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Abstract

Surprisingly high levels of within-group cooperation are observed in conflict situations. Ex-

periments confirm that external threats lead to higher cooperation. The psychological literature

suggests proximate explanations in the form of group processes, but does not explain how these

processes can evolve and persist. We provide an ultimate explanation, in which cooperation is a

rational response to an external threat. We introduce a model in which groups vary in their willing-

ness to help each other against external attackers. Attackers infer cooperativeness of groups from

members’ behaviour under attack, and may be deterred by a group that bands together against an

initial attack. Then, even self-interested individuals may defend each other when threatened in

order to deter future attacks. We argue that a group’s reputation is a public good with a natural

weakest-link structure. We extend the model to cooperative and altruistic behaviour in general.
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1 Introduction

On August 6th, 2011, a riot started in Tottenham Hale in North London, involving arson and rampant

looting. Over the next three days, riots spread to other parts of London and several other cities in the

UK. Within a few days of the riots, people came together in large cooperative efforts to counter the

riots and their aftermath. People who were not personally threatened by the riots voluntarily formed

vigilante groups to deter further rioting in their communities, at personal cost and risk to themselves

(Beaumont et al., 2011). Hundreds of volunteers arrived at riot-stricken areas to help with the clean-

up efforts (BBC 2011, Davies et al. 2011). How did the riots lead to such large-scale cooperation,

when people could just as easily stay home and free-ride on the effort of others?

A fundamental puzzle for rationalist explanations of group conflict is that conflicts involve individuals

voluntarily cooperating, perhaps at great risk, to gain a collective benefit (Olson, 1974). Blattman and

Miguel (2008), in a wide-ranging review of the civil war literature, see “the sources of armedgroup

cohesion amid pervasive collective action problems” as a central unresolved theoretical puzzle, and

designate “the complex individual motivations underlying participation in armed groups” as “an im-

portant area for future research”. Defence is a canonical example of a “public good”, whose provision

benefits not only the providers, but also free-riders who contribute nothing. Accordingly, standard

economic theory predicts that defence will be underprovided unless the state enforces contributions.

Nonetheless, in many conflicts, people fight for their group against other groups, in the absence of

state coercion. Furthermore, there is considerable laboratory and field evidence that conflict increases

cooperativeness in general. Existing psychological theories, while they offer insight, can provide only

proximate explanations for this effect. In this paper, we attempt to provide an ultimate explanation,

in terms of the rationality and evolutionary optimality of cooperation during conflict.

We demonstrate a mechanism for the evolution of helping behaviour between individuals from the

same group, when those individuals come under attack by, for example, a rival ethnic group, or a

biological predator. The logic is that of reputation building (Kreps et al., 1982; Milgrom and Roberts,

1982). The argument runs as follows:
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1. Attacks against one group member are less likely to be successful if the member is defended or

supported by others in the group.

2. Groups vary in the willingness of their members to cooperate against attackers. This can be for

many reasons. For instance, some groups may be engaged in long-term cooperative relation-

ships (Trivers, 1971; Fudenberg and Maskin, 1986; Neyman, 1985), which will be terminated

when help is not provided to attacked partners, either due to reciprocal strategies or because the

partners are killed (Garay, 2008; Eshel and Shaked, 2001); other groups may be individually

self-sufficient members without a direct incentive to cooperate. Or, some groups may be com-

posed of closely related kin, with high mutual altruism, while others are made up of unrelated

individuals.

3. Attackers are opportunistic: they attack so as to acquire group members’ resources (or, in the

case of biological predators, for food). They are therefore more willing to attack group members

if they expect low levels of cooperation in defence. Conversely, if they expect a strong defence

from a group, they may prefer to engage in an alternative, less risky activity, or to find a different

group to attack.1

4. Because of the previous point, attackers have an interest in finding out the type of group they

are facing. However, they cannot always observe a group’s level of cooperativeness directly.

Instead, they will find it optimal to make one or more initial attacks, in order to gauge the

cooperativeness of a particular group. They can then decide whether to continue attacking or to

break off.

5. As a result, even members of uncooperative groups have an interest in appearing cooperative

during the initial stages of an attack. By doing so, they may deter the attacker, and prevent future

attacks which would eventually fall on themselves. In the terminology of signalling games, less

cooperative groups have an incentive to pool with more cooperative groups.

1We treat attackers as single self-interested agents, thus abstracting away from two-sided group conflicts. This would
be an interesting extension to the theory.
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6. A group’s appearance of being cooperative is itself a public good, so it might seem that the

collective action problem has been reintroduced at a higher level. However, this public good

has a natural “weakest-link” structure. If a single group member fails to cooperate, pooling

instantly fails; the attacker learns that the group is not truly cooperative, and can no longer be

deterred from further attacks; other group members then have no more incentive to cooperate.

This dramatic collapse of cooperation after a group member “breaks the chain” provides a

strong incentive not to do so.

We model this logic in a simplified setup. Some groups (henceforth strong types) participate in

social interaction, and will therefore help their fellows who come under attack,2 whereas other groups

(henceforth normal types) have weak intragroup connections and therefore are not motivated to help

their peers. An attacker makes one or more attacks on a group; during each attack, the (randomly

selected) target individual may be helped by another randomly selected individual, at a cost to the

helper which the helper privately observes. After each attack, the attacker may break off and attack a

new group.

When the maximum number of possible repeated attacks is large enough, this model has a unique

equilibrium that survives a natural refinement. The equilibrium has the following characteristics.

First, for any fixed group size, so long as individuals are patient enough, helping behaviour can be

sustained, even for arbitrarily large costs of helping. These costs may even be larger than the benefit

provided to the helped individual. This holds because the motivation to help is provided not by the

benefit to the target, but by the deterrence effect of driving off an attacker. In fact, our results would

hold even if helping purely harmed the attacker without benefiting the defender, suggesting that this

model might also explain the evolution of third-party punishment. In human conflicts, seemingly triv-

ial incidents such as insults of a group member may lead to disproportionate responses.3 Second, it is

irrelevant what proportion of the groups are actually strong types: this can be arbitrarily small. Third,

2Intuitively, helping in time of attack can be maintained in an equilibrium of a larger game that includes long-term
interactions such as trading.

3Many examples can be found in Horowitz (2001). Stephan and Stephan (2000) discuss “symbolic threats” from a
social psychological point of view.
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cooperation among normal types becomes less likely as the number of previous attacks increases.4

Lastly, cooperation is subject to sudden collapses: if a single individual does not help, then everyone

else stops helping. This is closely tied to the reputation logic of the game. An individual who doesn’t

help provides an unambiguous signal to the attacker that he is facing normal types, not strong types.

Afterwards the attacker can no longer be deterred, and this removes the incentive for other group

members to help. Thus, our theory predicts that external threats should increase not only people’s

cooperativeness, but also their sensitivity to each others’ behaviour: they should only help if others

have also helped.. This prediction goes beyond the standard social psychology claim that group

identity increases in response to threat, and could be used to test our theory. It also suggests an

alternative explanation for some cases of behaviour that resemble “indirect reciprocity” (Nowak and

Sigmund, 1998). Individuals may condition on others’ previous behaviour not so as to reward or

punish them, but because others’ previous play alters the reputational value of one’s own cooperation.

In addition to providing an ultimate explanation for cooperation in conflict, our paper contributes to

several other streams of the literature. Signalling explanations of altruism are well-known in theoret-

ical biology (Zahavi, 1975; Gintis, Smith and Bowles, 2001; Lotem, Fishman and Stone, 2003). In

these models helping behaviour is a costly signal of individual quality, which benefits the individual

helper by (e.g.) making him or her a more attractive partner for reproduction. By contrast, in our

story, helping behaviour signals a fact about the group, and benefits the whole group. Theorists have

also examined the effect of intergroup conflict on cooperation: Choi and Bowles (2007) show how

“parochial altruism” could coevolve with intergroup conflict by providing benefits at group level. We

demonstrate that, even without group-level selection, cooperation in defence may be evolutionarily

stable.

The model is also of interest to economic theorists interested in reputation-building. Previous work

has examined reputation-building in repeated games, either with one patient player against an infinite

set of short-run players (e.g., Kreps et al., 1982; Milgrom and Roberts, 1982; Fudenberg and Levine,

1989, 1992, 1994), two players differing in patience (e.g., Schmidt, 1993; Celetani et al., 1996) or
4In equilibrium, the attacker moves on at once after observing a single episode of helping, so this statement holds for

off-path behaviour.
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with two patient players (e.g., Cripps and Thomas, 1995; Cripps, Dekel and Pesendorfer, 2005). For

example, Kreps et al. (1982) show that the existence of a small proportion of cooperative types al-

lows self-interested actors to cooperate in Prisoner’s Dilemma setups. More recently, Tirole (1996)

developed a theory of collective reputation, constructed as an aggregate of the reputation of individ-

uals overlapping generations (see also, e.g., Bar-Isaac, 2007; Winfree and McCluskey, 2005). Healy

(2007) has shown how collective reputation can build up among individuals who are only connected

by their shared reputation through anonymous rematching. Here, we develop a model of short-term

collective reputation in a dynamic setup that is based on an a-priori correlation of types within groups.

Thus, our unique brand of collective reputation relies on group types rather than on aggregate indi-

vidual types. We follow the standard modelling technique in the literature, by assuming that a (small)

proportion of the reputation-building players is a “Stackelberg type” who always plays the action that

gives him the long-term best response, assuming the other players best respond. Similarly, our “strong

types” play so as to maximize the welfare of their group, and their proportion in the population can be

arbitrarily small. A motivation for the early reputation models was to rationalize predatory pricing,

in which a market incumbent might take losses so as to deter future entrants. Market entry is also a

potential application here. For instance, Section 9 could be interpreted as a cartel facing an entrant

and attempting to deter it by collective action.

Our paper is organized as follows. We next discuss the wide-ranging literature on cooperation in con-

flict. Sections 3-5 introduce our model and describe the equilibrium. The following sections develop

some extensions to the basic model. In particular, Section 9 extends the basic logic to public goods

games which are played among defenders before the attacker decides to attack. We can thus explain

why in-group cooperativeness increases in the face of external threats. The conclusion discusses

possibilities for further work.
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2 Cooperation in conflict

Costly cooperation in an intergroup conflict has been demonstrated under laboratory conditions and

in field experiments (Bornstein, 2003; Erev, Bornstein and Galili, 1993). Bornstein and Ben-Yossef

(1994) showed in a laboratory experiment that group members’ contributions to a public good in-

creased when they were competing with a rival group, even though the competition did not alter the

monetary incentives in any relevant way. Tan and Bolle (2007) found that competition without mone-

tary incentive was enough to lead to increased cooperation. It appears that humans naturally respond

to intergroup conflict with intragroup cooperation, somewhat mediated by the perception of in-group

members as collaborators and the emotional reactions to non-cooperation once conflict is instated

(Burton-Chellew, Ross-Gillespie and West, 2010; Puurtinen and Mappes, 2009).

Cooperation in conflict is particularly apparent in civil wars, where state coercion is diminished or

non-existent. Admittedly, some people may be coerced into participation by other group members

(Hardin, 1997; Kocher and Kalyvas, 2007). However, while we do not underestimate this aspect of

the phenomenon, we do not believe that it can be a complete explanation, and in many historical

episodes it seems unlikely to have played a large role. For instance, the risks from taking an active

part in the French Resistance, or the Provisional IRA during the Troubles, were surely much higher

than any risk one’s own side might impose for not taking part.5

Cooperation in times of conflict extend beyond the conflict effort. Increased participation in pro-

social behaviours was documented in Britain during World War II (Schmiedeberg, 1942; Janis, 1951,

1963). Similarly, the September 11 attacks triggered pro-social behaviour in the United States, such

as volunteering and charity (Penner et al., 2005; Steinberg and Rooney, 2005) and blood donations

(Glynn et al., 2003). There is a well-known “rally round the flag” effect in which expressed support

for political incumbents increases after a military or terrorist attack (Baker and Oneal, 2001). Shayo

and Zussman (2011) have shown that terrorist attacks in the local region lead Jewish and Arab judges

in small-claims courts in Israel to rule in favour of a plaintiff of the same nationality as the judge.

5Weinstein (2007) provides case studies of insurgencies where material rewards and punishments played a minor role
in motivating fighters.
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Once more, the effect has been replicated under experimental conditions. In the classic Robbers’

Cave experiments, Sherif (1958; 1961) has shown how competition between groups breeds out-group

hostility and in-group solidarity. More importantly, an outside threat, common to both groups, fa-

cilitated intergroup cooperation and induced positive attitudes towards members of the out-group.

Controlled experiments have similarly manipulated external threat to induce cooperation between

children (Wright, 1943) and decrease prejudice towards African-American group members (Fesh-

bach and Singer, 1957; Burnstein and McRae, 1962).6 Hargreaves-Heap and Varoufakis (2002) split

participants into two groups and created a situation in which one group suffered discrimination; sub-

sequently, pairs of members of that group cooperated more often in a Prisoner’s Dilemma than pairs

from the other group.

Sociologists and social psychologists have long been aware of this phenomenon, and have argued that

“war with outsiders... makes peace inside” (Sumner, 1906; Campbell, 1965). Social identity theo-

rists explain that individuals’ sense of group identity is increased by perceived threats to the group

(Stephan and Stephan, 2000). While these theories offer insight, they give only a proximate, not an

ultimate explanation. We still do not know how humans might have evolved a psychological mecha-

nism that responds to external threats by increasing group identity (and hence encouraging altruistic

behaviour, with associated costs to one’s own fitness). Indeed, the same question arises in non-human

biology, since some species seem to help unrelated conspecifics against predators: examples include

defensive rings, mobbing of predators and alarm calls (Edmunds, 1974). Furthermore, as in humans,

intergroup conflict sometimes increases within-group altruistic behaviours (Radford, 2008). Clearly,

social identity theory is unlikely to explain these instances of cooperation.

In our theory, the need to deter an attacker can mitigate the within-group collective action problem

and thus allow for cooperation in defence by rational, self-interested actors. We believe that this

insight can extend the logic of the “security dilemma” (Posen, 1993), in which actors in a conflict are

driven to fight because they fear attack from the other side, to collective settings. We also believe that

attention to the within-group collective action problem will help to explain group dynamics even in

6For an extensive review of the classic sociological and psychological literature see Stein (1976).
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the absence of overt conflict. For example, if the motivation for cooperation is given by the need to

deter potential attackers, then people may be induced to cooperate by manipulating their perception

of outside threats; that is, intergroup violence can be used to construct a shared social identity (cf.

Fearon and Laitin 2003).

Some of the examples provided above, such as ethnocentrism in court judgments, are hard to explain

as rational self-interested behaviour. However, the theory can be viewed either as a direct game-

theoretic rationalization of helping behaviour within conflict, or, more indirectly, as explaining the

evolution of psychological dispositions to cooperate when threatened by attack. That is, these dispo-

sitions may have evolved in strategic situations like those of the model, in which small groups faced

opportunist external enemies and needed to deter them. If so, these evolved dispositions might still

work the same way in larger and more specialized modern societies (Cosmides and Tooby, 1992).7

Thus, our theory can be interpreted as an ultimate explanation for the proximate explanations devel-

oped by psychologists.

3 Model

The “defenders” are a group of size N, one of a large population of such groups. An attacker makes

one or more attacks on a randomly chosen member (the “target”) of the group. Another randomly

chosen member of the same group (the “supporter”) may assist the target at a cost c to its own fitness.

The attack costs the defender A and gives the attacker a benefit of A if the helper does not help, and

costs the defender/benefits the attacker a < A if the helper helps. We normalize defender welfare

at 1 per round. Nothing in the results would change if the benefit to the defender of being helped,

A−a, were decoupled from the cost to the attacker, also currently A−a; this assumption is purely to

simplify the exposition.

A proportion π of the groups are “strong” types, meaning that their members always help the target;

7Evolutionary explanations are sometimes accused of being “just-so stories”, i.e. ex post rationalizations of existing
data. However, our model generates the novel prediction that cooperation under threat should be highly sensitive to other
players’ behaviour, so it is not just just-so.
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the rest are “normal”. Several different interpretations are possible. Strong types may be altruistic

towards one another, perhaps because they are genetically related, while normal types are purely

self-interested. Alternatively, strong types may be in long-term relationships, beyond the scope of

the attack episode, and able to enforce cooperation by conditioning their future behaviour on play

during the attack episode, whereas normal types do not expect to interact after the attack episode.

In the animal kingdom, migratory birds may either join communities of sedentary birds who have

bred together before, and may be in relationships of long-term reciprocity, or communities of other

migrants who are mutually anonymous (Krams and Krama, 2002).

After every attack, the attacker may stay, or may costlessly move to a different group. (We assume that

the number of groups is large enough that the chance of returning to the same group later is effectively

0, or alternatively, that the attacker can avoid groups that he has already moved away from.) However

the attacker may make no more than T attacks on any one group.8 Defenders and attackers share

a discount rate δ . There are N defenders in each group. The cost to the supporter of helping, c,

is random and drawn independently in each round from C ⊂ R+, with cdf Φ(C) = Pr(c ≤ C). We

assume Φ is continuous. Only the supporter observes c in each round. For technical reasons, we

assume that the cost is sometimes high, specifically:

Φ(C̄)< 1, where C̄ =
δ

1−δ

A
N
. (1)

The defenders and the attacker observe the history of attacks within a given group, and whether the

target was helped in each case.

8We use finite repetitions so as to avoid folk-theorem style results where there are multiple equilibria even if the
attacker does not condition on defender behaviour: we want to focus on the stark case where repeated play among
defenders alone could not sustain cooperation. This also enables us to find a unique equilibrium.
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4 Equilibrium analysis9

The set of histories of length t is H t = {0,1}t , where 1 indicates that the defender was helped, with

typical element ht . (Write H 0 = /0.) The set of all histories is H =
⋃T

t=0 H t . A strategy for the

attacker is ζ : H → [0,1], giving the probability of playing stay after each history. (We will often

write ζ (h)∈ {stay,move} for clarity: i.e., define stay= 1 and move= 0.) A pure strategy for a normal

type defender is σ : H ×C→{0,1}, giving the probability of helping.10 (Strong types always help.)

The attacker’s subjective probability that he is facing a group of strong types is µ : H → [0,1].

Define pt as the t-length history of 1s, i.e. the t-length history in which supporters always helped, and

let p0 = /0. Let P = {p0, p1, p2, ...}. We call these “histories of (perfect) helping”. We look for the

following equilibrium strategies.

• If the defender has always been helped in the past, the attacker moves to a different group.

Otherwise, the attacker attacks the same group forever. Thus ζ (h) = move if h∈P and ζ (h) =

stay otherwise.

• Defenders help at round t (after a history ht−1) if and only if (1) all previous defenders have

helped (2) c is less than a finite cutpoint Ct . Formally,σ(ht−1,c) = 1 if ht ∈P and c ≤ Ct ;

σ(ht−1,c) = 0 otherwise.

Notice in particular that the attacker moves after observing a single episode of helping. Because of

this, histories p2, p3, ... are off the equilibrium path. In order to ensure reasonable attacker beliefs at

these histories, we use the sequential equilibrium concept(Kreps and Wilson, 1982).

Proposition 1. For T high enough, the game has a Sequential Equilibrium of the above form (along

with appropriate beliefs).

The remainder of this section gives the proof.
9Since strong types always help by assumption, the following analysis deals strictly with normal types.

10The limitation to pure strategies is innocuous because defenders will only be indifferent between helping and not for
a single value of c. Technically a defender could condition behaviour on his own costs of helping in previous rounds when
he was a supporter. Allowing this would not affect our results.
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4.1 Supporter behaviour

Given the attacker’s strategy, and other defenders’ strategies, if at round t ht /∈P then a supporter’s

play does not affect future events in the game (future supporters will never help, and the attacker will

always stay). Since c > 0 it is never optimal to help.

If at round t, ht ∈P , then the supporter’s behaviour determines future play. Helping will cause the

attacker to move and not helping will cause the attacker to stay and all future supporters not to help.

Thus helping is optimal if

1− c+
T−t

∑
s=1

δ
s ≥ 1+

T−t

∑
s=1

δ
s(1− A

N
)

equivalently

c≤Ct =
δ −δ T−t+1

1−δ

A
N
. (2)

Ct is decreasing in t, and in particular, CT = 0. Also, since Ct <
δ

1−δ

A
N = C̄, there is always positive

probability that the supporter does not help.

As T → ∞, Ct approaches C̄ = δ

1−δ

A
N for any finite t. We can use the expression for C̄ to get a sense

of the strength of the motivation to support the target. A useful benchmark is the cost a defender

would be prepared to pay to prevent a single attack on him- or herself: this is exactly A. So, when

δ

1−δ
≥ N, supporters would bear as high a cost to protect the target as they would to avoid an attack

on themselves. For example, in a group of N = 100, this will hold for δ ≈ 0.99.

4.2 Attacker behaviour

Given these cutpoints, we can calculate the attacker’s beliefs. The initial belief µ( /0) = π . Since only

normal types ever fail to help, µ(ht) = 0 unless ht ∈P .11

Write V (ht) for the attacker’s equilibrium value after a history ht , and V =V ( /0). Also, write

VS(ht)

11This is shown for beliefs off the path of play in Lemma 6, where the sequential equilibrium refinement is used.
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for the attacker’s value after ht if he stays, and subsequently plays his equilibrium strategy.

Equilibrium strategies give

V (ht) =VS(ht) =
T−t−1

∑
s=0

δ
sA+δ

T−tV , if ht /∈P. (3)

In other words, after observing any non-helping, the attacker stays and receives A per round until the

number of rounds is up.

Otherwise,V (ht) = V since the attacker moves (or has just arrived). To show that these are a best

response, we can apply the One-Shot Deviation Principle: to check if a strategy is a best response, we

need only compare it against deviations involving a single action at one information set.12 Thus, we

need to show that

V (ht)≥V if ht /∈P, (4)

so that after observing a failure to help, it is optimal for the attacker to stay. This is true by (3) and

the fact that V ≤ ∑
∞
s=0 δ sA given that the attacker’s maximum per-round payoff is A. We also need to

show that

V ≥VS(ht) if ht ∈P (5)

so that after observing helping it is optimal for the attacker to move rather than to stay. The right hand

side here is the counterfactual value from staying for a further attack. This can be calculated as

VS(ht)= µ(ht)[a+δV ]+(1−µ(ht)){Φ(Ct+1)[a+δV ]+ (1−Φ(Ct+1))[A+δV ((ht ,0))]} if ht ∈P.

Here, the first term is the value if one is facing strong types: the supporter helps, so the attacker

receives a and then moves at once. Similarly, if the attacker is facing normal types but the supporter’s

cost drawn is lower than the cutpoint, then the supporter helps, the attacker receives a and moves.

12Hendon, Jacobsen and Sloth (1996) prove the principle for Sequential and Perfect Bayesian Equilibrium.
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Finally, if the cost is higher than the cutpoint, the attacker receives A and the game proceeds. In

equilibrium, applying (3),

V ((ht ,0)) =VS((ht ,0)) =
T−t−2

∑
s=0

δ
sA+δ

T−t−1V

and plugging this into the previous equation gives

VS(ht) = [µ(ht)+(1−µ(ht))Φ(Ct+1)][a+δV ] · · · (6)

+(1−Φ(Ct+1))[
T−t−1

∑
s=0

δ
sA+δ

T−tV ] if ht ∈P.

We now show that for T high enough, (5) holds given defender behaviour. First, we show that after

enough rounds, it always holds. This is simply because the attacker’s subjective probability that he is

facing a strong type group becomes increasingly close to certainty after observing enough rounds of

cooperation.

Lemma 1. For M large enough, equation (5) holds for all t > M.

Proof. First observe that V > a+δV since the attacker’s minimum payoff in the first round is a and

since the attacker receives A with strictly positive probability in equilibrium. Therefore, if µ(ht) is

close enough to 1, (6) will be less than V and (5) will hold.

Next, write µt ≡ µ(pt) for short (we will keep using this notation) and use Bayes’ rule to write

µt =
π

π +(1−π)∏
t
s=1 Φ(Cs)

. (7)

Since Φ(Ct)< Φ(C̄)< 1, µt is strictly increasing in t and approaches 1 for large enough t.13

The next part of the argument demonstrates the same for early rounds. This relies on choosing T high

enough that Ct is very close to C̄. The logic is as follows. Observing a further round of helping has

13Technically a little more work is necessary to show that only the beliefs of equation (7) are possible in sequential
equilibrium. See Lemma 6 in the Appendix.
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three effects on the attacker. First, it increases his probability that he is facing a strong type group.

This encourages him to move to a different group. Second, the end of the T rounds is now closer,

and third, as a result, the defenders’ cutpoint decreases somewhat (i.e. Ct+1 <Ct). These effects may

encourage the attacker to stay. However, when T is large, they become negligible, since the end of

the game is far away and (for that reason) the defenders’ cutpoint changes very little. Therefore the

first effect dominates.

Lemma 2. For any M, for T high enough, VS( /0)>VS(p1)> ... >VS(pM).14

Combining these Lemmas, along with the fact that VS( /0) =V , we can choose M and T large enough

that V ≥VS(ht) for ht ∈P , both for t > M and for t ≤M as equation (5) requires. This completes the

proof of Proposition 1.

5 Uniqueness

Here we investigate whether there are other equilibria. We continue to write V for the value of the

game to the attacker, which is also the attacker’s value after choosing move. First, we demonstrate

that behaviour for ht /∈P is always the same as in the equilibrium above. The argument is essentially

by backward induction: after the attacker has become certain he is facing a normal type group, then

he cannot be driven off by any further helping, and then cooperation cannot be preserved among the

defenders since the game has finite periods.

Lemma 3. Suppose µ(ht) = 0. Then in any equilibrium, ζ (ht) = stay and σ(ht ,c) = 0 for all c.

Sequential equilibrium ensures that µ(ht) = 0 for all ht /∈P ,15 so this Lemma shows that in any

equilibrium, when ht /∈P , σ(ht ,c) = 0 for all c and ζ (ht) = stay, just as in the previous section.

Therefore, the only source of variation in equilibria must be in different attacker and defender re-

sponses to a history of helping pt .

14Proofs not given in the main text are in the Appendix.
15See Lemma 6 in the Appendix.
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We now show that for T large enough, there is no equilibrium with ζ (pt) > 0 for t ≥ 1. Thus, the

equilibrium of the previous section is the unique sequential equilibrium. 16

The proof works as follows. First, we observe that for t large enough, ζ (pt) = move since it becomes

increasingly certain that the defenders are strong types. Next, we show that when there are enough

rounds, the defenders’ cutpoint is higher at the end of a set of periods for which the attacker stays with

positive probability even after observing helping, than at the beginning of these periods. The logic

is that at the end, one’s own action decides whether the attacker will leave or not. At the beginning,

on the other hand, the attacker will stay until some future round and will then only leave if all other

supporters have also helped. Thus, the incentive to help is greater in the later round. On the other

hand, the future history of play which one can affect may be shorter in the later round; but when T is

large enough, this makes little difference.

We then examine the attacker’s value at round F , the last round in which ζ (pF) > 0, and at the last

earlier period L−1 at which ζ (pL−1) = 0 (or if there is none such, at the beginning of the game). At

F the attacker’s belief that he is facing a strong type group is strictly higher, and (as we showed) the

normal types’ cutpoint is also higher. Combining these facts reveals that, since the attacker is more

likely to observe a further round of defense VS(pL−1) > VS(pF). By our assumption that at L− 1,

moving is optimal,V ≥ VS(pL−1). Thus, we arrive at V > V (pF), which contradicts the assumption

that staying is optimal at pF .

Proposition 2. For T large enough, ζ (pt) = move for all t ≥ 1.

6 Evolutionary stability

So far we have used a “rationalist” game theory approach. Given our applications to biology, and

the evolutionary tone of our argument in Section 2, it is interesting to ask whether the equilibrium

of Section 3 is evolutionarily stable. Technically, it is not an Evolutionarily Stable Strategy, since

16There may be Weak Perfect Bayesian equilibria with ζ (p1) = 0 (i.e. move), ζ (pt)> 0 for some t > 1, in which case,
pt is never reached in equilibrium. However, all Weak Perfect Bayesian equilibria have ζ (p1) = move.
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both defenders and attackers may play differently at histories which are not on the equilibrium path

(for example, pt for t ≥ 2), without affecting their welfare. However, for T large enough, all Weak

Perfect Bayesian equilibria satisfy ζ ((1)) = move (and C1 as defined in (2), and ζ (h) = stay and

σ(h,c) = 0,∀c, for h /∈P). It would therefore be surprising if the equilibrium outcome given by

these actions were not evolutionarily stable.

Indeed, define Q = {(0),(0,0),(0,0,0)...} as the set of histories in which no defender helps, and

define the following sets of strategies:

Z = {ζ (·) : ζ ((1)) = move;ζ (h) = stay for all h ∈Q}

S = {σ(·, ·) : σ( /0,c) = 1 iff c≤C1;σ(h,c) = 0,∀h ∈Q,∀c}

Strategies in these sets result in the same behaviour as our equilibrium, along the path of play. Taking

the game’s payoff functions as a measure of fitness, we can then show the following:

Lemma 4. For high enough T : if defenders are playing any σ ∈ S, then any ζ ∈ Z gives the attacker

strictly higher fitness than any ζ ′ /∈ Z; and if the attacker is playing ζ ∈ Z and other defenders are

playing σ̂ ∈ S, then any σ ∈ S gives any defender strictly higher fitness than any σ ′ /∈ S.17

Thus, these strategy sets are evolutionarily stable in the sense that a single mutant defender or a single

mutant attacker will be selected against.18

Proof. (1) Suppose σ ∈ S̄ = {σ(·, ·) : σ( /0,c) = 1 iff c≤C1;σ(h,c) = 0,∀h /∈P,∀c}. Then in equi-

librium, only the histories {(1)}∪Q are observed by the attacker with positive probability. In each

of these cases any strategy ζ ∈ Z is strictly optimal. This follows simply from noticing that the argu-

17Technically, we require that, after at least one history h ∈Q∪ /0, σ̂(h,c) 6= σ(h,c) for all c ∈C, a set occuring with
positive probability.

18We also expect that these sets are stable against simultaneous mutations by defenders and attackers, but showing it
would be more complex. The logic is that if a small proportion of attackers becomes more aggressive in staying after
a helping episode, then optimal defender cutpoints will be lower; this, however, makes helping a stronger signal that
defenders are strong types, and increases the fitness of the less aggressive attackers.
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ments in Lemmas 2 and 1 suffice to prove the strict versions of the inequalities in equations (4) and

(5).

(2) Suppose ζ ∈ Z̄ = {ζ (·), : ζ ((1)) = move;ζ (h) = stay for all h /∈P}, and suppose that all other

defenders are playing σ̂ ∈ S̄. Then, in equilibrium, only the histories /0∪Q are observed by a defender

with positive probability. Defenders’ payoffs from helping are strictly decreasing in cost c, so the

strict optimality of σ ∈ S is trivial from the definition of C1, and from observing that for h ∈Q, the

attacker’s and the other defenders’ behaviour is unchanged by helping.

(3) The conclusion follows since S⊂ S̄ and Z ⊂ Z̄.

7 When history is unobserved

Some readers may be concerned that our result is driven by the history-dependent behaviour of other

defenders. Since future supporters will cease to help if the current supporter does not help, perhaps

this is just a Folk-theorem like result albeit for finite repetitions. To show this is not so, we now

assume that defenders cannot condition on others’ behaviour. Instead, a normal type strategy is σ :

{1, ...,T}×C→{0,1}, where σ(t,c) gives the probability of helping in each round t, given a helping

cost of c.

We look for an analogue of the earlier equilibrium, in which the attacker is instantly deterred by a

single episode of helping on the equilibrium path.

Proposition 3. If and only if Φ( δ

1−δ

A
N ) <

√
π−π

1−π
, then for large enough T there is an equilibrium of

the following form:

ζ (h) = move if and only if h ∈P .

Normal defenders help during the first round if and only if c is less than C1 = ∑
T−1
t=1 δ T A

N . In subse-

quent rounds they never help.

The expression
√

π−π

1−π
is increasing in π and approaches 0 as π → 0. Thus, the model’s conclusions

are modified somewhat when defenders cannot condition on each others’ behavior. Our equilibrium
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only exists when the proportion of strong types is non-negligible, compared to the probability of low

costs. Also, after the first round, defenders can infer that another defender did not help and therefore

cooperation collapses. Nevertheless, this result shows that cooperation does not require defenders to

directly observe earlier behaviour.

8 Relaxing the assumptions

We now informally discuss some ways in which the model’s assumptions could be relaxed. First,

we have assumed that strong types always help. This gives cooperation in defense its weakest-link

structure: a single episode of not helping is immediate proof that the group is normal type. Never-

theless, this structure will remain, so long as strong types help with probability close enough to 1.

For, a single episode of not helping will still provide strong evidence that the group is normal type;

for a fixed round t, if T is large enough, the attacker will then prefer to stay (as he preferred to stay

in the previous round, and now puts a higher probability on facing a normal group). The attacker

may still be deterred by observing further rounds of helping, but if this requires more than one round,

then the incentive for future supporters to help will be diminished in all but the last of these rounds

(since helping does not instantly deter the attacker). Thus, not helping will continue both to alter the

attacker’s and future supporters’ behaviour.

Second, suppose that the attacker faces some cost in moving to a new group (e.g. search costs).

The main difference this makes is that π now becomes relevant. In the model, the probability of

the existing group being strong type is exactly balanced by the probability that any other group is

strong type. Introducing fixed costs of moving would drive a wedge between the values of moving

and staying. However, if moving costs are low, a single episode of helping will remain sufficient to

deter the attacker, and defender behaviour will be unchanged.

Lastly, we have assumed that defenders are harmed but not killed by the attack. Killing is more

than an extreme loss of fitness; it also alters the strategic structure of future rounds, by removing

some actors. In particular allowing defenders to be killed would bring the partner effect into play
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(Eshel and Shaked, 2001): each death shrinks the group, and therefore increases the probability that

an individual survivor will be targeted in a given round. At large group sizes this effect is negligible

(i.e. 1
N ≈

1
N−1 ), but at smaller group sizes it would strengthen the incentive to help.

9 Cooperation before conflict

In the introduction we mentioned the evidence that cooperative and helping behaviour seems to in-

crease when there is an attack, or the threat of an attack, from the outside. We can extend the model

to give a natural explanation for this. The setup is kept as simple as possible to focus on the intuition.

Suppose now that the attacker must commit before the game to attacking for all T periods, or moving.

This resembles an irrevocable decision to launch a war. In the period before making his choice, the

attacker observes K randomly selected group members playing a one-shot Prisoner’s Dilemma. Each

player may cooperate or defect; a player’s cooperation gives R ∈ (1/K,1) to each of these K players,

at a cost of q to the player. The value of q is common knowledge among defenders, but is not known

by the attacker; it is drawn from a distribution with pdf Ψ(·), supported on (R,1). After observing

play in the Prisoner’s Dilemma, the attacker either attacks, or does not, earning a payoff of P. This

could be the expected payoff from attacking a different group, or the payoff from some other activity.

We assume that strong types always cooperate, and, as before, always support each other against

attacks.19 Normal types never help during the attack itself, since the attacker cannot be deterred. We

assume
T

∑
t=1

δ
t a
N

< P <
T

∑
t=1

δ
t A
N
.

19The Prisoner’s Dilemma itself may be the basis for the differentiation between group types. For example, strong
types can be engaging in the game repeatedly with the same partners, and condition their cooperation on helping during
the attacks as well as on cooperation in previous rounds of the Prisoner’s Dilemma. Conversely, normal types often
reconstruct new groups with strangers, and therefore have no incentives to cooperate in the absence of an imminent
attack. The attacker observes only one period of the repeated game, and therefore cannot distinguish between partner and
stranger groups.
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The expected loss to each defender from facing an attack is:

T

∑
t=1

δ
t A
N
.

There is always an equilibrium in which normal types do not cooperate. However, there may also be

cooperation in equilibrium, for the same signalling reason as before. We seek an equilibrium in which

all normal types cooperate if q is below some level q̄.

It must be the case that such cooperation (and only such cooperation) deters the attacker. The at-

tacker’s belief after observing full cooperation is

µ =
π

π +(1−π)Ψ(q̄)
(8)

and he is deterred if

µ

T

∑
t=1

δ
t a
N
+(1−µ)

T

∑
t=1

δ
t A
N
≤ P. (9)

If he observes any non-cooperation he learns for sure that the defenders are normal types, and attacks

(since ∑
T
t=1 δ t A

N > P ).

Since µ in (8) is decreasing in q̄, (9) provides an upper limit for q̄. Above this upper limit, cooperation

is not convincing enough since too many normal types are doing it. Call this the “attacker deterrence

constraint”.

If the attacker is deterred by full cooperation, and q≤ q̄ so that other defenders will cooperate, then it

is optimal for each defender to join in cooperating if

R−q≥−
T

∑
t=1

δ
t A
N
,

equivalently if

q≤ R+
T

∑
t=1

δ
t A
N
.

This provides another upper limit on q̄. Call it the “reward constraint”, since it requires that the reward
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from cooperation be large enough to justify the cost. Of course, q̄ may be lower than these, since no

defender will cooperate if, for a given value of q, he or she expects the others not to cooperate. To

sum up, there is a set of equilibria in which normal type defenders cooperate for q≤ q̄ where

0≤ q̄≤min{R+
T

∑
t=1

δ
t A
N
, q̂},

where

q̂≡Ψ
−1

(
π

1−π

(
∑

T
t=1 δ t A−a

N

∑
T
t=1 δ t A

N −P

))
is the solution to (8) and (9).

Examining the upper bound for q̄ reveals the following. (1) If only the attacker’s deterrence constraint

is binding, so that the upper bound is given by q̂, then it is weakly increasing in P and π . An increase

the value of the outside option, or in the probability the attacker puts on the defenders being strong

types, will make him easier to deter. Also, in this case the upper bound is decreasing in A20 and a: a

greater benefit for the attacker from finding either kind of group makes him harder to deter. Finally,

the upper bound increases if Ψ increases (in the sense of first order stochastic dominance): when

average costs get higher, then cooperation up to a higher cost level will still persuade the attacker

that he is facing a strong group. (2) If only the reward constraint is binding then the upper bound is

increasing in R and A: cooperation is sustainable at higher levels when it is more efficient in itself,

and when the cost of an attack is high.

It is clear that this logic could be extended to many different game forms, including episodes of

pairwise cooperation or altruism – any behaviour that correlates with the desire to cooperate in an

actual attack.
20To show this, differentiate q̂, recalling that P > ∑

T
t=1 δ t a

N .
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10 Conclusion

Economists, political scientists and biologists have puzzled over the problem of cooperation in group

conflict. This paper demonstrates one possibility: if there is even some small uncertainty regarding

the cohesiveness of the group, then a group consisting of selfish unrelated individuals may cooperate

against outside attackers so as to deter them by appearing cohesive. The resulting cooperation levels

decrease in group size, but can be arbitrarily high if the time horizon of the attack is long enough and

defenders are patient enough.

The collaborative efforts that followed the 2011 riots in England can be thus explained by an effort

to signal to rioters that they stand to face cooperative resistance from communities. Activists made

statements to convey that efforts were collaborative as part of a cohesive community rather than

individual charitable helping. A dedicated website set up to coordinate efforts was reported to state

that “This is not about the riots. This is about the clean up – Londoners who care, coming together to

engender a sense of community” (BBC England, 2011, August 9). In our theoretical framework, both

vigilante actions and clean-up efforts can be seen as a way to signal that people in the community

are willing to sacrifice in order to help their neighbours, by that reducing the incentives to riot and

loot. In line with this reasoning, empathy and helping effort declined once the deterrence effect was

acheived.21

Our analysis provides an ultimate explanation for the proximate mechanisms identified in the psycho-

logical literature for cooperation in conflict. Those proximate mechanisms should generally lead to

the rational behavior identified in our model. Therefore, our analysis can be instrumental in directing

future empirical research, as it points at the necessary conditions for cooperation to be selfishly bene-

ficial in the long run. Our results heavily rely on a strategic attacker, who can condition his decisions

on observed cooperation within the group. Cooperation in conflict is thus predicted to be reduced

when these conditions are not satisfied. For example, cooperation should diminish if it is not visible

to enemies; cooperation should be higher in the face of threats from other groups than of a natural

21The website www.riotcleanup.com, for example, stopped publishing calls for donations immediately after the riots
ended.
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threat. Although proximate mechanisms sometimes generalize beyond the context for which they are

adapted, our analysis raises interesting new questions that merit empirical inveestigation, and may

lead to new insights regarding human behavior in conflict.

We see scope for further theoretical work in the following areas. First, can the uniqueness result be

generalized to a wider class of games with group reputation? Second, extending the model to multiple

groups, and/or differentiating between leaders and followers within groups, would help us to under-

stand how leaders can manipulate followers’ willingness to take part in group conflict. Lastly, in our

theory, defensive cooperation is due to group members’ expectations of further attacks. In the model,

groups are exogenously given. However, a group might also be defined by the attacker’s (perhaps

arbitrary) choice of targets. This could provide a model of “violence and the social construction of

identity” (Fearon and Laitin, 2003).
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Appendix

Proof of Lemma 2

Proof. Rewrite (6) as

VS(pt) = [µt +(1−µt)Φ(Ct+1)][a+δV ]+ [(1−µt)(1−Φ(Ct+1))][
T−t−1

∑
s=0

δ
sA+δ

T−tV ].

Now, ∑
T−t−1
s=0 δ sA+ δ T−tV is strictly decreasing in t and is greater than a+ δV . Therefore, to show

the above is strictly decreasing in t, it will suffice if

(1−µt)(1−Φ(Ct+1)) (10)

is decreasing in t. Rewrite this expression, using the definition of µ(ht) in (7), as

(
1− π

π +(1−π)∏
t
s=1 Φ(Cs)

)
(1−Φ(Ct+1)).

Observe from the definition of Ct in (2) that, for any t, Ct → C̄ as T → ∞. Since Φ is continuous, the

above expression approaches

(1− µ̄t)(1−Φ(C̄)) where µ̄t ≡
π

π +(1−π)Φ(C̄)t (11)

as T → ∞. This expression is strictly decreasing in t, since µ̄t is strictly increasing in t. Define

ε = mint∈{0,...,M−1}(1− µ̄t+1)(1−Φ(C̄))−(1− µ̄t)(1−Φ(C̄)) and note that ε > 0. Now, by selecting

T large enough, we can ensure that

| (1−π)∏
t
s=1 Φ(Cs)

π +(1−π)∏
t
s=1 Φ(Cs)

(1−Φ(Ct+1))− (1− µ̄t)(1−Φ(C̄))|< ε

2
for all t,

and this, combined with our definition of ε , ensures that (10) is decreasing.

Lemma 5. In any equilibrium, after any history ht , normal types do not help with probability of at
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least 1−Φ(C̄)> 0.

Proof. Normal types help if

1− c+δW ≥ 1+δW ′

where W and W ′ are continuation values from helping and not helping respectively. These are

bounded below by ∑
T−t
s=0 δ s(1− A

N ) and above by ∑
T−t
s=0 δ s. The above bound is reached if the at-

tacker leaves; the lower bound holds because the defender can achieve at least this payoff by never

helping. The maximum difference between δW and δW ′ is thus δ ∑
T−t−1
s=0 δ s A

N = δ−δ T−t+1

1−δ

A
N < C̄; so

for c≥ C̄ the inequality above will not be satisfied.

Lemma 6. In any sequential equilibrium, beliefs µ(pt) must be as given in equation (7), while

µ(ht) = 0 for ht /∈P .

Proof. First, observe that in any equilibrium, defender play σ(pt ,c) can be characterized by a (per-

haps infinite) cutpoint Ct , because if σ(pt ,c) = 1 is optimal, then σ(pt ,c′) must be strictly optimal

for c′ < c. Since pt may be off the equilibrium path of play, permissible beliefs must be derived

by constructing a sequence of equilibria of perturbed games in which (1) defenders’ probability of

helping at ht , σn(ht ,c) is bounded within a subinterval of (0,1), with the interval approaching [0,1] as

n→∞, for all ht and c; (2) σn(ht ,c)→ σ(ht ,c) as n→∞ (to avoid complications we assume that this

convergence is uniform across all c) and (3) attacker’s probability of leaving or staying is similarly

bounded between 0 and 1 and converges to 0 or 1 according toζ (ht) ∈ {stay,move}. We also assume

that normal defenders help with probability 1−ηn(ht ,c)→ 1 as n→ ∞. We then apply Bayes’ rule

to give the attacker’s beliefs. For pt , this results in

µn(pt) =
π ∏

t
s=1 {

∫
(1−ηn(ps,c))dΦ(c)}

π ∏
t
s=1 {

∫
(1−ηn(ps,c))dΦ(c)}+(1−π)∏

t
s=1 {

∫
σn(ps,c)dΦ(c)}

.

As n→ ∞ we arrive at the limit

µ(pt) =
π

π +(1−π)∏
t
s=1 {

∫
σn(ps,c)dΦ(c)}
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and in the equilibrium of Section 3, since σn(ps,c)→ 1 for c≤Cs, σn(ps,c)→ 0 otherwise, this must

reduce to

µ(pt) =
π

π +(1−π)∏
t
s=1 Φ(Cs)

as in (7).

For ht /∈P , in any equilibrium, write ht = (r1,r2, ...,rt), with rs ∈ {0,1} for s ∈ {1, ..., t}. Bayes’

rule gives

µn(ht) =
π ∏

t
s=1 {rs

∫
(1−ηn(hs,c))dΦ(c)+(1− rs)

∫
ηn(hs,c)dΦ(c)}

D

with

D = π

t

∏
s=1

{
rs

∫
(1−ηn(hs,c))dΦ(c)+(1− rs)

∫
ηn(hs,c)dΦ(c)

}
+(1−π)

t

∏
s=1

{
rs

∫
σn(ps,c)dΦ(c)+(1− rs)

∫
(1−σn(ps,c))dΦ(c)

}
.

Since rs = 0 for at least one s, the numerator of the above expression goes to 0 as n→ ∞, and the

denominator D remains bounded above 0 since, after any history, normal types sometimes fail to help

(Lemma 5). Thus µ(ht) = 0.

Lemma 7. Suppose that ζ ((ht ,0,h+)) = ζ ((ht ,1,h+)) for all continuation histories h+ of length 0

or more. Then in any equilibrium, σ(ht ,c) = 0 for all c.

Proof. We prove by backwards induction over the T periods. First, in a final period history hT−1,

σ(hT−1,c)= 0 for all c, since supporter behaviour cannot affect future play. Next, at T−2, σ(hT−2,c)=

0 for all c, since the supporter cannot affect either future supporter play (as we have just shown) or the

attacker’s future play (by assumption). Then at T − 3, σ(hT−3,c) = 0 for all c for the same reason,

and so on.
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Proof of Lemma 3

Proof. Again, start at the end. Since µ(hT−1) = 0, the attacker is certain that the defenders are normal

types, and since σ(hT−1,c) = 0 for all c, the attacker will gain his maximum per-round payoff of A

next round by staying, giving a continuation value of A+δV >V (since there is positive probability

of receiving a in the first round, V < A/(1−δ )). Thus ζ (hT−1) = stay is strictly optimal.

Now consider ζ (hT−2). Since µ(hT−2) = 0, the attacker’s belief will stay at 0 for any continuation

history. Thus, ζ ((hT−2,0)) = ζ ((hT−2,1)) = stay as we have just shown. Therefore, the assumption

of Lemma 7 holds for histories of length T −2. Applying Lemma 7, we conclude that σ(hT−2,c) = 0

for all c. Therefore ζ (hT−2) = stay. For, given that σ(hT−2,c) = σ((hT−2,0),c) = σ((hT−2,1),c) =

0 for all c, and that µ(hT−2) = 0, the continuation value for staying is A+ δA+ δ 2V > V . We have

now proved the conclusion of the Lemma for histories of length T −2.

At hT−3, if ζ (hT−3) = stay then the previous paragraph shows that ζ ((hT−3,h+)) = stay for any

positive-length continuation history h+. Again this allows us to apply Lemma 7 and shows that

σ(hT−3,c) = 0 for any c, and again this shows that ζ (hT−3) = stay. This plus the previous paragraph

proves the conclusion of the Lemma for histories of length T − 3. Continuing thus, we prove it for

histories of any length.

Lemma 8. There is some t̄ such that in any equilibrium for a game of any length T , ζ (pt) = move

for all t ≥ t̄ .

Proof. Applying (7), Lemma 5 shows that in any equilibriumµ(pt) is strictly increasing in t, and

so approaches 1. Furthermore, in any equilibrium, since the probability of helping is no more than

Φ(C̄), µ(pt) ≥ µ̄t as defined in (11). Therefore, the set of beliefs µ(pt), defined over all equilibria,

approaches 1 uniformly as t → ∞: for any ε > 0, there is some t̄ε such that µ(pt̄ε ) ≥ µ̄t̄ε > 1− ε in

any equilibrium.

Now, the value to the attacker of staying in equilibrium can be written

VS(pt) = µ(pt)[a+δV ′]+ (1−µ(pt))V ′′ (12)

34



where V ′ is the continuation value conditional on the defenders being strong types, and V ′′ is the value

if the defenders are normal types. Since strong types always help, the best response when faced with

them is to leave; therefore a+δV ′ ≤ a+δV . Furthermore,

V ≥ (π +(1−π)Φ(C̄))a+(1−π)(1−Φ(C̄))A+δV = a+δV +(1−π)(1−Φ(C̄))(A−a),

since (1) the probability of normal types helping is no more than Φ(C̄), and (2) the attacker can

achieve at least the payoff on the RHS, by leaving after the first round. Therefore, in any equilibrium,

a+ δV ′ ≤ V − ε2 where ε2 = (1−π)(1−Φ(C̄))(A− a). Plugging this into (12), and using the fact

that V ′′ is bounded above by ∑
∞
s=0 δ sA, gives for any ε some t̄ε such that

VS(pt̄ε ) ≤ (1− ε)(V − ε2)+ ε

∞

∑
s=0

δ
sA

≤ V − (1− ε)ε2 + ε

∞

∑
s=0

δ
sA

Choosing ε so that the right hand side is strictly less than V for any equilibrium value of V , we can

set t̄ = t̄ε . Then, it is sequentially rational to leave after pt̄ , so ζ (pt̄) = leave.

Proof of Proposition 2

Proof. Suppose false, so that ζ (pt) > 0 for some t > 0. If T ≥ t̄, ζ (pt) = 0 (i.e. leave) for t high

enough, as Lemma 8 shows. So, for T large enough we may take F such that ζ (pF) > 0, but

ζ (pF+1) = 0. Now, define L = min{t ≥ 1 : ζ (pt ′) > 0 for all t ≤ t ′ ≤ F}. Observe that if ζ (pt) = 0

for all t < F , then L = F ; if ζ (pt)> 0 for all t < F , then L = 1.

First we show that CL < CF+1. After pF , the attacker will condition on the next round, staying until

T if he observes no helping and leaving otherwise. Thus,

CF+1 =
δ −δ T−F

1−δ

A
N
,
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just as in (2). Observe that for any T , F < t̄, by Lemma 8. Therefore as T becomes large,

CF+1→ C̄ =
∞

∑
t=1

δ
t A
N
. (13)

Now examine the supporter’s problem in round L. The benefit of not helping is

1+
T

∑
t=L+1

δ
t−L
[

1− A
N

]
. (14)

The benefit of helping is

1−c+
F

∑
t=L+1

δ
t−L
[

1−Nohel pt
A
N
−Attackt

{
1
N

∫ Ct

0
ĉdΦ(ĉ)+

1
N
[Φ(Ct)a+(1−Φ(Ct))A]

}]
+

T

∑
t=F+1

δ
t−L1−

[
Nohel pF+1

A
N

]
(15)

where Nohel pt gives the probability that at least one defender failed to help between rounds L+ 1

and t− 1, and Attackt gives the probability that the attacker is still present at time t even though all

defenders helped. That is, until round F , the attacker may still be present even after observing helping.

If so, the defender bears the expected cost in curly brackets, which includes the expected cost of being

a supporter and helping if c≤Ct , and the expected cost of being attacked and perhaps helped. From

round F +1 onwards, either the attacker has observed perfect helping and left, or h /∈P , the attacker

is staying forever and no defenders help.

We can calculate Attackt as
t−1

∏
s=L+1

Φ(Cs)ζ (ps)

which is positive by definition of L, and Nohel pt , recursively, as

Nohel pt−1 +(1−Nohel pt−1)ζ (pt−2)(1−Φ(Ct−1))

with Nohel pL+1 = 0 since by assumption the current supporter helped. I.e. even if every supporter

helped up till t−2, if the attacker continued to stay then at t−1 the supporter may have failed to help.
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All that matters is that both Attackt and Nohel pt are positive, since ζ (pt) is positive for L≤ t ≤ F .

Rearranging (15) and (14), and taking T → ∞, gives

CL −→
T→∞

F

∑
t=L+1

δ
t−L
[
(1−Nohel pt)

A
N
−Attackt

{
1
N

∫ Ct

0
ĉdΦ(ĉ)+

1
N
[Φ(Ct)a+(1−Φ(Ct))A]

}]
+

∞

∑
t=F+1

δ
t−L(1−Nohel pF+1)

A
N
.

Comparing this with 13 shows CL <CF+1, since each term of the above sum is less than A
N .

Now,

VS(pL−1)= [µL−1+(1−µL−1)Φ(CL))](a+δV (pL))+(1−µL−1)(1−Φ(CL))(A+δA+...+δ
T−LA+δ

T−L+1V )

where the first term in brackets gives the probability of the supporter helping, and V (pL) is the value

after pL. Observe that

a+δV (pL)< A+δA+ ...+δ
T−LA+δ

T−L+1V

since V (pL) involves a sequence of no more thanT − L attacks which can give no more than A,

followed by V , and since V < A+δV implies V < A+δA+ ...+δ t−1A+δ tV for any t ≥ 1. Therefore

we can write

VS(pL−1) > [µF +(1−µF)Φ(CF+1))](a+δV (pL))+(1−µF)(1−Φ(CF+1))(A+δA+ ...+δ
T−LA+δ

T−L+1V )

(by µF > µL−1 and CL <CF+1, and a+δV (pL)< A+δA+ ...+δ
T−LA+δ

T−L+1V )

> [µF +(1−µF)Φ(CF+1))](a+δV )+(1−µF)(1−Φ(CF+1))(A+δA+ ...+δ
T−F−1A+δ

T−FV )

(since V (pL)≥V, as must always hold given that leaving is an option,

and V < A+δV ⇒ δ
T−FV < δ

T−F A+δ
T−F+1A+ ...+δ

T−LA+δ
T−L+1V )

= V (pF).

But since, by definition of L, either ζ (pL−1) = 0, or VS(pL−1) = V if L = 1, it must be that V ≥

VS(pL−1). We therefore arrive at V >V (pF) which contradicts ζ (pF)> 0.
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Proof of Proposition 3

Proof. First consider defender behaviour. Since ζ ((1)) = move, if t ≥ 2 then the attacker must have

observed not helping and will stay forever. Therefore it is not optimal to bear any cost to help. Now

suppose that t = 1. Helping gives expected welfare of

1− c+
T−1

∑
t=1

δ
t

and not helping gives

1+
T−1

∑
t=1

δ
t(1−A/N)

giving a cutpoint

C1 =
T−1

∑
t=1

δ
t A
N
.

Next consider attacker behavior. Write pt = (1,1, ..,1) for a t-length history of helping, so that pt ∈

P . Clearly since only related helpers help in the second and subsequent periods, v(pt) = move is

optimal for t ≥ 2. The interesting question is ζ (p1), the optimal strategy after a single episode of

helping. The benefit of attacking is

µ1(a+δV )+(1−µ1)(
T−2

∑
t=0

δ
tA+δ

T−1V )

with

µ1 =
π

π +(1−π)Φ(C1)

while the benefit of moving is

V = [π +(1−π)Φ(C1)](a+δV )+(1−π)(1−Φ(C1))(
T−1

∑
t=0

δ
tA+δ

TV )
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We wish to show conditions when the benefit of moving is greater than that of attacking. Taking T to

infinity, the relevant inequality becomes

µ1(a+δV )+(1−µ1)
∞

∑
t=0

δ
tA≤ [π +(1−π)Φ(C1)](a+δV )+(1−π)(1−Φ(C1))

∞

∑
t=0

δ
tA.

Since a+ δV < ∑
∞
t=0 δ tA, this will hold in the limit whenever µ1 > π +(1−π)Φ(C1), equivalently

when
π

π +(1−π)Φ(C1)
> π +(1−π)Φ(C1).

This results in a quadratic, but we can observe at once that it holds for Φ(C1)→ 0, does not hold

for Φ(C1)→ 1, and has a single crossover point in terms of Φ(C1). Intuitively, when Φ(C1) is small

enough, the fact that the supporter helped is strong evidence that the defenders are indeed strong

types. Taking T → ∞ gives C1→ ∑
∞
t=1 δ t A

N = δ

1−δ

A
N . Solving the quadratic for Φ(C1) gives

Φ(C1) =

√
π−π

1−π

as the upper bound for Φ(C1) for the equilibrium to exist.
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