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Abstract 
 

Human serum albumin (HSA) is a plasma protein that fulfils a wide range 

of biological functions and is thought to be the major Zn2+ transporter in 

blood plasma. The high affinity Zn2+ binding site (Site A) has recently 

been characterised and is located at an interdomain site. In addition to 

metal binding, HSA is also important in the transport of fatty acids. 

Previous work has shown that the binding of Zn2+ at Site A and the 

binding of myristate at fatty acid site 2 are mutually exclusive.  It has been 

predicted that upon fatty acid binding, a conformational change occurs 

that can disrupt the residues that form Site A. This allosteric interaction 

could have an impact on the Zn2+ dependent activities of histidine-rich 

glycoprotein (HRG), a plasma protein involved in blood coagulation. The 

purpose of this work was to investigate the metal-binding properties of 

HSA and a peptide derived from HRG using a native MS approach. 

Furthermore, the possible Zn2+ transfer between the proteins was 

explored and also whether fatty acids influenced the Zn2+ distribution. 

 

Native ESI-MS was able to detect Zn2+ ions associating with HSA 

although the interactions with fatty acids appeared to be broken upon 

entering the gas phase. No apparent loss of Zn2+ from HSA was observed 

by ESI-MS following incubation with myristate which was confirmed by 

elemental analysis in solution. Travelling wave ion mobility-MS showed 

no significant conformational changes between apo-HSA and holo-HSA 

although Zn2+ appears to have a role in stabilising the domain I/II 

interface. HSA incubated with myristate showed a larger collisional cross 

section that is in agreement with the X-ray crystal structures.  

 

A peptide mimicking the His-rich region of HRG, HRGP330, was found to 

bind up to 5 Zn2+ ions by ESI-MS and evidence from a combination of  

circular dichroism spectroscopy, ion mobility and top-down MS/MS 

indicated that a conformational change occurs upon Zn2+ binding. During 

CID and ETD, Zn2+-binding fragments were able to be detected in order 



 

xv 
 

to map which residues Zn2+ was bound to. However, numerous fragments 

were detected and so it would appear that several possible binding sites 

in HRGP330 have a similar binding affinity for Zn2+. Complementary ESI-

MS and elemental analysis showed that up to 90% of Zn2+ was 

transferred from HSA to HRGP330 even in the absence of fatty acid. Cu2+ 

also preferentially bound to HRGP330 over the N-terminal peptide mimic 

of HSA. Overall this could have implications for how these metal ions are 

transported in blood plasma as it would appear from this evidence that 

HRG is a significant competitor for metal ions bound to HSA.  
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 Chapter 1 

Introduction 

 

1.1 Metal ions in biological systems 

Many transition metals play crucial roles in biology where they can 

enhance or even determine the activities of biomolecules. Approximately 

50% of all enzymes require interaction with a metal ion to fulfil their 

biological function (Waldron et al., 2009). A delicate balance of these 

elements needs to be maintained as high concentrations can be toxic but 

too little can be equally damaging and have a detrimental effect on cells.  

 

Metal ions can be classed as “essential” to the development of an 

organism or “non-essential”. One hundred years ago, Bertrand derived a 

mathematical relationship between the concentration of the nutrient and 

the effect on health as shown in Figure 1.1 (Bertrand, 1912). For those 

that are essential (e.g. Zn2+) an optimal balance is needed and a 

deficiency can be detrimental to health. Essential metal ions can also 

become toxic when the concentration becomes excessive. Non-essential 

metal ions (e.g. Cd2+) can only be tolerated at a low concentration, which 

is demonstrated by the sharp drop in beneficial effects as the 

concentration increases. This model highlights that every trace metal ion 

can be potentially toxic and it is the concentration that determines this 

toxicity (Mertz, 1981).   
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Figure 1.1 Essential vs. non-essential metal ions. The diagram illustrates that the 
effect of a metal ion on an organism is concentration dependent. Biologically essential 
metal ions can become toxic at high concentrations and non-essential metal ions can 
only be tolerated at low concentrations. Adapted from Bertrand (1912).  

 

1.2 The importance of Zn2+ 

Zn2+ is the second most abundant trace metal ion present in man after 

iron, with 2-3 g in adult humans (Haase and Rink, 2009). It is considered 

to be relatively non-toxic to humans (Fosmire, 1990) and studies 

administering the radioisotope 65Zn to patients showed that 90% of the 

metal ion is stored in the bones and muscle (Wastney et al., 1986). In 

biology, Zn2+ exists only in a 2+ oxidation state and does not undergo 

redox reactions, a consequence of its filled d orbital. Furthermore, it is a 

borderline Lewis acid which allows it to interact with a variety of ligand 

donors including nitrogen, sulfur and oxygen. A study of 57 organisms in 

2006 indicated that Zn2+-binding proteins are extremely abundant, 

comprising 4-10% of proteomes (Andreini et al., 2006). 

 

Zn2+ is vital for many cellular processes, and its roles in nature can be 

broadly placed into three categories: structural, catalytic and regulatory.  

It is involved in the transmission of genetic information, the development 

Concentration

Optimal concentrationGood effects 

(health)

Bad effects

(death) Essential metal ions

Non-essential metal ions

Key
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of the immune system and as a signalling substance (Cousins et al., 

2006). On a cellular level it has critical roles in proliferation and apoptosis 

and therefore is essential for growth (Maret and Sandstead, 2006). Many 

enzymes require Zn2+ in order to be catalytically active, for example, 

carbonic anhydrase which allows the interconversion of carbon dioxide 

and water to bicarbonate and protons to proceed rapidly (Keilin and Mann, 

1940). In addition, Zn2+ is required in so-called “Zn2+ finger proteins” 

where the protein chain arranges itself around the metal ion to form a 

stable fold. An example of this was first discovered in a transcription 

factor from Xenopus Laevis, TFIIIA, which contained a series of these 

small domains which were ordered in the presence of Zn2+ (Miller et al., 

1985). 

 

1.3 Blood plasma proteins 

Blood plasma contains many different types of components including 

cells, low molecular weight compounds and proteins (Schaller et al., 

2008).  The concentrations of plasma proteins span a wide concentration 

range over 10 orders of magnitude (Anderson and Anderson, 2002). 

Lesser abundant proteins are often difficult to isolate and characterise 

due to the high content of albumin (55%) in blood which can cause 

interference. Globulins form the second most abundant fraction (38%) 

followed by fibrinogen which makes up around 7% of the total protein in 

plasma (Porth, 2002). Those proteins that are of much lower abundance 

include tissue leakage proteins and interleukins with concentrations as 

low as a few pg/ml (Anderson and Anderson, 2002). Proteins that are not 
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normally present in healthy plasma may accumulate as a biomarker for a 

particular disease which further complicates the system (Schaller et al., 

2008). This study will focus on two particular plasma proteins: human 

serum albumin (HSA) and histidine-rich glycoprotein (HRG) with a focus 

on their metal-binding properties.  

 

1.4 Human serum albumin (HSA) 

1.4.1 Structure and function 

 HSA is the most abundant protein in blood plasma and is synthesised in 

the liver (Peters, 1995). It belongs to the albuminoid protein family along 

with α-fetoprotein and vitamin D-binding protein. Expression of HSA 

begins during foetal development and is at normal levels at birth. The 

protein is continuously turned over and typically found at concentrations 

of ~0.6 mM in plasma (Peters, 1995).  It has the extraordinary ability to 

bind multiple types of ligand including metal ions, fatty acids, hormones 

and drug molecules (Kragh-Hansen et al., 2002; Fasano et al., 2005). 

HSA has an isoelectric point (pI) of 5.67 which indicates it is negatively 

charged at physiological pH. This negative charge is important for its 

biological roles, which are summarised in Figure 1.2. For example, HSA 

maintains colloid osmotic pressure by preventing water from escaping 

from the intravascular compartment. The protein does this by attracting 

positively charged sodium ions across the capillary membrane which 

causes water to follow. Ultimately, this distribution of fluids is important for 

regulating body temperature. 
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Figure 1.2 Summary of the biological functions of HSA.  

 

The 66 kDa protein forms a heart-shaped structure with the dimensions 

80 x 30 Å (He and Carter, 1992). The structure consists of three 

homologous domains as highlighted in Figure 1.3: domain I from residues 

1-181 (blue), domain II from 188-373 (red) and domain III (green) from 

380-571. Each of the domains is separated into two sub-domains that are 

given the notation “A” and “B” (He and Carter, 1992; Curry et al., 1998; 

Sugio et al., 1999). It is a largely helical protein (67%) with each of these 

three domains containing 10 principal helices as highlighted in Figure 1.3 

(He and Carter, 1992; Peters, 1995).  A common characteristic within the 

albumin family is the formation of 17 disulfide bridges which stabilise its 

folded structure and allow it to have a lengthy in vivo circulating half-life of 

approximately 19 days (Peters, 1995). Six of these bridges are formed in 

domains II and III, with domain I only having five disulfide bonds and a 

free thiol at Cys34. This residue is susceptible to oxidation and it can form 

disulfide bonds with other free thiols in plasma such as circulating 

glutathione. 
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Figure 1.3 X-ray crystal structure of HSA. The three homologous domains are 
highlighted as follows: blue = domain I, red = domain II and green = domain III. The 
figure was created using PyMOL v1.3 and based on PDB 1AO6. 
 

 

1.4.2 HSA-dimer formation 

It has been well documented in the literature that HSA can form a dimer 

that is suggested to form through a covalent disulfide bond between 

Cys34 of two HSA molecules. Evidence against this, however, is that this 

residue is buried in a hydrophobic cavity 9.4 Å deep but it has been 

proposed that the pocket could flatten out to bring the residues closer 

together in space (Peters, 1995). A synthetic mercury bridged dimer was 

first produced by Straessle and co-workers in 1954 by linking the Cys34 

residue of two HSA molecules, although it showed low stability (Edsall et 

al., 1954; Straessle, 1954). Other efforts with longer linker molecules to 

avoid strain on the protein molecules achieved high yields and a dimer 

that was stable for over a year at room temperature (Komatsu et al., 

1999). It is not known in great detail what biological significance a HSA 

dimer may have, although the possible clinical applications have recently 

Domain I

Domain II

Domain III
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been reviewed (Taguchi et al., 2012).  These include its use as a plasma 

volume expander to treat conditions such as inflammation and as a drug 

carrier because it shows prolonged blood retention compared to the 

monomer.  

 

1.4.3 HSA as a Zn2+ transporter 

The concentration of Zn2+ in plasma is estimated to be ca. 15-20 µM 

(Kiilerich et al., 1980). It is thought that HSA is the major transporter of 

Zn2+ in blood plasma (Cousins, 1986) and binds approximately 80% of 

the metal ion present (Foote and Delves, 1984). The remainder is bound 

by α2-macroglobulin and low molecular weight compounds such as Cys 

and His which are able to compete for protein-bound Zn2+ (Giroux and 

Henkin, 1972). Although early studies implicated transferrin in Zn2+ 

transport this was found to be an insignificant amount (Chesters et al., 

1981).  

 

HSA has an important role in reducing the toxicity of Zn2+ to cells and it 

also influences the delivery of Zn2+. At physiological concentrations HSA 

was capable of protecting human WRL-68 cells from toxic concentrations 

of Zn2+ as high as 600 µM (Blindauer et al., 2009). The presence of 

albumin reduced the amount of Zn2+ uptake into erythrocytes suggesting 

that it is involved in a regulation mechanism (Gálvez et al., 2001). The 

Zn2+-albumin complex has also been shown to be important for Zn2+ 

acquisition by endothelial cells (Rowe and Bobilya, 2000; Tibaduiza and 

Bobilya, 1996). Cases of familial hyperzincemia, an excess Zn2+ disorder, 
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appear to be due to enhanced occupancy of the metal ion to HSA (Failla 

et al., 1982). 

 

1.5 Ligand binding to HSA 

1.5.1 Metal binding sites  

HSA has the capacity to bind various metal ions, both essential and toxic, 

with different specificities at each binding site (Martins and Drakenberg, 

1982; Bal et al., 1998). Although there is a lack of detailed structural 

information, four metal binding sites have been described in the literature:  

a) Amino-Terminal Cu2+ and Ni2+ binding motif (ATCUN) 

b) Site A 

c) Site B 

d) Free thiol on Cys34 

 

Each of these binding sites is described below in further detail including 

their structural elements and metal specificity. The binding constants that 

have been determined for Zn2+ Cd2+, Cu2+, Co2+ and Ni2+ ions by various 

methods are summarised in Table 1.1. Overall, this demonstrates that 

Cu2+ and Ni2+ ions show stronger binding to HSA than Zn2+ Cd2+ or Co2+ 

ions. HSA has a moderate affinity for Zn2+ with affinity in the high 

nanomolar range. The differences in the binding affinities obtained from 

different research groups can be attributed to important factors such as 

ionic strength, temperature and pH.    
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Table 1.1 Stability constants for metal ion- HSA complexes. 

Metal 

ion 

pH of 

study 

n
c
  logK1 Reference 

Zn N/A 3 7.53
b
  Masuoka and Saltman, 1994 

Zn N/A 1 7.10
b
 Ohyoshi et al., 1999 

Zn 7.4 1 6.98
a
 Giroux and Henkin, 1972 

Cd 7.4 2 5.30
a
 Goumakos et al., 1991 

Cu 7.5 1 16.18
a
 Lau and Sarkar, 1971 

Cu N/A 3 11.18
b
 Masuoka and Saltman, 1994 

Cu 7.4 1 12.00
a
 Rózga et al., 2007 

Ni 7.5 1 9.57
a
 Glennon and Sarkar, 1982 

Co 7.4 3 4.90
a
 Sokolowska et al., 2009 

 

a. K1 = apparent binding constant of the highest affinity binding site 
b. K1 = intrinsic binding constant of the highest affinity binding site. These are not 

dependent on pH.  
c. Number of binding sites 

 

Amino-Terminal Cu2+ and Ni2+ binding motif (ATCUN) 

The first metal site to be identified was the N-terminus which is the 

primary binding site for Cu2+ and Ni2+ and is known as an ATCUN motif. 

(Glennon and Sarkar, 1982; Harford and Sarkar, 1997). The motif can 

also be found in other proteins such as histatins (Harford and Sarkar, 

1997). This site at the N-terminus of HSA has been well characterised 

and four nitrogen ligands from Asp1, Ala2 and His3 coordinate to the 

central metal ion to form a square-planar structure as illustrated in Figure 

1.4. There is also evidence to suggest that in intact HSA Lys4 may be 

involved in this site (Sadler et al, 1994).  Although only 5-10% of Cu2+ in 

the blood is bound to HSA, it was suggested early on that a ternary 

albumin-Cu2+-histidine complex was important for Cu2+ transport (Lau and 

Sarkar, 1971). The majority of Cu2+ in plasma is tightly-bound to 

ceruloplasmin, which is a non-exchangeable fraction, and the remainder 
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associated with circulating amino acids (Neumann and Sass-Kortsak, 

1967).  

 

In contrast, HSA is the major transporter of Ni2+ with 95% estimated to be 

bound to the protein in vivo (Lucassen and Sarkar, 1979) although Ni2+ is 

generally thought to be non-essential for human health. Intriguingly, this 

ATCUN motif does not occur in some albumins from mammalian species 

such as dog serum albumin (DSA) and as a result this protein does not 

show a specific binding site for the first equivalent of Cu2+. This suggests 

that the mechanism of Cu2+ metabolism could differ across mammalian 

species (Appleton and Sarkar, 1971).  

 

Figure 1.4 Structure of the ATCUN motif at the N-terminus of HSA. Asp1, Ala2 and 
His3 are involved in binding and M represents a Cu

2+
 or Ni

2+
 ion. Lys4 may also have a 

role in metal binding as proposed by Sadler et al. (1994) 
 

 

Co2+ binding to HSA has attracted attention due to the albumin-cobalt 

binding assay (ACB assay), an FDA-approved test for myocardial 

ischemia (Bar-Or et al., 2000). In patients with acute coronary syndrome 

the binding of Co2+ in serum is significantly reduced (Bar-Or et al., 2001) 
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and this can be detected colorimetrically by measuring complex formation 

between Co2+ and dithiothreitol (DTT) which has absorbance at 470 nm. 

Early studies suggested that the N-terminal site was the primary binding 

site for Co2+ due to the fact that it was shown by potentiometry to interact 

with peptide mimics of the N-terminus (Lakusta and Sarkar, 1979). Sadler 

and co-workers (1994) provided further evidence for this by showing that 

addition of Co2+ to HSA reduced the intensity of the 1H-NMR resonances 

observed for the N-terminal residues (Asp1, Ala2, His3 and also Lys4). 

However, it was not clear if the binding mode was the same as the 

square-planar arrangement formed with Cu2+ and Ni2+. More recent 

studies have demonstrated that Co2+ actually competes with Zn2+ and 

Cd2+ for the occupation of Sites A and B and that only the third equivalent 

will be bound to the N-terminus (Mothes and Faller, 2007; Sokolowska et 

al., 2009). ITC and 111Cd-NMR experiments have also confirmed that the 

primary binding site is not the N-terminus as the addition of Co2+ to 

111Cd2+ loaded HSA caused suppression of the peaks for Sites A and B 

as seen by NMR spectroscopy. This could have implications for the 

molecular mechanism of the ACB assay as the reduced Co2+ binding of 

plasma from ischemic patients may be due to elevated fatty acids (Lu et 

al., 2012a). 

 

Site A 

The location of the high affinity Zn2+ binding site has previously been 

reported (Stewart et al., 2003), with increasing knowledge about the site 

being discovered over the past decade. The site is essentially pre-formed 

in HSA with little movement of the residues needed to accommodate the 
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metal ion. 111Cd-NMR experiments of HSA yield two signals at ~ 25-30 

ppm and another at 110-150 ppm, designated Site B and Site A 

respectively.  Site A has been identified as the high affinity Zn2+ binding 

site on HSA and an interdomain location was proposed based on analysis 

of the albumin crystal structures available. The amino acids involved are 

from two domains: His67 and Asn99 from domain I and His247 and 

Asp249 from domain II. It is important to note that this ligand set has also 

been identified in other Zn2+-binding enzymes such as human calcineurin, 

E. coli 5-endonucleotidase and kidney bean purple acid phosphatase 

(Stewart et al., 2003). Compared to Asp, Cys and His, Asn is a relatively 

weak and uncommon ligand for metal ions in proteins. Further evidence 

for the residues involved in the Zn2+ binding site was obtained using X-ray 

absorption fine structure (EXAFS) spectroscopy (Blindauer et al., 2009) 

which characterised it as a 5-coordinate site with oxygen and nitrogen 

ligands (Figure 1.5). In addition, mutations at His67 and Asn99 clearly 

affected the Zn2+ binding affinity, further confirming that these residues 

participate in metal binding (Stewart et al., 2003).  
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Figure 1.5 Zn
2+

 binding site located at the interface between domain I and domain 
II of HSA. Domain I is shown in blue and domain II is shown in red with the Zn

2+
 ion 

highlighted in magenta. The close-up image shows the 5-coordinate site composed of 
His67, Asn99, His247, Asp249 and a coordinating water molecule. The model was 
created using PyMOL v1.3 and based on the model published by Blindauer et al. (2009). 
 

Cd2+ can also bind to Site A but is readily displaced by Zn2+ as shown by 

113Cd-NMR spectroscopy (Martins and Drakenberg, 1982; Goumakos et 

al., 1991). Circular dichroism (CD) studies also indicated that it is a 

weaker binding site for Cu2+ and Ni2+ once the N-terminus has become 

saturated (Sadler and Viles, 1996) which was also confirmed by the work 

of Bal et al. (1998).  This is consistent with the findings of Masuoka and 

Saltman (1994) who demonstrated by equilibrium dialysis that the first 

equivalents of Zn2+ and Cu2+ do not bind to the same site. 

 

Site B 

 A high affinity Cd2+ site has been identified, Site B, but its location is yet 

to be fully characterised (Goumakos et al., 1991). The binding of Cu2+ or 

His67

Asp249

His247

Asn99

H2O



Chapter One 

14 
 

Zn2+ to HSA did not reduce its affinity towards Cd2+ which supported the 

idea of a site that preferentially bound Cd2+ (Goumakos et al., 1991). This 

was later confirmed by 113Cd-NMR data which showed that the peak for 

Site B was not supressed by the addition of 0.5-1.5 mol. equiv. of Zn2+ 

(Sadler and Viles, 1996). It has been proposed that the site consists of all 

oxygen ligands plus one or no nitrogen ligands, based on the fact that its 

111Cd chemical shift is 30 ppm (Öz et al., 1998; Stewart et al., 2003). A 

13C-NMR study with tripeptides suggested residues Asp35, Glu36 and 

His37 as good candidates for this binding site (Lakusta et al., 1980).  

 

Free thiol located on Cys34 

The final metal binding site that can be discussed is the only free thiol on 

the protein located at Cys34. The remaining 34 Cys residues are involved 

in the formation of disulfide bonds which are a characteristic trait of the 

albumin family.  The sulfur has a high affinity for ‘soft’ acids for example 

Au+, Ag+ and Hg2+. Previous workers have reported that metallodrugs can 

bind at this site, for example Pt2+ anticancer drugs (Pizzo et al., 1988; 

Esposito and Najjar, 2002) and also Au+ antiarthritic drugs (Christodoulou 

et al., 1994). Although Sadler and co-workers later showed that it was 

predominantly Met residues that were involved in cisplatin binding and 

only a minor amount of the drug was bound to Cys34 (Ivanov et al., 1998). 

A more recent study found that cisplatin is able to form a cross-link 

between His67 and His247 and that there is competitive binding between 

Zn2+ and Pt2+ at this site (Hu et al., 2011).  
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1.5.2 Fatty acid transport by HSA 

It was recognised as early as the 1940’s that HSA extracted from serum 

contained fatty acids (Kendall, 1941) but it was not until over a decade 

later that researchers began to understand the physiological significance 

of this (Gordon and Cherkes, 1956). These acids are endogenous 

molecules which are insoluble in aqueous environments (Vorum et al., 

1992) and therefore need to be transported around the blood by HSA. 

These molecules are the building blocks of fat in the body and a source of 

energy as their metabolism yields large quantities of adenine triphosphate 

(ATP). Few proteins are able to bind fatty acids and HSA has the ability to 

bind large amounts and with high affinity (Spector, 1975). Depending on 

the carbon chain length, they can be categorised as short-chain fatty 

acids (SCFA) with aliphatic tails of fewer than 8 carbon atoms, medium-

chain fatty acids (MCFA) with 8-14 carbons atoms and long-chain fatty 

acids (LCFA) with greater than or equal to 16 carbon atoms (Beerman et 

al., 2003). The total concentration of fatty acids in blood plasma is 

approximately 300 µM (Van der Vusse, 2009) although only 5-10 nM are 

unbound (Richieri and Kleinfield, 1995). Typically the most common fatty 

acids found in the blood under normal conditions are oleic acid (18:1), 

palmitic acid (16:0) and linoleic acid (18:2) with 66% comprising of 

unsaturated acids (Saifer and Goldman, 1961). Importantly, fatty acids 

can dissociate from HSA very rapidly during circulation (Demant et al., 

2002) which allows HSA to work as an effective buffer against 

fluctuations in concentration. This also ensures that fatty acids bound to 

HSA are readily available to cells (Spector and Soboroff, 1971).  
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1.5.3 Fatty acid binding sites 

Experimental evidence has indicated that fatty acid binding stabilises 

HSA against denaturation (Kragh-Hansen, 1981). Under normal 

physiological conditions, 0.1-2 moles of fatty acids are complexed to HSA, 

but seven sites have been identified by X-ray crystallography (Curry et al., 

1998). Five of these sites are proposed to be of high to moderate affinity 

where the molecules are anchored into the protein by polar interactions 

(Bhattacharya et al, 2000). There is no evidence of such interactions at 

the other two sites and therefore these are thought to be weaker binding 

sites. Figure 1.6 shows the distribution of the high affinity binding sites 

occupied by myristate molecules. FA1 is located in subdomain IB and 

FA2 is at the interface between IA and IIA. FA3 and FA4 are both located 

in subdomain IIIA and FA5 is in subdomain IIIB. Sites FA6 and FA7 are 

not shown in Figure 1.6, but  FA6 lies at the interface between IIA and IIB 

and FA7 in subdomain IIA (Curry, 2004).  

 
Figure 1.6 X-ray crystal structure of myristate-bound HSA. The protein structure is 
shown in the same colour scheme as previous figures. Myristate molecules are shown to 
occupy FA sites 1-5 (orange). The figure was created using PyMOL v1.3 and based on 
PDB 1BJ5 (Curry et al., 1998). 
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For many years, efforts have been directed towards quantifying the 

affinity of various fatty acids for HSA, even though difficulties occur as 

they are not readily soluble in aqueous media. Simard and co-workers 

carried out an NMR titration of HSA with 13C-labelled palmitate, which 

revealed that FA sites 2, 4 and 5 are the high affinity binding sites 

whereas 1, 3, 6 and 7 are the low affinity binding sites (Simnard et al., 

2006). This is most likely because sites 2, 4 and 5 provide the most 

enclosed environment and the aliphatic chain can sit in the pocket in 

almost a linear conformation (Van der Vusse, 2009).  

 

1.6 Conformational changes of HSA 

1.6.1 pH-induced conformational changes 

HSA is a flexible molecule and can undergo several conformational 

changes. One trigger for this change is the pH of the environment (Carter 

and Ho, 1994; Peters, 1995) and this has an impact upon both the 

secondary and tertiary structure of HSA. The five structures described in 

the literature are summarised in Table 1.2. The N-(neutral) form is 

dominant at physiological relevant pH of 7.0-7.5. As the pH drops to 4.0, 

it is converted into the F-form which was shown by CD spectroscopy to 

involve a decrease in helical content (Era and Sogami, 1998). As the pH 

becomes more acidic further unfolding occurs to produce the E-form, until 

the molecule appears to have expanded to its full extent at pH 2.5. At 

alkaline pH, an N-to-B transition occurs which is thought to involve a loss 

of rigidity in the protein structure. 
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Table 1.2 Albumin conformations that are dependent on pH 

Abbreviation Name pH of transition Characteristics 

E Extended 2.7 Fully expanded form with 
disulfide bonds intact 

F Fast 4.3 Fast migrating form 
observed on gels 

N Neutral/Normal 7.0 Normal heart-shaped 
conformation observed at 

physiological pH. 

B Basic 8.0 Subtle change in molecule 
as it loses rigidity; 

physiologically  relevant 

A Aged 10.0 Slower migrating form 
observed on gels 

 

Dockal and co-workers demonstrated by CD spectroscopy and 

fluorescence measurements that during the N to B transition, domains I 

and II experienced an isomerisation in tertiary structure whereas domain 

III was unaffected (Dockal et al., 2000). The biological relevance of these 

isoforms has yet to be fully determined, although they are thought to be 

important for ligand binding and release. 

 

1.6.2 Fatty acid-induced conformational changes 

It has been shown that fatty acid binding is another trigger for a 

conformational change. Curry and co-workers compared myristate-bound 

HSA to unliganded HSA and found that substantial domain rotations 

occurred within the protein. Both domains I and III were moved 

considerably relative to domain II and a helix connecting domains I and II 

showed substantial bending (Curry et al., 1998). Later this conformational 

change was also found to occur with fatty acids of varying chain lengths 

from C10.0 to C18:0 (Bhattacharya et al., 2000). A combination of 
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chemical cross-linking and mass spectrometry has also been used to 

probe the effect of unsaturated fatty acid binding to HSA and the results 

correlated well with the changes observed in the crystal structures 

(Huang et al., 2005). 

 

It is unclear whether these conformational changes have physiological 

significance, but one theory is that it could allow HSA receptors to 

differentiate between HSA molecules loaded with fatty acid and those that 

are fatty acid-free. This could have important implications for the delivery 

of fatty acids to cells (Curry et al., 1999). Overall, it is debatable whether 

HSA protein receptors on cells exist but there has been some evidence 

put forward (Schnitzer and Oh, 1994; de Château et al., 1996; Tiruppathi 

et al., 1996; Luiken et al., 1997). The conformational change could also 

be biologically important in that it may mediate the interactions with other 

molecules. An example that supports this is the case of thyroxine where 4 

molecules of the hormone bind to fatty acid-free HSA, but upon myristate  

association, a fifth binding site for the hormone was identified in a new 

cleft created by movement of the domains (Petitpas et al., 2003). 

Interestingly, it appears that it is binding to fatty acid site 2 (FA2) that is 

mainly responsible for the conformational changes observed. This is 

discussed further with respect to implications for Zn2+ binding to Site A in 

section 1.7.2.  
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1.7 Interactive binding of metal ions and fatty acids 

1.7.1 Evidence that fatty acid binding influences Zn2+ binding 

Evidence to date that fatty acids influence the occupation of Site A has 

been obtained from combinations of 111Cd-NMR spectroscopy, 1H-NMR 

spectroscopy, isothermal titration calorimetry (ITC) and molecular 

modelling. Zn2+ is spectroscopically inactive, therefore it can usefully be 

replaced with isostructural Cd2+ in order to gain information about metal 

binding.   

 

During early studies of 113Cd binding to various mammalian albumins it 

was noted that there were differences in the appearance of the NMR 

peak corresponding to the major Zn2+ binding site (Sadler and Viles, 

1996). It was realised that these differences could be attributed to the 

heterogeneity of the samples and that the relative affinity of Cd2+ for Site 

A was reduced in the presence of fatty acid. In light of this, Stewart and 

co-workers (2003) compared samples with high and low concentrations of 

octanoate by 111Cd-NMR spectroscopy and found that the peak for Site A 

was supressed by fatty acid loading whereas Site B was not affected. 

Later experiments with myristate loading showed that both peaks 

observed in the 111Cd-NMR spectrum of BSA were supressed indicating 

myristate binding had an impact upon metal binding to both Sites A and B 

(Figure 1.7,  Lu et al., 2012b).  
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Figure 1.7 Influence of myristate loading on metal binding to BSA by 
111

Cd-NMR 
spectroscopy. For dialysed BSA two peaks are observed: one for Site A and one for 
Site B. In the presence of myristate these peaks are significantly affected. (Lu et al., 
2012b). 

 

Further evidence for a relationship between fatty acids and Zn2+ was 

gained from ITC. Titrations with Zn2+ in the presence of 5 mol. equiv. 

octanoate gave similar data as titrations carried out in the absence of 

fatty acid. This was consistent with 1H-NMR data showing simultaneous 

binding of Zn2+ and octanoate as although the H1 resonances for His67 

and His247 were affected it was concluded that octanoate binding to FA2 

does not abolish Zn2+ binding to BSA (Lu et al., 2012b). In contrast, 

analysis of BSA-Zn2+ in the presence of myristate by ITC revealed that 

Zn2+ binding is dramatically decreased. This suggested that the chain 

length of the fatty acid is an important factor. One of the most important 

outcomes of ITC was the observation that Zn2+ binding was affected by 

the addition 1-2 molar equivalents of myristate which are physiologically 

relevant levels in plasma (Lu et al., 2012b).  
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1.7.2 Disruption of Site A due to occupation of FA2 

X-ray crystallography of fatty acid-bound albumin showed that the 

occupation of site FA2 was mainly responsible for the conformational 

change observed. Crucially, this is the only fatty acid site that is located 

between two domains (Curry et al., 1998) and is also next to Site A, the 

major Zn2+ binding site. At this site, the carboxylate end of the molecule 

interacts with Arg257 and Ser287 in subdomain IIA and the aliphatic tail 

interacts with Tyr150 in subdomain IB.  In order to accommodate the fatty 

acid anion, domains I and II have to move by 10 Å to form a cavity that is 

large enough.  This causes significant disruption of the Zn2+ binding site 

as the His247/Asp249 pair from domain II and the His67/Asn99 pair from 

domain I are moved apart  by 4-6 Å (Stewart et al., 2003). 

 

Molecular modelling has given an insight into how fatty acids with 

different chain lengths could have an impact on the Zn2+ binding site. A 

model with octanoate bound shows that both the short-chain fatty acid 

and Zn2+ could be accommodated in their binding sites without the need 

for any conformational changes (Figure 1.8 B). As a result Site A is still 

observed to be intact as the C8 chain is too short to act as a pin between 

the two half sites. In contrast, when myristate is bound, a conformational 

change has to occur to accommodate the longer fatty acid chain and Zn2+ 

binding is lost (Figure 1.8 A, Lu et al., 2012b). 
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Figure 1.8 Molecular modelling shows binding modes of fatty acids with different 
chain lengths to FA2. When myristate is bound in FA2, Site A is disrupted (A) due to a 
significant conformational change whereas when octanoate occupies the site, the Zn

2+
-

binding site is still observed to be intact (B). Adapted from (Lu et al., 2012b). 

 

1.7.3 Biological significance  

The experimental observations indicate that fatty acids could be a way of 

regulating Zn2+ speciation in blood plasma. HSA in healthy plasma carries 

0.1-2 fatty acid molecules per protein, but some disease states including 

obesity, diabetes, cancer or cardiovascular disease are characterised by 

elevated fatty acid levels (Richieri et al., 1993). This is also a symptom of 

analbuminemia, which is a deficiency of HSA. Therefore this allosteric 

fatty acid “switch” mechanism may be a reason for shifts in Zn2+ 

distribution in plasma. The consequences of Zn2+ displacement from HSA 

are currently unknown, but predictions can be made. Zn2+ is potentially 

toxic to cells, so therefore an elevated fatty acid concentration could 

cause an increase in the unbound Zn2+ concentration in plasma which 

could be detrimental. A so-far unexplored link is the possibility that an 

increase in “free” Zn2+ concentration could have an impact on the 

A B

Myristate bound = Site A disrupted Octanoate bound = Site A intact
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activities of other proteins that are Zn2+-dependent such as histidine-rich 

glycoprotein (Stewart et al., 2009). This is the basis for this project and 

the hypothesis will be discussed later in this Chapter.  

 

1.8 Histidine rich glycoprotein (HRG) 

1.8.1 Structure and function 

HRG is a 75 kDa plasma protein that was first isolated from human serum 

in 1972 (Heimburger et al., 1972) and belongs to the cystatin superfamily 

(Koide and Odani, 1987). It is synthesised in the liver and is present in 

blood at relatively abundant concentrations of 1.5-2 µM. The local 

concentration, however, could increase when it is released from activated 

platelets or close to thrombocytes activated during coagulation (Leung et 

al., 1983). During pregnancy HRG levels fall to half their normal 

concentration and then gradually return to normal after birth (Morgan et 

al., 1978a). It has been suggested that this may be related to delivering 

essential metal ions to the foetus during development (Morgan, 1981). At 

birth, the HRG concentration is 20% of that in adults and then increases 

with age (Corrigan et al., 1990). Thrombophilia (or hypercoagulability), a 

condition that increases the risk of blood clots, has been shown to be a 

consequence of a HRG deficiency (Shigekiyo et al., 1998). 

 

HRG is involved in the formation of multi-protein complexes that regulate 

numerous biological processes, which has earned it the title the “Swiss 

Army Knife” of mammalian plasma (Poon et al., 2011). Its multidomain 

structure lends itself to being able to interact with many ligands including 
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heme (Morgan, 1978b; Katagiri et al., 1987), Zn2+ (Morgan, 1978b), 

plasminogen (Lijnen et al., 1980), fibrinogen (Leung, 1986),  

thrombospondin (Leung et al., 1984), vasculostatin (Klenotic et al., 2010) 

immunoglobulin (Gorgani et al., 1997) and heparin (Lijnen et al., 1983).  

Table 1.3 summarises the roles of HRG including comments on the 

supporting experimental evidence. With regards to the immune system, 

HRG is involved in the clearance of circulating immune complexes (ICs) 

whereby antibodies form complexes with target antigen and facilitate the 

clearance of invading microorganisms (Poon et al., 2010). If ICs are not 

cleared, deposition at tissues can occur, a consequence of which are 

diseases such as arthritis and vasculitis (Poon et al., 2011). 

 

In vascular biology, HRG regulates angiogenesis, the formation of new 

blood vessels from ones that already exist (Olsson et al., 2004). The 

process has to be tightly controlled in order to maintain the correct 

balance of oxygen and nutrients being delivered to cells in the organism. 

Unregulated angiogenesis can be extremely detrimental and is 

associated with a number of pathological conditions including ischemia, 

rheumatoid arthritis, thyroiditis and cancer (Folkman, 1995; Carmeliet and 

Jain, 2000). An additional function that has been found is that HRG 

shows antibacterial activity and that the His-rich region (HRR) is a 

requirement for this function (Rydengård et al., 2007). 
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Table 1.3 Biological functions of HRG. 

Function Comments Reference(s) 

Angiogenesis  
inhibitor 

Tumour angiogenesis was reduced in 
mice in the presence of HRG and 
tumour growth was reduced by >60 %. 
 
A peptide derived from the HRR 
showed antiangiogenic activity 

Olsson et al., 2004 
 
 
 
 
Dixelius et al., 2006 

 
Anticoagulant 

 
Mice that were HRG-deficient showed 
increased blood coagulation and 
clotting 
 

 
Tsuchida-Straeten  
et al., 2005 

Antifibrinolytic 
effect 

HRG deficient mice showed greater 
spontaneous fibrinolytic activity in 
clotted blood 
 

Tsuchida-Straeten  
et al., 2005 

 
Antibacterial  

A peptide derived from the HRR, 
(GHHPH)4, had antibacterial effect 
against E. faecalis in the presence of 
Zn

2+
 

 
HRG-deficient mice were more 
susceptible to S. pyogenes bacteria. 
 

Rydengård et al., 2006 

 
 
 
 
Shannon et al., 2010 

Antifungal HRG has significant antifungal action 
against Candida 
 

Rydengård et al., 2008 

 

Apoptotic and 
necrotic cell 
clearance 

A complex consisting of both HRG 
and immunoglobulin G (IgG) was 
characterised and found necessary to 
aid necrotic cell uptake by monocytes 
 
HRG binds to cytoplasmic ligands 
exposed in necrotic cells – this 
interaction is mediated by the N-
terminal domain. 

Poon et al., 2010 
 
 
 
 
Jones et al., 2005a 

 
Endotoxin-
neutralising 
effects 

 
A 25-mer peptide from the HRR was 
shown to be an endotoxin 
lipopolysaccharide 
(LPS) antagonist 
 

 
Bosshart and 
Heinzelmann., 2003 

Formation of 
immune 
complexes 

HRG regulates the binding of 
monomeric IgG and IC to monocytes. 
 
HRG binds to IgG and C1q as shown 
by ELISA 
 

Gorgani et al., 1999 
 
 
Gorgani et al., 1997 

Regulates T-cell 
adhesion 

HRG binds strongly to human T-cells 
with the interaction enhanced by Zn

2+
 

Olsen et al., 1996 

 

 



Chapter One 

27 
 

No structure exists for HRG, however, suggestions have been made as to 

its domain structure from experimental observations. The different 

domains are illustrated in Figure 1.9 which is based on the models 

proposed in previous studies (Borza et al., 1996; Poon et al., 2011).  The 

proposed structure contains 2 N-terminal regions which show homology 

to cystatin-like domains: N1 which consists of residues 1-112 and N2 

from residues 113-225. The HRR occurs from residues 330-389 in the 

centre and is flanked by Pro-rich regions (PRRs). Finally, there is a C-

terminal domain from residues 440-507. Four intradomain and two 

interdomain disulfide bonds are distributed across the protein as well as 

six predicted N-glycosylation sites at various Asn residues. Plasmin 

readily cleaves the multi-domain protein into various fragments ranging 

from 9-67 kDa and after 30 minutes none of the intact protein remained in 

patients undergoing thrombolytic therapy (Smith et al., 1985).  

 

 

 
Figure 1.9 Multi-domain structure proposed for HRG. There are two cystatin-like N-
terminal domains (pink) and a His-rich region (HRR) in the centre of the molecule 
(green). The HRR is flanked by Pro-rich regions (PRRs; blue) and finally a C-terminal 
domain with a disulfide bond linking it back to the N-terminus. Carbohydrate recognition 
sites and disulfide bonds are highlighted. This is based on models by Borza et al. (1996) 
and Poon et al. (2011). 

N1 N2

PRR1HRRPRR2C

1 112 113 225

238303330389398431440507

= carbohydrate attachment (Asn45, Asn69, Asn107, Asn184, Asn326, and Asn327)

= disulfide bonds (Cys6-Cys486, Cys60-Cys71, Cys87-Cys108, Cys185-Cys399, 

Cys200-Cys223 and Cys306-Cys339)
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A 30 kDa fragment containing the HRR is released upon cleavage while 

the N- and C-terminal domains remain linked by disulfide bond Cys6-

Cys486 (Borza et al., 1996).  Far UV CD spectroscopy revealed that the 

N-terminal regions are mainly comprised of β-sheet and some α-helices 

which are similar to the structure of cystatin. The C-terminal region and 

both the HRR and PRR regions show a lack of regular secondary 

structure which can be attributed to their high Pro content. In fact, the C-

terminal appears to be predominantly random coil while a polyproline II 

helix has been suggested for the HRR and PRR which will be discussed 

in more detail below (Borza et al., 1996). 

 

1.8.2 The His-rich region of HRG 

Analysis of the primary structure shows that a quarter of the sequence is 

composed of His and Pro residues: 12.6 % His and 12.4 % Pro. The 

majority of these are found in the so-called HRR and PRR regions. The 

primary sequences of the HRR from mammalian species show 

conservation of the GHHPH pentapeptide with 12 tandem repeat units. 

This unusual domain shows some similarity to high molecular weight 

kininogen (HMWK), a protein from the blood circulation system which has 

a HRR that participates in coagulation and also has the ability to disrupt 

endothelial cell function (Zhang et al., 2000). The PRR shows similarity to 

Pro-rich proteins from parotid saliva, which have a repeating unit of 

QGPPP, with the sequence similarity between the two proteins being as 

high as 49% (Koide et al., 1986) Analysis of repeat units in protein 

sequences has shown that these are more common in eukaryotic 
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proteins than prokaryotic proteins and a reason for these could be that 

these proteins evolve quicker than those with non-repetitive units 

(Marcotte et al., 1998). In order for HRG to exert its anti-angiogenic 

properties the HRR is proteolytically released from the protein (Olsson et 

al., 2004) and smaller protein fragments have been found in preparations 

of HRG and identified by SDS-PAGE, which supports this idea 

(Kluszynski et al., 1997).  

 

The HRR and PRR lack conventional secondary structure such as α-

helices or β-sheet, probably due to the high Pro content. Borza and co-

workers carried out CD-spectroscopy on the HRR region obtained from 

proteolytic cleavage, which indicated the formation of a polyproline II helix 

(Borza et al., 1996). This type of secondary structure is characterised by 

a large negative peak at 203 nm and a small positive peak at 226 nm. 

This structure formation is due to a lack of basic and hydrophobic amino 

acids which precludes more compact protein folding. 

 

1.8.3 Metal binding to HRG 

Contrary to earlier observations (Morgan, 1981; Guthans and Morgan, 

1982) HRG does not appear to be a transporter for metal ions but there is 

inconsistent evidence for this. Analysis of hyperzincemic plasma showed 

that HRG concentrations were similar to that of normal plasma which is 

not in line with it being a major Zn2+ binder (Failla et al., 1982).  

Importantly however, its interactions with other binding partners are 

enhanced by Zn2+ but it is unclear how much Zn2+ would normally be 
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bound to HRG in vivo. Metal ion titrations and equilibrium dialysis have 

indicated that as many as 10 Zn2+ ions can bind to rabbit HRG (Morgan, 

1981) and human HRG (Horne et al., 2001) with the His residues being 

involved in metal coordination (Morgan, 1981). Evidence for His 

involvement has been demonstrated by chemically modifying the His 

residues with diethyl pyrocarbonate (DEPC) which caused HRG to lose 

the ability to bind both Zn2+ (Morgan, 1981; Burch et al., 1987) and 

heparin (Borza and Morgan, 1998). At physiological pH the imidazole ring 

is partially deprotonated therefore it is readily available for metal binding.  

It is likely that Zn2+ binding modifies the protein structure of HRG in order 

to mediate interactions with other biomolecules (Jones et al., 2005b). The 

His residues provide a good “anchorage point” for metal ions, particularly 

in unstructured proteins where the residues are far more accessible 

(Rowinska-Zyrek et al., 2013). It is thought that the extended 

conformation of the HRR allows easier metal ion access to the imidazole 

rings of the His residues. It has also been demonstrated that the binding 

of Zn2+ to the HRR is cooperative, so that the binding of the first Zn2+ ion 

could make it more favourable for subsequent Zn2+ ions to bind (Morgan, 

1981).   

 

As shown in Figure 1.10 the HRR from different species are highly 

conserved. There are some slight differences, however, which could 

suggest that there are differences in Zn2+ binding affinity. For example, 

human HRG has 12 GHHPH repeats whereas rabbit HRG has 15, and 

overall a longer HRR, which indicates that the latter could have the 
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capacity to bind more metal ions. Moreover, the repeating unit GHHPH is 

predominant in bovine, human, mouse and rat HRG whereas GPPPH is 

more common in rabbit HRG.  

 

 

Figure 1.10 Sequence alignment of the HRR of HRG from various mammalian 
species. Amino acids are coloured according to their chemical properties: hydrophobic 
(red), acidic (blue), basic (magenta), hydroxyl/sulfhydryl/amines (green).  Symbols 

represent conservation of amino acids: fully conserved (*), conservation between groups 

with strongly similar properties (:) and conservation between groups of less similar 
properties (.).  

 

In contrast, there is very little homology between the linker regions 

connecting the HRR and PRR thus highlighting the importance of these 

unusual domains with regards to the functionality of HRG (Hulett and 

Parish, 2002).  

 

The binding affinity of HRG for metal ions has been addressed by a 

number of research groups as summarised in Table 1.4, These indicate 

that HRG binds Zn2+ with logK ~ 5-6 which suggests it is a weaker metal 

binder than HSA. Although the binding of Zn2+ and Cd2+ showed a similar 

binding affinity, Morgan (1981) demonstrated that Zn2+ is the strongest 

binder of the two as it was able to inhibit heme binding to a much greater 

extent than Cd2+. The general consensus is that affinity data are difficult 

to obtain for HRG and these values may be underestimated due to the 

HUMAN    PLLPMSCSSCQHATFGTNGAQRHSHNNNSS-----DLHPHKHHSHEQHPHGHHPHAHHPH 354 

BOVINE   LPFPPPGLRCPHPPFGTKGNHRP---------------PHDHSSDE-------------- 263 

RABBIT   PLSPPFRPRCRHRPFGTNETHRFPHHRISVNI-IHRPPPHGHHPHGPPPHGHHPHGPPPH 343 

RAT      PQLPPGYP----PHSGANRTHRPSYNHSCNEHPCHGHRPHGHHPHSHHPPGHHSHGHHPH 346 

MOUSE    PQMLPGHS----GPSGTNRSHRPPHNHSCNEHPCHGQHPHGHHPHGQHPHGHHPHGQHPH 346 

                        *::  :*                ** * ..                

 

HUMAN    -------------------EHDTHRQHPHGHHPHGHHPHGHHPHGHHPHGHHPHCHDFQD 395 

BOVINE   ------------------------------HHPHGHHPHGHHPHGHHPHGHHPPDNDFYD 293 

RABBIT   GHPPHGPPPRHPPHGPPPHGHPPHGPPPHGHPPHGPPPHGHPPHGPPPHGHPPHGHGFHD 403 

RAT      G--------------HHPHSHHSHGHHPPGHHPHGHHPHGHHPHGHHPHGHHPHGHDFLD 392 

MOUSE    G--------------HHPHGQHPHGHHPHGQHPHGHHPHGHHPHGDHPHGHHPHGHDFLD 392 

                                       : ***  **** ***  **** *  :.* * 
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fact that binding of Zn2+ and Cd2+ to the protein show cooperativity. 

Additionally, most work has been carried out using rabbit HRG, as the 

protein is more abundant in rabbit serum, but this has a longer HRR 

region compared to the human form. 

 

Table 1.4 Stability constants for metal ion-HRG complexes 

Metal ion pH of study Species logK Reference 

Cu 7.4 Rabbit 6 Morgan, 1981 

Cd 7.4 Rabbit 6
a
 Morgan, 1981 

Zn 7.4 Rabbit 6
a
 Morgan, 1981 

Zn 7.1 Rabbit 5 Guthans and Morgan, 
1982 

Zn 7.4 Rabbit 6-6.6 Burch and Morgan, 1985 

Zn 7.4 Human 5.4 Horne et al., 2001 
 

a 
Values must be taken with caution as due to cooperative binding of these metal ions 

the apparent Kd was qualitatively determined from competition experiments. However, 
these are still in good agreement with other estimations.  

 

1.8.4 Zn2+ mediates HRG-ligand interactions 

It has been recognised for some time that metal ions have a strong 

influence on the interactions between HRG and its binding partners.  

Binding to heparin was studied by Borza and Morgan (1998) who 

demonstrated that both Zn2+ and Cu2+ were effective at promoting this 

interaction. Ni2+ and Co2+ had some influence on the interaction, but not 

to the same extent as Zn2+ and Cu2+. Other divalent metal ions including 

Mn2+, Ca2+ and Mg2+ had no effect on promoting the binding of heparin. 

Additionally, this could have clinical significance as a combination of HRG 

and Zn2+ was shown to neutralise heparin although no appreciable effect 

was observed at normal plasma levels (Fu and Horne, 2002). The 

presence of Zn2+ ions enhanced the binding of a His-rich peptide to 
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tropomyosin with a suggested mechanism involving HRG becoming 

positively charged upon Zn2+ binding which facilitates its interaction with 

negatively charged tropomyosin (Doñate et al., 2004). Furthermore, the 

more recently discovered antibacterial activity of HRG was facilitated by 

low pH and Zn2+ (Rydengård et al., 2007). It has also been revealed that 

Zn2+ greatly increased the binding of HRG to platelets. As high 

concentrations of Zn2+ have been detected in activated platelets 

(Gorodetsky et al., 1993) this is a physiologically relevant function that 

could occur at blood clotting sites (Horne et al., 2001).  

 

1.8.5 Could the fatty acid “switch” mechanism be involved in the 

regulation of HRG functions? 

Elevated fatty acid levels may well result in an increase in plasma Zn2+ 

concentration through the fatty acid “switch” mechanism described above. 

An increase in the plasma Zn2+ concentration could allow more of the 

metal ion to associate with HRG and consequently trigger its interactions 

with its functional partners (Stewart et al., 2009). The proposed interplay 

between these two proteins is summarised in Figure 1.11. Even though 

HSA binds to Zn2+ with a greater affinity than HRG, the binding constants 

are not completely dissimilar so even small alterations in fatty acid levels 

could influence whether Zn2+ is bound to HSA and HRG. This suggested 

mechanism is biologically relevant as free fatty acids have been shown to 

be elevated during diseases such as cancer, diabetes and obesity (Brown 

et al., 1983; Richieri et al., 1993; Boden and Shulman, 2002). 
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Figure 1.11 Mechanism of possible HRG regulation by the levels of plasma fatty 
acids. An increase in fatty acid levels could affect the Zn

2+
 distribution in blood plasma 

and cause more Zn
2+

 to associate with HRG (Stewart et al., 2009). 

 

Additionally, an increase in fatty acids is also observed with myocardial 

ischemia, a heart disorder where a decrease in blood flow to the heart 

reduces its oxygen supply and hence fatty acid consumption 

(Hendrickson et al., 1997). When this is taken together with the fact that 

the local pH also drops during ischemia (Xia et al., 1996), which could 

cause HRG to become more protonated, then a scenario where fatty 

acids may affect the activities of HRG is even more viable.    

 

This model is based on the assumption that HSA is the major Zn2+ carrier 

in plasma due to its abundance and HRG would only be Zn2+ bound if 

conditions in plasma became abnormal. However, there is conflicting 

evidence for this which needs to be taken into account.  Indeed, Guthans 

and Morgan (1982) showed by equilibrium dialysis that when HSA was in 

10-fold excess over HRG, 88 % of the Zn2+ present was found to be 

bound to rabbit HRG. Altering the HRG:HSA ratio to 1:100 still resulted in 
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equal concentrations of Zn2+ (29 µM) associating with both HSA and HRG. 

This led to the suggestion that HRG could also been an important 

competitor for Zn2+ in plasma although that fatty acid content of HSA used 

in this study is unclear.   

 

1.9 Research motivation and aims 

The aim of this work is to study the interactive binding of metal ions and 

fatty acids to albumin and to explore its biological significance. In 

particular native mass spectrometry will be used as a new approach to 

investigate metal ion binding to HSA directly.  Overall, structural details 

on the biomolecular interactions of HRG are lacking although there have 

been numerous studies linking it to important physiological functions.  

The possible link between the fatty acid “switch” mechanism and the 

HRG-Zn2+ interaction could have implications for Zn2+ transport in blood 

plasma although there is no experimental evidence for this as yet. The 

reported binding constants for HSA and HRG give no clear answer as to 

whether Zn2+-dependent HRG-complex formation would only occur as a 

result of elevated fatty acids and therefore this issue needs to be 

addressed.  

 

Objectives: 

1. To optimise mass spectrometry methods to study non-covalent HSA 

complexes under native conditions. This has mainly been applied in 

previous studies to investigate the binding of molecules that form 

covalent bonds with albumin (Chapter 3). 
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Can Zn2+ binding to HSA be observed in the gas phase? Do fatty 

acids have any effect on this?  

 

2. To utilise travelling wave- ion mobility mass spectrometry as a novel 

technique to study HSA complexes (Chapter 4). 

Can any conformational changes be detected in the presence of metal 

ions or fatty acids? 

 

3. To identify a suitable peptide mimic of the HRR of HRG and study its 

metal binding properties. There is currently very little structural 

information on HRG and its biomolecular interactions therefore this 

work will attempt to address this (Chapter 5).  

What are the metal binding properties of the HRGP330 peptide and 

can these be related to its biological functions? Do any structural 

changes occur upon metal binding? 

 

4. To investigate the distribution of metal ions between the peptide mimic 

of HRG and HSA and explore if fatty acids have an effect on this 

(Chapter 6).  

Is the peptide mimic of HRG able to compete with HSA for metal ions? 

Do fatty acids have any effect on the distribution?   
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1. Chapter 2 
Experimental Methods 

 

2.1 Materials and chemicals 

Wherever possible, reagents of the highest quality were used. If not 

stated, chemicals were obtained from either Fisher Scientific (UK) or 

Sigma Aldrich (UK). 

 
 

2.2 Methods for defatting HSA 

2.2.1 Dialysis of HSA 

Recombinant HSA (Recombumin™) was a gift from Novozymes® (batch 

number PDP090078) containing 31.1 mM octanoic acid, 141 mM sodium 

chloride and 15 mg/L polysorbate 80. The dialysis tubing acquired from 

Medicell International Ltd was prepared by boiling in 10 mM 

ethylenediaminetetraacetic acid (EDTA) for 1 hour, followed by storage in 

a fresh EDTA solution. SnakeSkin™ dialysis tubing (Pierce Protein 

Biology Products, 10 KDa MWCO) was used without any further 

preparation. HSA stock solution (5 ml) was diluted to 20 ml in water and 

transferred to the tubing. Dialysis was carried out against 5 L of 100 mM 

ammonium bicarbonate for 24 hours at 4 °C with at least two buffer 

changes. Samples were frozen with liquid nitrogen, lyophilised by freeze-

drying and stored at -20 °C.  
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2.2.2 Charcoal treatment 

The method used was based on that described (Chen, 1967) with slight 

modifications. HSA in distilled water was acidified to pH 3.0 using 

microlitre aliquots 0.1 M HCl. An equal weight of activated charcoal was 

added and the mixture stirred on ice for 1 hour. Charcoal was removed 

from the solution by centrifugation (Sorvall RC6 floor standing centrifuge) 

at 30,000 x g for 20 minutes at 2 °C. The solution was filtered through a 

0.22 µm filter and neutralised by addition of 0.2 M NaOH. Desalting into 

the appropriate buffer was achieved using a PD-10 column. 

 

2.3 Characterisation of HSA 

2.3.1 SDS-PAGE 

Two kits were used: the NuPAGE® system from Invitrogen and Biorad. 

Pre-cast gels NuPAGE® gels (10 well, 4-12% gradient Bis-Tris gels) were 

assembled in the electrophoresis apparatus (OmniPAGE mini, Geneflow). 

Ten microlitres of SeeBlue2® pre-stained molecular weight marker was 

loaded into the first well. Samples were mixed 1:1 with NuPAGE 4 x LDS 

sample buffer and loaded onto additional sample wells. Gels were run at 

200 mV for 35 minutes and then stained overnight with Coomassie Blue 

solution (0.25 g/L Coomassie Blue R-250, 10% acetic acid and 50% 

methanol). Gels were destained in distilled water overnight with agitation.  

 

Mini-Protein TGX pre-cast gels were assembled in the Biorad apparatus. 

Ten microlitres of Precision Plus Protein™ Dual Colour Standard was 

used as a reference. Samples were mixed 1:1 with the Laemmli sample 
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buffer and loaded onto the gel. Gels were allowed to run for 35 minutes at 

200 mV. Staining was achieved as described previously.  

 

2.3.2 Determining HSA concentration 

Protein concentration was estimated by measuring the absorption at 279 

nm and using a value of A279 (1 mg/ml, 1 cm) = 0.556 for HSA (Sadler et 

al., 1994).  

 

2.3.3 Assay for free thiol content 

A modified colorimetric assay was used to determine the free thiol 

concentration (Ellman, 1958). HSA samples (100-200 µL) were diluted 

with 2.6 ml of 0.1 M Tris-Cl (pH 7.05 containing 1 mM EDTA) and 200 µL 

of 2.5 mM DTNB (dissolved in 50 mM ammonium acetate, pH 5.0, 1 mM 

EDTA) was added. Milli-Q water was used to make the total sample 

volume up to 3 ml. The solution was left to react for 10-15 minutes at 

room temperature before measuring the absorbance at 412 nm (Biomate 

3 spectrophotometer, Fischer Scientific).  An 800 µM cysteine stock, 

containing 1 mM EDTA, was used to prepare standards of known thiol 

concentration.  Thiol concentration was calculated through calibration 

using these standard solutions. This was then divided by the protein 

concentration to give the free thiol content of the HSA sample. 

 

2.3.4 Reaction with DTNB for ESI-MS analysis 

Lyophilised HSA was dissolved in 2.5 ml potassium dihydrogen 

phosphate (100 mM, pH 8.0). Forty mol. equiv. of DTNB (5,5'-Dithio-
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bis(2-nitrobenzoic acid) were added to a 30 µM solution of HSA and 

incubated at room temperature for an hour. Excess DTNB was removed 

using a PD-10 column. Confirmation that the free thiol of Cys-34 had 

been covalently modified was obtained using ESI-MS (theoretical mass of 

HSA-NTB = 66,635 Da).  

 

2.4 ESI-MS of HSA  

2.4.1 Desalting with PD-10 column 

Lyophilised samples were reconstituted in 10 mM ammonium acetate (pH 

7.4). The PD-10 column (Sephadex® G-25, Amersham Biosciences) was 

equilibrated with the appropriate buffer (25 ml) and loaded with 2.5 ml of 

protein sample. Elution was achieved with 3.5 ml of the buffer solution. 

The column was washed with a further 25 ml of buffer, and stored at 4 °C. 

If required, protein eluate fractions were concentrated using Amicon® 

Ultra-4 centrifugal filter units (Millipore) with a 30 kDa MWCO.  

 

2.4.2 Sample preparation  

Native HSA was prepared at a concentration of 2.5-5 µM in 10 mM 

ammonium acetate (~ pH 7.4) with 10% methanol (v/v). To denature the 

protein, 1 % formic acid and 50% organic solvent (methanol or 

acetonitrile) was used. All buffers used for sample preparation were 

filtered through a 0.22 µm sterile (Millipore) filter to prevent blocking of the 

electrospray needles. Prior to analysis, samples were centrifuged at 

13,200 rpm for 2 minutes to ensure any precipitate was removed from 

solution.  
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2.4.3 Acquiring data: microTOF 

Mass spectra were recorded on a microTOF instrument (Bruker Daltonics, 

Germany) operating in the positive mode. Samples were introduced into 

the syringe pump with injection into the instrument at a flow rate of 240 

µL/hour. The following parameters were used:  source temperature = 

195 °C; capillary exit = 150 V; skimmer 1 = 50 V; skimmer 2 = 23.5 V; 

hexapole RF = 450 V; hexapole 1 = 24 V; hexapole 2 = 20.9 V; transfer 

time = 88 µs. Data were acquired for 1.2-1.5 minutes over an m/z range 

of 1500-5000. Raw data were averaged and deconvoluted using Bruker 

Daltonics Data Analysis v3.3.  

 

2.4.4 Acquiring data: maXis-UHR-TOF 

Positive electrospray mass spectra were acquired on a maXis ultra-high 

resolution time-of-flight (UHR-TOF) instrument (Bruker Daltonics, 

Germany) calibrated with Tune Mix for positive mode ESI (Bruker 

Daltonics). A syringe pump injected the sample into the mass 

spectrometer at a rate of 120 µL/hour. Data were collected for 

approximately 2 minutes over an m/z range of 1500-5000. This was 

extended to 7000 m/z to observe the dimer charge states. The following 

conditions were used for the Q-TOF mass spectrometer: dry gas = 4.0 

L/min; source temperature = 200 °C; funnel RF = 400 Vpp; multipole RF = 

400 Vpp; ISCID = 100 eV; collision cell energy = 10 eV; collision RF = 

1800 Vpp; ion cooler = 650 Vpp; transfer time = 140.4 µs; pre pulse 

storage = 20 µs.  
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Online nanoESI was also used to record spectra using an TriVersa 

NanoMate® system (Advion Biosciences, Ithaca, NY, USA) coupled to 

the maXis  instrument.  Aliquots of 5 µM protein samples (20 µL) were 

pipetted into the wells on the sample-loading plate from which 5 µL was 

taken up by the tip, in an automated process, and infused at a flow rate of 

approximately 120 nL/min. Spraying voltages in the range of 1.65 – 1.75 

kV were used and a gas pressure of 0.65 psi applied which gave ~ 100 

nA current. Data were acquired in the positive mode over an m/z range of 

1500-5000 and processed using the maximum entropy deconvolution 

algorithm (MaxEnt) within Bruker Compass Data Analysis v4.0.  

 

2.4.5 Identifying fatty acids in the low mass range  

To optimise the conditions for identifying small molecules in HSA samples, 

the conditions were adjusted as follows: dry gas = 4.0 L/min; source 

temperature = 200 °C; funnel RF = 400 Vpp; multipole RF = 400 Vpp; 

ISCID = 0 eV; collision cell energy = 10 eV; collision RF = 400 Vpp; ion 

cooler = 125 Vpp; transfer time = 100 µs; pre pulse storage = 5 µs. 

 

2.5 Preparation of HSA complexes 

2.5.1 Metal ion-bound HSA 

HSA solutions were incubated with 1-2 molar equivalents of the 

appropriate metal ion from the following stock solutions: 

Zn(CH3COO)2.2H2O, Cd(CH3COO)2.2H2O, Cu(CH3COO)2.H2O. Stock 

solutions were filtered through 0.22 µm filters prior to use. Following 
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incubation for 2 hours at 37 °C, unbound metal ions were removed by 

passage through a PD-10 column.   

 

2.5.2 Fatty acid-bound HSA 

Stock solutions of octanoic acid and myristic acid were prepared in Milli-Q 

water and heated to 60 °C in a water bath. The solution was cooled to 

37 °C and 1-5 mol. equiv. of fatty acid were added to HSA and incubated 

at 37 °C in a water bath for 2-5 hours.  

 

2.5.3 pH titration with HSA 

A 5 µM sample of Zn-HSA was titrated with microlitre additions of 1 % 

acetic acid (v/v). An aliquot was taken in order to measure the pH 

(Hamilton Biotrode pH electrode) and the pH of the ESI-MS sample was 

measured directly following analysis.  

 

2.6 Determination of metal: protein stoichiometry by ICP-OES 

Following incubation with the appropriate ligands, HSA samples were 

buffer exchanged into 10 mM ammonium acetate (pH 7.4) using a PD-10 

desalting column. ICP-OES (Inductively coupled plasma-optical emission 

spectroscopy) analyses were performed using an Optima 5300DV (Perkin 

Elmer). Ultrapure 72% nitric acid was obtained from in-house acid 

distillation. Samples were diluted with ultrapure 0.1 M HNO3 and analysed 

for S, Zn, Cd and Cu. Standards of these elements were prepared 

gravimetrically from high grade 10,000 ppm stocks in the range of 0.2-5 

ppm. The samples were measured in triplicate and then averaged. The 
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raw data (presented in mg/L) was divided by the atomic mass of the 

element to obtain the concentration in mmol/L. Protein concentration was 

estimated by dividing the sulfur concentration by the number of sulfur-

containing residues (41 for HSA). Subsequently, the number of metal ions 

bound to the protein was calculated by dividing the metal concentration 

by the protein concentration. 

 

2.7 NMR experiments with HSA 

2.7.1 1-D 1H NMR spectroscopy 

Lyophilised samples of HSA were reconstituted in 100% D2O and 

incubated at 4 °C overnight to minimise amide resonances. The sample 

was lyophilised again and stored at -20 °C. NMR samples were prepared 

to a concentration of 1 mM in 50 mM [D11]Tris-Cl, 50 mM NaCl, 100% 

D2O (v/v), pH 7.2. The pH* was measured using a pH meter calibrated 

with H2O buffers and was not corrected for the effect of deuterium. The 

corresponding pD value can be calculated by adding 0.41 to the observed 

pH* (Glasoe and Long, 1960). Additions of ligands were made as stock 

solutions in the same buffer. The pH* values were monitored before and 

after addition of ligands. Spectra were obtained on a Bruker Avance 700 

UltrashieldTM spectrometer using 8k complex data points over 256 scans. 

The data was apodized, firstly with a squared-sinebell function followed 

by a Gaussian function for resolution enhancement and then Fourier-

transformed.  
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2.7.2 111Cd-NMR spectroscopy 

Dialysed HSA was solubilised into 50 mM Tris-Cl, 50 mM NaCl with 10% 

D2O (pH 7.2). Proton decoupled 1-D 111Cd-NMR spectra were obtained 

using a Bruker DRX500 spectrometer fitted with a broadband observe 

(BBO) probe. The operating frequency for 111Cd is 106.037 MHz and the 

pulse sequence employed inverse gated decoupling. Data were acquired 

at 37 °C and a spectral width of 300 ppm was used with 8k complex data 

points and 98k scans. Spectra were referenced using an external 

standard of 0.1 M Cd(ClO4)2. The data was zero-filled to 32k data points 

and apodized using exponential multiplication with a line-broadening 

factor of 90 Hz. Spectra were processed using TOPSPIN 2.0 provided by 

Bruker. 

 

2.8  TWIM-MS of HSA complexes 

2.8.1 Experimental parameters 

Samples of metal- and fatty acid-bound HSA were prepared according to 

sections 2.5.1 and 2.5.2. For TWIM-MS, 30 µM HSA samples were buffer 

exchanged into 200 mM ammonium acetate (pH 7.4). Ten microlitres was 

injected via a nanoflow source into a Synapt HDMS G2 system (Waters, 

Corporation, Milford, MA, USA). The instrument was operated in the 

positive mode with a source temperature of 90 °C. The following 

instrumental conditions were used: backing pressure 5 mBar; capillary 

voltage 1.5 kV; cone voltage 80 V; helium cell gas flow 180 mL/min; IMS 

cell gas flow 90 mL/min; travelling-wave height 40 V and travelling wave 
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velocity 700 m/s. A mass acquisition range of 500-5000 m/z was used. 

Data were processed using MassLynx v4.1 provided by Waters. 

 

2.8.2 TWIM-MS calibration: sperm whale myoglobin 

Arrival time distributions (ATDs) were extracted for each ion of interest. 

Calibration was achieved using 10 µM sperm whale myoglobin in 50% 

acetonitrile with 0.2% formic acid which was measured under the same 

conditions as in section 2.8.1. The calibration procedure followed has 

been described previously (Thalassinos et al., 2009).  

 

2.8.3 Estimation of theoretical cross sections using MOBCAL 

Theoretical calculations for the rotationally-averaged collision cross-

section were carried out using MOBCAL, a program to calculate 

mobilities (Mesleh et al., 1996; Shvartsburg and Jarrold 1996). These 

were carried out by Matthew Edgeworth. PA and EHSS approximations 

were performed on published X-ray crystal structures 1AO6 (Sugio et al., 

1999) and 1BJ5 (Curry et al., 1998) from the RCSB Protein Data Bank 

(www.rcsb.org, Berman et al. 2000).  

 

2.9 Purification of the synthetic peptide HRGP330 

2.9.1 Reverse phase-high performance liquid chromatography  

A crude synthetic peptide from the His/Pro-rich region of HRG was 

synthesized at the Keck Biotechnology Research Facility (Yale University, 

USA). The sequence is shown below and included an acetylated N-

terminus and amidated C-terminus. 
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Ac-DLHPHKHHSHEQHPHGHHPHAHHPHEHDTHRQHPH-CONH2 

 

The crude peptide was purified using reverse phase high performance 

liquid chromatography (RP-HPLC) on an Agilent 1100 instrument with 

HPLC grade solvents. Crude peptide (5 mg) was solubilised in 20% 

acetonitrile with 0.1% TFA. Aliquots of 50 µL were injected onto a Jupiter 

Proteo 90 Å C12 column (250 x 4.6 mm, Phenomenex) equilibrated with 

95% of the aqueous mobile phase (H20 + 0.1% TFA) and 5% organic 

mobile phase (Acetonitrile + 0.1% TFA). The peptides were eluted at 1 

ml/min using the gradient in Table 2.1 and elution monitored at 220 nm. 

Fractions were analysed for HRGP330 using a microTOF instrument 

using the same parameters described in section 2.4.3 but over a mass 

range of 400-5000 m/z.  

 

Table 2.1 Gradient used for purification of HRGP330 by RP-HPLC 

Time (mins) % Organic Mobile Phase 

0 5 
20 55 

40 100 

45 100 

50 5 

 

2.9.2 Lyophilisation of peptides 

Fractions containing HRGP330 were combined in a round bottomed flask 

and the acetonitrile/TFA removed on a rotary evaporator for 10 minutes. 

The solution was aliquoted into acid-washed Eppendorfs and freeze-dried. 

The dried peptide was stored at -20 °C until required. 
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2.9.3 Estimating HRGP330 concentration 

HRGP330 has no absorbance at 280 nm due to the lack of Cys, Trp and 

Tyr residues. Scopes’ Equation (1) was used to estimate the 

concentration by measuring the absorbance at 205 nm (Scopes, 1974). 

The lyophilized peptide was reconstituted in the appropriate aqueous 

buffer before the absorbance was measured. 

 

       ⁄    
    

      
 

 

c = concentration; A = absorbance; b = optical path length (cm) 

Equation 1 
 

2.10 Metal ion-binding experiments with HRGP330 

2.10.1 Desalting HRGP330 samples  

Lyophilized HRGP330 was reconstituted in 10 mM ammonium acetate 

(pH 7.4). Desalting was achieved using 5 ml polyacrylamide desalting 

columns with a 1.8 kDa exclusion limit (Pierce Protein Biology Products). 

The columns were inverted several times to resuspend the resin and then 

left to settle for 10 minutes. The storage solution (0.02% sodium azide) 

was removed from the column and it was equilibrated with 50 ml 10 mM 

ammonium acetate (pH 7.4). HRGP330 (0.5 ml) was loaded onto the 

column and 0.5 ml fractions collected. Emergence of peptide from the 

column was monitored by measuring the absorbance at 220 nm. The 

columns were regenerated by washing with 50 ml of buffer and stored at 

4°C.  
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2.10.2 Metal ion titrations by ESI-MS 

Metal stocks of Zn(CH3COO)2.2H2O, Cd(CH3COO)2.2H2O and 

Cu(CH3COO)2.H2O were prepared in Milli-Q water at a concentration of 

20 mM.  Microlitre aliquots were added to HRGP330 samples to achieve 

varying metal:peptide ratios. Samples were incubated at room 

temperature for 2 hours. Spectra were acquired using a maXis-UHR-TOF, 

as outlined in section 2.4.4, with parameters adjusted to suit smaller 

proteins. A syringe pump injected the sample into the mass spectrometer 

at a rate of 90 µL/hour. Raw data were collected for approximately 1-1.5 

minutes over a m/z range of 500-1500. The following conditions were 

used for the Q-TOF mass spectrometer: Dry gas = 4.0 L/min; dry gas 

temperature = 180 °C; funnel RF = 400 Vpp; multipole RF = 400 Vpp; 

collision cell energy = 10 eV; collision RF = 1300 Vpp; ion cooler = 650 

Vpp; transfer time = 148.4 µs. The data were deconvoluted, smoothed 

and baseline subtracted using Bruker Compass Data Analysis v4.0. 

 

2.10.3 pH titration of Zn5-HRGP330 by ESI-MS 

HRGP330 (20 µM) was incubated with 5 mol. equiv. of 

Zn(CH3COO)2.2H2O and desalted as described in section 2.10.1. 

Microlitre additions of 1% acetic acid were added to reduce the pH and 

spectra acquired for 2 minutes at each point. The pH range investigated 

was 2-7 and was double-checked for each sample following ESI-MS 

analysis.  
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2.10.4 CD spectroscopy of HRGP330 

Lyophilized HRGP330 samples were reconstituted in 10 mM sodium 

phosphate buffer (pH 7.4) and diluted to a concentration of 11 µM. Far-

UV CD spectra were measured on a J-720 spectropolarimeter (Jasco Inc, 

Easton, MD, USA) using quartz cuvettes with a 1 mm pathlength and a 

temperature of 20 °C. Spectra were recorded over a range of 180-260 nm 

with a data pitch of 0.2 nm, bandwidth of 1 nm, a scanning speed of 100 

nm/min and a response time of 1 s. Sixteen scans were averaged and the 

spectrum of the buffer was subtracted to give the final corrected spectrum. 

Titrations were carried out by adding microlitre additions of ZnCl2.  

 

2.10.5 Comparison of apo- and holo-HRGP330 using TWIM-MS 

Samples of Zn2+-bound HRGP330 were prepared using the same 

procedure as described in section 2.10.2.  Ten microlitres of 10 µM 

HRGP330 in 10 mM ammonium acetate (pH 7.4) was injected via a 

nanoflow source into a Synapt HDMS G2 system (Waters Corporation, 

Milford, MA, USA). The instrument was operated in the positive mode 

with a source temperature of 90 °C. The following instrumental conditions 

were used: backing pressure 2 mBar; capillary voltage 1.2 kV; cone 

voltage 40 V; helium cell gas flow 180 mL/min; IMS cell gas flow 90 

mL/min; travelling-wave height 40 V and travelling wave velocity 700 m/s. 

A mass acquisition range of 200-1500 m/z was used. To calibrate the ion 

mobility data 10 µM polyalanine in 50% acetonitrile was used. Data were 

analysed and processed using MassLynx v4.1 provided by Waters. 
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2.11 Comparison of apo- and holo-HRGP330 by NMR spectroscopy 

2.11.1 NMR sample preparation 

Samples of HRGP330 (0.3-0.5 mM) were prepared in protein NMR buffer: 

50 mM [D11]Tris-Cl, 50 mM NaCl, 10% D2O, pH 7.4. The pH was adjusted 

if necessary using 1 M DCl or 1 M NaOD and the pH measured prior to 

experiments. Aliquots of ZnCl2 from a 55 mM stock solution were added 

to HRGP330 at varying metal ion:peptide ratio. The pH was adjusted with 

1M DCl or NaOD and samples were allowed to equilibrate for 20 min 

before being spun to remove any aggregated protein. 

 

2.11.2 1-D 1H NMR spectroscopy 

Spectra were recorded on a Bruker Avance 700 Ultrashield™ 

spectrometer which has an operating frequency of 700.13 MHz for 1H. 

Suppression of the water signal was achieved using excitation sculpting 

with gradients (Hwang et al., 1995).  1-D spectra were obtained over 

various temperatures (5-35 °C) using 65k complex data points, 128 scans 

and a spectral width of 15 ppm. Spectra were processed using TOPSPIN 

2.0 provided by Bruker.  

 

2.11.3 2-D homonuclear [1H, 1H]  NMR spectroscopy 

2-D [1H,1H] total correlation (TOCSY) and nuclear Overhauser (NOESY) 

spectra were acquired over 32 scans with 4k data points in the F2 

dimension and 512 increments in F1. The spectral width was 13 ppm in 

both directions. A spin lock of 60 ms for the TOCSY and mixing time of 

500 ms for the NOESY were used. The raw data were processed in 
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TOPSPIN 2.0 with apodization using a squared sine-bell function and 

Fourier-transformed with 2k x 2k data points in F2 and F1. Baseline 

correction was employed in both directions. Analysis was carried out 

using Sparky v3.114 (Goddard and Kneller, 2007).  

 

2.11.4 Chemical shift referencing using residual water  

The chemical shift of water is typically 4.766 at pH 7.0, 298 K and no salt 

(Wishart et al., 1995). This chemical shift is affected by temperature (-

11.9 +/- 0.3 ppb/K), pH (-2 ppb/pH unit in the range of 2-7) and salt 

concentration (-9 ppb/100 mM salt). Residual water can be used as an 

internal standard and the shift is calculated according to Equation 2 

(where pH = 6.20, temperature = 5 °C and salt concentration = 50 mM).  

 

                                                
                    

Equation 2 
 

2.12 Electrospray-tandem mass spectrometry (ESI-MS/MS) 

MS/MS experiments were carried out on a dual ion funnel amazon speed 

ETD instrument (Bruker, Coventry, UK) operating in positive mode. 

HRGP330 was infused at a rate of 6 µL/min and acquisitions were 

performed using a scan speed of 8,100 m/z/sec-1. The following 

parameters were used: trap drive = 71.8; capillary exit = 140 V; source 

temperature = 180 °C. An isolation width of 4 m/z was used to select the 

ion of interest and CID was performed by applying an amplitude of 1.0 V. 

Fluoranthene was used as the electron transfer dissociation (ETD) 

reagent with an ETD reaction time of 100-120 ms followed by a proton 
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transfer reaction (PTR) time of 75 ms. Monoisotopic peaks were assigned 

using the SNAP™ peak detection algorithm.  Spectra were analysed 

using BioTools v3.2 and Sequence Editor provided by Bruker.  

 

2.13 Interaction of HRGP330 with a heparin dodecasaccharide  

An ammonium salt of an unsaturated heparin dodecasaccharide was 

obtained from Dextra Laboratories (Reading, UK) which had been 

produced by enzyme cleavage (purity ≥ 95%). To observe the complex 

formation, the dodecasaccharide was reconstituted in 10 mM ammonium 

acetate (pH 7.4) and incubated with HRGP330 at a 1:1 ratio for 1 hour 

prior to mass spectrometry analysis. For the protein-heparin complex, 

spectra were obtained in the positive mode using the method previously 

described in section 2.10.2. 

 

2.14 Determination of an apparent binding constant for HRGP330  

5 µM ZnCl2 was added to 10 µM Zincon in 50 mM HEPES and 100 mM 

NaCl at pH 7.4. Aliquots of HRGP330 in the same buffer were titrated in 

and the absorbance measured at 620 nm until a plateau was reached. 

The apparent binding constant was determined using Equation 3.  

 

                                   
                    ⁄

                    ⁄
 

Equation 3 
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The absorbance values were converted to percentages with 100% 

relative absorbance corresponding to the maximum absorbance observed 

at 620 nm for the Zn2+-Zincon complex.  

 

2.15 Zn2+ binding to full length HRG 

Rabbit HRG was a gift from Dr Alan Stewart (University of St Andrews). 

HRG was incubated with 10 mol. equiv. of Zn(CH3COO)2.2H2O for 2 

hours at 37 °C. Samples were buffer exchanged into 10 mM ammonium 

acetate (pH 7.4) using a PD-10 column. The protein fraction that eluted 

was concentrated using Amicon-Ultra 4 centrifugal filters with a 30 kDa 

MWCO membrane. Samples were diluted with ultrapure 0.1 M HNO3 and 

analysed using ICP-OES as described in section 2.6. HRG concentration 

was estimated by dividing the sulfur concentration by 13.  

 

2.16 Metal binding to Gly-Gly-His peptide 

2.16.1 ESI-MS 

A peptide mimic for the N-terminus of HSA, Gly-Gly-His, was obtained 

from GenScript Corporation (USA) which had a purity of > 95%. The 

lyophilised peptide was reconstituted into sterile water, aliquoted and 

frozen at -20 °C. Aliquots were thawed on ice and 1 mol. equiv. of the 

appropriate metal ion added. The peptide was incubated for 2 hours 

followed by analysis on a maXis-UHR-TOF instrument in the positive 

mode over a mass range of 5-2000 m/z. The following parameters were 

used: dry gas = 4.0 L/min; source temperature = 200 °C; funnel RF = 100 

Vpp; multipole RF = 300 Vpp; collision cell energy = 5 eV; collision RF = 
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600 Vpp; ion cooler = 200 Vpp; transfer time = 131.4 µs; pre pulse 

storage = 1 µs. 

 

2.16.2 1-D 1H NMR spectroscopy  

2 mM peptide samples were prepared in 90% H2O/ 10% D2O at pH 7.35. 

1H-HMR was carried out on a Bruker-DRX550 instrument operating at a 

frequency of 500.13 MHz for 1H. Data were obtained over 256 scans at a 

temperature of 25 °C. ZnCl2 was titrated into the peptide from a 50 mM 

stock solution.  

 

2.17 Metal ion transfer experiments 

2.17.1 Zn2+ distribution between HSA and HRGP330  

15 µM Zn-HSA (with or without 5 mol. equiv. myristate) was prepared as 

described in section 2.5.1 in 10 mM ammonium acetate (pH 7.4). 

Lyophilised HRGP330 was reconstituted in the same buffer and added to 

HSA at a concentration of 15 µM. The protein samples were incubated at 

37 °C for 2 hours after which time they were diluted to 5 µM and analysed 

by ESI-MS as outlined in section 2.10.2.  

 

2.17.2 Separation of HSA and HRGP330 with a MWCO filter 

To investigate Zn2+ binding to HRGP330 in the presence of  600 µM HSA, 

a 30 kDa MWCO filter was used to retain the HSA on the membrane but 

allow any Zn2+-bound HRGP330 to pass through. Zn-HSA (with or without 

5 mol. equiv. myristate) was prepared as in section 2.5.1 in 10 mM 

ammonium acetate (pH 7.4) and concentrated to ~600 µM. 10-20 µM 
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HRGP330 was added followed by incubation at 37 °C for 2 hours.  The 

peptide was separated from HSA by washing through an Amicon® Ultra-

0.5 centrifugal filter unit (30 kDa MWCO) 3 times at 13,000 rpm for 10 

minutes. The HRGP330 fraction was analysed by ESI-MS as outlined in 

2.10.2 and the HSA fraction was prepared for ICP-OES analysis 

according to section 2.6.  

 

2.17.3 Size exclusion chromatography 

600 µM HSA, 20 µM HRGP330 and 25 µM ZnCl2 (± 5 mol. equiv. 

myristate) were separated on a BioSep™-SEC-S2000 column (300 x 7.8 

mm, Phenomenex) in 10 mM HEPES, 50 mM NaCl (pH 7.4) following 

incubation at 37 °C for 2 hours. Aliquots of the fractions where proteins 

eluted (200 µL) were diluted to 3 ml in 3% HNO3 in acid-washed tubes 

and analysed for Zn on an Agilent 7500 ICP-MS instrument by Dr James 

Barnett. Protein concentration of the fractions was assessed using a BCA 

Protein Assay kit according to the manufacturer’s instructions (Pierce 

Protein Biology Products).  

 

2.17.3 Cu2+ transfer between Gly-Gly-His and HRGP330 

The Cu2+-Gly-Gly-His complex was formed by addition of 1:1 mol. equiv. 

Cu(CH3COO)2.H2O to the peptide in 10 mM ammonium acetate (pH 7.4). 

Addition of 0.2-1 mol. equiv. of HRGP330 was made from a stock in the 

same buffer. Following an equilibration period, samples were analysed on 

a maXis-UHR-TOF according to the same method in section 2.16.1. 
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2.18 Bioinformatic analysis 

Primary sequences of HSA and HRG were obtained from the protein 

database, UniProtKB, accessed via ExPASy. Sequence alignments were 

carried out using ClusalW2 (Larkin et al., 2007). The Unimod database 

(Matrix Science Ltd, London) was used to identify protein modifications 

from mass spectrometry data. Structures from the protein databank (PDB) 

were manipulated using DeepView Swiss PDB-viewer v4.01 (Guex and 

Peitsch, 1997) and PyMOL Molecular Graphics System v1.3 (Schrödinger, 

LLC).  
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2. Chapter 3 
HSA-ligand complexes 

 

3.1 Introduction 

In this Chapter, a high resolution Q-TOF instrument was used to optimise 

methods to study large protein complexes. Once weakly bound buffer and 

salt adducts were removed efficiently, this enabled production of data on 

metal binding to HSA. It was found that the interactions with biologically 

relevant fatty acids are removed on transfer into the gas phase. 

Conversely, perfluorinated fatty acids (PFCAs) were observed to bind in 

the gas phase and the data showed that Zn2+ remained bound to HSA 

even in the presence of perfluorinated octanoic acid (PFOA). This is 

consistent with the hypothesis proposed by Lu et al. (2012b) that Zn2+ is 

able to still bind in Site A when a short-chain fatty acid molecule is bound 

to FA2.  

 

3.2 Electrospray-ionisation mass spectrometry (ESI-MS) 

3.2.1 An overview of mass spectrometry 

Mass spectrometry has been developed over the years to become an 

essential tool in the fields of both chemistry and biology. The mass of a 

molecule is an important characteristic and the ability to measure it 

precisely is necessary for a variety of scientific investigations. A mass 

spectrometer is an instrument that can measure the mass-to-charge ratio 
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(m/z) of ions in the gas phase. The instrument can be separated into five 

different components that are outlined in Figure 3.1. Firstly the sample of 

interest is injected into the mass spectrometer, followed by the formation 

of ions in the ion source. The ions are separated depending on their m/z 

by the mass analyser and the ion intensity at each different m/z value is 

registered by the detector. A digitizer allows this information to be 

converted into a user-friendly data format known as the mass spectrum. 

Typically, instruments have two mass analysers, for example the maXis-

UHR-TOF used in this work has a quadrupole coupled to a time-of-flight 

analyser. A collision cell located between these allows MS/MS data to be 

obtained. 

 

Figure 3.1 A general overview of a mass spectrometer. A schematic diagram of the 
components that make up a conventional mass spectrometer. 

 

 

3.2.2 Development of ESI-MS for biomolecules  

Until the late 1980’s, researchers in the field of mass spectrometry 

believed that it was impossible to transfer large biomolecules from 

solution to the gas phase without breaking any covalent bonds and 

ultimately destroying the molecule. With the introduction of two new 

methods of ionisation, electrospray ionisation (ESI) and matrix assisted 
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laser desorption ionisation (MALDI), came the realisation that 

biomolecules could be preserved in the gas phase by using these soft 

ionisation techniques.  ESI-MS is a technique that was first pioneered by 

John Fenn, who later received the Nobel Prize for the work. Firstly, the 

technique was employed for small molecules (Yamashita and Fenn, 

1984), but then later extended to larger biomolecules such as 

oligonucleotides and proteins (Fenn et al., 1989). It has become an 

indispensable tool for analysing biomolecules of varying sizes and also 

their complexes. Early examples of ESI-MS to study non-covalent 

interactions include Zn2+ and Ca2+ binding to the metalloproteinase 

matrilysin (Feng et al., 1995) and the observation of a heme-myoglobin 

complex (Katta and Chait, 1991).     

 

3.2.3 Mechanisms of ion formation 

The sample is typically dissolved in a volatile buffer and/or organic 

solvent and infused continuously into the ion source. The solution is 

sprayed through a capillary needle which has a high electrical potential 

with respect to the entrance of the mass spectrometer. This electric field 

induces a charge accumulation on the surface of the solution at the end 

of the capillary, known as a Taylor cone (Figure 3.2). At a critical point the 

solution breaks away from the Taylor cone to form multiply charge 

droplets.  A heated nebulising gas (typically nitrogen) flows around the 

outside of the capillary and directs the newly-released droplet towards the 

mass spectrometer in addition to aiding desolvation of the droplets.  

 



Chapter Three 

61 
 

 

Figure 3.2 Ion formation during ESI-MS. A schematic diagram showing the steps 
involved in the CRM mechanism of ion formation during ESI-MS. Adapted from (Kebarle, 
2000).  

 

Gas phase ions form as solvent evaporates from the droplets. The 

mechanism of ion formation can be described using the two proposed 

models:  the charge residue model (CRM) or the ion evaporation model 

(IEM). The CRM suggests that once the droplet is released from the 

Taylor cone, solvent evaporation occurs until the charge repulsion in the 

droplet exceeds the surface tension (or Rayleigh limit). The droplet can 

divide by means of a Coulombic explosion and this process is repeated 

until a single, multiply-charged, analyte ion is produced (Dole et al., 

1968). In contrast, the IEM proposed by Iribarne and Thomson (1976) 

suggests that as the droplet reaches a particular radius the field strength 

of the surface of the ion becomes sufficiently large enough to eject the 

analyte ion out of the droplet. The IEM is thought to be the mechanism 

through which ions with a low mass are formed while the CRM is 

dominant for multiply charged ions with a high mass such as proteins 

(Kebarle, 2000; Kebarle and Verkerk, 2009).  

 

3.3 Advantages of ESI-MS  

A main advantage of ESI is that for instruments of limited m/z range, the 

production of the multiply-charged ions allows the observation of 
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molecules of higher masses at lower m/z values.  It is also a particularly 

good technique for studying molecules that associate non-covalently 

because the gentle ionisation involved ensures that these complexes 

remain intact and can be detected. As proteins are proposed to form ions 

via the CRM model, non-covalent complexes are expected to survive in 

the gas phase due to a cooling effect as the solvent evaporates (Wilm, 

2011). It is also an extremely sensitive technique that can analyse 

samples in a short time, requiring only low micromolar concentrations of 

the analyte. In addition, ESI-MS can be advantageous over other 

techniques for studying large proteins. NMR spectroscopy can provide 

detailed structural information on biomolecules as large as ribosomes 

although this requires large quantities of sample and hours, or even days, 

of instrument time (Cabrita et al., 2009). Furthermore, the protein may 

need to be isotopically labelled. X-ray crystallography is also an important 

technique in structural biology, however, some proteins can be difficult to 

crystallise and various conditions have to be screened in a trial and error 

process (Drenth, 2007). 

 

3.4 Maintaining the native structure of proteins in the gas phase 

3.4.1 Sample preparation 

In the early days, mass spectrometry was mainly applied to proteomics, 

and routine analysis of intact proteins often used denaturing conditions 

(high concentrations of organic solvent or acidic solutions) in order to 

observe an accurate mass. With the development of instrumentation and 

methods for sample preparation it has become possible to study proteins 
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in their “native” state (Winston and Fitzgerald, 1997). This relies on 

proteins being prepared in volatile buffers at physiologically-relevant pH 

values. Purification of proteins by chromatography often utilises non-

volatile buffers including Tris and HEPES and salts such as sodium 

chloride which are incompatible with mass spectrometry. The presence of 

these ionic substances will supress the ionisation of the analyte of 

interest (van Duijn, 2010).  It is necessary for the protein samples to be 

buffer-exchanged into a volatile buffer and be as homogenous as 

possible. The sample concentration used for experiments is typically in 

the low micromolar range which prevents non-specific association of 

protein molecules, a common artefact at physiological pH.  

 

3.4.2 Instrumental conditions 

In addition to sample preparation, instrumental factors are also important. 

Time-of-flight mass analysers allow ions at a high m/z to be detected and 

the addition of a reflectron greatly increases the resolution (Mamyrin et al., 

1973). Ion cooling is important for protein complexes as this removes 

excess energy that the ions may have acquired in the collision cell from 

interactions with neutral gas molecules (Chernushevich and Thomson, 

2004). Lenses are then used to focus the ions into the mass analyser and 

the lower energy of the ions improves the resolution that is achieved. 

Transmission of the ions through the mass spectrometer under native 

conditions can also be problematic particularly for large protein 

complexes. One approach to improve this is to increase the backing 
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pressure because the low transmission is largely due to the high energy 

and energy-spread of high m/z ions (van den Heuvel and Heck, 2004). 

 

3.5 How has ESI-MS previously been applied to albumin? 

Although there are a variety of ligands that are transported around the 

blood by HSA, few of these interactions have been characterised using 

mass spectrometry. This is possibly because at the physiological 

conditions required to observe intact HSA complexes, the protein shows 

a weak spectrometric response (Henrotte et al., 2004) In particular, the 

binding of metal ions and fatty acids has not been investigated using this 

method although there has been success with drugs and other small 

molecules. Table 2 summarises the albumin-ligand interactions that have 

been investigated by ESI-MS to date, taking into account albumin 

proteins from various species. The majority of the ligands described here 

are exogenous. Combined with the extensive research on albumin, it 

would be interesting to apply mass spectrometry techniques to study 

endogenous molecules that bind to HSA. 
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Table 3.1. Non-covalent albumin complexes observed by ESI-MS. 

Ligand Albumin 
type 

Comments Reference 

Anti-hepatitis B 
immune RNA 

Human Stoichiometric ratios 
calculated 

Qi et al., 2007 

Berberine Human Plant extract; determined 
binding constant 

Cao et al., 2007a 

Digitoxin Human Cardiac glycoside; used 
nanoESI-MS 

Benkestock et al., 2005* 

DNA Bovine KD measured by ESI-MS Greig et al., 2002 

FK506 and 
FK520 

Human Immunosuppressant drugs Ray and Stearns, 1995 

Gd-DTPA 
Gd-C4Me-DTPA Gd-
EOB-DTPA 
MP-2269 

Human Gadolinium(III) chelates 
used as MRI contrast 
agents 

Henrotte et al., 2004 

Growth hormone 
releasing factor 

Bovine 44 amino acid peptide Baczynskyj et al., 1994 

Glyburide Human Anti-diabetic drugs; used 
nanoESI-MS 

Benkestock et al., 2005* 

Iopanoic acid Human Iodine containing contrast 
agent; used nanoESI-MS 

Benkestock et al., 2005* 

Ketoprofen Human NSAID drug; used 
nanoESI-MS 

Chen et al., 2006 

KP1019 and KP418 Human Ru(II) anticancer agents; 
negative electrospray 

Groessl et al., 2006 

Naproxen Human NSAID drug; used 
nanoESI-MS 

Benkestock et al., 2005* 

Oligonucleotide Bovine 20mer phosphorothioate 
oligonucleotide; 
determined KD 

Shaw et al., 1991 

Para-Sulfonato-
Calix[n]arene 
derivatives 

Bovine Molecules of biological 
interest; KA determined by 
ESI-MS 

Da Silva et al., 2006 

Puerarin Human Isoflavone of biological 
interest 

Qi et al., 2006 

Sodium aescinate Human Anti-inflammatory Qi et al., 2006 

Suramin Human Prostate cancer treatment 
undergoing clinical trials 

Roboz et al., 1998 

Tanshinone IIA Human Medicinal herb used in 
Chinese medicine 

Liu et al., 2008 

Tectoridin Human Isoflavone of biological 
interest; stoichiometric 
ratios calculated 

Cao et al., 2007b 

Tropane alkaloids Human Anticholinergic drugs; 
measured binding 
constant 

Ma et al., 2008 

Warfarin  Human Anti-coagulant Benkestock et al., 2005*; 
Liu et al., 2008 

 
*Indicates that although intact HSA was originally used, low mass resolution on the 
instrument mean published data were acquired using only Domain II. 
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3.6 Results and discussion 

3.6.1 Native ESI-MS of HSA 

A recombinant form of HSA was used in this work as this is typically more 

homogeneous with regards to the state of Cys34 and fatty acid content 

than HSA extracted from plasma. Furthermore, it is a safer alternative to 

handling plasma proteins extracted from human blood. The charge states 

that are observed under different conditions can be related to the protein 

conformation (Chowdhury et al., 1990). Denaturation unfolds the protein 

and allows basic sites to become more accessible to protons and 

therefore highly charged states are observed. Under native conditions the 

protein is folded and as a result can accept fewer charges. The mass 

spectrum of HSA acidified with formic acid is shown in Figure 3.3 A where 

at least 3 bell-shaped charge state distributions were observed to overlap.  

 

 

Figure 3.3 Comparison of the charge state distribution for denatured and native 

HSA. A) 5 µM HSA in 10 mM ammonium acetate with addition of 1% formic acid, pH 3.0 

B) 5 µM HSA in 10 mM ammonium acetate (pH 6.90).  
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In contrast, using native conditions, four peaks were observed 

corresponding to the charge states 19+ through to 16+. (Figure 3.3 B). 

Deconvolution of the raw spectrum in Figure 3.3 A gave a clear indication 

of the components of the recombinant albumin sample which is shown in 

Figure 3.4. The most abundant peak observed was 66,437.38, in 

excellent agreement with the theoretical mass of 66,438.41 Da. A small 

proportion of Asp1-Ala2 truncation product was also observed at 66,253 

Da (Chan et al., 1995). The second most abundant peak had a mass 

increase of 32 Da, possibly an oxidation product (+ 2O) of Cys34 or a Met 

residue. This has been observed before with recombinant HSA in borate 

buffer at pH 8.0 (Nicholls and Morton, 2010). Therefore it is possible that 

extensive dialysis in ammonium bicarbonate at pH 7.80-7.90 contributed 

to this oxidation. This was also not observed in early experiments, 

suggesting that storage time was a factor in the species occurring. The 

free thiol content of HSA was assessed using a cysteine assay with 

DTNB. The result indicated that there was 0.63 ± 0.04 mol SH mol-1 HSA 

in a fresh sample of HSA. The reported literature values for recombinant 

HSA are as high as 0.90 mol SH mol-1 HSA suggesting that the thiol had 

been partially oxidised (Ivanov et al., 1998). ESI-MS analysis following 

reaction of HSA with DTNB showed that 68% of the protein had been 

modified to produce a mass of 66,635 Da (Figure A2, Appendix). The 

only remaining species was that with +2O which suggests this is an 

oxidation occurring at Cys34 which subsequently blocks the residue from 

reaction with DTNB (Figure A2). 
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Figure 3.4 Deconvoluted spectrum of acid-denatured HSA. Two major species are 
observed with masses of 66,437.38 and 66,470.15 Da. A small proportion of HSA with 
Asp1 and Ala2 cleaved off is also present.  

 

The HSA-dimer was observed with charge states from 27+ to 24+. The 

presence of the dimer was consistent but always of insufficient intensity 

to be studied in great detail. This formation of the dimer has been related 

to factors including the age of the sample, storage temperature and 

moisture content (Peters, 1995). Intriguingly, a dimeric species was only 

observed under native conditions which contradicts the idea that it is 

formed through a disulfide bond between to HSA molecules. At low pH, 

the protein would be denatured but would still allow the observation of an 

-S-S- bonded species therefore, based on this evidence it is likely to be a 

non-covalent dimer.  

 

3.6.2 Incomplete desolvation of the analyte ions 

The charge states observed at physiological pH under mild conditions 

were extremely broad which complicated the analysis i.e. the mass 

observed was not comparable to that predicted from the primary 

sequence. Further research into the limitations of ESI gave an indication 
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that the reason could be the formation of buffer adducts from the aqueous 

conditions used to preserve native protein complexes. Broad peaks are 

observed because the ion current is distributed over a heterogeneously 

solvated species as a result of an insufficient desolvation process (McKay 

et al., 2006) although manipulation of instrumental parameters can 

overcome this to some extent (Sobott and Robinson, 2004). Suggested 

approaches to improving desolvation include increasing the temperature 

of the counter flow gas, increasing the vacuum pressure and optimising 

the collision energies (Loo, 2000).  

 

Collision induced dissociation (CID) is typically carried out in two areas of 

the instrument: the source region and the collision cell. Experiments were 

undertaken which involved varying the collision cell energy; it was 

typically set at 6-10 eV to give the large HSA ions enough energy for 

transmission. An increase to 20 eV reduced the peak broadness, 

however, at increased collision cell energy the intensity of peaks was 

considerably reduced and so the spectra were not improved. The other 

method to enhance the desolvation involves optimising the in-source 

collision induced dissociation (ISCID). Figure 3.5 shows spectra collected 

with various ISCID energies applied. An increase to 100 eV reduced the 

broadness of the peaks without changing the charge state distribution.  

This removed the unwanted buffer adducts and gave clear, well defined 

charge states with accurate masses without inducing fragmentation of the 

intact protein. In addition, the intensity of the signal was not compromised 

and enough data could be obtained for deconvolution. 
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Figure 3.5 Effect of in-source CID on desolvation of protein complex ions. ESI 
mass spectrum of HSA with increasing ISCID energies ranging from 0-140 eV. Samples 
were 2.5 µM in 10 mM ammonium acetate.  
 

Above 100 eV, the intensity for native HSA signals dropped and also the 

charge state distribution was shifted slightly to the right hand side of the 

spectrum. The charge state distribution for the dimer became 

considerably more abundant in relative intensity at 140 eV.  An 

explanation for this could be that increasing the activation energy of the 

ions focuses them and as a result higher m/z ions are favoured (Loo, 

1997). This could also support the idea that the dimeric form occurs 

through a covalent disulfide bond between Cys34 of two HSA molecules 

as a weaker interaction would be expected to break easily at the higher 

energy applied. These experiments highlighted the importance of finding 

a balance between removal of non-specific adducts and preserving the 

non-covalent complexes of interest.  
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3.6.3 NanoESI-MS of HSA 

NanoESI-MS using a TriVersa Nanomate® (Advion) was also used as in 

NanoESI, initial droplet size is smaller which can improve sensitivity 

(Wilm and Mann, 1996). Higher order aggregates of HSA were observed 

in the spectra with charge state distributions of a trimer and tetramer 

centred around 6500 and 7500 m/z respectively (Figure 3.6 A). It is 

unclear as to what extent these oligomer formations are an artefact 

formed during the gentle ionisation process or if they are always present 

in HSA solutions as weak bands were detected for these assemblies on 

SDS gels as in Figure 3.6 B.  

 

Observations of non-specific protein assemblies have been recently 

documented in the literature. Lane and co-workers attempted to improve 

the understanding of this phenomenon by modelling the number of 

molecules that would exist in a droplet, just before it is introduced into the 

mass spectrometer, using Monte Carlo methods (Lane et al., 2009). The 

model assumes that as the protein concentration increases, the 

probability of more than one biomolecule being contained within the 

droplet also increases. As it is most likely that desolvation of protein ions 

proceeds via the CRM model, non-specific association of the 

biomolecules may occur at the final stages of the ionisation process.  
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Figure 3.6 Observation of higher order oligomers of HSA during nano-ESI-MS and 

SDS-PAGE A) Samples (5 µL) were infused into a maXis-UHR-TOF mass spectrometer 

using a TriVersa Nanomate® (Advion) B) For SDS-PAGE samples were loaded onto a 4-

12% SDS PAGE pre-cast gel (Invitrogen). As more concentrated samples are loaded 
the dimer and higher oligomers become more visible but dimers are clearly present even 
at the lowest concentration. 
 

Although this model goes some way to explaining the observations of 

oligomers, at the experimental concentrations used (2.5-5 µM) the model 

predicts that the droplets should contain only one or even no molecules. 

This indicates that to a certain degree the assemblies are already formed 

in solution. 

 

3.6.4 Analysis of Zn2+-HSA  

A comparison of the charge states for apo-HSA and Zn2+-HSA is shown 

in Figure 3.7 A and B and there is no obvious difference between them. 

The close-up of the 18+ charge state shows two new peaks are observed 

in D compared to C: the first corresponds to the addition of a Zn2+ ion to 
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HSA (3695.11 m/z; theoretical = 3695.49 m/z) and a second which 

corresponds to the addition of Zn2+ to the oxidised species of HSA 

(3697.30 m/z). The difference compared to the theoretical values could 

be due to the broadness of the peaks. Only 1 Zn2+ ion was detected to be 

bound to HSA in the gas phase even when higher metal:protein ratios 

were used which suggests only binding to Site A is maintained during 

ESI-MS. 

 

Figure 3.7 Native ESI-MS of HSA shows 1 Zn
2+

 ion bound. Charge state distribution 
of A) apo-HSA and B) Zn

2+
-HSA. Close-up of the 18+ charge state of C) apo-HSA and D) 

Zn
2+

 HSA. Two new peaks are evident upon the addition of the metal ion. 

 

To confirm the observations of experiments in the gas phase, samples 

were analysed in solution for inorganic elements. ICP-OES analysis 

indicated that 1.06 Zn2+ ions were bound per HSA molecule in these 

preparations which fits with the mass shifts observed.  The data suggest 

that non-covalent metal complexes of HSA can be preserved in the gas 

phase even when less gentle conditions are used. This is consistent with 

the work of Gumerov et al. (2003) who found that studying Fe3+ binding to 

transferrin under extremely mild conditions was impractical. Interestingly, 
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a further peak centred around 3710 m/z is seen to be present for apo-

HSA but not Zn2+-HSA. It is possible that this is residual octanoic acid 

present in the sample as the mass is very close to the addition of two 

octanoate molecules. One line of evidence for this is that when a titration 

was carried out with increasing molar equivalents of octanoic acid, this 

peak increased in intensity. This will be discussed in more detail in 

section 3.6.6. 

 

3.6.5 pH-induced Zn2+ release and unfolding of HSA 

A sample of Zn2+-bound HSA (0.95 Zn2+ ions per molecule as determined 

by ICP-OES) was titrated with varying amounts of acetic acid to achieve 

samples at varying pH which were analysed under the same conditions. 

The same four peaks were observed as in the previous section, however, 

at pH 7.36 the mass shift was greater than the addition of 1 Zn2+ ion and 

so it is possible that salt adducts contributed to this. At pH 6.15 the 

complex is still observed and the peaks are more resolved.  As the pH 

was lowered to 5.46 there was little change to the Zn2+ binding although 

the protein began to partially unfold as higher charge states become 

visible. At pH 5.05 a clear bimodal distribution is observed as the charge 

states for partially unfolded HSA increase significantly in intensity. Below 

pH 5.0 Zn2+ has been released from the protein and only the peaks for 

HSA and HSA(oxidised) are visible. 
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The same observation is made at pH 3.96 although the charge states for 

native HSA are reduced in intensity. The increase in intensity of the 

higher charge states is concurrent with the loss of Zn2+ binding which 

indicates the metal ion could have a stabilising effect between domains I 

and II.  

 

3.6.6 Analysis of HSA in the presence of fatty acids 

To investigate the effect of fatty acids on HSA, titrations were carried out 

with both octanoate and myristate as shown in Figure 3.9 A and B. With 

increasing octanoate concentration, there was a substantial increase in 

the peak centred around 3710 m/z; the relative intensities at each point (1, 

3 and 5 mol. equiv. octanoate) were 29%, 37% and 40% respectively. 

This peak was also evident in samples that had been dialysed which 

indicates it could be bound octanoate still remaining from the protein 

stock which originally contained 31 mM octanoic acid as a stabiliser. The 

data suggested that this was a non-covalent species as it was not visible 

once the protein was denatured (cf. Figure 3.4). This larger adduct had a 

mass of ~ 300 Da larger than HSA although an accurate mass could not 

be established due to the broadness of the peak.  

 

In contrast, this peak was less apparent during the myristate titration and 

no change was visible. Clearly, this observation could be consistent with 

the interactions with myristate being broken in the gas phase although the 

larger adduct could be 2 molecules of octanoate-bound HSA (144.21 x 2 

= 288.42 Da).  
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Figure 3.9 HSA titrated with varying amounts of fatty acid followed by ESI-MS.  A) 
Aliquots of octanoate from a 0.5 mM stock solution were added to HSA and incubated at 
37 °C for 2 hours B) Aliquots of myristate from a 1 mM stock solution were added to 
HSA at 37 °C for 2 hours. Mass spectra were obtained on a maXis-UHR-TOF instrument. 
A peak ~300 Da larger than HSA (*) that was observed in native samples was observed 
to increase in intensity in the presence of increased octanoate.  

 
 
Although fatty acids bind to HSA with relatively high affinity (Kd = 0.05-1 

µM), it would appear that the interactions are too hydrophobic even 

though some polar side chains are thought to be involved at the high 

affinity binding sites. In the gas phase, hydrophobic binding partners are 

likely to dissociate as they are no longer being forced together as they 

would be in the presence of water molecules (Bich et al., 2010). 

Therefore, ESI-MS of HSA does not reflect the fatty acid binding that 

would occur in solution. More recently, Liu et al., (2009) have been able 

to characterise fatty acids binding to bovine β-lactoglobulin. However, it 

could be that the stabilisation of this hydrophobic protein-ligand 

interaction in the gas phase is due to the fatty acid being sterically 

trapped inside the cavity. The EF loops form a lid over the cavity, as can 

be observed in the crystal structure with myristate (3UEV), which may 

restrict movement of the ligand (Loch et al., 2012). The fatty acid binding 
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sites on HSA need to be less hindered in order to facilitate rapid 

dissociation of the molecules during transport.  

 

3.6.7 Binding of PFCAs to HSA in the gas phase: a fatty acid mimic 

 PFCAs were chosen as a fatty acid mimic as the fatty acids investigated 

were not observed to remain bound in the gas phase. Fluorination of the 

molecules means they cannot be metabolised in the same way as their 

biologically relevant counterparts (D’eon et al., 2010).  On a molecular 

level, HSA has been shown to be the most likely candidate for interaction 

of PFCAs that become present in blood serum at low levels (Han et al., 

2003). 

 

PFOA is an example of a C8 PFCA that is produced on an industrial 

scale and used in the production of Teflon® for cookware.  It has been 

demonstrated by 19F-NMR spectroscopy that PFOA, and other similar 

molecules, would bind in the same 7 hydrophobic cavities on HSA as 

fatty acids (D’eon et al., 2010) and it has been shown to bind to other 

fatty acid binding proteins. Han et al. (2003) reported the dissociation 

constant for PFOA binding to HSA as 0.38 mM, compared to 0.05-1 µM 

for fatty acids (Spector, 1975). Therefore, it is not thought that the PFOA 

molecule would be able to displace fatty acids once they are bound to 

HSA (Han et al., 2003). A native ESI-MS study identified the binding of up 

to 8 molecules (Henrotte et al, 2004) of PFOA to HSA in neutral 

ammonium acetate buffer. Following incubation with 5 mol. equiv. PFOA, 

and using the method developed on the maXis-UHR-TOF, 3 molecules of 
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PFOA were observed to be bound to HSA.  Due to its impact on Zn2+ 

binding, the fatty acid site of the highest interest is FA2, which is one of 

the three highest affinity binding sites, therefore under these conditions it 

is likely to be occupied by PFOA. Additionally it has been demonstrated 

that FA2 becomes populated at HSA:FA concentrations as low as 1:1 

(Simard et al., 2005). To obtain an optimum ISCID energy to observe 

non-covalent binding but remove buffer and salt adducts, mass spectra 

were obtained between 75 and 125 eV. The relative intensity for each 

complex was calculated and plotted to produce Figure 3.7. As the ISCID 

was increased the peak corresponding to HSA with no PFOA bound 

increased in a sigmoidal fashion. Non-covalent interactions with PFOA 

begin to significantly decrease at 105 eV, and a value of 100 eV 

appeared to be a good compromise between obtaining good spectra and 

preserving the complexes.  

 

To ascertain if PFOA was a reasonable mimic for fatty acid binding and 

its impact on metal binding to HSA, 111Cd NMR spectroscopy and 1H 

NMR spectroscopy were carried out to probe the effect on metal binding 

and the histidine residues. In the presence of 5 mol. equiv. PFOA the 

111Cd NMR peak for Site A was supressed and the peak for Site B was 

still prominent albeit slightly reduced in intensity (Figure A3, Appendix). 

This is the same effect that has been previously observed for octanoate 

(Stewart et al., 2003). Figure A3 B (Appendix) shows the effect of PFOA 

on the 1H-HMR spectrum of HSA where the His residues can clearly be 

seen.  
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Figure 3.10 Binding of PFOA to HSA by ESI-MS. A) Spectra of HSA obtained with 
varying concentrations of PFOA. The numbers above the peaks correspond to number 
of PFOA molecules bound. B) Spectra were obtained at varying ISCID energies from 75-
125 eV and the relative intensities plotted against the ISCID.  
 

 

Peak 5 was unaffected by the addition of PFOA and also there was only a 

slight impact on peak 10. Peaks 6 and 6b disappeared completely and 

the intensity of peak 9 was also reduced considerably. Peaks 1 and 4, 

B 
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which have been previously shown to correspond to His67 and His247, 

were no longer present once 5 mol. equiv. of PFOA were added. A 

previous titration with octanoate, showed that peak 4 became sharper 

which is different to that observed in the presence of PFOA, however, 

overall, the changes that occurred with both were largely similar 

indicating that the binding mode is the same. The fact that peaks 1 and 4 

are affected by PFOA and also that Site A is perturbed in 111Cd-NMR are 

both good indicators that PFOA binds in the vicinity of the Zn2+-binding 

site. The evidence indicates that PFCAs are able to bind in the gas phase 

because the C-F bond is polar compared to a C-H bond which is non-

polar. The hydrophilic fluorine atoms interact strongly with the lone pairs 

of polar amino acids and these associations are stabilised in the gas 

phase. However, fatty acid binding involves hydrophobic interactions 

which are not stabilised in the gas phase.  

 

3.6.8 Concurrent PFOA and Zn2+ binding 

As PFOA was shown to be a good model for octanoate, a sample 

incubated with both 5 mol. equiv. PFOA and Zn2+ was analysed by ESI-

MS. Figure 3.12 shows the spectra obtained with an expansion of the 

most abundant 18+ charge state (Figure 3.12B).  The two major peaks 

correspond to HSA-PFOA-Zn2+ (3718.44 m/z, theoretical mass = 3718.53 

m/z) and also a HSA(oxidised)-PFOA-Zn2+ complex (3720.16 m/z, 

theoretical mass = 3720.30 m/z). The same set of peaks was also 

observed for the complex with 2 PFOA molecules bound (3741.60 m/z, 

theoretical mass = 3741.52 m/z). This would suggest that PFOA and Zn2+ 
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can bind simultaneously to HSA which would fit the hypothesis put 

forward for octanoate binding, i.e. that it does not disrupt Zn2+ binding in 

the same way predicted for myristate.  ICP-OES evidence also suggested 

the ability of HSA to bind Zn2+ was not perturbed by the presence of 

PFOA. Zn-HSA was prepared in the absence and presence of PFOA in 

10 mM ammonium acetate and subjected to gel filtration. Analysis of the 

solution showed Zn2+-HSA had 1.48 Zn2+ per protein while following 

incubation with 5 mol. equiv. PFOA and gel filtration there was still 1.47 

Zn2+ per protein. Therefore, neither in solution nor in the gas phase does 

PFOA perturb Zn2+ binding. 

 

Figure 3.11 Simultaneous binding of PFOA and Zn
2+

 to HSA observed by ESI-MS. 
A) Charge states observed B) Expansion of the 18+ charge state showing peaks 
corresponding to the mass of Zn

2+
 bound to a PFOA complex. 

 

Interestingly, Wu et al. (2009) carried out CD and fluorescence 

spectroscopy of PFOA-bound HSA and this indicated a conformational 

change occurred as is also observed with normal fatty acids. Although as 

with octanoate the conformational change may not be significant enough 

to disrupt the interdomain Zn2+ binding site. 
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3.6.9 Analysis of Zn2+ binding in the presence of myristate 

Figure 3.8C shows the effect of myristate on the Zn2+-HSA complex. The 

peaks are much broader than those observed in the presence of Zn2+ only. 

The average mass of the peak hinted that Zn2+ binding had not been lost 

from HSA and ICP-OES analysis of the same sample in solution 

confirmed that 1.21 Zn2+ ions were still bound. This does not support the 

hypothesis that myristate would induce a conformational change that 

disrupts Zn2+ binding.  

 

Figure 3.12  Effect of myristate on Zn
2+

 binding to HSA. A) HSA with the addition of 
Zn

2+ 
B) HSA with the addition of Zn

2+
 and 5 mol. equiv. myristate. The spectra on the 

right hand side are zoomed in on the 18+ charge state.  
 

One explanation for this could be that myristate binding may displace the 

Zn2+ from Site A to another site on HSA as there are two further sites that 

can accommodate Zn2+. Evidence for this is that Goumakos et al. (1991) 

showed that HSA became saturated at 3.3 ± 0.2 Zn2+ ions which would 

indicate that there are two further binding sites in addition to Site A. 

Furthermore, ICP-OES analysis during this work showed > 2 mol. equiv. 

of Zn2+ remaining associated with HSA following passage through a gel 

filtration column. These other two binding sites are proposed to be Site B 
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and the N-terminus. Additionally, myristate has also been shown to 

displace metal ions from Site B (Lu et al., 2012b) which may result in 

increased binding at the N-terminus. This would rationalise why the ICP-

OES results show a similar Zn2+:HSA stoichiometry in the absence and 

presence of myristate as ICP-OES cannot provide information on to 

which of the three potential sites the Zn2+ is bound. Another explanation 

for there being no decrease in the Zn2+ binding ability of HSA in the 

presence of myristate could be that the buffer conditions are different as 

ESI-MS is not compatible with high concentrations of non-volatile buffers 

and salts. 

 

One important question to address is could Zn2+ bind to the N-terminus if 

fatty acids displaced it from Sites A and B? To investigate if Zn2+ binding 

to the N-terminus is possible, 1 mol. equiv. of Zn2+ was added to a 

peptide mimic of this site that has been well characterised (Lau et al., 

1974) which is shown in Figure 3.13 B. No evidence of an interaction was 

observed by ESI-MS while the control sample with 1 mol. equiv. of Cu2+ 

did show an intense peak corresponding to the Cu2+-Gly-Gly-His complex 

(Figure 3.13 A).  It was thought that perhaps the interaction with Zn2+ was 

simply too weak to be observed by ESI-MS and a  previous study using 

13C-NMR spectroscopy did suggest that Zn2+ can form a complex with the 

tripeptide (Lakusta et al.,1980). Therefore the Zn2+-Gly-Gly-His interaction 

was also studied by 1H NMR spectroscopy. 
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Figure 3.13 Comparison of Zn
2+ 

binding to Gly-Gy-His peptide by ESI-MS and 
1
H 

NMR spectroscopy. A) ESI-MS spectra of Gly-Gly-His in the presence of 1 mol. equiv. 
Cu

2+
 or B) 1 mol. equiv. Zn

2+
 C) 1-D 

1
H NMR spectra of Gly-Gly-His titrated with varying 

amounts of ZnCl2.  
 

Substantial changes to lineshapes were observed and Figure 3.13 C 

shows the broadening that occurs to the CH2 group of the His residue 

which suggests that there is an interaction with Zn2+ in solution. Overall, 

this indicates that Zn2+ may bind to the N-terminus of HSA if the other 

sites are saturated or no longer available due to the fatty acid-induced 

conformational change, even though this interaction may be too weak to 

be detected by ESI-MS.  

 

3.6.10 Identification of myristic acid in low mass range 

Additional evidence for fatty acid interactions being broken in the gas 

phase was obtained by scanning the low mass range while HSA samples 

were being injected. This has been shown with other molecules; for 

example Jones and co-workers detected perfluorooctane sulfonic acid 

(PFOS) at 499 m/z when BSA was subjected to high collision energy and 

the interaction between the protein and the compound was lost (Jones et 
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al., 2003). Once the conditions were optimised for smaller molecules, a 

peak at 229.21 m/z for protonated myristic acid was observed (Figure 

3.14 B). Using Smart Formula 3D a molecular formula and theoretical 

isotopic distribution was generated for the molecule which matched that 

of myristic acid (Figure 3.14 C). 

 

Figure 3.14 Detection of protonated myristic acid in the low m/z range of HSA.  A) 
Full spectrum showing small molecules and native HSA peaks B) Expansion of the low 
m/z range shows protonated myristic acid C) This is confirmed by the formula and 
theoretical isotopic distribution calculated from Smart Formula 3D. The isotopic 
distributions are in close agreement.  
 

Importantly, no extra collision energy was needed to observe this peak 

supporting the idea that the interaction of the fatty acid was broken during 

the transition to the gas phase. This experiment was repeated on two 

different maXis-UHR-TOF instruments (Instrument 2 at Bruker, Coventry, 

UK) to ensure the reproducibility of the data and the unbound myristic 

acid was detected on both indicating that it was present in the sample. 
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3.7 Conclusion 

Experimental conditions were optimised using the maXis-UHR-TOF to 

study large proteins. A balance between stripping the protein of weakly-

bound buffer molecules and being able to investigate ligand binding to 

HSA meant binding of 1 metal ion to HSA could be resolved. Evidence for 

only 1 Zn2+ ion being bound to HSA was observed by ESI-MS which is 

likely to be Site A. The interactions of HSA with myristate were disrupted 

in the gas phase resulting in no significant mass increase observed for 

these complexes, although, a larger HSA species was in agreement with 

the addition of 2 octanoate molecules. This could suggest that for two 

binding sites at least the interactions with octanoate are not completely 

abolished. For myristate bound samples, protonated myristic acid was 

detectable in the low mass range confirming that the ligands were too 

hydrophobic to remain bound in the gas phase. PFOA was used as a 

model compound to mimic a natural fatty acid as this interaction was 

preserved in the gas phase due to the more hydrophilic nature of fluorine. 

The ESI-MS data indicated that 1 Zn2+ ion can bind to HSA in the 

presence of PFOA which would fit with the hypothesis that this size 

molecule can fit in FA2 along with Zn2+ being bound in Site A. With 

addition of myristate to the Zn2+-complex it appeared from the mass 

observed that Zn2+ was still bound. This was also confirmed in solution 

which does not support the overall hypothesis that myristate binding to 

HSA at FA2 displaces Zn2+ from its major binding site.
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Chapter 4 
Travelling-wave ion mobility 

mass spectrometry of HSA  

 
4.1 Introduction 

In this chapter, travelling wave ion mobility mass spectrometry (TWIM-MS) 

was applied as a novel technique to study HSA complexes with metal 

ions and fatty acids. Instrumental conditions were optimised to prevent 

unfolding of the protein, although this gave an insight into how metal ions 

may influence the conformational flexibility of HSA. The data obtained 

were compared to theoretical cross sections obtained from published 

crystal structures.   

 

4.2 Ion mobility-mass spectrometry  

4.2.1 Development of IM-MS 

Ion-mobility-mass spectrometry (IM-MS) is an analytical technique 

whereby the conformation of molecules can be studied. It was first 

introduced in the 1970’s under the name plasma chromatography as a 

method to separate ions (Cohen and Karasek, 1970) and was soon 

recognised as a powerful tool that could be used to analyse a whole host 

of molecules (Collins and Lee, 2001). During the 1990’s the technique 

was applied to larger biomolecules with Clemmer demonstrating protein 

conformer separation using cytochrome c (Clemmer et al., 1995). The 

development of high resolution IM-MS over the past decade has further 
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enabled the separation of structural isomers that have an identical mass 

(Wu et al., 2000).   

 

As described previously conventional mass spectrometry involves four 

processes: sample introduction, sample ionisation, mass separation and 

detection. The addition of an IM cell to a mass spectrometer allows for an 

extra separation step which is dependent on the mobility of the ions 

(Kanu et al., 2008). The mobility of an ion is measured by the time it takes 

to pass through a buffer gas which is subjected to a weak electric field 

(drift time). The mobility can be dependent on many factors including 

molecular mass, charge on the ion, size of the ion and the polarizability of 

the drift gas used (Karasek, 1974). 

 

4.2.2 TWIM-MS 

Four types of IM-MS are available but only one will be discussed here: 

TWIM-MS (Pringle et al., 2007). Unlike other traditional IM-MS methods 

where the electric field is applied constantly, a high electric field is applied 

to one part of the cell and is swept sequentially through the cell in the 

direction that the ions are moving. This is achieved by using a stacked 

ring ion guide (SRIG) (Giles et al., 2004) which consists of a series of ring 

electrodes stacked orthogonally to the axis on which the ions travel. Ions 

are propelled down the SRIG in pulses or “waves” and it is therefore 

given the name “travelling wave”. The ions exit the IM cell at unequal 

times because the time it takes for the ion to exit the cell is dependent on 

its mobility through an inert gas as it travels along the travelling voltage 
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wave. Separation of ions is then achieved as ions that have a high 

mobility can keep up with the wave and exit the IM cell faster. Ions that 

have a lower mobility have more interactions with the buffer gas, roll over 

the top of the wave and have to wait for ensuing waves to propel them 

through the cell. As a consequence these ions exit the cell later (Giles et 

al., 2004). A longer drift time through the IM cell indicates that the ion has 

a larger collisional cross section (Jarrold, 1999). The quantity of ions 

exiting the cell is plotted as a function of time, known as the arrival time 

distribution (ATD).  

 

4.2.3 A commercially available TWIM-MS instrument: Synapt HDMS 

The travelling wave ion guide has been integrated into a conventional 

hybrid Q-TOF mass spectrometer to produce the Synapt HDMS 

instrument which is manufactured by Waters (Pringle et al., 2007). The IM 

cell is located between two mass analysers, namely a quadrupole and a 

TOF. A close-up view of the TriWave cell is shown in Figure 4.1. The IM 

cell contains three travelling wave-enabled SRIGs: trap, IM and transfer 

cell. Ions first accumulate in the trap, are released into the IM ion guide 

for the actual separation and then pass into the transfer region to allow 

them to travel to the TOF mass analyser (Pringle et al., 2007). Although 

suggested flow rates for the buffer gas in this region are indicated on the 

diagram, these can be optimised depending on the sample. The presence 

of a helium cell prior to the nitrogen region maximises the transmission of 

the ions into the IM cell. 
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Figure 4.1 An outline of the ion mobility cell in the Synapt G2 instrument. This is a 
schematic view of the TriWave cell where the separation of the ions according to their 
mobility takes place. The three main regions of the IM cell (trap, IM separation and 
transfer) and labelled on the diagram. The black lines represent the electrode pairs. 
Adapted from Pringle et al. (2007).  

 

In the transfer region a travelling wave voltage is continuously applied in 

order to maintain the mobility separation of the ions as they travel to the 

TOF and then the detector. A main advantage of this instrument is that it 

allows the simultaneous collection of both ATD data and mass spectra 

which is achieved by synchronising the TOF acquisition with the release 

of ions from the trap SRIG into the IM SRIG (Pringle et al., 2007). 

 

4.2.4 Calibration of TWIM-MS data 

In order to obtain a good estimate of the collisional cross section from 

ATD values for an unknown molecule, the ATD data must be calibrated 

using the mobilities of standards for which there are established cross 

sections. Different research groups have developed various approaches 

to calibrating ATD data. A calibration method has been previously 

published by the Scrivens group (Thalassinos et al., 2009) and was used 

throughout this work. The size of the unknown molecule dictates which 

standard will be used for calibration and for the experiments on HSA 

Trap

Ions from 

quadrupole

Gate IMS

Helium

180 ml/min

Nitrogen

90 ml/min

Transfer

Argon
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reported here, sperm whale myoglobin was used as a calibration 

standard. Importantly the calibration standard must be analysed under 

the same conditions as the unknown sample (Leary et al., 2009) as the 

buffer gas, T-wave height and wave velocity can have an impact on the 

ATD of an ion. For the estimation of protein cross sections, a power fit 

series has been shown to be the most appropriate (Thalassinos et al., 

2009). 

 

4.3 Results and discussion 

4.3.1 TWIM-MS of recombinant HSA at physiological pH 

TWIM-MS was used as a novel technique to study the conformation of 

HSA and its binary and ternary complexes. Preliminary experiments with 

10 mM ammonium acetate as in Chapter 3 did not yield reliable data as 

the ion transmission through the IM cell was insufficient. To overcome 

this, the buffer concentration was increased to 200 mM ammonium 

acetate as higher concentrations have been shown to stabilise large 

proteins (Sterling et al., 2010). In addition a high backing pressure was 

used, as Ruotolo et al. (2008) suggested that for IM experiments of 

proteins between 50-200 kDa a backing pressure of 5.5 mbar was 

optimal. Using the Synapt G2, the charge states observed were 14+ to 

17+ for apo-HSA. These are slightly different charge states than observed 

from standard electrospray in Chapter 3 (16+ to 19+) because the Synapt 

G2 has a nanospray source.  As collisional activation had been shown to 

be beneficial on other instruments, cone voltages of 60, 80 and 100 V 

were investigated and the conformations of the protein compared. 
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Although all three conditions appeared to produce the same charge state 

distribution associated with the monomeric folded form of the protein, 

shown in Figure 4.2 A, the ATD suggested otherwise.  

 

At 60 and 80 V, one conformation was observed, but when the cone 

voltage was increased to 100 V, a significant change occurred and three 

different conformations were observed in the ATD plot. The single 

observed conformation in both the 60 V and 80 V spectra had an arrival 

time of 8.71 ms and 8.85 ms respectively for the 16+ charge state. It was 

established that this was the heart-shaped, folded form of HSA as the 

values were in close agreement with the theoretical collisional cross 

section, 3847 Å2, calculated from the PDB structure of HSA (see Figure 

4.8 B for details).  

 

As the cone voltage was increased, less of this species was observed 

and two more extended conformations were seen at 10.03 and 11.47 ms 

(16+ charge state, Figure 4.2 B). For the 15+ charge state, extended 

conformations were observed at 12.50 and also at 10.03 ms, which 

dominated at 100 V, while the native conformation had an arrival time of 

9.54 ms at both 60 and 80 V. The calculated cross sections for these, 

provided in Figure 4.2 C, indicated that the ions with longer arrival times 

were extended forms of the protein and their dominance at higher cone 

voltages is in line with expectations. 
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Figure 4.2 Comparison of ATD for the 16+ and 15+ charge states of apo-HSA at 
varying cone voltages of 60, 80 and 100 V. A) ATD at cone voltage = 60 V (red), 80 V 
(green) and 100 V (blue). Arrows highlight the new conformations observed as the cone 
voltage is increased. B) Table showing the estimated collisional cross sections of 
conformations observed for each cone voltage. Partially unfolded conformations are 
highlighted (blue).  
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A larger number of solvent clusters are stripped away from the protein at 

100 V compared to lower cone voltages which could explain these 

additional conformations. These unfolded conformations are novel 

observations and could reflect intermediates between the N and F-forms 

of HSA, which are described in detail in section 1.6.1. As a result of these 

findings, subsequent experiments were carried out with a cone voltage of 

80 V where only one conformation was observed.  

 

4.3.2 Comparison of N- and F-forms of HSA 

In order to see if altered conformations of HSA at different pH values 

could be identified by TWIM-MS, a sample of HSA at pH 4.0 was 

analysed. The N-form is thought to be a compact, heart shape structure 

whereas conversion to the F-form is characterised by elongation of the 

protein structure. It has previously been shown that at least two steps of 

isomerisation occur to the N form before full expansion of the protein 

occurs (Leonard and Foster, 1961). At pH 4.0 the charge states showed 

that HSA is denatured to some extent as more highly charged states are 

observed. In this experiment the charge states at pH 7.4 ranged from 15+ 

to 18+. Two particular charge states, 17+ and 18+, were present at both 

pH 7.4 and 4.0 which allowed a comparison of the ATDs (Figure 4.3). At 

pH 7.4 two peaks were observed in the ATD which represent the native-

like conformations that travel through the gas relatively quickly.  At pH 4.0 

the single peak observed for each charge state has a much longer arrival 

time (20.88 and 17.97 ms) indicating that it is a more extended 

conformation of HSA. 
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Figure 4.3 ATDs for the 17+ and 18+ charge states of HSA measured at pH 7.4 and 
pH 4.0.  The blue shaded region indicates the conformations at pH 7.4 and the grey 
shaded region indicates conformations at pH 4.0. The cone voltage was 100 V which 
explains why there are two conformations observed at pH 7.4. 

 

Therefore, it can be seen that at pH 4.0 there is a large amount of 

unfolding which could correspond to the F-form of the protein. Carter and 

Ho (1994) suggested that the F-form was a separation of two halves of 

the molecule from each other. Differences in the mobility of ions under 

native and denatured conditions have been previously recognised. An 

example is the case of cytochrome c where the 9+ ion observed from an 

aqueous solution was much smaller than that observed using a 

denaturing buffer (Hudgins et al., 1997). Furthermore, Faull et al. (2008) 

demonstrated that haemoglobin at pH 4.5 had a greater collisional cross 

section than those measured at neutral pH. Both of these studies are in 

pH 7.4 pH 4.0

17+

17+

18+

18+
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agreement with what is observed in this work and so it would appear that 

pH-dependent conformations of HSA can be observed even when the 

species have the same number of charges.  

 

4.3.3 Comparison of the conformations of apo- and holo-HSA 

The effect of Zn2+ and Cd2+ binding on protein conformation was 

investigated using TWIM-MS. The same charge state distribution (14+-

17+) was observed for the metal bound forms of HSA as for apo-HSA. 

The ATDs for the most abundant charge states showed no difference 

between apo-HSA, Zn2-HSA and Cd2-HSA as shown in Figure 4.4. The 

ATD for Cd2-HSA showed a very slight increase in drift time suggesting it 

had a less compact structure than apo-HSA and Zn2-HSA. It has not yet 

been determined where the other high affinity binding site for Cd2+, Site B, 

is located although 111Cd-NMR spectroscopy suggests a ligand set 

containing one or less nitrogen atoms, different to that for the high affinity 

Zn2+ site. This could account for the small differences in ATD for this 

particular complex. The 17+ charge state shows evidence of another 

conformation beginning to appear in both the apo- and holo- HSA 

complexes. As this charge state is the most highly charged out of those 

observed, this more elongated conformation could be due to partial 

unfolding of the protein. This observation could indicate that a partially 

unfolded conformation is present under mild conditions as well as when 

the collisional activation is higher. 
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Figure 4.4 Comparison of ATD for the 17+, 16+, 15+ and 14+ charge states of apo-
HSA, Zn2-HSA and Cd2-HSA. Green = apo-HSA, Purple = Zn2-HSA and Blue = Cd2-
HSA. The cone voltage was 80 V in all experiments.  
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Using these IM data, estimated collisional cross sections were obtained 

by calibration with sperm whale myoglobin. The experimentally- 

determined collisional cross sections were plotted against charge state 

(Figure 4.5) and show the expected trend of more highly charged ions 

having a less compact structure. For the apo- and metal forms, no 

significant differences are observed although Cd2-HSA showed a slightly 

larger collisional cross section for all of the charge states, consistent with 

the slightly longer arrival times. Site A only undergoes minor re-

arrangements to accommodate a Zn2+ ion therefore no great change in 

cross section is in agreement with the proposed model for the 

interdomain site.  In the case of Cd2-HSA, the protein structure may be 

slightly less compact. 

 

 

 

Figure 4.5 Dependence of the estimated collisional cross section on charge state 
for apo-HSA, Zn2-HSA and Cd2-HSA. There is no major difference in the cross 
sections calculated for the apo- or holo-HSA complexes. 

 

Although the collisional cross sections of apo- and holo-HSA were similar, 

the partially unfolded conformations of HSA observed in Figure 4.2 were 
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able to give an indication of how the metal ions influenced the 

conformational flexibility of HSA. The high affinity Zn2+ site, Site A, 

involves residues from both domains I and II, as illustrated previously 

(Chapter 1, Figure 1.5). Therefore metal ion binding at this site has been 

speculated to make the domain interface more rigid. Figure 4.6 shows the 

ATD for the 16+ and 15+ charge state of Zn2-HSA measured at 60, 80 

and 100 V. Comparison to the ATD to Figure 4.2 shows some interesting 

differences. 

.  

 
Figure 4.6 Comparison of ATD for the 16+ and 15+ charge states of Zn2-HSA at 
varying cone voltages of 60, 80 and 100 V. Cone voltage  = 60 V (red), 80 V (green) 
and 100 V (blue). Arrows highlight the new conformations observed as the cone voltage 
is increased.  
 

The two extended conformations of the protein are considerably less 

intense for the 16+ charge state and do not dominate the ATD as was 
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observed for apo-HSA. In fact the native form of HSA is the most 

prominent peak in the ATD at 9.12 ms. For the 15+ charge state the 

difference is more subtle although the unfolded conformation observed at 

12.50 ms for apo-HSA is not visible in Figure 4.6. These observations are 

experimental evidence that occupation of Site A by Zn2+ has a stabilising 

effect on the domain I/domain II interface. This outcome can also be used 

to explain why in the 1H-NMR spectroscopy of HSA other His residues, 

apart from the Zn2+ ligands His67 and His247, broaden when 1 mol. 

equiv. of Zn2+ is added (Blindauer et al., 2009) as the stabilisation of the 

interface means the sidechains are less flexible. Other interdomain His 

residues appear to be affected by metal ion binding even though they are 

not directly involved in coordination which would support the idea that 

Zn2+ binding locks domain I and II in place. 

 

4.3.4 Conformational changes induced by fatty acids 

Previous studies indicate that a conformational change occurs when fatty 

acids bind to HSA (Curry et al., 1998; Bhattacharya et al., 2000). This 

causes the relative movement between domains I and II and results in 

disruption of the Zn2+ binding site as His67/Asn99 and His247/Asp249 are 

no longer in close proximity to each other (see Figure 1.5). Previously, 

conformational changes induced by fatty acid binding have been studied 

by other approaches including cross linking of Lys residues followed by 

tryptic digestion and analysis of the peptides produced (Huang et al., 

2005). TWIM-MS was used to compare the mobility of HSA samples that 

had been extensively dialysed to samples that had high concentrations of 



Chapter Four 

102 
 

myristate present. The HSA was studied in the presence of myristate and 

not myristate/Zn2+ so the experimental cross section could be directly 

compared to the theoretical value calculated from the structure deposited 

in the PDB. Although the Synapt used a much gentler nanospray source, 

a HSA-myristate complex could not be preserved as no significant 

increase in mass was observed (cf. Chapter 3). However, HSA in the 

presence myristate showed an increased collisional cross section 

compared to apo-HSA under the same conditions. The sample that had 

been incubated with myristate had a large increase in cross section which 

was estimated to be 87 Å2 for the 15+ charge state (Figure 4.7). 

 

 

Figure 4.7 Dependence of charge state for the estimated collisional cross sections 
of apo-HSA and HSA in the presence of 5 mol. equiv. myristate. There are large 
differences in cross sections observed for each protein sample.  

 

In order to validate these experimental data, theoretical cross sections 

were calculated using MOBCAL, an open source program (Mesleh et al., 

1996; Shvartsburg and Jarrold, 1996). X-ray crystal structures are 

available for apo-HSA and myristate bound HSA, files 1AO6 and 1BJ5 in 
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the Protein Data Bank, respectively. Theoretical cross sections are 

calculated based on projection approximation (PA) and exact hard sphere 

scattering (EHSS) approximation. The PA method can underestimate the 

cross sections of more complex molecules such as proteins as they 

undergo more interactions with the buffer gas. The EHSS method takes 

into account the scattering between the ion and the buffer gas correctly 

but can overestimate cross sections (Jarrold, 1999). However, these 

models are used because they take substantially less computational time 

than others such as the more accurate trajectory method (TJ) (Jarrold, 

1999).  

 

The PA and EHSS cross sections for 1AO6 and 1BJ5 are outlined in 

Figure 4.8 B. The experimentally-determined cross sections fall between 

the theoretical values for the PA and EHSS. There is good agreement 

between the experimental values and those calculated from the PA 

method but the EHSS method overestimates the cross section of HSA 

significantly.  Some examples of native gas phase conformations have 

smaller estimated cross sections than those obtained from the EHSS 

method, for example in the case of bovine pancreatic trypsin inhibitor 

(BPTI) (Shelimov et al., 1997). This could be due to a lack of water 

molecules which would otherwise occupy cavities in the protein structure 

and increase its size. Furthermore, polar side chains, which would usually 

extend out into the solvent, collapse onto the protein surface in the gas 

phase (Shelimov et al., 1997).   
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Complex HSA (1AO6) HSA-5Myr (1BJ5) 

Experimental 3920 Å² 4007 Å² 

PA 3847 Å² 3923 Å² 

EHSS 5054 Å² 5127 Å² 

 

Figure 4.8 Comparison of experimental and theoretical collisional cross sections 
for HSA complexes. A) Overlay of the protein structures from 1AO6 (red; FA free) and 
1BJ5 (green; 5 myristates) B) Table summarising the experimental cross sections and 
those obtained from the PA and EHSS methods.  

 

The theoretical difference between the cross sections calculated from the 

PA method is 76 Å2 which compares well with the experimental difference 

of 87 Å2.  An overlay of 1AO6 and 1BJ5 is also shown in Figure 4.8 A 

which indicates the structural changes induced by fatty acid binding. The 

crevice in the centre of the protein is considerably expanded and domains 

I and III are moved away from each other.  

 

Taking into account the experimental and theoretical results, it can be 

suggested that even though the interactions with fatty acids were broken 

on entering the gas phase, the expanded conformation induced by fatty-

acid binding in solution was apparently retained in the gas phase during 

the time in which the experiment was performed. This can be rationalised 

B 

A 
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as it has been shown that gas phase structures reflect the native 

structure of proteins in solution over short time scales (Hoaglund-Hyzer, 

1991; Breuker and McLafferty, 2008). A study of cytochrome c that 

involved trapping the ions for various periods of time prior to IM 

experiments showed that protein native structure was retained for 30-60 

ms. Trapping the ions for longer than this resulted in unfolded 

conformations being observed (Badman et al., 2005). Other reports have 

indicated that structural features can be retained for longer than 100 ms 

(Wyttenbach et al., 2009). The TWIM-MS experiments in this work were 

carried out on a shorter timescale of 10-20 ms therefore there is less 

chance for the solution structure to rearrange into the most  stable FA-

free conformation in the gas phase.  

 

4.4 Conclusion 

In summary, this chapter has described efforts to study HSA complexes 

using TWIM-MS. The estimated collisional cross section of HSA at 

physiologically relevant pH was in good agreement with theoretical values 

obtained from the crystal structures. At pH 4.0 a significantly elongated 

conformation was observed, providing evidence for a pH-induced 

conformational change. This could reflect two halves of the molecule 

becoming separated which results in a longer arrival time. No significant 

increase in the collisional cross sections for metal-bound forms of HSA 

was seen compared to the apo-form. However, the Cd2-HSA form had a 

consistently larger collisional cross section. In the presence of Zn2+ less 

unfolding to extended protein conformations was observed, compared to 

the apo-form, which could indicate Zn2+ having a stabilisation effect on 
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the domain I/domain II interface. Even though HSA-myristate interactions 

appeared to be broken in the gas phase, an increased collisional cross 

section was still detected for myristate-HSA compared to apo-HSA, which 

could mean on the timescale of the IM-MS experiment the protein had not 

returned to its most stable FA-free conformation in the gas phase. 

Overall, this evidence has indicated that TWIM-MS can be applied to 

study native HSA using a method that hasn’t been attempted previously 

and has given an important insight into how ligand binding can influence 

the conformation of HSA. 
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3.  Chapter 5 
Metal binding properties of a 

peptide mimic from HRG 

 
5.1 Introduction 

In this Chapter, the metal binding properties of a peptide mimic 

(HRGP330) from the HRR of HRG were explored by native ESI-MS, NMR 

spectroscopy and tandem MS/MS. Although some potential biological 

roles for HRG have been acknowledged, there is a shortfall on structural 

information as to how it might fulfil these. Additionally, many studies have 

utilised rabbit HRG, which may have different metal-binding properties, 

whereas the peptide sequence used here is derived from the human form.  

 

5.2 HRGP330: a peptide mimic of the His/Pro-rich region 

Histidine rich glycoprotein (HRG) contains a His/Pro-rich region which 

shows some similarities to high-molecular-weight kininogen (HMWK) 

(Nordahl et al., 2005), a 72 kDa protein from the blood coagulation 

system, with which it shows 17% sequence similarity.  HRGP330, a 35 

amino acid peptide derived from the HRR was selected to mimic the Zn2+ 

binding properties and Zn2+-mediated interactions of HRG. The primary 

sequence consists of amino acids 330-365 from the full length HRG 

sequence which is highlighted in Figure 5.1. The nomenclature used by 

Dixelius et al. (2006) does not count the signal peptide and only the main 

chain hence the position of HRGP330 in Figure 5.1 is shifted by 18 
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residues to 348-383 as highlighted in red. This peptide has been shown 

to be biologically active and has been used for in vivo experiments 

confirming that it is suitable for mimicking physiological conditions. It has 

been demonstrated that HRGP330 shows antiangiogenic properties both 

in vitro and in vivo (Dixelius et al., 2006). HRGP330 at a concentration of 

23 nM was able to inhibit chemotaxis of primary endothelial cells which 

had been induced by vascular endothelial growth factor. Also in 2006, 

Vanwildemeersch et al. (2006) showed that HRGP330 can bind to both 

heparin and heparan sulphate in a Zn2+-dependent manner.          

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.1 Location of HRGP330 in the full-length sequence of human HRG. The 
red residues indicate the sequence of HRGP330. The residues coloured in blue are the 
signal peptide.  
 

  

HRGP335, a related 26 amino acid peptide (residues 353-378; Arg378 is 

replaced by Gly), was shown to bind to defined heparin oligomers in the 

presence of Zn2+ with increased binding observed with increasing 
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oligomer length. This reached maximum binding with the heparin 

dodecasaccharide and tetradecasaccharide (Vanwildemeersch et al., 

2006). Modifications to HRGP330 used in this work included C-terminal 

amidation and an N-terminal acetylation to avoid metal binding occurring 

at these sites. HRGP330 was selected as it has been previously shown to 

be a minimal active domain of HRG (Dixelius et al., 2006). Furthermore, 

its relatively small size (4.3 kDa) allows it to be studied by techniques 

such as MS, MS/MS and NMR spectroscopy. The peptide has no 

aromatic residues and furthermore Zn2+ is spectroscopically inactive 

therefore ESI-MS is an invaluable tool that can be used to study the 

peptide-metal ion interactions. 

 

5.3 Results and discussion 

5.3.1 Purification of HRGP330 by HPLC 

HRGP330 typically eluted from the HPLC column at 9.2 min (Figure 5.2). 

This corresponded to an acetonitrile concentration of 25% which shows 

that it was the least hydrophobic component of the sample. The peak that 

eluted slightly later at 9.6 min was shown by ESI-MS to correspond to 

HRGP330 with a mass increase of 56 Da (Figure A5, Appendix). This 

was attributed to a t-butyl protecting group still remaining from the 

synthesis. As a result, it was beneficial to use TFA in the separation as 

this cleaves protecting groups although ESI-MS data indicated that this 

modification did not appear to interfere with metal binding. The identity of 

the peptide was confirmed by ESI-MS as shown in Figure 5.3. The HPLC 

fractions were infused directly into the instrument and therefore the 
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samples had a low pH of 2.0. As a result a range of charge states were 

observed with 5+ being predominant. 

 

Figure 5.2 Purification of crude HRGP330 with RP-HPLC. Example of a 
chromatogram obtained from loading crude HRGP330 onto a Jupiter Proteo 90 Å 
column using an Agilent 1100 instrument. The blue line shows an increasing gradient of 
acetonitrile containing 0.1% TFA. 
 
 
 
 

Following deconvolution of the raw data, the experimental mass of 

4333.98 Da was observed (theoretical mass = 4334.58 Da) which was 

the most abundant peak. The mass of the peptide eluting at 9.6 min was 

4390.0 Da and this fraction contained more impurities (Figure A5). SDS-

PAGE was also used to check the purity and HRGP330 was observed 

just below the 10 kDa standard. This is at a higher position than expected 

indicating it migrates more slowly through the gel. One reason for this 

could be that the unusual composition of the peptide means it may not 

take up as many SDS molecules. After the peptide had been buffer-
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exchanged into a neutral buffer, the predominant charge states were +4 

and +5.  

 
 
 

 
 
Figure 5.3 Identification of purified HRGP330 by SDS-PAGE and ESI-MS. A) SDS 
PAGE of HRGP330 fractions. B) Charge state envelope C) Deconvoluted mass 
spectrum. The HPLC fraction that eluted at 9.2 minutes was injected directly into the 
mass spectrometer to produce the spectrum. 
 
 

At physiologically-relevant pH, a small amount of Zn2+ contamination was 

sometimes observed in the samples that had been purified. The peak 

corresponding to the Zn2+-bound species had a relative intensity of ~ 5% 

and so was not significant. This could be from contamination during the 

purification process. To avoid this contamination, once the peptide was 

brought up to neutral pH, the containers used for experiments were acid-

washed. It could also not be ruled out that that the source of 

contamination was the mass spectrometer. In order to test this, a sample 
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was tested on two different mass spectrometers (Figure 5.4). This 

confirmed that at least on one of these, the sample was binding metal 

ions upon injection into the instrument and not as a result of 

contamination in the laboratory. This phenomenon has previously been 

reported by Mattapalli et al. (2009) who found evidence that the apo-form 

of a model Zn2+ finger peptide became Zn2+-bound on infusion into the 

mass spectrometer even after rigorous cleaning.  

 

Figure 5.4 Comparison of apo-HRGP330 spectra from two different mass 
spectrometers. Two new peaks became apparent in the second spectrum which have a 
mass shift of 63 Da and 126 Da compared to HRGP330 i.e. addition of 1 or 2 Cu

2+
 or 

Zn
2+

 ions. The low resolution results in difficulty in assigning these unambiguously. 
 

They concluded that Zn2+ from previous experiments was being deposited 

in the stainless steel emitter of the instrument and then detected in other 

samples (Mattapalli et al., 2009). Although this example showed a 

particularly extreme amount of contamination, it highlighted how the 

peptide can readily bind trace metal ions from the environment. 
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5.3.2 Metal binding properties of HRGP330 investigated by ESI-MS 

Prior to the addition of metal ions, the peptide was desalted and buffer 

exchanged into 10 mM ammonium acetate (pH 7.4). The literature 

suggests that up to 10 Zn2+ ions could bind in the HRR (Morgan, 1981). 

The region characterised as the HRR is 59 amino acids in length and 

HRGP330 spans approximately half this region.  Therefore, 1, 2 and 5 

mol. equiv. of metal ion were titrated into the peptide. The spectra for 

three titrations with Zn(CH3COO)2.2H2O (A), Cd(CH3COO)2.2H2O (B) and 

Cu(CH3COO)2.H2O (C) are shown in Figure 5.5. The masses of Zn2+ and 

Cu2+ are within 1 Da of each other and so high resolution MS allows the 

unambiguous assignment of which metal ion is present. The highlighted 

peak on the right hand side shows the experimental isotopic distribution 

of HRGP330 with 1 metal ion bound with a comparison to the theoretical 

model.  At a HRGP330:Zn2+ ratio of 1:1, Zn1-HRGP330 was observed at 

a low intensity but the most abundant peak was apo-HRGP330. Similarly, 

once 2 mol. equiv. of Zn2+ were added, a peak for Zn2-HRGP330 was 

observed but the apo-form was still present in substantial quantities. 

Once 5 mol. equiv. Zn2+ were present, the apo-form disappeared from the 

spectrum completely and a range of metallated species were observed. 

The most abundant metalloform was Zn4-HRGP330. Mangani et al., 

(2003) carried out EXAFS on a Zn2+-bound complex of HRG associated 

with rabbit skeletal muscle AMP deaminase, a protein that has similarities 

to HRG but has a unique extended N-terminal region (Ranieri-Raggi et 

al., 1997). The possible models of Zn2+ coordination proposed were 3 

coordinating His imidazole rings, with an additional sulfur from Cys or a 
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Cl- ligand, in a mononuclear or dinuclear site. There is only one Cys 

residue in the HRR not involved in disulfide bonds therefore a CysHis3 

site could potentially form. However, HRGP330 contains no Cys residues 

and still binds a number of metal ions. Assuming that 3 His residues 

coordinate to Zn2+ then 5 metal ions would be able to coordinate to 

HRGP330 which is in agreement with the ESI-MS data.  

 

The titration with Cd2+ also resulted in a range of metallated peptide 

species but notably the apo-HRGP330 was present throughout the 

experiment, even when 5 mol. equiv. Cd2+ were present. The most 

abundant species was the Cd2-HRGP330 form which could indicate that 

this metal ion has a lower affinity for HRGP330 than Zn2+ and this fits with 

previous observations made in the literature (Morgan, 1981).  

 

The titration with Cu2+ followed a similar course to the titration with Zn2+ 

with a Cu4-HRGP330 species being the most abundant. The only 

difference was that apo-HRGP330 was no longer observed once 1 mol. 

equiv. of Cu2+ was present which indicates that HRGP330 has a high 

affinity for this metal ion. It has been suggested that HRG could be 

involved in Cu2+ transport and indeed some studies have found the 

protein has a higher affinity for Cu2+ than Zn2+ (Morgan, 1981; Guthans 

and Morgan, 1982) .  Although it is mainly Zn2+ that is thought to mediate 

the interactions of HRG with heparin, Cu2+ could also have an influence 

(Borza and Morgan, 1998). 
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Figure 5.5 Metal binding properties of HRGP330. 15 µM HRGP330 was titrated with 1, 
2 and 5 mol. equiv. of A) Zn(CH3COO)2.2H2O B) Cd(CH3COO)2.2H2O and C) 
Cu(CH3COO)2.H2O. The buffer was 10 mM ammonium acetate at pH 7.4. The isotopic 
distribution for 1 mol. equiv. of the metal ion bound to HRGP330 is shown on the right 
hand side together with a comparison to the theoretical model.  
 

 



Chapter Five 

116 
 

Some groups have investigated small His-containing peptides and their 

interaction with Cu2+ including an MS study of the oligopeptide 

(GHHPG)5G which found that one Cu2+ binds per GHHPH moiety 

(Hutchens et al., 1992). It is unsurprising that Cu2+ binds more strongly 

than other metal ions as it is able to deprotonate backbone amides to a 

much greater extent than Zn2+. La Mendola et al. (2012) suggested a 

model where only two His residues in the peptide Ac-HGHH-NH2 were 

involved in Cu2+ coordination.  

 

As shown in Figure 5.5, there was a preference for forming the [Metal 

ion]2-HRGP330 species before fully saturating the apo-HRGP330 with 

one metal ion. An explanation for this is that the binding of metal ions to 

HRG is cooperative and so the addition of the first Zn2+ ion could induce a 

conformational change that makes it easier for the second Zn2+ ion to 

bind. This was demonstrated previously using small peptides where two 

Zn2+ ions bound to the sequence Ac-(HHPHG)2-NH2 with higher stability 

compared to one Zn2+ binding to Ac-(HHPHG)-NH2 (Jancsó et al., 2009). 

Cooperativity has also been observed for Zn2+ and Cd2+ binding to full 

length HRG (Morgan, 1981). 

 

5.3.3 Comparison of Zn2+ binding to intact HRG  

Attempts were made to study rabbit HRG under native MS conditions 

however, the charge states were of too low intensity to interpret and small 

peptides were observed which could be the result of protein degradation 

(Figure A6, Appendix). To gain an understanding of the Zn2+ binding 
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properties, the sample was analysed by ICP-OES which indicated 8.4 

Zn2+ per HRG molecule. This is consistent with previous literature that 10 

metal ions can bind per protein (Morgan, 1981) and the slight discrepancy 

could be Zn2+ loss occurring during the gel filtration column. As yet it is 

unclear as to how many Zn2+ ions are required to be bound to HRG in 

order for the protein to have an anti-angiogenic effect but some authors 

have shown that only one Zn2+ may be bound per 10 HRG molecules 

endogenously (Horne et al., 2001; Fu and Horne, 2002).    

 

5.3.4 pH titration of Zn5-HRGP330 

In order to understand how metal binding to HRGP330 facilitates its 

biological function, it is necessary to study the Zn2+ binding and release 

properties of the His-rich domain. One way in which HRG could become 

positively charged is through acidic conditions and the protein has been 

proposed to be a plasma pH sensor (Borza and Morgan, 1998). The pH 

dependence of Zn2+ binding to HRGP330 was explored using a pH 

titration as shown in Figure 5.6. At a physiologically relevant pH (7.36), a 

range of metallated states were observed as described previously. As the 

pH was lowered to 6.33, a complete loss of Zn5-HRGP330 was observed 

indicating the loss of a Zn2+ ion from a low affinity binding site. A small 

peak for Zn4-HRGP330 was still present, however, this has drastically 

reduced in intensity. As the conditions became more acidic (pH 5.05) the 

most abundant species was Zn1-HRGP330 with a sharp increase in the 

apo form. The apo-form became most abundant at pH 4.66 but Zn1-

HRGP330 could still be observed at pH 3.31. Interestingly, from this data 
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there appears to be one metal binding site that is more stable at low pH 

whereas a significant drop in the intensity of Zn4- and Zn5-HRGP330 

occurs across a relatively small change in pH.  

 

Figure 5.6 pH titration of Zn5-HRGP330. Zn5-HRGP330 (20 µM) was titrated with 
microlitre additions of 1% acetic acid followed by analysis using ESI-MS 
 
 
 

5.3.5 CD spectroscopy of HRGP330 

CD spectroscopy can be used to study the conformation of proteins and 

any conformational changes that are induced by ligands. This technique 

was used to study samples of HRGP330 in the absence and presence of 

metal ions (Figure 5.7). It is useful to have complementary solution phase 

data to compare with mass spectrometry experiments where the protein 

is in the gas phase. In the HRR of HRG there is a lack of conventional 

secondary structure such as α-helices and β-sheets. The high His and 

Pro content in this region indicates that formation of a polyproline type II 

helix with numerous His residues could occur. Previously a limited 

proteolysis approach isolated a 30 kDa fragment containing the HRR and 
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this showed evidence for a polyproline II helix (Borza et al., 1996). The 

spectrum for apo-HRGP330 shows a negative band at 198 nm and a 

slight positive band with a maximum at 221 nm indicated by the black line 

in Figure 5.7. These bands are characteristic of a polyproline II helix 

(Ronish & Krimm, 1974). In the presence of 2 mol. equiv. Zn2+, an 

increase in the negative band was observed and also a slight increase in 

the positive band. The same observation was seen when the Zn2+ 

concentration was increased to 5 mol. equiv. with respect to HRGP330.  

 

Figure 5.7 Far-UV region CD spectrum of HRGP330 in the presence and absence 
of Zn

2+
. The black line represents the signal for HRGP330 (11 µM in 10 mM potassium 

phosphate, pH 7.4). The red line was observed after addition of 2 mol. equiv. ZnCl2 and 
the grey line after addition of 5 mol. equiv. ZnCl2. 

 
 

An increase in the negative band upon metal ion binding has been 

reported for His-rich antimicrobial peptides from histatin which could 

indicate similarity between the structural features occurring in both 

peptides (Brewer and Lajoie, 2000). The interpretation of CD spectra in 

terms of polyproline II helical content can be difficult because its CD 

spectrum can be similar to that of a random coil and also there is not yet 
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an established way to quantify the amount of polyproline II helix structure 

within the peptide. Nevertheless, the substantial change in band 

intensities suggests that a conformational change occurs upon Zn2+ 

binding. 

 

5.3.6 TWIM-MS of HRGP330 

As described in Chapter 4, TWIM-MS is an invaluable technique for 

studying the conformation of biomolecules. The distinctive negative band 

in the CD spectrum (Figure 5.7) indicated a lack of traditional secondary 

structure elements and this could be due to the abundance of Pro 

residues. This makes HRGP330 an interesting candidate for IM-MS 

studies as the effect of coordinating metal ions on the peptide structure 

can be probed in more detail. 

 

Firstly, apo-HRGP330 was analysed in 10 mM ammonium acetate (pH 

7.4) on a Synapt HDMS G2 instrument. The ATDs observed for charge 

states ranging from 6+ to 3+ are shown in Figure 5.8 A. The ATDs are 

used to estimate the collisional cross section of the peptide for each 

charge state in Figure 5.8 B. The charge states 6+, 5+ and 4+ appear to 

show one conformation, however, the 4+ charge state has an unusually 

small collisional cross section and does not fit the linear trend where 

increasing charge leads to increasing collisional cross section.  
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Figure 5.8 ATDs and estimated collisional cross sections of the charge states 
observed for apo-HRGP330. A) ATDs for the charge states observed which are given 
in ms B) Estimated collisional cross sections calculated from the ATDs. The samples 
were 10 µM HRGP330 in 10 mM ammonium acetate (pH 7.4). There are 3 points for the 
3+ charge state representing the 3 different conformations observed. The estimated 
cross sections were the same across two datasets.  

 

Furthermore, the 3+ charge state shows the presence of at least 3 

different conformers, two of which have a more compact structure, as 

each peak in the ATD represents at least one gas phase conformation of 

the ion. A possible explanation for this could be the difference in the 

+6

+5

+4

+3

A

(ms)

400.0

500.0

600.0

700.0

800.0

900.0

1000.0

1100.0

2 3 4 5 6

E
s
ti

m
a
te

d
 c

o
ll

is
io

n
a
l 
c
ro

s
s
 s

e
c
ti

o
n

 (
Å

2
)

Charge state

B



Chapter Five 

122 
 

conformation of HRGP330 as it reaches a more native (more folded) 

charge state. 

 

5.3.7 Comparison of apo- and Zn2+ bound HRGP330 by TWIM-MS 

The ATDs for the 5+ charge state of Zn2+-HRGP330 are compared in 

Figure 5.9 A and the width of the ATD can be related to the number of 

different conformations that contribute to the area under the peak. A 

relatively sharp ATD is observed in the plot for apo-HRG330, compared 

to the Zn2+-bound forms, suggesting one defined conformation dominates 

in this case. In contrast the ATDs for Zn2-HRGP330, Zn3-HRGP330, Zn4-

HRGP330 and Zn5-HRGP330 are broader indicating multiple 

conformations. The peak for Zn1-HRGP330 was of too low intensity to 

produce reliable data. Furthermore as the number of Zn2+ ions interacting 

with HRGP330 increases, the ATD moves to a shorter arrival time 

indicating that the peptide structure becomes more compact.  

 

Calculation of the estimated cross sections for the 5+ charge state is 

shown in  in Figure 5.9 B. Apo-HRGP330 has a larger estimated cross 

section than the holo-forms and a decrease in estimated cross section is 

observed for all the Zn2+-bound forms. The 5+ charge state shows a clear 

trend of the decrease in the collisional cross section as more Zn2+ 

becomes bound. This suggests that the Zn2+ bound forms have a more 

compact structure. This correlates well with the hypothesis that Zn2+ 

alters the conformation of the HRR of HRG to mediate interactions with 

ligands.  
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Figure 5.9 Effect of Zn
2+

 binding on the ATD and collisional cross section of the 5+ 
charge state of HRGP330. A) ATDs of Zn

2+
 bound species which are given in ms B) 

Estimated collisional cross sections calculated. The sample was 10 µM HRGP330 in 10 
mM ammonium acetate (pH 7.4). The error bars represent the standard error in the two 
datasets obtained in the presence of Zn

2+
 ions. 

 

5.4 NMR spectroscopy of HRGP330 

5.4.1 1-D and 2-D NMR spectroscopy of apo-HRGP330 

1-D 1H NMR spectroscopy of apo-HRGP330 at 25 °C showed a mixture 

of sharp and broad peaks, suggesting an unfolded structure. Various 

temperatures from 5-35 °C were investigated in order to gain more 

+ 2 Zn

HRGP330

+ 3 Zn

+ 4 Zn

+ 5 Zn

(ms)

A

840

850

860

870

880

890

900

910

0 2 4 6

E
s
ti

m
a
te

d
 c

o
ll

is
io

n
a
l 
c
ro

s
s
 s

e
c
ti

o
n

 (
Å

2
)

Number of zinc ions bound 

B



Chapter Five 

124 
 

information from the spectra and improve the resolution. Figure 5.10 

shows that as the temperature is decreased, a greater dispersion of the 

peaks in the fingerprint region is observed, indicating that at 5 °C the 

peptide appears to have a more ordered structure. Consequently, all 

subsequent experiments were performed at 5 °C. 

 

 

 

Figure 5.10 Stacked plot of 700 MHz 1-D 
1
H-NMR spectra showing fingerprint 

region of HRGP330 obtained at varying temperatures from 5-35 °C. ~0.7 mM 
sample was prepared in 50 mM Tris[D11], 50 mM NaCl with 10% D2O at pH 7.4.  

 

To obtain information on the peptide folding, 2-D TOCSY and NOESY 

were employed. These experiments give information about through-bond 

and through-space 1H-1H interactions, respectively. An overlay of the 

TOCSY (blue) and NOESY (red) spectra are shown in Figure 5.11 A. The 

distribution of backbone amide proton peaks spans the range 6.9-8.9 
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ppm which indicates a lack of conventional protein folding and secondary 

structure.  For the apo-form of HRGP330, partial assignment was 

achieved at pH 6.20 and 5°C (Figure 5.11 A). Full details of chemical 

shifts are provided in Table A4 (Appendix). Approximately 27 NH-CH(α) 

crosspeaks can be detected in the fingerprint region of the TOCSY  

whereas 30 would be expected therefore it is clear some residues are not 

observed. A significant number of crosspeaks are observed in the 

NOESY which indicates that the structure is not completely random coil. 

The nomenclature used for the imidazole protons of His (Hε1 and Hδ2) is 

shown in Figure 5.11 B and these can be clearly observed in the TOCSY 

spectrum. The His Hδ2 protons are observed at 7.0 ppm and the Hε1 

protons centred around 8.0 ppm at 5 °C. On closer inspection the His 

residues are resolved in the NH direction and approximately 11 can be 

distinguished although they cannot be assigned unambiguously (Figure 

5.11 C).  Three that could be identified are His3, His7 and His30 which 

are highlighted.  
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Figure 5.11 Fingerprint region of [

1
H,

1
H] TOCSY and NOESY spectra of HRGP330 

obtained at 700 MHz. A) Full fingerprint region showing assigned peaks. B) Chemical 
structure of His showing nomenclature of resonances. C) Identification of approximately 
11 His residues from their Hisβ-Hisδ2 crosspeaks, each distinguished with a dashed line.   

Sample concentration was ~0.4 mM in 50 mM Tris[D11], 50 mM NaCl with 10% D2O. The 
pH was 6.20 and the spectra were obtained at 5 °C. The TOCSY spectrum (blue) is 
overlaid onto the NOESY spectrum (red).  
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5.4.2 1-D and 2-D NMR spectroscopy of Zn2+-HRGP330 

A Zn2+ titration was carried out by addition of microlitre aliquots of ZnCl2 

to HRGP330 followed by the recording of 1-D 1H spectra which are 

shown in Figure 5.12. Upon addition of 1 mol. equiv. Zn2+
 the His residues 

in the aromatic region broadened considerably which indicates they are 

participating in metal binding. When 2 mol. equiv. were added, the peaks 

had broadened significantly into the baseline and no further change was 

seen at 3 mol. equiv. Zn2+. Some of the peaks, however, remain relatively 

sharp for example Gln12, Gln32 and Arg31 which are annotated in the 

spectrum. Asp1 and Leu2 are also still visible in the presence of 3 mol. 

equiv. Zn2+ although are much broader.  These amino acids are not 

thought to be involved in metal binding although some broadening could 

be due to their close proximity to Zn2+ binding residues.  

 

It must also be noted that broadening of residues other than His may 

mean Zn2+ is promoting the formation of oligomers. With greater than 3 

mol. equiv. ZnCl2, aggregation of the peptide was visible as white 

precipitate in the NMR tube. This could be due to high peptide 

concentrations used for NMR spectroscopy as only a small amount of 

dimer was observed in ESI-MS and only in the presence of metal ions. As 

shown in Figure A7 (Appendix), this was a minor species and the relative 

abundance compared to the HRGP330 monomer was 1.5-2% relative 

intensity in the samples.  
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Figure 5.12 Stacked plot of 700 MHz 1-D 
1
H-NMR spectra showing fingerprint 

region of HRGP330 in the presence of varying mol. equiv. ZnCl2. Sample was 
prepared in 50 mM Tris[D11], 50 mM NaCl with 10% D2O at pH 7.4 and 278 K. The His 
protons are annotated but significant overlapping meant they could not be assigned 
unambiguously. f denotes formate. 
 

Intriguingly, this oligomerisation of HRGP330 in the presence of Zn2+ may 

have physiological relevance as Jones et al. (2004) hypothesised that 

Zn2+ may be able to crosslink the HRR regions of HRG molecules. This 

would form a functional oligomeric complex that would have an enhanced 

binding affinity towards cell surfaces. From the NMR data it can be 

suggested that a number of Zn2+-bound complexes were present which 

are in intermediate exchange with each other. It cannot be said 

conclusively from the NMR data that Zn2+ alters the peptide structure, 

however, TWIM-MS did suggest a more compact conformation was 

formed upon Zn2+ binding. Furthermore, both NMR data and the 
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broadness of the ATDs support that fact that there are a number of 

complexes present once Zn2+ is bound. 

 

Figure 5.13 shows an overlay of the TOCSY spectra obtained for 

HRGP330 in the absence and presence of Zn2+. Upon Zn2+ binding, most 

of the residues disappear completely which is clearly seen by the overall 

lack of orange peaks (with Zn2+) compared to the blue peaks (no Zn2+). 

Interestingly, some spin systems remain unaffected as highlighted in 

Figure 5.13 A.  Peaks for the amino acids Asp1 and Leu2 are still 

relatively strong which indicates they have similar behaviour in the 

presence of Zn2+. In this case, the amino group at the N-terminus has 

been modified to an amide group which lowers its exchange rate with 

water and allows it to be observed. The Arg31Hδ-Hε crosspeak is also 

still prominent which could indicate residues at both ends of the peptide 

are generally less affected by Zn2+ binding. This is further supported by 

the observation that Gln32 can be seen in the aromatic region of the 

spectrum even when the His crosspeaks are significantly broadened 

(Figure 5.13 B).  
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Figure 5.13 Effect of Zn
2+

 on TOCSY spectrum of HRGP330 at 700 MHz. A) 
Fingerprint region B) Aromatic region. The TOCSY spectrum of Zn-HRGP330 (orange) 
is overlaid onto the TOCSY spectrum of apo-HRGP330 (blue). ~0.5 mM samples were 
prepared in 50 mM Tris[D11], 50 mM NaCl with 10% D2O at pH 6.20 and 278 K. The 
peaks that remain upon Zn

2+
 binding are annotated. The His crosspeaks are labelled to 

show that they are no longer observed when Zn
2+

 is bound.  
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5.5 Tandem mass spectrometry  

5.5.1 An overview of MS/MS 

Tandem mass spectrometry (MS/MS) involves at least two steps of mass 

analysis and is a valuable tool for gaining structural information about 

biomolecules. Typically, an ion of interest is isolated using a first mass 

analyser (known as the precursor or parent ion) and then fragmented to 

yield ions of smaller masses which are detected by a second mass 

analyser. Fragmentation of a protein provides information about the 

amino acid sequence and depending on the MS/MS technique used, 

different types of ions can be formed. Assignment of these product ions is 

carried out using the Biemann nomenclature which is summarised in 

Figure 5.14 (Biemann, 1982; Roepstorff and Fohlmann, 1984; Johnson et 

al., 1988). If the charge on the ion is retained on the N-terminal fragment 

then the ion is denoted a, b or c and if it is on the C-terminal fragment the 

assignment is x, y and z. 

 

 

Figure 5.14 Schematic showing the nomenclature of peptide ions formed from 
tandem MS/MS experiments. This notation is based on the Biemann method (Biemann, 
1982; Roepstorff and Fohlmann, 1984; Johnson et al., 1988). The numbers in subscript 
next to the letters represent the number of residues in the fragment ion.  
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5.5.2 Collision-induced dissociation (CID) 

Collision-induced dissociation (CID1) was first introduced by Jennings and 

McLafferty and carried out on small organic molecules (Jennings, 1968; 

McLafferty et al., 1973). During CID the ion of interest is subjected to high 

energy collisions with inert gas molecules (Ar, N2, He etc.) in a collision 

cell and the internal energy within the molecule increases until 

fragmentation occurs. With the advent of new mass spectrometry 

techniques to study biomolecules, CID was soon applied to peptides and 

proteins and was able to provide valuable information about post 

translational modifications (Hunt et al., 1986). As a result of CID, 

cleavage occurs at the amide bond and predominantly b and y ions are 

formed. CID experiments are dependent on the size of the biological 

molecule as with large proteins the efficiency of energy transfer is 

considerably reduced which results in individual collisions being less 

effective.  

 

5.5.3 Electron Capture Dissociation and Electron Transfer 

Dissociation 

Other more recently developed techniques include electron capture 

dissociation (ECD) and electron transfer dissociation (ETD) and in both 

cases fragmentation is driven by free radicals.  Zubarev was first to apply 

ECD to proteins in 1998 and the technique involves electrons being 

captured by ions which induces fragmentation (Zubarev et al., 1998). 

More efficient fragmentation is achieved and a predictable series of c and 

                                                 
1
 Also known as collisonally activation dissociation (CAD) 
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z ions is produced following cleavage of the N-Cα bond. Other ions such 

as y can be generated from secondary reactions but these are less 

abundant. One disadvantage of ECD is that it can only be used with 

highly expensive FT-ICR instrumentation which is not readily available. 

This drove the development of the analogous technique ETD for lower 

resolution ion-trap instruments (Syka et al., 2004). 

 

During ETD protein ions that are positively charged are allowed to react 

with radical anions (e.g. fluoranthene). This can be followed by Proton 

transfer reaction (PTR) which reduces the charge on the resulting 

fragments and simplifies the spectra to allow easier interpretation of the 

data (Coon et al., 2005). The mechanisms by which ECD and ETD occur 

are not fully understood but they do have some advantages over CID. 

Firstly, these techniques are more site-specific and labile modifications or 

“weak linkages” are able to be retained (e.g phosphorylation) which may 

not be the case during CID (Zubarev, 2004; Zhou et al., 2011). Secondly, 

they are independent of the size of the peptide/protein and so are suited 

to the analysis of larger biomolecules (Coon et al., 2005).  

 

The majority of examples in the literature on non-covalent protein 

complexes utilise ECD and not ETD which is due to the accuracy and 

high resolution that FT-ICR instruments afford. A study on non-covalently 

bonded peptide-antibiotic complexes using ECD showed that the 

interactions were preserved (Haselmann et al., 2002) and binding site 

information has also been obtained from ECD of larger protein-ligand 
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complexes (Xie et al., 2006; Clarke et al., 2011; Breuker and McLafferty, 

2003) . This is a good indication that ECD and ETD could be used to 

study metalloproteins as the metal-protein interactions occur through non-

covalent bonds. Although it is not entirely clear what effect the positively 

charged metal ion may have on these processes.  

 

5.5.4 MS/MS of non-covalent protein complexes: metalloproteins 

It is of much interest to develop the application of different fragmentation 

techniques that allow identification of metal ions on peptide fragments 

and which could be a good indication of high affinity binding sites. It is 

challenging to maintain metal binding during fragmentation and carry out 

experiments under non-denaturing conditions which will preserve any 

non-covalent interactions, however, a limited number of studies have 

been able to achieve this. Loo et al. (1994) investigated the interaction of 

Zn2+ ions with an angiotensin peptide of 8 residues in size and were able 

to gain evidence of how the metal ion was coordinating to the peptide. A 

year later Hu and Loo extended this work by comparing the fragmentation 

chemistry of angiotensin peptides in the presence of Zn2+, Co2+ and Ni2+ 

(Hu and Loo, 1995). More recently, the Zn2+ binding site of a 23-residue 

histidine-rich peptide, H5WYG, was investigated using CID and it was 

shown that the metal ion was associated with three out of the five 

histidine residues (Buré et al., 2009a), even though conclusive evidence 

required the generation of mutant peptides (Buré et al., 2009b). A similar 

experiment was used to map the site of Cu2+ binding on CP12, a protein 

originating from Chlamydomonas reinhardtii that is involved in the Calvin 
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cycle (Erales et al., 2009). The largest metalloprotein to be studied by 

tandem MS in a native state is carbonic anhydrase (29 kDa) although this 

utilised supercharging with m-nitrobenzyl alcohol.   Yin and Loo (2011) 

did not obtain good sequence coverage but were able to identify some 

Zn2+--bound fragments. One recent example utilised ETD/PTR to study a 

bacterial metallothionein and showed that folded dimeric Zn4SmtB2  

yielded  few fragments while the monomeric form did produce some Zn2+-

bound fragments which contained residues thought to be Zn2+ ligands 

within the intact protein (Kondrat et al., 2012). 

 

5.5.5 MS/MS of HRGP330 

The 5+ charge state was selected for study as this showed the greatest 

intensity (Figure A8, Appendix) and so the 867 m/z ion was isolated and 

fragmented using CID and ETD. ETD was followed by PTR which allowed 

the isotopic pattern of many of the ions to be clearly observed and 

facilitates easier identification of metal-containing fragments. As shown in 

Figures 5.15 A and 5.16 A, good sequence coverage was achieved for 

apo-HRGP330 in both experiments: 82.9% achieved in the ETD 

fragmentation compared to a slightly lower value of 74.6% for CID. The 

Biemann nomenclature was used to annotate the fragments and 

fragmentation schemes in Figure 5.15 B and 5.16 B summarise the 

cleavages that occurred in each experiment. CID tends to give lower 

sequence coverage than ETD because while ETD produces a defined ion 

series that is independent of the protein size, CID induces more random 

fragmentation along the backbone.  
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Figure 5.15 CID spectrum of apo-HRGP330. A) CID spectrum of 867 m/z B) 
Fragmentation scheme showing the b and y ions produced. The b-18 and y-17 ions 
correspond to the loss of water and ammonia respectively. Analysis was carried out 
using Biotools v3.2 and Sequence Editor v3.2.  Sequence coverage of 74.6% was 
obtained.  
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Figure 5.16 ETD spectrum of apo-HRGP330. A) ETD spectrum of 867 m/z B) 
Fragmentation scheme showing the c and z ions produced. Analysis was carried out 
using Biotools v3.2 and Sequence Editor v3.2. Sequence coverage of 82.9% was 
obtained.  
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Full sequence coverage was still not expected for ETD because 

HRGP330 contains 5 Pro residues and cleavage of the N-Cα bond in the 

N-terminal direction cannot occur due to its cyclic structure. This 

precludes the observation of c3, c13, c18 c23, c33, z2, z12, z17, z22 and z32.  In 

addition to c and z ions, a number of y ions were also detected in the 

ETD spectra which can be produced from secondary reactions. An 

important feature of the ETD spectrum is the charge-reduced states of 

the parent ion (4+, 3+ and even 2+) which are visible at high intensity and 

are labelled on Figure 5.16 A. 

 

5.5.6 MS/MS of Zn2+-bound HRGP330 

The intact spectrum prior to isolation and fragmentation is provided in 

Figure A8 (Appendix). Comparison of the CID spectra for fragmentation 

of 867 m/z (apo-HRGP330) and 880 m/z (Zn1-HRGP330) showed that a 

significant number of peaks were produced in each case. This is evident 

from the spectra shown in Figures 5.15 A and 5.17 A. In fact, there also 

appeared to be more fragmentation once the Zn2+ was bound (Figure 

5.17 A) which suggested that additional fragment peaks with Zn2+ ions 

bound were likely. Immediately a number of possible Zn2+ binding 

fragments could be identified from the isotopic distribution. A summary of 

the fragments that were Zn2+-adducts is given in the fragmentation 

scheme in Figure 5.17 B (A table of the mass list with comparison to 

theoretical values is provided in Table A5, Appendix).  
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Figure 5.17 CID spectrum of Zn-HRGP330. A) CID spectrum of 880 m/z B) 
Fragmentation scheme showing the b and y ions produced and those that were 
identified to be Zn

2+
-adducts. Analysis was carried out using Biotools v3.2 and 

Sequence Editor v3.2. 
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In some cases these were observed as a mixture of the Zn2+-free and 

Zn2+-bound fragments. Many of them identified were large fragments 

which did not provide useful information about the specific interactions 

that are occurring. In order to confirm that the new peaks were observed 

as a result of Zn2+ binding, the 893 m/z (+2 Zn2+ ions) peak was 

fragmented as this was also observed in the intact spectrum (Figure A8, 

Appendix). A comparison of the mass range 540-740 m/z from the CID 

spectra of 867 m/z, 880 m/z and 893 m/z is shown in Figure 5.18. This 

showed that in the CID spectrum of 893 m/z the same peaks were 

present as in that for 880 m/z, however, the intensity was increased. 

 

 

Figure 5.18 Comparison of the MS/MS spectra of apo-HRGP330 (867 m/z), Zn1-
HRGP330 (880 m/z) and Zn2-HRGP330 (893 m/z). The highlighted regions indicate the 
new peaks that appear in the Zn

2+
-bound samples. Those that could be assigned are 

labelled and those that were not conclusive are marked with a ? 
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These peaks were clearly not observed in the CID spectrum of apo-

HRGP330, 867 m/z. The blue regions highlight the new Zn2+-bound 

peaks that appear and illustrate how they increase in intensity at a higher 

concentration of Zn2+. Two of the small fragments identified to bind Zn2+ 

were y8 and y10 which are highlighted in Figure 5.18.  The y10 fragment 

had a mass loss of 17 Da indicating that ammonia had been lost. In the 

case of the y8 ion these data suggest that the metal ion is interacting with 

His35, His33, and His27. This is in good agreement with the proposal that 

three His residues are involved in Zn2+ ion ligation. Additionally His25 

could also be involved in the case of the y10 ion. The Zn2+-bound ions 

were characterised by their distinctive isotopic distribution. The isotopic 

patterns for the y12
1+ ion and y10-NH3

2+ ion are shown in Figure 5.19 A 

and C respectively.  

 

 

Figure 5.19 Comparison of experimental and theoretical isotopic patterns for the 
Zn

2+
 adducts of y12 and y10 generated from CID. A) Experimental isotopic distribution 

of the y12 
1+ 

ion with Zn
2+

 bound B) Theoretical isotopic distribution of the y12 
1+ 

ion with 
Zn

2+ 
bound. C) Experimental isotopic distribution of the y10 

2+ 
ion with a loss of NH3 and 

Zn
2+

 bound D) Theoretical isotopic distribution of the y10 
2+ 

ion with a loss of NH3 and 

Zn
2+

 bound.  The peaks marked with * are contaminating peaks.  
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The experimental isotopic distributions are in agreement with the 

theoretical simulations (Figure 5.19 B and D) which is evidence that the 

Zn2+ was bound in this location in the full-length HRGP330. Furthermore, 

the doubly charged ion for the y12 fragment with Zn2+ bound was also 

identified which provides further confirmation. Although the masses of the 

ions identified to be Zn2+-adducts proved that a metal ion was bound, the 

intensities for some of the peaks in the isotopic distribution did not exactly 

match those of the simulation which could be because there is 

considerable overlap in the complex spectra.   

 

As shown in the fragmentation scheme in Figure 5.17 B, fragments from 

the N-terminal end of the molecule were also observed to be interacting 

with Zn2+. The smallest fragment was b11 which indicates that any of the 

five His residues in the sequence DLHPHKHHSHE could be coordinating 

to a Zn2+ ion. Interestingly, compared to the CID of apo-HRGP330, Zn-

HRGP330 showed a considerable lack of fragmentation around the 

GHHPH pentapeptide unit. This could be due to a conformational change 

upon Zn2+ binding which means the central residues of the peptide are 

less predisposed to collisions with the gas molecules. 

 

In contrast to CID, the ETD spectrum of Zn2+-HRGP330 showed 

considerably less fragment ions as illustrated by Figure 5.20. Overall, the 

spectrum in Figure 5.20 A is noisier and the peaks throughout are less 

well resolved. The fragmentation scheme in Figure 5.20 B shows 

predominantly low mass c and z ion which suggests that only the two  
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Figure 5.20 ETD spectrum of Zn-HRGP330. A) ETD spectrum of 880 m/z B) 
Fragmentation scheme showing the c and z ions produced and those that were 
identified to be Zn

2+
 adducts. Analysis was carried out using Biotools v3.2 and 

Sequence Editor v3.2. The spectrum does not show many peaks compared to the 
fragmentation scheme because most of the peaks were of too low intensity to be 
recognised by the software. Therefore, the raw data was manually interrogated to 
produce the fragmentation scheme. 
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ends of the peptide can be fragmented by ETD when Zn2+ is attached. 

Intriguingly, fragments around the GHHPH pentapeptide are noticeably 

absent as was the case for the CID spectrum. There is a significant 

increase in the intensity of the y7 ion (911.61m/z) once Zn2+ is present as 

shown in Figure 5.21. A concomitant decrease in the intensity of the c7 

ion (924.66 m/z) is also observed which could indicate a conformational 

change upon Zn2+ binding that has an impact on the way the molecule 

fragments.  

 

 

Figure 5.21 Zn
2+ 

binding to HRGP330 has an effect on the intensity of different 
ions produced by ETD. A) c7 ion observed in the ETD spectrum of 867 m/z B) y7 ion 
observed in the ETD spectrum of 880 m/z. The y ion is produced from a secondary 
reaction.  
 

It appeared as though a number of Zn2+-bound peaks appeared in the 

ETD spectrum of 880 m/z although the complex spectrum did not allow all 

of these to be assigned. Those that were distinguishable with the most 

certainty are described in Table A6 (Appendix). The smallest ion 

identified to have a Zn2+ ion bound was Z13*, although this was of low 

intensity, which would suggest that any of the six His residues could be 
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involved in binding: His35, His33, His30, His27, His25 or His23 (Figure 

5.22 B). This correlates well with the observation that the y12 ion detected 

in CID also associated with Zn2+. Figure 5.22 C illustrates the well 

resolved peaks for ETD of 867 m/z compared to that for 880 m/z in D.  

 

 

 
 
Figure 5.22 Identification of Zn

2+
-adducts in the ETD spectrum of Zn1-HRGP330. A) 

ETD spectrum of apo-HRGP330 showing z13* B) Observation of a Zn
2+

 ion bound to z13* 
C) ETD spectrum of apo-HRGP330 shows a number of clearly resolved peaks between 
1500-2100 m/z D) ETD spectrum of Zn1-HRGP330 shows a number of peaks identified 
to be Zn

2+
-adducts although the spectrum is much noisier. Those peaks that appear to 

coordinate Zn
2+

 but not assigned are marked with a ? 
 
 



Chapter Five 

146 
 

There appears to be many Zn2+ adducts but these cannot all be fully 

assigned with confidence. The lack of fragments for the ETD spectrum of 

the Zn1-HRGP330 compared to those produced in the absence of Zn2+, 

could indicate that the molecule undergoes a conformational change to 

form a less flexible structure that is less susceptible to fragmentation. 

ETD has in principle the advantage of leaving more labile interactions 

intact so it is possible that the ETD mechanism cannot fragment Zn2+-

HRGP330 as efficiently whereas CID is a higher energy fragmentation 

and can overcome the structural changes to some extent to still produce 

b and y ions effectively.  This is supported by the IM data which indicated 

that the HRGP330 structure becomes more compact when Zn2+ binding 

occurs. The contribution of the Zn2+ ion to the electron transfer process, 

however, can also not be ignored as two earlier studies reported that the 

cation may act as an electron sink. Zubarev et al. (2000) demonstrated 

through ECD of cytochrome c that the region around the heme, with 

bound Fe3+, was resistant to backbone cleavage. Similarly, ECD of an 

angiotensin peptide produced fewer fragments in its Zn2+-bound form 

(Zubarev et al., 2002). This would rationalise the lack of fragmentation 

around the GHHPH region if Zn2+ was indeed bound there, however, the 

observation of Zn2+ adducts not containing this pentapeptide would point 

towards the partial occupation of different sites. 

 

Taking into account the findings of the MS/MS data it would appear that 

there is not a single preferred binding site for Zn2+ to HRGP330 as 

fragments from both N-terminal and C-terminal ends of the molecule were 
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observed in a Zn2+-bound form. This would suggest that several of the His 

residues, and the binding sites they may form, have a similar affinity for 

Zn2+ ions and that at sub-stoichiometric Zn2+:HRGP330 ratios they are 

likely to be partially occupied. However, it was noticed that in the 

presence of Zn2+ the least fragmentation occurred around the GHHPH 

unit. Further work is needed to rationalise this observation fully which 

could involve fragmentation of other metal ion-HRGP330 complexes and 

a comparison of the data.  

 

5.6 Conclusion 

The biologically-active peptide from the HRR of HRG was shown to bind 

up to 5 Zn2+ ions by native ESI-MS. Broadening of the proton signals and 

aggregation of the peptide did not allow any significant information to be 

gained from 1H-NMR spectroscopy although the large number of NOESY 

cross peaks suggested it was not completely random coil structure. 

TWIM-MS showed that a number of complexes were present in the Zn2+-

bound forms which could not be resolved. Interestingly, the collisional 

cross sections that were estimated showed that the peptide complexes 

with Zn2+ had a more compact structure. Furthermore, CD spectroscopy 

showed evidence of a polyproline II helix and a substantial change upon 

addition of Zn2+. These results give an insight into how active multimeric 

HRG complexes could form and it would appear significant changes 

occur in the HRR in order to facilitate this.  

 

Top down MS/MS was utilised to map the sites for Zn2+ binding. 

HRGP330 was able to be sequenced by CID and ETD with high levels of 
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sequence coverage, most likely due to its extended conformation which 

allowed it to fragment easily. When Zn2+ was bound to HRGP330, less 

sequence coverage was achieved, indicating that a conformational 

change may have taken place. Zn2+ binding fragments were identified in 

both CID and ETD data and it was found that the metal ion was primarily 

associating with y fragments from the C terminus although some Zn2+-

binding fragments from the N-terminus were also identified. ETD was not 

able to efficiently fragment the Zn2+-bound HRGP330 to the same extent 

as CID indicating that a conformational change had occurred that ETD 

was not able to overcome. Overall, the observation of Zn2+-peptides has 

important implications for the field of top-down MS/MS of metalloproteins 

as few studies have attempted this.    
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Chapter 6 

Investigating metal ion 
distribution between HSA 

and HRGP330 
 

6.1 Introduction 

The hypothesis being investigated in this chapter is that the fatty acid 

“switch” mechanism could have implications for other Zn2+ binding 

proteins in plasma. If the balance of fatty acids in plasma were perturbed, 

during a disease for example, then other proteins may play a role in 

protecting the cells from toxic concentrations of Zn2+. This chapter 

investigates if Zn2+ can transfer between HSA and HRGP330. 

Furthermore, the effect of fatty acid is investigated to establish if this 

could facilitate Zn2+ binding to HRG. It also explores if HRGP330 could 

acquire Cu2+ from the N-terminal site on HSA as Cu2+ may also have an 

effect on the antiangiogenic activity of HRG.   

 

6.2 Results and discussion 

6.2.1 Zn2+ transfer occurs between HSA and HRGP330 

Reports addressing interactions between HSA and HRG are lacking apart 

from two examples where Zn2+ distribution between rabbit HRG and HSA 

was investigated using equilibrium dialysis (Guthans and Morgan, 1982) 

and also the effect of HRG on heme binding to HSA was probed (Morgan, 

1981). It has been demonstrated that small molecules such as histidine 
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can affect Zn2+ distribution between the two proteins (Guthans and 

Morgan, 1982), therefore, this work sought to address if fatty acids can 

also have an effect. First, Zn2+ transfer from HSA to HRGP330 at a 1:1 

ration and in the absence of fatty acids was probed. Separation of HSA 

and HRGP330 was achieved using a molecular weight cut-off filter, 

retaining the HSA on the membrane but allowing the HRGP330 to pass 

through. Analysis of the HRGP330 fraction by ESI-MS showed that 

compared to the control sample, HRGP330 had obtained Zn2+ from HSA 

(Figure 6.1 A).  

 

B 

Sample Zn
2+

:HSA stoichiometry 

Zn-HSA 0.96 

Zn-HSA following incubation with 

HRGP330 

0.12 

 

Figure 6.1 ESI-MS of HRGP330 and ICP-OES of HSA as evidence for Zn
2+

 transfer 
having occurred. A) Mass spectra of HRGP330 before and after incubation with Zn-
HSA B) ICP-OES analysis of the HSA fraction confirms a significant loss of Zn

2+ 
in the 

presence of HRGP330. Analysis was carried out on a maXis-UHR-TOF in 10 mM 
ammonium acetate (pH 7.4). HSA samples were diluted in 0.1 M HNO3 and analysed on 
a Perkin Elmer Optima 7500 DV.  
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The fact that the majority of Zn2+ is removed from HSA is an indicator that 

HRG has a higher binding affinity for Zn2+ than any site on HSA under the 

conditions employed. Furthermore, high resolution ESI-MS allowed the 

metal ion to be unambiguously assigned as Zn2+ as opposed to Cu2+. In 

order to confirm that the source of Zn2+ was HSA, the protein fraction 

retained on the membrane was diluted and subjected to ICP-OES 

analysis. Figure 6.1 B shows that the Zn2+ bound to HSA had reduced by 

87% from 0.96 to 0.12 Zn2+ ions per HSA molecule. Analysis of the buffer 

also failed to detect any Zn2+; giving strong evidence that Zn2+ transfer 

occurred between HSA and HRGP330. Additionally, the preparation of 

Zn-HSA involved passing the sample through a PD-10 column prior to 

incubation with HRGP330 to ensure no unbound metal ions were present 

in the solution. 

 

6.2.2 Does Zn2+ transfer occur from HRGP330 to HSA? 

To confirm the findings of the previous experiment, the reverse Zn2+ 

transfer reaction was carried out. HRGP330 was incubated with 5 

equivalents of Zn(CH3COO)2.2H2O and then excess metal ions were 

removed. Four different species were observed (apo-HRGP330, Zn1-

HRGP330, Zn2-HRGP330 and Zn3-HRGP330) as shown in Figure 6.2. 

This sample was combined with dialysed HSA in a 1:1 molar ratio and 

infused into the mass spectrometer. The conditions were optimised to 

favour observation of HRGP330 over HSA. Following incubation with 

dialysed HSA the distribution of metallated species in HRGP330 did not 
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change perceptibly. This demonstrates that at a 1:1 molar ratio, the Zn2+ 

ions have a higher affinity for HRGP330 rather than for HSA.  

 

 

  
Figure 6.2 Direct infusion of a 1:1 mixture of dialysed HSA and Zn-HRGP330. Mass 
spectrometry was carried out on a maXis-UHR-TOF in 10 mM ammonium acetate (pH 
7.4) with conditions optimised for HRGP330.  
 

 

The experiments suggested that HRGP330 has a higher affinity for Zn2+ 

than HSA and this is not in agreement with the hypothesis that HRG 

could only obtain Zn2+ if it was displaced from HSA. The next step was to 

ascertain if fatty acid had any further effect on the Zn2+ distribution.  

 
 
6.2.3 Effect of fatty acid on Zn2+ distribution  

Although it appeared that HRGP330 was able to readily obtain Zn2+ from 

HSA under the conditions used for ESI-MS, the effect of myristate was 

investigated to try and identify any perceptible differences. One of the 

samples was supplemented with 5 mol. equiv. myristate and the other 

with no fatty acid. The instrumental parameters were optimised in order to 

observe HRGP330 as a probe for Zn2+ binding. A charge state distribution 
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for HRGP330 was observed including the +5 and +4 which were of the 

highest intensity (Figure 6.3 A).  A charge state distribution for native 

HSA could be observed but this was of low intensity and the peaks were 

extremely broad. Compared to the starting HRGP330 sample that was 

analysed (Figure 6.3 A), two new peaks for Zn1-HRGP330 and Zn2-

HRGP330 became present as shown in the deconvoluted spectrum in 

Figure 6.3 B. A Zn2-HRGP330 species was also formed before the apo-

HRGP330 was saturated with one metal ion. This is the same result 

described in section 6.2.2 which confirms reproducibility. 

 

 

 
Figure 6.3 Direct infusion of a 1:1 mixture of Zn-HSA and HRGP330 in the absence 
and presence of myristate. A) HRGP330 control sample B) HRGP330 incubated with 
Zn-HSA at a 1:1 ratio C) HRGP330 incubated with Zn-HSA at a 1:1 ratio with 5 mol. 
equiv. myristate. The spectra on the left show the charge states and the spectra on the 
right are the deconvolution of the HRGP330 peaks.  Mass spectrometry was carried out 
on a maXis-UHR-TOF in 10 mM ammonium acetate (pH 7.4) with conditions optimised 
for HRGP330. Native HSA peaks can be observed but at low intensity. 
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The sample analysed with addition of myristate is shown in Figure 6.3 C. 

The same amount of Zn2+ was bound to HRGP330 in both cases as 

evidence by similar intensity peaks in the mass spectrum corresponding 

to the Zn1-HRGP330 and Zn2-HRGP330 complexes. This indicates that 

the myristate had no effect on the distribution of Zn2+ between HSA and 

HRGP330 in this case because HRGP330 was already an effective 

competitor for the metal ion.   

 

To corroborate the findings of the previous section and investigate the 

ternary system in more detail, HSA was incubated with the various 

ligands followed by separation from HRGP330. A summary of the ICP-

OES measurements is provided in Figure 6.4.   

 
Figure 6.4 HSA:Zn

2+
 stoichiometry in the presence of 1 mol. equiv. HRGP330 (± 

myristate). Samples were prepared in 10 mM ammonium acetate at pH 7.4. Following 
incubation with the ligands HSA was separated from HRGP330. HSA fractions were 
diluted in 0.1 M HNO3 and analysed on a Perkin Elmer Optima 7500 DV.  
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Z
n

2
+

/ H
S

A
 s

o
ti

c
h

io
m

e
tr

y
Z

n
2
+

: 
H

S
A

 s
to

ic
h

io
m

e
tr

y



Chapter Six 

155 
 

The control sample of only HSA showed less than the expected 1 Zn2+ 

bound, likely due to some loss during gel filtration. In the presence of 

myristate no change in the Zn2+ bound to HSA was observed which is 

consistent with the findings in Chapter 3. With the addition of HRGP330, 

a substantial loss of Zn2+ occurred (82%) and the same effect was also 

observed for the sample with myristate where 81% of the HSA-bound 

Zn2+ is transferred to HRGP330. There is only a small difference in Zn2+ 

content between the samples with and without myristate, therefore it can 

be concluded that the myristate appears to have no effect on whether the 

Zn2+ is bound to HSA or HRGP330. 

 

6.2.4 Effect of excess HSA on Zn2+ distribution 

To determine if the presence of HRGP330 had an impact on Zn2+ binding 

when HSA was in significant excess, as in blood plasma, the Zn2+ 

distribution between 600 µM HSA and 20 µM HRGP330 was investigated. 

This was used because the concentration of HRGP330 in blood plasma is 

~2.5 µM, however, the effective concentration could be 10 times higher 

due to the proposed HRG: metal stoichiometry of 1:10. Additionally, a 

higher concentration had to be used in these experiments in order to 

obtain sufficient signal for ESI-MS following separation from HSA. 

Although good quality spectra of HRGP330 were obtained from 5 µM 

samples, it was found that a small proportion of contaminating HSA, 

following the separation of the proteins, supressed the ionisation of the 

HRGP330 signals when lower concentrations were used (Appendix, 

Figure A9).  
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Following incubation with 600 µM Zn-HSA (± myristate) an increase in the 

relative intensity of the Zn1-HRGP330 was observed as shown in Figure 

6.5. The control HRGP330 sample (Figure 6.5 A) showed a slight amount 

of Zn2+ contamination (34%) most likely from the purification procedure. 

Following incubation with Zn-HSA the relative intensity of this peak 

increased by 7% compared to the control sample indicating that some 

Zn2+ had been obtained from HSA. This supports the data in the previous 

section of HRGP330 being a good competitor for Zn2+ even without fatty 

acid-induced Zn2+ release. In the presence of myristate there was a 

further increase of 4% in the relative intensity of the peak. Overall, this 

may indicate that slightly more Zn2+ was transferred from HSA to 

HRGP330 in the presence of fatty acids, but this could not be confirmed 

by ICP-OES analysis (see below).  

 

Figure 6.5 Relative intensity of Zn1-HRGP330 following incubation with Zn-HSA (± 

myristate). A) HRGP330 control sample B) 20 µM HRGP330 incubated with 600 µM Zn-

HSA C) 20 µM HRGP330 incubated with 600 µM Zn-HSA with 5 mol. equiv. myristate.  

Mass spectrometry was carried out on a maXis-UHR-TOF in 10 mM ammonium acetate 
(pH 7.4) 
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Elemental analysis was carried out on the HSA fractions. The results in 

Figure 6.6 showed a greater amount of Zn2+ associating with HSA in the 

presence of myristate: 0.74 Zn2+ ions per HSA compared to 0.66 Zn2+ 

determined for the control sample. With the addition of HRGP330 there 

was a decrease of the Zn2+ interacting with HSA which is consistent with 

an increased amount bound to HRGP330 as demonstrated by ESI-MS 

(Figure 6.5 B).  

 

Figure 6.6 HSA:Zn
2+

 stoichiometry (600 µM) in the presence of  20 µM HRGP330 (± 

myristate). Samples were prepared in 10 mM ammonium acetate at pH 7.4. Following 
incubation with the ligands HSA was separated from HRGP330, diluted in 0.1 M HNO3 

and analysed on a Perkin Elmer Optima 7500 DV.  
 

The quaternary system, with the addition of myristate, showed slightly 

more Zn2+ bound to HSA than only with HRGP330: 0.60 Zn2+ per HSA 

with myristate compared to 0.50 Zn2+ with no myristate. Importantly, both 

HSA samples allowed to react with HRGP330 had less Zn2+ bound than 

those without HRGP330 which is good agreement with the increases in 
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Zn2+-bound HRGP330 shown in Figure 6.5 B and C. Overall, this would 

indicate that even when HSA is in significant excess, as in plasma, a 

small proportion of Zn2+ becomes bound to HRG.  

 

ESI-MS and ICP-OES results indicate that HRGP330 can readily 

compete for Zn2+ under these conditions. This is in good agreement with 

the work by Guthans and Morgan (1982). Based on the original 

hypothesis it was expected that Zn2+ transfer would only occur between 

HSA and HRGP330 in the presence of fatty acids. Therefore, the 

question to address is would HRG carry Zn2+ endogenously or would it 

only come into play if Zn2+ was displaced from another protein i.e. through 

elevated fatty acids? Overall this work is in agreement with the former 

conclusion. Although HRG is present at relatively low abundance in 

comparison to other proteins thought to be major Zn2+ transporters, it 

could be able to compete with these because of its high number of 

potential metal binding sites. If it is assumed that HRG binds 10 metal 

ions and is 2 µM in human plasma (Morgan et al., 1978) then the effective 

binding site concentration is as high as 20 µM. This could be an 

explanation as to why HRGP330 binds preferentially to Zn2+ in the 

presence of HSA  in vitro although it is unclear as to if this is something 

that could occur in vivo. It is important to note that these experiments 

were carried out at low ionic strength due to the low tolerance of ESI-MS 

to salts, however, changes in ionic strength could affect the stability of the 

metal:protein complexes.  
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6.2.5 Investigation of metal binding between HSA and HRGP330 at 

plasma Zn2+ concentrations 

Experiments were carried out with physiologically relevant Zn2+ 

concentrations using a combination of size exclusion chromatography 

(SEC) and inductively coupled plasma mass spectrometry (ICP-MS). 

These techniques are also more amenable to high concentrations of salt 

and so the effect of this can be probed. Calibration of the column was 

achieved using HSA (66.5 kDa) and insulin B chain (3.5 kDa) as shown in 

Figure 6.7. The two proteins eluted at 7 ml and 9 ml respectively.  

 

 
Figure 6.7 Elution of HSA and insulin B chain on a BioSep-SEC-2000 column. HSA 
eluted at 7 ml (blue) which is 66 kDa. Insulin B chain which is 3.5 kDa eluted at 9-10 ml 
(red) which indicates HRGP330 (4.3 kDa) should elute in similar fractions. The buffer 
was 10 mM HEPES, 50 mM NaCl (pH 7.4).  

 

Insulin B-chain has a similar size to HRGP330, therefore they would be 

expected to elute around the same volume. Surprisingly, when a 

concentrated HRGP330 sample was loaded onto the column, an increase 

in absorbance at 220 nm at an elution volume of 11-12 ml was observed 

(blue trace of Figure 6.8 A). The fact that this fraction has absorbance at 
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220 nm but not 280 nm also suggests that this is HRGP330 as it has a 

lack of aromatic residues (inset of Figure 6.8 A). Some residual HSA from 

a previous run was also observed at a lower intensity in the HRGP330 

sample (sharp peak in blue trace at 7.40 ml). Therefore it would appear 

that HRGP330 elutes ~1 ml later than expected.  

 

To investigate plasma concentrations of Zn2+ with respect to HSA and 

HRGP330, samples of HSA (600 µM) and HRGP330 (20 µM) were 

incubated at 37 °C with 25 µM ZnCl2 and one sample included the 

addition of 5 mol. equiv. myristate. The proteins were applied to a 

BioSep- SEC-2000 gel filtration column and the fractions were analysed 

for Zn2+ content (ICP-MS) and protein content (BCA assay). As can be 

seen in Figure 6.8 B the Zn2+ detected at ppb levels eluted with the HSA 

across the fractions labelled 7 and 8. This is consistent with 

chromatographic separation of both human and rabbit plasma which has 

shown that the majority of Zn2+ elutes with HSA (Muñiz et al., 2001; 

Manley et al., 2009). The HRGP330 could not be observed in the UV 

chromatogram due to the lower concentration used in these samples. 

Interestingly, in the presence of myristate, the concentration of Zn2+ 

eluting with HSA was considerably reduced to 300 ppb (Figure 6.8 C) 

compared to 600 ppb without myristate. This is one piece of evidence that 

myristate could shift the Zn2+ distribution from HSA at physiologically 

relevant Zn2+ levels. One reason for this result could be the presence of 

salt in the buffer, as ionic strength may affect the stability of the   
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Figure 6.8 Elution of HSA and HRGP330 from a BioSep-SEC-2000 column.. A) 
Chromatograms for HSA (green), HRGP330 at 220 nm (blue) and HRGP330 at 280 nm 
(red). The inset shows an increase in absorbance at 220 nm at 11.50 ml which could 
correspond to elution of HRGP330. B) Zn

2+
 concentration (black) and corresponding 

protein concentration (grey, dashed line) of fractions when a sample of 600 µM HSA, 20 

µM HRGP330 and 25 µM ZnCl2 was applied to the column C) 600 µM HSA, 20 µM 

HRGP330 and 25 µM ZnCl2 with 5 mol. equiv. myristate. The buffer was 10 mM HEPES, 

50 mM NaCl (pH 7.4).  
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metal:protein complex, although this is a further avenue that needs 

exploring. On analysis of the Zn2+ content of fractions eluting at 11-12 ml 

there does appear to be a small peak in Zn2+ concentration at 11-12 ml, 

however, no significant difference was observed between the samples 

with or without myristate. One possibility is that free Zn2+ that had been 

shifted from HSA may elute in another fraction although this could not be 

concluded from this experiment.  It would appear that under these 

conditions, myristate was able to perturb metal binding although other 

work has provided non-conclusive evidence for this. 

 

6.2.6 Estimation of the apparent binding constant for Zn-HRGP330 

Zincon was used in a competition assay to determine an apparent binding 

constant (Kapp) for HRGP330. Complexation of Zincon with Zn2+ produces 

a 1:1 complex with a blue colour and a characteristic absorbance at 620 

nm. This absorbance can be exploited to assess the binding of Zn2+ to 

peptides and proteins (Shaw et al., 1990; Mekmouche et al., 2005; Armas 

et al., 2006; Talmard et al., 2007).   

 

Titrating increasing amounts of HRGP330 into the Zn2+-Zincon complex 

produced a decrease in the absorbance at 620 nm (Figure 6.9). 

Approximately 4.8 µM HRGP330 was required to reduce the absorbance 

at 620 nm by 50% which indicates that half of the Zn2+ originally bound to 

Zincon had been transferred to HRGP330. A plateau in the absorbance is 

reached relatively quickly which demonstrates that Zn2+ exchange 

between HRGP330 and Zincon is rapid.  The results indicate that the 
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binding constants are globally similar but HRGP330 is a slightly stronger 

Zn2+ binder than Zincon. The Kapp for Zincon has previously been 

determined to be 7.9 x 104 M-1 at pH 7.4 (Shaw et al., 1990) and more 

recently a slightly different value of 8.5 x 104 M-1 was found by 

Mekmouche et al. (2006) under 50 mM HEPES, 100 mM NaCl at pH 7.4. 

Using this value, Equation 3 in the experimental methods can be used 

which results in a Kapp for HRGP330 of 2.7 x 105 M-1   

 

 

Figure 6.9 Estimation of the apparent binding constant of Zn
2+

 and HRGP330 

using competition with Zincon. HRGP330 was titrated into a solution of 10 µM Zincon 

and 5 µM ZnCl2 in 50 mM HEPES, 100 mM NaCl, pH 7.4. 100% relative absorbance 

corresponds to the maximum absorbance observed at 620 nm at t=0 and t=∞. The inset 

shows the structure of Zincon. 
 

 

As HRGP330 is able to obtain Zn2+ from the 1:1 Zn2+-Zincon complex this 

would suggest it is also able to rapidly acquire Zn2+ from other available 

donors, including HSA under appropriate conditions. This result yields an 

apparent logK of 5.43 which is in the same range as the values published 
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for full length HRG (Table 1.4) therefore it would appear that HRGP330 

has a similar binding affinity to the intact protein. Differences will be due 

to the different buffer conditions and ionic strengths used. Recently, our 

laboratory has determined an apparent logK of 5.67 for  Zn2+ binding to 

BSA in 50 mM Tris, 50 mM NaCl at pH 7.2 (Lu et al., 2012b). Therefore, 

although BSA or HSA would bind Zn2+ with greater affinity than HRG, the 

high number of potential binding sites may mean the binding capacity of 

HRG is underestimated. It would be invaluable to assess the binding 

affinity of HSA and human HRG under the same conditions by a method 

such as ITC although there may be difficulties in comparing a cooperative 

binder (HRG) to a non-cooperative binder (HSA).  

 

6.2.7 Cu2+ transfer between Gly-Gly-His and HRGP330  

The major Cu2+ binding site on HSA is the N-terminal ATCUN-motif. Gly-

Gly-His is a peptide mimic of this site that has been previously studied as 

a model for the N-terminal site (Figure 6.10). The apparent stability 

constant for the Cu2+-peptide complex has been shown to be logK = 16 

compared to 16.2 for Cu2+-HSA (Lau et al., 1974). Although most of the 

ligands that interact with HRG are thought to be mediated by Zn2+ binding 

to the HRR, these associations could also be influenced by the 

concentration of Cu2+. Borza and Morgan (1998) confirmed that the only 

other transition metal apart from Zn2+ to be effective at promoting heparin 

binding to HRG at physiological pH was Cu2+. Binding of Cu2+ to rabbit 

HRG has also been shown to be stronger than Zn2+ (Morgan, 1981). In 

fact, analysis of serum indicates that while the concentration of Zn2+ is 
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reduced in human cancers (Kuo et al., 2002), plasma Cu2+ levels are 

actually increased (Coates et al., 1989). Therefore, it must be 

acknowledged that Cu2+ could potentially be biologically relevant for HRG 

although the question still remains as to whether it contributes 

significantly to anti-angiogenic activity.  

 

ESI-MS experiments of Gly-Gly-His showed binding of 1 equivalent of 

Cu2+ which is consistent with the literature. Cu2+ distribution between Gly-

Gly-His and HRGP330 was also studied using this technique. First the 

Cu2+-Gly-Gly-His complex was formed which can be observed at 331 m/z 

in spectra A and C in Figure 6.11. 

 

 

Figure 6.10 Structure of Gly-Gly-His. The peptide mimic for the N terminus of HSA. 

 

This was reacted with 1 or 0.2 mol. equiv. of HRGP330, shown in Figure 

6.11 B and D respectively. With addition of 1 mol. equiv. of HRGP330, 

the intensity of ESI-MS peaks corresponding to the Cu2+-Gly-Gly-His 

species reduced considerably to 10% relative intensity from 69% and the 

peak at 270 m/z, corresponding to Gly-Gly-His without a metal ion, 

became the most abundant species (Figure 6.11 B). This showed that  
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Figure 6.11 Effect of HRGP330 on Cu
2+

 binding to Gly-Gly-His. Cu
2+

 was allowed to 
react with Gly-Gly-His producing the spectra in A and C.  HRGP330 was added at 
concentrations of 1 mol. equiv. (B) and 0.2 mol. equiv. (D). Samples were prepared in 10 
mM ammonium acetate at pH 7.4 and analysed on a maXis-UHR-TOFinstrument. 

 

Cu2+ transfer had occurred to HRGP330. A similar approach was to add 1 

mol. equiv. of Cu2+ to a 1:1 HRGP330:Gly-Gly-His: the same result was 

achieved as the metal ion preferentially bound to HRGP330 over Gly-Gly-

His. As HRGP330 was clearly shown to be able to bind up to 5 metal ions 

in Chapter 5, this reaction was repeated with 0.2 mol. equiv. HRGP330. 

This means that the potential binding sites between the two peptides are 

approximately equal. At this concentration there was a significant 
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increase in the 270 m/z peak to the point where a 50:50 ratio of Gly-Gly-

His and Cu2+-Gly-Gly-His was observed. This experiment indicated that 

not all of the Cu2+ had been transferred to HRGP330. At this point it can 

be assumed that globally the binding affinities are roughly similar as 

approximately half of Cu2+ is bound to each peptide. This result is 

surprising  as Gly-Gly-His binds to Cu2+ with a much stronger affinity than 

proposed for HRG: logK = 16 for Cu2+-Gly-Gly-His (Lau et al., 1974) 

compared to ~6.70 for Cu2+-HRG (Morgan, 1981). Therefore, it may be 

that case that the large number of potential binding sites makes Cu2+ 

binding to HRGP330 more favourable. These results indicate that one 

route through which HRG may obtain Cu2+ in plasma could be through 

transfer from HSA. Furthermore, as Cu2+ binds to HRG more strongly 

than Zn2+ then it would be feasible that Cu2+ would sufficiently block metal 

binding sites and this might have consequences for the Zn2+-dependent 

activities of HRG.  

 

6.2.8 Implications of Zn2+ transfer to HRG: effect of Zn2+ on HRGP330 

binding to heparin 

The results described in this chapter have suggested that, using 

HRGP330 as a mimic, Zn2+ would transfer from HSA even without 

elevated fatty acid levels to displace Zn2+ from HSA under the conditions 

used. One consequence of Zn2+ being transferred to HRG would be an 

increase in its biological activities as evidence has suggested that its 

interactions with other biomolecules are enhanced by Zn2+. Native HRG 

has a pI of 6.45 so will be negatively charged at physiological pH. 
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However, through interactions with metal ions it can acquire positive 

charges which facilitate complex formation with other ligands such as 

heparin. It has been demonstrated that HRG is the only plasma protein 

that can compete with antithrombin for heparin which gives an insight into 

the importance of this interaction. This is likely because the dissociation 

constant of heparin binding to human HRG has been reported to be 7 nM 

(Lijnen et al., 1983).  To investigate one biological implication of HRG 

obtaining Zn2+ from HSA, the interaction of HRGP330 with a heparin 

dodecasaccharide (Figure 6.12) was investigated by ESI-MS. Previous 

data have shown that this gives maximal binding to a related peptide, 

HRGP335 (Vanwildemeersch et al., 2006). 

 

Figure 6.12 Chemical structure of the heparin dodecasaccharide (dp12) used in 
this work. 
 

There are examples of work where ESI-MS has be used to observe 

complexes of heparin with a fibroblast growth factor (Harmer et al., 2004; 

Harmer et al., 2006) and a chemokine (Przybylski et al., 2010). The 

average mass of the heparin dodecasaccharide (dp12) was 3550 Da. 

Following incubation of dp12 with HRGP330 at a 1:1 mol. ratio, a new 

group of peaks became visible that were centred around 1550 and 1950 
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m/z (Figure 6.13 A). These corresponded to the 5+ and 4+ charge states 

of a 1:1 HRGP330:dp12 complex which has a theoretical mass of 7883 

Da.  Low intensity peaks for unbound dp12 were also observed between 

these charge states. Although some complex formation was detected 

between the peptide and the heparin, in the presence of 1 mol. equiv. 

Zn2+, the intensity of the complex was increased more than two-fold : 18% 

relative intensity of the complex compared  to 7% without Zn2+ (Figure 

6.13 B).  

  

Figure 6.13 ESI-MS shows increased HRGP330:dp12 complex in the presence of 
Zn

2+
. A) HRGP330 was incubated with 1 mol. equiv. of heparin dodecasaccharide B) 

HRGP330 was incubated with Zn
2+

 prior to addition of dp12. A greater amount of the 
complex was formed with Zn

2+
 as judged by the relative intensities of the peaks. 

 
This is the first ESI-MS evidence of heparin binding to a HRG-derived 

peptide. Currently, there are no examples of His-rich peptides binding to 
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heparin in the gas phase, therefore, this result indicates that the 

complexes are strong enough to be detected. Furthermore, this adds 

support to the argument that heparin binding occurs at the HRR. There 

has been much debate over this in recent years with one study 

demonstrating that the N-terminal domain bound to immobilised heparin 

and cell-surface heparan sulphate while no interaction was observed with 

HRR-derived peptides (Jones et al., 2004). It is surprising that such a 

large fragment of heparin can bind to a relatively small peptide, however, 

longer fragments may have multiple sites that can interact with the 

peptide and stabilise the association.  The fact that the formation of the 

complex appears to be enhanced by the presence of Zn2+ is in good 

agreement with the literature. The complex spectra contained many 

overlapping peaks although a close-up view of the 5+ charge state 

provides evidence for the fact that Zn2+ is bound to the complex (Figure 

6.14). Two sets of abundant peaks (marked with * and †) are visible in 

Figure 6.14 A and the difference between them is an SO3 group (80 Da). 

The other peaks are attributed to ammonia and sodium adduction. In the 

presence of Zn2+ these peaks are clearly shifted by 63 Da (Figure 6.14 B) 

therefore it is indeed possible that a ternary complex of HRGP330-Zn2+-

dp12 exists in the gas phase. This observation is consistent with the 

suggested mechanism that the interaction is mediated by metal ions 

bound to HRG and the addition of EDTA completely abolishes complex 

formation (Lijnen et al., 1983). 
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Figure 6.14 Close-up view of the 5+ charge state of HRGP330:heparin complex. A)  
HRGP330 incubated with 1 mol. equiv. of heparin dodecasaccharide shows two sets of 

abundant peaks marked with * and †. The difference between them is 80 Da which 

corresponds to loss of an SO3 group. B) The complex with addition of Zn
2+

 shows that 
these peaks are still most abundant and shifted by the mass of 63 Da i.e. addition of a 
Zn

2+ 
ion. 

 

6.9 Conclusion 

ESI-MS has demonstrated that Zn2+ transfer can occur from HSA to 

HRGP330 even in the absence of fatty acids. Even with HSA in 

significant excess, as would be in plasma, an increase in Zn2+ bound to 

HRGP330 was still detected.  This indicates that the affinities of HSA and 

HRG are very close to each other, however, this could depend on the 

solution conditions. At low ionic strength, HRG displays higher affinity, 

whilst the data presented in section 6.2.5 suggest that at higher ionic 

strength, HSA retains bound Zn2+. Therefore, the question remains: is 

HRG carrying Zn2+ endogenously or would it only obtain Zn2+ if there was 

a change in the plasma conditions? This work provides support for the 

former conclusion. The apparent dissociation constant determined 
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appeared to be in good agreement with these experimental observations 

although further work, such as ITC, is warranted to make direct 

comparisons with full length HRG. HRGP330 is also able to compete for 

HSA-bound Cu2+ which could have implications for the activities of HRG 

as this metal ion has been shown to mediate some HRG-ligand 

interactions.  

 

SEC revealed that at physiologically relevant Zn2+ concentrations, the 

metal ion eluted with HSA and no increase in Zn2+ was observed in the 

fractions corresponding to HRGP330. This SEC approach could be 

utilised to analyse whole plasma samples and detect less abundant Zn2+ 

binding plasma proteins although a higher resolution separation method 

may be desirable to separate HSA and HRG which are close in size (66 

kDa compared to 75 kDa). With regards to biological consequences of 

Zn2+ transfer to HRG, experiments with heparin as a model ligand 

showed a larger amount of HRGP330:heparin complex formation with 

Zn2+ as assessed by ESI-MS. This is the first ESI-MS evidence of a 

heparin complex with a peptide derived from HRG. 
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Chapter 7 

Conclusion  
 

7.1 Summary of observations  

7.1.1 Native ESI-MS of HSA-ligand complexes 

In Chapter 3, methods were developed to study HSA in its native form 

using ESI-MS. This proved challenging as the gentle conditions allowed 

buffer and salt adducts to remain bound to the protein. However, once 

these could be effectively removed, single metal ion binding to HSA was 

detected. The addition of fatty acids to HSA did not yield any significant 

mass increase, therefore, it was concluded that the interactions with 

these must be broken on entering the gas phase. Evidence to support 

this was obtained by observing a protonated myristic acid molecule in the 

low mass range while infusing HSA-myristate complexes into the mass 

spectrometer.  

 

In contrast, a perfluorinated derivative of octanoic acid was found to 

remain bound in the gas phase and also a ternary HSA-PFOA-Zn2+ 

complex was detected. This is in agreement with molecular modelling that 

indicates the binding of octanoate does not induce a conformational 

change great enough to abolish metal binding at Site A (Lu et al., 2012b). 

Recently, a perfluorinated derivative of myristic acid has become 

commercially available and so this could be tested in the future. It would 

appear that these molecules are good fatty acid mimics and the 
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hydrophilic nature of fluorine can be exploited to preserve the binding of 

these molecules in the gas phase.  

 

TWIM-MS was also used as a novel technique to study the conformation 

of HSA and its complexes in Chapter 4. The estimated collisional cross 

section for apo-HSA was in good agreement with that calculated from the 

X-ray crystal structure (1AO6). No change in conformation was seen in 

the presence of Zn2+ or Cd2+ although the collisional cross section was 

slightly larger upon Cd2+ binding. Increasing the cone voltage provided 

sufficient energy for HSA to begin to unfold although with the addition of 

Zn2+, less of these extended conformations were detected which is 

evidence that occupation of Site A confers some stability onto the domain 

I/domain II interface. Although the fatty acids appeared to dissociate from 

HSA in the gas phase, the myristate-bound sample showed an increased 

collisional cross section compared to that to fatty acid-free HSA. This 

could indicate that a conformational change takes place within the protein 

upon fatty acid binding but that the protein doesn’t revert back to its 

normal fatty acid-free conformation during the timescale of the IM 

experiment.  

 

7.1.2 Metal binding properties of HRGP330 

In the work reported in Chapter 5, a peptide derived from the HRR of 

HRG was studied by various techniques. Complexes with Zn2+, Cd2+ and 

Cu2+ were able to be observed in the gas phase and CD spectroscopy 

suggested a conformational change occurs upon Zn2+ binding. A dimeric 
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form of HRGP330 was identified only in the presence of Zn2+ which could 

give an important insight as to how multimeric complexes of HRG form in 

plasma. To obtain further information on residues involved in metal 

binding, NMR analysis was carried out in the absence and presence of 

Zn2+. The addition of the metal ion ligand significantly broadened the 

signals suggesting that the binding to the peptide is dynamic. This 

precluded gaining any structural information from NMR spectroscopy 

although using sub-stoichiometric quantities may allow this to a greater 

extent. 

 

TWIM-MS confirmed that a change occurred to the peptide upon Zn2+ 

binding as the estimated cross sectional area of the Zn2+-bound 

complexes were observed to be significantly more compact than apo-

HRGP330. Top-down ESI-MS was then utilised to map the Zn2+ binding 

sites within the peptide. High sequence coverage was obtained from both 

CID and ETD/PTR of HRGP330 which could be due to a lack of 

conventional secondary structure which allows it to fragment easily. Zn2+-

bound fragments from both N- and C- terminal ends of the molecule were 

detected which implies several His residues have a similar affinity for the 

metal ion.  During the ETD/PTR experiment the sequence coverage was 

dramatically reduced and fewer fragments were identified. Intriguingly, 

the most pronounced loss of fragments was observed around the 

GHHPH pentapeptide although further studies are required to completely 

rationalise this.  
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Overall the data suggest that a conformational change within the peptide 

could have occurred upon Zn2+ binding that was unable to be overcome 

by the ETD mechanism which can maintain weaker linkages. This work 

could have implications for the study of His-rich proteins by mass 

spectrometry as interestingly one of the other studies to retain Zn2+ 

binding during MS/MS also concerns a His-rich protein (Buré et al, 2009a 

and 2009b). There has also been little research into how metal cations 

may affect the processes involved in the ECD or ETD mechanisms 

although it has been suggested that they may act as an electron sink 

(Zubarev et al., 2002). This could be another explanation for the 

significant decrease in fragmentation upon Zn2+ binding, although further 

investigation is needed.  

 

7.1.3 Metal ion distribution between HSA and HRGP330 

Competition experiments between HSA and HRGP330 showed that the 

majority of Zn2+ was transferred to HRGP330. The presence of fatty acids 

had no further effect on this distribution, which indicates that HRG could 

be an important competitor for Zn2+ in normal plasma. However, this is in 

agreement with Chapter 3 which showed no loss of Zn2+ in the presence 

of myristate under the conditions used.  Competition with Zincon 

suggested the apparent binding constant for Zn-HRGP330 was similar to 

that for full-length HRG which validated the potential biological 

significance of the observations in Chapter 6. The exact role of HRG is 

uncertain although it would appear from these results that it would be 
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found in a Zn2+-bound state endogenously even with high concentrations 

of HSA.  

 

It is also important to note that other factors may trigger an increase in 

Zn2+ concentration in plasma which could affect the activities of HRG, for 

example at sites of injury degranulating platelets can release high 

concentrations of Zn2+ that are 30-60 times higher than plasma levels with 

the metal ion distributed between the cytoplasm and α-granules 

(Gorodetsky et al., 1993; Marx et al., 1993). Taken together with the 

information that HRG is also released from human platelets (Leung et al., 

1983) then this could clearly be another route through which the Zn2+-

dependent activities of HRG are modulated. More recent evidence has 

indicated that activated platelets contained the antiangiogenic fragment of 

the HRR with one possibility being that the large increase in Zn2+ 

concentration could stimulate proteolysis to release this active domain. In 

the tissue of cancer patients, this peptide was also found to associate 

with the vessel wall but no binding was observed in healthy patients 

(Thulin et al., 2009).   

 

Additionally HRG could become activated through low pH to the extent 

that Borza and Morgan (1998) suggested an important role as a plasma 

pH sensor. During hypoxia or ischemia an onset of acidosis can occur 

which could be extremely detrimental to tissues (Levine, 1993). This 

would cause the His sidechains to become protonated and would 

enhance the interaction with negatively charged glycosaminoglycans on 
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the cell surface. Apart from HMWK, HRG appears to be the only plasma 

protein that can be regulated in this way. Some parallels can be drawn 

between HMWK, a cofactor in blood coagulation, and HRG as numerous 

reports have found that binding of HMWK to endothelial cells is Zn2+-

dependent (van Iwaarden et al., 1988; Schmaier et al., 1988; Joseph et 

al., 1996). Although, HMWK may not act as a pH sensor to the same 

extent as HRG as the His-rich region contains a greater number of Arg 

and Lys which are permanently protonated at physiological pH. As a 

whole, this evidence points toward HRG being a unique protein whose 

multi-domain structure and polycationic nature are extremely important 

for the formation of functional complexes in plasma.   

 

More recently it has been acknowledged that Cu2+ could be biologically 

relevant for HRG, although given the fact that only 5-10% of 

exchangeable serum Cu2+ is bound to HSA it is questionable whether a 

proportion would be bound to HRG. The competition experiments with the 

N-terminal peptide mimic of HSA in Chapter 6 showed that HRG is able 

to compete with the N-terminus even though Gly-Gly-His has a higher 

binding affinity for Cu2+ than HRG. This could be due to the large number 

of possible binding sites as Cu2+ can deprotonate backbone amides and 

may only require two additional imidazole side chains for stable binding. 

This could have important consequences for Cu2+ homeostasis, because 

if the levels of Cu2+ are increased in tumours then the expression of Cu2+-

carrying proteins may be upregulated (Lowndes and Harris, 2005). There 

is ongoing work to use Cu2+-chelators as a therapeutic strategy to combat 
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tumour angiogenesis, one example being Tetrathiomolybdate (TM) which 

significantly reduced Cu2+ levels in clinical trials (Redman et al., 2003).  

  

7.2 Future directions 

1. Native mass spectrometry of full-length HRG 

No detailed structural information is available on HRG and suggestions 

have only been made based on analysis of the fragments obtained from 

proteolysis. Analysis of HRGP330 by TWIM-MS highlighted a possible 

conformational change upon Zn2+ binding therefore this could be verified 

by gas-phase studies of full-length HRG. Most of the observations in the 

literature have been made using in vitro model peptides although many of 

these show the same biological activity of HRG therefore it could be 

argued that in this case these studies are relevant.  

 

2. Investigate the binding of other fatty acid molecules to HSA using 

TWIM-MS 

As TWIM-MS was able to identify an increased collisional cross section 

for myristate-HSA, it would be of interest to study the conformational 

changes induced by fatty acids of different chain lengths. Furthermore, a 

titration could be carried out with varying fatty acid concentrations to 

follow the changes that occur to the protein structure.  

 

3. Zn2+ distribution between HSA and HRG 

This work has utilised a peptide derived from the His-rich region as there 

are challenges associated with isolating sufficient amounts of human 
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HRG from plasma. Further investigations are warranted using a direct 

comparison between human HSA and HRG which would have more 

relevance than the studies using rabbit HRG. The influence of different 

buffers and ionic strengths also needs to be explored as this may impact 

upon binding affinities.  

 

4. A metalloproteomics approach to characterising Zn2+ binding 

proteins in plasma: does Zn2+ associate with HRG endogenously? 

It would be of great interest to develop protocols in order to isolate HRG 

from human plasma and determine the amount of Zn2+ associated with it. 

This is associated with difficulties as HSA is so abundant. Previous 

strategies to identifying less abundant proteins have involved targeted 

depletion of highly concentrated plasma proteins with antibody columns. 

A metallopoteomics approach to fractionating metal binding proteins in 

the marine cyanobacterium Synechococcus sp. WH8102 has recently 

been developed in our laboratory which could be applied to plasma 

samples (Barnett et al., 2012). It is important to note that due to its large 

number of binding partners in serum it is possible that HRG could be 

isolated in a complex with another biomolecule. It would also be 

interesting to achieve this from the point of view of Cu2+ to establish 

whether any Cu2+ is associated with HRG in vivo, considering it might be 

a stronger binder.  Plasma samples could then be supplemented with 

fatty acids of varying chain lengths to see what effect this has on the 

metal ion distribution.  
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5. Analysis of clinical samples: can a correlation between fatty acids 

and Zn2+ be observed in vivo? 

An important future direction would be to study clinical samples from 

patients with conditions known to be associated with elevated fatty acid 

levels.  There is a growing body of evidence that indicates serum Zn2+ 

levels are reduced during diseases such as diabetes (Kinlaw et al., 1983; 

Chausmer, 1998) and cardiovascular disease (Shokrzadeh et al., 2009; 

Little et al., 2010). The fact that elevated fatty acids are also associated 

with diabetes, obesity (Boden and Shulman, 2002) and cardiovascular 

disease (Bhagavan et al., 2009) makes it even more pertinent that the 

relationship between these two nutrients is addressed. The allosteric 

binding of fatty/acid Zn2+ to HSA may go some way to explaining shifts in 

Zn2+ distribution observed during disease. Although many studies have 

analysed plasma levels of Zn2+ or fatty acid, testing needs to be carried 

out for both to assess if there is any correlation between them.  
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Thesis reference: Chapter 2, page 37 

 
Figure A1 Expression of recombinant albumin in Saccharomyces 

cerevisiae. A 2 µM plasmid for expression of recombinant HSA in yeast 

which is a safe and alternative product to albumin extracted form blood 
plasma. The HSA gene (green/black/red) is incorporated between the 
STB and the origin of replication (Evans et al., 2010). 
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Thesis reference: Chapter 3, page 66  
 
Table A1 Comparison of the experimental and theoretical masses 
observed for HSA. Values are expressed as average masses in Da. 
Errors in the mass become larger at lower charge states due to peak 
broadening. 
 

Charge state Experimental m/z Theoretical m/z ∆mass (Da) 

16+ 4152.96 4153.34 -0.38 

17+ 3908.68 3909.08 -0.40 

18+ 3691.60 3691.97 -0.37 

19+ 3497.36 3497.71 -0.35 

20+ 3322.93 3322.87 +0.06 

21+ 3164.60 3164.69 -0.09 

22+ 3020.91 3020.89 +0.02 

23+ 2889.74 2889.59 +0.15 

24+ 2769.39 2769.23 +0.16 

25+ 2658.53 2658.50 +0.03 

26+ 2556.33 2556.29 +0.04 

27+ 2461.59 2461.65 -0.03 

28+ 2373.77 2373.77 0.00 

29+ 2292.04 2291.95 +0.09 

30+ 2215.63 2215.58 +0.05 

31+ 2144.15 2144.15 0.00 

32+ 2077.30 2077.17 +0.13 

33+ 2014.32 2014.26 +0.06 

34+ 1955.04 1955.05 -0.01 

35+ 1899.19 1899.22 -0.03 

36+ 1846.50 1846.49 +0.01 

37+ 1796.58 1796.61 -0.03 

38+ 1749.34 1749.36 -0.02 

39+ 1704.55 1704.53 +0.02 

40+ 1662.00 1661.94 +0.06 

41+ 1621.39 1621.43 -0.04 

42+ 1582.86 1582.85 +0.01 

43+ 1546.03 1546.06 +0.03 

44+ 1510.92 1510.94 +0.02 

45+ 1477.41 1477.39 +0.02 
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Figure A2 HSA reacted with 40 mol. equiv. DTNB and analysed by 
ESI-MS. The observed mass was 66,635.63 Da. From the relative 
intensity of the peaks, it was estimated that 68% of the free thiol was 
available to react with DTNB. This is in agreement with the thiol assay by 
UV-Vis spectroscopy. The protocol for reaction with DTNB has previously 
been described (Stewart et al., 2005). The fact that the other species 
remaining corresponds to HSA + 2O atoms suggests that the oxidation 
has occurred at Cys34.  
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Figure A3  Effect of PFOA binding to HSA on His residues and metal 
binding. A)  1 mM samples were prepared in 50 mM Tris [D11]-Cl, 50 mM NaCl 
in 100% D2O (pH 7.10). Spectra were acquired at 37 °C on a Bruker Avance 
Ultrashield spectrometer operating at 700 MHz. f = sodium formate at 8.48 ppm 
which was added as a chemical shift reference. B) 1 mM samples were 
prepared in 50 mM Tris-Cl, 50 mM NaCl in 10% D2O (pH 7.4). Spectra were 
acquired at 37 °C on a Bruker DRX-500 spectrometer operating at 106 MHz for 
111Cd. Peaks A and B correspond to Site A and Site B respectively.  
 

A 

B 



Appendix 

211 
 

Thesis reference: Chapter 4, page 97 
 

 

 
 

 
 
Figure A4.  Comparison of spectra obtained for HSA complexes prior to 
ion mobility experiments. A) HSA with 2. mol. equiv. Zn2+ added (purple) 
compared to apo-HSA (green). B) HSA with 2. mol. equiv. Cd2+ (blue). The inset 
shows a close-up view of the 15+ charge state showing the mass shift observed. 
Samples were in 200 mM ammonium acetate (pH 7.4). Spectra were obtained 
on a Synapt HDMS G2 instrument (Waters).  
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Thesis reference: Chapter 5, page 111 and 115 
 
 
 
Table A2 Comparison of the experimental and theoretical masses of 
charge states observed for HRGP330. Values are expressed as 
monisotopic masses.  
 

Charge state Experimental 

m/z 

Theoretical m/z ∆mass (Da) 

3+ 1445.00 1445.00 0.00 

4+ 1083.99 1084.00 0.01 

5+ 867.39 867.40 0.01 

6+ 722.99 723.00 0.01 

7+ 619.85 619.86 0.01 

8+ 542.49 542.50 0.01 

 

 

 
Table A3 Comparison of the experimental and theoretical masses of 
metalloforms observed for HRGP330. Values are expressed as 
monoisotopic neutral masses in Da. The italicised numbers are the 
theoretical values. 
 
 

 

Metal 
ion 

Number of metal ions 
0 1 2 3 4 5 

Zn
2+ 

 4331.98 4393.89 4455.80 4517.71 4579.63 4641.54 

Zn
2+  

 
4331.88 4393.89 4455.79 4517.78 4579.70 4641.64 

Cd
2+

 4331.98 4443.86 4555.75 4667.64 4779.53 N/A 

Cd
2+

  4331.88 4443.81 4555.75 4667.63 4779.54 N/A 

Cu
2+

 4331.98 4392.89 4453.80 4514.72 4575.63 4636.54 

Cu
2+

  4331.88 4392.96 4453.71 4514.68 4575.60 4636.61 
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Figure A5 Comparison of products from RP-HPLC of crude 
HRGP330. A) Peptide that eluted at 9.2 min shows a mass that matches 
that expected for HRGP330. B) Peptide that eluted at 9.6 min had a mass 
4390.0 Da, a mass increase of 56 Da compared to that expected for 
HRGP330. It is likely that the second peptide still has a protecting group 
attached as t-butyl has a mass of 56 Da. 
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Experimental mass Theoretical mass 
Δmass 

(Da) 
Assignment 

477.197 477.165 -0.032 (R)CPEE(F) 

477.197 477.219 0.022 (F)IEDT(E) 

477.197 477.230 0.033 (A)NTKD(S) 

477.197 477.249 0.051 (G)QCKV(I) 

477.197 477.303 0.106 (C)KTTK(P) 

499.178 499.255 0.077 (D)GYLF(Q) 

521.160 521.220 0.060 (F)GTNET(H) 

521.160 521.224 0.064 (C)PEEF(N) 

543.142 543.234 0.092 (H)QHAMG(P) 

543.142 543.245 0.102 (Y)YVDF(S) 

543.142 543.277 0.135 (P)LPEAN(F) 

737.273 737.299 0.025 (I)EDTEPF(R) 

737.273 737.340 0.066 (H)QHAMGPP(P) 

737.273 737.358 0.084 (V)DFSVRN(C) 

737.273 737.358 0.084 (G)PQDLHQ(H) 

737.273 737.387 0.113 (S)PVLFDF(I) 

759.255 759.298 0.042 (D)FNCTTSS(V) 

759.255 759.425 0.169 (P)LAEKALD(L) 

759.255 759.425 0.169 (L)AEKALDL(I) 

759.255 759.425 0.169 (K)TTKPLAE(K) 

759.255 759.425 0.169 (N)TKDSPVL(F) 

759.255 759.437 0.182 (I)NKWRR(D) 

781.237 781.336 0.099 (S)FDVEASN(L) 

781.237 781.340 0.102 (D)VKETDCS(V) 

781.237 781.340 0.102 (V)KETDCSV(L) 

781.237 781.366 0.129 (F)GFCRADL(S) 

803.218 803.379 0.161 (T)NETHRF(P) 

 
Figure A6 ESI-MS of full-length rabbit HRG. A) Low intensity signals 
are observed for HRG along with peptides visible in the low mass range B) 
Identification of peptides using FindPept (ExPasy) yields a number of 
matches that are within 0.2 Da. 

 

A 
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Table A4 1H resonance assignments of HRGP330 recorded at 700 
MHz. The spectra were measured at pH 6.20 and 5 °C in 50 mM Tris-D11 

and 50 mM NaCl. 
 

 

 

Residue NH Hα Hβ Others 

D1 8.38 4.51 2.65, 2.51 - 

L2 8.43 4.24 1.54 Hδ1 0.81; Hδ2 0.89; γCH 1.403 

H3 8.58 4.60 3.06 (Q) Hδ2 7.04 

K6 8.34 4.25 1.69 (Q) γCH2 1.29 (Q); εCH2 2.94 (Q) 

H7 8.64 - 3.20, 3.12 Hδ2 7.13 

S9 8.45 - 3.94, 3.85 - 

Q12 8.53 4.23 - γCH2 2.27 (Q); Hε21 6.94; Hε22 7.60 

E26 8.37 4.20 1.93 (Q) γCH2 2.14 (Q) 

H27 8.63 4.65 - - 

D28 8.40 4.66 2.74, 2.65 - 

T29 8.31 4.23 - γCH3 1.16 

H30 8.53 4.61 3.21, 3.14 Hδ2 7.16 

R31 8.19 4.38 1.80, 1.71 δCH2 3.17 (Q); γCH2 1.54; Hε 7.27 

Q32 8.51 4.25 - γCH2 2.32 (Q); Hε21 6.97; Hε22 7.62 

Hs† 8.81 4.64 3.19, 3.13 Hδ2 7.10 

Ht† 8.76 4.64 3.20, 3.15 - 

Hu† 8.73 4.62 3.15, 3.08 - 

Hv† 8.71 4.64 3.11 (Q) - 

 

 

† These four His residues (labelled s, t, u and v) are all thought to be after 
Pro based on strong crosspeaks observed. Therefore they could be His5, 
His15, His20, His25 or His35.  

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 



Appendix 

216 
 

Thesis reference: Chapter 5, page 127 
 
 
 

 

 

 
 

 
Figure A7 Identification of a Zn2+-bound HRGP330 dimer. The sample 
was 10 µM HRGP330 in 10 mM ammonium acetate (pH 7.4) that had 
been incubated with 5 mol. equiv. Zn(CH3COO)2.2H2O. The inset shows 
the +7 charge states of a low intensity Zn2+-bound dimer. The peaks 
between those labelled in the inset correspond to sequential addition of a 
Zn2+ ion.  
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Figure A8 Intact spectrum of HRGP330 prior to top-down MS/MS. A) 
ESI-MS spectrum of apo-HRGP330 B) ESI-MS spectrum showing Zn1-
HRGP330 and Zn2-HRGP330. In each case the 5+ charge state was 
isolated with a width of 4 m/z and fragmented by CID and ETD/PTR on 
an amaZon speed ETD instrument. 
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Table A5 Summary of Zn2+-bound peptides identified from CID.  

 

 

Assignment 

of fragment 

Experimental 

[M+H]
1+

 

Theoretical 

[M+H]
1+

 

∆mass 

(Da) 

Experimental  

+ Zn 

[M+H]
1+

 

Theoretical  

+ Zn 

[M+H]
1+

 

∆mass 

(Da) 

y8 1026.68 1026.49 +0.19 1087.54 1087.40 +0.14 

y10-NH3 1275.70 1275.57 +0.13 1337.74 1337.50 +0.24 

b11 1397.70 1397.64 +0.06 1459.65 1459.55 +0.10 

y12  1526.96 1526.71 +0.25 1588.86 1588.62 +0.24 

y17 2106.34 2105.97 -0.37 2168.20 2167.89 -0.31 

b18 2290.08  2289.93 +0.15 2290.08  2289.93 +0.15 

y22 2671.30 2671.22 +0.08 2733.24  2733.14 +0.10 

b23  2807.32 2807.28 +0.04 2869.24  2869.19 +0.05 

b28 3422.68 3422.52 +0.16 3484.54  3484.43 +0.11 

y29 3563.74 3563.60 +0.14 3625.63  3625.51 +0.12 

y32 3926.15  3925.80 +0.35 3988.15 3987.71 +0.44 

y32 –H2O 3908.12 3907.79 +0.33 3970.00 3969.71 +0.29 

y33 4125.12 4124.77 +0.35 4125.12 4124.77 +0.35 

b33 4082.02 4081.84 +0.18 4144.04 4143.76 +0.28 

y34  4176.65 4175.94 +0.71 4238.30 4237.86 +0.44 

y34-NH3 4158.60 4158.92 -0.32 4220.65 4220.85 -0.20 
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Table A6 Summary of Zn2+-bound peptides identified from ETD. 

 

 

Assignment 

of fragment 

Experimental 

[M+H]
1+

 

Theoretical 

[M+H]
1+

 

∆mass 

(Da) 

Experimental 

+ Zn 

[M+H]
1+

 

Theoretical 

+Zn 

[M+H]
1+

 

∆mass 

(Da) 

z13* 1648.06 1647.75 +0.31 1711.06 1711.56 -0.5 

c20 2479.50 2479.15 +0.35 2542.50 2542.65 -0.15 

c26 3187.68 3187.46 +0.22 3250.62 3250.96 -0.34 

c27 3324.82 3324.52 +0.30 3388.68 3388.02 +0.66 

c28 3439.82 3439.54 +0.28 3502.76 3503.04 -0.28 

z28* 3410.76 3410.52 +0.24 3473.76 3474.02 -0.26 

z29* 3547.82 3548.58 -0.76 3611.62 3612.08 -0.46 

z30* 3676.76 3676.68 +0.08 3739.62 3740.18 -0.56 

z31* 3812.76 3812.74 +0.02 3876.82 3876.24 +0.58 

c31 3833.76 3833.75 +0.01 3986.82 3897.25 +0.57 

z33* 4047.94 4047.85 +0.09 4110.82 4111.35 -0.47 

z34* 4160.94 4160.94 0.00 4223.82 4224.44 +0.62 

c34 4195.94 4195.92 +0.02 4258.94 4259.42 -0.48 

 

*denotes (z+1) and (z+2) ions 
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Figure A9 ESI-MS of HRGP330 following incubation with HSA and 

then separation for analysis. A) 5 µM HRGP330 B) 5 µM HRGP330 

following separation from HSA. The HRGP330 can clearly be identified, 
however, the presence of a small proportion of HSA supressed the 
HRGP330 charge states considerably. Samples were in 10 mM 
ammonium acetate (pH 7.4) and spectra were acquired on a maXis-UHR-
TOF instrument. 
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