroid hormone. Meanwhile a little amount

of iodine is deiodinated and reused in the thyroid. The secreted T3 and T4 enter

blood circulation and act on controlling metabolic rate. The hormone is deiodinated.

The iodide is partly absorbed again by thyroid gland to start a second cycle and the

rest is excreted by the kidney.

Figure 2.2 The iodide cycle

Note: Reprinted from Rousset and Dunn (91) with permission.

1 Thyroglobulin (Tg) is the most abundant protein carrying thyroid hormone in the thyroid gland.
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2.7 Consequences of Iodine Deficiency

Inadequate iodine intake results in less production of T3 and T4, forcing the thyroid

gland becoming “underactive” (hypothyroidism). Since thyroid hormones are critical

for regulating body metabolism, neurological development and numerous other body

functions, a reduction of the hormone decreases the speed of several body functions,

such as energy burning and body reactions, causing depression, weight gain, and

heart failure. When iodine intake is reduced to less than 150 micrograms per day

(μg/day), the risks of serious health problems emerge. Increasing iodine intake can 

reduce the risks effectively. However, too much iodine is also prejudicial to health.

The upper limit for optimal daily iodine intake is 299 μg. Iodine intake over 449 

μg/day is defined as excessive iodine intake. Excessive iodine intake forces the 

thyroid gland to be “overactive”, causing weight loss, anxiety and diarrhoea. Iodine

excess leads to increased risks of iodine-induced hyperthyroidism (IIH) and

autoimmune thyroid disease. Extremely high iodine may lead to severe health

outcomes, such as thyroid papillary cancer and iodermia (92).

Inadequate iodine intake can lead to various clinical manifestations of IDD. On the

other hand, excessive iodine intake can also result in several diseases. Some of them

have similar clinical presentations to those of the disorders caused by iodine

deficiency (93). However, these presentations can disappear within a few years with

proper iodine intake. Different manifestations of iodine deficiency in different life

stages are presented in Table 2.2.
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Table 2.2 The manifestations of IDD at different stages of life

Stage Manifestations

Foetus

Abortions

Congenital anomalies

Increased perinatal mortality

Neurological cretinism: mental deficiency, deaf mutism, spastic
Diplegia squint

Myxoedematous cretinism: mental deficiency, dwarfism,
hypothyroidism

Psychomotor defects

Stillbirths

Neonate

Endemic mental retardation

Increased susceptibility of the thyroid gland to nuclear radiation

Neonatal goitre

Neonatal hypothyroidism

Child and
adolescent

Delayed physical development

Goitre

Impaired mental development

Impaired intellectual performance

Increased susceptibility of the thyroid gland to nuclear radiation

Adult

Goitre

Hypothyroidism

Impaired mental function

Increased susceptibility of the thyroid gland to nuclear radiation

Iodine-induced hyperthyroidism

Spontaneous hyperthyroidism in the elderly
Note: Modified from de Benoist et al.(94).

To most people, endemic goitre has historically been the most common

manifestation of iodine deficiency, presented with a swollen neck. Goitre occurs in

all life stages and is mostly seen in mountainous regions such as the Himalayas, the

European Alps, and the Andes. Estimated in 2003 from school-aged children, Africa

has the highest goitre prevalence (26.8%), and Latin America and the Caribbean

have the lowest (4.7%) (94). Endemic goitre is curable using iodine and thyroxine

preparations.
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Pregnant women and foetuses are the most vulnerable populations at risk of iodine

deficiency. During pregnancy, the level of thyroid hormone increases by up to 50%.

Normal daily diets may not provide adequate iodine intake to cover the needs of both

mothers and foetuses. Hence mothers and foetuses are subject to risks of various

disorders depending on the severity of iodine deficiency. More importantly, many

IDD in adults can be treated by iodine fortification, but the damage caused by iodine

deficiency to the development of foetuses is irreversible. Among various degree of

neurological deficit, endemic cretinism is the most extreme form, stunting up to 10%

of the population’s physical and mental development in areas severely deficient in

iodine (87).

However, cretinism and other severe health outcomes are only the tip of the iceberg.

More people suffer from subtle neurological and mental impairments. These mild

impairments bring damage to brain development, resulting in a lower intellectual

capacity which is reflected in a loss of Intelligence Quotient (IQ) (95-98). Two meta-

analysis studies reported that iodine deficient children have 12-13.5 lower IQ points

than those normal children (97;98). Lower IQ leads to poor school performance,

reduced intellectual ability and impaired work capacity. Consequently entire

populations may suffer considerable social and economic loss.

Maintaining sufficient maternal iodine supplement is of great importance to mothers

and foetuses (95;99;100), particularly from the second trimester of pregnancy when

the most critical period of foetal brain development starts (101). Recent studies

suggest the necessity of a high amount of iodine intake in pregnant and lactating

women (102;103). The WHO recommends an iodine intake of 150-249 μg/day for 
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mothers during pregnancy and lactation. Long-term consumption of iodised salt is

linked to better maternal thyroid function (18).

Excessive iodine intake also causes adverse health problems. Recently there has been

growing awareness of side effects of high dose iodine intake. It is reported that

sudden increase in iodine intake leads to IIH in early stage of iodine fortification,

particularly in elderly populations who were previously of mild to moderate

deficiency in iodine (94). Liu et al. find drinking water with high iodine content

significantly reduces primary school students’ IQ by 9 points in Tianjin, China (104).

However, IIH is transient and it disappears in 1-10 years. Hence, the priority of

iodine correction is to eliminate iodine deficiency since its risks are far more

devastating than those of iodine excess (105).

2.8 Assessment of Iodine Status

There are four commonly used indicators to assess the severity of IDD: total goitre

rate (TGR), urinary iodine concentration (UIC), serum thyroid stimulating hormone

(TSH), and serum thyroglobulin (Tg).

Total goitre rate reflects goitre prevalence in a region. There are two approaches to

diagnose goitre at individual level: neck palpation and thyroid ultrasonography. In

1994 a simplified 3-grade classification system was introduced by the WHO for

palpation diagnosis: grade 0, no palpable or visible goitre presence; grade 1, a goitre

is palpable but not visible in normal position of the neck, and nodular thyroid is in

this grade if an enlarged thyroid is invisible; and grade 2, a visibly swollen neck in a
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normal position is presented and is consistent with an enlarged thyroid when the

neck is palpated.

Total goitre rate is defined as the rate of grade 1 and 2 goitre in percentage in the

general population. The WHO recommends the following criteria to determine a

population’s iodine status: ≥30%, severe deficiency; 20.0-29.9%, moderate 

deficiency; 5.0-19.9%, mild deficiency; <5.0%, iodine sufficiency.

In endemic areas, thyroid size may not return to normal for months, sometimes even

years, after supplemental iodine fortification (90;106). Therefore TGR is useful to

assess the history of the severity of IDD, but is not a good indicator of the present

iodine status in a population.

Urinary iodine concentration is so far the most widely used indicator recommended

by the WHO. It is more sensitive than TGR to recent change (i.e. days) of iodine

intake in a population. School-aged children (6-12 years) are the ideal age group for

the assessment of the iodine intake status in the general population.

Two approaches are used to assess UIC: 24-hour urinary sample test and spot urinary

sample test. It is better to use 24-hour sample to estimate accurately urinary iodine

status, but the spot approach is more practical and commonly used, in spite of day-

to-day variations in the spot samples at individual level (107;108).

The iodine status indicator is usually expressed as median level of UIC in microgram

per litre. Table 2.3 shows cut-off values of iodine status for different populations.



31

Iodine status can also be assessed by testing thyroid stimulating hormone levels in

newborns. Thyroid stimulating hormone determines serum concentration of thyroid

hormone. It is a more sensitive indicator of iodine deficiency in neonates rather than

in older children and adults. A population which has <3% newborns with TSH >5

micro International Units per millilitre (μIU/mL) is defined as iodine sufficiency; 3-

20% as mild deficiency; 20-40% as moderate deficiency; and >40% as severe

deficiency.

Table 2.3 Cut-off values for epidemiological classification of population iodine

nutrition status based on median urinary iodine concentration

Population group
Median UIC

(μg/L) 
Iodine intake Iodine status

Children less than 2
years old

<100 Insufficient

≥100 Adequate 

Pregnant women

<150 Insufficient

150-249 Adequate

250-499 More than adequate

≥500 Excessive 

Lactating women
<100 Insufficient

≥100 Adequate 

School-aged
children (6-12
years) and other
adults

<20 Insufficient Severe iodine deficiency

20-49 Insufficient Moderate iodine deficiency

50-99 Insufficient Mild iodine deficiency

100-199 Adequate Optimal iodine nutrition

200-299 More than adequate

Risk of iodine-induced
hyperthyroidism within 5-
10 years following
introduction of iodised salt
in susceptible groups

≥300 Excessive 

Risk of adverse health
consequences (iodine
induced hyperthyroidism,
auto-immune thyroid
diseases)

Note: Reproduced from Andersson et al. (109).
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Recently thyroglobulin has been regarded as a promising IDD indicator (107;110).

Other than TSH, Tg level can be assessed in school-aged children so that it has wider

application than TSH. Serum Tg level can be tested using dried whole blood spots

(DBS) (107). The WHO describes the reference interval for DBS Tg in iodine

sufficient school-aged children as 4-40 μg/L.  

2.9 Correcting Iodine Deficiency

Correcting iodine deficiency has been a long term commitment of the World Health

Organization, with the goal of eliminating iodine deficiency by 2000 set in the 1990

World Summit for Children2. Iodine repletion in the general population is such that

the median urinary iodine concentration is higher than 100 μg/L, with no more than 

20% of the population being below 50 μg/L.  

Diverse vehicles for iodine supplementations are available, including water, milk,

dairy products, flour, oil, salt, etc. Iodination of water can be an effective way to

increase iodine levels in humans, crops and animals. Iodised irrigation water has

been successful in reducing iodine deficiency in China (111). Similarly, fortified

animal feeds can also raise the iodine concentration in animal products. Accordingly

daily iodine supplementation can be obtained through food products like bread, milk

and infant formula (112). Another approach is to add iodine into foods, such as flour.

However, little research has been conducted and the effect of this approach is still

unclear. Further assessments are needed, particularly on the iodisation technology,

2 In 2002, the target was later extended to 2005 at the Special Session on Children of the United
Nations General Assembly (94).



33

optimal iodine fortification levels and its potential coverage. Iodised oil is usually

distributed in populations in remote areas where other iodine supplementation

vehicles are difficult to reach. It is prepared by adding iodine to seed or vegetable oil.

It contains about 40% organically combined iodine. Iodised oil can be administered

orally or given by intramuscular injection once or twice a year (113;114).

Compared to the previous vehicles, salt is the major vehicle for iodine

supplementation worldwide. It is mainly because of the following advantages

(32;57):

 Salt is commonly and stably consumed by people throughout the year;

 Salt production is limited to a few geographical areas;

 The quality of iodised salt is easily monitored;

 The addition of iodine to salt does not affect its taste, odour and colour;

 Salt iodisation programmes are easy to implement.

Salt iodisation is the most cost-effective way to improve the population iodine intake.

It costs only US$0.02-0.09 per person per year to obtain sufficient iodine. The

implementation of salt iodisation in children can avert $1,000 per child death and

save $34-36 per disability-adjusted life years (DALYs) (115).

Universal salt iodisation (USI) was adopted in the 54th World Health Assembly in

1994 to promote the use of iodised salt in the general population and eliminate IDD

in the world. The WHO, United Nations Children's Fund (UNICEF) and

International Council for Control of Iodine Deficiency Disorders (ICCIDD) have

been recommending salt iodisation as the primary strategy for controlling iodine
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deficiency since then. USI requires all food grade salt be iodised. Several countries

in Europe and North America, such as Sweden, Austria and the United States, add

potassium iodide (KIO3) to salt. Other countries usually add potassium iodate (KI)

because it is more stable and less soluble than KIO3, especially in hot and humid

conditions (e.g. tropical regions). Assuming average daily salt intake of 10 grams per

capita and 40% iodine loss from salt during delivery and cooking (107), the salt

industry is advised to add 20-40 mg iodine in each kg of salt during production.

Therefore individuals can consume 150 μg/day iodine, as recommended by the 

WHO.

To achieve the goal of sustainable elimination of IDD, two indicators are used: 1) at

least 90% of households should be covered by adequately iodised salt (≥15 ppm); 

and 2) median UI should be 100-199 μg/L in the general population and 150-249 

μg/L in pregnant women (107). 

Remarkable achievements have been obtained since the introduction of USI

worldwide. More than 170 countries have adopted the USI programme for

controlling iodine deficiency by 1998 (116). Of the 130 countries affected by IDD,

110 have established legislations on salt iodisation (117). The overall coverage of

iodised salt is steadily improving: an estimated 69% of households worldwide are

using iodised salt, compared to less than 20% in 1990s (23), although populations in

Central Eastern Europe, Commonwealth of Independent States and South Asia have

much lower coverage of iodised salt. The number of countries at risk of iodine

deficiency reduced from 110 in 1993 to 47 in 2007 (118), and further down to 32 in
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2011 (17). Over 90 million newborns every year are now protected from learning

disabilities caused by IDD.

Figure 2.3 Iodine status based on national median UIC data

Note: Reprinted from Andersson et al. (17) with permission.

However, the progress of the USI programme differs from one region to another.

Wide geographical variations are observed in the availability and consumption of

iodised salt (119) in different parts of the world. For instance, East Asia has an 86%

coverage of iodised salt, whereas 49% South Asian households are still not protected

by iodised salt. More disparities are found from country to country (90). In South

Asia, Sri Lanka and Bhutan have met the USI 90% target line, while the coverage in

Pakistan and Afghanistan is less than 30% (119). In Africa, the goitre prevalence rate

dropped considerably after introduction of iodised salt: 20%, 60%, 50% and 38%

reduction in goitre rates were achieved in Kenya, Cameroon, Zambia and Zimbabwe

respectively (120). In Lesotho, iodine deficiency is no longer a public health problem

after legislation on USI was established in 2000 (121). Access to iodised salt can
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vary even within a country. For example, with 30% households covered by iodised

salt in Russia, the coverage in 7 out of 17 surveyed regions is lower than 10% (122).

Additionally, there are diverse geographical patterns of iodine status at national and

sub-national level. In Sub-Saharan Africa, several countries (e.g. Chad and the

Central African Republic) are severely iodine deficient, whereas their neighbouring

countries, such as Nigeria and the Democratic Republic of Congo, are at risk of IIH

(Figure 2.3). Valeix et al. (123) reveal a west-east pattern with regard to median UIC

concentration in France. In a study in Albania, significant geographical variations of

median UIC (3.52-1,079 μg/L) are found among four regions (124). In Russia, while 

iodine deficiency has been reduced in certain Russian regions (e.g. Moscow and

Tartarstan) in accordance with increased urinary iodine concentration, it remains

unchanged in others (122).

2.10 Economic Impact of Iodine Deficiency

Little research has been carried out on the economic impact of iodine deficiency.

Muir and Zegarac (125) reviewed the economic costs due to IQ loss. It was

estimated that in 1999, a loss of 5 IQ points cost US$301 billion in the US and

Canadian $30 billion in Canada annually and the projected social cost would be up to

$92 billion for the US and Canada combined.

Thus the elimination of iodine deficiency would be economically beneficial to

society. It is estimated that every US$1 spent on the iodine fortification returns a per

capita productivity gain of US$26-28 (25;119).
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2.11 Perceived Conflicts of Policies of Iodine Fortification

using Salt and Population Salt Reduction

The WHO recommends a salt intake of <5 g/day in the general population while the

USI programme is adopted by many countries to maintain the population iodine

intake within the optimal range (150-299 µg/day) with the assumption of 10 g/day

salt intake and 20-40 ppm iodine content in salt.

It is conceivable that the health policies have potential conflicts. Salt reduction may

result in reduced iodine availability, particularly in many low- and middle-income

countries that heavily rely on dietary salt for iodine supplementation. This could

jeopardise salt iodisation programmes and expose more people to the risk of IDD.

On the other hand, people may inadvertently increase salt intake in the hope of

increasing iodine intake. Although there is no population level study reporting such a

scenario, such behaviour may compromise the efforts towards salt reduction and put

people at risk of hypertension and CVD.

Another issue related to the USI policy is the average salt intake assumption. The

assumption is the basis of salt iodisation policy. However, it may not be applicable

worldwide. Evidence shows considerable variation of population salt intake across

the world (126). For those countries committed to salt reduction, the population salt

intake is likely to change over time. Varied salt intake may influence the iodine

intake in the general population and therefore jeopardise USI programmes.
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2.12 Summary of Chapter 2

Chapter 2 reviewed the literature related to the effects of salt and iodine intakes in

two separate sections.

For salt, the association between its intake and BP and cardiovascular disease was

reviewed. The association is well supported by overwhelming scientific evidence

from animal studies, randomised clinical trials and observational population studies.

Many countries have established different goals or guidelines for population salt

reduction, following the WHO recommendation of 5 g salt per day, mainly because

it is the most cost-effective strategy to reduce BP and prevent chronic diseases.

However, the progress of salt reduction programmes differs across the world. The

salt review ended with a summary of several available population-based policy

options for the programme.

For iodine, the review began with a brief introduction on the effects of iodine

deficiency, particularly from a physiological perspective. Insufficient iodine intake

leads to iodine deficiency disorders (IDD), causing irreversible brain and physical

damage and other consequences. Iodine status is best assessed by urinary iodine

concentration (UIC) and the optimal UIC is set in the range of 100-199 μg/L for 

adults with different ranges for different population. Correcting iodine deficiency is

cost saving and beneficial to the society. In order to supplement iodine at a

population level, salt is used as the most cost-effective vehicle across the world since

the 1990s, compared to other vehicles such as water, flour, dairy products and

livestock feeds.
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Thus, two health programmes, salt reduction and salt iodisation, overlap when salt

iodisation is the chosen policy to supplement populations with iodine. The potential

conflicts between the programmes are that salt reduction may jeopardise salt

iodisation and salt iodisation may unintentionally lead to an increase in salt

consumption.
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Chapter 3 Salt Intake and Iodine Status: An

Assessment

3.1 Objectives of this Chapter

This Chapter was added to address the complexities in the nutritional assessments of

both salt and iodine intakes and of the need for the use of valid urinary biomarkers.

Salt and iodine intake measurements were systematically reviewed. In addition, two

common methods of estimating salt intake using spot urine samples were validated

by comparison with 24-hour urinary sodium in two populations.

3.2 Systematic Review of Studies Comparing 24-hour

versus Spot Urine Collections for Estimating Population

Salt Intake

3.2.1 Introduction

In steady state conditions, the kidneys handle most of the sodium eaten in a day. The

majority (up to 95%) is eventually excreted in the urine in the subsequent 24-hour.

The remaining is excreted in sweat, saliva and gastro-intestinal secretions. The daily

renal excretion rate of sodium is not constant throughout the 24-hour, depending on

sodium consumption pattern, such as time of day, individual’s posture, and neuro-

hormonal influences.
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Twenty-four-hour urine collection is the gold standard for assessing salt intake

through urinary sodium excretion both in individuals and in populations (127).

However, it is often deemed inconvenient for repeated use in large population

studies. There are concerns that high participation burden, lack of completeness and

high cost will impact on response rate and feasibility. Over the years, alternative

methods have been implemented to try and overcome this concern, such as spot and

timed urine samples.

The assessment of population salt intake and its changes over time underpins salt

reduction policies and represent one of the major pillars of such programmes

globally (4;12;15;128). And yet intake is not known for many countries.

Several questions need answering: can average population salt intake be assessed

with methods other than 24-hour urine collections? Can we predict daily intake from

spot urines? Can we estimate daily intake from spot urines? Is the validation for

groups the same as for individuals? Can we use alternative methods to 24-hour

urinary sodium for a reliable monitoring of population changes? Are these methods

valid in different population subgroups according to gender, age and ethnicity?

The aim of the present section was systematically to review all studies comparing

24-hour urine collections with alternative methods (spot, overnight, daily, timed) for

the assessment of salt intake in both adults and children.
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3.2.2 Methods

Literature search

We developed a search strategy to identify studies that reported the association

between sodium excretions obtained with 24-hour urine collection compared to spot

urine samples. We searched the electronic databases MEDLINE (from 1950 to April

week 4, 2010) and EMBASE (from 1980 to week 18, 2010), as well as the Cochrane

Library using the terms “sodium [dietary, chloride, intake, excretion]” “salt [intake]”

and “urine [timed, spot, random, 24-hour].” Furthermore, we reviewed reference lists

of original and review articles to search for more studies. Only full-length articles

were considered. No language restriction was applied. Only studies in humans were

included.

Inclusion and Exclusion Criteria

Studies had to fulfil the following criteria: (a) full paper, (b) human study, (c)

population study or those in large groups (n>30), (d) availability of both 24-hour

urine and one of alternative methods (spot, overnight, timed), (e) availability of

urinary analytes. Studies were excluded if: (a) not in the English language, (b)

abstract form, (c) sample size <30, (d) studies in special patients’ groups (e.g. renal

or heart failure, CHD, diabetes, or treated patients’ groups). If multiple published

reports from the same study were available, we included only the one with the most

detailed information for both exposure and outcome.
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Data extraction

Three investigators (CJ, LS and CP) extracted data independently and differences

were resolved by discussion and consensus. Relevant data included the first author’s

surname, year of publication, country of origin of the population studied, population

type, sample size, age, duration, description of urine sampling, mean sodium for 24-

hour and for alternative samples, outcome measures (correlations, ratios).

3.2.3 Results

Characteristics of studies

Forty-three papers met the inclusion criteria. Of these 23 were excluded due to lack

of data and 20 were suitable for final review, 16 in adults (129-144) and 4 in children

(145-148) (Figure 3.2.1). Where results were reported separately for independent

groups, they were entered into the tabulation as separate studies (132-134;145;149).

Overall, the review included 1,380,130 participants from 7 different countries (5

from the USA, 6 from Japan, 3 from China, 2 from Brazil, and 1 each from France,

Croatia and the Netherlands). Fourteen studies recruited both men and women, while

2 studies recruited only women. Four studies in 5 samples were carried out in

children and adolescents.
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Figure 3.2.1 Flow chart of systematic review of salt intake
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Studies comparing 24-hour with overnight samples in adults

Table 3.2.1 summarises studies in adults. Nine studies tested the correlation between

24-hour and overnight urinary sodium (132;135-137;144;149-152). Ten used flame

photometry for the analysis of sodium concentrations (133-

136;140;144;150;151;153), while one (152) used ion-selective electrode method and

one (149) a new salt monitor. One study (135) analysed the correlation coefficient of

the true mean 24-hour urine sodium and the true mean overnight urine sodium in

order to eliminate the influence of intra-individual variation. It suggested that at least

a week of overnight samples would be required to reduce the intra-individual

variation.

Luft et al. (137) studied the sodium intake by placing participants on a fixed diet and

monitoring their urinary output. They found that the mean sodium intake showed a

greater correlation with the 24-hour (r=0.75) than the overnight sodium (r=0.55).

They recognized that daily variation in salt intake is a limitation, and concluded that

overnight urinary collections do not appear promising in estimating mean sodium

intake.

Another study (136) found a correlation of 0.94 between the true mean 24-hour and

overnight sodium excretion. The urine samples were not collected on consecutive

days. They also completed another study (151) where six 24-hour urine samples

were collected within ten days. They reported a high correlation between the true

mean overnight and 24-hour urinary sodium (r=0.92). There was a greater degree of

intra- and inter-individual variation with the overnight urine sodium collections than
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the 24-hour excretions and thus a greater number of samples would be needed to

measure accurately sodium intake in populations.

He et al. (150) found a correlation coefficient of 0.843 between the 24-hour and

overnight true mean values when pooling data from rural and urban residents.

Despite a strong correlation, double the amount of samples would be needed to limit

the diminution of correlation coefficient to less than 5%. The strength of this study

was the inclusion of rural population samples in contrast with previous studies of

predominantly urban populations with a high salt intake.

In relation to time of day, one study (152) found that the correlation between 24-hour

urinary electrolytes and half-day (12-hour duration) urine contents were better than

correlations with overnight (8-hour duration) urine contents. This was probably due

to the longer time period involved with the half-day collections. This study did not

find a strong correlation between the 24-hour and overnight urinary sodium, and

cautioned the use of a partial sample as substitute for 24-hour urinary sodium

analysis.

A few studies piloted the use of purpose-built devices to facilitate partial urine

collections. Kamata & Tochikubo (132) devised a urine-sampling pipe with a two-

way stopcock that could trap overnight urine proportionally, to estimate the volume

of overnight urine and to estimate the 24-hour urinary sodium. They accounted for

the lean body mass of individuals to estimate the 24-hour urinary sodium levels.

Using an electrical device to monitor daily salt intake at home, another study (149)

found a significant correlation between 24-hour urinary sodium excretion and

overnight values. The correlation between 24-hour urinary sodium with ion electrode
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method and the measured value with a new salt monitor using overnight urine was

significant (r=0.72). The self-monitoring method suggested overnight sampling as an

adequate substitute for 24-hour urine.

Studies comparing 24-hour with spot sampling in adults

Eight studies included in our review made a comparison between 24-hour urinary

sodium contents and single spot urinary sodium (133;134;139;140;144;153-155).

Kawasaki et al. (133) showed in 242 participants that a single 24-hour urine

specimen does not represent the individual average of daily sodium excretions. The

correlation coefficient between spot and 24-hour urine was 0.467. When they took

the average of 3 daily collections from 117 participants, the correlation coefficient

was 0.624. They also compared urine samples from 59 persons with an intra-

individual standard deviation of spot urine specimen for excretion of creatinine

within 20%. The correlation coefficient was 0.725.

Wolf et al. (153) looked at using a spot urine sample instead of the usual 24-hour

sample to measure urinary sodium. There was an overestimation of both the

excretion rate and sodium/creatinine ratio when the spot urine was compared to the

24-hour sample. The spot sample, carried out in the morning after overnight fasting,

was closely related to the 24-hour sample.

Kawasaki et al. (134) found that spot samples of second morning voided urine,

collected over 3 days, gave a more reliable and accurate estimation of 24-hour

urinary sodium than a one day collection. They found a highly significant correlation
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(r=0.774). They also found that there was a stronger correlation when using morning

spot samples in comparison to those at night.

Costa et al. (155) analyzed the relationship between systolic pressure and sodium

excretion at different levels of diastolic pressure. They used a single casual spot

sample instead of 24-hour urine to estimate sodium excretion. They found that spot

samples showed significantly higher estimates of sodium excretion in comparison to

24-hour collections, with a weak positive correlation coefficient (r=0.28). They

concluded that this weak but significant correlation suggests that an even larger

sample of spot urine collections would be needed in comparison to 24-hour urines to

detect an association with BP and sodium excretion.

Tanaka et al. (140) found that the correlation between the 24-hour and the spot

urinary sodium was 0.65. They concluded that the method would be a convenient

and accurate way to estimate population sodium intake. They discussed that

individual monitoring should still use 24-hour samples, but spot samples is a good

alternative to monitor and evaluate population mean sodium intake.

In another study (154), the ratio between 24-hour and spot samples was 2.0. It also

reported a correlation of 0.45 between spot and 24-hour urinary sodium. This study

concluded that spot urine could be used instead of “tedious and impractical 24-hour

urine collection”. They did note that spot sampling is not sufficient in all cases, but is

a reliable alternative.

Mann & Gerber (139), more recently, looked at 3 different spot samples – random,

AM and PM - in comparison to the 24-hour sample. When sodium⁄creatinine ratios 

were adjusted for 24-hour creatinine excretion, all correlations were strengthened.
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The correlations between the 24-hour sodium excretions were 0.17, 0.31, and 0.86

for random, AM and PM, respectively. The value for the random sample was not

significantly correlated and therefore would not be a good alternative to 24-hour

urinary sodium collections. However, a spot sample collected in the late afternoon or

early evening before dinner (PM sample), adjusted for 24-hour creatinine excretion,

predicts 24-hour sodium excretion accurately. They concluded that the use of spot

urine is convenient and cost-effective in assessing sodium excretion in clinical

practice and epidemiological studies.

All but one (133) studies that made a comparison between spot and 24-hour urine

collections advocated using the spot sampling method. There was a significant

consensus that a greater number of collections would be necessary using spot urine

samples, but regardless this would be more convenient and feasible for general

populations that require monitoring.

Studies comparing 24-hour with multiple other sampling techniques in adults

Yamori et al. (144) looked at 24-hour urine samples split in three parts, and found

that the highest correlation of sodium in the urine samples occurred in the daytime

voided urine and the second in the overnight voided urine. The correlation was low.

Despite the higher correlation of daytime voided urine with 24-hour collection,

practicality favours evening and overnight collection as these can be completed at

home for most individuals. They suggest the use of partial urine samples to analyse

sodium intake, and even the use of single spot urine samples for large population

surveys.
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Studies comparing 24-hour with other sampling techniques in children

The studies in children and adolescents are summarised in Table 3.2.2. The studies

have included ages from 3 to 19 years and have all compared overnight urines with

24-hour samples. In all studies, multiple collections were used (from a minimum of

two (148) to a maximum of seven days (145;146)). Most studies used correlation

coefficients to assess concordance, reliability and reproducibility, with values

varying from 0.62 (147) to 0.95 (146).
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Table 3.2.1 Systematic review of studies in adults

Author
(year)

Coun
try

Population
Sample

(n)
Age
(yrs)

Duration
Urine

samples
Mean
(24h)

Mean
(spot)

Ind.
samples

Correlation Notes

Liu et al.
(1979)

USA
Business and

administrative
volunteers

116 men 30-44 4d
24h v day-

time v
overnight

165-183

116-138
d

No
0.722 versus

ov

Flame photometry. Conditional
probability of 24h Na in V Q to III
T ranges from 0.58 to 0.77, given

night Na in V Q. If overnight used,
at least a week collection.

45-57 ov

Yamori
et al.
(1982)

Japan
Healthy

volunteers

Farming &
fishing

villagers
39 men & 44

women

30-50 1d

24h v day-
time v

evening v
overnight v

spot

202
farming

No

Na/Cr
0.717 d
0.559 e

0.419 ov
0.463 spot

Flame photometry. Day-time best
substitute

198
fishing

Luft
et al.
(1982)

USA
University

Students or
employees

12 white men,
10 white

women, 14
black men, 7
black women

19-54
15

consecutive
days

24h versus
16h diurnal

versus 8h
nocturnal for

10 days

139
28

(night)
No 0.22

Nocturnal urines are not useful to
estimate mean Na intake

Kawasaki
et al.
(1982)

Japan
Healthy

volunteers
91 men, 151

women
20-63 3d

24h versus
spot (within
4h after first

morning
void)

218 No

0.467 versus
spot Flame photometry with Li as

internal standard.0.624 versus
3-day average

Wolf
et al.
(1984)

France
Healthy

volunteers

Supine (s): 61
men, 30
women

20-68
24h versus

spot

6.15a s 13.3b s

Yes
Flame photometry. Spot urine

overestimates urinary Na excretion
rateUpright (u):

30 men, 30
women

5.91a u 7.85b u
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Table 3.2.1 cont’d

Author
(year)

Coun
try

Population
Sample

(n)
Age
(yrs)

Duration
Urine

samples
Mean
(24h)

Mean
(spot)

Ind.
samples

Correlation Notes

Liu et al.
(1986)

China
Healthy

doctors and
technicians

49 30-50
6 samples

over 3
months

24h versus day-
time versus

overnight for 6
days

231 d 94
No 0.94

Flame photometry. Overnight urine
sample could be used but 6

specimens needed
262 ov 110

Liu et al.
(1987)

China
Normotensive

health
professionals

50 men 27-50 10 d

24h versus day-
time (12h)

versus night-
time (12h) 6 d

235 d
122-142

d
No 0.92

Flame photometry. Conditional
probability of 24h Na in V Q to III

T ranges from 0.774 to 0.950, given
night-time Na in V Q260 n

109-122
n

Kawasaki
et al.

(1993)
Japan

Healthy free-
living

individuals

Group 1:
91 men &

women
20-79 1 d

24h versus spot

233 men
185

women
n/a Yes

0.728

Flame photometry.
Group 2:

15 men &
women

40-67 2 d
0.531 (external

gp)

He et al.
(1993)

China
Normotensive
Chinese men

30 farmers,
33 urban
dwellers

19-55 3 d
24h versus

overnight (8h)

147 d 1 38 in 8h

No 0.843
Flame photometry. Overnight

collections underestimated 24h Na
by -1.99 mmol/h (~48 mmol/24h)

155 d 2 41 in 8h

165 d 3 43 in 8h

Costa et
al.
(1994)

Brazil
Healthy

individuals
611 20-74 single 24h versus spot 220 n/a Yes 0.28

Flame photometry. Spot urine
overestimates Na excretion
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Table 3.2.1 cont’d

Author
(year)

Count
ry

Population
Sample

(n)
Age
(yrs)

Duration
Urine

samples
Mean
(24h)

Mean
(spot)

Ind.
samples

Correlation Notes

Pan et al.
(1994)

China Research staff
21 men &
19 women

24 1 mo

24h versus
half-day (hd)

versus
overnight

151

69 hd

No

0.83 versus
same day

0.41 versus
adjacent day

0.41 versus 1
mo apart using

hd urine
0.60 versus

same day
0.28 versus

adjacent day
0.28 versus 1

mo apart using
ov urine

Ion-selective electrode
method.

31 ov

Tanaka et
al.
(2002)

Japan

Group 1:
INTERSALT

participants,
Group 2: manual

workers

295 men &
296 women

20-59 n/a 24h versus spot 187
179

(estimat
ed)

Yes 0.54

Emission flame photometry.
(a) Estimated means lost

accuracy on lower salt intakes.
(b) Spot urines underestimated

true excretion. (c) needs
population-specific validation

with age, wt, ht and 24h

Kamata &
Tochikubo
(2002)

Japan
Healthy

individuals

Study 1:
126 men

38

n/a

24h versus
predicted by Cr

and lean mass
n/a n/a No

0.73
Automated ion-electrode

method. Population-specific,
needs validation. Overnight

urine underestimates the true
value with gender differences

and risk of bias

Study 1:
225 women

50 0.78

Study 2: 71
men

35 24h v overnight
with sampling

pipe

0.59

Study 2: 78
women

49 0.67
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Table 3.2.1 cont’d

Author
(year)

Count
ry

Population
Sample

(n)
Age
(yrs)

Duration
Urine

samples
Mean
(24h)

Mean
(spot)

Ind.
samples

Correlation Notes

Yamasue
et al.

(2006)
Japan

Healthy
adults

Study 1: 62
men & 188

women
54 n/a

24h versus
overnight

n/a n/a No

n/a

Comparing two different methods
Study 2: 70
men & 154

women
53 21-66 d

24h with
IEM

versus
overnight

with NSM

0.72

Ilich et a
l.
(2009)

Croatia
Healthy

participants
143 women 30-79 n/a

24h versus
fasting

spot
16.6b 12.9b Yes 0.452 Flame AA/emission spectrometry

Mann &
Gerber
(2010)

USA
Unselected
volunteers

81 21-82 n/a
24h versus

spot, AM
& PM

181 spot 160

No

0.17 Spot

Treated individuals188 AM 176 0.31 AM

164 PM 158 0.86 PM

Note: Ind.: independent, Na: sodium, Cr: creatinine, n/a: not available, IEM: ion-electrode method, NSM: new salt monitor;
a: Na (mmol/h);
b: Na/Cr ratio (mmol/h).
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Table 3.2.2 Systematic review of studies in children and adolescents

Author
(year)

Coun
try

Population
Sample

(n)
Age
(yrs)

Urine Samples Duration
Mean Mean Independent

Correlation Notes

(24h) (spot) sample

Liu et al.
(1979)

USA 6th-8th grade

31 boys

11 to 14
24h versus
overnight

7 days

123 49

No 0.73

Automated methods.
Conditional probability
of 24h in V Q to III T
ranges from 0.59 to 0.78,
given night-time Na in V
Q

42 girls 150 69

Micheli
& Rosa
(1982)

Brazil
Children &
Tees

31 6 to 17
24h versus
overnight v food
record 2days

146

137 No 0.71

Ion selective electrode
method. 24h urine still
the most reliable method
to determine UNa162

Luft et al.
(1984)

USA Twins
52 boys

3 to 18
24h versus
overnight

5d over
1mo

115
37
(night)

No 0.62 Flame photometry
43 girls

Knuiman
et al.
(1988)

Netherl
ands

Boys 28 8 to 9
24h versus
overnight

7 days 101
34
(night)

No 0.95

Flame AAS. Overnight
may replace 24h in
young boys, but more
overnight than 24h
specimens are required to
achieve similar precision

Note: Na: sodium.
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3.2.4 Discussion

This is the first systematic review of studies comparing simple measures of urinary

sodium excretion with 24-hour urinary sodium excretion. The studies are

heterogeneous in objectives, protocols, types of urine collections, number of

repeated measures, populations studied, measures taken for validation, and analytical

approaches. It does not provide, therefore, a uniform pool of data to assess the

evidence with consistency. This is reflected in the contrasting conclusions that the

authors have reached over the years either in favour of or against the suitability of

alternative methods for the assessment of urinary sodium excretion (a proxy for salt

intake) instead of 24-hour urinary sodium excretion.

Advantages and disadvantages

There are advantages and disadvantages of the different options (4;156). Twenty-

four-hour urine collection is the gold standard for assessing daily salt intake. It will

capture over 90% of the sodium ingested around the time of the collection. When

applying it to population samples, however, it may pose a high burden on the

participants with the risk of low participation rates.

The inaccuracy of completeness (both under- and over-collections) is also of concern.

The biochemical method of using para-amino-benzoic acid (PABA) administration

for three days preceding the urine collection would overcome this problem (157-159).

PABA is a substance not metabolised by the body and, once absorbed in the

bloodstream, is flushed through the kidneys with excretion being 100% of the

ingested load. A direct measurement of PABA in the urine would allow a direct
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measure of completeness. This method does not provide a feasible alternative for

population monitoring though, especially in low- and middle-income countries. It

reduces response rate as participants will have to plan in advance and take three pills

on the days preceding the collection. Non-responders (hence defaulters) will only be

identified once PABA has been measured (and undetected) in the urine, with

resource implications in terms of additional laboratory costs, pill costs and

unnecessary screenings.

A less precise but more feasible alternative is the measurement of urinary creatinine

excretion, constant within an individual at rest, and is dependent mainly on lean

body mass and age.

Finally, one advantage of 24-hour urine collection is that it could be used at the same

time for monitoring total iodine intake and therefore complements population

programmes of universal iodization for the prevention of iodine deficiency (25).

Feasibility and usefulness

24-hour urine collections have been employed in population studies for over four

decades. The most compelling evidence of feasibility and usefulness derives from

the INTERSALT study, an international study of the relationships between salt

intake and BP (126). INTERSALT was carried out in 52 population samples around

the world, in all continents, and included samples from remote populations in the

Amazon jungle, Africa, Australasia and rural China. Practicalities were addressed

with local training that allowed the quality of 24-hour urine collections to be

preserved.



58

In addition, community-based studies in rural Africa have been able to perform 24-

hour urine collections following the training of health care assistants at low cost

(53;160-162).

Alternative methods

There are several methods of partial urine collections (spot, timed, daytime, evening-

time, overnight) in alternative to 24-hour urine. They are less onerous for

participants, can allow faster screening time and fewer training needs for staff. They

are highly variable at the individual level but can give reasonable estimates of group

means, an aspect that makes them of interest for long-term monitoring and

population surveillance. These methods are highly dependent on hydration, duration

and volume of collection, and high proportional residual bladder volume. They are

expressed as sodium concentration per litre (rather than total daily excretion) and

converted into an estimated 24-hour sodium excretion. No validation is available to

establish the precision, validity and reliability of these conversions.

The method by Tanaka et al. (140), for example, is population-specific; requires

internal calibration with age, weight and creatinine; overestimates low intakes and

underestimates high intakes; and it has very low specificity for identifying lower salt

intake (163). Moreover, the relationship between urinary concentrations and total

excretions does not give information on population distributions (164).

Spot urines are currently used for monitoring iodine status in global iodization

programmes around the world, mainly in children and women of childbearing age

(25). These methods are less desirable for the initiation of monitoring programs of
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population salt reduction because they cannot provide an absolute measure of salt

intake at baseline. However, they may prove useful in repeated assessments over the

course of the programmes to assess relative ‘changes from a known baseline’ (156).

Implications for future research and policy

The assessment of population salt intake underpins the implementation of salt

reduction policies (4;15). This can be achieved by measurements and estimates of

‘average’ population levels and ‘average’ changes over time in the population as a

whole and in subgroups, and the population distributions (164). This objective

differs from the need to measure an individual’s salt intake. The present systematic

review indicates that most studies were aimed at answering the latter question, and

almost every study relied on correlation analyses and the strength of the correlation

coefficients to draw conclusions. The majority of studies have compared 24-hour

urine data with data derived from partial collections that were part of the 24-hour

collection (i.e. dependent collections) rather than independent of it. This is an

important point recently highlighted by Mann & Gerber (139). The appropriate

validation test would be between a 24-hour sample and an alternative sample which

would be independent of the 24-hour collection (as it would be when reassessing salt

intake in different population samples over time, to avoid spurious inter-correlations).

Correlation may not be the best measure to assess the question in the current context

of monitoring and evaluating public health programs of population salt reduction in

which ‘average’ values are estimated and followed up over time. Very few studies

have used this approach. In Scotland, for example, in the 2006 Health Survey, 24-

hour urinary sodium was weakly correlated with urinary sodium/creatinine ratio
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obtained from spot urine collections (165). There was poor reproducibility of three

consecutive spot urines (worse in women), and poor discrimination between groups

in the second, third and fourth quintile of 24-hour urinary sodium distribution.

A comprehensive validation analysis was carried out in Section 3.3 in which the

reliability and reproducibility of salt intake measured from ‘timed’ and ‘independent’

urine collections were examined in a British multi-ethnic population of men and

women and were independently validated in another population sample of Italian

men (163). The analysis compared different methods to estimate 24-hour sodium

output from ‘timed’ collections and used not only correlations but Bland-Altman

plots, prediction of quintile position and sensitivity and specificity of detecting a

reduction of sodium excretion below 100 mmol/day (about 6 g salt per day) using

Receiver Operating Characteristic (ROC) areas under the curve. In short, the analysis

showed consistent bias, moderate sensitivity and low specificity using time urines.

Finally, a national survey of salt intake in Ireland used spot urine collections to

estimate population levels of salt intake and 24-hour collections in an independent

sub-sample of the population (166). The average values were close to each other

(10.3 v 10.4 g of salt/day in men and 7.4 v 7.4 g of salt/day in women). The study

did not present breakdown data by age or by quintiles of salt intake to determine

whether biases across ages and levels of intake were present.

3.2.5 Conclusion

The present systematic review, whilst inconclusive in providing an answer to modify

current recommendations, highlights the inadequacies of current evidence and the
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need for validation studies pertinent to the context of population monitoring of salt

intake and of evaluation and surveillance of salt reduction programmes. At the same

time it suggests that 24-hour urine collections in small surveys are viable and reliable.

In the absence of more definitive evidence, we endorse the recommendations of the

PAHO/WHO Regional Expert Group in that “until more studies are carried out to

assess simpler but reliable methods of urine collection for the purpose of estimating

daily excretions of [sodium], 24 hour urine collections are recommended” (156).

3.3 Comparisons of Spot vs 24-hour Urine Samples for

Estimating Salt Intake: validation study

3.3.1 Introduction

A twenty-four hour urinary collection is the gold standard for assessing salt intake

through 24-hour urinary sodium excretion both in individuals and in populations

(167). This method has been used for a long time in physiological, metabolic and

epidemiological research. However, particularly for repeated use in large population

studies, 24-hour urine collections are often deemed inconvenient and alternative

methods have been derived (168-170). Spot and timed urine samples have been

suggested as an alternative and several methods have been devised and tested to

calculate the daily excretion from partial urine collections (171).

The aim of the present study was to investigate if spot urine can be an acceptable

substitute for 24-hour urine to estimate 24-hour sodium in men and women from

different ethnic groups (discovery study). The study tested the validity of spot urines
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applying different methods used in the literature and replicated the analysis in an

independent population of white men (validation study).

3.3.2 Data and Methods

Study 1 (discovery study)

Participants were selected from general practitioners’ registers in the South-West

London area, as described in detail elsewhere (172;173). In brief, the study was a

population-based cross-sectional survey of men and women between 40 and 59 years

old of three different ethnic groups: northern European origin (whites); West African

or Caribbean origin (blacks) and South Asian Indian origin (S Asians). The study

was designed so that there were approximately 250 people in each gender and ethnic

group stratum. In all 1,577 participants were studied between 1994 and 1996. The

present analysis includes 915 participants (297 white [131 men], 326 of black

African origin [125 men] and 292 South Asian [154 men]) who were untreated and

who provided both 24-hour urine collections and timed urine samples. The study had

ethical approval (EG/CL/92.5.17 and 10/H1211/29) and participants gave their

informed consent. The participants were asked to attend a screening unit between

08.00 am and 12.00 noon. They were requested to fast for the 12 h prior to the visit.

All attendees were administered a questionnaire, which was used to determine age,

ethnic origin, history of migration, socioeconomic and lifestyle characteristics.

Height and weight were measured and used to calculate body mass index (BMI)

(weight/(height)2). Supine BP was measured with standardised procedure using an

automatic machine as previously described. After the interview participants were

asked to collect 24-hour urine sample within a few days. They were given written
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detailed instructions on how to collect complete 24-hour urine sample. Complete

urine collections were either returned by the participants or were collected at the

participant’s address. Time and volume of collections were immediately recorded,

aliquots taken and stored at -20°C until assayed. A timed urine collection after an

overnight fast was also obtained on the morning of the investigation after the

participants had drunk one-to-two glasses of tap water in the morning. Volume (in

ml) and duration (in min) of the collection were recorded and specimens were

aliquoted and stored at -20°C until assayed. Urinary sodium and creatinine (Cr)

concentrations were measured using an automated analyser.

Study 2 (validation study)

The study started in 1975 with periodical follow-up for 30 years and involved the

Olivetti factories male workforce in southern Italy (www.olivettiheartstudy.org).

Data presented in this study were collected during the 2002–2004 follow-up

examination; a total of 148 healthy men, aged 32 to 75 years were examined, as

described elsewhere (174). The local ethics committee approved the study protocol,

and participants gave their informed consent. Body weight and height were measured

on a standard beam balance scale. Body weight was measured to the nearest 0.1kg

and height was measured to the nearest centimeter. The BMI was calculated as in

Study 1. BP was taken after the subject had been sitting upright for at least 10 min.

Systolic and diastolic (phase V) BP were measured with a random zero

sphygmomanometer (Gelman Hawksley Ltd., Sussex, UK) three times, 2 min apart.

The first reading was discarded, and the average of the last two readings was

recorded. A 24-hour urine collection was obtained from each participant for the
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measurement of sodium excretion to estimate daily dietary sodium intake. On the

day before the visit, participants were instructed to discard the first urine of the

morning of the collection and to save all urines voided for the following 24hour.

Urine was collected in polypropylene bottles, and delivered to the laboratory for

immediate storage of the samples at -80°C. Urinary sodium concentration was

measured by flame photometry. The 24-hour urinary creatinine excretion was used

as an estimate of the completeness of the collection: the participants whose urinary

creatinine felt below the 5th percentile of the distribution (0.6 g creatinine/24 h) were

excluded from the analysis. Urinary creatinine was determined by picric acid

colorimetric method (Jaffe`) using Cobas-Mira analyzer.

Statistical analyses

Estimation methods

Two methods are used to estimate 24-hour urinary sodium from timed urinary

sodium: Tanaka’s prediction and arithmetic extrapolation.

Tanaka’s prediction is completed in the following three equations:

-ܚ۱ܚ܃ܚܝܗܐ≈ ܌܍ܚ۾ ܚ۱ܚ܃ܚܝܗܐ-܌܍ܜ܋ܑ (1)

-܉ۼܚ܃ܚܝܗܐ

-ܚ۱ܚ܃ܚܝܗܐ
∝
ܕܜܑ ܉ۼܚ܃܌܍

ܕܜܑ ܚ۱ܚ܃܌܍

(2)

-܉ۼܚ܃ܚܝܗܐ∝
ܕܜܑ ܉ۼܚ܃܌܍

ܕܜܑ ܚ۱ܚ܃܌܍
× ܌܍ܚ۾ ܚ۱ܚ܃ܚܝܗܐ-܌܍ܜ܋ܑ

(3)

where Na is sodium and Cr is creatinine. Equation (1) assumes that 24-hour urinary

creatinine excretion at population level can be approximately estimated on the basis

of age, weight and height. Equation (2) assumes that 24-hour urinary sodium to
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creatinine ratio is proportional to timed urinary sodium to creatinine ratio. Equation

(3) is simply obtained by transforming equation (2) and replacing the measured 24-

hour urinary creatinine with the predicted values. More details of Tanaka’s

prediction can be found elsewhere (175-177).

The arithmetic extrapolation is shown in equation (4). The estimated 24-hour

urinary sodium is obtained by simply extrapolating the timed 24-hour urinary

sodium excretion level from timed duration to 24-hour scale:

ܕܜܑܛ۳ ܉ۼܚ܃ܚܝܗܐ-܌܍ܜ܉

ൌ ሺܑܕܜ ൈܖܗܜܑ܉ܚܜܖ܍܋ܖܗ܋�܉ۼ�ܚ܃�܌܍ ܕܜܑ ሻܔܗܞ�ܚ܃�܌܍

× (-ܖܗܜܑ܋܍ܔܔܗ܋ܚ܃/ܚܝܗܐ ܕܜܑ (܍

(4)

Statistical methods

In Study 1 the analyses were stratified by gender since men and women differ

significantly in weight and height, and therefore have different level in urinary

creatinine and sodium. Stepwise regression was used to predict 24-hour urinary

creatinine, as stated by Tanaka et al. (175). Correlation coefficients were examined

to compare the estimated and measured 24-hour sodium. Bland-Altman plot is

generally used to compare agreement of measurements in a graphical way. We used

it to validate the agreement between the estimated and measured 24-hour values

(178). The agreement was also examined by area under the curve (AUC) of Receiver

Operating Characteristic (ROC) curve and sensitivity and specificity with a cut-off

of <100 mmol/day (6 g salt per day) of urinary sodium (179). In addition, timed

urinary sodium was compared by quintiles of 24-hour urinary sodium. A p-value
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<0.05 was considered statistically significant. All analyses were conducted using

SPSS v17.

3.3.3 Results

Study 1 (discovery study)

The characteristics of the participants in Study 1 are shown in Table 3.3.1. Men were

heavier and taller than women. Daily urinary sodium and creatinine excretions were

significantly higher in men, whilst daily sodium to creatinine ratio was higher in

women (all p-values ≤ 0.001). Similar differences were seen in timed sodium and 

creatinine concentrations. Timed sodium to creatinine ratio was significantly higher

in women across all ethnic groups (all p<0.001). Timed urine volume was greater in

women than men, irrespective of ethnicity, while only white women had lower 24-

hour urinary volume than white men (2,173 v 2,724 ml/day, p<0.001). The average

sodium (salt) intakes estimated with the Tanaka methods were not surprisingly

comparable to the measured ones, since they were used to develop coefficients for

the Tanaka equations. However, the arithmetic method consistently underestimated

the intake.
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Table 3.3.1 Age adjusted characteristics of population in Study 1 (discovery study) by gender and ethnic group

Whites (n=297)
p

value

African origins (n=326)
p

value

South Asians (n=292)
p

valueFemale
(n=166)

Male
(n=131)

Female
(n=201)

Male
(n=125)

Female
(n=138)

Male
(n=154)

Age (year)
50.3 51.3

0.117
51.1 52.5

0.025
49.6 49.5

0.926
(49.4, 51.2) (50.4, 52.3) (50.3, 51.9) (51.5, 53.6) (48.6, 50.6) (48.6, 50.5)

Height (cm)
160.9 174.7

<0.001
160.9 172.7

<0.001
155.1 170.3

<0.001
(159.8, 161.9) (173.5, 175.8) (160.0, 161.7) (171.5, 173.8) (154.1, 156.1) (169.3, 171.2)

Weight (kg)
67.1 77.2

<0.001
76.1 79.3

0.036
65.5 71.4

<0.001
(65.2, 69.0) (75.1, 79.3) (74.2, 77.9) (77.0, 81.7) (63.4, 67.5) (69.4, 73.3)

BMI (kg/m2)
26 25.3

0.161
29.4 26.5

<0.001
27.2 24.6

<0.001
(25.3, 26.6) (24.5, 26.0) (28.8, 30.0) (25.7, 27.3) (26.5, 27.9) (23.9, 25.3)

Waist to hip ratio
0.804 0.916

<0.001
0.836 0.92

<0.001
0.849 0.937

<0.001
(0.794, 0.814) (0.904, 0.927) (0.827, 0.846) (0.908, 0.932) (0.836, 0.861) (0.925, 0.949)

Systolic B.P. (mmHg)
123.1 125.6

0.226
135.6 135.6

0.999
128.8 129

0.945
(120.5, 125.7) (122.6, 128.5) (132.8, 138.4) (132.1, 139.1) (126, 131.6) (126.3, 131.6)

Diastolic B. P. (mmHg)
77.2 81.2

<0.001
85.2 88.7

0.004
80.4 85.3

<0.001
(75.8, 78.7) (79.6, 82.8) (83.8, 86.7) (86.9, 90.5) (78.8, 81.9) (83.9, 86.8)
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Table 3.3.1 cont’d

Whites (n=297)
p

value

African origins (n=326)
p

value

South Asians (n=292)
p

valueFemale
(n=166)

Male
(n=131)

Female
(n=201)

Male
(n=125)

Female
(n=138)

Male
(n=154)

24-hour Urine volume (mL)*
2,173 2,724

<0.001
2,271 2,180

0.407
2,165 2,298

0.287
(2,034, 2,324) (2,528, 2,936) (2,141, 2,409) (2,023, 2,350) (1,998, 2,346) (2,131, 2,480)

24-hour Urinary Na
(mmol/day)*

129.9 174.9
<0.001

145.9 170.9
0.001

129.8 161.4
<0.001

(121.9, 138.5) (162.8, 187.8) (137.9, 154.5) (159, 183.6) (121.2, 139.0) (151.3, 172.2)

24-hour Urinary Cr (mmol/day)*
9.5 13.9

<0.001
12.2 17.2

<0.001
7.6 12

<0.001
(9.1, 9.9) (13.2, 14.5) (11.7, 12.7) (16.4, 18.1) (7.2, 8.0) (11.4, 12.6)

24-hour Urinary Na/Cr
13.7 12.6

0.043
12 9.9

<0.001
17 13.5

<0.001
(13, 14.4) (11.9, 13.4) (11.4, 12.6) (9.3, 10.6) (16.0, 18.1) (12.8, 14.3)

timed Urine volume (mL)*
246 200

0.028
233 151

<0.001
223 183

0.048
(218, 278) (174, 230) (211, 258) (133, 172) (193, 256) (160, 209)

timed Urine collection time
(min)*

148 137
0.038

152 145
0.269

139 141
0.772

(141, 155) (130, 144) (145, 159) (137, 154) (130, 149) (132, 150)

timed Urinary Na concentration
(mmol/L)*

47.4 61.9
<0.001

54.8 89.6
<0.001

49.4 64.5
<0.001

(43.6, 51.4) (56.4, 67.8) (50.6, 59.4) (80.9, 99.2) (44.5, 54.7) (58.5, 71.1)

timed Urinary Cr concentration
(mmol/L)*

3.4 6
<0.001

4.4 9.8
<0.001

3 5.2
<0.001

(3.0, 3.8) (5.3, 6.9) (4.0, 4.9) (8.5, 11.2) (2.6, 3.5) (4.5, 5.9)

timed Urinary Na/Cr*
13.9 10.3

<0.001
12.4 9.1

<0.001
16.3 12.5

<0.001
(12.7, 15.2) (9.3, 11.3) (11.5, 13.4) (8.3, 10.0) (14.8, 18.0) (11.4, 13.7)

Note: Values are shown as Mean (95% CI) unless stated; Na: sodium, Cr: creatinine; *: Geometric means.
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Tanaka’s prediction

Estimates of daily urinary sodium using the Tanaka method were derived for men

and women in each ethnic group. Correlations between measured and estimated 24-

hour urinary sodium were weak, although significant in Whites (r Spearman=0.251;

p=0.004 in men and 0.330; p<0.001 in women) and South Asians (0.187; p=0.02 and

0.310; p<0.001 in men and women respectively) (Table 3.3.2). Low grade and non-

significant correlations were seen in men and women of African origin (0.166;

p=0.065 and 0.055; p=0.436, respectively).

Table 3.3.2 Correlations between estimated 24-hour urinary sodium by Tanaka

method and by Arithmetic method, and measured 24-hour urinary sodium

Tanaka’s method Arithmetic method

Whites
African
origins

South
Asians

Whites
African
origins

South
Asians

Women
0.330

(<0.001)
0.055

(0.436)
0.310

(<0.001)
0.367

(<0.001)
0.116

(0.102)
0.264

(0.002)

Men
0.251

(0.004)
0.166

(0.065)
0.187

(0.020)
0.282

(0.001)
0.221

(0.013)
0.170

(0.035)
Note: Values are expressed as coefficient (p-value).

The Tanaka’s prediction produced overestimated values in the low 24-hour urinary

sodium levels and underestimated values in the high 24-hour urinary sodium levels

across genders and ethnic groups indicating consistent bias (Figure 3.3.1). The bias

was mainly due to the inaccuracy of age, weight and height to predict 24-hour

creatinine excretion in the three ethnic groups, particularly in those of African origin

(data not shown).
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Figure 3.3.1 Study 1: Bland-Altman plot comparing estimated 24-hour urinary

sodium by Tanaka method and measured 24-hour urinary sodium

Note: Solid and dashed lines are mean and 95% confidence interval of the difference between
estimated and measured 24-hour urinary sodium.

Using Receiver Operating Characteristic (ROC) Areas Under the Curve (AUC)

estimated 24-hour urinary sodium values were poor (all <0.750) using measured 24-

hour urinary sodium as gold standard. Using a measured 24-hour urinary

sodium >100 mmol/day as positive test, estimated values had moderate sensitivity

and poor specificity in both genders and all ethnic groups (Table 3.3.3).
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Table 3.3.3 ROC, sensitivity and specificity of two methods of estimation

Tanaka’s method Arithmetic method

Whites
African
origins

South
Asians

Whites
African
origins

South
Asians

Women
0.652

(95.8/8.5)
0.550

(100/0)
0.631

(95.3/6.3)
0.640

(68.1/51.1)
0.533

(64.4/42.1)
0.603

(68.9/53.1)

Men
0.538

(100/0)
0.521

(100/0)
0.582

(100/0)
0.514

(69.0/33.3)
0.575

(70.4/20.0)
0.624

(68.9/45.5)

Note: Measured 24-hour urinary sodium 100 mmol/day is defined as positive; results are expressed
as Area Under Curve (sensitivity %/specificity %).

Figure 3.3.2 shows both estimated and measured 24-hour urinary sodium plotted

against quintiles of estimated 24-hour sodium. Poor discrimination of measured

sodium was found between Q3 and Q4 in white men and Q1, Q2 and Q3 in South

Asians. The worst estimation of group means was in those of African origin.
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Figure 3.3.2 Study 1: Measured 24-hour urinary sodium by quintiles of estimated

24-hour urinary sodium using Tanaka’s method

Arithmetic extrapolation

Similar to the Tanaka’s method, correlations between measured and estimated 24-

hour urinary sodium were weak, although significant in Whites (r Spearman=0.282;

p=0.001 in men and 0.367; p<0.001 in women) and South Asians (0.170; p=0.035

and 0.264; p=0.002 in men and women respectively). In people of African origin the

correlation was significant in men (0.221; p=0.013) but not in women (0.116;

p=0.102).



73

The Arithmetic extrapolation produced underestimated values in the low 24-hour

urinary sodium levels and overestimated values in the high 24-hour urinary sodium

levels across genders and ethnic groups indicating consistent bias (Figure 3.3.3). The

bias was in the opposite direction as that described using the Tanaka’s method.

Figure 3.3.3 Study 1: Bland-Altman plot comparing estimated 24-hour urinary

sodium by Arithmetic method and measured 24-hour urinary sodium

Note: Solid and dashed lines are mean and 95% confidence interval of the difference between
estimated and measured log transformed 24-hour urinary sodium.
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Using Receiver Operating Characteristic (ROC) Areas Under the Curve (AUC),

again, estimated 24-hour urinary sodium values were poor (all <0.750) using

measured 24-hour urinary sodium as gold standard. Using a measured 24-hour

urinary sodium >100 mmol/day as positive test, estimated values had moderate

sensitivity and poor specificity in both genders and all ethnic groups (Table 3.3.3).

Figure 3.3.4 Study 1: Measured 24-hour urinary sodium by quintiles of estimated

24-hour urinary sodium using the Arithmetic method
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Figure 3.3.4 shows both estimated and measured 24-hour urinary sodium plotted

against quintiles of estimated 24-hour sodium. There is a very poor discrimination of

measured sodium. Furthermore, a bias is clearly detected with gross underestimate at

low intakes and gross overestimates at high intakes across genders and ethnic groups.

Note that natural logarithm transformation was applied in this case on the estimated

and measured sodium values in order to remove the dependence of variation on the

magnitude of urinary sodium level.

Study 2 (validation study)

We carried out a validation analysis in an independent population sample of white

men, whose characteristics are shown in Table 3.3.4.

Table 3.3.4 Age adjusted characteristics of population in Study 2 (validation

study) (n=148)

Variables
Mean

(95% CI)

Age (year) 58.3 (57.1, 59.4)

Height (cm) 166.9 (166.0, 167.9)

Weight (kg) 75.8 (74.0, 77.6)

BMI (kg/m2) 27.2 (26.6, 27.7)

Waist to hip ratio 0.985 (0.974, 0.995)

Systolic BP (mmHg) 138.1 (135.4, 140.8)

Diastolic BP (mmHg) 89.8 (88.3, 91.3)

24-hour Urinary Na (mmol/day)* 193.3 (181.1, 206.4)

24-hour Urinary Cr (mmol/day)* 12.6 (12.0, 13.3)

24-hour Urinary Na/Cr 15.3 (14.4, 16.3)

timed Urine volume (mL)* 275 (250, 303)

timed Urine collection time (min)* 119 (117, 121)

timed Urinary Na concentration
(mmol/L)*

54.7 (48.9, 61.1)

timed Urinary Cr concentration
(mmol/L)*

3.5 (3.1, 4.0)

timed Urinary Na/Cr* 15.5 (14.3, 16.9)

Note: Na: sodium, Cr: creatinine*: Geometric means.
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Tanaka’s prediction

As the participants were all whites, the formulas for white men obtained in Study 1

were used. The pattern of correlation between measured and estimated 24-hour

urinary sodium was similar to the one obtained in white men in Study 1, although the

correlation coefficient was stronger (r Spearman = 0.499; p<0.001). Like in Study 1, the

Bland-Altman plot indicated overestimated values in the low 24-hour urinary sodium

levels and underestimated values in the high 24-hour urinary sodium levels

indicating consistent bias (Figure 3.3.5a). Although the Area Under the Curve (AUC)

of ROC was higher than white men in Study 1 (0.649), it was still below 0.750 with

specificity of 100% (sensitivity 0%) for the detection of values <100 mmol/day.

Figure 3.3.5c shows the comparison between estimated and measured 24-hour

urinary sodium in Study 2 by quintile. Again the quintile was created on the basis of

estimated urinary sodium values. The estimated values show significant

underestimation in the Q3-Q5.

Arithmetic extrapolation.

Similar to the Tanaka’s method, correlations between measured and estimated 24-

hour urinary sodium were weak, although significant (r Spearman=0.329; p<0.001).

The Arithmetic extrapolation produced underestimated values in the low 24-hour

urinary sodium levels and overestimated values in the high 24-hour urinary sodium

levels indicating consistent bias (Figure 3.3.5b). The bias was in the opposite

direction as that described using the Tanaka’s method, consistent with the results of

Study 1.
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Using Receiver Operating Characteristic (ROC) Areas Under the Curve (AUC), like

in Study 1, estimated 24-hour urinary sodium values were poor (0.576) using

measured 24-hour urinary sodium as gold standard. Using a measured 24-hour

urinary sodium >100 mmol/day as positive test, estimated values had moderate

sensitivity (85.5%) and poor specificity (20.0%).

Figure 3.3.5d shows both estimated and measured 24-hour urinary sodium plotted

against quintiles of estimated 24-hour sodium. Using this method, there is poor

discrimination of measured sodium. Furthermore, a bias is clearly detected with

underestimate at low intakes and overestimates at high intakes. Note that, as in Study

1, natural logarithm transformation was applied in this case on the estimated and

measured sodium values in order to remove the dependence of variation on the

magnitude of urinary sodium level.
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Figure 3.3.5 Study 2. Comparison of 24-hour urinary sodium measured by

Tanaka’s method (a) and arithmetic method (b) and 24-hour urine sample (solid line

- mean of difference, dash lines - mean±2SD). Comparison between estimated and

measured 24-hour urinary sodium by quintiles of sodium with the Tanaka method (c)

and the arithmetic methods (d)

Note: Na: sodium.

3.3.4 Discussion

This study investigated the reliability and reproducibility of two methods of

assessing daily sodium excretion (hence salt intake) alternative to 24-hour urinary

sodium, based on spot timed urine collections, using two independent population

samples. The results show that simple and less expensive alternative methods using

spot and timed urine samples produce biased estimations and have low-grade

agreement with 24-hour urine collections in both populations. This is in spite of the

average value in sex and ethnic groups were highly comparable with one method.
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The methods show different performance in male and female white, black and South

Asian groups, with the worst estimation in people of black African origin. The

results suggest that whilst alternative methods using spot and timed urine samples

may be able to approximate average true levels in population samples, they are

unreliable and not reproducible for estimating salt intake between groups within the

same population and they are therefore unsuitable for monitoring group changes over

time. Our conclusions are in keeping with those of a recent systematic review of the

world literature carried out in over 1.3M participants in adults and children (171).

The present study adds to the previous evidence in that it provides a systematic

validation study repeated in an independent population sample to show the presence

of bias. This is a great importance since the assessment of population’s salt intake

and its changes over time underpin current policies for population salt reduction and

it is a major pillar of such programs globally (180).

The estimations by the two methods across all ethnic groups show consistently low-

grade correlation with measured 24-hour urinary sodium. The weak correlations of

the estimation by the Tanaka’s method are different from other studies. Tanaka et al.

(181) reported a correlation coefficient of 0.54 in a Japanese population sample but a

coefficient of 0.32 in a validation Japanese sample, both using random spot urines.

Kawasaki et al. (182) adopted a similar estimation method. They produced a

correlation coefficient of 0.73 with measured values in a Japanese sample using

second morning voiding urines. In the United States, Mann also employed this

method and used measured 24-hour urinary creatinine in a group of patients with

unstated illness. Correlation coefficients were 0.17, 0.31 and 0.86 in random spot,
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morning and evening urines. The variation of reported coefficients indicates that

Tanaka’s method perform inconsistently in different populations.

Although the alternative methods can provide a convenient and less expensive way

to estimate 24-hour urinary sodium, the estimations are dependent on the variability

of urinary sodium concentration. Sodium concentration in spot and timed urines has

high inter-individual and intra-individual variability, which are caused by various

factors, including time of collection (e.g. morning vs afternoon), dietary

consumption (e.g. high-salt-content meal vs low-salt-content meal), hydration and

residual bladder volume (171). Using quintile analysis and Bland-Altman plots, the

estimation by the Arithmetic method has also shown large discrepancy with

measured 24-hour sodium in both samples. It is mainly caused by the sodium

variability. If sodium concentration in the timed urine is close to 0, the estimated 24-

hour urinary sodium will also be close to 0. Therefore, the Arithmetic method is very

likely to produce extreme estimates. Compared to the Arithmetic method, Tanaka’s

method estimates 24-hour urinary sodium with adjustment for 24-hour urinary

creatinine. Although the adjustment somewhat reduces the variability of sodium

concentration, its 24-hour sodium estimation is still constrained by the accuracy in

prediction of 24-hour urinary creatinine excretion. The prediction assumes that

participants’ age, weight and height can approximately produce accurate 24-hour

creatinine excretion. Our results, however, indicate that this assumption is

population-specific. The correlation between predicted and measured 24-hour

urinary creatinine is weak (results not shown). Although the quintile comparison

shows underestimation across all ethnic groups, which is consistent with Tanaka and

colleagues’ results (181), poor discrimination is presented in some ethnic groups, e.g.
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African men and women and White women. Consistent bias is shown in Bland-

Altman plots with poor diagnostic performance presented in sensitivity and

specificity test. Tanaka’s method produced underestimations at high levels of salt

intake and overestimations at low levels.

Strengths and limitations

Timed urine samples were used in our analysis instead of spot urine samples. It is

known that sodium concentration varies considerably in spot urines. The variability

in timed urine samples may be stabilised by the collection time. In addition, our

analysis was conducted in participants from populations rather than from patients’

groups. Different ethnic representation enabled us to investigate the reproducibility

and reliability in different groups. Moreover, our analysis used not only correlation

coefficient and quintile comparison, but Bland-Altman plot, Receiver Operating

Characteristic curve and sensitivity/specificity test for comparing agreement and

diagnostic performance.

Our analysis has limitations. The validation sample only includes Italian White men.

This may limit our validation in both genders and people of African origin and South

Asian groups. We relied on a single 2h-h urine collection for each participant. This

may not be adequate for accurate measurement as salt intake differs largely from day

to day (183). Our analysis tested two methods. Other forms of estimation, such as

sodium to potassium ratio, are not analysed and discussed here. The inaccuracy of

completeness (both under- and over-collections) is also a limitation. We did not use

the para-aminobenzoic acid method (184;185) as it would not be feasible for
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population studies, especially in low- and middle-income countries, would reduce

response rate, and would increase resources needed for surveillance programs (171).

Implications

The use of alternative methods based on spot and timed urines have become

increasingly popular as they are less onerous for participants, allow faster screening

time and require less training of staff. Although they are convenient, the methods are

likely to produce biased estimations of salt intake in populations. Moreover, these

methods are not reproducible. The estimated coefficients for equations used in both

Tanaka’s methods and the Arithmetic method are different across ethnic groups. This

indicates that for each specific population, the sodium to creatinine ratio, sodium

concentration, and anthropometric information have to be collected each time in

order to obtain the estimation equations for the population.

3.3.5 Conclusions

Urinary sodium concentration in spot and timed urines does not provide reliable and

reproducible estimates of 24-hour urinary sodium excretion. 24-hour urinary

collection for measurement of sodium excretion remains the preferred tool for

assessing salt intake in populations.
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3.4 Systematic Review of Studies Comparing 24-hour

versus Spot Urine Collections for Estimating Population

Iodine Intake

3.4.1 Introduction

Urinary iodine is widely used to measure iodine intake. Two approaches are used to

assess urinary iodine: 24-hour urinary collection and spot urinary samples. Twenty-

four-hour collection is the gold standard to estimate urinary iodine status (186). At

least 90% of iodine intake is excreted in the urine within the next 24 hours. The

remaining iodine in the body is utilised by the thyroid gland, as shown in Figure 2.2.

The spot samples approach is more practical and easy to use, in spite of day-to-day

variations in the spot samples at individual level (107;108). However, the reliability

and reproducibility of the spot urine approach are not always satisfactory.

The present section aimed to systematically review all studies comparing iodine

intake measured by both 24-hour urine collections and alternative methods (spot and

timed) in both adults and children.

3.4.2 Methods

Literature search

Similar to the salt intake review, a search strategy was developed to identify studies

that reported the association between iodine excretions measured by 24-hour urine

collection and spot urine samples. We searched the electronic databases MEDLINE
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(from 1950 to May week14, 2010) and EMBASE (from 1980 to week 18, 2010), as

well as the Cochrane Library using the terms “sodium [dietary, chloride, intake,

excretion]” “salt [intake]” and “urine [timed, spot, random, 24-hour]”. In addition,

we reviewed reference lists of original and review articles to search for more studies.

Only full-length articles were considered. No language restriction was applied. Only

studies in humans were included.

Inclusion and Exclusion Criteria

Studies were included if they meet the criteria as set out below: (a) full paper, (b)

human study, (c) population study or those based on large groups, and (d)

availability of both 24-hour and ‘spot’, ‘overnight’ or ‘timed’ urinary iodine. Studies

were excluded if the following criteria were met: (a) not in the English language, (b)

abstract only, (c) sample size <40, (d) studies in special patients group (e.g. renal or

heart failure, CHD, diabetes, etc.), and (e) studies not reporting either 24-hour

urinary iodine or one of alternative methods (spot, overnight, timed urinary iodine).

If multiple published reports from the same study were available, only the one with

the most detailed information for both exposure and outcome was included.

Data extraction

Three investigators (CJ, LS and CP) extracted data independently and differences

were resolved by discussion and consensus. Relevant data included the first author’s

surname, year of publication, country of origin of the population studied, population

type, sample size, age, description of urine sampling, mean or median iodine for 24-

hour and for alternative samples, outcome measures (correlations, regression

coefficients, Bland-Altman plots).
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3.4.3 Results

Characteristics of studies

Eleven papers met the inclusion criteria. Five papers were excluded after reading the

full papers due to lack of data. The actual sample size of participants providing both

24-hour and spot urinary iodine measurements in 2 papers was less than 40

(187;188). The other 3 papers only reported either 24-hour urinary iodine excretion

or spot urinary iodine concentration (189-191). Of these three, 2 papers used the

same population (189;190). Only 6 papers were finally included for this review

(Figure 3.4.1). Four papers were conducted in the adult population, 1 in adolescents

and 1 in both adults and children.

Overall, there were 1,434 participants from 5 countries (1 from Brazil, 2 from New

Zealand, 1 from Norway, 1 from China and 1 from Ivory Coast). All studies

recruited both male and female participants.
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Figure 3.4.1 Flow chart of systematic review of iodine intake

Summary of studies

Details of these papers were listed in Table 3.4.1. One study (192) used an auto-

Analyzer technique for iodine measurement, while the other three (193-195) used the

Sandell-Kolthoff reaction method.

Two studies reported 24-hour urinary iodine excretion (UIE) and spot urinary iodine

concentration (UIC) (196;197). However, no comparison (correlation, Bland-Altman

plot, etc.) was made between the two measurements.



87

Frey et al. (192) conducted the study in a group of healthy Norwegian physicians

and nurses. The urine samples were collected on an ordinary working day. The

authors regressed the urinary iodine to creatinine ratio (I/Cr) estimated from the

afternoon urine samples on the 24-hour UIE for men and women. Both relationships

were significant (regression coefficient=0.5 for men and 0.76 for women). The

coefficients were then applied in a population group to estimate the population

iodine intake. The authors recommended using the spot urinary I/Cr for the

estimation of 24-hour UIE, rather than using a theoretical value which ignored

circadian variation in iodine excretion.

Thomson et al. (193) compared the association of urinary iodine levels measured

from spot urine samples and 24-hour urine collection in a group of volunteers in

New Zealand. Two types of spot urine samples were obtained: 1) a fasting urine

sample collected one day prior to the 24-hour urine collection, and 2) a random

sample obtained from the 24-hour urine collection. The authors reported a higher

association between 24-hour UIE and the random UIC (r=0.58) and a lower

association between 24-hour UIE and the fasting UIC (r=0.34). Although both

correlations were significant, they concluded that a 24-hour urine collection was

necessary for diagnosing iodine deficiency in individuals. They also suggested the

use of fasting urines to estimate the iodine deficiency in the populations.

In another study in New Zealand, two groups of people were recruited from two

blood transfusion centres. Thomson et al. (194) compared the 24-hour UIE with the

UICs measured from overnight fasting urine samples and double voided fasting

morning samples. Both concentrations showed comparable correlations with the 24-

hour UIE (r=0.492 for overnight fasting and 0.475 for double voided) using the



88

pooled sample. The authors confirmed the necessity of using 24-hour urine

collection to determine iodine status in individuals.

Vanacor et al. (195) conducted a study in a group of Brazilian men and women.

Twenty-four-hour urine collection was obtained from four continuously collected

samples: morning, afternoon, evening and overnight. The afternoon sample had a

higher correlation with 24-hour UIE, compared to the other three timed urine

samples (r=0.78 for afternoon, r=0.54 for morning, r=0.37 for evening and r=0.77 for

overnight). The Bland-Altman plot suggested the afternoon sample was the best in

estimating 24-hour UIE. The other three samples had increased level of over- and

under-estimation. In particular, both evening and overnight samples had a trend of

underestimated values in the low 24-hour urinary iodine levels and overestimated

values in the high 24-hour urinary iodine levels. It was suggested that the afternoon

sample was the best among the four spot urine samples to estimate the iodine status.
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Table 3.4.1 Systematic review of studies in adults

Author
(year)

Country Population
Sample

(n)
Age
(yrs)

Urine
samples

Urinary Iodinea Ind. Measureb Notes

Frey et al.
(1973)

Norway
Physicians 33 men 22-64

24h v spot
(PM)

24h mean: 216 µg/d
spot I/Cr: 114 µg/g

No

Regression: spot I/Cr=0.5*24h
UIE Auto-Analyzer

technique
Nurses 29 women 20-57

24h mean: 165 µg/d
spot I/Cr: 125 µg/g

Regression: spot I/Cr=0.76*24h
UIE

Thomson
et al.
(1996)

New
Zealand

Volunteers

31 men 18-56 24h v
fasting
spot v

random
spot

24h mean: 0.45 mmol/d
0.34 mmol/L

F mean: 0.34 mmol/L
R mean: 0.34 mmol/L

24h &
random

are
dependent

F v 24h UIE: r=0.34
F v 24h UIC: r=0.39
R v 24h UIE: r=0.58
R v 24h UIC: r=0.56

Sandell-Kolthoff
reaction method.

24h urines are
necessary for diagnosis
of iodine deficiency in

individuals
31 women 18-58

Thomson
et al.
(1997)

New
Zealand

Otago Blood
Transfusion

Centre

102 men,
86 women

18-68 24h v
overnight
fasting v

double
voided
fasting

morning

24h: 60 µg/d
42 µg/L

ov: 43 µg/L
DV: 43 µg/L

No

24h UIC v UIE: r=0.697
ov_fasting v 24h UIE: r=0.492

DV v 24h UIE: r=0.475

24h I/Cr v 24h UIE: r=0.833
ov_fasting I/Cr v 24h UIE:

r=0.587
DV I/Cr v 24h UIE: r=0.597

Sandell-Kolthoff
reaction method.
UI concentrations

comparable in threes
samples. However,

spot UIC poorly
associated with 24h
UIE, Bland-Altman

plot indicated
unsatisfactory

agreement

Waikato Blood
Transfusion

Centre

67 men,
77 women

19-72

24h: 76 µg/d
53 µg/L

ov: 50 µg/L
DV: 45 µg/L

Vanacor
et al.
(2008)

Brazil Volunteers
17 men,

43 women
33.7

24h v AM,
PM, eve,

overninght

24h mean: 292 µg/d
AM: 182 µg/L
PM: 201 µg/L

eve: 238.4 µg/L
ov: 253.1 µg/L

No

AM v 24h UIE: r=0.544
PM v 24h UIE: r=0.778
eve v 24h UIE: r=0.366
ov v 24h UIE: r=0.771

Bland-Altman: PM estimates
were closer to 24h,

overestimation in eve and
overnight samples

Sandell-Kolthoff
reaction method.

UI concentration in
afternoon sample better

reflected 24h UI
concentration
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Table 3.4.1 cont’d

Author
(year)

Country Population
Sample

(n)
Age
(yrs)

Urine
samples

Urinary Iodinea Ind. Measureb Notes

Hess et
al.
(1999)

Ivory Coast

Adults urban
30 men,

22 women
30.6

24h

443 µg/d

Yes n/a
Sandell-Kolthoff
reaction method.
No comparison

Adults rural
28 men,

21 women
29 166 µg/d

Children urban 110 10

spot (AM)

488 µg/L

Children rural 103 9.3 263 µg/L

Pregnant
women urban

72 25.9 351 µg/L

Pregnant
women rural

66 23 136 µg/L

Wong et
al.
(1998)

China Student
476 spot,

80 of
them 24h

15.3 spot
15.1 24h

24h v spot
(AM)

24h: 189 µg/d
170 µg/L

spot: 190 µg/L
Yes n/a

Ceric ion-arsenious
acid reaction.

No comparison

Note: Ind.: independent, UIE: urinary iodine excretion, UIC: urinary iodine concentration, I/Cr: urinary iodine/Creatinine ratio (ug/g), n/a: not available;
a: median values unless specified;
b: r: correlation coefficient; Regression: regression coefficient; Bland-Altman: Bland-Altman plot.
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3.4.4 Discussion

This is the first systematic review of studies comparing urinary iodine levels

estimated in spot urines and measured in 24-hour urine collection. Compared to the

salt intake review (Section 3.2), very few studies have conducted such comparison in

iodine. However, the included studies are still different in objectives, urinary iodine

determination methods, types of urine collection, study populations, measures for

comparison and protocols. The studies cannot provide convincing evidence on

whether the gold standard can be replaced with any of the proposed methods or

which urine sample is the best for estimating 24-hour urinary iodine excretion or

concentration.

Advantages and disadvantages

Urinary iodine is a sensitive indicator of iodine intake and commonly used by the

WHO and many Member States for measuring population and individual iodine

status. More than 90% of the iodide is excreted in urine in the next 24 hours (89;90).

Twenty-four-hour urine collection is the gold standard for iodine measurement.

However, this method has three major issues, including high participation burden,

high cost and lack of completeness. In particular, a quality assurance tool was not

widely used in the iodine measurement. In the four studies, only one study (195)

reported that they used 75% of 24-hour urinary creatinine as a validation of urine

collection completeness. Frey et al. (192) only asked participants to confirm the

completeness. The other two studies did not report any method of such validation.

The lack of quality assurance indicates the potential inaccuracy in 24-hour urinary
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iodine measurement. In the salt intake review (Section 3.2), two possible methods

were discussed: para-amino-benzoic acid (PABA) and urinary creatinine. The use of

such methods needs to be included in the protocols for high quality urinary iodine

measurement.

Alternative methods

Three studies used spot UIC to estimate 24-hour urinary iodine excretion. The UIC

values were estimated from spot, morning, afternoon, evening, overnight and timed

samples. Spot urinary iodine to creatinine ratio (I/Cr) was also used in one paper

(192).

Correlation coefficient is commonly used for comparisons between spot UIC and 24-

hour UIE. The results varied in different types of samples. Vanacor et al. (195)

found the afternoon sample had the strongest correlation with 24-hour urine

collection. Two New Zealand studies led by Christine Thomson both reported weak

correlations between the overnight and double voided fasting samples and 24-hour

collection.

Two of the 4 included studies (194;195) used Bland-Altman plot to examine the

agreement of urinary iodine in spot samples and 24-hour urine collection. Bland-

Altman plot perform better than correlation in terms of accuracy. Both studies

produced unsatisfactory results according to the plots. In one study, the plots showed

under- or over-estimation in all (morning, afternoon, evening and overnight) urine

samples. In particular, these overestimated values may misclassify individual and
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population iodine status, exposing more individuals than expected to the risk of

iodine deficiency.

One study used urinary I/Cr to estimate 24-hour UIE. However, spot urinary

creatinine varies considerably across populations, ethnic and age groups and by

gender (198;199). Thus, creatinine correction may not properly adjust iodine for

demographic differences.

Therefore, although median spot UIC may be used to monitor population iodine

status, these alternative methods would not perform as well as the gold standard to

make accurate classification of those at risk of mild, moderate and severe iodine

deficiency.

Implications

The number of valid papers is far from sufficient to provide conclusive comparisons

in urinary iodine between spot urine samples and 24-hour collection. However, the

included papers highlighted methodological challenges in the comparison.

Firstly, spot urine samples were part of the 24-hour urine collection. The dependence

inevitably increases the resulting correlation strength. Ideally, the comparison should

be carried out using a spot or timed sample independent of the 24-hour collection.

Secondly, validation of 24-hour urine completeness did not appear to be a common

practice in the studies. Any inaccurate collection could lead to biased estimation of

the urinary iodine. Future studies could include one of the effective methods (e.g.

PABA or urinary creatinine) for such validation.
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In addition, there are concerns about the reliability and reproducibility of the spot

urine methods in the adult population and the generalisability of the results for policy

decisions. Four included papers were carried out in an adult population. No valid

comparison was made in the most vulnerable populations (i.e. newborns, children,

and women of pregnant age) to iodine deficiency and the main target of population

iodisation programmes. Their dietary patterns and iodine status classification are

different from the adults. Therefore, the findings in the included papers may not be

applicable in these vulnerable populations. Studies specifically designed for these

populations are needed to answer the question of this review.

When using spot urine samples to estimate urinary iodine excretion in a 24-hour

span, people may encounter another issue related to total iodine intake. Studies often

report UIC, UIE or both. There seems to be no consensus on which indicators should

be consistently used. The WHO defines the optimal iodine status as 100-199 μg/L, 

which corresponds to the optimal average iodine intake of 150-300 μg/day. Even if 

UIC in spot urine samples has a high correlation with that in 24-hour urine collection,

a high UIC is not necessarily associated with a high level of daily iodine intake. This

is partly due to the circadian rhythm of urinary iodine excretion (191). In the same

24-hour span, spot UIC could be high at one time and low at another, while 24-hour

UIE is constant. In addition, UIC (μg/L) is a measure that does not allow for the 

amount of urinary volume produced and hydration status. Further comparison of the

association between UIC and UIE in both timed urine samples and 24-hour urine

collection is desirable to provide better understanding of this issue and improve the

report quality of iodine intake and iodine status.
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Conclusions

The present systematic review suggests that simple methods using spot urine

samples may not be as reliable and accurate as the gold standard for iodine intake

measurement and it highlights the need for further methodological investigations.

Given the limited evidence, 24-hour urine collection should still be the method for

iodine intake measurement.

3.5 Summary of Chapter 3

Chapter 3 systematically reviewed the measurements of population salt and iodine

intake since the reliability and reproducibility of such intakes are important to

monitoring and evaluation of salt reduction and salt iodisation programmes. Twenty-

four-hour urine collection is the gold standard for both salt and iodine intakes

measurements, but it is also subject to high cost, lack of completeness and high

participation burden. However, current evidence is not adequate and consistent,

indicating that simple methods using spot urine samples are not as reliable and

accurate as the gold standard for both salt and iodine intake measurements.

In particular, two popular measurements of salt intake based on spot urine samples

were examined for their reliability and reproducibility in two independent

populations using correlation, Bland-Altman plot, Receiver operating characteristics

curve and quintile analysis. The resulting biases in the estimated 24-hour urinary

sodium excretion suggested that 24-hour urine collection remains the preferred tool

for assessing salt intake in populations.
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Chapter 4 Research Methodology

4.1 Introduction

Before the introduction of universal salt iodisation (USI), iodine status varied

geographically due to its natural distribution. There was higher prevalence of iodine

deficiency in inland and mountainous areas than coastal areas. For example, the

“goiter belt” in the United States (see Section 4.3 in Chapter 4) and the Alps and

Pyrenees of Europe. After years of implementation of USI programmes worldwide,

the geographical inequality is still reported at national (17;118) and sub-national

levels (200-202). Likewise, data showed the levels of salt intake varied across

(32;126) and within countries (203;204).

In many population studies, geographical information is collected but its usage is

usually limited for descriptive purposes only. The exploration of the geographical

structure of the data in the stage of data modelling is even rare. However,

geographical information can be useful in that the effect of geographical location,

known as spatial effect, can be regarded as a surrogate of many risk factors in that

people clustered in the same area are usually exposed to similar risk factors, e.g.

weather, food sources, education, and access to medical services, etc. Therefore, the

inclusion of the spatial effect in the models is helpful to improve the estimation and

understanding of the interested health outcomes.

A class of Bayesian geo-additive models will be used to estimate the spatial effect

and the effects of other risk factors. Compared to conventional statistical models,

such as general or generalised linear models, this innovative method has a few
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advantages. Firstly, geographical locations are more or less inter-related in some way.

Locations close to each other may exhibit a higher degree of correlation than those

far apart (205). Therefore, many variables, particularly in national survey data, may

have an unobserved spatial structure. Linear regression models may be able to

estimate uncorrelated spatial patterns, but are incompetent to deal with the structure

because the assumption of independence of model residuals is violated (206).

Neglecting the spatial correlation may result in underestimation of standard errors of

risk factors.

Secondly, health data, particularly national health survey data, are usually collected

using complex sampling designs, such as stratification and multistage sampling.

Although efficient and cost-saving, the sampling faces two issues. One is that some

low level geographical locations (i.e. community or county) may be subjected to

small sample size due to the design and response rate. The estimated spatial effect of

these locations may be biased. The other is caused by clustered data. Some surveys

often recruit two or more participants within one household. These participants are

highly unlikely to be independent of each other, particularly in terms of dietary

intakes and socioeconomic status. Appling sampling weight in the classic regression

models would not correct the dependence issue. Accordingly, the resulting

estimations of risk factors are possibly biased. Bayesian geo-additive models can

take into account these issues by using a hierarchical model structure and spatial

smoothing techniques to borrow strength from neighbouring locations to reduce

posterior uncertainty.

Moreover, Bayesian geo-additive models can overcome the difficulty in dealing with

the geographical variable. To incorporate a geographical variable in a regression
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model, a common practice is to use dummy variables (207), i.e. one variable

represents one specific geographical location. However, some health data were

collected at the region or county level. Therefore the analysis probably has to handle

a large number of dummy variables (e.g., US national surveys can generate 50 and

more than 3,000 dummy variables for state and county information respectively), as

well as other continuous and categorical covariates. The high-dimension of variables

could be problematic and leads to great mathematical difficulty in parameter

estimation.

In addition, some risk factors may have nonlinear associations with the interested

health outcomes, e.g. age and income with mortality risk (208-210): here a simple

linear assumption becomes inappropriate. Using a flexible nonlinear function could

improve the reliability and accuracy of the estimations.

In short, Bayesian geo-additive models provide a unified framework for modelling

linear and non-linear covariate effects and estimating the spatial effect

simultaneously. This class of models can also produce visualised maps and graphs

for better interpretation and presentation of the results.

Therefore, in this study, linear regression models will be used in data that do not

contain sufficient geographical information (i.e. the Kumasi data), while a class of

Bayesian geo-additive models will be used where data allow (i.e. the UK and US

data). The following sections of this chapter give a detailed introduction of the

Bayesian geo-additive models.
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4.2 Model Construction

The Bayesian geo-additive models are developed by extending the generalised linear

models (GLM) within the Bayesian framework. Consider ݊ observations with a

dependent variableݕ�, and a vector of ݎ covariates ,ݖ ݅ൌ ͳǡǥ ǡݎ, which contain

either continuous or categorical variables, or both. The GLM assumes that the

dependent variable belongs to an exponential family. The effects of the covariates

are related to the expected mean (ߤ) of the dependent variable through a known link

function ,(ߟ)݃ and ߟ is a linear predictor that can be modelled by ݖ
ᇱߚ, i.e.,

=ࣆ (ࣁ)ࢍ + =ࣁ,ࢿ ࢠ
=,ࢼ′ ,⋯ , (5)

Hastie and Tibshirani (211) extended the GLM to the GAM by replacing the single

linear predictor with an additive semi-parametric predictor. Hence we have

=ࣁ (࢞)ࢌ +⋯+ +൯࢞൫ࢌ ࢝

′
ࢾ

(6)

where ଵ݂ǡڮ ǡ݂  are unknown smooth functions of continuous covariates ڮଵǡݔ ǡݔ,

and ݓ
ᇱߜ are the strictly linear effects of covariates ڮଵǡݓ ǡݓ which are categorical

in most cases. Note that the original covariates vector ݖ is divided into two sub sets:

 dimensional set of ,ݔ and ݍ dimensional set of ,ݓ where  ൌݍ .ݎ By adding

a spatial effect ௦݂௧, the model is able to estimate the spatial effect on the

dependent variable:

=ࣁ (࢞)ࢌ + ⋯+ +൯࢞൫ࢌ (࢙)ࢇ࢚ࢇ࢙ࢌ + ࢝

′
ࢾ

(7)

where ∋ݏ (ͳǡڮ ǡܵ ) is the region index and ௦݂௧(ݏ) represents the spatial effect

of the region ݏ to which observation ݅belongs. The spatial effect is usually a
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surrogate of many unobserved risk factors: some of them may follow certain spatial

structures, while others may be only presented locally. Accordingly we can further

divide this single spatial effect into two independent components: one is a correlated

(structured) effect, ݂ , and the other is an uncorrelated (unstructured) effect,

௨݂. Therefore the model finally becomes

=ࣁ (࢞)ࢌ +⋯+ +൯࢞൫ࢌ (࢙)࢘࢘ࢉࢌ + (࢙)࢘࢘ࢉ࢛ࢌ + ࢝

′
ࢾ

(8)

4.3 Prior Construction

The estimation of the parameters in the Bayesian approach requires priors assigned

to the unknown parameters. All these unknown parameters are regarded as random

variables. Since there is no prior knowledge of the linear coefficient parameters ,ߜ

independent diffuse priors are assigned to the parameter, i.e., אߜ ݊ܿ .ݐݏ

For the unknown smooth functions, a few smoothness prior choices have been

proposed, including Bayesian smoothing splines (212), random walk priors (213)

and Bayesian penalised splines (P-splines) (214). However, the Bayesian P-splines

approach leads to more parsimonious and yet flexible modelling (215). Hence, it will

be used in the following analyses. The Bayesian P-splines approach is a Bayesian

analogue of the P-splines introduced by Eilers and Marx (216). They suggest that a

smooth function can be approximated by a polynomial regression spline using a

large number (k+1), usually 20 to 40, of equally spaced knots over domain of

ǡ݆ݔ ൌ ͳǡڮ ǡ. Therefore, for each covariate ,ݔ an ݈degree P-spline is a linear

combination of ܭ ൌ ݇ ݈basis function .ܤ That is,
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=൯࢞൫ࢌ  ൯࢞൫ࣅࣅࢻ

ࡷ

ୀࣅ

(9)

where ఒߙ is the unknown regression coefficient of .ܤ Eilers and Marx use squared

ܾ௧ order (usually 1st or 2nd) penalty to prevent overfitting and ensure the smoothness

of smooth functions. The Bayesian P-splines substitute the penalty term with a ܾ௧

(correspondently first or second) order random walk, i.e. ǡ௧ൌߙ ǡ௧ିߙ ଵ אݐ,௧ߝ

( ǡʹ ڮ ǡ) or ǡ௧ൌߙ ǡ௧ିߙʹ ଵ െ ǡ௧ିߙ ଶ  ௧ߝ , אݐ ( ǡ͵ ڮ ǡ) with Gaussian errors

א௧ߝ ܰ(Ͳǡ ௦ߪ ௧
ଶ ) and diffuse priors ଵ݂ א ݊ܿ orݐݏ ଵ݂�ܽ݊݀�݂ଶ א ݊ܿ .ݐݏ Therefore,

the estimation of the smooth functions is reduced to the estimation of those unknown

coefficients.

The correlated and uncorrelated spatial effects are assigned with different priors. For

the correlated spatial effects, common choices are stationary Gaussian random fields

(GRF) priors, two dimensional P-splines and Markov random fields (MRF) priors

(217;218). However, GRF and two dimensional P-splines are commonly used for

point-level geographical data (i.e. longitude and latitude), while MRF is used for

aggregated geographical data (i.e. county and districts) (217). Hence, MRF is used to

construct the priors of correlated spatial effects in this study. The MRF approach is

based on the assumption that the spatial effect in region ݏ depends on its

neighbouring regions. In spatial statistics, two regions are defined as neighbours if

they share a common boundary. Hence, the distribution of the spatial effect in region

isݏ conditional on its neighbouring regions:



102

(࢙)࢘࢘ࢉࢌ = ࢙൬࢘࢘ࢉࢌ|(࢙)࢘࢘ࢉࢌ
′
൰~ࡺ ቌ



ࡺ
࢙
′

࢙൬࢘࢘ࢉࢌ
′
൰,
࣌
࢘ࢉ


ࡺ
࢙
′

ቍ

(10)

where ݂(ݏ
ᇱ) is the effect of each neighbouring region of region andݏ ܰ௦

ᇲ is the

total number of all neighbours of region .ݏ Note that the mean of the spatial effect of

a specific region is the average of its neighbours' spatial effects.

For the uncorrelated spatial effects, we assume them as normally distributed random

variables with mean 0, i.e., ௨݂(ݏ) ̱ ܰ(Ͳǡߪ௨
ଶ ).

The variance terms ଶߪ (e.g. ௦ߪ ௧
ଶ , ߪ

ଶ , and ௨ߪ
ଶ ) are assumed as random

variables so that they can be simultaneously estimated with the smooth functions and

spatial effects. In addition, since there is no prior knowledge of these variances,

highly dispersed inverse Gamma (IG) distributions are assigned to these variances as

the conjugate priors. By introducing hyperparameters ܽ and ǡܾ�we have

ଶȁܽߪ ǡܾ ̱ )ܩܫ ǡܾܽ ). Values of ܽ and ܾ are usually small and choices of the values vary.

A common choice proposed in Brezger and Lang's work (219) is ܽൌ ܾൌ ͲǤͲͲͳ.

Alternative values, such as ܽ ൌ ͳ, ܾൌ ͲǤͲͲͷ or 0.0005, and ܽ ൌ ܾൌ ͲǤͲͳ, can be

used in the sensitivity analysis to detect a possible dependent relationship between

the simulation results and the choices of the hyperparameters' values.

4.4 Posterior Updating

The full Bayesian inference is made upon the posterior distribution of the data.

Generally computation of the posterior distribution is mathematically intractable. An

efficient attempt to tackle this problem is to use the Markov chain Monte Carlo
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(MCMC) algorithm. MCMC is a computer-intensive statistical tool providing us an

alternative to handle complicated calculations. Suppose ݂ is the vector of all

functions of effects (e.g. ଵ݂ǡڮ ǡ݂ ǡ݂ ,�݂௨), the variances term ଶߪ and fixed

effects parameter .ߜ We have the full posterior as

∝൯࢟หࢾ,࣌,ࢌ൫ ෑ (ࣁ;࢟)ࡸ



ୀ

ෑ ൛൫ࢌห࣌൯൫࣌൯ൟෑ ࢾ) )



 ୀ

ן�� ෑ (ࣁǢ࢟)ࡸ



ୀ

ෑ ൛൫ࢻห࢙࣌ ࢎ࢚
 ൯൫࢙࣌ ࢎ࢚

 ൯ൟ

࢘࢘ࢉ࣌ห࢘࢘ࢉࢌ൫
 ൯൫࢘࢘ࢉ࣌
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 ቁ൫࢘࢘ࢉ࢛࣌
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 ୀ

(11)

where (∙)ܮ is the likelihood function. Note that the posterior distribution is

proportional to the product of the likelihood function and prior distributions. Since

the full conditional distributions for the unknown functions, spatial effects and fixed

effects are multivariate Gaussian and for the variance terms are diffuse inverse

gamma, we use Gibbs sampler to achieve MCMC simulation and obtain the posterior

distribution. Gibbs sampler is an example of MCMC which uses full conditional

distribution as proposal distribution. It sequentially draws from the full conditional

distribution for blocks of parameters ൫ߙǡ݂ ǡ݂ ௨ǡߜ ൯ǤThe statistical

characteristics of the posterior distribution, such as mean and precision, are obtained

by drawing samples from the posterior distribution.
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4.5 Model Selection

As there are usually a number of risk factors available in a dataset, a few models can

be constructed using different combinations of these risk factors. Thus, model

selection is needed to find the one that fits the data most efficiently. A common

approach is to compare the goodness of fit of the models. The goodness of model fit

usually increases as more parameters included in the model. However, too many

parameters lead to overfit and increased estimated variance (i.e. larger standard

errors) of parameters. On the contrary, too few parameters reduce the model fit and

result in high bias in parameters. Therefore an efficient model selection method has

to trade off model fit and variance of parameters.

A recently popular method is the deviance information criterion (DIC) (220). It is a

Bayesian generalisation of the Akaike Information Criterion (AIC). The standardised

deviance, ,ሻߠሺܦ is defined as

(ࣂ)ࡰ = −ࢍ൫(ࣂ|࢟)൯+ ࢍ൫(࢟)ࢎ൯ (12)

where θ represents the set of parameters in the model, (ߠ|ݕ) is the likelihood

function and ℎ(ݕ) is a standardising term that is the function of data alone.

The effective number of parameters, ,ܦ measures the complexity of model. It is

defined as

ࡰ = −തതതതതതത(ࣂ)ࡰ (ഥࣂ)ࡰ (13)
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Where D(θ)തതതതതതis the posterior mean of the deviance, measuring the goodness of fit, ߠ̅

is the expectation of θ and ܦሺ̅ߠ) is the point estimate of the deviance of posterior

mean.

According to Spiegelhalter et al. (220), the deviance information criterion is thus

constructed by the sum of posterior estimate of the deviance and effective number of

parameters,

ࡵࡰ = +തതതതതതത(ࣂ)ࡰ ࡰ (14)

According to equation (13), DIC also can be written as

ࡵࡰ = (ഥࣂ)ࡰ + ࡰ (15)

As the number of parameters increase, തതതതതതതdecreases(ߠ)ܦ and ܦ increases. Therefore

the value of തതതതതതതis(ߠ)ܦ penalised by ,ܦ reflecting the trade-off between model fit and

complexity. To choose the best model, the lowest DIC is preferred.

4.6 Summary of Chapter 4

In Chapter 4, a methodology, Bayesian geo-additive models, was illustrated.

Bayesian geo-additive models are developed from generalised additive models

(GAM), an advanced form of generalised linear model (GLM), within the Bayesian

framework. In GAM, smooth functions are employed to estimate possible nonlinear

effects of continuous risk factors. By adding a spatial effect term, Bayesian geo-

additive models provide a unified framework for modelling linear and non-linear

covariate effects and estimating the spatial effect simultaneously. Different priors are

assigned to different types of risk factors: Markov random fields (MRF) priors to
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spatial effects and Bayesian P-splines to continuous factors. In addition, inverse

Gamma (IG) distribution is assigned to the hyperparameters of the variance terms.

Posterior means of the effects of risk factors can be obtained by updating the priors

using Markov Chain Monte Carlo methods. Deviance Information Criterion (DIC)

can be used to select the best model with lowest DIC value.

The Bayesian models are advantageous over the classic linear regression models in

that they can properly account for spatial effect, particularly spatial dependence, they

are competent to deal with a large number of risk factors and complex sampling

designs without being affected by clustered data, and they can simultaneously

estimate possible nonlinear effects to improve the reliability and accuracy of the

estimations.
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Chapter 5 Salt Intake and Iodine Status in the

World

5.1 Salt Intake and Iodine Status – An Ecological Analysis

5.1.1 Introduction

Concerns of potential conflicts between salt reduction programmes and universal salt

iodisation programmes have been raised recently (24;25). For the majority of the

world, salt is the most cost-effective vehicle for iodine supplementation in the

general population. Many countries have improved population-wide iodine status

after implementing salt iodisation programmes (118). The current recommended

addition of iodine in salt ranges from 20-40 ppm at salt production stage, based on

the assumption of 10 g/day salt consumption in the adult population. This

assumption is close to the average salt intake in western countries (10-12 g/day), and

is lower than the levels in rice-eating populations (221). However, the goal of the salt

reduction programme is to reduce salt intake to <5 g/day, removing more than half of

current salt intake in populations. It is believed that the widely accepted reduction

will inevitably curtail iodine intake (28) and expose populations to higher risk of

IDD.

From the perspective of salt reduction, another concern is that people may

voluntarily eat more salt to increase iodine intake, although this is rarely documented.

This could happen when confusions and anxieties rise from unclear health

information on salt reduction and iodine supplementation given to the public. In his
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comments (24) on Asaria et al.’s salt reduction paper (74), Beard mentioned the case

of the Australian public being told to reduce discretionary use of salt, but at the same

time being told that “certain kind of salt is essential, especially for children” (222).

Additionally, in some extreme scenarios, consumption of iodised salt may increase

unexpectedly due to the increasing demand for iodine. For instance, people increased

purchase and consumption of iodised salt in fear of radiation exposure during the

Japan Tohoku earthquake (223).

Although the World Health Organization (WHO) states that both policies of salt

iodisation and salt reduction can be compatible (4), adjustment in levels of iodine

fortification is probably needed, as well as coordination of both programmes among

governments, global organisations, scientists, media, industry, the public and other

interested stakeholders.

In order to adapt accurately the current policies at national level, the relationship

between iodine status and salt intake and the potential impact of salt reduction on

iodine supplementation should be quantitatively scrutinised. The results can improve

the interaction and congruence among all stakeholders, and can act as a benchmark

for health policy-makers in the long term monitoring and evaluation of both

programmes.

However, countries are generally different to each other in respect to the

development of policies and the implementation of health programmes. Different

approaches may be required to support the policy-makers towards potential

adaptation in salt reduction and salt iodisation programmes and to meet the interests

of other stakeholders. Therefore, each country may need unique and dedicated
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analyses to coordinate the two health programmes. Before analysing specific cases, it

will be pragmatically useful to summarise iodine status and salt intake and estimate

the cross-country salt and iodine intake association using an ecological analysis.

Ecological analysis is usually used to analyse aggregate data (i.e. population

characteristics) rather than individual data. Hence the results of this analysis may

contribute to better understanding of the positions of both programmes and provide

us a good basis to further investigate specific cases. Thus the aims of this section are

1) to describe and understand the diversity of population salt intake and iodine status

in different countries; and

2) to evaluate the cross-country associations between salt and iodine intakes and

between household coverage of iodised salt and iodine intake, and derive a

hypothesis of the within-country association between salt and iodine intakes from a

global perspective based on the evaluation.

5.1.2 Data and Methods

Data on national iodine nutrition level and salt intake were extracted from several

online databases of international organisations and published reports.

National iodine nutrition level

Population iodine status can be assessed by various indicators (94;224;225). The

most commonly used indicator is the median urinary iodine concentration (UIC),

which reflects the recent change of iodine intake. It is usually surveyed among

school-aged children (6-12 years) as they are easily accessible and their status is then
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generalised to the general population (94). The WHO 2004 iodine status report (94)

provides a list of national median urinary iodine concentrations surveyed in school-

aged children (SAC) and adults at national and sub-national levels. Only countries

with SAC data were extracted. The Iodine Network database3 was also used as a

supplementary source of national iodine status.

Household coverage of iodised salt (HCIS)

Household coverage of iodised salt is an indicator used mainly by UNICEF to

measure the iodine status of the general population. It is defined as the percentage of

households using or covered by salt containing adequate iodine (>15 ppm). This

indicator is thought to be related to the median UIC since high coverage of iodised

salt would result in higher overall consumption of iodine in the populations.

The national coverage data were obtained from the selected countries with extracted

valid iodine status. The sources include the WHO online database4, UNICEF online

databases 5 , Salt Institute6 and Iodine Network and International Council for the

Control of Iodine Deficiency Disorders (ICCIDD) newsletters7 and other published

reports (119;226).

Salt intake

Several methods can be commonly used to measure salt intake in the general

population: food frequency questionnaire, food diary, 24-hour urine collection and

3 http://www.iodinenetwork.net
4 http://who.int/countries/en
5 http://www.unicef.org/infobycountry/index.html and http://www.childinfo.org/idd_profiles.php
6 http://www.saltinstitute.org
7 http://www.iccidd.org/pages/idd-newsletter.php
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spot urine samples. The estimate made from the 24-hour urinary collection is

considered the most reliable and accurate. However, national levels of salt intake

were extracted from reports using any one of the above methods due to the

difficulties in 24-hour urine collection. Cappuccio et al.’s paper e was used as the

source for salt intake data extraction. The intake was presented as g/day of sodium

chloride. For those countries only reporting salt intake by gender, an unweighted

mean was taken by dividing the sum of men’s salt intake and women’s salt intake by

2.

Universal salt iodisation programme

USI implementation has substantial effect on improving iodine status across the

world. This indicator was created for discussion purpose.

National economic status

The economic status of countries is used in this analysis. Similar to individual’s

socioeconomic status, it can be a surrogate of a country’s national characteristics and

permit the grouping countries with similar contexts in salt iodisation and salt

reduction. The World Bank sets the criteria based on each country’s gross national

income (GNI) per capita (227). All countries are classified as low income ($1,005 or

less), lower middle income ($1,006-$3,975), upper middle income ($3,976-$12,275)

and high income ($12,276 or more).

Statistical analysis

To estimate the relationship between iodine intake, household coverage of iodised

salt and salt intake, Spearman's rank correlation coefficient was calculated in all
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countries and later by countries’ economic status. It was used because Spearman’s

rank correlation is not restricted by the normal distribution assumption and is less

sensitive to outliers when compared to Pearson correlation. Note that although the

World Bank’s definition of income economy has 4 groups, there were only 2

countries classified as low- and middle-income economies. Hence they were merged

with the upper-middle income economies (n=6) as middle-income economy group,

which would be compared with high income economy group (n=13). As the sample

size was small, Fisher’s exact test was used to compare the iodine status distribution

between high-income and low- and middle-income countries. The significance level

was defined as 0.05.

5.1.3 Results

Data of median UIC, HCIS and salt intake were extracted from 41, 34 and 34

countries, respectively. In total, a database was constructed including 22 countries

with complete data of national iodine nutritional level, salt intake and household

coverage of iodised salt. Chile reported a very high level of UIC (984 µg/L),

suggesting that at least 50% of the population consumes more than 1,000 µg iodine

per day (assuming an average daily urine excretion of 1.2-1.5 L). The US Institute of

Medicine (IoM) sets 1,100 µg/day as the upper intake level of iodine for adults (228).

Hence the reported iodine status indicated an extremely high health risk in the

population. It was considered not realistic and it was excluded from the analysis.

Finally 21 countries were included: 12 are in Europe, 5 in South and North America,

3 in Australasia and 1 in Asia (see Table 5.1.1).
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Table 5.1.1 Constructed database for countries with reported national iodine

status and salt intake and their data sources by country’s economic status (n=21)

Low- and
middle-
income

Salt
iodisation
legislation

Median
UIC

(µg/L)a

Year of
report
(UIC)

HCIS
(%)b

Year of
report
(HCIS)

Salt
Intake

(mg/day)

Fiji Yes 34 1994 31 1994 5.3†

Guatemala Yes 222 1995 76 2007 19.0†

Lithuania No 75 1995 6 2000 11.0†

Brazil Yes 360 2000 96 2006 9.6†

Bulgaria Yes 111 1996 100 2006 12.0†

China Yes 241 2002 96 2009 12.0†

Costa Rica Yes 233 1996 92 1996 7.0†

Ecuador Yes 420 1999 99 1999 10.0†

High-income
Salt

iodisation
legislation

Median
UIC

(µg/L)a

Year of
report
(UIC)

HCIS
(%)b

Year of
report
(HCIS)

Salt
Intake

(mg/day)

Australia No 77 2001 10 2006 9.2‡

Hungary No 80 1994-97 27 1995 17.0†

Italy No 94 1992-99 3 2002§ 10.8†

Netherlands Yes 154 1995-96 40 1998 8.6‡

New Zealand No 66 1999 83 1996-99 6.5†

Spain No 109 1995-2002 27 1982 9.8‡

United States No 237 1988-94 70 2000 8.6†

Belgium Yes 80 1998 10 2002§ 11.0‡

Czech
Republic

Yes 119 2000 90 2002§ 11.5†

Denmark Yes 61 1997-98 100 2002§ 8.7‡

Finland Yes 164 1997 90 2002§ 8.8‡

France Yes 85 1996 55 2002§ 8.4†

Switzerland Yes 115 1999 94 1999 9.5‡

Note: UIC: urinary iodine concentration; HCIS: household coverage of iodised salt.
a: Median UIC was extracted from de Benoist et al. (94).
b: Data of HCIS were extracted from different sources for the following countries: Australia (229),
Hungary (230), Netherlands, Spain, Switzerland (226); HCIS of Fiji, Guatemala, Bulgaria, China,
Costa Rica, Ecuador, New Zealand were extracted from the WHO country profile (231); HCIS of
Brazil, Lithuania and United States were extracted from UNICEF country statistics (232),
Iodinenetwork country profiles (233), and Salt institute (234), respectively; HCIS of Denmark,
Finland, France, Belgium, Italy and Czech Republic were extracted from ICCIDD Newsletter (235).
†: Salt intake was estimated using dietary survey.
‡: Salt intake was measured from 24-hour urine collection.
§: Data were reported in ICCIDD 2002 newsletter. No exact date of survey was mentioned. Hence the
year of HCIS for each country may be earlier than 2002.
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Summary of the data

The UIC ranged from 34 µg/L in Fiji to 420 µg/L in Ecuador. The mean UIC was

149.4 µg/L (Standard Deviation: 22.2). Italy had the lowest HCIS (3%) while 100%

coverage was found in both Bulgaria and Denmark. The mean HCIS is 61.7%

(36.6%). In the 21 countries, mean salt intake was 10.2 (3.1) g/day. Fijians had the

lowest level of salt consumption (5.3 g/day) and Guatemalans had the highest level

(19.0 g/day) (see Table 5.1.2).

Table 5.1.2 Summary of the iodine status and salt intake in 21 countries

Mean
(Standard Deviation)

Range

Median Urinary Iodine Concentration (µg/L) 149.4 (101.8) 34-420

Household Coverage of Iodised Salt (%) 61.7 (36.6) 3-100

Salt Intake (mg/day) 10.2 (3.1) 5.3-19

Overall, UIC and salt intake are not significantly correlated. The correlation strength

is also weak (r=0.215). HCIS had significant and strong correlation with iodised salt

(r=0.472, p=0.031) (see Figure 5.1.1).

A further comparison was made by country’s economic status. In the stratified

analysis, the correlations between UIC and salt intake remain weak and not

statistically significant (Figure 5.1.2). However, the relationship between HCIS and

UIC is not statistically significant (Figure 5.1.3). In the high-income countries, the

correlation is weak and in the low and middle-income countries, the correlation

appears to be stronger but remain not statistically significant (r=0.611, p=0.108).
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Figure 5.1.1 Scatterplot between national urinary iodine concentration, salt intake

and household coverage of iodised salt

Note: Spearman’s correlation coefficients were calculated and shown with corresponding p value in
each plot.

Figure 5.1.2 Scatterplot between national urinary iodine concentration and salt

intake by country’s economic status

Note: Spearman’s correlation coefficients were calculated and shown with corresponding p value in
each plot.
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Figure 5.1.3 Scatterplot between national urinary iodine concentration and

household coverage of iodised salt by country’s economic status

Note: Spearman’s correlation coefficients were calculated and shown with corresponding p value in
each plot.

Table 5.1.3 shows the distribution of countries’ iodine status by economic status.

The results suggest that mild iodine deficiency is more common in high-income

countries while in low and middle-income countries excessive iodine intake is

common (p=0.019).

Table 5.1.3 Distributions of iodine deficiency in countries by median urinary

iodine concentration

Country’s economic status*

Low- and middle-
income (n=8)

High-income (n=13)

Iodine
Status

moderate iodine
deficiency

1 (12.5) 0 (0.0)

mild iodine deficiency 1 (12.5) 7 (53.8)

optimal iodine status 1 (12.5) 5 (38.5)

more than adequate
iodine intake

3 (37.5) 1 (7.7)

excessive iodine intake 2 (25.0) 0 (0.0)

Note: Values were expressed as count (percentage).
*: Comparison was made using Fisher’s exact test. P value=0.019.
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Impact of high salt intake on the associations

The left panel of Figure 5.1.1 showed that two countries had higher salt intakes

which might bias the correlations. Therefore, a further estimation was made by

excluding the two countries, Guatemala and Hungary. Spearman’s correlation

coefficients were shown in Table 5.1.4. The correlation strength increased in the

correllation between salt intake and UIC in all countries and by economic status. On

the contrary, the strength decreased in the correlation between HCIS and UIC in all

countries and by economic status. However, the statistical significance was not

changed. Therefore the relationship between salt intake and UIC and the relationship

between HCIS and UIC remained unchanged and the results before the exclusion

will be discussed later.

Table 5.1.4 Correlations between urinary iodine concentration and salt intake,

and between urinary iodine concentration and household coverage of iodised salt in

all countries and by economic status, after excluding two countries with high salt

intake

Urinary iodine concentration

Overall
Low- and middle-
income country

High income
country

Salt intake 0.250 (0.302) 0.180 (0.699) 0.084 (0.795)

Household coverage of
iodised salt

0.460 (0.047) 0.595 (0.159) 0.102 (0.753)

Note: Spearman’s correlation coefficients were calculated. Values were expressed as correlation r (p
value).
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5.1.4 Discussion

Key findings

This analysis is the first attempt to explore the relationship between iodine levels and

salt intake from a global perspective. One of the main findings is that there was no

substantial association between urinary iodine concentration and salt intake across

the world, which echoes the WHO statement of the compatibility of two programmes.

Based on these findings, a hypothesis can be made: that a moderate reduction in salt

intake would not affect the iodine status of the general population, which will be

compared and tested in the following case studies (see Section 5.2-5.4). The findings

were mainly for description purpose only. Nonetheless, the results helped us

understand the various levels of population salt and iodine intakes in different

countries. In the specific case we were able to stratify by socioeconomic status but

were unable to allow for differences in age distributions, gender distributions,

anthropometric indices and other behavioural and social factors.

Notwithstanding, various reasons could be considered to either independently or

interactively lead to these findings. A large proportion of consumed salt is non-

iodised. In the countries examined, 6 out of 7 (86%) low- and middle-income

countries have implemented the USI programme, whereas only 7 out of 13 (54%)

high-income countries have enacted regulations on compulsory salt iodisation.

Moreover, although there are calls to iodise all food grade salt (221), some countries

only require mandatory fortification on discretionary salt (i.e. table and cooking salt)

(236-238). Nonetheless, around 75% of salt intake in the general population in

industrialised countries is derived from processed foods (33;239;240) which are
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mostly “energy-dense but micronutrient-poor foods” (241). Only 10-12% is added at

table or during cooking. The rest is present naturally in foods or from other

supplementations. Therefore in an industrialised population with average salt intake

of 10 g/day, the estimated amount of iodised salt is only 1-1.2 g/day, which

translates to an iodine intake of 15-18 µg/day.

Iodine intake from alternative sources may also weaken the link between salt intake

and UIC. There are many iodine-rich foods available to the general population,

including milk and dairy products, meat, seafood, egg, etc. In some countries, such

as the UK and Norway, milk and dairy products have historically been the major

determinants of iodine intake (242;243), despite the recent decreasing trend of iodine

content in milk (244).

In addition, poor quality of salt iodisation may also contribute to the lack of

association between UIC and salt intake. The techniques of salt iodisation are simple

and low-cost – an extra expenditure of 2-9 US cents a year can ensure sufficient

iodine intake for each person (19). Most countries require 20-40 ppm addition of

iodine during salt production (25). However, reports have revealed that inadequately

iodised salt is still available to the general population across iodine sufficient and

iodine deficient countries (245;246). The inadequacy of iodine content in salt could

be caused by various factors. For instance, some countries in Europe and North

America use potassium iodide (KI) for fortification while others use potassium

iodate (KIO3). The former compound is less stable and more soluble than the latter

and is more likely to be affected by heat and humidity. The salt fortified with KI may

lose more iodine during packaging, transportation and storage. Experience in
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Indonesia (247) also reveals that a limited supply of iodine compound can result in

less than adequate iodine in salt. Furthermore, ineffective monitoring and evaluation

may be responsible for inadequately iodised and non-iodised salt on the market. For

instance, black market salt is still prevalent in some areas. The considerably lower

cost of non-iodised salt (usually 2-3 times lower than iodised salt) makes it more

attractive in rural and border areas, and consequently more people are exposed to the

risk of iodine deficiency.

After almost 20 years of promotion of salt iodisation, USI has become a popular and

effective public health intervention to combat iodine deficiency in many countries.

However, one should be vigilant about the alleged re-emergence of iodine deficiency,

particularly in high-income countries. In this analysis, more than half of the high

income countries (53.8%) were classified as having mild deficiency when assessed

through UIC. If these figures were consistent in all age and gender groups, the results

would suggest that a high proportion of children and women of reproductive age

may still be at risk of stunted growth, low educational attainment and other iodine

deficiency diseases. In countries not fully dependent on USI, some studies suggest

that the re-emergence of iodine deficiency is attributable to the reduction in milk and

dairy consumption (248), exacerbated by reduced iodine concentration due to limited

use of iodophor in foodstuffs (249) and consumption of goitrogenic foods in animals

(250).

In contrast, some populations have been consuming too much iodine (251-255).

Excessive iodine intake has adverse effects on human health, causing increased

events of iodine-induced hyperthyroidism, goitre (93;256-258) and thyroid papillary
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cancer (92). For this reason, the Ministry of Health in China has adapted the standard

of salt iodisation from 20-60 ppm to 20-30 ppm in 2011 (259). Hence prompt actions

should be taken to prevent the adverse health outcomes.

Strengths and limitations

The ecological approach is a convenient way to investigate the global association of

salt intake and iodine status. In addition, this analysis provided an opportunity to

propose a hypothesis of the salt and iodine association, which could be used as a

benchmark for the following case studies for comparison. Thirdly, most data were

obtained from the online databases or reports of the authoritative international

organisations..

This analysis is also subject to several limitations. Firstly, the analysis used national

estimates of median urinary iodine concentration, household coverage of iodised salt

and mean salt intake. Some data may not reflect up-to-date nutritional intake related

information. For example, Italy did not adopt a salt iodisation programme at the time

of UIC measurement (260) until 2005 (261), and the WHO did not record any UIC

measurement in or after 2005 in Italy. Therefore Italy was still classified as non-USI

country in this analysis, in order to make it consistent with the UIC data. As

population salt and iodine intakes vary over time, the quality of this constructed

database was less desirable and the estimation of the cross-country salt and iodine

association could be potentially biased. However, it is not possible to infer whether

new data can enhance or weaken the association. Furthermore, updating the data

from recently published individual studies may need more time than the present

study allowed. In short, the limited data sources restricted the extent of this analysis.
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The WHO now urges Member States to monitor iodine status every three years (262)

and salt intake every five years (263). Better monitoring and evaluation is promising.

Another limitation is that no matched data were used since there were no health

surveys or studies in the sources reporting iodine and salt intake and use of iodised

salt at the same time. This caused a wide span of more than 30 years in the

constructed database, making the validity of these health indicators questionable.

What is more, the urinary iodine concentration is used to reflect the recent change of

iodine level. The data may become more unreliable when considering the great

achievements of elimination of iodine deficiency obtained in the past decades.

Additionally, salt intake was estimated using a 24-hour urine collection and food

questionnaire. Twenty-four-hour urine collection provides the most reliable and

accurate measurement of salt intake. Food questionnaire, however, underestimates

the salt intake at individual level, as it usually does not measure discretionary use of

salt. Hence these national estimates of salt intake do not fully reflect their true levels.

Moreover, some countries reported salt intake by sex. The national average was then

estimated by simply averaging two salt intakes. Such estimation might lead to some

bias as no adjustment for sex and age was made. However, it would be also difficult

to make the adjustment due to the lack of the detailed age and sex data.

Implications

This ecological analysis is merely a description of recent positions of global iodine

status and salt intake and their relationship. Although subject to the above limitations,

this analysis helps develop a hypothesis on the association of salt iodisation and salt
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reduction, which can be tested and compared in case studies at country level (see

Section 5.2 in this Chapter).

Analyses within each national framework may offer more insights into how to

improve the coherence of both programmes and give instructive support and rational

suggestions to health policy-makers. Meanwhile, the following work will take the

opportunity to quantify the impact of possible salt reduction on iodine

supplementation (and vice versa) according to each country’s context (see the

following sections in this Chapter). Moreover, as the aggregate data often conceal

significant geographical variations, the impact of the geographical locations and

other determinants can be specifically investigated using more consistent and

representative national data (see Section 5.3 and 5.4 in this Chapter). It will also be

important to concentrate the attention on the socially disadvantaged and vulnerable

groups in order to maximise the effects of health intervention programmes (see

Section 5.2-5.4).

5.2 Salt Intake and Iodine Status in Ghana

5.2.1 Introduction

Salt is commonly used in the African diet. Discretionary use of salt (i.e. table and

cooking salt) is the major source of salt intake in African populations. However,

substantial scientific evidence has supported the fact that increased salt intake is

associated with raised BP (11;13;34;264). High BP, or hypertension, is the leading

modifiable cause of death in the world (8), and is among the leading causes of death

in the low- and middle-income countries (7). In West Africa, 15.6% of the
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population is hypertensive (265). The prevalence is gradually increasing in many

African countries (266) along with economic development, urbanisation and changes

in diet (162). Urban populations usually have higher prevalence of hypertension

(267).

The health care burden attributable to non-optimal BP in Sub-Saharan Africa is

US$2 billion (268) and there are growing concerns regarding the increasing

prevalence of hypertension (267;269;270). Prevention, management and control of

hypertension are sub-optimal in Africa. Most of the African countries have not

established strategies to reduce salt intake in the general population except Nigeria

and South Africa (4;15). The limited resources and health budget also restrict

governments’ ability to tackle this health issue.

Population-wide salt reduction is recommended by the WHO as a cost-effective way

to reduce population BP and, therefore, cardiovascular disease (CVD). This strategy

is effective in both sexes and in all age and ethnic groups (15) and is also cost saving

(75;271;272).

On the other hand, salt is a major vehicle for iodine supplementation in Africa.

Iodine is an essential nutrient for human beings. Iodine deficiency was first

recognised as a major public health threat in Africa in 1987 (120). At the time of the

54th World Health Assembly (WHA), there were about 181 million African people

(32.8%) at risk of iodine deficiency disorders (273). Although severe iodine

deficiency leads to devastating consequences for the affected individuals, moderate

to mild deficiency can cause 10% loss in GDP due to considerable economic and

productivity losses (274). The elimination of iodine deficiency could be integrated in
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the Millennium Development Goals set in 2000 by United Nations and support the

achievement of at least six of those goals.

Universal salt iodisation (USI) was introduced in Africa in the 1990s, though Kenya

and Zambia have had legislation on salt iodisation much earlier than the introduction

(120). Many countries have adopted the USI programme with different regulations

on the addition level of iodine in salt. Some require the iodine content in salt to be up

to 100 ppm (245). Remarkable progress has been achieved. An estimated 55% of

households in Africa are now covered by iodised salt, although the average coverage

hides a significant geographical variation at national and community levels. For

instance, the household coverage of iodised salt ranges from 2% in Mauritania to 98%

in Nigeria (275). The number of iodine deficient countries has reduced from 17 in

2003 to 10 in 2011 (17). Children are also better protected. The proportion of school-

aged children at risk of iodine deficiency has reduced from 42.3% to 39.3% during

the same time.

The prevention, management and control of hypertension and iodine deficiency are

both a high priority in Africa. Although population salt reduction and universal salt

iodisation programmes are perhaps intrinsically compatible (26), reduced salt intake

may, in principle, curtail iodine intake while increasing iodine intake may result in

an unintended increase in salt intake if current iodisation practices and salt reduction

targets remain unchanged. Thus, adaptation of current policies is required and they

are critical to improve the coordination between both programmes (33).

A number of studies assessed iodine intake, household coverage of iodised salt,

and/or salt intake in African populations. However, the investigation of the
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relationship between salt and iodine intakes is scarce (197). Hence these studies are

not able to provide the solution to the potential conflict between the two programmes

to international organisations, policy-makers and other stakeholders for policy

harmonization. Therefore, this analysis has the following objectives by using the

data extracted from a community based study in Kumasi in the Ashanti region of

Ghana:

1) to estimate salt intake and iodine status in a non-industrialised African

population;

2) to assess the association of salt intake and iodine intake in this population

which is mainly dependent on iodised salt for iodine supplementation;

3) to investigate the impact of modifications of salt intake on iodine status in

similar countries; and

4) to provide suggestions to policy-makers.

5.2.2 Data and Methods

Country profile

Ghana is a West African country bordered by Togo, Burkina Faso, and Ivory Coast

and facing the Gulf of Guinea in the south (Figure 5.2.1(a)). From the south to the

north, Ghana has five distinct geographical regions: low plains, Ashanti uplands, the

Volta Basin, the Akwapim-Togo Ranges and high plains. The country has 10

administrative regions: Ashanti, Brong Ahafo, Central, Eastern, Greater Accra,

Northern, Upper West, Upper East, Volta, and Western (Figure 5.2.1(b)).
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In 2010, the total Ghanaian population was 24.2 million. Ghana is a low-middle

income country with an estimated $1,230 gross national income (GNI) per capita. It

is one of the two largest salt producing countries in West Africa with an annual

output of 250,000 metric tonnes.

Study area

The data used in this analysis were obtained from a community-based study at

Kumasi in the Ashanti region of Ghana. The study was designed to investigate the

prevention of hypertension and stroke in the region through a modification of salt

intake with health promotion (276;277).

Prior to the study, a census was conducted during January and March 2001 in 12

villages with rare day-to-day contact in the Ejisu-Juabeng and Kumasi Districts of

the Ashanti region. The villages are Pemenase, Edwenase, Domeabra, Tikrom,

Ofoase, Atia, Dumakwai, Appeadu, Duase, Apatrapa, Feyiase and Nwamase

(Figure 5.2.1(c)). Six of them were defined as rural villages because they are distant

from Kumasi city and lack piped water and electricity. The rest of the villages were

defined as semi-urban villages because they are closer to the city and have piped

water and electricity. The total number of the local population was 16,965 at the time

of the census. The adult populations in the rural and semi-urban areas were 50% and

57%, respectively. Two thousand seven hundred and forty three villagers were in the

range of 40-75 years. The population structure was approximately equivalent to the

national counterpart. Details of the census have been described elsewhere (276).
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Figure 5.2.1 Map of Africa (a), Ghana (b) and the Ashanti region with the

locations of 12 villages (c)

Note: The left panel was adapted from http://www.worldatlas.com, and the right panel was

reprinteded from Plange-Rhule et al. (276). White circles are rural villages: 1. Pemenase; 2.
Edwenase; 3. Domeabra; 5. Ofoase; 6. Atia; 7. Dumakwai. Black spots are semi-urban villages: 4.
Tikrom; 8. Appeadu; 9. Duase; 10. Apatrapa; 11. Feyiase; 12. Nwamase.

One thousand eight hundred and ninety six villagers were randomly selected from

the 40-75 age-group (n=2,743) between June 2001 and June 2002 using an age and

sex stratification that is identical to the structure in the census population. Pregnant

and lactating women and individuals with mental or physical illness were excluded.

Higher proportions of villagers were invited from villages with small populations.

About 53% (n=1,013) of the selected individuals took part in the community-based

study. The study team including doctors, nurses and clerks collected individuals’

information from the 12 villages. In the census, it was found that the self-reported

age might not be reliable as many villagers did not have birth certificates or other
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forms of birth identification. Therefore, the villagers were shown with a list of

important dates and events in Ghana history to improve the accuracy of the age

information (276). The study protocol was approved by institutional ethics

committees in Ghana and in the UK, and by the Chief and the Council of Elders in

each participating village. More details of the study design and participant

recruitment have been described elsewhere (53).

Baseline measurement

Each study individual was asked to complete a detailed questionnaire gathering

demographic, socioeconomic, personal and family medical history and dietary

information. The whole procedure was administered by fieldworkers in English, and

in Twi, a local language, if necessary.

Height was measured barefoot (no shoes) to the nearest 0.5 cm. Weight was

measured barefoot and with light clothing to the nearest 0.5 kg. Body mass index

(BMI) was calculated using weight divided by squared height (kg/m2).

Sitting BP readings were taken three times at one minute intervals following at least

5 minutes rest with a semi-automated device (277). The first reading was discarded

and the average of the other two readings was used for the analysis.

Participants also provided information on socioeconomic status, lifestyle and

medical history, such as education, main job, smoking and drinking habits. Extra

dietary information was also collected, such as the use of salty foods, including

salted pigs’ feet, salted beef, kako, koobi, momoni, and the use of salt at table or

during cooking (278).
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Approximately 90% of the daily consumption of iodine and salt is excreted in a 24-

hour urine sample. Thus 24-hour urinary sodium and iodine excretions were used to

estimate the daily salt and iodine intakes. Two consecutive 24-hour urine samples

were collected at the baseline. 24-hour urinary biomarkers, including 24-hour urinary

sodium excretion and 24-hour urinary iodine excretion, were then measured using

AutoAnalyzer 3 based on the Sandell-Kolthoff reaction (201).

Iodine status was determined by median urinary iodine concentration at population

level. There are 5 categories of the status according to epidemiological criteria: <20

μg/L, severe iodine deficiency; 20-49 μg/L, moderate iodine deficiency; 50-99 μg/L, 

mild iodine deficiency; 100-199 μg/L, optimal iodine status; 200-299 μg/L, more 

than adequate iodine intake; ≥300 μg/L, excessive iodine intake.  

Intervention programme

In the design of this community-based study, the major objective was to investigate

the prevalence of hypertension and the potential for prevention through dietary salt

modification in an African population. The villages were randomly assigned to

intervention and control groups. Each group had six villages, which was a mixture of

rural and semi-urban villages. The locality stratification and the matching of villages

in clusters were made by an independent statistician (279). The random allocation

was carried out in two stages. The power calculation of 4.8 mmHg in SBP with a

power of 90% and a significance level of 5% gave an estimated number of 70

villagers per village. However, the first stage of 95 villagers from each village was

not satisfactory due to a larger refusal rate than the assumed 25%. Therefore, an

increased refusal rate was set to include more participants in each village (53). In all
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villages, community health workers gave villagers intensive health education on a

range of public health issues, such as diabetes and hypertension. For the intervention

group, a health promotion package on how to reduce salt intake was added. Villagers

were told to reduce their salt intake in several ways, such as removing salt from

salted fish and meat before its consumption, and not to add salt at the table or in

cooking (for instance by avoiding the use of ‘Maggi’ cubes, common practice in the

area).

Follow-ups

Follow-up measurements were conducted after six months. There were 801

individuals remaining in the study at 6 months. Weight, height, BP and 24-hour

urinary biomarkers were measured in the same way.

Main results

The main results of the programme have been reported previously (53;277). In brief,

(a) there was a significant positive relationship between salt intake and both systolic

and diastolic blood pressure at baseline; (b) at six months the intervention group

showed a reduction in systolic and diastolic blood pressure when compared to

control; (c) there was no significant change in urinary sodium excretion between

groups; (d) smaller villages showed greater reductions in urinary sodium than larger

villages; (e) irrespective of randomization there was a consistent and significant

relationship between change in urinary sodium and change in systolic blood pressure,

when adjusted for confounders.
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Rationale for the present analyses

Because the aim of salt iodisation is to promote the supplementation of iodine via

dietary salt, reduction in salt will only affect the iodine intake in those consuming

iodised salt. This implies that the impact of salt reduction on iodine status can be

assessed in the villages, which were covered by iodised salt.

A criterion to determine whether villages were using iodised salt was to determine

the correlation (both at baseline and at 6 months) between urinary sodium and iodine

excretions. A strong correlation would indicate use of iodised salt as the main source

of salt in that village.

Therefore, the associations in each village were tested. If the association was

significant, the village was then assigned to the “concordant” group. The villages

with lack of correlation between iodine and sodium were assigned to the “discordant”

group. Furthermore, differences in sodium excretion between baseline and 6 months

were correlated with the changes in iodine excretion over the same period to estimate

the likely effect of variations in salt intake on iodine status.

Statistical analysis

For the cross-sectional analysis at baseline and 6 months follow-up, t-test and chi-

square test were used to examine the sex and locality differences of continuous risk

factors and categorical risk factors, respectively. Pearson’s correlation coefficient

was used to test the correlation of the changes of iodine and sodium excretion in

each village as both changes are approximately normally distributed. For the analysis

of changes during the study period, chi-square test was used to compare categorical
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variables (i.e. iodine status distribution). The overall change of iodine status during 6

months in two groups was tested using the test of marginal homogeneity. This test is

suitable for testing the repeated measures of ordinal data.

The impact of the change of sodium intake on the change of iodine intake in

discordant and concordant villages was estimated using three linear regression

models. No adjustment was made for Model I. Model II was adjusted for age and sex.

Model III was adjusted for age, sex and locality.

The significance level for all tests was set as 0.05. All analyses were performed with

SPSS V19.0 (IBM Corp. Armonk, NY, USA).

5.2.3 Results

Population characteristics

Table 5.2.1 summarises the characteristics of the Kumasi population. Of the 1,013

participants, 38% (n=385) were men and 47.5% (n=481) were living in rural villages.

The mean age was 54.7 years (Standard Deviation: 11.3). Participants had a mean

body weight of 54.3 kg (11.2) and a mean height of 160.4 (8.5) cm. The average

BMI was 21.1 (4.2) kg/m2.

The population BP had a normal distribution with mean systolic and diastolic blood

pressures of 125.5 (26.1) mmHg and 74.4 (13.6) mmHg, respectively.

Twenty-four-hour urinary sodium excretion was 101.2 (45.0) mmol/day and 24-hour

urinary iodine excretion was 70.6 (95% confidence intervals: 66.8, 74.7) μg/day. The 

median urinary iodine concentration was 68.9 (IQR: 100.2) μg/L.  
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Table 5.2.1 Characteristics of the study population at baseline (n=1,013)

Study population (n=1,013) Mean(Standard Deviation)

Age (year) 54.7 (11.3)

Sex (%)-Male 38

Sex (%)-Female 62

Weight (kg) 54.3 (11.2)

Height (cm) 160.4 (8.5)

BMI (kg/m2) 21.1 (4.2)

Systolic blood pressure (mmHg) 125.5 (26.1)

Diastolic blood pressure (mmHg) 74.4 (13.6)

Locality (%)-Rural 47.5

Locality (%)-Semi-urban 52.5

24-hour urinary sodium (mmol/day) 101.2 (45.0)

24-hour urinary iodine (μg/day)* 70.6 (66.8, 74.7)

Urinary iodine concentration (μg/L)† 68.9 (100.2)

Note: Results are mean and standard deviation unless specified.
*: Geometric mean with 95% confidence intervals.
†: Median (IQR).

Figure 5.2.2 Iodine status distribution of the study population

The median urinary iodine concentration was 68.9 μg/L, indicating that, on average, 

the study population was at risk of mild iodine deficiency. 64.4% of the population
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had a urinary iodine concentration of less than 100 μg/L; 12.7% had a concentration 

of less than 20 μg/L (Figure 5.2.2). 

Baseline characteristics

Extreme values of sodium or iodine excretions may influence the mean estimates of

salt and iodine intakes substantially, and lead to biased estimation and interpretation.

Therefore, the dataset was checked for outliers. Of the 1,013 study participants at

baseline, 1,004 were included with complete and valid urinary measurements. A

further check of baseline 24-hour urinary iodine and 24-hour urinary sodium

indicated 7 outliers in the data. They were excluded from this analysis. Hence 997

participants with complete data contributed to the final analysis at baseline. Their

characteristics did not differ from the whole study population (data not shown).

Table 5.2.2 shows that the mean age was comparable between men and women. Men

were significantly heavier and taller but women had significantly higher BMI.

Men and women had comparable levels of daily salt and iodine intakes but men had

significantly higher urinary iodine concentration (86.5 vs 74.0 μg/L, p=0.024), 

although both groups were mildly iodine deficient.

Compared to semi-urban participants, rural participants had significantly lower

weight, BMI, and both systolic and diastolic blood pressures.

Twenty-four-hour urinary sodium excretion was not significantly different between

rural and semi-urban participants (p=0.228) but 24-hour urinary iodine excretion was

significantly higher in semi-urban participants. Urinary iodine concentration was



136

also higher in semi-urban participants. The median urinary iodine concentration

indicated optimal iodine status in semi-urban area and mild iodine deficiency status

in rural area.

Follow-up characteristics

Five more outliers were excluded at 6 months follow-up, leaving 780 participants

with full sets of data at baseline and 6 months for the follow-up analysis 38.6% of

them (n=302) were men and 49.9% (n=390) were rural residents.

As for the baseline, there were no sex differences in 24-hour urinary sodium and

iodine excretions. The rural and semi-urban differences remained significant for 24-

hour urinary iodine excretion. Iodine status was comparable to that at baseline. 24-

hour urinary sodium excretion between rural and semi-urban areas became

significantly different (p=0.001) with higher level in participants living in semi-

urban villages (94.8 (SD: 43.8) vs 85.8 (SD: 36.2) mmol/day).
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Table 5.2.2 Characteristics of the study population at baseline and at 6 months

follow-up

Baseline
All

(n=997)
Men

(n=378)
Women
(n=619)

p
value

Rural
(n=475)

Semi-
urban

(n=522)

p
value

Age (year)
54.7

(11.3)
54.5

(10.9)
54.8

(11.5)
0.706

54.4
(11.2)

54.9
(11.4)

0.468

Weight (kg)
54.2

(11.3)
56.3
(9.7)

53.0
(11.9)

<0.001
51.0
(9.5)

57.1
(11.9)

<0.001

Height (cm)
160.4
(8.5)

166.7
(6.9)

156.5
(7.0)

<0.001
160.5
(8.6)

160.2
(8.5)

0.635

BMI (kg/m2)
21.1
(4.2)

20.2
(3.1)

21.6
(4.6)

<0.001
19.8
(3.1)

22.3
(4.6)

<0.001

Systolic blood pressure
(mmHg)

125.5
(26.1)

126.3
(24.4)

124.9
(27.1)

0.417
121.4
(25.1)

129.2
(26.5)

<0.001

Diastolic blood pressure
(mmHg)

74.3
(13.6)

75.8
(13.7)

73.4
(13.6)

0.008
72.3

(13.1)
76.2

(13.8)
<0.001

24-hour urinary sodium
(mmol/day)

101.0
(44.9)

99.5
(45.7)

101.9
(44.5)

0.405
99.2

(45.1)
102.7
(44.8)

0.228

24-hour urinary iodine
(μg/day)*

69.5
(8.3)

74.0
(12.5)

66.8
(9.6)

0.078
52.7
(7.6)

89.4
(13.7)

<0.001

Urinary iodine
concentration
(μg/L)†

78.2
(124.9)

86.5
(127.9)

74.0
(121.3)

0.024
60.2

(70.6)
111.4

(178.5)
<0.001

6 Months follow-
up

All
(n=780)

Men
(n=302)

Women
(n=478)

p
value

Rural
(n=388)

Semi-
urban

(n=392)

p
value

Weight (kg)
55.0

(11.3)
56.8
(9.7)

53.9
(12.0)

<0.001
52.1
(9.7)

57.9
(11.9)

<0.001

BMI (kg/m2)
21.4
(4.2)

20.4
(3.2)

22.0
(4.6)

<0.001
20.2
(3.3)

22.6
(4.7)

<0.001

Systolic blood pressure
(mmHg)

128.2
(27.0)

129.9
(25.8)

127.2
(27.7)

0.172
123.9
(25.5)

132.5
(27.7)

<0.001

Diastolic blood pressure
(mmHg)

77.9
(14.3)

79.5
(15.0)

76.9
(13.8)

0.015
75.8

(13.9)
80.0

(14.4)
<0.001

24-hour urinary sodium
(mmol/day)

90.3
(40.4)

89.4
(41.9)

90.8
(39.5)

0.635
85.6

(36.2)
94.8

(43.8)
0.001

24-hour urinary iodine
(μg/day)*

67.2
(7.5)

72.7
(14.0)

64.0
(10.7)

0.053
48.8
(7.7)

92.3
(16.4)

<0.001

Urinary iodine
concentration
(μg/L)†

77.8
(123.4)

86.3
(126.7)

72.3
(115.8)

0.009
60.1

(68.9)
110.2

(170.6)
<0.001

Note: Results are mean and standard deviation, unless specified.
*: Geometric mean with standard error.
†: Median (IQR).

Concordant and discordant groups

The changes of urinary sodium and iodine excretions in each village were plotted in

Figure 5.2.3. The correlation between iodine and salt intake was positive in all

villages; however the strength varied substantially. The correlation strength was
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medium in villages 2, 7, 8, 9, 10, 11, small in villages 1, 3, 5, and negligible in

villages 4 and 12.

Based on the p values of the correlation coefficients, iodine and salt intake were

significantly correlated in villages 1, 2, 7, 8, 9, 10 and 11. Therefore these villages

were defined as concordant village group; villages 3, 4, 5, 6 and 12 were defined as

discordant village group thereafter.

Figure 5.2.3 Scatterplot of the change in urinary iodine excretion against the

change of urinary sodium excretion in the eligible participants (n=780) in 12

villages after 6 months of follow-up

Note: The title for each sub-plot shows the village identification number with Pearson’s correlation
coefficient and p value in brackets. Each plot is fitted with a linear regression line.

Changes of salt and iodine intakes in 6 months

Table 5.2.3 shows the test results of the changes of salt and iodine intakes by

correlation group during the study period. Salt intake was significantly reduced in
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both concordant and discordant groups (p<0.001 for both). The means were -12.0

(46.7) mmol/day and -11.3 (51.2) mmol/day, respectively. The change of iodine

intake was, however, not significant. Larger variation was seen in the concordant

group. On average, iodine intake increased by 3.5 (94.2) μg/day in the concordant 

group and was reduced by 0.1 (63.4) μg/day in the discordant group.  

Table 5.2.3 Test of the changes of 24-hour urinary sodium and iodine excretion

during 6 months follow-up

Concordant group Discordant group

Mean (Standard
Deviation)

p value
Mean (Standard

Deviation)
p value

Change of urinary sodium
excretion -12.0 (46.7) <0.001 -11.3 (51.2) <0.001
Change of urinary iodine
excretion 3.5 (94.2) 0.475 -0.1 (63.4) 0.978

Note: The hypothesis of mean of change=0 was tested. If p value <0.05, the change could be
considered significant.

Association between iodine intake and salt intake

Three linear regression models were created to estimate the impact of the change of

sodium intake on the change of iodine intake in discordant and concordant villages.

Results are shown in Table 5.2.4. Model I was not adjusted for covariates. Model II

was adjusted for age and sex. Model III was adjusted for age, sex and locality.

Locality was used here to account for possible geographical variation and

socioeconomic differences. All coefficients of the sodium change in the concordant

group were significant, while all coefficients in the discordant group were not

significant, whether or not adjustments were considered.
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Table 5.2.4 Linear regression models of the change of iodine intake in relation to

the change of sodium excretion in concordant and discordant village groups, with

adjustment for age, sex, residential locality

Village
group

Change of urinary sodium excretion†

Model I Model II Model III

Change of
urinary iodine
excretion

Discordant
0.115

(-0.005, 0.235)
0.111

(-0.010, 0.232)
0.111

(-0.010, 0.232)

Concordant* 0.628
(0.432, 0.824)

0.628
(0.431, 0.824)

0.620
(0.429, 0.811)

Note: Results are presented as coefficient (95% confidence intervals).
*: All models of the concordant group are significant. P values for model I, II and III are all <0.001.
†: No adjustment was made for Model I; Model II was adjusted for age and sex; Model III was
adjusted for age, sex and locality.

The coefficient of sodium change in Model III was 0.62, indicating that 10

mmol/day change of sodium was associated with a change of 6.2 μg/day iodine.  

Change of iodine status distribution

The distributions of iodine status in concordant and discordant groups are shown in

Figure 5.2.4. Distribution at baseline and at follow-up was plotted together to

compare the change during 6 months.

Iodine status improved significantly in both groups over 6 months (p<0.001 for both).

The graph shows that the overall distributions of iodine concentration shifted to the

right. The proportion of iodine deficiency (including severe, moderate and mild

deficiency) was reduced. The reduction in moderate iodine deficiency was the most

obvious: an absolute reduction of 12.8% and 20.3% lower in concordant and

discordant group, respectively – approximately 50% reduction throughout the study

period. On the other hand, the proportion of people with excessive iodine intake

increased significantly in both village groups. In the concordant group, the number

of participants at risk of iodine-induced hyperthyroidism (IIH) was almost doubled
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(from 8.6% to 16.9%) while the number of participants at risk of adverse health

issues was more than tripled (5.1% to 17.2%). The absolute change was not large in

the discordant group. However, the increase in the population with excessive iodine

intake was still evident, particularly in the concentration of more than 300 μg/L level 

(from 0% to 4.5%).

Figure 5.2.4 Comparison of the iodine status change in the participants of the

concordant village group (left panel) and the discordant village group (right panel)

after the 6 months health promotion of salt reduction

Note: For both groups, p<0.001 using the test of marginal homogeneity.

5.2.4 Discussion

Key findings

This analysis was set out to assess the salt intake and iodine status in an African

population, and also to investigate the association between salt and iodine intakes in

the population by modelling the changes of urinary sodium and iodine excretions

between baseline and follow-up, using data directly obtained from a community-

based study.
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As one would have expected, urinary sodium excretion (used as a proxy for salt

intake) had a strong association with urinary iodine excretion (used as a proxy of

iodine status) in some but not all villages. The analysis suggests that the effect is

predominantly explained by the use of iodised salt in some villages but not in others.

The relationship suggests that a population-wide variation in salt intake by an

average of 1 gram of salt per day (or 17.1 mmol/day of sodium) will lead to a

parallel change in iodine intake of 10.6 μg/day. This assumes widespread use of 

iodised salt in the community and a constant iodine level in salt. This is likely not to

be the case in real life scenarios as indicated by the fact that half the recruited

villages did not appear to have iodised salt as the main source of salt in their

community.

The study population had relatively low salt intake compared to average worldwide

population intakes (15). The average salt intake was about 6 g/day (equivalent to

101.0 mmol/day, 1 g salt=17.1 mmol sodium). The estimated level of urinary iodine

concentration indicated that the population was at risk of mild iodine deficiency.

Significant rural and semi-urban differences in iodine status were seen, as the semi-

urban participants had a higher proportion of participants with optimal iodine status

compared to the rural participants.

Furthermore, the proportion of iodine deficient people was surprisingly reduced in

both concordant and discordant groups, although overall status was almost

unchanged and salt intake was reduced in both groups after 6 months of promoting

salt reduction in some villages.
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The distribution of iodine status changed during the study period. The comparison of

urinary iodine concentration between baseline and follow-up showed an overall

improvement of iodine status, with less risk of iodine deficiency and increased risk

of IIH and other adverse health circumstances, although there was only little change

in the concentration of urinary iodine.

Finally, the present analysis also revealed significant geographical variation of

iodine intake in the Kumasi area. Semi-urban residents consumed more iodine than

rural residents.

Discussion of findings

This is the first analysis to quantify the association between salt intake and iodine

intake in an African population. The need for the investigation of this association is

obvious. Dietary salt intake is assumed to be 10 g per day worldwide. The amount of

iodine added to salt is usually in the range of 20-40 ppm to guarantee an iodine

intake of 150 µg per day for an adult, considering the 40% loss of iodine during

production, transportation, storage and cooking. Although the salt reduction

programme and the USI programme are deemed to be compatible (26), a reduction in

salt intake may cause lower iodine intake and lead to worse iodine status in the

general population. Thus, for a population at optimal iodine status, the reduction may

put the population at risk of iodine deficiency. For a population already deficient in

iodine, the reduction could make things worse. On the contrary, people may increase

their salt intake in an attempt to increase iodine intake, given that iodine

supplementation in Ghana is exclusively delivered through iodised salt used in the

households.
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Theoretically, if a population reduces its salt intake from 10 g per day to 5 g per day

(the WHO target), iodine intake would be reduced by 53 μg/day in the general 

population. However, this reduction is untenable for policy adaptation. On the other

hand, an increase in iodine content of salt calculated to deliver the extra 53 μg/day 

necessary to offset the impact of a reduction in salt intake on iodine status would

make the two policies compatible. Precise and consistent scientific evidence is

urgently needed to provide more practical support for international organisations (e.g.

WHO, UNICEF), governments, policy-makers, salt industry, media and other

stakeholders in order to improve the coalition of both programmes.

The results of the present analysis provide the evidence that reduced salt intake

would lower iodine intake in the general population covered by iodised salt. The

estimated effect, however, is weaker than the theoretical relationship.

The mixed coverage of iodised and non-iodised salt in the concordant group might

be a major cause. Ghana is a major salt producing country in West Africa. The

annual output of salt reaches 250,000 metric tonnes. Only small amounts are

imported from the UK, Germany and China. However, major salt plants only

produce 58% of the salt needed. The rest is produced and sold by many small-scale

salt plants, mostly without iodisation. Although sale of non-iodised salt is illegal,

these salts are still popular on the market. An important reason is the price. The cost

of iodised salt is higher than non-iodised salt. Households of low socioeconomic

status are usually more sensitive to prices. Hence they are inclined to buy cheaper

salt. Moreover, in some areas with poor road links, difficulties in transportation

either increase the total cost of salt or make the delivery of iodised salt impossible,
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resulting in even lower coverage of iodised salt. According to the 2006 micronutrient

survey in Ghana, only one third of the households consumed iodised salt adequately,

and 20% consumed salt with less than 15 ppm iodine, whereas 45% of salt was non-

iodised (280). In the present analysis, the insignificant weak correlation between salt

intake and iodine intake in 5 villages also suggested the lack of adequate iodised salt

consumption, which is in agreement with the survey findings.

The other possible explanation might be that the loss of iodine was more than

expected before salt consumption. In Ghana, law and regulation on salt iodisation

was enacted in 1995 by parliament (281). Potassium iodate (KI) is added to salt in

the range of 25-45 ppm. Although this compound is more stable and less soluble

than potassium iodide (KIO3), there is still loss of iodine in the stages of packaging,

transportation, storage and cooking. The tropical weather with excessive heat and

humidity can also increase the loss.

Significant rural and semi-urban differences in iodine intake and iodine status were

detected. This geographical variation reflected the historical inequality between rural

and urban areas. In Africa, rural residents are more disadvantaged with poorer

socioeconomic status, less access to medical facilities and less food availability. The

household coverage of iodised salt in rural areas is only half of that in urban areas

(281). The on-going globalisation and urbanisation continue to aggravate the

inequality gap. Urban residents have access to more iodine-rich foods and have

higher iodine intake due to the increasing food diversity, whereas rural residents

have limited food sources and are more vulnerable to food shortage.
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In fact, the household coverage of iodised salt also has considerable geographical

variation in the country (Figure 5.2.5). In the 2006 Ghana Multiple Indicator Cluster

Study (MICS) (280), it was revealed that a few regions had very low coverage of

iodised salt, including the Ashanti region in which only 23.1% of households

reported the regular use of iodised salt. The lowest household coverage of iodised

salt was in Brong Ahafo (17.7%) while Volta had the highest household coverage of

iodised salt (82.9%).

Figure 5.2.5 Household coverage of iodised salt in Ghana

Note: Modified from the 2006 Ghana Multiple Indicator Cluster Study report (280).

The ineffective monitoring and weak enforcement of salt iodisation (282) contributes

to the geographical variation. It also slows the progress of the USI programme.

Although salt iodisation was made mandatory in the 1990s, the production and sale

of non-iodised salt is still persistent, resulting in the recurrence of declining iodised

salt coverage. National health surveys and micronutrient surveys in the past 15 years

showed that the coverage increased dramatically from 0.7% in 1997 to 49.1% in

2002 (283) and then declined to 41.5% (284). Although strict monitoring put in place
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in 2005 pushed the coverage back to 74.1%, recent reports revealed that only 32% is

covered by iodised salt (285). The coverage of adequately iodised salt is even lower

(280). Consequently, population iodine status varied over time. The median urinary

iodine concentration was 77 μg/L in a 1993 national survey and later increased 

dramatically to 196 μg/L in the ThyroMobil visit in 2001 (280;286). A recent study 

recruiting 112 randomly selected school-aged children in Greater Accra showed the

median urinary iodine concentration was only 68 μg/L (287).Salt intake in the 

Kumasi area was lower than the estimated national average according to UNICEF

(10 g/day). The difference is hardly sufficient to prove the geographical variation

within Ghana due to lack of more evidence. However, a few studies in different

African countries and populations indicate that the salt intake is different from

country to country. Hess et al. (197) evaluated the salt intake of 188 adults and

children living in coastal and inland areas in Ivory Coast by means of 3-day weighed

food records and 24-hour urine collections. The average dietary salt intake was 6.8

g/day in adults and 5.7 g/day in the whole study sample. The 24-hour urinary sodium

was 7.4 g/day, with little difference between north and south. Maseko et al. (288)

reported a salt intake of 6.8 g/day and 6.5 g/day in normotensive and on-treatment

hypertensive urban South Africans, respectively. In their review of global salt intake,

Elliot and Brown (30) listed studies on different African populations in the last two

decades. For example, Pavan reported 4 g/day (equivalent to 1,575 mg sodium per

day) in Uganda and Tanzania (289), and Charlton and his colleagues estimated that

black, mixed ancestry and white urban South Africans consume 7.9-9.6 g/day

(135.3-164.8 mmol/day) (290). In the INTERSALT study (126), it was showed that
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Zimbabweans consume about 8.2 g/day salt. The salt intake is 5.4 g/day in rural

Nigerians and 8.7 g/day in urban Jamaicans, estimated in a randomised trial (291).

Despite the low salt intake revealed in this analysis, the prevalence of hypertension

in Ghana was comparable to that of industrial countries (292) and continue to

increase rapidly. Before the 1990s, only 8-13% of the urban population and 4.5% of

the rural population were hypertensive (293). The prevalence was 28.3% in 2003

(294) and increased to 29.4% in 2004 (295). Moreover, the number of hypertensives

increased almost five-fold from 1988 to an estimated 249,342 in 2005, and then

doubled to 505,180 in 2007.

In fact, not only Ghana, but also other low- and middle-income countries are facing

an increasing threat from hypertension and CVD. The CVD mortality in low- and

middle-income countries accounts for almost 90% CVD deaths in the world (296).

By 2020, the number of coronary heart disease (CHD) events could increase by more

than 120% in both sexes (297).

Additionally, the ageing population (≥60 years), which has a higher risk of CVD, is 

expanding in low- and middle-income countries. In Sub-Saharan Africa, the number

will double by 2030 (298). Considering the limited resources available, the

accessibility and affordability of the same treatments as industrialised countries

remain a big question to the governments and health officers in those less developed

countries.

Therefore, precautions should be taken by means of salt reduction to prevent higher

prevalence of hypertension and increasing CVD risk. Consumer awareness campaign
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and population-wide health intervention should be emphasised, particularly in urban

areas where the consumption of processed foods is increasing due to urbanisation

and globalisation (299). The information in campaigns or health promotions should

be simple and clear. This is to avoid misunderstanding among individuals, e.g. some

people may increase salt consumption to increase iodine intake.

The present analysis did not show a significant rural-urban difference in salt intake.

One possible explanation is that the dietary habits of semi-urban residents were

similar to those of rural residents. However, rural-urban disparity in salt intake is

common in low- and middle-income countries (300;301). Urban residents usually

have more choice of food and have growing preference in processed foods.

Therefore, it is not surprising to see a higher prevalence of hypertension in the urban

areas. Mbanya (302) reported that the age-adjusted prevalence was 16.4% and 12.1%

in urban men and women, compared to 5.4% and 5.9% in their rural counterparts. In

the International Collaborative Study of Hypertension in Blacks (ICSHIB) study,

higher prevalence in urban areas was also revealed in Nigeria and Cameroon (265).

The iodine status distribution was improved for both groups after 6 months, while

the overall iodine change was small and non-significant in both groups. One possible

explanation is that the iodine intake in many participants was increased so that their

individual iodine status was improved. But some participants might have much

lower levels of urinary iodine measured at the follow-up. That is, the many small

increases were neutralised by the few large decreases. The large standard deviation

of the iodine changes may provide the evidence (Table 5.2.3). In addition, urinary

iodine varies not only between individuals, but within individuals. Like other urinary
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biomarkers, the iodine variation can be day-to-day and have circadian rhythm (303).

Different food intakes could lead to large day-to-day difference in urinary iodine

levels. Therefore, one simple collection may not fully reflect the true level of iodine

intake in individuals.

Strengths and Limitations

The data contains a baseline measurement and a follow-up measurement. This

enables us to investigate the impact of the change of salt intake on the iodine intake

and iodine status. Moreover, the comparison of the nutritional intake changes

provided an opportunity to identify the varied use of iodised salt in the villages while

this problem would be disguised if we only use a cross-sectional data set (i.e. the

baseline measurement) and the association between salt intake and iodine status

would have been distorted.

This analysis has several limitations. Firstly, the lack of sufficient geographical

information limited the assessment of spatial effect on the intakes and their

association. Although there was residential locality information, it was not an ideal

surrogate of many latent risk factors. Therefore, the investigation and discussion

related to the geographical variation of salt and iodine intakes are far from complete.

Secondly, the study period lasted for 6 months. There was possible seasonal impact

on individuals, particularly in dietary sources and habits, as food diversity changes

according to the harvest season. However, this analysis does not include these

changes and was not able to provide much insight into the temporal variation in salt

intake and iodine status. Additionally, as the community-based study was designed

to examine the effect of salt reduction in population, there were no pre-defined
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protocols to assess iodine status independently. It was not possible to do a

retrospective data collection. Therefore, although the criterion used to determine the

concordant and discordant groups may not be the most reliable, it was the best option

to assess the salt and iodine association in the data. Moreover, the original data were

collected from a single homogeneous community in Ghana (>90% of the Ashanti

tribe). Although some suggestions and interpretations were made based on the

results, they might be not applicable to other countries. For example, some Asian

countries with low- and middle-income status have different cultures and dietary

patterns. The association between salt and iodine should be re-estimated in those

settings. Therefore the generalisability should be made with caution.

Implications

Many countries are facing the dilemma that the implementation of both health

programmes may jeopardise each other. This present analysis indicates that a

reduction in population salt intake by 1 g per day could reduce the iodine intake of

10.6 μg per day in the general population. The association is expected to increase if 

the household coverage of iodised salt is improved. In order to achieve success in

both programmes, in low- and middle-income countries where the majority of iodine

comes from table and cooking salt, the best solution would be to increase the iodine

content in salt.

In addition, the USI programme should be improved, with special emphasis on the

monitoring and enforcement of the use of iodised salt. In Ghana, the lack of such

strictness has led to a stagnant status of the programme, leaving tens of thousands of

people, especially children and pregnant women, at risk of iodine deficiency. For
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countries that produce salt locally, the governments should extend their close

partnership with all producers and encourage the local small-scale producers to add

sufficient iodine during production. Essential political advocacy is needed to achieve

the elimination of iodine deficiency.

Meanwhile, attention should be paid to the monitoring and control of salt intake. The

trend of increasing salt intake has been seen during the economic development of

many industrialised countries. With the on-going epidemiological transition in many

low- and middle-income countries such as Ghana, the trend is expected to repeat.

Additionally, the less developed countries, unlike their industrialised counterparts,

usually have fewer budgets allocated to health care, and struggle to compete with

some more urgent diseases such as malaria and HIV/AIDS. They are likely to

underperform in the prevention, management and control of hypertension.

Several approaches are used to enhance the salt reduction programme, including

social marketing, labelling, public awareness campaigns, product reformulation,

regulation and taxation (15). The use of “salt substitutes”, i.e. potassium chloride

instead of sodium chloride, is also being examined in China. However, the effect is

unclear. Regulation, taxation and product reformulation are the most effective

approaches in most developed countries. The estimated total reduction could reach

up to 6 g per person per day (15). One recent example of an adoption of such a

policy is the Foodstuffs, Cosmetics and Disinfectants Act draft published in South

Africa in July 2012, to regulate the food industry and food distribution to achieve a

reduction in the salt content of the main food categories by 2016 (304). These

policies, by incorporating the need to use iodised salt in food manufacturing, would
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address the harmonisation of the two public health policies without the involvement

of individuals in the responsibility of delivering a public health service. However, for

many low- and middle-income countries, the majority of salt intake still comes from

salt added to food and in the cooking process. For these countries, also relying on

table salt as the main vehicle for iodine supplementation, close partnership with food

manufacturers and effective health awareness campaigns may be more appropriate

and practically cost-saving to enhance the salt reduction programme and improve the

coalition with the salt iodisation programme. At the same time, it is imperative that

the fortification of salt be reviewed and that the population coverage be increased.

During the implementation of both programmes, attentions should be paid to the

socioeconomic inequality. The socioeconomically disadvantaged groups, such as

rural residents, women and household at low income, usually have lower iodine

intake and higher salt intake. Governments and health policy-makers should adhere

to the population-wide approaches to reduce the inequality. Experience in the

industrialised countries indicates the individual based approaches expand the

socioeconomic inequality (305). However, both types of approaches can be

combined to reduce the health burden substantially in short- to medium-term (306).

For instance, in the framework of the USI programme, iodised oil could be

distributed to remote areas where iodised salt is not available.

As our case study is based on the Ghana data, the association between iodine and salt

intakes may be changed according to the context of each country. Therefore, it is

recommended that every country should conduct a detailed investigation regarding

this association to make a tailored adaptation to their own policy.
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5.3 Salt Intake and Iodine Status in the United States

5.3.1 Introduction

High salt intake has become the 7th leading risk factor for premature death in the

United States (US) (307). The causal effect of high salt intake as a determinant of

high BP is supported by a large body of scientific evidence (15). High salt intake is

responsible for 30% of hypertensive events in the United States (308). The link

between high salt intake and cardiovascular disease (CVD) is also established (4).

Salt reduction programmes to lower BP and to prevent the risk of CVD and other

chronic diseases are adopted widely in the general population. The WHO calls for a

reduction of salt intake to less than 5 g per day for all countries (4). In the United

States, the target is set to reduce sodium intake to 2,300 mg/day (equivalent to 5.75

g/day salt) (69). The American Heart Association recommends an even greater

reduction to <1,500 mg/day (about 3.8 g/day salt) (16). New York City initiated a

programme to reduce salt in foods by 25% in order to achieve a 20% reduction in the

population as a whole (1).

Many high-income countries have established legislations or regulations on salt

iodisation (309). The United States Food and Drug Administration (FDA) began salt

iodisation in early 1920s (310) after David Cowie’s successful experiments of

treating goitre using iodine supplementation in Michigan (311). Although the salt

iodisation is on a voluntary basis and so far only discretionary salt, i.e. table and

cooking salt, is widely iodised, iodine deficiency is rare in the country.
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However, some concerns have been raised recently regarding the compatibility of

population salt reduction and universal salt iodisation (USI) programmes (25;33).

Reducing salt intake may restrict the availability of iodine and jeopardise the salt

iodisation programme. As discovered in the previous section, salt and iodine intakes

have a strong association in a Ghanaian urban-rural mixed community when iodised

salt is commonly used. However, due to methodological differences in the

assessment of biomarkers to monitor these programmes and to the historic lack of

links between the two programmes, little is known of the reciprocal effects of these

programmes in high-income countries. The existing studies (28;29) may be useful in

answering the question “whether salt reduction will impact on salt iodisation

programme?” but are unable to provide the answer to “what is the extent of the

impact?”.

Misunderstanding, waste of health investment and potentially conflicting values can

all jeopardise the progress of both health programmes in all high-, middle-and low-

income countries. The need to assess the impact of salt reduction on iodine

supplementation is thus apparent and urgent to promote the coordination of both

programmes and improve the public health.

This analysis will use the United States as an example

1) to estimate salt intake and iodine status in an industrialised population in

which processed foods dominate their diets;

2) to assess the association between salt and iodine intakes in high-income

countries that implement salt iodisation programmes;
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3) to investigate the impact of modifications of salt intake, mainly from

processed foods, on iodine status in the population;

4) to investigate the potential geographical variation and determinants of the

iodine intake and salt intake in the US population;

5) to provide suggestions to policy-makers.

5.3.2 Data and Methods

Country profile

The United States of America is a confederation of states located in North America,

neighbouring Canada in the north and Mexico in the south. The nation consists of 50

states and one federal district. Forty-eight are contiguous while Alaska and Hawaii

are separated from the majority of the country. The total population in the United

States is about 314 million people. The country is composed of diverse racial and

ethnical groups. White American is the major group, comprising more than 70% of

the US population. The remaining groups include African American (or Black

American), Asian, American Indian, Hispanic American, etc.

As the wealthiest country by GDP and the second largest economy in the world, the

US also has the largest health expenditure per capita ($8,362) in 2010 (312). Similar

to other high-income countries, CVD is the major cause of death in the United States

(313).
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Introduction of NHANES III

The National Health and Nutrition Examination Survey (NHANES) is a nationally

representative (excluding institutional population) population health surveillance

programme administered by the Centers for Disease Control and Prevention (CDC).

It contains a series of surveys with a complex, multistage, stratified probability

design. The aim of the programme is to assess the health and nutrition status of the

US population and to develop health promotions and improve disease prevention in

the country.

The first survey was carried out in the 1960s and the third, NHANES III, was

conducted during 1988-1994. The survey has been conducted every two years since

1999. Several sub-populations are over-sampled to improve the reliability of the

analyses. These sub-populations include African Americans, Mexican-Americans,

people aged 60 and over and children. Oversampling in low-income White

Americans started in 2000.

The NHANES III was carried out in two phases and data are kept in the National

Center for Health Statistics (NCHS). The first phase was carried out between

18th October 1988 to 24th October 1991, and the second from 20th September 1991 to

15th October 1994. Participants and their households were randomly selected to

complete the home interview and examination procedures in the survey. A total of

85.6% (n=33,994) of the 39,695 selected individuals aged 2 months and over

attended the interview. In the NHANES III, the interview was conducted at the

participant’s home by means of household questionnaires with computer assistance.

The questionnaires, administered by trained personnel, included a Household
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Screener Questionnaire, a Family Questionnaire, a Household Adult Questionnaire,

and a Household Youth Questionnaire. Participants provided demographic,

socioeconomic, and dietary information, as well as answering health related

questions.

All of the interviewed participants were then invited to the mobile examination

centers (MEC) for physical and physiological examination and laboratory testing.

About 90% (30,818) of the interviewed participants attended the MEC examination.

Blood and spot urine samples were collected. In addition, five automated

questionnaires were also carried out at the MEC: a MEC Adult Questionnaire, a

MEC Youth Questionnaire, a MEC Proxy Questionnaire, a 24-hour Dietary Recall,

and a Dietary Food Frequency Questionnaire. Some participants were not able to

attend the MEC examination. They included infants aged 2-11 months and adults

aged 20 years and over who had difficulty coming to the MEC. Home examination

was then conducted instead in 493 participants. However, these participants were not

included in this analysis as they were not involved in the 24-hour dietary recall and

urine test.

Anthropometric measurement

The adult population included participants aged 17 years and over, and the youth

population included participants aged 2 months to 16 years. To keep the

confidentiality of those aged 90 years and over, their age was recoded into a single

age category, “90+”. All participants were defined as one of the following race-

ethnicity groups: Non-Hispanic White, Non-Hispanic Black, Mexican-American,

and other.
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Standing height was measured to the nearest 0.1 cm and weight was measured to the

nearest 10 g. Body mass index was calculated by weight over height squared (kg/m2).

Multiple BP readings were taken by trained doctors at the MEC using

sphygmomanometry recording Korotkoff sounds. Three measurements were

obtained and the average systolic and diastolic blood pressure records were based on

all readings.

Each participant’s marital status was recorded. The status included married (spouse

in household), married (spouse not in household), living as married, widowed,

divorced, separated, and never married. According to the living status, those who

were living with partners were grouped as “living together” and the rest, including

married (spouse not in household), were grouped as “living alone”.

Participants provided their education background by answering “what is the highest

grade or year of regular school?” The majority was in the category of 12 grade/years

education (equivalent to high school qualification). According to the analytical

recommendation in the NHANES III documents, three levels were used to categorise

the education background: below high school, high school (12 grade/years), and

above high school.

Smoking habit was determined on the basis of two questions: “Have you smoked at

least 100 cigarettes during your entire life?” and “Do you smoke cigarettes now?”

Non-smoker was defined as the person not smoking now who might have smoked

less than 100 cigarettes in the past. Former smoker was defined as the person who
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smoked at least 100 cigarettes but not smoking now. Current smoker was defined as

the person still smoking.

Participants were asked about their employment status in the past two weeks at the

time of interview. However, this information could not provide long-term reflection

of the participants’ socioeconomic status. Therefore, poverty income ratio (PIR) was

included in this analysis to describe the family income as well as their

socioeconomic status. PIR reflected the position of the midpoint of the observed

family income category in the poverty threshold. As indicated in the NHANES III

Examination Data File, PIR “allows income data to be analysed in a comparable

manner across the six years of the survey”.

Urine test

Urine test was based on spot urine samples. No volume information was available,

although the fasting time was recorded. Twenty-four-hour urine collection was not

carried out because it was deemed unfeasible (314). Details of the test have been

described in the Laboratory Procedures Used for NHANES III. Briefly, urinary

iodine concentration (UIC) was measured by the Iodine Research Laboratory,

University of Massachusetts Medical Center using Sandell-Kolthoff

spectrophotometric method. The limit of detection of the UIC is 0.2 µg/dL. Values

lower than 0.5 µg/dL were defined as “below level of detection” in the NHANES III.

Hence the values were recoded to be “missing” in the analysis. In the analysis, the

valid UIC was converted to µg/L by using the conversion equation: µg/L=µg/dL*10.

The WHO uses the median UIC as the indicator of iodine status at a population level.
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The measured UIC was used in this analysis as an indicator of iodine nutrition and to

assess the iodine status in the US adult population.

Urinary creatinine concentration was measured by the Jaffé alkaline picrate method.

The concentration levels lower than 10 mg/dL were “statistically suspect” and were

defined as “below level of detection”. Hence these values were also recoded to

missing values. The concentration levels were recorded as mg/dL in the raw data set.

The unit was converted to mmol/L by using the conversion equation:

mmol/L=mg/dL*0.0884.

24-hour dietary recall

The NHANES III adopted a 24-hour dietary recall (midnight to midnight) to assess

participants’ dietary pattern and nutrition intakes. The information was obtained via

a computer-aided dietary interview at the MEC. Nutrient intakes were measured on

the reported foods and beverages. The nutrient intakes from other sources, such as

nutrient supplements, medications, table and cooking salt and drinking water, were

not recorded nor measured. The amount of nutrient intakes was assessed based on

two US Department of Agriculture (USDA) food composition databases that were

updated in 1993 and 1995, respectively.

In the NHANES III, salt intake was measured by dietary sodium intake calculated

from the dietary recall. The final dietary recall dataset provided data of the dietary

sodium and energy intakes as well as the consumption of alcohol. The dietary iodine

intake was not calculated. The dietary sodium intake was recorded in mg/day and the

dietary energy intake was recorded in kcal/day. Alcohol consumption was recorded
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in g/day. However, the majority of the participants reported a 0 g/day intake of

alcohol. Hence alcohol consumption was dichotomised. Those who answered no

consumption were grouped as “non-drinker” and those who had some consumption

(>0 g/day) were grouped as “drinker”.

Geographical location

The survey was conducted in 4 census regions (see Figure 5.3.1), including 50 states

and 760 counties. However, the released data only contain geographical information

of the census region. More detailed geo-information, such as county and state

information, is not publicly available 8 . Hence the investigation of geographical

variation effect was limited at census region level.

In addition, residential location was classified as rural or urban. In the NHANES III,

the residential location within a metropolitan statistical area (counties with

populations more than 100,000) was defined as urban and the residential location out

of a metropolitan statistical area was defined as rural.

8 The CDC restricts the use of more detailed geo-information and requires researchers use these
confidential data at their Hyattsville (at Washington DC) or Atlanta centre. The cost also prohibited
me from accessing these data. CDC requires $750 for set-up fees and $300/day for on-site access. As
there was no extra funding in this project to cover the cost, the analysis has to be limited to the census
region level.
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Figure 5.3.1 The United States census regions used in the NHANES III survey

Sampling weight

Several sampling weights were calculated and used for the adjustments for non-

response, oversampling of selected sub-populations and non-coverage. There were a

number of sampling weights available for different analytic purposes, e.g. by survey

year. However, in this analysis, two sampling weights were used for national

estimate: interview weight for home interview variables and MEC examination

weight for examination and blood and urine test variables. Details of the sampling

weights have been discussed in the survey documents and elsewhere (315). At the

modelling stage, no sampling weight was used. Some participants in the NHANES

III were from the same household. Bayesian geo-additive models were used to take

into account the potential within-household dependence.
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Statistical analysis

The means and standard errors were reported for the continuous variables. For the

categorical variables, the medians and interquartile ranges (IQR) were calculated.

These analyses were weighted for sampling weights using SAS SURVEYMEANS

and SAS SURVEYFREQ procedures.

Comparisons by sex and region were also made. However, the SAS survey

procedures are unable to produce weighted p values for the comparisons. Hence

unweighted methods were used. One way Analysis of Variance (ANOVA) was used

to compare age, weight, height and BMI. Dietary indicators were compared using the

Kruskal Wallis test as normality assumption might not be suitable for them. For

instance, extreme values were found in UIC. For the categorical variables, Pearson's

chi-squared test was used to test the difference.

Bayesian geo-additive models were used to investigate the association between

iodine intake and sodium intake and to assess the effects of risk factors on both

intakes. The details of model construction are illustrated in Chapter 3.

Four models were created to test the different combinations of risk factors, the

nonlinearity of the continuous risk factors and the regional effect (see Table 5.3.1).

However, the software is unable to estimate spatial effects (correlated and

uncorrelated effects) at this level due to limited geographical information. Therefore,

the census region was included in the models as a fixed-effect risk factor.

For UIC, Model 1 estimates the effect of sodium intake and regional impact. Model

2 expands Model 1 by adjusting for age, sex, BMI and urinary creatinine
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concentration. Model 3 develops Model 2 by adjusting for demographic, lifestyle

and socioeconomic risk factors (race-ethnicity group, marital status, education,

smoking and drinking habit, and household location and economic status). Model 4

attempts to explore the nonlinear effects of the continuous risk factors. The model

structures for dietary sodium intake are almost identical to those of UIC.

Table 5.3.1 List of Bayesian models

Dependent
variable

Model Risk factor

Urinary iodine
concentration

Model 1 Region + Sodium intake

Model 2
Region + Sodium intake + Age + Sex + BMI + Urinary
creatinine concentration

Model 3

Region + Sodium intake + Age + Sex + BMI + Race-
ethnicity + Marital status + Education + Smoking +
Drinking + PIR + Location + Urinary creatinine
concentration

Model 4

Region + Sodium intake (nonlinear) + Age (nonlinear) +
Sex + BMI (nonlinear) + Race-ethnicity + Marital status +
Education + Smoking + Drinking + PIR + Location +
Urinary creatinine concentration (nonlinear)

Dietary sodium
intake

Model 1 Region

Model 2 Region + Age + Sex + BMI + Dietary energy intake

Model 3
Region + Age + Sex + BMI + Race-ethnicity + Marital
status + Education + Smoking + Drinking + PIR +
Location + Dietary energy intake

Model 4

Region + Age (nonlinear) + Sex + BMI (nonlinear) +
Race-ethnicity + Marital status + Education + Smoking +
Drinking + PIR + Location + Dietary energy intake
(nonlinear)

Note: Nonlinear: the effect was assumed to be nonlinear.

As there were some extremely high levels of urinary iodine concentration, a direct

modelling of this variable may produce biased results and lead to incorrect

interpretation. These values were difficult to normalise, even after attempts at

different mathematical transformations (e.g. log transformation, square root, and

Box-Cox transformation). High iodine intake leads to hyperthyroidism, thyroid

papillary cancer and iodermia (92). The US Institute of Medicine (IoM) instructs that
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no more than 1,100 µg/day iodine should be consumed in adult population.

Therefore, this upper limit was used as a reference to exclude these extreme values

in the modelling. By using a conservative estimate of 1.2 L/day urine output, the cut-

off value was defined as 916.7 µg/L. There were 263 out of 17,043 (1.6%)

participants who had valid urinary iodine measurement beyond this value. They were

not included in the following modelling. An exponential transformation was applied

to the concentration variable to normalise the data: transformed UIC=UIC^0.1. Log

transformation was also used for comparison. As the models of both transformations

produced similar results, the log transformed UIC was finally chosen as the

dependent variable.

For the categorical risk factors, dummy variables were generated using dummy

coding (1 vs 0). One level of each risk factors was defined as the reference level

(value=0). The designated reference level was indicated in Table 5.3.2.

Different transformation methods were used to normalise the dietary sodium variable.

Exponential transformation was also applied. The equation is: transformed

sodium=sodium^0.3. Log transformation was compared with this transformation.

However, the performance of the exponential transformation was better. Hence the

models of the non-transformed sodium intake were finally chosen.

Deviance information criterion (DIC) (220) was used for model selection. It is a tool

to measure the model performance by trading off model complexity and fit. The

model with the smallest DIC value was regarded as the best model.
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Table 5.3.2 List of categorical variables with defined reference level

Variable Category Indicator

Region

Northeast reference level

Midwest

South

West

Race-ethnicity

Non-Hispanic White reference level

Non-Hispanic Black

Mexican-American

Others

Sex
Female reference level

Male

Smoking

Non-smoker reference level

Former smoker

Current smoker

Marital status
Living together reference level

Living alone

Education

Above high school reference level

High school

Below high school

Drinking
Non-drinker reference level

Drinker

Poverty Income Ratio
At or above poverty reference level

Below poverty

Location
Urban reference level

Rural

For the preliminary analysis, all p values <0.05 are regarded as significant. For the

Bayesian modelling results, 90% credible intervals were computed. If both the lower

and upper limits were either negative or positive, the effect of the corresponding risk

factor was regarded as significant. The preliminary analysis was conducted using

SAS version 9.2 (SAS Institute, Cary, NC, USA). The Bayesian models were

constructed and estimated using BayesX version 2.0.0 (06.05.2009).
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5.3.3 Results

Population characteristics

The population characteristics are summarised in Table 5.3.3. The total number of

included participants was 20,050, representing a population of 187,647,206 US

adults aged 17 and older. Home interview weight was applied in the analysis. The

South region had the largest adult population (34.3%), followed by the Midwest

(24.1%), the West (20.9%) and the Northwest (20.8%). There were fewer

participants involved in the MEC examination and blood and urine measurements.

The total numbers of participants provided valid examination and urine

measurements were 18,106 and 17,107, respectively. The MEC measured variables

include height, weight, BMI, SBP, DBP, and all dietary and urine variables. A

separate MEC examination weight was applied to these variables.

The mean age of the US adult population was 43.3 (Standard Error: 0.4) years. Men

were younger than women (42.3 (0.4) vs 44.2 (0.4)). The population was divided

into four race-ethnic groups. The non-Hispanic Whites were the major group

(76.0%), almost 7 times larger than the non-Hispanic Blacks (11.2%). Mexican-

Americans and other minor race-ethnic groups consisted of 12.8% of the population.

The mean height and weight were 168.4 (0.1) cm and 75.0 (0.3) kg. The computed

BMI was 26.3 (0.1), kg/m2, indicating overweight in the population. The average

systolic and diastolic blood pressures were 121.8 (0.4) and 73.7 (0.2) mmHg.

The majority of participants were cohabiting. Single, widowed, or living separately

(including married couples) comprised 39.1% of the adult population.
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Nearly half (47.2%) were non-smokers while there were 24.5% and 28.2% former

and current smokers. Less than one quarter (23.6%) of the population reported

alcohol consumption in the dietary interview. The majority (76.4%) had no

beverages or foods containing alcohol.

The educational attainment in the population had an inverse pyramid structure. More

people had higher educational attainment. Almost a quarter of the population (73.2%)

had at least high school qualification, while 39.4% had studied for more than 12

years. One third (33.0%) of the participants had no job or had run no business in the

two weeks preceding the time of the interview. Nonetheless, the family economic

status seemed unrelated to the short-term employment stats. There were only 12.8%

of the households below the poverty threshold.

The total daily dietary energy intake was 2,000 (IQR: 1,291) kcal. The dietary

sodium intake was 3,133 (IQR: 2,356) mg/day.
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Table 5.3.3 Characteristics for NHANE III participants

Variable Total (n=20,050)‡

Age (year) 43.3 (0.4)

Sex (%)-Male 47.8

Sex (%)-Female 52.2

Race-Ethnicity (%)-Non-Hispanic White 76.0

Race-Ethnicity (%)-Non-Hispanic Black 11.2

Race-Ethnicity (%)-Mexican-American 5.2

Race-Ethnicity (%)-Other 7.6

Height (cm) 168.4 (0.1)

Weight (kg) 75.0 (0.3)

BMI (kg/m2) 26.3 (0.1)

SBP (mmHg) 121.8 (0.4)

DBP (mmHg) 73.7 (0.2)

Education (%)-Above high school 39.4

Education (%)-High School 33.8

Education (%)-Below high School 26.8

Marital status (%)-Living together 60.9

Marital status (%)-Living alone 39.1

Smoking (%)-Non-smoker 47.2

Smoking (%)-Former 24.5

Smoking (%)-Current 28.2

Employment in last 2 weeks (%)-Jobless 33.0

Employment in last 2 weeks (%)-Have a job/business 67.0

Poverty Income Ratio (%)-Below poverty 12.8

Poverty Income Ratio (%)-At or above poverty 87.2

Location (%)-Urban 49.7

Location (%)-Rural 50.3

Census region (%)-Northeast 20.8

Census region (%)-Midwest 24.1

Census region (%)-South 34.3

Census region (%)-West 20.9

Alcohol drinking (%)-Non-drinker 76.4

Alcohol drinking (%)-Drinker 23.6

Food energy (kcal/day)† 2,000 (1,291)

Dietary sodium intake (mg/day)† 3,133 (2,356)

Urinary iodine concentration (µg/L)† 133.3 (142.6)

Urinary creatinine concentration (mmol/L)† 10.6 (10.3)
Note: Results are mean and standard deviation unless specified. Sampling weights were applied. The
examination weight was applied to the MEC variables and the home interview weight was applied to
the rest variables for mean, median and percentage estimation.
†: Median (Interquartile range).
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Table 5.3.4 Characteristics for NHANE III participants by sex and region

Sex p
value‡

Region p
value‡

Male (n=9,401) Female (n=10,649) Northeast (n=2,931) Midwest (n=3,854) South (n=8,558) West (n=4,707)

Age (year) 42.3 (0.4) 44.2 (0.4) 0.501 44.1 (0.8) 43.7 (0.7) 42.4 (0.6) 43.3 (1.0) <0.001

Race-Ethnicity (%)-Non-Hispanic White 76.3 75.8 <.0001 81.3 85.4 71.6 67.1 <.0001

Race-Ethnicity (%)-Non-Hispanic Black 10.4 11.9 8.8 9.3 17.7 5.0

Race-Ethnicity (%)-Mexican-American 5.7 4.8 0.3 2.3 4.2 15.1

Race-Ethnicity (%)-Other 7.6 7.6 9.6 3.0 6.4 12.7

Height (cm) 175.6 (0.1) 161.9 (0.1) <0.001 167.7 (0.2) 169.3 (0.3) 168.7 (0.2) 167.8 (0.4) <0.001

Weight (kg) 81.6 (0.4) 68.9 (0.4) <0.001 74.3 (0.7) 75.8 (0.6) 75.3 (0.4) 74.1 (0.8) <0.001

BMI (kg/m2) 26.4 (0.1) 26.3 (0.1) <0.001 26.3 (0.3) 26.4 (0.3) 26.4 (0.1) 26.2 (0.2) 0.003

SBP (mmHg) 124.2 (0.4) 119.6 (0.5) <0.001 121.8 (0.8) 120.9 (0.9) 122.5 (0.5) 121.8 (0.7) <0.001

DBP (mmHg) 76.1 (0.2) 71.4 (0.2) <0.001 72.6 (0.6) 73.3 (0.2) 74.6 (0.3) 73.7 (0.2) <0.001

Education (%)-Above high school 41.6 37.4 <0.001 41.8 40.0 33.5 46.0 <0.001

Education (%)-High School 30.7 36.5 32.3 37.0 34.6 30.0

Education (%)-Below high School 27.6 26.1 25.9 23.0 31.9 24.0

Marital status (%)-Living together 65.0 57.2 <0.001 58.2 62.1 61.7 61.1 <0.001

Marital status (%)-Living alone 35.0 42.8 41.8 37.9 38.3 38.9

Smoking (%)-Non-smoker 38.4 55.2 <0.001 46.4 46.6 46.8 49.4 <0.001

Smoking (%)-Former 29.9 19.7 26.5 23.5 23.0 26.4

Smoking (%)-Current 31.7 25.1 27.1 30.0 30.2 24.2

Employment in last 2 weeks (%)-Jobless 23.9 41.4 <0.001 35.1 31.2 31.7 35.3 <0.001

Employment in last 2 weeks (%)-Have a job/business 76.1 58.6 64.9 68.8 68.3 64.7

Poverty Income Ratio (%)-Below poverty 10.8 14.7 <0.001 12.8 10.7 15.4 11.2 <0.001

Poverty Income Ratio (%)-At or above poverty 89.2 85.3 87.2 89.3 84.6 88.8

Location (%)-Urban 50.4 49.1 0.223 56.9 47.1 36.1 67.9 <0.001

Location (%)-Rural 49.6 50.9 43.1 52.9 63.9 32.1

Census region (%)-Northeast 69.2 82.8 <0.001 74.0 76.0 80.5 72.3 <0.001

Census region (%)-Midwest 30.8 17.2 26.0 24.0 19.5 27.7

Food energy (kcal/day)† 2489 (1398) 1668 (909) <0.001 1958 (1305) 2031 (1342) 2028 (1258) 1986 (1287) 0.014

Dietary sodium intake (mg/day)† 3836 (2690) 2644 (1797) <0.001 3044 (2439) 3186 (2291) 3223 (2357) 3022 (2257) 0.046

Urinary iodine concentration (µg/L)† 148.3 (144.7) 119.7 (134.7) <0.001 124.3 (141.5) 124.7 (127.0) 142.0 (149.6) 137.9 (151.7) <0.001

Urinary creatinine concentration (mmol/L)† 12.6 (9.8) 8.6 (9.7) <0.001 10.8 (9.8) 10.7 (10.3) 10.7 (10.1) 10.1 (10.8) <0.001

Note: Results are mean and standard deviation unless specified. Sampling weights were applied. The examination weight was applied to the MEC variables and the home
interview weight was applied to the rest variables for mean, median and percentage estimation.
†: Median (Interquartile range).
‡: Tests were not weighed for sampling weights.
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The characteristics were compared by sex and census region. As indicated previously,

no sampling weight was applied for calculating the p values. The results were shown

in Table 5.3.4. Almost all variables differed significantly between men and women

and across regions. Most p values were less than 0.001. Dietary sodium intake and

UIC differed significantly across the regions (p<0.001 and p=0.046, respectively).

Iodine status and distribution

The median UIC of the population was 133.3 (IQR: 142.6) µg/L (see Table 5.3.3),

indicating the population was of optimal iodine status. Men had significantly higher

urinary iodine concentration than women (148.3 µg/L vs 119.7 µg/L). People living

in the South and West regions had higher UIC levels, but none of the regions showed

risk of iodine deficiency.

Figure 5.3.2 Distribution of iodine status in the US adult population. Weighted by

the examination sampling weight



173

As shown in the Figure 5.3.2, 36.4% of the participants had optimal iodine intake,

whilst 34.7% of the participants had some degree of iodine deficiency. However, the

proportion of severe iodine deficiency was very low (2.2%). Some participants were

at risk of iodine-induced hyperthyroidism (IIH) due to excessive iodine intake. In

particular, a few participants had extremely high urinary iodine concentration levels.

The highest iodine concentration was 110,000 µg/L. Using the 916.7 µg/L cut-off

value, 267 participants had unacceptable levels of iodine intakes.

DIC results

The DIC values of two pairs of models are shown in Table 5.3.5. Model 3 produced

the lowest DIC for both UIC and dietary sodium intake. The inclusion of

nonlinearity effect increased the complexity of the model (shown as the increased pD,

effective number of parameters). Hence only the results of Model 3 are presented

below and the discussion is mainly based on these results.

Table 5.3.5 DIC results calculated from the models of urinary iodine

concentration and dietary sodium intake

Urinary iodine concentration Dietary sodium intake

Deviance pD DIC Deviance pD DIC

Model 1 16228.7 7.3 16243.2 17073.5 5.8 17085.0

Model 2 16648.7 10.0 16668.6 17041.4 9.8 17061.0

Model 3 14482.9 21.9 14526.7 15274.8 20.9 15316.6

Model 4 14459.7 46.1 14551.8 15259.3 40.2 15339.7

Urinary iodine concentration

The estimated fixed effects of the continuous and categorical risk factors are shown

in Table 5.3.6. The effects are shown as means with standard deviation and 90%

credible intervals. The significance of the effects was determined by the position of
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the credible intervals. If both the upper and lower limits were either positive or

negative, the effect was considered significant.

Table 5.3.6 Estimated fixed effects of urinary iodine concentration (Model 3)

Mean
effect

Standard
Deviation

5%
quantile

95%
quantile

Age (year) 0.0052 0.0003 0.0047 0.0058

Sex-Female 0

Sex-Male -0.0046 0.0061 -0.0149 0.0050

Body Mass Index (kg/m2) -0.0005 0.0010 -0.0021 0.0010

Race-ethnicity-Non-Hispanic White 0

Race-ethnicity-Non-Hispanic Black -0.1938 0.0117 -0.2136 -0.1750

Race-ethnicity-Mexican Americans 0.1653 0.0126 0.1441 0.1857

Race-ethnicity-Other -0.0070 0.0214 -0.0412 0.0282

Education (%)-Above high school 0

Educatio (%)n-High school -0.0180 0.0080 -0.0308 -0.0044

Educa (%)tion-Below high school 0.0557 0.0085 0.0418 0.0700

Marital status-Living together 0

Marital status-Living alone 0.0112 0.0057 0.0018 0.0205

Smoking habit-Non-smoker 0

Smoking habit-Former -0.0015 0.0091 -0.0162 0.0136

Smoking habit-Current -0.0336 0.0092 -0.0487 -0.0191

Alcohol drinking-Non-drinker 0

Alcohol drinking-Drinker -0.0097 0.0071 -0.0212 0.0021

Dietary sodium intake (mg/day) 2.18×10-5 2.83×10-6 1.70×10-5 2.67×10-5

Urinary creatinine concentration
(mmol/L)

0.0591 0.0008 0.0577 0.0603

Poverty income ratio-At or above poverty 0

Poverty income ratio-Below poverty 0.0289 0.0072 0.0169 0.0407

Location-Urban 0

Location-Rural 0.0158 0.0061 0.0060 0.0261

Region-Northeast 0

Region-Midwest -0.0865 0.0108 -0.1045 -0.0681

Region-West 0.0324 0.0114 0.0141 0.0517

Region-South 0.1273 0.0090 0.1123 0.1419

Older people were associated with higher UIC. Significantly higher UIC was also

found in participants with the following characteristics: Mexican Americans, having

lower educational attainment (below high school), living alone in rural areas, and

poorer family economic status. On the contrary, black participants who were current
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smokers/drinkers and attained only high school qualification had significantly lower

levels of iodine concentration. Overall, participants of lower socioeconomic status

appeared to have higher iodine concentration.

Although the model was not able to capture the spatial correlation, the regional

variation was still significant. People living in the South and the West regions were

more likely to have higher UIC, while those in the Midwest region were more likely

to have lower UIC, compared to those in the Northeast region.

Association between urinary iodine concentration and dietary sodium intake

Higher dietary sodium intake was significantly associated with higher UIC. However,

the effect of dietary sodium was comparatively small (2.18×10-5) in the model.

Dietary sodium intake

The estimated fixed effects of the included risk factors on the exponentially

transformed dietary sodium intake are shown in Table 5.3.7.

Older people appeared to eat less sodium, probably because they tend to consume

less food. In fact, higher sodium intake was significantly associated with higher BMI

and more energy intake. This was true particularly for those overweight or obese

people who tend to eat more energy-dense foods.

Significantly higher sodium intake was also found in the male participants who were

living in rural areas, had quit smoking, had only high school qualification and were

in “Other” race-ethnic group. Compared to white Americans, significantly lower

dietary sodium intake was found in blacks and Mexican Americans who were current
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smokers/drinkers with below high school qualification, living alone and having

poorer family economic status.

The geographical effect was still significant for dietary sodium intake. The effect

varied across the census regions. The levels of sodium intake were significantly

higher in the South region, compared to the Northeast region.

Table 5.3.7 Estimated fixed effects of dietary sodium intake (Model 3)

Mean
effect

Standard
Deviation

5%
quantile

95%
quantile

Age (year) -0.0014 0.0006 -0.0024 -0.0005

Sex-Female 0

Sex-Male 0.0814 0.0221 0.0467 0.1186

Body Mass Index (kg/m2) 0.0036 0.0018 0.0008 0.0064

Race-ethnicity-Non-Hispanic White 0

Race-ethnicity-Non-Hispanic Black -0.0746 0.0283 -0.1212 -0.0274

Race-ethnicity-Mexican Americans -0.1838 0.0304 -0.2324 -0.1335

Race-ethnicity-Other 0.2210 0.0573 0.1253 0.3130

Education (%)-Above high school 0

Educatio (%)n-High school -0.1121 0.0271 -0.1576 -0.0677

Educa (%)tion-Below high school -0.0140 0.0274 -0.0580 0.0312

Marital status-Living together 0

Marital status-Living alone -0.0485 0.0214 -0.0827 -0.0141

Smoking habit-Non-smoker 0

Smoking habit-Former 0.0935 0.0262 0.0525 0.1360

Smoking habit-Current -0.0371 0.0251 -0.0766 0.0071

Alcohol drinking-Non-drinker 0

Alcohol drinking-Drinker -0.2676 0.0257 -0.3089 -0.2247

Dietary energy intake (kcal/day) 0.0014 1.08×10-5 0.0014 0.0014

Poverty income ratio-At or above poverty 0
Poverty income ratio-Below poverty -0.0966 0.0255 -0.1378 -0.0557

Location-Urban 0

Location-Rural 0.0444 0.0225 0.0086 0.0822

Region-Northeast 0

Region-Midwest 0.0253 0.0362 -0.0340 0.0855

Region-West 0.0135 0.0367 -0.0473 0.0734

Region-South 0.1030 0.0334 0.0503 0.1600
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5.3.4 Discussion

Key findings

This analysis sought to assess the association between salt intake and iodine intake

and to estimate both intakes and possible risk factors in the United States using the

third National Health and Nutrition Examination Survey. An important finding is the

weak association between dietary sodium intake and urinary iodine concentration. In

addition, the US adult population consumed 3,133 mg of sodium per day during the

survey time (1988-1994), which was approximately a consumption of 7.8 g salt

(sodium chloride) per day. The UIC of the population was 133.3 µg/L, indicating an

optimal iodine status of the population. The risk of severe iodine deficiency was also

small in the population. Less than 3% of people had a UIC of less than 20 µg/L.

Discussion of findings

Salt intake in the United States

In the NHANES III dietary assessment of sodium intake accounts only for sodium

present in food, without the assessment of discretionary sources. Therefore, the

estimation was lower than the real salt consumption. In the US, salt hidden in

processed and restaurant foods contributes to approximately 75% of total salt intake

(31;316). Discretionary salt contributes about 10-12% and the salt naturally

presented in foods makes up the rest. Therefore, the total salt intake in the population

can be estimated by adding a 25%. So the average consumption would be about

10.4 g/day (or 4,177 mg sodium per day). This estimate would be slightly higher

than the salt intake reported in the INTERSALT study (30;126) but would be
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comparable to that reported in the INTERMAP study (317). Both studies used 24-

hour urine collection to measure salt intake.

The causal effect of high salt intake on raised BP, or hypertension, is well

established (2;6;39;126). An estimated 30% hypertension prevalence is attributable

to high salt intake in the United States (308). In the US, one in three adults aged 18

and over is hypertensive (318) which translates into an estimated 76 million

hypertensives in 2012 (319). According to CDC estimates, age-adjusted

hypertension prevalence remained unchanged in the last 10 years (320). This may be

largely attributable to the constant increase in the awareness, treatment and control

of hypertension in the public (321). However, mortality caused by high BP still

increased 20.2% in the same period (319).

High salt intake is also associated with higher risk of CVD (14;322;323). An

increased salt intake by 5 g/day is associated with a significant 17% increase in CVD

risk (14).

Population-wide salt reduction is the most cost-effective approach to lower BP and

the second most cost-effective to prevent CVD (15;74;272). The cost of hypertension

is huge. It is estimated that the total cost of high BP is $50.6 billion (319). Bibbins-

Domingo and her colleagues (75) estimated that a reduction of 3 g per day in salt

intake could save 194,000 to 392,000 quality-adjusted life years (QALY) and $10

billion to $24 billion in healthcare costs.

A population-wide dietary salt reduction is recommended by the WHO and by many

national and regional health organisations as the primary strategy to reduce

hypertension and to prevent, treat and manage cardiovascular disease. In the US, salt
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reduction was firstly proposed in 1969 (324). Nonetheless, the average salt intake

has remained unchanged in recent decades. Bernstein and Willett (325) reviewed 38

studies that reported 24-hour urinary sodium excretion in the US population between

1957 and 2003. It is clear that salt intake before 2000 varied by a very small range

(8.3-8.7 g/day) and surprisingly increased after 2000 (see Figure 5.3.3). Although the

changes are not significant, the trend indicates that the surveillance efforts on salt

reduction are far from sufficient. In addition, the salt intake in Black Americans is

always lower than that in Whites, which is consistent with the findings in both

preliminary and modelling results.

Figure 5.3.3 Change of salt intake during 1953 and 2003 in the United States

Note: Modified from Bernstein and Willett (325).

Therefore, the American Medical Association (AMA) recently urged the FDA and

called on the public to reduce salt intake by 50% (16). In 2008, New York City also

initiated a programme, aiming at a 20% reduction of population salt intake by

reducing sodium content in foods by 25% in 5 years (1).
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Iodine intake in the United States

Salt iodisation in the US can be dated back to the early 20th century when

David Cowie started his experiment in Michigan about treating goitre patients with

iodine supplementation (311). The US FDA later began a salt iodisation programme

following David Cowie’s success (310). The effect of the programme was evident.

Before the implementation of salt iodisation, high prevalence of goitre was present in

the Northwestern, Great Lakes, and Appalachian regions (the so called “goiter belt”).

The prevalence in children varied from 26% to 70% (326) in this belt. After the use

of iodised salt, the country experienced significant improvement in iodine status and

the “goiter belt” disappeared (327).

Despite the early start, only table and cooking salt is iodised on a voluntary basis in

the US. Potassium iodide (KI) is added to salt at a recommended level of 60-100

ppm (equivalent to 46-77 mg iodine per 1 kg salt). However, potassium iodide is less

stable and more soluble than potassium iodate (KIO3). The loss of iodine during

production, transportation, storage and cooking may be more than expected. In a

study by Dasgupta and colleagues (310), 88 table salt samples were collected from

different locations in the US, and the content of iodine was measured at different

environmental conditions (different humidity, heat and light). The iodine content was

in the range of 12.7 to 129 ppm, with a median of 44.1 ppm. Only 41% of the

samples contained iodine within the FDA recommended range, while 52% was

below the range. The study also revealed that the magnitude of iodine loss increased

rapidly as the humidity increased in a 40-day observation. High heat can cause up to

25% loss of iodine depending on the salt brands. The study also found that not all

household iodised salt was consumed by household members. For instance, salt used
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in boiling water for cooking pasta is wasted after use, while the salt in home-baked

cakes is shared by people out of the household. In addition, only half of the salt

products on the market are iodised (328). Hence, the iodine obtained from

discretionary salt may be even less than expected.

In fact, iodine supplementation of the US population relies on many other dietary

and nutritional sources. In the US, as well as other high-income countries, a diverse

selection of foods is available to the public. Some foods are rich in iodine, including

seafood, milk and dairy products, and bread. For example, the iodine content in one

gram of kelp can reach 8,165 µg (329). The iodine content ranges from 352-464 µg

per litre in the milk sold in the US, while bread contains iodine from 10.1 µg to more

than 300 µg per slice (112).

With the long-term commitment to salt iodisation and diverse iodine rich food

supply, the US is believed to have eliminated iodine deficiency. This analysis

showed that the iodine status in the adult US population was optimal during 1988-

1994. However, Hollowell et al. described a declining iodine intake in the population

after comparing the urinary iodine concentration in the NHANES I and NHANES III

(314). Nonetheless, the declining trend ceased as the data in the NHANES 2001-02

and NHANES 2005-08 showed higher median UIC in the population (330;331).

Although iodine deficiency would raise more attention, the US government and

health authorities should be alerted to those with extremely high iodine

concentrations. Albeit a small number in the NHANES III data, people may suffer

from a variety of severe health issues induced by extreme iodine intake. The high

iodine concentration was likely to be caused by the consumption of iodine-rich foods,
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nutrient supplements or medications. In particular, Americans have a high preference

for supplementing micronutrients by consuming nutrient supplements. It is reported

that more than 50% of the general population are consuming vitamin and

micronutrient supplements (332). As this survey did not measure the use of

supplements, it was not possible to estimate and validate the impact of nutrient

supplements that contains iodine.

Unfortunately, the 24-hour dietary recall did not calculate the amount of iodine in the

self-reported foods. Hence, the contribution of the iodine-rich foods is still

inconclusive in this case.

The compatibility of salt reduction and salt iodisation programmes

A significant association between urinary iodine concentration and dietary sodium

intake was obtained in the analysis. However, the US does not require the use of

iodised salt in food manufacturing. Hence, no contribution of iodine from the salt

used in food industry is expected. The association was probably caused by the foods

that contain both iodine and non-iodised salt, e.g. cheese and meat. High

consumption of these foods led to higher intake of both iodine and salt, while

reducing salt during food manufacturing would not affect iodine availability.

Few studies investigated the impact of salt reduction on iodine status in high-income

countries. Tayie and Jourdan (28) estimated the relationship between salt restriction

and iodine status using the data of NHANES 2001-2004. However, they

dichotomised the sodium intake by a cut-off value of 2,400 mg/day and grouped the

urinary iodine concentration into 3 levels. Although they concluded that salt

restriction is associated with iodine deficiency in women, the analytical method lost
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much useful information of sodium intake and urinary iodine concentration and was

not able to produce a numerical estimate of the association.

Verkaik-Kloosterman et al. (29) used a simulation model to assess the impact of salt

reduction on iodine deficiency in the Netherlands. They simulated 3 levels of salt

reduction in processed foods: 12%, 25% and 50%. All reductions would reduce

some iodine intake but would not affect current iodine status in the population. Only

when there is a 50% salt reduction in processed foods, at the table and in cooking,

would the general population be affected, with about 10% of the population possibly

being exposed to iodine deficiency. However, cooking salt are iodised compulsorily

and iodised baker salt is used on a voluntary basis in the Netherlands. Hence, the

contribution of iodised salt to the population iodine intake would be much larger

than that in the US. This also indicated that the extended use of iodised salt in the

food industry might offset any predicted fall in the US population iodine status.

The salt and iodine intake measurements in the NHANES III were subjected to

inaccuracy and might lead to misleading calculations. Therefore, the assessed

association should be interpreted with caution and further analysis using accurate

sodium and iodine intake measurements is needed.

The effects of risk factors

Some sub-populations had lower sodium intake but higher iodine concentration.

They included Mexican Americans, those with lower educational attainment, poorer

family economic status, and those living alone. A possible explanation is that these

sub-populations, particularly those in low SES, might consume more iodine-rich

foods. The higher urinary iodine concentration could also be the result of a greater
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use of discretionary salt not detected by the dietary assessment of salt intake used in

the NHANES III. Recent data in the UK shows a SES gradient in salt intake (333)

but not in iodine intake (see Section 5.4 in this Chapter). In the US, however, low

SES has been linked with poor diet quality (334;335). People with low SES have a

higher preference for buying fast foods (336) and other processed foods (337).

Higher awareness of salt reduction is also found in higher SES (337).

Rural participants had higher UIC and sodium intake. The rural-urban difference

suggested a consumption of high sodium-density and iodine-rich foods in rural

participants. This may be partly explained by the cultural diet in rural areas that

consists of energy dense foods. However these foods are usually less nutritional.

Hence, this can hardly explain the association with high UIC. Moreover, the

definition of rural/urban areas was based on the population density (metropolitan

statistics area), which is different from traditional governmental definition. This led

to a different rural/urban population, which might cause the significant rural effect in

this analysis.

In addition, Black Americans had significantly higher negative association with both

UIC and sodium intake. People of African descent usually have a higher preference

in using table and cooking salt. However, discretionary salt is not likely to contribute

sufficient iodine to the blacks. It is possible that Black Americans opted in for a

comparatively low iodine diet.

It should be noted that these contradictory results might be due to the data collection

methods. The urinary iodine concentration was measured from spot urine samples.

This method usually produces less reliable and less accurate estimates compared
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with 24-hour urine collection. Results are also often affected by the food consumed

during the day preceding the urine collection. Some measurements may be extremely

low or high. For the dietary sodium intake, the estimates were calculated from the

24-hour dietary recall. The food consumption was self-reported. Although the data

collection was computer aided, the data quality was largely affected by memory and

misreporting (338). For example, people may exaggerate the consumption of healthy

foods, such as fruits and vegetables, and under-report the consumption of unhealthy

foods, such as high energy and high fat foods. As there is no validation data to prove

the discovered association in the present analysis, this finding remains inconclusive.

Geographical variation

Although this analysis was limited to the census region level, the results still indicate

significant geographical variations in iodine concentration and sodium intake. After

adjustment for the selected covariates, the South and the West regions were

associated with a higher level of iodine concentration, and the South region alone

was associated with a higher dietary sodium intake. These findings coincide with the

well-known “goiter belt” and “stroke belt”. Before the implementation of salt

iodisation, high prevalence of goitre was presented in the Northwestern, Great Lakes,

and Appalachian regions, and the water and soil in these regions were both deficient

in iodine. The iodine status was improved after the implementation of salt iodisation.

The present finding indicates that the traditional geographical heterogeneity of the

iodine intake still exists. It might still be caused by the soil and water being deficient

in iodine. However, the iodine status in the West region was better than that in the

Midwest and Northeast regions. Therefore, more emphasis on the iodine
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supplementation should be placed in these two regions, particularly in those

disadvantaged and vulnerable subpopulations.

The “stroke belt” (see Figure 5.3.4) was discovered in the 1980s. The National Heart,

Lung, and Blood Institute (NHLBI) compared the age-adjusted stroke mortality at

state level and discovered higher than average stroke mortality in 11 adjacent states.

These states are mostly in the South region. Various reasons are suggested to explain

the high mortality, such as genes, lifestyle, dietary habit and CVD risk factors (339).

The coincidence between the high sodium intake and high stroke mortality in the

South indicated that high salt intake, particularly the salt hidden in processed foods,

could be a critical risk factor of the high stroke mortality in the region. Therefore,

emphasis on reducing salt intake can help the public lower the risk of stroke and

reduce the large healthcare cost.

Figure 5.3.4 The “stroke belt” in the United States
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Strengths and limitations

My analysis used a large national representative data set to describe the iodine status

and salt intake in the US population. The availability of both iodine and sodium

information enabled me to assess the association between salt intake (in the form of

dietary sodium intake) and iodine status (in the form of urinary iodine concentration).

However, the analysis and measurements had their limitations. Firstly, the SAS

survey procedures are not able to produce weighted p values for group comparisons.

Therefore, the unweighted p values in Table 5.3.4 may be biased. The spot urinary

iodine concentration is also of high variability. It is subject to a few limiting factors,

including collection time, temperature, urine volume, and food consumption before

the collection. Although some efforts were made to extrapolate mathematically the

spot urinary electrolyte estimates to the 24-hour scale (134;139;140), the reliability

and accuracy are still uncertain compared to the measurements based on 24-hour

urine collections. Moreover, dietary content varies over time. The 24-hour dietary

recall is not able to describe a representative food consumption pattern. In addition,

the 24-hour dietary recall only recorded the sodium in dietary foods. The

consumption of discretionary salt was not measured. As the US policy only requires

the iodisation of discretionary salt on a voluntary basis, the association between

sodium and iodine might have been stronger if the sodium intake at the table and

cooking had been accounted for. However, the increase in the strength of the

association cannot be estimated in this analysis, particularly when the use of iodised

salt is largely affected by customer preference and market coverage (for detailed

discussion, see Section 6.3 in Chapter 6). Due to the limited availability of

geographical information, this analysis was only carried out at regional level. No
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spatial correlation was taken into account in the models. Hence, the precisions of the

estimated effects may be over-estimated. Furthermore, the classification of the SES

variables may not be precise enough to represent the entire population. Therefore,

the confounding effect of SES was probably not fully controlled for. Another

limitation lies in the study population. This analysis was carried out in the adult

population. Although the youth data are available, they were not used as other

analyses in this thesis would use adult population only. Hence the study population

may limit the generalisation of the findings to the whole population. Additional

studies are recommended in children and adolescents since food consumption and

other risk factors may differ in young people.

The extent of the present analysis is limited by the lack of detailed geographical

information. The accuracy of geographical effect could be improved if there is

detailed geographical information available. The latent correlated and uncorrelated

spatial pattern can be captured and the map can be used for virtual illustration and

monitoring.

Implications

In most high-income countries, salt iodisation and salt reduction programmes are

carried out simultaneously. These countries are characterised by a high consumption

of processed and restaurant foods and some have similar SES structure to the US.

Hence the association between dietary sodium intake and UIC in the US can be

generalised to these countries. In addition, high availability of iodine-rich foods is

attributable to the majority of individuals’ iodine intake in many high-income

countries. Thus iodised salt becomes a complementary tool for iodine
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supplementation. Therefore the salt reduction programme may be also compatible

with salt iodisation programme in these countries.

As the change of dietary sodium intake has little impact on UIC, increasing iodine

content in salt seems not to be the best option for improving iodine intake in high-

income countries. A better solution would be to increase the consumption of iodine-

rich foods and to increase the iodine content in the daily diet, e.g. flour and bread.

It should be noted that the re-emergence of iodine deficiency is reported in several

high-income countries (244;340;341). The replacement of iodophor in milk and

dairy products (249), reduced consumption of iodine-rich foods (248) and

consumption of goitrogenic foods in animals (250) are largely to blame for the

declining iodine intake. Although these countries do not rely on salt iodisation for

iodine supplementation, other countries that have voluntary or mandatory salt

iodisation programmes should be alerted about the trend. In the coordination of salt

reduction and salt iodisation programmes in high-income countries, the monitoring

procedure would be ideally extended to the iodine content of the iodine-rich foods

and their consumption, as these foods contribute more iodine than the iodised salt.

However, iodine intake should also be kept within a healthy range. The extremely

high iodine concentrations discovered in the NHANES III indicates that the

knowledge of iodine intake in the general population might be insufficient. Therefore,

the need for improvement in public awareness and knowledge of iodine

supplementation and salt reduction simultaneously is apparent and also important in

the joint coordination of both programmes.
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Again, for all countries that adopt both health programmes, the collection of reliable

data on both iodine and salt intakes is critical in estimating the salt and iodine

association in their own country context. Without the available iodine and salt

measurements, it is difficult to quantify the association and to make policy

adjustments. Additionally, the use of 24-hour urine collection is recommended to

obtain the most reliable and accurate measurements. The use of 24-hour urine

collection can also make the comparison consistent and comparable either along with

time or by country, which will improve the monitoring quality of the programmes.

Given the possible methodology bias in this analysis, further studies on the impact of

salt reduction on salt iodisation are needed to validate the present findings.

Last but not least, the efforts with salt reduction and salt iodisation programmes have

to be consistent to keep the quality of both programmes. In particular, sufficient and

coherent political support should be guaranteed. However, the absence of a specified

salt reduction target (342) in a recent UN High-Level Meeting on non-communicable

diseases (60) indicates that political consensus on salt reduction has not yet been

reached. Therefore, the coordination between governments, global health

organisations, health authorities, media, health researchers and industry should be

more effective and partnership between the government and industry needs

improvement to avoid misunderstanding of the policies and mistrust between both

sides.
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5.4 Salt Intake and Iodine Status in Britain

5.4.1 Introduction

Raised BP is the major risk factor of cardiovascular disease (CVD) in the United

Kingdom (UK). Nearly 20% of the UK population is hypertensive (56). About half

of coronary heart disease (CHD) deaths are attributable to high BP (343). It is

estimated that every increase of 2 mmHg in systolic blood pressure results in 7%

more CHD deaths and 10% more stroke deaths (344). The burden of CVD is

considerable. It cost the UK healthcare £14.3 billion in 2006 for treating CVD and

the consequent productivity loss, and informal care cost due to CVD is worth more

than £16 billion (345).

Association between high salt intake and raised BP has been demonstrated

consistently in many studies (2;39-42). It is estimated that if the general population

reduced salt intake by 3 g/day, the mean systolic and diastolic blood pressure (SBP

and DBP) in the population would fall by 2.5/1.4 mmHg (55). Accordingly stroke

mortality would reduce by 12 to 14% and CHD mortality by 9-10% (55). Hence, in

the UK, about 6,500-8,000 stroke deaths and 7,500-12,000 CHD deaths would be

averted annually. The WHO recommends less than 5 g/day salt intake in the general

population. In the UK, the Food Standards Agency (FSA) has set a target of reducing

daily salt intake to 6 g/day, with various targets for children in different age groups.

The National Institute for Health and Clinical Excellence (NICE) also suggests a

target of 3 g salt per day by 2025 (56).
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In contrast, iodine deficiency has not been considered as a significant public health

threat for decades in the UK. However, recent data arguably suggested the re-

emergence of iodine deficiency in the UK population:. Vanderpump et al. (244)

reported a median urinary iodine concentration of 80.1 μg/L in school girls aged 14-

15 years based on spot urine samples. Historically, the elimination of iodine

deficiency was coincidental (346) as there was no programme specifically developed

for iodine supplementation in the country. Dietary salt is not required to be iodised in

the UK. The major dietary source of iodine is milk and dairy foods. Iodine was

initially added in feeding stuffs in the 1920s to increase the level of animal

reproduction. Consequently it is presented in milk and dairy products and consumed

by individuals. In 1946, the UK parliament passed the School Milk Act which

provided children under 18 with free milk (1/3 pint). With the increasing

consumption of milk, iodine intake in children and adults progressively increases.

Measured in the 1980s, milk alone has already provides 150 µg/day iodine (347). A

recent retail survey held by the FSA reported mean iodine concentration ranges from

0.30 to 3.10 mg/kg in cow, goat and sheep’s milk, and 0.60 to 0.99 mg/kg in cheese,

egg and yoghurt (348).

Globally, it is critical to coordinate and integrate the salt reduction and the USI

programmes to avoid conflict and to achieve success for both WHO policies. For

countries implementing both salt iodisation and salt reduction programmes, the UK

provides a good example of alternative strategies to adapt the policies and to

coordinate the health programmes. However, although the positive effect of milk and

dairy foods on iodine status has been acknowledged, there is a large gap in

knowledge for this effect and the association between salt intake and iodine status in
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a country that does not rely on salt iodisation for iodine supplementation. Moreover,

it is also important to know if there are any geographical and socioeconomic

inequalities of iodine and salt intakes in the UK and what determinants are likely to

affect the distribution of iodine and salt consumption.

Therefore, the objectives of this analysis are

1) to estimate salt intake and iodine status in white British adults;

2) to assess the association of salt intake and iodine intake in dietary foods in the

adult population with high percentage of processed foods consumption but without

established salt iodisation programme;

3) to investigate the impact of modifications of salt intake on iodine status and

determine the effect of milk and dairy consumption on iodine intake;

4) to investigate the potential geographical variation and determinants in iodine

intake and salt intake; and

5) to provide suggestions to policy-makers, particularly on the use of alternative

iodine fortification vehicles to improve iodine supplementation and offset potential

impact of salt reduction on salt iodisation programmes.

5.4.2 Data and Methods

Country profile

Britain, or Great Britain, is the largest of island of the United Kingdom, situated at

North-West Europe. It is a union of England, Scotland and Wales. The island is
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geographically divided by the Tees-Exe line. Lowlands dominate the east and south

Britain and highlands dominate the north and west Britain.

The population in Britain was estimated to be around 62 million in 2010. The

majority ethnic group is White British, followed by other White, Indian, Pakistani,

Black Caribbean and African, and other minority groups.

The United Kingdom has the sixth largest economy in the world and the third largest

in Europe. The health expenditure per capita in the United Kingdom is US$3,503

(312), ranking the 20th in the world.

Data

This analysis was conducted using the 2000-01 National Diet and Nutrition Survey

(NDNS). The NDNS contains a series of cross-sectional surveys of different

population age-groups. The 2000-01 survey is a nationally representative survey

covering the adults aged 19 to 64 years living in private households in Britain. It was

carried out by 12 Government Office Regions (GORs). However, to maintain

consistency with previous surveys, the regional information in this 2000-01 survey

has been recoded according to the classification of Standard Statistical Regions

(SSRs). A map with 11 regions is shown in Figure 5.4.1: Scotland, North, Yorkshire

and Humberside, North West, East Midlands, West Midlands, Wales, East Anglia,

London, South East and South West. Field work was undertaken between July 2000

and June 2001. Dietary and nutritional information of the British population was

collected to provide evidence for government to improve people’s nutritional status

and health.
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Figure 5.4.1 Standard Statistical Regions of Great Britain (Adapted from the

website of the Food Standards Agency)

The survey was composed of the following components: 1) an interview covering

socio-demographic and lifestyle information; 2) a 7-day record of bowel movements;

3) a 7-day record of physical activity; 4) a weighed 7-day record of dietary

consumption; 5) blood test and 24-hour urine sample; 6) physical and blood pressure

measurements; and 7) a self-count of the number of teeth and amalgam fillings.
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Five thousand six hundred and seventy three households were selected randomly and

3,704 (65.3%) were eligible for the survey interview. After excluding the refusals

and non-contacts, a total of 2,251 participants from 11 regions completed an

interview. Of those who responded, 76.6% (n=1,724) completed a 7-day dietary

record and 64.8% (n=1,459) provided completed 24-hour urine collection.

Participants came from different ethnic groups, such as White, Caribbean, African,

Indian, Bangladeshi, and Chinese, etc. White participants were the major group

(93.6%, n=2,108). Since estimation based on few participants may not be

representative for minority ethnic groups, especially when compared by region, only

White participants were included in this analysis.

Height was measured to the nearest 0.1 cm using the Leicester Height Measure and a

Frankfort Plane card. Weight was measured to the nearest 0.1 kg using digital

personal weighing scales. Body mass index (BMI) was calculated using weight over

height squared (kg/m2).

For the participants who consented to the BP measurement procedure, three sitting

BP readings were taken at one minute intervals using the Dinamap 8100

oscillometric monitor, and were later scrutinised by the survey doctor or a general

practitioner (GP). Mean BP was calculated on the basis of the second and third

readings.

Daily iodine and sodium intakes were obtained from the 7-day dietary record,

calculated from all foods and supplements. Participants were required to keep a diary

of all food they consumed in the 7-day period. They were encouraged to record and

weigh all home-made and take-away food (including supplements, water and
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medicines), or give description of food consumed outside of home and food that

cannot be weighed as far as possible. The use of table and cooking salt was not

recorded. Only questions regarding the frequency of the use of discretionary salt

were asked at the interview. Dietary sodium intake was calculated in milligram per

day (mg/day). Daily iodine intake was also obtained from the 7-day dietary record,

calculated in microgram per day (µg/day) from all foods and supplements.

Additionally, energy intake, milk and dairy consumption and alcohol consumption

were also recorded and calculated. Daily energy intake was calculated in kilocalorie

per day (kcal/day) on the basis of all dietary foods and supplements consumed over

the 7-day period. Milk and dairy products included all cow, sheep and goat milk,

cheese, and yogurt. It was calculated in grams per day (g/day). Alcohol consumption

was calculated based on the total amount of alcohol consumption from drinks and

foods. The units were also recorded in g/day.

Educational attainment was recorded in 7 groups: degree or equivalent; higher

education below degree level; GCE A level or equivalent; GCSE grades A-C or

equivalent; GCSE grades D-E or equivalent; other qualifications; no qualifications.

In this analysis, the educational attainment was simplified and re-categorised into 4

groups: degree or equivalent; below degree level, GCE A level or equivalent; GCSE,

other qualification or equivalent; no qualification.

There were 7 types of marital status in the NDNS questionnaire: married; cohabiting;

single; widowed; divorced; separated; same sex couple. The marital status was then

simplified in this analysis according to whether the participant was living alone

(including single, widowed, divorced, and separated) or living with someone else

(married, cohabiting and same sex couple). In the following analysis, “living
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together” represents the status of cohabiting with someone else, and “living alone”

represents the status of living alone.

Social class was originally recorded according to the social class of the household

reference person (HRP). HRP was used because of “the availability of the large

number of cases and less dependent on age and sex differences in participants”. The

standard 6 categories listed in the NDNS User Guide were recoded into 3 groups in

the survey as follows: non-manual (including social classes I, II and III skilled non-

manual); manual (including social class III manual, IV and V); unclassified (those

not assigned with a social class due to various reasons). However, as there were only

3 persons in the unclassified category, social class was further simplified by

removing this category in the present analysis. Hence, non-manual can be regarded

as high social class and manual can be regarded as low social class.

Smoking habit was recorded in 3 groups: non-smoker; former smoker; current

smoker Based on two questions: “Have you ever smoked a cigarette, a cigar or a

pipe” and “Do you smoke cigarettes at all nowadays”.

Twenty-four-hour urine collection was tested and 24-hour urinary sodium and

creatinine excretion level was used in this analysis. The marker substance para-

aminobenzoic acid (PABA) was used to test the completeness of the collection.

1,495 participants provided a 24-hour urine collection and 1,458 (91.1%) collections

were finally included.

The geographical boundaries of 11 British regions were obtained in order to estimate

the spatial effect. According to the SSRs classification, the UK digitalized boundary

data, in shapefile format, and map information were downloaded from the
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UKBORDERS9. Then the boundary files were converted to the specific format that

can be recognised in the Bayesian software.

Statistical analysis

The means and standard errors were reported for the continuous demographic

variables. For the urinary and dietary variables, medians and interquartile ranges

were presented. For the categorical variables, percentages were presented. One way

ANOAVA was used to compare the means of demographic variables by sex and

region with adjustment for age and sex when appropriate. The Mann-Whitney test

was used to compare the medians of dietary and urinary variables between men and

women. The Kruskal-Wallis test was used to test the difference in dietary and

urinary variables across the regions. The non-parametric test ws used as the variables

did not appear to be approximately normal distributed. Percentages were compared

using Pearson's chi-squared test. No sampling weight was used because only White

participants were included in the analysis. Bayesian geo-additive models were used

to investigate the association between dietary iodine and sodium intakes and to

assess the effects of other risk factors on dietary iodine intake, dietary sodium intake

and 24-hour urinary sodium excretion.

Four Bayesian geo-additive models were constructed and fitted for dietary iodine

intake, dietary sodium intake and 24-hour urinary sodium excretion to assess the

association between iodine intake and sodium intake, as well as the linear and

nonlinear effects of other risk factors. The dietary iodine intake, dietary sodium

9 http://edina.ac.uk/ukborders/
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intake and 24-hour urinary sodium excretion are all continuous variables. Thus the

normal distribution was assumed in the model construction. Cube root

transformation was used for all dependent variables as it performed better than log

and square root transformations, suggested by the Box-Cox transformation.

The models are shown in Table 5.4.1. For dietary iodine intake, Model 1 assessed

the effect of dietary sodium intake and regional impact. Model 2 was adjusted for

age, sex, BMI and dietary energy intake on the basis of Model 1. Model 3 extended

Model 2 by adjusting for socioeconomic, lifestyle and dietary risk factors. Milk and

dairy consumption was also included in the model to estimate the contribution of

milk and dairy products to the iodine intake. Model 4 explored the nonlinear effects

of the continuous risk factors. For dietary sodium intake, the models were similar to

the iodine models. The difference was the exclusion of the dietary sodium intake and

milk and dairy consumption. The models of 24-hour urinary sodium excretion were

also similar to those of the dietary sodium intake. A minor change was the

replacement of the dietary energy intake with the 24-hour urinary creatinine

excretion.
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Table 5.4.1 List of Bayesian geo-additive models

Dependent
variable

Model

Dietary iodine
intake

Model 1 Region + Dietary sodium intake

Model 2
Region + Dietary sodium intake + Age + Sex + BMI +
Dietary energy intake

Model 3

Region + Dietary sodium intake + Age + Sex + BMI +
Race-ethnicity + Marital status + Education + Smoking
+ Alcohol consumption + Social class + Dietary energy
intake + Milk and dairy consumption

Model 4

Region + Dietary sodium intake (nonlinear) + Age
(nonlinear) + Sex + BMI (nonlinear) + Race-ethnicity +
Marital status + Education + Smoking + Alcohol
consumption + Social class+ Dietary energy intake
(nonlinear) + Milk and dairy consumption (nonlinear)

Dietary sodium
intake

Model 1 Region

Model 2 Region + Age + Sex + BMI + Dietary energy intake

Model 3
Region + Age + Sex + BMI + Race-ethnicity + Marital
status + Education + Smoking + Alcohol consumption +
Social class+ Dietary energy intake

Model 4

Region + Age (nonlinear) + Sex + BMI (nonlinear) +
Race-ethnicity + Marital status + Education + Smoking
+Alcohol consumption + Social class + Dietary energy
intake (nonlinear)

24-hour urinary
sodium
excretion

Model 1 Region

Model 2
Region + Age + Sex + BMI + 24-hour urinary creatinine
excretion

Model 3
Region + Age + Sex + BMI + Race-ethnicity + Marital
status + Education + Smoking + Alcohol consumption +
Social class + 24-hour urinary creatinine excretion

Model 4

Region + Age (nonlinear) + Sex + BMI (nonlinear) +
Race-ethnicity + Marital status + Education + Smoking
+ Alcohol consumption + Social class + 24-hour urinary
creatinine excretion (nonlinear)

Note: Nonlinear: the effect was assumed to be nonlinear.

Dummy coding (1 vs 0) was used to create dummy variables for all categorical

variables. The effect of each category on dependent variables was assessed by

comparison to a predefined reference category (value set as 0). Details of the coding

are listed in the Table 5.4.2.
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Table 5.4.2 List of categorical variables with defined reference level

Variable Category Indicator

Sex Female reference level

Male

Smoking habit

Non-smoker reference level

Former smoker

Current smoker

Social class
Non-manual work reference level

Manual work

Marital status
Living together reference level

Living alone

Education

Higher education reference level

A level or equivalent qualifications

GCSE or equivalent qualifications

No qualification

Model choice was determined by deviance information criterion (DIC). The model

with the lowest DIC value was regarded as the best model.

The preliminary analysis of the NDNS data were conducted in SPSS v17.0 (IBM,

New York, USA) and Bayesian modelling and estimated graph plotting were

conducted in BayesX version 2.0.0 (06.05.2009). The statistical significance level in

the descriptive analysis was set as α=0.05 and the level in the Bayesian analysis was 

set as α=0.1. 

5.4.3 Results

Characteristics by sex

A total of 2,105 participants’ records were obtained. Results are shown in

Table 5.4.3. The overall mean age was 42 years. Men were heavier and taller than

women (84.7 vs 69.5 kg and 176.3 vs 161.9 cm, p<0.001 for both). Men had

significantly higher body mass index than women (27.3 vs 26.5 kg/m2, p=0.004),
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which indicates overweight in both sexes in the study population. Women had

significantly lower systolic and diastolic blood pressure than men (122.6 vs 130.5

mmHg and 68.9 vs 74.3 mmHg, p<0.001 respectively).

Educational attainment differed significantly between men and women. More men

had higher educational qualifications (A level and above qualifications), while more

than two thirds of women obtained lower qualifications (GCSE and lower

qualifications).

More than half of the households (58.8%) were classified as a non-manual social

class. Men and women were found to be at similar marital status, with around two

thirds of men and women (63.7% and 59.6%, respectively) living together with their

partner. Women had almost even distribution in the smoking status (32.2%, 32.4%

and 35.4% in non-, former, current smoker category). More men (41.7%) quit

smoking before the survey started. There were only 6.9% participants on

antihypertensive medications.

The median energy intake was 1,745 (Interquartile Range: 726) kcal/day. The

median dietary iodine intake was 181 (107) µg/day. The median dietary sodium

intake was 2,611 (1,243) mg/day, which is equivalent to an estimated salt intake of

6.5 g/day. Men appeared to have significantly higher sodium and iodine intake

(3,226 (1,257) mg/day and 215 (111) µg/day) than women (2,263 (846) mg/day and

157 (89) µg/day). These differences reflected the higher food intake of men

compared to that of women. After the adjustment of dietary energy intake, the

difference between men and women remained in the dietary sodium to energy ratio



204

but disappeared in the dietary iodine to energy ratio. In other words, men ate more

high-sodium dense food than women.

The median alcohol consumption was 8.6 (22.0) g/day in the British White

population. The median alcohol consumption was almost 3-fold higher in men than

in women. Likewise, the consumption of milk and dairy foods of women (222.1

(196.7) g/day) were significantly lower than that of men (248.2 (226.8) g/day).

The median 24-hour urinary sodium was 140.6 (99.4) mmol/day, or approximately

an estimated salt intake of 8.2 g/day. Men had significant higher levels of 24-hour

urinary sodium, potassium and creatinine. However, the median 24-hour urinary

sodium to creatinine ratio was higher in women than men (11.7 (6.3) vs 10.0 (4.9)).

The difference between the salt intakes measured by dietary record and 24-hour

urine collection was approximately 1.7 g/day (or about 21% of the total salt intake).

This can be deemed as an estimation of the use of discretionary salt and natural

sources. Allowing for inaccuracies in the estimations of salt intake with either

method, these figures are in line with those of 23% reported elsewhere (31).
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Table 5.4.3 Basic characteristics of the 2000-01 National Diet and Nutrition

Survey (19-64 years) with adjustment for age and sex when appropriate

Variable
Total

(n=2,105)

Sex
p

valueMale
(n=938)

Female
(n=1,167)

Age (year) 42.0 (0.3) 42.1 (0.4) 41.9 (0.4) 0.609

Weight (kg) 77.1 (0.4) 84.7 (0.5) 69.5 (0.5) <0.001

Height (cm) 169.1 (0.2) 176.3 (0.2) 161.9 (0.2) <0.001

BMI (kg/m2) 26.9 (0.1) 27.3 (0.2) 26.5 (0.2) 0.004

Systolic blood pressure (mmHg) 126.5 (0.4) 130.5 (0.5) 122.6 (0.5) <0.001

Diastolic blood pressure (mmHg) 71.6 (0.3) 74.3 (0.4) 68.9 (0.3) <0.001

Education (%)-HE 17.2 20.6 13.8 <0.001

Education (%)-AE 24.9 28.2 21.6

Education (%)-GE 39.4 35.2 43.5

Education (%)-No 18.5 15.9 21.1

Marital status (%)-LA 38.4 36.3 40.4 0.049

Marital status (%)-LT 61.6 63.7 59.6

Smoking habit (%)-NO 29.1 26.0 32.2 <0.001

Smoking habit (%)-FM 37.0 41.7 32.4

Smoking habit (%)-CR 33.8 32.3 35.4

Social class (%)-NM 58.8 51.3 66.2 <0.001

Social class (%)-MN 41.2 48.7 33.8

Sodium intake (mg/day)† 2,611 (1,243) 3,226 (1,257) 2,263 (846) <0.001

Iodine intake (µg/day)† 181 (107) 215 (111) 157 (89) <0.001

Energy intake (kcal)† 1,745 (726) 2,077 (703) 1,547 (532) <0.001

Alcohol consumption (g/day)† 8.6 (22.0) 14.8 (31.1) 5.3 (15.6) <0.001

Milk and dairy consumption (g/day)† 235.6 (210.8) 248.2 (226.8) 222.1 (196.7) 0.006

Dietary sodium to energy ratio† 1.5 (0.4) 1.6 (0.4) 1.5 (0.4) <0.001

Dietary iodine to energy ratio† 0.104 (0.050) 0.104 (0.051) 0.104 (0.050) 0.840

24hr urine volume (L)† 1.8 (1.1) 1.9 (1.2) 1.7 (1.0) <0.001

24hr urinary sodium (mmol/day)† 140.6 (99.4) 167.0 (120.9) 123.4 (73.5) <0.001

24hr urinary creatinine (mmol/day)† 12.9 (7.1) 17.0 (7.1) 10.9 (4.2) <0.001

24hr urinary sodium to creatinine
ratio† 10.9 (5.7) 10.0 (4.9) 11.7 (6.3) <0.001

Note: Results are mean and standard deviation unless specified. Education: HE=Higher education,
AE=A level or equivalent qualifications, GE=GCSE or equivalent qualifications, No=No
qualifications; Marital status: LA=Living alone, LT=Living together; Smoking habit: NO=Non-
smoker, FM=Former smoker, CR=Current smoker; Social class: NM=Non-manual work,
MN=Manual work.
†: Median (IQR).
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Characteristics by region

Of the 11 regions, the South East had the largest group of participants (n=430) and

Wales had the smallest group (n=102). As shown in Table 5.4.4, no significant age

and weight difference was found across regions. The mean BMI varied across

Britain with overall overweight found in all regions. Participants residing in the

North had the highest BMI (28.2 kg/m2) and participants residing in London had the

lowest (26.0 kg/m2). BP also showed some geographical difference, systolic blood

pressure ranging from 123.6 mmHg in London to 129.7 mmHg in Yorkshire and

Humberside and diastolic blood pressure from 70.1 mmHg in London to 73.8 mmHg

in Wales.

The proportion of former smokers ranged from 47.0% in East Anglia to 18.0% in

Wales while no region had less than 30% current smokers in the NDNS sample. No

significant difference was found for either marital status levels across regions,

although the East Midlands has the highest proportion of couples living together.

Significant geographical variation in educational attainment was observed across

Britain. Among the regions, London had the highest proportion (36.8%) of

participants with a degree and the lowest proportion (11.0%) in the no qualification

level. On the contrary, the North had the lowest (5.5%) and highest proportion

(32.0%) in the highest and lowest education levels, respectively. It seemed that

GCSE or other equivalent qualifications was the most common educational

attainment in Britain.

A high proportion of participants in southern England was classified as being of non-

manual class, with London having the highest proportion (77.8%). In the North and
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in Wales, fewer than half the participants were in this class (45.6% and 48.0%

respectively). Overall geographical variation was significant (p<0.001).

Dietary energy intake varied significantly across the 11 regions (p=0.039).

Participants living in London had the lowest intake of energy and those in the South

East and South West had the highest intake. No significant geographical difference

was observed in daily dietary iodine and sodium intake. The dietary sodium to

energy ratio, calculated to adjust sodium for daily energy intake, however, appeared

to be significantly different among the British regions (p<0.001), i.e. participants

living in Scotland and the North consumed a higher amount of sodium and iodine for

every calorie they ate. Participants in London consumed the lowest amount of milk

and dairy foods (178.0 g/day).

A significant geographical difference was observed in the 24-hour urinary sodium

excretion across the regions (p=0.035). The 24-hour urinary creatinine excretion and

the 24-hour urinary sodium to creatinine ratio, however, did not vary significantly.

Maps of dietary iodine, sodium intake and 24-hour urinary sodium are presented in

Figure 5.4.2. The horizontal colour band at the bottom of the maps shows the range

of observed values. The colour in each region was determined on the basis of the

average of iodine and sodium levels. Little change in the colour was spotted in

iodine map, while sodium maps showed slight variation in colours.
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Table 5.4.4 Characteristics of the 2000-01 UK National Diet and Nutrition Survey (19-64 years) by region with adjustment for age and sex

when appropriate

Variable

Region

p
valueNorth

(n=128)

York &
Humberside

(n=198)

North
West

(n=270)

East
Midlands
(n=119)

West
Midlands
(n=200)

East
Anglia
(n=124)

London
(n=156)

South
East

(n=430)

South
West

(n=191)

Wales
(n=102)

Scotland
(n=187)

Age (year) 42.9 (1.1) 42.0 (0.9) 42.0 (0.7) 42.3 (1.1) 40.4 (0.9) 40.6 (1.1) 42.5 (1.0) 41.9 (0.6) 43.5 (0.9) 43.3 (1.2) 41.3 (0.9) 0.377

Weight (kg) 79.9 (1.4) 76.6 (1.2) 75.8 (1.0) 78.3 (1.5) 75.9 (1.2) 78.5 (1.4) 76.0 (1.3) 76.7 (0.8) 78.7 (1.2) 78.4 (1.8) 75.7 (1.3) 0.223

Height (cm) 168.3 (0.6) 169.2 (0.5) 169.0 (0.4) 169.0 (0.6) 169.2 (0.5) 168.3 (0.6) 170.5 (0.5) 169.9 (0.3) 168.9 (0.5) 167.6 (0.7) 167.9 (0.6) 0.006

BMI (kg/m2) 28.2 (0.5) 26.7 (0.4) 26.5 (0.4) 27.3 (0.5) 26.4 (0.4) 27.7 (0.5) 26.0 (0.4) 26.5 (0.3) 27.6 (0.4) 27.9 (0.6) 26.7 (0.5) 0.004

Systolic blood pressure
(mmHg)

125.8 (1.4) 129.7 (1.2) 126.3 (1.0) 124.8 (1.4) 128.1 (1.1) 129.0 (1.4) 123.6 (1.3) 126 (0.8) 126.4 (1.1) 127.5 (1.8) 124.4 (1.3) 0.017

Diastolic blood pressure
(mmHg)

71.3 (1.0) 73.4 (0.8) 71.7 (0.7) 71.0 (1.0) 72.5 (0.8) 72.1 (1.0) 70.1 (1.0) 71.1 (0.6) 70.8 (0.8) 73.8 (1.3) 71.1 (0.9) 0.189

Education (%)-HE 5.5 10.6 14.4 15.1 18 13.7 36.8 17.8 14.1 11.8 23.5

<0.001
Education (%)-AE 21.9 25.8 25.9 23.5 29 16.9 24.5 25 23 27.5 23

Education (%)-GE 40.6 43.4 36.7 39.5 35.5 46.8 27.7 44.4 43.5 40.2 35.8

Education (%)-No 32 20.2 23 21.8 17.5 22.6 11 12.9 19.4 20.6 17.6

Marital status (%)-LA 39.8 38.9 39.6 26.1 35 38.7 44.9 39.5 33 40.2 44.9
0.059

Marital status (%)-LT 60.2 61.1 60.4 73.9 65 61.3 55.1 60.5 67 59.8 55.1

Smoking habit (%)-NO 32.8 31.3 25.2 35.3 28 23.4 32.1 24.7 34.6 38.2 32.1

0.001Smoking habit (%)-FM 33.6 32.3 35.6 32.8 40.5 45.2 34.6 43.7 35.6 17.6 33.2

Smoking habit (%)-CR 33.6 36.4 39.3 31.9 31.5 31.5 33.3 31.6 29.8 44.1 34.8

Social class (%)-NM 45.6 56.5 59.7 57.9 54.1 51.6 77.8 67 61.6 48 55.5
<0.001

Social class (%)-MN 54.4 43.5 40.3 42.1 45.9 48.4 22.2 33 38.4 52 44.5
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Table 5.4.4 cont’d

Variable

Region

p
valueNorth

(n=128)

York &
Humberside

(n=198)

North
West

(n=270)

East
Midlands
(n=119)

West
Midlands
(n=200)

East
Anglia
(n=124)

London
(n=156)

South
East

(n=430)

South
West

(n=191)

Wales
(n=102)

Scotland
(n=187)

Sodium intake
(mg/day)†

2,644
(1,598)

2,519
(1,250)

2,711
(1,325)

2,485
(1,487)

2,636
(1,369)

2,498
(1,110)

2,547
(1,180)

2,622
(1,097)

2,717
(1,104)

2,523
(1,671)

2,609
(1,186)

0.623

Iodine intake (µg/day)† 195 (134) 175 (818) 172 (120) 176 (100) 187 (106) 167 (107) 176 (95) 188 (119) 182 (103) 173 (104) 188 (114) 0.060

Energy intake (kcal)† 1,742
(654)

1,703
(698)

1,657
(809)

1,694
(811)

1,778
(749)

1,734
(639)

1,610
(724)

1,790
(679)

1,790
(736)

1,774
(852)

1,775
(809)

0.039

Alcohol consumption
(g/day)† 8.3 (24.9) 7.1 (20.3) 9.7 (26.8) 8.5 (18.7) 8.6 (21.1) 5.0 (17.4) 12.0 (23.7) 9.2 (20.5) 8.2 (17.6) 7.9 (23.1) 8.7 (21.2) 0.342

Milk and dairy
consumption (g/day)†

259.3
(216.5)

248.0
(216.0)

242.4
(217.1)

249.6
(232.3)

239.0
(189.7)

190.3
(195.4)

178.0
(205.8)

232.4
(215.0)

253.4
(188.6)

250.1
(213.7)

243.4
(206.1)

0.007

Dietary sodium to
energy ratio† 1.5 (0.5) 1.6 (0.4) 1.6 (0.5) 1.6 (0.5) 1.5 (0.4) 1.5 (0.3) 1.5 (0.4) 1.5 (0.4) 1.5 (0.4) 1.5 (0.3) 1.6 (0.4) <0.001

Dietary iodine to
energy ratio†

0.107
(0.066)

0.103
(0.044)

0.107
(0.052)

0.106
(0.045)

0.102
(0.050)

0.096
(0.039)

0.102
(0.042)

0.105
(0.051)

0.101
(0.054)

0.095
(0.044)

0.110
(0.061)

0.054

24hr urine volume (L)† 1.8 (1.2) 1.7 (1.0) 1.8 (0.9) 1.7 (1.1) 1.7 (1.1) 1.6 (1.2) 1.8 (1.1) 1.9 (1.1) 1.8 (1.1) 1.9 (1.1) 1.7 (1.0) 0.378

24hr urinary sodium
(mmol/day)†

147.0
(96.6)

138.6
(87.2)

148.7
(92.8)

130.7
(92.7)

149.1
(113.1)

124.2
(71.3)

143.2
(93.8)

139.8
(96.5)

134.6
(104.3)

155.7
(113.8)

162.4
(135.7)

0.035

24hr urinary creatinine
(mmol/day)† 12.8 (6.8) 12.4 (8.1) 12.9 (6.8) 13.9 (8.4) 13.1 (9.2) 12.0 (6.4) 12.6 (8.0) 13.2 (7.1) 12.9 (6.1) 13.4 (5.8) 14.0 (7.2) 0.256

24hr urinary sodium to
creatinine ratio† 11.4 (6.2) 10.9 (5.4) 11.4 (5.5) 10.1 (5.2) 10.8 (5.5) 10.1 (6.8) 10.3 (6.3) 10.6 (5.9) 10.8 (5.1) 11.9 (6.2) 12.4 (6.0) 0.061

Note: Results are mean and standard deviation unless specified. York & Humberside= Yorkshire & Humberside; Education: HE=Higher education, AE=A level or
equivalent qualifications, GE=GCSE or equivalent qualifications, No=No qualifications; Marital status: LA=Living alone, LT=Living together; Smoking habit: NO=Non-
smoker, FM=Former smoker, CR=Current smoker; Social class: NM=Non-manual work, MN=Manual work.
†: Median (IQR).



210

Figure 5.4.2 Observed dietary iodine intake (left panel), dietary sodium intake

(centre panel) and 24-hour urinary sodium (right panel) across Britain

Note: red/green indicates high/low level of dietary intake or urinary sodium level.

Iodine status distribution

The median dietary iodine intake in the 2000-01 NDNS White population was 181.3

(IQR: 106.7) µg/day with no significant geographical variation. However dietary

iodine intake is not a commonly used indicator of iodine status in the general

population. The WHO recommends using median urinary iodine concentration (UIC)

to determine the population iodine status. Nonetheless, the urinary iodine

concentration or excretion was not measured in the NDNS. In the UK, there is no

USI programme or other voluntary salt iodisation programme. The iodine content in

salt is estimated to be low (260). Thus the majority iodine should be obtained from

dietary foods and supplements. The UIC of each participant was then approximately

estimated using the dietary iodine intake divided by the 24-hour urine volume in this

analysis. However, it should be noted that this method slightly underestimates the

true urinary iodine concentration at both individual and population levels.



211

The estimated median UIC was 103.4 µg/L, with just under 50% of participants

having urinary iodine levels below 100 µg/L and less than 10% below 20 µg/L (see

Figure 5.4.3). The majority of participants had mild iodine deficiency and optimal

iodine status. The result indicated overall optimal iodine status in the White

population in Britain, but with risk of re-emergence of iodine deficiency.

Figure 5.4.3 Distribution of iodine status in the 2000-01 National Diet and

Nutrition Survey (19-64 years) white population

DIC results

Table 5.4.5 listed computed DIC values of all constructed models of dietary iodine

intake, dietary sodium intake and 24-hour urinary sodium excretion. Model 3 of

dietary and urinary sodium had the lowest DIC value while Model 2 of dietary iodine

intake had the lowest DIC value. Therefore these models were considered the best

models and only the results of these models were presented below. The assumption
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of the nonlinear effect, whilst improving the fitness, increased the complexity of the

model. Therefore this assumption was not likely to improve the statistical estimation.

Table 5.4.5 DIC results calculated from the models of dietary iodine and sodium

intakes and 24-hour urinary sodium excretion

Dietary iodine intake Dietary sodium intake
24-hour urinary sodium

excretion

Devian
ce

pD DIC
Devian

ce
pD DIC

Devian
ce

pD DIC

Model 1 1616.1 9.5 1635.0 1618.1 7.6 1633.4 1355.2 8.7 1372.7

Model 2 1516.9 12.9 1542.8 1517.4 13.9 1545.1 1329.1 13.3 1355.7

Model 3 1492.6 23.3 1539.2 1490.8 21.7 1534.3 1259.4 21.0 1301.4

Model 4 1470.3 43.6 1557.4 1477.4 36.1 1549.6 1245.2 33.8 1312.9

Dietary iodine intake

Spatial effect

The estimated spatial distribution of dietary sodium intake was drawn in Figure 5.4.5.

The left panel of the graph is the estimated residual spatial regional effects on dietary

iodine intake. The colour band represents the range of daily dietary iodine intake in

each region. Shaded areas in red/green indicate high/low level of iodine consumption.

The 90% posterior probability map on the right of the graph further showed the

statistical significance of the spatial variation of sodium consumption. This

probability graph usually employs simple colour indications: white (value=1.0)

indicates regions with significantly positive spatial effect, grey (value=0) indicates

regions with non-significant effect, and black (value=-1.0) indicates regions with

significantly negative effect. In Figure 5.4.4, although the mean effect was higher in

Scotland and lower in English regions and Wales, the spatial effect was not

significantly different, which indicated that dietary iodine intake had no particular

spatial pattern in Britain.
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Figure 5.4.4 Estimated posterior mean residual spatial regional effects (left) and

90% posterior probability map (right) of dietary iodine intake

Note: Left panel: red/green indicates high/low level of dietary iodine intake; Right panel: white
(value=1.0) indicates significantly positive spatial effect, grey (value=0) indicates non-significant
effect, and black (value=-1.0) indicates significantly negative effect.

Fixed effects

Estimated fixed effects of continuous and categorical risk factors were shown in

Table 5.4.6. The fixed effects can be interpreted as linear association. Although

BayesX cannot produce the exact p value for each estimation, significance at specific

credible level, α=0.1 in this analysis, can be decided by the credible intervals. If 

overall credible intervals are under or above 0, the effect of the risk factor can be

regarded as significant. Therefore, the participant’s age, daily energy and sodium

intake, daily alcohol and dairy consumption had a significantly positive effect on

iodine intake. In particular, the effect of dietary sodium intake was smaller than that

of milk and dairy consumption. Current smokers who attained low or no educational

qualification, however, were more likely to consume less iodine. The effect of

education also tended to decrease as the educational attainment level decreases.
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Table 5.4.6 Estimated fixed effects of dietary iodine intake (Model3)

Mean
effect

Standard
Deviation

5%
quantile

95%
quantile

Constant 3.76 0.11 3.59 3.94

Age† 0.0091 0.0013 0.0069 0.0112

Sex-Female 0

Sex-Male -0.0004 0.0350 -0.0564 0.0567

BMI (kg/m2) -0.0020 0.0028 -0.0065 0.0027

Education-Higher education 0

Education-A level or equivalent qualifications -0.0717 0.0435 -0.1402 0.0007

Education-GCSE or equivalent qualifications† -0.1545 0.0436 -0.2287 -0.0847

Education-No qualification† -0.1716 0.0548 -0.2571 -0.0781

Marital status-Living together 0

Marital status-Living alone 0.0168 0.0285 -0.0324 0.0630

Smoking habit-Non-smoker 0

Smoking habit-Former 0.0034 0.0344 -0.0513 0.0576

Smoking habit-Current† -0.0641 0.0370 -0.1267 -0.0036

Social Class-Non-manual work 0

Social Class-Manual work -0.0282 0.0321 -0.0808 0.0234

Alcohol consumption (g/day)† 0.0134 0.0008 0.0121 0.0147

Dietary sodium intake (mg/day)† 7.34×10-5 2.60×10-5 3.06×10-5 1.15×10-4

Energy intake (kcal/day)† 0.0004 4.46×10-5 0.0003 0.0005

Milk and dairy consumption (g/day)† 0.0023 0.0001 0.0021 0.0024

†: Significant at α=0.1 level. 

Dietary sodium intake

Spatial effect

Estimated mean spatial effect of dietary sodium intake was shown in the left of

Figure 5.4.5. It was obvious that participants living in Scotland had a higher level of

sodium intake than the rest of Britain. A decreasing trend was also shown as the

latitude lowers. Participants in southern England appeared to consume the lowest

level of salt. The 90% posterior probability map on the right of the graph further

showed the statistical significance of the spatial variation of sodium consumption.

This map confirmed that participants in Scotland were more likely to eat higher level
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of dietary sodium, while people from the rest of Britain, including England and

Wales, were no different in dietary sodium intake.

Figure 5.4.5 Estimated posterior mean residual spatial regional effects (left) and

90% posterior probability map (right) of dietary sodium intake

Note: Left panel: red/green indicates high/low level of dietary sodium intake; Right panel: white
(value=1.0) indicates significantly positive spatial effect, grey (value=0) indicates non-significant
effect, and black (value=-1.0) indicates significantly negative effect.

Fixed effects

The estimated effects of those controlled risk factors were shown in Table 5.4.7.

Men who had no educational attainment were more likely to consume higher levels

of dietary sodium while current smokers who were living alone were more likely to

consume lower level of dietary sodium. In particularly, the effect of education

decreased as the educational attainment level became lower. The age effect on

dietary sodium intake decreased as the age increases. However, other continuous risk

factors, including BMI, alcohol consumption and energy intake, had significantly

positive effects on dietary sodium.
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Table 5.4.7 Estimated fixed effects of dietary sodium intake (Model 3)

Mean
effect

Standard
Deviation

5%
quantile

95%
quantile

Constant 9.74 0.19 9.43 10.05

Age† -0.0117 0.0023 -0.0155 -0.0078

Sex - Female 0

Sex - Male† 0.3243 0.0604 0.2320 0.4289

BMI (kg/m2)† 0.0154 0.0049 0.0074 0.0232

Education-Higher Education 0

Education-A level or equivalent qualifications 0.0219 0.0763 -0.1025 0.1456

Education-GCSE or equivalent qualifications 0.0651 0.0770 -0.0566 0.1994

Education-No qualification† 0.1565 0.0983 0.0030 0.3186

Marital status-Living together 0

Marital status-Living alone† -0.1399 0.0522 -0.2280 -0.0549

Smoking habit-Non-smoker 0

Smoking habit-Former -0.0340 0.0618 -0.1360 0.0713

Smoking habit-Current† -0.1873 0.0654 -0.2919 -0.0778

Social Class-Non-manual work 0

Social Class-Manual work -0.0498 0.0597 -0.1477 0.0538

Alcohol consumption (g/day)† 0.0099 0.0013 0.0077 0.0122

Energy intake (kcal/day)† 0.0021 0.0000 0.0021 0.0022

†: Significant at α=0.1 level. 

24-hour urinary sodium excretion

Spatial effect

The estimated maps shown in Figure 5.4.6 also revealed a clear spatial pattern of the

24-hour urinary sodium. Participants in Scotland had the highest 24-hour urinary

sodium excretion and those living in south-east of England appeared to have low

level, with people in the North and Wales had sodium levels in between. The

probability map on the right showed that Scotland had significant positive spatial

effect on 24-hour urinary sodium excretion. These two maps were similar to those of

the dietary sodium, which confirmed the north-south pattern of sodium consumption

and excretion in Britain.
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Figure 5.4.6 Estimated posterior mean residual spatial regional effects (left) and

90% posterior probability map (right) of 24-hour urinary sodium excretion

Note: Left panel: red/green indicates high/low level of 24-hour urinary sodium excretion; Right panel:
white (value=1.0) indicates significantly positive spatial effect, grey (value=0) indicates non-
significant effect, and black (value=-1.0) indicates significantly negative effect.

Fixed effects

Higher levels of BMI and 24-hour urinary creatinine were significantly associated

with higher level of 24-hour urinary sodium (Table 5.4.8). Participants with A level

qualification or no educational attainment and from households with lower social

class had significantly higher level of 24-hour urinary sodium. Gender had a

different effect on urinary sodium compared to the effect on dietary sodium. It was

mainly due to the adjustment for 24-hour urinary creatinine. In a further analysis by

removing the 24-hour urinary creatinine, the effect of being a male changed to be

significantly positive.
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Table 5.4.8 Estimated fixed effects of 24-hour urinary sodium excretion (Model 3)

Mean
effect

Standard
Deviation

5%
quantile

95%
quantile

Constant 3.51 0.14 3.28 3.73

Age -0.0011 0.0018 -0.0042 0.0018

Sex - Female 0

Sex - Male -0.0845 0.0519 -0.1680 -0.0027

BMI (kg/m2) 0.0136 0.0040 0.0071 0.0201

Education-Higher Education 0

Education-A level or equivalent qualifications 0.1095 0.0642 0.0019 0.2135

Education-GCSE or equivalent qualifications 0.0674 0.0645 -0.0411 0.1777

Education-No qualification† 0.1488 0.0784 0.0237 0.2813

Marital status-Living together 0

Marital status-Living alone -0.0234 0.0431 -0.0957 0.0439

Smoking habit-Non-smoker 0

Smoking habit-Former 0.0430 0.0513 -0.0412 0.1264

Smoking habit-Current 0.0198 0.0541 -0.0694 0.1095

Social Class-Non-manual work 0

Social Class-Manual work 0.0826 0.0474 0.0044 0.1598

Alcohol consumption (g/day) 0.0012 0.0010 -0.0004 0.0029

24-hour urinary creatinine excretion
(mmol/day)† 0.0926 0.0044 0.0854 0.0997

†: Significant at α=0.1 level. 

5.4.4 Discussion

Key findings

In the present study, spatial distribution of dietary iodine, urinary and dietary sodium

and their demographic and socioeconomic determinants from 2,105 White

participants living in 11 British regions were analysed. One important finding is that

there was a clear north-south pattern of dietary and 24-hour urinary sodium in

Britain but no significant spatial variation of dietary iodine intake across those

regions. In particular, people living in Scotland had a significantly higher salt intake

than those living in England and Wales. Moreover, people with lower educational

attainment and from a lower social class background had higher salt intake. Different
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age effects were also shown by comparing the results of the dietary sodium and

urinary sodium models.

The inconsistency between the spatial distributions of iodine intake and salt intake

(using sodium intake as the proxy) is not surprising. Although in many countries,

particularly in the low- and middle-income countries, iodised salt is the primary

strategy for iodine supplementation, salt is not mandatorily required to be iodised in

the UK. Only 2.5% salt is iodised on the UK market (260). The spatial patterns of

iodine and salt intakes are thus not necessarily matched.

The dietary iodine model results indicated that salt and iodine intake were

significantly associated. However, the significance did not necessarily indicate that a

change of salt intake would lead to a change of iodine intake. The association was

possibly due to confounding since the salt used in food manufacturing and household

is not iodised in the UK. Some commonly consumed iodine-rich foods, such as

cheese and processed meat, are added high levels of salt during manufacturing.

Therefore, higher consumption of these foods could result in a high level of salt and

iodine intake. Nevertheless, reducing salt content in these foods would not reduce

iodine content at the same time.

Historically, milk and dairy products have been the major iodine supplementation

vehicle. Iodine was initially added to feedstuffs to increase animal reproduction.

With the implementation of the School Milk Act in 1946, milk and dairy products

gradually became a part of people’s daily diet and contributed more than 40% of

daily iodine intake in the UK adult population in the 1990s (349;350). The average
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iodine intake accordingly increased at population level. The 2000-01 NDNS report

also estimated that 38% iodine intake was contributed by milk and dairy foods (351).

According to the iodine model results, the milk and dairy products had a much larger

effect on iodine status than dietary sodium intake. Unlike salt iodisation, milk and

dairy consumption is not likely to be affected by salt reduction. In addition, the

technology of iodine addition in feedstuffs is mature. In the UK, adding iodine to

feedstuffs has been used since 1920s. In fact moderate to high iodine concentration

has been found in milk and dairy products in many European countries, ranging from

45-601 µg/kg (352). In fact, the consumption of milk and dairy products may be

beneficial to prevent CVD. Elwood et al. (353) in a meta-analysis of 15 studies

showed significantly lower risks of stroke (relative risk: 0.79, 95% confidence

intervals: (0.75, 0.82) and CHD (0.84(0.76, 0.93)).

The iodine concentration in cow’s milk was on the increase during the 1980s and

1990s and was estimated to be more than 300 µg/kg in the 1998/9 UK Ministry of

Agriculture Fisheries and Food (MAFF) survey (350). However, Bath et al. (250)

recently observed lower concentration in organic milk, although the concentration of

iodine was at the same level as the previous MAFF surveys. The organic milk,

produced by the cows that were fed organic feed, had a median iodine concentration

of 145 µg/L, which was less than 60% of that in other conventional milk samples.

With the growing popularity of organic milk, the population iodine status might be

negatively affected.

In fact, the reduced iodine content in milk has been blame for the re-emergence of

iodine deficiency in several countries that did not introduce salt iodisation
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programmes, e.g. Australia (248) and New Zealand (354). Vanderpump et al. (244)

also reported a median UIC of 80.1 µg/L in UK school girls aged 14-15 years in a

recent cross-sectional study, indicating a mild iodine deficiency status in the UK

population. The reduced iodine concentration in milk is attributable to the following

reasons: the replacement of iodophor in milk and dairy products (249), reduced

consumption of iodine-rich foods (248) and consumption of goitrogenic foods in

animals (250). Therefore, strict surveillance of iodine content in milk and dairy

products is necessary to keep the general population at safe.

In this analysis, the estimated median UIC was 103.4 µg/L, indicating a borderline

optimal iodine status in the White population. However, the iodine intake was

measured from dietary foods and supplements only. This approach underestimated

the real habitual intakes because of the under-reporting of the energy intake in this

survey (355). Therefore the true population urinary iodine concentration should be

higher. A better and accurate measurement should be made by 24-hour urine

collection

Although participants with A-level or equivalent educational attainments had

significantly higher urinary sodium levels, the results showed consistently that

participants with lower educational attainment had lower iodine intake and higher

sodium intake, while participants with lower educational attainment and in lower

social class had higher 24-hour urinary sodium excretion. Educational attainment

and social class are two commonly used indicators of socioeconomic status (SES).

The findings are in line with those of the INTERSALT study (356). Therefore those

socioeconomically disadvantaged people had increasing risks of both iodine

deficiency and hypertension with ensuing cardiovascular disease.
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This analysis is the first to present significant spatial variations of dietary and 24-

hour urinary sodium in Britain. People living in Scotland were more likely to eat

more salt compared to those living in the rest of Britain. The dietary sodium to

energy ratio (sodium density) also showed that sodium level in every unit of energy

intake was higher in northern Britain, indicating people in these regions, particularly

in Scotland, ate more salty foods.

Maintaining a low sodium diet helps control hypertension and reduces the risk of

CVD. A high sodium diet usually is associated with low diet quality. In Scotland, the

high level of salt intake suggested a high risk of CVD in the country, which echoes

the “Scottish effect” – a phenomenon describing high mortality in Scotland. This

particular phenomenon has been extensively discussed and explored in recent years

(357) and it is associated with a complex combination of diet quality, economic

deprivation and other lifestyle and environmental factors (357-361). Recent research

suggested that if the Scottish opted for the English diet, 40% of the CHD deaths

could be averted (360). The present models were not adjusted for diet quality. The

unobserved effect of diet quality was likely to have been accounted for by the spatial

effect. However, the specification of diet quality could possibly contribute to a better

explanation of the spatial variation of the salt intake in Britain, which will be

examined in the future.

The resulting spatial pattern could also be partly attributed to residual confounding.

The social class used in this analysis was a crude summary of the study population

and may not have been precise enough to describe the social gradient. Therefore, the

effects of other social groups that may play an important role in relation to salt intake

and diet quality, particularly in Scotland, may not have been adjusted for. Therefore,
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it would also be of interest to use a more comprehensive SES variable to avoid this

confounding issue.

To reduce salt intake in the general population, the UK government has set targets

for the food industry. The visualised spatial maps can be useful for policy-makers,

the public and other stakeholders to spot the difference of salt intake across areas and

help health officers to review and monitor the progress of salt reduction.

Strengths and limitations

This analysis is the first study that has assessed the association between salt intake

and iodine status in the UK. An innovative approach, Bayesian geo-additive models,

was used to simultaneously estimate spatial effect and linear and nonlinear effects.

The SES gradient was consistent in salt and iodine intakes in this analysis,

irrespective the different measurements.

However, there are some limitations of this analysis apart from the residual

confounding and diet quality discussed previously. Firstly, this analysis was based

on the 2000-01 NDNS data. The UK started a national salt reduction programme in

the past decade and the mean salt intake has fallen by 0.9 g/day from 9.5 g/day in

2001 (64). The recent report based on the latest 2011 NDNS (19-64 years) showed

that the average salt intake in England is reduced to 8.1 g/day (65). It would be

important to repeat this analysis on the latest data to update the progress of salt

reduction in Britain and monitor the population iodine status in the context of long

term salt reduction in the country. The new data also offer an opportunity to estimate

whether the reduction in salt intake has modified the social and spatial inequality

over time. In addition, this analysis only included White participants. Hence
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generalisation of the results to the whole population should therefore be made with

caution. It is possible that the associations may be altered in some areas with larger

ethnic presence, such as London. Larger sample size of the minority groups is

needed to produce more robust estimations. Another limitation was that this survey

did not collect information on pregnant women who are one of the most vulnerable

populations to iodine deficiency. Concerns of iodine deficiency in pregnant women

and women of child bearing age are raised (362;363). As the iodine deficiency-

induced damage to foetuses is severe and irreversible, it is critical to evaluate and

monitor the iodine status in these vulnerable subpopulations. Further analysis on the

iodine status of pregnant women and women of reproductive age will be of interest

when data become available. The level of geographical classification was another

limitation. The correlated spatial effects could have been better estimated if more

detailed classification (for instance, county) was available. The 11 SSRs might result

in over-smoothing the estimates and hiding significant spatial variation at lower

geographical levels. Finally, the analysis was also limited by the use of repeated

dietary records for estimation of dietary intakes. Dietary records are useful in

national survey but lack accuracy (364). Problems like under-reporting have been

revealed. Twenty-four-hour urine collection is the gold standard for sodium and

iodine estimation. Thus the collection 24-hour urine samples should be used as a

standard procedure in the coming national dietary and health surveys.

Implications

The UK NDNS data were used here as an example to show that alternative

approaches of iodine fortification, such as milk and dairy consumption, can

effectively reduce and eliminate the risk of iodine deficiency at population level.
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This approach also provides an economical solution to avoid the potential conflict of

salt iodisation against salt reduction as two WHO policies may put each other in

jeopardy. Milk and dairy foods are likely to act more effectively as a vehicle for

iodine supplementation in the countries that had a tradition of or increasing trend of

milk and dairy consumption. As there is no specific programme utilising milk and

dairy products for iodine supplementation, it may be appropriate for international

organisations to integrate this approach into the coordination of salt reduction and

salt iodisation programmes. Like the salt reduction programme, the UK experience

may be shared to other countries to improve the iodine status. Policy-makers,

industry and other stakeholders should also be aware of the potential limitations,

such as dietary habit, political influence and economic restriction.

In addition, the evaluation of spatial variation of iodine and salt intakes could be an

innovative and useful monitoring tool for policy-makers and academic researchers.

The models and resulting maps provide a visual snapshot of the progress of the

health promotions and may help the media campaigns to raise public awareness.

In conclusion, this analysis described a north-south pattern of salt intake across

Britain with people living in Scotland having higher salt intake than those in England

and Wales. Iodine status is considered optimal in Britain with no significant spatial

variation at regional level. Low socioeconomic status is associated with higher levels

of salt intake and lower level of iodine intake, indicating higher risk of CVD. Special

attention should be given to social and regional differences in salt intake to achieve

sustainable success in salt reduction in the UK. Milk and dairy products can be

considered as an approach for iodine supplementation and may help to reconcile the
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potential conflicts between salt reduction and salt iodisation programmes in the

world.

5.5 Summary of Chapter 5

In Chapter 5, the thesis objectives were explored firstly in an ecological analysis

from a global perspective. The association between salt and iodine intakes were

determined using Spearman’s correlation coefficients across the world and by

national economic status. The weak and non-significant coefficients suggested that a

moderate modification of salt intake would not affect the iodine status of the general

population, which was also served as a hypothesis to be further examined in the

following three case studies.

In the first case study, data obtained from a 6-month salt reduction study in a

Ghanaian community including 6 rural villages and 6 semi-urban villages were used.

Linear regression models, instead of Bayesian geo-additive models, were carried out

to estimate the association of changes in salt and iodine intake over the study period.

Although iodine intake did not change significantly during the study period in the

concordant group (villages consuming iodised salt on a regular basis) and discordant

group (villages not consuming iodised salt on a regular basis), the salt and iodine

association was significant in the concordant group but not in the discordant group.

Given the variation in household coverage of iodised salt, the results suggested that a

moderate salt reduction in the countries dependent on iodised salt for iodine

supplementation is unlikely to have a major impact on the population iodine status.



227

The second case study used the data of the third United States National Health and

Nutrition Survey (NHANES III). Bayesian geo-additive models were constructed to

estimate the salt and iodine association in the US population, as well as the

determinants of both intakes. The results showed a weak but significant association

between salt intake (measured from dietary foods only) and iodine intake (measured

by spot urinary iodine concentration). However, the association was possibly caused

by the addition of both non-iodised salt and iodine in foods as the US does not

conventionally use iodised salt in food processing. Therefore, the results were not

sufficient to suggest a substantial effect of salt reduction on iodine intake in the US.

The analysis also revealed regional difference of salt and iodine intake, suggesting

more variations in the sub-regional levels. However, no spatial dependence could be

estimated due to lack of sufficient geographical data. The US data indicated that

higher socioeconomic status was associated with higher salt intake and lower iodine

intake.

This chapter finished with the third case study on the white participants in the 2000-

01 National Diet and Nutrition Survey in Britain. The British population obtains

sufficient iodine intake mainly from milk and dairy consumption. The Bayesian geo-

additive models showed a weak but significant salt and iodine association based on

dietary data. However, the association did not indicate a possible impact of salt

reduction on iodine intake as there is no salt iodisation programme in Britain. The

study served as an example to demonstrate the possibility of using milk and dairy

products as an alternative vehicle to salt in some countries sharing similar dietary

pattern with the British population. Milk and dairy products had a strong association

with iodine intake. The model results also described a significant north-south spatial
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pattern of salt intake at regional level after controlling for a set of socioeconomic and

demographic risk factors, suggesting the Scottish were likely to eat more salt than

the others living in England and Wales. In addition, low socioeconomic status was

associated with high salt intake and low iodine intake, suggesting higher risks of

CVD and IDD in the vulnerable subpopulation.
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Chapter 6 Discussion

6.1 Summary of the Thesis

Salt plays an important role in regulating BP (4;6). It is also used as the major

fortification vehicle to supplement iodine in the general population (94). Salt

reduction programmes aim to lower BP and prevent the risk of cardiovascular

disease (CVD) by reducing population salt intake, while universal salt iodisation

(USI) programmes are adopted to control iodine deficiency disorders (IDD). There

have been increasing regional and national initiatives worldwide (17;26;63) for both

programmes, and remarkable achievements have been obtained by both programmes

(17;58;59;107).

A substantial reduction in salt intake, through a reduction in the use of discretionary

salt, may potentially cause a reduction in iodine intake through a reduced delivery of

potassium iodide where iodised salt is used, possibly undermining salt iodisation

programmes. On the other hand, there is also the potential risk that the

implementation of a universal salt iodisation programme might unintentionally lead

to an increase in salt intake and ensuing risk of avoidable cardiovascular events.

Furthermore, salt iodisation programmes worldwide use rough estimates of average

population salt consumption to set the amount of iodisation necessary to deliver the

desired amount of iodine. These estimates are often wrong and out of date giving rise

to concerns on the appropriateness of the current criteria used for defining iodine

content of salt (25).



230

To reconcile any potential conflicts, a global coordination of programmes has been

proposed (25;26;365;366). The World Health Organization (WHO) recommends that

health authorities and policy-makers adapt current policies to optimise the population

salt and iodine intakes.

Scientific evidence is crucial to inform and adapt policies. However, research on the

programme coalition is scarce. In particular, it is accepted that the iodine content in

salt should be adjusted according to the country’s salt intake. No study is able to

verify if the adjustment is universally needed or to provide information of the

possible adjustment level to policy-makers, international organisations, salt and food

industries, media and civil society.

This study set out with the aims of evaluating the population salt intake and iodine

status and assessing the salt-iodine association. A class of Bayesian geo-additive

models was also employed to investigate the risk factors and the spatial variations of

the salt intake and iodine intake or status, where possible.

6.2 Validity of the Average Salt Intake Assumption

The present study assessed the salt intake in three populations. All estimated intakes

were less than the assumed salt intake (10 g/day), although the US data only took

into account the salt in dietary foods. The results indicated that the assumption of the

average salt intake used for setting up the criteria of salt iodisation needs to be

updated, particularly for those countries that have implemented salt reduction

programmes or are in economic transition with a changing dietary pattern. The

current assumption might cause an over- and under-estimation bias in projected
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amount of iodine supplementation, which could perhaps widen the inequality of

iodine status across the world and potentially result in more hidden economic burden

and loss of health.

6.3 Impact of Salt Reduction on Iodine Supplementation

Different estimations of the association between salt and iodine intakes were

produced in three case analyses. The British analysis was used in this study as an

example of alternative approaches of iodine fortification. The UK does not have a

salt iodisation programme in place. Hence a non-significant salt and iodine

association was expected. However, an opponent result was obtained. The

association is possibly due to confounding. Figure 6.1 showed how sodium and

iodine are added into foods and contribute to the total salt and iodine intakes in the

UK. Iodine is usually added to feedstuffs and subsequently appears in milk and dairy

products, while some iodine rich processed foods, such as cheese and processed meat,

are blended with high level of non-iodised salt separately during manufacturing.

Therefore, when people eat these foods, both iodine and salt intakes increase. If the

salt content in processed foods is reduced, the iodine availability could be affected

minimally. This possibility was also supported by the inconsistent spatial patterns of

dietary iodine intake and dietary sodium intake.

Milk and dairy products have been the major contributors to iodine intake in the UK

for a long time. The energy intake adjusted effect of milk and dairy consumption was

stronger than that of sodium intake in the model. Salt reduction is not likely to affect

the iodine intake via milk and dairy consumption. Therefore, the UK experience can
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be shared to other countries with similar dietary habit to use milk and dairy products

as an effective alternative to salt for population-wide iodine supplementation.

Figure 6.1 The addition of iodine (I-) and sodium (Na+) in foods in the UK

Note: Na+: sodium; I-: iodide; Percentages were quoted from James et al. (316).

As a case study of a high-income country that implements salt iodisation, the US

analysis showed a significant association between urinary iodine concentration and

dietary sodium intake. However, only discretionary salt is iodised on a voluntary

basis, while the salt added in food manufacturing is usually not iodised. Thus, this

association was possibly caused by the same reason that explained the salt and iodine

association in the British analysis, i.e. confounding, possibly via energy intake and a

greater use of table salt in those eating more food. If salt were reduced during food

manufacturing, the iodine level would not be expected to change accordingly (see

Figure 6.2).
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Although not assessed in this study, the modification of table and cooking salt

consumption might affect the iodine intake in the US population. However, the use

of discretionary salt only constitutes approximately 11% of the total salt intake (31).

Its contribution to the population iodine intake is also dependent on the household

coverage of iodised salt and consumers’ preference. Data showed that only half of

the table and cooking salt on the market is iodised (328). Thus the supplementation

of iodine via discretionary salt is proportionally reduced. As a consequence, the

impact of salt reduction on iodine intake in the US could be greatly diluted. Due to

the limitation of sodium and iodine measurements, more data are needed to

investigate the association by using accurate salt and iodine intake measurements

(e.g. 24-hour urine collection).
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Figure 6.2 The addition of iodine (I-) and sodium (Na+) in foods in the United

States

Note: Na+: sodium; I-: iodide; Percentages were quoted from Mattes and Donnelly (31).

In the Kumasi area of Ashanti, Ghana, a significant association between urinary

iodine and urinary sodium excretions was found in 50% of participating villages

(referred to as ‘concordant’). Iodised discretionary salt is the major source of iodine

intake in Ghana, as well as many other low- and middle-income countries (see

Figure 6.3). The use of discretionary salt is usually dominant in people’s daily salt

intake (278). More than 70% of the total salt intake is added at the table or during

cooking (30;33;367). The association estimated in the ‘concordant’ group indicated

that a change of 1 g in salt intake per day would result in a parallel change of 10.6 µg

in iodine intake per day. However, the analysis also revealed a non-significant

association in the ‘discordant’ group. Population household coverage of iodised salt
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is likely to be the major reason for inconsistent association between salt and iodine

intake in these West African villages in the Kumasi area of Ashanti, Ghana. Half of

the study villages did not appear to use iodised salt on a regular basis. Therefore, a

population-wide salt reduction would cause less of a reduction in iodine intake that it

would be expected from theoretical assumptions based on large population coverage.

Figure 6.3 The addition of iodine (I-) and sodium (Na+) in foods in Ghana

Note: Na+: sodium; I-: iodide; Percentages were estimated from the studies in Nigeria, Brazil and
China (30;33;367).

6.4 Impact of Iodine Supplementation on Salt Reduction

Although lacking substantial evidence, universal salt iodisation programmes may

inadvertently increase salt intake. It is conceivable that people could intentionally eat

more iodised salt to improve iodine status. An Australian study showed that

increasing purchase of iodised salt was associated with increased media coverage of
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the risk of iodine deficiency (229). Nevertheless, no study has confirmed this

tendency at population level. The present study was also not able to provide accurate

estimation of the impact of iodine supplementation on salt reduction programme.

As explained previously, household coverage of iodised salt is an important

determinant of the impact of salt reduction on the population iodine intake. The

coverage also plays an important role in determining the impact of iodine

supplementation on salt reduction. Logically, by increasing salt intake in areas with

mixed coverage, people may end up with having higher salt intake but less than

expected iodine intake.

Despite lack of evidence, policy-makers perhaps still need to be prepared for the

potential risk of such behaviour, particularly in the disadvantaged and vulnerable

populations who have limited iodine sources. Thus, simple and clear health

promotion messages should be delivered to the public to increase effectively their

awareness and knowledge of current salt reduction and salt iodisation policies.

Support is needed in the disadvantaged and vulnerable populations to provide

additional protection.

6.5 Socioeconomic Inequality

A finding, perhaps not unexpected, was that socioeconomic status (SES) was

inconsistently associated with salt and iodine intakes in the present studies. People

from more disadvantaged social groups in a population have increased mortality and

morbidity (368;369). However, the association between SES and nutritional intakes

is not entirely consistent. Although some studies suggested that high SES is
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associated with lower salt intake (337;356;370), others were unable to produce

similar results (336;371;372). For iodine, the evidence is more consistent. High SES

is associated with better iodine status (measured by goitre rate and thyroid volume)

(373) and higher cognitive function (374), while low SES has lower coverage and

awareness of the use of adequately iodised salt (245;375). Although some studies

reported the lack of such association (376;377), the use of residential and school

based SES variables might be attributable to the results.

Aside from the mixed literature, there are several possible explanations for the

inconsistent SES effect in this thesis. The methodological difference in the

assessment of SES might have contributed to the disparity of the SES effect,

particularly between the analyses in the US and Britain. The SES variables in the

analyses were defined differently, as presented in Sections 5.2-5.4. In population

studies, education, occupation and income are three major indicators of SES and

capture different dimensions of people’s social environment. Nonetheless, there is no

consensus regarding the choice of the indicators. The definitions of these indicators

may vary from country to country and from study to study. However, these

indicators are not interchangeable (378) and hence may perform differently in

relation to nutritional intakes (379).

Secondly, the definitions of the SES variables in both US and British analyses may

be inaccurate so that the inconsistency might be partly caused by residual

confounding. For example, in the British analysis, social class was defined by only

two groups, and in the US analysis, family economic resources was represented by a

binary variable (poverty income ratio). Therefore, the confounding effect of SES
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could not be completely controlled for in the models due to the lack of detailed SES

specification.

Thirdly, differences in the measurements of salt and iodine intake could be another

possible explanation. In most population studies, dietary record, spot or timed urine

samples and 24-hour urine collections are generally used to measure salt and iodine

intakes. As discussed previously, alternative methods to 24-hour urine collection

have various flaws in the measurements of nutritional intakes. The inaccuracy and

reduced reliability may explain in part the inconsistent effect of SES.

In addition, the possible interference of diverse dietary patterns cannot be ruled out.

Different patterns involve different salt and iodine consumption habits. High SES is

not always linked with healthier nutritional intakes (380), particularly in countries

that are in rapid social and economic transformation (381).

Therefore, the interpretation of the SES effect should be cautious. Comparison might

be more meaningful in a longitudinal study design by monitoring the change within

the same country.

Finally, geographical variations in nutritional patterns and in the distribution of SES

may represent an additional caveat when comparing patterns of association between

studies in different localities. In our analysis in Britain we were able to show for the

first time that salt intake was higher in low SES once any geographical variation was

taken into account (382).
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6.6 Spatial Variation and Bayesian Geo-additive Models

The study demonstrated different spatial patterns of salt and iodine intakes in three

analyses. In Ghana, a significant rural-urban difference was observed in iodine

intake. In the US, the pattern of salt intake corresponded to the well-known stroke

belt, while the iodine status had a different geographical distribution. Finally, in

Britain, a north-south gradient of salt intake was identified.

The investigation of the spatial variation was conducted differently in the three data

sets. In Ghana, the rural-urban difference was compared with adjustment for age and

sex. In the US, the geographical variable was treated as a linear and fixed effect.

Only in the British analysis was the spatial correlation taken into account. The major

reason for the different investigation was the availability of detailed geographical

information. The collection of corresponding boundary data is likely to be an

important limitation. In this study, only the UK National Diet and Nutrition Survey

publicly released the regional level information. However, lower geographical

information is still desirable. The currently used regional classification may lead to

over-smoothing, which consequently conceals the sub-regional variation. In

particular, in the US analysis, I was unable to estimate the spatial correlation due to

the small number of regions. Therefore, the estimated standard errors of the included

risk factors may be over-estimated and important spatial variation of iodine and salt

intakes at lower geographical levels may still be hidden.

Despite the restrictions in model applications, the estimated spatial patterns are

potentially helpful for policy-makers to identify the high-risk areas that had high salt

intake and low iodine intake and, accordingly, to make decisions on resource
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allocations. The results indicated the usefulness of the Bayesian geo-additive models

in support of the monitoring and evaluation of a health programme.

6.7 Policy Implications

The coordination of salt reduction and USI programmes can maximise the benefits

that the health programmes bring to the general population and minimise the related

healthcare cost and the impact of potential conflicts between the two programmes.

Based on the findings of the present study, several suggestions are made to help

coordinate the salt reduction and USI programmes.

1. Direct knowledge of up-to-date population salt intake level is needed for policy-

makers to understand the true iodine availability to the general population. It also

serves as an important basis for future policy adaptation and can inform the

international organisations, salt and food industries and the public of the need for

better understanding and close interaction during the coalition. Based on the

present study, each country has its own population salt intake level and trends.

Therefore, governments and health authorities are encouraged to measure the

population salt intake before any possible policy adaptation.

2. The household coverage of iodised salt needs to be improved. Insufficient

coverage jeopardises salt iodisation programmes and may widen the social and

geographical health inequality. In addition, iodine content in salt may need to be

increased to offset the impact of salt reduction on salt iodisation programmes.

This adjustment, however, should be made according to each country’s context

of salt reduction and iodine status.
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3. Alternative vehicles for iodine fortification could be considered where possible.

The British analysis suggests the appropriateness of milk and dairy products as a

complementary iodine vehicle to salt. Others, such as flour, can also be

considered in some countries, since bread is consumed in many countries. Some

suggestions are given in Table 6.1. These suggestions are mainly made upon

dietary assumptions. That is, high-income populations have a high proportion of

processed foods in the diet, while low- and middle-income populations are

assumed to largely rely on iodised salt for iodine supplementation with a small

proportion of processed foods in their diet. For countries in economic transition,

diets evolve over time. The level of iodine-rich foods (e.g. milk and meat)

consumption is usually approaching that of high-income countries (383).

Therefore, milk, other animal products and bread can be used as alternative

vehicles for iodine supplementation in these countries.

Table 6.1 Possible alternative options for population iodine supplementation

Country Options

High-income countries
Milk and other animal products, irrigation

or drinking water, flour*

Low- and middle-income countries
Iodised oil, irrigation or drinking water,

flour*

Countries in economic transition Milk and other animal products

*: Further research is needed for assessment of effect.

4. Encouraging the food industry to use iodised salt in food manufacturing is

recommended. In the Netherlands, using iodised salt in the making of bread and

other bakery products is required. A 50% reduction of salt in processed foods in

the Netherlands could result in an estimated reduction of iodine intake of 19-34

µg/day in children and 21-32 µg/day in adults (29). An extension of the use of
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iodised salt in food manufacturing beyond bread and bakery products may offset

any predicted fall in iodine status.

5. Joint population monitoring and surveillance of sodium and iodine through 24-

hour urine collection should be encouraged. Twenty-four-hour urine collection is

the most reliable and accurate measurement of salt and iodine intakes. Using

other measurements may lead to over- or under-estimation of the nutritional

intakes and their association. In addition, the current recommended reporting

frequency for salt and iodine intakes is 3 and 5 years (262;263), respectively.

However, a unified framework for jointly reporting these nutritional intakes is

recommended. It would not only help policy-makers and other stakeholders of

salt reduction and salt iodisation programmes to better understand the population

nutritional status and improve the monitoring quality, but it would also reduce

the programme cost, especially the human cost.

In addition to the above suggestions, it is important for policy-makers to reduce the

social inequality in salt and iodine consumption. SES is a key determinant of health

(368;369;384;385). Higher SES is associated with lower hypertension prevalence

(386) and CVD risk (387). Reducing the dietary gap across SES levels can

potentially lower the risks of CVD and IDD in the general population and may

further alleviate the health burden and reduce healthcare cost. Further research is

needed to interpret the various salt and iodine gradients over SES levels possibly

from a wider scope by considering the impact of, for example, diet quality and

dietary habit. Policy-makers are encouraged to provide support to those

disadvantaged and vulnerable populations.
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The present study also demonstrated the usefulness of the spatial analysis of the

dietary intakes. In particular, the Bayesian geo-additive models can be used as an

effective monitoring and evaluation tool in a coordinated programme. The models

can improve the estimation by accounting for the spatial correlation that is usually

overlooked in the analyses using classic regression models. Through the use of

posterior maps, policy-makers are able to highlight the high risk areas so that

appropriate health programme enforcement can be delivered to the targeted areas.

The maps are also helpful to raise the public awareness and increase the

understanding of the programme progress among the salt and food industries to

enhance their collaboration with governments.

6.8 Future Work

With the analyses in three population data sets in this study, it might be useful to

extend such investigation to other countries to produce country-specific estimations

and provide suggestions to policy-makers and other stakeholders.

The spatial effect was not fully explored in this study due to the limited geographical

information. Not all population surveys record the geographical information

sufficiently, mostly on the grounds of confidentiality or study design. However, if

the data become available, it would be meaningful to re-run the analyses for a better

data interpretation.

Moreover, new data have been continuously collected in recent years, such as the

UK 2010-11 National Diet and Nutrition Survey. These data provide up-to-date

information of the population dietary intakes, which are essential to the monitoring
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the progress of the health programmes. Therefore, updating the analysis using new

data and extending the British analysis to minority ethnic groups are recommended if

data were available. In addition, it would be of interest to compare the change of

dietary intakes in the population over time and investigate if there is any temporal

and spatial interaction in the general population.

Recently concerns on the iodine status of women of child-bearing age and children

have been raised. They are the most vulnerable groups subjected to the risk of IDD.

Their salt and iodine intakes, as well as salt reduction targets and iodine intake

requirements, are different compared to those of other adults. Further analysis using

the Bayesian geo-additive models in these vulnerable populations is desirable to

provide policy-makers and other stakeholders with more population-specific

information for the programme coalition.

6.9 Summary of Chapter 6

Chapter 6 began with a brief summary of the background and motivation of the

thesis. Based on the results obtained from the three case studies, this chapter went on

to discuss the following findings:

1) The assumed average salt intake (10 g/day) is no longer valid across the

world. Three case studies indicated different population salt intake in

different countries. The current assumption might cause an over- and under-

estimation bias in projected amount of iodine supplementation.

2) The possible impact of salt intake modification on iodine status varies in

different countries. Three estimated associations in Ghana, the US and
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Britain were summarised separately according to the respective country

settings. In high-income countries like the US, salt reduction is unlikely to

have influential impact on population iodine status in part because of the high

proportion of non-iodised salt consumption from processed foods,

irrespective of the implementation of USI programme. In particular, the

impact in the US is further weakened by the coverage of iodised salt and

customer preference. In low- and middle-income countries relying on iodised

salt for iodine supplementation like Ghana, salt reduction may have a

stronger impact on population iodine status. However, a population-wide salt

reduction would cause less of a reduction in iodine intake that it would be

expected from theoretical assumptions based on large population coverage,

mainly due to the varied coverage and use of iodised salt. The British

analysis provided an example for countries with similar dietary habit that use

milk and dairy products as an effective alternative to salt for population-wide

iodine supplementation.

3) The effect of socioeconomic status (SES) on both salt and iodine intakes is

inconclusive. Inconsistent effects were obtained in the case studies. The

inconsistency, however, might be caused by the methodological differences

in defining SES variables, residual confounding of the SES and spatial

variables, different intake measurements, and diverse dietary patterns.

4) Diverse spatial patterns of the nutritional intakes were identified in the case

studies. The present study still suffered from insufficient geographical data,

particularly in the US analysis. Despite the data restrictions, Bayesian geo-

additive models are useful to support policy-makers in the monitoring and

evaluation of a health programme.
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Several suggestions, particularly on salt iodisation policy, were subsequently

made to help coordinate the salt reduction and USI programmes:

1) Direct knowledge of up-to-date population salt intake level is needed for

policy-makers to understand the true iodine availability to the general

population.

2) The household coverage of iodised salt needs to be improved.

3) Alternative vehicles for iodine fortification could be considered where

possible.

4) Iodised salt could be used in food manufacturing to offset any predicted fall

in iodine status.

5) Joint population monitoring and surveillance of sodium and iodine through

24-hour urine collection should be encouraged.

6) The Bayesian geo-additive models can be used as an effective monitoring

and evaluation tool in a coordinated programme.

This chapter ended with a brief projection of future work in relation to the

programme coordination, which will also be useful to policy-makers and other

researchers.
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Chapter 7 Conclusions

In conclusion, this study shows different population salt and iodine intakes across the

world, suggesting the need to revise the assumption of average salt intake in adults in

the salt iodisation policy. Moreover, this study suggests that iodine content in salt

perhaps needs to be adjusted to optimise population salt and iodine intakes,

particularly in countries that rely on discretionary salt for iodine supplementation.

Attention needs to be paid and support needs to be given to the disadvantaged and

vulnerable subpopulations to reduce health inequalities and maximise the benefit of

salt reduction and salt iodisation policies to the population as a whole.

The current findings add substantially to our knowledge of the coordination of salt

reduction and salt iodisation programmes. They can serve as a basis for policy

adaptation and further research related to the programme coalition.

The Bayesian method used in this study could be applied to both programmes’

monitoring and evaluation. The flexible estimations and resultant maps provide all

stakeholders with a better understanding and may contribute to the progress of the

prevention, management and control of hypertension, CVD and IDD.
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