
  

 

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap  

 

A Thesis Submitted for the Degree of PhD at the University of Warwick 

 

http://go.warwick.ac.uk/wrap/57678 

 

 

This thesis is made available online and is protected by original copyright.  

Please scroll down to view the document itself.  

Please refer to the repository record for this item for information to help you to 
cite it. Our policy information is available from the repository home page.  

 
 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/18327507?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/wrap
http://go.warwick.ac.uk/wrap/57678


www.warwick.ac.uk

AUTHOR: Emmanuel Olusegun Ogundimu DEGREE: Ph.D.

TITLE: On Sample Selection Models and Skew Distributions

DATE OF DEPOSIT: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I agree that this thesis shall be available in accordance with the regulations
governing the University of Warwick theses.

I agree that the summary of this thesis may be submitted for publication.
I agree that the thesis may be photocopied (single copies for study purposes

only).
Theses with no restriction on photocopying will also be made available to the British

Library for microfilming. The British Library may supply copies to individuals or libraries.
subject to a statement from them that the copy is supplied for non-publishing purposes. All
copies supplied by the British Library will carry the following statement:

“Attention is drawn to the fact that the copyright of this thesis rests with
its author. This copy of the thesis has been supplied on the condition that
anyone who consults it is understood to recognise that its copyright rests with
its author and that no quotation from the thesis and no information derived
from it may be published without the author’s written consent.”

AUTHOR’S SIGNATURE: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

USER’S DECLARATION

1. I undertake not to quote or make use of any information from this thesis
without making acknowledgement to the author.

2. I further undertake to allow no-one else to use this thesis while it is in my
care.

DATE SIGNATURE ADDRESS

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



On Sample Selection Models and Skew

Distributions

by

Emmanuel Olusegun Ogundimu

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy

Department of Statistics

February 2013



Contents

List of Tables v

List of Figures viii

Acknowledgments x

Declarations xii

Abstract xiii

Abbreviations xv

Chapter 1 Introduction 1

1.1 Overview of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I On Sample Selection Models and Skew-Normal Distributions 7

Chapter 2 Literature Review 8

2.1 Skew-Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Univariate Skew-normal distribution . . . . . . . . . . . . . . 8

2.1.2 Multivariate Skew-normal distribution (MSN) . . . . . . . . . 11

2.1.3 Extended Skew-normal distribution (ESN) . . . . . . . . . . . 12

2.1.4 The closed skew-normal (CSN) distribution . . . . . . . . . . 14

2.2 Sample selection and Skew distributions . . . . . . . . . . . . . . . . 17

2.3 Other families of Skew distributions . . . . . . . . . . . . . . . . . . 19

2.4 Motivating Example-The MINT Trial . . . . . . . . . . . . . . . . . 19

2.5 Concepts of Missing Data . . . . . . . . . . . . . . . . . . . . . . . . 23

Chapter 3 Ignorable Missing Data Methods and Sample Selection 28

3.1 Copas and Li (1997) Sample selection model . . . . . . . . . . . . . . 28

i



3.2 Regression models with ESN error distribution . . . . . . . . . . . . 30

3.3 Generalized Skew-normal distribution . . . . . . . . . . . . . . . . . 31

3.3.1 A three-parameter generalized skew-normal distribution . . . 33

3.3.2 Extended two-parameter generalized skew-normal distribution 34

3.4 Modeling bounded scores with truncated skew-normal distribution . 41

3.4.1 Truncated distributions . . . . . . . . . . . . . . . . . . . . . 41

3.4.2 Truncated skew-normal distribution and the NDI scores . . . 42

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Chapter 4 A Sample Selection Model With Skew-Normal Distribu-

tion 45

4.1 Sample selection models . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Selection Skew-normal model (SSNM) . . . . . . . . . . . . . . . . . 47

4.2.1 Conditioning in bivariate skew-normal distribution to formu-

late SSNM model . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.2 Hidden truncation formulation of SSNM model . . . . . . . . 49

4.2.3 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . 53

4.2.4 Profile log-likelihood for the NDI scores . . . . . . . . . . . . 59

4.3 Possible extensions of the SSNM models . . . . . . . . . . . . . . . . 63

4.3.1 Multivariate extension of the SSNM model . . . . . . . . . . 64

4.3.2 Sample selection model with skew-t distribution . . . . . . . 65

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Chapter 5 A Unified Approach to Multilevel Sample Selection Mod-

els 70

5.1 Multilevel Sample Selection Models . . . . . . . . . . . . . . . . . . . 71

5.2 Mathematical formulation of the Model . . . . . . . . . . . . . . . . 72

5.2.1 Statistical bias in two-level sample selection problem . . . . . 72

5.2.2 Two-level selection models . . . . . . . . . . . . . . . . . . . . 74

5.3 Moments and Maximum Likelihood estimator for multilevel selection

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.1 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . 80

5.4 Multilevel extension of the SSNM model . . . . . . . . . . . . . . . . 86

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Chapter 6 Copula-based sample selection model with sinh-arcsinh

distribution as marginals 90

6.1 Copula Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

ii



6.1.1 Basic definitions and theorems . . . . . . . . . . . . . . . . . 91

6.1.2 Joint and Conditional density functions . . . . . . . . . . . . 92

6.2 Sample selection and Gaussian copula . . . . . . . . . . . . . . . . . 96

6.3 Sinh-Arcsinh distribution (SHASH) . . . . . . . . . . . . . . . . . . . 99

6.3.1 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . 101

6.4 Multilevel Sample Selection . . . . . . . . . . . . . . . . . . . . . . . 109

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

II Sensitivity Analysis for Recurrent Event Data with Dropout113

Chapter 7 Sensitivity Analysis for Recurrent Event Data Trials sub-

ject to informative Dropout 114

7.1 Motivating Example- The Bladder Cancer Trial . . . . . . . . . . . . 115

7.2 Notation and Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2.2 Poisson Process Models . . . . . . . . . . . . . . . . . . . . . 117

7.2.3 Recurrent event data model . . . . . . . . . . . . . . . . . . . 118

7.3 Methods of Imputation . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.3.1 Waiting times or Gap times . . . . . . . . . . . . . . . . . . . 122

7.3.2 Bayesian Multiple imputation . . . . . . . . . . . . . . . . . . 125

7.3.3 Asymptotic ML estimate . . . . . . . . . . . . . . . . . . . . 126

7.3.4 Bootstrap imputation method . . . . . . . . . . . . . . . . . . 127

7.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.4.1 Asymptotic and Bootstrap simulation . . . . . . . . . . . . . 129

7.4.2 Effects of fraction of missing information on treatment estimates130

7.4.3 Event generation based upon alternative random-effects dis-

tributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.4.4 Alternative event generation process . . . . . . . . . . . . . . 134

7.4.5 Imputation under MNAR assumption- Treated follows Placebo 138

7.4.6 Imputation under MNAR assumption- Higher event rates than

MAR assumption . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.5 Application to Bladder Cancer Trial . . . . . . . . . . . . . . . . . . 138

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Chapter 8 General Conclusions and Future Research 143

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

iii



Appendix A Supplementary Material 148

A.1 Derivation of Gradients and Observed information matrix . . . . . . 148

A.2 Simulation results for fixed λ and varying ρ . . . . . . . . . . . . . . 151

A.3 PDFs and h-functions of some selected copulas . . . . . . . . . . . . 152

A.4 R-codes for copula based truncated sample selection model . . . . . 153

A.5 Tables for Part II of the thesis . . . . . . . . . . . . . . . . . . . . . 155

iv



List of Tables

2.1 Missingness per question during the trial; 599 patients. . . . . . . . . 22

2.2 Scoring Interval and Overall missingness with Measurement time. . . 22

3.1 Simulation results (multiplied by 10,000) using skew-distributions to

model selectively reported data. Selection and Outcome equations

have the same covariates. . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Simulation results (multiplied by 10,000) using skew-distributions to

model selectively reported data. Selection equation has one more

covariate that is not in Outcome equation. . . . . . . . . . . . . . . . 40

3.3 Fit of Azzalini (1985) model, ESN and EGSN model to complete case

NDI scores at 8 months. λ1 and λ2 are constrained to be equal in the

EGSN model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Fit of truncated normal (TN) and truncated skew-normal (TSN)

models to complete case NDI scores at 8 months. . . . . . . . . . . . 43

4.1 Simulation results (multiplied by 10,000) in the presence of exclusion

restriction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Simulation results (multiplied by 10,000) in the absence of exclusion

restriction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Probit model for dropout at 4, 8 and 12 months using Vernon scores. 57

4.4 Fit of selection skew-normal model (SSNM), Selection-normal model

(SNM), and Heckman two-step model to the NDI scores at 8 months. 58

4.5 Fit of selection skew-normal model (SSNM) with 6 fixed value of ρ

to the NDI scores at 8 months. . . . . . . . . . . . . . . . . . . . . . 62

4.6 Fit of selection skew-normal model (SSNM), Selection-normal model

(SNM), and Heckman two-step model to the NDI scores at 12 months. 63

4.7 Complete cases with Azzalini Skew-normal errors and Normal errors. 63

v



5.1 Simulation results (multiplied by 10,000) for the likelihood based es-

timator of two-level selection model. . . . . . . . . . . . . . . . . . . 82

5.2 Simulation results (multiplied by 10,000) for the moment based esti-

mator of two-level selection model. . . . . . . . . . . . . . . . . . . . 83

5.3 Probit model for dropout at months 8. . . . . . . . . . . . . . . . . . 84

5.4 Fit of Two-level selection models (ρ23 6= 0) & ρ23 = 0), and Heckman

selection model to the NDI scores at 8 months. . . . . . . . . . . . . 85

6.1 Fit of SHASH model, SN model, and classical Heckman model (SNM)

to a sample selection dataset with bivariate normal error distribution. 103

6.2 Simulation results (multiplied by 10,000) in the presence of exclusion

restriction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3 Simulation results (multiplied by 10,000) in the absence of exclusion

restriction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4 Empirical significance levels (as %) of the tests of symmetry for the

nominal significance level α = 0.05 in the SHASH model. . . . . . . 108

6.5 Powers (as %) of the tests of symmetry for the nominal significance

level α = 0.05 in the SHASH model. . . . . . . . . . . . . . . . . . . 108

6.6 Fit of copula-based Sinh-archsinh (SHASH), Skew-normal (SN), and

Selection-normal model (SNM) sample selection models to the NDI

scores at 8 months. The corresponding outcome models are truncated

at [0,50]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.7 Fit of copula-based Sinh-archsinh (SHASH), Skew-normal (SN), and

Selection-normal model (SNM) sample selection models to the NDI

scores at 8 months. The corresponding outcome models are untrun-

cated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.1 Distribution of the Number of Recurrences observed for the patients

the three treatment groups in bladder cancer trial. . . . . . . . . . . 116

7.2 Summary statistics for the follow-up times of patients in the three

treatment groups in bladder cancer trial. . . . . . . . . . . . . . . . . 116

7.3 Bias and MSE in estimated treatment effect with 30% missing data

in both placebo and treated arm: Asymptotic and Bootstrap impu-

tations. Simulation results (multiplied by 10,000). . . . . . . . . . . 131

7.4 Bias and MSE in estimated treatment effect with 30% and 40% miss-

ingness in the treated arm. Percentage of missing data in placebo

arm is fixed at 10%. Simulation results (multiplied by 10,000). . . . 132

vi



7.5 Bias and MSE in estimated treatment effect with 30% missingness in

both placebo and treated arm: Uniform and Normal random effects.

Simulation results (multiplied by 10,000). . . . . . . . . . . . . . . . 133

7.6 Proportion of events observed in treatment group using simulated

data for the models, n=1000, 1000 replications and censoring at 112

days. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.7 Bias and MSE in estimated treatment effect under the Weibull, Con-

ditional, Poisson and Autoregressive data generation process. Im-

putation was done under mixed Poisson process. Simulation results

(multiplied by 10,000). . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.8 Imputation of treated arm using placebo rate λp(t). A and P stand

for active and placebo arms respectively. . . . . . . . . . . . . . . . . 139

7.9 Fit of Direct Likelihood, Asymptotic Imputation and Bootstrap Im-

putation to the bladder cancer data. . . . . . . . . . . . . . . . . . . 140

7.10 Fit of Asymptotic Imputation and Bootstrap Imputation to the blad-

der cancer data using event rates in the placebo arm to impute data

in the treated arm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.11 Fit of Bootstrap Imputation to the bladder cancer data using higher

rate than the MAR rate. Bold face entries are significant at 5% level

of significance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.1 Simulation results (multiplied by 10,000) for λ = 1 and varying ρ in

the presence of exclusion restriction. . . . . . . . . . . . . . . . . . . 151

A.2 Simulation results (multiplied by 10,000) for λ = 2 and varying ρ in

the presence of exclusion restriction. . . . . . . . . . . . . . . . . . . 152

A.3 Imputation with new rate λnew,trt(t). 30% data is missing in both

the treated and the placebo arm. . . . . . . . . . . . . . . . . . . . . 155

A.4 Imputation with new rate λnew,trt(t), 10% and 30% data is missing

in placebo and treated arm respectively. . . . . . . . . . . . . . . . . 156

A.5 Imputation with new rate λnew,trt(t), 10% and 40% data is missing

in placebo and treated arms respectively. . . . . . . . . . . . . . . . . 157

vii



List of Figures

2.1 Comparison of Skew-normal densities . . . . . . . . . . . . . . . . . . 10

2.2 Contour plot and 3-d plot of a bivariate SN2(µ,Ω,λ) with µ =

(−0.1, 0.1), Ω = diag(1,1) and λ = (−1, 1) . . . . . . . . . . . . . . . 12

2.3 Marginal distributions and Correlations at Baseline, Month 4, 8 and

12 for the NDI scores . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Chi-square plots for items at baseline, month 4, month 8 and month 12 24

2.5 Q-Q plots for residuals of scores at baseline, month 4, month 8 and

month 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Two indistinguishable parameter combination for two-parameter ESN,

∆((3, 2), (2, 1.3)) = 0.01 . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Comparison of generalized skew-normal densities . . . . . . . . . . . 35

4.1 Plot of correction factor for different values of skewness parameter

with λ = 0 corresponding to the normal case. . . . . . . . . . . . . . 51

4.2 Plot of correction factor for different values of skewness parameter

with λ = 0 corresponding to the normal case. . . . . . . . . . . . . . 51

4.3 Plot of marginal effect for different values of skewness parameter with

λ = 0 corresponding to the normal case. . . . . . . . . . . . . . . . . 52

4.4 Plot of marginal effect for different values of skewness parameter with

λ = 0 corresponding to the normal case. . . . . . . . . . . . . . . . . 52

4.5 Fitted SSNM model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Fitted SNM model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.7 Fitted Two-step model. . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.8 Profile log-likelihood for λ for the NDI scores (SSNM model). . . . . 60

4.9 Profile log-likelihood for ρ for the NDI scores (SSNM & SNM models). 60

4.10 Profile log-likelihood for σ for the NDI scores (SSNM & SNM models). 61

5.1 Comparison of Close skew-normal densities . . . . . . . . . . . . . . 76

viii



6.1 Comparison of SHASH densities. . . . . . . . . . . . . . . . . . . . . 100

6.2 Contour plots of SHASH distribution with ρ = 0.5 between marginals. 101

6.3 Contour plots of SN distribution with ρ = 0.5 between marginals. . . 101

6.4 Q-Q plots of SHASH(ε = 1.0) and SN(λ = 1.0) margins from a

bivariate Gaussian copula with correlation 0.5 and normal margins. . 102

6.5 Profile likelihood for ε using SHASH model. Data generated from a

bivariate normal distribution with ρ = 0.5. . . . . . . . . . . . . . . . 104

6.6 Profile likelihood for λ using SN model. Data generated from a bi-

variate normal distribution with ρ = 0.5. . . . . . . . . . . . . . . . . 104

6.7 Profile likelihood for ρ using SHASH and SN model. Data generated

from a bivariate normal distribution with ρ = 0.5. . . . . . . . . . . 107

6.8 Profile likelihood for σ using SHASH and SN model. Data generated

from a bivariate normal distribution with ρ = 0.5. . . . . . . . . . . 107

ix



Acknowledgments

Let me begin by expressing my deepest gratitude to my supervisor, Prof. Jane

Luise Hutton for her support and encouragement which enabled me to complete

this thesis. She believes in me as a mother would do with her child. Thanks

for introducing me to skew distributions and pointing me in the right direction to

better my future career in statistics. The technical support, and time given to me

during the preparation of the thesis is invaluable. The four Xmas celebrated during

the period of my studentship were celebrated home away from home at her place.

Thanks for the tasty dishes. May you live long to eat the fruits of your labor. I

sincerely look forward to future collaboration with you because no one ever forgets

a good teacher. Thank you again and again!

I am very grateful to my examiners, Dr. Ewart Shaw and Prof. David Firth.

The feedback from Dr. Shaw on my second year report improved the final draft of

this thesis. Prof. Firth’s critical view on ceiling and floor effects of bounded scores

on likelihood-based inference motivated the use of truncated distributions in the

thesis. A big thank you to Prof John Copas for helpful insight that improved this

work. I wish him all the very best in his retirement. Thanks to Prof. Sallie Lamb

and the MINT trial team for the permission to use the Neck disability index data.

My PhD research was funded by the Engineering and Physical Sciences Research

Council grant, for the Centre for Research in Statistical Methodology. I am grateful

to the Department of Statistics for this grant.

I received a very warm reception and hospitality during my three months

placement at Novartis Pharma, Switzerland. Many thanks to Mouna Akacha for all

the stimulating discussions on models for recurrent event data. I appreciate Prof.

x



Frank Bretz for the opportunity to be part of ‘the Novartis dream’. May God bless

you.

Many people contributed to my academic career till date. I thank all my

teachers. In particular, Prof. Geert Molenberghs who has been of tremendous

assistance. He is ever ready to give me his shoulder to stand on and see farther. I

appreciate my Professor and mentor, Prof. Adewale R. Solarin for his support. I

appreciate my former Heads of Department, Prof. Kaku Sagary Nokoe and Prof.

James Adedayo Oguntuase for their support and love. May the Lord reward you.

My appreciation is definitely incomplete without mentioning friends and fam-

ily. I appreciate my Mum that taught me that hard work and perseverance pay. She

is fond of our local version of the French proverb, ‘One may go a long way after one

is tired’. Out of sight is indeed not always out of mind. A big thanks to my uncle,

Johnson Sunday Olawunmi, for his incessant calls to check how I am fairing during

the last three and a half years. It is of course true that behind every successful man,

there is a woman. Thanks to my angel Oluwakemi Racheal Adeboye for her patience

and unalloyed support throughout the period of my PhD research. You are an angel

indeed! Dr. Peter Kimani was my first Warwick friend and he has been of enormous

support. I am very grateful Peter, God bless you. I had interesting discussions with

my colleague, Javier Rubio on skew distributions. Thank you Javier. Alex Thiery

was and is still a good friend and colleague. God bless you.

Above all, I appreciate God who was my help in ages past, my hope for years

to come, my shelter from the stormy blast, and my eternal home.

xi



Declarations

I declare that the work in this thesis is my own, and has not been submitted else-

where for examination. The materials that are not my original ideas have been

acknowledged by referencing. The work in Chapter 7 was done jointly with Mouna

Akacha during my internship at Novartis Pharma, Switzerland.

xii



Abstract

This thesis is concerned with methods for dealing with missing data in non-
random samples and recurrent events data.

The first part of this thesis is motivated by scores arising from questionnaires
which often follow asymmetric distributions, on a fixed range. This can be due to
scores clustering at one end of the scale or selective reporting. Sometimes, the scores
are further subjected to sample selection resulting in partial observability. Thus,
methods based on complete cases for skew data are inadequate for the analysis of
such data and a general sample selection model is required. Heckman proposed
a full maximum likelihood estimation method under the normality assumption for
sample selection problems, and parametric and non-parametric extensions have been
proposed.

A general selection distribution for a vector Y ∈ Rp has a PDF fY given by

fY(y) = fY?(y)
P (S? ∈ C |Y? = y)

P (S? ∈ C)
,

where S? ∈ Rq and Y? ∈ Rp are two random vectors, and C is a measurable subset of
Rq. We use this generalization to develop a sample selection model with underlying
skew-normal distribution. A link is established between the continuous component
of our model log-likelihood function and an extended version of a generalized skew-
normal distribution. This link is used to derive the expected value of the model,
which extends Heckman’s two-step method. The general selection distribution is
also used to establish the closed skew-normal distribution as the continuous compo-
nent of the usual multilevel sample selection models. Finite sample performances of
the maximum likelihood estimator of the models are studied via Monte Carlo simu-
lation. The model parameters are more precisely estimated under the new models,
even in the presence of moderate to extreme skewness, than the Heckman selection
models. Application to data from a study of neck injuries where the responses are
substantially skew successfully discriminates between selection and inherent skew-
ness, and the multilevel model is used to analyze jointly unit and item non-response.
We also discuss computational and identification issues, and provide an extension
of the model using copula-based sample selection models with truncated marginals.
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The second part of this thesis is motivated by studies that seek to analyze
processes that generate events repeatedly over time. We consider the number of
events per subject within a specified study period as the primary outcome of interest.
One considerable challenge in the analysis of this type of data is the large proportion
of patients that might discontinue before the end of the study, leading to partially
observed data. Sophisticated sensitivity analyses tools are therefore necessary for
the analysis of such data.

We propose the use of two frequentist based imputation methods for deal-
ing with missing data in recurrent event data framework. The recurrent events are
modeled as over-dispersed Poisson data, with constant rate function. Different as-
sumptions about future behavior of dropouts depending on reasons for dropout and
treatment received are made and evaluated in a simulation study. We illustrate our
approach with a clinical trial in patients who suffer from bladder cancer.
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Chapter 1

Introduction

This thesis discusses issues arising with missing data, in two parts. The first part is

devoted to the unification of missing data problems into a distributional framework,

while the second part considers a distinct, but related, concept of dealing with

missing data in a recurrent events data framework.

The first part of the thesis is motivated by a study where pain related ac-

tivity restriction is measured repeatedly over time using the neck disability index

(NDI) questionnaire (Vernon and Mior, 1991). In this type of study, the patient’s

perception of his or her well-being is usually the most important outcome of inter-

est. These are broadly termed quality of life (QoL) outcomes. Scores arising from

instruments designed to assess QoL (e.g. screening questionnaires) often follow

asymmetric distributions due to skewness inherent in Likert-scale type instruments.

Indeed, skewness related studies are not uncommon in psychology literature. In

addition, the realized samples from the underlying discrete process are further sub-

jected to selective reporting and missing data, with the scores reflecting a selected

population. Consequently, there is need for a general model for sample selection

with inherent skewness.

The two most common deviations from normality are heavier tails and skew-

ness. In dealing with heavier tails in sample selection, Marchenko and Genton

(2012) derived a model using links between hidden truncation and sample selection

but with an underlying bivariate-t error distribution. They noted that a more ap-

pealing flexible parametric model is needed to be considered that can accommodate

heavy tails and skewness. A skew-normal distribution (Azzalini, 1985) could be a

good candidate to accommodate skewness.

An additional, commonly observed complication in the analysis of QoL study

is that they are usually planned as longitudinal studies. Sometimes, the treatment
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effects at a measurement occasion may be desirable and a cross-sectional view of

the data will make two missing data type inevitable- unit and item non-response.

Unit non-response occurs when the whole questionnaire is missing for a patient and

item non-response occurs where a response has not been provided for a question.

The traditional practice is to use weighting adjustment for unit non-response and

imputation methods for item non-response. Weighting adjustment means weights

are assigned to sample respondents in order to compensate for their systematic

differences relative to non-respondents, whereas imputation involves filling in missing

values (singly or multiply) to produce complete data set.

Although these methods have reached a high level of sophistication, they

normally assume that the missing data mechanism is missing at random (MAR), an

assumption that cannot be verified using the observed data alone. Apart from this,

patients may refuse to answer sensitive questions (e.g. underlying health issues or

drug addiction) on a questionnaire for reasons related to the underlying true values

for those questions. In multivariate settings with arbitrary patterns of non-response,

imputation, and hence the MAR assumption, is convenient computationally, but it

is often implausible (Robins and Gill, 1997). In this setting, MAR means that a

patient’s probabilities of responding to items may depend only on his or her own

set of observed items, which is an unrealistic assumption. Specifically, the use

of mean imputation is justifiable if items within the scale are strongly correlated

with each other but correlation with external factors is low relative to within-scale

correlations. This cannot be readily established in practice. Thus, when we suspect

that non-response may depend on missing values, then a proper analysis will be to

model jointly the population of complete data and the non-response process. Sample

selection models are therefore viable tool.

A selection model was introduced by Heckman (1976). He proposed a full

maximum likelihood estimation under the assumption of normality. His method

was criticized on the ground of its sensitivity to normality assumption prompting

him to develop the two-step estimator (Heckman, 1979). Sample selection models,

also referred to as models with incidental (hidden) truncation, arise in practice as

a result of the partial observability of the outcome of interest in a study. The data

are missing not at random (MNAR) because the observed data do not represent a

random sample from the population, even after controlling for covariates. Although

the model has its origin from the field of Economics, it has been applied extensively

in other social sciences, and in medicine. A prominent application to treatment

allocation for patients and links with the skew-normal distribution was discussed by

Copas and Li (1997).
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There are situations where a variable is skewed and yet the residuals are

approximately normal when the skewed variable is conditioned on other variables.

This however, is not the case with bounded scores since the data exhibits ceiling and

floor effects and the skewness could be natural consequences of this. The classical

approach is to transform the data to near normality so that a linear regression model

can be used. This may not remove the non-linear dependence of the transformed

scores on covariates because of the bounds (see Hutton and Stanghellini (2011)). In

fact, if such transformations exist, they are not always appropriate in modeling data

resulting from selectively reported samples because interest is in making inference

in the unselected population. There is additional disadvantage of not working on

the original scale familiar to the health care professionals.

In view of these limitations, we propose extensions of Heckman (1976) and

Heckman (1979) models by adding two additional features in a parametric frame-

work. First, a skew-normal error distribution is used as an underlying error dis-

tribution. This model allows us to establish a link between the continuous compo-

nent of our model log-likelihood function and an extended version of a generalized

skew-normal distribution (Jamalizadeh et al., 2008). Sensitivity analysis for the as-

sumption of selection is readily carried out using the profile likelihood in a manner

similar to the Copas and Li (1997) approach. In addition, the link is used to derive

the expected value of the model, which extends Heckmans two-step method. Sec-

ondly, sample selection model is unified into a distributional framework. This allows

for straightforward extensions of Heckman’s models into multilevel and longitudinal

framework. In particular, the model is used to analyze jointly a data set with unit

and item non-response. Sample selection models using Gaussian copula are also

investigated.

The second part of this thesis is motivated by a study that compares an

active treatment with a placebo in a recurrent event data framework, subject to

informative dropout. The aim is to provide a tool for sensitivity analysis in such

studies. Recurrent event data arise in practice when a subject experiences the

same type of event repeatedly over time. Unlike in a classical survival study where

patients can experience at most a single event, patients can experience multiple

events in recurrent event data framework. For example, in clinical research, repeated

seizures in epileptic patients, flares in gout studies or repeated asthma attacks can

be classified as recurrent events.

A point process formulation is commonly used to describe and analyse recur-

rent event data and the two most commonly used approaches are the event counts

or gap/ waiting times between successive events (Cook and Lawless, 2007). Models
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based on event counts are used to describe situations where events occur randomly

in such a way that the numbers of events in non-overlapping time intervals are statis-

tically independent. These models are often used for frequently occurring events in

a subject. On the other hand, the gap time approaches are often used when events

are relatively infrequent. This method is ideal for situations where prediction of

time to next event is of interest, and is very common in studies that investigate

system failures. Our focus in this part of the thesis will be on event counts and the

traditional framework for its analysis, the Poisson process.

Recurrent event data analysis takes the whole evolution of the recurrent

events into account. There are potential problems in the presence of dropout. First,

if we assume an intention to treat analysis (ITT, i.e. patients data are analyzed

in the treatments groups they are randomized to and not on the treatments they

eventually received) we need to take into account the follow-up time. This is because

the number of events may be the same for two patients but the number of counts

per unit time, (i.e. number of count/follow-up time) may differ substantially. For

example, a patient who drops out, say, after the second event, due to toxicity has

event count of two. On the other hand, there might be less dropout in the placebo

group with high number of events. Thus, the treatment might appear to be effective

when in fact the latent reason is the high dropout rate in the treated group. Of

course, the dropout time can be adjusted for in the model and this will give valid

analysis if the missingness process is unrelated with the outcome process. This does

not give sufficient flexibility to examine other types of missing data mechanism that

can also bias the treatment comparison.

Consequently, we examine in a simulation study how data analyses results

can depend on assumptions of MAR and MNAR, and the imputation methods used

to impute the missing data. The flexibility and transparency of multiple imputation

makes it attractive for this work. In addition, multiple imputation separates the

solution of the missing data problem from the solution of the complete data problem.

The missing data problem is first solved before solving the complete data problem.

The fact that these two phases can be separated gives a better insight into the

scientific problems we study in this part of the thesis. We also investigate the

importance of varying event generation process (see (Metcalfe and Thompson, 2006;

Jahn-Eimermacher, 2008)) and the impact of the imputation methods used.
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1.1 Overview of Thesis

The thesis has eight chapters and is organized in two parts. The first part is mo-

tivated by the MINT trial (Managing Injuries of the Neck Trial) which uses the

NDI scores, and the second is motivated by a publicly available bladder cancer data

set. In the introductory part, we pointed out that selectively reported outcomes

often leads to skewness. This selectivity may result not only from decisions on

sampling design but also from self-selection. An overview of relevant literature on

skew-normal distribution is provided in chapter 2. Given that the univariate and

multivariate normal distributions are well known, we will assume that the underly-

ing process follows normal laws. Since selection under the normal process leads to

the familiar Azzalini (1985) (or its extension) skew-normal distribution, this allows

us to describe their connections with missing data. Exploratory analysis of the data

set used in this part of the thesis and the concept of missing data concludes this

chapter.

Methods that ignore the missing data process are discussed in chapter 3. In

particular, we introduce a new class of skew-normal distribution which we referred to

as an extended two-parameter generalized skew-normal distribution. The implication

of using skew-normal distributions to model data arising from sample selection is

evaluated in a simulation study, and data example concludes this chapter.

In chapter 4, we develop a sample selection model with underlying skew-

normal distribution which we referred to as selection skew-normal model (SSNM).

Its moment estimator was derived using the link between skew models arising from

selection and hidden truncation formulation of skew models. The moment esti-

mator is shown to extend Heckman two-step method. A simulation study is used

to demonstrate the superiority of the SSNM model over the conventional sample

selection model and data application is considered. We conclude this chapter by

proposing a multivariate extension of this model in a straightforward way.

In chapter 5, we propose a unified approach for multilevel sample selection

models in a parametric framework by treating the outcome variable as the non-

truncated marginal of a truncated multivariate normal distribution. The resulting

density for the outcome is the continuous component of the sample selection den-

sity, and has links with the closed skew-normal distribution. The closed skew-normal

distribution provides a framework which simplifies the derivation of the conditional

expectation and variance of the observed data. We use this to generalize the Heck-

man’s two-step method to a multilevel sample selection model. This model is used

to analyze jointly unit and item non-response in the NDI scores.

5



A major draw-back of the model proposed in chapter 4 is that a solution

to the score equations always exists associated with the skewness parameter equals

to zero. This feature is inherited from the underlying Azzalini (1985) skew-normal

distribution used. To circumvent this problem, we propose in chapter 6, the use of

Gaussian copula in a sample selection framework with the Jones and Pewsey (2009)

sinh-arcsinh distribution as marginals. We examine the power of Wald test and LRT

for the hypothesis of symmetry. We conclude the chapter with the examination of

the impact of boundedness in the NDI scores on inherent skewness in the data using

sample selection models with truncated marginal distributions for the outcomes.

The second part of this thesis focus on imputation of missing data in recur-

rent event data study. We propose a method for artificially creating the missing

recurrent event sequence for the data under the assumption that patients get no

benefit if they stop taking the active treatment. This method of imputation is re-

ferred to as placebo multiple imputation (pMI). The MAR assumption implies that

the future statistical behavior of the observations from a subject, conditional on the

history, is the same whether the subject drops out (deviates) or not in the future.

Based on this, we propose sensitivity analysis tools in a simulation study by imput-

ing missing data for patients in the active treatment with higher event rate than

the one determined by the MAR assumption. In chapter 7, we review models for

recurrent event data, and two frequentist based imputation methods are evaluated.

To make the method readily available to applied statisticians, we give an easy to

follow algorithm to execute the imputation model. A scenario evaluation study to

compare the performances of the methods proposed in this part is also studied. A

data example completes this chapter.

In chapter 8, an overall conclusion of this thesis and direction for future

research is presented.
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Part I

On Sample Selection Models

and Skew-Normal Distributions
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Chapter 2

Literature Review

There is an enormous body of literature that address skew distributions and sample

selection separately and jointly. Arguably, most of the works are very general and

well grounded mathematically. However, these works have been applied sparingly

in modeling real life data. We present the Azzalini (1985) skew-normal distribution

and its links with sample selection problems. Other methods for the construction of

skew distributions are discussed. In addition, we introduce the data set that is used

in this part of the thesis. Data exploration which motivated the models proposed

in the thesis is also evaluated. Concepts of missing data conclude this chapter.

2.1 Skew-Normal Distribution

The skew-normal distributions are extensions of the normal distribution which ad-

mit skewness whilst retaining most of the interesting properties of the normal dis-

tribution. Their popularity, since the Azzalini (1985) paper, has led to intense

development of this class. The developments are so numerous that it is confusing to

applied statisticians which class of skew-normal model is most appropriate for data

analysis. The relationship between these models are discussed below.

2.1.1 Univariate Skew-normal distribution

A random variable (r.v) Z is said to have a skew symmetric distribution generated

by g and π, if its probability density function (PDF) is

fZ(z) = 2g(z)π(z), z ∈ R, (2.1)
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where g is a PDF symmetric about 0 and π is a Lebesgue measurable function

satisfying 0 ≤ π(z) ≤ 1 and π(z) + π(−z) = 1, almost everywhere on R. The

function π is called a skewing function.

Skew-symmetric distributions have been investigated by many authors. For

various π, Nadarajah and Kotz (2003) and Arellano-Valle et al. (2004) studied the

properties of skew-symmetric distributions with g = φ, the standard normal density.

The cases in which π(z) ≡ Ψ(λz), λ, z ∈ R where Ψ is a CDF with Ψ′ symmetric

about 0, and g is any of the following PDFs: normal, Student’s t, Cauchy, Laplace,

logistic, and uniform has also been investigated (see Gupta et al. (2002)).

The theory of skew-symmetric distributions begins with the Azzalini (1985)

paper where g(z) = φ(z) is combined with the skewing function π(z) = Φ(λz),

where Φ denotes the standard normal CDF.

Definition 1. Let Z be a continuous random variable. Let φ and Φ denote the

standard normal density and corresponding distribution function respectively. Then

Z is said to have a skew-normal distribution with parameter λ ∈ R if the density of

Z is

f(z;λ) = 2φ(z)Φ(λz), z ∈ R (2.2)

and we write Z ∼ SN(λ).

The component λ is called the shape parameter because it regulates the shape

of the density function. When λ = 0, the density is the standard normal. Figure 2.1

shows the densities corresponding to 4 different positive skewness. It can be seen

that the model converges to half-normal distribution very fast as λ increases, even

for values of λ as small as 5 or 10. In practice, to fit data, we work with an affine

transformation Y = µ+ σZ , µ ∈ R and σ > 0. The density of Y is then written as

f(y;µ, σ, λ) =
2

σ
φ
(y − µ

σ

)
Φ
(
λ
y − µ
σ

)
, (2.3)

and we write Y ∼ SN(µ, σ, λ). A convolution type stochastic representation of (2.2)

in terms of a normal and a half normal was given by Henze (1986). If Y0 and Y1 are

independent N(0, 1) random variables and δ ∈ [−1, 1], then

Z = δ|Y0|+
√

1− δ2Y1,

is SN(λ), where λ = δ/
√

1− δ2.

Some important properties of the density include:
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Figure 2.1: Comparison of Skew-normal densities

• E(Z) = λ
√

2/π

• Var(Y )= 1− 2
πλ2

• Skewness index γ =
(

2/π
)3/2(

2−π/2
)

sign(λ)λ2
/(

1−2λ2/π
)3/2

∈ [-0.995,0.995].

The CDF of (2.2) is

2

∫ z

−∞

∫ λs

−∞
φ(s)φ(t)dtds = 2Φ2

(
z, 0;−λ

/√
1 + λ2

)
,

where Φ2 is the CDF of a standard bivariate normal distribution.

The skew-normal distribution and its multivariate counterparts suffer from

two inferential drawbacks. When the skewness parameter equals zero, the profile

likelihood for skewness admits stationary points for any sample of any size, and

the Fisher information matrix is singular. These problems have not limited the

usefulness of the distribution in practice (see Pewsey (2000), Ley and Paindaveine

(2010) and Hallin and Ley (2012)).
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2.1.2 Multivariate Skew-normal distribution (MSN)

The multivariate skew-normal distribution, like its univariate counterpart, has some

properties similar to the normal distribution and includes the normal distribution

as a special case.

Definition 2. A random vector Z= (Z1, . . . , Zp)
′ is a p-dimensional skew-normal,

denoted Z ∼ SNp(Ω̄,λ), if it is continuous with PDF

f(z) = 2φp(z; Ω̄)Φ(λ′z), z ∈ Rp (2.4)

where φp(z; Ω̄) denotes the PDF of the p-dimensional multivariate normal distribu-

tion with standardized marginals and correlation matrix Ω̄.

If p = 2, the PDF given in (2.4) becomes

f(z1, z2) = 2φ2(z1, z2;ω)Φ(λ1z1 + λ2z2), (2.5)

where ω is the off-diagonal element of Ω̄. As in the univariate case, when a location-

scale transformation of the type Y = µ + SZ is applied, we have the PDF of Y

as

f(y) = 2φp(y;µ,Ω)Φ(λ′S−1(y − µ)),

where Ω = SΩ̄S, and we write Y ∼ SNp(µ,Ω,λ), where µ = (µ1, . . . , µp)
′, S =

diag(σ1, . . . , σp). Like the univariate SN , density 2.4 has some attractive properties:

• If λ = 0, then the model reduces to standard multivariate normal.

• If Y ∼ Np(0, Ω̄) and Z ∼ SNp(Ω̄,λ), then Y′Ω̄−1Y and Z′Ω̄−1Z have the

same distribution i.e. χ2
p

• If Z ∼ SNp(Ω̄,λ) and B is a symmetric positive semi-definite p× p matrix of

rank k such that BΩ̄B = B, then Z′BZ ∼ χ2
k.

Details on how to generate MSN distribution including multivariate generalization

of Henze (1986) can be found in Genton (2004).

The contours of the bivariate skew-normal density are not elliptical (see Fig-

ure 2.2). This implies that the correlation coefficient is not a good measure of

association between the two bivariate variables. The implication of this will be

discussed in chapter 4. Although the distributions have properties similar to the

normal distribution, they lack the important property of closure under conditioning

as the following Theorem shows.
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Theorem 1. Let (Z1, Z2)′ ∼ SN2. The conditional density f(Z2|Z1 = z1) is

φc(z2|z1;ω)Φ(λ1z1 + λ2z2)

Φ(λ1z1)
, (2.6)

where φc(z2|z1;ω) denotes the conditional density associated with a bivariate normal

variable with standardized marginals and correlation ω.

Equation (2.6) belongs to the extended skew-normal (ESN) family (Azzalini

and Dalla Valle, 1996; Capitanio et al., 2003).
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Figure 2.2: Contour plot and 3-d plot of a bivariate SN2(µ,Ω,λ) with µ =
(−0.1, 0.1), Ω = diag(1,1) and λ = (−1, 1)

2.1.3 Extended Skew-normal distribution (ESN)

Since the MSN distribution lacks the closure property under conditioning, a slight

extension of this class to the so-called extended skew-normal distribution (ESN) is

necessary. The ESN distribution permits the construction of multivariate skewed

models that have marginal and conditional densities that are of the same form.

However, the cost to be paid for gaining the latter is the loss of the χ2 distribution

of certain quadratic form (Capitanio et al., 2003). We present here the definition

of the multivariate ESN distribution and from it derive the univariate equivalence.

Identifiability issues of the distribution are discussed in chapter 3, and the model

forms the background of what is to be used in chapter 4.

Definition 3. A random vector Z= (Z1, . . . , Zp)
′ has a p-dimensional ESN distri-
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bution, denoted by Z ∼ ESNp(Ω̄,λ0,λ), if it is continuous with PDF

f(z) =
φp(z; Ω̄)Φ(λ0 + λ′z)

Φ(τ )
, z ∈ Rp,

where λ0 = τ/
√

1− δ′Ω̄−1δ, λ = Ω̄−1δ/
√

1− δ′Ω̄−1δ, and δ = Ω̄−1λ/
√

1 + λ′Ω̄λ.

Here, λ0 and λ are the p-dimensional vector of shift and scale parameters

respectively. For data analysis purpose, if we introduce a location-scale transforma-

tion, Y = µ+ ωZ, where µ and ω are as defined in section 2.1.2, then

f(y) =
φp(y;µ, Ω̄)Φ(λ0 + λ′ω−1(y − µ))

Φ(τ )
, y ∈ Rp, (2.7)

and we write Y ∼ ESNp(µ,Ω,λ0,λ). If p = 1 in (2.7), we have

f(y;λ0, λ1, µ, σ) =
φ
(y−µ

σ

)
Φ
(
λ0 + λ1(y−µσ )

)
σΦ

(
λ0√
1+λ21

) . (2.8)

Representation (2.8) is sometimes referred to as 4-parameter skew-normal density

with λ0 & λ1 as shift and shape parameter respectively. The moment generating

function (mgf) of the above density is given by

MY (t) =

exp
(
µt+ σ2t2

2

)
Φ

(
λ0+λ1σt√

1+λ21

)
Φ

(
λ0√
1+λ21

) . (2.9)

The mean and the variance of the ESN distribution is given respectively as,

E(Y ) = µ+ σρΛ(c?),

and

Var(Y ) = σ2(1− ρ2Λ(c?){c? + Λ(c?)}),

where Λ = φ/Φ, ρ = λ1/
√

1 + λ2
1 and c? = λ0/

√
1 + λ2

1. Further properties and

problems of inferential procedures of this model will be discussed in chapter 3.
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2.1.4 The closed skew-normal (CSN) distribution

The CSN family is constructed in the multivariate framework because it is a gen-

eralization of the multivariate skew-normal distribution such that some important

properties of the normal distribution are preserved (Gonzalez-Farias et al., 2004). It

is closed under marginalization, conditioning, linear transformations, sums of inde-

pendent random variables from CSN family, and joint distribution of independent

random variables in CSN family. We begin with a definition of the CSN distribution.

Definition 4. Consider p ≥ 1, q ≥ 1, µ ∈ Rp, ν ∈ Rq, D an arbitrary q×p matrix,

Σ and ∆ positive definite matrices of dimensions p×p and q× q, respectively. Then

the PDF of the CSN distribution is given by:

fp,q(y) = Cφp(y;µ,Σ)Φq(D(y − µ);ν,∆), y ∈ Rp, (2.10)

with:

C−1 = Φq(0;ν,∆ +DΣD′), (2.11)

where φp(.;η,Ψ), Φp(.;η,Ψ) are the PDF and CDF of a p-dimensional normal

distribution with mean η ∈ Rp and p × p covariance matrix Ψ. We write Y ∼
CSNp,q(µ,Σ, D,ν,∆), if y ∈ Rp is distributed as CSN distribution with parameters

q,µ, D,Σ,ν,∆. The special case of ν = 0 in (2.10), gives,

fp,q(y) = 2qφp(y;µ,Σ)Φq(D(y − µ); 0,∆),

which is the multivariate skew-normal distribution discussed in Azzalini and Dalla

Valle (1996). When q = 1 and ν 6= 0 in (2.10), we obtain the multivariate ESN

distribution. If p = 2 and q = 1, a bivariate skew-normal distribution is derived. It

is straightforward to see that the PDF in (2.10) includes the normal distribution as

a special case when D and ν = 0.

The properties of CSN distributions that are required to formulate the models

in chapters 4 and 5 are given below.

Properties of CSN Distribution

The CSN distribution properties of scalar multiplication, marginalization, condi-

tioning and addition are used to construct the model described in chapter 4. The
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moment generating function is used to study the extended Heckman (1979) model

in chapter 5.

• The distribution function of Y ∼ CSNp,q(µ,Σ, D,ν,∆) is given as:

Fp,q(y) = CΦp+q

((
y

0

)
;

(
µ

ν

)
,

(
Σ −ΣD′

−DΣ ∆ +DΣD′

))
, (2.12)

where C is as defined in (2.11).

• The distribution is closed under translation and scalar multiplications. In

particular, for an arbitrary constant b ∈ Rp and any real number c 6= 0

Y ∼ CSNp,q(µ,Σ, D,ν,∆)⇒ Y + b ∼ CSNp,q(µ+ b,Σ, D,ν,∆),

and,

cY ∼ CSNp,q(cµ,Σc
2, Dc−1,ν,∆)

In general, Y ∼ CSNp,q(µ,Σ, D,ν,∆) if, and only if,

a′Y ∼ CSN1,q(µa,Σa, Da,ν,∆a), for every a 6= 0, p-vector in Rp, where

µa = a′µ, Σa = a′Σa, Da = DΣaΣ−1
a , and ∆a = ∆+DΣD′−DΣaa′ΣD′Σ−1

a .

• The distribution is closed under marginalization. For example, let Y ∼
CSNp,q(µ,Σ, D,ν,∆) and partition Y = Y′ = (Y′1,Y

′
2), where Y1 is k di-

mensional, Y2 is p− k dimensional. Then

Y1 ∼ CSNk,q(µ1,Σ11, D
?,ν,∆?), (2.13)

where D? = D1 +D2Σ21Σ−1
11 , ∆? = ∆+D2Σ22.1D

′
2 , Σ22.1 = Σ22−Σ21Σ−1

11 Σ12,

and µ1, Σ11, Σ22, Σ12, Σ21 came from the corresponding partitions of µ & Σ

and D1, D2 from

D =
( k p− k

q D1 D2

)
.

• The distribution is closed under the operation of conditioning.

If Y ∼ CSNp,q(µ,Σ, D,ν,∆), then for two subvectors Y1 and Y2, where

Y′ = (Y′1,Y
′
2), Y1 is k-dimensional, 1 ≤ k ≤ p, and µ, Σ, D are partitioned
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as above, then the conditional distribution of Y2 given Y1 = Y10 is

CSNp−k,q(µ2 + Σ21Σ−1
11 (Y10 − µ1),Σ22.1, D2,ν −D?(Y10 − µ1),∆). (2.14)

• The distribution is closed under sums of independent random variables. That

is, if Y1, . . . ,Yn are independent random vectors with Yi ∼ CSNp,qi(µi,Σi, Di,νi,∆i),

i = 1, . . . , n, then

n∑
1

Yi ∼ CSNp,q?(µ
?,Σ?, D?,ν?,∆?), (2.15)

where: q? =

n∑
1

qi, µ
? =

n∑
1

µi, Σ? =

n∑
1

Σi, D
? = (Σ1D

′
1, . . . ,ΣnD

′
n)′
( n∑

1

Σi

)−1

,

ν? = (ν ′1, . . . ,ν
′
n)′, and:

∆? = ∆† +D†Σ†D†′ −
[ n⊕

1

(DiΣi)

]( n∑
1

Σi

)−1[ n⊕
1

(ΣiD
′
i)

]
,

where ∆† =
n⊕
1

∆i, D
† =

n⊕
1

Di, Σ† =
n⊕
1

Σi, and
⊕

is the matrix direct

sum operator.

The addition of independent CSN random vectors has the dimension of p

fixed but the dimension of q changes. The CSN distribution is therefore not

a stable distribution.

• The moment generating function (mgf) of Y is given as:

My(t) =
Φq(DΣt;ν,∆ +DΣD′)

Φq(0;ν,∆ +DΣD′)
et
′µ+ 1

2
t′Σt, t ∈ Rp. (2.16)

The mean and the variance are respectively

E(Y) =
∂

∂t
MY(t)

∣∣∣∣
t=0

= µ+ ΣD′ψ,

and

var(Y ) =
∂2

∂t∂t′
MY(t)

∣∣∣∣
t=0

− E(Y )E(Y ′)

=Σ + µµ′ + µψ′DΣ + ΣD′ψµ′ + ΣD′ΛDΣ− E(Y )E(Y ′),
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where ψ =
Φ?q(0;ν,∆+DΣD′)

Φq(0;ν,∆+DΣD′) and Λ =
Φ??q (0;ν,∆+DΣD′)

Φq(0;ν,∆+DΣD′) involve evaluation of first

and second derivatives of multinormal integrals with respect to t.

The CSN distribution can be represented in terms of multivariate normal and mul-

tivariate truncated normal distribution. If Z ∼ Np(0, Ip) and S ∼ Nν
q , that is, S is

truncated at ν, Z and S are independent. Then the distribution of

Y = µ+
(

Σ−1 +D′∆−1D
)−1/2

Z + ΣD′
(

∆ +DΣD′
)−1

S,

is CSNp,q(µ,Σ, D,ν,∆). Random samples can easily be simulated from the distri-

bution using this form.

A reparametrization of the CSN distribution will result into the unified skew-

normal (SUN) distribution of Arellano-Valle and Azzalini (2006). The SUN distri-

bution unified earlier proposals extending the SN distribution, and it is a precursor

to the generalization of the link between sample selection and SN distributions.

2.2 Sample selection and Skew distributions

Copas and Li’s (1997) paper is probably the first instance where the link between

sample selection models and skew distributions was established. Until this work,

earlier appearances of the Azzalini (1985) type SN distribution, derived based on

certain operations performed on the normal distribution, has been in the literature.

Birnbaum (1950) in the context of educational testing showed that the SN distri-

bution can result from linear truncation of a multivariate normal random variable.

Further, Weinstein (1964) using a convolution of normal and truncated normal ran-

dom variable derived a distribution similar to SN although implicitly. Roberts (1966)

in the context of twin studies considered the distribution resulting from selecting

the maximum/minimum value from suitably standardized measurements taken on a

pair of twins. The resulting distribution is also similar to the SN distribution. In the

Bayesian context, O’Hagan and Leonard (1976) suggested the use of an extended

version of the SN distribution as a possible prior for a normal mean. Arnold et al.

(1993) considered inference for the non-truncated marginal of a truncated bivariate

normal distribution.

Other references in this category include Arnold and Beaver (2000), Arnold

and Beaver (2002), Loperfido (2002), Arellano-Valle et al. (2006) and Arnold and

Beaver (2007). All these revealed that simple and common nonlinear operations such

as truncation, conditioning and censoring carried out on normal random variables

lead invariably to versions of skew-normal random variables.
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Arellano-Valle et al. (2002) and Arellano-Valle and Azzalini (2006) put for-

ward a formula for the derivation of Azzalini (1985) type SN distribution using a

conditioning approach. This was extended in Arellano-Valle et al. (2006) to establish

a link between sample selection and SN distributions. The model, which is simply

a conditional distribution, is defined as follows.

Definition 5. Let S? ∈ Rq and Y? ∈ Rp be two random vectors, and denote by

C a measurable subset of Rq. A selection distribution is defined as the conditional

distribution of Y? given S? ∈ C (i.e. Y?|S? ∈ C). A random vector Y ∈ Rp is said

to have a selection distribution if Y
d
= (Y?|S? ∈ C).

If C = Rq, then there is no selection. The model can be viewed as a truncated

distribution when Y? = S?. In particular, if Y? in definition 5 has PDF fY? say,

then Y has a PDF fY given by

fY(y) = fY?(y)
P (S? ∈ C |Y? = y)

P (S? ∈ C)
.

Selection distributions depend on the subset C of Rq. The usual selection subset is

defined by

C(β) = {s ∈ Rq | s > β},

where β is a vector of truncation levels. A hidden truncation equivalence of selection

distributions consist of upper and lower truncation subset defined by

C(α, β) = {s ∈ Rq |α > s > β}.

A special case of this subset with p = q = 1 is considered in Arnold et al.

(1993). For this thesis, we will focus on the subset C(0) which leads to simple

selection distribution. Note that the only difference between using C(β) and C(0)

is essentially a location change, since no symmetry around 0 is assumed. In this

case, the distribution X = (Y?|S? > 0) can be written as

fY(y) = fY?(y)
P (S? > 0 |Y? = y)

P (S? > 0)
. (2.17)

To illustrate how (2.17) is linked with skew-distributions, consider a multi-

variate extension of Copas and Li (1997) model.

Y? = µ+ ε1, ε1 ∼ Np(0,Σ)

S? = −ν +Dµ+ ε2, , ε2 ∼ Nq(0,∆),
(2.18)
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where ε1 and ε2 are independent random vectors, and D(q × p) is an arbitrary

matrix, µ ∈ Rp, ν ∈ Rq, and ∆(q × q) > 0. The joint distribution of Y? and S? is:(
Y?

S?

)
∼ Np+q

((
µ

−ν

)
,

(
Σ ΣD′

DΣ ∆ +DΣD′

))
.

But the conditional density (y?|s? > 0) can easily be written as in equation (2.17),

which simplifies to,

fY?|S?>0(y?|s? > 0) = Cφp(y;µ,Σ)Φq(D(y − µ);ν,∆), (2.19)

where C is as defined in (2.11). This is a CSN distribution. A similar argument can

be used to show that the univariate Copas and Li (1997) model is essentially the

extended skew-normal distribution given in (2.8).

2.3 Other families of Skew distributions

Apart from the Azzalini (1985) type skew-symmetric distributions, which are con-

structed by perturbation of symmetric PDFs, other methods for the construction of

skew distributions have been studied. An example of skew distribution constructed

with different scale factors is studied in Fernandez and Steel (1998) and Ferreira

and Steel (2007). Other methods include derivation of skew distributions from dis-

tributions of order statistics (e.g. Jones (2004)), and skew distributions obtained

via the transformation approach (e.g. Jones and Pewsey (2009)). We will use the

skew distribution based on the latter in a copula based sample selection model in

chapter 6.

2.4 Motivating Example-The MINT Trial

The data set used to illustrate the methods proposed in the first part of this thesis

is presented in this section. The data set is obtained from a two-arm clinical trial

in patients suffering from neck disability called MINT study. This data is used to

illustrate the proposed methods in chapters 3-6 of this thesis.

MINT is a multi-center randomized controlled trial to estimate the clinical

effectiveness of a stepped care approach to whiplash injuries on clinical outcomes

over 12 months, the effectiveness in pre-specified sub-groups of patients (those with

severe physical symptoms, prior neck problems, psychological or physical risk fac-

tors for poor outcome, and those seeking compensation), and the costs and cost-
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effectiveness of each strategy (Lamb et al. (2007)). Treating patients at the lowest

appropriate treatment tiers, and only stepping up to more intensive treatment as

clinically required for a neck injury caused by a sudden forward movement of the

upper body is called a stepped-care approach to whiplash injury. The trial is a two-

stage randomized controlled trial to evaluate two stepped care evaluation methods.

These are:

• The Whiplash book

• Physiotherapy.

Consequently, the first stage randomization (with about four thousand par-

ticipants), which was at a cluster level, was done when the patients first attended

the emergency departments of the hospitals used in the study. Thus, a comparison

between the use of ‘The Whiplash Book’ (Burton et al., 2001) versus ‘Usual Advice’

was done at this level. The second stage randomization is an individually ran-

domized trial of physiotherapy versus reinforcement of advice given in Emergency

Department. The main eligibility criteria for entry to Stage 2 was that the patients

have no contra-indications to physiotherapy treatment and report symptoms in the

24 hours before attendance at the physiotherapy research clinic approximately three

weeks after attendance at ED. Details of randomization and data collection methods

for Stage 2 MINT trial are given in Lamb et al. (2007). We present some attributes

of the data set in Stage 2 of MINT trial.

Stage 2 Physiotherapy versus Reinforcement of Advice

Six hundred patients were randomized into either physiotherapy or reinforcement of

advice. It was expected that all treatments would be completed within four months

of the patient’s first attendance at emergency department. The following treatments

are included in the physiotherapy package (Lamb et al., 2007):

1. Mobilization (gentle manipulation) of the cervical and upper thoracic spine.

2. Exercises for the cervical spine, thoracic spine and shoulder to improve range

of movement and muscle control.

3. A cognitive behavioral approach to treatment delivery, which has been effective

in physiotherapy for other painful conditions.

For advice reinforcement, patients receive a single 40-minute session of advice

from a physiotherapist. Details of the four outcome measures are given in Lamb et al.
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(2007). Our main focus will be on the primary outcome of interest which is return to

normal function after the whiplash injury, measured using the NDI scores. The NDI

is a self-completed questionnaire which assess pain-related activity restrictions in 10

areas including personal care, lifting, sleeping, driving, concentration, reading and

work. It was developed in 1989 by Howard Vernon as a modification of the Oswestry

Low Back Pain Disability Index. The NDI has been shown to be reliable and valid

(Vernon and Mior, 1991), hence its use as a standard instrument for measuring

self-rated disability due to neck pain by clinicians and researchers.

Each of the 10 items on the questionnaire is scored from 0-5. In effect,

the maximum obtainable score is 50. Some respondents will not complete all the

questions (called item non-response in surveys). The average of all other items is

scaled to give an imputed score if one or two items are missing. The scoring intervals

are interpreted as follows:

• 0− 4 = No Disability

• 5− 14 = Mild Disability

• 15− 24 = Moderate Disability

• 25− 34 = Severe Disability

• 35− 50 = Complete Disability.

Measurements were taken at baseline, and at four months interval for a

complete calendar year (0, 4, 8 and 12 months). Exploration of salient variables

and other interesting features of the data are examined and are presented in next

section.

Numerical Exploration of MINT’s Data

There are 599 patients with a total of 1934 measurements and 342 patients have

complete observations (i.e. scores at all measurements occasion). Further, approx-

imately 50% of the patients are in the two treatment groups resulting in balanced

randomization in terms of patients number.

Table 2.1 shows the number of questions missing at various time points. It is

observed that question 8 (question related to driving) recorded the highest number

of missing observations while question 4 (question on reading) was answered by

most patients. The driving question consistently recorded high missing value across

all the four measurement occasions. Analogous to most longitudinal studies, the

number of missing scores (Table 2.2) at the last measurement occasion, month 12,
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Table 2.1: Missingness per question during the trial; 599 patients.

Time q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

Baseline 2 3 2 0 1 0 4 43 0 1
Month 4 98 97 100 96 97 96 98 120 96 96
Month 8 106 104 108 103 106 104 108 131 104 104
Month 12 123 122 125 120 122 120 123 143 121 121

Total 329 326 335 319 326 320 333 437a 321 322

aDriving question with highest number of non-response.

Table 2.2: Scoring Interval and Overall missingness with Measurement time.

Scoring Interval missingness
Time 0-4 5-14 15-24 25-34 35-50 num %

Phy. Adv. Phy. Adv. Phy. Adv. Phy. Adv. Phy. Adv. Phy. Adv. Phy. Adv.
Base 1 2 55 72 121 131 76 56 22 12 25 26 4.2 4.3
M4 33 32 104 104 62 69 25 25 8 7 68 62 11.4 10.4
M8 56 26 96 92 56 51 17 15 5 3 70 76 11.7 12.7
M12 70 80 84 87 51 45 12 12 5 1 78 74 13.0 12.4

was highest. Only six patients reported complete disability (35-50 scores on the NDI

scale) at the last measurement occasion with 45.9% reported to have no disability

(see Table 2.2, and scoring interval, Page 21). This result is obviously as expected

when subjective endpoints are accessed in clinical trials. In addition, there is wide

variability in patients’ age distribution. The mean age is approximately 41 years

with range 18 to 78 years respectively. The mean age of patients in ‘Usual Advice’

and ‘Physio’ treatment is 40.8 and 41.2 respectively.

Assessing Normality of the Observed scores

Since scores are formed by adding up items on a scale, the observed NDI scores are

inevitably skewed (see Figure 2.3). A chi-square (also known as gamma plot, see

Johnson and Wichern (2007)) is used to assess item normality of the NDI scale.

Figure 2.4 shows the chi-square plot for measurements at baseline and the three

follow-up. There is obvious departure from straight line through the origin. The

departure became more pronounced as follow-up increases with measurements at

month 12 having the greatest departure. This could be due to the fact that more

patients drop out at month 12 than any other follow-up period. Thus, the observed

scores represent a selected population hence skewed. We further corroborate this

conclusion by the use of the multivariate extension of Shapiro-Wilk test (mvnormtest
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in R) with all measurements occasion reporting a significant p-value thereby reject-

ing the Null Hypothesis of multivariate item normality for the NDI scale.

Assessing Normality of the Residuals

In longitudinal studies, the usual assumption for modeling observed responses at

the measurement occasions is that the residuals follow joint multivariate normal-

ity. Often, this assumption is not realistic. Figure 2.5 shows the q-q plots of the

residuals obtained after fitting univariate normal error regression models to the ob-

served scores at baseline, 4, 8 and 12 months follow-up. The plots deviate from the

‘straightness’ that is required to confirm normality with the heaviest deviation at

month 8. A formal test using the correlation coefficients 0.993, 0.980, 0.972 and

0.973 for baseline, month 4, month 8 and month 12 respectively showed that the

normality assumption is rejected when compared with the critical value (0.9953)

corresponding to the data at hand at 5% level of significance. Indeed, the normality

assumption is rejected marginally for the four measurements occasions. This, in

principle, implies that conditional normality is not tenable for any of the measure-

ment occasion in this data set and models to be used must accommodate skewness

to avoid wrong inferences.

2.5 Concepts of Missing Data

As shown above, the NDI scores is incomplete both at the unit and item levels.

Similarly, the bladder cancer data that will be used in part II of this thesis suffers

from some form of missing data problem. The incompleteness of the data sets may

lead to results that are different from those that would have been obtained had the

data sets been completely observed. Hence, it is important to handle missingness

carefully. In this section, we introduce notation and fundamental concepts that are

used in the area of incomplete data.

Notation for Missing Data

We follow the standard notion for missing data due to Rubin (1976) and used by Ver-

beke and Molenberghs (2000). Suppose that for subject i, i = 1, 2, ...N , a sequence

of measurements Yij is designed to be measured at time points tij , j = 1, 2, ...ni.

The outcome vector Yi =(Yi1, Yi2, ..., Yini)
′ that would have been recorded if there

had been no missing data is referred to as the complete data. Suppose further that,

for each measurement in the series, a corresponding missingness indicator Rij is

defined as:
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Figure 2.3: Marginal distributions and Correlations at Baseline, Month 4, 8 and 12
for the NDI scores
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Figure 2.4: Chi-square plots for
items at baseline, month 4, month
8 and month 12
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Figure 2.5: Q-Q plots for residu-
als of scores at baseline, month 4,
month 8 and month 12
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Rij =

{
1 if Yij is observed

0 otherwise

which are grouped into a vector Ri of the same length as Yi. The set of mea-

surements, along with the missingness indicators, (Yi,Ri), is referred to as the full

data. Typically, Yi can be partitioned into two sub-vectors: Yobs
i consisting of those

Yij for which Rij=1, and Ymiss
i consisting of the remaining components, which are

referred to as observed and missing components respectively.

Modeling Framework of Missing Data

Models for incomplete cross sectional or longitudinal data involves working with the

joint density f(yi, ri|Xi, Zi, θ, ψ) where Xi and Zi are design matrices for fixed and

random effects, respectively, and θ and ψ are respective parameter vectors describing

the response and missingness process. The use of joint density is prompted by the

presence of the two stochastic components Yi and Ri. The modeling frameworks

have been elucidated in statistical literatures and it is based on the choice of the

factorization of the joint density above.

Since the patients are considered independent, the joint density (after sup-

pressing dependence on Xi and Zi) can be factored as either

f(yi, ri|Xi, Zi, θ, ψ) = f(yi|θ)f(ri|yi, ψ), (2.20)

f(yi, ri|Xi, Zi, θ, ψ) = f(yi|ri, θ)f(ri|ψ) (2.21)

or as

f(yi, ri|Xi, Zi, θ, ψ) = f(yi|bi, θ)f(ri|bi, ψ), (2.22)

where in (2.22) the response and missingness processes are independent conditional

on a common set bi of latent variables or random effects.

The factorization in (2.20) is termed a selection model (Rubin, 1976). This

model is often an obvious choice in clinical trials. In trials context, incomplete data

is often dependent on treatment response. This implies that patients are selected for

missingness by their response. The factorization in (2.21) is termed pattern-mixture

models (Little, 1993). In this case, different patterns of response can be proposed for

patients who have or do not have missing values. The third factorization (2.22) is

termed shared-parameter models. Details of this modeling framework can be found
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in Wu and Carroll (1988) and Wu and Bailey (1989).

The comparison of parameter of interest (θ) is not immediately possible in the

three modeling frameworks. Clearly, θ in (2.20) represents marginal effects whereas

θ in (2.21) and (2.22) describe conditional effects. Any attempt to obtain marginal

effects will require marginalization over the missingness pattern for the former or

over the random effects for the latter.

Missing Data Mechanisms

The basic taxonomy for classifying missingness process was developed in the selec-

tion model framework (Rubin, 1976). The precise form of the second term in the

right hand side of (2.20) which can be expressed as f(ri|yi, ψ) = f(ri|yobsi , ymissi , ψ)

defines the missingness mechanism. In line with Diggle and Kenward (1994) and

Little and Rubin (2002), the missing data mechanisms are described below.

The data is said to be missing completely at random (MCAR) if missingness

does not depend on either the observed or the unobserved responses. Mathemati-

cally,

f(ri|yobsi , ymissi , ψ) = f(ri|ψ). (2.23)

In Little (1995), covariate dependent missingness are classified as MCAR missing-

ness. This was further stressed in Carpenter et al. (2002). If missingness depends

on those values of yi that are observed and not on the unobserved components, the

data are said to be missing at random (MAR). Mathematically,

f(ri|yobsi , ymissi , ψ) = f(ri|yobsi , ψ). (2.24)

This missingness assumption is less restrictive than MCAR.

Finally, if the missingness depends on unobserved components of yi i.e ymissi

then the data is missing not at random (MNAR). In this case, we cannot simplify

f(ri|yobsi , ymissi , ψ).

Importantly, it should be noted that MCAR, MAR and MNAR are assump-

tions made regarding the underlying missingness process, therefore absolute cer-

tainty about them cannot be guaranteed. Indeed, the validity of inferences made

under different statistical methods depends on the assumption made about the miss-

ingness process. Since MNAR missingness cannot be ruled out in practice, the prin-

cipal focus of this thesis is to develop models in a sample selection framework (which

is a form of MNAR missingness), but with more flexible underlying distributional

assumption.
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According to Carpenter et al. (2002), four different approach to the analysis

of missing data can be distinguished:

• Perform the analysis only on those subjects who complete the trial;

• Analyse only the available data;

• Use a single or multiple imputation technique to replace the missing observa-

tions with plausible values, then analyse the complete data set(s); and

• Model observed data and the missingness process jointly.

The first option yields a complete case analysis and form the basis of the discussion

in chapter 3. The second option is the likelihood-based approach of using available

information only. Single and multiple imputation techniques has been well estab-

lished in the literature (Rubin (1987), Rubin (1996), Schafer (1997), Schafer (1999),

Little and Rubin (2002)). Chapter 7 of this thesis is devoted to the use of multiple

imputation in recurrent event data with dropouts. The fourth option is usually the

most complex, and also the most useful as it gives room to easily assess subtle as-

sumptions behind other methods in a sensitivity analysis framework. Chapters 4-6

of this thesis is devoted to this method.
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Chapter 3

Ignorable Missing Data

Methods and Sample Selection

We noted in chapter 2 the link between sample selection and skew distributions, and

that the hidden truncation models can be considered a special case of sample selec-

tion models. Due to this link, it would be logical to use skew distributions to model

data arising from hidden truncation or sample selection. In this chapter, we consider

complete case analysis for data arising from sample selection with underlying normal

and skew-normal distributions. The performances of the Azzalini skew-normal dis-

tribution, the extended skew-normal distribution, and a new class of model, which

we refer to as an extended two-parameter generalized skew-normal (EGSN) distri-

bution are evaluated in a simulation study. Since the scores are bounded, we also

consider modeling the outcome using doubly truncated skew-normal distribution.

3.1 Copas and Li (1997) Sample selection model

Consider a univariate case of the model given in equation (2.18), but with error

distributions unspecified for the moment. That is, let Y ?
i be the outcome variable

of interest, assumed linearly related to covariates xi through the standard multiple

regression

Y ?
i = β′xi + σε1i, i = 1, . . . , N.

Suppose the main model is supplemented by a selection (missingness) equation

S?i = γ′xi + ε2i, i = 1, . . . , N

where β and γ are unknown parameters and xi are fixed observed charac-
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teristics not subject to missingness, the variance of S?i is fixed as 1 because the

variance is not identifiable from sign alone. Selection is modeled by observing Y ?
i

only when S?i > 0 (the 0 threshold is arbitrary since no symmetry is assumed), i.e.

we observe Si = I(S?i > 0) and Yi = Y ?
i Si for n =

∑N
i=1 Si of N individuals. Thus

an observation has the conditional density

f(y|x, S? > 0) =
f(y, S? > 0|x)

P (S? > 0|x)
=
f(y|x)P (S? > 0|y, x)

P (S? > 0|x)
. (3.1)

Equation (3.1) is the univariate case of (2.17). The quantity f(y|x) is a proper PDF,

with a skewing function P (S? > 0|y, x), and a normalizing function P (S? > 0|x).

It is straightforward to show that under the additional assumption(
ε1i

ε2i

)
∼ N2

{(
0

0

)
,

(
1 ρ

ρ 1

)}
;

f(y|x, S = 1; Θ) =

1
σφ
(y−β′x

σ

)
Φ

(
γ′x+ρ

(
y−β′x
σ

)
√

1−ρ2

)
Φ(γ′x)

, (3.2)

(see Copas and Li (1997)), where Θ = (β, σ, γ, ρ). The parameter ρ ∈ [-1,1] deter-

mines the correlation of Y ?
i and S?i , and hence the severity of the selection process.

Model (3.2) includes the three missing data mechanisms discussed in section

2.5. If the non-intercept terms in γ, as well as ρ are 0 in (3.2), the data are MCAR.

If ρ = 0 in (3.2) the data are MAR, and valid inference about the conditional distri-

bution of Y given x can be made when adjustment for missing data are done using

covariates on complete cases. If ρ 6= 0 in (3.2), then the missing data are MNAR.

In this case, the missing data process is said to be informative or non-ignorable, as

valid inference depends on adequate adjustment for the selection process.

As expected, from Arellano-Valle et al. (2006), equation 3.2 belongs to the

extended skew-normal distribution family. To see this, we let µ = β′x, λ0 =

γ′x/
√

1− ρ2 ∈ R and λ1 = ρ/
√

1− ρ2 ∈ R in (3.2); we then have the PDF written

in the four-parameter ESN form given in equation (2.8).

In principle, (3.2) can also be derived using hidden truncation methods. In

line with Arnold et al. (1993), the non-truncated marginal of a truncated bivariate

normal distribution is essentially an ESN distribution. In particular, suppose Z

and S are two independent random variables, with arbitrary and possibly different

distributions, and the outcome Z is observed only if S satisfies the constraints

λ0 + λ1Z > S. If we further assume that Z has density function ψ1 with associated
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distribution function Ψ1 and S has density function ψ2 with distribution function

Ψ2, then the conditional density of Z|(λ0 + λ1Z > S), according to Arnold and

Beaver (2002), is

f(z|(λ0 + λ1Z > S) =
ψ1(z)Ψ2(λ0 + λ1z)

P (λ0 + λ1Z > S)
. (3.3)

In particular, if Z and S are normally distributed in (3.3), the resulting

distribution is a two-parameter ESN distribution, with density given by

f(z|(λ0 + λ1Z > S) =
φ(z)Φ(λ0 + λ1z)

Φ

(
λ0√
1+λ21

) ,

which becomes (2.8) after a location-scale transformation Y = µ+ σZ.

In general, as equation (2.17) shows, it is straightforward to establish a link

between sample selection and families of extended skew-elliptical distributions. The

Copas and Li (1997) model used underlying bivariate normal distribution which

results in the extended skew-normal distribution as we have shown here. Marchenko

and Genton (2012) used underlying student’s-t distribution, and established a link

with the extended skew-t distribution. The use of skew-elliptical distributions to

model complete cases may therefore appear to be a good practice in the sample

selection framework. We examine the pros and cons of regression models using ESN

distribution next.

3.2 Regression models with ESN error distribution

Suppose Y1, . . . , Yn are independent realization from Y with covariates x1, . . . , xn,

the model can be written as

Yi = β′xi + σεi, εi ∼ ESN(µ?, σ2?, λ0, λ1),

where µ? = σρΛ(c?) and σ2? = σ2(1 − ρ2Λ(c?){c? + Λ(c?)}) and Λ, ρ and c? are

as defined in section 2.1.3. Unlike the normal errors, these errors have non-zero

conditional mean. The amount of the bias is given by

E(Yi − β′xi) = σρΛ(c?), (3.4)
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where Λ(.) is the inverse Mills ratio. The MLEs of the 4-parameter ESN model are

obtained by simultaneously maximizing the log-likelihood function given below.

l(Θ) =
−n
2

ln 2π − n

2
lnσ2 − 1

2

n∑
i=1

(yi − βxi)2

σ2
+

n∑
i=1

ln
[
Φ
(
λ0 + λ1

(yi − βxi
σ

))]
−n ln

[
Φ
(
λ0(1 + λ1)−1/2

)]
,

where Θ = (µ, σ, λ0, λ1).

The ESN model suffers from severe identifiability problems and, as such,

Arnold et al. (1993) suggested the use of profile likelihood to help study the un-

certainty in the MLEs. The reason given for this is that the distribution can be

uninformative about all of the population parameters, even with large sample size.

In particular, the model may be unidentifiable in the sense that for some (λ0, λ1) 6=
(λ∗0, λ

∗
1), f(y;λ0, λ1) = f(y;λ∗0, λ

∗
1). For example, regardless of the value of λ0, the

ESN distribution reduces to the normal distribution when λ1 = 0. In addition, like

in Azzalini SN distribution where say, SN(9) and SN(10) are indistinguishable,

(λ0, λ1) & (λ∗0, λ
∗
1) may also be indistinguishable. To see this, suppose for a given

density with parameters (λ0, λ1) = θ1 and for a given ε > 0 there is another pair of

parameter (λ∗0, λ
∗
1) = θ2 such that

∆(θ1, θ2) = max|f(z;λ0, λ1)− f(z;λ∗0, λ
∗
1)| < ε,

then θ1 & θ2 are indistinguishable. Examples of such ‘equal’ models include, ∆((3, 3), (2, 3)) =

0.02 and ∆((3, 2), (2, 1.3)) = 0.01. The smaller the value of ε, the less the two models

are distinguishable (see Figure 3.1 for the plot of the latter parameter combination).

3.3 Generalized Skew-normal distribution

One of the generalization of the Azzalini (1985) SN distribution is the two-parameter

generalized skew-normal (GSN) distribution introduced by Jamalizadeh et al. (2008).

Its PDF was given as

f(z;λ1, λ2) =
2π

cos−1
(

−λ1λ2√
1+λ21

√
1+λ22

)φ(z)Φ(λ1z)Φ(λ2z), z ∈ R. (3.5)

The author realized in their follow-up papers (Jamalizadeh and Balakrishnan, 2009,

2010) that the distribution is in fact special cases of the multivariate unified skew-

normal (SUN) presented by Arellano-Valle et al. (2006), which in itself is a reparametriza-
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Figure 3.1: Two indistinguishable parameter combination for two-parameter ESN,
∆((3, 2), (2, 1.3)) = 0.01

tion of the CSN distribution of Gonzalez-Farias et al. (2004). They gave basic prop-

erties of the distribution, but technical properties can easily be derived if one takes

advantage of the CSN distribution reparametrization. For example, the addition

of an independent random variable from GSN(λ1, λ2) and normal N(0, 1) random

variable is still in the two-parameter generalized skew-normal distribution as the

following theorem shows.

Theorem 2. Let Y ∼ CSNp,q(µ,Σ, D,ν,∆), with parameters as defined in (2.10).

Let also X ∼ Np(µx,Σx), Σx > 0 be independent of Y, then

Y + X ∼ CSNp,q

(
µ+ µx,Σ + Σx, DΣ(Σ + Σx)−1,ν,∆ + (D(I − Σ(Σ + Σx)−1))ΣD′

)
.

If we apply the theorem to Zλ1,λ2 ∼ GSN(λ1, λ2) and X ∼ N(0, 1), that is,

Zλ1,λ2 ∼ CSN1,2

(
0, 1, (λ1, λ2)′, (0, 0)′,∆ = I2

)
,

where I2 is a 2× 2 identity matrix. Then,

(
Zλ1,λ2 +X

)
∼ CSN1,2

[
0, 2, (λ1/2, λ2/2)′, (0, 0)′,

(
1 + λ2

1/2 λ1λ2/2

λ1λ2/2 1 + λ2
2/2

)]
.
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By using scalar multiplication properties of the CSN distribution, we have

1√
2

(
Zλ1,λ2 +X

)
∼ CSN1,2

[
0, 1, (λ1/

√
2, λ2/

√
2)′, (0, 0)′,

(
1 + λ2

1/2 λ1λ2/2

λ1λ2/2 1 + λ2
2/2

)]
,

which is a two-parameter generalized skew-normal distribution with parameters

(λ1/
√

2, λ2/
√

2). This theorem is a special case of the general method of adding

independent random variables from the CSN distribution given in (2.15).

We now construct two classes of three-parameter extensions of the Jamal-

izadeh et al. (2008) model. The first extension is written as a special case of the

CSN distribution and the second extension adds a shift parameter to the Jamal-

izadeh et al. (2008) model.

3.3.1 A three-parameter generalized skew-normal distribution

We use the CSN distribution given in chapter 2 to define a three-parameter gener-

alized skew-normal distribution, GSN(λ1, λ2, λ3).

Definition 6. A random variable Zλ1,λ2,λ3 is said to have a three-parameter gener-

alized skew-normal distribution if its PDF can be written as

f(z;λ1, λ2, λ3) =
1

Φ3(0; ρ12, ρ13, ρ23)
φ(z)Φ3((λ1, λ2, λ3)′z; 0, I3), (3.6)

where ρ12 = λ1λ2/
√

1 + λ2
1

√
1 + λ2

2, ρ13 = λ1λ3/
√

1 + λ2
1

√
1 + λ2

3, ρ23=λ2λ3/
√

1 + λ2
2

√
1 + λ2

3,

and I3 is a 3× 3 identity matrix.

We write Z ∼ CSN1,3(0, 1, D = (λ1, λ2, λ3)′, ν = (0, 0, 0)′, I3). Since the

PDF given by (3.6) is in a CSN form, it is trivial to show that it is a proper PDF.

In order to avoid the evaluation of three dimensional integral present in the

CSN representation (3.6), one can re-write the expression in the form given by

Jamalizadeh et al. (2008). To do this, we consider the following lemma.

Lemma 1. If R =

 1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

, then

Φ3(0;R) =
2π − cos−1(ρ12)− cos−1(ρ13)− cos−1(ρ23)

4π
.

Thus equation (3.6) can be written as

4π

2π − cos−1(ρ12)− cos−1(ρ13)− cos−1(ρ23)
φ(z)Φ(λ1z)Φ(λ2z)Φ(λ3z),
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and we write Zλ1,λ2,λ3 ∼ GSN(λ1, λ2, λ3). We denote

4π

2π − cos−1(ρ12)− cos−1(ρ13)− cos−1(ρ23)
=

1

Φ3(0; ρ12, ρ13, ρ23)
= K(λ1, λ2, λ3).

Basic properties of GSN(λ1, λ2, λ3)

Using the properties of CSN distribution, simple properties of the GSN(λ1, λ2, λ3)

distribution can be obtained.

1. GSN(λ1, λ2, 0) = GSN(λ1, 0, λ2) = GSN(0, λ1, λ2) = GSN(λ1, λ2)

2. GSN(λ, 0, 0) = GSN(0, λ, 0) = GSN(0, 0, λ) = SN(λ)

3. GSN(0,0,0) = N(0,1)

4. Z ∼ GSN(λ1, λ2, λ3), then −Z ∼ GSN(−λ1,−λ2,−λ3)

5. The distribution function of Z ∼ GSN(λ1, λ2, λ3) is

K(λ1, λ2, λ3)Φ4



Z

0

0

0

 ;


0

0

0

0

 ,


1 −λ1 −λ2 −λ3

−λ1 1 + λ2
1 λ1λ2 λ1λ3

−λ2 λ1λ2 1 + λ2
2 λ2λ3

−λ3 λ1λ3 λ2λ3 1 + λ2
3


 .

Figure 3.2 represents plots of the density of GSN(λ1, λ2, λ3). This figure

further illustrates some of the simple properties of the distribution. A comparison

of the density GSN(0,0,0) (Normal case) with GSN(1,0,-1) shows that the latter

is also symmetric but with tails different from the normal. It appears that the

distribution GSN(λ1, λ2,−λ1) can model heavier or lighter tails than the normal

distribution depending on the values of λ1. In this case, skewness is controlled by

λ2. Since this thesis is concerned with modeling skewness, further investigation of

the properties of this skew symmetric model is beyond its scope.

We now investigate a new class of three-parameter generalized skew-normal

distribution which does not have a link with the CSN distribution.

3.3.2 Extended two-parameter generalized skew-normal distribu-

tion

Definition 7. A random variable Zλ0,λ1,λ2 is said to have an extended two-parameter

generalized skew-normal distribution, if its PDF is

f(z;λ0, λ1, λ2) = k(λ0, λ1, λ2)φ(z)Φ(λ1z)Φ(λ0 + λ2z), z ∈ R, (3.7)
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Figure 3.2: Comparison of generalized skew-normal densities

where λ0, λ1, λ2 ∈ R. λ1 & λ2 are the skewness parameter and λ0 is the shift

parameter.

Since (3.7) is a PDF, we must have

k(λ0, λ1, λ2) =
1∫∞

−∞ φ(z)Φ(λ1z)Φ(λ0 + λ2z) dz
=

1

E[Φ(λ1X)Φ(λ0 + λ2X)]
, (3.8)

where X ∼ N(0, 1). Direct integration yields

1

Φ2

(
0, λ0√

1+λ22
; λ1λ2√

1+λ21

√
1+λ22

) =
2

ΦSN

(
λ0√
1+λ22

; 0, 1, −λ1λ2√
1+λ21+λ22

) ,
where Φ2 is the standard bivariate normal CDF and ΦSN is the standard CDF of

the Azzalini (1985) SN distribution . The evaluation of ΦSN can be obtained from

the ‘psn’ function in Azzalini’s SN package in R.

Thus, the extended two-parameter generalized skew-normal density in (3.7)
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becomes

f(z;λ0, λ1, λ2) =
2

ΦSN

(
λ0√
1+λ22

; 0, 1, −λ1λ2√
1+λ21+λ22

)φ(z)Φ(λ1z)Φ(λ0 + λ2z), z ∈ R,

(3.9)

and we write Zλ0,λ1,λ2 ∼ EGSN(λ0, λ1, λ2).

Remark 1 : For the special case λ0 = 0, (3.9) becomes

2

ΦSN

(
0; 0, 1, −λ1λ2√

1+λ21+λ22

)φ(z)Φ(λ1z)Φ(λ2z), z ∈ R,

which is equivalent to (3.5). To see this, we note that

2π

cos−1
(

−λ1λ2√
1+λ21

√
1+λ22

) =
1

Φ2

(
0, 0; λ1λ2√

1+λ21

√
1+λ22

) =
2

ΦSN

(
0; 0, 1, −λ1λ2√

1+λ21+λ22

) .
(3.10)

The R.H.S in (3.10) is a more general expression when the centered orthant proba-

bilities rule is not applicable. The EGSN distribution is so named because it extends

the two-parameter generalized skew-normal distribution, in the same way the ESN

distribution extends the Azzalini (1985) SN distribution.

Basic properties of EGSN(λ0, λ1, λ2)

Some properties of the model in (3.9) are stated below

1. EGSN(0, λ1, λ2) = GSN(λ1, λ2)

2. EGSN(λ0, 0, λ) = ESN(λ0, λ)

3. EGSN(0, 0, λ) = EGSN(0, λ, 0)= SN(λ)

4. EGSN(0, 0, 0) = N(0,1)

5. EGSN(λ0, λ1, λ2) can be derived from the convolution of an independent SN

random variable and a truncated normal random variable.
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Moment generating function of EGSN(λ0, λ1, λ2)

Theorem 3. If M(t;λ0, λ1, λ2) is the moment generating function of Zλ0,λ1,λ2 ∼
EGSN(λ0, λ1, λ2), then

M(t;λ0, λ1, λ2) = k(λ0, λ1, λ2)et
2/2Φ2

(
λ1t√
1 + λ2

1

,
λ0 + λ2t√

1 + λ2
2

;
λ1λ2√

1 + λ2
1

√
1 + λ2

2

)
(3.11)

where k(λ0, λ1, λ2) is as given in (3.9).

Proof. From (3.7), we have the MGF as

E(etZ) =k(λ0, λ1, λ2)

∫ ∞
−∞

etzφ(z)Φ(λ1z)Φ(λ0 + λ2z) dz

=k(λ0, λ1, λ2)et
2/2

∫ ∞
−∞

φ(z − t)Φ(λ1z)Φ(λ0 + λ2z) dz

Put x = z − t. Then,

E(etZ) =k(λ0, λ1, λ2)et
2/2

∫ ∞
−∞

φ(x)Φ(λ1x+ λ1t)Φ(λ0 + λ2x+ λ2t) dx

=k(λ0, λ1, λ2)et
2/2E(Φ(λ1X + λ1t)Φ(λ0 + λ2X + λ2t)

=k(λ0, λ1, λ2)et
2/2P (Y1 − λ1X < λ1t, Y2 − λ2X < λ0 + λ2t)

=k(λ0, λ1, λ2)et
2/2Φ2

(
λ1t√
1 + λ2

1

,
λ0 + λ2t√

1 + λ2
2

;
λ1λ2√

1 + λ2
1

√
1 + λ2

2

)
where X,Y1, Y2 are iid N(0, 1), and

P (Y1−λ1X < λ1t, Y2−λ2X < λ0+λ2t) = Φ2

(
λ1t√
1 + λ2

1

,
λ0 + λ2t√

1 + λ2
2

;
λ1λ2√

1 + λ2
1

√
1 + λ2

2

)
.

The moments of Zλ0,λ1,λ2 can be obtained from (3.11). The mean and the variance

of the extended two-parameter generalized skew-normal distribution is respectively,

E(Zλ0,λ1,λ2) =k(λ0, λ1, λ2)

{
1√
2π

λ1√
1 + λ2

1

Φ

(
λ0

√
1 + λ2

1√
1 + λ2

1 + λ2
2

)

+
λ2√

1 + λ2
2

φ

(
λ0√

1 + λ2
2

)
Φ

(
−λ0λ1λ2√

1 + λ2
2

√
1 + λ2

1 + λ2
2

)}
,

(3.12)
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Var(Zλ0,λ1,λ2) = 1 + k(λ0, λ1, λ2)

{
λ1λ2√

1 + λ2
1 + λ2

2

[
1√
2π

( 1

1 + λ2
1

)
φ

(
λ0

√
1 + λ2

1√
1 + λ2

1 + λ2
2

)
+
( 1

1 + λ2
2

)
φ

(
λ0√

1 + λ2
2

)
φ

(
−λ0λ1λ2√

1 + λ2
2

√
1 + λ2

1 + λ2
2

)]
− λ0λ

2
2

(1 + λ2
2)3/2

φ

(
λ0√

1 + λ2
2

)
Φ

(
−λ0λ1λ2√

1 + λ2
2

√
1 + λ2

1 + λ2
2

)}
−
(
E(Zλ0,λ1,λ2)

)2
.

(3.13)

To fit the extended two-parameter skew-normal distribution to data, one can

introduce the affine transformation Y = µ + σZλ0,λ1,λ2 ∼ EGSN(µ, σ2, λ0, λ1, λ2).

The density becomes

f(y;µ, σ2, λ0, λ1, λ2) =

2
σφ
(y−µ

σ

)
Φ
(
λ1(y−µ)

σ

)
Φ
(
λ0 + λ2

(y−µ
σ

))
ΦSN

(
λ0√
1+λ22

; 0, 1, −λ1λ2√
1+λ21+λ22

) . (3.14)

The log-likelihood function in this case is

l(Ξ) =n ln 2− n

2
ln 2π − n

2
lnσ2 −

n∑
i=1

(yi − µ)2

σ2
+

n∑
i=1

ln Φ

(
λ1(yi − µ)

σ

)

+

n∑
i=1

ln
[
Φ
(
λ0 + λ2

(yi − µ
σ

))]
−n ln

[
ΦSN

( λ0√
1 + λ2

2

; 0, 1,
−λ1λ2√

1 + λ2
1 + λ2

2

)]
,

(3.15)

where Ξ = (µ, σ, λ0, λ1, λ2).

Since the EGSN model is an extension of the ESN model, it suffers from

parameters identifiability draw-backs as well. For instance, if λ1 = λ2 = 0, the dis-

tribution becomes the normal distribution regardless of the value of λ0. However, it

is unlikely that this will be the case in practice because the two (skewness) param-

eters are distinct. Also, the introduction of extra parameters to a model, although

leads to a more flexible model, comes at a cost of model identifiability in some cases.

There may not be sufficient information in the data to identify all the parameters.

The use of profile likelihood is therefore recommended to study the uncertainty in

the MLEs of skew-normal models in practice.

We assess the performances of the use of skew-normal distributions to model

data arising from sample selection in a simulation study. The data set is generated in

a similar way as was done in the simulation study of Marchenko and Genton (2012),
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but with skew-normal errors. The outcome equation is Y ?
i = 0.5 + 1.5xi + ε1i,

and the selection equations are S?i = 1 + xi + ε2i and S?i = 1 + xi + 1.5wi + ε2i,

where xi
iid∼ N(0, 1), wi

iid∼ N(0, 1) and i = 1, . . . , N = 1000. The use of the first

selection equation ensures that all variables that predict missingness are included in

the outcome equation, whereas the second selection equation has an extra predictor

of missingness that is not included in the outcome model. The parameters of interest

are from the outcome equation, i.e. β′ = (0.5, 1.5). The covariates xi and wi are

independent and are also independent of the error terms ε1i and ε2i. The error

terms are generated from bivariate skew-normal distribution with λ= 0, 0.5, 1 and

2. The covariance matrix Σ =

(
σ2 ρσ

ρσ 1

)
, where σ = 1 and the correlation ρ = 0.5.

About 20% and 30% observations are missing when the first and the second selection

equations are used respectively for data generation. Simulation results are based on

1000 replications.

Tables 3.1 and 3.2 show the finite sample performances of fitting the Azzalini

(1985) SN, ESN and EGSN models to selectively reported outcomes, when the

selection equation has the same parameters and an extra parameter as the outcome

model respectively. We present parameters from the outcome equation only in

the Tables. Parameters from the selection equations are captured by λ0 and λ1

when hidden truncation models are used in sample selection settings. The models’

performances are similar in the two tables. The ESN model appears to outperform

other models at λ = 0. The intercept of the model has less bias compared to

the scenario where λ 6= 0, and this is due to the fact that the ESN model is the

correct model when the underlying assumption is bivariate normal (see (3.2)). The

performance of the models in identifying the intercept is poor at λ = 0.5. This has

to do with the model’s inability to distinguish the MLEs at that point from λ = 0,

which is always a solution to the score equation. As λ→∞, the bias in the intercept

tends to zero.

Application to the NDI scores

We fitted SN, ESN and EGSN models to the NDI scores at month 8. Table 3.3

shows the results of fitting these models. The EGSN model is constrained such that

λ1 = λ2. The parameter labeled ‘physio’ is the Physiotherapy treatment effects. An

adjustment was made for measurements at month 4 in the model, which we label

‘prev’. There is a significant treatment effects according to the three model at 5%

level of significance. The gender effect is not significant. A likelihood ratio test

between the SN and the EGSN model gave a non-significant p-value (0.286). The
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Table 3.1: Simulation results (multiplied by 10,000) using skew-distributions to
model selectively reported data. Selection and Outcome equations have the same
covariates.

Bias MSE
SN ESN EGSN SN ESN EGSN

λ = 0.0
β0 452 374 1283 2536 2280 1811
β1 -1475 -1471 -1478 234 283 236
σ 889 600 338 136 110 276

λ = 0.5
β0 2467 2055 3870 2447 3244 2811
β1 -1173 -1178 -1168 151 152 151
σ 298 126 -279 58 99 177

λ = 1.0
β0 1364 1699 2663 656 3246 1967
β1 -882 -886 -885 88 89 92
σ -130 -325 -447 53 163 396

λ = 2.0
β0 636 -54 795 71 3315 204
β1 -575 -574 -575 40 40 40
σ -15 24 -84 20 220 42

Table 3.2: Simulation results (multiplied by 10,000) using skew-distributions to
model selectively reported data. Selection equation has one more covariate that is
not in Outcome equation.

Bias MSE
SN ESN EGSN SN ESN EGSN

λ = 0.0
β0 1272 641 1349 2976 2311 1881
β1 -691 -685 -686 64 64 64
σ 1115 759 493 186 126 178

λ = 0.5
β0 3340 2803 3423 3352 3384 3458
β1 -579 -578 -580 47 47 48
σ 411 179 402 66 85 134

λ = 1.0
β0 1499 1646 1516 908 3445 1095
β1 -439 -441 -438 30 30 31
σ -87 -279 -40 56 158 164

λ = 2.0
β0 529 192 494 63 3317 136
β1 -288 -287 -286 15 15 16
σ 63 -1 101 25 221 65

SN model can therefore be used to describe this data.

40



Table 3.3: Fit of Azzalini (1985) model, ESN and EGSN model to complete case
NDI scores at 8 months. λ1 and λ2 are constrained to be equal in the EGSN model.

SN ESN EGSN
Estimate S.E. p-value Estimate S.E p-value Estimate S.E p-value

int 5.593 0.940 0.000 7.915 5.671 0.164 5.388 0.679 0.000
age 0.083 0.024 0.001 0.082 0.024 0.001 0.087 0.017 0.000
sex(f) 0.569 0.646 0.379 0.623 0.642 0.333 0.636 0.455 0.163
prev 0.667 0.039 0.000 0.668 0.040 0.000 0.665 0.027 0.000
physio 1.479 0.617 0.017 1.820 0.613 0.003 1.477 0.434 0.001
σ 8.796 0.584 0.000 9.429 1.497 0.000 8.627 0.418 0.000
λ1 -1.295 0.273 0.000 -1.442 0.410 0.001 -1.234 0.198 0.000
λ0 - - - -0.646 1.374 0.638 5.195 4.198 0.217

Loglik -1596.86 -1596.32 -1596.29

3.4 Modeling bounded scores with truncated skew-normal

distribution

The results of the skew-normal models fitted to the NDI scores at month 8 (see

Table 3.3), did not take into account the lower and upper bounds of the data. In

practice, a properly fitted distribution is expected to cover the range of values over

which the model variable could theoretically extend. If a fitted distribution extends

beyond the range of plausible values, then the model will produce unrealistic values

at the extreme tails of the distribution.

All scores in the NDI data belong to the interval [0, 50], and skewness is

apparent in the data. There are many strategies available in the literature to model

such skew and bounded outcome. One strategy is to use transformation (e.g. logistic

transformation) and then model the transformed data using a skew distribution.

However, as we remark in chapter 1, transformation of the data may not remove

the non-linear dependence of the transformed scores on covariates. In cases where

the truncation bounds are known, it may be natural to model skew bounded scores

using truncated distributions.

3.4.1 Truncated distributions

Suppose we have a continuous distribution with PDF and CDF specified as g(.) and

G(.), respectively. Let Y be a random variable representing the truncated version

of this distribution over the interval [a, b], where −∞ < a < b <∞. The PDF and

CDF of Y are given respectively by
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fY (y) =

{
g(y)

G(b)−G(a) if a ≤ y ≤ b,
0 otherwise

and

FY (y) =
G(max(min(y, b), a))−G(a)

G(b)−G(a)
.

Expression for the mean, variance, quantile function and generation of random num-

bers from truncated distributions can be found in Nadarajah and Kotz (2006). In

particular, the truncated extended skew-normal (TESN) distribution has a standard

PDF given by

fTESN (λ0, λ1, a, b) = c(λ0, λ1, a, b)φ(z)Φ(λ0 + λ1z), (3.16)

where

c(λ0, λ1, a, b) =
1

Φ
(

λ0√
1+λ21

)[
ΦESN (b;λ0, λ1)− ΦESN (a;λ0, λ1)

] .
The corresponding CDF is given by

FTESN (λ0, λ1, a, b) =


0 if z < a,
ΦESN (z,λ0,λ1)−ΦESN (a,λ0,λ1)
ΦESN (b,λ0,λ1)−ΦESN (a,λ0,λ1) if a ≤ z < b,

1 if z ≥ b.

The expression for ΦESN is not readily available in statistical software, but can

be easily computed from the CDF of multivariate normal distribution. If Y ∼
ESN(µ, σ2, λ0, λ1), then it has a closed skew-normal form CSN1,1(µ, σ2, λ1/σ,−λ0, 1).

The corresponding CDF can be computed using equation (2.12), and we have

1

Φ

(
λ0√
1+λ21

)Φ2

((
y

0

)
;

(
µ

−λ0

)
,

(
σ2 −λ1σ

−λ1σ 1 + λ2
1

))
.

3.4.2 Truncated skew-normal distribution and the NDI scores

Truncated skew-normal (TSN) distribution has been discussed in the literature (see

Kim (2004), Jamalizadeh et al. (2009) and Flecher et al. (2010)). The model is

a realistic model for the NDI scores at month 8 since skewness is apparent in the

data and the floor and ceiling effects in the data can be adjusted for. If λ0 =
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0 in (3.16), the TSN model is recovered. Table 3.4 shows the results of fitting

regression models with truncated normal and TSN error distributions to the NDI

scores. The truncation points are taken into account in the model with the lower

and upper bounds taken to be 0 and 50 respectively. The truncated normal error

is fitted for comparison purposes only as the data is clearly skew (likelihood ratio

test gave p-value <0.0001). A comparison of TSN model (Table 3.4) and the SN

model (Table 3.3) using LRT shows that the TSN model fits better. Although the

statistical significance of the parameters in the SN and TSN models are the same,

the parameters in the TSN model are consistently larger in magnitude. This is due

to the restricted range over which the parameters are maximized.

Table 3.4: Fit of truncated normal (TN) and truncated skew-normal (TSN) models
to complete case NDI scores at 8 months.

TN TSN
Estimate S.E. p-value Estimate S.E p-value

int -12.561 2.620 0.000 -0.287 1.830 0.876
age 0.171 0.047 0.000 0.146 0.041 0.001
sex(f) 1.303 1.303 0.318 0.756 1.096 0.491
prev 1.052 0.091 0.000 1.044 0.077 0.000
physio 2.643 1.230 0.032 2.724 1.050 0.010
σ 9.441 0.587 0.000 19.419 3.345 0.000
λ1 - - - -3.202 0.749 0.000

Loglik -1496.28 -1483.45

3.5 Summary

We have written down two types of three-parameter generalized skew-normal distri-

butions, which are extensions of the two-parameter generalized skew-normal distri-

bution of Jamalizadeh et al. (2008). The first of these models is a special case of the

CSN distribution, which can model skewness and tail-weight simultaneously. Since

the focus of this thesis is on modeling skewness, we have not studied statistical prop-

erties of the model, and in particular the characterization of the tail-weight. The

second distribution (EGSN) does not have direct link with the CSN distribution.

This model is the basis of our model in chapter 4.

Finite sample performances of skew-normal distributions in modeling data

arising from sample selection were examined in a simulation study. The link be-

tween sample selection, hidden truncation and skew distributions implies that skew
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distributions can be used to model complete cases in selectively reported outcomes.

Although the use of skew distributions are justifiable mathematically, parameters

effect may not be completely accounted for in the model. For instance, data arising

from sample selection with underlying bivariate normal assumption mathematically

results in equation (3.2). The use of ESN distribution to model the data, from

hidden truncation perspectives, implies that the function γ′x/
√

1− ρ2 is modeled

as a single parameter λ0. In principle, γ′x carries covariate information, which can-

not be fully adjusted for in λ0. It is therefore necessary to take into account the

data generation process before proposing models, rather than using models based

on their mathematical links. We also examined MAR scenarios, where ρ = 0 (not

shown here.) As expected, the three models gave better fit with almost no bias

when compared with the ρ = 0.5 cases given in Tables 3.1 and 3.2.

Since the data is on a finite range, the use of TSN model was proposed. The

model gave a better fit and its predictive capability is superior to it non-truncated

counterparts. The interpretation of the parameter is on the original scale unlike

what we might have obtained with data transformation.

The use of skew-normal distributions for modeling data arising from sample

selection is not recommended in practice. This can leads to inflated type 1 error,

where parameters in the model becomes significant, when in fact they are not. The

treatment effect is significant in all the complete case models we considered in this

chapter. This is shown not to be true when a full sample selection model (i.e. the

missingness process is included in the model) is used, as we show in next chapter.
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Chapter 4

A Sample Selection Model With

Skew-Normal Distribution

In chapter 3 we mention that modeling data sets arising from sample selection using

skew distributions amount to complete case analysis. Although parameter estimates

may be unbiased, there could be inflated type-1 error in statistical significance tests.

We show in this chapter that the additional information about observability or non-

observability of the data included in classical sample selection density can correct for

this error, and aid model identifiability. In particular, we develop a sample selection

model with underlying skew-normal distribution. A link is established between the

continuous component of our model log-likelihood function and the extended two-

parameter generalized skew-normal distribution introduced in chapter 3. This link

is used to derive the expected value of the model, which extends Heckman’s two-

step method. Finite sample performance of the maximum likelihood estimator of

the model is studied via Monte Carlo simulation. The model is applied to the NDI

scores at month 8 and month 12. The application of the model to scores at month

12 is to emphasis the influence of conditional normality in sample selection models.

We discuss computational and identification issues, and give directions for possible

extensions of the model.

4.1 Sample selection models

Recall the regression models given in section 3.1, that is

Y ?
i = β′xi + σε1i, i = 1, . . . , N, (4.1)
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as regression model of interest, and selection mechanism given as

S?i = γ′xi + ε2i, i = 1, . . . , N, (4.2)

where β, γ, xi, Y
?
i , S

?
i , Y, S andn are as defined in section 3.1. Under the bivariate

normal assumption of the error terms ε1i and ε2i, the conditional density f(y|x, S =

1; Θ) (where Θ = (β, σ, γ, ρ)) is given by equation (3.2). This equation is not the full

sample selection density. The density of the sample selection model is composed of

a continuous component corresponding to the conditional density f(y|x, S = 1; Θ)

and a discrete component given by P (S = 1|x). The marginal distribution of the

selection equation determines the nature of the model to be fitted to the discrete

component. In Copas and Li (1997) (and Heckman (1976)), a probit model P (S =

s) = {Φ(γ′x)}s{1− Φ(γ′x)}1−s was used. The log-likelihood function is therefore

l(Θ) =
n∑
i=1

Si

(
ln f(yi|xi, Si = 1; Θ)

)
+

n∑
i=1

Si(ln Φ(γ′xi)) +
n∑
i=1

(1− Si) ln Φ(−γ′xi).

(4.3)

The maximum likelihood estimation based on (4.3) is not robust to deviations

from the normality assumption. This prompted Heckman (1979) to develop the two-

step estimator (TS). The TS estimator is derived from the conditional expectation

of the observed data, and is given by

E(Y |x, S? > 0) = β′x+ σρΛ(γ′x), (4.4)

where Λ is the inverse Mills ratio. This model is equivalent to equation (3.4) when

γ′x = λ0

√
1− ρ2 and ρ = λ1/

√
1 + λ2

1. To use (4.4) in practice, a standard probit

model for S provides an estimate of γ̂. The quantity Λ(γ̂′x) is then taken as an

additional covariate in equation (4.4), and the least squares coefficient of Λ(γ̂′x)

gives an estimate of σρ.

The TS method is moment based and does not require distributional as-

sumption for the error terms in the second-step OLS procedure to obtain consistent

estimator. However, when the outcome and the selection equations contain the same

covariates, the method has been shown to perform poorly due to multicollinearity

(see Puhani (2000)). This is because the inverse Mills ratio is nearly linear over a

wide range of its support. To avoid this problem in practice, an exclusion restriction,

where at least one extra variable is a good predictor of non-response is included in

the selection equation and excluded from the primary regression.

The conditional variance of the observed data can be derived using the link
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between the ESN density and equation (3.2). This gives

var(y|x, S? > 0) = σ2[1− ρ2Λ(γ′x){γ′x+ Λ(γ′x}]. (4.5)

To obtain the estimates of ρ and σ in (4.4), the average value of the right-hand

side of (4.5) is equated to the observed residual of the second-step regression. Note

that the mean depends linearly on ρ but the variance does not. Thus, most of the

parameters of interest may be sensitive to small changes in the value of ρ.

As noted in chapter 3, the continuous component of the sample selection

density (equation (3.2)) is essentially an ESN density (equation (2.8)). The ESN

distribution is not identifiable when λ = 0 (ρ = 0 in the case of (3.2)) but the model

becomes identifiable in the sample selection framework due to the additional infor-

mation from the selection process which is introduced through a probit model. The

price to pay for the identifiability is possibility of model misspecification. Although

sensitivity analysis on the model parameters is justifiable, the use of range of plau-

sible parametric representations, especially those having the normal distribution as

special case, is preferred. In the following section, we develop a sample selection

model with an underlying skew-normal error distribution.

4.2 Selection Skew-normal model (SSNM)

In this section, we relax the assumption of bivariate normality of the Heckman

(1976) model such that the underlying error distribution is bivariate skew-normal.

We show that the continuous component of our model log-likelihood function can

be derived using conditioning approach of equation 3.1 or the hidden truncation

of Arnold and Beaver (2002), and that the methods are equivalent. This link is

used to derive a Heckman-type two-step estimation method under the skew-normal

distribution.

4.2.1 Conditioning in bivariate skew-normal distribution to formu-

late SSNM model

The continuous component of the sample selection density given by (3.2) was de-

rived using the conditional distribution properties of a bivariate normal distribution.

Suppose we relax the assumption of bivariate normality given in section 3.1 such

that the underlying error distribution is bivariate skew-normal. i.e(
ε1i

ε2i

)
∼ SN2

{(
0

0

)
,

(
1 ρ

ρ 1

)
,

(
λ1

λ2

)}
,
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where λ1 and λ2 are the skewness parameters for Y ?
i and S?i respectively. Then

f(y|x, S = 1; Ξ) (where Ξ = β, σ, γ, ρ, λ1, λ2) is still defined as equation (3.1). To

determine the expression P (S? > 0|y, x) in equation (3.1), it is easier to write the

joint distribution in the CSN form, that is(
Y

S

)
∼ CSN2,1

{
µ = (β′x, γ′x),Σ =

(
σ2 ρσ

ρσ 1

)
, D = (λ1/σ, λ2), ν = 0,∆ = 1

}
.

(4.6)

The distribution of S|Y , using the conditional distribution property of CSN

(see equation (2.14)), is

S|Y ∼ CSN1,1

{
γ′x+ ρ

(y − β′x
σ

)
, 1− ρ2, λ2,−(λ1 + λ2)

(y − β′x
σ

)
, 1

}
,

and P (S? > 0|Y ) is an ESN lower tail probability written as

ΦESN

{
γ′x+ ρ

(y − β′x
σ

)
; 0, 1− ρ2,

−λ2√
1− ρ2

,−(λ1 + λ2)
(y − β′x

σ

)}
. (4.7)

To determine the expression P (S? > 0) in equation (3.1) we need to ex-

tract its marginal distribution from the bivariate process. Using the property of

marginalization of CSN (see equation (2.13)), we have

P (S? > 0) = ΦSN

(
γ′x; 0, 1,

−(λ2 + λ1ρ)√
1 + λ2

1 − λ2
1ρ

2

)
, (4.8)

where ΦSN denotes the CDF of a skew-normal random variable. The marginal

distribution of the outcome equation is

Y ∼ CSN1,1

{
β′x, σ2,

(λ1 + λ2ρ

σ

)
, 0, (1 + λ2

2 − λ2
2ρ

2)
}
,

and the corresponding PDF is

f(y) =
2

σ
φ

(
y − β′x
σ

)
Φ

{( λ1 + λ2ρ√
1 + λ2

2 − λ2
2ρ

2

)(y − β′x
σ

)}
. (4.9)

Substituting (4.7), (4.8) and (4.9) into the general sample selection equation
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(3.1) we have f(y|x, S = 1; Ξ) given by

f(y)ΦESN

{
γ′x+ ρ

(
y−β′x
σ

)
; 0, 1− ρ2, −λ2√

1−ρ2
,−(λ1 + λ2)

(
y−β′x
σ

)}
ΦSN

(
γ′x; 0, 1, −(λ2+λ1ρ)√

1+λ21−λ21ρ2

) . (4.10)

If λ1 and λ2 are set equal to zero in (4.10), Copas and Li (1997) model given by

(3.2) is recovered.

From now on, we shall restrict attention to a special case of the model given

in (4.10). Suppose only λ2 is set equal to zero, (i.e. selection random variable is

normal) we get a simpler model:

f(y|x, S = 1; Ω) =

2
σφ
(
y−β′x
σ

)
Φ
(
λ1(y−β′x)

σ

)
Φ
(
γ′x+ρ

(
y−β′x
σ

)
√

1−ρ2

)
ΦSN

(
γ′x; 0, 1, −λ1ρ√

1+λ21−λ21ρ2

) , (4.11)

where Ω = (β, σ, γ, ρ, λ1). This situation is possible in practice when the underlying

mechanism governing selection is not skewed before entering the joint process.

Equation (4.11) is the basis of the extended two-parameter generalized skew-

normal (EGSN) density introduced in equation (3.9). This model is the continuous

component of the sample selection density for underlying bivariate skew-normal

error distribution. The model can be readily derived using the hidden truncation

approach as we show below.

4.2.2 Hidden truncation formulation of SSNM model

Suppose Z ∼ SN(0, 1, λ1) and S ∼ N(0, 1), with Z & S independent. Then (3.3)

becomes

f(z|λ0 + λZ > S) =
2φ(z)Φ(λ1z)Φ(λ0 + λz)

P (λ0 + λZ > S)
. (4.12)

The determination of the normalizing constant P (λ0 +λZ > S), requires the distri-

bution of S − λZ:

(S − λZ) ∼ SN

(
0, (1 + λ2),

−λ1λ√
1 + λ2

1 + λ2

)
. (4.13)

Equation (4.13) was derived using the scalar multiplication and additive

properties of the skew-normal distribution. Details of this can be found in equation
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(2.15). So,

P(S − λZ < λ0) = ΦSN

(
λ0√

1 + λ2
; 0, 1,

−λ1λ√
1 + λ2

1 + λ2

)
.

Equation 4.12 can now be written as

f(z|λ0 + λZ > S) =
2φ(z)Φ(λ1z)Φ(λ0 + λz)

ΦSN

(
λ0√
1+λ2

; 0, 1, −λ1λ√
1+λ21+λ2

) ,
which is equivalent to (3.14) when we make use of the transformation Y = µ+ σZ.

Now that we have established the equivalence of the two routes of deter-

mining the continuous component of SSNM density, the discrete component can be

determined by the marginal distribution of the selection equation. In this case, we

have a binary regression model with the skew-normal link.

The conditional expectation and variance of the observed data can be derived

from equations (3.12) and (3.13). In particular, the mean (E(Y |x, S? > 0)) is given

by

β′x+σ

[(
2

ΦSN

(
γ′x; 0, 1, −λρ√

1+λ2−λ2ρ2

)){ 1√
2π

λ√
1 + λ2

Φ

(
γ′x
√

1 + λ2√
1 + λ2 − λ2ρ2

)

+ρφ(γ′x)Φ

(
−γ′xλρ√

1 + λ2 − λ2ρ2

)}]
.

(4.14)

When λ = 0 in equation (4.14), we have the Heckman two-step model given

in equation (4.4). To visualize the impact of using selection-normal model when the

correct model is the one given by equation (4.14), we plot the second component of

the expectation (E(Y |x, S? > 0)- β′x) as a function of γ′x, the mean of the selection

variable. We take ρ = 0.5 and 0.9 for values of λ= 0, 1, 2 and 5. It should be noted

that λ = 0 corresponds to the inverse Mills ratio correction in (4.4). The standard

deviation, σ, simply scales the correction factor and ρ is the correlation between the

outcome and the selection process.

It can be seen from Figure 4.1 (ρ = 0.5) that especially for positive values of

the selection linear predictor γ′x, the conditional expectation will be underestimated

under the usual selection-normal model. This underestimation increases as the

skewness increases. However, for negative values of γ′x, the underestimation of the
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Figure 4.1: Plot of correction factor
for different values of skewness pa-
rameter with λ = 0 corresponding
to the normal case.
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Figure 4.2: Plot of correction factor
for different values of skewness pa-
rameter with λ = 0 corresponding
to the normal case.

conditional expectation by the selection-normal model compared to selection skew-

normal model decreases and the difference dies out as γ′x becomes more negative

and missingness increases. This observation is also true for ρ = 0.9, as the figures

are similar (see Figure 4.2).

Sometimes, the marginal effect of the covariates (xi) on the outcome Yi in

the observed sample may be of interest. For the Heckman two-step model, the

effect consists of two components- the direct effect of the covariates on the mean of

Yi which is captured by β and the indirect effect of the covariates in the selection

equation. For Heckman two-step model (equation (4.4)), the marginal effect is given

by

∂

∂xi
E(Y |x, S? > 0) = β′i − ρσγ′i

{
γ′x

φ(γ′x)

Φ(γ′x)
+

(
φ(γ′x)

Φ(γ′x)

)2}
. (4.15)

Using similar argument, the marginal effect ( ∂
∂xi
E(Y |x, S? > 0)) correspond-
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ing to equation (4.14) can be written as

β′i−σγ′i

[(
2

ΦSN

(
γ′x; 0, 1, −λρ√

1+λ2−λ2ρ2

)){ρ(γ′x)φ(γ′x)Φ

(
−γ′xλρ√

1 + λ2 − λ2ρ2

)

+

2ρ

(
φ(γ′x)

)2(
Φ

(
−γ′xλρ√

1+λ2−λ2ρ2

))2

ΦSN

(
γ′x; 0, 1, −λρ√

1+λ2−λ2ρ2

) − 1√
2π

λ√
1 + λ2 − λ2ρ2

φ

(
γ′x
√

1 + λ2√
1 + λ2 − λ2ρ2

)

+
λρ2φ(γ′x)√

1 + λ2 − λ2ρ2
φ

(
−γ′xλρ√

1 + λ2 − λ2ρ2

)

+
1√
2π

λ√
1 + λ2

Φ

(
γ′x
√

1 + λ2√
1 + λ2 − λ2ρ2

) 2φ(γ′x)Φ

(
−γ′xλρ√

1+λ2−λ2ρ2

)
ΦSN

(
γ′x; 0, 1, −λρ√

1+λ2−λ2ρ2

)}].
(4.16)

Equation (4.16) reduces to equation (4.15) when λ = 0.
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Figure 4.3: Plot of marginal effect
for different values of skewness pa-
rameter with λ = 0 corresponding
to the normal case.
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Figure 4.4: Plot of marginal effect
for different values of skewness pa-
rameter with λ = 0 corresponding
to the normal case.

From Figures 4.3 and 4.4, the conditional marginal effect of covariates xi on

the outcome Y will be underestimated by the selection-normal model for positive
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values of γ′x between (roughly) -4 and 4. When |γ′x| exceeds 4, this effect dies out

since the correction factor becomes zero for all the values of λ (including λ = 0).

The complete density of the selection skew-normal model, like the selection

normal model, is comprised of a continuous component given by (4.11) and a discrete

component for P (S = 1|x). As stated earlier, the marginal distribution of the

selection process determines the nature of the model to be fitted for the binary

variable which in this case is given by

P (S = s) = {ΦSN (γ′x; 0, 1, λ?)}s{1− ΦSN (γ′x; 0, 1, λ?)}1−s,

where λ? = −λρ/
√

1 + λ2 − λ2ρ2. This is a binary regression model with a skew-

normal link. The log-likelihood function is therefore

l(Ω) =
n∑
i=1

Si

(
ln f(yi|xi, Si = 1)

)
+

n∑
i=1

Si

(
ln ΦSN (γ′xi; 0, 1, λ?)

)
+

n∑
i=1

(1− Si) ln ΦSN (−γ′x; 0, 1,−λ?).
(4.17)

4.2.3 Monte Carlo Simulation

In this section we study finite sample properties of our selection skew-normal model

(SSNM). We compare its performance with selection normal model (Heckman, 1976)

SNM, and the Heckman’s two-step method TS. The data generation is essentially

the same as the simulation scenarios given in chapter 3. We refer to the selection

equation S?i = 1 + xi + 1.5wi + ε2i as scenario with exclusion restriction and S?i =

1 + xi + ε2i is without the exclusion restriction. The advantage of the exclusion

restriction has been discussed in section 4.1.

The results of the simulation in the presence of exclusion restriction are

presented in Table 4.1. Even under the normality assumption (i.e. λ = 0) the

performance of SSNM is comparable to SNM and TS. For instance, SNM and TS

showed slightly less bias in the estimation of the intercept of the outcome equation

than SSNM. However, this advantage is counter-balanced when the intercept of the

selection equation is considered since it has less bias than SNM and TS. In terms

of MSE, SNM and TS are more efficient. Other parameters are comparable across

the three models. In effect, SNM and TS do not appear to show emphatic superior

advantage overall even with underlying normal assumption.

As the degree of skewness increases, the SSNM model gets better in precision

of estimating the intercept of the selection and the outcome equations whereas SNM
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and TS get worse. When λ = 5 (which is almost a folded normal), the SNM and

TS break down. However, SSNM performs well but at a cost of non-convergence for

some of the samples (in this case, 828 out of 1000 samples converged).

The results of the simulation in the absence of exclusion restriction are pre-

sented in Table 4.2. When the underlying process is normal, the intercept has a

lower bias than SNM but higher than TS. For regression parameters of interest, the

three models are comparable. Similar to what we observed under exclusion restric-

tion, the SSNM model appears useful even when the underlying process is normal.

When λ increases, the performance of SSNM gets better both in bias and MSE.

There were severe identifiability problems with SSNM model when λ = 5 as about

300 samples out of 1000 produced errors in the optimization algorithm. This may

be due to the fact that λ = 5 is close to the half-normal distribution.

In addition, the SSNM estimates are better than the SNM and TS models for

σ and ρ when λ ≥ 1 both in the presence and absence of the exclusion restriction.

Since, the variance σ describes the variability of the probability distribution of the

outcomes Yi, correct prediction intervals of new observations will be obtained under

SSNM model. Further, in applied settings (similar to the MINT Trials data we

describe next), interest may be on patients who do not return their questionnaire.

This requires a correct model for the selection process. The SSNM gave consistently

smaller bias and MSE as compared to SNM and TS models for the selection equation

when λ ≥ 1 (Tables 4.1 and 4.2). The bias in the parameter estimates of the selection

equation when SSNM model is used is smaller even under normality assumption,

with or without the exclusion restriction.

We also considered the effect of varying the underlying correlation in the

presence of exclusion restriction for λ = 1 and 2. The results (see Tables 1 and 2 in

Appendix A) are similar to the ones for ρ = 0.5.

Application of selection skew-normal model to the NDI scores

Vernon (2009) recommended that patients with only 2 missed items should be con-

sidered complete, with mean imputation used for adjustment. We follow this rec-

ommendation and any patient with 3 or more missing items are considered as unit

missing. In effect, we have only unit non-response left in the data set. In what

follows, we will identify predictors of dropout at each measurement occasion before

fitting the SSNM model to the scores at month 8 and 12.
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Table 4.1: Simulation results (multiplied by 10,000) in the presence of exclusion
restriction.

Bias MSE
SSNM SNM TS SSNM SNM TS

λ = 0.0
β0 16 -1 2 108 24 27
β1 -3 -3 -5 19 19 19
γ0 61 67 73 74 50 51
γ1 40 52 59 60 59 60
γ2 80 98 106 94 93 94
σ 28 -9 -7 17 9 9
ρ -7 -6 -21 84 84 113
λ -27 - - 175 - -

λ = 0.5
β0 2071 3564 3564 1379 1289 1291
β1 1 2 2 16 16 16
γ0 1786 2091 2101 517 507 514
γ1 203 259 269 74 75 78
γ2 314 398 409 126 125 130
σ -444 -654 -652 65 50 50
ρ -173 -243 -248 104 102 129
λ -30 - - 1267 - -

λ = 1.0
β0 445 5620 5624 361 3173 3178
β1 4 10 7 12 12 12
γ0 401 3516 3529 282 1319 1330
γ1 108 533 547 73 98 102
γ2 201 835 860 138 192 199
σ -110 -1697 -1696 67 293 293
ρ -72 -636 -658 133 155 181
λ -501 - - 1471 - -

λ = 2.0
β0 13 7088 7098 36 5034 5049
β1 7 20 14 8 9 9
γ0 149 4706 4728 302 2310 2333
γ1 86 850 877 88 151 157
γ2 140 1275 1324 171 304 317
σ -6 -2879 -2881 22 833 834
ρ -65 -1087 -1145 170 250 285
λ 311 - - 993 - -
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Table 4.2: Simulation results (multiplied by 10,000) in the absence of exclusion
restriction.

Bias MSE
SSNM SNM TS SSNM SNM TS

λ = 0.0
β0 143 154 49 607 84 124
β1 -123 -121 36 62 62 89
γ0 -2 66 66 167 38 38
γ1 29 100 101 55 52 52
σ 228 -18 59 69 12 23
ρ -359 -427 -237 474 452 651
λ 18 - - 1139 - -

λ = 0.5
β0 2912 3675 3593 1334 1411 1372
β1 -108 -88 -20 50 48 63
γ0 1646 2036 2038 463 461 462
γ1 157 217 220 60 58 58
σ -406 -642 -586 59 49 50
ρ -654 -648 -440 604 544 683
λ -3782 - - 2527 - -

λ = 1.0
β0 640 5580 5604 381 3151 3187
β1 -76 48 25 37 36 42
γ0 759 5261 5340 527 2841 2926
γ1 91 434 490 73 84 88
σ -138 -1637 -1628 67 276 276
ρ -669 -604 -733 768 548 721
λ -761 - - 1512 - -

λ = 2.0
β0 36 6812 7085 45 4681 5051
β1 -17 304 37 23 49 29
γ0 333 4451 4677 884 2052 2251
γ1 -47 507 865 121 114 141
σ 33 -2708 -2827 19 741 805
ρ -556 100 -1245 879 869 864
λ 165 - - 916 - -
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Use of Probit model to identify predictors of dropout

In any model involving missing data, it is important to include covariates that are

predictors of dropout in the model. For the NDI scores, we use probit regression

model to identify predictors of dropout. Binary response variables were constructed

with value 1 if patient drops out by months 4, 8 or 12 and 0 otherwise. The first

step was to consider if the baseline measurements could influence dropout. We then

consider whether any pre-randomization variables give any further improvement.

The two treatments under consideration were also included with the reinforcement

of advice used as the reference category. Monotone pattern of missing data is consid-

ered in order to incorporate measurement at previous occasion into the model. This

results in 502, 479 and 426 observations included at months 4, 8, and 12 respectively.

The results of these models are presented in Table 4.3. Measurements at

baseline, months 4 and 8 are labeled ‘base’, ‘m4’ and ‘m8’ respectively. We focus on

the missingness model at months 8 for the moment, which shows that age and sex

of the patients are good predictors of missingness. The model showed that females

are more likely to drop out than males.

Table 4.3: Probit model for dropout at 4, 8 and 12 months using Vernon scores.

Missing at 4 months Missing at 8 months Missing at 12 months
Estimate S.E. p-value Estimate S.E p-value Estimate S.E p-value

int 1.293 0.266 0.000 0.888 0.284 0.002 0.816 0.256 0.001
physio -0.233 0.181 0.198 0.185 0.194 0.340 0.291 0.167 0.082
sex(f) 0.048 0.184 0.795 0.539 0.189 0.005 0.292 0.170 0.086
age 0.006 0.007 0.381 0.029 0.008 0.000 0.011 0.007 0.109
base 0.010 0.011 0.377 -0.010 0.015 0.510 -0.032 0.014 0.018
m4 0.025 0.015 0.100 0.016 0.015 0.283
m8 0.023 0.015 0.128

A preliminary analysis shows that the effect of sex is not significant in the

outcome equation of the models and it was removed. This further improve model

identifiability in the context of the exclusion restriction criteria.

The intercept estimates of SSNM, SNM and TS models for the NDI scores

at month 8 differ substantially, as expected from the simulation results (Table 4.4).

Note that the treatment effect and measurements at month 4 are labeled ‘physio’

and ‘prev’ respectively in the table. Coefficient estimates in the outcome model vary

less. As observed in the simulation study, the coefficients in the selection equations

for SNM and TS are consistently larger than the SSNM model. In particular, the

estimate of the skewness parameter (λ = 1.537) is statistically significant in the
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Table 4.4: Fit of selection skew-normal model (SSNM), Selection-normal model
(SNM), and Heckman two-step model to the NDI scores at 8 months.

SSNM SNM TS
Estimate S.E. p-value Estimate S.E p-value Estimate S.E p-value

Selection Equation

int 0.208 0.177 0.239 0.835 0.100 0.000 0.818 0.115 0.000
age 0.021 0.005 0.000 0.024 0.006 0.000 0.025 0.006 0.000
sex(f) 0.309 0.126 0.014 0.335 0.129 0.009 0.383 0.152 0.012

Outcome Equation

int -3.769 0.802 0.000 0.799 0.621 0.198 1.030 1.766 0.560
age 0.074 0.025 0.003 0.086 0.023 0.000 0.068 0.047 0.154
prev 0.678 0.035 0.000 0.687 0.035 0.000 0.708 0.035 0.000
physio 0.766 0.532 0.150 0.887 0.538 0.099 1.007 0.548 0.067
σ 7.723 0.563 0.000 6.166 0.292 0.000 5.703 2.036 0.005
ρ 0.758 0.174 0.000 0.802 0.072 0.000 0.474 0.641 0.460
λ 1.537 0.450 0.001 - - - - - -

SSNM model. This implies that neglecting the influence of λ in the model, although

it leads to the same qualitative conclusions for the covariate effects in the outcome

equation (except age that is not significant at 5% level for the TS model), will

lead to wrong predictive power of the model. The SSNM model has a better fit

(log-likelihood = -1452.67) to the NDI data than the SNM model (log-likelihood =

-1455.03). The SSNM is more general with the advantage of having good predictive

power whether or not there is skewness in the data and, of course, has SNM as a

special case.

A plot of fitted scores at month 8 against previous scores (month 4) for

fixed values of age (40 years), sex and treatment are presented in Figures 4.5, 4.6

and 4.7 for the models in Table 4.4. A linear association (as expected) between

measurements at months 8 and 4 is evident. The SSNM model provides a better fit

to the data. To see this, consider a 40-year old male patient given physiotherapy

with previous scores equals 11. His observed scores at month 8 is 12. However, the

fitted values from SSNM, SNM and two-step models result in 12.61, 13.09 and 12.76

respectively.
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Figure 4.5: Fitted SSNM model.

10 15 20 25

12
14

16
18

20
22

 SNM Fitted Scores

Previous Scores

F
itt

ed
 S

co
re

s

Physio (F)
Advice (F)
Physio (M)
Advice (M)

Figure 4.6: Fitted SNM model.
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Figure 4.7: Fitted Two-step model.

4.2.4 Profile log-likelihood for the NDI scores

The introduction of extra parameters to a model, although leading to a more flex-

ible model, comes at a cost of model identifiability in some cases. The profile log-
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likelihood for the shape parameter of a univariate skew-normal distribution always

has a stationary point at λ = 0. This problem is also visible in the SSNM model

since it has the Azzalini’s skew-normal distribution as its basis. To illustrate this,

we examine the profile log-likelihood for the parameters λ, ρ and σ for the NDI

scores. At λ = 0 in Figure 4.8, the profile log-likelihood has a stationary point, with

log-likelihood value of -1455.03. The profile log-likelihood for ρ under the SSNM

(see Figure 4.9) is flat in the neighborhood of zero, but less flat for SNM and may

not affect inference about ρ. Although the Wald test in Table 4.4 shows that the

correlation ρ is significant in the SSNM model (and also the SNM model), a likeli-

hood ratio test for ρ = 0 gave a nonsignificant p-value (0.437). A similar test under

the SNM model yielded a significant p-value (0.009). The discrepancy in the tests

under SSNM model reflects the flat surface of the profile log-likelihood around zero.

The profile log-likelihood for sigma in SSNM and SNM models (Figure 4.10) are

much more regular, though again the SSNM profile is flatter.

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−
14

56
−

14
55

−
14

54
−

14
53

λ

Li
ke

lih
oo

d

Profile likelihood of λ

Figure 4.8: Profile log-likelihood for
λ for the NDI scores (SSNM model).
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Figure 4.9: Profile log-likelihood for
ρ for the NDI scores (SSNM & SNM
models).

We assess the effects of profile log-likelihood surface flatness around zero on

the parameter estimates when the SSNM model is fitted to the NDI scores at month

8 for fixed values of ρ i.e (-0.7, -0.5, 0, 0.5, 0.7, 0.8). There is a negative correlation

between λ and ρ (Table 4.5).
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Figure 4.10: Profile log-likelihood for σ for the NDI scores (SSNM & SNM models).

The results under the SSNM model are consistent with ρ = 0, i.e. MAR,

with the skewness in the response variable being intrinsic to the measured outcome,

and not due to selection. Similarly, the TS model (with standard errors obtained

from bootstrap) also supports the MAR assumption. However, the SNM model

suggests the data are MNAR: if the outcome variable is normal in the population,

informative missingness is required to explain the observed result.

A comparison of sample selection models in this chapter and the complete

case analysis of chapter 3, using skew distributions, underscores the impact of the

additional information due to binary regression in selection models. All the models

fitted to the NDI scores at month 8 in chapter 3 showed that the treatment effect is

significant (see Tables 3.3 and 3.4). However, the SSNM, SN and TS models, which

correct for selection, show that the treatment effect is not significant.

Instead of modeling observed data in sample selection framework using skew-

normal distribution, e.g. the ESN distribution, a model based on equation (3.2)

should be preferred. This equation described the observed data satisfactorily be-

cause additional information about covariates can be incorporated in the model

through γ′x. This model was fitted to the NDI scores at month 8 using restricted

parameter space (i.e. ρ = 0 is excluded). The parameter estimates from the model

(not shown here) gave results similar to the outcome model of the SNM model in

Table 4.4, and the treatment effect is not significant. The main disadvantage of
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Table 4.5: Fit of selection skew-normal model (SSNM) with 6 fixed value of ρ to the
NDI scores at 8 months.

ρ = −0.7 ρ = −0.5 ρ = 0 ρ = 0.5 ρ = 0.7 ρ = 0.8
Estimate Estimate Estimate Estimate Estimate Estimate

Selection Equation

int 1.236 1.133 0.817 0.427 0.256 0.175
age 0.021 0.023 0.025 0.023 0.021 0.021
sex(f) 0.286 0.333 0.384 0.361 0.324 0.296

Outcome Equation

int -2.855 -2.658 -2.806 -3.359 -3.674 -3.837
age 0.022 0.030 0.045 0.061 0.071 0.078
prev 0.672 0.675 0.677 0.679 0.679 0.676
physio 0.759 0.746 0.746 0.759 0.768 0.760
σ 8.846 8.139 7.559 7.554 7.664 7.786
λ 2.148 1.899 1.718 1.663 1.581 1.498

Loglik -1453.98 -1453.27 -1452.97 -1452.90 -1452.71 -1452.72

modeling observed scores using (3.2) is that selection models cannot be consistently

estimated.

Conditional normality and NDI scores at month 12

The SSNM, SNM and TS models are fitted to the NDI scores at the last measurement

occasion, adjusting for previous measurements (m4 and m8). We also included age

and sex in the model as biological factors that could predict non-response in the

scores. Table 4.6 is the results of fitting the models to the NDI scores at month

12. The sample selection effect (ρ 6= 0) is not significant using the Wald test (p-

value = 0.857) and the LRT affirm it with p-value = 0.863. The direct parameter

from the Azzalini model (see Table 4.7) fitted to the data agrees closely with the

parameters of the SSNM model in Table 4.6, further justifying that a complete case

analysis may be sufficient to model the data. In addition, the skewness parameter

is not significant both in the SSNM and the Azzalini skew-normal model. A LRT

for λ = 0 in Table 4.6 also gave a non significant p-value (0.675). Although residual

plots for the NDI scores (see Figure 2.5) showed that conditional normality is not

tenable, adjusting for previous measurements at month 12 makes the residuals to

be approximately normal.
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Table 4.6: Fit of selection skew-normal model (SSNM), Selection-normal model
(SNM), and Heckman two-step model to the NDI scores at 12 months.

SSNM SNM TS
Estimate S.E. p-value Estimate S.E p-value Estimate S.E p-value

Selection Equation

int 0.240 0.306 0.433 0.293 0.105 0.005 0.293 0.105 0.005
age 0.020 0.005 0.000 0.020 0.005 0.000 0.020 0.005 0.000
sex(f) 0.387 0.134 0.004 0.387 0.134 0.004 0.387 0.135 0.005

Outcome Equation

int -2.391 2.016 0.236 -1.215 1.583 0.443 -1.245 2.633 0.637
age 0.017 0.031 0.572 0.018 0.032 0.572 0.019 0.046 0.688
physio -0.924 0.540 0.088 -0.901 0.539 0.095 -0.900 0.551 0.103
base 0.092 0.046 0.046 0.096 0.046 0.036 0.096 0.047 0.042
m4 0.215 0.050 0.000 0.217 0.049 0.000 0.217 0.055 0.000
m8 0.618 0.051 0.000 0.620 0.050 0.000 0.620 0.054 0.000
σ 5.112 0.770 0.000 4.570 0.262 0.000 4.574 2.300 0.047
ρ 0.114 0.636 0.857 0.138 0.600 0.819 0.150 0.591 0.800
λ 0.694 0.583 0.235 - - - - - -

Loglik -1132.24 -1132.33

Table 4.7: Complete cases with Azzalini Skew-normal errors and Normal errors.

Direct Param OLS Param
Estimate S.E. p-value Estimate S.E. p-value

int -2.192 1.620 0.177 -0.899 0.777 0.248
age 0.013 0.020 0.515 0.013 0.021 0.544
physio -0.929 0.540 0.087 -0.901 0.544 0.099
base 0.092 0.046 0.0460 0.096 0.046 0.039
m4 0.214 0.050 0.000 0.216 0.050 0.000
m8 0.618 0.051 0.000 0.620 0.051 0.000
σ 5.128 0.773 0.000 4.595 0.112 0.000
λ 0.710 0.564 0.209

4.3 Possible extensions of the SSNM models

We present a brief overview of two extensions of the SSNM model that can be of

practical interest. A multivariate extension is given in order to emphasis the use

of the model in a longitudinal framework, while extension to model skewness and

heavy-tail simultaneously is given to emphasise the generality of sample selection

models.
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4.3.1 Multivariate extension of the SSNM model

The model proposed in this chapter, although it made explicit assumption about

non-response mechanism, is deficient in that it cannot capture average evolution of

treatment effect which is the ultimate goal of any longitudinal study. A multivariate

extension of this model can readily be developed using the CSN distribution. We

maintain the general formulation (2.17).

Suppose a p×1 random vector Y of outcomes follows a SN distribution with

a p × 1 location vector β′x, p × p symmetric positive definite dispersion matrix Ω

and p × 1 vector of skewness parameter λ. That is, Y ∼ SNp(βx,Ω,λ). Suppose

further that S is a selection mechanism which is normally distributed with mean γx

and variance 1. This implies that the selection patterns across the p-dimensional

outcomes are the same. Using the approach of (4.6), the joint distribution of the

outcomes and the selection process can be written as(
Y

S

)
∼ CSNp+1,1

{
µ = (β′x, γ′x),Σ =

(
Ω ρΩ1/2

ρΩ1/2 1

)
, D = (λ′Ω1/2, 0),ν = 0,∆ = 1

}
,

where ρ is the correlation between each element of Y and S. When ρ = 0, there is

no selection, as in the case of the SSNM model. The distribution of S|Y in CSN

form is

CSN1,1

{
γ′x+ ρΩ−1/2(y − β′x), 1− ρ2, 0,−λ′Ω−1/2(y − β′x), 1

}
. (4.18)

Notice that all the matrices are conformable for multiplication. Equation (4.18) is

an ESN distribution. Since the skewness parameter is zero, it turns out that the

distribution is a normal distribution. So

P (S? > 0|Y, x) = Φ

(
γ′x+ ρΩ−1/2(y − β′x)√

1− ρ2

)
.

The normalizing function P (S? > 0) has a CSN representation

CSN1,1

{
γ′x, 1,λ′ρ, 0, 1 + λ′λ(1− ρ2)

}
.

This implies

P (S? > 0) = ΦSN

(
γ′x; 0, 1,

−λ′ρ√
1 + λ′λ(1− ρ2)

)
,

which is a univariate skew-normal distribution with skewness parameter−λ′ρ/
√

1 + λ′λ(1− ρ2).
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The continuous component of the multivariate SSNM model is therefore

2φp

(
y;β′x,Ω

)
Φ
(
λ′Ω−1/2(y − β′x)

)
Φ

(
γ′x+ρΩ−1/2(y−β′x)√

1−ρ2

)
ΦSN

(
γ′x; 0, 1, −λ′ρ√

1+λ′λ(1−ρ2)

) . (4.19)

If ρ = 0 in (4.19), the multivariate skew-normal distribution is recovered. The

SSNM model can be derived from this generalization when the dimension p of the

outcome equation is 1. Similarly, the hidden truncation formulation of this model

is straightforward if we make use of equation 5.5 of Arnold and Beaver (2002).

The complete sample selection density of the multivariate SSNM has (4.19)

as its continuous component. The selection part is a binary regression with the skew-

normal link. One major challenge in using this model is how to model the covariance

structure over time and the estimation of all the skewness parameters from the

available data. We will examine the impact of boundedness of the scores on the

covariance structure in our future work. In the same vein, modeling simultaneously

the two prominent deviations from normality assumption (skewness and heavy-tail)

may be of interest. Although this is beyond the scope of this thesis, we show in

the next section that a model with underlying bivariate skew-t distribution can be

derived using the same approach that we used for the development of the SSNM

model.

4.3.2 Sample selection model with skew-t distribution

There is a noticeable pattern in the construction of the models in this chapter.

When the underlying distributional assumption is bivariate normal, the continuous

component of the sample selection density is from the ESN distribution. Marchenko

and Genton (2012) used a bivariate-t distribution and the continuous component is

an extended skew-t (EST) distribution (Arellano-Valle and Genton (2010)). When

the underlying distribution is no longer elliptical, as we’ve shown here, the continu-

ous component of sample selection density is still in the form given by (3.1) but the

derivation is more complicated. The model that we derive in this chapter used the

flexibility of the CSN distribution to construct the continuous component of sample

selection density.

A more general sample selection model can be described using an underlying

bivariate skew-t distribution. The advantage of this model is that it has the Heckman

(1976), Marchenko and Genton (2012), and the SSNM models as special cases. We

expect the model to capture skewness, heavier tails than the normal, mixtures of
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normal distributions, and some contaminated normal data sets. We define next a

skew-t distribution.

Definition 8. A p-dimensional random vector Y is said to have a skew-t distribu-

tion if its PDF is of the form

f(y) = 2tp(y; η)T1

(
λ′ω−1(y − ξ)

[
η + p

Q+ η

]1/2

; η + p

)
, (4.20)

where tp is the density of a p-dimensional t variate with η degrees of freedom:

tp(y; η) =
Γ((η + p)/2)

|Ω|1/2(πη)p/2Γ(η/2)
(1 +Q/η)(η+p)/2, (4.21)

where

Q = (y − ξ)′Ω−1(y − ξ).

The scalar parameter η > 0 denotes the degrees of freedom of the multivariate

t-distribution and Γ is the gamma function. The p-dimensional vector ξ is a location

parameter, Ω is a p×p covariance matrix and ω = diag(Ω)1/2. The skewing function,

T1(.; η + p), is a univariate t distribution function with η + p degrees of freedom.

The p-dimensional vector λ controls the skewness. A tool for the construction of

sample selection model with underlying bivariate skew-t distribution can easily be

developed.

Consider equation (2.18) but with an underlying multivariate t-distribution.

That is

Y? = µ+ ε1, ε1 ∼ tp(0; Ω, η)

S? = −ν +Dµ+ ε2, , ε2 ∼ tq(0; ∆, η),
(4.22)

where ε1 and ε2 are independent random vectors, and D(q × p) is an arbitrary

matrix, µ ∈ Rp, ν ∈ Rq, ∆(q × q) > 0, and η > 0. The joint distribution of Y? and

S? is (
Y?

S?

)
∼ tp+q

((
µ

−ν

)
,

(
Ω ΩD′

DΩ ∆ +DΩD′

)
, η

)
.

The conditional density (y?|s? > 0) after some algebra yields a closed skew-t

(CST) distribution CSTp,q(µ,Σ, D,ν,∆, η) with density

f(y) =
1

Tq(0;ν,∆ +DΩD′, η)
tp(y;µ,Ω, η)Tq(D(y − µ);ν,∆, η + p),
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where Tq(.;µ,Ψ, η) is the CDF of a q-dimensional t-distribution with mean µ ∈ Rq,
q × q covariance matrix Ψ and η degrees of freedom. The CST distribution can be

reparametrized to form the so-called unified skew-t (SUT) distribution introduced

in Arellano-Valle and Genton (2010). As it turns out, when η → ∞ in the CST

distribution, CSN distribution is obtained.

If we assume a bivariate skew-t distribution for the outcome and selection

equation, but restrict the skewness parameter to zero in the selection equation, we

can develop a new class of sample selection model. The continuous component of the

sample selection model is a form of the univariate extended skew-t distribution, EST

(see Arellano-Valle and Genton (2010)), but with an additional skewness parameter.

Arellano-Valle and Genton (2010) gave analytic proof that the EST distribution,

unlike the ESN, does not have a stationary point at λ = 0. We expect the additional

skewness parameter in the EST distribution not to induce stationarity at λ = 0 in

the model, and thus produce a more stable parameter estimates than the SSNM

model. In addition, the selection equation is a binary regression with the skew-t

link (see Kim (2002)).

4.4 Summary

We introduced a sample selection model with underlying bivariate skew-normal dis-

tribution which we called selection skew-normal model (SSNM). This model is more

flexible than the conventional sample selection model since it has an extra parameter

that regulates skewness and has conventional sample selection model as a special

case. Its moment estimator was derived using the link between skew models aris-

ing from selection and hidden truncation formulation of skew models. The moment

estimator was shown to extend Heckman two-step method. Maximum likelihood

estimation was considered using a Monte Carlo study to compare the model with

conventional sample selection models with moderate correlation (ρ = 0.5) and vary-

ing degree of skewness between 0 and 5. We also fixed λ to be 1 and 2, and considered

the effect of varying the correlation ρ under the exclusion restriction criteria (see

Tables A.1 and A.2 in Appendix A). The simulation showed that the SSNM model

outperforms the conventional sample selection models for all the skewness parame-

ters considered. The conventional sample selection model has a negligible advantage

when λ = 0 with smaller bias in the intercept of outcome equation. We also noted

that the conventional sample selection model breaks down as λ increases to 5 (which

is almost a folded normal distribution) and the SSNM works well if it converges.

The model is very promising even in the absence of exclusion restriction criteria.
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In addition, the model has good estimates of the intercept both in the selec-

tion and outcome equations and hence will give better predictions even when the

underlying process is bivariate normal. This model should perform better than the

conventional sample selection model in modeling heavier tailed data.

The model presented here is very simple to use and the likelihood function

can be easily coded in R software. Starting values can be obtained using the two-step

method (TS). However, we recommend obtaining a starting value for λ by fitting

the Azzalini skew-normal model (direct parametrization) to complete cases with

the intended covariates for the outcome equation. Further, the optimization routine

used was BFGS in R software but other numerical maximization algorithms can be

used as well (although we do not recommend the use of Nelder-Mead optimization

method which appears not to work well with the CDF of Azzalini’s skew-normal

distribution). We recommend the use of profile likelihood for λ to avoid convergence

to local maxima.

On the issue of model identification, the model is well identified in the sense

that for any Θ1 6= Θ2, f(y,Θ1) 6= f(y,Θ2), where Θ1 and Θ2 are model parameters.

Further, the observed information matrix is non-singular (see section A.1 in the

Appendix A for the elements of the observed information matrix). This is usually

the case with sample selection models since additional information comes into the

model through the selection process. However, in the absence of exclusion restriction

and with λ approaching infinity, the model is weakly identified. It is noteworthy that

inference about λ and ρ may not be feasible when the two parameters equal zero.

This is not related to the identification of the model parameters but the stationarity

of profile log-likelihood of λ and ρ at zero. In addition, the observed information

matrix is not singular when either λ or ρ is zero. Since the stationarity problem of λ

was inherited from the underlying Azzalini’s skew-normal distribution used, a more

flexible skew distribution (not based on the perturbation of normal kernel) can be

used and the use of sinh-arcsinh distribution of Jones and Pewsey (2009) will be

considered in chapter 6.

We noted that model (4.10) is more general than the one presented here.

However, it is computationally complicated. Apart from this, the parameter ρ is no

longer adequate to capture the underlying association. The model therefore needs

to be re-parameterized using correlation curves. In addition, since the marginal dis-

tribution of the observed data are known to be skew, copula based sample selection

models can be used. A bivariate Gaussian copula, similar to Lee (1983) model, but

with skew-normal and normal margins was compared with the SSNM model and

the results were shown to be similar. The stationarity of profile likelihood for λ
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at λ = 0 persisted and the surface of the profile likelihood of ρ remained flat in

the neighborhood of zero. These give further credence to the fact that the station-

arity problem is not peculiar to the SSNM model but to the underlying Azzalini

skew-normal distribution used.

To apply this model in practice, we recommend that the model is fitted

in conjunction with the conventional sample selection model. This can be used

to assess the degree of departure from symmetry. The model could be of bene-

fit in clinical trials and it has prospects in fields where observational studies are

conducted (econometrics, psychology, politics) and respondents need to complete

questionnaires.
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Chapter 5

A Unified Approach to

Multilevel Sample Selection

Models

The models proposed for the analysis of the NDI scores so far have not distinguished

between the two levels of non-response present in the data set. Unit non-response

occur when a subject declines participation in a study, and item non-response occur

when questions are skipped. We can regard the observed outcomes as the result of a

two level selection process. That is, both unit and item non-response simultaneously

affect the outcome of interest and both types of non-response are potentially corre-

lated. This distinction can be used to study factors that affect the two non-response

types independently and jointly. In this chapter, we consider the observed outcomes

as realizations from a non-truncated marginal of a truncated multivariate normal

distribution. The resulting density for the outcome is the continuous component of

the sample selection density, and has links with the CSN distribution. The CSN

distribution provides a framework which simplifies the derivation of the conditional

expectation and variance of the observed data. We use this to generalize the mo-

ment based Heckman’s two-step method to a multilevel sample selection model. A

simulation study is used to study finite sample performances of the moment and

likehood based estimators of the model. In addition, since the NDI scores are skew,

we propose an extension of the SSNM model of chapter 4, with skew outcomes and

two normally distributed selection processes.
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5.1 Multilevel Sample Selection Models

Multilevel sample selection arises when more than one selection process affects the

outcome of interest in a study. These models have been discussed in the literature in

various forms. Poirier (1980) investigated random utility models in which observed

binary outcomes do not reflect the binary choice of a single decision-maker, but

rather the joint unobserved binary choices of two decision-makers. This model was

further developed by Ham (1982). A slight modification of this model was considered

in Luca and Peracchi (2006) in which an extension of Poirier (1980) model was used

to jointly analyze items and unit non-response in survey data. Further application

of multilevel selection models in cross-sectional settings can be found in Bellio and

Gori (2003), Arendt and Holm (2006) and Rosenman et al. (2010).

Recall the regression model given in section 3.1, that is

Y ?
i = β′xi + σε1i, i = 1, . . . , N,

as regression model of interest, but now with n possible selection processes (not

necessarily hierarchical) given as

S?1i = α′1xi + ε2i

S?2i = α′2xi + ε3i

...

S?ni = α′nxi + ε(n+1)i,

where S1i = I(S?1i > 0), S2i = I(S?2i > 0),. . . , Sni = I(S?ni > 0). The usable

observations are the Yi = Y ?
i ∗ S1i ∗ S2i · · · ∗ Sni with density f(yi|xi, S1i = 1, S2i =

1, . . . , Sni = 1). This density is the continuous component of the multilevel sample

selection density. The discrete component is determined by the marginal distribution

of the selection mechanisms. Unlike in single selection process, the binary regression

is determined by the nature of the selection process.

When multilevel selection models are mentioned in the literature (economet-

ric literature in particular), what usually comes to mind is a two-level selection

process. This has an outcome equation (binary or continuous outcomes) and two

selection equations with trivariate Gaussian error distribution assumption. At the

end, a two-level extension of the Heckman two-step method is derived and used to

analyze the observed data. However, there are cases where more than two selection

processes can affect the outcome of interest. In some of these cases, the selection

mechanisms are combined to make the model more manageable and the complicated
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algebra required to write more than two-level Heckman selection method is avoided

in the process. In principle, the observed outcomes follow the CSN distribution

which can easily be constructed using the link between sample selection and skew

distributions of section 2.2 (hidden truncation or conditioning). Properties of the

CSN distribution can then be used to generalize multilevel sample selection models

to any number of selection processes in a straightforward way.

Without loss of generality, we use a two-level selection model to illustrate the

unification of multilevel sample selection problems into a distributional framework.

We begin by quantifying the overall effect of two nested non-response mechanisms

on the regression outcome of interest.

5.2 Mathematical formulation of the Model

In section 3.1, we showed that the continuous component of sample selection density

is an ESN density. Since the CSN density is a unifying class for the Azzalini (1985)

SN family, the ESN is necessarily a member. In fact, we wrote an ESN density

in a CSN form in section 3.4.1. Thus equation (3.2), the continuous component of

Heckman (1976) sample selection density, can be written as

f(y|x, S = 1) =
φ
(
y;β′x, σ2

)
Φ
(
ρ
σ

(
y − β′x

)
;−γ′x, 1− ρ2

)
Φ
(

0;−γ′x, 1
) ,

which has CSN form

(Y |x, S = 1) ∼ CSN1,1

(
β′x, σ2,

ρ

σ
,−γ′x, 1− ρ2

)
.

One can as well make an educated guess that the continuous component of

multilevel sample selection density is a CSN density using equation (2.18). What

we need to determine is the structure of the density in a sample selection settings.

We first look at statistical bias in two-level hierarchical selection problem and show

when the non-response processes is ignorable

5.2.1 Statistical bias in two-level sample selection problem

In this section, we present an expression that quantifies the overall non-response bias

in two-level sample selection model. The non-response mechanism under which the

bias vanishes is also described in a manner similar to the one discussed in Luca and

Peracchi (2006). The model is developed by assuming the two-level selection equa-
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tions correspond to unit and item non-response. We begin by extending equations

(4.1) and (4.2) with an additional selection equation,

S?2i = α′xi + ε3i, i = 1, . . . , N. (5.1)

Since we have two selection equations, we can take S1i = I(S?1i > 0) and S2i =

I(S?2i > 0). The usable observations are on Yi = Y ?
i S1iS2i.

Now, the interest is to estimate the conditional mean function of a random

outcome using data from a clinical study. Suppose at each time points, N patients

are expected to respond, then unit non-response may reduce the number of pa-

tients to N1 < N responding units. Further, non-response at item level may reduce

effective number of observations to N2 < N1. The loss of information due to miss-

ing observations results in efficiency loss relative to the ideal situation of complete

response.

It is logical to consider at each time point a sequential framework where

patients are first observed before they decide to answer specific item of the ques-

tionnaire. Let the indicator of unit response be S1, which is always observed, while

the indicator of item response be S2 which is observed conditional on S1 being

present. Since the observations are present when the indicators are greater than

zero, we can then describe the response process by π0 = Pr{S1 = 0} and π0|1 =

Pr{S2 = 0|S1 = 1} representing the probability of unit non-response and the proba-

bility of item non-response conditional on unit response respectively. Since Y is the

outcome of interest, we have using, the law of iterated expectations,

E(Y |S1 = 1)− E(Y ) = π0[E(Y |S1 = 1)− E(Y |S1 = 0)]. (5.2)

In addition,

E(Y |S1 = 1) = E(Y |S1 = 1, S2 = 1) + π0|1[E(Y |S1 = 1, S2 = 0)− E(Y |S1 = 1, S2 = 1)].

(5.3)

The difference between the conditional mean of Y for the fully responding

patients and the unconditional mean of Y for the complete response is the overall

non-response bias and is given as E(Y |S1 = 1, S2 = 1) - E(Y ). Substituting (5.3)

into (5.2) and rearranging gives

E(Y |S1 = 1, S2 = 1)− E(Y ) = π0[E(Y |S1 = 1)− E(Y |S1 = 0)] +

π0|1[E(Y |S1 = 1, S2 = 1)− E(Y |S1 = 1, S2 = 0)].
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Generally, the overall bias has two separate components that are proportional

to the probabilities of unit and item non-response respectively. There are 3 ways

by which the bias can be zero in the above equation. If there is neither unit nor

item non-response (π0 = π0|1 = 0), if both unit and item non-response are MAR

(E(Y |S1 = 1)= E(Y |S1 = 0) and E(Y |S1 = 1, S2 = 1)= E(Y |S1 = 1, S2 = 0)),

and when the bias terms due to unit and item non-response have opposite sign and

offset each other. Next, we consider a model that removes this bias.

5.2.2 Two-level selection models

Recall that the hidden truncation method of Arnold and Beaver (2002) and skew

distributions arising from selection of Arellano-Valle et al. (2006) were used to derive

the continuous component of sample selection density in section 3.1. The same

approach can be used here although the derivation of the conditional mean and

variance is complicated when there is more than one selection equation. The moment

generating function (mgf) of the CSN distribution can be used to simplify this.

Hidden truncation method

Suppose f(y, s1, s2) is the density of a trivariate normal random variable with mean

vector µ = (µ1, µ2, µ3)′ and covariance matrix

Σ =

 σ2 σρ12 σρ13

σρ12 1 ρ23

σρ13 ρ23 1

 . (5.4)

Suppose further that W = (Y, S1, S2)′ has joint densityf(w) = 1
C

1√
(2π)3|Σ|

e−1/2(w−µ)′Σ−1(w−µ), w ∈ R

= 0, otherwise

where R is a rectangle in 3-space; R: −∞ < y <∞, cs1 < s1 <∞ and cs2 < s2 <∞.

C is a normalizing constant (necessary to ensure that the density function integrates

to 1) given by

C =

∫
R

1

C

1√
(2π)3|Σ|

e−1/2(w−µ)′Σ−1(w−µ)dw.

This implies (Y, S1, S2) has a truncated trivariate normal distribution. S1 and S2 are

truncated below at cs1 and cs2 respectively. We are interested in the marginal dis-

tribution of Y , which is the only non-truncated random variable in this formulation.
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Using Cartinhour (1990), we can write the required density as,

f(y) =
1

C
e−1/2(

y−µ1
σ2

)2
∫ ∞
cs1

∫ ∞
cs2

1√
(2π)2|A−1

¬y |
e−1/2(w¬y−m(y))′A¬y(w¬y−m(y))dw¬y,

(5.5)

where w¬y = (s1, s2)′, A−1
¬y = Σ?

2 =

(
1− ρ2

12 ρ23 − ρ12ρ13

ρ23 − ρ12ρ13 1− ρ2
13

)
(this is the inverse

of the submatrix of the inverse of Σ when the row and column corresponding to y

is deleted), and m(y) is defined as m(y) = µ¬1 + (y−µ1/σ
2)k; with µ¬1 = (µ2, µ3),

and k = (σρ12, σρ13)′. We determine C and the double integral in equation (5.5).

Now, C can be written as a noncentral normal integral

Φ3


−∞cs1
cs2

 ,

∞∞
∞

 ,

µ1

µ2

µ3

 ; Σ

 .

When the above is centralized, we have

Φ3


 −∞
cs1 − µ2

cs2 − µ3

 ,

∞∞
∞

 ; Σ

 = Φ2

((
0

0,

)
,

(
cs1 − µ2

cs2 − µ3

)
; Σ2

)
, (5.6)

where Σ2 =

(
1 ρ23

ρ23 1

)
. Using properties of multivariate normal cumulative dis-

tribution function and the definition of m(y), the double integral reduces to

Φ2

((
σρ12

σρ13

)(y − µ1

σ2

)
;

(
cs1 − µ2

cs2 − µ3

)
,Σ?

2

)
. (5.7)

The required density is derived when equations (5.6) and (5.7) are substituted

in equation (5.5). The PDF is

φ(y;µ1, σ
2)Φ2(D(y − µ1);ν,Σ?

2)

Φ2(0;ν,Σ2)
, (5.8)

where 0 = (0, 0)′, D = (ρ12/σ, ρ13/σ)′, and ν = (cs1 − µ2, cs2 − µ3)′. It is easy to

see that Σ2 = Σ?
2 +Dσ2D′, and thus (5.8) belongs to the closed skew-normal (CSN)

family.

A plot of the PDF given by (5.8) is shown in Figure 5.1. The ‘CSN(Normal)’

represents the normal distribution as a special case of the CSN distribution. The
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Figure 5.1: Comparison of Close skew-normal densities

parameters are µ1 = 1, σ = 1, D = (0, 0)′, ν = (0, 0)′, and Σ?
2 =

(
1 0

0 1

)
. The

‘CSN(Skew-normal)’ is a skew-normal equivalence of CSN distribution with D =

(1, 2)′, and other parameters kept as in the normal case. The more general form of

the CSN is marked as ‘CSN(General)’ with ν = (−2, 4)′ and other parameters kept

as in the skew-normal, and it appears symmetric in Figure 5.1. The more general

CSN can be more or less skew depending on its parameters. Thus, the need for

model formulation in the general CSN family.

Arellano-Valle et al. (2006) equivalence of (5.8) can be obtained by restricting

cs1 & cs2 to be zero, and using regression parametrization µ1 = β′x, µ2 = γ′x and

µ3 = α′x. We then obtain,

φ(y;β′x, σ2)Φ2

(
D(y − β′x);

(
−γ′x
−α′x

)
,Σ?

2

)

Φ2

((
0

0

)
;

(
−γ′x
−α′x

)
,Σ2

) . (5.9)

The mathematical rigor in the derivation of (5.9) can be avoided using skew

distributions arising from selection.
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Skew distributions arising from selection method

Suppose we consider (4.1), the outcome equation and (4.2) and (5.1), the selection

equations such that the error terms are distributed normally with means zero and

covariance matrix given by (5.4). Then,YS1

S2

 ∼ N3


β
′x

γ′x

α′x


 σ2 σρ12 σρ13

σρ12 1 ρ23

σρ13 ρ23 1


 .

Now, (3.1) can be generalized to a two-level selection model as

f(y|x, S1 = 1, S2 = 1)) =
f(y|x)P (S1 = 1, S2 = 1|y, x)

P (S1 = 1, S2 = 1)
. (5.10)

The quantity f(y|x) is a proper PDF with a skewing function P (S1 = 1, S2 = 1|y, x)

and a normalizing function P (S1 = 1, S2 = 1) to ensure that the LHS (left-hand side)

of (5.10) integrates to 1. The marginal distribution of Y is f(y|x) = φ(y;β′x, σ2).

Similarly,

P (S1 = 1, S2 = 1) = 1− Φ2(−γ′x,−α′x; ρ23) = Φ2(γ′x, α′x; ρ23).

Using the conditional distribution properties of the normal distribution, P (S1 =

1, S2 = 1|y, x) becomes

Φ2

(
D(y − β′x);

(
−γ′x
−α′x

)
,Σ?

2

)
,

where D and Σ?
2 are as defined in section 5.2.2. When appropriate substitutions are

made in equation (5.10), the resulting density becomes:

φ(y;β′x, σ2)Φ2

(
γ′x+ρ12( y−β

′x
σ

)√
1−ρ212

,
α′x+ρ13( y−β

′x
σ

)√
1−ρ213

; ρ23−ρ12ρ13√
1−ρ212

√
1−ρ213

)
Φ2(γ′x, α′x; ρ23)

, (5.11)

which is the standardized version of (5.9). Equation (5.11) is equivalent to equation

10 given in Ahn (1992).

In general, a CSN density is the continuous component of the multilevel

sample selection density. In the bivariate case, it is given by equation (5.11). The

discrete component of the log-likelihood function can be described by a bivariate

probit model since the marginal distribution of the selection equation is a bivariate
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normal distribution. Roughly speaking, the normalizing constant of the continuous

component will turn out to be the observed component of the discrete process which

is Φ2(γ′x, α′x; ρ23) in this case. There are various bivariate models that fit into this

framework depending on the assumption about the observability of S1 and S2. This

ranges from separate observability of both S1 and S2 to observability of S1S2 only

(see Meng and Schmidt (1985)).

The extension of this result to more than two-level selection problem is

straightforward. For instance, in the three-level selection problem, the continuous

component of the sample selection density is a CSN density with dimensions p=1

and q=3. The normalizing constant of this density turns out to be the completely

observed part of the discrete component, which is a trivariate probit model with

level of observability determined by context.

5.3 Moments and Maximum Likelihood estimator for

multilevel selection model

The fact that the continuous component of the multilevel sample selection density is

from a well established CSN family results in a straightforward formula for its mean

and variance. These models turn out to be generalizations of Heckman’s two-step

method.

To derive the conditional mean and variance in two-level selection problem,

we make use of the mgf of the CSN distribution. The mean is then given by:

E(Y |x, S?1 > 0, S?2 > 0) = β′x+ σρ12Λ1(θ) + σρ13Λ2(θ), (5.12)

where

Λ1(θ) =
φ(γ′x)Φ

(
α′x−ρ23γ′x√

1−ρ223

)
Φ2(γ′x, α′x; ρ23)

and Λ2(θ) =
φ(α′x)Φ

(
γ′x−ρ23α′x√

1−ρ223

)
Φ2(γ′x, α′x; ρ23)

.

Λ1(θ) and Λ2(θ) are the bivariate inverse Mills ratio. This equation extends Heck-

man’s two-step method (see equation (4.4)) to two-level selection problems. A stan-

dard bivariate probit model is fitted depending on what is assumed about the ob-

servability of S1 and S2 and γ & α are estimated. These are used to construct Λ1(θ̂)

and Λ2(θ̂) for cases with S1 and S2 greater than zero. These quantities are taken

as additional covariates in (5.12) and fitted by least squares. The coefficient of the

additional covariates give estimates of σρ12 and σρ13 respectively.

A consistent estimate of the variance can be derived from the conditional
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variance given by:

var(Y |x, S?1 > 0, S?2 > 0) =σ2 − σ2ρ2
12(γ′x)Λ1(θ)− σ2ρ2

13(α′x)Λ2(θ)

+
φ2(γ′x, α′x; ρ23)

Φ2(γ′x, α′x; ρ23)

[
2σρ12σρ13 − ρ23(σ2ρ2

12 + σ2ρ2
13)
]

−
(
σρ12Λ1(θ) + σρ13Λ2(θ)

)2

=σ2 + υ.

(5.13)

The error terms of the selected sample are heteroscedastic. A generalization of

Heckman’s estimator for σ2 given by

σ2 = (S −
∑

υ̂i)/N2,

where S is the sum of squared residuals from the second-step regression, N2 is the

size of the complete cases, and υi equals υ̂i after parameter estimates have been

substituted for their true values, can be used to get consistent estimator for σ2.

The derivation of equations (5.12) and (5.13) require evaluation of derivatives

of multinormal integrals. Suppose we have a q-dimensional normal random vector

S, with mean ν and a positive definite matrix Ωq×q whose elements are ωi,j . The

derivative of Φ(S;ν,Ω) with respect to any Si is given by (see Dominguez-Molina

et al. (2004))

∂

∂si
Φq(s;ν,Ω) = φ(Si; νi, ωii)Φq−1

(
s¬i;ν¬i+Ωi¬iω

−1
ii (Si−νi),Ω¬i¬i−ω−1

ii Ωi¬iΩ
′
i¬i

)
,

where s¬i = (s1, . . . , si−1, si+1, . . . , sp)
′, Ω¬i¬i is the q−1 × q−1 matrix derived from

Ωq×q by eliminating its i-th row and its i-th column and Ωi¬i is the q − 1 vector

derived from the i-th column of Ω by removing the i-th row term. The second

derivatives is given as

∂2

∂si∂sj
Φq(s;ν,Ω) =φ2(s[i,j];ν[i,j],Ω[i,j])Φq−2

(
s¬[i,j] − Ω[i,j]¬[i,j]Ω

−1
[i,j](s[i,j] − ν[i,j]);

ν¬[i,j],Ω¬[i,j]¬[i,j] − Ω[i,j]¬[i,j]Ω
−1
[i,j]Ω

′
[i,j]¬[i,j]

)
,

where the definition is as before but with the components (i, j) taken simultaneously

and φ2(.; ., .) denotes the PDF of a standard bivariate normal distribution. By

convention, Φ0 = 1.
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The log-likelihood function takes the form:

l(β, σ, γ, α, ρ12, ρ13, ρ23) =
N∑
i=1

(
S1iS2i

[
ln f(yi|xi, S1i = 1, S2i = 1)

]
+S1iS2i

[
ln Φ2(γ′xi, α

′xi; ρ23)
]

+S1i(1− S2i)
[
ln Φ2(γ′xi,−α′xi;−ρ23)

]
+(1− S1i)S2i

[
ln Φ2(−γ′xi, α′xi;−ρ23)

]
+(1− S1i)(1− S2i)

[
ln Φ2(−γ′xi,−α′xi; ρ23)

])
.

(5.14)

5.3.1 Monte Carlo Simulation

The finite-sample performance of the models in section 5.3 are studied in two parts-

the moment based estimator (5.12) and the maximum likelihood estimator (5.14).

The outcome equation is Y ?
i = 0.5 + 1.5xi + ε1i, where xi

iid∼ N(0, 1) and i =

1, . . . , N = 1000. The two-level selection equations are given as S?1i = 1 + 0.4xi +

0.3wi + ε2i and S?2i = 1 + 0.6xi + 0.7wi + ε3i, where wi
iid∼ N(0, 1). The error

terms are generated from a trivariate normal distribution with covariance matrix

Σ =

 1 0.7 0.5

0.7 1 0.5

0.5 0.5 1

. This construction implies that the variance of the outcome

model is 1.

We only observe values of Y ?
i when both S?1i and S?2i are greater than zero.

With this representation, roughly 30% of the observations were censored. Roughly

70% censored observations was generated by changing the intercept terms in the

selection equations S?1i and S?2i to -0.1 and -0.2 respectively. In both cases, we allow

for full observability in the bivariate process. Pilot simulation results show that

there is very little gain in imposing exclusion restriction between the two selection

equations, (although this is recommended in practice due to the linearity of the

bivariate inverse Mills ratio on a wide range of its support) and as such we did not

impose this criteria. Since the moment based method is very common for modeling

multilevel sample selection models in practice, we consider four alternative models

in this case

• 2TS: Model that generalizes Heckman selection model and accounts for selec-

tivity induced by the selection equations and further impose correlation of the

error terms in the selection equations (5.12)
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• 2TS0: Model that accounts for selection bias generated by the selection equa-

tions, but assumes that the errors in the selection equations are independent

• TS: Classical Heckman two-step method where the selection equations are

collapsed to a single indicator for missingness (4.4)

• OLS: Ordinary least square regression using complete cases.

The use of full information maximum likelihood approach to multilevel sam-

ple selection problems is not common in the literature. This is due in part to

the robustness of the moment based estimator (5.12), to deviation from normal-

ity. Nonetheless, we investigate its performance when the underlying normal as-

sumption holds in a simulation study under three model specification. The model

labeled 2SNM is the maximum likelihood counterpart of 2TS where correlation

is imposed on the error terms of the two selection equations. The SNM1 and

SNM2 models are the classical Heckman selection where the two selection equa-

tions are collapsed into a single indicator for missingness. Since we have two selec-

tion equations, and we do not know the true underlying equation out of the two,

the SNM1 model is assumed when the first selection equation is the correct model

(S?1i = 1 + 0.4xi + 0.3wi + ε2i) and SNM2 model is assumed for the second selection

equation (S?2i = 1 + 0.6xi + 0.7wi + ε3i).

Table 5.1 is the results of the simulation when the likelihood based estimator

is used. When interest is not in the selection process, the results shows that collaps-

ing the indicator for missingness and the use of classical Heckman model (SNM1 &

SNM2) gives consistent parameter estimates for the outcome as well as the 2SNM

model. However, correct specification of the selection model may be difficult in the

classical Heckman model since more than one equation now governs the selection

process and different covariates might feature in the equations. In addition, it is

known that high degree of censoring usually leads to efficiency loss as compared to

full data. This however, does not affect the consistency of the parameters as long as

the model is correctly specified. In fact, the consistency of model parameters under

70% censored observation, as shown in our simulation result, does not appear worse

than the 30% case (although there is increase in the variance of the former). How-

ever, results for moment based estimates (see Table 5.2) showed that a high level of

censoring might affect the consistency of the estimates. Parameter estimates from

OLS are not consistent.
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Table 5.1: Simulation results (multiplied by 10,000) for the likelihood based estimator of
two-level selection model.

Bias MSE
2SNMa SNM1b SNM2c 2SNM SNM1 SNM2

m = 30%
β0 28 62 62 61 44 44
β1 -94 7 7 23 21 21
σ -37 -115 -115 17 18 18
γ0 47 -3717 29 1405
γ1 3 1442 30 235
γ2 21 2456 25 630
α0 38 -3717 33 1405
α1 20 -558 32 58
α2 56 -1544 36 265
ρ12 -1352 729 1013 171
ρ13 99 1271 253 279
ρ23 9 32

m = 70%
β0 701 544 544 397 309 309
β1 -156 -99 -99 50 49 49
σ -49 -331 -331 52 57 57
γ0 -2 -5212 17 2739
γ1 10 1415 21 226
γ2 90 2359 19 584
α0 -2 -4212 22 1797
α1 21 -585 27 60
α2 77 -1641 30 297
ρ12 -1183 -818 917 206
ρ13 -38 1182 247 279
ρ23 1 22

aMaximum likelihood estimator for two-level selection with correlated selection errors.
bHeckman selection model with the two-level selection collapsed into the first non-response process.
cHeckman selection model with the two-level selection collapsed into the second non-response process.
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Table 5.2: Simulation results (multiplied by 10,000) for the moment based estimator of
two-level selection model.

Bias MSE
2TSa 2TS0b TSc OLS 2TS 2TS0 TS OLS

m = 30%
β0 18 159 212 2842 656 898 74 819
β1 -2 -19 -52 -1188 91 121 27 155
σ 370 4326 -165 -1667 123 5440 26 300
ρ12 -2305 -3471 6947 10817
ρ13 -489 -1999 813 2676
ρ23 14 34

m = 70%
β0 193 464 742 6857 5943 10811 391 4733
β1 -45 -44 -150 -1821 301 540 55 358
σ 1481 8934 -383 -2711 1051 19577 67 771
ρ12 -2923 -4247 7079 9836
ρ13 -899 -2682 704 2774
ρ23 23 22

aTwo-step method for two-level selection with correlated selection errors.
bTwo-step method for two-level selection with independent selection errors.
cClassical Heckman two-step method.

Application to the NDI scores

We focus on the measurement at months 8 and use the two-level sample selec-

tion model to jointly analyze the two non-response processes in the NDI scores.

In line with the study design, 599 patients are expected to return the question-

naire. After removing covariates with missing values, the sample size consists of 567

patients. Out of this, 77 patients returned the questionnaire blank (genuine unit

non-response). Vernon (2009) recommended that patients with only 2 missed items

should be considered complete, with mean imputation used for adjustment. Rather

than discarding these patients, we categorize them as item non-respondents with

43 patients falling into this category. Of course, unit non-respondents are also item

non-respondents, making patients with item non-response to be effectively 120. The

fully responding units (complete cases) are 447 patients.

The questions to answer are whether unit and item non-response are related

and whether both are related to the outcome of interest. To answer the first ques-

tion, we consider a bivariate probit model with sample selection for unit and item

and estimate the correlation parameter. This model is also used to identify possible

predictors of non-response in the unit and item equations. Unlike the discrete com-

ponent of (5.14), the log-likelihood function for a bivariate probit sample selection
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model is

l(γ, α, ρ23) =
N∑
i=1

(
S1iS2i

[
ln Φ2(γ′xi, α

′xi; ρ23)
]

+ S1i(1− S2i)
[
ln Φ2(γ′xi,−α′xi;−ρ23)

]
+(1− S1i)

[
ln Φ(−γ′xi)

])
.

(5.15)

A simulation study (not reported here) showed that if model (5.15) is cor-

rectly specified, correct specification includes imposing exclusion restriction on the

covariates in the two equations of the unit and item, the model parameters are

consistent. In addition, one can test the hypothesis of conditional independence

between unit and item non-response using Wald test or the likelihood ratio test.

To fit the two step model (5.12) to a two-level selection problem with sample selec-

tion between unit and item non-response, the probit model needed in the bivariate

inverse Mills ratio is the one given by equation (5.15). This approach was taken

by Luca and Peracchi (2006). We consider the maximum likelihood approach to

this problem using the NDI scores. Patients may feel that the treatment they re-

ceived is of no benefit, and thereby discontinue treatment. This will lead to unit

non-response rather than item non-response. We therefore include treatment as a

possible predictor of unit non-response.

Table 5.3: Probit model for dropout at months 8.

Missing at 8 months

Bivariate Probit Individual Probit
Estimate S.E. p-value Estimate S.E. p-value

int(u)a 1.085 0.005 0.000 1.019 0.124 0.000
age 0.002 0.000 0.000 0.017 0.005 0.002
sex(f) 0.015 0.006 0.011 0.117 0.138 0.398
physio 0.008 0.006 0.161 0.067 0.134 0.616

int(i)b 1.599 0.045 0.000 0.841 0.100 0.000
age -0.020 0.000 0.000 0.001 0.005 0.914
sex(f) -0.302 0.008 0.000 -0.062 0.124 0.616
ρ23 0.078 0.147 0.595

aIntercept for unit non-response.
bIntercept for item non-response.

The results in Table 5.3 show that there is conditional independence between

unit and item non-response for the scores. This was further affirmed by the likelihood
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ratio test that compares the maximized values of the log-likelihood in (5.3) with the

sum of the log-likelihoods for two simple probit models for unit and item non-

response separately.

Table 5.4: Fit of Two-level selection models (ρ23 6= 0) & ρ23 = 0), and Heckman selection
model to the NDI scores at 8 months.

2SNM(ρ23 6= 0) 2SNM(ρ23 = 0) SNMa

Estimate S.E. p-value Estimate S.E p-value Estimate S.E p-value

Selection Equations

int(u)b 0.872 0.005 0.000 0.872 0.005 0.000 0.804 0.115 0.000
age -0.008 0.000 0.000 -0.008 0.000 0.000 0.001 0.004 0.938
sex(f) -0.129 0.005 0.000 -0.127 0.005 0.000 -0.069 0.125 0.578
physio 0.044 0.005 0.000 0.042 0.005 0.000 0.085 0.122 0.489
int(i)c 4.263 0.482 0.000 4.333 0.273 0.000
age 0.012 0.035 0.745 0.004 0.018 0.830
sex(f) 1.584 11.032 0.878 1.984 30.090 0.949
ρ23 0.656 0.810 0.419

Outcome Equation

int -0.294 0.055 0.000 -0.342 0.061 0.000 -0.260 1.498 0.862
age 0.096 0.001 0.000 0.094 0.001 0.000 0.082 0.027 0.003
sex(f) 0.658 0.031 0.000 0.641 0.031 0.000 0.571 0.722 0.429
physio -0.354 0.030 0.000 -0.354 0.030 0.000 -0.418 0.716 0.560
base 0.628 0.002 0.000 0.626 0.002 0.000 0.626 0.052 0.000
wad2 -0.072 0.041 0.081 -0.107 0.041 0.009 -0.101 0.976 0.918
wad3 -0.487 0.056 0.000 -0.524 0.056 0.000 -0.517 1.343 0.701
σ 7.453 0.031 0.000 7.377 0.036 0.000 7.388 0.850 0.000
ρ12 -0.500 0.016 0.000 -0.456 0.022 0.000 -0.460 0.503 0.361
ρ13 -0.055 7.554 0.994 0.289 0.767 0.707

aSelection model where unit and item non-response are collapsed into a single indicator for non-response.
bIntercept for unit non-response.
cIntercept for item non-response.

Table 5.4 contains the results of a two-level sample selection model with

ρ23 6= 0 & ρ23 = 0, and the classical full information Heckman sample selection

model where a single indicator is used for unit and item non-response. The ‘wad’

variable stands for Whiplash Associated Disorder (Whiplash describes both the

mechanism of injury and the symptoms caused by that injury). It is a categorical

variable with grade 3 the most severe neck disability and grade 1 the least before the

patient enters the study. The results in the columns with ρ23 6= 0 are reported for
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completeness sake. This result also strengthen the earlier conclusion about condi-

tional independence of unit and item non-response reported in Table 5.3. Under the

model with conditional independence (ρ23 = 0), separate probit models are used for

unit and item missingness for the discrete components of the log-likelihood function

given in (5.14). In addition, the classical sample selection model also adduce to the

fact that the selectivity generated by unit and item non-response is not different

from zero. The classical Heckman model (SNM) also supported the hypothesis of

no selection bias (ρ12 has p-value = 0.361). The parameter estimates in the outcome

equation of the 2SNM(ρ23 = 0) agrees closely with estimates in the SNM model, a

further justification that the missingness on the unit and item can be ignored.

5.4 Multilevel extension of the SSNM model

It is also possible to derive a model similar to the SSNM model of chapter 4 in a

multilevel selection framework. Suppose we have a joint process where the outcome

Y is skewed and the two selection models have skewness parameters zero. The joint

distribution can be written in a CSN form. That is,YS1

S2

 ∼ CSN3,1

{
µ = (β′x, γ′x, α′x),Σ =

 σ2 σρ12 σρ13

σρ12 1 ρ23

σρ13 ρ23 1

 , D = (λ/σ, 0, 0), ν = 0,∆ = 1

}
.

The conditional probability P (S1 = 1, S2 = 1|y, x) is

CSN2,1

{
µ =

[
γ′x+ ρ12

(y − β′x
σ

)
, α′x+ ρ13

(y − β′x
σ

)]′
,Σ = Σ?

2, D
? = (0, 0)′,

ν = λ
(y − β′x

σ

)
,∆ = 1

}
,

where Σ?
2 is as defined in section 5.2.2. Since the skewness parameters are zero, we

have a normal distribution. This turns out to be the bivariate normal distribution

given in equation (5.11). Similarly, the marginal selection process P (S1 = 1, S2 = 1)

has a bivariate skew-normal distribution

SN2


(
γ′x

α′x

)
,

(
1 ρ23

ρ23 1

)
,

 −λ(ρ12−ρ13ρ23)
(1−ρ223+λ[ρ212+ρ213−2ρ12ρ13ρ23])

−λ(ρ13−ρ12ρ23)
(1−ρ223+λ[ρ212+ρ213−2ρ12ρ13ρ23])

 .
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The continuous component of a multilevel SSNM model has density

2
σφ
(
y−β′x
σ

)
Φ
(
λ(y−β′x)

σ

)
Φ2

(
γ′x+ρ12( y−β

′x
σ

)√
1−ρ212

,
α′x+ρ13( y−β

′x
σ

)√
1−ρ213

; ρ23−ρ12ρ13√
1−ρ212

√
1−ρ213

)
P (S1 = 1, S2 = 1)

. (5.16)

The normalizing constant P (S1 = 1, S2 = 1) determines the nature of the binary

regression model for the discrete process, which is a bivariate binary regression model

with skew-normal link. The correlations and the skewness parameter λ contribute

to skewness in the model.

It is very unlikely that the likelihood function is tractable in this case. Even

in the case where the outcome and the two selection equations are normally dis-

tributed, there is possibility of model misspecification and identification issues. Our

future work will examine the use of computationally efficient algorithm to estimate

parameters in this model and CSN related models.

In principle, one can construct an extension of the CSN distribution with

p-dimensional skew-normal and q-dimensional normal random vectors. This model

will have all the models we have discussed so far in this thesis as special cases.

However, an equivalence of equation 2.18 in the multivariate skew-normal (MSN)

distribution (Azzalini and Dalla Valle, 1996) is not readily available. In fact the

joint distribution of independent MSN random vectors is not a MSN distribution.

A multivariate MSN distribution which satisfies this property is the one proposed

by Gupta et al. (2004). One approach to derive the CSN extension is by adding p-

dimensional random vector from MSN distribution to an independent q-dimensional

random vector from the truncated multivariate normal distribution which involves

manipulating complicated algebra.

An alternative approach is to consider a joint distribution of MSN in the

CSN form. That is, a CSNp+q,1 random vector with p-dimensional MSN and q-

dimensional normal components, as demonstrated in the matrix of skewness pa-

rameters. Conditioning and marginalization in this representation, and the use of

equation (2.17) will result in the required extension. If p = 1 and q = 2, we have

the extension of the SSNM model discussed here. The SSNM model of chapter 4

corresponds to the case with p = q = 1.

5.5 Summary

Classical sample selection models and their multilevel counterparts have been in

the literature for some time. We have therefore, not claimed any originality in this
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proposal. What we have done however, is to unify two streams of literature on this

matter and propose a framework for easy generalization to any number of selection

equations in a straightforward manner, and which to the best of our knowledge has

not been proposed elsewhere.

The econometric literature usually assumes a joint Gaussian error distribu-

tion for the outcome and the selection equations. By using properties of truncated

normal distribution, the moment-based estimators of sample selection model is de-

rived. On the other hand, the statistics literature contains studies on the closed

skew-normal (CSN) distribution. Although the CSN distribution is elegant and a

generalization of the Azzalini skew-normal distribution, its use is limited in like-

lihood based methods due to identifiability issues. When used in sample selection

framework, the CSN becomes identifiable due to extra information from the selection

process.

We have shown in this thesis that the sample selection models can be con-

structed either through the use of hidden truncation approach or conditioning in the

multivariate normal distribution, and that the latter is a special case of the former

in sample selection framework. In addition, it was established that the resulting

distribution is the CSN distribution. Using the properties of CSN distribution, mo-

ment based estimator for any number of selection equations and with one outcome

equation can readily be defined. This gives a unified method for studying more

than two-level selection problems which is the current practice in econometric lit-

erature. We also emphasize that the density of the sample selection is comprised

of a continuous component (CSN) and a discrete component. The model fitted to

the discrete component is determined by the marginal distribution of the selection

equations. If the marginal distribution is normal, the degree of observability in the

discrete process determines the probit model to be fitted and was shown to depend

on context.

A simulation study was conducted to assess the performance of the moment

and the likelihood based estimators under two-level selection process. Consistent

parameter estimates for the outcome models were obtained under the two methods.

For the moment based method, the degree of censoring is slightly important. How-

ever, the model with 70% censored observations is comparable in terms of precision

to the one with 30% censored observation under the likelihood method. In the like-

lihood method, collapsing the selection process into a single non-response indicator

gave less bias in the parameter estimates for the outcome model. The single se-

lection model needs to be correctly specified (a daunting exercise in practice), and

there should be no interest in the two selection equations for this to be a reasonable
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model. Of course, the results from the classical Heckman model using the collapsed

single non-response indicator tends not to work well when the Gaussian assumption

is violated.

The NDI scores were analyzed using a multilevel sample selection model in

which unit and item non-response (is assumed to) simultaneously affect the out-

come of interest. Initial analysis showed that the unit and item non-response are

conditionally independent (ρ23 = 0). A model based on this assumption showed

that the dependence between the unit missingness and the outcome model (ρ12),

and the dependence between the item missingness and the outcome model (ρ13) are

of opposite signs. These offset each other, implying that there may be no selection

biases. This was affirmed by using Heckman two-step method, where indicators for

the unit and item non-response were collapsed to a single non-response indicator.

On model identifiability, the Fisher information matrix for two selectivity

criteria was derived in Ahn (1992) and was shown to be nonsingular. Even in the

more than two-level cases, we expect the model to be identifiable. The continuous

component (CSN) would necessarily be non-identifiable in general, but will become

identifiable from the additional information from the discrete component. However,

it is advisable that exclusion restriction is used in the model regardless of the level of

observability of the discrete process. The model has better prospects in observational

studies and surveys where multilevel selection process need to be analyzed jointly

and with information on likely variables that could potentially be responsible for a

particular selection process included in the analysis.
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Chapter 6

Copula-based sample selection

model with sinh-arcsinh

distribution as marginals

In chapter 4, we proposed a sample selection model with underlying bivariate skew-

normal distribution, the SSNM model. The complexity of the model was reduced by

the restriction of the skewness parameter in the selection equation to zero, and max-

imum likelihood method was used for parameter estimation. Although the skewness

parameter of the selection equation was set to zero, the marginal distribution of the

selection process is still a univariate skew-normal distribution. We also noted that

the correlation parameter ρ in the underlying bivariate process is not adequate to

capture association between the outcome and the selection process because of its

non-elliptical nature. In particular, the profile likelihood of the skewness parameter,

λ has stationarity at λ = 0.

To circumvent these problems, we present in this chapter the use of copulas

in sample selection settings by first showing that the principle of skew distributions

arising from selection given in section 2.2, and in particular, equation (2.17) is

also the basis of all copula-based sample selection models. Since copulas allow

arbitrary marginals, we allow the marginal distribution for the outcome model to

follow an asymmetric subfamily of the sinh-arcsinh distribution proposed by Jones

and Pewsey (2009), and the selection process to be normally distributed. This

model has the advantages of tractability, non-stationarity of profile likelihood if the

skewness parameter equals zero and non-singularity of the Fisher information matrix

for any parameter value in the model. A simulation study is used to study the finite

sample performances of the copula-based models. We also investigate the power of
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the Wald and LRT of the hypothesis of symmetry. Motivated by the NDI scores,

we assess the ceiling and floor effects of the bounds on the skewness in the data

using truncated skew distributions in a sample selection framework. We conclude

the chapter by constructing a multilevel selection model using a trivariate Gaussian

copula with arbitrary marginals and show that the models in chapter 5 are a special

case of this model.

6.1 Copula Theory

Copulas have become a popular tool for multivariate modeling in many applied

fields where multivariate dependence structure exists and the validity of the usual

multivariate normality assumption is suspect. There is fast growing literature in

copula theory (see Joe (1997), Nelsen (2006)). Copulas have been applied in a

wide range of problems in biomedical studies (Wang and Wells, 2000; Lambert and

Vandenhende, 2002; Escarela and Carriere, 2003). In engineering, copulas are used

for hydrological modeling and environmental data (Zhang and Singh, 2006; Genest

and Favre, 2007). Applications of copula in sample selection models appeared in

much econometric literature (Lee, 1983; Prieger, 2002; Smith, 2003; Genius and

Strazzera, 2004).

6.1.1 Basic definitions and theorems

A copula is a function C : [0, 1]p → [0, 1] which satisfy the following properties

1. C(u1, . . . , uj−1, 0, uj+1, . . . , up) = 0 (grounded property);

C(1, . . . , 1, uj , 1, . . . , 1) = uj for all j ∈ {1, . . . , p}, uj ∈ [0, 1];

2. C(u1, . . . , up) is non-decreasing in each component uj ;

3. For all u11, . . . , up1, u12, . . . , up2 ∈ [0, 1]p with ui1 ≤ ui2 the following rectangle

inequality holds∑2
i1=1 . . .

∑2
ip=1

(
−1
)i1+...+ip

C(u1i1 , . . . , upip) ≥ 0.

Properties 1-3 ensures that a copula is the distribution function of a random vec-

tor in Rp with uniform (0,1) marginals. Property 1 is necessary for the existence

of the uniform marginal distributions. Properties 2 and 3 are the usual properties

expected of a distribution function. If F1(x1), . . . , Fp(xp) are univariate distribu-

tion functions, then C(F1(x1), . . . , Fp(xp)) is a multivariate distribution function

with marginals F1(x1), . . . , Fp(xp) because Uj = Fj(Xj), j = 1, . . . , p, are uniformly
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distributed random variables. Although the definition of copula uses standard uni-

form marginals, arbitrary marginals can be used in general. We present next a

theorem which provides an easy way to form multivariate distributions from known

marginals.

Theorem 4. (Sklar) If F is a distribution function on Rp with one-dimensional

marginal distribution functions F1(x1), . . . , Fp(xp), then there exists a copula C so

that

F (x1, . . . , xp) = C(F1(x1), . . . , Fp(xp)). (6.1)

If F is continuous, then C is unique and is given by

C(u1, . . . , up) = F (F−1
1 (u1), . . . , F−1

p (up)),

for u = (u1, . . . , up) ∈ Rp, where F−1
i = inf{x : Fi(x) ≥ u}, i, . . . , p, is the general-

ized inverse of Fi.

Conversely, if C is a copula on [0, 1]p and F1(x1), . . . , Fp(xp) are distribution

function in R, then the function defined in (6.1) is a distribution function on Rp

with one-dimensional marginal distribution functions F1(x1), . . . , Fp(xp). Another

fundamental property of a copula is boundedness below and above by Frechet lower

and upper bounds, defined as

FL(x1, . . . , xp) =max
[ p∑
j=1

Fj(xj)− p+ 1, 0
]

FU (x1, . . . , xp) =min
[
F1(x1), . . . , Fp(xp)

]
,

for all x1, . . . , xp ∈ R̄p, where R̄p = [−∞,+∞]. This definition implies that the

upper bound is always a distribution function while the lower bound is a distribution

function only in the bivariate case p = 2. For p > 2, FL may be a distribution

function under some conditions (Joe, 1997).

6.1.2 Joint and Conditional density functions

For general multivariate distribution, the derivative of the distribution results in its

density function. Similar approach can be taken to derive the density function of

any copula C with continuous and differentiable marginal distribution. Accordingly,

the joint density function is the product of the marginal densities and the copula
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density, i.e.

f(x1, . . . , xp) = f1(x1) . . . fp(xp).c(F1(x1), . . . , Fp(xp)),

where fi(xi) is the density corresponding to Fi and c is the copula density, which is

defined as

c =
∂pC

∂F1(x1), . . . , ∂Fp(xp)
,

(see Kaarik and Kaarik (2009)). The distribution function can also be written in

terms of the density as

C(u1, . . . , up) =P (U1 ≤ u1, . . . , Up ≤ up)

=

∫ u1

0
. . .

∫ up

0
c(s1, . . . , sp) ds1, . . . ,dsp.

(6.2)

If a copula is not absolutely continuous, the joint density does not exist. For the

purpose of our work, the idea of conditional distribution is essential. The conditional

density of copula C can be easily defined if we take into account the joint density

defined earlier and basic definition of conditional density, and is given as follows:

f(xp|x1, . . . , xp−1) =
f(x1, . . . , xp)

f(x1, . . . , xp−1)

=
f1(x1) . . . fp(xp).c(F1(x1), . . . , Fp(xp))

f1(x1) . . . fp−1(xp−1).c(F1(x1), . . . , Fp−1(xp−1))

=fp(xp)
c(F1(x1), . . . , Fp(xp))

c(F1(x1), . . . , Fp−1(xp−1))
,

(6.3)

where c(F1(x1), . . . , Fp(xp)) and c(F1(x1), . . . , Fp−1(xp−1)) are corresponding copula

densities.

Aas (2005) categorized copulas into two groups, implicit and explicit copu-

las. If the p-dimensional integral in equation (6.2) is implied by well-known mul-

tivariate distribution function, we have implicit copulas. For explicit copulas, the

p-dimensional integral has a simple closed form. Two examples of implicit bivariate

copulas are the Gaussian and Student’s t copulas, which are given respectively (in
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bivariate form) as

C(u1, u2; ρ) =Φ2

(
Φ−1(u1),Φ−1(u2); ρ

)
=

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π
√

1− ρ2

{
exp

[
−(x2

1 − 2ρx1x2 + x2
2)

2(1− ρ2)

]}
dx1 dx2,

(6.4)

and

C(u1, u2; ρ, η) =

∫ t−1
η (u1)

−∞

∫ t−1
η (u2)

−∞

1

2π
√

1− ρ2

{
1+

(x2
1 − 2ρx1x2 + x2

2)

η(1− ρ2)

}−(η+2)/2

dx1 dx2,

where Φ−1(.) is the inverse of the standard univariate normal CDF, t−1
η is the inverse

of the standard univariate student-t CDF with η degrees of freedom, expectation 0

and variance η/(η − 2), η > 2 and ρ (−1 ≤ ρ ≤ 1) is the Pearson’s correlation pa-

rameter. These are elliptical copulas, and non-elliptical copulas can be constructed

as well.

Clayton copula and Gumbel copula are two examples of explicit copulas,

and they belong to the Archimedean family of copula functions. This family has

the general form

C(u1, u2) = γ−1
(
γ(u1) + γ(u2)

)
,

where γ−1 is the inverse of the strict generator γ(u) : [0, 1] → [0,∞]. The depen-

dence parameter δ is embedded in the functional form of the strict generator γ,

which is continuous, convex and decreasing function. The unique definition of an

Archimedean copula depends on the generator used, which must be a monotone

function.

Clayton copula is an asymmetric copula, exhibiting greater dependence in

the negative tail than in the positive tail. It is given by the generator γ(u) =
1
δ (u−δ − 1), 0 < u < 1, and is of the form

C(u1, u2; δ) =
(
u−δ1 + u−δ2 − 1

)−1/δ
, δ ≥ 0.

Perfect dependence is obtained if δ → ∞, while δ → 0 implies independence. The

Gumbel copula is also an asymmetric copula, but unlike the Clayton copula, it

exhibits greater dependence in the positive tail than in the negative. This copula is
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given by

C(u1, u2; δ) = exp
[
−
(
− log uδ1 − log uδ2

)1/δ]
, δ ≥ 1,

with the generator (− log u)δ. Perfect dependence is obtained if δ →∞, while δ = 1

implies independence. Details about tail dependence of the copulas discussed can be

found in Aas (2005). The copula PDFs and h-functions for the bivariate student-t,

Clayton and Gumbel copulas are presented in section A.3 in Appendix A.

The simplest copula function is the product copula which corresponds to

independence case, and it has the form

C(u1, u2) = u1u2,

but the Gaussian copula is perhaps the most famous copula. Its density takes the

form:

c(u1, u2; ρ) =φ2

(
Φ−1(u1),Φ−1(u2); ρ

) 2∏
i=1

1

φ(Φ−1(ui))

=
1√

1− ρ2
exp

{
−ρ

2[Φ−1(u1)2 + Φ−1(u2)]− 2ρΦ−1(u1)Φ−1(u2)

2(1− ρ2)

}
,

where φ2(.) is the PDF of standard bivariate normal distribution. The conditional

distribution of the second component given the first in (6.4) is ∂C(u1, u2; ρ)/∂u1,

and is the same as the h-function (Aas et al., 2009)

h(u2|u1; ρ) = Φ

(
Φ−1(u2)− ρΦ−1(u1)√

1− ρ2

)
. (6.5)

The function h(u1|u2; ρ) can be equivalently defined. The evaluation of derivatives

of multinormal integral can be carried out using the equation given in Dominguez-

Molina et al. (2004) for general multivariate normal case, or the use of equation

4 given in Genton et al. (2011) for the standard multivariate normal distribution.

Based on this, an equivalent function can be derived for any p-dimensional Gaussian

copula. For a trivariate Gaussian copula given by

C(u1, u2, u3; Σ) = Φ3

(
Φ−1(u1),Φ−1(u2),Φ−1(u3); Σ

)
,
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where

Σ =

 1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

 .

The derivative ∂C(u1, u2, u3; Σ)/∂u1 is given as

h(u2, u3|u1) = Φ2

[(
Φ−1(u2)− ρ12Φ−1(u1)√

1− ρ2
12

)
,

(
Φ−1(u3)− ρ13Φ−1(u1)√

1− ρ2
13

)
; τ23|1

]
,

(6.6)

where τ23|1 is the partial correlation between u2 and u3 given u1, and it is given by

ρ23 − ρ12ρ13√
1− ρ2

12

√
1− ρ2

13

.

Equations 6.5 and 6.6 forms the basis of the models that will be discussed in subse-

quent sections.

The Gaussian copula is flexible in that it allows for equal degree of posi-

tive and negative dependence that includes both Fréchet bounds in its permissible

range. However, it is asymptotically independent. This means, regardless of the

assumed correlation, extreme tail events appear to be independent in each margins

because the density function is thin at the tails. In situations where asymmetric

tail dependence is suspected, other measures of dependence such as Kendall’s τ and

Spearman’s ρ can be easily computed from ρ, and like ρ, they take value on [-1,1]

which are familiar to applied researchers.

6.2 Sample selection and Gaussian copula

The use of copulas in sample selection framework dated back to the paper by Lee

(1983), although he neither mentioned nor gave any reference to its use. He used

Gaussian copula, and several authors have extended this ideas to other copulas.

Prieger (2002) used a copula approach to model incidence and duration of hospitali-

sation using the Farlie-Gumbel-Morgenstern system of bivariate distributions (Kotz

et al. (2000), section 44.13). Genius and Strazzera (2004) also relax the assumptions

of marginal and joint normality. An expository discussion on modeling sample selec-

tion using Archimedean copulas was given in Smith (2003). For general references

on copulas, see Nelsen (2006).

Arguably, a lot of work has been done on the use of copulas in sample selection

settings, none that we are aware of explicitly derive the copula sample selection
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model and link it with the general sample selection model. The use of truncated

distributions to model bounded scores in sample selection framework is also not

adequately studied.

Recall the regression models given in section 3.1, that is

Y ?
i = β′xi + σε1i, i = 1, . . . , N,

as regression model of interest, and selection mechanism given as

S?i = γ′xi + ε2i, i = 1, . . . , N,

where all model parameters are as defined in section 3.1. Now we assume that the

error distributions have arbitrary marginals and are ‘coupled’ by a Gaussian copula

C(F1(ε1i), F2(ε2i); ρ) = Φ2

(
Φ−1(F1(ε1i)),Φ

−1(F2(ε2i)); ρ
)
,

where F1 is the error distribution of the outcome margin with corresponding density

f1 and F2 is the error distribution of the selection process with density f2. One can

easily write

F1(ε1i) = F1

(Y ?
i − β′xi
σ

)
and F2(ε2i) = F2(S?i − γ′xi).

Using the general equation (3.1) and properties of Gaussian copula, we have

f(y|x, S = 1; Θ) =

1
σf1

(
y−β′x
σ

)
Φ

{
Φ−1

(
F2(γ′x)

)
+ρΦ−1

(
F1

(
y−β′x
σ

))
√

1−ρ2

}
F2(γ′x)

, (6.7)

where Θ is the parameters from the models F1 and F2, and

f(y|x) ≡ 1

σ
f1

(y − β′x
σ

)
,

P (S? > 0|y, x) ≡ Φ

{
Φ−1

(
F2(γ′x)

)
+ ρΦ−1

(
F1

(
y−β′x
σ

))
√

1− ρ2

}
, derived from the h-function,

P (S? > 0) ≡ F2(γ′x).

Equation (6.7) is the general continuous component of sample selection den-

sity from bivariate Gaussian copula with arbitrary marginals. To examine this,

suppose F1(ε1i) and F2(ε2i) are normally distributed, then (6.7) reduces to (3.2).
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The discrete component can be determined from the marginal distribution of the

selection process. In this case, the distribution of F2(γ′x) is used. The binary

regression is of the general form:

P (S = s) = {F2(γ′x)}s{1− F2(γ′x)}1−s.

Roughly speaking, the normalizing constant of the continuous density (6.7) will

be the observed component of the binary regression. If F2 is a CDF of normal

distribution, the binary regression becomes the usual probit model.

The log-likelihood function is

l(Θ) =
N∑
i=1

{
Si ln f1

(yi − β′xi
σ

)
+ Si ln Φ

[
Φ−1

(
F2(γ′x)

)
+ ρΦ−1

(
F1

(
y−β′x
σ

))
√

1− ρ2

]

−Si lnσ + (1− Si) ln
(

1− F2(γ′xi)
)}

.

Two-step estimation methods have been proposed in copula literature in lieu of

the MLE estimation approach. Joe (1997) proposes the Inference Functions for

Margins (IFM) which involves maximizing the likelihoods of the marginal models

separately. The estimated margins are then combined into a multivariate model to

estimate the association parameter. A reverse of the IFM method called Canonical

Maximum Likelihood (CML) was proposed by Genest et al. (1995). In the CML

method, empirical distribution functions of the margins are first used to estimate

the association parameters, and the parameters of the margins are subsequently

estimated. However, neither the IFM and CML are appropriate in sample selection

settings because the model fitted to the outcome utilizes only selected population

in that margin, and thus introduce selection bias.

There are competing skew-normal distributions that can be used as F1 for

the outcome model. The distribution that readily comes to mind is the Azzalini

(1985) (or Azzalini-type) SN distribution generated from hidden truncation process

by perturbation of the normal kernel. Applied statisticians often look at the SN dis-

tribution as the panacea for modeling continuous non-normal data. A possible rea-

son for this is because simple and common nonlinear operations such as truncation,

conditioning and censoring carried out on normal random variables lead invariably

to versions of skew-normal random variables. The SN distribution therefore appears

to be an appropriate model for modeling hidden truncation.

Although researchers are more familiar with the Azzalini SN model, one can-

not be sure if there is any hidden truncation present in the underlying process. Body
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Mass Index (BMI) data is necessarily skew, but not because of hidden truncation.

Even in data where hidden truncation is suspected, the goal has always been to

obtain a good fit to the data but not to model the hidden truncation process it-

self (see Arnold et al. (1993)). Since this is usually the goal of applied researchers,

the choice of skew-normal model used may be unimportant as long as the model

provides adequate fit to the data and inference is not hampered. Further details

on the Azzalini-type SN distributions can be found in chapter 2. We describe next

the sin-arcsinh (SHASH) distribution, which is the proposed marginal distribution

for the outcome model in this chapter. The SN models are used for comparison

purposes and to form links with earlier chapters.

6.3 Sinh-Arcsinh distribution (SHASH)

Several problems are associated with Maximum Likelihood (ML) estimation for the

SN distribution. The three well known are:

1. multiple maxima on the likelihood surface (Pewsey, 2000)

2. a solution to the score equations always exists associated with λ = 0 (Azzalini,

1985; Arnold et al., 1993)

3. the expected information matrix is singular when λ = 0 (Azzalini, 1985).

The centered parametrization was used to circumvent the last of these problems.

However, no satisfactory solution has has been found for the second problem. In

fact Pewsey (2006) showed that the second problem is not peculiar to SN distri-

bution but for any skew distribution generated by the perturbation of the normal

kernel. Instead of the use of the Azzalini-type SN distribution with their associated

inferential problems, other class of skew distribution can be used.

Recently, Jones and Pewsey (2009) proposed the sinh-arcsinh transformation

as a general means of generating classes of distributions containing symmetric as

well as asymmetric cases with varying tailweight.

Definition 9. A random variable Yε,δ, is said to have a sinh-arcsinh normal distri-

bution if its PDF can be written as

fε,δ(y) =
1√

2π(1 + y2)
δCε,δ(y) exp{−S2

ε,δ(y)/2},

where Z = Sε,δ ≡ sinh
(
δsinh−1(y) − ε

)
and Cε,δ(y) = cosh

(
δsinh−1(y) − ε

)
=

{1 + S2
ε,δ}1/2.
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Z is the sinh-arcsinh transformation, ε is the skewness parameter with ε > 0

corresponding to positive skewness, δ measures the tailweight with δ < 1 yielding

heavier tails than the normal distribution and δ > 1 yielding lighter tails. It is

easy to see that f0,1(y) = φ(y), is a standard normal distribution. We will keep the

normal tailweight δ = 1 and focus on the skewness parameter ε (i.e. fε,1(y)). This

is the asymmetric subfamily of the SHASH distribution used in Rosco et al. (2011)

to generate skew-t distribution. We still refer to this as the SHASH distribution

in what follows. The corresponding CDF is written as Fε,δ(y) = Φ{Sε,1(y)}, where

Sε,1(y) = cosh(ε)y − sinh(ε)(1 + y2)1/2. This is used to scale the SHASH PDF in

order to derive the truncated version of this distribution as was explained in section

3.4.1.

Unlike the SN density where the introduction of skewness parameter changes

the weight in one of the tails, the SHASH density retains two-normal like tails

when skewness parameter is introduced. The scale-location extension is of the form

η−1fε,1{η−1(y − ξ)}. Analogous to the SN distribution, the parameter ξ is not the

mean of the distribution but a function of it. For further details on the SHASH

distribution, we refer the reader to Jones and Pewsey (2009).
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Figure 6.1: Comparison of SHASH densities.

Figure 6.1 shows the densities corresponding to 4 different positive skew-

ness. The plot reinforces the skewness parameter ε satisfying the skewness ordering

100



mention in Jones and Pewsey (2009) for fixed δ. We emphasis that the SHASH

and the SN models are different, although it may be somewhat possible to relate

the magnitude of the skewness parameter ε, for the SHASH model and λ, for the

SN model using Arnold and Groeneveld (1995). Figure 6.4 shows the q-q plots of

SHASH(ε = 1.0) and SN(λ = 1.0) margins from a bivariate Gaussian copula with

correlation 0.5 and normal margins. The degree of deviation from normality is more

pronounced for ε = 1 than λ = 1. This conclusion is supported by the contour plots

in Figures 6.2 and 6.3.
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Figure 6.2: Contour plots of SHASH
distribution with ρ = 0.5 between
marginals.
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Figure 6.3: Contour plots of SN
distribution with ρ = 0.5 between
marginals.

6.3.1 Monte Carlo Simulation

In this section we study finite sample properties of the MLEs for SHASH and SN

copula based sample selection models. We generated the data in the same way as

the simulation scenarios given in chapters 3 and 4.

Exploration of SHASH model using Profile likelihoods

We first explore the likelihood surface of the parameters in the SHASH model using

profile likelihood on artificially generated data. This will help to study uncertainty in

maximum likelihood estimates. To make a fair comparison between the SHASH and
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Figure 6.4: Q-Q plots of SHASH(ε = 1.0) and SN(λ = 1.0) margins from a bivariate
Gaussian copula with correlation 0.5 and normal margins.

the SN models, the errors were generated from a bivariate normal distribution. We

make use of the selection equation S?i = 1+xi+1.5wi+ε2i with exclusion restriction

(recall that the outcome model is Y ?
i = 0.5 + 1.5xi + ε1i, correlation ρ = 0.5, and

standard deviation σ = 1). In summary, the model parameters for data generation

are Θ = (β′ = (0.5, 1), γ′ = (1, 1, 1.5), σ = 1, ρ = 0.5, and ε = λ = 0).

Table 6.1 shows the results of fitting the SHASH, SN, and the correct model,

selection normal model (SNM) to the generated data. The three models gave a good

fit to the data although the the skewness parameter λ for the SN model is poorly

estimated. The SHASH model, according to the log-likelihood value (-1273.72), is

the best fitting model (by a very small margin). It fits better than the correct

SNM model that generated the data. The Wald test for the hypothesis of symmetry

agrees closely with the data generation process with the skewness parameters in

the SHASH and the SN models nonsignificant at 5% level of significance. A LRT

for symmetry between SHASH and the SNM model also support this conclusion

(p-value =0.842). Note that the LRT cannot be carried out between the SN and

the SNM model.

Figures 6.5-6.8 are the profile likelihoods for the parameters in the SHASH,

SN and SNM models. The profile likelihood for λ is very flat in the neighborhood

of zero. An approximate 95% likelihood ratio confidence interval is wide (-1.25,
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Table 6.1: Fit of SHASH model, SN model, and classical Heckman model (SNM) to
a sample selection dataset with bivariate normal error distribution.

SHASH SN SNM
Estimate S.E. p-value Estimate S.E p-value Estimate S.E p-value

Selection Equation

int 0.999 0.073 0.000 1.003 0.073 0.000 0.999 0.073 0.000
x 1.093 0.080 0.000 1.097 0.080 0.000 1.091 0.080 0.000
w 1.453 0.094 0.000 1.461 0.094 0.000 1.455 0.090 0.000

Outcome Equation

int 0.545 0.093 0.000 0.277 0.669 0.679 0.538 0.053 0.000
x 1.520 0.045 0.000 1.526 0.045 0.000 1.525 0.045 0.000
σ 1.033 0.029 0.000 1.063 0.166 0.000 1.030 0.029 0.000
ρ 0.336 0.107 0.002 0.334 0.106 0.002 0.330 0.106 0.002
ε&λ -0.009 0.055 0.870 0.324 0.859 0.706 - - -
Loglik -1273.72 -1273.76 -1273.74

1.07). Not only is the interval very wide, the likelihood surface possibly has multiple

maxima as well. The profile likelihood for λ shows that it attains maximum with

the value -1273.71, and three values of λ (-0.450, -0.475, -0.500) correspond to this

value. It should be noted that the SN model is sensitive to initial values, but

this sensitivity appears to only affect the estimation of λ. For the SHASH model

however, the bias in the estimation of ε, its skewness parameter, is small. The

likelihood surface is very steep and its interval is rather precise (-0.12,0.07) with

corresponding maximum likelihood -1273.70. The corresponding ε, is -0.025, which

is not far from the estimated -0.009 in the full model.

Monte Carlo study

We carry out a full simulation study with 1000 replications using the SHASH, SN,

SNM models, and the Heckman two-step method (TS). The error terms are gen-

erated from a bivariate Gaussian copula with SHASH distribution as the marginal

distribution for the outcome with ε= 0, 0.25, 0.5 and 1.0. We include simulation

results from the SN models for completeness sake only as the SHASH and the SN

models are not comparable except when ε = 0. Table 6.2 shows the results of the

simulation under these models in the presence of the exclusion restriction. The bias

in the estimates of skewness parameters when ε = 0 is lower in the SHASH model

than the SN, which support our earlier observation in Table 6.1. The outcome mod-
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Figure 6.5: Profile likelihood for ε
using SHASH model. Data gener-
ated from a bivariate normal distri-
bution with ρ = 0.5.
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Figure 6.6: Profile likelihood for λ
using SN model. Data generated
from a bivariate normal distribution
with ρ = 0.5.

els are generally better estimated under the SHASH model than any of the other

models. However, the estimate of the selection part of the model is poor. Similar

observations can be seen in Table 6.3 in the absence of exclusion restriction.

Test of hypothesis of symmetry in SHASH models

We investigate the performance of two tests for testing hypothesis of symmetry in

the SHASH model when used as an outcome model in a bivariate Gaussian copula

with normal selection process. The tests under consideration are the Wald test of

the hypothesis H0 : ε = 0 and the LRT of symmetry which has χ2
1 distribution.

The data is generated as before but we restrict attention to the exclusion restriction

scenario. We consider varying sample sizes (N = 500, 1000) and varying correlation

(ρ = 0.0, 0.1, 0.3, 0.5 and 0.7). The nominal level used is 0.05.

When the errors are uncorrelated and N = 1000, the LRT maintains correct

nominal value. The performances of the Wald test are poorer when the correlation

is above 0.5 for N = 500 and N = 1000. In these cases, the LRT maintains nominal

value, especially when N = 1000 (see Table 6.4). Tables 6.5 contains powers of the

test of hypothesis of symmetry using Wald and LRT. The LRT is a powerful test

for symmetry for large sample size (N = 1000) and the skewness parameter ε > 0.2.
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Table 6.2: Simulation results (multiplied by 10,000) in the presence of exclusion
restriction.

Bias MSE
SHASH SN SNM TS SHASH SN SNM TS

ε = 0.0
β0 -16 -100 -1 2 67 31 24 28
β1 26 23 -3 -5 18 18 18 19
γ0 85 75 67 73 57 56 50 51
γ1 79 67 52 59 59 58 59 60
γ2 148 134 98 106 99 98 93 9
σ -23 -7 -9 -7 9 9 9 9
ρ 40 33 -6 -21 83 83 84 113
ε -12 87 - - 26 13 - -

ε = 0.25
β0 21 -5936 3296 3381 84 3819 1115 1174
β1 64 -28 53 10 21 23 22 22
γ0 212 -152 39 76 67 73 51 53
γ1 215 -201 14 85 71 80 62 65
γ2 309 -183 10 138 118 134 99 101
σ -10 3959 553 535 10 1683 41 39
ρ 108 -118 242 -5 87 117 114 131
ε -33 - - - 35 - - -

ε = 0.5
β0 38 -5819 6779 6972 96 3597 4636 4899
β1 53 -80 119 21 21 38 31 28
γ0 298 20 5 76 90 141 51 53
γ1 300 1 -57 85 94 155 64 65
γ2 436 54 -126 138 162 218 109 101
σ -24 7182 1870 1825 15 5287 365 348
ρ 49 -264 451 -38 98 207 152 140
ε -18 - - - 44 - - -

ε = 1.0
β0 333 -2992 15238 15720 265 1054 3320 4790
β1 71 -137 294 69 31 56 78 57
γ0 709 -121 -54 76 267 151 52 53
γ1 695 -216 -172 85 267 175 71 65
γ2 103 -205 -346 138 486 295 141 101
σ 131 14997 7038 6919 99 22684 4994 4824
ρ -32 -979 704 -126 153 394 224 152
ε -157 - - - 185 - - -

105



Table 6.3: Simulation results (multiplied by 10,000) in the absence of exclusion
restriction.

Bias MSE
SHASH SN SNM TS SSNM SN SNM TS

ε = 0.0
β0 197 103 154 49 105 84 84 124
β1 -117 -124 -121 36 67 63 62 89
γ0 61 61 66 66 35 35 38 38
γ1 52 54 100 101 47 47 52 52
σ -19 -19 -18 59 13 13 12 23
ρ -403 -414 -427 -237 500 466 452 651
ε -30 71 - - 29 1 - -

ε = 0.25
β0 134 -5906 2606 3365 130 3886 809 1279
β1 -3 -315 651 15 76 107 142 97
γ0 73 17 -140 32 37 39 38 36
γ1 62 -10 -329 57 50 53 69 49
σ 46 4283 982 666 15 1940 123 71
ρ -176 -1076 1457 -166 490 803 781 684
ε -62 - - - 34 - - -

ε = 0.5
β0 64 -5911 5027 6887 148 3962 2728 4926
β1 55 -93 1720 77 80 197 459 120
γ0 75 -90 -605 32 39 52 76 36
γ1 63 -144 -1247 59 51 80 239 49
σ 67 7629 2935 2017 19 5923 908 443
ρ -74 -819 3020 -123 451 1120 1549 681
ε -56 - - - 39 - - -

ε = 1.0
β0 939 163 11555 15479 01291 5234 13869 24327
β1 723 1786 4066 220 845 1233 2106 242
γ0 -92 -843 -1878 35 134 226 417 35
γ1 -249 -1511 -3244 63 230 596 1215 49
σ 1670 14123 9300 7263 1109 20642 8776 5355
ρ 813 867 3954 -113 1075 1859 2301 679
ε -1465 - - - 915 - - -
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Figure 6.7: Profile likelihood for ρ
using SHASH and SN model. Data
generated from a bivariate normal
distribution with ρ = 0.5.
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Figure 6.8: Profile likelihood for σ
using SHASH and SN model. Data
generated from a bivariate normal
distribution with ρ = 0.5.

Application to the NDI scores

We apply the copula models to the NDI scores at month 8 in this section. Since the

outcomes are bounded, it may be of interest to evaluate the effect of the boundedness

on parameter estimates, and most importantly, its implications on inherent skewness

in the data set. To achieve this, we first consider a case where the outcome model has

a truncated distribution for the SHASH and SN models but with normal selection

marginals (see section A.4 in Appendix A for coding). The second case is the

unrestricted space for the outcomes, that is, the SHASH and the SN models are non-

truncated. Table 6.6 contains the results of the truncated SHASH and SN models

in the interval [0,50], while Table 6.7 shows the results of the non-truncated models.

The two tables gave contradictory conclusions on the importance of skewness in

the data. Table 6.6 suggested that the data only appear to be skew because of the

bounds, and that the inherent skewness is not important when the bounds in the

data are taken into account. However, the skewness parameters in the SHASH and

the SN models become significant when the obviously restricted data set is ‘forced’

on the whole real line. Even in terms of fit, the truncated models have better

fits than their respective non-truncated models. For instance, the log-likelihood

value for the truncated and untruncated SHASH models are -1424.94 and -1453.21
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Table 6.4: Empirical significance levels (as %) of the tests of symmetry for the
nominal significance level α = 0.05 in the SHASH model.

N = 500 N = 1000
ρ Wald LRT Wald LRT

0.0 4.7 5.4 4.8 5.0
0.1 5.3 5.2 5.0 4.8
0.3 4.2 5.1 4.8 4.7
0.5 3.6 5.1 4.1 5.0
0.7 3.5 4.7 3.7 5.1

Table 6.5: Powers (as %) of the tests of symmetry for the nominal significance level
α = 0.05 in the SHASH model.

N = 500 N = 1000
ρ Wald LRT Wald LRT

ε = 0.1

0.0 25.2 25.7 45.6 44.7
0.1 24.6 24.5 44.6 44.3
0.3 24.0 24.8 43.6 42.9
0.5 24.1 24.9 42.8 42.7
0.7 24.7 25.0 42.6 42.1

ε = 0.2

0.0 71.6 72.3 94.8 95.5
0.1 72.0 72.7 95.5 95.4
0.3 71.0 71.3 95.2 95.1
0.5 69.4 69.6 94.5 94.7
0.7 69.9 69.4 94.4 94.4

ε = 0.25

0.0 88.3 87.9 99.4 99.5
0.1 86.7 87.4 99.5 99.6
0.3 86.3 86.8 99.2 99.4
0.5 86.7 86.5 99.1 99.6
0.7 86.5 86.8 99.1 99.4

respectively. As expected, parameter estimates for the SHASH and SNM model in

Table 6.6 are similar since the skewness parameter is not different from zero. This

is not the case in Table 6.7.

A comparison of the SN model in Table 6.7 with the SSNM model in Table

4.4 of chapter 4 shows that the parameter estimates for the outcome models are

similar. The estimate of skewness parameter λ, in the models are 1.552 and 1.537

respectively, and both are significant. The treatment effect is not significant in both

models. Notice that the correlation ρ is not significant in Table 6.7 but significant

in Table 4.4 under the Wald test (although LRT is not significant, p-value = 0.437).

Both SN and the SSNM models are possibly misspecified by not taking into account

the bounds in the data.
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Failure in taking into account bounds in a data set is not the only problem.

Ignoring the effect of selection process in a model when it is present can also inflate

type 1 error. Consider the truncated skew-normal (TSN) model of chapter 3. The

truncation points are taken into account, yet skewness is present in the data. The

truncation points were also taken into account in Table 6.6 but with additional

information from the selection process. The skewness parameter λ is no longer

significant in this case. This further emphasis the relationship between selection

and skewness and the importance of dealing with them simultaneously when they

are suspected to be present in a data set.

Table 6.6: Fit of copula-based Sinh-archsinh (SHASH), Skew-normal (SN), and
Selection-normal model (SNM) sample selection models to the NDI scores at 8
months. The corresponding outcome models are truncated at [0,50].

SHASH SN SNM
Estimate S.E. p-value Estimate S.E p-value Estimate S.E p-value

Selection Equation

int 0.834 0.102 0.000 0.827 0.103 0.000 0.829 0.103 0.000
age 0.022 0.006 0.000 0.023 0.006 0.000 0.023 0.006 0.000
sex(f) 0.336 0.131 0.011 0.351 0.134 0.009 0.347 0.133 0.009

Outcome Equation

int -3.857 1.282 0.003 -7.037 2.052 0.001 -3.891 1.293 0.003
age 0.109 0.031 0.001 0.105 0.031 0.001 0.107 0.031 0.001
prev 0.889 0.055 0.000 0.864 0.052 0.000 0.872 0.051 0.000
physio 1.370 0.757 0.071 1.219 0.738 0.099 1.274 0.738 0.085
σ 7.227 0.603 0.000 7.597 0.854 0.000 6.904 0.404 0.000
ρ 0.769 0.082 0.000 0.719 0.010 0.000 0.737 0.086 0.000
ε&λ -0.078 0.099 0.433 0.693 0.518 0.182 - - -

Loglik -1424.94 -1425.11 -1425.26

6.4 Multilevel Sample Selection

Recall the models

Y ?
i = β′xi + σε1i, i = 1, . . . , N,
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Table 6.7: Fit of copula-based Sinh-archsinh (SHASH), Skew-normal (SN), and
Selection-normal model (SNM) sample selection models to the NDI scores at 8
months. The corresponding outcome models are untruncated.

SHASH SN SNM
Estimate S.E. p-value Estimate S.E p-value Estimate S.E p-value

Selection Equation

int 0.828 0.115 0.000 0.822 0.109 0.000 0.835 0.100 0.000
age 0.024 0.006 0.000 0.025 0.006 0.000 0.024 0.006 0.000
sex(f) 0.363 0.156 0.020 0.379 0.144 0.009 0.335 0.129 0.010

Outcome Equation

int 1.261 0.852 0.140 -3.553 0.896 0.000 0.799 0.621 0.199
age 0.031 0.031 0.320 0.069 0.032 0.034 0.086 0.023 0.000
prev 0.670 0.035 0.000 0.678 0.035 0.000 0.687 0.035 0.000
physio 0.717 0.528 0.175 0.766 0.534 0.152 0.887 0.538 0.100
σ 5.450 0.453 0.000 7.621 0.548 0.000 6.166 0.292 0.000
ρ -0.288 0.591 0.626 0.528 0.448 0.239 0.794 0.076 0.000
ε&λ 0.236 0.082 0.004 1.552 0.517 0.003 - - -

Loglik -1453.21 -1452.87 -1455.03

as regression model of interest, and selection mechanisms given as

S?i =γ′xi + ε2i, i = 1, . . . , N,

S?2i =α′xi + ε3i, i = 1, . . . , N,

where S1i = I(S?1i > 0), S2i = I(S?2i > 0) and Yi = Y ?
i S1iS2i. Suppose the error

terms are arbitrary and can be ‘coupled’ using a trivariate Gaussian copula. That

is,

C(F1(ε1i), F2(ε2i, F3(ε3i); Σ) = Φ3

(
Φ−1(F1(ε1i)),Φ

−1(F2(ε2i)),Φ
−1(F3(ε3i)); Σ

)
,

where Σ is as defined in section 6.1.2 and F1 is the error distribution of the outcome

margin with corresponding density f1, and F2 and F3 are the error distributions

of the selection processes with densities f2 and f3. Using the link between sample

selection and skew distribution, one can write

f(y|x, S1 = 1, S2 = 1; Θ) =

1
σf1

(
y−β′x
σ

)
Φ2

(
A,B; τ23|1

)
C
{
F2(γ′x), F3(α′x); ρ23

} , (6.8)
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where τ23|1 is as defined in section 6.1.2, and

A =

{
Φ−1

(
F2(γ′x)

)
+ ρ12Φ−1

(
F1

(
y−β′x
σ

))
√

1− ρ2
12

}
, B =

{
Φ−1

(
F3(α′x)

)
+ ρ13Φ−1

(
F1

(
y−β′x
σ

))
√

1− ρ2
13

}
.

Equation (6.8) can be extended readily to more than two selection equations. The

model for selection is governed by the bivariate Gaussian copula C
{
F2(γ′x), F3(α′x); ρ23

}
.

In particular, if the error distribution in (6.4) and (6.4) follows trivariate Gaussian

distribution then, F1(ε1i), F2(ε2i) and F3(ε3i) are normally distributed marginally,

and the model reduces to the model discussed in chapter 5. In this case, the selection

model is a bivariate probit model.

The generalization of copula sample selection model to multilevel settings

can be carried out for any multivariate copulas that is differentiable. The main

issue is to derive the h-function, and for the copulas to have extension beyond the

bivariate form.

6.5 Summary

We have shown in this chapter that the link between sample selection and skew

distribution can be extended to copula based sample selection models. The copula

representation of sample selection models have the advantage that it allows differ-

ent model specification for the marginals and great flexibility in the specification of

the association parameters. This prompted us to consider a flexible class of skew

distribution of Jones and Pewsey (2009). Since the focus of the thesis is on model-

ing skewness in data sets subjected to selective reporting, we have focused on the

asymmetric subfamily of this distribution, which we referred to as SHASH model.

This model was used as the marginal model for the outcomes. We assumed nor-

mal distribution for the margin of selection process throughout. This margins are

assumed to be ‘coupled’ by the bivariate Gaussian copula.

We remark that the choice of a bivariate Gaussian copula was motivated

by its flexibility in that it allows for equal positive and negative dependence that

includes the Fréchet bounds in its permissible range. In fact a measure of association

that takes value on [-1,1], the correlation ρ in this case, is what is easily interpretable

to applied researchers as a measure of linear association. Of course, other copulas

with this range of association, which can also capture asymmetry in real data, can

be constructed. In addition, the use of Gaussian copula allows direct comparison

between the models proposed in chapters 4 and 5 with the model in this chapter.
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In section 6.1.2, we emphasized the importance of the conditional distri-

bution in both explicit and implicit copulas. This distribution turns out to be the

h-functions for conditional copulas discuss in Aas et al. (2009). With the h-function,

the continuous component of the sample selection density can be easily constructed.

The selection process is then determined from the marginal distribution of the selec-

tion process. This was illustrated with equation (6.7), and it is very general for any

differentiable bivariate copulas with arbitrary margins. The use of Azzalini (1985)

(SN) model was also investigated as a plausible outcome model.

An attempt to gain insight into finite sample properties of the MLEs for

the SHASH and the SN models was partially successful. Although the data sets

were generated using the SHASH model as marginal, yet the selection parts still

have some bias. This is why we investigated powers of the tests of hypothesis of

symmetry rather than selection bias, even though the latter is usually of interest in

sample selection framework. The impact of bounds on skewness was investigated

using truncated versions of the SHASH and the SN distributions as models for the

outcomes. The result underscores the importance of bounds and adjustments for

selection bias on skewness and possible inflated type-1 error.

112



Part II

Sensitivity Analysis for

Recurrent Event Data with

Dropout
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Chapter 7

Sensitivity Analysis for

Recurrent Event Data Trials

subject to informative Dropout

The studies that motivated this work seek to analyze processes which generate events

repeatedly over time. Such processes are referred to as recurrent event processes.

Examples include seizures in epileptic studies, flares in gout studies or occurrence

of cancer tumors.

Interest lies in understanding the underlying event occurrence process. This

includes the investigation of the rate at which events occur, the inter-individual

variation, and most importantly, the relationship between the event occurrence and

covariates such as treatment. One considerable challenge in analyzing recurrent

event data arises when a large proportion of patients discontinue before the end of

the study, e.g. due to adverse events, leading to partially observed data. Any analy-

sis of such data relies on untestable assumptions regarding the post-discontinuation

behavior of patients that drop out. Regulatory agencies are therefore increasingly

asking for sensitivity analyses which assess the robustness of conclusions across a

range of different assumptions. Sophisticated sensitivity analyses for continuous

data, e.g. using the pattern-mixture model approach, are being increasingly per-

formed. However, this is less the case for recurrent event or discrete data.

We present in this chapter some approaches for performing sensitivity analy-

ses for recurrent events data, subject to dropouts, using frequentist multiple imputa-

tion (MI) techniques. The modeling approach for recurrent event data used is based

on event counts and the traditional framework for analysis is the Poisson process.

Poisson models are often used in regression analysis of count data. The constraint
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of equal mean and variance is generally inapplicable, and individual effects (random

effects) are included in the model. A convenient model is the negative binomial

model (Lawless, 1987a,b), which we use in this chapter. We investigate the impor-

tance of varying event generation process and the impact of the imputation methods

used. In particular, we consider an approach for imputation similar to Little and

Yau (1996), which involves imputation of values of missing outcomes using a model

that conditions on an ‘assumed’ treatment received by patients after dropout. We

refer to this as the use of event rate different from the MAR rates for imputation

in treated arm, since MAR assumption requires that the same observed data and

covariates (e.g. treatment) will have the same statistical behavior in their future

evolution whether they are observed or not. A method that involves imputation of

missing values in the active arm using the event rates of the placebo arm is consid-

ered, and we referred to this as placebo multiple imputation (pMI). Imputation of

missing values in the active arm using incremental event rates for the active arm is

also considered. Of course, patients in the placebo arm are imputed under the MAR

missingness assumption in both cases because they receive no active substance in

the first instance.

7.1 Motivating Example- The Bladder Cancer Trial

The data used in the second part of this thesis is a publicly available placebo con-

trolled trial of tumor recurrence in patients with bladder cancer. The data is from

the bladder tumor study conducted by the Veteran Administration Co-operative

Urological Research Group (VACURG). This randomized clinical trial, in its origi-

nal form (see Andrews and Herzberg (1985)), studied the effect of three treatments

on the frequency of recurrence of bladder cancer. The data has been used by Dean

and Balshaw (1997), Wellner and Zhang (2000), Sun and Wei (2000), Sun and Wei

(2002), Zhang (2006), and Balakrishnan and Zhao (2009). There were 116 patients

in the study and all had superficial bladder tumors when they entered the trial. The

patients were assigned randomly to one of the three treatments: placebo, pyridoxine

and thiotepa.

Table 7.1 shows the distribution of the number of recurrences observed for

the patients in each of the three groups. The placebo group has 47 patients while

pyridoxine and thiotepa groups have 31 and 38 patients respectively. Table 7.2 gives

summary statistics for the follow-up times in the three groups. The placebo group

has the highest follow-up time of 64 months.

The version of the data we use in this thesis included only the placebo and
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Table 7.1: Distribution of the Number of Recurrences observed for the patients the
three treatment groups in bladder cancer trial.

Num. of Recurrences Num. of
Treatment 0 1 2 3 4 5 6 7 8 9 patients

Placebo 18 10 4 6 2 4 1 0 1 1 47
Pyridoxine 16 5 4 0 0 2 0 0 2 2 31
Thiotepa 20 8 3 2 2 2 0 1 0 0 38

Table 7.2: Summary statistics for the follow-up times of patients in the three treat-
ment groups in bladder cancer trial.

Follow-up times in Months
Treatment Min 1st Quartile Median Mean 3rd Quartile Max

Placebo 1 23.00 30.00 32.51 43.00 64
Pyridoxine 2 12.50 37.00 32.03 45.50 60
Thiotepa 1 18.25 32.50 31.13 44.00 59

thiotepa groups. Other authors have also considered this version (Wei et al., 1989;

Metcalfe and Thompson, 2007). The data is readily available in the survival package

in R software. The outcome variable was the timing of the clinical visit in which

a recurrence was detected. Patients are censored when they die or when the end

of the study is reached. Two baseline variables, the number and size of the tumors

removed prior to recruitment to the study are included in the data. Patients in the

placebo arm may likely experience higher tumor recurrence rates than patients in

the thiotepa group, making it more likely for them to withdraw early. It is therefore

very important to handle missing data carefully in recurrent event data settings.

Concepts of missing data in recurrent event framework are the same as the ones

given in section 2.5.

7.2 Notation and Models

Our study deals with dropouts in recurrent event data, and as such we adopt the

same notation as was used in Akacha and Benda (2010).

7.2.1 Notation

Suppose m independent subjects are randomized equally into a two arm trial of an

active treatment and placebo, and that each subject experiences a type of recur-

rent event. Let Ni(T ) = ni denote the number of events over the complete study

period [0,T] for the ith subject. The event times j for subject i are denoted by
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0 < ti1 < . . . < tini ≤ T and the corresponding random variables by Ti1, . . . , Tini .

Let the treatment be denoted as Xi which is one for the treated group and zero

otherwise. Furthermore, let Ni = {Ni(T ), Ti1, . . . , Tini} denote the complete recur-

rent event data information for subject i and let tid ∈ (0, T ] indicate the dropout

time for subject i. Then Ni,obs = {Ni(tid), Ti1, . . . , Tid} denote the observed part

and Ni,mis = {Ni(T ), Tid+1, . . . , Tini} the missing part of the recurrent event data

sequence. Monotone dropout is expected in this setting: when a subject drops out

they never return to the study.

7.2.2 Poisson Process Models

A Poisson process is a stochastic process with events occurring randomly over time.

Let N(t) be as defined above and let λ(t) be a left continuous function such that∫ t

0
λ(u)du = Λ(t) <∞. (7.1)

Then, {N(t)}∞t=0 is a Poisson process with intensity function λ(t) and cumulative

intensity function Λ(t) if and only if

1. N(0)=0

2. Pr{N(t+ h)−N(t) = 0|H(t)} = 1− λ(t)h+ o(h)

3. Pr{N(t+ h)−N(t) = 1|H(t)} = λ(t)h+ o(h)

4. Pr{N(t+ h)−N(t) > 1|H(t)} = o(h),

for small h and t > 0, and where o(h) is such that o(h) = limh→0 o(h)/h = 0.

The history of the process, H(t), is the record of all events up to time t, i.e.

H(t) = {N(u) : 0 ≤ u < t}. The intensity function (λ(t)) is the instantaneous

probability of an event occurring at a certain time, given the history of the process.

Mathematically,

λ(t) = lim
h→0

Pr(∆N(t) = 1|H(t))

h
,

where ∆N(t) = N(t+h)−N(t) denote the number of events in the interval [t, t+h).

If λ(t) = λ, then the Poisson process is said to be a homogeneous Poisson process. A

non-homogeneous Poisson process has an intensity function that is time dependent.

For Poison processes (homogeneous or non-homogeneous), the process history at

time t does not affect the instantaneous probability of events at time t. If covariates
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are absent, time t is the only factor determining the intensity. In this case, the

intensity function becomes,

λ(t) = lim
h→0

Pr(∆N(t) = 1)

h
= ρ(t).

The intensity function, ρ(t) is also called the rate function.

The Poisson process has a number of useful properties that simplifies our

models in subsequent sections:

• The process is a Markov process, i.e. the probability of an event in (t, t + h)

may depend on t but is independent of H(t).

• For t > 0, N(t) is a Poisson random variable with mean Λ(t).

• If (u1, t1] and (u2, t2] are non-overlapping intervals, thenN(u1, t1) andN(u2, t2)

are independent random variables.

• If the process is homogeneous, then the inter-event times are independent

exponential random variables with rate λ.

7.2.3 Recurrent event data model

Methods for the analysis of recurrent event data are usually specified through the

intensity function. The commonly used intensity function are the counting process

with the Cox-type rate function (Cox, 1972, 1975). An extension of the Cox model

is the Andersen and Gill’s counting process model (Andersen and Gill, 1982). In this

model, the partial likelihood of the Cox model is extended such that each subject

contributes the number of events they experienced over the study period to the

likelihood. Like the Cox model, the assumption of proportional intensity is used to

estimate model parameters. Under the proportional intensity assumption for two

subjects with covariate values, x1 and x2, the ratio λx1(t)/λx2(t) does not depend

on time (is constant). A major draw-back of the Andersen-Gill model is that it

assumes each event is independent (conditionally on covariates), i.e., it still retain

the Poisson assumption of independence.

Extensions of the Andersen-Gill model without the Poisson-type assumption

have been proposed in the literature (see Lin et al. (2000) and references therein).

These models have the advantage of modeling correlation in the recurrent events

within a subject. Although the models are semi-parametric and have some robust-

ness to model mispecification, they are not suitable for use under the MAR missing

data mechanism. Similarly, semi-parametric GEE based methods in longitudinal
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data with missingness are not suitable under MAR assumption. The statistical

analysis we adopt here is a parametric approach.

Poisson regression can be used to model homogeneous Poisson process. In

what follows, we assume that events occur in continuous time and according to

a Poisson process. For a Poisson random effect model, we consider an intensity

function for a subject of the form

λx(t, θ|U = u) = uλx(t, θ), (7.2)

where u is a realization of the gamma-distributed random variable U , with mean

1 and variance φ, λx is covariate dependent intensity function and θ are model

parameters. This intensity function belongs to the conditional process, N |U = u,

and not to the marginal process N. The extended model is then given by

N(t)|U ∼P[Λx(t, θ|U)] and U ∼ Gamma(φ−1, φ), and

N(t) ∼ N B
( 1

φ
,

1

1 + φΛx(t, θ)

)
,

where P and N B stand for the Poisson and the Negative Binomial distri-

butions respectively, and

Λx(t, θ|U = u) =

∫ t

0
uλx(w, θ)dw = uΛx(t, θ).

The marginal distribution of N(t) is a negative binomial model and is ob-

tained by integrating out the random effects from the mixed Poisson-Gamma distri-

bution. The advantage of having a Poisson conditional process can be linked with

the properties of Poisson process given in section 7.2.2. The process is memoryless

and inter-event times can easily be simulated from the exponential distribution.

The contribution of a specific subject to the joint likelihood when, say, n
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events occur at times t1, . . . , tn, with U specified as above, is then given by

LN (φ, θ) =

∫
fN(T ),T1,...,Tn,U (n, t1, . . . , tn, u) du

=

∫
fN(T ),T1,...,Tn|U (n, t1, . . . , tn)fU (u) du

=

[ n∏
j=1

λx(tj , θ)

Λx(T, θ)

]
n!

∫
exp{−uΛx(T, θ)}(uΛx(T, θ))n

n!
fU (u)du

=n!

[ n∏
j=1

λx(tj , θ)

Λx(T, θ)

] Γ

(
n+ 1

φ

)
n!Γ

(
1
φ

) [
φΛx(T, θ)

φΛx(T, θ) + 1

]n[ 1

φΛx(T, θ) + 1

]1/φ

︸ ︷︷ ︸
f(θ,φ)

,

(7.3)

where f(θ, φ) denotes the probability mass function of a negative-binomial

distributed random variable with mean Λx(T, θ) and variance Λx(T, θ) + φΛ2
x(T, θ).

In line with Cook and Lawless (2002), we assume that the treatments affect

the intensity function through a multiplicative model of the form

λx(t, θ) = uλ0(t, δ)g(x;β), (7.4)

where λ0(t, δ) is the baseline intensity function, g(x;β) = exp(βx) is a function of

covariates and θ = (β, δ, φ)′ is the parameter of interest. For convenience, we will

use g(x;β) = exp(βx) since no restrictions are needed on the values of β, which can

simply be interpreted as log-relative intensities. If we assume that the rate of events

is constant over the study period, then λ0(.) is assumed specified up to a parameter

δ > 0 (i.e. λ0(t, δ) = δ). This yields a homogeneous Poisson process. A non-

homogeneous Poisson process can be specified using, for example, a Weibull intensity

function (i.e λ0(t, δ) = δ0 δ1 t
δ1−1), and can be monotone decreasing (0 < δ1 < 1)

or increasing (δ1 > 1). Other choices are discussed in Akacha and Benda (2010). If

a constant rate is chosen, and we leave out the density of the negative-binomial in

(7.3), we obtain LN (φ, θ) = T−n.

The likelihood function (7.3) can be used to model data sets with no missing

cases (complete data), complete cases (with missing data but analyse only complete

sequence) and completed cases (completed data through imputation).

Sometimes, a valid analysis for missing data can be accomplished by neither

deleting nor imputing the missing data. In this case, all the available data are

analysed in a likelihood framework (direct likelihood- DL), which is valid under an
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ignorable missingness process (i.e. MAR with parameter separability (Carpenter

et al., 2002)). A little modification of (7.3) yields the required likelihood, i.e.

Li,obs(φ, θ) =ni,obs!

[ni,obs∏
j=1

λxi(tij , θ)

Λxi(tid, θ)

]Γ

(
ni,obs + 1

φ

)
ni,obs!Γ

(
1
φ

) [
φΛxi(tid, θ)

φΛxi(tid, θ) + 1

]n
i,obs
∗

[
1

φΛxi(tid, θ) + 1

]1/φ

,

(7.5)

where ni,obs = Ni(tid), and tid is the dropout time for subject i. Our aim is to

impute ni,mis- the missing part of the recurrent event data sequence. Although DL

is valid under an ignorable missing data mechanism, we adopt imputation to allow

for flexibility (imputation models can be different from the analysis model) and

transparency (missingness assumptions can be easily varied) in our sensitivity tool.

Multiple imputation (MI) was introduced in the Bayesian framework (Rubin, 1987).

Frequentist alternatives have also been proposed (Little and Rubin, 2002). We will

consider two of these methods, imputation based on asymptotic normal properties

of maximum likelihood estimators (MLE) and imputation based on a bootstrap

approach. In large samples, the two are expected to be equivalent, although a

bootstrap approach is to be preferred in small samples. These frequentist methods,

like the Bayesian approach, are ‘proper’ imputation procedures because the ML

estimates are asymptotically equivalent to a sample from the posterior distribution

of the parameter. Basic characteristics that makes an imputation procedure to be

proper can be found in Van Burren (2012). We introduce first the idea of imputing

the missing recurrent data sequence based on the waiting time approach before

discussing the imputation methods.

7.3 Methods of Imputation

Both the frequentist based imputation methods and the Bayesian method of MI will

be introduced in section 7.3.2. The motivation for using the frequentist MI approach

is that they are (approximate) proper imputation methods, simple to use and can

easily be implemented by applied statisticians. The waiting times for imputation

are generated using the unconditional counting process of the mixed effect Poisson

process.
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7.3.1 Waiting times or Gap times

In section 7.2.3, the data was assumed to be generated from a mixed effect Poisson

process, with the random effects, u′is, assumed to follow a gamma distribution. Con-

ditional on the ui, the event counts were assumed to follow a Poisson process with

rate function uλx(t, θ). To impute the missing events, the unconditional counting

process is required since we now work with the marginal counting process. The

marginal intensity function is given as

λx(t, θ|Hi(t)) =

{
1 + φNi(t

−)

1 + φΛx(t, θ)

}
λx(t, θ), (7.6)

where Ni(t
−) is the number of events that occur in the interval [0, t), and Hi(t)

is the history in that interval. The intensity function given by (7.6) at any time t

depends both on φ and on the process history prior to t and is therefore no longer

that of a Poisson process.

In order to use (7.6) to generate new waiting times, we consider the distri-

bution of the waiting time, Wj between (j − 1)st and jth events given by

Pr{Wj > wj |Tj−1 = tj−1, H(tj−1)} = exp

{
−
∫ tj−1+wj

tj−1

λx(u|H(u))du

}
. (7.7)

Equation (7.7) can be used to simulate a general intensity model. As an event

occurred at tj−1, then Wj for the jth event is simulated based on

Bj =

∫ tj−1+wj

tj−1

λx(t|H(t))dt, (7.8)

where Bj has a standard exponential distribution (see Cook and Lawless (2007)).

By repeating (7.8) for j = 1, 2, . . ., successive event times tj = tj−1 + wj can be
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generated. For the constant rate, we have

Bj =

∫ tj−1+wj

tj−1

{
1 + φNi(t

−)

1 + φΛx(t, θ)

}
λx(t, θ)dt

=

∫ tj−1+wj

tj−1

{
1 + φNi(t

−)

1 + φΛx(t, θ)

}
δ exp(βx)dt

=
1 + φN(t−)

φ

∫ tj−1+wj

tj−1

φ δ exp(βx)

1 + φ δ t exp(βx)
dt

=
1 + φN(t−)

φ
ln
(

1 + φ δ tj exp(βx)
)∣∣∣∣tj−1+wj

tj−1

.

(7.9)

If we make Wj the subject of the formula we get

Wj =

exp

[
Bj

1
φ

+N(tj−1)
+ ln

{
1 + φ δ tj−1 exp(βx)

}]
− 1

φ δ exp(βx)
− tj−1. (7.10)

When φ = 0, an equivalent of the waiting time given in (7.10) can be derived for a

classical homogeneous Poisson process with intensity function λx(t, θ) = δ exp(βx).

For this case, the waiting times are exponentially distributed with rate parameter

δ exp(βx). Using l′Hospital’s rule (l′HR) for the calculation of the limits, we obtain

lim
φ→0

Wj = lim
φ→0

exp

(
Bj

1
φ

+N(tj−1)
+ ln

(
|1 + φ δ tj−1 exp(βx)|

))
− 1

φ δ exp(βx)
− tj−1

l′HR
= lim

φ→0

(
Bj

φ2[φ−1+N(tj−1)]2
+

δ tj−1 exp(βx)
1+φ δ tj−1 exp(βx)

)
.φ

δ exp(βx)
− tj−1

=
Bj + δ tj−1 exp(βx)

δ exp(βx)
− tj−1

=
Bj

δ exp(βx)
,

(7.11)

i.e. the gap times wj , (j = 1, 2, . . .) between events are independent and identically

distributed exponential random variables with rate δ exp(βx).

In the motivating study, patients may drop out of the study because of drug

related reasons, and patients are censored after the whole study period. To imple-
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ment the proposed imputation method using the waiting time approach, a complete

data set is generated by drawing random effects u from a gamma distribution and

the rate function is computed using 7.4. The intensity function is used to draw the

waiting times from the exponential distribution. If the waiting times are greater

than the maximum time, the waiting time is censored. The number of events are

then counted between the starting time and the censored time. MAR dropout is

introduced in the complete data set by allowing dependence of the dropout model

on the ratio of current number of events (N(tj)) and time tj (rate per unit time).

That is, the probability, that a patient drops out after tj is p(tj) = Pr(Dj = 1),

where Dj ∼ Bernoulli[p(tj)], and logit[p(tj)] = β0 + β1x+ γ
N(tj)
tj

. The parameter,

β0 is varied in order to determine the percentage of missing data.

In order to impute the missing data, suppose patient i with count Ni(tid)

dropped out at time tid. The waiting time approach implies N(tid) = N(t−) and

tid = tj−1. We follow the steps:

1. Let j = 1

2. The waiting time wj between the event tid and tid+j is computed using (7.10)

3. Check if tid+j = tid +
∑j

k=1 < T

(a) If tid+j ≥ T stop

(b) If tid+j < T then,

4. N(tid+j) = N(tid) + j

5. Let j = j + 1

6. Repeat 1-4

7. The final imputed time is tid+j with corresponding count N(tid) + j.

The DL function given in (7.5) can be used for the estimation of φ, δ and

β needed in (7.10). This method results in single imputation of the missing data

and the uncertainty in parameters used to impute are not taken into account. To

avoid this, Rubin (1987) proposed multiple imputation (MI) as a flexible alternative

to single imputation methods. MI solves the problem of uncertainty in the single

imputation methods where imputation parameters are drawn from a conditional

distribution. It is an extension of likelihood-based methods in that it adds an extra

step in which imputed data values are drawn and final analyses combined. There

has been a massive literature in support of MI (see Rubin (1996), Schafer (1997),
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Collins et al. (2001) and Schafer and Graham (2002)). On the other hand, some

authors have criticized MI on the grounds that Rubin’s estimate of variance as too

conservative (see for example, Wang and Robins (1998), Robins and Wang (2000)

and Nielsen (2003)). This criticism has been shown not to invalidate MI procedures

in general (Rubin, 2003).

Apart from Rubin’s proper imputation there are various approximate meth-

ods of creating multiple imputations. These include, but are not limited to the use

of posterior distribution from a subset of the data, refining approximate draws using

importance sampling and drawing from pragmatic conditional distributions. Details

of these methods can be found in Little and Rubin (2002). The imputation meth-

ods for this work focus on the use of the asymptotic distribution of the maximum

likelihood (ML) estimates, and substitution of the ML estimates from bootstrapped

samples. We introduce first Rubin’s idea of MI.

7.3.2 Bayesian Multiple imputation

Rubin (1987) developed multiple imputation (MI) in the Bayesian framework. It is

a simulation-based technique where missing values are replaced by M > 1 Bayesian

draws from the conditional distribution of Ni,miss given Ni,obs and relevant covariates

Xi, creating M completed data sets (imputation phase). Each of the M completed

data sets are analysed using the same statistical procedures that would have been

used had the data been complete (analysis phase). The M parameter estimates and

their standard errors are then combined into a single set of results (pooling phase).

A convenient way to create multiple imputation in the imputation phase is

to use data augmentation algorithm (Tanner and Wong, 1987; Schafer, 1997). This

involves a two-step procedure that consists of an imputation step (I-step) and a

posterior step (P-step).

• In the I-step, the missing data are drawn based on the observed data, covariates

and the current parameter estimate

• The updated parameter estimate is drawn based on the current data in the

P-step

• Under some conditions, the resulting imputed data sets define a Markov Chain

which converges to the stationary distribution of Ni,mis|Ni,obs, Xi for all i ∈
{1, . . . , N}.

After the analysis of the M completed data sets, the results are pooled. The pooling

process is as follows. Suppose the parameter estimates of θ from the M completed
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data sets is θ̃m and the variance Vm, then the MI estimator of θ is

θ̃MI =
1

M

M∑
m=1

θ̃m. (7.12)

The estimate of the variance combines between and within imputation variability

and is given by

VMI =
1

M

M∑
m=1

Vm +

(
1 +

1

M

)(
1

M − 1

) M∑
m=1

(θ̃m − θ̃MI)
2. (7.13)

Equations (7.12) and (7.13) are referred to as ‘Rubin’s rules for MI’ and inference

for θ is based on these equations. This gives,

θ̃MI − θ√
VMI

,

which has an approximate tν distribution with

ν = (M − 1)
(

1 +
W

B

)2
, (7.14)

where W = 1/M
∑M

m=1 Vm and B = 1/(M − 1)
∑M

m=1(θ̃m − θ̃MI)
2. This apply for

univariate parameter θ. Extensions to multi-dimensional estimators are straightfor-

ward (see Schafer (1997)). The so-called approximate proper imputations considered

in this work are described below.

7.3.3 Asymptotic ML estimate

The asymptotic ML imputation methods use the asymptotic normal distribution

properties of MLE’s to draw imputation parameters from its asymptotic normal

distribution. For recurrent event data, the imputation strategy for missing events

follow the step-by-step approach laid out below:

1. Fit a negative-binomial model to the observed counts using direct-likelihood

given in (7.5), extract θ̂ = (φ̂, δ̂, β̂)′.

2. Consider the asymptotic distribution of θ ∼ N(θ̂, Σ̂), where Σ̂ is the inverse

of the observed information matrix from the MLE of θ. Draw θk from this

distribution and use it to draw new waiting times given by equation 7.10.

3. Complete the data set using the new waiting times.
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4. Repeat 2 and 3 m times (where m can be greater than 100) to create m

imputed data sets.

5. Fit the negative-binomial model to the completed data sets and save the point

estimates and standard errors.

6. Combine results with Rubin’s rules i.e. equations (7.12) and (7.13).

The advantage of this method is that it is very simple to use, and in large

samples, it correctly propagates asymptotic uncertainty in the ML estimate of θ.

7.3.4 Bootstrap imputation method

The bootstrap approach is an alternative to the asymptotic ML method. Random

samples, with replacement, of the same size n as the observed sample are taken

and the DL method is used to estimate parameters. The ML estimates from the

bootstrap samples are asymptotically equivalent to samples from the posterior dis-

tributions of the parameters and do not rely heavily on large-sample properties.

The algorithm for imputation with recurrent event data is similar to the one laid

out in section 7.3.3, but with steps 1 and 2 replaced by non-parametric bootstrap

procedures, i.e.

1. Draw a bootstrap sample with replacement of size n from the original data

2. Fit a negative-binomial model to each sample and combine the estimates to

form θ̃ = (φ̃, δ̃, β̃)′. Use θ̃ to draw new waiting times and complete the data

using the new waiting times.

The imputation steps described above use the assumption that patients that

share the same observed data and covariates (e.g treatment) will have the same

statistical behavior in their future evolution whether they are observed or not. This

is an MAR assumption, and it implies that patients who drop out under the active

treatment arm, will be imputed using information from this group. In many clinical

trial settings however, the MAR assumption may be unrealistic. For instance, pa-

tients may discontinue treatment due to adverse treatment effects, lack of efficacy

or some MCAR missing data mechanism related reasons. To analyze this data, a re-

alistic imputation assumption is to impute missing data for the treated group using

information from the placebo arm. For patients with missing data in the placebo

arm, they are imputed using the event rate in the placebo arm. This is because the

MAR assumption is realistic for the placebo arm since patients in the arm received

no active substance in the first instance. We investigate this and other plausible

scenarios in a simulation study.
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7.4 Simulation

We assess the performance of the asymptotic and bootstrap methods of imputa-

tion using the waiting times approach in a simulation study. In addition, since the

imputation method was developed under the mixed gamma-Poisson model, we in-

vestigate the impact of using different data generation process in recurrent event

data settings. The data for the motivating example is from a placebo-control trial.

This motivated the investigation of the impact of imputation of missing data in the

treated arm using the information from the placebo arm.

Sometimes however, clinicians might know, based on experience, a realistic

percentage increase in event rate for patients who discontinued treatments. We

therefore imputed data for patients who discontinued in the active arm with higher

event rates than the MAR rate of λtrt(t) i.e. from

λnew,trt(t) = λtrt(t) ∗ k, k ∈ {1.05, 1.10, 1.20, 1.50}. (7.15)

In clinical settings, the constant rate rather than the Weibull is usually as-

sumed for the intensity function. We therefore assume the former for this study.

As mentioned earlier, two treatment groups are compared: the active arm and the

placebo arm. We set a constant treatment effect of β1 = −0.3, with maximum follow

up time T = 112 days. The random effect variance, φ, is fixed at 0.5, and the decay

rate, δ at 0.02 for the mixed Poisson process. The mean rate of events per unit time

in the treated arm is 0.015 (i.e. 0.02 ∗ exp(−0.3)) while that of the placebo arm

is 0.02 since we expect treatment intervention to reduce event rates in the former.

The mean over the study period is 1.66.

The first simulation settings involves the Comparison of Asymptotic and

Bootstrap imputation methods using 10, 20, 50 and 100 imputations for the for-

mer 10, 20 and 50 imputation for the latter in small (n = 100, 200) and large

(n = 400, 1000) sample sizes. Missingness percentage considered is 30% treated vs.

30% placebo. The further simulations itemized below used 10 imputations for both

methods, and larger sample size as this was clearly sufficient.

• Evaluation of impact of missingness percentage in the Asymptotic and Boot-

strap methods: 30% missingness in treated arm vs. 10% missingness in placebo

arm and 40% missingness in treated arm vs 10% missingness in placebo arm.

• Evaluation of the impacts of using different random effects for data generation.

Uniform, (U[-1,1.5]) and Normal, (N [0, 1/2]) random effects are used. These

choice ensure that the variance of the random effects is close to 0.5, which
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is the choice used for the Gamma-Poisson mixture. Missingness percentages

considered are 30% missingness in treated arm vs. 30% missingness in placebo

arm.

• Evaluation of other event generation process. The processes considered are

Poisson, Weibull, Conditional, and Autoregressive process see (Metcalfe and

Thompson, 2006; Jahn-Eimermacher, 2008). Missingness percentage consid-

ered is 30% missingness in treated arm vs. 30% missingness in placebo arm.

• Imputation of missing data in the treated arm using event rate of the placebo

arm. The data generation follows the gamma-Poisson mixture model described

in section 7.2.3. Missingness percentage considered are 30% missingness in

treated arm vs. 30% missingness in placebo arm, 30% missingness in treated

arm vs. 10% missingness in placebo arm and 40% missingness in treated arm

vs 10% missingness in placebo arm.

• Imputation of missing data in the treated arm using rates higher than the

MAR rates as given in (7.15). The gamma-Poisson mixture model is used for

the data generation.

7.4.1 Asymptotic and Bootstrap simulation

A unique feature of MI is that it provides a mechanism for dealing with inherent

uncertainty of imputations themselves. The question of how many imputations are

needed has been discussed in the literature. Graham et al. (2007) approached the

problem in terms of loss of power for hypothesis testing. Using simulation study,

they recommend 20 imputations for 10%-30% missing information (the percentage

of missing information is W/(W +B)100%, where W and B are as defined in section

7.3.2), and 40 imputations for 50% missing information. For the current study, we

assess the impact of the number of imputations Asymp ∈ {10, 20, 50, 100} under the

asymptotic method and Bootstrap ∈ {10, 20, 50} under the bootstrap method. Bias

and MSE in small and large sample sizes and 30% missing data in the two treatment

arms is used to quantify their relative performance.

Table 7.3 shows the results when using ‘many’ asymptotic and bootstrap

imputations. The data is generated from the gamma-Poisson process (see section

7.2.3). The row labeled NM is for the original complete data set (before introducing

missingness) and DL gives the results of the direct likelihood approach. There is

no gain in having sample size of 200 over 100 in terms of the bias for the treatment

effect β. However, φ and δ have less bias with sample size of 200. Although absolute
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bias is larger for n = 200, the relative bias (to NM) is smaller. Similar observation

can be seen when large samples are used, i.e. the bias in β for sample size 400 is

consistently lower than that of 1000. Overall however, the bias in β is smaller when

large sample sizes are used than when small sample sizes (100 and 200) are used.

Of course as expected, the MSE is consistently smaller as the sample size increases

regardless of whether the sample is small or large.

Similarly, the Bias and the MSE suggest that the use of 10 imputations is suf-

ficient under the asymptotic mle imputation and the bootstrap approach regardless

of the sample size.

7.4.2 Effects of fraction of missing information on treatment esti-

mates

In some settings, it is possible to have higher rate of drop outs in the treated arm

than the placebo arm due to adverse effects. We consider settings where 30-40% of

the observations are missing in the treated arm and about 10% missing data in the

placebo arm. Table 7.4 presents the results for the setting. As expected, there is

slight bias in treated estimates with increased amount of missing information in the

treated arm. Under MAR assumption with sample size and number of imputation

approaching infinity, we would expect to see no bias.

7.4.3 Event generation based upon alternative random-effects dis-

tributions

Gamma distribution is often used as random effects for mixed Poisson process be-

cause it leads to a closed form expression in the marginal process. Mixture distri-

butions other than gamma may be assumed for the random effects. In this study,

we consider realizations U from a uniform U [−1, 1.5] distribution (with associated

rate δ exp(U + βx)), and realizations Z from a normal distribution with mean zero

and variance 1/2 (with rate δ exp(Z + βx)). The choices ensure that the variance

of the random effects is close to 0.5 which was chosen for the gamma-Poisson mix-

ture. Table 7.5 shows the results of using alternative random effects distributions

in the data generation process. The performance of the two imputation methods

are similar and the bias in sample size of 1000 is negligible. Comparing this result

with equivalent part of Table 7.3 suggests that the choice of the random effects that

generated the data is immaterial even when the negative binomial model is fitted

to the completed data sets.
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Table 7.3: Bias and MSE in estimated treatment effect with 30% missing data in
both placebo and treated arm: Asymptotic and Bootstrap imputations. Simulation
results (multiplied by 10,000).

Bias MSE
φ δ β φ δ β

n=100
NM -198 0 5 279 0.0 408
DL -92 2 -36 511 0.0 603
Asymp10 33 6 -60 461 0.0 754
Asymp20 53 6 -66 446 0.0 761
Asymp50 75 6 -59 434 0.0 767
Asymp100 86 6 -58 432 0.0 762
Bootstrap10 -583 -1 -41 572 0.0 779
Bootstrap20 -583 -1 -37 583 0.0 779
Bootstrap50 -581 -1 -34 586 0.0 778

n=200
NM -123 -0 60 128 0.0 213
DL -27 1 57 247 0.0 311
Asymp10 29 3 92 252 0.0 424
Asymp20 28 3 100 245 0.0 424
Asymp50 36 3 105 246 0.0 433
Asymp100 39 3 102 245 0.0 430
Bootstrap10 -203 0 89 264 0.0 445
Bootstrap20 -202 0 89 264 0.0 445
Bootstrap50 -204 0 88 260 0.0 445

n=400
NM -56 1 15 64 0.0 97
DL -45 1 12 124 0.0 137
Asymp10 0 2 7 125 0.0 204
Asymp20 0 2 9 121 0.0 203
Asymp50 -1 2 8 120 0.0 201
Asymp100 1 2 7 120 0.0 203
Bootstrap10 -101 1 0 126 0.0 209
Bootstrap20 -116 0 4 129 0.0 211
Bootstrap50 -116 0 5 128 0.0 210

n=1000
NM -60 0 -28 28 0.0 42
DL -37 1 -25 50 0.0 58
Asymp10 -7 1 -30 49 0.0 86
Asymp20 -5 1 -28 49 0.0 86
Asymp50 -7 1 -27 48 0.0 86
Asymp100 -6 1 -28 48 0.0 86
Bootstrap10 -44 1 -27 50 0.0 91
Bootstrap20 -43 1 -18 51 0.0 90
Bootstrap50 -43 1 -16 49 0.0 92
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Table 7.4: Bias and MSE in estimated treatment effect with 30% and 40% missing-
ness in the treated arm. Percentage of missing data in placebo arm is fixed at 10%.
Simulation results (multiplied by 10,000).

Bias MSE
Size(Missing) φ δ β φ δ β

n=400 (30%)
NM -56 1 15 64 0.0 97
DL -51 1 9 97 0.0 127
Asymptotic -31 1 24 92 0.0 144
Bootstrap -94 0 9 95 0.0 146

n=1000 (30%)
NM -60 0 -28 28 0.0 42
DL -54 0 -10 39 0.0 52
Asymptotic -35 0 7 37 0.0 58
Bootstrap -60 0 -1 38 0.0 59

n=400 (40%)
NM -56 1 15 64 0.0 97
DL -40 1 24 105 0.0 134
Asymptotic -17 1 50 100 0.0 159
Bootstrap -93 0 16 102 0.0 162

n=1000 (40%)
NM -60 0 -28 28 0.0 42
DL -56 0 -8 42 0.0 60
Asymptotic -32 0 22 40 0.0 69
Bootstrap -58 0 14 13 0.0 69
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Table 7.5: Bias and MSE in estimated treatment effect with 30% missingness in
both placebo and treated arm: Uniform and Normal random effects. Simulation
results (multiplied by 10,000).

Bias MSE
R.E Size φ δ β φ δ β

U[-1,1.5]

n=400
NM 14 129 11 38 2 81
DL 254 133 -6 68 2 115
Asymptotic 272 134 25 68 2 137
Bootstrap 233 133 28 68 2 145

n=1000
NM 13 129 12 15 2 34
DL 209 132 10 28 2 47
Asymptotic 230 133 6 28 2 57
Bootstrap 213 132 9 27 2 58

N[0,1/2]

n=400
NM 357 57 -11 75 0.0 107
DL -248 52 -39 92 0.0 130
Asymptotic -220 52 -29 88 0.0 183
Bootstrap -283 51 -31 95 0.0 190

n=1000
NM 357 56 8 38 0.0 42
DL -275 51 14 43 0.0 54
Asymptotic -252 51 13 40 0.0 80
Bootstrap -278 51 9 43 0.0 82
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7.4.4 Alternative event generation process

In practice, the actual process that generated the data is unknown. We consider

four processes that may generate recurrent event data and created MAR missingness

in the data. The imputation method under the mixed Poisson process described in

section 7.3.1 is used to complete the data.

Poisson process

In a very unlikely situation where it is thought that patient specific heterogeneity is

unnecessary in the model, the data can be obtained from a Poisson model. Events

in Poisson process occur independently of one another, both between subjects and

within each subject. The data generation is similar to the one described in section

7.2.3 for the mixed Poisson process but with the omission of random effect u. Wait-

ing times are simulated as independent realization of an exponential distribution

with rate λ = δ expβx.

Weibull model

There are situations where an individual is particularly susceptible to further events

shortly after a previous event. In this case the intensity function for further event

will change over time and a Weibull model can be used to describe the waiting times

between events. Its intensity function can be written as u δ0 δ1 t
δ1−1 expβx, where

δ0 & δ1 are positive. The intensity function is monotone decreasing when 0 < δ1 < 1,

constant when δ1 = 1 amd monotone increasing when δ1 > 1. Unlike the mixed

Poisson process whose inter-arrival times are exponentially distributed, the waiting

time for the Weibull intensity function has to be calculated directly using inverse

CDF method. This is given by

w =

(
ln(1− ν)

−Uδ exp(βx)
+ tδ1

)1/δ1

− t,

where ν ∼ Uniform(0, 1), t is previous event time and δ1 is the shape param-

eter that describes how the intensity of an event is distributed across time. For our

simulation, we take δ1 = 0.9 and δ = 0.032 so that the expected number of events

is similar to that of the mixed Poisson process. Our choice of δ1 reflects a declining

intensity function.
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Autoregressive model

In settings where the occurrence of an event in a patient makes it more likely for the

patient to have further events, an underlying autoregressive process can be assumed.

For instance, in an epileptic study, occurrence of a seizure in a patient can make

it more likely for the patient to experience further seizures. For this study, we

generated the waiting times using

w =
− ln ν

exp{−0.1 + βx+ 0.1n}
,

where n is the number of previous events. The quantity exp{−0.1 + βx + 0.1n} is

the rate parameter and was chosen such that the number of events observed over

the study period is similar to other data generation process.

Conditional process

The conditional process is similar to the autoregressive model because it makes

the assumption that event rates may increase or decrease after observing a certain

number of events in a patient. Unlike the autoregressive model, the number of events

does not contribute to increase or decrease in the rate of events in a continuous

manner. For this study, we consider an extended mixed Poisson process such that

the rate parameters

λ1 = u δ exp(βx) and λ2 = u δ exp(βx+ 0.1)

are used when event counts is less than 2 and greater than or equal to 2 respectively.

That is, a patient will have a slightly increased chance of having subsequent events

after experiencing the first event. Both u and δ are as defined for the mixed Poisson

process.

Table 7.6 gives the proportion of events observed in the treatment group when

subjects are censored at 112 days. The simulation is based on 1000 replications for

each model. The mixed Poisson process, the Weibull model and the conditional

model result in greater proportion of subjects with no events or more than 4 events

compared to other process. This reflects the larger variance of models especially

when compared with the Poisson model (the mixed-Poisson, the Weibull and the

conditional models incorporated random effects which introduce extra variability

than the Poisson model in order to capture over-dispersion). The Weibull model

was constructed to have expected number of events over the study period to be

equivalent to the mixed-Poisson process, hence the similarity in the result obtained
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Table 7.6: Proportion of events observed in treatment group using simulated data
for the models, n=1000, 1000 replications and censoring at 112 days.

Num. of events 0 1 2 3 4 5 6 7 8 > 9

Poisson 0.190 0.315 0.262 0.146 0.060 0.020 0.005 0.001 0.000 0.000
Mixed Poisson 0.298 0.271 0.185 0.112 0.063 0.035 0.018 0.009 0.005 0.005
Weibull 0.298 0.272 0.185 0.111 0.063 0.034 0.018 0.009 0.005 0.005
Autoregressive 0.222 0.309 0.237 0.132 0.061 0.025 0.009 0.003 0.001 0.000
Conditional 0.299 0.271 0.173 0.110 0.066 0.037 0.021 0.011 0.006 0.007

in the table. Table 7.7 is the result of applying our imputation methods to the data

generated through the Weibull, the conditional, the Poisson and the autoregressive

model. The bias in the treatment effects is small and the result is comparable with

the equivalent results from Tables 7.3. However, there is a little bias in the results

based on the data generated from the conditional model.

Note that the entry for φ is not included for the Poisson and the autoregres-

sive models. This is because the two models did not include random effects. There

were numerous numerical instability in an attempt to force imputation strategy

based on mixed effect Poisson process on the two data generation process because

φ ' 0. When the sample size is 400, about 60% of the simulated data experienced

numerical problems under the Poisson data generation process with the asymptotic

imputation and almost 35% failed under the bootstrap procedure. There are fewer

cases of non-convergence with sample size of 1000. The performance of the impu-

tation method is better under the autoregressive models as only 39 samples out of

1000 replications failed to converge under the autoregressive model with sample size

of 1000. The percentage with non-convergence increases with the number of impu-

tation. Although in reality, there will almost always be subject specific effect in a

recurrent event data set, the presence of numerical instability, as we observe with the

Poisson process, could be a pointer to the fact that the data is better imputed and

analyzed in the Poisson process framework than the mixed Poisson process settings.

A method to solve the numerical instability when imputing the data under

the mixed-Poisson process is to use ‘conditional imputation’. By this we mean, a

threshold is set for φ (say for instance, φ = 0.001). If φ is less than this threshold,

the waiting time under the Poisson model (see equation (7.11)) is used to impute

the missing data. Otherwise, the waiting time of the mixed Poisson process is used.
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Table 7.7: Bias and MSE in estimated treatment effect under the Weibull, Condi-
tional, Poisson and Autoregressive data generation process. Imputation was done
under mixed Poisson process. Simulation results (multiplied by 10,000).

Bias MSE
Model Size φ δ β φ δ β

Weibull

n=400
NM -46 -120 -19 62 1 103
DL 594 -112 -21 181 1 147
Asymptotic 521 -112 -66 182 1 188
Bootstrap 418 -113 -57 170 1 192

n=1000
NM -29 -120 -34 28 1 40
DL 538 -113 -36 87 1 58
Asymptotic 520 -113 -11 88 1 66
Bootstrap 470 -114 -14 83 1 68

Conditional

n=400
NM 561 9 -104 102 0.0 109
DL 432 8 -104 132 0.0 140
Asymptotic 450 8 -118 148 0.0 163
Bootstrap 366 8 -115 140 0.0 166

n=1000
NM 572 9 -129 61 0.0 49
DL 458 8 -135 67 0.0 63
Asymptotic 477 8 -128 76 0.0 74
Bootstrap 435 8 -131 73 0.0 75

Poisson

n=400
NM - 0 1 - 0.0 49
DL - 3 -18 - 0.0 80
Asymptotic - 59 21 - 13 164
Bootstrap - 3 33 - 0.0 133

n=1000
NM - 0 5 - 0.0 19
DL - 1 4 - 0.0 28
Asymptotic - 29 -9 - 1 73
Bootstrap - 1 -12 - 0.0 52

Autoregressive

n=400
NM - 4 -292 - 0.0 75
DL - 0 -234 - 0.0 94
Asymptotic - 9 -206 - 1 411
Bootstrap - -1 -249 - 0.0 108

n=1000
NM - 4 -343 - 0.0 36
DL - 0 -282 - 0.0 40
Asymptotic - 2 -289 - 0.0 47
Bootstrap - -1 -293 - 0.0 21
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7.4.5 Imputation under MNAR assumption- Treated follows Placebo

Table 7.8 contains the results of imputing the missing data in the active arm using

the event rates of placebo arm. If the MAR assumption is used, the estimated

treatment effects will be close to -0.3 when in actual fact the effect is higher than

-0.3 as demonstrated by the imputation. As the fraction of missing data increases in

the treated arm, the rate of events also increases, which is intuitively reasonable since

a larger percentage of patients in the treated arm now follows the higher placebo

arm rate.

7.4.6 Imputation under MNAR assumption- Higher event rates

than MAR assumption

Tables A.3-A.5 in section A.5 of Appendix A show the results of incrementing the

event rates in the active arm by 5%, 10%, 20% and 50% for imputing the missing

recurrent events in the active arm with varying percentage of missing data. The

impact of 5-10 percent increase in the event rates does not appear to increase the

estimate of the treatment effect by larger percentage. However, the impact of using

higher rate for imputation became pronounced when the imputation was done with

50% increment in event rate than the MAR assumption. The degree of increment

in practical settings is a matter of judgement from clinical experts.

7.5 Application to Bladder Cancer Trial

In the paper of Wei et al. (1989), marginal approach to the analysis of multivariate

failure time based upon an elaboration of the Cox proportional hazards model was

proposed. In the current work, the average treatment effect captured by a parameter

is considered. Since the time to the end of the study was not explicitly stated, we

base our work on the assumption that the end of the study is equivalent to the

maximum follow-up time, which is 64 months. Apart from the treatment effects β,

we also adjusted for the two baseline variables in the model. All the models fitted to

this data are based on the assumption of homogeneous mixed Poisson process and

we define φ as the random effect variance and δ as the decay rate. We adopt a mixed-

Poisson process approach because the variance (2.315) of the count is much larger

than its mean (1.318). In addition, 20 imputations are used for the asymptotic and

the bootstrap methods and 500 bootstrap samples from the original data is used for

each imputation under the bootstrap method. We used 20 imputations even though

10 imputations were adjudged adequate in the simulation study because the sample
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Table 7.8: Imputation of treated arm using placebo rate λp(t). A and P stand for
active and placebo arms respectively.

Parameters Std. Err.
Missing Size φ δ β φ δ β

True Val. 0.5000 0.0200 -0.3000 - - -

30% A-30% P

n=400
Asymptotic 0.5618 0.0202 -0.2129 0.1701 0.0710 0.1075
Bootstrap 0.5519 0.0201 -0.2136 0.1545 0.0707 0.1031

n=1000
Asymptotic 0.5632 0.0201 -0.2151 0.1047 0.0449 0.0676
Bootstrap 0.5587 0.0201 -0.2151 0.0952 0.0448 0.0654

30% A-10% P

n=400
Asymptotic 0.5600 0.0201 -0.2109 0.1585 0.0709 0.1074
Bootstrap 0.5528 0.0200 -0.2133 0.1529 0.0707 0.1029

n=1000
Asymptotic 0.5612 0.0200 -0.2109 0.0986 0.0449 0.0677
Bootstrap 0.5585 0.0200 -0.2118 0.0949 0.0448 0.0652

40% A-10% P

n=400
Asymptotic 0.5704 0.0201 -0.1893 0.1581 0.0713 0.1092
Bootstrap 0.5641 0.0200 -0.1909 0.1511 0.0711 0.1032

n=1000
Asymptotic 0.5704 0.0200 -0.1894 0.0986 0.0451 0.0689
Bootstrap 0.5673 0.0200 -0.1902 0.0940 0.0450 0.0653

size for the data is smaller than the ones considered in the simulation study.

Table 7.9 is the result of fitting the DL model and the use asymptotic and

bootstrap imputation methods to complete the bladder cancer data under the MAR

assumption. The standard errors under the bootstrap method of imputation are

consistently smaller than the DL and the asymptotic methods. This is expected if

we consider the small size of the data set. There is a significant difference between

the two treatment arms (β) at 5% level of significance under the bootstrap approach.

However, a non-significant treatment effects are obtained under the DL and asymp-

totic imputation method. A possible explanation for this is that the precision of the

estimates is reduced when draws are taken using the asymptotic MLE properties

because of the small sample size. Of course small sample size also affects standard

errors in DL approach. This is not the case with the bootstrap method and as such,

we are inclined to conclude that inference based on this estimate is more likely to

be representative of the unknown true value.

We also explore the idea of imputing the missing data in the treated arm using

the placebo event rate. A possible reason for patients to discontinue treatment in the

bladder cancer study is death. A patient that dies received no treatment afterwards,

and it is logical to assume that their event rate will be similar to the placebo arm

event rate after death. Table 7.10 is the result of imputing the data using the
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Table 7.9: Fit of Direct Likelihood, Asymptotic Imputation and Bootstrap Imputa-
tion to the bladder cancer data.

DL Asymptotic Bootstrap
Estimate S.E. p-value Estimate S.E p-value Estimate S.E p-value

φ 0.4981 0.2544 0.0537 0.5982 0.2719 0.0335 0.4487 0.1911 0.0217
δ 0.0353 0.0111 0.0020 0.0310 0.0099 0.0031 0.0291 0.0074 0.0002
β -0.4605 0.2707 0.0928 -0.4263 0.2781 0.1330 -0.4727 0.2183 0.0338
num. 0.1877 0.0735 0.0125 0.1926 0.0799 0.0206 0.2131 0.0592 0.0006
size -0.0337 0.0921 0.7151 -0.0120 0.0977 0.9032 -0.0128 0.0744 0.8644

placebo arm event rate. In this case, the treatment effect becomes non-significant

under the two models. This is intuitive since there are high degree of missingness

in the treated arm.

Table 7.11 is the results of imputing the missing data in the treated arm

using event rate higher than the MAR. We consider 5, 10, 20 & 50% increase in the

MAR rate as was done in the simulation study but only focus on imputation based

on bootstrap (since its performance is generally more reliable in small samples).

When the rate is 20% and above, the treatment effect becomes non-significant. As

we remarked earlier, the degree of increase in the rate than MAR is a matter of

clinical judgement.

Table 7.10: Fit of Asymptotic Imputation and Bootstrap Imputation to the bladder
cancer data using event rates in the placebo arm to impute data in the treated arm.

Asymptotic Bootstrap
Estimate S.E. p-value Estimate S.E p-value

φ 0.6185 0.2605 0.0218 0.4069 0.2155 0.0636
δ 0.0313 0.0100 0.0030 0.0316 0.0076 0.0001
β -0.2692 0.2483 0.2839 -0.2994 0.2126 0.1641
num. 0.1838 0.0715 0.0135 0.1874 0.0543 0.0010
size -0.0067 0.0984 0.9457 -0.0295 0.0728 0.6867

7.6 Summary

The first simulation scenario compares the use of asymptotic and bootstrap methods

for multiple imputation and the effects of the number of imputations used on their

performances. The parameter of interest is the treatment effect (β), although other

parameters in the model are also reported. Our results suggested that the use of 10
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Table 7.11: Fit of Bootstrap Imputation to the bladder cancer data using higher
rate than the MAR rate. Bold face entries are significant at 5% level of significance.

λ = 1.05 λ = 1.10 λ = 1.20 λ = 1.50
Estimate S.E. Estimate S.E Estimate S.E Estimate S.E

φ 0.4443 0.1924 0.4332 0.1819 0.3692 0.1780 0.3494 0.1464
δ 0.0300 0.0080 0.0307 0.0081 0.0305 0.0072 0.0311 0.0075
β −0.4687 0.2164 −0.4324 0.2157 -0.3621 0.2072 -0.2115 0.2031
num. 0.2089 0.0603 0.2022 0.0594 0.1881 0.0590 0.2158 0.0504
size -0.0213 0.0777 -0.0263 0.0800 -0.0130 0.0756 -0.0477 0.0765

imputations are sufficient under the methods when up to 30% values are missing in

the two treatment groups. A pilot simulation with roughly 50% missing counts in

the groups also affirmed this. We found that sample size (N) of 400 patients (200

in each arm) are sufficient to achieve this conclusion.

We assumed that the underlying process is a gamma- mixture of Poisson

processes, with negative binomial regression model as standard analysis method.

It is almost impossible in practice to know the actual process that generated the

observed data. These included the nature of random effects and the actual event

generation processes. Our simulation results found that the use of asymptotic and

bootstrap imputation methods do not affect estimation of β, although its precision

improved with N = 1000. It turns out that the imputation techniques are not af-

fected by making a gamma random effects assumption when in fact the true random

effects are uniformly or normally distributed. This is in line with simulation results

in the literature that analyzed complete data (see Metcalfe and Thompson (2006)).

When events are generated from Poisson and autoregressive models, we experienced

numerical instability because of the attempt to force our imputation methods based

on gamma-Poisson process on data generation methods with no random effect, i.e,

φ = 0. In practice, this numerical problem can signal that the gamma-Poisson

model is not appropriate for the data at hand, and alternative models should be

investigated.

The key assumption under the pMI technique is that patients in the active

arm do not benefit from treatment after discontinuation. This is responsible for

the increase in estimated event rates in the treated arm after pMI. The event rate

increases further as the fraction of missing data increases. The choice of realistic

higher event rates than the MAR to use for imputation in treated arm depends on

the nature of the study, and it is determined by clinical experts, while avoiding data

snooping.
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Application to the bladder cancer data showed that parameter estimates un-

der the direct-likelihood, asymptotic and bootstrap imputation methods are similar,

as expected, under MAR missingness process. Due to small sample size, we used

the small-sample degrees of freedom proposed by Barnard and Rubin (1999) for the

p-value calculations in Tables 7.9- 7.11 under the frenquetist imputation methods.

This method ensures that the degrees of freedom under multiple imputation does

not exceed the complete data degrees of freedom (85-5=80 in the bladder cancer

data).

142



Chapter 8

General Conclusions and Future

Research

8.1 Conclusion

This thesis is concerned with methods of dealing with missing data. The first part

unifies missing data problem into a distributional framework, while methods for

imputation of missing data in recurrent event data is proposed and evaluated in a

simulation study in the second part.

In chapter 2, we reviewed relevant literature on skew distributions and their

unified class, the closed skew-normal (CSN) distribution. The link between sample

selection and skew distributions were established. This link formed the central

theme of the ideas discussed in chapters 3-6. The MINT trial data, which was used

as motivating examples in the first part of the thesis, was explored. Results from

the exploration showed that the data is skewed marginally. The skewness can be

due to several factors, including but not limited to, the boundedness of the scores

or non-ignorable missingness (sample selection). We also looked briefly at concepts

of missing data, which cut across the two parts of the thesis.

In chapter 3, we used complete case analysis for the subjects that completed

the trial. The missing data problem was treated as a hidden truncation problem,

and as such, the use of skew-normal models are justified. The SN and ESN models

are standard and well known in the statistical literature. We introduced a three-

parameter skew distribution which we referred to as EGSN. This model has two

parameters that control skewness and a third parameter which is a shift parameter.

The SN, ESN and EGSN models were used in a simulation study where the data sets

were generated in a sample selection settings but with bivariate skew-normal errors.
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There is bias in parameter estimates as expected from complete case analysis, and

the bias is more pronounced when the skewness parameter, λ = 0.5. The three

models resulted in similar fits to the NDI scores, although the SN model may be

preferred because it has fewer parameters. The bounds in the scores were adjusted

for using truncated skew-normal distribution. We concluded chapter 3 by noting

that complete case analyses failed to adjust for covariate information that led to

non-response. The implication of this is inflated type-1 error, and this motivated

the model developed in chapter 4.

In chapter 4, we developed a sample selection model with an underlying bi-

variate skew-normal distribution. This model has the advantage of adjusting for

additional information about the non-response process, and we showed how this cir-

cumvented non-identifiability of the ESN model in chapter 3. Finite sample proper-

ties of the MLEs of the model were studied in a simulation study. The performance

of our model was superior to classical Heckman’s models. The bias observed in pa-

rameter estimates when λ = 0.5 in the models of chapter 3 was also observed in this

case. This is due to the models inability to distinguish between λ = 0 and λ = 0.5,

as there is stationarity of profile likelihood of λ at λ = 0. The treatment effect is

not significant in all the models in chapter 4, even though it was significant in the

models in chapter 3. This further buttresses the danger of complete case analysis

under non-ignorable non-response.

The model in chapter 5 is a multilevel extension of the model discussed in

chapter 4. Although, the developments of multilevel sample selection models are not

new in the literature, the work we presented here is probably the first time it was

linked to the CSN distribution. This link provided a framework that simplified the

derivation of conditional mean and variance of the model, and was used to generalize

Heckman two-step method to multilevel selection process. We focused on likelihood

estimation of the parameters in the model which is rarely used in the literature. This

is due in part to sensitivity of the approach to normality assumption. Unit and item

non-response in the NDI scores were jointly analyzed. We noted the large standard

error and high p-value for the sex variable in the item level equation in Table 5.4

relative to the same statistics for other variables. This could be an indication of

numerical issue of the optimization routine. We will assess in our future work

how robust our results are to changes in model specification and develop tools for

sensitivity analysis for multilevel selection models.

The models presented in chapter 6 were based on the use of Gaussian copulas

in sample selection settings with skew-normal marginals for the outcome equation.

The principal contribution in this chapter is the use of the link between sample
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selection and skew distributions to derive copula-based sample selection models.

This gave a straightforward approach for the use of any differentiable copulas in

this setting. The flexibility of copulas allowed us to model bounded outcomes using

truncated skew-normal distributions as marginals. Our reference distribution for

the outcomes is the asymmetric subfamily of the sinh-arcsinh distribution, which

we referred to as SHASH model. Tractability and inferential advantages were the

motivation for the use of the SHASH model over the Azzalini’s SN model. Applica-

tion to the NDI scores showed that the adjustment for the bounds in the outcome

using truncated SHASH and SN models resulted in nonsignificant skewness param-

eter, even though the skewness parameters in the non-truncated counterparts were

significant. A Gaussian copula was used on the ground that the association pa-

rameter is easily conceivable by applied researchers, and to establish links between

results in chapter 6 and earlier chapters. We therefore caution on over-interpreting

these results, knowing fully well that copulas can be abused, especially the Gaussian

copula.

The second part of this thesis is motivated by a placebo-controlled trial

which explores recurrent event data over a period of several weeks. We focus on a

situation where the number of events (counts) occurring in a specific time interval

are of interest. Due to missingness, this endpoint is not observed for all patients and

the classical approach of analysis will be complete cases which is valid only under

MCAR missingness mechanism. However, dropout is usually outcome related and

the MCAR assumption becomes untenable.

We proposed the use of two frequentist based imputation methods, asymp-

totic MLE and bootstrap methods for dealing with missing data in recurrent event

data framework. The recurrent events are modeled as over-dispersed Poisson data,

with constant rate function. We observed that the use of 10 imputations is sufficient

for both methods when the fraction of missing data is up to 50%. The bootstrap

approach is recommended in ‘very’ small samples as the MLEs have large variances

and this can reduce precision for asymptotic methods. Although the usual assump-

tion in practice is mixed-Poisson process, numerical instability in the estimation of

the variance of the random effects is a pointer to the fact that the assumption may

be inappropriate.
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8.2 Future Work

The following list gives possible extensions of the work described in this thesis.

1. The SSNM model discussed in chapter 4 inherited its inferential drawbacks

from the Azzalini (1985) SN model, therefore, there is need for developments

of rigorous inferential tools for the SSNM model. These drawbacks are associ-

ated with the skewness parameter, λ in which it can diverge. The most satis-

factory method to alleviate this problem so far is the Sartori (2006) modified

likelihood. Sartori (2006) used method for bias prevention of the maximum

likelihood estimator proposed by Firth (1993). The method modifies the score

function such that the resulting estimator has lower bias than the maximum

likelihood estimator. The major advantage of this method is its finiteness.

Our future work on the SSNM model will use this modified likelihood and also

propose Bayesian techniques for parameter estimation.

2. The focus of this thesis has been on modeling skewness. An extension of the

SSNM model using skew-t distribution is likely to be a more rewarding exercise

since it has the SSNM model as a special case. The challenge in multivariate

extensions of the SSNM model is modeling the covariance structure over time.

Bounded data requires correlation to decrease with increase in time between

measurements, and correlation to increase as the study progress, and outcome

attain their final levels. Also, a model for recovery rate and final recovery level

is valuable and this can be done when the data is used in longitudinal settings.

3. We did not proceed with the estimation of parameters in the multilevel ex-

tension of the SSNM model in section 5.4 because the likelihood function is

difficult to evaluate. Our future work will explore the use of Pseudo-likelihood

methodology for parameter estimation and develop sensitivity analyses tools

for the hypothesis of selection in this settings.

4. The contour plot in Figure 6.2 with SHASH marginals points to the possibility

that the Gaussian copula used in chapter 6 may be inappropriate. Although

copula functions are theoretically independent of marginals, the geometrical

behavior of the marginal densities (being increasing, decreasing, constant or

unimodal functions), have influence on the dependence structure. Our future

work will search for a new class of dependence functions that will take into

account the type of marginals used.
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5. It can also be of interest to evaluate the use of multiple imputation in sample

selection settings. In principle, there are situations where a variable is skewed

and yet the residuals are approximately normal when the skewed variable is

conditioned on other variables. In this case, a correctly specified conditional

normal imputation can be used. This however, does not remove the effect of

boundedness of the scores. Imputation of bounded values changes the mean

and variance of the imputed variable. The use of truncated distributions can

ensure imputations are done within a specified bounds. Although multiple

imputation is valid under MAR assumption, MNAR counterparts can be in-

vestigated.

6. There are still open questions on imputation for recurrent event data. For in-

stance, it may be of interest to compare the performance of Bayesian Multiple

Imputation to frequentist approach. It could also be of interest to investigate

how the use of higher event rates than the MAR affects power in sections 7.4.5

and 7.4.6.
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Appendix A

Supplementary Material

A.1 Derivation of Gradients and Observed information

matrix

The gradient of the selection skew-normal model log-likelihood can be derived as

follows:
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Note that the derivative of ΦSN

(
−γ′xi; 0, 1, λρ√

1+λ2−λ2ρ2

)
w.r.t. γ follows the usual

differentiation of CDF to get the PDF. However, the derivatives of ρ and γ in

this expression is not a straightforward application of this principle. The approach

we followed is to re-write the CDF above as a standard bivariate normal integral(
2Φ2

(
−γ′xi, 0;−λρ/

√
1 + λ2

))
. We make use of the fact that, if Φ2(., .; ρ) and

φ2(., .; ρ) are standard bivariate normal CDF and PDF respectively, then dΦ2(.,.;ρ)
dρ =

φ2(., .; ρ).
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The elements of the observed information matrix are:
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A.2 Simulation results for fixed λ and varying ρ

In this section, the effects of varying correlation coefficient ρ when λ is fixed to be

1 and 2 is considered. The results in Tables A.1 and A.2 show that the bias in the

estimate of λ decreases as the strength of the correlation increases. This is in line

with the fact that both ρ and λ contribute to the skewness present in the observed

data.

Table A.1: Simulation results (multiplied by 10,000) for λ = 1 and varying ρ in the
presence of exclusion restriction.

Bias MSE
SSNM SNM TS SSNM SNM TS

ρ = 0.0
β0 990 5636 5637 977 3196 3197
β1 7 4 3 14 14 14
γ0 -35 72 73 110 54 54
γ1 49 75 76 63 63 63
γ2 109 148 149 101 102 102
σ -385 -1746 -1746 121 310 310
ρ 42 22 15 194 145 143
λ -2164 - - 3274 - -

ρ = 0.3
β0 461 5627 5630 384 3183 3187
β1 7 9 7 13 13 13
γ0 209 1960 1965 181 448 451
γ1 58 226 233 68 72 73
γ2 114 366 376 111 119 121
σ -113 -1714 -1714 71 299 299
ρ -26 -432 -449 173 153 158
λ -541 - - 1529 - -

ρ = 0.7
β0 484 5614 5619 375 3164 3171
β1 1 9 6 11 11 12
γ0 637 5395 5437 478 3011 3065
γ1 185 1036 1078 93 187 202
γ2 309 1583 1645 173 383 412
σ -123 -1684 -1683 67 289 289
ρ -93 -656 -683 70 113 165
λ -564 - - 1518 - -
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Table A.2: Simulation results (multiplied by 10,000) for λ = 2 and varying ρ in the
presence of exclusion restriction.

Bias MSE
SSNM SNM TS SSNM SNM TS

ρ = 0.0
β0 9 7127 7130 41 5093 5097
β1 10 4 4 9 30 30
γ0 -4 72 73 193 54 54
γ1 6 74 76 62 63 63
γ2 45 148 149 100 102 102
σ -4 -2996 -2996 27 902 902
ρ 13 30 13 265 138 135
λ 339 - - 1110 - -

ρ = 0.3
β0 6 7107 7114 38 5063 5073
β1 10 13 30 8 9 9
γ0 40 2538 2543 256 714 717
γ1 22 325 333 73 80 81
γ2 57 509 524 125 138 140
σ -1 -2918 -2919 23 856 856
ρ -14 -739 -776 224 200 203
λ 331 - - 1034 - -

ρ = 0.7
β0 24 7072 7079 34 5010 5021
β1 5 26 21 7 8 8
γ0 251 7605 7683 311 5911 6038
γ1 141 1754 1832 102 400 432
γ2 226 2629 2757 198 849 922
σ -12 -2851 -2850 21 817 816
ρ -86 -1162 -1194 88 236 295
λ 284 - - 991 - -

A.3 PDFs and h-functions of some selected copulas

Bivariate t-copula
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η (u1) and x2 = t−1
η (u2).
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Bivariate Clayton copula

c(u1, u2; δ) =(1 + δ)(u1u2)−(1+δ)
(
u−δ1 + u−δ2 − 1

)−1/δ−2

h(u1, u2; δ) =u
−(1+δ)
2

(
u−δ1 + u−δ2 − 1

)−(1+1/δ)
.

Bivariate Gumbel copula

c(u1, u2; δ) =C(u1, u2; δ)(u1u2)−1
[
(− log u1)δ + (− log u2)δ

]−2+2/δ
(log u1 log u2)δ−1

×
[
1 + (δ − 1)

(
(− log u1)δ + (− log u2)δ

)−1/δ]
h(u1, u2; δ) =C(u1, u2; δ).

1

u2
.
(
− log u2

)δ−1(
(− log u1)δ + (− log u2)δ

)1/δ−1
.

A.4 R-codes for copula based truncated sample selec-

tion model

shashlike <- function(bstart,y1,x1,y2,x2,a,b){

if (match("gamlss",.packages(),0)==0) require(gamlss)

dtrunc <- function(x, spec, a = a, b = b, ...)# defining general truncated PDFs

{

tt <- rep(0, length(x))

g <- get(paste("d", spec, sep = ""), mode = "function")

G <- get(paste("p", spec, sep = ""), mode = "function")

tt[x>=a & x<=b] <- g(x[x>=a&x<=b], ...)/(G(b, ...) - G(a, ...))

return(tt)

}

ptrunc <- function(x, spec, a = a, b = b, ...)# defining general truncated CDFs

{

tt <- x

aa <- rep(a, length(x))

bb <- rep(b, length(x))

G <- get(paste("p", spec, sep = ""), mode = "function")

tt <- G(apply(cbind(apply(cbind(x, bb), 1, min), aa), 1, max), ...)

tt <- tt - G(aa, ...)

tt <- tt/(G(bb, ...) - G(aa, ...))
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return(tt)

}

p=ncol(x1); k=ncol(x2)

b1 =bstart[1:p];b2 =bstart[(p+1):(k+p)]

sigma <- bstart[(k+p+1)]

if (sigma < 0)

return(NA)

rho <- bstart[k+p+2]# Linear correlation from Gaussian copula

nu <- bstart[k+p+3]# skenwess parameter of SHASH model

if ((rho < -1) || (rho > 1))

return(NA)

xb1 = x1%*%b1; xb2 = x2%*%b2; u2 <- y2-xb2; r <- sqrt(1 - rho^2)

Bb1 <- qnorm(pnorm(xb1))

Bb2 <-rho*qnorm(ptrunc(y2,"SHASHo", a = a, b = b,mu =xb2, sigma = sigma,

nu= nu, tau= 1))

Bb <- Bb1+Bb2; B <- Bb/r

l1 <- dtrunc(y2,"SHASHo", a = a, b = b,mu = xb2, sigma = sigma, nu= nu, tau = 1)

l1 <- log(l1)

b <- log(1-pnorm(xb1))

ll<- ifelse(y1==0,b,l1+(pnorm(B,log.p=TRUE)))

return(-sum(ll))

}

154



A.5 Tables for Part II of the thesis

Table A.3: Imputation with new rate λnew,trt(t). 30% data is missing in both the
treated and the placebo arm.

Parameters Std. Err.
Size Rate φ δ β φ δ β

True Val. 0.5000 0.0200 -0.3000 - - -

n=400

λ = 1.05
Asymptotic 0.5138 0.0202 -0.2793 0.1754 0.0693 0.1117
Bootstrap 0.5033 0.0201 -0.2793 0.1639 0.0689 0.1016

λ = 1.10
Asymptotic 0.5279 0.0202 -0.2596 0.1737 0.0698 0.1125
Bootstrap 0.5167 0.0201 -0.2598 0.1612 0.0694 0.1020

λ = 1.20
Asymptotic 0.5569 0.0202 -0.2201 0.1705 0.0708 0.1143
Bootstrap 0.5445 0.0201 -0.2219 0.1559 0.0704 0.1029

λ = 1.50
Asymptotic 0.6542 0.0202 -0.0984 0.1650 0.0741 0.1222
Bootstrap 0.6392 0.0201 -0.1021 0.1411 0.0737 0.1060

n=1000

λ = 1.05
Asymptotic 0.5129 0.0201 -0.2834 0.1083 0.0438 0.0701
Bootstrap 0.5094 0.0201 -0.2829 0.1010 0.0437 0.0644

λ = 1.10
Asymptotic 0.5268 0.0201 -0.2639 0.1072 0.0441 0.0706
Bootstrap 0.5230 0.0201 -0.2635 0.0993 0.0440 0.0647

λ = 1.20
Asymptotic 0.5557 0.0201 -0.2245 0.1051 0.0447 0.0718
Bootstrap 0.5504 0.0201 -0.2250 0.0962 0.0446 0.0652

λ = 1.50
Asymptotic 0.6527 0.0201 -0.1042 0.1022 0.0469 0.0766
Bootstrap 0.6472 0.0201 -0.1059 0.0873 0.0467 0.0673
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Table A.4: Imputation with new rate λnew,trt(t), 10% and 30% data is missing in
placebo and treated arm respectively.

Parameters Std. Err.
Size Rate φ δ β φ δ β

True Val. 0.5000 0.0200 -0.3000 - - -

n=400

λ = 1.05
Asymptotic 0.5104 0.0201 -0.2780 0.1671 0.0691 0.1088
Bootstrap 0.5034 0.0200 -0.2805 0.1624 0.0689 0.1015

λ = 1.10
Asymptotic 0.5243 0.0201 -0.2582 0.1652 0.0696 0.1101
Bootstrap 0.5163 0.0200 -0.2620 0.1598 0.0694 0.1018

λ = 1.20
Asymptotic 0.5539 0.0201 -0.2183 0.1615 0.0707 0.1124
Bootstrap 0.5459 0.0200 -0.2215 0.1542 0.0704 0.1028

λ = 1.50
Asymptotic 0.6524 0.0201 -0.0963 0.1544 0.0741 0.1212
Bootstrap 0.6422 0.0200 -0.1017 0.1396 0.0738 0.1060

n=1000

λ = 1.05
Asymptotic 0.5102 0.0200 -0.2795 0.1039 0.0437 0.0688
Bootstrap 0.5077 0.0200 -0.2803 0.1007 0.0437 0.0643

λ = 1.10
Asymptotic 0.5243 0.0200 -0.2597 0.1026 0.0441 0.0694
Bootstrap 0.5215 0.0200 -0.2603 0.0991 0.0440 0.0645

λ = 1.20
Asymptotic 0.5542 0.0200 -0.2195 0.1005 0.0447 0.0709
Bootstrap 0.5508 0.0200 -0.2209 0.0958 0.0447 0.0651

λ = 1.50
Asymptotic 0.6508 0.0200 -0.0995 0.0961 0.0468 0.0762
Bootstrap 0.6465 0.0200 -0.1019 0.0870 0.0467 0.0672
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Table A.5: Imputation with new rate λnew,trt(t), 10% and 40% data is missing in
placebo and treated arms respectively.

Parameters Std. Err.
Size Rate φ δ β φ δ β

True Val. 0.5000 0.0200 -0.3000 - - -

n=400

λ = 1.05
Asymptotic 0.5142 0.0201 -0.2705 0.1688 0.0693 0.1129
Bootstrap 0.5073 0.0200 -0.2732 0.1619 0.0690 0.1017

λ = 1.10
Asymptotic 0.5308 0.0201 -0.2454 0.1667 0.0699 0.1146
Bootstrap 0.5230 0.0200 -0.2487 0.1587 0.0696 0.1020

λ = 1.20
Asymptotic 0.5647 0.0201 -0.1960 0.1630 0.0711 0.1177
Bootstrap 0.5560 0.0200 -0.1998 0.1526 0.0708 0.1031

λ = 1.50
Asymptotic 0.6729 0.0201 -0.0499 0.1559 0.0747 0.1278
Bootstrap 0.6619 0.0200 -0.0557 0.1373 0.0744 0.1065

n=1000

λ = 1.05
Asymptotic 0.5126 0.0200 -0.2733 0.1048 0.0438 0.0712
Bootstrap 0.5094 0.0200 -0.2746 0.1006 0.0437 0.0643

λ = 1.10
Asymptotic 0.5290 0.0200 -0.2484 0.1035 0.0442 0.0720
Bootstrap 0.5257 0.0200 -0.2498 0.0986 0.0441 0.0646

λ = 1.20
Asymptotic 0.5621 0.0200 -0.1998 0.1015 0.0449 0.0741
Bootstrap 0.5601 0.0200 -0.1999 0.1001 0.0449 0.0685

λ = 1.50
Asymptotic 0.6701 0.0200 -0.0542 0.0971 0.0472 0.0805
Bootstrap 0.6657 0.0200 -0.0567 0.0855 0.0472 0.0674
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