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Abstract

In Chapter 1 we present the background material about curves on surfaces. In particular
we define the Dehn–Thurston coordinates for the set S = S(Σ) of free homotopy class
of multicurves on the surface Σ. We also prove new results, like the precise relationship
between Penner’s and D. Thurston’s definition of the twist coordinate and the formula for
calculating the Thurston’s symplectic form using Dehn–Thurston coordinates.

For Chapter 2, let Σ be a surface of negative Euler characteristic together with a pants
decomposition PC. Kra’s plumbing construction endows Σ with a projective structure as
follows. Replace each pair of pants by a triply punctured sphere and glue, or ‘plumb’,
adjacent pants by gluing punctured disk neighbourhoods of the punctures. The gluing across
the ith pants curve is defined by a complex parameter µi ∈ C. The associated holonomy
representation ρµ : π1(Σ) −→ PSL(2,C) gives a projective structure on Σ which depends
holomorphically on the µi. In particular, the traces of all elements ρµ(γ), where γ ∈ π1(Σ),
are polynomials in the µi.

Generalising results proved in [24; 40] for the once and twice punctured torus respectively,
we prove in Chapter 2 a formula giving a simple linear relationship between the coefficients
of the top terms of Tr ρµ(γ), as polynomials in the µi, and the Dehn–Thurston coordinates
of γ relative to PC. We call this formula the Top Terms’ Relationship.

In Chapter 3, applying the Top Terms’ Relationship, we determine the asymptotic di-
rections of pleating rays in the Maskit embedding of a hyperbolic surface Σ as the bending
measure of the ‘top’ surface in the boundary of the convex core tends to zero. The Maskit
embedding M of a surface Σ is the space of geometrically finite groups on the boundary
of Quasifuchsian space for which the ‘top’ end is homeomorphic to Σ, while the ‘bottom’
end consists of triply punctured spheres, the remains of Σ when the pants curves have been
pinched. Given a projective measured lamination [η] on Σ, the pleating ray P = P[η] is the
set of groups inM for which the bending measure pl+(G) of the top component ∂C+ of the
boundary of the convex core of the associated 3-manifold H3/G is in the class [η].

xi
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Introduction

In this thesis we mainly deal with Kleinian groups, which are discrete groups of
isometries of the hyperbolic 3–space H3. In the upper–half–space model of H3

the orientation–preserving isometries are identified with the group PSL(2,C). Such
groups also act by conformal automorphisms on the sphere at infinity Ĉ = C∪{∞} =
∂H3. In the 1960s, Ahlfors and Bers studied Kleinian groups mainly analytically,
in terms of their action on the Riemann sphere Ĉ. Thurston revolutionised the
subject in the 1970s by taking a more topological viewpoint and showing that, in
a certain sense, ‘many’ 3-manifolds are hyperbolic. He also introduced new con-
cepts which helped a lot in understanding much more deeply the topic. In the last
years, our understanding of Kleinian groups improved a lot with the proofs of three
great conjectures: the Density Conjecture, the Ending Lamination Conjecture and
the Tameness Conjecture. Combined, they give a remarkably complete picture of
Kleinian groups.

Keen and Series in 1990s introduced the Pleating Coordinates Theory, which
is a new tool in the study of the deformation spaces of holomorphic families of
Kleinian groups. The key idea is to study these deformation spaces via the internal
geometry of the associated hyperbolic 3–manifold, in particular, the geometry of
the boundary of its convex core. This method allows one to relate combinatorial,
analytical and geometrical data. One important result is to give algorithms enabling
one to compute the exact position of the deformation space as a subset of Cn. This
answers a question posed by Bers in the late 1960s about the possiblity to compute
explicitly these deformation spaces.

Important examples of Kleinian groups are Fuchsian and Quasifuchsian groups,
which are groups such that the limit set is a circle or a topological circle, respectively.
In this thesis we describe a slice on the boundary of the Quasifuchsian space, the
Maskit slice, mainly using the Pleating Coordinates Theory. We modify the plumb-
ing construction introduced by Kra which is an explicit construction of Kleinian
groups in these slices.
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Let Σ be a surface of negative Euler characteristic together with a pants decom-
position PC. Kra’s plumbing construction endows Σ with a projective structure as
follows. Replace each pair of pants by a triply punctured sphere and glue, or ‘plumb’,
adjacent pants by gluing punctured disk neighbourhoods of the punctures. The glu-
ing across the ith pants curve is defined by a parameter µi ∈ C. The holonomy
representation ρµ : π1(Σ) −→ PSL(2,C) associated with the projective structure
on Σ that was described above depends holomorphically on the µi, and, by con-
struction, the images of the pants curves are parabolic. In particular, the traces of
all elements ρµ(γ), for γ ∈ π1(Σ), are polynomials in the µi.

The main result of Chapter 2 is a relationship between the coefficients of the top
terms of Tr ρµ(γ), as polynomials in the µi, and the Dehn–Thurston coordinates of
γ relative to PC. This generalises results of Keen and Series [24] and Series [40] for
the once and the twice punctured torus, respectively.

Our formula is as follows. Let S = S(Σ) denote the set of homotopy classes of
multicurves on Σ, and let σ1, . . . , σξ be the pants curves defining PC. The Dehn–
Thurston coordinates of γ ∈ S are i(γ) = (qi, pi), for i = 1, . . . , ξ, where qi =
i(γ, σi) ∈ N∪{0} is the geometric intersection number between γ and σi, and pi ∈ Z
is the twist of γ about σi. Our main result in Chapter 2 is the following.

Theorem A. Let γ be a connected simple closed curve on Σ.
If γ is not parallel to any of the pants curves σi, then, up to terms of lower degree,
we have:

Tr ρµ(γ) = ±iq2h
(
µq11 · · ·µ

qξ
ξ +

ξ∑
i=1

(pi − qi)µq11 · · ·µqi−1
i · · ·µqξξ

)
,

where q =
∑ξ

i=1 qi > 0 and h = h(γ) is the total number of sbcc–arcs in γ, see
Section 1.1 for the definition.

If qi = 0 for all i = 1, . . . , ξ, then γ = σi for some i, ρµ(γ) is parabolic, and
Tr ρµ(γ) = ±2.

In the literature, the definition of the twist parameters pi is not uniquely de-
termined, unlike the length parameters qi. In particular, one of the main tools in
our proof of Theorem A is the description of the relationship between Penner and
Harer’s definition [38] of pi and Dylan Thurston’s one [41], which we describe in the
following result.

Theorem (Theorem 1.2.6). Suppose that two pairs of pants meet along a pants
curve σi. Label their respective boundary curves (A,B, σi) and (C,D, σi) in clockwise
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order. Let qi, p̂i and pi denote the length parameter, Penner and Harer’s twist and
Dylan Thurston’s twist, respectively. Then

p̂i =
pi + l(A, σi;B) + l(C, σi;D)− qi

2
,

where l(X,Y ;Z) denotes the number of strands of γ ∩P running from the boundary
curve X to the boundary curve Y in the pair of pants P having boundary curves
(X,Y, Z).

The idea comes from Appendix B of [41], where there is a similar statement
(without proof). We correct and prove it in Section 1.2.3.

We want also to underline a very interesting result about the relationship between
Thurston’s product and the Dehn–Thurston coordinates for the set S of multicurves
on Σ. Given a (generic birecurrent) train track τ ⊂ Σ, let n, n′ ∈ W(τ ) be
weightings on τ ; see Section 1.3.3 for the definitions. Denote by bv(n) and cv(n)
the weights of the left hand and right hand outgoing branches at v respectively.
Thurston’s product is defined by

ΩTh(n,n′) =
1
2

∑
v

bv(n)cv(n′)− bv(n′)cv(n).

In [40], Series relates Thurston’s product to the Dehn–Thurston coordinates de-
scribed above, but her proof works only for the case Σ = Σ1,2, because she uses a
particular choice of train tracks called canonical train tracks, see Keen–Parker–Series
[23]. Our idea is to use the standard train tracks defined by Penner and Harer [38].
The Dehn-Thurston coordinates (using Penner and Harer’s twist) give us a choice
of a standard model and, using the relationship between Penner and Harer’s and D.
Thurston’s twist (see Theorem 1.2.6), we prove the following result in Section 1.3.3.

Theorem (Theorem 1.3.3). Suppose that loops γ, γ′ ∈ S belong to the same chart
and that they are represented by coordinates i(γ) = (q1, p1, . . . , qξ, pξ) and i(γ′) =
(q′1, p

′
1, . . . , q

′
ξ, p
′
ξ). Then

ΩTh(γ, γ′) =
1
2

ξ∑
i=1

(qip′i − q′ipi).

In addition, if γ, γ′ are disjoint, then ΩTh(γ, γ′) = 0.

If the representation ρµ, constructed by Kra’s plumbing construction, is free and
discrete, then the resulting hyperbolic 3–manifold M = H3/ρµ(π1(Σ)) lies on the
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Maskit slice. The Maskit slice M = M(Σ) is the space of geometrically finite
groups on the boundary of Quasifuchsian space QF(Σ) for which the ‘top’ end is
homeomorphic to Σ, while the ‘bottom’ end consists of triply punctured spheres,
the remains of Σ when the pants curves have been pinched. We investigated M
using the method of pleating rays. For this description we were inspired by Series’
analysis of the case of the twice punctured torus; see [40].

Given a projective measured lamination [η] on Σ, the pleating ray P = Pη is the
set of groups in M for which the bending measure pl+(G) of the top component
∂C+ of the boundary of the convex core of the associated 3-manifold H3/G is in the
class [η]. We restrict to pleating rays for which [η] is rational, that is, supported on
multicurves. The Top Terms’ Relationship discussed above enables us to find the
asymptotic direction of P in M as the bending measure tends to zero in terms of
natural parameters for the representation variety R(Σ) (see Section 2.2.5) and of
the Dehn–Thurston coordinates for the support curves to [η] relative to the pinched
curves on the bottom side. This leads to a method of locating M in R.

Bonahon and Otal describe precisely which laminations can be the pleating locus
on ∂C+. In particular, η =

∑ξ
i=1 aiδγi can be the pleating lamination on ∂C+ if

and only if qi(η) > 0, for all i = 1, . . . , ξ. We call such laminations admissible. See
Section 3.2.2 for the definition of non-exceptional lamination. The main result of
Chapter 3 is the following.

Theorem B. Suppose that η =
∑m

i=1 aiδγi is admissible and non-exceptional. Then,
as the bending measure pl+(G) ∈ [η] tends to zero, the pleating ray Pη approaches
the line

<µi =
pi(η)
qi(η)

,
=µ1

=µj
=
qj(η)
q1(η)

.

One might also ask for the limit of the hyperbolic structure on ∂C+(G) as the
bending measure tends to zero. The following result answers this question.

Theorem C. Let η =
∑ξ

1 aiδγi be as above. Then, as the bending measure pl+(G) ∈
[η] tends to zero, the induced hyperbolic structure of ∂C+ along Pη converges to the
barycentre of the laminations σ1, . . . , σξ in the Thurston boundary of T (Σ).

4



Chapter 1

Curves on surfaces

In this chapter we recall the background material on surfaces which we will use later.
In particular, in Section 1.1 we introduce some notation and basic facts about curves
on surfaces. In Section 1.2 we discuss Dehn–Thurston coordinates, in particular we
define different types of twist, following D. Thurston in Section 1.2.1, and Penner and
Harer in Section 1.2.2. In Section 1.2.3 we explain the precise relationship between
these two different definitions. In Section 1.3 we define Thurston’s symplectic form
and in Section 1.3.3 we describe an exact formula for calculating it using Dehn–
Thurston coordinates.

1.1 Background material on surfaces

Suppose Σ is a surface of finite type, let S0 = S0(Σ) denote the set of free homotopy
classes of connected closed simple non-trivial non-boundary parallel curves on Σ.
For simplicity we usually refer to elements of S0 as ‘curves’. Let S = S(Σ) be
the set of free homotopy classes of multicurves on Σ, where a multicurve is a finite
unions of disjoint curves in S0. The geometric intersection number i(α, α′) between
multicurves α, α′ ∈ S is the least number of intersections between representatives of
the two homotopy classes, that is

i(α, α′) = min
a∈α, a′∈α′

|a ∩ a′|.

Now given a surface Σ = Σg,b of finite type (with genus g and b boundary compo-
nents) and negative Euler characteristic, choose a maximal set PC = {σ1, . . . , σξ} of
homotopically distinct and non-boundary parallel curves in Σ called pants curves,
where ξ = ξ(Σ) = 3g − 3 + b is the complexity of the surface. These curves split
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the surface into k = 2g − 2 + b (open) three-holed spheres P1, . . . , Pk, called pairs
of pants, obtained by removing three closed disjoint disks on the sphere. (Note
that the boundary of Pi may include punctures of Σ.) We refer to both the set
P = {P1, . . . , Pk}, and the set PC, as pants decompositions of Σ. In the following,
we will try to use, in general, the subindex i as i ∈ {1, . . . , ξ} and the subindex j as
j ∈ {1, . . . , k}. For example a general pants curve will be denoted σi and a general
pair of pants Pj .

Let Pj to be a three-holed sphere embedded in Σ. Each pants curve σ = σi is the
common boundary of one or two pairs of pants whose union (including σ) we refer
to as the modular surface associated to σ, and we denote MS(σ). If σ is the common
boundary of one pair of pants, then MS(σ) is homeomorphic to a one-holed torus
Σ1,1, otherwise it is homeomorphic a four-holed sphere Σ0,4.

Any hyperbolic pair of pants P is made by gluing two right angled hexagons along
three alternate edges which we call its seams; see Fathi, Laudenbach and Poénaru
[17]. In much of what follows, it is convenient to designate one of these hexagons as
‘white’ and one as ‘black’.

Definition 1.1.1. A properly embedded arc in P , that is, an arc with its end-
points on ∂P , is called sbcc–arc (same boundary component connector) if it has
both its endpoints on the same component of ∂P and dbcc–arc (different boundary
component connector) otherwise.

See Figure 1.4 for an example of sbcc–arc. Note that in [28] the sbcc–arcs are
called scc (same component connector) arc and the dbcc–arcs are called dcc (different
component connector).

1.1.0.a Convention on dual curves

We shall need to consider dual curves to σi ∈ PC, that is, curves which intersect
σi minimally and which are completely contained in MS(σi), the union of the pants
P, P ′ adjacent to σi along σi. The intersection number of such a connected curve
with σi is 1 if MS(σi) a one-holed torus and 2 otherwise. In the first case, the
curve is made by identifying the endpoints of a single dbcc–arc in the pair of pants
adjacent to σi and, in the second, it is the union of two sbcc–arcs, one in each of the
two pants whose union is MS(σi). We adopt a useful convention introduced in [41]
which simplifies the formulae in such a way as to avoid the need to distinguish
between these two cases. Namely, for those σi for which MS(σi) is Σ1,1, we define
the dual curve Di ∈ S to be two parallel copies of the connected curve intersecting
σi once, while if MS(σi) is Σ0,4 we take a single copy. In this way we always have,
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by definition, i(σi, Di) = 2, where i(α, β) is the geometric intersection number as
above. Note that with this convention some dual curves are actually multicurves,
but for simplicity we will continue to use the term ‘dual curves’.

A marking on Σ is the specification of a fixed base (topological) surface Σ0, to-
gether with a homeomorphism f : Σ0 −→ Σ. There is a related notion of ‘marking
decomposition’ which we will discuss in Section 1.2.1 below. Marking decomposi-
tions can be defined in various equivalent ways, for example by specifying the choice
of dual curves. See Section 1.2.1 for details.

1.1.0.b Convention on twists

Our convention is always to measure twists to the right as positive. In particular,
given a surface Σ, a curve σ ∈ S0 and t ∈ R, the distance t Fenchel–Nielsen twist
deformation around σ is the homeomorphism Twσ,t : Σ −→ Σ defined in the follow-
ing way. Let A = A(σ) = σ × [0, 1] to be an annulus around σ. If we parameterise
σ as s 7→ σ(s) ∈ Σ for s ∈ [0, 1), then the distance t twist, denoted Twσ,t : Σ −→ Σ,
maps A to itself by (σ(s), θ) 7→ (σ(s+ θt), θ) and is the identity elsewhere. You can
extend this definition to a multicurve σ ∈ S by considering disjoin annuli around
the curves in σ.

We denote by Twσ,1(γ) = Twσ(γ) the right Dehn twist of the multicurve γ about
the multicurve σ.

1.2 Dehn–Thurston coordinates

In this section we recall various ways to define Dehn–Thurston coordinates. In
particular, we describe D. Thurston’s and Penner and Harer’s approaches, and the
relationship between them.

Suppose we are given a surface Σ together with a pants decomposition P, as
defined in Section 1.1. Let γ be a multicurve in S (see Section 1.1 for the definition)
and qi = i(γ, σi) ∈ Z>0, for i = 1, . . . , ξ. Notice that, if σi1 , σi2 , σi3 are pants curves
which together bound a pair of pants embedded in Σ, then the sum qi1 + qi2 + qi3

of the corresponding intersection numbers is even. The qi = qi(γ) are sometimes
called the length parameters of γ.

To define the twist parameter twi = twi(γ) ∈ Z of γ about σi, we first have to
fix a marking decomposition on Σ, for example by fixing a specific choice of dual
curves Di to the pants curve σi, see Section 1.2.1 below. Then, after applying an
isotopy to move γ into a well-defined standard position relative to the marking, the
twist twi is the signed number of times that γ intersects a short arc transverse to
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σi. We make the convention that, if i(γ, σi) = 0, then twi(γ) > 0 is the number of
components in γ freely homotopic to σi.

There are various ways of defining the standard position of γ, leading to differ-
ent definitions of the twist. The parameter pi(γ) which occurs in the statement of
the Top Terms’ Relationship (Theorem A) is the twist parameter defined by Dy-
lan Thurston [41], however in the proof of the formula we find it convenient to
use a slightly different definition: the twist parameter p̂i(γ) described by Penner
and Harer [38]. Both of these definitions are explained in detail below, as is the
precise relationship between them, see Theorem 1.2.6. With either definition, a
classical theorem of Dehn [12], see also [38] (p.12), asserts that the length and twist
parameters uniquely determine γ:

Theorem 1.2.1. (Dehn’s theorem)

The map i : S(Σ) −→ (Z>0 × Z)ξ which sends a multicurve γ ∈ S(Σ) to the (2ξ)–
vector (q1(γ), tw1(γ), . . . , qξ(γ), twξ(γ)) is an injection. In addition, we have that the
point (q1(γ), tw1(γ), . . . , qξ(γ), twξ(γ)) is in the image of i (and hence corresponds
to a multicurve) if and only if:

(i) if qi = 0, then twi > 0, for each i = 1, . . . , ξ.

(ii) if σi1 , σi2 , σi3 are pants curves which together bound a pair of pants embedded
in Σ, then the sum qi1 + qi2 + qi3 of the corresponding intersection numbers is
even.

We remark that, as a special case of (ii), the intersection number with a pants
curve which bounds an embedded once–punctured torus or twice–punctured disk in
Σ is even.

We will use the notation iDT and iPH when we consider the twist parameters
twi to be the D. Thurston’s twists parameters pi and the Penner and Harer’s twist
parameters p̂i respectively.

One can think of this theorem in the following way. Suppose given a multicurve
γ ∈ S, whose length parameters qi(γ) necessarily satisfy the parity condition (ii),
then the qi(γ) uniquely determine γ ∩ Pj for each pair of pants Pj , j = 1, . . . , k,
in accordance with the possible arrangements of arcs in a pair of pants, see for
example [38]. Now given two pants adjacent along the curve σi, we have qi(γ)
points of intersection coming from each side and we have only to decide how to
match them together to recover γ. The matching takes place in the cyclic cover of
an annular neighbourhood of σi. The twist parameter twi(γ) specifies which of the
Z possible choices is used for the matching.

8



Remark 1.2.2. The name Dehn–Thurston coordinates refers to William Thurston
who extended this parametrization to the set ML(Σ) of measured laminations on
the surface Σ, see Theorem 3.1.1 of Penner [38]. (See Section 1.3.1 for the definition
of ML(Σ).)

1.2.1 The DT-twist

In [41], Dylan Thurston gives a careful definition of the twist twi(γ) = pi(γ) of
γ ∈ S which is essentially the ‘folk’ definition and the same as that implied in Fathi–
Laudenbach–Poénaru [17]; see Section 1.2.1.e. He observes that this definition has
a nice intrinsic characterisation, see Section 1.2.1.d. Furthermore, it turns out to be
the correct definition for our formula in Theorem A.

1.2.1.a The marking decomposition

Given the pants decomposition P of a topological surface Σ, we note, following [41],
that we can fix a marking decomposition on Σ in three equivalent ways. These are:

(a) an involution: an orientation–reversing map R : Σ −→ Σ so that for each
i = 1, . . . , ξ we have R(σi) = σi;

(b) a hexagonal decomposition: this can be defined by a multicurve which meets
each pants curve twice, decomposing each pair of pants into two hexagons;

(c) dual curves: for each i, a (multi)curve Di so that i(Di, σj) = 2δij .

The equivalence of these definition is easy and we will explain the ideas of the
proof in the following paragraphs.

These characterisations are most easily understood in connection with a particu-
lar choice of hyperbolic metric h0 on Σ. Recall that a pair of pants P in a hyperbolic
surface is the union of two right angle hexagons glued along its seams, and that there
is an orientation reversing symmetry of P which fixes the seams, see Fathi, Lauden-
bach and Poénaru [17]. The endpoints of exactly two seams meet each component
of the boundary ∂P . Now let Σ∗ = (Σ, h0) be a hyperbolic surface formed by gluing
pants P1, . . . , Pk in such a way that the seams are exactly matched on either side
of each common boundary curve σi. In this case the existence of the orientation
reversing map R as in (a) and of the hexagonal decomposition as in (b) are clear
and are clearly equivalent.

In order to understand the relationship between (a)–(b) and (c), we consider two
cases:
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• the modular surface MS(σi) associated to σi is homeomorphic to Σ0,4;

• the modular surface MS(σi) associated to σi is homeomorphic to Σ1,1.

In the first case, that is, if the modular surface associated to σi is made up of
two distinct pairs of pants P and P ′, then, as explained above, the dual curve Di

to σi is obtained by gluing the two sbcc–arcs in P and in P ′ which run from σi

to itself. Given a pair of pants P , there is a unique minimal length sbcc–arc in P

which run from σi to itself and this arc intersects σi orthogonally. Each arc meets
σi orthogonally so that in the metric Σ∗ the two endpoints on each side of σi are
exactly matched by the gluing. In the second case, that is, if the modular surface
is a single pair of pants P , then the dual curve is obtained by gluing the minimal
length single dbcc–arc in P which runs from σi to itself. Once again both ends of this
arc meet σi orthogonally and in the metric Σ∗ are exactly matched by the gluing.
In this case, following the convention explained in Section 1.1.0.a, we take the dual
curve Di to be two parallel copies of the curve just described. Thus in all cases
i(Di, σj) = 2δij and furthermore the curves Di are fixed by R.

A general hyperbolic surface Σh = (Σ, h) can be obtained from Σ∗ by performing
a Fenchel–Nielsen twist deformation Twσ,r : Σ∗ −→ Σh about the multicurve σ =∑ξ

i=1 σi, where r = (r1, . . . , rξ) ∈ Rξ, see Section 1.1.0.b for definition. Clearly
Twσ,r induces a reversing map, a hexagonal decomposition, and dual curves on
the surface Twσ,r(Σ), showing that each of (a), (b) and (c) equivalently define a
marking on an arbitrary surface Σ. This concludes the argument which explains the
equivalence between (a), (b) and (c).

1.2.1.b The twist

Having defined the marking decomposition, we can now define the twist pi(γ) for
any γ ∈ S. Arrange, as above, the dual curves Di to be fixed by R, so that, in
particular, if σi is the boundary of a single pair of pants P (and hence the modular
surface MS(σi) ∼= Σ1,1), then the two parallel components of the multicurve Di are
contained one in each of the two hexagons making up P . For each i = 1, . . . , ξ,
choose a small (open) annular neighbourhood Ai of σi, in such a way that the
complement Σ \ ∪ξi=1Int(Ai) of the interiors of these annuli in Σ are closed pairs of
pants P̂1, . . . , P̂k. Arrange γ in D. Thurston’s position, that is so that its intersection
with each P̂i is fixed by R and so that it is transverse to Di. Also push any
component of γ parallel to any σi into Ai.

If qi = i(γ, σi) = 0, define pi ≥ 0 to be twice the number of components of γ
parallel to σi. Otherwise, qi = i(γ, σi) > 0. In this case, orient both γ ∩ Ai and
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Di ∩ Ai to run consistently from one boundary component of Ai to the other. (If
MS(σi) is Σ0,4, then the two arcs of Di ∩ Ai will be oriented in opposite directions
relative to the connected curve Di.) Then define

pi = î(γ ∩ Ai, Di ∩ Ai),

where î(α, α′) is the algebraic intersection number between the multicurves α and
α′, namely the sum of the indices of the intersection points of α and β, where an
intersection point is of index +1 when the orientation of the intersection agrees with
the orientation of Σ and −1 otherwise.

Note that this definition is independent of both the choice of the orientations of
γ ∩ Ai and Di ∩ Ai, and the choice of the arrangement of γ in the pairs of pants
adjacent to σi. Also, following the convention about dual curves in Section 1.1.0.a,
the parameter pi is always even. Two simple examples are illustrated in Figures 1.1
and 1.2.

1.2.1.c An alternative definition

The twist pi can also be described in a slightly different way as follows. Lift Ai to
its Z–cover which is an infinite strip H. As shown in Figures 1.1 and 1.2, the lifts of
Di∩Ai are arcs joining the two boundaries ∂0H and ∂1H of H. As explained in the
previous section, we orient the lifts of both γ ∩ Ai and Di ∩ Ai to run consistently
from one boundary component of H to the other. They are equally spaced, like
rungs of a ladder, in such a way that there are exactly two lifts in any period of
the translation corresponding to σi. Any arc of γ enters H on one side and leaves
on the other. Fix such a rung D∗ say and number the strands of γ meeting ∂0H in
order as Xn, with n ∈ Z, where X0 is the first arc to the right of D∗ and n increases
moving to the right along ∂0H, relative to the orientation of the incoming strand of
γ. Label the endpoints of γ on ∂1H by X ′n, with n ∈ Z correspondingly, as shown in
Figure 1.1. Since γ is simple, if X0 is matched to X ′r, then Xn is matched to X ′n+r

for all n ∈ Z. Then it is not hard to see that r = pi
2 .

1.2.1.d Intrinsic characterisation

The intrinsic characterisation of the twist in [41] uses Luo product α · β, where
α, β ∈ S are multicurves on an oriented surface Σ. This is defined as follows [26; 41]:

• If α ∩ β = ∅, then α · β = α ∪ β ∈ S.
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Figure 1.1: A curve γ with pi(γ) = 0. The arcs D,D′ together project to the dual
curve Di.
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Figure 1.2: A curve γ with pi(γ) = −2.

• Otherwise, arrange α and β in minimal position, that is, such that i(α∩ β) =
|α ∩ β|. In a neighbourhood of each intersection point xj ∈ α ∩ β, replace
α ∪ β by the union of the two arcs which turn left from α to β relative to the
orientation of Σ, see Figure 1.3. (In [26] this is called the resolution of α ∪ β
from α to β at xj .) Then α · β is the multicurve made up from α ∪ β away
from the points xj , and the replacement arcs near each xj .

α

β

xj

↵ · �

Figure 1.3: Luo product: the resolution of α ∪ β at xj .

Proposition 1.2.3 ([41] Definition 15). The function pi : S(Σ) −→ Z is the unique
function such that, for all γ ∈ S, we have:
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(i) pi(σj · γ) = pi(γ) + 2δij;

(ii) pi depends only on the restriction of γ to the pairs of pants adjacent to σi;

(iii) pi(R(γ)) = −pi(γ), where R is the orientation reversing involution of Σ de-
fined in Section 1.2.1.a.

We call pi(γ) the DT–twist parameter of γ about σi. Property (i) fixes our con-
vention noted above that the right twist is taken positive. Notice that pi(Di) = 0.
We also observe:

Proposition 1.2.4. Let γ ∈ S. Then

pi (Twσi(γ)) = pi(γ) + 2qi.

1.2.1.e Relation to Fathi, Laudenbach and Poénaru’s definition

In Fathi, Laudenbach and Poénaru [17], a multicurve γ ∈ S is parameterized by three
non–negative integers (mi, si, ti). These are defined as the intersection numbers of γ
with the three curves Ki, K ′i and K ′′i , namely the pants curve σi, its dual curve Di,
and Twσi(Di), the right Dehn twist of Di about σi, see Figure 4 on p. 62 in [17].
In particular:

• mi(γ) = i(γ,Ki) = i(γ, σi) = qi(γ);

• si(γ) = i(γ,K ′i) = i(γ,Di) =
|pi(γ)|

2
;

• ti(γ) = i(γ,K ′′i ) = i (γ, Twσi(Di)) =
∣∣pi(γ)

2
− qi(γ)

∣∣.
As proved in [17], the three numbers mi, si and ti satisfy one of the three relations:

• mi = si + ti;

• si = mi + ti;

• ti = mi + si.

As it is easily verified by a case–by–case analysis, we have:

Theorem 1.2.5. Each triple (mi, si, ti) uniquely determines and is determined by
the parameters qi and pi. In fact, qi = mi and pi = 2sign(pi)si, where

sign(pi) =

+1, if mi = si + ti or si = mi + ti;

−1, if ti = mi + si.

13



Proof. If sign(pi) = −1, then
pi
2
− qi ≤ 0. So

ti = |pi
2
− qi| = −(

pi
2
− qi) =

|pi|
2

+ qi = si +mi.

If sign(pi) = +1, then we have:

1. if
pi
2

6 qi, then ti = |pi
2
− qi| = qi −

|pi|
2

= mi − si;

2. if qi 6
pi
2

, then ti = |pi
2
− qi| =

|pi|
2
− qi = si −mi,

as we wanted to prove.

1.2.2 The PH–Twist

We now summarise Penner and Harer’s definition of the twist parameter following
Section 1.2 of [38]. Instead of arranging the arcs of γ transverse to σi symmetrically
with respect to the involution R, we now arrange them to cross σi through a short
closed arc wi ⊂ σi. There is some choice to be made in how we do this, which leads
to the difference with the definition of the previous section. It is convenient to think
of wi as contained in the two ‘front’ hexagons of the pairs of pants P and P ′ glued
along σi, which we will also refer to as the ‘white’ hexagons, see Section 2.2.1.

Precisely, for each pants curve σi ∈ PC, fix a short closed arc wi ⊂ σi, called
window, which we take to be symmetrically placed in the white hexagon of one of
the adjacent pairs of pants P , midway between the two seams which meet σi ⊂ ∂P .
See Figure 1.4 for details. For each σi, fix an annular neighbourhood Ai and extend
wi into a ‘rectangle’ Ri ⊂ Ai with one edge on each component of ∂Ai and ‘parallel’
to wi and two edges arcs from one component of ∂Ai to the other. Let di be one
of these two edges going from one component of ∂Ai to the other; see Figure 1.4.
(See [38] for precise details.)

Now isotop γ ∈ S into Penner and Harer standard position as follows. Any
component of γ homotopic to σi is isotoped into Ai. Next, arrange γ so that it
intersects each σi exactly qi(γ) times and, moreover, so that all points in γ ∩ σi are
contained in the interior of wi. We further arrange that all the twisting of γ occurs
in Ai. Precisely, isotop so that γ ∩ ∂Ai ⊂ ∂Ri, in other words, so that γ enters Ai

across the interior of the edges of Ri parallel to wi. By pushing all the twisting into
Ai, we can also arrange that outside Ai, any dbcc–arc of γ ∩ P does not cross any
seam of P . The sbcc–arcs are slightly more complicated. Any such arc has both
endpoints on the same boundary component, let say ∂0P . Give the white hexagon
(the ‘front’ hexagon in Figure 1.4) the same orientation as the surface Σ. With
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this orientation, the two other boundary components ∂1P and ∂∞P are arranged
as shown in Figure 1.4. We isotop the sbcc–arc so that outside Ai it loops round
the right hand component ∂1P (‘right’ relative to the incoming strand of the arc),
without cutting the seam joining ∂0P to ∂∞P , see Figure 1.4.

�i = @0P

@1P @1P

wi

di

Figure 1.4: An sbcc–arc in Penner and Harer standard position, the window wi and
the arc di.

Having put γ into Penner and Harer standard position, we define the Penner and
Harer–twist or PH–twist p̂i(γ) as follows.

• If qi(γ) = i(γ, σi) = 0, let p̂i(γ) > 0 be the number of components of γ which
are freely homotopic to σi.

• If qi(γ) 6= 0, let |p̂i(γ)| be the minimum number of arcs of γ∩Ai which intersect
di, where the minimum is over all families of arcs properly embedded in Ai,
isotopic to γ ∩ Ai by isotopies fixing ∂A pointwise. Take p̂i(γ) > 0 if some
components of γ twist to the right in Ai and p̂i(γ) 6 0 otherwise. (There
cannot be components twisting in both directions since γ is embedded and, if
there is no twisting, then p̂i(γ) = 0.)

1.2.2.a The dual curves in Penner and Harer position

As an example, we explain how to put the dual curves Di into Penner and Harer
standard position. This requires some care. For clarity, we denote one component
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D̂�i

�

�0

P

P 0

�i

wi

di

X 0 = X Ŷ

Ŷ 0

Figure 1.5: The dual curve Di in Penner and Harer standard position and the
window wi on σi. The endpoints of di are on the boundary of the annulus Ai (not
shown) around σi. The segment di is one edge of the rectangle Ri which is drawn.

of the dual curve Di by D̂i, so that in the case in which MS(σi) is Σ1,1, we have
2D̂i = Di, while D̂i = Di otherwise.

If MS(σi) is Σ1,1, then there is only one arc to be glued whose endpoints we can
arrange to be in wi. We simply take two parallel copies of this curve D̂i so that
Di = 2D̂i and p̂i(Di) = 0.

If MS(σi) is Σ0,4 then Di = D̂i. In this case we have to match the endpoints
of two sbcc–arcs β ⊂ P and β′ ⊂ P ′, both of which have endpoints on σi. The
arc β has one endpoint X in the front white hexagon of P , which we can arrange
to be in wi, and the other Y in the symmetrical position in the black hexagon.
Label the endpoints of β′ in a similar way. To get β ∪ β′ into standard Penner and
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Harer position, we have to move the back endpoints Y and Y ′ round to the front so
that they also lie in wi. Arrange P and P ′ as shown in Figure 1.5 with the white
hexagons to the front. In Penner and Harer position, β has to curve round the right
hand boundary component of P so that Y has to move to a point Ŷ to the right of
X along wi in Figure 1.5. In P ′ on the other hand, β′ has to loop round the right
hand boundary component of P ′, so that Y ′ gets moved to a point Ŷ ′ to the left of
X ′ on wi. Since X is identified to X ′, to avoid self–intersections, Ŷ has to be joined
to Ŷ ′ by a curve which follows σi around the back of P ∪ P ′. By inspection, we see
that p̂i(D̂i) = −1.

1.2.3 Relationship between the different definitions of twist

Our proof of Theorem A in Section 2.4 uses the explicit relationship between the
above two definitions of the twist. The formula in Theorem 1.2.6 below appears
without proof in [41]. We modify the statement and, for completeness, we also
supply a proof. Note that this formula is not symmetric, as one would expect
because of the non-symmetric definition of the PH–twist p̂i.

Suppose that two pairs of pants meet along σi ∈ PC. Label their respective
boundary curves (A,B,E) and (C,D,E) in clockwise order, where E = σi, see
Figure 1.6. (Some of these boundary curves may be identified in Σ.)

Theorem 1.2.6. (Appendix B of [41]) As above, let γ ∈ S and let qi = qi(γ),
p̂i = p̂i(γ) and pi = pi(γ) respectively denote its length parameter, its PH–twist and
its DT–twist around σi. Then

p̂i =
pi + l(A,E;B) + l(C,E;D)− qi

2
,

where E = σi and l(X,Y ;Z) denotes the number of strands of γ∩P running from the
boundary curve X to the boundary curve Y in the pair of pants P having boundary
curves (X,Y, Z).

Proof. Let γ ∈ S. We use a case–by–case analysis to give a proof by induction on
n = qi(γ). We shall assume that the modular surface MS(σi) is Σ0,4, so that σi
belongs to the boundary of two distinct pairs of pants P = (A,B,E) and P ′ =
(C,D,E), and leave the case in which MS(σi) is Σ1,1 to the reader. We begin with
the cases n = 1 and n = 2, because n = 2 is useful for the inductive step.

When n = 1, the strand of γ which intersects σi must join one of the boundary
components of P different from E, to one of the two boundary components of P ′

different from E. We have four cases corresponding to γ joining A or B to C or D.
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Ai

γ

Di

A B

CD

Figure 1.6: Case n = 1 when γ goes from A to C. E is the core curve of the annulus
Ai.

Figure 1.6 shows the case in which γ joins A to C. Without loss of generality we
can consider the case p̂ = 0.

1. From A to C: l(A,E;B) = 1, l(C,E;D) = 1, p = −1 and q = 1;

2. From A to D: l(A,E;B) = 1, l(C,E;D) = 0, p = 0 and q = 1;

3. From B to C: l(A,E;B) = 0, l(C,E;D) = 1, p = 0 and q = 1;

4. From B to D: l(A,E;B) = 0, l(C,E;D) = 0, p = 1 and q = 1.

In all these cases the formula is true.
Now consider n = 2, so that γ ∩MS(σi) may have either one or two connected

components. If there are two components, then each one was already analysed in
the case n = 1, and the result follows by the additivity of the quantities involved.

If γ ∩ P is connected, we must have (in one of the pairs of pants P or P ′) a
sbcc–arc which has both its endpoints on σi. Without loss of generality, we may
suppose that this arc is in P . Choose an orientation on γ and call its initial and
final points X1 and X2, respectively. The endpoints of this arc must be joined to
the boundary components C or D of P ′. Figure 1.7 illustrates the case in which X1

is joined to D, while X2 is joined to C. We will verify the formula in the following
three cases (and again, without loss of generality, we assume p̂ = 0).

1. From C to C: l(A,E;B) = 0, l(C,E;D) = 2, p = 0 and q = 2;
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Figure 1.7: Case n = 2 when X1 is joined to D and X2 is joined to C (in D.
Thurston’s position).

2. From C to D: l(A,E;B) = 0, l(C,E;D) = 1, p = 1 and q = 2;

3. From D to D: l(A,E;B) = 0, l(C,E;D) = 0, p = 2 and q = 2.

Suppose now that the statement is true for any n < q, and let γ ∈ S such that
qi(γ) = q. If γ∩MS(σi) is not connected, then each connected component intersects
σi less then n times and the result follows from the inductive hypothesis and the
additivity of the quantities involved.

If γ̂ = γ ∩MS(σi) is connected, then there is an arc which has both its endpoints
on σi. Choose an orientation on γ. Without loss of generality, we can suppose that
the first such arc is contained in P . Let X1 and X2 be its two ordered endpoints.
Then X2 splits γ̂ into two oriented curves α and β, where α contains only one arc
with both endpoints in σi, while β has q − 1 arcs of this kind. Now we modify α

and β in such a way that they become properly embedded arcs in MS(σi), that is,
arcs with endpoints on ∂(MS(σi)) ⊂ Σ. We do this by adding a segment for each
one of α and β from X2 to one of the boundary components C or D of P ′. In order
to respect the orientation of α and β, we add the segment twice, once with each
orientation. This doesn’t change the quantities involved. For example, suppose we
add two segments from X2 to C. This creates two oriented curves α′ and β′ in
MS(σi) such that

twi(γ) = twi(α ∪ β) = twi(α′ ∪ β′) = twi(α′) + twi(β′)
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and the conclusion now follows from the inductive hypothesis.

Remark 1.2.7. There is a nice formula for the number l(X,Y, Z) in the above theo-
rem. Given a, b ∈ R, let max (a, b) = a∨b and min (a, b) = a∧b. Suppose that a pair
of pants has boundary curves X,Y, Z and that γ ∈ SC. Let x = i(γ,X) and define
y, z similarly. As above let l(X,Y ;Z) denote the number of strands of γ running
from X to Y . Then we have

l(X,Y ;Z) = 0 ∨
(
x+ y − z

2
∧ x ∧ y

)
,

see [41] p. 20.

1.3 Thurston symplectic form

In order to define Thurston’s symplectic form, we adopt Penner and Harer’s ap-
proach [38], which uses train tracks. Before defining train tracks, we recall, in
Section 1.3.1, the notion of measured laminations following McMullen [34]. In Sec-
tion 1.3.2, following Hamenstäd [19], we define train tracks, so as to be able to define
the symplectic form, also called Thurston’s product. In Section 1.3.3 we present an
easy way to calculate this product using the Dehn–Thurston coordinates.

1.3.1 Measured laminations

Given a surface Σ with an hyperbolic structure, a geodesic lamination η on Σ is a
closed set of pairwise disjoint complete simple geodesics on Σ called its leaves. A
transverse measure on η is an assignment of a measure to each arc transverse to
the leaves of η that is invariant under the push forward maps along the leaves of
η. A measured geodesic lamination on Σ is a geodesic lamination together with a
transverse measure. We define the space of measured laminations ML(Σ) to be the
space of all homotopy classes of measured geodesic laminations on Σ with compact
support. This space is called ML0(Σ) in Penner and Harer [38]. An important
subset of ML(Σ) is the space MLQ(Σ) of rational geodesic laminations, that is,
measured geodesic laminations with support on multicurves. In addition, these
definitions don’t depend on the hyperbolic structure, but only on the topology of
Σ, as discussed, for example, by Penner and Harer [38, Section 1.7].

Multiplying the transverse measure on a geodesic lamination by a positive con-
stant, gives an action of R+ on ML(Σ). We can therefore define the set of projective
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measured (geodesic) laminations PML(Σ) on Σ as the quotient

PML(Σ) = (ML(Σ) \ 0)/R+,

where 0 is the empty lamination. Similarly you can also define the set of rational
projective measured (geodesic) laminations PMLQ(Σ).

There is a well defined topology on ML(Σ) which is defined as the weak∗ topology.
The interested reader can refer to Bonahon [6] for a more detailed discussion.

1.3.2 Train tracks and Thurston symplectic form

A train track on a surface Σ is an embedded 1–complex τ ⊂ Σ such that:

i The edges (called branches) are smooth arcs and the tangent vectors at the
endpoints are well–defined.

ii At any vertex v (called switch) the incident edges are mutually tangent and are
divided into “incoming” and “outgoing” branches at v (according to their inward
pointing tangent vectors at the switch).

iii Each closed curve component of τ has a unique bivalent switch, and all other
switches are at least trivalent.

iv The complementary regions of the train track have negative Euler characteristic
(that is, they are different from disks with 0, 1 or 2 cusps at the boundary and
different from annuli and once-punctured disks with no cusps at the boundary,
where a cusp is a non-smooth point).

A train track is called generic if all switches are at most trivalent. In the case of a
trivalent vertex, there is one incoming branch and two outgoing ones. A train track
is called maximal if each complementary region is either a trigon or a once-punctured
monogon.

Denote B = B(τ ) the set of branches of τ . A function w : B −→ R>0 (resp.
w : B −→ R) is a transverse measure (resp. weighting) for τ if it satisfies the switch
condition, that is for all switches v, we want

∑
iw(ei) =

∑
j w(Ej) where the ei are

the incoming branches at v and Ej are the outgoing ones.
A train track is called recurrent if it admits a transverse measure which is positive

on every branch. A train track τ is called transversely recurrent if every branch
b ∈ B(τ ) is intersected by an embedded simple closed curve c = c(b) ⊂ Σ which
intersects τ transversely and is such that Σ− τ − c does not contain an embedded
bigon, i.e. a disk with two corners on the boundary. (Here a corner is a point where
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v

cv(n)incoming branch

outgoing branches

Figure 1.8: A switch v of a train track with one black incoming edge and two red
weighted outgoing edges.

c cuts a branch of τ transversally and a cusp is formed by two mutually tangent
branches of τ which meet at a switch, either both incoming or both outgoing.) A
recurrent and transversely recurrent train track is called birecurrent.

A geodesic lamination (or a train track) λ is carried by a train track τ if there is
a map F : Σ −→ Σ of class C1 which is isotopic to the identity and which maps λ to
τ in such a way that the restriction of its differential dF to every tangent line of λ is
non–singular. A generic transversely recurrent train track which carries a complete
geodesic lamination is called complete, where we define a geodesic lamination to be
complete if there is no geodesic lamination that strictly contains it.

Given a generic birecurrent train track τ ⊂ Σ, we define V(τ ) to be the collection
of all (not necessary nonzero) transverse measures supported on τ and let W(τ ) be
the vector space of all weightings, that is assignments of (not necessary non-negative)
real numbers, one to each branch of τ , which satisfy the switch conditions. By
splitting, we can arrange τ to be generic. Since Σ is oriented, we can distinguish the
right and left hand outgoing branches. If n,n′ ∈ W(τ ) are weightings on τ , then we
denote by bv(n), cv(n) the weights of the left hand and right hand outgoing branches
at v respectively; see Figure 1.8. Thurston’s product ΩTh : W(τ ) ×W(τ ) −→ R is
defined as

ΩTh(n,n′) =
1
2

∑
v

(
bv(n)cv(n′)− bv(n′)cv(n)

)
. (1.1)

In Theorem 3.1.4 of Penner and Harer [38] it is proved that, if the train track
τ ⊂ Σ is complete, then the interior int (V(τ )) of V(τ ) can be thought of as a chart
on the PIL manifold ML(Σ) of measured laminations (with compact support), as
underlined by Penner and Harer in Section 3.1 of [38]. See Section 1.3.1 for the
definition of ML(Σ). (PIL is short for piecewise–integral–linear, see [38, Section 3.1]
for the definition.) In addition, in this case, we can identify W(τ ) with the tangent
space to ML(Σ) at a point in int (V(τ )). The Thuston product ΩTh defined above
allows us to define a symplectic structure on the PIL manifold ML(Σ).
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We now add a short remark which is not used in the following sections, but which
could be useful for some readers. An orientation on a train track τ is a specification
of orientation for each branch of τ such that incoming branches points towards
outgoing ones, see page 31 of Penner and Harer for a more precise definition. It is
interesting to note that, if τ is oriented, then there is a natural map hτ : W(τ ) −→
H1(Σ; R), see Section 3.2 [38], which is related to Thurston’s product by the following
result. For a generalisation of this result to the case of an arbitrary (not necessarily
orientable) train track τ ∈ Σ, see Section 3.2 [38].

Proposition 1.3.1 (Lemma 3.2.1 and 3.2.2 [38]). For any train track τ , ΩTh(·, ·) is
a skew-symmetric bilinear pairing on W(τ ). In addition, if τ is connected, oriented
and recurrent, then for any n,n′ ∈ W(τ ), ΩTh(n,n′) is the homology intersection
number of the classes hτ (n) and hτ (n′).

As before, we add now a remark not important for the future results, but that
we find really interesting and which could help in understanding the meaning of
ΩTh. We need to recall the last Proposition of Section 3.2 of [38] and some notation
from Bonahon’s work (see his survey paper [6] for a general introduction to the
argument and for other further references). After rigorously defining the tangent
space Tη ML(Σ) with η ∈ ML(Σ), Bonahon proves in [4] that we can interpret
any tangent vector v ∈ Tη ML(Σ) as a geodesic lamination with a transverse Hölder
distribution. Theorem 11 of Bonahon [5] shows that the space of Hölder distributions
on a track τ coincides with the space W(τ ), the vector space of all assignments of
not necessary non-negative real numbers, one to each branch of τ , which satisfy
the switch conditions. As a corollary of this result, one can prove that the space of
Hölder distributions on a track τ is finite dimensional. In particular, if τ is maximal,
then the real dimension of this space is dimR(W(τ )) = 2ξ(Σg,b) = 6g − 6 + 2b.
Bonahon also characterised which geodesic laminations with transverse distributions
correspond to tangent vectors to ML(Σ). Notice that, if the lamination η ∈ ML(Σ)
is carried by the track τ , we can locally identify Tη ML(Σ) with W(τ ).

Theorem 1.3.2 (Theorem 3.2.4 [38]). For any surface Σ, Thurston’s product is
a skew-symmetric, nondegenerate, bilinear pairing on the tangent space to the PIL
manifold ML(Σ).

1.3.3 Thurston symplectic form and Dehn–Thurston coordinates

In this section we explain how to calculate Thurston symplectic form using Dehn–
Thurston coordinates. We generalised an idea discussed by Series [40] in the case of
the twice punctured torus.
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In Proposition 4.3 of [40], Series describes a formula for calculating Thurston’s
product using a set of coordinates similar to the Dehn–Thurston coordinates de-
scribed in Section 1.2, but her proof works only for the case Σ = Σ1,2, since she uses
a particular choice of train tracks, called canonical train tracks, see Keen–Parker–
Series [23]. Our idea is to use the standard train tracks defined by Penner and Harer
in Section 2.6 of [38]. See Figures 1.9 and 1.10. We are able to prove the following
result.

Theorem 1.3.3. Suppose that the curves γ, γ′ ∈ S belongs to the same chart (and
so are supported on a common standard train track). Then

ΩTh(γ, γ′) =
1
2

ξ∑
i=1

(qip′i − q′ipi),

where iDT (γ) = (q1, p1, . . . , qξ, pξ) and iDT (γ′) = (q′1, p
′
1, . . . , q

′
ξ, p
′
ξ) are the DT–

coordinates of γ and γ′.
In addition, if γ, γ′ are disjoint, then ΩTh(γ, γ′) = 0.

We consider this result really interesting in its own right and we believe it should
have many further consequences.

The hypothesis that the curves γ, γ′ ∈ S belongs to the same chart is necessary
for the definition of ΩTh. In fact, we define ΩTh for weightings n,n′ ∈ W(τ ), see
Section 1.3.2.

Remark 1.3.4. Using Theorem 1.3.3 and recalling that dimR(ML(Σ)) = 2ξ, we
can see that this symplectic form ΩTh(·, ·) induces a map R2ξ −→ R2ξ defined by
x = (x1, y1, . . . , xξ, yξ) 7→ x∗ = (y1,−x1, . . . ,−yξ, xξ) such that

2ΩTh(i(γ), i(δ)) = i(γ) · i(δ)∗, (1.2)

where · is the usual inner product on R2ξ and where i = iDT is defined just after
Theorem 1.2.1. We will use this map in Chapter 3.

The outline of the proof is the following. Given a multicurve γ ∈ S, the Dehn-
Thurston coordinates, using the length parameter qi and Penner and Harer’s twist
p̂i, define a choice of standard weighted train tracks which carries γ, as discussed in
Section 1.3.3.a below. Then, if we have a pair of multicurves γ, γ′ ∈ S supported
on a common standard train track, we can calculate Thurston’s product ΩTh(γ, γ′)
using the definition in Equation (1.1). Finally, using the relationship between the
PH–twist and the DT–twist, as described by Theorem 1.2.6, one can prove Theorem
1.3.3, which will be very important in the proof of the main theorems of Chapter
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3. The pants decomposition PC (used in the definition of the Dehn–Thurston co-
ordinates i) decomposes Σ in pieces which are annuli Ai around the pants curves
and pairs of pants Pj in the complement of these annuli. In particular, the sum of
Thurston’s products in the annuli Ai give us

∑ξ
i=1(qip̂′i − q′ip̂i), using Penner and

Harer’s twists, while the sum over the pairs of pants give us some other terms, so that
the total sum give us the results that we want, that is the product

∑ξ
i=1(qip′i−q′ipi).

Note that in this final sum we are using DT–twist.
We now explain the detailed proof.

1.3.3.a Standard models

e2

e1

e1

e2

e1

e1

e2

e1

e2

e1

Figure 1.9: Types of track in a annulus: type +2, −2, +1 and −1.

Given a pants decomposition PC = {σ1, . . . , σξ} and a multicurve γ such that
iPH(γ) = (q1, p̂1, . . . , qξ, p̂ξ) (read with respect to PC), Penner and Harer describe
exactly how to construct a train track τ which carries γ. In particular, we can
decompose Σ in pieces which are annuli Ai around the pants curves and pairs of
pants Pi in the complement of these annuli. Then, according to the inequalities
satisfied by the coordinates qi and p̂i, we can write down a train track for each Ai

and Pi. On the annuli there are 4 (maximal) types of tracks and on the pairs of
pants there are the same number of (maximal) types of tracks. In detail, for the
annulus Ai around the pants curve σi, we have the following tracks (see Figure 1.9):

1. type +2 , if |p̂i| > qi and p̂i > 0;

2. type −2 , if |p̂i| > qi and p̂i 6 0;

3. type +1 , if qi > |p̂i| and p̂i > 0;

4. type −1 , if qi > |p̂i| and p̂i 6 0.
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l2,2

q1

Figure 1.10: Types of track in a pair of pants: type 0 and 2.

For the pair of pants Pi,j,k such that the boundary curves are σi, σj and σk (which
we don’t require to be distinct), we have four possibilities (see Figure 1.10):

1. type 0 , if qi 6 qj + qk, qj 6 qi + qk and qk 6 qi + qj ;

2. type 1 , if qi > qj + qk;

3. type 2 , if qj > qi + qk;

4. type 3 , if qk > qi + qj .

Notice that we discussed only the maximal tracks. There are also subtracks
which are carried by more than one maximal track at the same time. In fact, that
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is the case when the coordinates satisfy more than one type of inequalities in the
description above (that happen when the coordinates satisfies the equalities instead
of the inequalities). In this case one chooses one of the maximal tracks which carries
the subtrack.

Figures 1.9 and 1.10 describe the weights for some of the edges of the track in
an annulus and in a pair of pants, respectively. The other edges are determined
by the switch conditions. For the annulus we have weights e1 and e2, while for the
pair of pants we have weights li,j . We can write the value of these weights using
the Dehn–Thurston coordinates (with Penner and Harer’s twist). In detail, for the
annulus Ai we have

e1(σi) =



qi, if type + 2

qi, if type− 2

p̂i, if type + 1

|p̂i| = −p̂i, if type− 1

and

e2(σi) =



p̂i − qi, if type + 2

|p̂i| − qi = −p̂i − qi, if type− 2

qi − p̂i, if type + 1

qi − |p̂1| = qi + p̂i, if type− 1,

while for the pair of pants Pi,j,k with boundary curves σi, σj , σk, we have thatla,b(σi, σj , σk) = qa+qb−qc
2 , if {a, b, c} = {i, j, k},

la,a(σi, σj , σk) = qa−qb−qc
2 , if {a, b, c} = {i, j, k}.

See also Figure 2.6.1 and 2.6.2 of Penner and Harer [38].

1.3.3.b Proof of Theorem 1.3.3

Now we have all the tools we need in order to prove Theorem 1.3.3 which is the main
result of this section. The proof is a bit technical, so we describe some examples
in Section 1.3.3.c where the reader can see an application of the ideas behind the
following proof.

Proof of Theorem 1.3.3. If γ, γ′ ∈ S belong to the same chart, then they define
the same type of standard tracks in each annulus and pairs of pants. If iPH(γ) =
(q1, p̂1, . . . , qξ, p̂ξ) and iPH(γ′) = (q′1, p̂

′
1, . . . , q

′
ξ, p̂
′
ξ) are the Dehn–Thurston coor-

dinates of the multicurves γ and γ′, where p̂i and p̂′i are the PH–twists, we can
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associate weights on the edges of this standard tracks in a natural way, see Penner
and Harer [38] or Section 1.3.3.a.

Using the standard train tracks associated to the multicurves γ and γ′ and using
the definition of Thurston’s product ΩTh (that is, Equation (1.1)), you can see that
in the annulus Ai about σi the product is ΩTh(γ, γ′)|Ai = αi = qip̂

′
i−q′ip̂i for all types

of track. On the other hand, in the pair of pants with boundary curves σi, σj , σk we
have different value for different types. In particular, for a track on pair of pants
Pi,j,k of type 0 we have ΩTh(γ, γ′)|Pi,j,k = βi,j,k = q′iqk−q′kqi+q′kqj−qkq′j+q′jqi−qjq′i,
while if Pi,j,k is of type 1 we have ΩTh(γ, γ′)|Pi,j,k = βi,j,k = q′iqk − q′kqi. Types 2
and 3 are similar to type 1.

Now, let P be a pair of pants with boundary curves σ1, σ2 and σ3 and consider
the sum

∑3
i=1(qip′i − q′ipi), where pi and p′i are the DT–twists. If you apply the

formula of Theorem 1.2.6 to pi and p′i, you can check that you get exactly the terms
2(α1 + α2 + α3 + β1,2,3) = 2ΩTh(γ, γ′) for any type of standard track in P . This
proves our result.

1.3.3.c Examples

In this section we give two examples in order to explain better our method in the
proof of Theorem 1.3.3. The second example also explains why we need to use the
DT–twist in the formula.

Example 1 In the first simple example, let’s consider a four punctured sphere
Σ = Σ0,4 with a pants decomposition PC = {σ = σ1} and two multicurves γ and γ′

on Σ defined by iPH(γ) = (q, p̂) = (2,−1) and iPH(γ′) = (q′, p̂′) = (2, 0). See Figure
1.5 for a picture of γ. Note that we are using Penner and Harer’s definition of the
Dehn–Thurston coordinates (in fact, that is the meaning of the subscript PH in
iPH). In this case, we can split Σ in two pairs of pants P and P ′ and one annulus A.
The coordinates iPH(γ) and iPH(γ′) tells us that in P and P ′ we have train track of
type 1, while in A we have a train track of type −1. Since in the pair of pants the
multicurves don’t meet the other boundary components, we have only two switches
v ∈ P and v1 ∈ P ′ and in A we have two other switches v1 (in the upper part of
the picture), v′1 (in the lower part). At v and v we have two (inward) half-edges
with weight l1,1 = q

2 , while at v1 and v′1 we have two inward edges with weights
q − |p̂| = q + p̂ and |p̂| = −p̂ respectively.

Using the definition of ΩTh, we get:

2ΩTh(γ, γ′) = 2{ΩTh|v(γ, γ′) + ΩTh|v1(γ, γ′) + ΩTh|v′1(γ, γ′) + ΩTh|v′(γ, γ′)
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= (l1,1l′1,1 − l′1,1l1,1) + [(−p̂)(q′ + p̂′)− (−p̂′)(q + p̂)]

+ [(−p̂)(q′ + p̂′)− (−p̂′)(q + p̂)] + (l1,1l′1,1 − l′1,1l1,1)}

= 2(−q′p̂+ qp̂′).

You can now apply Theorem 1.2.6 to see that p̂ = p−q
2 and p̂′ = p′−q′

2 and hence
ΩTh(γ, γ′) = 1

2(qp′ − pq′), as we wanted.
According to this example, one might think that a formula similar to Theorem

1.3.3 could work for PH–coordinates as well. The next example explains why this
is not the case.

Q

Q0

�3�2�1

Figure 1.11: Pants decomposition for Σ2,0.

1

2

3
45

6

78

a

b

c

d

f

g

Figure 1.12: Train track on τ on Σ2,0 with 8 switches.
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Example 2 For this second example, let’s consider a genus two surface Σ = Σ2,0

with the pants decomposition PC = {σ1, σ2, σ3} described in Figure 1.11. The pants
decomposition PC splits Σ into two pair of pants Q and Q′ and into three annuli A1,
A2 and A3 around the pants curves σ1, σ2, σ3 respectively. Consider two multicurves
γ and γ′ on Σ defined by iPH(γ) = (q1, p̂1, q2, p̂2, q3, p̂3) = (2,−1, 0, 0, 0, 0) and
iPH(γ′) = (q′1, p̂

′
1, q
′
2, p̂
′
2, q
′
3, p̂
′
3) = (1, 0, 1,−1, 0, 0). They are supported by the train

track τ described in Figure 1.12. In detail, we have a (subtrack of a) maximal track
of type 1 in Q and Q′ and a maximal track of type −1 in A1 and A2.

On τ there are 8 switches which we call v1, . . . , v8 and 12 edges some of which are
called ea, . . . , eg; see Figure 1.12. In the figure the edge with labelling eJ is denoted
J , where J ∈ {a, b, c, d, f, g}. The weighting w : B(τ ) −→ R on the set of branches
B(τ ) is determined by the PH–coordinates iPH(γ) and iPH(γ′). In particular, we
have the following:

• w(ea) = q2 − |p̂2| = q2 + p̂2;

• w(eb) = |p̂2| = −p̂2;

• w(ec) = w(ed) = q1−q2
2 ;

• w(ef ) = q1 − |p̂1| = q1 + p̂1;

• w(eg) = |p̂1| = −p̂1.

The weights on the other edges are determined by the switch conditions.
As before, we calculate ΩTh(γ, γ′) using the definition, that is Equation (1.1). In

particular, we calculate the value at each switch:

• 2ΩTh(γ, γ′)|v1 = (−p̂1)(q′1 + p̂′1)− (−p̂′1)(q1 + p̂1) = −p̂1q
′
1 + p̂′1q1;

• 2ΩTh(γ, γ′)|v2 = (−p̂1)(q′1 + p̂′1)− (−p̂′1)(q1 + p̂1) = −p̂1q
′
1 + p̂′1q1;

• 2ΩTh(γ, γ′)|v3 = ( q1−q22 )( q
′
1+q′2

2 )− ( q
′
1−q′2

2 )( q1+q2
2 ) = q′2q1−q′1q2

2 ;

• 2ΩTh(γ, γ′)|v4 = (q2)( q
′
1−q′2

2 )− (q′2)( q1−q22 ) = q′1q2−q′2q1
2 ;

• 2ΩTh(γ, γ′)|v5 = (−p̂2)(q′2 + p̂′2)− (−p̂′2)(q2 + p̂2) = −p̂2q
′
2 + p̂′2q2;

• 2ΩTh(γ, γ′)|v6 = (−p̂2)(q′2 + p̂′2)− (−p̂′2)(q2 + p̂2) = −p̂2q
′
2 + p̂′2q2;

• 2ΩTh(γ, γ′)|v7 = ( q1−q22 )( q
′
1−q′2

2 )− ( q
′
1−q′2

2 )( q1−q22 ) = 0;

• 2ΩTh(γ, γ′)|v8 = (q2)(q′1 − q′2)− (q′2)(q1 − q2) = q2q
′
1 − q′2q1.
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Hence

2ΩTh(γ, γ′) = 2(−p̂1q
′
1 + p̂′1q1) + 2(−p̂2q

′
2 + p̂′2q2) + q2q

′
1 − q′2q1.

Note that this shows that the formula of Theorem 1.3.3 doesn’t work for Penner
and Harer’s definition of the twist.

Using Theorem 1.2.6, we can see that p̂1 = p1+q2−q1
2 and p̂2 = p2+q2−q2

2 = p2
2 . So

we have:

2ΩTh(γ, γ′) = [−(p1 + q2 − q1)(q′1) + (p′1 + q′2 − q′1)(q1)] + [−(p2)(q′2) + (p′2)(q2)] + q2q
′
1 − q′2q1

= q1p
′
1 − q′1p1 + q2p

′
2 − q′2p2,

as we wanted to prove.
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Chapter 2

Top Terms’ Relationship

In this chapter we explain in detail the gluing construction mentioned in the In-
troduction. We recall some background material on 2 and 3–manifolds in Section
2.1. In Section 2.2 we describe the gluing construction inspired by Kra’s plumbing
construction. We explain the relationship with Kra’s ideas in Section 2.2.4 and with
the Maskit slice in Section 2.2.5. In Section 2.3 we discuss how to calculate the
image of some paths on the surface which are fundamental in the inductive proof of
the Top Term Relationship described in Section 2.4.

2.1 Background material about structures on 3–manifolds

In this section we recall some basic definitions that we need later. In particular, we
introduce the notion of Kleinian groups and Teichmüller space in Section 2.1.1, the
notion of groupoid in Section 2.1.2 and the notion of complex projective structure
in Section 2.1.3.

2.1.1 Kleinian groups and Teichmüller space

A Kleinian group G is a discrete subgroup of the orientation–preserving isometries
of the hyperbolic 3–space H3. In the upper–half–space model of H3 the orientation–
preserving isometries are identified with the group PSL(2,C), so that a Kleinian
group can be considered as a discrete subgroup of PSL(2,C). Such a group also acts
by conformal automorphisms on the sphere at infinity Ĉ = C ∪ {∞}. Discreteness
implies points in H3 have finite stabilisers and discrete orbits under the group G, but
the orbit G·x of a point x ∈ H3 typically accumulates on Ĉ. The set of accumulation
points of G · x in Ĉ for one point x ∈ H3 (and hence for all) is called the limit set of
G, and its complement in Ĉ is called the domain of discontinuity. Since we will use

32



this notion later (in particular in Section 2.2.5), we need to be more precise. We
follow Maskit [32].

Let X be a topological space and let G be a group of homeomorphism of X into
itself. We say that the action of G at a point x ∈ X is:

• discontinuous, if there is a neighbourhood U of x so that gU ∩ U 6= ∅ for all
but finitely many g ∈ G;

• freely discontinuous, if there is a neighbourhood U of x so that gU ∩ U 6= ∅
for all non-trivial g ∈ G.

We denote Ω0(G) the set of points at which the action is freely discontinuous. A
point x is a limit point for the Kleinian group G if there is a point z ∈ Ω0(G) and
a sequence {gm} of distinct elements of G with gmz −→ x. As remarked by Maskit,
this definition doesn’t depend on the point z chosen. The set of limit points is called
the limit set of G, and is usually denoted Λ(G), while the set of points at which the
action is discontinuous is called regular set or domain of discontinuity or ordinary
set of G and is usually denoted Ω(G).

Clearly a freely discontinuous action is also discontinuous, and, if G is a torsion
free group, also the converse is true, see Proposition 2.1.2.

Maskit defines a group G ⊂ PSL(2,C) to be Maskit–Kleinian if there is a point
z ∈ Ĉ at which the action is freely discontinuous. The following result is true.

Proposition 2.1.1 (Proposition C.3 of Chapter II in [32]). Any Maskit–Kleinian
group G is discrete (that is Kleinian).

The converse to Proposition 2.1.1 is not true, see Remark C.4 of Maskit [32]. For
example totally degenerate groups are Kleinian, but not Maskit–Kleinian. Maskit
also proves the following theorem.

Theorem 2.1.2 (Theorem E.6, Proposition E.8 of Chapter II in [32]). For any
Maskit–Kleinian group G, then Ĉ is the disjoint union of Λ(G) and Ω(G), and
Ω(G) \ Ω0(G) is a discrete subset of Ω(G) which consists of fixed points of elliptic
elements of G.

A Kleinian group whose limit set consists of at most two points is called an
elementary group; otherwise it is called non-elementary. Maskit proves the following
fact for Maskit–Kleinian groups, but the result is still true for Kleinian groups.

Proposition 2.1.3 (Proposition E.3, Proposition E.4 in Chapter V in [32]). If G is
a non-elementary Maskit–Kleinian group, then the limit set Λ(G) is the closure of
the fixed points of the loxodromic elements of G. In addition, if E is a non-empty
G-invariant closed set, then E contains Λ(G).
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Since all the Kleinian groups that we will study are torsion-free, assume, from
now on, that all Kleinian groups are also torsion-free. In that case the sets Ω(G)
and Ω0(G) coincide.

An example of Kleinian groups are the Fuchsian groups. A Fuchsian group
is a discrete subgroup of the orientation–preserving isometries Isom+(H) of the
hyperbolic 2–space H = H2. Using the half-space model for H, we have that
Isom+(H) = PSL(2,R). We define the Fuchsian space F(Σ) as the space of marked
groups G ' π1(Σ) such that G is Fuchsian.

Since we need the following results in the proof of Theorem 2.2.5, we are going to
discuss Fuchsian groups a bit more deeply. The limit set Λ(G) of a Fuchsian group
G acting on H is contained in ∂H = R̂ = R ∪ {∞}. In particular, Theorem 3.4.6 of
Katok [22] tells us that either Λ(G) = ∂H or Λ(G) is a perfect nowhere dense subset
of ∂H. Hence, we can give the following definition.

Definition 2.1.4. A Fuchsian group G is called:

(i) of the first kind, if Λ(G) = ∂H;

(ii) of the second kind, if Λ(G) is a perfect nowhere dense subset of ∂H.

Let’s recall also another interesting result about Fuchsian groups of the first kind.

Theorem 2.1.5 (Theorem 4.5.2 of [22]). If a Fuchsian group G has fundamental
region of finite area, then G is of the first kind.

Another example of Kleinian groups are the Quasifuchsian groups. A Kleinian
group is Quasifuchsian if Λ(G) is a topological circle. If G is Quasifuchsian (and
torsion free), then the associated manifold MG = H3/G is homeomorphic to the
product of such a surface Σ with the open interval (−1, 1), and Ω(G) has exactly
two simply connected G–invariant components Ω±. See Marden [29]. We denote
QF(Σ) the Quasifuchsian space, i.e the space of marked groups G ' π1(Σ) such
that G is Quasifuchsian.

Given an oriented surface Σ of negative Euler characteristic, we define the Te-
ichmüller space T (Σ) following McMullen [34]. The Teichmüller space T (Σ) is
the space of marked complex structures on Σ. In detail, it consists of equivalence
classes [(f,X)] of pairs (f,X), where X is a Riemann surface of finite area and
f : int(Σ) −→ X is an orientation preserving homeomorphism. Two pairs (f1, X1)
and (f2, X2) are equivalent in T (Σ) if there is a conformal map g : X1 −→ X2

such that g ◦ f1 is isotopic to f2. The space T (Σ) is a finite–dimensional complex
manifold, diffeomorphic to a ball in R2ξ.
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Using the Uniformisation Theorem, the Teichmüller space can also be defined as
the space of marked hyperbolic structure of finite area on Σ. In detail, it consists of
equivalence classes [(f,X)] of pairs (f,X), where X is a complete hyperbolic surface
of finite area and f : int(Σ) −→ X is a homeomorphism. The canonical orientation
of X is required to agree with the given orientation of Σ. Two pairs (f1, X1) and
(f2, X2) represent the same point in T (Σ) if there is a isometry g : X1 −→ X2 such
that g ◦ f1 is isotopic to f2. Sometimes people refer to the Teichmüller space in this
second setting as the Fricke space, see Imayoshi and Taniguchi [20] and Aramayona
[1].

Using the Cartan–Hadamard Theorem, which we will recall as Theorem 2.1.6, we
can identify the Teichmüller space T (Σ) with the Fuchsian space F(Σ). Since there
are diffrerent version of the theorem, we recall here the statement we are referring
to.

Theorem 2.1.6 (Cartan–Hadamard Theorem). Let X be a connected surface equipped
with a hyperbolic structure, and suppose that the natural path-metric on X is com-
plete. Then X is isometric to H/Γ, where Γ is a Fuchsian group acting freely on
H.

We refer to Theorem 3.8 of Aramayona [1] for a proof and for further references.
Note that, if the hyperbolic structure is of finite area, then the Fuchsian group is of
the first kind, see Definition 2.1.4.

2.1.2 Fundamental groupoid

In this section, we will define the notion of ‘groupoid’. We will follow Brown [8], [9].

Definition 2.1.7. A groupoid consists of:

• A set OB of objects.

• For each x, y ∈ OB, a (possibly empty) set MOR(x, y) of morphisms (or
arrows) from x to y; MOR = ∪(x,y)∈MOR(x,y) is the set of all morphisms.

• Two maps s, t : MOR −→ OB, called source and target, and a map i : OB −→
MOR such s ◦ i = t ◦ i = Id.

If f, g ∈MOR such that t(f) = s(g), then a product fg exists and satisfies s(fg) =
s(f) and t(fg) = t(g). In addition:

• this product is associative;

• the elements i(x), where x ∈ OB, act as identities;
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• each element f ∈MOR(x, y) has an inverse f−1 ∈MOR(y, x) with s(f−1) =
t(f), t(f−1) = s(f), ff−1 = i ◦ s(f), f−1f = i ◦ t(f).

Now as an example of groupoid we will define the fundamental groupoid of a
surface Σ with respect to a subset B ⊂ Σ. We will use this notion later.

Definition 2.1.8 (Fundamental groupoid). Given a topological space Y with a
fixed subset B ⊂ Y , then we define the fundamental groupoid associated to the pair
(Y,B), denoted π1(Y,B), as the groupoid such that:

• OB = B;

• For each x, y ∈ OB,MOR(x, y) is the set of homotopy classes, relative to the
endpoints, of the paths in Y from x to y.

• The map s, t : MOR −→ OB sends γ ∈ MOR to its initial and final points,
while i : OB −→ MOR maps x ∈ OB to the homotopy class of the trivial
loop in Y based at x.

One can then check that the remaining hypotheses in the definition of groupoid are
satisfied.

2.1.3 Complex projective structure

In this section we will define the notion of marked complex projective structure on
a surface Σ and we will also explain how to define the associated developing map
and holonomy representation. In addition, in Section 2.1.3.b, we will explain also
how to define the notion of groupoid holonomy representation.

A (complex) projective structure on a surface Σ is a (G,X)–structure on Σ, where
G = PSL(2,C) and X = Ĉ, that is a (complex) projective structure consists of a
(maximal) atlas of charts with values in Ĉ and Möbius transition functions. More
precisely, a (complex) projective structure on a surface Σ is a (maximal) covering
of Σ by open sets {Ui : i ∈ I} and maps Φi : Ui −→ Vi ⊂ Ĉ such that:

1. Φi is a homeomorphism from Ui onto its image Vi;

2. for all pairs i, j ∈ I with Ui∩Uj 6= ∅, if W is a connected component of Ui∩Uj ,
then Φi ◦ Φ−1

j |Φj(W ) is the restriction of some g ∈ PSL(2,C).

Two atlases A and A′ are equivalent or compatible if the union A ∪ A′ still defines
an atlas of complex projective charts. In addition, in each equivalence class there
is a unique maximal atlas, where a maximal atlas of charts is an atlas not properly
contained in any other atlas.

36



We can define the space of marked (complex) projective structure P(Σ) as the set of
equivalence classes [(f, Z)] of pairs (f, Z), where Z is Σ with a (complex) projective
structure and f : int(Σ) −→ Z is an orientation preserving homeomorphism. Two
pairs (f1, Z1) and (f2, Z2) are equivalent in P(Σ) if there is an orientation-preserving
diffeomorphism g : Z1 −→ Z2 such that g ◦ f1 is isotopic to f2. The space P(Σ) is a
finite–dimensional complex manifold, diffeomorphic to a ball in R4ξ, where ξ = ξ(Σ)
is the complexity of the surface, see Section 1.1. See Dumas [14] for a detailed
discussion of this notion.

2.1.3.a Developing map and holonomy representation

Associated to every complex projective structure (and, more generally, to any (G,X)–
structure) on a surface Σ, there is the pair (Dev, ρ), where:

• ρ is a homomorphism ρ : π1(Σ) −→ PSL(2,C), called the holonomy represen-
tation;

• Dev is a map Dev : Σ̃ −→ Ĉ from the universal covering space Σ̃ of Σ to the
Riemann sphere Ĉ, called the developing map, equivariant with respect to ρ.

A projective structure on Σ lifts to a projective structure on the universal cover
Σ̃. Then, as summarised by Dumas [14], a developing map can be constructed by
analytic continuation starting from any base point x0 in Σ̃ and any chart defined
on a neighbourhood U of x0. Another chart (defined on U ′) that overlaps U can be
adjusted by a Möbius transformation so as to agree on the overlap, in such a way
that one can define a map from U∪U ′ to Ĉ. Continuing with this method one defines
a map on successively larger subsets of Σ̃. The simple connectivity of Σ̃ is essential
here, as nontrivial homotopy classes of loops in the surface create obstructions to
unique analytic continuation of a projective class. See Section B.1 of Benedetti
and Petronio [2] or Section 3.2.1 of Aramayona [1] for a detailed discussion in the
analogous case of a hyperbolic structure.

In terms of the projective structure, the holonomy representation ρ : π1(Σ) −→
PSL(2,C) is described as follows; see Epstein [15] for a more precise description, or
also the next subsection. A path γ in Σ passes through an ordered chain of simply
connected open sets U0, . . . , Un such that Ui ∩ Ui+1 is connected and non-empty
for every i = 0, . . . , n − 1. This gives us the overlap maps Ri = Φi ◦ Φ−1

i+1 for i =
0, . . . , n−1. The sets Vi and Ri(Vi+1) overlap in Ĉ and hence the developing image of
γ̃ in Ĉ passes through, in order, the sets V0, R0(V1), R0R1(V2) . . . , R0 · · ·Rn−1(Vn).
If γ is closed, we have Un = U0 so that V0 = Vn. Then, by definition, the holonomy

37



of the homotopy class [γ] is ρ([γ]) = R0 · · ·Rn−1 ∈ PSL(2,C). In the next section
we will see that, actually, this method shows that we can also define a groupoid
holonomy representation associated to a projective structure.

The map Dev is defined up to post-composition with elements of PSL(2,C), while
ρ is defined up to conjugation by elements of PSL(2,C). So PSL(2,C) acts on the
sets of pairs (Dev, ρ) in the following way: given A ∈ PSL(2,C), then we have

A · (Dev, ρ(·)) = (A ◦Dev, Aρ(·)A−1).

As described by Dumas [14], we can define the space of equivalence classes of complex
projective structures on Σ in a different way, using developing maps and holonomy
representations associated to the projective structures. It consists of pairs (Dev, ρ),
where two pairs (Dev1, ρ1) and (Dev2, ρ2) represent the same point in P(Σ) if there
exists A ∈ PSL(2,C) such that Dev2 = A ◦ Dev1 and ρ2(·) = A ◦ ρ1(·) ◦ A−1. Note
that to define an element of P(Σ) we need also to fix a marking on each projective
structure.

2.1.3.b Groupoid holonomy representation

Now we want to define a holonomy map ρ : π1(Σ, B) −→ PSL(2,C) from the funda-
mental groupoid π1(Σ, B) of Σ to PSL(2,C) which agrees with the usual definition
of holonomy map, when restricted to the fundamental group π1(Σ, b) (where b ∈ B).
This definition is essentially the one described by Epstein [15] (and summarised in
the previous section). For completeness we will repeat his arguments, following [15]
very closely.

Any element of π1(Σ, B) is the homotopy class (relative to the endpoints) of a
path joining two points in the base set B. For each base point b in B, fix a preferred
germ of a chart. Recall that, given a point x of a topological space X, and two
maps f, g : X −→ Y (where Y is any set), then f and g define the same germ at x
if there is a neighbourhood U of x such that, restricted to U , the maps f and g are
equal. We denote the germ of the fixed chart at b ∈ B as Φb : U b −→ V b ⊂ Ĉ, and
we denote the collection of all these fixed (germs of) charts as C = {Φb|b ∈ B}. We
are going to define the map

ρC : π1(Σ, B) −→ PSL(2,C).

Let γ : [0, 1] −→ Σ be a path such that γ(0) = b1 and γ(1) = b2, where b1, b2 ∈ B.
Choose a partition 0 = t1 ≤ t2 . . . ≤ tn = 1 and charts Φi : Ui −→ Vi ⊂ Ĉ for
i = 1, . . . , n−1 such that γ[ti, ti+1] ⊂ Ui for i = 1, . . . , n−1 and such that Uj ∩Uj+1
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is connected and non-empty for every j = 1, . . . , n− 2. Let Φ0 = Φb1 , Φn = Φb2 and
let t0 = t1 = 0, tn+1 = tn = 1. Let Ri−1 ∈ PSL(2,C) such that Φi−1 = Ri−1Φi near
γ(ti−1), for i = 1, . . . , n. We define h(γ,Φb1 ,Φb2) = R0 · · ·Rn−1 ∈ PSL(2,C).

Now we want to show that h(γ,Φb1 ,Φb2) is independent of the choices involved.
We want to prove the following claims:

1. If 0 = t1 ≤ t2 . . . ≤ tn = 1 is fixed and we change Φi to Φ′i, then h(γ,Φb1 ,Φb2)
doesn’t change.

2. Given the partition 0 = t1 ≤ t2 . . . ≤ tn = 1, any finer partition of the unit
interval defines the same element h(γ,Φb1 ,Φb2).

For the first claim, we can assume that only one chart changes, because then we
can conclude by induction. Let g ∈ PSL(2,C) be the element such that Φi = gΦ′i
on γ[ti−1, ti]. Then R′i−1 = Ri−1g and R′i = g−1Ri. This shows that h(γ,Φb1 ,Φb2)
doesn’t change.

For the second claim, we can assume that one single point T is added, with
ti−1 ≤ T ≤ ti. Again, if more points are added we can conclude by induction. The
computation of h(γ,Φb1 ,Φb2) can be done by using the same chart Φi : Ui −→ Vi

for both the intervals [ti−1, T ] and [T, ti]. The transition function in PSL(2,C)
associated with T is the identity, so that the computation of h(γ,Φb1 ,Φb2) doesn’t
change.

From these two claims, we can see that h(γ,Φb1 ,Φb2) is well defined. In addition,
we can prove the following properties:

(i) h(γ−1,Φb2 ,Φb1) = h(γ,Φb1 ,Φb2)−1.

(ii) If γ and γ′ are two paths in Σ such that γ(1) = γ′(0), then h(γγ′,Φb1 ,Φb3) =
h(γ,Φb1 ,Φb2)h(γ′,Φb2 ,Φb3), where γ(1) = γ′(0) = b2, γ(0) = b1, γ′(1) = b3.

(iii) If g, g′ ∈ PSL(2,C), then h(γ, gΦb1 , g′Φb2) = gh(γ,Φb1 ,Φb2)(g′)−1.

(iv) If γ and γ′ are homotopic, keeping the endpoints fixed, then h(γ,Φb1 ,Φb2) =
h(γ′,Φb1 ,Φb2).

The properties (i), (ii) and (iii) follow easily from the definition. To prove prop-
erty (iv), the idea is that a very small change in γ can be dealt with without changing
the charts Φ: Ui −→ Vi. For the proof of this point, see also the proof of Proposition
B.1.3 of Benetti and Petronio [2].

These fact tells us that, given the choice of the fixed (germs of) charts C = {Φb|b ∈
B}, then the map

ρC : π1(Σ, B) −→ PSL(2,C)
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defined by ρC([γ]) = h(γ,Φb1 ,Φb2), where s([γ]) = b1 and t([γ]) = b2, is well-defined
and is a homomorphism of groupoids. Recall that s and t are the source and
target maps introduced in Definition 2.1.8. We call this map the groupoid holonomy
homomorphism. If we don’t fix the set C = {Φb1 , . . . ,Φb∗k}, that is, if we allow the set
C to be exchanged with a different set C′, then the map ρ : π1(Σ, B) −→ PSL(2,C)
is well defined, up to left and right multiplication by elements of PSL(2,C), see
point (iii) above.

Similarly, fixing a point b ∈ B and its germ Φb ⊂ C of a chart at b, we see that
the map

ρΦb = ρC|π1(Σ,b) : π1(Σ, b) −→ PSL(2,C)

defined by ρΦb([γ]) = h(γ,Φb,Φb) is well-defined (and it belongs to the conjugacy
class of the holonomy map described in Section 2.1.3.a). If we don’t fix the chart
Φb (among the germs of charts based at b), then the map ρ : π1(Σ, b) −→ PSL(2,C)
is well defined, up to conjugation by elements of PSL(2,C) which fix b, see again
point (iii) above. Similarly, if we don’t fix the base point b (among the base points
in B), then, by property (i) and (ii) above, then the map ρ : π1(Σ) −→ PSL(2,C)
is well defined, up to conjugation by elements of PSL(2,C).

2.2 The gluing construction

In this section we discuss how to endow Σ with a projective structure coming from
Kra’s plumbing construction.

As explained in the Introduction, the representations which we consider are holon-
omy representations of projective structures on Σ, chosen so that the holonomies of
all the loops σi ∈ PC determining the pants decomposition P are parabolic. The
interior of the set of free, discrete, and geometrically finite representations of this
form is called the Maskit embedding of Σ, see Section 2.2.5 below.

The construction of the projective structure on Σ is based on Kra’s plumbing
construction [25], see Section 2.2.4. However it is convenient to describe it in a
somewhat different way. We will refer to our construction as the gluing construction.
The idea is to manufacture Σ by gluing triply punctured spheres across punctures.
There is one triply punctured sphere for each pair of pants P ∈ P, and the gluing
across the pants curve σi is implemented by a specific projective map depending
on a parameter µi ∈ H. The µi are the parameters of the resulting holonomy
representation ρ = ρµ : π1(Σ) −→ PSL(2,C), where µ = (µ1, . . . , µξ) ∈ Hξ. (Note
that Hξ = H×. . . ,×H is the product of ξ copies of H.) We will call these parameters
the gluing parameters.
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More precisely, we first fix an identification of the interior of each pair of pants Pj
to a standard triply punctured sphere P. We endow P with the projective structure
coming from the unique hyperbolic metric on a triply punctured sphere. The gluing
is carried out by deleting open punctured disk neighbourhoods of the two punctures
in question and gluing horocyclic annular collars round the resulting two boundary
curves, see Figure 2.1.

Figure 2.1: Deleting horocyclic neighbourhoods of the punctures and preparing to
glue.

2.2.1 The gluing

To describe the gluing in detail, first recall (see for example [37] p. 207) that any
triply punctured sphere is homeomorphic to the standard triply punctured sphere
P = H/Γ, where

Γ =
〈(1 2

0 1

)
,

(
1 0
2 1

)〉
.

Fix a standard fundamental set ∆ for Γ as shown in Figure 2.2, so that the three
punctures of P are naturally labelled 0, 1,∞. (A fundamental set for the group G

is a subset of Ω(G) which contains exactly one point from each equivalence class of
points of Ω(G); see p.32 of Maskit [32].) In detail let ∆ be defined by the following:

∆ = {z ∈ H : −1 < <z ≤ 1, |z − 1
2
| ≥ 1

2
, |z +

1
2
| > 1

2
}.

From now on, we will use ε to denote element of the cyclically ordered set {0, 1,∞}.
Let ∆0 be the (closed) ideal triangle with vertices {0, 1,∞}, and ∆1 be the interior
of its reflection in the imaginary axis. We sometimes refer to ∆0 as the white triangle
and ∆1 as the black. The set ∆ is the union of ∆0 and ∆1.

With our usual pants decomposition P, we define bijections

Φ̂j : Pj −→ ∆
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Figure 2.2: The standard fundamental set for Γ. The white triangle ∆0 is unshaded
and the black one ∆1 is shaded.

from each (open) pair of pants Pj to the fundamental set ∆ by

Φ̂j := (ζ|∆)−1 ◦ Φj ,

where
Φj : Pj −→ P

is the homeomorphism which identifies Pj to P, and where

ζ : H −→ P = H/Γ

is the natural quotient map (which is a bijection when restricted to ∆). Note that Φ̂j

restricts to a homeomorphism between Pj minus the seams to ∆ minus λ1∪λ0∪λ∞,
where λε is the geodesic joining ε+ 1 and ε+ 2 with ε in the cyclically ordered set
{0, 1,∞}.

This identifications induce a labelling of the three boundary components of Pj as
0, 1,∞ in some order, fixed from now on. We denote the boundary of Pj labelled
ε ∈ {0, 1,∞} by ∂εPj . The identifications also induce a colouring of the two right
angled hexagons whose union is Pj , one being white and one being black. We will
call ∂εP the boundary component of P corresponding to ∂εP under the identification
Φ: P −→ P.

Suppose that the pants P, P ′ ∈ P are adjacent along the pants curve σ meeting
along boundaries ∂εP and ∂ε′P

′. (If P = P ′ then clearly ε 6= ε′.) The gluing across
σ is described by a complex parameter µ with =µ > 0, called the gluing parameter,
as already defined above. We first discuss the gluing in the case ε = ε′ =∞.

Arrange the pants with P on the left as shown in Figure 2.3. (Note that the
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z

H1

⌦0

J

z0

H 0
0

⌦1

⌦1(z) ⌦0(z0)

J � ⌦0(z)

Figure 2.3: The gluing construction when ε = 1 and ε′ = 0. Only the parts of H1

and H ′0 in ∆0 and ∆′0 are shown.

illustration in the figure explains the more general case ε = 1 and ε′ = 0.)
Take two copies P,P′ of P. Each of these is identified with H/Γ as described above.

We refer to the copy of H associated to P′ as H′ and denote the natural parameters
in H,H′ by z, z′ respectively. Let ζ and ζ ′ be the projections ζ : H −→ P and
ζ ′ : H′ −→ P′ respectively.

Let h∞ = h∞(µ) be the loop on P which lifts to the horocycle

h∞,H = {z ∈ H|=z =
=µ
2
}
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on H. For a small positive number ν > 0, we define

H∞ = H∞(µ, ν) = {z ∈ H|=µ− ν
2

< =z < =µ+ ν

2
} ⊂ H

to be the horizontal strip which projects to the annular neighbourhood A∞ = A∞(µ)
of h∞ ⊂ P. Let S ⊂ P be the surface P with the projection of the horocyclic
neighbourhood {z ∈ H|=z ≥ =µ+ν

2 } of ∞ deleted. Note that S is open. Define h′∞,
S′ and A′∞ in a similar way. We are going to glue S to S′ by matching A∞ to A′∞
in such a way that h∞ is identified to h′∞ with orientation reversed, see Figure 2.3.
The resulting homotopy class of the loop h∞ on the glued up surface (the quotient of
the disjoint union of the surfaces Sj by the attaching maps across the Ai = A(σi)) is
in the homotopy class of σ. To keep track of the marking on Σ, we do the gluing on
the level of the Z–covers of S, S′ corresponding to h∞, h′∞, that is, we actually glue
the strips H∞ and H ′∞. See Section 2.2.3 for a detailed discussion of the marking.

As shown in Figure 2.3, the deleted punctured disks are on opposite sides of h∞
in S and h′∞ in S′. Thus we first need to reverse the direction in one of the two
strips H∞ and H ′∞. Set

J =

(
−i 0
0 i

)
, Tµ =

(
1 µ

0 1

)
. (2.1)

We reverse the direction in H∞ by applying the map J(z) = −z to H. We then
glue H∞ to H ′∞ by identifying z ∈ H∞ to z′ = TµJ(z) ∈ H ′∞. Since both J

and Tµ commute with the conjugacy classes (with respect to the action of Γ) of
the holonomies z 7→ z + 2 and z′ 7→ z′ + 2 of the curves h∞, h′∞, this identi-
fication descends to a well defined identification of A∞ with A′∞, in which the
‘outer’ boundary ζ({z ∈ H|=z = =µ+ν

2 }) of A∞ is identified to the ‘inner’ bound-
ary ζ ′({z′ ∈ H|=z′ = =µ−ν

2 }) of A′∞. In particular, h∞ is glued to h′∞ reversing
orientation.

Now we treat the general case in which P and P ′ meet along punctures with
arbitrary labels ε, ε′ ∈ {0, 1,∞}. As above, let ∆0 ⊂ H be the ideal ‘white’ triangle
with vertices 0, 1,∞. Notice that there is a unique orientation preserving symmetry
Ωε of ∆0 which sends the vertex ε ∈ {0, 1,∞} to ∞:

Ω0 =

(
1 −1
1 0

)
, Ω1 =

(
0 −1
1 −1

)
, Ω∞ = Id =

(
1 0
0 1

)
. (2.2)
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Let hε be the loop on P which lifts to the horocycle

hε,H = Ω−1
ε ({z ∈ H|=z =

=µ
2
})

on H, so that hε is a loop round ∂ε(P) in P. Also let Hε = Hε(µ, ν) be the region in
H defined by

Hε = Ω−1
ε ({z ∈ H|=µ− ν

2
< =z < =µ+ ν

2
}) = Ω−1

ε (H∞).

The strip Hε projects to annular neighbourhoods Aε = Aε(µ) of hε ⊂ P. Define h′ε′ ,
H ′ε′ and A′ε′ in a similar way.

To do the gluing, first move ε and ε′ to ∞ using the maps Ωε and Ωε′ and then
proceed as before. Thus the gluing identifies z ∈ Hε to z′ ∈ H ′ε by the formula

Ωε′(z′) = Tµ ◦ J (Ωε(z)) , (2.3)

see Figure 2.3.
Finally, we carry out the above construction for each pants curve σi ∈ PC. To do

this, we need to ensure that the annuli corresponding to the three different punctures
of a given Pj are disjoint. (Note that, for example, the condition =µi > 2, for all
i = 1, . . . , ξ, ensures that the three curves h0, h1 and h∞ associated to the three
punctures of Pj are disjoint in P.) Under this condition, we can clearly choose ν > 0
so that their annular neighbourhoods Aε,j,+ ⊂ Sj are disjoint. In what follows, we
shall usually write h and H for hε and Hε provided the subscript is clear from the
context.

Hence, we are defining the quotient Sµ/ ∼ (homeomorphic to Σ), where Sµ =
S1t . . .tSk is the disjoint union of the truncated surfaces Sj ⊂ P defined above and
the equivalence relation ∼ is given by the attaching maps along the annuli Aε(σi).
Let Π: Sµ −→ Sµ/ ∼ be the quotient map. In Section 2.2.2 we will see that
this quotient is endowed with a complex projective structure Σ(µ) coming from our
gluing construction.

Remark 2.2.1. In the above construction, we glued a curve exiting from the white tri-
angles ∆0(P ) to one entering the white triangle ∆0(P ′), where we denote ∆0(Pj) =
Φ̂−1
j (∆0) ⊂ Pj and ∆1(Pj) = Φ̂−1

j (∆1) ⊂ Pj the white and the black hexagons
in Pj , respectively. On the other hand, suppose we wanted to glue the two black
triangles ∆1(P ) and ∆1(P ′). This can be achieved, when gluing ∂∞(P ) to ∂∞(P ′),
by replacing the parameter µ with µ − 2. However, following our recipe, it is not
possible to glue a curve exiting a white triangle to a curve entering a black one,
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because the black triangle is to the right of both the outgoing and incoming lines,
while the white triangle is to the left.

Remark 2.2.2. In our construction we require the parameter µ to be in Hξ, but the
gluing construction makes sense also for gluing parameters µ ∈ Lξ, where L = {z ∈
C|=z < 0}. In fact, if in Theorem 2.2.5 we substitute the hypothesis µ ∈ Hξ with
µ ∈ Lξ, we get 3–manifolds where the pants curves σ1, . . . , σξ are pinched in the top
components Ω+, rather than in the bottom one Ω−.

2.2.1.a Independence of the direction of the travel

The recipe for gluing two pairs of pants apparently depends on the direction of travel
across their common boundary. The following lemma shows that, in fact, the gluing
in either direction is implemented by the same recipe and uses the same parameter
µ.

Lemma 2.2.3. Let pants P and P ′ be glued across a common boundary σ, and
suppose the gluing used when travelling from P to P ′ is implemented by (2.3) with
the parameter µ. Then the gluing when travelling in the opposite direction from P ′

to P is also implemented by (2.3) with the same parameter µ.

Proof. Using the maps Ωε if necessary, we may, without loss of generality, suppose
that we are gluing the boundary ∂∞P to ∂∞P ′. (Note that Ω∞ = Id by Equation
(2.2).) By definition, to do this we identify the horocyclic strip H ⊂ H to the strip
H ′ ⊂ H′ using the map Tµ ◦ J .

Fix a point X ∈ h. The gluing sends X to TµJ(X) ∈ h′. The gluing in the
other direction, that is, from P ′ to P , reverses orientation of the strips to be glued
and is done using a translation Tµ′ , say. To give the same gluing we must have
Tµ′JTµJ(X) = X. This gives µ′ − (−X + µ) = X, which reduces to µ = µ′, as
claimed.

2.2.2 Projective structure Σ(µ) and holonomy representation

The gluing construction described in Section 2.2.1 gives a way to define a marked
complex projective structure on Σ. We describe the projective structure in this
section and we deal with the marking in Section 2.2.3. The idea is the following.
First, we define a complex projective structure on each truncated surface Sj ⊂ P,
where j = 1, . . . , k, and then, we describe why the attaching maps allow us to define
a complex projective structure on the quotient Sµ/ ∼ (homeomorphic to Σ) defined
in Section 2.2.1.

We recall some basic facts about complex projective structures; see Dumas [14].
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1. If Z is a complex projective structure on Σ and Σ′ ⊂ Σ is an open subset,
then the restriction of Z to Σ′ defines a complex projective structure on Σ′.

2. If X is preserved by a group Γ of Möbius transformations acting freely and
properly discontinuously, then the quotient surface Y = X/Γ has a natural
projective structure in which the charts are local inverses of the covering X −→
Y .

3. A Fuchsian group Γ ⊂ PSL(2,R) gives rise to a projective structure on the
quotient surface H/Γ;

4. If π : X −→ Y is a covering map, then a complex projective structure on Y

lifts to a complex projective structure on X.

The first and third facts allow us to define a complex projective structure on each
Sj ⊂ P = H/Γ, with j = 1, . . . , k; see Section 2.2.1 for the definitions.

Now, suppose σi = ∂εPj ∩ ∂ε′Pj′ , we discuss the gluing of S = Sj and S′ = Sj′

along the annuli A = Aε(σi) ⊂ S and A′ = Aε′(σi) ⊂ S′, that is we discuss the
complex projective structure on StS′/ ∼, where the equivalence relation ∼ is given
by the attaching maps along the annuli A and A′.

Recall that there are strips H = Hε = Ω−1
ε (H∞) and H ′ = Hε′ = Ω−1

ε′ (H∞) in
H ⊂ Ĉ such that ζ(H) = A ⊂ S and ζ ′(H ′) = A′ ⊂ S′, where ζ : H −→ P = H/Γ
and ζ ′ : H −→ P′ = H/Γ. So ζ t ζ ′ : H t H ′ −→ A t A′. Let πH : H t H ′ −→
H t H ′/ ∼ and πA : A t A′ −→ A t A′/ ∼. With abuse of notation let’s denote
ζ t ζ ′ : (H tH ′/ ∼) −→ (A tA′/ ∼). We can see that πA ◦ (ζ t ζ ′) = (ζ t ζ ′) ◦ πH .

Note that V ⊂ H tH ′/ ∼ is open if and only if π−1
H (V ) ⊂ H tH ′ is open. Note

also that π−1
H (V ) = V1 t V2, where V1 = π−1

H (V ) ∩ H and V2 = π−1
H (V ) ∩ H ′, see

Figure 2.4. Note that in the figure H and H′ are superimposed so that ∆0 = ∆′0 and
the set V1 and V2 are in different positions with respect to ∆0 and ∆′0 even though
they correspond to the same set V in S t S′/ ∼. Using the first fact above, we can
see that there are natural complex projective structures on H and H ′, respectively,
where the charts are the inclusion maps i. We define a complex projective structure
on HtH ′/ ∼ as follows. Let V = {Vi} be a covering of HtH ′/ ∼, we define two sets

of charts on V . The charts ψ1 = ψ1
V : V −→ H ⊂ Ĉ are defined by V π−1

7−→ V1
i7→H

and the charts ψ2 = ψ2
V : V −→ H ′ ⊂ Ĉ defined by V π−1

7−→ V2
i7→H ′.

The transition maps are given by ψ1 ◦ (ψ2)−1 = Ω−1
ε J−1T−1

µi Ωε′ ⊂ PSL(2,C)
for every V ∈ V. This defines a complex projective structure on H tH ′/ ∼ which
descends to a complex projective structure on AtA′/ ∼ (see the second fact above).
This defines a complex projective structure on S t S′/ ∼.
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Figure 2.4: The open sets V1 ⊂ Hε and V2 ⊂ Hε′ in case H = H ′ = H∞. In the
figure H and H′ are superimposed so that ∆0 = ∆′0. The set V1 and V2 are in
different positions with respect to ∆0 and ∆′0 even though they correspond to the
same set V in S t S′/ ∼.

Carrying out the above construction for each pants curve σi ∈ PC and considering
the unique maximal atlas in the equivalence class of this atlas, we can define a
complex projective structure on the quotient Sµ/ ∼ (homeomorphic to Σ), which
we denote by Σ(µ), where µ = (µ1, . . . , µξ) ∈ Hξ. Note that this projective structure
is obtained by the gluing procedure described in Section 2.2.1 with parameter µi
along curve σi.

Then, as described in Section 2.1.3, we can consider the developing map

Devµ : Σ̃ −→ Ĉ

and the holonomy representation

ρµ : π1(Σ) −→ PSL(2,C)

associated to this complex projective structure, where µ = (µ1, . . . , µξ) ∈ Hξ. Both
these maps are well defined up to the action of PSL(2,C) and Devµ is equivariant
with respect to ρµ.

As a consequence of the construction, we note the following fact which underlies
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the connection with the Maskit embedding (Section 2.2.5), and which (together with
the definition of the twist parameter in the case qi = 0, see Section 1.2) proves the
final statement of Theorem A.

Lemma 2.2.4. Suppose that γ ∈ π1(Σ) is a loop homotopic to a pants curve σi.
Then, for any µ ∈ Hξ, we have that ρµ(γ) is parabolic and that Tr ρµ(γ) = ±2.

2.2.3 Marking on Σ(µ)

To complete the description of the marked complex projective structure, we have to
specify a marking on Σ(µ), that is a homeomorphism fµ : Σ −→ Σ(µ) from a fixed
topological surface Σ to the surface Σ(µ). Endow Σ with a marking decomposition,
as described in Section 1.2.1.a, that is a pants decomposition PC = {σ1, . . . , σξ} and
a set of dual curves {D1, . . . , Dξ}.

We first describe this marking for the particular case Σ(µ0), where µ0 = (µ0
1, . . . , µ

0
ξ)

is defined by <µ0
j = 1, for all j = 1, . . . , ξ, and then we see how to deal with all the

other cases. The imaginary part of µ0
j is not important. (For definiteness, you can

fix it to be =µ0
j = 5.) In particular, we describe a marking decomposition for Σ(µ0),

so that we can define the homeomorphism fµ0 : Σ −→ Σ(µ0) by sending the pants
curves σi and the dual curves Di on Σ to the corresponding curves in Σ(µ0).

Recall that λε ⊂ ∆0 is the unique oriented geodesic from ε + 1 to ε + 2, where
ε is in the cyclically ordered set {0, 1,∞}, see Figure 2.2 and Section 2.2.2. The
lines λε project to the seams of P. We call λ0 (from 1 to ∞) and λ1 (from ∞ to
0) respectively the incoming and the outgoing strands (coming into and going out
from the puncture) at ∞, and refer to their images under the maps Ωε in a similar
way. For µ ∈ C, let X∞(µ) = 1 + =µ/2 be the point at which the incoming line λ0

meets the horizontal horocycle {z ∈ H|=z = =µ/2} in H, and let Y∞(µ) = =µ/2
be the point at which the outgoing line λ1 meets the same horocycle. Also define
Xε(µ) = Ω−1

ε (X∞) and Yε(µ) = Ω−1
ε (Y∞). Now pick a pants curve σ and, as usual,

let P, P ′ ∈ P be its adjacent pants in Σ, to be glued across boundaries ∂εP and
∂ε′P

′. Let Xε(P, µ), Xε(P ′, µ) be the points corresponding to Xε(µ), Xε(µ) under
the identifications ζ|∆ and ζ ′|∆′ of ∆,∆′ with P, and similarly for Yε(P, µ), Yε(P ′, µ).
The base structure Σ(µ0) is the one in which the identification (2.3) matches the
point Xε(P, µ) on the incoming line across ∂εP to the point Yε′(P ′, µ) on the outgoing
line to ∂ε′P′. Referring to the gluing equation (2.3), we see that this condition is
fulfilled precisely when <µ = 1. We define the structure on Σ by specifying <µi = 1
for i = 1, . . . , ξ. The imaginary part of µi is unimportant for the above condition to
be true. This explains our choice for µ0.
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Now note that the reflection z 7→ −z̄ of H induces an orientation reversing isom-
etry of P which fixes its seams; with the gluing matching the seams, as above, this
extends, in an obvious way, to an orientation reversing involution of Σ. Following
(a) of Section 1.2.1.a, this specification is equivalent to a specification of a marking
decomposition on Σ. This gives us a way to define the marking fµ0 : Σ −→ Σ(µ0).

Finally, we define a marking on the surface Σ(µ). After applying a suitable stretch-
ing to each pants in order to adjust the lengths of the boundary curves, we can map
Σ(µ0) −→ Σ(µ) using a map which is the Fenchel–Nielsen twist Twσi,<µi−1 on an
annulus around σi ∈ PC, i = 1, . . . , ξ and the identity elsewhere, see Section 1.2.1.a
for the definition of Twσ,t. This gives a well defined homotopy class of homeo-
morphisms fµ : Σ −→ Σ(µ). Notice that the stretch map used above depends on
=µi.

With this description, it is easy to see that <µi corresponds to twisting about σi;
in particular, µi 7→ µi + 2 is a full right Dehn twist about σi. The imaginary part
=µi corresponds to vertical translation and has the effect of scaling the lengths of
the σi.

2.2.4 Relation to Kra’s plumbing construction

Kra in [25] uses essentially the above construction to manufacture surfaces by glu-
ing triply punctured spheres across punctures, a procedure which he calls plumbing.
Plumbing is based on so called ‘horocyclic coordinates’ in punctured disk neighbour-
hoods of the punctures which have to be glued.

Given a puncture ε on a triply punctured sphere P, let ζ : H −→ P be the natural
projection, normalised so that ε lifts to ∞ ∈ H, and so that the holonomy of the
loop round ε is, as above, ς 7→ ς + 2. Let D∗ denote the punctured unit disk
{z ∈ C : 0 < z < 1}. The function f : H −→ D∗, given by f(ς) = eiπς , is
well defined in a neighbourhood N of ∞ and is a homeomorphism from an open
neighbourhood of ε in P to an open neighbourhood of the puncture in D∗. Choosing
another puncture ε′ of P, we can further normalise so that ε′ lifts to 0. Hence f
maps the part of the geodesic from ε′ to ε contained in N to the interval (0, r),
for suitable r > 0. These normalisations (which depend only on the choices of ε
and ε′) uniquely determine f . Kra calls the natural parameter z = f(ς) in D∗, the
horocyclic coordinate of the puncture ε relative to ε′.

Now suppose that ẑ and ẑ′ are horocyclic coordinates for distinct punctures in
distinct copies Pẑ and Pẑ′ of P. Denote the associated punctured disks by D∗(ẑ) and
D∗(ẑ′). To plumb across the two punctures, first delete punctured disks {0 < ẑ < r}
and {0 < ẑ′ < r′} from D∗(ẑ) and D∗(ẑ′) respectively. Then glue the remaining
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surfaces along the annuli

A(ẑ) = {ẑ ∈ D∗ : r < ẑ < s} and A(ẑ′) = {ẑ′ ∈ D∗ : r′ < ẑ′ < s′}

by the formula ẑẑ′ = tK . (To avoid confusion we have written tK for Kra’s parameter
t ∈ C.) It is easy to see that this is essentially identical to our construction; the
difference is simply that we implement the gluing in H and H′ without first mapping
to D∗(ẑ) and D∗(ẑ′). Our method has the advantage of having a slightly simpler
formula and also of respecting the twisting around the puncture, which is lost under
the map f .

The precise relation between our coordinates z, z′ ∈ H in Section 2.2.1 and the
horocyclic coordinates ẑ, ẑ′ is:

z = f−1(ẑ) = − i
π

log ẑ, z′ = f−1(ẑ′) = − i
π

log ẑ′.

The relation
ẑẑ′ = tK

translates to
log ẑ′ + log ẑ = log tK

which, modulo 2πiZ, is exactly our relation

z′ = −z + µ.

Hence we deduce that
µ = − i

π
log tK ,

or equivalently
tK = exp(iπµ).

2.2.5 Relation to the Maskit embedding of Σ

As usual, let PC = {σ1, . . . , σξ} be a pants decomposition of Σ. We have con-
structed a family of projective structures on Σ, to each of which is associated a
natural holonomy representation ρµ : π1(Σ) −→ PSL(2,C). We want to prove that
our construction, for suitable values of the parameters, gives exactly the Maskit
embedding of Σ; see Figure 2.5.

For the definition of this embedding we need to recall the definition of the repre-
sentation variety R(Σ) of Σ. For us R = R(Σ) will be the set of non-elementary
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Figure 2.5: The Maskit embedding M(Σ1,1) for the once punctured torus Σ1,1.
Reproduced, with permission, from [37] published by Cambridge University Press.

representations ρ : π1(Σ) −→ PSL(2,C) modulo conjugation in PSL(2,C). More
precisely, R(Σ) is defined as the GIT (short for Geometric Invariant Theory) quo-
tient

R(Σ) = Hom(π1(Σ),PSL(2, C))//PSL(2,C),

where PSL(2,C) acts on the space Hom(π1(Σ),PSL(2, C)) of homomorphisms from
π1(Σ) to PSL(2,C) by conjugation. See Kapovich [21].

For the definition of the Maskit embedding we follow [40], see also [31]. Let
M⊂ R be the subset of representations for which:

(i) the group G = ρ (π1(Σ)) is discrete (Kleinian) and ρ is an isomorphism;

(ii) the images of σi, i = 1, . . . , ξ, are parabolic;

(iii) all components of the regular set Ω(G) are simply connected and there is
exactly one invariant component Ω+(G);

(iv) the quotient Ω(G)/G has k + 1 components (where k = 2g − 2 + n if Σ =
Σ(g,n)), Ω+(G)/G is homeomorphic to Σ and the other components are triply
punctured spheres.

In this situation, see for example [30] (Section 3.8), the corresponding 3–manifold
MG = H3/G is topologically Σ × (0, 1). Moreover G is a geometrically finite cusp
group on the boundary (in the algebraic topology) of the set of Quasifuchsian rep-
resentations of π1(Σ). The ‘top’ component Ω+(G)/G of the conformal boundary
may be identified to Σ × {1} and is homeomorphic to Σ. On the ‘bottom’ compo-
nent Ω−(G)/G, identified to Σ×{0}, the pants curves σ1, . . . , σξ have been pinched,
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making Ω−(G)/G a union of k triply punctured spheres glued across punctures cor-
responding to the curves σi. The conformal structure on Ω+(G)/G, together with
the pinched curves σ1, . . . , σξ, are the end invariants of MG in the sense of Min-
sky’s Ending Lamination Theorem. Since a triply punctured sphere is rigid in the
hyperbolic space H3, the conformal structure on Ω−(G)/G is fixed and independent
of ρ, while the structure on Ω+(G)/G varies. It follows from standard Ahlfors–Bers
theory, using the measurable Riemann mapping theorem (see again [30] Section 3.8),
that there is a unique group corresponding to each possible conformal structure on
Ω+(G)/G. Formally, the Maskit embedding of the Teichmüller space of Σ is the map
T (Σ) −→ R which sends a point X ∈ T (Σ) to the unique group G ∈ M for which
Ω+(G)/G has the marked conformal structure X.

For the proof, we need to use results discussed in Section 2.1.1 about Maskit–
Kleinian and Fuchsian groups.

Theorem 2.2.5. Suppose that µ ∈ Hξ is such that the associated developing map
Devµ : Σ̃ −→ Ĉ is an embedding. Then the holonomy representation ρµ is a group
isomorphism and G = ρµ(π1(Σ)) ∈M.

Proof. Since the developing map Devµ : Σ̃ −→ Ĉ is an embedding, then ρµ acts
discontinuously on Ω+ = Dev(Σ̃), so by using the definitions of Section 2.1.1, we
can see that the group G = ρµ (π1(Σ)) is Maskit–Kleinian, and hence Kleinian,
by Proposition 2.1.1. This tells us also that Ω+ ⊂ Ω(G). By construction (see
Lemma 2.2.4), the holonomy of each of the curves σ1, . . . , σξ is parabolic. This
proves (i) and (ii).

The set Ω+ is a simply connected G–invariant set contained in Ω(G). The simply
connectivity follows from the fact that the developing map Devµ is an embedding
and Σ̃ is simply connected. Now, consider its closure Ω+, that is, consider the
accumulation points of the set Ω+. First note that since Ω+ = Ω+ ∪ ∂Ω+ is closed
and G–invariant, then, by the second statement of Proposition 2.1.3, it contains
the limit set Λ(G). Now, since Ω+ ⊂ Ω(G) and since, by Theorem 2.1.2, Ĉ is the
disjoint union of Λ(G) and Ω(G), then Λ(G) ⊂ ∂Ω+.

To prove that Λ(G) ⊃ ∂Ω+ we use an idea used by Thurston to prove that
the space of marked complex projective structures is homeomorphic to the product
T (Σ)×ML(Σ), where T (Σ) is the Teichmüller space of Σ and ML(Σ) is the space
of measured laminations. Since Ĉ is the ideal boundary of hyperbolic space H3,
we can consider the boundary of the hyperbolic convex hull of Ĉ − Ω+ and denote
it Pl = Plµ. Moreover, there is a retraction map r : Ω+ −→ Pl and observe that
∂Pl = ∂Ω+. Then Pl is a convex pleated plane in H3 invariant under the action
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of G = ρ(π1(Σ)) by isometries. If you equip Pl with the path metric, then it is a
complete hyperbolic 2–manifold (see Theorem 1.12.1 of Epstein and Marden [16]).
By this isometry, the action of G on Pl corresponds to a discontinuous action on H
by a Fuchsian group G′ ∈ F(Σ). Moreover, we claim that our construction tells us
also that there is a fundamental region for the action of G on Pl which has finite
area (and hence the same it is true for the action of G′ on H), see Lemma 2.2.6
below. So, using Theorem 2.1.5, this finite area region tells us that G′ is of the first
kind and hence that Λ(G′) = ∂H. In addition, the isometry from Pl to H extends
continuously to the boundaries ∂Pl ⊂ ∂H3 and ∂H, see Theorem 3.6 of Minsky [35].
This tells us that the limit set Λ(G) is the boundary of the pleated plane Pl, that
is Λ(G) = ∂Ω+. So Ω+ is a connected component of the regular set Ω(G) of G, and
its boundary ∂Ω+ is the limit set Λ(G).

Now let P ∈ P, and let P̃ be a lift of P to the universal cover Σ̃. The boundary
curves σi1 , σi2 , σi3 of P lift, in particular, to three curves in ∂P̃ corresponding to el-
ements γi1 , γi2 , γi3 ∈ π1(Σ) such that γi1γi2γi3 = id and such that ρ(γij ) is parabolic
for j = 1, 2, 3. These generate a subgroup Γ(P̃ ) of SL(2,R) conjugate to Γ, see
Section 2.2.1. Thus the limit set Λ(P̃ ) of Γ(P̃ ) is a round circle C(P̃ ).

Without loss of generality, fix the normalisation of G such that ∞ ∈ Ω+(G).
Since Ω+(G) is connected, it must be contained in the component of Ĉ\Λ(P̃ ) which
contains ∞. Since Λ(G) = ∂Ω+(G), we deduce that Λ(G) is also contained in the
closure of the same component, and hence that the open disk D(P̃ ) bounded by
C(P̃ ) and not containing ∞, contains no limit points. (In the terminology of [24],
Γ(P̃ ) is peripheral with peripheral disk D(P̃ ).) It follows that D(P̃ ) is precisely
invariant under Γ(P̃ ) and hence that D(P̃ )/G = D(P̃ )/Γ(P̃ ) is a triply punctured
sphere.

Thus Ω(G)/G contains the surface Σ(G) = Ω+(G)/G and the union of k triply
punctured spheres D(P̃ )/Γ(P̃ ), one for each pair of pants in P. Thus the total
hyperbolic area of Ω(G)/G is at least 4πk. Now Bers’ area inequality [3], see also
Theorem 4.6 of Matsuzaki–Taniguchi [33], states that

Area(Ω(G)/G) ≤ 4π(T− 1),

where T is the minimal number of generators of G. In our case T = 2g + b − 1.
Since k = 2g + b− 2, we have

4π(2g + b− 2) ≤ Area(Ω(G)/G) ≤ 4π(T − 1) = 4π(2g + b− 2).

We deduce that Ω(G) is the disjoint union of Ω+(G) and the disks D(P̃ ), with
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P ∈ P. This completes the proof of (iii) and (iv).

Lemma 2.2.6. In the above setting, there is a fundamental region of finite area for
the action of G on Pl (endowed with the path metric).

Proof of the claim. In order to prove the lemma we will show that a fundamental
region r(E) for the action of G on Pl can be constructed as the union of k regions
r(Ej), each of which is compact or of finite area. These regions r(Ej) correspond
to the lifts (by the retraction map r) to Pl of the images Ej (under (ζ|∆)−1) of
the truncated surfaces Sj corresponding to the pair of pants Pj , as we are going to
explain.

Suppose that ∂Pj = {si1 , s12 , s13} and let Φ̂j : Pj −→ ∆, so that si1 = ∂∞(Pj),
si2 = ∂0(Pj) and si3 = ∂1(Pj). Then consider the region Ej obtained by removing
from ∆ the horoballs of heights

=µij
2 , that is:

• {z ∈ C|=z > =µi1
2 } around ∞;

• {z ∈ C : |z − i 1
=µi2
| < 1

=µi2
} around 0;

• {z ∈ C : |z − (1 + i 1
=µi3

)| < 1
=µi3
} around 1;

• {z ∈ C : |z − (−1 + i 1
=µi3

)| < 1
=µi3
} around −1,

where µij is the gluing parameter corresponding to the pants curve σij for j = 1, 2, 3,
if σij /∈ ∂Σ, and where µij := ∞ (and 1

=µij
:= 0) if σij ∈ ∂Σ. If σi = ∂ε(Pj) ∈ ∂Σ,

let Hi be a horoball of height 1 around ε. Then let E = E1 ∪ . . . ∪ Ek be the
union of the regions Ej under the attaching maps defined in Section 2.2.1 and let
H = H1 ∪ . . . ∪ Hb be the union of the regions Hi for i = 1, . . . , b, where b is the
number of boundary components of Σ. The set E is a fundamental region for the
action of G on Ĉ.

We want to show that r(E) has finite area. The set E′ = E \ (E ∩ H) is a
compact set contained in the interior of Ω+ and so its image r(E′) under r remains
compact and contained in the interior of Pl, and hence has finite area. On the other
hand, for each horoball Hi, with i = 1, . . . , b, based at the parabolic fixed point
x = Fix(g) ∈ ∂Ω+ of g ∈ G, we have that Hi \ {x} is contained in the interior of
Ω+ (since it is the image, under 〈g〉, of Hi ∩∆), and r(Hi)/G is a punctured disk
(since r(Hi)/G = r(Hi)/〈g〉, because r(Hi) is precisely invariant under the parabolic
element g). Hence it has finite area. So the claim is proved.

This gives an alternative viewpoint on our main result: we are finding a formula
for the leading terms of the trace polynomials in the parameters µi of simple curves
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on Σ under the Maskit embedding of T (Σ). This was the context in which the result
was presented in [24; 40], see also Section 2.3.4.a.

2.3 Calculation of paths

In this section we discuss how to compute the holonomy ρµ : π1(Σ) −→ PSL(2,C).
In order to prove Theorem A of the Introduction, we need to describe ρµ in a

concrete way, so we need to compute the holonomy images of the generators of the
fundamental groupoid of the surface Σ, see Section 2.1.2 and 2.3.1. Thus, in Section
2.3.2, we study paths contained in one pair of pants, then in Section 2.3.3, we specify
a particular path joining one hexagon to the next, and, finally, in Section 2.3.4, we
compute the holonomy representations of some paths in the one holed torus and in
the four times punctured sphere, as an example.

2.3.1 Groupoid holonomy map

In Section 2.1.3.b we explained how, given a projective structure Z on Σ, given any
subset B ⊂ Σ and chosen germs of charts Φb : U b −→ V b for every b ∈ B, it is
possible to define a groupoid holonomy map (associated to Z)

ρC : π1(Σ, B) −→ PSL(2,C)

from the fundamental groupoid π1(Σ, B) (see Definition 2.1.8) to PSL(2,C), where
C = {Φb|b ∈ B}. In addition, when we restrict this map to the fundamental group
π1(Σ, b) (where b ∈ B) we get the usual holonomy map ρ : π1(Σ, b) −→ PSL(2,C)
well defined up to conjugation (if we don’t ask the germ Φb to be fixed).

In our case, we will choose as base set B on the surface Σ the barycentres of
the hexagons in the pair of pants Pj , as we are going to explain. In Section 2.2
we described the maps Φ̂j : Pj −→ ∆ ⊂ H from each pair of pants Pj ∈ P to
the standard fundamental set ∆ ⊂ H. Recall that ∆ is the union of the white
hexagon ∆0 and the black one ∆1, and that ∆0(Pj) = Φ̂−1

j (∆0) ⊂ Pj and ∆1(Pj) =
Φ̂−1
j (∆1) ⊂ Pj are the white and the black hexagons in Pj , respectively. Also let

bj = Φ̂−1
j (b0) and b∗j = Φ̂−1

j (b∗0), where b0 = 1+i
√

3
2 ∈ ∆0 and b∗0 = −1+i

√
3

2 ∈ ∆1 are
the barycentres of the white and the black triangles ∆0 and ∆1, respectively. These
points B = {b1, b∗1, . . . , bk, b∗k} will serve as base points in Σ.

We can now define the fundamental groupoid π1,2k(Σ, B) of Σ and explain how
to define a holonomy map from this fundamental groupoid into PSL(2,C).
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Definition 2.3.1. The fundamental groupoid π1,2k(Σ, B) is the fundamental groupoid
associated to the topological surface Σ with base space B = {b1, b∗1, . . . , bk, b∗k}, see
Definition 2.1.8.

Note also that in our description of the gluing we have fixed, for each base point in
B, a preferred germ of a chart. For any b ∈ B this germ of a chart Φb is the germ of
the map Φ̂j : Pj −→ ∆ described in Section 2.2.1. Let C = {Φb1 ,Φb∗1 , . . . ,Φb∗k}. Then
the discussion in Section 2.1.3.b shows that the groupoid holonomy transformation

ρC
µ : π1,2k(Σ, B) −→ PSL(2,C)

is well defined and agrees with the standard definition of the holonomy map, when
considering the restriction of it to any fundamental group π1(Σ, b) ⊂ π1,2k(Σ, B) for
any b ∈ B. So, from now on, we will denote both these maps as ρµ.

From now on, unless differently specified, the holonomy map will be the homo-
morphism of groupoids ρµ : π1,2k(Σ, B) −→ PSL(2,C). In addition, if (X,B′) ⊂
(Σ, B), where B = {b1, b∗1, . . . , bk, b∗k}, we will consider often, with abuse of nota-
tion, ρµ : π1(X,B′) −→ PSL(2,C), omitting the composition with the injective map
π1(X,B′) ↪→ π1,2k(Σ, B).

Any curve γ ∈ π1(Σ) which intersects the pants curves σ1, . . . , σξ in total q = q(γ)
times passes through a sequence of pants Pi1 , . . . , Piq = Pi1 and can therefore be
written as a product

∏q
j=1 κjϑj , where κj ∈ π1(Pij ; bij ) is a path in Pij with both

its endpoints in the base point bij = b(Pij ) and ϑj = ϑ(Pij , Pij+1) is a path from bij
to bij+1 across the boundary σij between Pij and Pij+1 . We describe the holonomy
of paths with endpoints in one pair of pants P in Section 2.3.2, and of paths with
endpoints in two adjacent pair of pants P and P ′, in Section 2.3.3.

2.3.2 Paths in a pair of pants

In this section we consider a pair of pants Pj = P with the base points bj = b and
b∗j = b∗, as described in Section 2.3, and we calculate the holonomy of the paths in
P joining b and b∗ and joining b to itself. As usual, we identify P with ∆ so that the
components of its boundary are labelled 0, 1,∞ in some order. Recall that in Section
2.2.3 we defined the three lines λε ⊂ H as the unique oriented geodesics going from
ε+1 to ε+2, where ε is in the cyclically ordered set {0, 1,∞}, see Figure 2.2. Orient
each of the three boundary curves ∂ε(P ) consistently. We denote by υε ∈ π1(P ; b)
the loop based at b and freely homotopic to the oriented loop ∂ε(P ). To calculate
the holonomy of υε, we begin by noting the holonomies of the three homotopically
distinct paths γε in P , with ε ∈ {0, 1,∞}, joining b to b∗, see Figure 2.6.
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2.3.2.a The paths γε

0 1−1

b0 γ0γ1

γ∞

b∗0 F (b∗0)

G(b∗0)

Figure 2.6: Paths between b0 and b∗0 where F = ρ(γ0) and G = ρ(γ∞).

Each path γε is determined by the geodesic λε which it crosses. Thus γ0 connects
b and b∗ crossing λ0, and so on. For any µ ∈ Hξ, let ρµ : π1,2k(Σ, B) −→ PSL(2,C).

Lemma 2.3.2. For any µ ∈ Hξ, the holonomies of the above paths γε, with ε ∈
{0, 1,∞}, are:

ρµ(γ0) = Ξ0 =

(
1 2
0 1

)
; ρµ(γ1) = Ξ1 =

(
1 0
0 1

)
; ρµ(γ∞) = Ξ∞ =

(
1 0
2 1

)
.

Proof. This result is clear from Figure 2.6, where you can see the lift γ̂ε of the paths
Φ(γε) ⊂ P = H/Γ to H, where Φ: P −→ P. In fact, γ̂1 connects b0 in ∆0 to b∗0 in
∆1, so ρµ(γ1) = Id. On the other hand, γ̂0 connects b0 ∈ ∆0 to F (b∗) ∈ F (∆1),

where F =

(
1 2
0 1

)
, and, similarly γ̂∞ connects b0 ∈ ∆0 to G(b∗) ∈ G(∆1), where

G =

(
1 0
2 1

)
. So the result is proved.

2.3.2.b The paths υε

In this section we describe the holonomy of the loop υε ∈ π1(P ; b), that is the
loop based at b and freely homotopic to the oriented loop ∂ε(P ). To calculate the
holonomy of υε, we use the paths γε discussed in Section 2.3.2.a. See Figure 2.7 for
a picture of the loop υ0 in P .
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ε1 =∞ε3 = 1

ε2 = 0

Figure 2.7: The loop υ0 homotopic to ∂0P .

Lemma 2.3.3. For any µ ∈ Hξ, the holonomy image of the loop υε ∈ π1(P ; b),
where ε ∈ {0, 1,∞}, is the following:

(i) ρµ(υ0) = Υ0 =

(
1 0
2 1

)
;

(ii) ρµ(υ1) = Υ1 =

(
−3 2
−2 1

)
;

(iii) ρµ(υ∞) = Υ∞ =

(
1 −2
0 1

)
.

Proof. To calculate the holonomy ρµ(υ0) of the loop υ0 round the boundary ∂0P ,
we have to go from b to b∗ crossing λ∞ and then go from b∗ to b crossing λ1. Hence,
as illustrated in Figure 2.7, we have to go along the path γ∞ and then along the
path γ−1

1 . Thus we find:

ρµ(υ0) = ρµ(γ∞γ−1
1 ) =

(
1 0
2 1

)
.

Similarly, to calculate the holonomy of ρµ(υ1), we have to go from b and b∗ crossing
λ0 and then return from b∗ to b crossing λ∞. This means going along γ0 and then
along γ−1

∞ . Thus the holonomy is:

ρµ(υ1) = ρµ(γ0γ
−1
∞ ) =

(
1 2
0 1

)(
1 0
−2 1

)
=

(
−3 2
−2 1

)
.

Finally, to calculate the holonomy of ρµ(υ∞), we have to go from b to b∗ crossing

59



λ1 and return from b∗ to b crossing λ0. Hence we have to go along the path γ1 and
then along the path γ−1

0 , so the holonomy is:

ρµ(υ∞) = ρµ(γ1γ
−1
0 ) =

(
1 −2
0 1

)
.

As a check, we verify that

ρµ(υ0)ρµ(υ∞)ρµ(υ1) =

(
1 0
2 1

)(
1 −2
0 1

)(
−3 2
−2 1

)
= Id

in accordance with the relation υ0υ∞υ1 = id in π1(P ; b).

Remark 2.3.4 (Holonomy of the sbcc–arc). The sbcc–arcs in the pair of pants P
correspond to paths going around a certain boundary components of P . In partic-
ular, the sbcc–arcs starting at the boundary component ∂ε(P ) correspond (up to
the change of orientation) to the path υε+1 and, hence, its holonomy image is the
matrix Υε+1 or Υ−1

ε+1.

2.3.3 Paths ϑ between adjacent pants

In this section we describe the holonomy of the path ϑ = ϑ(P, P ′) between two
pairs of pants, say P and P ′, with initial point b = b(P ) ⊂ ∆0(P ) and ending point
b′ = b(P ′) ⊂ ∆0(P ′). This path, together with the paths γε and υε, defines a set of
generators for the fundamental groupoid π1,2k(Σ, B).

If ∂εP is glued to ∂ε′P ′, then there is an obvious path ϑ = ϑ(P, P ′; ε, ε′;σ) on Σ
from b to b′ crossing the pants curve σ = σi. As discussed in Section 2.2.2, we will
identify Σ with the quotient Sµ/ ∼ defined in Section 2.2.1. In particular, P ∪ P ′
is identified with S t S′/ ∼, where S, S′ ⊂ P are the truncated surfaces defined in
Section 2.2.1 and where ∼ is the equivalence relation given by the attaching maps
along the annuli A ⊂ S and A′ ⊂ S′.

We can describe ϑ by defining, first, a path in H and a path in H′, which project
to a path in S t S′/ ∼, see Section 2.2.1 and 2.2.2.

Recall that

H∞ = H∞(µ, ν) = {z ∈ H|=µ− ν
2

< =z < =µ+ ν

2
} ⊂ H,

where µ = µi ∈ H is the gluing parameter associated to the pants curve σ = σi and
ν > 0 is a small positive number, and Hε = Ω−1

ε (H∞), where the matrices Ωε were
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1�1 0

F (b0)

B0

b0

µ�B0 = F (B0)

µ

�1

�2 = F � ��1
2

F � ��1
1

Figure 2.8: The path δ1 between b0 and B0, the path δ2 = F (δ′2)−1 between B0 and
µ−B0 and the path F (δ−1

1 ) between µ−B0 and F (b0), where F = J−1T−1
µ , in the

case H = H ′ = H∞.

defined in Section 2.2.1. Recall also that S ⊂ P is the surface P with the projection
of the horocyclic neighbourhood Ω−1

ε

(
{z ∈ H|=z ≥ =µ+ν

2 }
)

of ε deleted.

Consider in H the straight lines δ1 = δ1,∞ between b0 = 1+i
√

3
2 and B0 =

1+i(=µ−2ν)
2 and δ2 = δ2,∞ between B0 and µ − B0 = µ −

(
1+i(=µ−2ν)

2

)
; see Fig-

ure 2.8. If we concatenate these two paths, we have a path δ∞ = δ1 · δ2 in H which
is contained in the complement of the open horoball {z ∈ H|=z > =µ+ν

2 } around
∞. Similarly, let also δε = Ω−1

ε (δ∞) and δi,ε = Ω−1
ε (δi) with ε = 0, 1,∞ and i = 1, 2.

Define the path δ′ε′ and δ′i,ε′ in H′ in a similar way, where ε′ = 0, 1,∞ and i = 1, 2.
Let ζ : H −→ H/Γ and let ζ ′ : H −→ H/Γ. Then the path δε descends to a path

δε,S = ζ(δε) ⊂ S ⊂ P and the path δ′ε descends to a path δ′ε′,S′ = ζ ′(δ′ε′) ⊂ S′ ⊂ P′.
Let also δi,ε,S = ζ(δi,ε) ⊂ S ⊂ P and δ′i,ε′,S′ = ζ ′(δ′i,ε′) ⊂ S′ ⊂ P′ with ε, ε′ = 0, 1,∞
and i = 1, 2.

Note that in the strip H tH ′/ ∼, where H = Hε and H ′ = Hε′ we have that the
projection of the path δ2 and of the path (δ′2)−1 (that is, δ′2 with reversed orientation)
coincide, see Section 2.2.2 for understanding the identification ∼ in detail. In fact,
we have that

δ2,ε = (δ′2,ε)
−1 ⊂ H tH ′/ ∼,
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as you can see from the fact that

Ω−1
ε (B0) = Ω−1

ε′ (µ−B0) and Ω−1
ε (µ−B0) = Ω−1

ε′ (B0) in H tH ′/ ∼ .

This tells us that δε,S ∪ (δ′ε′,S′)
−1 defines a path in S t S′/ ∼.

With these definitions and using the notation of Section 2.2, we can see that
ϑ(P, P ′; ε, ε′;σ) is defined as the following union

ϑ(P, P ′; ε, ε′;σ) = δε,S ∪ (δ′ε′,S′)
−1 ⊂ S t S′/ ∼ .

Unless needed for clarity, we refer to all these paths as ϑ(P, P ′) or ϑ(P, P ′; ε, ε′).
For finding the holonomy and the developing image of ϑ(P, P ′), we need to glue

δε with F ◦ (δ′ε′)
−1, where F = Ω−1

ε J−1T−1
µ Ωε′ is the transition function defined in

Section 2.2.2. See Sections 2.1.3.a and 2.1.3.b for the definition of the developing
map and of the groupoid holonomy map. Figure 2.8 shows the developing im-
age Devµ(ϑ(P, P ′;∞,∞;σi)) of ϑ(P, P ′; ε, ε′;σi). Now referring to the gluing equa-
tion (2.3) and to the description of the groupoid holonomy map of Section 2.1.3.b,
we see that the holonomy of ϑ(P, P ′) is given by the following formula:

ρµ
(
ϑ(P, P ′; ε, ε′;σ)

)
= Θε−→ε′ = Ω−1

ε J−1T−1
µ Ωε′ , (2.4)

since the path ϑ(P, P ′; ε, ε′;σ) can be covered with only two charts and the only
transition map is the map Ω−1

ε J−1T−1
µ Ωε′ , where µ = µi.

Remark 2.3.5. Note that if you look at Figure 2.8 as a picture of two superimposed
copies of H, say H and H′, as we did in Figure 2.4, then the point B0 ∈ H, which is
the starting point of δ2, and the point µ − B0 = F (B0) ∈ H′, which is the starting
point of F ◦ δ′2 (where F = Ω−1

ε J−1T−1
µ Ωε′), project to the same point in S t S′/ ∼

under the two different charts ψ1 and ψ2 defined in Section 2.2.2 exactly when the
surfaces S and S′ are glued by a Fenchel–Nielsen twist Twσi,<µi−1. This agrees with
the description of the marking we made in Section 2.2.3. In fact, in that section we
first defined the marking for the surface Σ(µ0), where µ0 = (µ0

1, . . . , µ
0
ξ) is defined by

<µ0
i = 1, for all i = 1, . . . , ξ, where the seams of S and the seams of S′ match. Then,

for defining the marking on the general surface Σ(µ), we use a Fenchel–Nielsen twist
Twσi,<µi−1 on the annulus around σi ∈ PC, for all i = 1, . . . , ξ.

As already noted in Lemma 2.2.3, the gluing parameters µ are independent of the
direction of travel (from P to P ′ or vice versa). From (2.4) we have

ρµ
(
ϑ(P ′, P ; ε′, ε)

)
= Ω−1

ε′ J
−1T−1

µ Ωε
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so that
ρµ(ϑ(P ′, P ; ε′, ε)−1) = Ω−1

ε TµJΩε′ .

Using the identities J−1 = −J , T−1
µ = T−µ and TµJ = JT−µ this gives

ρµ
(
ϑ(P ′, P ; ε′, ε)−1

)
= −ρµ

(
λ(P ′, P ; ε′, ε)

)−1
, (2.5)

as one would expect. That fact will be particularly important for our proof in
Appendix B.

2.3.3.a Types of crossing

Table 2.1: The holonomy images Θε−→ε′
Type of crossing Matrix of crossing Calculation

0 −→ 0 Ω−1
0 J−1T−1

µ Ω0 Θ0−→0 = i

(
1 0

2− µ −1

)
0 −→ 1 Ω−1

0 J−1T−1
µ Ω1 Θ0−→1 = i

(
1 −1

1− µ µ− 2

)
0 −→∞ Ω−1

0 J−1T−1
µ Ω∞ Θ0−→∞ = i

(
0 1
1 1− µ

)
1 −→ 0 Ω−1

1 J−1T−1
µ Ω0 Θ1−→0 = i

(
2− µ −1
1− µ −1

)
1 −→ 1 Ω−1

1 J−1T−1
µ Ω1 Θ1−→1 = i

(
1− µ µ− 2
−µ µ− 1

)
1 −→∞ Ω−1

1 J−1T−1
µ Ω∞ Θ1−→∞ = i

(
1 1− µ
1 −µ

)
∞ −→ 0 Ω−1

∞ J−1T−1
µ Ω0 Θ∞−→0 = i

(
1− µ −1
−1 0

)
∞ −→ 1 Ω−1

∞ J−1T−1
µ Ω1 Θ∞−→1 = i

(
−µ µ− 1
−1 1

)
∞ −→∞ Ω−1

∞ J−1T−1
µ Ω∞ Θ∞−→∞ = i

(
1 −µ
0 −1

)

In this section we describe all the types of crossing from one pair of pants to the
next which can appear in our representation, that is we list the holonomy Ωε−→ε′ of
the paths ϑ(P, P ′; ε, ε′). When a curve crosses a pants curve from the side labelled
ε to the side labeled ε′, where ε, ε′ ∈ {0, 1,∞}, we write ε −→ ε′. In Table 2.1
there is a summary of all the different matrices which describe these paths. Recall
from Equation (2.4) that ρµ (ϑ(P, P ′; ε, ε′;σ)) = Θε−→ε′ = Ω−1

ε J−1T−1
µ Ωε′ , where we

defined the matrices J and Tµ in Equation (2.1) and the matrices Ωε in Equation
(2.2).
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2.3.4 Examples of calculations of paths

To conclude this section, we look at the special cases of the once punctured torus
and the four times punctured sphere.

2.3.4.a The once punctured torus

Dσ

σ

∂∞(P ) ∂0(P )

∂1(P )

Figure 2.9: Gluing construction for the once punctured torus.

The once punctured torus Σ1,1 is decomposed into one pair of pants by cutting
along a single pants curve σ. To determine the projective structure on Σ1,1 fol-
lowing our construction, we take a pair of pants P and glue the boundaries ∂∞P
and ∂0P , so that the remaining boundary ∂1P becomes the puncture on Σ1,1, see
Figure 2.9. In this case µ = µ ∈ H because ξ(Σ1,1) = 1. To find the representation
ρµ : π1(Σ1,1) −→ PSL(2,C), it is sufficient to compute the holonomy of σ and of
its dual curve Dσ.

To do the gluing, take two copies of P and, following the notation in Section 2.2,
label the copy on the left in the figure P , and that on the right, P ′. We identify P
with the standard triply punctured sphere P by the homeomorphism Φ: P −→ P,
so that the universal covers P̃ , P̃ ′ are identified with copies H,H′ of the upper half
plane H with coordinates z, z′ respectively. The cusps to be glued are labelled ε =∞
and ε′ = 0. We first apply the standard symmetries Ωε,Ωε′ which carry ε =∞ and
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ε′ = 0 to ∞. Referring to (2.2), we see that Ω∞(z) = z and Ω0(z′) = 1− 1
z′ .

According to the choices made in Section 1.2.1.a, the dual curve Dσ to σ is the
curve ϑ(P, P ′;∞, 0) joining b(P ) ∈ P to b(P ′) ∈ P ′. By (2.7) in Section 2.3 and by
the formulae (2.2) for the standard symmetries, we have:

ρµ(Dσ) = Ω−1
∞ J−1T−1

µ Ω0

=

(
i 0
0 −i

)(
1 −µ
0 1

)(
1 −1
1 0

)
= −i

(
µ− 1 1

1 0

)
.

Since clearly we have ρµ(σ) =

(
1 2
0 1

)
, this is enough to specify the representation

ρµ : π1(Σ1,1) −→ PSL(2,C).
The original motivation for studying the representations in this paper came from

the study of the Maskit embedding of the once punctured torus, see [24] and Sec-
tion 2.2.5. The Maskit embedding for Σ1,1 is described in [24] as the representation
ρ′µK : π1(Σ1,1) −→ PSL(2,C) given by

ρ′µK (σ) =

(
1 2
0 1

)
and ρ′µK

(Dσ) = −i

(
µK 1
1 0

)
.

This agrees with the above formula setting µK = µ− 1.

2.3.4.b The four holed sphere Σ0,4

We decompose Σ0,4 into two pairs of pants P and P ′ by cutting along the curve σ,
and label the boundary components as shown in Figure 2.10, so that the boundaries
to be glued are both labelled ∞. In the figure, P is the upper of the two pants
and P ′ the lower one. We shall calculate the holonomy of the dual Dσ to σ in
two different ways, first we put Dσ in the standard Penner and Harer position and
second we put it in the symmetrical D. Thurston’s position. As it is to be expected,
the two calculations give the same result. Also in this case, µ = µ ∈ H because
ξ(Σ0,4) = 1.

The loop Dσ in Penner and Harer standard position. If we put the loop Dσ

in Penner and Harer standard position, as illustrated in Figure 1.5, and as described
in Section 1.2.2, we see that it is the concatenation of the paths:

1. ϑ(P, P ′;∞,∞) from b0(P ) to b0(P ′);

2. υ0(P ′);
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3. υ∞(P ′);

4. ϑ(P ′, P ;∞,∞) from b0(P ′) to b0(P );

5. υ−1
0 (P ).

Thus, using the calculations in Sections 2.3.3 and 2.3.2, we have

ρµ(Dσ) = ρµ
(
ϑ(P, P ′;∞,∞) · υ0(P ′) · υ∞(P ′) · ϑ(P ′, P ;∞,∞) · υ−1

0 (P )
)

=

(
i −iµ
0 −i

)
·
(

1 0
2 1

)
·
(

1 −2
0 1

)
·
(
−i iµ

0 i

)
·
(

1 0
−2 1

)

=

(
−4µ2 + 6µ− 3 2µ2 − 4µ+ 2
−4µ+ 4 2µ− 3

)
,

giving
Tr ρµ(Dσ) = −4µ2 + 8µ− 6.

Now q(Dσ) = 2 and p(Dσ) = 0 (see Section 1.2.1), and the number h of sbcc–arcs
in Dσ is 2. Thus, as Theorem A predicts, we have that

Tr ρ(Dσ) = ±i222(µ+ (0− 2)/2)2 +R,

where R represents terms of degree at most 0 in µ. So our result is in accordance
with the statement of Theorem A.

The loop Dσ in symmetrical D. Thurston standard position. As usual, we
take as base points the barycentres b(P ) and b∗(P ) of the ‘white’ and the ‘black’
hexagons respectively in P and the same base points b(P ′) and b∗(P ′) in P ′. Also
denote ϑ∗(P, P ′;∞,∞) the path R(ϑ(P, P ′;∞,∞)) from b∗0(P ) to b∗0(P ′) through the
black hexagons, where R is the orientation reversing symmetry of Σ(µ) as defined
in Section 1.2.1.

From Figure 2.10, we see that Dσ is the concatenation of the paths:

1. ϑ(P, P ′) = ϑ(P, P ′;∞,∞) from b0(P ) to b0(P ′);

2. γ∞(P ′) in P ′ from b0(P ′) to b∗0(P ′);

3. ϑ∗(P, P ′) = ϑ∗(P ′, P ;∞,∞) from b∗0(P ′) to b∗0(P );

4. γ−1
∞ (P ) in P from b∗0(P ) to b0(P ).
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Dσσ

∂∞(P )

∂∞(P ′)

∂1(P ) ∂0(P )

∂1(P ′)∂0(P ′)

b0(P )b∗0(P )

b0(P ′)b∗0(P
′)

Figure 2.10: The loop Dσ in its symmetrical DT–position in the four holed sphere.

Thus

ρµ(Dσ) = ρµ
(
ϑ(P, P ′; )

)
· ρµ (γ∞(P )) · ρµ

(
ϑ∗(P ′, P )

)
· ρµ

(
γ−1
∞ (P )

)
.

Following Remark 2.2.1 and Equation (2.5), we have:

ρµ
(
ϑ∗(P ′, P )

)
= ρµ−2

(
ϑ(P ′, P )

)
= ρµ−2

(
ϑ−1(P, P ′)

)
= −ρµ−2

(
ϑ(P, P ′)

)
.

So, from the discussion in Section 2.3.3, we have ρµ (ϑ∗(P ′, P )) =

(
−i i(µ− 2)
0 i

)
.

Thus, referring also to the calculations of Section 2.3.2, we see that

ρµ(Dσ) =

(
i −iµ
0 −i

)
·
(

1 0
2 1

)
·
(
−i i(µ− 2)
0 i

)
·
(

1 0
−2 1

)

=

(
−4µ2 + 6µ− 3 2µ2 − 4µ+ 2
−4µ+ 4 2µ− 3

)
.

Hence Tr (ρµ(Dσ)) = −4µ2 + 8µ− 6 as before.
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2.4 Proof of Top Terms’ Relationship

In this final section we discuss the Top Terms’ Relationship, which is stated in the
Introduction as Theorem A. In the statement of Theorem A we use the notion of
sbcc–arcs; see Section 1.1 for the definition.

Theorem 2.4.1. Let γ be a connected simple closed curve on Σ and let µ =
(µ1, . . . , µξ) ∈ Hξ. If γ is not parallel to any of the pants curves σi, then Tr ρµ(γ) is
a polynomial in µ1, · · · , µξ whose top terms are given by:

Tr ρµ(γ) = ±iq2h
(
µ1 +

(p1 − q1)
q1

)q1 · · ·(µξ +
(pξ − qξ)

qξ

)qξ
+R,

= ±iq2h
(
µq11 · · ·µ

qξ
ξ +

ξ∑
i=1

(pi − qi)µq11 · · ·µqi−1
i · · ·µqξξ

)
+R,

where:

• q =
∑ξ

i=1 qi > 0;

• h = h(γ) is the total number of sbcc–arcs in γ \ ∪ξi=1(γ ∩ σi) in the standard
representation of γ relative to P;

• R represents terms with total degree in µ1 · · ·µξ at most q− 2 and of degree at
most qi in the variable µi.

If q = 0, then γ = σi for some i, ρµ(γ) is parabolic, and Tr ρµ(γ) = ±2.

In [28] we gave a combinatorial proof of this theorem that we include here in
Appendix B. Before finding that proof, we tried to prove the result using induction
on the total intersection number q =

∑ξ
i=1 qi > 0 of the curve γ with the pants curves

and a particular decomposition of the trace Tr ρµ(γ) into ‘base blocks’. Since the
idea of the combinatorial proof in Appendix B was Series’, we decided to discuss in
this chapter only the calculations which inspired that proof, see Section 2.4.1. These
calculations correspond to the step cases of the inductive proof we wanted to use.
Unfortunately, the method breaks down because the Dehn–Thurston coordinates
(using D. Thurston’s twist) are not well defined for arcs between the base points in
B. In fact, if γij is an arc crossing a pants curve σ = ∂εP ∩ ∂ε′P

′, we need to know
the boundary component across which γij entered P and the one across which it
left P ′ in order to define p(γij ). So the proof reduces to the one described in the
Apppendix. We give a sketch of this proof in Section 2.4.2.
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2.4.0.c Generators of π1,2k(Σ, B) and degree of the trace polynomial

Recall that we consider each curve γ ∈ π1(Σ) as a product of elements of the
fundamental groupoid π1,2k(Σ, B). Since we think it could help the reader, we recall
here the different generators of π1,2k(Σ, B), specifying for each one the holonomy
image and the section where we have defined them:

• The path γε ∈ P which joins b and b∗ in P crossing λε(P ). Its holonomy image
is ρµ(γε) = Ξε, see Section 2.3.2.a for the definition.

• The path υε ∈ P which goes around the boundary component ∂ε(P ). Its
holonomy image is ρµ(υε) = Υε, see Section 2.3.2.b for the definition.

• The path ϑ(P, P ′; ε, ε′) going from b(P ), in the pair of pants P , to b(P ′), in
the pair of pants P ′. Its holonomy image is ρµ(ϑ(P, P ′; ε, ε′)) = Θε−→ε′ =
Ω−1
ε J−1T−1

µ Ωε′ , see Section 2.3.3 for the definition.

Recall that the definition of the map Ωε is given in Equation (2.2), while the defini-
tions of the map J and Tµ are given in Equation (2.1). Recall also that the matrices
Θε−→ε′ are given in Table 2.1, and that, as underlined in Remark 2.3.4, an sbcc–arc
in the pair of pants P starting at the boundary component ∂ε(P ) corresponds (up
to the change of orientation) to the path υ±ε+1 and, hence, its holonomy image is the
matrix Υε+1 or Υ−1

ε+1.
Now suppose that γ is a curve on Σ. Although not logically necessary, we can

greatly simplify our description by arranging γ in standard Penner and Harer posi-
tion, so that it always passes from one pants to the next through the white hexagons
∆0(Pj). Suppose, as in Section 2.2.2, that γ passes through a sequence of pants
Pi1 , . . . , Pin . We may as well assume that γ starts at the base point b(Pi1) of Pi1 .
Given our identification Φi1 of Pi1 with P, there is a unique lift b̃(Pi1) of b(Pi1)
to ∆0 and hence there is a unique lift γ̃ of γ ∩ Pi1 to H starting at b̃(Pi1). This
path exits ∆0 either across one of its three sides, or across that part of a horocycle
which surrounds one of the three cusps 0, 1,∞ contained in ∆0. In the first case,
the holonomy is given by the usual action of the group Γ on H, where Γ is the
triply punctured sphere group as in Section 2.2.1. (This is explained in detail in
Section 2.3.2.) In the second case, we have a precise description of the gluing across
the boundary annuli, giving a unique way to continue γ̃ into a lift of Pi2 . In this
case we continue in a new chart in which the lift of Pi2 is identified with ∆ ⊂ H, as
described before.

The following result applies to an arbitrary connected loop on Σ.
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Proposition 2.4.2. Let γ ∈ π1(Σ) be a (connected) curve and suppose that the total
intersection number of γ with the pants curves σi is

∑
i i(γ, σi) = q. Then for any

µ = (µ1, . . . , µξ) ∈ Hξ, the trace Tr ρµ([γ]) is a polynomial p = p(µ) ∈ C[µ1, . . . , µξ]
in µ1, . . . , µξ of maximal total degree q and of maximal degree qk(γ) = i(γ, σk) in
the parameter µk.

Proof. Suppose the boundary ∂εP of one pair of pants P is glued to the boundary
∂ε′P

′ of another pair P ′ along a pants curve σ. As before let’s denote Φ̂ : P −→
∆ ⊂ H and Φ̂′ : P ′ −→ ∆′ ⊂ H′ the identifications of P and P ′ with ∆ and ∆′

respectively. Then the map Φ̂◦(Φ̂′)−1 : ∆′ −→ ∆, which glues the horocycle labelled
ε′ in ∆′0 to the horocycle labelled ε in ∆0, is Ω−1

ε J−1T−1
µ Ωε′ , where, as usual, the

maps Ωε and Ωε′ are the standard maps taking ε and ε′ to∞, see Equation 2.2 for the
definition of the matrices Ωε. This fact is explained in Section 2.2; in particular, see
Equation 2.3 and Figure 2.3. Thus, with the notation of Section 2.2.2, the overlap
map R = Φ̂ ◦ (Φ̂′)−1 is

Ω−1
ε J−1T−1

µ Ωε′ . (2.6)

Any curve γ ∈ π1(Σ) which intersects the pants curves σ1, . . . , σξ in total q times
passes through a sequence of pants Pi1 , . . . , Piq = Pi1 and can therefore be written as
a product

∏q
j=1 κjϑj where κj ∈ π1(Pij ; bij ) is a path in Pij with both its endpoints

in the base point bij = b(Pij ) and ϑj = ϑ(Pij , Pij+1) is a path from bij to bij+1 across
the boundary σij between Pij and Pij+1 . See Section 2.3.2 and 2.3.3 for a detailed
description of these paths. In particular, we have ρµ(ϑj) = Ω−1

εj J
−1T−1

µij
Ω′εj+1

.
It follows that the holonomy of γ is a product

ρµ([γ]) =
q∏
j=1

ρµ(κj)Ω−1
εj J

−1T−1
µij

Ω′εj+1
, (2.7)

from which the result follows.

It is clear from this formula that Tr ρµ([γ]) is an invariant of the free homotopy
class of a closed curve γ ∈ π1(Σ), because changing the base point of the path γ

changes the above product by conjugation, as already discussed in Section 2.1.2.

2.4.0.d Independence from the labelling

In this section we want to prove that the trace Tr ρµ(γ) doesn’t depend on the
labelling chosen for the boundary components of the pairs of pants Pj .

The idea behind the independence from the labelling is the following. If you write
ρµ(γ) as a product of matrices coming from the images of the generators of the
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fundamental groupoid π1,2k(Σ, B) for a particular choice of labelling, then you can
get the matrix decomposition of a new one just by adding blocks of type ΩεΩ−1

ε ,
as we are about to explain. This adding operation, of course, does not change the
trace which we are calculating.

Lemma 2.4.3. The trace is independent from the labelling {0, 1,∞} chosen for the
boundary components of the pairs of pants in the pants decompositions P.

Proof. We consider a path in P entering from the boundary ∂ε(P ) and exiting from
the boundary ∂ε′(P ). We want to prove that, if we change the labelling in P , than
the holonomy of γ remains the same. The holonomy of γ (while crossing from ∂ε(P )
to ∂ε(P ′)) depends on ε and ε′ only for the following pieces:

• ΩεΥα
ε′Ω
−1
ε′ , if ε 6= ε′; or

• ΩεΥε+1Υα
ε Ω−1

ε , if ε = ε′ and, hence, the paths create an sbcc–arc based at
∂ε(P ),

where α ∈ Z is the PH–twist of this piece of path.
So we want to prove that

• · · ·ΩεΥα
ε′Ω
−1
ε′ · · · = ± · · ·Ω$Υα

$′Ω
−1
$′ · · · , where ε, ε′, $,$′ ∈ {0, 1,∞} and ε 6=

$, ε 6= ε′, $ 6= $′; or

• · · ·ΩεΥε+1Υα
ε Ω−1

ε · · · = ± · · ·Ω$Υ$+1Υα
$Ω−1

$ · · · , where ε,$ ∈ {0, 1,∞} and
ε 6= $.

We discuss the first situation in the case ε = 0, ε′ = 1 and $ = 1. In this situation
we have $′ =∞. Since

Ω0Υα
1 Ω−1

1 = Ω1Ω−1
1 Ω0Υα

1 Ω−1
1 Ω∞Ω−1

∞ ,

then we only need to prove that

Ω−1
1 Ω0Υα

1 Ω−1
1 Ω∞ = ±Υα

∞.

We have that:

Ω1Ω−1
0 Υα

1 Ω1Ω−1
∞ = (−1)α

(
−1 1
−1 0

)(
1 −1
1 0

)(
2α+ 1 −2α

2α −2α+ 1

)(
−1 1
−1 0

)

= (−1)α
(

0 1
−1 1

)(
−1 2α
−1 −1

)
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= (−1)α+1

(
1 −2α
0 1

)
= ±Υα

∞,

as we wanted to prove. The other cases can be analysed in a similar way.

2.4.1 Case of simple closed curves

In Section 2.4.1.a and Section 2.4.1.b we prove Theorem 2.4.1 for simple closed
curves γ ∈ π1(Σ) with q(γ) = 1 and q(γ) = 2, respectively. We do our calculations
for a particular choice of labelling of the pants curves, but our result does not depend
on the choice, as proved in Lemma 2.4.3.

2.4.1.a Case q = 1

γ
∞
1

Figure 2.11: Case q = 1

Let γ be a curve such that q =
∑ξ

i=1 qi = 1, then, without loss of generality,
we can suppose q = qi = 1. In this case the curve γ is contained in the modular
surface MS(σi) associated to the pants curve σi and MS(σi) is a once holed torus, see
Section 1.1 for the definition of modular surface. Let’s choose the labelling of Figure
2.11. We can do that because of Lemma 2.4.3. Let, as usual, µ be a vector in Hξ.
Suppose that γ = υ−α1 ϑ(P, P ; 1,∞;σi), where P = MS(σi). With this assumption,
Penner and Harer’s twist is p̂i = α.

Using the results of Section 2.3.2, we have the following:

ρµ(γ) = Υ−α1 Θ1−→∞

= i(−1)α
(
−2α+ 1 2α
−2α 2α+ 1

)(
1 1− µi
1 −µi

)

= i(−1)α
(

1 −µi − 2α+ 1
1 −µi − 2α

)
.
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So
Tr
(
ρµ(γ)

)
= i(−1)−α+1(µi + 2α− 1).

The relationship between Penner and Harer’s definition and D. Thurston’s one, tells
us that p̂i = pi+1−1

2 , see Theorem 1.2.6. Using this fact and the fact that p̂i = α,
we can see that the DT–twist is pi = 2α. In addition, the total number of sbcc–arcs
is h = 0. So we have:

Tr
(
ρµ(γ)

)
= ±iq2h(µi + pi − qi),

as we wanted to prove.

2.4.1.b Case q = 2

Let γ be a curve such that q =
∑ξ

i=1 qi = 2, then there are three possibilities:

(i) γ meets two different pants curves (suppose q = qi + qj = 2);

(ii) γ meets only one pants curve which is the boundary of two different pairs of
pants (suppose q = qi = 2 and MS(σi) ∼= Σ0,4);

(iii) γ meets only one pants curve which is the boundary of only one pair of pants
(suppose q = qi = 2 and MS(σi) ∼= Σ1,1).

We prove these cases using the trace relations of Appendix A. Let µ ∈ Hξ.

γ

1∞

1 ∞

Figure 2.12: Case q = 2 (i)

Case q = 2 (i) We have to prove Theorem 2.4.1 for simple closed curves γ with
q(γ) = 2 and which meet two different pants curves. In Figure 2.12 you can see a
curve γ that meets two different pants curves. Without loss of generality, we can
suppose q = qi + qj = 2. In this case, using Lemma 2.4.3, let’s choose the labelling
of Figure 2.12. Suppose that MS(σi) = P ∪ P ′, and assume

γ = υ−α∞ (P )ϑ(P, P ′;∞, 1;σi)υ−α∞ (P ′)ϑ(P ′, P ;∞, 1;σj).
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In this case we have that the PH–twist are p̂i = α and p̂j = β.
Using the results of Section 2.3.2, we have the following:

ρµ(γ) = Υ−α∞ Θ∞−→1(µi)Υ−β∞ Θ∞−→1(µj),

where Θ∞−→1(µi) =

(
−µi µi − 1
−1 1

)
and Θ∞−→1(µj) =

(
−µj µj − 1
−1 1

)
. Using

Proposition A.1, we have that

Tr(ρµ(γ)) = Tr(A) Tr(B)− Tr(C),

where
A = Υ−α∞ Θ∞−→1(µi), B = Υ−β∞ Θ∞−→1(µj)

and
C = AB−1 = Υ−α∞ Θ∞−→1(µi)Θ−1

∞−→1(µj)Υβ
∞.

Then we have:

A = Υ−α∞ Θ∞−→1(µi)

=

(
1 2α
0 1

)(
−µi µi − 1
−1 1

)

= i

(
−µi − 2α µi + 2α− 1
−1 1

)
.

So Tr(A) = −i(µi + 2α− 1). Similarly Tr(B) = −i(µj + 2β− 1). Finally, the matrix
C satisfies:

C = Υ−α∞ Θ∞−→1(µi)Θ−1
∞−→1(µj)Υβ

∞

= −
(

1 2α
0 1

)(
−µi µi − 1
−1 1

)(
1 1− µj
1 −µj

)(
1 −2β
0 1

)

= −
(

1 2α
0 1

)(
1 µi − µj
0 1

)(
1 −2β
0 1

)

= −
(

1 µi − µj + 2α− 2β
0 1

)
.

Hence we have:

74



Tr(ρµ(γ)) = Tr(A) Tr(B)− Tr(C)

= Tr(A) Tr(B) +R

= −[µiµj + (2β − 1)µi + (2α− 1)µj ] +R,

where R represents terms with total degree 0. Using Theorem 1.2.6, we have that the
DT–twists are pi = 2α and pj = 2β. So we have pi−qi = 2α−1 and pj−qj = 2β−1.
Since the total number of sbcc–arcs is 0, we have that

Tr(ρµ(γ)) = ±iq2h (µiµj + (pj − qj)µi + (pi − qi)µj) +R,

as we wanted to prove.

β

0 0

Figure 2.13: Case q = 2 (ii)

Case q = 2 (ii) We have to prove Theorem 2.4.1 for simple closed curves γ with
q(γ) = 2 and which meet only one pants curve which is the boundary of two different
pair of pants. In that case, without loss of generality, we can suppose q = qi = 2
and MS(σi) ∼= Σ0,4, where MS(σi) is the modular surface associated to σi. In this
case let’s choose the labelling of Figure 2.13, thanks to Lemma 2.4.3.

Suppose that MS(σi) = P ∪ P ′, and let γ be

γ = υ±1 (P )υ−α0 (P )ϑ(P, P ′; 0, 0;σi)υ±1 (P ′)υ−β0 (P ′)ϑ(P ′, P ; 0, 0;σi).

In this situation we have that the PH–twist is p̂i = α+ β.
Using the calculations of Section 2.3.2, we have the following:

ρµ(γ) = Υ±1 Υ−α0 Θ0−→0Υ±1 Υ−β0 Θ0−→0.
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Note that the matrices Υ±1 correspond to the sbcc–arcs starting at ∂0(P ) and ∂0(P ′).
We do the calculation in the case ρµ(γ) = Υ1Υ−α0 Θ0−→0Υ−1

1 Υ−β0 Θ0−→0, but the
other cases are similar. Using Proposition A.1, we have that

Tr(ρµ(γ)) = Tr(A) Tr(B)− Tr(C),

where
A = Υ1Υ−α0 Θ0−→0, B = Υ−1

1 Υ−β0 Θ0−→0

and
C = AB−1 = Υ1Υ−α0 Θ0−→0Θ−1

0−→0Υβ
0 Υ1.

In particular we have:

A = Υ1Υ−α0 Θ0−→0

= i

(
−3 2
−2 1

)(
1 0
−2α 1

)(
1 0

2− µi −1

)

= i

(
−3 2
−2 1

)(
1 0

−µi − 2α+ 2 −1

)

= i

(
1− 4α− 2µi −2
−µi − 2α −1

)

and

B = Υ−1
1 Υ−β0 Θ0−→0

= i

(
1 −2
2 −3

)(
1 0
−2β 1

)(
1 0

2− µi −1

)

= i

(
1 −2
2 −3

)(
1 0

−µi − 2β + 2 −1

)

= i

(
−3 + 4β + 2µi 2
+3µi + 6β − 2 3

)
.

So Tr(A) = −2i(µi + 2α) and Tr(B) = 2i(µi + 2β). Finally, the matrix

C = Υ1Υ−α0 Θ0−→0Θ−1
0−→0Υβ

0 Υ1 = Υ1Υ−α+β
0 Υ1

doesn’t contain the parameter µi. Hence we have:
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Tr(ρµ(γ)) = Tr(A) Tr(B)− Tr(C)

= Tr(A) Tr(B) +R

= 4(µ2
i + (2α+ 2β)µi + 4αβ) +R

= 4(µ2
i + (2α+ 2β)µi) +R′,

where R and R′ represent terms with total degree 0. In addition, using Theorem
1.2.6, we have that the DT–twist is pi = 2α+2β+2 and pi−qi = 2α+2β. Since the
total number of sbcc–arcs is 2, we have that Tr(ρµ(γ)) = ±iq2h

(
µqi + (pi − qi)µq−1

i

)
+

R, as we wanted to prove.

Case q = 2 (iii) We have to prove Theorem 2.4.1 for simple closed curves γ with
q(γ) = 2 and which meet only one pants curve which is the boundary of only one pair
of pants In this situation, without loss of generality, we can suppose q = qi = 2 and
MS(σi) ∼= Σ1,1, where MS(σi) is the modular surface associated to σi. In this case,
we are in a case similar to Figure 2.11, but with the curve γ going twice around the
handle. We choose the labelling of Figure 2.11. We can do that, because of Lemma
2.4.3.

Let MS(σi) = P and assume

γ = υ−α1 ϑ(P, P ; 1,∞;σi)υ
−β
1 ϑ(P, P ; 1,∞;σi).

In this case, the PH–twist is p̂i = α+ β.
Similarly to the previous cases we have ρµ(γ) = Υ−α1 Θ1−→∞Υ−β1 Θ1−→∞. Us-

ing Proposition A.1, we have that Tr(ρµ(γ)) = Tr(A) Tr(B) − Tr(C), where A =
Υ−α1 Θ1−→∞, B = Υ−β1 Θ1−→∞ and C = AB−1 = Υ−α1 Θ1−→∞Θ−1

1−→∞Υβ
1 .

By Section 2.4.1.a, we have that Tr(A) = i(−1)−α+1(µi + 2α − 1) and Tr(B) =
i(−1)−β+1(µi + 2β − 1), and, similarly to case q = 2 (ii), the matrix C doesn’t
contain the parameter µi.

So
Tr
(
ρµ(γ)

)
= (−1)α+β+1

(
µ2
i + (2α+ 2β − 2)µi

)
+R,

where R is a term with total degree 0. So, using Theorem 1.2.6, we have that the
DT–twist is pi = 2α + 2β. Since the total number of sbcc–arcs is 0, we have that
Tr(ρµ(γ)) = ±iq2h

(
µqi + (pi − qi)µq−1

i

)
+R as we wanted to prove.
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2.4.2 Inductive proof of Theorem 2.4.1

Using the discussion made in Section 2.3, we can see that any simple closed curve
γ ∈ π1(Σ) can be written as a product γ = γi1 . . . γiq ∈ π1,k(Σ, B′), where γij is a
paths with endpoints in the set B′ = {b1, . . . , bk} ⊂ B consisting of base points bj in
the white hexagons ∆0(Pj). (See Section 2.3.1 for the definition of the base points.)
Note that the number of such arcs γij is q = q(γ) =

∑ξ
i=1 qi(γ) and note also that

q(γij ) = 1 for all j = 1, . . . , q.
In particular, each path γij is of the form:

γij =

{
υ−αε ϑ(ε, ε′) if h = 0
υ±1
ε+1υ

−α
ε ϑ(ε, ε′) if h = 1,

where h = h(γij ) is the number of sbcc–arcs in γij and where υε and ϑ(ε, ε′) were
defined in Section 2.3.4. Note that any term γij = υ±1

ε+1υ
−α
ε ϑ(ε, ε′) corresponds to

an sbcc–arc of γ and it should be preceeded by a factor ϑ(ε′, ε). Let p̂(γij ) = α be
the PH–twist of γij . Then

p̂i(γ) =
∑

γij∩σi 6=∅
p̂(γij ). (2.8)

Using the discussion of Section 2.3 and the fact that Υε = Ω−1
ε Υ∞Ωε, we can see

the following:

ρµ(γij ) =

{
Υ−αε Θε−→ε′ = Ω−1

ε Υ−α∞ Θ∞−→∞Ωε′ if h = 0
Υ±1
ε+1Υ−αε Θε−→ε′ = Ω−1

ε Ω1Υ±1
∞ Ω0Υ−α∞ Θ∞−→∞Ωε′ if h = 1,

Note that the matrix Υ−α∞ Θ∞−→∞ corresponds to the matrix AX defined in Ap-
pendix B with X = −(µi + 2α).

Unfortunately, there is no canonical way to define the DT–twist p(γij ) of γij , so
the idea of an inductive proof breaks down. Using Theorem 1.2.6, we can define the
DT–twist for arcs with endpoints on the pants curve. We believe that a different
proof of Theorem 2.4.1 can be found by defining a new fundamental groupoid which
contains π1,2k(Σ, B). (In particular, in the new fundamental groupoid one needs
to add one base point for each pants curve.) Using this new groupoid, we think
that one can give an inductive proof of Theorem 1.2.6. Anyway, we decided not to
do this, because that method would introduce new definitions and would make the
material more difficult to understand.

Now we explain the idea of the combinatorial proof of Appendix B. The main

78



thought is to cut the product ρµ(γ) = ρµ(γi1) . . . ρµ(γiq) in a different way (that is,
after each piece Υ−α∞ Θ∞−→∞ = AX) and to use the trace formula (iv) of Theorem
A.1. In detail, we find a new decomposition

ρµ(γ) = γ̂i1 . . . γ̂iq ,

where

γ̂ij =

{
Ωε′Ω−1

ε Υ−α∞ Θ∞−→∞ if h = 0
Ω1Υ±1

∞ Ω0Υ−α∞ Θ∞−→∞ if h = 1,

Notice that, in the first case, ε 6= ε′, so Ωε′Ω−1
ε ∈ {Ω0,Ω1}. Supposing that q(γ̂ij ) =

qi(γ̂ij ) = 1, we have three types of base blocks:

γ̂ij =



Ω1Υ−α∞ Θ∞−→∞ = Ω1AX = i

(
0 1
1 −µi − 2α+ 1

)
if h = 0,

Ω0Υ−α∞ Θ∞−→∞ = i

(
1 −µi − 2α+ 1
1 −µi − 2α

)
if h = 0,

Ω0Υ±1
∞ Ω1Υ−α∞ Θ∞−→∞ = i

(
1− 4α− 2µi −2
−µi − 2α −1

)
if h = 1,

(2.9)

where X = −(µi + 2α), see Appendix B.
Each factor γ̂ij corresponds to a crossing Θ∞−→∞ of a pants curve, and it is

preeceeded and followed by a matrix Ω1 or Ω0. For each factor γ̂ij , we can describe
the twist parameter p(γij ), as we are about to explain, and we have

pi(γ) =
∑

γij∩σi 6=∅
p(γij ). (2.10)

In fact, if γij is an arc crossing a pants curve σ = ∂εP ∩ ∂ε′P ′, we need to know the
boundary component across which γij entered P and the one across which it left P ′

in order to define p(γij ) using Theorem 1.2.6. Knowing that, we can define p(γij ).
For example, if γ̂ij = Ω0Υ−α∞ Θ∞−→∞ is part of the product

ρµ(γ) = . . .Θ∞−→∞γ̂ijΩ1Υ−α∞ Θ∞−→∞ . . . ,

then p(γ̂ij ) = 2α+ 1, while if

ρµ(γ) = . . .Θ∞−→∞γ̂ijΩ0Υ−α∞ Θ∞−→∞ . . . ,

then p(γ̂ij ) = 2α. The reason for that is the following. Using the above factorisation
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and Lemma 2.4.3, we can suppose that γij cuts the pants curve σi = ∂∞(P )∩∂∞(P ′),
and so the terms Ωε before and after Υ−α∞ Θ∞−→∞ tell us that γ enters P from ∂0(P )
and leaves P ′ from ∂0(P ) (in the first case) or leaves P ′ from ∂1(P ) (in the second
case). We can then use Theorem 1.2.6 and see the value of p(γ̂ij ) in the two cases.
Table 2.2 summarise how to define p(γ̂ij ).

Table 2.2: Types of blocks
Factor γ̂ij of ρµ(γ) p(γ̂ij )

. . .Ω0Υ−α∞ Θ∞−→∞Ω0 . . . 2α

. . .Ω0Υ−α∞ Θ∞−→∞Ω1 . . . 2α− 1

. . .Ω1Υ−α∞ Θ∞−→∞Ω0 . . . 2α+ 1

. . .Ω1Υ−α∞ Θ∞−→∞Ω1 . . . 2α

In the Appendix we will prove Proposition B.4 and Theorem B.5 by induction
and this will prove Theorem 2.4.1.
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Chapter 3

Asymptotic behaviour

As explained in the Introduction, in this chapter we extend to a general hyperbolic
surface Σg,b the results proved by Series in [40] for the case of a twice punctured
torus Σ1,2. Before explaining our result, we give, in Section 3.1, some definitions
about 3–manifolds and pleating rays.

3.1 Three manifolds and pleating rays

In this background section, we recall some known material related to hyperbolic
3–manifolds. Since we are in the same setting as Series’ paper [40], we follow her
description.

Let M be a hyperbolic 3–manifold, that is a complete 3-dimensional Rieman-
nian manifold of constant curvature −1 such that the fundamental group π1(M) is
finitely generated. We exclude the somewhat degenerate case that π1(M) has an
abelian subgroup of finite index, that is π1(M) is an elementary Kleinian group. An
important subset of M is its convex core CM = C. We say that a subset M ′ of M is
convex when, given any two points in M ′, then the geodesic segment between them
is entirely contained in M ′.

Definition 3.1.1. The convex core CM of a hyperbolic 3–manifoldM is the smallest,
non-empty, closed, convex subset of M such that the inclusion of CM into M is a
homotopy equivalence.

Given a hyperbolic 3–manifold M = H3/G, we can also define the convex core as
the quotient CH(Λ)/G, where CH(Λ) is the convex hull of the limit set Λ = Λ(G)
of G, see Section 2.1.1 for the definition of limit set.

The boundary ∂CM of the convex core is a surface of finite topological type whose
geometry was described by W. Thurston [42]. If M is geometrically finite, then
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Thurston proved that there is a natural homeomorphism between the components
of ∂CM and the components of the conformal boundary Ω/G of M . Each component
F of ∂CM inherits a hyperbolic structure from M . In addition, Thurston proved
that each such component F is a pleated surface, that is a hyperbolic surface which
is totally geodesic almost everywhere and such that the locus of points where it fails
to be totally geodesic is a geodesic lamination; see [16] for a detailed discussion on
the pleated structure of the boundary of the convex core.

Given a topological surface Σ = Σg,b, a pleated surface is defined in the following
way.

Definition 3.1.2. A pleated surface with topological type Σ in a hyperbolic 3–
dimensional manifold M is a map f : Σ −→M such that:

(i) the path metric obtained by pulling back the hyperbolic metric of M by f is
a hyperbolic metric m on Σ;

(ii) there is an m-geodesic lamination λ such that f sends each leaf of λ to a
geodesic of M and is totally geodesic on Σ− λ.

In this case, we say that λ is the bending (or pleated) lamination, while the images
of the complementary components of λ are called flat pieces.

The bending lamination of each component of ∂CM carries a natural transverse
measure, called the bending measure (or pleating measure). In the case M is home-
omorphic to Σ × R, there are two components ∂+CM and ∂−CM of ∂CM and we
denote pl± ∈ ML(Σ) the respective pleating measure on each one.

We deal with manifolds for which the bending lamination is rational, that is,
supported on closed curves. As explained in Section 1.3.1, the subset of rational
measured laminations is denoted MLQ(Σ) ⊂ ML(Σ) and consists of measured lam-
inations of the form η =

∑m
i=1 aiδγi , where the curves γi ∈ S(Σ) are disjoint and

non-homotopic, ai ≥ 0, and δγi represents the transverse measure which gives weight
1 to each intersection with γi. For simplicity, we write η =

∑m
i=1 aiδγi =

∑m
i=1 aiγi ∈

MLQ(Σ). If
∑m

i=1 aiγi is the bending measure of a pleated surface Σ, then ai is the
angle between the flat pieces adjacent to γi, also denoted θγi . In particular, θγi = 0
if and only if the flat pieces adjacent to γi are in a common totally geodesic subset of
∂C. We take the term pleated surface to include the case in which a closed leaf γ of
the bending lamination maps to the fixed point of a rank one parabolic cusp of M .
In this case, the image pleated surface is cut along γ and thus may be disconnected.
Moreover, the bending angle between the flat pieces adjacent to γ is θγ = π. See
discussion in Series [40] or Choi–Series [11].
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Bonahon and Otal [7] described exactly which laminations can appear as bending
laminations in the boundary ∂CM of the convex core. We discuss only the case
we are interested in. We recall that a set of curves {γ1, . . . , γm} in a surface Σ is
said to fill the surface if, for any γ ∈ S(Σ), there exists j ∈ {1, . . . ,m} such that
i(γ, γj) 6= 0. Equivalently, the set of curves {γ1, . . . , γm} in Σ fills the surface Σ if
all the components of Σ \ ∪mi=1γi are discs or once punctured discs.

Theorem 3.1.3 (Theorem 1 of [7]). Suppose that M is 3–manifold homeomorphic
to Σ × (0, 1), and that η+ =

∑m
i=1 a

+
i γ

+
i , η

− =
∑n

j=1 a
−
j γ

+
j ∈ MLQ(Σ). Then there

exists a geometrically finite group G such that M = H3/G and such that the bending
measures on the two components ∂C±(G) of ∂C(G) equal η± respectively, if and only
if a+

i , a
−
j ∈ (0, π] for all i and j and the set {γ+

i , γ
−
j |i = 1, . . . ,m, j = 1, . . . , n} fills

up Σ (i.e. if i(η+, γ) + i(η−, γ) > 0 for every γ ∈ S). If such a structure exists, it
is unique.

Specialising now to the Maskit embeddingM =M(Σ), let ρ : π1(Σ) −→ PSL(2,C)
be a holonomy representation such that the image G = ρ (π1(Σ)) is in M. The
boundary ∂C(G) of the convex core has k+ 1 components: one is ∂+C and the oth-
ers are k triply punctured spheres whose union we denote ∂−C. ∂+C faces Ω+/G and
is homeomorphic to Σ. The induced hyperbolic structures on the components of ∂−C
are rigid, while the structure on ∂+C varies. Recall that we called pl+(G) ∈ ML(Σ)
the bending lamination of ∂+C. Following the discussion above, we view ∂−C as a
single pleated surface with bending lamination π(σ1 + . . .+ σξ), indicating that the
triply punctured spheres are glued across the annuli whose core curves σ1, . . . , σξ

correspond to the parabolics ρ(σi) ∈ G.

Corollary 3.1.4. A lamination η ∈ MLQ(Σ) is the bending measure of a group
G ∈ M if and only if i(η, σ1), . . . , i(η, σξ) > 0. If such a structure exists, it is
unique.

Definition 3.1.5. A lamination η ∈ MLQ(Σ) is called admissible if

i(η, σ1), . . . , i(η, σξ) > 0.

3.1.0.a Pleating rays

In the set PML = PML(Σ) of projective measured laminations on Σ, we denote the
projective class of η = a1γ1 + . . . + amγm ∈ ML(Σ) by [η]. See Section 1.3.1 for
the definition of ML and PML. The pleating ray P = P[η] of η ∈ ML is the set of
groups G ∈M for which pl+(G) ∈ [η]. The ray P[η] depends only on the projective
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class of η, but, to simplify the notation, we write Pη for P[η]. In addition, Pη is
non-empty if and only if η is admissible. In particular, we write Pγ for the ray
P[δγ ]. As pl+(G) increases, Pη limits to a geometrically finite group G = Gcusp(η)
in the algebraic closure M of M at which at least one of the support curves to η
is parabolic; in particular, at G we have that that pl+(G) = θ(a1γ1 + . . . + amγm)
with max{θa1, . . . , θαm} = π. We write Pη = Pη ∪Gcusp(η).

Similarly, for disjoint non-homotopic curves γ1, . . . , γm ∈ S0 (with, of course,
m ≤ ξ), we define the pleating variety Pγ1,...,γm of γ1, . . . , γm to be the set of groups
G ∈ M for which pl+(G) =

∑m
i=1 aiγi with ai > 0 for all i. Thus Pγ1,...,γm is the

union of the pleating rays Pη with η =
∑m

i=1 aiγi with ai > 0. If γi is admissible,
then the ray Pγi is contained in the boundary of Pγ1,...,γm ; note that γi may not
be admissible even though η =

∑m
i=1 aiγi is. In Section 5 of [40] the interested

reader can find some computations of pleating varieties in the case Σ1,2. We write
Pγ1,...,γm = ∪ηPη where the union is over η =

∑
aiγi with ai ≥ 0.

From now on, when we will write η =
∑m

i=1 aiγi, we will always assume ai > 0,
unless differently specified.

The following key lemma is proved in Proposition 4.1 of Choi and Series [11], see
also Lemma 4.6 of Keen and Series [24]. The essence is that the complex length of
the curves in a bending line of the boundary ∂C(G) of the convex core can’t have
rotational part, because the two flat pieces of ∂C(G) on either side of a bending line
are invariant under translation along the bending line.

Lemma 3.1.6. If the axis of g ∈ G is a bending line of ∂C(G), then Tr(g) ∈ R.

Notice that the lemma applies even when the bending angle θγ along γ van-
ishes. Thus, if {γ1, · · · , γm, γm+1, · · · , γξ} is a pants decomposition of Σ and if
G ∈ Pγ1,...,γm , then we have Tr g ∈ R for any g ∈ G whose axis projects to a curve
γi, i = 1, . . . , ξ.

In order to compute pleating rays, we need the following result which is a special
case of Theorems B and C of [11], see also [24]. Recall that a codimension-p sub-
manifold N ↪→ Cn is called totally real if it is defined locally by equations =fi = 0
for i = 1, . . . , p, where fi are local holomorphic coordinates for Cn. As usual, if γ is
a bending line, we denote its bending angle by θγ .

We recall the definition of complex length, see e.g. [11] for details. Let C+ = {z ∈
C|<z > 0}. If A ∈ PSL(2,C), then TrA is well defined up to multiplication by ±1.

Definition 3.1.7. The complex length λ(A) ∈ C+/2iπ of a loxodromic element
A ∈ PSL(2,C) is defined by TrA = 2 cosh λ(A)

2 . Given a representation ρ ∈ R(Σ)
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(that is, ρ : π1(Σ) −→ PSL(2,C)) and given a curve γ ∈ S0, then we define λ(γ) =
λ(ρ(γ)).

By construction, Pγ1,...,γm ⊂ M ⊂ R(Σ). Recall that the representation variety
R(Σ) was defined in Section 2.2.5.

Theorem 3.1.8. The complex lengths λ(γ1), . . . , λ(γξ) are local holomorphic coor-
dinates for R(Σ) in a neighbourhood of Pγ1,...,γξ . Moreover Pγ1,...,γξ is connected and
is locally defined as the totally real submanifold =Tr γi = 0 of R, where i = 1, . . . , ξ.
Any ξ–tuple (f1, f2, . . . , fξ), where fi is either the hyperbolic length <λ(γi) or the
bending angle θγi, are global coordinates on Pγ1,...,γξ .

As explained by Series [40], this result extends to Pγ1,...,γξ , except that one has
to replace <λ(γi) by Tr γi in a neighbourhood of a point for which γi is parabolic.
In fact, as discussed in Section 3.1 of [11] and in Section 3 of [40], complex length
and traces are interchangeable except at cusps (where traces must be used) and
points where a bending angle vanishes (where complex length must be used). The
parameterisation by lengths or angles extends to Pγ1,...,γξ .

Notice that the above theorem gives a local characterisation of Pγ1,...,γξ as a subset
of the representation variety R(Σ) and not just as a subset ofM. In other words, to
locate P, one does not need to check whether nearby points lie a priori in M; it is
enough to check that the traces remain real and away from 2 and that the bending
angle on one or other of θγi does not vanish. As we shall see, this last condition can
easily be checked by requiring that further traces be real valued.

3.2 Asymptotic behaviour of pleating rays

As explained in the Introduction, an important result of the Pleating Coordinates
Theory introduced in 1990s by Keen and Series is to give algorithms enabling one
to compute the exact position of the deformation spaces of holomorphic families
of Kleinian groups as subset of the representation variety R. Theorem B from
the Introduction, which describes the direction of the pleating rays in the Maskit
embedding M =M(Σ) of Σ = Σg,b as the bending measure tends to zero, enables
us to compute the location of the slice M(Σ) as a subset of R(Σ). As explained by
Series [40] in the case of the twice punctured sphere, the idea is the following. The
pleating rays are real 1–submanifolds of M along which the projective class of the
bending measure of the component ∂+C of the convex hull boundary is supported
on a fixed (subset of) a pants decomposition of Σ. In general, the pleating ray is
a connected nonsingular branch of the real algebraic variety along which the traces
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of the support curves take real values; see Theorem 3.1.8. The main result of this
paper identifies the correct branch by determining its direction as the parameters
of the representation tend to infinity, equivalently as the bending measure tends to
zero; see Theorem B. Then, the sliceM can then be plotted by following these real
trace branches until one of the supporting curves becomes parabolic.

The aim of this section is to prove Theorem B and C from the Introduction. As
already observed by Series [40], almost all the results of Section 6 of [40] generalise
straightforwardly, but for Section 7 of [40] some non-trivial extensions are needed. In
Section 3.2.1 we restate the theorems of Section 6 of [40] and we gave a sketch of the
ideas used in the proofs. We refer to the original paper for a more detailed discussion.
Also all the results of Section 7 of [40] still remain true in our more general context,
but we need to discuss the results more deeply in order to generalise them. We will
do that in Section 3.2.2.Note also that we correct some misprints in [40].

3.2.1 Geometry of the top boundary component ∂+C(G) of the con-

vex core

Recall that in Chapter 2, given a pants decomposition PC = {σ1, . . . , σξ} on a sur-
face Σ and given a vector µ = (µ1, . . . , µξ) ∈ Hξ, we constructed a complex projective
structure Σ(µ) with associated developing map Devµ : Σ̃ −→ Ĉ and holonomy rep-
resentation ρµ : π1(Σ) −→ PSL(2,C). Let G = Gµ = ρµ(π1(Σ)). In particular, in
Theorem 2.2.5 we proved that, if Devµ is an embedding, then Gµ ∈ M, where M
is the Maskit slice, see Section 2.2.5 for the definition. In particular, for groups
Gµ ∈M, the pants curves σ1, . . . , σξ have been pinched on the ‘bottom’ component
Ω−/Gµ of Ω(Gµ)/Gµ.

The key idea for proving Theorems B and C from the Introduction is to understand
the geometry of the top component ∂+C(G) of the convex core for groups G ∈ Pη ⊂
M, pleated along pl+(G) = θη, as the bending angle θ −→ 0. Recall that the
definition ofM depends on the choice of a pants decomposition PC = {σ1, . . . , σξ},
which tells us the curves which are pinched in the bottom surface of the associated
manifold. Before stating the results, we need to fix some notation. We use Series’
notation, so that the interested reader can refer to her paper [40] more easily. Given
a group G ∈ Pη ⊂ M and given an index i ∈ {1, . . . , ξ}, let σ+ = σ+

i denote the
geodesic representative of σi on ∂+C and let l+σ = l+σi be its hyperbolic length in the
hyperbolic structure on ∂+C. We show that l+σ −→ 0 as θ −→ 0, while σ+ becomes
asymptotically orthogonal to the bending lines. From this we deduce results on the
asymptotic behaviour of the parameters µi.

In the case of the twice puncture torus Σ1,2, Series uses, as generators of the
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Figure 3.1: The generators {σ1, σ2, γT } of π1(Σ1,2).

free group π1(Σ1,2) of rank three the curves {σ1, σ2, γT }, where {σ1, σ2} are a pants
decomposition and the curve γT plays the role of dual curve for both σ1 and σ2. See
Figure 3.1. In our situation the role of the curve γT is played by the dual curves
D1, . . . , Dξ.

Moreover, the main points (in the generalisation of the results of Section 6 [40]) at
which the following differs from [40] are the proof of Proposition 3.2.7 (see Section
3.2.3) and of Proposition 3.2.16. In particular, in the first proof we need to use the
gluing construction described in Section 2.2, while in the second one we need to use
the definition of DT–twist defined in section 1.2.1.b.

Notation 3.2.1. Given a quantity X = X(σi) which depends on the pants curves
σi ∈ PC, we write X (σi) = O(θe), meaning that X 6 cθe as θ −→ 0 for some
constant c > 0, where e is an exponent (usually e = 0, 1, 1

2).

Remark 3.2.2 (Section 6.1 of [40]). The estimates below all depends on the lami-
nation η. So, more precisely, one has X 6 c(η)θe. However it is easily seen, by
following through the arguments, that the dependence on η is always of the form
X(σi) 6 cqeθe, where q = i(σi, η) and where, now, c is a universal constant indepen-
dent of η. The dependence of the constants on η is not important for our argument,
but it may be useful elsewhere.

The main result in Section 6 of [40] is Proposition 6.1, which we generalise as:

Theorem 3.2.3. Let η =
∑m

i=1 aiδγi be an admissible rational measured lamination
on the surface Σ = Σg,b and let G = Gη(θ) be the unique group in M with pl+(G) =
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θη. Then, as θ −→ 0, we have:

<µi = −pi(η)
qi(η)

+O(1) and =µi =
4 +O(θ)
θqi(η)

,

where O(1) denotes a universal bound independent of η.

From this theorem we can see that <µi=µi = O(θ). So, using the fact that <µi=µi =
cot (Arg(µi)) = tan

(
π
2 −Arg(µi)

)
, we can deduce the following result.

Corollary 3.2.4. With the same hypothesis as Theorem 3.2.3, as θ −→ 0, we have
that: ∣∣∣Arg(µi)−

π

2

∣∣∣ = O(θ) and
=µi
=µj

=
qj
qi

+O(θ).

The proof of Theorem 3.2.3 relies on two other main results:

• Proposition 3.2.5 (which is a generalisation of Proposition 6.6 and 6.11 of [40])
for the asymptotic behaviour of the imaginary part =µi of the parameters µi;

• Proposition 3.2.16 (which is a generalisation of Proposition 6.14 of [40]) for
the real part <µi of µi.

When we deal with the imaginary part =µi, the main idea is to estimate the
lengths l+σi . The following result is a generalisation of Proposition 6.6 and 6.11 of
[40]. The second claim shows, in particular, that l+σi −→ 0 as θ −→ 0.

Proposition 3.2.5. Given an admissible lamination η, suppose G = Gµ is the
unique group in M such that pl+(G) = θη, where µ = (µ1, . . . , µξ) ∈ Hξ. Then,
along the pleating ray Pη, we have that, as θ −→ 0:

(i) =µi(1−O(θ)) 6 4
l+σi

6 =µi(1 +O(θ));

(ii) θi(η, σi)(1−O(θ)) 6 l+σi 6 θi(η, σi)(1 +O(θ)).

In order to explain the main ideas behind the proof of this result, we will sum-
marise Series’ method, and we will explain how to adapt her results to our case.
The first lemma proved by Series in this context is Proposition 6.3 of [40], where she
estimates the length of a piecewise geodesic arc in H3; see also Theorem 4.2.10 of
Canary, Epstein and Green [10]. For completeness, we recall the statement of this
result. See also Figure 3.2.

Lemma 3.2.6 (Proposition 6.3 of [40]). Let λ be a piecewise geodesic arc in H3

with endpoints P and P ′, and let λ̂ be the H3 geodesic joining P to P ′. Suppose that

88



P

�̂

P 0

�

Q

K=z = 0

Figure 3.2: The piecewise geodesic λ in H3.

for all X ∈ λ the angle between PX and λ is bounded in modulus by a ∈ (0, π/4).
Then l(λ̂) ≥ (cos a)l(λ) for all X ∈ λ, where l(λ̂) and l(λ) are the lengths of λ̂ and
λ in H3, respectively.

In order to be able to apply Series’ proofs also in our case, we need to prove
Proposition 3.2.7 below, which follows from our gluing construction; see Section
2.2.1 and Figure 2.3. A similar argument is proved in Proposition 2.1 of Series [40];
see also Appendix 1 of [40].

Without loss of generality, since our holonomy representation is defined up to

conjugation, we can assume that ρµ(σi) =

(
1 −2
0 1

)
= Υ∞. (We will try to use

the same notation as Chapter 2.) Recall that we denoted σ+ = σ+
i the piecewise

geodesic representative of σi on ∂+C and recall that ∂+C = ∂+ CH(Λ)/G, where
CH(Λ) is the convex hull of the limit set Λ = Λ(G) of G. Let σ̃+ = σ̃+

i be the lift
of σ+

i to ∂+ CH(Λ) invariant under translation ς 7→ ς − 2. In particular, in Figure
3.2, the piecewise geodesic σ̃+ corresponds to λ.

We also suppose that σ = σi is the common pants curve of the two pairs of pants
P and P ′ such that ∂P = {σ, σi2 , σi3} and ∂P ′ = {σ, σi4 , σi5}, where σij are pants
curves. Let µij be the gluing parameters associated to σij with j = 2, . . . , 5, if
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σij ∈ PC, or let µij :=∞ (and 1
µij

:= 0), if σij ∈ ∂Σ.

Proposition 3.2.7. In the above setting (that is, assuming that ρµ(σi) = Υ∞,
σi = P ∩ P ′, ∂P = {σ, σi2 , σi3} and ∂P ′ = {σ, σi4 , σi5}) and assuming =µi > 1,
than the lines {z ∈ C|=z = 0} and {z ∈ C|=z = =µi} are contained in the limit
set Λ(Gµ). In addition, if =µij > 4 for all j = 2, . . . , 5, then the limit set Λ(Gµ) is
contained in the union of two strips

{z ∈ C|0 ≤ =z ≤ 1
2
} ∪ {z ∈ C|=µi −

1
2
≤ =z ≤ =µi}.

Since the proof is quite long and not required for the remaining discussion of the
section, we decided to postpone it to Section 3.2.3.

With this result, most of Series’ proofs generalise straightforwardly to our case,
as we are going to describe.

By applying Lemma 3.2.6, Series proves Proposition 6.4 of [40]. In our situation,
the corresponding result is the following, whose proof is the same as that of [40].

Proposition 3.2.8. Under the hypothesis of Proposition 3.2.5 we have that, as
θ −→ 0, then:

l+σi 6 θi(η, σi)(1 +O(θ)). (3.1)

Note that this proposition corresponds to the second inequality of Proposition
3.2.5 (ii).

Again with the hypothesis of Proposition 3.2.5, one can deduce the following
generalisation of Corollary 6.5 of [40].

Lemma 3.2.9. With the hypothesis of Proposition 3.2.5, then 1/=µi ≤ O(θ), as
θ −→ 0. Moreover the groups Gη(θ) have no algebraic limit as θ −→ 0.

The main idea to prove the first claim of Lemma 3.2.9 is that the horizontal lines
{z ∈ C : =z = 0} and {z ∈ C : =z = =µi} are contained in the limit set Λ, and
that the half planes L = {z ∈ C : =z < 0} and Hµi = {z ∈ C : =z > =µi} are
contained in Ω−; see Proposition 3.2.7. For the second claim of Lemma 3.2.9 it is
enough to show that, as θ −→ 0, then the trace of some element becomes infinite. In
particular, we consider the trace of the dual curve Di. Looking at the calculations
made in Section 2.3.4, we can see that:

Tr(Di) =

{
±(µi − 1) if MS(σi) ∼= Σ1,1,

±(4µ2
i − 8µi + 6) if MS(σi) ∼= Σ0,4,
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where MS(σi) is the modular surface associated to the pants curve σi. (See Section
1.1 for the definition of MS(σi).) This gives the conclusion because, from the first
claim, we see that, as θ −→ 0, then =µi −→∞.

With the same hypothesis as above, given a bending line γ of the pleating lami-
nation η which intersects σi, then Series proves Proposition 6.8 of [40]. The corre-
sponding result is the following.

Proposition 3.2.10. Let η ∈ MLQ(Σ) be an admissible lamination and let G =
Gµ be the unique group in M such that pl+(G) = θη, where µ = (µ1, . . . , µξ) ∈
Hξ. Normalise G so that ρµ(σi) = Υ∞ and let γ be a bending line of the pleating
lamination η which intersects σi. Then, as θ −→ 0, there is a lift γ̃ of γ with
endpoints γ± such that |<(γ+ − γ−)| ≤ 2 and =µi − 1 < |=(γ+ − γ−)| < =µi.

Any lift of a bending line satisfying these conditions is called good. The idea of
the proof is to consider again the setting of Corollary 6.5 and the position of the
limit set Λ(G) in terms of the parameters µi. The proof of Proposition 6.8 of [40]
generalises to our case. In particular, we use Proposition 3.2.7. In fact, Lemma 3.2.9
tells us that, as θ −→ 0, then the hypothesis for the second claim of Proposition
3.2.7 is verified as θ −→ 0.

An easy corollary of the existence of good lifts and of Proposition 3.2.9 is the
following. See Corollary 6.9 of [40].

Corollary 3.2.11. Let γ̃ be a good lift of a bending line γ and set γ+−γ− = 2reiα,
where, without loss of generality, we take =(γ+ − γ−) > 0. Then, as θ −→ 0, we
have

r =
=µi

2
(1 +O(θ)) and |π/2− α| = O(θ).

The next result follows from the cross-ratio formula for the complex distance
D between geodesics in H3. Since there are some typos in Series’ arguments (see
Proposition 6.10 of [40]), we restate the formula with a proof. You can see Series
[39] for a detailed discussion about the complex distance d = dα(γ1, γ2), where α is
the common perpendicular between the geodesics γ1 and γ2.

Lemma 3.2.12 (Cross-ratio formula for complex distance between geodesics). Let
z1 and z2 and w1 and w2 be endpoints of two oriented geodesic γ1 and γ2 in H3,
and let d = dα(γ1, γ2) be the complex distance between the two geodesics γ1 and γ2.
Then

[z1, z2, w1, w2] :=
z1 − z2

z1 − w1
· w2 − w1

w2 − z2
= − 1

sinh2(d2)
.
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Proof. If two oriented geodesics γ1 and γ2 in H3 are at complex distance d, we can
conjugate them in such a way that the endpoints z1, z2 of the first move to 1, −1 and
the endpoints w1, w2 of the second one move to ed, −ed. Then a simple substitution
gives the result.

Applying Lemma 3.2.12 to the endpoints z1 = γ+, z2 = γ−, w1 = γ+ − 2, w2 =
γ− − 2 and using Corollary 3.2.11, we obtain:

Proposition 3.2.13. Let γ̃ be a good lift of a bending line γ of the pleating lam-
ination η which intersects σ̃i. Then the complex distance d between γ̃ and Υ∞(γ̃)
satisfies

sinh2(
d

2
) = − 1

r2e2iα
.

These results are now sufficient for completing the proof of claim (i) in Proposition
3.2.5, see the proof of Proposition 6.6 of [40] for the details. In particular, for the
lower bound one should use Lemma 3.2.6, 3.2.9 and the existence of good lifts, while
for the lower bound one should apply Corollary 3.2.11 and Proposition 3.2.13.

So now we only need to prove the first inequality of claim (ii) of Proposition 3.2.5.
This result is a direct consequence of the fact that, asymptotically, σ̃+ becomes
orthogonal to the bending lines.

To explain in detail what that means, let’s fix the same conventions as in the
discussion preceding Proposition 3.2.8. Let P ′ and P (= P ′ − 2) be the points in
H3 at which the piecewise geodesic σ̃+ meets the lifted bending lines γ̃ and Υ∞(γ̃)
respectively. Let Q be the highest point of the geodesic segment joining P and P ′,
and let K be the footpoint of the perpendicular from Q to C, as shown in Figure
3.2. Then we have the following result.

Lemma 3.2.14. In the above setting, as θ −→ 0, the angle ∠PKQ satisfies ∠PKQ =
O(
√
θ).

Again, the proof of Proposition 6.12 of Series [40] works in our more general
situation. In particular the proof uses Proposition 3.2.6 and 3.2.9.

This result is used in the proof of Proposition 6.13 of [40] in order to show that,
along the pleating variety Pη, the curve σ̃+ is asymptotically orthogonal to the
bending lines as θ −→ 0. More precisely, a generalisation of Series’ result to our
situation is the following fact.

Proposition 3.2.15. Suppose that σ̃+ meets an (oriented) bending line γ̃ at a point
P so that the acute angle between σ̃+ and γ̃ is ψ(P ), then, as θ −→ 0, we have that
|ψ(P )− π/2| ≤ O(

√
θ).
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The proof of this result follows from Series’ proof of Proposition 6.13 [40]. In
particular, we should use Proposition 3.2.14 and 3.2.10.

These results are now sufficient to prove the claim (ii) of Proposition 3.2.5. Again,
a central role in this estimate is played by Lemma 3.2.6. See the proof of Proposition
6.11 of Series [40].

Hence to complete the proof of Proposition 3.2.3, it remains to bound <µi. The
result one wants to prove is the following.

Proposition 3.2.16. Let η ∈ MLQ be admissible and suppose that the multicurve
γ ∈ S is contained in the support of η and qi(γ) 6= 0. Then, if G = G(µi) ∈ Pη, we
have <µi = −pi(γ)/qi(γ) +O(1) and hence, in particular, |Argµi− π/2| = O(θ) as
θ −→ 0.

To prove this bound, Series uses the concept of ‘twist of one geodesic around
another’ following Minsky [36]. Suppose given a hyperbolic metric h on the surface
Σ. The twist twβ(γ,h) of a curve γ about another curve β is defined as follows.
Let p be an intersection point of γ with β. Let P be a lift to H = H2 of p and
let γ̃, β̃ be the lifts of γ, β through P . Orient γ̃, β̃ with positive endpoints Z,W
respectively on ∂H so that the anticlockwise arc from Z to W does not contain the
other two endpoints. Let R be the footpoint of the perpendicular from Z to β̃. Let
t be the oriented distance PR, where t > 0 if R follows P in the positive direction
along β̃, and t ≤ 0 otherwise. One verifies, see Lemma 3.1 of [36], that t/lβ(h) is
independent, up to an additive error of 1, of the choices made, including the choice
of p. So one can define twβ(γ,h) = inf t/lβ(h), where we take the infimum over all
possible choices of lifts as above.

The twist twβ(γ,h) is independent of the orientation of β and γ but depends on
the choice of the hyperbolic metric h ∈ T , where T is the Teichmüller space of
Σ. Hovewer Minsky proved in Lemma 3.5 of [36] that, given γ1 and γ2 in S, then
twβ(γ1,h) − twβ(γ2,h) is independent of h ∈ T , up to a bounded additive error of
1. See also Lemma 6.16 of [40]. So Series defines the signed relative twist of γ1, γ2

with respect to β to be

Iβ(γ1, γ2) = inf
h∈T

twβ(γ1, h)− twβ(γ2, h),

and she describes a useful way of computing it, which is the following.

Lemma 3.2.17 (Lemma 6.17 of [40]). Let γ1, γ2 ∈ S and let γ̃1, γ̃2 be lifts of γ1, γ2

to H which cut the fixed axis β̃ corresponding to β. Let b ∈ Γ be the primitive
element whose axis is β̃ and whose attracting fixed point is the positive endpoint of
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β̃, where Γ is the Fuchsian group uniformising h. Then twβ(γ1, h) − twβ(γ2, h) is
equal, in magnitude, to the number of times the images bn(γ̃1), with n ∈ Z, intersect
γ̃2, up to a bounded additive error of 1. The sign is negative, if b(γ̃1) follows γ̃1 in
the positive direction along γ̃2, and positive otherwise.

Series proves Proposition 6.14 of [40] by computing Iσi(γ, γT ) in two different
ways, where γT ∈ S is the curve corresponding to the generator T ∈ π1(Σ); see
Figure 3.1. Recall that she analyses the case Σ = Σ1,2. Adapting Series’ method to
our case, we prove Proposition 3.2.16 by computing Iσi(γ,Di) in two different ways,
where Di is the dual curve to the pants curve σi. Recall that the twist parameter
pi(γ) we are using in this thesis is half the twist parameter Series uses.

(i) Using combinatorial ideas related to the definition of the Dehn–Thurston co-
ordinates pi(γ) and qi(γ) and using Lemma 3.2.17, one can prove, following
ideas of Lemma 6.18 of [40], that Iσi(γ,Di) = − pi(γ)

2qi(γ) +O(1); see Proposition
3.2.18.

(ii) Using properties related to the position of the limit set and of a fundamental
domain for the action of the group G = Gµ in the regular domain Ω(G),
one can prove, following ideas of the proof of Proposition 6.14 of [40], that
Iσi(γ,Di) = <µi

2 +O(1); see the proof of Proposition 3.2.16.

Since Series’ proofs need to be changed slightly, we will prove Proposition 3.2.16
in detail. First, we have the following result.

Proposition 3.2.18. Suppose that the multicurve γ ∈ S(Σ) has Dehn–Thurston
coordinates iDT (γ) = (q1(γ), p1(γ), . . . , qξ(γ), pξ(γ)) and suppose that qi(γ) 6= 0.
Then Iσi(γ,Di) = − pi(γ)

2qi(γ) +O(1).

Proof. For this proof, we will use the Dehn–Thurston coordinates, see Section 1.2.
In particular, we will use the D. Thurston twist, see Section 1.2.1.

Given σ = σi, let A = Ai be a small annular neighbourhood of σ. Then, by
definition of Di, we have that Di ∩ A consists of two arcs δ and δ′. Put γ in D.
Thurston position. Then γ∩A is made of qi = qi(γ) connected components and each
connected component intersects δ either m or m + 1 times, where m ∈ Z. By the
definition of the twist we have that mqi ≤ |pi|2 ≤ (m+1)qi, that is m =

[
|pi|
2qi

]
+O(1),

where [·] is the integer part.
Consider a hyperbolic structure Σ∗ = (Σ, h0) on Σ such that σi and Di are

perpendicular and let Γ0 ∈ F(Σ) be the associated Fuchsian group. Choose lifts
σ̃, D̃, γ̃ and Ã of σ, D, γ and A, respectively, to the covering space H, such that

94



σ̃ ⊂ Ã, D̃ ∩ σ̃ 6= ∅ and γ̃ ∩ σ̃ 6= ∅. Let f ∈ Γ0 be the primitive element whose axis is
σ̃ and whose attracting fixed point is the positive endpoint of σ̃. By Lemma 3.2.17
we have that Iσi(γ,Di) is equal, in magnitude, to the number of times the images
fn(γ̃) intersect D̃, up to a bounded additive error of 1 (where n ∈ Z). We can see
that this number is, up to a bounded additive error of 1, the number of times that
a connected component of γ ∩ A cuts the arc δ in A ⊂ Σ, that is, the number m
defined above. This proves that |Iσi(γ,Di)| =

∣∣∣ pi(γ)
2qi(γ)

∣∣∣+O(1).
Finally, in order to understand the sign of Iσi(γ,Di), consider the metric Σ∗,

which we choose so that σi and Di are perpendicular. Then twσi(Di,Σ∗) = 0, while
twσi(γ,Σ∗) is negative if pi > 0 and positive if pi < 0, that is the sign of twσi(γ,Σ∗)
is the sign of −pi. This concludes the proof.

These results are now enough to prove Proposition 3.2.16 and, hence, also Propo-
sition 3.2.3.

Proof of Proposition 3.2.16. In Proposition 3.2.18 we showed that Iσi(γ,Di) = − pi(γ)
2qi(γ)+

O(1). We will now show that Iσi(γ,Di) = <µi
2 +O(1) which will prove the result.

As done before, normalize Gµ so that ρµ(σi) = Υ∞ and let σ̃+ = σ̃+
i be the lift

of σi to ∂+ CH(Λ) which is invariant under z 7→ z − 2. Consider the region ST ′
defined in the proof of Proposition 3.2.7. (We refer to the notation used in Section
3.2.3. See especially Figure 3.4.) We can consider a good lift γ̃ of γ, which certainly
intersects σ̃+. It follows from the usual ping-pong theorem methods, that there is a
lift D̃ = D̃i of Di to ∂+ CH(Λ) which cuts the side of ST ′ between B2 and B′3 and
the side between B4 and B5, see Section 3.2.3.

By Lemma 3.2.17, Iσi(γ,Di) is, up to sign, the number of images Υn
∞(γ̃) of γ̃ which

cut D̃i. Hence, since γ̃ is a good lift, we can see that |Iσi(γ,Di)| =
∣∣∣<µi2

∣∣∣ + O(1).
Using Lemma 3.2.17 and the orientation described in Figure 3.4, we can see that
Iσi(γ,Di) = <µi

2 +O(1). Hence we have

<µi = −pi(γ)
qi(γ)

+O(1)

and the result follows.

Remark 3.2.19. Note that, following through the arguments of the proofs of Propo-
sitions 3.2.18 and 3.2.16, we can see that <µi agrees with −pi(γ)

qi(γ) up to a bounded
additive error of 4. Unfortunately, that doesn’t improve the results we want to prove
in the remaining part of this chapter.
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These results let us prove also Theorem C from the Introduction. We follow
Series’ proof very closely. Let’s recall the statement of the theorem.

Theorem 3.2.20 (Theorem C). Let η =
∑ξ

1 aiδγi be as above. Then, as the bending
measure pl+(G) ∈ [η] tends to zero, the induced hyperbolic structure of ∂+C along Pη
converges to the barycentre of the laminations σ1, . . . , σξ in the Thurston boundary
of T (Σ).

Proof. Let η =
∑ξ

1 aiδγi be an admissible lamination and let G = Gη(θ) be the
unique group for which pl+(G) = θη. Let h(θ) denote the hyperbolic structure of
∂+C(G). Let l+σi be the hyperbolic length of the geodesic representative of σi on
the hyperbolic surface ∂+C(G). By Proposition 3.2.5 (ii), we have that, as θ −→ 0,
then l+σi −→ 0, for all i = 1, . . . , ξ. So the limit of the hyperbolic structures h(θ) in
PML(Σ) is in the linear span of δσ1 , . . . , δσξ . We want to prove that the limit is the
barycentre

∑ξ
i=1 δσi .

Let δ, δ′ ∈ S. Since σ1, . . . , σξ are a maximal set of simple curves on Σ, the thin
part of h(θ) is eventually contained in collars Ai around σi of approximate width
log( 1

l+σi
) and the lengths of δ, δ′ outside the collars Ai are bounded (with a bound

depending only on the combinatorics of δ, δ′ and hence the canonical coordinates
i(δ), i(δ′)). By Proposition 3.2.16, the twisting around Ai is bounded. We deduce
that, for any curve δ transverse to σi, we have:

l+δ = 2
ξ∑
i=1

qi(δ) log(
1
l+σi

) +O(1), (3.2)

see, for example, Proposition 4.2 of Diaz and Series [13]. By Theorem 3.2.3 and by

Proposition 3.2.5 (i) we have l+σi
l+σj
−→ qj(η)

qi(η) , and, since η is admissible, qi(ξ) > 0 for

i = 1, . . . , ξ. Thus log l+σi
log l+σj

−→ 1. Hence, by factorizing both in the numerator and

the denominator the term 2 log( 1
l+σ1

), we get the following:

l+δ
l+δ′
−→

∑ξ
i=1 qi(δ)∑ξ
i=1 qi(δ′)

=
i(δ,

∑ξ
1 δσi)

i(δ′,
∑ξ

1 δσi)
.

The result follows from the definition of convergence to a point in PML(Σ).

3.2.2 Asymptoticity results for the pleating rays

The next results are the key tools for the proof of Theorem B. We need to fix more
notation. Suppose that γ is a bending line of ∂C+(G) for a group G = Gµ ∈ Pη.
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The Top Terms’ Formula (that is, Theorem 2.4.1), together with the condition
Tr γ ∈ R of Lemma 3.1.6, determines the asymptotic behaviour of the parameters
µ ∈ Pµ as the bending measure tends to 0, in terms of the canonical coordinates
i(γ) of γ. For the remaining of this Chapter i(γ) will always denote the vector
iDT (γ) = (q1(γ), p1(γ), . . . , qξ(γ), pξ(γ)) (read using D. Thurston twist), see Section
1.2. In particular, for µ = (µ1, . . . , µξ) ∈ Cξ, set

µi − 1 = xi + iyi, Y = ‖(y1, . . . , yξ)‖ = (y2
1 + . . .+ y2

ξ )
1
2 and wi =

yi
Y
.

Define

Eγ(µ1, . . . , µξ) = w2 · · ·wξ(q1x1 + p1) + . . .+ w1 · · ·wξ−1(qξxξ + pξ)

= w1 · · ·wξ
ξ∑
i=1

(qixi + pi)
wi

,

where wi > 0, for i = 1, . . . , ξ.
The reason why we introduce this expression is the following result, which gen-

eralises Proposition 7.1 of [40]. Again Series’ proof extends clearly to our case, but
we will repeat it here, since it will help the reader to understand the meaning of
Eγ(µ1, . . . , µξ).

Proposition 3.2.21. Suppose that η ∈ MLQ is an admissible lamination, that
Gµ ∈ Pη has bending measure pl+(G) = θη, where µ = (µ1, . . . , µξ) ∈ Hξ, and that
γ is a bending line of η. Then, as θ −→ 0, we have

Eγ(µ1, . . . , µξ) = O(θ).

Proof. Suppose first that qi = qi(γ) > 0 for all i = 1, . . . , ξ. Set ai = −pi(γ)
qi(γ) . By

Theorem 2.4.1 we have

Tr ρµ(γ) = ±iq2h
(
µ1 − a1 − 1

)q1 · · ·(µξ − aξ − 1
)qξ

+R, (3.3)

where:

• q =
∑ξ

i=1 qi(γ) > 0;

• h = h(γ) is the total number of sbcc–arcs of γ in the complement of the pants
curves;

• R represents terms with total degree in µ1 · · ·µξ at most q − 2 and of degree
at most qi in the variable µi
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By Proposition 3.2.16, xi − ai = O(1) and by Corollary 3.2.4∣∣∣∣ qi(η)
qj(η)

− wj
wi

∣∣∣∣ = O(θ). (3.4)

(Notice that the terms in (3.4) involve qi(η) as opposed to qi = qi(γ) in (3.3).)
Note that, by Lemma 3.2.9, Y −→∞ as θ −→ 0.
Hence, arranging the terms of (3.3) in order of decreasing powers of Y , and

recalling that i2q = ±1, we get the following

±
(

Tr ρµ(γ)
)

2−h =

Y qwq11 . . . w
qξ
ξ + iY q−1wq11 . . . w

qξ
ξ

(
ξ∑
i=1

qi(xi − ai)
wi

)
+O(Y q−2).

Note that

wq11 . . . w
qξ
ξ

(
ξ∑
i=1

qi(xi − ai)
wi

)
= wq1−1

1 . . . w
qξ−1
ξ Eγ(µ1, . . . , µξ).

By Lemma 3.1.6, Tr ρµ(γ) ∈ R. Hence from the definition of Eγ we have that

wq1−1
1 . . . w

qξ−1
ξ Eγ(µ1, . . . , µξ) = O(1/Y ).

From this and using (3.4), we deduce that

Eγ(µ1, . . . , µξ) = O(1/Y ).

Since 1/Y = O(θ) by Lemma 3.2.9, this proves the result, if qi = qi(γ) > 0 for all
i = 1, . . . , ξ..

We still have to deal with the case that there exists a non-empty subset I in
{1, . . . ξ} such that qi = qi(γ) = 0 for all i ∈ I. Then in the trace polynomyal
Tr ρµ(γ) the factors

(
µi − ai − 1

)qi
= 1 for all i ∈ I. The result then follows by

similar reasoning to the above. Note, infact, that we need to use Equation (3.4) only
for the qj which appear in Tr ρµ(γ), that is the qj such that j ∈ {1, . . . ξ} \ I.

Our aim is to locate the pleating ray Pη, where η =
∑m

i=1 aiγi. If G ∈ Pη,
then ∂+C(G)− {γ1, . . . , γm} is flat, so that, not only γ1, . . . , γm, but also any curve
ζ ∈ lk(γ1, . . . , γm), is a bending line for G, where lk(γ1, . . . , γm) denotes the set of
(isotopy classes of) curves in Σ disjoint from γ1 ∪ . . . ∪ γm. The names comes from
the fact that it is the link of the simplex (γ1, . . . , γm) in the complex of curves of Σ.
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(Note that this set in [40] is called wheel.) One can think of it as the set of all curves
ζ ∈ S0 = S0(Σ) disjoint from γ1, . . . , γm. Thus µ = (µ1, . . . , µξ) is constrained by
the equations:

=Tr γi = =Tr ζ = 0 ∀i = 1, . . . ,m, ∀ζ ∈ lk(γ1, . . . , γm),

and hence, using Proposition 3.2.21, it is constrained by the equations:{
Eγi(µ1, . . . , µξ) = O(θ)

Eζ(µ1, . . . , µξ) = O(θ),

for all ζ ∈ lk(γ1, . . . , γm) and for i = 1, . . . ,m.
We would like to solve these equations simultaneously for µ1, . . . , µξ. Following

the analysis in Section 7 of [40], we note that, for any curve ω ∈ S, we have:

Eω(µ1, . . . , µξ) = i(ω) · u,

where · is the scalar product in Rξ, where, as usual, i(ω) = (q1(ω), p1(ω), . . . , qξ(ω), pξ(ω))
and where

u = (u11, u12, . . . , uξ1, uξ2) = w1 · · ·wξ(
x1

w1
,

1
w1
, . . . ,

xξ
wξ
,

1
wξ

)

= (w2 · · ·wξx1, w2 · · ·wξ, . . . , w1 · · ·wξ−1xξ, w1 · · ·wξ−1),

with xi = <µi − 1, wi = =µi
Y as above. We will use linear algebra and Thurston’s

symplectic form ΩTh to approximately solve the equations:{
i(γi) · u = O(θ)

i(ζ) · u = O(θ),

for all ζ ∈ lk(γ1, . . . , γm) and for i = 1, . . . ,m. See Section 1.3 for the definition of
ΩTh and recall the last claim of Theorem 1.3.3, which says that, if γ, γ′ are disjoint,
then ΩTh(γ, γ′) = 0. As already underlined in Equation (1.2), Thurston’s symplectic
form induces a map R2ξ −→ R2ξ defined by

x = (x1, y1, . . . , xξ, yξ) 7→ x∗ = (y1,−x1, . . . , yξ,−xξ)

and such that
2ΩTh(i(γ), i(δ)) = i(γ) · i(δ)∗, (3.5)
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for all γ, δ ∈ S0 and where · is the usual inner product on R2ξ. So Theorem 1.3.3
tell us that i(γ)∗ is orthogonal not only to i(γ), but also to all curves in wh(γ).

We need the following Lemma, which generalises Lemma 7.2 of [40]. See Sec-
tion 1.3.3.a for a definition of standard train tracks. Recall also the definition of
lk(γ1, . . . , γm) given at page 98.

Lemma 3.2.22.

(i) Suppose that {γ1, . . . , γξ} is a pants decomposition of Σ. Then γi are sup-
ported on a common standard train track and i(γi) are independent vectors in
i(S(Σ)) ⊂ (Z+ × Z)ξ.

(ii) Given any set of disjoint curves simplex g = {γ1, . . . , γm} in Σ, we can
find 2ξ − 2m curves D1, . . . , D2ξ−2m ∈ lk(γ1, . . . , γm) such that the vectors
i(γ1), . . . , i(γm), i(D1) . . . , i(D2ξ−2m) are independent vectors in i(S(Σ)) ⊂
(Z+ × Z)ξ.

Proof. (i): Recall that the standard train tracks are defined with respect to the pants
decomposition PC = {σ1, . . . , σξ} for Σ. The pants decomposition PC decomposes
the surface Σ into pieces which are annuli A1, . . . ,Aξ around the pants curves and
pairs of pants P1, . . . , Pk in the complement of these annuli, where ξ = ξ(Σg,b) =
3g − 3 + b and k = −χ(Σg,b) = 2g − 2 + b.

Recall that the space ML(Σ) of measured laminations on Σ is an open piece-
wise integral linear (PIL) ball of dimension 2ξ, where the maximal charts are the
spaces V(τ ), where τ is a maximal train track in Σ and V(τ ) is the collection of all
(not necessary nonzero) transverse measures supported on τ , see Section 1.3.2 and
Section 1.3.3.a for the definitions.

The disjointness of the curves γ1, . . . , γξ tells us that the train track τ ′ = ∪ξi=1γi is
carried by a common standard train track, say τ ⊂ Σ. In fact, you can look at how
these curves intersect the above annuli and pairs of pants. (Of course the choice of
τ may not be unique.) Then, as described by Penner [38] in Proposition 2.2.4, the
incidence matrix describes the linear inclusion V(τ ′) ⊂ V(τ ).

Since the curves γi are linearly independent vectors in V(τ ′), then, using the
inclusion above, they are linearly independent vectors in V(τ ). Finally, since the
map i restricted to any chart is a linear inclusion, we have that the vectors i(γi) are
independent vectors in i(S(Σ)) ⊂ (Z+ × Z)ξ, as we wanted.

(ii): First, note that ξ(Σg) = ξ(Σ)−m = ξ−m = ξ′, where Σg = Σ \ {γ1, . . . , γm}.
This can be proved by induction on m. (The case m = 1 can be discussed by dealing
with the case γ separating and non-separating.)
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Second, recall that the space ML(Σg) of measured laminations on Σg is an open
piecewise integral linear (PIL) ball of dimension 2ξ′. Note also that the set MLQ(Σg)
of rational measured laminations in Σg is a dense subset of ML(Σg). Note that the
boundary curves of Σ aren’t contained in ML(Σ).

We will show our result by constructing a chart V(η) of dimension 2ξ −m such
that η carries the curves γ1, . . . , γm and is carried by a standard train track τ and
by using the density of MLQ(Σg) into ML(Σg) explained above.

The idea is the following. Consider a maximal lamination λ′ in Σg (where maximal
means that the complement of λ′ in Σg is made of pieces which are triangles or once
punctured monogons.) Let λ be the lamination defined by λ := λ′ t γ1 . . . t γm.
Then λ is carried by a standard train track τ .

By splitting, we can find a train track η which is carried by τ and such that the
curves γ1, . . . , γm are disjointly embedded in η and the lamination λ′ is carried by η.
So the curves γ1, . . . , γm are independent vectors in the chart V(η) and there exists a
subtrack η′ of η contained in Σg which carries λ′ (and so of dimension 2ξ′ = 2ξ−2m).
By the density of MLQ(Σg) into ML(Σg), we can find curves D1, . . . , D2ξ−2m ⊂ Σg

(and so in lk(γ1, . . . , γm)) carried by η′ and such that γ1, . . . , γm, D1, . . . , D2ξ−2m

are linearly independent vectors in V(η).
Now, as before, the incidence matrix describes the linear inclusion V(η) ⊂ V(τ ).

So the curves γ1, . . . , γm, D1, . . . , D2ξ−2m are linearly independent vectors in V(τ ).
Finally, since the map i restricted to any chart is a linear inclusion, we have that the
vectors i(γ1), . . . , i(γm), i(D1) . . . , i(D2ξ−2m) are independent vectors in i(S(Σ)) ⊂
(Z+ × Z)ξ, as we wanted.

Now we can state precisely Theorem B of the Introduction and prove it. Before
doing that, let’s define the exceptional laminations.

Definition 3.2.23. A geodesic lamination η =
∑m

i=1 aiδγi is exceptional if the
matrix (qi(γj)) i=1,...,ξ

j=1,...,m
has rank strictly less than m.

Theorem 3.2.24 (Theorem B). Suppose that η =
∑m

i=1 aiγi is admissible and not
exceptional (with m 6 ξ). Let i(η) = (q1(η), p1(η), . . . , qξ(η), pξ(η)). Let also

Lη : [0,∞) −→ Hξ

be the line defined by t 7→ (z1(t), . . . , zξ(t)), where

zj(t) = −pj
qj

+ 1 + it
q1

qj
.
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Let (µ1(θ), . . . , µξ(θ)) ∈ Hξ be the point corresponding to the group G = Gη(θ)
with pl+(G) = θη, so that the pleating ray Pη is the image of the map θ 7→
(µ1(θ), . . . , µξ(θ)) for a suitable range of θ > 0. Then Pη approaches Lη as θ −→ 0
in the sense that, if t(θ) = 4

θq1
, then, for i = 1, . . . , ξ, we have

{
|<µi(θ)−<zi(t(θ))| = O(θ)

|=µi(θ)−=zi(t(θ))| = O(1).

Proof of Theorem 3.2.24. We use the previous notation, that is we write µi(θ)−1 =
µi − 1 = xi + iyi, Y = ‖(y1, . . . , yξ)‖, and wi = yi

Y , where the dependence on θ

is clear. By Theorem 3.2.3, we have yi − 4
θqi

= O(1). On the other hand, with
t = t(θ) as in the statement of the theorem, we find =zi(t) = t q1qi = 4

θqi
. Thus, for

i = 1, . . . , ξ, we have that, as θ −→ 0, then:

|=µi(θ)−=zi(t(θ))| = O(1),

as we wanted to prove.
Now, let’s deal with the coordinates xi = <µi(θ) − 1. Given γ1, . . . , γm, let

D1, . . . , D2ξ−2m be the curves defined by Lemma 3.2.22. Then we have that i(γ1), . . . , i(γm),
i(D1), . . . , i(D2ξ−2m) are linearly independent. If (µ1, . . . , µξ) ∈ Pη, then the curves
γ1, . . . , γm, D1, . . . , D2ξ−2m are all bending lines of Gµ, where µ = (µ1, . . . , µξ). Since
D1, . . . , D2ξ−2m lie in a flat piece, it follows from Lemma 3.1.6 that

=Tr(γi) = =Tr(Dj) = 0

for i = 1, . . . ,m and j = 1, . . . , 2ξ − 2m. So, by Proposition 3.2.21, it follows that

Eζ(µ1, . . . , µξ) = O(θ) as θ −→ 0

for ζ ∈ {γ1, . . . , γm, D1, . . . , D2ξ−2m}. Defining W = w1 · · ·wξ and regarding these
as equations in R2ξ for a parameter u ∈ R2ξ, where

u = (u11, u12, . . . , uξ1, uξ2) = W (
x1

w1
,

1
w1
, . . . ,

xξ
wξ
,

1
wξ

),

we have that, for ζ ∈ {γ1, . . . , γm, D1, . . . , D2ξ−2m},

i(ζ) · u = O(θ). (3.6)
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On the other hand, by Theorem 1.3.3, we have:

ΩTh(γi, ζ) = 0 for i = 1, . . . ,m, for ζ ∈ lk(γ1, . . . , γm) ∪ {γ1, . . . , γm}.

Hence, using Equation (3.5), we have

i(ζ) · i(γi)∗ = 0 for i = 1, . . . ,m, for ζ ∈ {γ1, . . . , γm, D1, . . . , D2ξ−2m}. (3.7)

Now i(γ1), . . . , i(γm), i(D1) . . . , i(D2ξ−2m) are independent, and using the definition
of i(·)∗, we can see that i(γ1)∗ . . . , i(γm)∗ are independent too. In addition, by
Equation (3.7), we have that i(γi)∗ is perpendicular to i(ζ) for all i = 1, . . . ,m and
ζ ∈ {γ1, . . . , γm, D1, . . . , D2ξ−2m}. So the vectors i(γ1), . . . , i(γξ), i(Dm+1) . . . , i(Dξ),
i(γ1)∗ . . . , i(γm)∗ form a basis of R2ξ. Hence we can write

u(θ) = λ1(θ)i(γ1)∗ + . . .+ λm(θ)i(γm)∗ + ν(θ)v(θ), (3.8)

where v = v(θ) is in the linear span of i(γ1), . . . , i(γm), i(D1) . . . , i(D2ξ−2m) and
||v|| = 1.

Using (3.6), we find that u·v = O(θ) (where the constants depend on i(γ1), . . . , i(γm),
i(D1) . . . , i(D2ξ−2m)). Then v·i(γi)∗ = 0 for i = 1, . . . ,m, gives ν(θ) = O(θ). Equat-
ing the two sides of (3.8) gives

ui1 =
Wxi
wi

= λ1pi(γ1) + · · ·+ λmpi(γm) +O(θ),

ui2 =
W

wi
= −λ1qi(γ1)− · · · − λmqi(γm) +O(θ).

(3.9)

So we proved u approximately belongs to the m–dimensional subspace generated by
i(γ1)∗, . . . , i(γm)∗. Now we want to prove u is approximately parallel to the vector
i(η)∗, that is (λ1, . . . , λm) is proportional to (a1, . . . , am).

By Corollary 3.2.4, we have:∣∣∣∣ yiyj − a1qj(γ1) + · · ·+ amqj(γm)
a1qi(γ1) + · · ·+ amqi(γm)

∣∣∣∣ = O(θ). (3.10)

Note that yi
yj

= uj2
ui2

.
Defining new variables

vi2 = −λ1qi(γ1)− · · · − λmqi(γm),
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we have, by (3.9), that vi2 = ui2 +O(θ). So we have:∣∣∣∣vj2vi2 − yi
yj

∣∣∣∣ = O(θ) (3.11)

Hence, Equation (3.10) and Equation (3.11) give the following:∣∣∣∣vj2vi2 − a1qj(γ1) + · · ·+ amqj(γm)
a1qi(γ1) + · · ·+ amqi(γm)

∣∣∣∣ = O(θ), (3.12)

that is∣∣∣∣λ1qj(γ1) + · · ·+ λmqj(γm)
λ1qi(γ1) + · · ·+ λmqi(γm)

− a1qj(γ1) + · · ·+ amqj(γm)
a1qi(γ1) + · · ·+ amqi(γm)

∣∣∣∣ = O(θ) (3.13)

Since this is true for all i, j = 1, . . . , ξ, i 6= j, and since the (ξ × m) matrix
(qr(γs)) r=1,...,ξ

s=1,...,m
has maximal rank (because of the hypothesis that η is not excep-

tional), then we can conclude the following:∣∣∣∣λiλj − ai
aj

∣∣∣∣ = O(θ), ∀i, j = 1, . . . ,m, i 6= j,

that is u = αi(η)∗ + O(θ) for some α > 0, as we wanted to prove. This concludes
the proof because xi = ui1

ui2
.

Remark 3.2.25 (The exceptional case). There is a natural generalisation of Series’
arguments (see Section 7.2 of [40]) in order to discuss the exceptional case. As
underlined by Series in Remark 7.6 of [40], in the exceptional case one can only
prove that the pleating ray Pη is close to some line in the pleating variety Pγ1,...,γm
(but not necessary to Lη).

3.2.3 Proof of Proposition 3.2.7

In this section we are going to prove Proposition 3.2.7. We recall the statement.

Proposition (Proposition 3.2.7). Assuming that ρµ(σi) = Υ∞, σi = P ∩ P ′, ∂P =
{σ, σi2 , σi3} and ∂P ′ = {σ, σi4 , σi5} and assuming =µi > 1, than the lines {z ∈
C|=z = 0} and {z ∈ C|=z = =µi} are contained in the limit set Λ(Gµ). In addition,
if =µij > 4 for all j = 2, . . . , 5, then the limit set Λ(Gµ) is contained in the union
of two strips, that is, in the region

{z ∈ C|0 ≤ =z ≤ 1
2
} ∪ {z ∈ C|=µi −

1
2
≤ =z ≤ =µi}.
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Figure 3.3: The fundamental domain ST for 〈Υ∞,Υ0,Υ3〉.

Recall that µij is the gluing parameters associated to σij with j = 2, . . . , 5, if
σij ∈ PC, or µij :=∞ (and 1

µij
:= 0), if σij ∈ ∂Σ.

Proof. For the first claim, without loss of generality, we assume that σi = σ is the
common pants curve of the two pairs of pants P and P ′ and that σ corresponds to
∂∞(P ) and ∂∞(P ′). Consider the group

Γ = 〈Υ∞,Υ0〉,

where Υ∞ =

(
1 −2
0 1

)
and Υ0 =

(
1 0
2 1

)
. Let Θ = Θ∞−→∞ = i

(
1 −µ
0 −1

)
,

where µ = µi is the gluing parameter associated to the pants curve σ = σi. (The
notation agrees with that used in Chapter 2.) Note that ΘΥ∞Θ−1 = Υ−1

∞ . Let Γ′

be the group obtained by conjugating the group Γ with the matrix Θ, that is

Γ′ = 〈Υ∞,Υ′0〉,

where Υ′0 = ΘΥ0Θ−1 =

(
1− 2µ 2µ2

−2 1 + 2µ

)
is the parabolic transformation with

fixed point at Θ(0) = µ.
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Let L be the piecewise straight line obtained as the disjoint union of the lines
{z ∈ C|<z = 1,=z < 1

2} and {z ∈ C|<z = <µ + 1,=z > =µ − 1
2}, together with

the straight segment between the point 1 + 1
2 i and µ+ 1− 1

2 i; see Figure 3.3. The
strip ST 1 between L and Υ∞(L) is a fundamental domain for the group J1 = 〈Υ∞〉
acting on Ĉ.

A fundamental domain for the group J2 = 〈Υ0〉 acting on Ĉ is

ST 2 = {z ∈ C : |z +
1
2
| > 1

2
, |z − 1

2
| > 1

2
},

and a fundamental domain for the group J3 = 〈Υ′0〉 acting on Ĉ is

ST 3 = {z ∈ C : |z − µ+
1
2
| > 1

2
, |z − µ− 1

2
| > 1

2
}.

Since, by hypothesis, =µ > 1, then the union of the closures of the intersections
ST i ∩ST j , with i 6= j and i, j = 1, 2, 3, is the whole of Ĉ. Moreover the boundaries
of the ST i only intersect at parabolic fixed points. In this situation by the Klein-
Maskit Combination Theorem, see Theorem A.13 of Maskit [32], we can see that
ST = ST 1 ∩ ST 2 ∩ ST 3 is a fundamental domain for the group Γ ∗〈Υ∞〉 Γ′ =
〈Υ∞,Υ0,Υ′0〉. (In the statement of the Theorem A.13, Maskit uses the notion of
fundamental set, see Section 2.2.1 for the definition.) The region ST has 3 connected
components: one in L = {z ∈ C : =z < 0}, one in Hµ = {z ∈ C : =z > =µ} and one
in the strip {z ∈ C : 0 < =z < =µ}; see Figure 3.3.

The first claim now follows easily. In fact, Λ(Γ) = R̂ = {z ∈ C|=z = 0} ∪ {∞}
and Λ(Γ′) = {z ∈ C|=z = =µ} ∪ {∞}. Hence, since Γ,Γ′ ⊂ Gµ, then the lines
{z ∈ C|=z = 0} ∪ {∞} and {z ∈ C|=z = =µ} ∪ {∞} are contained in the limit set
Λ(Gµ).

We now want to show that the disks L = {z ∈ C : =z < 0} and Hµ = {z ∈ C :
=z > =µ} are contained in the regular set Ω(Gµ). This follows from the the proof
of Theorem 2.2.5. In fact, the groups Γ and Γ′ correspond to the groups denoted
Γ(P̃ ) in that proof. In particular, that proof shows that Γ and Γ′ are peripheral
groups, using the terminology of [24]. Now, since we proved above that the lines
{z ∈ C|=z = 0} ∪ {∞} and {z ∈ C|=z = =µ} ∪ {∞} are contained in the limit set
Λ(Gµ), this shows that the peripheral disks of Γ and Γ′ are L and Hµ, respectively.
Hence L and Hµ are contained in Ω(Gµ). (Actually, they are contained in Ω−,
following the notation of Section 2.2.5.)

Finally, for the last claim, recall that we are assuming that σ is the common
pants curve of the two pairs of pants P and P ′ such that ∂P = {σ, σi2 , σi3} and
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Figure 3.4: The region ST ′ contained in Ω(Gµ).

∂P ′ = {σ, σi4 , σi5}. Let µij be the gluing parameters associated to the pants curves
σij (or let µij = ∞ if σij is an element of ∂Σ). By hypothesis we assumed that
=µij > 4 for all j = 1, . . . , 4. Recall also that the horocycle {z ∈ C|=z = r} (with
r ∈ R+) based at ∞ corresponds, using Ωε (see Equation (2.2)), to the horocycles:

• {z ∈ C : |z − i 1
2r | < 1

2r} based at 0;

• {z ∈ C : |z − (1 + i 1
2r )| < 1

2r} based at 1.

So the horocycle {z ∈ C|=z = =µ
2 } based at ∞ corresponds, for example, to the

horocycle {z ∈ C : |z − i 1
=µ | < 1

=µ} based at 0. Hence, supposing ∂0(P ) = σi2 ,
∂1(P ) = σi3 , ∂0(P ′) = σi4 , ∂1(P ′) = σi5 , we define the following horocycles:

• B2 = {z ∈ C : |z − i 1
=µi2
| < 1

=µi2
};

• B3 = {z ∈ C : |z − (1 + i 1
=µi3

)| < 1
=µi3
};

• B′3 = {z ∈ C : |z − (−1 + i 1
=µi3

)| < 1
=µi3
};

• B4 = {z ∈ C : |z − (µ− i 1
=µi4

)| < 1
=µi4
};

• B5 = {z ∈ C : |z − (µ− 1− i 1
=µi5

)| < 1
=µi5
};
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• B′5 = {z ∈ C : |z − (µ+ 1− i 1
=µi5

)| < 1
=µi5
}.

Let also Bj = {z ∈ C : z /∈ Bj} for j = 2, 3, 4, 5 and, similarly B′i = {z ∈ C : z /∈ B′i}
for i = 3, 5. We can now define the following region:

ST ′ = ST 1 ∩ B2 ∩ B3 ∩ B′3 ∩ B4 ∩ B5 ∩ B′5 ∩ {z ∈ C : 0 < |=z| < =µ}.

If =µij > 4 for all j = 1, . . . , 4, then the strip

ST ∗ = ST 1 ∩ {z ∈ C :
1
2
< |=z| < =µ− 1

2
}

is contained in ST ′.
We claim that ST ′ is contained in Ω+ ⊂ Ω(Gµ), where Ω+ is the image of the

developing map Devµ; see Section 2.2.5 for the definition of Ω+.
This claim implies that the strip {z ∈ C : 1

2 < |=z| < =µ − 1
2} is contained in

Ω(Gµ) because the translates of ST ∗ by ρµ(σi) = Υ∞ cover it. (Actually one has
to consider the strip

ŜT ∗ = ŜT 1 ∩ {z ∈ C :
1
2
< |=z| < =µ− 1

2
},

where ŜT 1 is the fundamental set associated to J1, that is ŜT 1 = ST 1 ∪ L.)
This fact proves the last part of Proposition 3.2.7 because, since we already know

that L and Hµ are contained in Ω(Gµ), we can now see that the limit set Λ(Gµ)
should be contained in the strips {z ∈ C|0 ≤ =z ≤ 1

2} and {z ∈ C|=µi − 1
2 ≤ =z ≤

=µi}, as we wanted to prove.
The claim follows easily from our construction. In fact, the region ST ′ is exactly

the union of the two regions which are images of the truncated regions S ⊂ P, S′ ⊂ P
under the maps (ζ ′|∆)−1 : S′ −→ H and Θ ◦ (ζ|∆)−1 : S −→ H, where ζ : H −→ P,

ζ ′ : H −→ P′ and Θ = Θ∞−→∞ = i

(
1 −µ
0 −1

)
, see Section 2.2.1 for the definition

of ζ and S and see Table 2.1 for the definition of Θ.
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Appendix A

Trace identities

We recall here some useful trace identities that are originally due to Fricke and Klein
[18]. See also Mumford–Series–Wright [37, pag. 191–192].

Proposition A.1. Given A,B ∈ SL(2,C), then:

(i) Tr(A−1) = Tr(A);

(ii) Tr(AB) = Tr(BA) and Tr(A+B) = Tr(A) + Tr(B);

(iii) Tr(ABA−1) = Tr(B);

(iv) Tr(AB) + Tr(A−1B) = Tr(A) Tr(B);

(v) Tr(A2) + Tr(Id) = [Tr(A)]2.

Proof.

• Identity (i) follows easily from the fact that, if

A =

(
a b

c d

)
∈ SL(2,C),

then

A−1 =

(
d −b
−c a

)
.

• Equalities (ii) are an easy calculation.

• Identity (iii) follows easily from (ii) by replacing B with BA−1.
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• The proof of (iv) follows easily from the Cayley–Hamilton Theorem, which
says that, given A ∈ SL(2,C), then A2 − Tr(A)A+ 1 = 0. So, multiplying on
the right by A−1B, we get

AB +A−1B = (Tr(A))B,

from which (iv) follows easily by taking traces of both sides.

• Equality (v) is a particularly case of (iv).

Note that in Mumford–Series–Wright [37] the identity (iv) is called grandfather
identity.

In Section 2.3.2.b we calculated the holonomy of the paths υε in a pair of pants.
The matrices corresponding to the holonomy images of these paths belong to the sub-

group of PSL(2,C) spanned by the matrices Υ0 =

(
1 0
2 1

)
and Υ∞ =

(
1 −2
0 1

)
.

In particular, since it is useful for the calculations of Section 2.4, we calculate the k-

th power of the matrices Υ0, Υ∞ and Υ1 = Υ−1
∞ Υ−1

0 =

(
−3 2
−2 1

)
, for any integer

k ∈ Z. This result could be easily proved by induction, so we omit the proof.

Proposition A.2. For any integer k, the k-th power of the matrices Υ0, Υ∞ and
Υ1 is given by:

1. Υk
0 =

(
1 0
2k 1

)
;

2. Υk
∞ =

(
1 −2k
0 1

)
;

3. Υk
1 = (−1)k

(
2k + 1 −2k

2k −2k + 1

)
.
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Appendix B

Combinatorial proof of Top

Terms’ Relationship

In this section we prove the Top Terms’ Relationship (Theorem 2.4.1) using a com-
binatorial method which covers all cases, without having to discuss the base cases
separately, as you need to do with the inductive proof of Section 2.4. Note that this
proof is the one included in the article [28] and was Series’ idea.

Our method is to show that the product of matrices forming the holonomy always
takes a special form and then to give a case-by-case proof. Fix µ ∈ Hξ.

First, consider the holonomy representation of a typical path. Let γ ∈ S0 be a
simple loop on Σ. We suppose γ is in Penner and Harer standard position, so that
it always cuts σij in the arc wij ⊂ σij . Starting from the base point in some pants
P , it crosses, in order, pants curves σij , with j = 1, . . . , q(γ). If the boundaries
glued across σij are ∂εP and ∂ε′P

′, then, by equation (2.6), the contribution to the
holonomy product ρµ(γ) is

Ω−1
ε J−1T−1

µij
Ω′ε′ ,

where µij = µi whenever σij = σi ∈ PC.
A single positive twist around ∂εP immediately before this boundary component

contributes ρµ(υ−1
ε ) = Ω−1

ε ρµ(υ−1
∞ )Ωε (because υε twists in the negative direction

round ∂εP , see Figure 2.7), while a single positive twist around ∂ε′P
′ after the

crossing contributes ρµ(υε′) = Ω−1
ε′ ρµ(υ∞)Ωε′ . Thus if, in general, γ twists αj times

around ∂εP = σij immediately before the crossing and βj times after, the total
contribution to the holonomy is

Ω−1
ε ρµ(υ∞)−αjJ−1T−1

µi ρµ(υ∞)βjΩ′ε′ , (B.1)
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where σij = σi ∈ PC.
From Sections 2.2.1 and 2.3.2 we have

J−1T−1
µ =

(
i −iµ
0 −i

)
and ρµ(υ∞) =

(
1 −2
0 1

)
.

For variables X,Y , write AX =

(
1 X

0 −1

)
and BY =

(
1 Y

0 1

)
. We calculate

ρµ(υ∞)−αjJ−1T−1
µi ρµ(υ∞)βj = iAXj ,

where Xj = −(µi + 2αj + 2βj), from which we note in particular that, as expected,
which side of the crossing the twists occur makes no difference to the final product;
see also Lemma 2.4.3.

Proposition B.1. (i) Suppose that γ contains no sbcc–arcs. Then, for every µ ∈
Hξ, we have that ρµ(γ) is of the form ±iqΠq

i=1AXjΩij , where Ωij = Ω0 or Ω1

for all j. If the term AXj corresponds to the crossing of a pants curve σij = σi,
with αj twists before the crossing and βj after, then Xj = −(µi + 2αj + 2βj).

(ii) If γ contains sbcc–arcs, then, for every µ ∈ Hξ, the holonomy image ρµ(γ)
takes the same form as above, with an extra term

AXjΩ1B±2Ω0AXj

inserted for each sbcc–arc which crosses σij twice in succession.

(iii) In all cases, the total PH–twist of γ about σi ∈ PC is p̂i(γ) =
∑

σij=σi
(αj+βj).

Proof. As computed above we have

ρµ(υ∞)−αJ−1T−1
µ ρµ(υ∞)β = i

(
1 −(µ+ 2α+ 2β)
0 −1

)
= iA−(µ+2α+2β).

It follows that the holonomy ρµ(γ) is a concatenation of q terms of the form
Ω−1
ε A−(µ+2α+2β)Ωε′ , one for each crossing of a pants curve σij . If γ contains no

sbcc–arcs, then it enters and leaves each pants P across distinct boundary compo-
nents, say ∂ε1P and ∂ε2P respectively. Then the corresponding adjacent terms in
the concatenated product are then

. . .Ωε1Ω−1
ε2 . . . ,
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where ε1 6= ε2, from which (i) easily follows.
We also note that, regardless of how the twists are organised (that is, before

or after the crossings), the sum
∑qi(γ)

j=1 (αj + βj) of the coefficients in the terms
corresponding to crossings of the pants curve σi is equal to p̂i(γ), the ith PH–
twisting number of the curve γ with respect to the pants decomposition PC. This
proves (iii).

Now suppose that γ contains some sbcc–arcs. Suppose that γ cuts a curve σij
twice in succession entering and leaving a pants P across the boundary ∂∞P . Since
γ is in PH–form, after crossing ∂∞P it goes once around ∂0P in either the positive
or negative direction and then returns to ∂∞P , see Figure 1.5. Since γ is simple,
the twisting around σij is the same on the inward and the outward journeys. The
term in the holonomy is therefore

AXjρµ(υ0)±1AXj = AXjΩ
−1
0 ρµ(υ∞)∓1Ω0AXj = AXjΩ

−1
0 B±2Ω0AXj

as claimed.
If, more generally, γ enters and leaves P across ∂εP , then this entire expression

is multiplied on the left by Ω−1
ε and on the right by Ωε. By the same discussion as

in (i), this leaves the form of the holonomy product unchanged. The contribution
to the twist about σij is calculated as before.

We are now ready for our combinatorial proof of Theorem A. Suppose first that
γ ∈ S0 contains no sbcc–arcs. If

ρµ(γ) = Πq
i=1AXjΩij ,

define X∗j = Xj + h(Ωij ) + k(Ωij−1), where Ωi0 := Ωiq , and

h(Ωij ) =

1 if ij = 0

0 otherwise
and k(Ωij ) =

0 if ij = 0

1 otherwise.

Thus:

Ω0AXΩ0 → X∗ = X + 1

Ω0AXΩ1 → X∗ = X

Ω1AXΩ0 → X∗ = X + 2

Ω1AXΩ1 → X∗ = X + 1.
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Remark B.2. Replacing ρµ(γ) by ρµ(γ)−1 leaves the occurrences of the above blocks
unchanged. The entire matrix product is multiplied by (−1)q. This is because
A−1
X = −AX and, for example,

(Ω0AXΩ1)−1 = Ω−1
1 A−1

X Ω−1
0 = −Ω0AXΩ1.

Now, given the path of some γ ∈ S0, consider a crossing for which σij = σi.
Let Ωij−1AXjΩij be the corresponding terms in ρµ(γ) (where Ωij−1 is associated to
the crossing of the previous pants curve σij−1). Let pj and p̂j be the respective
contributions from this jth crossing to the DT– and PH–twist coordinates of γ, so
that the total twists pi and p̂i about σi are obtained by summing over all crossings
for which σij = σi are pi =

∑
σij=σi

pj and, likewise, p̂i =
∑

σij=σi
p̂j .

For any variable aj ∈ R which depends on the jth crossing, define a∗j according to
the same rule as X∗ above, in other words a∗j = aj + h(Ωij ) + k(Ωij−1). We have:

Lemma B.3. Suppose that γ contains no sbcc–arcs and, as usual, let pj and p̂j be
the contributions to the DT– and PH–twists of γ corresponding to the jth crossing
of a pants curve σi ∈ PC. Then (−2p̂j)∗ = −pj + 1.

Proof. This is verified using Theorem 1.2.6, together with the fact that γ is assumed
to be in PH–standard form.

Consider a crossing for which σij = σi with corresponding term Ωij−1AXjΩij in
ρµ(γ). Suppose, for example, that the relevant term in the holonomy is Ω0AXjΩ0,
so that, by definition, a∗j = aj + 1 for any variable aj . Without loss of generality,
we may suppose that σij is the gluing of ∂∞P to ∂∞P ′ as shown in Figure 1.6. The
first Ω0 means that there is an arc from D to E, and the second Ω0 means there is
an arc from E to A. The formula of Theorem 1.2.6 therefore gives a contribution of
2p̂j = pj + 0 + 1− 1 = pj . Thus (−2p̂j)∗ := −2p̂j + 1 = −pj + 1, as claimed.

Similarly, consider the sequence Ω1AXjΩ0. In this case, (−2p̂j)∗ = −2p̂j+2. From
Theorem 1.2.6 we find 2p̂j = pj+1+1−1 = pj+1, so (−2p̂j)∗ = −2p̂j+2 = −pj+1.

The other two possible sequences are similar.

In the case of no sbcc-arcs, Theorem 2.4.1 is an immediate corollary of this lemma
and the following proposition:

Proposition B.4. Suppose that γ contains no sbcc–arcs, then

Tr
(
ρµ(γ)

)
= ±iq Tr

(
Πq
j=1AXjΩij

)
= ±iq

(
Πq
j=1X

∗
j

)
+R,

where R denotes terms of degree at most q − 2 in the Xj.
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Proof of Theorem A. (No sbcc–arcs case.) By Proposition B.1, if σij = σi then
Xj = −(µi + 2αj + 2βj). There are qi(γ) such terms Xj . Thus the top order
term of Tr ρµ(γ) is µq11 . . . µ

qξ
ξ , with coefficient ±iq, in accordance with the result of

Theorem A.
Now the contribution to the PH–twist corresponding to the jth crossing is p̂j =

αj + βj . Thus:

Πq
j=1X

∗
j = Πq

j=1[−(µi + 2αj + 2βj)]∗

= Πq
j=1[−(µi + 2p̂j)]∗

= Πq
j=1[−µi + (−2p̂j)∗]

= Πq
j=1[−µi − pj + 1]

= (−1)qΠq
j=1(µi + pj − 1),

where we used Lemma B.3 to evaluate (−2pj)∗. Hence the coefficient of the term
µq11 . . . µqi−1

i . . . µ
qξ
ξ is

±iq
∑
σij=σi

(pj − 1) = ±iq(pi − qi),

which is exactly the coefficient in Theorem A.

Proof of Proposition B.4. We prove this by induction on the length q of the product
Πq
j=1AXjΩij . If q = 1, with respect to the cyclic ordering we see either the block

Ω0AXΩ0 or the block Ω1AXΩ1, so that X∗ = X+1. In both cases we check directly
that TrAXΩ0 = TrAXΩ1 = X + 1.

The case q = 2 corresponds to a product AX1ΩεAX2Ωε′ . Hence there are four
possibilities corresponding to ε = ±1 and ε′ = ±1. These cases can be checked
either by multiplying out or by using the trace identity (iv) of Proposition A.1,
which we rewrite as

Tr(AB) = Tr(A) Tr(B)− Tr(AB−1). (B.2)

For example, if ε = ε′ = 0, then

Tr(AX1Ω0AX2Ω0) = Tr(AX1Ω0) Tr(AX2Ω0) + TrAX1AX2

= (X1 + 1)(X2 + 1) + 2 = X∗1X
∗
2 + 2,

where we used the relation A−1
X = −AX .
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If ε = 0, ε′ = 1 then

Tr (AX1Ω0AX2Ω1) = Tr(AX1Ω0) Tr(AX2Ω1)− Tr
(
AX1Ω0Ω−1

1 A−1
X2

)
.

The first term on the right hand side is (X1 + 1)(X2 + 1) and the last term reduces
to

−Tr(A−1
X2
AX1Ω1) = −X2 +X1 − 1.

Hence

Tr(AX1Ω0AX2Ω1) = X1X2 + 2X2 + 2 = (X1 + 2)X2 + 2 = X∗1X
∗
2 + 2.

The other two cases with q = 2 are similar (or can be obtained from these by
replacing γ with γ−1).

Now we do the induction step. Suppose the result true for all products of length
less than q. We split into three cases:

(i) Ω0 appears 3 times consecutively;

(ii) Ω0 appears at most 2 times consecutively;

(iii) Ω0 and Ω1 appear alternately.

In case (i), after cyclic permutation, the product is of the form

AX1Ω0AX2Ω0AX3Ω0 . . .Ωiq .

We apply (B.2), splitting the product as

(AX2Ω0)× (AX3Ω0 . . .ΩiqAX1Ω0).

Considering the first term of this split product alone, AX2 is still preceded and
followed by Ω0. Likewise, taking the second term alone, AX1 and AX3 are still
preceded and followed by the same values of Ωi as they were before and nothing else
has changed. Thus the induction hypothesis gives

Tr(AX2Ω0) = X∗2 and Tr(AX3Ω0 . . .ΩiqAX1Ω0) = X∗3 . . . X
∗
qX
∗
1 .

Now consider the remaining term coming from (B.2):

Tr[AX2Ω0(AX3Ω0 . . .ΩiqAX1Ω0)−1] = Tr[AX2A
−1
X1

Ω−1
iq
. . . A−1

X3
].
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Cyclically permuting, the three terms A−1
X3
, AX2 , A

−1
X1

combine to give a single term
AX3+X2+X1 , so that the trace has degree at most q − 2 in the variables X3 +X2 +
X1, X4, . . . , Xq. Putting all this together proves the claim.

In Case (ii), suppose first q ≥ 4. Thus after cyclic permutation the product is of
the form:

AX1Ω0AX2Ω0AX3Ω1AX4 . . .Ω1.

We apply (B.2) splitting as

(AX1Ω0AX2Ω0AX3Ω1)× (AX4 . . . AXqΩ1).

Taking each of these subproducts separately, we see that again the terms Ωi preced-
ing and following each AX are unchanged. So the induction hypothesis gives

Tr(AX1Ω0AX2Ω0AX3Ω1) = X∗1X
∗
2X
∗
3

and
Tr(AX4 . . . AXqΩ1) = X∗4 . . . X

∗
q .

Moreover, we note
AX1Ω0AX2Ω0AX3Ω1Ω−1

1 A−1
Xq
. . . A−1

X4

is of degree at most q− 2 in the variables X4 +X1, X2, X3 +Xq, X5, . . . , Xq−1. The
result follows.

The case q = 3 is dealt with by splitting

AX1Ω0AX2Ω0AX3Ω1 as (AX3Ω1AX1Ω0)×AX2Ω0,

using the previously considered case q = 2, and noting that

AX3Ω1AX1Ω0Ω−1
0 A−1

X2

has degree 1 in the variable X1 +X2 +X3. (Recall that A−1
X = −AX .)

Finally, in case (iii) we split

AX1Ω0AX2Ω1AX3Ω0AX4 . . .Ω1 as (AX1Ω0AX2Ω1)× (AX3Ω0AX4 . . .Ω1)

and the argument proceeds in a similar way to that before.

Now we add in the effect of having sbcc–arcs, that is we deal with the case h > 0.
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Theorem B.5. Suppose that a matrix product of the form in Theorem B.4 is modi-
fied by the insertion of h blocks AXjΩ

−1
0 BYrΩ0AXj , r = 1, . . . , h for variables Yr ∈ C.

Then its trace is
±
(

Πh
j=1Yk

)(
Πq
j=1X

∗
j

)
+R,

where R denotes terms of degree at most q − 2 in the Xj.

Proof. We first check the case q = 1, h = 1 by hand. (Note that such a block cannot
be the holonomy matrix of a simple closed curve.) We have:

AXΩ1BY Ω0 =

(
X(1 + Y )− (X + 1) ∗

∗ 1

)
,

hence Tr(AXΩ1BY Ω0) = XY . Since the term Ω0AXΩ1 contributes the factor X
and the term BY contributes Y , this fulfills our hypothesis.

Now work by induction on h. Suppose the result holds for products

ΩuAX1Ωi1AX2Ωi2 . . . AXs

containing at most h− 1 terms of the form BYr and consider a product

ΩuAX1Ωi1AX2Ωi2 . . .ΩvAXΩ1BYhΩ0AX .

There are four possible cases:

(i) u = 1, v = 0;

(ii) u = 1, v = 1;

(iii) u = 0, v = 0;

(iv) u = 0, v = 1.

Case (i): Consider the extra contribution to the trace resulting from the additional
block AXΩ1BYhΩ0AX . The first occurrence of AX appears in a block Ω0AXΩ1

which, according to what we want to prove, should contribute a factor X. Likewise,
the block Ω0AXΩ1 containing the second occurrence of AX should contribute X,
and the term BY should contribute Y . Thus it is sufficient to show that

Tr(Ω1AX1Ωi1AX2Ωi2 . . . AXsΩ0AXΩ1BY Ω0AX) =

±X2Y Tr(Ω1AX1Ωi1AX2Ωi2 . . . AXs) +R,
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where R denotes terms of total degree at most 2 less then the first term in the Xj .
Splitting the product as

(Ω1AX1Ωi1AX2Ωi2 . . .Ω0AX)× (Ω1BY Ω0AX)

and using (B.2), we see that the second factor contributes XY and the first factor,
containing the sequence Ω0AXΩ1, contributes X. The remaining term

(Ω1AX1Ωi1AX2Ωi2 . . .Ω0AX)× (Ω1BY Ω0AX)−1

coming from (B.2) has, as usual, degree in the Xj lower by 2. This proves the claim
in this case.

Case (ii): Again splitting the product as

(Ω1AX1Ωi1AX2Ωi2 . . .Ω1AX)× (Ω1BY Ω0AX),

the first split factor contains the block Ω1AXΩ1 which contributes a factor (X + 1)
to the trace. The second split factor contributes XY .

In the unsplit product we have from the first occurrence of AX the block Ω1AXΩ1,
which contributes a factorX+1, and, from the second AX , the block Ω0AXΩ1, which
contributes X, again proving our claim.

Case (iii): This can be done by inverting the previous case. Alternatively, splitting
again as

(Ω0AX1Ωi1AX2Ωi2 . . .Ω0AX)× (Ω1BY Ω0AX),

the first split factor contains the block Ω0AXΩ0, which contributes a factor X + 1,
while the second split factor contributes, as usual, XY .

In the unsplit product we have, from the first AX , the block Ω0AXΩ1 which
contributes X, and, from the second AX , the block Ω0AXΩ0 which contributes
X + 1, again proving our claim.

Case (iv): Again split as

(Ω0AX1Ωi1AX2Ωi2 . . .Ω1AX)× (Ω1BY Ω0AX).

The first split factor, containing Ω1AXΩ0, contributes X + 2 and the second split
factor contributes XY .

In the unsplit product we have, from the first AX , the term Ω1AXΩ1, which
contributes X + 1, and from the second AX the term Ω0AXΩ0, which contributes
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X+1. The induction still works because, up to terms of lower degree, X(X+2)Y =
(X + 1)(X + 1)Y .

Remark B.6. Not all the cases discussed above are realisable as the holonomy rep-
resentations of simple connected loops γ. For example, the cases

v = 1, u = 1, Y = +2 and v = 0, u = 0, Y = −2

produce non–simple curves.

Proof of Theorem A. This follows from Proposition B.4 and Theorem B.5 by setting
Yj = ±2.

For the final statement of the theorem, see Lemma 2.2.4.
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