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Abstract

Analysis concerning time series exhibiting changepoints have predominantly
focused on detection and estimation. However, changepoint estimates such as their
number and location are subject to uncertainty which is often not captured explicitly,
or requires sampling long latent vectors in existing methods. This thesis proposes
efficient, flexible methodologies in quantifying the uncertainty of changepoints.

The core proposed methodology of this thesis models time series and change-
points under a Hidden Markov Model framework. This methodology combines exist-
ing work on exact changepoint distributions conditional on model parameters with
Sequential Monte Carlo samplers to account for parameter uncertainty. The combi-
nation of the two provides posterior distributions of changepoint characteristics in
light of parameter uncertainty.

This thesis also presents a methodology in approximating the posterior of
the number of underlying states in a Hidden Markov Model. Consequently, model
selection for Hidden Markov Models is possible. This methodology employs the use
of Sequential Monte Carlo samplers, such that no additional computational costs
are incurred from the existing use of these samplers.

The final part of this thesis considers time series in the wavelet domain, as op-
posed to the time domain. The motivation for this transformation is the occurrence
of autocovariance changepoints in time series. Time domain modelling approaches
are somewhat limited for such types of changes, with approximations often taking
place. The wavelet domain relaxes these modelling limitations, such that autoco-
variance changepoints can be considered more readily. The proposed methodology
develops a joint density for multiple processes in the wavelet domain which can
then be embedded within a Hidden Markov Model framework. Quantifying the
uncertainty of autocovariance changepoints is thus possible.

These methodologies will be motivated by datasets from Econometrics, Neu-
roimaging and Oceanography.

x



Chapter 1

Introduction

Change is inevitable - except from a vending machine.

Robert C. Gallagher

Many time series and sequences of observations exhibit structural changes

and breaks where a change occurs in the underlying system generating the data.

Consequently, the data exhibits changes in statistical properties before and after

the occurrence of this structural break. Instances of such structural breaks are

becoming more frequent due to technological advances in recent years; time series

can now be collected over a longer period and at a greater sampling rate. Analysis

thus needs to account for such changes. We refer to instances of structural changes

and breaks as changepoints (CPs); instances in time where the statistical properties

differ pre and post this instance. This thesis considers aspects of CPs, in particular

the uncertainty of them.

CP analysis is important in both theoretical and applied Statistics. For exam-

ple, in standard time series analysis (see Chatfield (2003) for a good overview), many

of the statistical theories and methodologies assume a stationary process where the

statistical properties of the time series remain constant over time. Thus in order to

consider non-stationary time series, it is necessary to devise methods in which CPs

are identified and the non-stationary time series is segmented into smaller station-

ary time series. Methodologies assuming stationarity can then be applied to these

segmented series. Alternatively, the potential presence of CPs can be incorporated

into analysis, thus developing new methods which account for non-stationarity.

In an applied context, CPs are often associated with real life events which

may consequently lead to a better understanding of the data and aid in decision

making. For example, in the Gross National Product data considered in this thesis
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(Figure 1.1), CPs correspond to switches in business cycles (between recession and

growth periods). In addition these CPs and regimes often correspond to real life

events, for example the 1956 recession (grey shaded region) is suspected to be asso-

ciated with the Suez Crisis. The identification of CPs in time series may also suggest

an intervening action on the system considered. For example, Page (1954) devel-

oped a methodology to identify whether a machine was faulty or not and needed

replacing by assessing the quality of a product from the production line over time.

If a fall in production quality is detected (our CP in this case), then the machinery

is consequently replaced.

Motivated by the theoretical and applied aspects of CPs, considerable lit-

erature is dedicated to detection and estimation aspects of CPs problem. These

consider whether a CP has occurred, and if so, how many and where these CPs

might occur. In addition, CP methods encompass both offline and online scenarios

where the data is made fully and incrementally over time respectively. In compari-

son, little attention has been focused on the uncertainty of the estimated quantities

surrounding CPs.

Whilst detection and estimation of CPs are important aspects, perhaps moti-

vated by the desired objectives when presented with a CP problem, the uncertainty

of CP estimates should not be ignored. Considering the uncertainty of CPs may

provide a better understanding of the data, highlighting any other potential CP

configurations that may have occurred and providing some means of assessing the

plausibility of different configurations. This is particularly important when different

CP methods provide different results and we want to assess the plausibility of their

estimates and their performance. Such a phenomena is successfully demonstrated in

Chapter 2 where a variety of different CP methods are applied to the same dataset.

Many existing CP approaches do provide some means of uncertainty quantification,

but this is often implicit via the use of asymptotics and significance levels in hypoth-

esis testing based methods (for example Chen and Gupta (2000); Davis et al. (2006);

Cho and Fryzlewicz (2012)). Those which do quantify the uncertainty regarding CP

locations assume the number of CPs to be known a priori, an unreasonable assump-

tion if CP characteristics are generally unknown and of interest (see for example

Chib (1998)). Recent Bayesian methods do consider quantifying the uncertainty

of CP characteristics more explicitly, although this often requires sampling a long

latent sequence which is often difficult to perform and may not be desirable (see for

example Chen and Liu (1996); Chib (1998); Fearnhead (2006)).

This thesis considers methods in quantifying the uncertainty of CPs for a time

series via the use of Hidden Markov Models (HMMs), a popular framework in the

2



time series and CP community. We initially consider working on the observed time

series directly and develop a methodology which provides the posterior distributions

for several CP characteristics. This utilises an existing framework to compute exact

CP distributions conditioned on model parameters (Aston et al., 2011), and accounts

for model parameter uncertainty via the use of Sequential Monte Carlo (SMC)

samplers. This combined framework is detailed in Chapter 3 and does not require

sampling the underlying state sequence. This leads to a reduction in the Monte Carlo

error of the parameters and more importantly, the CP estimates. The resultant

methodology thus provides posterior distributions for CP characteristics in light of

parameter uncertainty such that a reduction of sampling error is present.

A time-domain HMM framework provides a flexible CP method for changes

in mean, variance, and combinations thereof. However, as non-stationarity can

also arise from changes in autocovariance structure, it is necessary to consider such

changes. Autocovariance CPs have received comparatively little attention compared

to changes in mean and variance, with recent methods including Davis et al. (2006);

Choi et al. (2008); Cho and Fryzlewicz (2012). However, such methods do not

explicitly quantify the uncertainty of their CP estimates, and often provide different

results.

A time-domain HMM is able to consider certain types of autocovariance CPs

exactly (namely those with changes in autoregressive structure), with an approxima-

tion taking place for those which cannot be considered exactly (for example changes

in moving average structure). This somewhat limits the type of data and changes

that we can consider. We propose considering the observed time series in the wavelet

domain which permits a frequency and location decomposition of the time series,

and developing a HMM framework in the wavelet domain. By considering the time

series in this alternative domain, CPs in second-order structure (autocovariance)

may be more readily analysed than in the time domain.

This wavelet-domain approach, outlined in Chapter 6, considers modelling

time series under a Locally Stationary Wavelet (LSW) framework, a popular wavelet

based framework for modelling time series with evolving second-order structure.

This second-order structure is characterised by the Evolutionary Wavelet Spectrum

(EWS) at different frequencies and locations, with changes in autocovariance in

the observed time series corresponding to changes in spectral structure of the EWS

and vice versa. Consequently, focus now turns to assessing the periodogram, an

estimate of the EWS, for changes. A HMM framework is established in modelling the

periodogram as a multivariate time series with the appropriate emission density. The

HMM framework thus allows a multitude of HMM-based CP methods to be applied,

3



with our interest being that of quantifying the uncertainty of CPs. Consequently,

the methodology detailed in Chapter 3 can be applied.

By considering the time series in the wavelet domain under the LSW frame-

work, time series may be considered more readily due to their alternative represen-

tation. In addition, the proposed wavelet approach removes some sensitivity and

concern with respect to model mis-specification compared to a time-domain approx-

imation where an autoregressive component needs to be appropriately specified. By

considering the time series in the wavelet domain, this may allow us to consider new

types of data exhibiting changes in autocovariance and quantify the uncertainty of

them.

The HMM setup considered throughout this thesis assumes that the number

of underlying states is known a priori. This is often not the case when presented

with time series data. This assumption is common in the statistical analysis and

applications of HMMs and is not exclusive to CP analysis. We consider accounting

for the uncertainty and determining the number of states of a HMM by extending

the use of SMC samplers in their current context (see Chapter 5). The proposed

SMC based methodology provides an efficient, flexible procedure in determining the

unknown number of states by approximating the model posterior, which reduces

the sampling error of estimates due to the absence of state sequence sampling, and

requires no additional computational cost.

This thesis is motivated by three real datasets which exhibit different types

of CPs. We firstly consider a dataset which is commonly featured in the CP lit-

erature; Hamilton’s Gross National Product data (GNP, Hamilton (1989)). This

data consists of differenced quarterly logarithmic US GNP data between the time

periods 1951:II to 1984:IV. CP methods are predominantly used on this dataset

in identifying the starts and ends of business cycles, namely when recessions begin

and end. Figure 1.1 shows the transformed data that is analysed by various CP

methods with recessions periods (grey regions) estimated by the National Bureau

of Economic Research (NBER). By quantifying the uncertainty of CPs such as the

number and location of recessions, we can assess the plausibility of NBER estimates

and those provided by other CP methods. A change in mean is suspected for this

time series. This dataset is analysed in Chapter 3 and will also feature as a running

example in our literature review (Chapter 2) for demonstrating the performance of

CP methods.

In addition, it is common to assume two underlying states are present in gen-

erating the GNP data, corresponding to the “contraction” and “expansion” states.

Chapter 5 thus assesses whether such an assumption is valid via the HMM model
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Figure 1.1: Hamilton’s GNP: differenced quarterly logarithmic US GNP data from

1951:II to 1984:IV. CP methods are applied to this dataset in determining the

starts and ends of business cycles, namely recessions. The grey regions denote the

estimated recessions according to the NBER. A change in mean is suspected in this

time series.

selection method developed.

The second dataset consists of functional Magnetic Resonance Imaging (fMRI)

signals from a psychological experiment. fMRI signals are one way to measure brain

activity over time. Two particular regions of the brain are of interest in the dataset

(Figure 1.2), namely the Rostral Medial Pre-Frontal Cortex (RMPFC, associated

with anxiety and fear emotions) and the Visual Cortex (VC, associated with visual

interpretation). Interest lies in whether these regions behave accordingly with re-

spect to the design of the experiment. In addition, statistical analysis for fMRI data

typically assumes that the experimental design is known a priori where the onset

timing of the stimulus corresponds directly to the onset timing of brain activity.

However, this is often not the case, particularly in psychological experiments where

the onset of a stimulus may not correspond directly in time to brain behaviour

and patients reacting differently to stimulus. CP methods have thus been used to

address this issue of unknown experimental design, with the uncertainty of CPs

capturing the uncertainty of the onset of the stimulus and different reactions from

subjects. A change in mean is associated with this dataset, although a trend is also

present due to instabilities associated with fMRI data acquisition; this needs to be

accounted for. Analysis of this dataset is considered in Chapter 4 where in addition

to quantifying the uncertainty of CPs, detrending and error process assumptions
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Figure 1.2: fMRI signals from two regions of the brain from a psychological exper-

iment. CP methods are used to determine whether the regions behave as expected

with respect to the design of the experiment and determining the onset of a stimulus

on the brain signal which is often assumed known in fMRI statistical analysis. A

change in mean is suspected in both time series, although a trend and error process

structure is also present which needs to accounted for.

are incorporated into the proposed methodology. We observe the effect of different

detrending and error process assumptions commonly assumed in fMRI analysis on

CP results.

The third dataset examines oceanographic data where interest lies in deter-

mining storm season changes from historic wave height data. By identifying these

changes, ocean engineers may be able to use these results in planning future mainte-

nance and inspection of ocean equipment such as offshore oil rigs. The data analysed

is differenced wave heights at a central location in the North Sea from March 1992 –

December 1994 (Figure 1.3), where changes in storm season correspond to changes

in autocovariance structure of the time series. Differencing has been performed due

to trend and seasonality being present in the original wave height time series. Due
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Figure 1.3: Differenced Wave Height Data from a central North Sea location col-

lected at 12 hourly intervals from March 1992 – December 1994. Changes in storm

season correspond to changes in autocovariance structure of this time series. The

ticks at the top and bottom are estimated storm season changes identified by existing

autocovariance CP methods.

to the inherent ambiguity and uncertainty associated with storm seasons such as

the number and location of them, quantifying the uncertainty of CPs is of consid-

erable interest. This dataset and the associated methodology of quantifying the

uncertainty of autocovariance CPs is considered in Chapter 6.

The thesis features material which has appeared in the following list of pub-

lications:

• Nam, C. F. H., Aston, J. A. D., and Johansen, A. M. (2012b). Quantifying the

uncertainty in change points. Journal of Time Series Analysis, 33(5):807–823

• Nam, C. F. H., Aston, J. A. D., and Johansen, A. M. (2012a). Parallel Se-

quential Monte Carlo samplers and estimation of the number of states in a

Hidden Markov model. CRiSM Research Report, 12(23)

• Nam, C. F. H., Aston, J. A. D., Eckley, I. A., and Killick, R. (2013). The uncer-

tainty of storm season changes: Quantifying the uncertainty of autocovariance

changepoints. CRiSM Research Report, 13(5)

1.1 Structure of Thesis

The structure of the thesis is as follows: Chapter 2 provides a literature review

of existing CP methods related to the problems of interest. Chapter 3 proposes

a methodology in quantifying the uncertainty of CPs in light of model parameter

uncertainty in the time domain via the use of a HMM framework. Chapter 4 further

7



extends this proposed methodology in the context of brain imaging data such that

detrending and error process assumptions can be embedded within the framework

in a unified manner. Chapter 5 demonstrates how the SMC component of our

proposed methodology in Chapter 3, can be further developed to deal with the

unknown number of states in a HMM framework. Chapter 6 considers time series in

a new domain, namely the wavelet domain. A HMM framework is developed in this

alternative domain which allows us to consider the uncertainty of autocovariance

CPs, an area which has received little to no attention. Chapter 7 concludes this

thesis with a summary and discussion on potential paths for future work.
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Chapter 2

Literature Review

Take a method and try it. If it fails, admit it frankly, and

try another. But by all means, try something.

Franklin D. Roosevelt

2.1 Introduction

Changepoint (CP) analysis dates as far back as the 1950s, where in introductory pa-

pers such as Page (1954), methods were heavily motivated by quality control in the

manufacturing industry. These problems were fundamentally detection driven; de-

termine whether a change has occurred in the production quality and decide whether

to suspend or reset the associated machinery based on the analysis outcome. Nat-

urally, CP problems and analysis have evolved over time to consider a variety of

different scenarios. This includes assuming different underlying assumptions on the

observations, the presence of multiple CPs, and scenarios where the data increases

incrementally over time. In addition, the term “changepoint” appears under a va-

riety of synonyms in the literature due to its varied applications in Biology and

Econometrics for example. This includes segmentation (for example in Braun and

Müller (1998)), structural breaks (for example in Davis et al. (2006)) and detecting

“disorder” (for example in Vostrikova (1981)).

There are a variety of ways in which changes in an observed time series can

occur, for example changes in distribution, mean and variance. The majority of CP

literature is dedicated to parametric changes, that is, the same model and distri-

butional form is assumed across the data, but different parameters are associated

between times of changes. Alternatively, changes in distribution assume that the

data does not come from the same distribution, with different distributions being

9



assumed between CPs.

Due to the extensive nature of CPs and the associated literature, we restrict

our attention to relevant methods associated with the applications and problems of

interest in this thesis. The problems and datasets encountered in this thesis concern

estimation of CP characteristics retrospectively when all data is made available prior

to analysis (an offline scenario). Consequently methods such as Ross (2012), which

are defined within an online scenario where the data increases incrementally over

time and analysis, will not be explored in detail. In addition, typically only a single

univariate time series is reported with no additional datasets, such as additional

exogenous covariates, being provided. Such covariates can be used in a change in

regression (trend) context where yt = xTt β1 for 1 ≤ t < τ1, and yt = xTt β2 for

τ1 ≤ t ≤ n, where xt = (xt1, . . . , xtp) are the additional exogenous covariates, y1:n is

the observed time series, and βj = (βj1, . . . , βjp) are changing regression parameters.

Multivariate CP methods and those concerning changes in regression such as Zeileis

et al. (2002) will receive little attention. The problems we shall consider also as-

sume a common parametric distribution and thus methods concerning distributional

changes will receive relatively little attention in this thesis.

For comprehensive overviews of CP methods, we refer the reader to Chen

and Gupta (2000), Eckley et al. (2011). The website changepoint.info (Killick

et al., 2012b), a recent initiative amongst the CP community, also provides a use-

ful resource in fostering the research and applications of changepoint analysis with

regards to publications and software implementations of both established and up-

coming CP methods.

The structure of this chapter is the following. Section 2.2 introduces com-

monly used terminology and notation within the CP literature and within this thesis.

We then proceed to Sections 2.3 to 2.13 which reviews a variety of CP methods.

We conclude this chapter with Section 2.14 where we discuss the relative merits and

downfalls of the reviewed CP methods with regards to quantifying the uncertainty

of CPs.

To motivate why quantifying the uncertainty of CPs is an important aspect,

we apply the reviewed CP methods to the aforementioned Hamilton’s GNP dataset

outlined in Chapter 1 (see Figure 1.1, page 5), where a software implementation of

the method is available and is appropriate for the dataset. Hamilton’s GNP time se-

ries is Gaussian distributed with a change in mean being suspected (Hamilton, 1989).

CPs detected by the various methods are denoted by red vertical lines in plots of

the data. Code is available from the respective author’s website, changepoint.info

(Killick et al., 2012b) and references therein.
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2.2 Terminology and Notation

We now proceed in establishing the terminology and notation commonly used within

the CP literature and in this thesis. Let y1:n = (y1, . . . , yn) be an observed univari-

ate time series of length n and Y1:n denote the corresponding sequence of random

variables. Many statistical time series analysis assume y1:n is weakly stationary

where the mean, variance and covariance of observations remain constant over time,

and that the observations belong to the same statistical family. That is Yt ∼ F (θ1),
for all t, for some common distribution function F with associated parameters θ1.

However, it is common for time series to be non-stationary such that the

statistical properties of y1:n change over time. This is particularly common for time

series collected over a long period of time, and can include changes in mean, variance,

covariance and distribution. Such changes caused by structural breaks are known

as changepoints (CPs) where the statistical properties of the data differ before and

after the specified instance.

More formally, τ1 ∈ {2, . . . , n} is defined to be a CP if y1:τ1−1 and yτ1:n possess

different statistical properties. For parametric changes, this results in y1:τ1−1 ∼
F (θ1) and yτ1:n ∼ F (θ2) with θ1 6= θ2. Such parametric changes encompasses

changes in mean, variance and covariance within the same distribution, F . This

definition can also be easily extended to changes in distribution.

However, multiple changes can also occur within time series, particularly

those collected over long periods of time. It is therefore necessary to extend the

single CP definition into a multiple setting.

Definition 1. τ1:M , CP configuration for M CPs.

τ1:M = (τ1, . . . , τM ) is defined to be a CP configuration for M CPs where τi denotes

the location of the ith CP if

1. τi ∈ {2, . . . , n} for i = 1, . . . ,M with τ0 = 1 and τM+1 = n+ 1.

2. τi < τj if and only if i < j, for i, j ∈ {0, 1, . . . ,M + 1}.

3. The configuration partitions the data into M +1 disjoint segments as follows:

y1:n = y1:τ1−1 ∪ yτ1:τ2−1 ∪ . . . ∪ yτM−1:τM−1 ∪ yτM :n

=

M+1⋃

i=1

yτi−1:τi−1

such that consecutive segments, yτi−1:τi−1 and yτi:τi+1−1 for i = 1, . . . ,M , are

statistically different.
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The additional conditions are necessary to make the multiple CP configura-

tion valid; condition 2 enforces that future CPs in the sequence cannot occur before

previous CPs, and condition 3 is necessary to partition the data into statistically

different segments. Note however that non-consecutive segments of data need not

be statistically different under this definition.

In the most general CP problem, we aim to estimate the unknown number of

CPs present,M , and the respective locations of theseM changes, τ1:M . In addition,

the parameters associated with each of the M +1 segments, θ = (θ1, . . . , θM+1), are

generally unknown with yτi−1:τi−1 ∼ F (θi), i = 1, . . . ,M + 1. This needs to be

estimated or accounted for in some manner.

In many of the methods considered, the likelihood,

l(θ, τ1:M |y1:n) = p(y1:n|θ, τ1:M) is a key concept in their approaches. How the like-

lihood is computed is very much dependent on assumptions made on the data and

the model. For example, in some methods, it is common to assume independence

amongst the segments conditional on the CP configuration τ1:M , in computing the

likelihood. If such an assumption is enforced, the likelihood is found to be the

product of the segment likelihoods.

More formally under this segment independence assumption, we denote the

segment likelihood for segment i ∈ {1, . . . ,M+1} as l(θi|yτi−1:τi−1) = p(yτi−1:τi−1|θi).
If segment independence is assumed conditional on the CP configuration, τ1:M , then

the likelihood can be computed as:

l(θ, τ1:M |y1:n) = p(y1:n|θ, τ1:M) =
M+1∏

i=1

p(yτi−1:τi−1|θi) =
M+1∏

i=1

l(θi|yτi−1:τi−1)

It is common to estimate the unknown θ via a maximum likelihood approach.

That is, we estimate θ as that which maximises the likelihood.

θ̂ = argmax
θ
l(θ, τ1:M |y1:n) (2.1)

In the presence of CP configuration τ1:M , the maximum likelihood estimate (MLE)

of θ is computed by considering the maximum likelihood of each segment. That is

θ̂i = argmax
θi

p(yτi−1:τi−1|θi). (2.2)

We denote the MLE of θ with respect to the MLE of each segment as θ̂ = (θ̂1, . . . , θ̂M+1).

However, not all methods, for example the methods proposed in this thesis, require

such an assumption.
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We now proceed in reviewing CP methods relevant to the problems of inter-

est. We begin by reviewing two established single CP methods (Section 2.3), and

then proceed to review multiple CP methods (Sections 2.4 to 2.13). Whilst single

CP methods may appear to be limited in use within single CP scenarios, we shall

review a method in which single CP methods can be applied within multiple CP

contexts (Section 2.4).

2.3 At Most One Change

The At Most One Change (AMOC) model is as the name suggests, a model which

is designed to account for a maximum of one CP occurring within the data. The

model is defined as a pair of hypothesis tests as to whether a CP has occurred or

not. More specifically, we test the following hypotheses

H0 : y1:n ∼ F (θ1).
H1 : There is an integer τ1 ∈ {2, . . . , n} such that

y1:τ1−1 ∼ F (θ1), yτ1:n ∼ F (θ2) with θ1 6= θ2.

Non-parametric and parametric tests can now be constructed from the AMOC setup

and thus used to determine whether a CP has occurred.

The Cumulative Sum (CUSUM, Page (1954)) is a non-parametric approach

in testing the AMOC hypotheses. The approach computes a statistic sequentially,

and compares this to a baseline statistic defined over the entire time series. For

a change of mean scenario, the cumulative mean and sample mean are commonly

considered as the sequential and baseline statistic respectively. The intuition of the

method is that the sequential statistic is most different to the baseline statistic at

the point of change. Thus, if the sequential statistic deviates sufficiently from the

baseline statistic with respect to some threshold based on a significance level, H0 is

rejected and a CP is concluded to have occurred. In addition, the location at which

the deviation is largest provides an estimate of the CP location.

There are a variety of ways in which the CUSUM statistic can be defined

dependent on the type of change and whether observations are independent or not.

A classical definition for a suspected change in mean (Kirch, 2006) is:

Sm :=
1√
m
|m(ȳm − ȳn)| where ȳm =

m∑

i=1

yi
m

T := max
m=1,...,n

Sm τ̂1 : = arg max
m=1,...,n

Sm.
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(b) Likelihood Ratio Test

Figure 2.1: The Cumulative Sum (CUSUM) and Likelihood Ratio Test (LRT) ap-

proaches under an At Most One Change setup, applied to Hamilton’s GNP data.

One CP and no CPs are identified under the two approaches respectively.

ȳm denotes the cumulative mean, the sequential statistic in this case. Sm denotes

the difference between the sequential statistic and the baseline statistic (the sample

mean of the time series). If T > α, where α is some predetermined significance

threshold which encapsulates how certain one is that a CP has occurred, then a

CP is concluded to have occurred. The respective location estimate of this CP, τ̂1,

is thus where this maximum deviation has occurred. An additional mathematical

property of the CUSUM approach is that the limiting distribution of the CUSUM

process T , forms a Brownian bridge under the null hypothesis (Csörgő and Horváth,

1997). In addition, if a confidence interval for τ̂1 is desired, then through the use of

bootstrapping and a suitable threshold, this can be computed (Hinkley, 1971).

Whilst we have presented the CUSUM statistic with respect to a change in

mean, corresponding versions exist for changes of variance and other parameters

(Inclan and Tiao, 1994; Lee and Lee, 2004). An implementation of the CUSUM

procedure exists in the R package changepoint (Killick and Eckley, 2011). Its

application on the GNP data, assuming a change in mean and 95% significance

level, is displayed in Figure 2.1(a). A single CP is detected around 1973.

The CUSUM method is a simple intuitive method which is still actively used

in the Engineering and quality control community. This may partly be due to the

fact that it places no assumption on the distribution of the observations and thus

makes it flexible in a variety of scenarios. However, CP uncertainty is only captured

via the pre-determined significance level α, which may not be explicit enough for

our particular needs.

An alternative approach to the AMOC setup is parametrically via maximum

likelihood ratio (see Chen and Gupta (2000) for an extensive overview with respect
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to different parametric distributions). In order to calculate this ratio, it is necessary

to compute the maximum likelihood (or some approximation of it) under both the

null and alternative hypothesis. ForH0, this is relatively straightforward as l(θ̂1|y1:n)
where θ̂1 is the maximum likelihood estimate of θ. For H1, the profile likelihood, as

a function of τ1, is considered which is defined as:

Prl(τ1) = l(θ̂1|y1:τ1−1)× l(θ̂2|yτ1:n). (2.3)

Let τ̂1 = argmaxτ1 Prl(τ1), the value which maximises the profile likelihood above.

These two likelihoods can then be used to define the log likelihood ratio test statistic:

T = 2
(
log Prl(τ̂1)− log l(θ̂1|y1:n))

)
. (2.4)

Similar to the CUSUM approach, the null hypothesis is rejected and it is deduced

that a CP has occurred if T > α, where α is some significance level specifying how

certain one wants to be that a CP has occurred. In addition τ̂1 is also the estimate

of the CP location. The typical threshold levels associated with likelihood ratio test

statistics are not applicable in CP problems, and thus new asymptotic distributions

for T need to be derived. Chen and Gupta (2000) derive asymptotic distributions

for a variety of observational distributions, and these are used to determine the

appropriate threshold to consider at various significance levels. For more obscure

distributions, simulations are suggested to determine a suitable threshold level.

A likelihood ratio test statistic approach for Gaussian distributed data is

available in the package changepoint (Killick and Eckley, 2011). Its application to

the GNP data assuming a 95% significance level is demonstrated in Figure 2.1(b).

Under this approach, no CPs are identified in the observed time series.

Similar to a CUSUM approach, a likelihood ratio test statistic is simple and

intuitive to understand as it is formulated from a hypothesis testing framework.

In addition, the parametric nature of the ratio also means it can be applied to

CP problems concerning changes in known distribution. However, the parametric

assumption required on the data is strong, and the resultant test statistic is heavily

dependent on the assumptions placed on the data. In terms of the uncertainty of

CPs, this is implicit via the specified significance level and is only with respect to

the number of CPs, and not its location.
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2.4 Binary Segmentation

Binary Segmentation (Vostrikova, 1981) is possibly one of the most established and

utilised multiple CP methods in the CP literature. Part of its appeal is that it

is intuitive as it iteratively applies a single CP method until no further CPs are

detected in each segment of data. It can thus be used in a multiple CP setting. The

general idea of the algorithm is that we iteratively segment data using a single CP

method until no further CPs are suspected in each of the resultant subsequences of

data.

Generic code for Binary Segmentation with respect to single CP methods in-

volving a test statistic is presented in Algorithm 1. The algorithm is computationally

efficient with computational cost O(n log n), although it is an approximate method

since it does not consider every possible CP configuration. Vostrikova (1981) and

Venkatraman (1992) discuss the accuracy and consistency of estimates obtained by

the algorithm, with two conditions being necessary in obtaining consistent estimates

of the CP locations:

(a) The rescaled CP instance, ti =
τi
n
, i = 1, . . . , M̂ , are not dependent on the length

of the time series n.

(b) The relative instants are sufficiently separated by some positive constant α,

That is ti − ti−1 ≥ α for some α ∈ (0, 12 ]. This intuitively means that CPs

cannot occur too close together and long segments generally occur.

An application of the Binary Segmentation algorithm on Hamilton’s GNP

data is presented in Figure 2.2 with the implementation available in the

changepoint package. For this particular application, we have considered the

CUSUM approach as the single CP method. We observe that numerous CPs are

detected, the majority of which lead to very short segment lengths. The poor perfor-

mance of this method is suspected to be due to the Binary Segmentation conditions

being violated, and a low threshold being used in the CUSUM method (the default

significance level of 95% in changepoint).

The merits of Binary Segmentation include the relative simplicity and intu-

itiveness of the procedure with a large amount of single CP literature being appli-

cable within a multiple CP context. However, its greatest attraction lies in the fact

that it is computationally efficient due to subsequences being tested for CPs in par-

allel of each other. However, this computational efficiency results in the algorithm

being an approximate method and thus estimates are subject to some error. This

error becomes more pronounced when the two conditions required for consistent
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Algorithm 1 Code for the Binary Segmentation for any single CP method involving
a test statistic.

Let T (·) be a single CP test statistic.
Let α be the threshold based on some significance level in determining whether a
CP has occurred.
Let τ̂(·) be the estimator of the CP location for a given sequence of observations.
Initialise: C = ∅= set of identified CPs, S = {[1, n]} = set of intervals.
Iterate:
while S 6= ∅ do

Select an element from S. Denote this as [t1, t2]. Compute T (yt1:t2).
if T (yt1:t2) < α then

Remove [t1, t2] from S. {CP is not identified in the interval considered.
Remove interval from considered set.}

else
r = τ̂(yt1:t2) + t1 − 1, and add r to C. {CP has been identified. Add r,
CP location in the original time series, to the set of CPs. Remove [t1, t2]
from S. }
if r 6= t1 then

Add [t1, r − 1] to S
end if
Add [r, t2] to S {Replace the interval with two subsequent intervals, seg-
menting around the identified CP.}

end if
end while
C contains the estimated CP locations with M̂ = |C| being the estimate of the
number of CPs.

estimates are not satisfied, for example in the presence of short segments occurring.

The effect of these two conditions potentially not being satisfied is demonstrated

in the GNP application. Extensions of the Binary Segmentation algorithm, such as

Circular Binary Segmentation (Olshen et al., 2004), have been developed to allow

shorter segments to occur to light of their Genomic application. The main draw-

back of Binary Segmentation with respect to our CP uncertainty interest is that

the uncertainty is only captured implicitly via asymptotic arguments required in

obtaining consistent estimates. More specifically, Vostrikova (1981) show that if the

two assumptions of Binary Segmentation are satisfied, then P (|t̂i − ti| > ǫ) ≤ δ as

n → ∞, is guaranteed. That is, the probability of the estimate of the relative CP

instance t̂i, deviating from the true relative CP location ti by each constant ǫ > 0,

then there exists a δ > 0 which provides an upper bound to this probability.
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Figure 2.2: CP estimates for the GNP data using Binary Segmentation with

CUSUM. Numerous CPs are identified which bare little relation to the estimates

provided by the NBER. This poor performance is likely to be due to the necessary

conditions of Binary Segmentation being violated and a low threshold (the default

setting of 95% significance in changepoint) being utilised in the CUSUM method.

2.5 Penalised Likelihood approaches

Multiple CP problems can also be perceived as model selection problems such that

each candidate model is associated with a different number of CPs being assumed.

In light of this alternative perspective, a variety of model selection approaches and

theory can be applied. In addition, a penalising approach can be utilised within

dynamic programming based algorithms such as those reviewed in Sections 2.6 and

2.7, to obtain CP estimates in an efficient manner.

A penalised log-likelihood approach is a popular frequentist model selection

approach which considers the fit of the model to the data but penalises for more

complex models. Such an approach is applicable within a CP context (Yao, 1988;

Chen and Gupta, 2000). The intuition for such a method is that the introduction

of CPs leads to better fitting models but a penalty is associated with the CPs. This

penalisation term is required as it is always possible to obtain a better fitting model

by introducing additional CPs, over-segmenting the data such that each observa-

tion is considered as its only segment. This is analogous to introducing additional

parameters in a linear regression context.
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The general form of a penalised log-likelihood is as follows:

PL(τ̂1:M ) = −2 log Prl(τ̂1:M) + pMφ(n),

where assuming M CPs are present, Prl(τ̂1:M) denotes the maximum profile like-

lihood with respect to CP configuration τ̂1:M . pM is the number of parameters

associated with assuming M CPs and φ(n) is the penalty function associated with

the length of data. For example, φ(n) = 2 and log(n) are equivalent to the penalty

terms utilised in the Akaike and Bayesian Information Criteria (AIC, Akaike (1974),

and BIC, Schwarz (1978)).

In obtaining an estimate of the number and location of CPs, the associated

model and number of CPs which minimises the penalised log-likelihood is selected.

The CP location estimates are those associated in achieving this minimisation. That

is,

M̂ = arg min
M=1,2,...

PL(τ̂1:M )

with τ̂1:M being the estimate of the CP locations. This approach is similar to

the Global Segmentation approach previously reviewed. However, the penalised

log-likelihood approach does not consider all possible CP configurations, often con-

sidering a considerably smaller number of candidate CP configurations compared to

the exhaustive approach of Global Segmentation. In addition, Global Segmentation

is not restricted to the use of the log-likelihood as the chosen target criterion to be

minimised.

The penalised log-likelihood approach can also be used as a single CP method

by considering the minimum between the penalised log-likelihood of no CP and a sin-

gle CP being present respectively (that is min{−2 log l(θ̂|y1:n)+p0φ(n),−2 log PL(τ̂1)+
p1φ(n)}). As such, if there is no prior knowledge in potential candidate CP config-

urations to consider, Binary Segmentation (Vostrikova, 1981) can be employed in

conjunction with the penalised log-likelihood approach for a more flexible multiple

CP method.

An implementation of penalised log-likelihood approaches exist in the

changepoint package (Killick and Eckley, 2011) in conjunction with the Binary

Segmentation algorithm. Application on the GNP data is displayed in Figure 2.3,

where Akaike (Akaike, 1974) and Bayesian (Schwarz, 1978) penalty terms are con-

sidered. Quite different results are achieved under the two penalty terms used; 20

CPs are identified using an AIC penalisation, whilst no CPs are determined under

a BIC penalisation. It is thus suspected that AIC and BIC are overestimating and
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(a) Akaike Penalty, φ(n) = 2
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(b) Bayesian Penalty, φ(n) = log n

Figure 2.3: Implementation of penalised log likelihood CP approaches on Hamitlon’s

GNP data, in conjunction with Binary Segmentation. We consider two different

penalty terms; Akaike and Bayesian respectively which yield quite different CP

results.

underestimating respectively the number of CPs, a result of under and over penal-

ising respectively, and a manual penalty of φ(n) between 2 and log n should thus be

considered.

A penalised log-likelihood approach benefits from the model selection per-

spective of the CP problem in that it is simple and intuitive to understand. Estab-

lished model selection results such as asymptotic overfitting associated with AIC,

also provides additional theoretical results to CP problems. These results also aid in

determining a suitable penalisation term, φ(n), such that one does not overestimate

the number of CPs in long time series. Yao (1988) show that consistency in the

estimate of the number of CPs is guaranteed if BIC (where φ(n) = log n) is chosen

as the penalisation term. The uncertainty of CP characteristics is thus captured

via these asymptotic arguments and is not explicit. In addition, these consistency

results are only valid for the number of CPs and not their respective locations. As

CP results are sensitive to the chosen penalisation term φ(n) (see Figure 2.3), fine

tuning is often required to obtain the expected CP results. These penalisation terms

are often abstract and hard to elicitate with respect to the application in hand

2.6 Global Segmentation

In contrast to the approximate nature of Binary Segmentation, Global Segmentation

(Braun and Müller, 1998) provides an exact algorithm that identifies multiple CPs

within a time series. The algorithm originates from a DNA segmentation context in

Genetics. The general idea of the algorithm is that we find the optimal partitioning
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of the data when it is assumed M CPs are present, with M = 0, 1, . . . ,Mmax where

Mmax is the maximum number of CPs considered. The optimal partitioning for

a given number of CPs is achieved by considering every possible CP configuration

possible and selecting the configuration which minimises a chosen target criterion.

This target criterion aims to capture the fit of the segment configuration with respect

to the data. More formally, one can consider the log of the maximum segment

likelihood,

R(yt1:t2) = − log p(yt1:t2 |θ̂). (2.5)

Then the resultant fit for a particular CP configuration τ1, . . . , τM , assumingM CPs

is,

ρM (τ1:M ) =
M+1∑

i=1

R(yτi−1:τi−1) (2.6)

Note that this is equivalent to the log profile likelihood as defined in Equation 2.3 if

segment independence is assumed. In determining the best segmentation assuming

M CPs are present, consider

ρ̂M (τ̂1:M ) = min
τ1:M
{ρM (τ1:M )}. (2.7)

τ̂1:M denotes the optimal partitioning assumingM = 1, 2, . . . ,Mmax. In determining

the optimal number of CPs to assume, one can consider a penalised log-likelihood

approach which takes into consideration the fit of the partitioning but penalises for

the introduction of additional CPs. That is,

PL(M) = 2ρ̂M (τ̂1:M ) + pMφ(n) (2.8)

M̂ = arg min
M=0,1,...,Mmax

PL(M) (2.9)

where pM is the associated number of parameters by assuming M CPs, and φ(n) is

a penalty function with respect to the length of the n as before in Section 2.5. M̂ is

the estimate of the number of CPs, with the associated CP configuration minimising

ρ̂M̂ (τ̂
1:M̂

) being the estimate of the CP locations.

Computing the optimal segmentation assuming M CPs are present is per-

formed via a dynamic programming approach (Auger and Lawrence, 1989). The

basic idea of such an approach is that the optimal segmentation for M CPs is de-

duced by using the optimal segmentation assuming M − 1 CPs and where best to

21



Algorithm 2 Algorithm code for the Global Segmentation.

Let R(·) be a target criterion in which we wish to minimise.
Let 1 < Mmax ≪ n be the specified maximum number of CPs considered.
Let pM be the number of parameters associated with a model assuming M CPs.
Let φ(n) be a penalty function associated with the length of the data.
Initialise: For all i, j ∈ [1, n] with i < j, compute q1i,j = R(yi:j). {Compute all
possible segment likelihoods.}
for M = 1, . . . ,Mmax do

for j ∈ {1, 2, . . . , n} do
Compute qM1,j = minv=1,...,j(q

M−1
1,v−1+q

1
v,j) {Compute optimal target from 1

to j assuming M CPs are present, based on the M − 1 CP configuration
and introducing a new CP at v.}
τM1 = argminv

(
qM−1
1,v−1 + q1v,n

)

end for
for i = 1, . . . ,M − 1 do

τMi = argminv

(
qM−i−1
1,v−1 + q1

v,τMi−1

)
{Determine locations of M CPs

present by traversing backwards.}
end for

end for
τM1:M are the CP locations assuming M CPs.
Final Inference: Compute PL(M) = 2qM1,n + pMφ(n)

M̂ = argminM=1,...Mmax PL(M) is the estimate of number of CPs, and associated
τ
1:M̂

minimising this quantity are the estimate of the CP locations.

place the new CP. Its implementation within the Global Segmentation algorithm is

displayed in Algorithm 2 which describes the generic algorithm.

The changepoint package features an implementation of the Global Segmen-

tation algorithm. Figure 2.4(a) displays its application on the GNP data assuming

a maximum of 20 CPs (Mmax = 20), and using a BIC penalty to determine the

optimal number of CPs to assume and the associated CP configuration. We observe

eight CPs have been identified which appears to concur with how the time series is

behaving (CPs are identified when there is a shift between the top and lower half of

the data range).

An advantage of Global Segmentation over many algorithms such as Binary

Segmentation is that it guarantees the optimal solution is found. This is achieved

by considering all possible CP configurations. However this exploration comes at

an increased computation cost O(n2). This results in the algorithm not being suit-

able within a long time series context, despite its original motivating application in

Genetics. Approximations of the algorithm exist (Braun et al., 2000), although this

comprises the accuracy and consistency of the estimates. In addition, the choice in
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(a) Global Segmentation (BIC)
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(b) PELT (BIC)

Figure 2.4: CP estimates via the Global Segmentation and PELT algorithm. The

same CPs are identified under both approaches.

Mmax and penalty function , φ(n) can be quite influential on the results. In addi-

tional analysis not shown here, different CP results were obtained when considering

an AIC penalty function and lower value of Mmax. This sensitivity may not be de-

sirable with these parameters set according to the expected CP results one wishes to

obtain. The algorithm captures the uncertainty of CP estimates implicitly via the

use of asymptotic arguments in providing consistent estimates for CP characteristics

and model parameters.

Extensions of the Global Segmentation algorithm exist, namely the Dynamic

Programming Algorithm as proposed in Bai and Perron (2003). This extended

algorithm allows a minimum distance between two CPs to be specified in addition

to the maximum number of CPs considered. By specifying a minimum segment

length, this allows additional exogenous information to be incorporated about CP

behaviour, for example, the minimum time period between two changes in business

cycles in the GNP example. An implementation of this CP algorithm exists in the

R package strucchange (Zeileis et al., 2002) via the function breakpoints.

2.7 Pruned Exact Linear Time algorithm

The Pruned Exact Linear Time Algorithm (PELT, Killick et al. (2012a)), combines

the computational advantage of Binary Segmentation, but also the exact nature

and accuracy of Global Segmentation. Akin to Global Segmentation, the objective

is to minimise a chosen target criterion over the possible number and locations of

CPs. One of the underlying assumptions of the algorithm in obtaining accurate CP

estimates is that the number of CPs increases linearly with the length of the data.

The PELT algorithm considers the data sequentially and the optimal seg-
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Algorithm 3 Algorithm code for PELT.

Let R(·) be a target criterion in which we wish to minimise.
Let φ(n) be a penalty function associated with the length of the data.
Let K denote a constant to ensure a time point is kept as a candidate CP.
Initialise: Rmin(0) = −φ(n), ∆(0) = ∅ = CP configuration up data point 0,
C1 = {0} = optimal set of candidate CP locations.
for t = 1, . . . , n do

Compute Rmin(t) = minτ∈Ct [R
min(τ) + R(yτ :t−1) + φ(n)] and let τ1 =

argRmin(t). {Determine the location of the most recent CP. }
Set ∆(t) = {∆(τ1) ∪ τ1}
Set Ct+1 = {τ ∈ Ct ∪ t : Rmin(τ) +R(yτ+1:t) +K ≤ Rmin(t)} {Pruning step:
Will τ ever be a potential CP?}

end for
∆(n) contains the estimates of the CP locations.

mentation up to that time point. In particular, the efficient computational cost is

achieved by restricting the number of CP configurations considered at each time

point. This restriction is enforced by considering the location of the last CP rather

than the entire CP configuration up to that time point, and eliminating CP config-

urations which include time points which could never be a potential CP location (a

pruning step). This leads to a linear number of CP configurations being considered

at each time point and thus a reduction in the computational cost.

Algorithm 3 describes the generic implementation code for PELT. R(·) and
φ(n) denote the same quantities as in Global Segmentation; the criterion to mea-

sure the fit of the data and the data dependent penalty term. Rmin(t) denotes

the minimum of the target criterion up to time t. Rmin(t) is computed recursively,

based on the minimum obtained at previous time points. This recursion is based on

the Optimal Segmentation algorithm (Jackson et al., 2005). K is a constant which

is introduced by the PELT setup as part of the pruning step. This pruning step

determines whether the current time point t will ever be a CP in future configura-

tions by significantly improving the target criterion if it is a candidate CP location

(Rmin(τ) + R(yτ+1:t) +K ≤ Rmin(t) in the Algorithm 3). ∆(t) is the optimal CP

configuration for the data up to time t, y1:t. Hence ∆(n) provides the estimate of

the CP locations, with M̂ = |∆(n)| being the estimate of the number of CPs

An implementation of PELT exists within the changepoint package. Figure

2.4(b) displays results of its implementation on the GNP data with a BIC penalty

function in place to control over segmentation. Eight CPs are identified with the

same configuration being obtained under Global Segmentation.

PELT offers a good recommendable alternative to the Global Segmentation
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as it retains the exactness and optimality of Global Segmentation, but at the same

computational cost of Binary Segmentation. As such, it can be applied on long time

series. However, the algorithm assumes that the number of CPs grows linearly with

the length of the time series, and hence segments cannot be too long. In addition,

CP uncertainty is captured implicitly via the use of asymptotic arguments.

2.8 AutoPARM

Davis et al. (2006) propose an alternative frequentist model selection approach by

obtaining a CP configuration which minimises the Minimum Description Length,

another measure of model fit. The proposed method models time series specifically

as piecewise autoregressive (AR) processes such that the number, location and orders

of the segment AR processes are unknown. Under the parametric assumption that

each segment can be modelled as an AR process, the proposed approach is aptly

named Automatic Piecewise Autoregressive modelling, AutoPARM.

More explicitly, AutoPARM models the observed process Yt as a piecewise

AR process,

Yt = µXt + φ1,XtYt−1 + . . .+ φp,XtYt−p + ǫt. ǫt
iid∼ N(0, σ2Xt

) (2.10)

Xt = {1, . . . ,M + 1} is a latent variable process which denotes which segment

and consequently which AR model is being assumed. Xt is constrained to be a

non-decreasing process such that it only has two moves at each time; stay in the

current segment, or start a new segment. Returning to previously visited segments

is therefore not possible.

µXt denotes the segment dependent mean associated with the AR segment

at time t. ǫt is an independent, Gaussian noise process with switching variance σ2Xt
.

(φ1,Xt , . . . , φp,Xt) denotes the p AR coefficients associated with the segment at time

t. In addition to the AR coefficients switching between segments, the AR order

is also permitted to change. p thus denotes the maximum AR order considered

amongst the M + 1 segments, that is p = max{p1, . . . , pM+1} where pj denotes

the AR order associated with segment j. This consequently results in zero AR

coefficients, φpj+1 = . . . = φp = 0, when pj < p.

In addition to the parameters of each AR segment,

θ = {µj, σ2j , φ1,j , . . . , φp,j}M+1
j=1 , being unknown and requiring estimation, both the

number of segments M + 1, and corresponding M breakpoints need to estimated.

The methodology determines these quantities by minimising the Minimum Descrip-

tion Length (MDL, Rissanen (1978)). MDL is a term from information theory which
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provides an alternative description of a fit of a model with regards to data. More

formally, it measures the compression of data with respect to a model with the

best fitting model achieving maximum compression of the data and thus achieving

a minimum MDL.

Davis et al. (2006) derive the explicit form for the MDL whereM breakpoints

at locations τ1:M are present, and AR orders p1, . . . , pM+1 for each of the resultant

segments as:

MDL(M, τ1:M , p1, . . . , pM+1) = logM + (M + 1) log n+

M+1∑

j=1

log pj

+
M+1∑

j=1

pj + 2

2
log(τj − τj−1) +

M+1∑

j=1

τj − τj−1

2
log(2πσ̂2j ).

(2.11)

This formula of the MDL can be seen as the sum of the code length of fitted values

(first four terms) and residuals (last term) under the assumed segmentation and

model. The MDL equation is derived by deducing the upper bound on code length

on each component,M , pj and τj, from their behaviour (integer valued and bounded

for example). The code length corresponding to the residuals under the fitted model

is constructed such that larger values of σ̂2j (the Yule-Walker estimate of σ2j ) will

thus correspond to large residuals (bad fitting models) and a larger code length.

The MDL can be viewed as a target criterion with a penalty term akin to

the penalised log-likelihood. The code length for the residuals effectively assesses

the fit of the assumed model. The code length regarding the fitted values will

however penalise models which are more complex than necessary and require more

parameters. The optimal segmentation is that which minimises the MDL as in

Equation 2.11.

The number of possible configurations under (M, τ1:M , p1, . . . , pM+1) is enor-

mous and thus optimisation of MDL cannot be performed by exhaustive procedures.

A Genetic Algorithm (GA, Goldberg and Holland (1988)) is thus implemented to

locate the minimumMDL stated in Equation 2.11. GA algorithms are search optimi-

sation algorithms inspired by Darwin’s theory of evolution. Algorithms begin with a

set of initial possible vector solutions from the search space known as chromosomes.

These chromosomes are also assigned weights in relation to how they perform on

the objective function (in this case the MDL), with those performing well being as-

signed higher weights. Parent chromosomes are then randomly selected according to

these weights. In exploring the solution space, offspring chromosomes are created by
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Figure 2.5: Application of AutoPARM on Hamitlon’s GNP data where no CPs are

determined to have occurred.

mutating the sampled parent chromosomes. These offspring chromosomes form the

second generation which are believed to further improve the objective function by

taking forward the stronger solutions and the characteristics associated with them.

This procedure of creating further generations by mutating existing offspring chro-

mosomes is iterated numerous times and a solution to the optimisation problem is

obtained. GA algorithms thus allow a configuration of (M, τ1:M , p1, . . . , pM+1) which

minimises the MDL to be determined. This provides an estimate of the number and

location of CPs which optimally partitions the data.

The setup of AutoPARM as highlighted in Equation 2.10, permits changes

in mean, variance and covariance (via changing AR parameters and orders) being

identified. An implementation of AutoPARM is available for request from the au-

thors. Its application on the GNP data is displayed in Figure 2.5. No CPs are

identified in the data according to the AutoPARM approach.

AutoPARM provides a state-of-the art methodology in identifying changes

in mean, variance and covariance for Gaussian time series. The latter type of change

has received relatively little attention compared to the former two types of changes.

This consequently makes AutoPARM an attractive recent CP method in encom-

passing a variety of types of changes compared to the approaches considered thus

far. The piecewise AR assumption also explicitly permits dependency within y1:n to

be considered, an aspect not considered in the methods reviewed thus far. Whilst we

have presented AutoPARM with respect to a univariate time series, a multivariate

version of AutoPARM is also outlined in Davis et al. (2006).

The parametric assumption of piecewise AR processes as the underlying gen-

erating process is strong and may thus not always be appropriate. This parametric

27



assumption is necessary in obtaining consistent CP location estimates with the num-

ber of CPs being present also being known. This also results in uncertainty being

captured implicitly for the CP location and not at all for the number of CPs present.

In addition, parameters are estimated via the typical Yule-Walker equations as in

standard time series analysis. Thus, any uncertainty regarding parameters θ is not

captured explicitly.

2.9 Bayesian Model Selection methods

Bayesian model selection approaches could also be employed within a CP prob-

lem. Bayesian statistics concerns deriving the posterior distribution for the un-

known quantities of interest and performing inference on this posterior distribution.

Within the CP context, Bayesian approaches are focused on obtaining or approxi-

mating the posterior distribution of CP characteristics. Namely, the joint posterior

p(M, τ1:M |y1:n) = p(M |y1:n)p(τ1:M |y1:n,M) is the quantity of interest. Such poste-

rior probabilities can be obtained via applications of Bayes’ Theorem and marginal-

isation. More explicitly,

p(τ1:M ,M |y1:n) ∝ p(M)p(τ1:M |M) p(y1:n|M, τ1:M ) = p(M)p(τ1:M |M)

∫
l(τ1:M , θ|y1:n)dθ

p(M |y1:n) =
∑

τ1:M

p(τ1:M ,M |y1:n) ∝ p(M)
∑

τ1:M

p(τ1:M |M)

∫
l(τ1:M , θ|y1:n)dθ

p(τ1:M |y1:n) ∝ p(τ1:M |M)

∫
l(τ1:M , θ|y1:n)dθ

where p(M) and p(τ1:M |M) denote the prior on the number of CPs and the locations.

p(y1:n|τ1:M) denotes the marginal likelihood with respect to CP configuration τ1:M ,

such that θ has been marginalised out.

The ease in which the posterior is computed is very much dependent on the

ease in computing the marginal likelihood p(y1:n|τ1:M ), and assumptions placed on

the data and the model. For example, if segment independence is assumed, then

it is convenient to compute the marginal likelihood as it is the product of segment

marginal likelihoods (Eckley et al., 2011). However, in general situations, numerical

approximation of p(y1:n|M) is often required to perform the marginalisation. The

choice of prior on the number of CPs present and their locations is also an important

aspect in calculating the posterior which we shall discuss later on in this section.

An advantage of such Bayesian approaches is that it provides a more ex-

plicit quantification of the uncertainty regarding CP characteristics. In addition,

the quantities presented above are not conditional on model parameters θ and thus
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the uncertainty associated with unknown θ has been accounted for. Having obtained

the posterior, a variety of inference approaches could thus be applied. This includes

Bayes’ Factor and Posterior Odds, the ratio between marginal likelihoods and poste-

riors respectively, which assesses the evidence of one CP configuration over another.

For example p(y1:n|M=1)
p(y1:n|M=2) is the Bayes’ Factor between one CP being present over

two. Larger values of this factor indicate stronger evidence of one CP being present.

Bayes’ Factor and Posterior Odds can also be used with respect to the posterior of

CP configurations. CP estimates can also be obtained by minimising the expected

posterior loss function for a suitable loss function. Such Bayesian approaches appear

in Smith (1975), Carlin et al. (1992), Stephens (1994) in both single and multiple

CP contexts.

An area of ongoing discussion in the Bayesian community is the choice of

prior, our initial belief on the unknown quantity of interest. This is known to have

an effect on the posterior on which inference is performed. This is no different in

a CP context where priors are specified on both the number and location of CPs,

p(M) and p(τ1:M |M). There are variety of ways in which this can be performed,

dependent on one’s belief. Uninformative priors are often chosen in the Bayesian

community if little is known on the unknown quantities. In a CP context this means

one does not favour certain CP configurations. As a result, the likelihood has the

most influence on the posterior rather than the prior. A naive, misguided prior in

achieving this uninformative-ness is to assume the following Uniform distribution

on both the number and location of CPs as in Bayesian CP analysis,

M ∼ Unif({0, 1, . . . ,Mmax})

p(τ1:M |M) = p(τ1)

M∏

i=2

p(τi|τi−1)

p(τ1) =
1

n−M τ1 = 2, . . . , n−M

p(τj |τj−1) =
1

n− τj−1 − 1
τj = τj−1 + 1, . . . , n −M + j − 1, j = 2, . . . ,M.

Whilst such a prior setup seems to be uninformative via the use of the Uniform

distribution, Koop and Potter (2009) show that this is not a case for the location of

the CPs with an undesirable clustering effect of CPs towards the end of the data.

This effect may not be a true representation of one’s uninformative belief and should

therefore be avoided if necessary.

In light of this, Koop and Potter (2009) propose the following set of unre-
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stricted uniform priors for the CP location,

p(τ1) =
1

⌈c · n⌉ τ1 = 2, . . . , ⌈c · n⌉ (2.12)

p(τj|τj−1) =
1

⌈c · n⌉ τj = τj−1 + 1, . . . , τj−1 + ⌈c · n⌉, j = 2, . . . ,M. (2.13)

where c is a tuning parameter controlling the maximum duration for each segment.

Larger values correspond to longer segments of data. ⌈x⌉ denotes the ceiling function
such that ⌈x⌉ = inf{z ∈ Z|x ≤ z}.

The form of the proposed priors look very similar to that of the “uninfor-

mative” uniform priors, although subtle differences occur. Namely CPs can occur

beyond the scope of the data. By extending the potential scope of CP instances,

this removes the undesirable clustering of CPs towards the end of the data, and thus

provides a true uninformative prior for the CP location. In addition, this proposed

prior also treats the number of CPs as an unknown with inference now focusing on

the number of CPs occurring within the scope of the data. This is despite the num-

ber of potential CPs being pre-specified. Nevertheless, the proposed prior provides

true uninformative belief and should thus be utilised if an uninformative prior is

desired.

An alternative manner to specify a prior on both the number and location

of CPs is to consider a prior on the segment length. This prior is introduced with

respect to the methodology reviewed in Section 2.13 and we will consider it there in

greater detail.

The Bayesian approaches reviewed in this section provide explicit quantifica-

tion of CP uncertainty in the form of the posterior and is an attractive approach for

the problem presented in this thesis. In addition, a Bayesian approach considers the

uncertainty associated with the unknown model parameters θ by integrating them

out of the joint posteriors obtained. This thus results in CP estimates which are

not conditional on specified model parameters. Implementations of these Bayesian

methods are scarce and often tailored with a specific problem and application in

mind due to the priors and models assumed. Specifying appropriate priors on the

number and location of CPs is a difficult task, particularly if it is sensitive on the

posterior of interest. This is a potential disadvantage of the Bayesian approaches

outlined in this section. If it is thus possible to obtain the posterior of the CP

characteristics without having to specify such influential priors on the CP charac-

teristics themselves, this would be a particularly advantageous Bayesian approach.

One alternative approach is to specify a prior on the segment durations which is

outlined in Section 2.13.
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2.10 Reversible Jump Markov Chain Monte Carlo

Reversible jump Markov Chain Monte Carlo (RJ-MCMC) (Green, 1995), is an ex-

tension of the Markov Chain Monte Carlo (MCMC) sampling algorithm to sample

from target distributions defined on spaces of varying dimensions. A typical applica-

tion of RJ-MCMC is within Bayesian model selection where the model space varies

in dimension with respect to different candidate models, and the potential number

of models is unknown. Mixture models with an unknown number of components is

a common application of RJ-MCMC (see page 131 of Frühwirth-Schnatter (2005)).

Given the setup of the CP problem where the model parameters θ varies in dimen-

sion with respect to the number of CPs present and this being unknown, it is evident

that RJ-MCMC is a potential method in estimating CP characteristics.

The approach obtains CP estimates by sampling from a joint posterior via

the use of MCMC, such that the invariant distribution of the MC is the posterior

distribution of interest. The joint posterior is defined with respect to the number of

CPs, the CP locations, and the associated model parameters, which is defined as

π(m, τ1:m, θ
(m)|y1:n) ∝ p(m)p(τ1:m|m)p(θ(m)|τ1:m,m)p(y1:n|θ(m),m, τ1:m)

where θ(m) = (θ1, . . . , θm, θm+1) in this section only. An MCMC sampling algorithm

may therefore consider the following moves:

m1 → m2

θ(m1) → θ(m2)

τ1:m1 → τ1:m2

The reversible jump terminology refers to the fact that as the dimension of the pos-

terior varies by assuming a different number of CPs, a mechanism is required such

that the sampling MC jumps between these different model spaces. The method-

ology thus considers both within model moves (m1 = m2 and thus retain the same

dimension), and out of model moves (m1 6= m2 and thus varies in dimension) for

the sampling MC. In the latter case, a mechanism is required to merge or split

the corresponding quantities such as the segment parameters. The sampling MC

thus provides samples from the joint distribution, in which the posterior for CP

characteristics, p(M |y1:n) and p(τ1:M |M,y1:n), can be obtained by marginalisation.

An alternative RJ-MCMC framework is to sample from the CP posterior

is via a data augmentation procedure. This procedure introduces a latent process

X1:n where Xt can be used to indicate which data segment or generating mecha-
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nism Yt arises from. Interest thus lies in sampling from the posterior p(x1:n|y1:n) =∫
p(x1:n, θ|y1:n)dθ which thus allows one to sample indirectly the respective CP char-

acteristics, for example by determining when there is a change in state in sampled

X1:n. The number of segments or generating mechanisms present in the data is

unknown, and thus the values in which Xt can take, in addition to the potential

configuration of X1:n , combined with the varying dimension of θ thus results in the

RJ-MCMC framework being applicable. The idea of a latent process X1:n being

associated with the observed process y1:n is not dissimilar to the ideas presented

under the Hidden Markov Model framework approaches reviewed later in this chap-

ter (Section 2.12). An advantage of this alternative RJ-MCMC via a latent process

is that priors on the number of CPs present and their locations does not need to

specified as they are indirectly determined by the latent process.

RJ-MCMC is a sophisticated Bayesian approach in tackling CP problems.

As a Bayesian approach, it allows the quantification of the uncertainty regarding

CP characteristics more explicitly by sampling from the respective posterior. This

is also in light of parameter uncertainty. Implementations of RJ-MCMC are highly

specific to the problem of interest and thus an appropriate open-source implemen-

tation for the GNP data does not exist to the best of my knowledge. Certain

problems associated with MCMC sampling algorithms are however prevalent. This

includes designing efficient sampling moves such that the model spaces are explored

sufficiently, and determining whether convergence has been reached. These issues

are further exaggerated for a RJ-MCMC framework with instabilities being more

common, difficulties in designing good split and merge moves, and a larger number

of sampling iterations being required for convergence to be concluded (Fearnhead,

2006).

2.11 Product-Partition models

Barry and Hartigan (1993) and Erdman and Emerson (2008) consider a Bayesian

approach to the CP problem by modelling the observed time series as a product-

partition model. A product-partition assumes a latent process in addition to the

observed time series, which denotes the locations of the CPs and when the param-

eters switch. More specifically, let X1:n denote the additional latent process which

takes values 0 or 1. Xt = 1 denotes that a CP occurs at location t for 1 ≤ t ≤ n.

pt = P (Xt = 1) denotes that the probability that CP occurs at time t. The use

of the latent process is similar to the latent Markov Chain in a HMM framework

(Section 2.12) , although the process is treated as a sequence of independent random
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variables, and the conditional independence amongst the observations given the un-

derlying state sequence is not present. CP inference now centres on postulating the

unknown behaviour of X1:n, given the observed time series y1:n by sampling from

the posterior p(x1:n|y1:n).
The method assumes Gaussian observations such that the mean differs be-

tween each segment, but the variance remains constant during the scope of the data,

yt ∼ N(µi, σ
2), i = 1, . . . ,M + 1. Independence amongst observations between dif-

ferent segments is also assumed under the framework. An exact inference approach

on X1:n is proposed in Barry and Hartigan (1993). However, such an approach is

computationally expensive with a computational cost of O(n3). In light of this, an

approximation is proposed in Erdman and Emerson (2008) which utilises Markov

Chain Monte Carlo in sampling from the posterior and performing inference. This

reduces the computational cost to O(n2). We shall thus outline this approximation

method due to its general applicability in CP problems.

CP inference is based on sampling from the posterior of X1:n and the model

parameters θ = ({µi}M+1
i=1 , σ2). That is we sample from p(x1:n, θ|y1:n). This is

performed by sampling iteratively from the conditional posterior distributions of

X1:n and θ. In sampling X1:n, consider sampling Xt, conditional on y1:n, θ and all

other components of X1:n except t (that is Xj such that j 6= t). We refer the reader

to Erdman and Emerson (2008) as to how this sampling is specifically performed.

An implementation of the outlined Bayesian Product-Partition method is

available in the R package bcp (Erdman and Emerson, 2007). An application of this

method on the GNP data is displayed in Figure 2.6. In particular, we display the

posterior means, and the posterior CP probability in Figure 2.6(a), and some initial

CP estimates in Figure 2.6(b). These estimates have been obtained by a defining a

threshold rule; a CP has occurred when the CP probability exceeds a threshold of

0.5. We thus conclude that seven CPs have occurred at the highlighted locations.

These locations correspond to when the mean of the GNP data switches sufficiently.

Evidently, these CP estimates are highly sensitive to the threshold used.

The Bayesian Product-Partition method is a sophisticated framework in ap-

proximating the posterior distribution of CP characteristics and the associated

model parameters. By reporting the posterior distribution, this provides explicit

quantification of the uncertainty with regards to CP characteristics. CP estimates

can be deduced in the desired manner (for example, thresholding or taking the

maximum a posterior estimates). Erdman and Emerson (2008) also extend the

framework such that multivariate Gaussian time series can be considered.

However such a method is costly and requires sampling a latent state se-
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Figure 2.6: Application of a Bayesian Product Partition CP method on GNP data.

Top panel displays the posterior mean and the CPP. Bottom panel presents CP

estimates based on a thresholding method on the CPP.



quence under a MCMC sampling regime. As discussed in other CP methods util-

ising MCMC, it is often difficult to design efficient sampling mechanisms to ensure

good mixing and assess convergence. This is more difficult in MCMC algorithms

involving sampling latent processes such as this due to their high dimension and

correlation.

2.12 Hidden Markov Models based methods

Hidden Markov Models (HMMs) are a popular framework for modelling non-stationary

and non-linear time series. Applications include Biology (modelling DNA sequences

(Eddy, 2004)), Engineering (speech recognition (Rabiner, 1989)) and Medical (mod-

elling daily epileptic seizure counts of a patient (Albert, 1991)). As they can be used

to model non-linearity and non-stationarity within time series, they are also a pop-

ular framework for CP analysis. For overviews of HMMs, we refer the reader to

MacDonald and Zucchini (1997) and Cappé et al. (2005).

A HMM can be defined as in Cappé et al. (2005): a bivariate discrete time

process {Xt, Yt}t≥0 where {Xt} is a latent finite state time-homogeneous Markov

chain (MC) with Xt ∈ ΩX . The observed process {Yt} is a sequence of indepen-

dent random variables conditional on {Xt} and the conditional distribution of Yt

is completely determined by Xt. Without loss of generality, Xt is assumed to take

values in ΩX = {1, . . . ,H},H < ∞. The underlying states can represent different

data generating mechanisms, for example “good” or “bad” days in modelling the

number of daily epileptic seizures (Albert, 1991), and thus can be used to capture

the non-linearity and non-stationarity of the observed time series Yt. In specifying

a HMM, three components are required:

1. An initial distribution for the underlying MC, {Xt}t≥0, at time 0, that is

P (X0 = i),∀i ∈ ΩX .

2. A transition probability which describes how the underlying MC will evolve

over time. For example, pij = P (Xt = j|Xt−1 = i),∀i, j ∈ ΩX .

3. An emission probability which describes how the observation’s distribution is

dependent on the underlying MC. For example, γj,yt = f(Yt = yt|Xt = j),∀j ∈
ΩX , where f is some assumed parametric density.

In the case presented above where the underlying MC is first-order Markov,

and the emission probability of Yt only depends on the underlying state at time

t, Xt, we refer to this as the standard HMM. Extensions of the standard HMM
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exist such that higher order MCs can be considered (see p. 12 of MacDonald and

Zucchini (1997)), additional exogenous covariates can be incorporated (see Godfeld

and Quandt (1973)), and finite dependency on previous observations and states Xt

is permitted for observation Yt (see p. 357 of Frühwirth-Schnatter (2005)). This

thesis will focus on the last extension which are referred to as General Finite State

HMMs and are of the form:

f(yt|y1:t−1, x1:t, θ) = f(yt|xt−r:t, y1:t−1, θ) (Emission) (2.14)

p(xt|x1:t−1, y1:t−1, θ) = p(xt|xt−1, θ) t = 1, . . . , n (Transition). (2.15)

where θ denotes the unknown parameters associated with the assumed HMM. The

emission density f(yt|·) describes how the observation distribution depends on a

finite number, r, of hidden states and previous observations. The emission density

can potentially be any parametric family. Such flexibility in the choice of emission

density contributes to the popularity of HMMs as a modelling approach. Associated

with the emission density are state dependent parameters which depend on the

underlying states of the MC. The transition equation describes how the underlying

MC evolves, the simplest setup being that of a first order MC. Extensions to higher

order MC behaviour are easily viable via standard embedding arguments (see p. 12

of MacDonald and Zucchini (1997) for example).

In this thesis, the term HMMs is specifically used to refer to the use of a

discrete finite state MC, that is H < ∞, as in MacDonald and Zucchini (1997),

with State Space Models (SSM) referring specifically to Markov Processes defined

over an infinite underlying state space ΩX . Much of the inference and applications

of HMMs, including many of the CP methods reviewed later in this section, assume

that H, the number of underlying states, is assumed known a priori. This is typically

not the case and Chapter 5 will review and propose a method for estimating H.

The model parameters θ, consist of the H × H transition matrix P =

{pij}i,j∈ΩX
and the state dependent emission parameters. These parameters will

depend on the emission distribution assumed. This can include state dependent

emission rates, means and variances for Poisson and Gaussian emission distribu-

tions respectively. This leads to Poisson Markov (Yt|Xt ∼ Poisson(λXt)), and Gaus-

sian Markov (Yt|Xt ∼ N(µXt , σ
2
Xt

) models. Not all parameters need to be state

dependent however, with some state invariant emission parameters also being ap-

plicable. Many inference methods and applications of HMMs are conditional on θ,

for example state sequence inference (Viterbi, 1967) and exact CP inference (Aston

et al., 2011). However, θ is usually unknown and thus needs to be estimated. The
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Expectation-Maximisation (EM) algorithm (Baum et al., 1970) is a popular method

which provides a point estimate of θ via maximum likelihood. However, such point

estimates usually do not encapsulate the uncertainty that may be associated with

the unknown θ. In capturing the potential uncertainty associated with θ, Bayesian

approximation of the posterior p(θ|y1:n), is a potential path to consider. We shall

explore one potential Bayesian estimation method in Chapter 3.

In many HMM based CP methods, a change in Xt corresponds to a change

in the data generating mechanism and thus the statistical properties of the observed

time series. That is if Xt−1 6= Xt, a CP is said to have occurred at the corresponding

time. Thus, postulating the potential behaviour of the underlying MC, X1:n, with

respect to observed y1:n is the key idea in HMM based CP methods. How this

state sequence is accounted for is one of the key differences between the various CP

methods reviewed.

To aid clarification in this HMM section, the notation of θ and H is sup-

pressed within quantities where necessary, despite many of them being conditioned

on them. In addition, these are assumed to be known a priori before analysis with

a suitable plug-in estimate being used where necessary. However, in practice, these

are unknown and thus need to be estimated. Chapters 3 and 5 consider methods in

estimating these quantities and how they can be incorporated within CP analysis.

2.12.1 Deterministic State Sequence Inference

Two popular methods in obtaining a single point estimate of the underlying state

sequence X1:n, are the Viterbi Algorithm (also known as Global decoding, Viterbi

(1967)) and Posterior Decoding (also known as Local Decoding, Juang and Rabiner

(1991)). Both of these algorithms are popular in the HMM literature and are not

exclusive to CP problems, with applications in speech processing (Rabiner, 1989)

and understanding daily epileptic seizures (Albert, 1991) for example.

The Viterbi algorithm (Viterbi, 1967) is a dynamic programming algorithm

which computes the most probable state sequence. This is defined as

arg max
x1,...,xn

P (X1:n = x1:n|Y1:n = y1:n). (2.16)

The algorithm for a standard HMM with discrete output (for example a Poisson

HMM) is outlined in Algorithm 4 and requires a forward and backward pass through

the data. The continuous output case (for example Gaussian HMM) follows analo-

gously. The forward pass computes ζt,i, the probability of the most probable state

sequence ending in state i ∈ ΩX at time t. The backwards pass computes and re-
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Algorithm 4 Determining the Viterbi state sequence, the most probable state
sequence.

Aim: Obtain,
x̂1:n = arg max

x1,...,xn
P (X1:n = x1:n|Y1:n = y1:n).

Forwards Run: Set

ζ1,i = P (X1 = i, Y1 = y1) = f(Y1 = y1|X1 = i)
∑

x0∈ΩX

px0iP (X0 = x0).

for t = 2, . . . , n do

ζt,j = max
x1,...,xt−1

P (X1:t−1 = x1:t−1,Xt = j, Y1:t = y1:t) ∀j ∈ ΩX

= f(Yt = yt|Xt = j) max
i∈ΩX

{ζt−1,ipij} = γj,yt max
i∈ΩX

{ζt−1,ipij}.

end for

Backwards Run: Set x̂n = argmaxi∈ΩX
ζn,i.

for t = n− 1, . . . , 1 do

x̂t = arg max
i∈ΩX

ζt,ipi,x̂t+1.

end for
x̂1:n = (x̂1, . . . , x̂n) is the Viterbi state sequence, the most probable state sequence.

turns the Viterbi state sequence, x̂1:n, by considering the state at time t which leads

to the most probable state at the next time t + 1. The algorithm is efficient with

computational cost O(n).
Alternatively, the Posterior Decoding algorithm (Juang and Rabiner, 1991)

provides an estimate of the underlying state sequence by choosing the states which

maximise the marginal smoothed probability for each time t. That is

x̃t = argmax
i
P (Xt = i|Y1:n = y1:n) t = 1, . . . , n.

The algorithm is outlined in Algorithm 5 for a standard HMM discrete output, and

is computed via the use of the Forward-Backwards equations.

Definition 2. Forward-Backward equations
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The Forward and Backward probabilities are defined as follows:

αt(i) = P (Y1:t = y1:t,Xt = i) t = 1, . . . , n,∀i ∈ ΩX (2.17)

βt(i) = P (Yt+1:n = yt+1:n|Xt = i) t = 1, . . . , n− 1,∀i ∈ ΩX (2.18)

βn(i) = 1 ∀i ∈ ΩX (2.19)

These probabilities are computed recursively as demonstrated in Algorithm

5 via the use of the Baum-Welch theorems (Baum et al., 1970). In addition, the

Forward-Backwards equations can be used to compute the likelihood for parameter

configuration, θ and number of states, H, exactly via,

l(θ,H|y1:n) = P (Y1:n = y1:n|θ,H) =
∑

i∈ΩX

αt(i)βt(i) ∀t = 1, . . . , n (2.20)

Equation 2.20 is important within the HMM literature as it states that the likelihood

can be computed without having to sample the unknown underlying state sequence

X1:n. This is an important property which shall be used throughout this thesis.

Posterior Decoding provides an alternative means of estimating the underly-

ing state sequence. However, a caveat exists as it is possible to obtain an estimate of

the underlying state sequence featuring impossible moves under the specified transi-

tion probability matrix. This is a result of single states only being considered at time

t (hence its alternative name Local Decoding), rather than states and transitions

between times as in the Viterbi algorithm.

Having obtained an estimate of the underlying state sequence, x̂1:n and x̃1:n

respectively under the Viterbi and Posterior Decoding Algorithm, CPs can be iden-

tified by determining when there is a change in state in the sequence. That is

x̂t−1 6= x̂t for the Viterbi state sequence and analogously for the Posterior Decoding

state sequence. Such an approach is simple and intuitive in identifying the number

and location of CPs as well as other CP characteristics such as segment lengths.

Implementations of the Viterbi and Posterior Decoding algorithm exist in

the R package HiddenMarkov (Harte, 2012). An application of the two algorithms

is demonstrated on the GNP example in Figure 2.7. A 2-state Gaussian Markov

Mixture model has been assumed for both algorithms and the maximum likelihood

estimates obtained via the EM algorithm have been utilised. Results indicate similar

behaviour between both algorithms (identical CP estimates except for one detected

in 1973) and the estimates provided by NBER (14 CPs identified corresponding to

seven recession periods).

However, the main drawback with the aforementioned algorithms and the
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Algorithm 5 Determining the Posterior Decoded State Sequence, the maximum
marginal smoothed probabilities.

Forward Equations: Compute the forward probabilities, αt(j).
Set α0(i) = P (X0 = i) for ∀i ∈ ΩX
for t = 1, . . . , n do

αt(j) =


∑

i∈ΩX

αt−1(i)pij


 γj,yt ∀j ∈ ΩX

end for
Backward Equations: Set βn(i) = 1,∀i ∈ ΩX .
for t = n− 1, . . . , 0 do

βt(i) =
∑

j∈ΩX

γj,yt+1βt+1(j)pij ∀i ∈ ΩX

end for
Deduce the Posterior Decoded state sequence

x̃t = argmax
i

αt(i)βt(i)∑
j∈ΩX

αt(j)βt(j)
∀t = 1, . . . , n.

subsequent CP approach is that they provide a single estimate of the underlying state

sequence. Within CP inference, these estimates are often used as “deterministically

correct” with all CP estimates determined from this single state sequence. It is

likely that other state sequences could have led to the observed output and thus

different CP configurations may arise from them. Fundamentally, if capturing the

uncertainty of CP characteristics is of interest, it would be necessary to postulate all

potential state sequences that could have led to y1:n. As these algorithms provide

only a single state sequence estimate, they do not capture the uncertainty of the

underlying state sequence, and thus the uncertainty of the CP estimates.

The Forward-Backward equations presented in Definition 2 are more com-

monly used to compute the filtering and smoothing probabilities typical in the HMM

and SSM literature. Such probabilities denote the probability of the underlying state

with respect to partial data up to time t, P (Xt|y1:t) (filtering), or conditional on

the complete data, P (Xt|y1:n) (smoothing). Such probabilities can also be used

in forming CP estimates. For example, Hamilton (1989) consider the smoothing

probabilities under a particular model, namely Hamilton’s Markov Switching Au-
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Figure 2.7: CP estimation on the GNP dataset via the Viterbi and Posterior De-

coding algorithm under a 2-state Gaussian Markov Model framework. CP estimates

are almost identical for the two algorithms, with one discrepancy in 1973. These

estimates concur with the estimates determined by NBER.

toregressive model of order r, HMS-AR(r). This can be seen as an extension of the

Gaussian Markov Mixture model such that dependence on r previous observations

is introduced in an autoregressive manner (see Equation 3.34, page 81). Only the

mean is state dependent, with variance and AR coefficients and order being state

invariant, This model will be discussed and used further in Chapter 3.

In particular, Hamilton (1989) assume a two state HMS-AR(4) model in

modelling the US GNP data. where the two underlying states represent “contrac-

tion” and “expansion” states of the economy and the autoregressive order of four

denotes the annual seasonality from the quarterly data. In determining recession

period, an intuitive thresholding argument is used namely

yt is from a recession regime ⇐⇒ P (Xt = “contraction”|y1:n) > α

where Hamilton (1989) consider α = 0.5. Under this threshold value and assuming a

two state HMM model, this is equivalent to the Posterior Decoding algorithm. The

corresponding recession period estimates (grey regions) are presented in Figure 2.8

and generally concur with those provided by NBER and the Viterbi and Posterior

Decoding estimates provided in this section. Such a method however is sensitive to

the choice of threshold used.
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Figure 2.8: Recession estimates (grey regions) provided by Hamilton’s Threshold-

ing Method on the smoothed probabilities assuming a 2-state Hamilton’s Markov

Switching Autoregressive Model of order four (Hamilton, 1989).

2.12.2 Exact CP Distributions

Conditional on a specific model parameter configuration θ and the number of un-

derlying states H, it is possible to compute exact CP distributions under a HMM

framework (Aston et al., 2011). The exact nature of this methodology refers to the

fact that conditional on θ, results are not subject to sampling or approximation

error. The approach forms one of the building blocks of the proposed methodology

in Chapter 3. We shall thus review this method in Section 3.2.1, page 60.

This approach provides an efficient and flexible framework in which the un-

certainty of several other CP characteristics can also be quantified. This includes

the distribution of regime lengths and the probability of a CP falling within a given

interval. The main advantage of this approach is that the underlying state sequence

is accounted for exactly and does not require sampling which is often a difficult

procedure. No approximation or sampling error is thus introduced on estimates.

However, the exact nature of the CP distributions is conditional on θ with

a MLE of θ typically being used. As θ is subject to uncertainty itself, it is also

important to account for this uncertainty as well. This is particularly important if

different configurations of θ give rise to different CP results, despite being equally

plausible. We shall return to accounting for parameter uncertainty within this CP
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approach in Chapter 3.

2.12.3 Constrained HMMs

The HMM framework and methods presented thus far have not placed any restric-

tions on the behaviour of the underlying MC in that the MC is permitted to visit

any of the states freely. Such a HMM is referred to as an unconstrained HMM.

Chib (1998) and Luong et al. (2012) consider a constrained HMM such that the

underlying MC is restricted to move in a particular way, and construct CP methods

around this framework.

Under the constrained HMM framework, the underlying MC cannot return

to previously visited states. In a CP context, this results in the underlying states

corresponding to the segments between two consecutive CPs. Thus if there are M

CPs, then the data is partitioned into M +1 segments and the assumed constrained

HMM has H = M + 1 underlying states. As the number of underlying states is

assumed known a priori for a HMM whether constrained or unconstrained, this

consequently means the number of CPs is known a priori under the constrained

HMM framework.

The behaviour of the underlying MC is more formally constrained to move

in the following manner. Firstly, X0 = X1 = 1 and Xn = H = M + 1. That is,

the latent MC and observation process must start in the first segment, and end in

the last segment. Secondly, the underlying MC is constructed such that it is unable

to return to previously visited segments and thus states. There are consequently

only two possible moves for the underlying chain at each time t. Explicitly, if

Xt = i, i = 1, . . . ,M , then either

(i) Remain in the current state and segment, thus Xt+1 = Xt = i.

(ii) Alternatively, move to the next segment and state in the state space. Thus,

Xt+1 = i+ 1 6= Xt = i

P, the corresponding transition matrix, is a matrix with non-zero entries on the

diagonal and immediate super-diagonal, and zeroes elsewhere. That is pij > 0 if

j = {i, i + 1}, else pij = 0. Under this setup, each row of the transition matrix

only has one unknown transition probability as pi,i+1 = 1− pi,i. Such restriction on

the transition matrix needs to be accounted for in parameter estimation methods in

order to maintain the constrained HMM framework.

Luong et al. (2012) provide a method in which the posterior CP probability

and confidence intervals for CP location estimates can be computed via the use
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of a constrained HMM framework. These pre-determined location estimates could

be provided by CP estimates computed under the Viterbi or Posterior Decoding

algorithm discussed earlier, or by alternative means. Via the Forward-Backward

Equations, it is shown that the probability of a CP occurring at a specified time,

can be computed in addition to usual smoothed probabilities under a constrained

HMM framework. That is, for i = 1, . . . ,M ,

P (ith CP at time t+ 1) = P (Xt+1 = i+ 1,Xt = i|y1:n) (2.21)

=
αt(i)βt+1(i+ 1)pi,i+1f(yt+1|Xt+1 = i+ 1)

α1(1)β1(1)
(2.22)

Such probabilities can thus be used to determine the CP probability (CPP, the

probability of any CP occurring at a specified time). The α confidence intervals for

the ith CP location, (Lαi , U
α
i ) can also be provided by:

Lαi = inf

{
L ∈ {1, . . . , n}|

L∑

t=1

P (ith CP at time t+ 1) ≥ 1− α
2

}

Uαi = inf

{
U ∈ {1, . . . , n}|

U∑

t=1

P (ith CP at time t+ 1) ≥ α+ 1

2

}

Such quantities provide quantification of the uncertainty regarding the CP location.

An implementation of the methodology is provided in the R package postCP

(Nuel and Luong, 2012) and its application on the GNP dataset are displayed in

Figure 2.9. We consider the 95% confidence intervals and CPP plot for the Viterbi

and NBER CP estimates, assuming a 2-state Gaussian Markov Mixture model . We

observe that the confidence intervals are a mixture of narrow and wide (the initial

CPs and the middle CPs respectively), highlighting that some of the CP estimates

provided are more certain than others and other CP configurations are possible. The

CPP plots provide further reasoning as to the shape and behaviour of the confidence

intervals, with narrow intervals associated with centred and peaked CPPs, and wide

intervals associated with more diffused CPPs around the CP estimates. Such CPP

behaviour corresponds to how the GNP data is behaving and whether the CPs are

obvious or not. By quantifying the uncertainty of CPs via the CPP plot for example,

this provides a better understanding of the data and the CP estimate.

Whilst the uncertainty of CP locations has now been addressed, there are

several disadvantages to such an approach, namely that CP location estimates need

to be provided preliminary and this is also dependent on the number of CPs being

known a priori. Luong et al. (2012) remark that the accuracy of the CP posterior
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(d) CPP for NBER CP estimates

Figure 2.9: Confidence Intervals (grey bars) and Changepoint Probability (CPP)

plots for the Viterbi and NBER estimates on the GNP dataset. These quantities

are computed via a constrained HMM framework as proposed in Luong et al. (2012).

probabilities reported are highly dependent on the estimates of the CP locations and

number provided, due to its influence in the estimation of θ. This is demonstrated

in the GNP implementation (see Figure 2.9, around 1980) where the CPP plots

are noticeably different for the two sets of CP estimates initially provided. Such

sensitivity is not particularly desirable or sensible if CP characteristics are generally

unknown.

Chib (1998) propose a framework in which the uncertainty of CP locations

is quantified more explicitly by considering the uncertainty of the underlying state

sequence. This is performed by sampling from the posterior of the underlying state

sequence, p(x1:n|y1:n), and thus sampling the location of CPs when there is a change

in state in the underlying state sequence. That is Xt = i 6= Xt+1 = i + 1 for

i = 1, . . . ,M .

Sampling the underlying state sequence is achieved by sampling from the

joint posterior distribution of the model parameters and underlying state sequence,
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p(x1:n, θ|y1:n,H). This is typically not a conventional, standard distribution and

thus a MCMC sampling scheme is employed. In particular, they iteratively sample

from the following two full conditionals,

• θ|y1:n,X1:n = x1:n

• X1:n|y1:n, θ.

It is thus possible to obtain a posterior of the state sequence by marginalising

out the model parameters from the joint posterior, p(x1:n|y1:n,H) =
∫
p(x1:n, θ|y1:n,H)dθ.

Consequently a posterior of the CP locations can be obtained by determining when

there is a change in state in the sampled state sequence from its posterior.

Chib (1998) also provide an ad-hoc solution in determining the number of

underlying states and thus the number of CPs. This is achieved by framing the

unknown number of CPs problem as a Bayesian model selection problem, similar to

that explored in Section 2.9. Each model assumes a different number of states and

thus number of CPs. The marginal likelihood can thus be approximated for each

model, and Bayesian model selection methods such as Bayes’ factor can be employed

in determining which model is suitable, and thus how many CPs to assume.

Chib (1998) remark that the marginal likelihood, p(y1:n|H = h) which as-

sesses the likelihood of the data arising from a model assuming H = h states, can be

approximated and obtained additionally from the MCMC sampling algorithm for

the joint posterior distribution of the underlying state sequence and parameters.

Having obtained the marginal likelihood, the model posterior distribution

can also be approximated in combination with a model prior. Chib (1998) use the

Bayes’ Factor to determine which model, and thus how many CPs, to assume. Bayes’

Factor in assessing the relative evidence of one model over another. Thus, suppose

one wants to assess whether to assume m1 or m2 CPs, and consequently whether

to assume m1 + 1 or m2 + 1 underlying states in a constrained HMM framework.

Then the Bayes’ Factor between these two models is defined as,

Bm1,m2 =
p(y1:n|H = m1 + 1)

p(y1:n|H = m2 + 1)
. (2.23)

Larger values of Bm1,m2 indicate that the data supports a model assuming m1 CPs

over m2 CPs.

Figure 2.10 displays the results of Chib’s implementation on the GNP exam-

ple. In particular, we assume the GNP data arises from a Gaussian Markov Mixture

model such that the mean and the variance are state dependent. As the number of

CPs is unknown a priori, this needs to be estimated firstly. We consider models with

46



0 1 2 3 4 5 6 7 8 9 10

No. CPs

P
os

te
rio

r 
P

ro
ba

bi
lit

y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Posterior Distribution of Number of CPs

Posterior Density of Regime Change Probabilities

Time

P
ro

ba
bi

lit
y

0 20 40 60 80 100 120 140

0.
0

0.
1

0.
2

0.
3

0.
4

(b) CP probability assuming one CP occurs

Figure 2.10: Posterior Distribution of Number of CPs and location of first CP under

the constrained HMM framework of Chib (1998). Zero CPs are most probable but if

a single CP is assumed to have occurred, then this is most likely to occurred towards

the beginning of the data.

zero to ten CPs and approximate their respective posterior distributions, assuming a

Uniform prior over the number of CPs (Figure 2.10(a)). As the posterior highlights,

zero CPs are the most probable, with some probability associated with one recession

potentially occurring. The use of Bayes’ Factor also concludes the same result. Up

to 14 potential CPs were also considered in concordance with the 14 detected by

NBER; identical results were achieved with nearly all probability mass on zero CPs

occurring.

We could thus conclude that no CPs have occurred during the data if we take

the maximum a posterior estimate of the number of CPs. However, if we condition

that one CP has occurred, this CP appears to occur towards the beginning of the

data.

The constrained HMM approach as proposed by Chib (1998) provides a state-

of-the art framework in tackling CP problems and providing quantification of CP

characteristics. The uncertainty is captured by sampling the underlying state se-

quence via a MCMC algorithm, and model parameter uncertainty is captured by

marginalising out this quantity. However, this is typically a high-dimensional corre-

lated vector and thus care is required in designing good moves such that the sampling

MC is mixing well. In addition, the uncertainty of both the number and location of

CPs are not considered simultaneously which may be desired.

2.13 Exact Sampling of the Posterior via Recursions

Fearnhead (2005); Fearnhead and Liu (2007) propose a framework in which exact
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sampling from the CP posterior distribution can be performed in an offline and

online context. The exact and efficient sampling relies on the assumption that

segments are independent, conditional on the CP locations. Assuming such a condi-

tional independence assumption results in probability recursions which allow exact

sampling to be performed. These recursions are similar to the Forward-Backward

algorithm in HMMs. In addition, the CP posterior distributions sampled from are

not conditional on model parameters, and thus the CP estimates obtained are in

light of parameter uncertainty (the CP estimates are not conditional on specific

model parameter configurations).

The framework proposed also provides an alternative elicitation approach in

specifying the prior over the CP characteristics. This alternative prior considers the

distribution of the segment lengths and is derived by modelling the event of a CP as

a point process. This prior setup indirectly implies a prior on both the number and

locations of CPs. This segment prior will be assumed in reviewing the methodology

and we refer the reader to Fearnhead (2006) with regards to the implementation of

standard priors directly on the CP characteristics of interest.

In this section only, we review the exact sampling methodology as in Fearn-

head and Liu (2007), the online context with the offline scenario following in a

similar manner. Under this methodology τ is a CP if it segments the data into y1:τ

and yτ+1:n. Under this definition of a CP, τ0 = 0 and τM+1 = n. The constraints

on the intermediary CPs remain unchanged. Let g(t) denote the probability mass

function for a segment of length t ∈ [1, n − 1]. Let G(t) =
∑t

s=1 g(s) denote the

corresponding distribution function of the segment length, and let GC(t) = 1−G(t).
Thus the prior probability of M CPs occurring at locations τ1:M = (τ1, . . . , . . . , τM )

is:

p(τ1:M = (τ1, . . . , . . . , τM )) =




M∏

j=2

g(τj − τj−1)


GC(n− τM ).

This alternative prior setup is equivalent to the usual prior defined over CP locations.

Typical segment priors implemented are those from the negative Binomial family

such as the Geometric distribution, and result in a Binomial prior on the number

of CPs. Specifying a prior over the segment length can often be more intuitive and

natural compared to the usual practice of specifying a prior over the potential CP

locations. For example, prior information and beliefs with respect to the length of

segments may be more accessible, and segment priors do not need to be adapted if

the length of the time series changes.

48



The exact sampling approach samples from the joint posterior of the CP

characteristics, p(M, τ1:M |y1:n), by performing a forward and backwards pass on the

data. The forward pass is essentially a filtering recursion which computes filtering

probabilities for a latent variable denoting the time of the most recent CP. The

backwards pass simulates the changepoints of interest by traversing backwards in

time. Before proceeding with the main framework, it is necessary to introduce the

partial marginal likelihood,

P (s, t, q) =

∫
p(ys−1:t|θ,model q)p(θ|model q)dθ, (2.24)

where p(θ|model q) is the model parameter prior by assuming model q. It is assumed

that this partial marginal likelihood can be computed for all s < t and q, either by

assuming conjugate priors for θ or numerical integration. The model q is one model

from a set of Q possible models for the data from each segment, for example each

model could assume a different regression model. Consequently, this methodology is

not limited by the types of changes compared to others. The model prior is denoted

by p(q).

The latent process introduced is denoted by Ct, which captures the time of

the most recent CP prior to time t. Consequently, the variable takes values from

Ct ∈ {0, 1, . . . , t− 1} where Ct = 0 denotes that no CP as occurred prior to time t.

At time t there are only two possible moves; either Ct = Ct−1 or Ct = t− 1 which

indicates that t−1 is not and is a CP respectively. Ct can be thought of as a Markov

Chain with the corresponding constrained behaviour. The transition probabilities

for this latent MC are based on the distribution of the segment durations as follows:

P (Ct+1 = j|Ct = i) =





GC(t−i)
GC(t−1−i) if j = i (t is not a CP),

g(t−i)
GC(t−1−i) if j = t (t is a CP),

0 otherwise.

The forward pass of the algorithm concerns computing the filtering probability of

this MC, that is P (Ct = i|y1:t), in a recursive manner. From the standard filtering

recursions,

P (Ct+1 = j|y1:t+1) ∝ P (yt+1|Ct+1 = j, y1:t)P (Ct+1 = j|y1:t) (2.25)

= P (yt+1|Ct+1 = j, y1:t)

t−1∑

i=0

P (Ct+1 = j|Ct = i)P (Ct = i|y1:t).
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Then it can be shown that the recursions are

P (Ct+1 = j|y1:t+1) ∝





∑Q
q=1 P (j,t+1,q)p(q)
∑Q

q=1 P (j,t,q)p(q)

GC(t−i)
GC(t−1−i)P (Ct = j|y1:t) if j < t,

∑Q
q=1 P (j,t+1,q)p(q)
∑Q

q=1 P (j,t,q)p(q)

∑t−1
i=0

g(t−i)
GC(t−1−i)P (Ct = j|y1:t) if j = t,

where P (C1 = 0|y1) = 1 is the initialisation setting.

Having obtained and stored these filtering probabilities, P (Ct = i|y1:t) for all
t = 1, . . . , n and i = 0, . . . , t−1, a backwards pass is then performed to sample from

the joint posterior distribution of the CP locations. To obtain one sample of a CP

configuration from the joint posterior, we begin by simulating the location of the

last CP using the probability P (Cn|y1:n). Denote this sampled CP location as t. If

t = 0, terminate the algorithm as this indicates no CPs have occurred. Else if t > 0,

the next CP is simulated backwards in time from the conditional distribution:

P (Ct = i|y1:n, Ct+1 = t) ∝ P (Ct = i|y1:t)P (Ct+1 = t|Ct = i) for i = 1, . . . , t− 1,

= P (Ct = i|y1:t)
g(t− i)

GC(t− 1− i) ,

which utilises the fact data after CP at time t is independent of the CP prior

to time t. We continue this simulation process until Ct = 0. This provides a

sample of CP locations and thus the number of CPs from the joint posterior. This

sampling recursion is efficient since these probabilities only need to be calculated

once throughout the whole sampling algorithm.

Fearnhead (2006); Fearnhead and Liu (2007) also develop a Viterbi algorithm

in calculating the maximum a posterior (MAP) CP estimates and the model for each

segment. Let Ms indicate the MAP choice of CP configuration and models prior

to time s, given that a CP occurs at time s. Then for t = 1, . . . , n, s = 0, . . . , t− 1

and q = 1, . . . , Q

Pt(s, q) = P (Ct = s,model q,Ms, y1:t) and PMAP
t = P (CP at t,Ms, y1:t).

Then the following equations provide the MAP estimates regarding the CP and

models,

Pt(s, q) = GC(t− s− 1)P (s, t, q)p(q)PMAP
s and PMAP

t = max
s,q

{
Pt(s, q)g(t− s)
GC(t− s− 1)

}
.

An implementation of the offline method is available on the author’s website1. This

1http://www.maths.lancs.ac.uk/~fearnhea/software/ARPS.html
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Figure 2.11: Maximum A Posterior Estimates of the CP locations for GNP data

using the exact sampling approach of Fearnhead (2005). Piecewise autoregressive

models of order up four have been considered.

assumes a piecewise constant autoregressive model for each segment. Figure 2.11

displays the MAP estimates of the CP locations when applied to the GNP data.

Autoregressive models of order up to four have been considered due to the belief

that there is some annual seasonality present in the data. We observe that a single

CP has been identified towards the end of the data. This again provides another

CP configuration which is different to NBER’s estimates. However, it is believed

that few CPs have been identified under this model since the piecewise constant

autoregressive model considered, assumes a constant zero mean in each of the au-

toregressive models. Thus, if the GNP data is suspected to contain changes in mean,

it is unlikely that this method will be able to identify the CPs.

This methodology has the advantage over many other Bayesian sampling

methods in that it can sample directly and efficiently from the CP posterior of

interest. The exact sampling is favourable compared to approximations via MCMC

for example, in that it is not necessary to design good mixing algorithms and one

need not worry about whether our sampling Markov Chain has reached convergence.

The exact algorithm also has a computation cost of O(n2) due to support of Ct

increasing linearly with t. An approximation is possible such that the summation

in Equation 2.25 is truncated due to the majority of previous filtering probabilities

P (Ct = i|y1:t), being negligible. Such an approximation only introduces negligible

approximation error according to empirical results (Fearnhead and Liu, 2007). An

additional advantage compared to the quantification of CP uncertainty as proposed

in Aston et al. (2011) (see Chapter 3) is that it considers parameter uncertainty.

However, this requires computing the segment marginal likelihood P (s, t, q), which
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may not be possible directly and may thus require some numerical approximation.

2.14 Conclusion

This chapter has presented an overview of a variety of CP methods in the liter-

ature. These methods are based on a variety of different assumptions placed on

the data including the underlying distribution, the type of change suspected and

whether observations are independent or not. In addition, the CP problem can also

be perceived in a variety of different perspectives in which statistical literature may

be more developed for the alternative perspective considered. This includes hy-

pothesis testing as in the AMOC setup, model selection for penalised log-likelihood

approaches, and the use of latent processes in HMM based approaches. CP methods

can also be characterised as to whether they are frequentist or Bayesian and thus

how explicit they are with regards to CP uncertainty.

Several of the reviewed methods have been applied to the running example

of Hamilton’s GNP data and successfully demonstrated that quite different CP

results can be obtained. This motivates the need to assess the plausibility of the

CP estimates provided and the performance of the various CP approaches available.

Quantifying the uncertainty of CPs thus provides a means of doing so.

The majority of the CP approaches reviewed in this chapter do provide some

quantification of CP uncertainty. For frequentist approaches however, this is often

implicit via the use of significance levels (AMOC approaches) or via asymptotic

arguments (for example penalised log-likelihood). In addition, the CP uncertainty

may also be partially captured. For example, penalised log-likelihood approach via

Bayesian Information Criterion can only provide a consistent estimate of the number

of CPs and not their respective locations, and AutoPARM provides consistent CP

location estimates if the number of CPs is known. Bayesian CP methods are often

more explicit with regards to CP uncertainty via the derivation of the CP posterior.

However, many partially capture the CP uncertainty to some degree (for example

in Chib (1998), the posterior of the CP locations is conditional on the number of

CPs), whilst others require MCMC sampling and numerical approximation to obtain

quantities such as the marginal likelihood. This can be difficult and computationally

costly to obtain, particularly those involving sampling long latent vectors due to

their high dimensional and induced correlation. Fearnhead (2006) appear to provide

a promising approach in fully capturing CP uncertainty for both the number and

location of CPs, for a variety of potential changes. However, the trade-off in doing so

is that it is computationally intensive and highly specific to the problem of interest.
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Another important aspect to consider is how the unknown model parame-

ters θ, are accounted for. Frequentist approach such as Global Segmentation (Braun

and Müller, 1998) and AutoPARM (Davis et al., 2006), estimate θ via maximum

likelihood and condition on these values in their respective methods. Any uncer-

tainty associated with θ is captured implicitly via the use of consistency arguments

and not considered within the CP results. This approach does not seem entirely

desirable if CP results are sensitive to the θ that they are conditioned on. Bayesian

approaches are considerably more explicit with regards to the uncertainty of θ and

incorporating this into the CP results. This is performed by integrating out θ from

the joint posterior involving θ and the CP quantities. A Bayesian CP approach thus

provides a more promising path in tackling CP problems as we can account for the

uncertainty of θ in some manner, and remove its sensitivity on the CP results of

interest.

The Hidden Markov Model framework is an attractive CP framework as it

allows a wide range of changes and parametric emission distributions to be con-

sidered. In addition it provides an intuitive framework in that the latent Markov

Chain represents how the underlying system may be behaving, and allows depen-

dent observations to be modelled. In particular, the approach proposed by Aston

et al. (2011) (see Section 3.2.1, page 60) is a promising HMM approach in that it

efficiently computes conditional exact CP distributions. A noticeable advantage of

this approach is that the underlying state sequence is accounted for exactly and

is not sampled compared to other methods involving latent processes (for example

Chib (1998), Green (1995), Fearnhead (2006)). This is a particular benefit as it

reduces the computational cost with Figure 4b of Aston et al. (2011) showing that

a large number of samples are required before the difference between an exact and

simulation based estimation procedure becomes negligible. However this exact CP

approach is conditional on θ and thus does not consider the uncertainty associated

with θ.

A large proportion of this thesis is thus focused on how we can account for

parameter uncertainty and how this can be incorporated within the conditional exact

CP approach proposed in Aston et al. (2011). Chapter 3 reviews this proposal with

subsequent chapters showing further extensions of this framework with respect to

model selection and changes in autocovariance structure. The latter further develops

CP methods concerning changes in autocovariance in which there are relatively few

methods in comparison to changes in mean and variance. In addition to accounting

for parameter uncertainty, the core framework proposed retains the exact nature

of the underlying state sequence and the CP distribution computed from it, and
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sampling error is only introduced in sampling θ. This thus provides a flexible,

efficient Bayesian CP approach in comparison to other Bayesian methods.
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Chapter 3

Exact Changepoint

Distributions and Sequential

Monte Carlo Samplers

Jack Donaghy: First of all, never bad mouth synergy.

“Retreat to Move Forward”, Episode 3.09, 30 Rock, Tami Sagher

3.1 Introduction

Detecting and estimating the number and location of changepoints (CPs) in time

series is becoming increasingly important as both a theoretical research problem

and a necessary part of data analysis. Chapter 2 has highlighted that a variety of

different CP methods exist, each assuming different assumptions and often providing

different CP estimates regarding the number and location of CPs for example. In

addition, many of these methods fail to capture fully or explicitly the uncertainty

associated with CPs, with those which do capture the uncertainty explicitly requiring

simulation of large vectors of dependent latent variables. It is important to account

for the uncertainty of CPs in a bid to assess the confidence of CP estimates and

provide a better understanding of the data analysed.

This chapter proposes a methodology which fully quantifies the uncertainty

of CPs for an observed time series, without estimating or simulating latent state

sequences. The absence of such simulation is desirable in some settings where a

reduction in computational cost is important for example, and is thus one significant

motivation of the technique proposed in this chapter.
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The proposed methodology is based upon three areas of existing work in

the literature. We model our observed time series and consider CPs in a Hidden

Markov Model (HMM) framework. HMMs and the general use of dependent latent

state variables are widely used in CP estimation (Chib, 1998; Fearnhead, 2006;

Fearnhead and Liu, 2007). In these approaches, each state of the underlying chain

represents a segment of data between CPs and thus a CP is said to occur when there

is a change in state in the underlying chain. The underlying chain is constructed

so that there are only two possible moves; either stay in the same state (no CP

has occurred), or move to the next state in the sequence, corresponding to a new

segment and thus a CP has occurred. Returning to previously visited states is

thus not possible. Interest now lies predominantly in determining the latent state

sequence (usually through simulation, by MCMC for example), in order to determine

the relevant CP characteristics. In the case of Chib (1998), this consequently means

the number of CPs is assumed known which may appear restrictive since these are

also often unknown and of interest.

We consider an alternative use of HMMs where each state represents different

data generating mechanisms (for example the “good” and “bad” states when using a

Poisson HMM to model the number of daily epileptic seizure counts (Albert, 1991))

and returning to previously visited states is possible. This allows the number of CPs

to be unknown a priori and inferred from the data. We assume that the number

of different underlying states is known a priori, a common assumption made in

the HMM literature. This latter point seems less restrictive in a CP context than

assuming the number of CPs which are usually of great interest. However, Chapter

5 proposes a method for estimating the number of underlying states if necessary.

By modelling the observations under a HMM framework, we are able to compute

exactly the likelihood via the Forward equations (Rabiner, 1989), which does not

require the underlying state sequence to be estimated or sampled.

We also consider a generalised definition of CPs corresponding to a sustained

change in the underlying state sequence. This means that we are alternatively look-

ing for runs of particular states in the underlying state sequence which corresponds

to a CP into a particular regime. We employ Finite Markov Chain Imbedding

(FMCI) (Fu and Koutras, 1994; Fu and Lou, 2003), an elegant framework which

allows distributions regarding run and pattern statistics to be efficiently calculated

exactly in that they are not subject to sampling or approximation error.

The above techniques allow exact CP distributions to be computed, condi-

tional upon model parameters. In practice, it is common for these parameters to be

treated as known and fixed, with MLEs typically being used. In most applications
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where parameters are estimated from the data itself, it is desirable to account for pa-

rameter uncertainty in CP estimates. As the above approach provides posterior CP

distributions conditional on a parameter, it seems natural to extend this Bayesian

approach to account for parameter uncertainty.

Recent Bayesian CP approaches have dealt with model parameter uncer-

tainty by integrating the parameters out in some fashion in order to ultimately

sample from the joint CP posterior. This is usually achieved by also sampling the

aforementioned latent state sequence (Chib, 1998; Fearnhead, 2006). However, this

introduces additional sampling error into the CP estimates and requires the sim-

ulation of the underlying state sequence which is often long and highly correlated

— and thus hard to sample efficiently. We consider model parameter uncertainty

by sampling from the posterior distribution of the model parameters via Sequential

Monte Carlo. This does not require simulating the latent state sequence as we exploit

the exact computation of the likelihood under a HMM framework. This approach

introduces sampling error only in the model parameters and retains, conditionally,

the exact CP distributions: we will show that this amounts to a Rao-Blackwellised

form of the estimator, a variance reduced estimator.

Quantifying the uncertainty in CP problems is often overlooked but never-

theless an important aspect of inference. Whilst quite naturally, more emphasis

has typically been placed on detection and estimation in problems, quantifying the

uncertainty of CPs can lead to a better understanding of the data and the system

generating the data. Whenever estimates are provided for the location of CPs, we

should be interested in determining how confident we are about these estimates and

whether other CP configurations are plausible. In many situations, it may be desir-

able to average over models rather than choosing a most probable explanation. In

addition, different CP approaches can often lead to different estimates when applied

to the same time series, as demonstrated successfully in Chapter 2. This motivates

the need to assess the performance and plausibility of these different approaches and

their estimates. Quantifying the uncertainty provides a means of so doing.

As a motivating example, we return to the US GNP data presented in Chap-

ter 1, Figure 1.1 (page 5) and analysed throughout Chapter 2. By quantifying the

uncertainty of the recessions, our CPs in this instance, we can express the confidence

of NBER’s recession estimates and if any other recession configurations are possible.

The exact CP distributions computed via FMCI methodology (Aston et al.,

2011) already quantify the residual uncertainty given both the model parameters and

the observed data. However, this conditioning on the model parameters is typically

difficult to justify. It is important to also consider parameter uncertainty because
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the use of different model parameters can give quite different CP results and thus

conclusions. This effect becomes more important when there are several different

competing model parameter values which provide equally-plausible explanations of

the data. By considering model parameter uncertainty within the quantification

of uncertainty for CPs, we are able to account for several types of CP behaviour

under a variety of model parameter scenarios and thus fully quantify the uncertainty

regarding CPs. This is demonstrated in both the simulated data and Econometric

GNP data we shall analyse.

The remainder of this chapter has the following structure: Section 3.2 details

the statistical background of the methodology which is proposed in Section 3.3. This

methodology is applied to both simulated and Econometric GNP data in Section

3.4. Section 3.5 concludes the chapter with some discussion of our findings and

potential paths for future work.

3.2 Background

Let y1:n = (y1, . . . , yn) be an observed time series which is potentially non-stationary.

This non-stationarity could be due to a changing mean, variance or covariance

present in the observations. Let Y1:n = (Y1, . . . , Yn) denote a general sequence

of random variables. One particular framework for modelling such a time series is

via Hidden Markov Models (HMMs), as discussed in Section 2.12 (page 35), where

{Xt}t≥0 denotes our unobserved underlying MC. The methods presented in this

chapter and thesis are applicable to general finite state HMMs such that finite de-

pendency on previous states of Xt and previous observations can be incorporated.

Let θ be our unknown model parameters associated with the HMM that

need to be estimated. These are dependent on the emission density assumed, but

typically consist of the transition probability matrix P and parameters associated

with the emission density, of which some must be dependent on the underlying MC

Xt.

We stress that the HMM framework defined in Equation 2.14 (page 36),

and indeed throughout the entire HMM literature, is conditional on the number

of underlying states H being known a priori. This is typically not the case and is

pre-specified prior to statistical analysis such as parameter estimation. Throughout

this chapter and Chapter 4, we assume that H is known priori to analysis. Chapter

5 shall address how one may want to estimate the number of underlying states.

A common definition within the HMM framework and the use of latent vec-

tors in modelling time series, is that a CP has occurred at time t whenever there is a
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change in state in the underlying MC or latent process, that is Xt−1 6= Xt. This def-

inition is currently adopted in existing work such as Hamilton (1989); Chib (1998);

Durbin et al. (1998); Fearnhead (2006). However, in some applications, a sustained

change is required before a change to a new regime is said to have occurred. Exam-

ples include Economics where a recession is said to have occured when there are at

least two consecutive negative growth (contraction) states, or in Genetics where a

specific genetic phenomena, for example a CpG island (Aston and Martin, 2007), is

at least a few hundred bases long, before being deemed to have occurred. Motivated

by such instances and applications, we define a sustained CP as follows.

Definition 3. A changepoint to a regime occurs at time t when a change in state

persists for at least kCP time periods. That is

Xt−1 6= Xt = . . . = Xt+j (3.1)

where j ≥ kCP − 1.

For example, in the Economic example concerning recession analysis, kCP = 2

and interest lies in the sustained changes to the “contraction” state. This definition

can be interpreted as a generalised version of the “change in state” definition defined

on a suitably defined space and it is both easier to interpret and computationally

convenient to make use of this explicit form. The standard CP definition can be

recovered by setting kCP = 1.

A graphical representation for this CP definition on the standard HMM is

presented in Figure 3.1. This graphical representation highlights two important

features. Firstly, similar to the other HMM based CP methods reviewed in Section

2.12, CP analysis is based on inference of the underlying state sequence of Xt.

Secondly, rather than analysing for changes in state in the underlying MC, attention

turns to analysing for runs in state of a minimum length kCP in the underlying

MC. This latter point motivates one of the main building blocks of the proposed

methodologies in this chapter.

Interest often lies in determining the time of a CP and the number of CPs

occurring within a time series. Let M (kCP) and τ (kCP) = (τ
(kCP)
1 , . . . , τ

(kCP)

M (kCP)) be

variables denoting the number and times of CPs respectively. Given a vector τ (kCP),

we use t ∈ τ (kCP) to indicate that one of the elements of τ (kCP) is equal to t: if

t ∈ τ (kCP), then ∃j ∈ {1, . . . ,M (kCP)} such that τ
(kCP)
j = t. This chapter will propose

a methodology to quantify the uncertainty in estimates of these CP characteristics
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Figure 3.1: Graphical representation of the sustained CP definition utilised. k ≡
kCP, the required sustained time period in the underlying state sequence for a CP

into a new regime to have occurred. In this example, a CP into the regime corre-

sponding to state s ∈ ΩX is said to have occurred at time t if Xt−1 6= Xt = . . . =

Xt+j = s for j ≥ kCP − 1.

by estimating:

P (M (kCP) = m|y1:n) m = 0, 1, 2 . . . , (3.2)

and P (τ (kCP) ∋ t|y1:n) t = 2, . . . , n (3.3)

where P (τ (kCP) = t) ≡ P (τ (kCP) ∋ t|y1:n) ≡
∑

m P (M
(kCP) = m|y1:n)

∑m
i=1 P (τ

(kCP) =

t|y1:n,M (kCP) = m), that is , the probability distribution of the number of CPs, and

the marginal posterior probability that a CP occurs at a particular time (the CP

probability, CPP). The CPP is commonly denoted using the equality symbol in the

CP literature. That is P (τ (kCP) = t) ≡ P (τ (kCP) ∋ t|y1:n), with the latter being used

since we shall be decomposing the event of a CP occurring into the event of the uth

CP occurring.

3.2.1 Exact CP Distributions via Finite Markov Chain Imbedding

Under the generalised CP definition and conditioned on a particular model parame-

ter setting θ, it is possible to compute exact CP distributions for a variety of CP char-

acteristics (Aston et al., 2011). That is, it is possible to compute P (τ (kCP) ∋ t|y1:n, θ)
and P (M (kCP) = m|y1:n, θ) exactly, such that they are not subject to sampling or

approximation error.

The generalised CP definition presented motivates why we are analysing for

runs of a minimum length in the underlying chain Xt. A run of length kCP in state

s ∈ ΩX in the underlying state sequence is kCP consecutive occurrences of s in Xt.

That is Xt = s = Xt+1 = . . . = Xt+kCP−1 and if Xt−1 6= s then the run of desired
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length has occurred at time t + kCP − 1. Thus in order to consider whether a CP

has occurred at time t, we can reformulate this problem as determining whether a

run of length kCP has occurred at time t+ kCP − 1 in the underlying chain.

One popular approach for inferring the behaviour in the underlying state

sequence for HMMs given an observation process, is via the Viterbi and Posterior

Decoding algorithms (Viterbi (1967) and Juang and Rabiner (1991) respectively).

However, as discussed in Section 2.12.1 (page 37), these provide a single estimate

of the underlying state sequence and all CP estimates are obtained deterministi-

cally from this single estimate. However, other state sequences may also be possible

under the observed data. These algorithms thus fail to capture the uncertainty re-

garding other potential state sequences occurring and consequently, the uncertainty

associated with the run and CP statistics derived from it is not captured.

In order to fully capture the uncertainty of CPs under a HMM framework,

it is necessary to consider all possible state sequences. This can be achieved by

computing posterior, time-inhomogeneous transition probabilities with respect to

the observed time series P (Xt|Xt−1, y1:n) for t = 1, . . . , n. These can be obtained

from the smoothed probabilities, the probability of the chain being in particular

states conditioned on the entire time series for example P (Xt−r:t−1,Xt = s|y1:n), as
follows:

P (Xt = s|Xt−r:t−1, y1:n) =
P (Xt−r:t−1,Xt = s|y1:n)∑

s∈ΩX
P (Xt−r:t−1,Xt = s|y1:n)

(3.4)

These posterior transition probabilities form a sequence of time dependent posterior

transition probabilities matrices {P̃1, . . . , P̃n} and permits us to consider the general

evolution of the underlying MC with respect to the observed time series. This

thus allows us to quantify the uncertainty of the underlying state sequence, the

uncertainty of runs in the underlying state sequence and ultimately, the uncertainty

of the CP themselves.

In doing so, we firstly decompose the event of a CP occurring at time t. Let

τ
(kCP)
u denote the time of the uth CP with u ≥ 1. The CP probability (CPP) can

thus be decomposed as follows via the total law of probability:

P (τ (kCP) ∋ t|y1:n, θ) =
∑

m

P (M (kCP) = m|y1:n, θ)
m∑

u=1

P (τ (kCP)
u = t|M (kCP) = m, y1:n, θ)

(3.5)

=
∑

u=1,2,...

P (τ (kCP)
u = t,M (kCP) ≥ u|y1:n, θ). (3.6)
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The event of the uth CP occurring at time t can be re-expressed as a quantity in-

volving runs, specifically: whether the uth run of minimum length kCP has occurred

at time t+ kCP− 1. Let Ws(kCP, u) denote the waiting time for the uth occurrence

of a run of minimum length kCP in state s ∈ ΩX . Thus Ws(kCP, u) = t + kCP − 1

denotes that the uth run of interest has successfully occurred at time t + kCP − 1.

Similarly, W (kCP, u) denotes the waiting time for the uth occurrence of a run in any

state in ΩX of at least length kCP. Specific regimes are associated with specific runs

of particular states s ∈ ΩX . Consequently, Ws(kCP, u), is the main focus of analysis

if interest lies in CPs into these specific regimes. For example, if recession regimes

are of interest where two consecutive “contraction” states are required for a CP into

a recession regime, then W1(kCP = 2, u) is of interest where s = 1 = “contraction”.

For general CP inference regarding CPs into any regime, W (kCP, u) is the main

focus.

By re-expressing the uth CP event as the waiting time for the uth occurrence

of a run, it is thus possible to compute the corresponding probabilities:

P (τ (kCP)
u = t|y1:n, θ) = P (W (kCP, u) = t+ kCP − 1|y1:n, θ). (3.7)

It is exactly the waiting time probability on the right of the above equation that can

be computed exactly. More specifically, it is possible to compute exact distributions

regarding the waiting times of run and pattern statistics, namely P (W (kCP, u) ≤
t|θ, y1:n). This is achieved by an efficient framework called Finite Markov Chain

Imbedding (FMCI, Fu and Koutras (1994), Fu and Lou (2003)). This framework

is not exclusive to the use of HMMs, originating from a multistate trials context

(Fu and Koutras, 1994), and applied in a Markov Chain scenario for generalised

patterns (see Aston and Martin (2005) for example). Motivated by the sustained

CP definition with respect to runs of states, we focus on reviewing FMCI with

respect to runs as opposed to patterns (a defined configuration of symbols).

As the name suggests, FMCI imbeds the random variables of interest into

finite auxiliary MCs such that the run and pattern statistic of interest, in this case

the waiting time statistic, can be computed via MC results. More specifically, FMCI

introduces several auxiliary MCs {Z(1)
t , Z

(2)
t , Z

(3)
t , . . .} which are defined over the

common state space Ω
(kCP)
Z = ΩX ×{−1, 0, 1, . . . , kCP}. Ω(kCP)

Z can be considered as

an expanded version of ΩX which consists of tuples (Xt, l). The first component of

the tuple denotes the behaviour of the underlying MC as before, and the new variable

l = −1, 0, 1, 2, . . . , kCP indicates the progress of any runs that are of interest. The

uth auxiliary MC {Z(u)
t }, corresponds to tracking the occurrence of the uth run of
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length kCP, conditional of (u− 1) runs having already occurred.

The states of the auxiliary MCs can be categorised into three groups de-

pendent on the pattern progress value l: continuation (l = −1), run in progress

(l = 0, 1, . . . , kCP − 1) and absorption (l = kCP). For the uth auxiliary MC {Z(u)
t },

which tracks the occurrence of the uth run, the absorption states denotes that the

uth run of desired length has successfully occurred, the run in progress states indi-

cate the progress of any potential initiated runs, and the continuation states denote

that the (u−1)th run is still in progress (its length exceeds the required length kCP)

and needs to end before the occurrence of the new uth run can be officially tracked.

The continuation states are also known as waiting states and there is a one-to-one

correspondence with the absorption states.

The auxiliary MCs are constructed such that at time 0, {Z(1)
t } is initialised

in the initialisation states where l = 0. At each time step thereafter, an operation

is performed such that any probability associated in the absorption states of each

chain {Z(u)
t }∞u=1, is mapped to the corresponding continuation state in the (u+1)th

chain {Z(u)
t }∞u=2. Consequently, the uth auxiliary chain for u = 2, 3, . . . is initialised

with non-zero probability in the continuation states when the previous chain in the

sequence has reached the corresponding absorption state.

The transition probabilities of these auxiliary MCs {Z(u)
t }∞u=1 between the

states are obtained deterministically from the original MC. Let Q denote the transi-

tion matrix for the auxiliary MCs {Z(u)
t }∞u=1 which is populated by entries from the

transition probability matrix P = (pij)i,j∈ΩX
for the original MC Xt. The transition

matrix Q is used as in standard MC theory to describe how the uth auxiliary MC

Z
(u)
t , evolves over time.

To fix ideas and terminology regarding FMCI, Figure 3.2 presents a toy

example with respect to a standard time homogeneous MC. We consider a two state

MC, ΩX = {0, 1} with the run of interest being 000 and thus s = 0, kCP = 3.

The transition probabilities of the auxiliary MCs, {Z(u)
t }∞u=1, are those from the

original MC {Xt} with some modifications in places (for example the transition

probabilities for the absorption state, (0, 3)). The first chain {Z(1)
t }, tracks the

movement of the first occurrence of the run. The chain is typically initialised in

the states corresponding to no pattern being in progress (l = 0), more specifically

in states (0, 0) and (1, 0). Such initialisation can be based on the initialisation of

the original chain {Xt}. If a 0 is observed at time 1 (X1 = 0), the auxiliary MC

moves to state (0, 1) = Z
(1)
1 , due to the initiation of a potential run and being one

step closer in observing the run of interested. For each Xt = 0, the pattern progress

variable l increases by one each time since we are one step closer in potentially
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seeing the run of interest. However, if a 1 is observed at any time (Xt = 1), this

terminates any initiated runs in progress, and the chain returns to Z
(1)
t = (1, 0), the

state corresponding to no pattern in progress. Upon reaching (0, 3), the absorption

state in this example, the run has successfully occurred and thus the first occurrence

of the run of interest has occurred. The auxiliary MC remains in this state for all

subsequent time points regardless of whether a 0 or 1 is observed.

Successfully reaching the absorption state activates the next chain in the

sequence {Z(2)
t }, which tracks the movement of the second occurrence of the run,

conditioned on the first occurrence having successfully happened. Upon Z
(1)
t =

(0, 3) reaching the absorption state for some time t, the new chain is immediately

initialised with the non-zero probability associated with this absorption state in

the corresponding continuation state Z
(2)
t = (0,−1) to denote that the previous

occurrence of the run is still in progress. If for future times t′ > t, Xt′ = 0 is

observed, then Z
(2)
t′ = (0,−1), to denote that the previous run is still in progress.

However if Xt′ = 1, then this officially terminates the previous run, a new run can be

officially tracked and Z
(2)
t′ = (1, 0). Z

(2)
t′ then proceeds as before, with new auxiliary

chains being fully initialised with non-zero probability when they reach absorption

states.

In the context of HMMs where an observed time series is available and with

respect to CP problems, a few modifications are made to the FMCI framework. Most

importantly, the time-homogeneous transition probability matrix associated with

the auxiliary MCs Q, is replaced with a sequence of posterior, time-inhomogeneous

transition probabilities {Q̃t}nt=1. These transition probabilities are based on the

sequence of posterior, time-inhomogeneous transition probabilities {P̃t}nt=1 defined

with respect the underlying MC {Xt}, and are determined from the posterior transi-

tion probabilities as calculated from Equation 3.4. The use of these posterior, time

inhomogeneous transition probabilities thus allows all potential underlying state

sequences to be postulated with respect to the observed time series.

Under the initialisation configuration presented where {Z(1)
t } is initialised

in the states where l = 0, it is possible for a CP to occur at time 1 (for example,

if X0 = 1,X1:3 = 0 in the example presented in Figure 3.2). As a CP occurring

at time 1 often makes little sense, it is thus possible to initialise in the equivalent

continuation states (l = −1) to resolve this issue.

Computing waiting time distributions is achieved by Markov Chain theory.

Before doing so, it is necessary to define the technical concepts discussed above in

linking the sequence of auxiliary MCs together such that multiple occurrences of

runs can be modelled. Let Ψt, t = 0, 1, . . . , n be a Mmax × |Ω(kCP)
Z | matrix where
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Figure 3.2: Graphical Example of Finite Markov Chain Imbedding (FMCI), an effi-

cient mechanism to compute exact run and pattern distributions of Markov Chains.

As our CP definition is defined in terms of sustained changes in states, we can thus

compute exact distribution regarding CPs.

Mmax = ⌊ n
kCP
⌋ denotes the maximum number of runs, and consequently the max-

imum number of CPs, that can occur during the scope of the data. The uth row

of Ψt is denoted by ψ
(u)
t which will store state probabilities for the uth auxiliary

MC {Z(u)
t }, at time t. The initial matrix Ψ0, thus has ψ

(1)
0 with non-zero proba-

bilities in the initialisation or continuation states, and zeroes elsewhere in the row

vector and the initialisation matrix Ψ0. This latter remark is due to the fact that

no further runs and subsequent chains can be in progress at t = 0. In order to

connect absorptions states to their corresponding continuation in the next auxiliary

MC in the sequence, this is achieved by the following mechanism. Denote the col-

lection of states representing the collection absorption and continuation states as

A = {Z(u)
t = (Xt, l) ∈ Ω

(kCP)
Z |l = kCP} and C = {Z(u)

t = (Xt, l) ∈ Ω
(kCP)
Z |l = −1}
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respectively. Then let Υ be |Ω(kCP)
Z | × |Ω(kCP)

Z | matrix is defined as follows:

Υ(z1, z2) =

{
1, if z1 ∈ A and z2 is the corresponding continuation state in C;

0, otherwise.

(3.8)

Finally, let {Q̃t}nt=1 denote the sequence of time in-homogeneous, posterior tran-

sition probabilities defined over the auxiliary MCs, and U(A) be a |Ω(kCP)
Z | length

column vector with ones in the locations of the absorption states and zeroes else-

where. Then the waiting time for the uth occurrence of a run, W (kCP, u) can be

computed as follows. For t = 1, . . . , n,

Ψt = Ψt−1Q̃t (3.9)

ψ
(u)
t ← ψ

(u)
t + ψ

(u−1)
t−1 (Q̃t − I)Υ, u = 2, . . . ,Mmax

(3.10)

P (W (kCP, u) ≤ t|y1:n, θ) = P (Z
(u)
t ∈ A|y1:n, θ) = ψ

(u)
t U(A) (3.11)

where I is a |Ω(kCP)
Z | × |Ω(kCP)

Z | identity matrix. The intuition of this computation is

as follows: Equation 3.9 computes the general evolution of all Mmax auxiliary MCs

simultaneously. Equation 3.11 denotes the probability of the uth chain being in any

of the absorption states and thus the probability the runs of interest having occurred

by time t, conditional on the (u− 1)th run having already occurred. Equation 3.10

is the necessary modification which links the auxiliary MCs together and such that

a chain is assigned non-zero probability (activated) when the previous chain in

the sequence has reached an absorption state. This is ultimately a row updating

operation which transfers the probability of the (u − 1)th auxiliary MC being in

absorption state into the corresponding continuation states of the uth auxiliary

MC. By expressing the above equations in terms of matrices and vector, this leads

to an efficient mechanism to compute waiting time distributions.

Having computed exactly the waiting time distributions for runs via the

FMCI framework presented above, it is thus possible to compute exact distributions

for a variety of CP characteristics. For example, the probability of the uth CP at

time t is provided by

P (τ (kCP)
u = t|y1:n, θ) = P (W (kCP, u) = t+ kCP − 1|y1:n, θ)

= P (W (kCP, u) ≤ t+ kCP − 1|y1:n, θ)−
P (W (kCP, u) ≤ t+ kCP − 2|y1:n, θ).
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The distribution of the number of CPs can also be computed from these waiting

time distributions:

P (M (kCP) = m|y1:n, θ) = P (W (kCP,m) ≤ n|y1:n, θ)− P (W (kCP,m+ 1) ≤ n|y1:n, θ).

Exact distributions for other CP characteristics such as the probability of a CP

within a given time interval and the distribution of regime lengths, can also be

computed via the FMCI framework. This thus provides a flexible methodology

in capturing the uncertainty of CP problems. Aston et al. (2011) discuss that

the computational complexity for this conditional exact CP method is O(n), when
H and Mmax are fixed between different runs. This computational complexity is

expected to increase as H and Mmax increase.

These exact CP distributions are conditioned on the model parameters θ.

However, it is typical for θ to be unknown, with the Expectation-Maximisation al-

gorithm (Baum et al., 1970) being a typical frequentist approach in obtaining a point

estimate of θ under the HMM framework. θ is also subject to error and uncertainty

which needs to captured. Consequently, in order to fully consider uncertainty of

CPs, it is also necessary to consider the uncertainty of the parameters. In capturing

the uncertainty fully and explicitly, we turn to Bayesian methods in accounting for

θ which explicitly considers the uncertainty compared to frequentist approaches. In

particular, we account for the model parameters via the use of Sequential Monte

Carlo samplers.

3.2.2 Sequential Monte Carlo methods

In dealing with parameter uncertainty, we adopt a Bayesian approach by integrating

out the model parameters to obtain marginal posterior distributions of the CP

quantities alone. However, it is not possible to perform this integration analytically

for the models of interest and thus numerical approximation is necessary.

Sequential Monte Carlo (SMC) methods, also known as particle filters (Kita-

gawa, 1996), permit such numerical approximation and are more specifically a

class of simulation algorithms for sampling from a sequence of related distribution

{πb}Bb=1 via importance sampling and resampling techniques. Common applications

of SMC methods in Statistics, Scientific Computing and Engineering include se-

quential Bayesian inference on the posterior where the data increases incrementally

(that is online inference such that πb ∝ p(θ)l(θ|y1:b), b = 1, . . . , B = n), the self

avoiding random walk model in modelling the growth of a polymer, and online fil-

tering in radar tracking problems. We refer the reader to Liu (2001) and Doucet
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and Johansen (2011) for recent surveys on the SMC literature.

Importance sampling is a fundamental concept in Monte Carlo sampling

such that if one wants to sample from a single, complex target distribution πB , we

sample instead from a similar, tractable distribution qB (importance distribution),

and reweight the samples accordingly such that they are samples from πB . Namely,

if θ ∼ qB, then the corresponding importance weight is,

wB(θ) ∝
πB(θ)

qB(θ)
(3.12)

where support [qB(·))] ≥ support [πB(·)]. The target distribution πB , is therefore

approximated by a weighted cloud of N samples, πB ≈ {θi,W i
B}Ni=1, where W

i
B are

the normalised importance weights. In addition, the normalising constant for πB

can also be approximated.

In the SMC context where one wants to sample from multiple distribu-

tions {πb}Bb=1, we firstly obtain samples from π1 via importance sampling. For

b = 2, . . . , B, we use the existing samples of πb−1 to obtain samples of πb. This

is achieved by perturbing existing samples in some fashion (namely via a Markov

kernel) and re-weighting accordingly. This thus approximates the sequence of dis-

tributions {πb}Bb=1 by weighted clouds of N samples, {θib,W i
b}Ni=1 for b = 1, . . . , B,

and such an algorithm is known as Sequential Importance Sampling (SIS) in the

literature.

A resampling mechanism is often introduced within SMC algorithms, such

as SIS, consequently leading to the Sequential Importance Resampling algorithm.

This avoids the weight degeneracy problem. Such a problem occurs due to the vari-

ance of the importance weights increasing with b as a result of several samples with

small weights close to zero, and only a few samples with large weights being present.

As a consequence, this does not provide accurate approximations or samples from

the distribution of interest πb. A resampling step is thus introduced to resolve this

issue such that we discard samples with small weights, and replicate those with

higher weights. This consequently allows greater focus on more probable areas of

the distribution and preserves the expectation of the approximation of the integral

to any bounded function. More specifically, if {W i, θi}Ni=1 is a collection of weighted

samples, then resampling consists of selecting a collection of samples {θ̃i}Ni=1 such

that: E[ 1
N

∑N
i=1 ϕ(θ̃

i)|{W i, θi}Ni=1] =
∑N

i=1W
iϕ(θi) for any bounded measurable

ϕ. Resampling selection is determined by the importance weights of the samples

and there are a variety of methods in which resampling can performed; Douc and

Cappé (2005) provide an overview and comparison of different resampling schemes
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available. The simplest approach is termed multinomial resampling as we draw N

samples with replacement from the existing collection of samples with multinomial

probabilities (W 1, . . . ,WN ). However, this approach unnecessarily increases the

Monte Carlo variance and other techniques such as residual resampling are prefer-

able. All resampled samples are then set to have equal importance weights (that is

W i = 1
N
).

Whilst resampling is beneficial in the long run, resampling unnecessarily at

every iteration is not desired since it introduces unnecessary Monte Carlo variance.

Thus resampling should not be performed at every iteration b. A dynamic resam-

pling scheme is therefore implemented within the SMC community such that one

only resamples when the variance of weights exceeds a pre-specified threshold. This

can be implemented by considering the Effective Sample Size (ESS),

ESS =
1

∑N
i=1(W

i)2
. (3.13)

This is obtained via a Taylor expansion of the variance of associated estimates (Kong

et al., 1994) and acts as a proxy for the variance of importance weights. Intuitively,

the ESS provides an approximation of the number of independent samples required

from the distribution πb, that would provide an estimate of comparable variance. Re-

sampling is performed when the ESS falls below a pre-specified threshold, ESS < T ,

with T = N/2 commonly being used in the literature. Resampling at such stopping

times rather than deterministic time is valid and has recently been demonstrated

that convergence results can be extended to this case (Del Moral et al., 2012).

Sequential Monte Carlo samplers

The standard application of SMC algorithms such as those presented above require

that the sequence of distributions {πb}Bb=1, are defined upon a sequence of increas-

ing state spaces. For example in sequential Bayesian inference, the state space

increases systematically with respect to each new observation. Sequential Monte

Carlo samplers (SMC samplers, Del Moral et al. (2006)) are a particular class of

SMC algorithms such that {πb}Bb=1 can be defined over any sequence of spaces.

One particular use of the SMC samplers framework is to ultimately sample from a

complex target distribution, πB, such that we sample initially from a tractable dis-

tribution π1 which shares the same state space as the target distribution, and define

a sequence of intermediary distributions in which we move through to sample from

the target distribution of interest. For example, in Bayesian inference where one

may be interested in sampling from a complex parameter posterior πB = p(θ|y1:n),
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it is possible to define the sequence of distributions as follows:

πb ∝ p(θ)l(θ|y1:n)γb b = 1, . . . , B (3.14)

where p(θ) is the model parameter prior, l(θ|y1:n) is the likelihood, and {γb}Bb=1 is

a non-decreasing tempering schedule such that γ1 = 0, γB = 1. Such a sequence

ultimately allows us to sample from the parameter posterior, πB ∝ p(θ)l(θ|y1:n),
by sampling from the prior initially and introducing the effect of the likelihood

gradually. It is exactly this sequence of distributions which shall be the focus of this

chapter. Sampling via SMC samplers has computational complexity O(N) where

N is the number of samples.

The general idea of SMC samplers is graphically represented in Figure 3.3 in

sampling from the parameter posterior. Each distribution in the sequence {πb}Bb=1 is

approximated by the weighted cloud of samples. Samples are represented graphically

by circles and their associated weights by their radii in the figure. We sample initially

from the first distribution in the sequence, π1 = p(θ) the parameter prior, either

directly or via importance sampling and compute the associated importance weights.

If π2 is similar enough to π1, then the intuition is that we can approximate π2 by

moving the existing samples approximating π1 by mutating them via local moves

into regions of higher probability density and re-weighting accordingly. There is a

great deal of flexibility in the mutation step, with Markov kernels such as Metropolis-

Hastings being a possibility. This idea of approximating πb via mutation of existing

samples of πb−1 and re-weighting persists throughout the SMC samplers algorithm.

In addition, to avoid weight degeneracy a dynamic resampling scheme is employed,

which encourages samples with higher weights in higher probability areas to survive.

Such an algorithm consequently allows one to sample and approximate the defined

sequence of distributions, and ultimately the posterior of interest, πB ∝ p(θ)l(θ|y1:n).
The SMC samplers framework also provides approximations of the normal-

ising constants for the distributions {πb}Bb=1. This is an important feature that will

become more relevant in the model selection methodology proposed in Chapter 5.

We refer the reader to Del Moral et al. (2006) for specific details regarding

the asymptotics of the SMC samplers algorithm. For example, it is shown that as

N → ∞ (that is as the number of samples in the approximation increases), the

approximations asymptotically converges to the distribution of interest.

In ensuring that mutated samples are correctly re-weighted to approximate

the next distribution in the sequence, it is necessary to discuss this re-weighting

procedure in greater detail. A collection of Markov kernels {Lb} is firstly intro-
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Figure 3.3: Graphical representation of Sequential Monte Carlo samplers, an algo-

rithm to sample from a sequence of connected distributions defined over any arbi-

trary sample space. Each distribution in the sequence is approximated by weighted

clouds of samples. Samples are represented by circles, and their corresponding

weights by their radii in the graphic above. The sampling of each distribution in the

sequence is achieved by mutating and resampling existing samples from the previous

distribution in the sequence. For the application of interest, the ultimate aim is to

sample from πB = p(θ|y1:n), the parameter posterior. This is achieved by initially

sampling from the prior π1 = p(θ), and sampling from a sequence of intermediary

distributions by introducing the effect of the likelihood l(θ|y1:n) ≡ l(y|θ) gradually
via the use of a non-decreasing tempering schedule {γb}Bb=1.



duced with the distributions of interest {πb(ub)} being formally augmented with the

aforementioned collection of Markov kernels to produce auxiliary distributions {π̃b}
with π̃b = πb(ub)

∏b−1
j=1 Lj(uj+1, uj).

Given a weighted sample {W i
b−1, θ

i
b−1} which is correctly weighted to ap-

proximate πb−1(θb−1), the SMC sampler with proposal kernel Kb(θ
i
b−1, θ

i
b) is used

which leads to the sample {W i
b−1, (θ

i
b−1, θ

i
b)}. Such a sample is properly weighted to

the distribution πb−1(θ
i
b−1)Kb(θ

i
b−1, θ

i
b). Given any backward kernel Lb−1(θb, θb−1)

which satisfies an appropriate absolute continuity requirement, one can modify the

weights of the sample such that it is correctly weighted to the target distribution

πb(θb)Lb−1(θb, θb−1). This is achieved by multiplying the weights by the appropri-

ate incremental weights w̃b(θ
i
b−1, θ

i
b) such that W i

b ∝ W i
b−1 · w̃b(θib−1, θ

i
b). These

incremental weights are:

w̃b(θ
i
b−1, θ

i
b) =

πb(θ
i
b)Lb−1(θ

i
b, θ

i
b−1)

πb−1(θ
i
b−1)Kb(θ

i
b−1, θ

i
b)
, (3.15)

where Lb−1(θ
i
b, θ

i
b−1) is a backwards Markov kernel. Del Moral et al. (2006) establish

that the optimal choice of the backward kernel is

Lopt
b−1(θb, θb−1) =

πb−1(θb−1)Kb(θb−1, θb)∫
πb−1(θ

′
b−1)Kb(θ

′
b−1, θb)dθ

′
b−1

, (3.16)

if resampling is performed at every iteration b of the SMC samplers algorithm.

However, the integral in the denominator is generally intractable and it is therefore

necessary to use approximations. These approximations only increase the variance

of the estimator but do not introduce any further approximation. If Kb is chosen to

be a πb MCMC invariant kernel, then a widely-used approximation of this optimal

quantity can be obtained such that if πb−1 ≈ πb (that is consecutive distributions in

the sequence are similar), then we can replace πb−1 with πb in the optimal backward

kernel. This thus provides the approximated optimal backward kernel:

Ltr
b−1(θb, θb−1) =

πb(θb−1)Kb(θb−1, θb)∫
πb(θ

′
b−1)Kb(θ

′
b−1, θb)dθ

′
b

=
πb(θb−1)Kb(θb−1, θb)

πb(θb)

where Kb is a πb-invariant Markov kernel. The incremental weight expressed in

Equation 3.15 is thus:

w̃b(θ
i
b−1, θ

i
b) =

πb(θ
i
b)

πb−1(θ
i
b−1)Kb(θ

i
b−1, θ

i
b)
× πb(θ

i
b−1)Kb(θ

i
b−1, θ

i
b)

πb(θ
i
b)

=
πb(θ

i
b−1)

πb−1(θ
i
b−1)

. (3.17)

Note that such a incremental weight is independent of the present sample θib at
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iteration b, and dependent only on the sample at the previous iteration θib−1. Con-

sequently, the importance weights of the sample at iteration b are independent of

the sample itself. Due to the independence between the weights and the sample at

iteration b, resampling can thus be performed prior to the mutation step. This prior

resampling before the mutation ultimately leads to greater diversity of the resulting

sample compared to post resampling.

Algorithm 6 presents a generic SMC sampler algorithm in sampling from a

sequence of distributions {πb}Bb=1. The SMC samplers application of sampling from

a complex target distribution πB through a sequence of distributions is similar to

Annealed Importance Sampling (Neal, 2001), although a resampling mechanism is

present in the SMC samplers framework.

Other Monte Carlo sampling strategies are also possible. Markov Chain

Monte Carlo (MCMC, Gilks et al. (1996)) is a popular approach to sample from

the complex distribution πB, where an ergodic Markov chain is constructed with

transition kernels K such that the stationary distribution of the sampling MC is

πB, the target distribution of interest. In the general context of SMC methods

where interest lies in a sequence of distributions, this is impossible to perform effi-

ciently via MCMC. Consequently, MCMC cannot be used in a sequential Bayesian

estimation context with respect to incremental data. In general, if πB is ultimately

of interest such as the example presented in this section, it is typically difficult to

design transition kernels such that the sampling chain is mixing well (exploring the

state space well), and it is often difficult to determine whether the chain has reached

convergence and thus sampling from the desired distribution πB is achieved. Ensur-

ing that the chain is mixing well is particularly important when πB is multimodal,

and it is thus necessary to ensure that the chain can move between these modes if

necessary. In comparison, SMC samplers has the advantage of considering several

samples simultaneously which explore the state space in a local fashion. Designing

good MCMC algorithms with acceptable performance is also often specific to the

application and problem, whereas SMC works well even under generic settings.

Data augmentation is a common strategy used within MCMC algorithms,

particularly when considering HMMs and mixture models. Such a strategy in-

troduces a latent vector sequence which postulates which component or state the

observation may have arisen from. This latent sequence is sampled along with

the parameters and via marginalisation, the parameter posterior can be obtained.

However, due to the inherent correlation within the latent sequence itself and the

parameters, it is often harder to obtain a fast, good mixing MCMC algorithm.

Particle MCMC (Andrieu et al., 2010) is a recently proposed sampling algo-
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Algorithm 6 Generic SMC Sampler algorithm to sample from the sequence of
distributions {πb}Bb=1. (Del Moral et al., 2006)

Step 1: Initialisation Set b = 1
for i = 1, . . . , N do

Draw θi1 ∼ q1 (q1 is a tractable importance distribution for π1).
Compute the corresponding importance weight {w1(θ

i
1)} ∝ π1(θi1)/q1(θi1).

end for
Normalise these weights, for each i:

W i
1 =

w1(θ
i
1)∑N

j=1w1(θ
j
1)
.

Step 2: Selection
If degeneracy is too severe (e.g. ESS < N/2), then resample and set W i

b = 1/N .

Step 3: Mutation Set b← b+ 1.
for i = 1, . . . , N do

Draw θib ∼ Kb(θ
i
b−1, ·) where Kb is a πb invariant Markov kernel.

Compute the incremental weights:

w̃b
(
θib−1, θ

i
b

)
=

πb(θ
i
b−1)

πb−1(θ
i
b−1)

.

end for
Compute the new normalised importance weights:

W i
b =W i

b−1w̃b(θ
i
b−1, θ

i
b)

/
N∑

j=1

W j
b−1w̃b(θ

j
b−1, θ

j
b). (3.18)

if b < B then
Go to step 2.

end if
Output:

{θib,W i
b}Ni=1 ≈ πb with

N∑

i=1

W i
b = 1 (3.19)

a weighted cloud of N samples approximating the distribution πb, for b = 1, . . . , B.



rithm which considers the use of SMC proposal kernels within the MCMC frame-

work. This thus provides high-dimensional proposals. Whiteley et al. (2009) in-

vestigate the use of Particle MCMC algorithms within a CP context which appears

promising. In more general settings than that considered here in which it is not pos-

sible to integrate-out the underlying state sequence, this seems a sensible strategy.

Both the conditional CP distribution method via FMCI in a HMM framework

and SMC samplers are powerful tools in their respective areas. One advantage that

both components share is that the latent state sequence of the underlying MC does

not need to be sampled. It is therefore worth considering whether it is possible to

combine the two components such that both parameter and CP uncertainty can be

considered without the need to sample the underlying state sequence. The next

section presents a methodology in doing so.

3.3 Methodology

In CP problems, the main characteristics of interest are often the posterior prob-

ability of a CP occurring at a certain time, P (τ (kCP) ∋ t|y1:n), and the posterior

distribution of the number of CPs, P (M (kCP) = m|y1:n). The aim of this chapter

is to estimate these quantities which are in light of parameter uncertainty. In par-

ticular, they can be seen as integrating out the model parameters θ from the joint

posterior, and manipulating as follows:

P (τ (kCP) ∋ t|y1:n) =
∫
P (τ (kCP) ∋ t, θ|y1:n)dθ =

∫
P (τ (kCP) ∋ t|θ, y1:n)p(θ|y1:n)dθ,

(3.20)

in the case of the probability of a CP at a specific time t (the CPP). A similar

expression regarding the distribution of number of CPs can be obtained. We focus

on the posterior CPP throughout this section; the distribution of number of CPs

can be dealt with analogously.

Equation 3.20 highlights that we can replace the joint posterior probability

of a CP and model parameters by the integral of the product of two familiar quan-

tities: P (τ (kCP) ∋ t|θ, y1:n), the CP probability conditioned on θ, and p(θ|y1:n), the
posterior of the model parameters. We have shown in Section 3.2.1 that it is possible

to compute exactly P (τ (kCP) ∋ t|θ, y1:n) via the use of FMCI in an HMM setting.

However, it is generally not possible to evaluate the right hand side of Equation 3.20

and so numerical and simulation based approaches need to be considered.

Viewing the integral of Equation 3.20 as an expectation with respect to
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p(θ|y1:n), that is

P (τ (kCP) ∋ t|y1:n) = Ep(θ|y1:n)[P (τ
(kCP) ∋ t|θ, y1:n)], (3.21)

then this reduces the estimation of the distribution of interest to a standard Monte

Carlo approximation of the expectation with respect to drawing samples from p(θ|y1:n),
and standard SMC convergence results can be applied.

Equation 3.21 can be viewed as a Rao-Blackwellised version of the estimator

one would obtain by simulating both the state sequence of the underlying MC and

the parameters from their joint posterior distribution. By replacing this estimator

with its conditional expectation given the sampled parameters, the variance can

only be reduced by the Rao-Blackwell theorem (see, for example, Theorem 7.8 of

Lehmann and Casella (1998)).

Thus, given that we can approximate the posterior of the model parameters

p(θ|y1:n) by a cloud of N weighted samples {θi,W i}Ni=1 via SMC samplers, then by

Monte Carlo results, we can approximate Equation 3.20 and 3.21 by

P (τ (kCP) ∋ t|y1:n) ≈ P̂N (τ (kCP) ∋ t|y1:n) =
N∑

i=1

W iP (τ (kCP) ∋ t|θi, y1:n). (3.22)

The proposed methodology is consequently formed of three stages:

1. Approximate the model parameter posterior p(θ|y1:n) by a cloud of N weighted

samples {θi,W i}Ni=1 via the aforementioned SMC samplers in Section 3.2.2.

2. For each sample {θi}Ni=1, compute the conditional exact CP distribution

P (τ (kCP) ∋ t|θi, y1:n), via the FMCI and HMM framework discussed in Section

3.2.1.

3. To obtain the general CP distribution of interest in light of model parameter

uncertainty, take the weighted average of the conditional exact CP distribu-

tions from step 2 with respect to weights {W i}Ni=1.

A more in-depth procedure of the proposed methodology is displayed in Algorithm

7.

An alternative Monte Carlo approach to the evaluation of Equation 3.20 is

via data augmentation. This involves sampling from the joint posterior distribution

of the model parameters and the underlying state sequence (see for example Chib

(1998); Fearnhead (2006); Fearnhead and Liu (2007)). However, it is not necessary

to sample the entire underlying state sequence under the proposed approach in
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Algorithm 7 SMC algorithm for quantifying the uncertainty in CPs.

Define the following sequence of distributions

πb ∝ p(θ)l(θ|y1:n)γb b = 1, . . . , b

where {γb}Bb=1 is a non-decreasing tempering schedule with γ1 = 0 and γB = 1.
Approximating p(θ|y1:n)
Initialisation: Set b = 1
for i = 1, . . . , N do

Sample θi1 ∼ q1 where q1(θ) is a tractable importance distribution of π1(θ) =
p(θ).

end for
Compute for each i

W i
1 =

w1(θ
i
1)∑N

i=1 w1(θ
i
1)

where w1(θ1) =
p(θ1)

q1(θ1)
. (3.23)

if ESS < T then Resample.
for b = 2, . . . , B do

Reweighting:
For each i compute

W i
b =

W i
b−1w̃b(θ

i
b−1)∑N

i=1W
i
b−1w̃b(θ

i
b−1)

(3.24)

where w̃b(θ
i
b−1) =

πb(θ
i
b−1)

πb−1(θ
i
b−1)

=
l(θib−1|y1:n)γb
l(θib−1|y1:n)γb−1

. (3.25)

Selection:
if ESS < T then Resample.
Mutation:
for each i = 1, . . . , N do

Sample θib ∼ Kb(θ
i
b−1, ·) where Kb is a πb invariant Markov kernel.

end for
end for
Intermediary Output:

πb ≈ {θib,W i
b}Ni=1, b = 1, . . . , B

Obtaining the change point estimates of interest using FMCI
Using,

p(θ|y1:n) ≈ {θiB ,W i
B}Ni=1 ≡ {θi,W i}Ni=1,

compute the CP quantities of interest in light of parameter uncertainty:

P̂N (τ (kCP) ∋ t|y1:n) =
N∑

i=1

W iP (τ (kCP) ∋ t|y1:n, θi) (3.26)

P̂N (M (kCP) = m|y1:n) =
N∑

i=1

W iP (M (kCP) = m|y1:n, θi) (3.27)

where P (τ (kCP) ∋ t|y1:n, θi) and P (M (kCP) = m|y1:n, θi) can be computed exactly
via FMCI.



order to compute the CP quantities of interest, as we can account for it exactly

under the FMCI and HMM framework reviewed in Section 3.2.1. For generic MCMC

strategies, it is typical to sample the underlying state sequence along with the model

parameters and then marginalising to obtain samples from the target distribution

of interest. That is we sample from p(θ, x1:n|y1:n), and then marginalise to obtain

p(theta|y1:n). However, it often difficult to design good MCMC moves to ensure that

the chain mixes well due to the high dimensionality and inherent correlation of the

state sequence. Our methodology has one advantage that we do not need to sample

this underlying state sequence and that we only introduce Monte Carlo error only

on the model parameters. This thus retains the exactness of the CP distributions

when conditioned on model parameters. In addition, parameter estimation can be

performed directly by using the sample approximation of the marginal posterior

distribution of the parameters. This estimation does not require knowledge of the

underlying state sequence and CP characteristics.

Other MCMC sampling strategies which do not require sampling x1:n are

available, such as the Metropolis-Hastings sampler (see Scott (2002) and references

therein for further details), and may thus be an alternative to the SMC samplers

utilised in this thesis. However, these algorithms tend to perform poorly when θ is of

high dimension. We thus advocate the use of SMC samplers over MCMC strategies

along with the other potential benefits discussed earlier.

3.3.1 Approximating the model parameter posterior, p(θ|y1:n)

As mentioned previously, we aim to approximate the model parameter posterior

p(θ|y1:n) via an SMC sampler, defining the sequence of distributions {πb}Bb=1 as

πb(θ) ∝ l(θ|y1:n)γbp(θ), (3.28)

where p(θ) denotes the prior on the model parameters and l(θ|y1:n) is the likelihood.
As the likelihood does not require sampling the underlying state sequence to evaluate

it for a HMM framework, each distribution in the sequence including the parameter

posterior, consequently does not need require sampling this quantity. There is great

flexibility in the choice of non-decreasing tempering schedule, {γb}Bb=1 such that γ1 =

0 and γB = 1, ranging from a simple linear sequence, with γb =
b−1
B−1 for b = 1, . . . , B,

to more sophisticated tempering schedules. We approximate each distribution, πb

with the weighted empirical measure associated with a cloud of N samples, with

the weighted sample denoted by {θib,W i
b}Ni=1. As the weighted cloud of samples

approximating the posterior πB = p(θ|y1:n) is ultimately of interest, we simplify the
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notation by dropping the subscript as follows, {θi,W i}Ni=1 ≡ {θiB ,W i
B}Ni=1

Dependent on the particular class of general HMM considered, the specifics

of the SMC algorithm differ. We partition θ into θ = (P, η) where P denotes

the transition probability matrix and η represents the parameters for the emission

distributions. As P is a standard component in HMMs, we discuss a general imple-

mentation for it within our SMC algorithm. We discuss a specific approach to η,

the emission parameters, for a particular model in Section 3.4.

Intialisation

The first stage of our SMC algorithm is to sample from an initial tractable distri-

bution, π1 = p(θ), either directly or via importance sampling. Following Chopin

(2007), we see no reason to assume a dependence structure between the transition

and emission parameter sets and hence assume prior independence amongst the

emission parameters and the transition probabilities. Consequently,

p(θ) = p(η)p(P). (3.29)

We further assume prior independence amongst the rows of the transition

probability matrix and impose an independent Dirichlet prior on each row:

p(P) =

H∏

h=1

p(ph) (3.30)

p(ph) ∼ DirichletH(αh), h = 1, . . . H (3.31)

where ph = (ph1, . . . , phH) denotes row h of the transition matrix and

αh = (αh1, . . . , αhH) are the corresponding hyperparameters. As HMMs are often

used in scenarios where the underlying chain does not switch states often and thus

there is a persistent nature, we typically assume an asymmetric Dirichlet prior on

the transition probabilities which favours configurations in which the latent state

sequence remains in the same state for a significant number of time periods. We

thus choose our hyperparameters to reflect this. We also note that since P is a

stochastic matrix, there are only H(H − 1) unknown transition probabilities that

need to be estimated.

There is also considerable flexibility when implementing the prior specifica-

tion of the emission parameters η. In the present work we assume that the com-

ponents are independent a priori. Our general approach when choosing priors and

their associated hyperparameters has been to use priors which are not very informa-
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tive over the range of values which are observed in the applications which we have

encountered. The methodology which we develop is flexible and the use of other

priors should not present substantial difficulties if this were necessary in another

context. In the settings we are investigating, the likelihood typically needs to pro-

vide most of the information in the posterior as prior information is often sparse. As

ever, informative priors could be employed if they were available; this would require

no more than some tuning of the SMC proposal mechanism.

By assuming standard distributions for the prior of each component of θ,

this means that we can sample from the parameter prior directly. Consequently,

the importance weights of the associated model parameter samples, {θi1}Ni=1, are all

equally weighted, W i
1 = 1

N
, i = 1, . . . , N . More generally, importance sampling

could be implemented for non-standard distributions: if q1 is the instrumental den-

sity that we use during the first iteration of the algorithm, then the importance

weights are of the form W i
1 ∝

p(θi1)

q1(θi1)
. Regardless of how we obtain this weighted

sample, we have a weighted cloud of N samples, {θi1,W i
1}Ni=1, which approximates

the prior distribution π1 = p(θ).

Approximating πb, given weighted samples approximating πb−1

Having obtained an approximation of distribution πb−1 in terms of a weighted cloud

of samples {θib−1,W
i
b−1}Ni=1, it is now necessary to mutate and re-weight samples such

that it approximates πb. This can be achieved by reweighting, possibly resampling

and then mutating existing samples with a πb-invariant Markov kernel, Kb(θ
i
b−1, ·).

There is a great deal of flexibility in this mutation step — essentially any MCMC

kernel can be used, including Gibbs and Metropolis Hastings kernels, as well as

mixtures and compositions of these.

As in any MCMC setting, it is desirable to update highly dependent compo-

nents of the parameter vector jointly. We update P and η, sequentially. The row

vectors ph, h = 1, . . . ,H can be mutated via a Random Walk Metropolis Hastings

(RWMH) strategy on a logit scale. Mutation of the logit scale ensures that the

sampled values remain within the appropriate domain. In some settings it may be

necessary to block the row vectors together and mutate them simultaneously. This

is discussed in Section 3.4.

Given θib−1, i = 1, . . . , N , it is necessary to re-weight the sample so that

they properly approximate the new distribution πb. The new unnormalised and
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normalised importance weights can be obtained via the equation

wb(θ
i
b) =W i

b−1w̃b(θ
i
b−1) W i

b =
wb(θ

i
b)∑N

i=1wb(θ
i
b)
, (3.32)

where w̃b(θ
i
b−1) =

l(θi
b−1|y1:n)γb

l(θi
b−1|y1:n)

γb−1
by substituting πb−1 and πb into Equation 3.17.

Note that the incremental weights do not depend on the new mutated particle θib,

allowing resampling to be performed before sampling {θib} in the mutation step.

Indeed, it is more intuitive to consider reweighting the existing sample approxima-

tion to target πb, to resample, and then to mutate the sample approximation of πb

according to a πb-invariant Markov kernel.

We have thus obtained a new collection of weighted samples {θib,W i
b}Ni=1

which approximates the distribution πb, by using the existing approximation of

πb−1.

3.4 Results and Applications

The following section applies the proposed methodology of Section 3.3 to simulated

and Econometric datasets. The Econometric dataset analysed is more specifically

the aforementioned Hamilton’s US GNP (Hamilton, 1989) where interest lies in

determining the starts and ends recessions.

Hamilton’s US GNP data can be modelled by Hamilton’s Markov Switching

Autoregressive model of order r, HMS-AR(r) (Hamilton, 1989). The model for the

observation at time t, yt, is defined as:

yt = µxt + at (3.33)

at = φ1at−1 + . . .+ φrat−r + ǫt ǫt ∼ N(0, σ2), (3.34)

where the underlying mean µxt is dependent on the underlying hidden state xt,

and yt is dependent on the previous r observations in an autoregressive manner via

the parameters φ1, . . . , φr. ǫt is additional Gaussian white noise with mean 0 and

variance σ2. The emission density for this model is thus

f(yt|x1:t, y1:t−1, θ) =
1√
2πσ2

exp



−

1

2σ2


at −




r∑

j=1

φjat−j





2
 (3.35)

=
1√
2πσ2

exp



−

1

2σ2


(yt − µxt)−




r∑

j=1

φj(yt−j − µxt−j
)





2
 .
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Note that Yt is dependent on r+1 underlying states of the Markov chainXt−r:t, in ad-

dition to the previous r observations yt−r:t−1. The model parameters to be estimated

under such a model are the transition probabilities, state dependent means, global

precision and AR coefficients, θ = (P, η) = (P, µ1, . . . , µ|ΩX |, λ = 1/σ2, φ1, . . . , φr).

We consider a common Bayesian practice of working with the precision as opposed

to the variance.

In addition to modelling business cycles in Econometrics, HMS-AR(r) mod-

els are also applied in Biology to model functional Magnetic Resonance Imaging

data (fMRI, see (Peng, 2008)). We consider such an application to brain signals

in Chapter 4. A two state HMS-AR(r) is often assumed in modelling Hamilton’s

GNP data (see Hamilton (1989); Aston et al. (2011)) with the two underlying states

corresponding to a “contraction” and “expansion” state. Motivated by the poten-

tial behaviour that can arise from such a model, we consider analysing simulated

data from a two state HMS-AR(r) model in Section 3.4.1, before analysing the

aforementioned GNP data in Section 3.4.2.

3.4.1 Simulated Data

We consider simulated data from a 2-state Hamilton MS-AR model of order 1,

HMS-AR(1). The model parameter vector is explicitly θ = (p11, p22, µ1, µ2, λ, φ1).

We now proceed in discussing a potential implementation for such a model.

Implementation for a 2-state HMS-AR(1)

In the absence of substantial prior knowledge concerning the parameters, we assume

that there is no correlation structure between the emission parameters and thus

assume independence between the emission parameters themselves. Consequently,

we can employ the following prior distributions for the emission parameters:

µ1 ∼N(0, σ2µ1 = 50) µ2 ∼N(−1, σ2µ2 = 50) (3.36)

λ ∼Gamma(shape = 5, scale = 2) φ1 ∼Unif(−1, 1)

Other priors could also be implemented, dependent on one’s belief about the pa-

rameters. The chosen prior distributions respect our belief and the domain of the

parameters. To obtain interpretable results and aid with state identifiability, we

introduce the constraint µ1 < µ2, which can be viewed as specifying a joint prior

distribution proportional to N(µ1; 0, σ
2
µ1
)N(µ2;−1, σ2µ2)1(µ1 ,∞)(µ2) where 1A(x) de-

notes the indicator function on set A evaluated at x. To maintain stationarity within

regimes, we constrain the roots of the AR polynomial to lie within the unit circle;
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that is |φ1| < 1 in this example. In additional, as no information is provided re-

garding the AR parameter, we assume a uniform prior on the interval (−1, 1) for

φ1. This is the default prior as in Huerta and West (1999), and our methodology is

flexible enough to permit non-uniform priors on this interval for φ1 if necessary. In

the case of the AR order being greater than one, the corresponding Partial Auto-

correlation Coefficients (PACs) can be considered in place of the AR coefficients to

maintain AR stationarity.

As mentioned previously in Section 3.3, we assume an asymmetric Dirich-

let prior for the transition probabilities such that transition matrices encouraging

persistent behaviour in states are favoured a priori. Using the benchmark that the

majority of mass should occur in the (0.5, 1) interval similar to that of Albert and

Chib (1993), we employed the following priors in this particular case.

p11 ∼ Beta(3, 1) p22 ∼ Beta(3, 1) (3.37)

We mutate current samples, θ via a RWMH proposal applied sequentially

to component(s) of θ, conditioned on the most recent values of the other other

components (akin to a Gibbs samplers). More specifically the mutation strategy is:

i. Mutate p11, p22 simultaneously via RWMH on a logit scale, with some specified

correlation structure. That is, proposals for the transition probabilities, p⋆11, p
⋆
22

are obtained via:


 l⋆11 = log

(
p⋆11

1−p⋆11

)

l⋆22 = log
(

p⋆22
1−p⋆22

)

 ∼ N




 l11 = log

(
p11

1−p11

)

l22 = log
(

p22
1−p22

)

 ,Σ =

[
σ2p ρp

ρp σ2p

]
 ,

(3.38)

where σ2p is the proposal variance for the transition probabilities, and ρp is a

specified covariance between l11 and l22. This proposal is accepted with the

following acceptance probability

min

{
1,
p(p⋆11)p(p

⋆
22)l(θ

⋆|y1:n)γb |
∏
i,j∈ΩX

p⋆ij |
p(p11)p(p22)l(θ|y1:n)γb |

∏
i,j∈ΩX

pij|

}
, (3.39)

where θ⋆ denotes θ with the proposal p⋆11 and p⋆22, in place.

ii. Mutate µ1, µ2 independently via RWMH on the standard scale. That is, pro-
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posals, µ⋆i are randomly sampled from

µ⋆i ∼ N(µi, σ
2
µ) i = 1, 2, (3.40)

where σ2µ is the specified proposal variance for the means. The corresponding

acceptance probability from this proposal is consequently,

min

{
1,
p(µ⋆i )l(θ

⋆|y1:n)γb
p(µi)l(θ|y1:n)γb

}
(3.41)

where θ⋆ is the proposal model parameter containing the proposal mean µ⋆i .

iii. Mutate λ via RWMH on a log scale. Proposals, λ⋆ are thus sampled via

log(λ⋆) ∼ N(log(λ), σ2λ), (3.42)

where σ2λ is the specified proposal variance for the precision. This is accepted

with probability

min

{
1,
p(λ⋆)l(θ⋆|y1:n)γb |λ⋆|
p(λ)l(θ|y1:n)γb |λ|

}
(3.43)

where θ⋆ is the proposal parameter sample as a result of the proposal precision

λ⋆.

iv. Mutate φ1 by transforming onto the interval (0, 1) and then performing RWMH

on a logit scale. That is, proposals φ⋆1 are obtained as follows,

l⋆ = log

(
φ⋆1 + 1

1− φ⋆1

)
∼ N

(
l = log

(
φ1 + 1

1− φ1

)
, σ2φ1

)
, (3.44)

where σ2φ1 is the proposal variance for the AR parameter. The corresponding

acceptance probability is

min

{
1,
p(φ⋆1)l(θ

⋆|y1:n)γb |(φ⋆1 + 1)(1 − φ⋆1)|
p(φ1)l(θ|y1:n)γb |(φ1 + 1)(1 − φ1)|

}
(3.45)

where θ⋆ contains the proposal AR parameter φ⋆1.

The SMC framework presented above with the proposal kernels Kb on the

sample θib corresponds to the composition of a sequence of Metropolis-Hastings ker-

nels (and the associated backward kernel). We note that the RWMH mutations are

performed on different scales due to the differing domains and constraints of the
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parameters. To ensure good mixing, we mutated the transition probabilities simul-

taneously as we believe that there is a significant degree of a posteriori correlation

between them.

As the values of p11 and p22 are closely related to the probable relative

occupancy of the two regimes, it is expected that for given values of the other

parameters there will be significant posterior correlation between these parameters

(and also between l11 and l22). In the current context, the two values were updated

concurrently using a bivariate Gaussian random walk on the logit scale, with a

positive correlation of ρp = 0.75.

In selecting proposal variances for each group of sub-components, we have

attempted to encourage good global exploration at the beginning, and then more

localised exploration in any possible modes, towards the end of the algorithm and

as we approach the target posterior distribution. This has been implemented by

decreasing the effective proposal variance with respect to the iteration. The initial

proposal variances used for each of the considered components are σ2p = 10, σ2µ =

10, σ2λ = 5, σ2φ1 = 10. We note that these proposal variances are not optimal and

performance would be improved by further tuning (see Roberts et al. (1997) and

related work for guidelines on optimal acceptance rates). However, these convenient

choices demonstrate that adequate performance can be obtained without careful

application-specific tuning.

The following simulated data results, are obtained using 500 = N samples

and 100 = B time steps taken to move from the initial prior distribution π1 = p(θ)

to the target posterior distribution πB = p(θ|y1:n). A simple linear tempering

schedule, γb =
b−1
B−1 , b = 1, . . . , B was used to define the sequence of distributions.

Systematic resampling (Carpenter et al., 1999) was carried out whenever the ESS

fell below T = N/2.

There is evidently a trade-off between the accuracy of approximations to their

target distributions, and computational costs with large values ofN and B leading to

better approximations. The current values were motivated by pilot studies: we found

that essentially indistinguishable estimates are produced when using N = 10, 000

samples.

Results

The following results consider a variety of data where the AR parameter, φ1, varies

in value. We fix however, the underlying state sequence (consequently the CPs)

and the values of the remaining parameters as follows: p11 = 0.99, p22 = 0.99, µ1 =

0, µ2 = 1, λ = 16. We simulate sequences of 200 observations under a variety of
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AR parameter values ranging from 0.5 to 0.9 resulting in the defined CPs becoming

increasing less obvious in their location and number.

Figure 3.4 displays the various simulated time series and the respective under-

lying state sequence together with the CPP plot (left column) and the distribution

of the number of CPs (right column), obtained via our proposed SMC based algo-

rithm. The latent state sequence is common to all of the simulated time series and

is denoted by the dashed line superimposed on the simulated time series plot.

Our CP results consider changes into and out of regime 1 which is that with

smaller mean for at least 2 time periods (kCP = 2 and s = 1). The CPP plots

display the probability of switching into and out of this regime (black solid and red

dotted line respectively). In all simulated time series, there are two occurrences of

this regime, starting at times of approximately 20 and 120, and ending at time 100

and continuing to the end of the data, respectively.

In all three time series considered, our results indicate that our proposed

methodology works well with good detection and estimation for the CP character-

istics of interest. CPPs are centred around the true locations of the starts and ends

of the regime of interest and the general features of the observed time series. The

shape and peaks of the CPPs provide a good indication of potential estimates of the

CP location. The true number of regimes is the most probable in all three of the

time series considered.

As φ1 increases, the distribution of the CP characteristics becomes more

diffuse. This is a result of the data being less informative with respect to the

defined CPs as φ1 increases and the behaviour associated with each regime is less

distinct (see for example the data concerning φ1 = 0.9 at around time 60). This

uncertainty is a feature of the model, not a deficiency of the inferential method,

and it is important to account for it when performing estimation and prediction of

related quantities. The proposed methodology is able to do this.

We also observe that the probability of no CPs is not negligible for φ1 =

0.75 and for φ1 = 0.90 which captures the uncertainty regarding the general CP

configuration. These results illustrate the necessity of accounting for CP uncertainty

in CP estimates.

Table 3.1 displays the posterior means of the model parameter samples ob-

tained via the SMC sampler. These are calculated by taking the weighted average

of the weighted cloud of samples approximating the model parameter posterior dis-

tribution. That is, θ̄ =
∑N

i=1W
iθi. In addition, we provide Monte Carlo estimates

of the posterior standard deviation,
√∑N

i=1W
i(θi − θ̄)2. We observe that the pos-

terior values are reasonably close to the true values used to generate the time series.
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As φ1 increases and consequently the data becomes less informative with respect

to the defined CPs, the estimates are less accurate with greater deviation from the

true values. Nevertheless, we observe that the model parameter posterior has been

reasonably well approximated.

To highlight why capturing the uncertainty of both parameter and CP char-

acteristics is important, we also consider the exact CP distributions obtained by

conditioning on these posterior means. From the corresponding plots in Figure 3.4,

quite different results can be achieved; some of the uncertainty concerning the possi-

ble additional CPs has not been captured (see, for example the two CPP plots when

φ1 = 0.75). The slight nuances around time 150 have not been captured in the CPP

plot under the exact approach compared to the proposed SMC based approach.

This “ironing-out” of the CPP is due to the absence of the parameter uncertainty.

This is reflected in the distribution of the number of switches to the regime of in-

terest where almost all mass is placed on two switches having occurred. Further

possible CP configurations and estimates are thus not captured under the exact CP

approach. This apparently improved confidence could be dangerously misleading in

real applications.

The importance of accounting for parameter uncertainty in CP problems is

successfully illustrated further in the φ1 = 0.75, 0.9 scenarios due to the differences

in CPP plots and CP distributions between the exact approach conditional on the

posterior mean and SMC approach. For φ1 = 0.9, we observe in the exact calcu-

lations that only one switch to the regime of interest is the most probable which

occurs at the beginning of the data, and the second occurrence to the regime is

generally not accounted for. The true behaviour of the underlying system is there-

fore not correctly identified in this instance. Thus obtaining results by conditioning

on model parameters may provide misleading CP conclusions and accounting for

model parameter uncertainty is able to provide an general overview with regards

to different types of possible CP behaviours that may be occurring. The proposed

approach concurs with Bayesian inference in that all inference is based upon the full

posterior distribution where nuisance parameters (the model parameters) have been

marginalised out.

3.4.2 Hamilton’s GNP data

We now return to our Econometric application. Hamilton’s GNP data (Hamil-

ton, 1989) consists of differenced quarterly logarithmic US GNP between 1951:II

to 1982:IV. The data is found to be adequately modelled by a HMS-AR(r) model

where yt represents the logged and differenced GNP data. Of particular interest in
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Figure 3.4: Results on Simulated Data from a HMS-AR(1) model. We consider

a variety of data and display the CPP plots and distribution of number of CP

under our proposed SMC based methodology. Comparisons with the exact CP

distributions conditioned on the posterior mean is also presented.



p11 p21 µ1 µ2 λ φ1

True 0.99 0.01 0 1 16 –

Posterior Means

φ1 = 0.5 0.982

(0.010)

0.086

(0.046)

0.006

(0.033)

0.975

(0.074)

15.314

(1.538)

0.414

(0.073)

φ1 = 0.75 0.958

(0.093)

0.121

(0.123)

-0.057

(1.117)

1.201

(1.666)

14.764

(1.854)

0.731

(0.086)

φ1 = 0.9 0.891

(0.161)

0.190

(0.178)

-0.039

(1.856)

1.718

(2.606)

14.038

(1.916)

0.905

(0.044)

Table 3.1: Estimated posterior means and posterior standard deviations (in paren-

theses) of parameters for the three simulated time series from a HMS-AR(1) model.

this dataset is to identify the starts and ends of business cycles, namely recessions.

CP methods have thus been proposed as a means of determining these recession

characteristics.

Official estimates of recession characteristics are provided by NBER. These

estimates are provided by considering other economical measures such as unem-

ployment rates. There is evidently uncertainty and ambiguity associated with these

recession estimates which needs to be captured. This thus makes the dataset ideal

in applying our proposed methodology. Several existing CP methods have also been

applied to the dataset. Hamilton (1989) determine the starts and ends of recession

by a thresholding method on smoothed probabilities of the underlying state at each

time assuming a HMS-AR(4) model. Albert and Chib (1993) consider an auxiliary

HMM in the spirit of Chib (1998), to sample from the joint posterior of the un-

derlying state sequence and parameters via Gibbs sampling. More recently, Aston

et al. (2011) compute the exact CP distributions conditional on MLE. Some sensi-

tivity analysis of CP results with respect to the conditioned parameters has been

performed in Aston et al. (2011) although as our simulated data results have high-

lighted, it is important to capture the parameter uncertainty more explicitly in CP

results. In addition to quantifying the uncertainty of NBER’s recession estimates,

we are also able to assess the estimates provided by these CP methods under our

proposed methodology.

GNP data and other measures of economical performance are often modelled

as arising from two potential states; “contraction” and “expansion”. In addition,

a dependence structure is typically present in Econometric datasets. Consequently,

a two state HMS-AR(4) is found to be adequate in modelling the GNP data of
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interest, where the underlying state space is ΩX = {“contraction”, “expansion”}
and the autoregressive order is four (Hamilton, 1989). A widely held definition of a

recession to be in progress is two consecutive “contraction” periods. As a result, we

deem a recession to have occurred at time t when there is a run of minimum length

of 2 (=kCP) in the “contraction” (=s) state of the underlying Markov chain.

Figure 3.5 displays the CP results generated under our proposed methodol-

ogy. Similar SMC settings as those in the simulated data section have been utilised:

N = 500 samples, B = 100 distributions, µ1, µ2 ∼ N(0, 10), λ ∼ Gamma(1, 1),

p11, p22 ∼ Beta(10, 1). An arbitrary strong prior for the transition probabilities

has been utilised, namely to reflect a stronger persistent nature in the underlying

MC; switches between “contraction” and “expansion” states and their correspond-

ing regimes do not occur too frequently. As a consequence, we set ρp = 0, that

is, there is no correlation structure between the proposals of the transition proba-

bilities. The tighter mean priors also reflects the range of the data considered. In

particular, Figure 3.5(a) presents a plot of the US GNP data analysed (first panel)

and the CPP plot under an exact MLE and proposed SMC approach (second and

third panel, see Hamilton (1989) for MLE). The CPP plot in particular displays the

probability of a recession starting (black line) and ending (red dotted line) respec-

tively. The grey regions denote the recession periods estimated by NBER. Figure

3.5(b) displays the distribution of the number of recessions under an exact MLE

and proposed SMC approach.

Accounting for parameter uncertainty under the proposed SMC approach

generates promising CP results. The CPPs are still peaked and centred around

NBER’s estimates and the mode of the distribution of the number of recessions is

seven. There is therefore evidence that NBER’s estimates are plausible, although the

uncertainty quantified by the proposed approach also highlights that other recession

configurations are also plausible.

In comparison with an exact MLE approach, we observe that both the CPP

plot and distribution of number of recessions are less peaked and less pronounced un-

der the SMC approach. For example, in the distribution of the number of recessions,

less probability is assigned to six–eight recessions occurring and assigned to other

configurations including zero recessions. The CPP shape has also changed quite

noticeably for the fourth to seventh recession. Such less pronounced behaviour and

different CPP profiles is not surprising since we are accounting for additional uncer-

tainty and therefore potentially highlighting different CP (recession) configurations

under different parameter settings.

Having obtained posterior distributions for the CP characteristics of interest,
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it is now possible to obtain CP estimates which may be more useful in decision

making. There are variety of ways in which estimates can be obtained with any

Bayesian loss function being applicable. We take the mode of the corresponding

distribution as the estimate of the number of recessions, M̂ (the MAP estimates).

The estimate of the CP locations can be obtained by locating the time point at

which at least half of the probability for the uth CP lies. More specifically,

M̂ = arg max
m=0,...,Mmax

{
P (M (kCP) = m|y1:n)

}
, (3.46)

τ̂u = inf

{
t ∈ {u+ 1, . . . , n}

∣∣∣∣P (τ (kCP)
u ≤ t|y1:n) ≥

P (τ
(kCP)
u ≤ n|y1:n)

2

}
u = 1, . . . , M̂ ,

(3.47)

where P (τ
(kCP)
u ≤ t|y1:n) =

∑t
q=1 P (τ

(kCP)
u = q|y1:n), the distribution of the time of

the uth CP. Our recession estimates under the proposed approach are represented

by the blue and green ticks at the top of the CPP plots.

Under such an approach, the estimate of the number of recessions concurs

with NBER’s estimate (that is seven recession is estimated), and estimates of the

start and end of recessions fall near those provided by NBER. The discrepancies

occurring for the final two recessions is a result of the uncertainty and highlighting

another possible recession configuration. The final NBER recession is also estimated

under the proposed approach if an eighth recession is assumed to have occurred

under our estimation procedure.

Sensitivity Analysis

There may be some interest as to how sensitive our CP results are with respect to

the SMC implementation, for example the number of samples considered in approx-

imating distributions and the hyperparameters assumed for the prior distributions.

Figures 3.6 and 3.7 present CP results (CPP plots and distribution of number of

CPs) under different SMC scenarios, namely considering 1000 samples, and more

disperse priors: p11, p22 ∼ Beta(5, 1), µ1, µ2 ∼ N(0, 100) and λ ∼ Gamma(1, 2). We

consider each of these scenarios individually, keeping all other conditions as in the

main GNP analysis presented previously.

We observe that the CPP plots remain largely unchanged under the new

scenarios, with a few subtle changes present. For example, the CPP profile for the

recession around 1980 retains the same shape generally although subtle nuances are

present in all scenarios. Larger discrepancies in CP results are exhibited in the
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Figure 3.5: CP results for US GNP data under the proposed methodology; the data,

CPP plots and the distribution of number of recessions. We also compare results

under an exact CP approach when conditioned on the MLE of θ. The blue and

green ticks represent the estimate of the start and end of recessions, assuming seven

recession (the MAP estimate).



distribution of number of recessions (see Figure 3.7).

The top panel displays the use of 1000 samples in the SMC approxima-

tion; this produces similar results to the original GNP analysis presented and thus

suggests that 500 samples is sufficient in our analysis if the same hyperparameter

settings is used. Consequently, there is no real incentive in considering more sam-

ples in the approximation. More noticeable differences are exhibited under different

hyperparameters settings with new modes being present. The second, third and

fourth panels display the recession distributions if a more diffuse prior is associated

for the transition probabilities, mean and precision. We observe that the general

shape of the distributions remains largely intact compared to the original conditions

considered, with the distributions placing substantial probability on seven to nine

recessions occurring and being centred in this region. However, there is also a no-

ticeable change in the mode of the distribution with nine (transition probability),

zero (mean) and eight (precision) being now being the most probable under the

conditions considered. In the case of the mean scenario where the mode switches

to zero recessions occurring with substantial probability associated with it, this is

suspected to have occurred as the corresponding prior distribution is extremely dis-

perse. The sensitivity of results to hyperparameters reinforces that as in standard

Bayesian analysis, care needs to be taken in choosing prior hyperparameters.

3.5 Conclusion and Discussion

This chapter has proposed a new methodology in which the uncertainty of CP es-

timates has been quantified in light of parameter uncertainty. The methodology

combines two recent approaches in the field of Statistics; Sequential Monte Carlo

samplers and exact CP distributions via Finite Markov Chain Imbedding in a Hidden

Markov Model framework. A Rao-Blackwellised SMC sampler is used to approxi-

mate the model parameter posterior via a weighted cloud of samples without the

need to sample the underlying state sequence. Conditional on these model parame-

ter samples, exact CP distributions can be computed via FMCI without additional

sampling. Consequently, sampling error is introduced only in the model parameters

and less variance is associated with the CP estimate. The methodology is applicable

and flexible such that a wide class of HMM models and different type of changes

can be considered.

Our results have successfully demonstrated good estimation of the posterior

distribution for CP characteristics for both simulated and Econometric data. This

is without the need for significant application specific tuning. In addition, good ap-
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Figure 3.6: CPP plots using a different number of samples and hyperparameter

values in the SMC component of our proposed framework. CPP under original

SMC settings (first panel), 1000 samples used in distribution approximations (second

panel), diffuse transition probability prior (third panel), diffuse mean prior (fourth

panel), and diffuse precision prior (fifth panel).
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Figure 3.7: Distribution of number of recessions using a different number of sam-

ples and hyperparameter values in the SMC component of our proposed framework.

Distributions using 1000 samples in distribution approximations (first panel), dif-

fuse transition probability prior (second panel), diffuse mean prior (third panel),

and diffuse precision prior (fourth panel). Distributions are displayed alongside the

distribution under the original SMC settings utilised in the previous section.



proximation of the model parameter posterior is provided by the SMC framework,

without the need to sample the underlying state sequence or CP characteristics.

Both simulated and Econometric results demonstrate that parameter uncertainty

cannot be safely ignored in CP analysis with other CP configurations being high-

lighted if parameter uncertainty is accounted for and ignoring it can lead to mis-

leading conclusions. For the GNP data analysed, we deem the recession estimates

provided by NBER to be plausible although other configurations are also possible.

There are a number of areas in which the proposed methodology could be

improved and extended. Firstly, the number of underlying states, H, in our HMM is

current assumed known a priori to analysis. This is typically not the case and thus

needs to be accounted for appropriately. Recent work by Robert et al. (2000), Scott

(2002) and Chopin (2007) propose Bayesian methods to account for the unknown

H by approximating the posterior distribution of it via MCMC and SMC methods.

We show in Chapter 5 however, that the presented SMC samplers methodology can

also be used to approximate the posterior of the number of underlying states in a

simple yet effective manner. This is at no additional computational cost if we also

approximate the parameter posterior as performed in this chapter.

In addition, some aspects of the SMC component of this framework could be

investigated further in achieving the best possible sampling performance. This will

be more critical when dealing with large collections of unknown parameters. Areas

to be considered include: using non-linear tempering schedules, optimal choice of

proposal variances, using different MCMC transition kernels, and mutating samples

by blocking correlated sub-components. Nevertheless, the SMC implementation

presented in this chapter provides promising results even under generic settings.

The current definition of a CP presented considers changes into a regime

explicitly, but not changes out of a regime. This poses a slight issue if brief but

unsustained changes in state occur, such that transitions to a new regime do not

occur. For example, in the case of ΩX = {1, 2}, kCP = 2 and runs in all states are

of interest, consider the scenario of Xt−1 = 1,Xt = Xt+1 = 2,Xt+2 = 1,Xt+3 =

Xt+4 = 2. In this case, a CP into regime 2 successfully occurs at time t. There is a

brief change to state 1 at time t+2 but not sustained enough for a CP into regime 1

to have occurred. The underlying chain then returns to state 2 for two time periods

such that under the current definition of a CP, a CP into regime 2 is said to have

occurred at time t+3 also. However, this poses an issue in that a switch to regime 1

never occurred successfully, and thus the change at time t+3 should not be deemed

to be a proper CP. It may therefore be worth accounting for this properly if switches

between regimes as opposed to states are of interest.
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This can be rectified by defining more explicitly a CP out of a regime as

follows:

Definition 4. We say a changepoint-out-of the regime corresponding to state s ∈
ΩX is said to have occurred at time t′ when Xt has not been in state s for k′CP time

periods. That is

Xt′−j 6= s ∀ 0 ≤ j ≤ k′CP − 1. (3.48)

Such a definition can be easily incorporated into the FMCI framework with

the necessary modifications made in how the auxiliary MC transitions between

states. This definition has the advantage that our CP results are not sensitive

to brief unsustained switches in state such as outliers that may occur whilst in a

regime, and in Chapter 6 where frequent but unsustained changes in state (almost

periodic in nature) occur in the time series analysed. The standard change in state

for a termination of a regime can also be recovered by setting k′CP = 1.

A limitation of the modelling employed in this chapter, and in general the

use of HMMs, is that by assuming a time-homogeneous HMM for the underlying

Markov chain, this implicitly imposes a Geometric distribution on the duration of

regime lengths. This may be an unreasonable assumption if segment and regime

lengths do not follow such a distribution. This assumption could be relaxed via the

use of Hidden Semi-Markov models (HSMMs, see Murphy (2002) and Yu (2010)

for introductory overviews). HSMMs have a variety of applications including CP

analysis (Dong and He, 2007) and can be seen as an extension of HMMs such that

associated with each underlying state is information regarding the distribution spent

in the corresponding state. For example, a probability mass function defined over

a probable set duration times based on prior information, could be associated with

the underlying state. For example, existing information and data for durations of

recession and non-recession periods could be embedded via the HSMMs framework.

A wide variety of HSMMs exist, each with different assumptions for the du-

ration distributions and state transitions, for example whether these quantities are

independent of the previous duration spent in the previous state. Variable transition

HMMs where the state transition probabilities are dependent on the state duration,

seem a natural extension since they can be collapsed onto a HMM construction.

One way of observing such a framework is an underlying Markov chain with time

inhomogeneous transition probabilities (Sin and Kim, 1995). This therefore natu-

rally implies the presented FMCI methodology could be employed and lead to a CP

approach in which additional information can be utilised.
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Chapter 4

Quantifying the Uncertainty of

Brain Activity

A Fox entered the house of an actor and, rummaging through

all his properties, came upon a Mask, an admirable imita-

tion of a human head. He placed his paws on it and said,

“What a beautiful head! Yet it is of no value, as it entirely

lacks brains.”

Aesop (from Aesop’s Fables, The Fox and the Mask)

4.1 Introduction

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive imaging technique

used to study and understand brain activity. Such a technique has become one of

the most popular methods in the Neuroimaging community in recent years. Data

collected from a fMRI scan, a series of 3D brain images collected over time, are

extensively used in medical research, for example in investigating the effect of drugs

on specific regions of the brain (for example Minas et al. (2012)), or determining

the connectivity between different regions of the brain (see Friston (2009) for ex-

ample). In answering such questions, a variety of statistical methods are employed

in accounting for the spatial and temporal nature of the data, and several subjects

typically partaking in a single fMRI experiment.

Statistical analysis used to model fMRI data often assumes however that the

exact experimental design is known a priori in that the exact timing of the stimulus

on the response is known (Worsley et al., 2002). However, this is often not the

case, especially for psychological experiments where the exact onset of the stimulus
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on the response is unknown and subjects often react differently to stimulus. The

unknown nature of activation thus needs to be accounted for in analysis. Change-

point (CP) methods have thus been proposed in determining when regions of the

brain are activated and thus the onset timings of the stimulus on the response. The

CPs (activations) effectively act as a latent experimental design for each time se-

ries in such a scenario. Lindquist et al. (2007) propose a CP approach under the

At Most One Change assumption using a control type CP method, similar to the

cumulative sum statistic (CUSUM) as reviewed in Section 2.3. However, multiple

activations in a single fMRI scan can occur and the number of activations and their

timings are inherently subject to uncertainty which are not accounted for explicitly

by this method. There is thus interest in quantifying the uncertainty of these brain

activations.

This chapter applies the method proposed in Chapter 3 to fMRI data from

an anxiety induced experiment initially presented in Lindquist et al. (2007) and

previously displayed in Figure 1.2 (page 6). By considering the proposed Hidden

Markov Model (HMM) based CP method, this allows multiple activations to be

considered and the uncertainty of the activations to be quantified. In addition,

error process assumptions and detrending typically performed in fMRI statistical

analysis can be included within the CP approach which thus provides a unified

approach. We also demonstrate how different assumptions on the error process and

detrending performed influence our analysis and results.

The structure of this chapter is as follows. Section 4.2 provides a brief back-

ground to fMRI in order to appreciate this chapter, in particular the paradigm of

a known experimental design. Section 4.3 details the anxiety induced experiment

from which our fMRI data is collected from. Section 4.4 presents the results of

the dataset considered under the proposed methodology. Section 4.5 concludes this

chapter which details potential paths of further research.

4.2 A Brief Introduction to Neuroimaging and fMRI

Neuroimaging is a discipline within the field of medicine and neuroscience which

provides various non-invasive imaging techniques in studying the structure and be-

haviour of the human brain. The disciple combines research from a variety of areas

of Science including Physics, Biology, Engineering and Statistics. Such imaging

techniques have proven to be intensively useful in answering clinical and medical

research questions in a safe, efficient manner.

Neuroimaging techniques can be categorised into two distinct groups; struc-
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tural and functional imaging techniques. Structural imaging techniques, such as

Magnetic Resonance Imaging (MRI), aims to provide a single 3D image of the brain

in order to examine the structure and anatomy of the brain. Functional neuroimag-

ing in contrast, studies the activity of the brain both spatially and temporally. A

variety of techniques are available, each with their own merits and disadvantages

arising from the logistical and statistical challenges. We focus our attention to a

particular functional neuroimaging technique.

Functional neuroimaging techniques can be further categorised into those

which measure brain activity directly and indirectly via a biological by-product

of brain activity. Electroencephalography (EEG) and Magnetoencephalography

(MEG) fall into the former category and account for brain activity by measur-

ing the electrical and magnetic activity respectively from the surface of the skull.

Such methods provide excellent temporal resolution (data can be sampled at a high

frequency up to milliseconds) but poor spatial resolution (difficulty in identifying

the region of the brain where the signal has arisen from). In contrast, functional

Magnetic Resonance Imaging (fMRI) measures signals associated with the changes

in blood flow due to neuronal activity via the concentration of oxygenated blood,

and thus fall in the latter category. This method provides greater spatial resolution

compared to EEG and MEG, but poorer temporal resolution due to slower rates

associated with brain hemodynamics (changes in blood flow which take a few sec-

onds) and how quickly the data can be collected under physical constraints of the

scanner. Research regarding fMRI studies has exploded considerably in the last two

decades and is the type of data of considered in this chapter. We refer the reader

to Lindquist (2008) and Poldrack et al. (2011) for good overviews of fMRI and the

statistical methods associated with such data.

4.2.1 Data Acquisition

As remarked earlier, fMRI data arises due to the change in concentration of oxy-

genated blood (oxyhemoglobin) which is a consequence of neuronal activity. Thus,

when neurons in the brain become active, they require more oxygen which is supplied

by the blood flow. As a result, the concentration of oxyhemoglobin in the activated

region of the brain decreases. This is known as the hemodynamic response function

(HRF), which describes the behaviour of change in concentration of oxyhemoglobin

over time due to activation. From the blood oxygenation level dependent effect

(BOLD, Ogawa et al. (1990)), oxyhemoglobin and deoxyhemoglobin possess differ-

ent magnetic properties, namely diamagnetic and paramagnetic respectively. By

placing a participant in a magnetic field (an MRI scanner) and examining the small
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changes in magnetic field arising due to the decrease (increase) of oxyhemoglobin

(deoxyhemoglobin) associated with neuronal activity, it is possible to measure brain

activity at different locations and time via this biological by-product. The neuronal

activity is achieved by asking the subject to perform a specific task (a stimulus)

such as responding to certain images or tapping their fingers. This is the essence

of fMRI data acquisition. We refer the reader to Lindquist (2008) and references

therein for more technical descriptions of the data acquisition procedure.

After image reconstruction of an fMRI scan, a series of 3D brain images col-

lected over time is collected per individual. Each image consists of voxels, uniformly

spaced volume elements which partition the brain into equally spaced sized cubes;

this is analogous to pixels in a 2D image. Each voxel corresponds to a specific part

of the brain, with the fMRI signal (the recorded change in magnetic field) over time

at a particular voxel being a measure of the brain activity associated with the voxel.

Regions of the brain, clusters, are a collection of voxels constituting that region.

It is typical for a brain volume to consist of approximately 100,000 voxels under

standard conditions of an fMRI scan (a 64 × 64 × 30 image). The signal from each

voxel over n time periods can be considered as a time series. Thus, one potential

statistical perspective of fMRI data is as a multivariate time series dataset consist-

ing of 100,000 time series. This multivariate time series exhibits correlation both

within individual time series (temporal) and across time series (spatially).

The low temporal resolution associated with fMRI arises from two factors.

Firstly, it takes approximately two seconds to obtain a single full brain volume un-

der the standard conditions of a fMRI scan. We can thus only detect changes in

magnetic field and the corresponding brain activity up to this degree of accuracy.

Secondly, whilst neuronal activity typically lasts for only a few milliseconds, the

HRF can last for up to twenty seconds under the canonical HRF typically assumed

(Grinband et al., 2008). This affects how closely we can identify activation timings,

and ultimately the design of experiments considered with the stimulus being suf-

ficiently separated in time. The data considered in this chapter concerns a block

design stimulus where stimulus is applied over a sustained period. This latter point

should therefore not pose too much of a problem.

Both spatial and temporal correlation exists within the fMRI data with neigh-

bouring voxels behaving similarly to one another (spatial correlation) and measure-

ments collected at nearby time points being possibly correlated (temporal correla-

tion). This correlation structure, and general noise associated with the signal, thus

needs to be accounted for in analysis.
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4.2.2 Preprocessing

Before any statistical analysis can be performed on a time series of 3D brain images,

preprocessing is performed to remove undesired artefacts that may be present from

the scanning session (both associated with the subject and the scanner itself) and

to validate model assumptions to ensure that the data is suitable for statistical

analysis. The various stages of preprocessing are as follows:

Slice Timing Correction Each 3D image of the brain is formed by taking several

2D images of the brain at different slices (parallel planes) of the brain. Each

slice is typically taken sequentially at different times (each separated by a

few milliseconds), and thus the corresponding measurements between each

slice are taken at slight lags. The slice timing correction step thus corrects

for the temporal shift that occurs between each of the sampled slices, and

consequently each slice can be assumed to be taken simultaneously from the

same time point. Such correction is typically performed by interpolation or

the Fourier shift theorem.

Motion Correction It is highly likely that subjects will move their heads whilst

in the MRI scanner during the experiment. Even small amounts of movement

can cause a large amount of error which causes signals from a specific voxel

to be contaminated by signals from neighbouring signals. It is thus neces-

sary to correct for this in order to match the measured fMRI signals to the

corresponding voxels, and remove contamination of signals from neighbouring

voxels. Such correction is performed in two steps: linear transformations of

the series of brain images (namely translations, rotations and scaling opera-

tions) such that it matches a target image, and then interpolating the image

to create new motion corrected voxel values.

In the case of the head movement being too severe such that no amount of

correction will make it viable for analysis, the subject and its corresponding

scan are removed from further analysis.

Coregistration fMRI data is typically of low spatial resolution compared to MRI

data and thus provides little information regarding the anatomical structures

of the brain. For presentational purposes and estimating localisation, it is

therefore common to map fMRI images onto a high resolution structure MRI

image of the brain. This is achieved by coregistration which aligns structural

and functional images via rigid body or affine transformations.
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Normalisation It is common in fMRI experiments for multiple subjects to be

scanned. However, it is highly likely that these subjects have different shaped

and sized brains; it is thus common to map these onto a standardised template

of the brain (for example the Talairach or Montreal Neurological Institute

(MNI) brain (Talairach and Tournoux, 1988)) so that we can consider the

activity from the same regions of the brain between individuals. In addition,

this spatial normalisation provides a consistent manner in which fMRI data

is reported in which fair comparisons between individuals and studies can be

made. This spatial normalisation is performed by non-linear transformations

to match local features of each subject’s brain to the template brain.

Spatial Smoothing It is common to perform spatial smoothing to fMRI data prior

to analysis which removes undesired high frequency behaviour such as noise

artefacts. Spatial smoothing may improve inter-subject registration to the

chosen brain template, blur any residual anatomical differences that may have

resulted from spatial normalisation, to ensure that the assumptions of random

field theory (for spatial analysis corrections) are valid, and to denoise images

such that the signal-to-noise ratio within a region is increased. Smoothing is

typical performed by convoluting the image with a 3D Gaussian kernel, with

the choice of suitable bandwidth being an area of ongoing discussion.

The preprocessing steps outlined above have an obvious effect on the spatial-

temporal correlation structure in the raw fMRI data. The effect of each preprocess-

ing step thus needs to be understood, along with its consequences on the correlation

structure. In addition, it is also necessary to understand the interactions between

the different steps, the order in which they may be performed and its impact on

the resulting data. There is thus considerable potential research in these prepro-

cessing steps and whether they can be included directly within statistical analysis

frameworks (see Lindquist (2008)).

For almost all fMRI scans, slice timing correction, motion correction and

coregistration are performed in order to satisfy the assumptions necessary for sta-

tistical analysis. In addition, the dataset considered in this chapter is of a multi-

subject nature, and thus the data has been normalised between individuals. Spatial

smoothing has not been performed on the data provided, although as we shall con-

sider specific regions of interest (a collection of voxels), we perform this by averaging

over the voxel time series forming the regions.
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4.2.3 Statistical Analysis

Having preprocessed the fMRI data into a suitable format, we can now proceed

in performing statistical analysis and answering questions regarding how certain

stimuli lead to changes in neuronal activity in the brain. This includes locating

the regions of the brain which are associated with certain stimuli, determining the

potential connectivity of regions of the brain with respect to a stimuli, and making

predictions about psychological or disease states of the brain.

However, many challenges are encountered with fMRI datasets. Firstly, de-

spite the intuitive perspective that fMRI data is a collection of 100,000 time series,

the complex nature of the correlation structure and the size of the data both for

individual and group analysis, makes it difficult to construct a complete statistical

model which can account for this type of behaviour fully. A number of simplifications

are thus required in order to balance computational feasibility with model efficiency.

The most common simplification is to consider a massive univariate approach where

each voxel is considered individually and independently from others initially, with

some sort of spatial correction implemented towards the end. This review will focus

on the massive univariate statistical approaches although approaches accounting for

spatial correlation more explicitly are available (see Lindquist (2008) and references

therein).

The measured fMRI signal at a specific voxel for one individual can be de-

composed into three components: the BOLD signal, drift and noise. Consequently,

a commonly assumed model for the fMRI signal is

fMRI signal = BOLD signal +Drift +Noise,

y = ∆µ +Gβ +a,

yt = δ′tµ +g′
tβ +at, (4.1)

where y = (y1, . . . , yn)
′, is a n length column vector containing the fMRI time

series. The BOLD signal comprises of ∆ = (δ1, . . . , δn)
′, a n × k design matrix

which typically denotes whether a stimulus is on-or-off at time t, and µ, is a k

length column vector which denotes the underlying BOLD signal associated with the

corresponding stimulus. The drift component consists of G = (g1, . . . ,gn)
′, a n× d

matrix containing the drift covariates and β is a d length column vector containing

the corresponding drift coefficients. a is a n length column vector corresponding to

the noise associated with the signal.

The fMRI signal typically drifts slowly over time due to scanner instabilities.

Such drift is associated with low frequency behaviour, and thus detrending using a
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high-pass filter is performed, that is removing the low frequency behaviour associated

with drift and retaining the high frequency behaviour of the BOLD signal. Two

common approaches in modelling drift are as a dth order polynomial with respect

to (rescaled) time (polynomial detrending), or as a series of d low frequency cosine

functions (discrete cosine transform basis detrending). More specifically,

g′
tβ =

d∑

b=1

βbt
b polynomial,

g′
tβ =

d∑

b=1

βb

√
2

n
cos

(
bπt

n

)
discrete cosine transform basis.

In order to model the temporal correlation present in the time series yt, a

model is associated with the noise variable at. In contrast to standard time series

analysis however, this noise correlation is specified prior to analysis rather than

being estimated from the data. This prior specification is due to the large number

of time series being considered, and thus estimation is not computationally feasible.

This is despite each time series being considered independently. An autoregressive

model of order r is found to be adequate in capturing the potential autocorrelation

present in the data.

The BOLD response signal is the main underlying signal within an fMRI

signal as it corresponds to the neuronal activity in which we wish to infer. The BOLD

response is typically modelled in terms of the stimuli via a linear time invariant (LTI)

system, where the stimulus acts as the input, and the BOLD response is the output

response function. The LTI system permits the following relationship between the

stimulus and BOLD response; scaling, superposition and time-invariance. Scaling

implies that scaling of the stimuli (the input) by some factor c, causes a scaling

by the same amount in the BOLD response. Consequently, this means that the

amplitude of the measured signal provides a measure of the amplitude of neuronal

activity, and difference between measured signals corresponds to difference between

neuronal activity. Superimposition implies that the response of two different stimuli

corresponds to the sum of their individual responses. Time-invariance implies that

a shift in time for the stimulus corresponds to a shift in the response BOLD signal

by the same amount. These three properties thus allow us to differentiate between

responses in various regions of the brain to multiple closely spaced stimuli.

The assumptions made regarding the BOLD response are crucial to the anal-

ysis when assuming Model 4.1. It is typical to assume that the stimulus function

timings are known and thus the exact form of the experimental design matrix cor-
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responding to the stimulus ∆, is known. In addition, if the HRF behaviour is

assumed known a priori (typically assumed to be canonical), then Model 4.1 reverts

to a multiple regression with known input signal components ∆, and unknown am-

plitudes, µ. Such assumptions lead to the popular general linear model approach

in modelling fMRI signals (Worsley et al., 2002). The model essentially “models

time series as a linear combination of different signal components and tests whether

activity in a brain region is systematically related to any of these known input func-

tion” (Lindquist, 2008). That is, we fit Model 4.1 to y, modelling it as a linear

model using ∆ as the design matrix, and estimating µ. In addition, we test whether

µ is significant, corresponding to association between the stimuli and BOLD re-

sponse, and thus whether neural activation has occurred. Significance results are

represented by a statistical map, a brain image which highlights the voxels in which

µ is found to be significant and thus activation has occurred in that voxel.

This can be further extended into mixed-effects analysis for multi-subject

fMRI analysis. Akin to mixed-effects models in standard statistical analysis, this

allows for two levels of variation; a global level which effects all subjects of the

experiment in a similar manner, and a local level which is specific to that individual.

Such models can thus be used in population level inference, determining whether

the activation of brain regions is generally associated with the stimulus by testing

the significance of the global effects µ.

In accounting for spatial correlation, this is typically accounted post voxel-

wise analysis via the use of random field theory on test statistics. As a result,

this corrects the test statistics computed for an individual voxel and determines the

statistical significance for the entire set of voxels. Methods which do account for

spatial correlation more explicitly in modelling individual voxels have recently been

developed, for example via the use of Markov random fields (see Lindquist (2008)

and references therein).

The statistical methods concerning fMRI data presented above assume that

the timings of the stimulus function are known exactly, such that the structure of the

design matrix ∆ is known exactly. This is a strong assumption and may not always

be the case in experiments, for example in psychological experiments where the

exact onset timing of the stimulus on the BOLD response is unknown. In addition,

there is no reason to assume that applying a stimulus causes an immediate effect

on the BOLD response, with a delay between the two being highly plausible for any

experiment. It is thus necessary to account for the unknown structure of ∆. One

way in which this can be estimated is via CP methods, as proposed in Lindquist

et al. (2007).
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4.3 An Anxiety Inducing Experiment

The data presented in Lindquist et al. (2007) and analysed in this chapter concerns

an anxiety inducing experiment. The experimental protocol, as outlined in Lindquist

et al. (2007), is described below with a graphical representation of the experiment

displayed in Figure 4.1.

The design was an off-on-off design, with an anxiety-provoking speech

preparation task occurring between lower-anxiety resting periods. Par-

ticipants were informed that they were to be given two minutes to pre-

pare a seven-minute speech, and that the topic would be revealed to

them during scanning. They were told that after the scanning session,

they would deliver the speech to a panel of expert judges, though there

was “a small chance” that they would be randomly selected not to give

the speech.

After the start of fMRI acquisition, participants viewed a fixation cross

for two minute (resting baseline). At the end of this period, participants

viewed an instruction slide for 15 seconds that described the speech

topic, which was to speak about “why you are a good friend”. The

slide instructed participants to be sure to prepare enough for the entire

seven minute period. After two minutes of silent preparation, another

instruction screen appeared (a relief instruction, 15 seconds duration)

that informed participants that they would not have to give the speech.

An additional two minute period of resting baseline followed, which com-

pleted the functional run.

The fMRI dataset consists of 215 images where an image is collected every

two seconds. The study features 24 valid fMRI scans from 24 subjects, where scans

involving excessive head motion and other prominent scanner instabilities being

removed from statistical analysis.

Lindquist et al. (2007) propose a Hierarchical Exponential Weighted Mov-

ing Average based CP method (HEWMA) in determining whether regions of the

brain become activated over the course of the scanning period, and estimates of

any potential activation times. A massive univariate based approach is considered

in analysing the entire brain. The Exponential Weight Moving Average approach

(EWMA), is a control type CP method similar to the CUSUM statistic, in that the

EWMA statistic is computed sequentially and compared to a baseline value. That
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Figure 4.1: Graphical representation of the design of the anxiety inducing experi-

ment.

is

zt = λyt + (1− λ)zt−1 t = 1, . . . , n, (4.2)

where λ ∈ (0, 1) is a user specified smoothing parameter. A CP into the activation

regime is deemed to have occurred if the EWMA statistic, zt, deviates sufficiently

(that is exceeds a threshold) from the baseline value. The duration of the activation

period is also estimated by determining when the EWMA statistic returns to baseline

behaviour. The hierarchical aspect is introduced as they test for activations on the

24 subjects simultaneously to obtain a general activation time over all subjects.

In addition, the proposed HEWMA method corrects for the autoregressive error

assumptions used within statistical fMRI analysis.

This methodology does not however easily allow for the incorporation of mul-

tiple activations (CPs) and requires detrending of the data prior to CP analysis (that

is, as a preprocessing step effectively). In addition, the uncertainty of activations is

only captured implicitly under the HEWMA approach via the chosen significance

level of the threshold. As there is ambiguity with respect to the timing of these

activations and the number of them, there is thus interest in quantifying the uncer-

tainty of activation regimes. The methodology proposed in Chapter 3 provides one

approach in doing so.

4.4 Results

The fMRI signal model presented in Model 4.1 can be rewritten in terms of a mod-

ified version of the Hamilton’s Markov Switching Autoregressive model of order r

(HMS-AR(r)) as presented in Equation 3.34 (page 81) with an additional trend

component. More specifically, if ∆ consists of zeroes and ones denoting whether a

stimulus is on or off with only one stimulus being activated at most at time t. Con-

108



sequently µ can be seen as the stimulus dependent BOLD response where we select

the corresponding entry dependent on the stimulus configuration. If an underlying

latent Markov Chain, Xt ∈ ΩX is used to equivalently denote the stimulus config-

uration δt at time t in ∆, then this results in the state dependent BOLD response

µXt . Model 4.1 can thus be re-expressed as,

yt = µXt + g′
tβ + at, (4.3)

at = φ1at−1 + . . . ,+φrat−r + ǫt ǫt ∼ N(0, σ2). (4.4)

As before, g′
t denotes the d known drift covariates (either polynomial or discrete

cosine) at time t, with corresponding d unknown drift coefficients β. Note that

setting β = 0 results in the standard HMS-AR(r) model and assuming that no drift

is present. As the anxiety induced experiment considers an on-off-on design, we

consequently assume a 2-state modified HMS-AR(r) model where the underlying

state space is ΩX = {“resting”, “active”}.
Peng (2008) investigated the uncertainty of brain activation associated with

this dataset, assuming the HMS-AR(r) presented above and conditional on model

parameters. This chapter quantifies the brain activation with respect to model

parameter uncertainty where the unknown parameters,

θ = (p11, p22, µ1, µ2, 1/σ
2, β1, . . . , βd, φ1, . . . , φr), are estimated via the Sequential

Monte Carlo samplers (SMC) methodology presented in Chapter 3. As Chapter

3 has demonstrated, accounting for model parameter is equally important in CP

analysis.

We focus on two specific regions of the brain; the rostral medial pre-frontal

cortex (RMPFC), which is known to be associated with anxiety, and the visual

cortex (VC) which is suspected to show activation behaviour associated with the

presentation of the task-related instructions. The time series from these regions

have been obtained by averaging over the time series from the voxels forming these

clusters. In addition, we are interested in the general activation behaviour of the

experiment across all subjects, and thus consider the averaged time series from each

subject’s cluster signal. These are the time series that shall be considered under our

proposed methodology.

We consider several different models as a result of assuming different AR

orders and performing different types of detrending. This is one of the benefits

of considering the HMM based framework in that it allows model assumptions to

be varied with ease. Firstly, as a baseline comparison, a model with independent

errors (an AR(0) error process) and no detrending is performed. This is shown
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to provide unsatisfactory CP results, which is unsurprising given that changepoint

detection techniques are well known to breakdown in the presence of other forms of

non-stationarity such as linear trends and drift. The analysis then proceeds using

various combinations of polynomial detrending of order three (Worsley et al., 2002)

and discrete cosine basis detrending of order twelve (Ashburner et al., 1999), along

with an AR(1) error model. An AR(1) model for fMRI time series is probably

the most commonly used and is the default in the Statistical Parametric Mapping

(SPM) software (Ashburner et al., 1999) available in the Neuroimaging community.

We deem a region to be activated when there is a sustained change into

the “active” state for at least five time points in the region, thus s = “active” and

kCP = 5. This is equivalent to an activation of at least 10 seconds in real time, which

accounts for the biological behaviour of the HRF. Other values of kCP were also

considered and provided similar results (results not presented here). Similar SMC

settings as those consider in Chapter 3 were employed: N = 500 samples, B = 100

distributions, linear tempering schedule, p11, p22 ∼ Beta(3, 1), µ1, µ2 ∼ N(0, 50),
1
σ2
∼ Gamma(1, 1).

The resulting CP distributions for the two regions of the brain are presented

in Figures 4.2 and 4.3, where we display CPP plots (the probability of an activation

regime starting and ending) and the distribution of the number of activation regimes.

The CP results under the proposed methodology finds significant evidence that there

is at least one CP, and thus activation, in both regions of the brain. This accords

with the HEWMA analysis, where both regions were shown to have a CP, with

the RMPFC region associated with the anxiety stimulus, and VC with the visual

instruction timings. In addition, this concurs with the design of the experiment.

However, quite different CP results are obtained under the different error and

detrending assumptions implemented. For the RMFPC region, if an AR(0) with no

detrending is used, then two distinct changes, one into the activation region and one

out of the activation region are determined. This corresponds to the speech prepa-

ration period when subjects are suspected to experience some anxiety. However, if

an AR(1) model is assumed, with or without polynomial detrending, the return to

baseline is no longer clearly seen, and the series is consistent with only one change

to activation from baseline during the scan. Little difference is seen with the type of

detrending, but considerable differences occur depending on whether independent

errors are assumed or not. A little extra variation is found in the CP distribution if

a discrete cosine basis is used, but this is likely due to identifiability issues between

the cosine basis and the CPs present.

On examining the regions of the VC, the choice of detrending is critical. If
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Figure 4.2: Changepoint analysis results for the RMPFC region of the brain with

respect to different order models and detrending. This region is associated with

emotions such as fear and anxiety.



a suitable detrending is assumed, in this case a discrete cosine basis trending, a

clear CP distribution with multiple CPs is found, corresponding directly to the two

visual instructions presented to subjects. However, if no or a small order polyno-

mial detrending is used, the CP distributions associated with the visual stimuli are

masked. It is also noticeable that the assumption of an AR(1) error process increases

the inherent variability in the CP distribution.

It is typical to assume and fix the AR coefficient associated with the noise

model in analysis. Consequently, we also consider fixing the AR error process coeffi-

cient to φ1 = 0.2 as featured in the SPM software (Ashburner et al., 1999). The CP

results (not presented) contain features present in both results AR(0) and AR(1)

analysis with more peaked and centred CP probability features compared to the

presented AR(1) results. This is not surprising since less uncertainty is present by

fixing the value of the AR parameter.

4.5 Conclusion and Discussion

This chapter has applied the HMM-based changepoint method presented in Chapter

3 on fMRI data in quantifying the uncertainty of brain activity. This is an important

aspect of statistical analysis regarding fMRI data as the experimental design is often

assumed known with the exact timings of the stimulus on the BOLD response being

known a priori. This is a strong assumption and is typically not the case, especially

for psychological experiments such as those considered in this chapter. CP methods

have thus been proposed in estimating the timings regarding the experimental design

(Lindquist et al., 2007). In addition, these timings are subject to uncertainty with

subjects reacting differently to the stimuli which thus needs to be accounted for. The

proposed HMM-based CP approach thus provides one way of both estimating and

accounting for the uncertainty regarding the unknown timings. The results under

the proposed methodology concur with the activation results of other CP methods

and the general design of the experiment.

The proposed methodology also provides a unified framework in which dif-

ferent assumptions regarding scanner instabilities can be made, namely the assump-

tions of the drift model and error process. Such assumptions are typically consid-

ered as a preprocessing step and to be known and fixed in other methods such as

Lindquist (2008). Typical statistical analysis assuming a known experimental design

are found to be robust to such assumptions (Worsley et al., 2002). However, these

assumptions are found to be highly influential on our CP results. A misspecification

of the drift model produces CP results which identify the expected CPs according
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Figure 4.3: Changepoint analysis results for the VC region of the brain with respect

to different order models and detrending. This region is associated with visualisa-

tion.



to the design of the experiment, although variation does exist between the different

models assumed. Not accounting for potential autocorrelated error provides more

noticeable discrepancies with underestimation of the uncertainty associated with the

CPs and thus the underlying experimental design. Care is therefore required when

analysing time series arising from experimental design such as fMRI experiments.

There are various areas of potential further research associated with the

anxiety induced fMRI data and other fMRI datasets with unknown experimental

design. As the CP results are sensitive to the error process structure assumed,

further investigation on such an influential factor is worth pursuing. Autoregressive

orders which capture the autocorrelation induced by physiological artefacts such as

heart beats and respiration should thus be investigated.

We have thus far considered two specific regions of the brain and performed

independent analysis on them. However, analysis regarding the entire brain is often

of interest and thus worth further investigation. In addition, it may be advan-

tageous to exploit the spatial correlation present in the brain in producing more

efficient methodologies. For example, rather than performing the SMC samplers for

each cluster of interest, it may be possible to perform the SMC samplers algorithm

at a fewer number of clusters and to “borrow” model parameters samples generated

under the algorithm for different clusters. This “borrowing” scheme is determined

via the spatial correlation and could be implemented via the use of Markov Ran-

dom Fields (Chellappa and Jain, 1991), similar to Woolrich et al. (2005). Such a

framework would thus allow us to capture both the temporal and spatial correlation

structure which is inherently present in fMRI data.

This chapter has considered analysis on a single fMRI signal at a specific re-

gion of the brain which has been obtained by averaging over the fMRI signals from

each subject of the experiment at the corresponding region. However, it seems waste-

ful to reduce the data in such a way and although we have provided a global estimate

of the potential underlying experimental design, subjects often react differently to

stimuli and it is thus worth investigating the experimental design corresponding to

individual subjects. There are two potential paths in which this can be considered.

Firstly, similar to the analysis presented in this chapter, we apply our HMM-

based CP methodology to each subject’s fMRI signal, independently of each other.

We consequently have a set of J CP results for each of the J subjects involved in

the experiment. To infer the global experimental design, these J CP results could

then be combined and summarised in some way such that the variation between

individual’s experimental designs could also be captured.

The second approach is to assume some sort of hierarchical structure is

114



present, a common approach as in other multi-subject experiments (see Lindquist

(2008)). Here, it seems intuitive to assume a two level structure; a global level which

represents how all subjects will generally react to the stimuli, and an individual spe-

cific level which models how individuals uniquely react to the stimulus. A potential

model would thus be

yjt = δ′tµ+ v′
jtηj + g′

tβ + ajt j = 1, . . . , J, (4.5)

where v′
jtηj denotes the specific BOLD response for individual j. Such a model may

thus also allow us to capture the inter variability between subjects and their exper-

imental designs. Chapter 6 proposes a methodology which considers changepoints

in a multivariate time series setting which may be feasible in this multi-subject

context.
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Chapter 5

Model Selection for Hidden

Markov Models

Statisticians, like artists, have the bad habit of falling in

love with their models.

George E. P. Box

5.1 Introduction

The Hidden Markov Model (HMM) based changepoint methods considered in this

thesis have assumed that the number of underlying states, H, is known a priori to

analysis. This assumption is made for the majority of the modelling and inference

methods regarding HMMs such as estimating the underlying state sequence (Viterbi,

1967) and parameter estimation (Baum et al., 1970). However, this is often not the

case when presented with time series data, where the number of underlying states

is unknown.

Assuming a particular number of underlying states without performing any

statistical justification can sometimes be advantageous if the states correspond di-

rectly to a particular phenomena. For example in the Econometric GNP analysis

(Hamilton, 1989) considered throughout this thesis, two states are often assumed

a priori, “Contraction” and “Expansion”, due to the interest in recessions which

are defined as two consecutive “contraction” states in the underlying state sequence

(Shiskin, 1974). Without such an assumption, this definition of a recession and the

conclusions we can draw from the resulting analysis may be lost.

However, it may be necessary to assess whether such an assumption on the

number of underlying states is adequate, and typically, we are presented with time
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series data for which we are uncertain about the appropriate number of states to

assume. This chapter concerns model selection for HMMs when H is unknown.

Throughout this chapter, we use “model” and the “number of states in a HMM”

interchangeably to denote the same statistical object.

Several methods for determining the number of states of a HMM currently

exist; Section 5.3 provides a review of some of these methods. Bayesian methods

appear to dominate the model selection problem of interest, and quantify more ex-

plicitly the model uncertainty by providing approximations of the model posterior

distribution. These approximations are often obtained by jointly sampling the pa-

rameter and underlying state sequence, and marginalising as necessary to obtain the

desired distribution. However, sampling the underlying state sequence can be par-

ticularly difficult due to its high dimension and correlation, and reduces statistical

efficiency if the state sequence is not of interest. Alternative sampling techniques

may thus be more suitable if they can avoid having to sample the state sequence.

This chapter proposes approximating the model posterior via the use of paral-

lel Sequential Monte Carlo (SMC) samplers, where each SMC sampler approximates

the marginal likelihood and parameter posterior conditioned on the number of states

as previously considered in Chapter 3. These approximations are combined to ap-

proximate the model posterior of interest. One major advantage of the proposed

methodology is that the underlying state sequence is not sampled and thus less

complex sampling designs can be considered. We demonstrate in this chapter that

the simple yet effective SMC sampler approach works well even with simple, generic

sampling strategies which do not require application specific tuning. In addition,

if we are already required to approximate numerous model parameter posteriors

conditioned on several different number of states (as would be the case for sensi-

tivity analysis, for example), the framework requires no additional computational

effort and leads to parameter estimates with smaller standard errors than competing

methods.

The structure of this chapter is as follows: Section 5.2 fixes terminology and

notation used within the HMM literature and within this chapter. Section 5.3 pro-

vides a brief review of existing model selection methods concerning HMMs. Section

5.4 outlines the proposed method. Section 5.5 applies the proposed methodology

to both simulated data and the Econometric GNP example considered throughout

this thesis. Section 5.6 concludes the chapter.
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5.2 Background

Let us consider the HMM setup and notation as defined in Sections 2.12 and 3.2

(page 35 and 58 respectively). We are still interested in general finite state HMMs,

however we now make it explicit that these models are conditioned on H underlying

states being present. Without loss of generality, we assume ΩX = {1, . . . ,H},H <

∞ with H being known a priori before inference is performed. Consequently, the

emission and transition equations are rewritten as follows.

yt|y1:t−1, x1:t ∼ f(yt|xt−r:t, y1:t−1, θ,H) (Emission)

p(xt|x1:t−1, y1:t−1, θ,H) = p(xt|xt−1, θ,H) t = 1, . . . , n (Transition). (5.1)

The use of HMMs allows us to compute exactly the likelihood l(θ|y1:nH),

via the use of the Forward-Backward algorithm (Baum et al., 1970), such that the

underlying state sequence is accounted for exactly and does not need to be sampled.

In dealing with unknown θ, the model parameters of the assumed HMM, a

maximum likelihood point estimate can be obtained via the Expectation-Maximisation

algorithm (Baum et al., 1970) or a Bayesian approach can be employed which consid-

ers the model parameter posterior conditioned on there being H states, p(θ|y1:n,H).

This is typically a complex distribution which cannot be sampled from directly, with

numerical approximations such as Monte Carlo methods being utilised. Approaches

include MCMC (see for example Scott (2002) and Chib (1998)) and Sequential

Monte Carlo algorithms such as Sequential Monte Carlo samplers (SMC, Del Moral

et al. (2006)) as demonstrated in Chapter 3. We redirect the reader to Section 3.2.2

(page 67) for the relative merits of these two approaches. In addition to sampling

from a sequence of connected distributions {πb}Bb=1 via SMC samplers, the sequence

of normalising constants, {Zb}Bb=1 associated with these distributions can also be

approximated in a natural way.

5.3 Literature Review

Standard model selection approaches via maximum likelihood and Akaike’s and

Bayesian Information Criteria are not suitable for HMMs as it is always possible

to optimise these criteria via the introduction of additional states. In addition,

information criteria methods have not been theoretically justified in the context of

HMMs (Titterington, 1984). We begin by reviewing Mackay (2002), a frequentist

information theoretic approach, before proceeding to Bayesian methods (Scott, 2002;

Robert et al., 2000; Chopin, 2007) which dominate the literature. However, such
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Bayesian approaches often require sampling the underlying state sequence which

may not be necessary for the problems of interest, and difficult to perform due

to their high dimensionality and inherent correlation. A more efficient Bayesian

methodology which can avoid sampling the additional nuisance state sequence is

thus of interest.

5.3.1 An Information Theoretic Approach

In light of the limitations of model selection via maximum likelihood and information

criteria, Mackay (2002) proposes an information theoretic approach which yields a

consistent estimate of the number of underlying states in addition to the model

parameters. This is achieved by minimising the penalised distance function. For

a k-dimensional process consisting of (Yt, . . . , Yt+k−1) for t = 1, . . . , n − k + 1, the

penalised distance for the distribution of the process {Yt}n−k+1
t=1 is defined as,

D(F̄ kn , F
k) = d1(F̄

k
n , F

k)− cn
H∑

i=1

logP (Xt = i), (5.2)

where F̄ kn is the k-dimensional empirical distribution function,

F̄ kn (y1, . . . , yk) =

∑n−k+1
t=1 1(Yt ≤ y1, . . . , Yt+k−1 ≤ yk)

n− k + 1
, (5.3)

P (Xt = i) is the stationary distribution of {Xt}, and cn is a sequence of positive

constant such that cn → 0. k is chosen based on identifiability conditions as dis-

cussed in Mackay (2002), and is also chosen to be as small as possible to minimise

the computation burden of the methodology. Mackay (2002) utilises k = 2Hmax

where Hmax is an upper bound of the number of underlying states. d1 is assumed to

be the Kolmogorov-Smirnov distance, where for distribution functions F1 and F2,

d1(F1, F2) = sup
y
|F1(y)− F2(y)|.

The intuition of Equation 5.2, is that as H →∞, that is there are more underlying

states, then there are more invariant probabilities P (Xt = i) which are closer to

zero, and consequently
∑H

i=1 logP (Xt = i) tends to minus infinity. As a result,

the distance between the two distributions is penalised more for the introduction of

these unnecessary states.

By minimising the penalised distance function presented in Equation 5.2,

Mackay (2002) shows that consistent estimates of the number of underlying states

119



and the model parameters can be obtained simultaneously, under mild conditions

regarding the HMM (see (Mackay, 2002, Section 2) for further details).

This frequentist approach appears to work well, although Mackay (2002)

highlights that global minimisation of Equation 5.2 can never be guaranteed which

is critical to the parameter estimates. More importantly, the choice of penalisation

constants cn is highly influential on the estimate of H, with tuning on these abstract

parameters being required. The mild conditions required for the consistent results

are generally applicable for simple HMMs (those in which the emission density is

only dependent on the underlying MC and not previous observations), although may

not be satisfied for the general finite state HMMs also of interest in this thesis. In

general, the uncertainty regarding the number of states is implicit, relying on the

use of asymptotic arguments in obtaining the consistency results which may not be

appropriate for time series of short length.

5.3.2 Parallel Markov Chain Monte Carlo

Scott (2002) proposes the use of a parallel Gibbs sampler in approximating the model

posterior, stemming from the fact that the parameter posterior, conditional on the

number of states, can be approximated via a Gibbs sampler. The parallel nature

of the methodology arises from the fact that the approximation of each conditional

parameter posterior can be performed independently of each other, and thus in

parallel.

The methodology assumes that the number of underlying states is from a

finite set, that is H ∈ {1, . . . ,Hmax}. Scott (2002) remarks that the use of the

upper bound Hmax, is a mild restriction. Hmax can be set to n, the length of

the time series considered, such that each observation has its own state. However,

in combination with an uninformative uniform prior over 1, . . . ,Hmax, this does

not lead to a parsimonious statistical model, and leads to estimation instabilities.

Consequently, Hmax ≪ n is a recommended choice.

Let θ = (θ1, . . . , θHmax) where θH denotes the model parameter θ associated

with the HMM assuming H states. Consequently, p(y1:n|θ,H) ≡ p(y1:n|θH ,H). It

is assumed that θ1, . . . , θHmax are conditionally independent given H, and conse-

quently,

p(θ,H) = p(H)

Hmax∏

H=1

p(θH), (5.4)

where p(H) is a model prior. This property also transfers to the posterior distri-
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bution in that θ1, . . . , θHmax are conditionally independent given y1:n and H. That

is,

p(θ|y1:n) =
Hmax∏

H=1

p(θH |y1:n,H). (5.5)

Each conditional parameter posterior p(θH |y1:n,H) can be sampled from via an

individual Gibbs sampler, and due to the conditional independence, these samplers

can be performed in parallel. These conditional samples can then be collated to

form a sample of θ. Sampling from each posterior p(θH |y1:n,H) requires sampling

the underlying state sequence x1:n, in addition to the model parameter θH . We refer

the reader to Scott (2002) for further details regarding the Gibbs sampler procedure.

A Monte Carlo approximation of p(H|y1:n) is thus obtained as follows:

p(H|y1:n) =
∫
p(H|y1:n, θ)p(θ|y1:n)dθ (5.6)

= Ep(θ|y1:n)[p(H|y1:n, θ)] (5.7)

≈ 1

N

N∑

i=1

p(H|θi, y1:n) =
1

N

N∑

i=1

p(y1:n|H, θiH)p(H)
∑Hmax

h=1 p(y1:n|H = h, θih)p(H = h)
(5.8)

where {θi = (θi1, . . . , θ
i
Hmax)}Ni=1, are N samples from p(θ|y1:n) obtained via the

parallel Gibbs sampler framework outlined above.

Scott (2002) discusses that computing p(H|y1:n) via MCMC is an improve-

ment over the BIC which provides an asymptotic approximation to log p(H|y1:n),
and assumes a uniform prior over the models in this approximation. As the Monte

Carlo approximation provides a more explicit approximation compared to asymp-

totic approximations which may not be satisfied in short time series, this is one

advantage of Bayesian methods. Explicit approximation thus avoids over penalisa-

tion associated with BIC in small sample cases and greater control over the model

prior. However, as with any other MCMC algorithm, this methodology also requires

careful sampling designs such that we can ensure that the sampling MC is mixing

well in the sample space and certainty that convergence has been reached for the

sampling MC.

5.3.3 Reversible Jump Markov Chain Monte Carlo

A reversible jump Markov chain Monte Carlo (RJ-MCMC, Green (1995)) frame-

work seems natural for such a model selection problem where the parameter space

varies in dimension. RJ-MCMC are extensively used in model selection for mixture
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distributions (see Frühwirth-Schnatter (2005) and references therein), and in turn,

they can also be applied to HMMs (Robert et al., 2000) where the sample space

varies in dimension with respect to the number of underlying states assumed. This

is an example of Variable-Dimension Monte Carlo as discussed in Scott (2002).

A fundamental concept of the RJ-MCMC is that the sampling MC needs to

be able to move between the spaces of varying dimension, in addition to the moves

within spaces of the same dimension size. This mechanism for moving between

spaces is achieved by one-to-one transitions, for example by split and combine moves,

where a state is broken into two states, and two states are merged to form a single

state respectively. Consequently, this forms one of the steps of the MCMC sampling

algorithm for this methodology.

Robert et al. (2000), present the RJ-MCMC based methodology for Gaus-

sian Markov Mixture models such that only the variances are state dependent and

the means are zero. However, they remark that the methodology is applicable for

other distributions. The objective of the methodology is thus to sample from the

conditional joint posterior density

p(ξ,H,P, x1:n, σ, |y1:n) = p(ξ|y1:n)p(H|y1:n)p(P|H, δ)p(σ|H, ξ),

where ξ is a hyperparameter for standard deviations σh, such that σh ∼ Unif(0, ξ).

Similar to Scott (2002), H the number of underlying states, is assumed to be from

the finite set {1, . . . ,Hmax}. P denotes the H × H transition matrix, where δ

denotes the associated hyperparameter assuming a Dirichlet prior distribution. A

single iteration of the MCMC algorithm is as follows:

(a) Update the transition probability matrix P.

(b) Update the standard deviations σ = (σ1, . . . , σH).

(c) Update the underlying state sequence x1:n.

(d) Update the hyperparameter ξ.

(e) Either split an existing state into two, or merge two states into one.

(f) Consider the birth or death of an empty state, a state in which no observations

have been allocated to it.

We refer the reader to Robert et al. (2000) for specific details of the algorithm.

(a)-(d) are performed via a Gibbs move, whilst (e) and (f) are complex Metropolis-

Hastings steps which allow for the number of underlying states to increase or de-

crease by one. The split-combine move works by splitting a randomly selected single
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state with probability bh, and combining a randomly selected adjacent pair of states

with probability dh = 1− bh. Under the conditions presented, d1 = bHmax = 0 natu-

rally, and Robert et al. (2000) implement bh = dh = 0.5 for h = 2, 3, . . . ,Hmax−1. As
part of the split-combine move, all parameters and the state sequence, are modified

accordingly in a systematic manner (and random for the case of splitting case). An

acceptance probability is then computed to determine whether the move is accepted

or rejected or not, and in turn whether it is beneficial in modelling the observed

time series.

For the birth-death move, a birth and death action are selected at random

with probabilities bk and dk respectively. As the death action is only performed on

empty states, this action involves deleting the corresponding parameters associated

with the deleted state and re-normalising the transition matrix. The underlying

state sequence remains unchanged. The birth action involves creating a new empty

state which is not associated with any of the existing states in comparison to a split

move, with the associated parameters being drawn from the prior distributions. An

acceptance probability is also computed for the birth-death move in determining

whether such a move accepted or not.

An approximation of the model posterior of interest, the model posterior

p(H|y1:n), can then be obtained by marginalisation. However, RJ-MCMC is often

computationally intensive and care is required in designing moves such that the

sampling MC mixes well both within model spaces (same number of states, dif-

ferent parameters) and amongst model spaces (different number of states). These

disadvantages mainly arise from the moves between model spaces which often lead to

lower acceptance rates, and the need to sample the underlying latent state sequence,

a high dimensional latent vector exhibiting correlation. In addition, RJ-MCMC is

typically more unstable compared to standard MCMC algorithms, and it is typically

more difficult to assess whether convergence has been reached (see Fearnhead (2006)

for example).

5.3.4 Sequential Hidden Markov Model

Chopin (2007) proposes a model selection methodology which reformulates the

HMM framework such that SMC can be used in approximating the model pos-

terior by re-expressing the problem as a filtering problem. The reformulation of the

HMM framework replaces the underlying Markov chain with an augmented hidden

Markov chain X̃t = (ht, xt), where xt represents the current state of the underlying

MC as before, and ht is a new variable which denotes the number of unique states

that have appeared up to time t. The augmented Markov chain has the following
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construction, for i, j ∈ ΩX :

X̃1 = (h1, x1) = (1, 1)

p(xt+1 = j|xt = i, ht = h) =





pij if i, j ≤ h ≤ H;∑H
j=i+1 pij if i ≤ j = h+ 1 ≤ H;

0 otherwise.

(5.9)

ht+1 = max(ht, xt+1)

The state dependent emission density remains unchanged, being dependent only on

xt at time t as in the standard HMM. Equation 5.9 can be seen as sequentially

relabelling the states with respect to the order in which they appear: at time t with

X̃t = (ht, xt) = (h, x), the chain can either return to a previously visited state l for

l ≤ h with probability pxl, or alternatively jump to a new state with probability∑H
l=h+1 pxl. In the latter case, ht+1 = h+ 1 to denote that a new unique state has

been visited; otherwise in the former case ht+1 = h to represent that no new state

has been visited. The transition matrix associated with this new HMM formulation

is denoted by P̃. Chopin (2007) show that this new reformulation is equivalent

to the original HMM as presented in Equation 5.1 and alleviates the problem of

state identifiability as the states are labelled as observed in the data sequence. It

is this sequential reformulation of the HMM framework that gives rise to the name

of the approach, Sequential HMM. Under this method, the transition probabilities

and emission parameters to be estimated are the same as those in Equation 5.1 (the

original HMM), but model selection inference is performed via the augmented HMM

highlighted in Equation 5.9 by inferring on the X̃t = (Ht,Xt). This latter point is

one of the key differences between the SHMM method and those reviewed thus far.

Having reformulated the HMM framework as follows, SMC can then be em-

ployed in estimating filtering probabilities such as p(x̃t|y1:n,H), and the model pos-

terior p(H|y1:n). An outline of the SMC based algorithm is as follows:

Step 1 Initialisation: For b = 1, draw N independent samples of (H, θ) from the

prior p(H, θ). This is performed by assuming the following prior structure,

p(H, θ) = p(H)p(θ|H) (5.10)

p(H) ∼ Unif({1, . . . ,Hmax}) (5.11)

p(θ|H) =
H∏

h=1

p(ηh)
H∏

h=1

Dirichlet((ph1, . . . , phH)|αh), (5.12)

where ηh are the state-dependent emission parameters, and αh are hyperpa-
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rameters associated with the transition probabilities (ph1, . . . , phH).

Let {H i, θi}Ni=1 denote the N samples drawn independently from the prior.

Set the associated importance weights to W i
1 = 1

N
for all samples i =

1, . . . , N .

Step 2 Reweight: Set b = b+1, compute the new importance weights for iteration

b.

W i
b =

W i
b−1p(yb|y1:b−1, θ

i)
∑N

j=1W
j
b−1p(yb|y1:b−1, θj)

for all i = 1, . . . , N. (5.13)

Step 3 Resample-Move: If ESS = 1∑N
i=1W

i
b

< T = N
2 , then resample particles

{θi}Ni=1 according to their weights {W i
b}. Let {θ̂i}Ni=1 denote the resampled

particles, and reweight with weights W i
b =

1
N
.

Mutate resampled particles with respect to some Markov kernel Kb(·, ·) with
invariant distribution p(θ|y1:b). That is

θi ∼ Kb(θ̂
i, ·) i = 1, . . . , N. (5.14)

A suitable choice of Kb(·, ·) is the Gibbs sampler for the Sequential HMM.

This involves sampling iteratively from the full conditionals regarding the

latent state sequence X̃1:n, the transition matrix P̃, and the emission pa-

rameters (η1, . . . , ηH).

Step 4 Positive Discrimination: Compute

p(H|y1:b) ≈ p̂H,b =
∑

i:Hi=H

W i
b . (5.15)

For each H ∈ {1, . . . ,Hmax} such that p̂H,b < ρ, where ρ ∈ (0, 1) say ρ = 0.1,

resample ρN particles from the sub-population of particles corresponding to

model H. Reweight these resampled particles with importance weights
p̂H,b

ρ
.

To retain N samples throughout the duration of the algorithm, resample

N −κρN particles from the remaining samples present in the system, where

κ denotes the number of models subjected to the positive discrimination

mechanism outlined above. Reweight these completion resample particles

with importance weights 1
N
.

Step 5 If b < n, then go to step 2. Else, terminate the algorithm.

The resample-move and positive discrimination steps are implemented in
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order to avoid the weight degeneracy issue common in all SMC algorithms. In

particular, the positive discrimination mechanism avoids particles associated with

larger values of H becoming extinct before there is enough data to be associated to

H states.

Equation 5.13 provides the weights of the samples such that the weighted

cloud of samples {θi,W i
b}Ni=1 approximates the distribution π̃b = p(θ|y1:b,H).

p(yb|y1:b−1, θ,H) denotes in particular, the likelihood of the observation yb, for pa-

rameter value θ and given y1:b−1. This is computed iteratively using the forward

recursion of HMMs as outlined in the Appendix of Chopin (2007). Note that this

sequence of distributions is different to that proposed in Chapter 3 and in this chap-

ter, which is with respect to all observations being present and a tempering schedule

on the likelihood. That is πb ∝ l(θ|y1:n,H)γbp(θ|H), where {γb}Bb=1 is some non-

decreasing tempering scheme on the likelihood. Whilst the final distribution under

both tempering schedules will both be the same parameter posterior p(θ|y1:n,H),

the data tempering scheme of Chopin (2007) naturally facilitates online estimation

and applications.

Chopin (2007) remark that the SMC based algorithm compares favourably to

MCMC based algorithms in terms of computational cost. However, they stress that

one of the main advantages of such SMC based algorithms is that there is greater

robustness compared to MCMC algorithms (one can be confident about the results

if several different runs of the algorithm lead towards the same results and conclu-

sions), and there is less concern about whether the algorithm has converged under

the mixture setting of interest. However, this SMC based methodology also requires

sampling the underlying state sequence which can often be difficult to perform since

it is typically of high dimension and highly correlated.

5.4 Methodology

Similar to the approaches of Robert et al. (2000); Scott (2002); Chopin and Pelgrin

(2004); Chopin (2007), we take a Bayesian model selection approach in determining

H, the number of underlying states in a HMM. That is, we approximate p(H|y1:n),
the posterior over the number of underlying states for a given realisation of data

y1:n (the model posterior). In addition, similar to these approaches, we assume a

finite number of states, H ∈ {1, . . . ,Hmax}, where Hmax ≪ n in order to obtain

stable estimates. Some methods, for example the Infinite HMM proposed in Beal

et al. (2002), place no restriction on Hmax via the use of a Dirichlet process based

methodology. However, this also requires sampling the underlying state sequence
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via Gibbs samplers and requires approximating the likelihood via particle filters,

neither of which is necessary under the proposed approach.

Via Bayes’ Theorem, the model posterior of interest can be re-expressed as

follows,

p(H|y1:n) ∝ p(y1:n|H)p(H) (5.16)

=
p(y1:n|H)p(H)

∑Hmax

h=1 p(y1:n|H = h)p(H = h)
(5.17)

where p(y1:n|H) denotes the marginal likelihood for model H, and p(H) denotes the

model prior. We are thus able to approximate the model posterior if we are able to

approximate the marginal likelihood associated with each model.

As Chapter 3 has demonstrated, SMC samplers can be used to approximate

the conditional parameter posterior, πB ∝ p(θ|y1:n,H), and its normalising constant

ZB . In contrast to Chapter 3, we now make explicit that these quantities are

conditional on the number of underlying states assumed. Recall, that we can define

the sequence of distributions {πb}Bb=1 as follows:

πb(θ) ∝ l(θ|y1:n,H)γbp(θ|H), b = 1, . . . , B (5.18)

where conditioned on a specific modelH, p(θ|H) is the prior of the model parameters

and γb is a non-decreasing temperature schedule. We thus sample initially from

π1(θ) = p(θ|H) either directly or via importance sampling, and introduce the effect

of the likelihood l(θ|y1:n,H), gradually. We in turn sample and approximate the

target distribution, the parameter posterior p(θ|y1:n,H). This does not require

sampling the underlying state sequence as the likelihood and prior do not require

this sampling. This latter point leads to Rao-Blackwellised estimates, a reduction

in Monte Carlo variance.

Note that this setup is different to that proposed in Chopin and Pelgrin

(2004) and Chopin (2007), where distributions are defined as π̃b = p(θ, x̃1:b|y1:b)
with respect to incoming observations, and x̃b denotes the augmented hiddenMarkov

Chain. A different tempering schedule is consequently employed due to the increas-

ing data sequence over time.

ZB , the normalising constant for the parameter posterior p(θ|y1:n,H) =
l(θ|y1:n,H)p(θ|H)

ZB
, is more specifically of the following form,

ZB =

∫
l(θ|y1:n,H)p(θ|H)dθ =

∫
p(y1:n, θ|H)dθ = p(y1:n|H). (5.19)
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That is, the normalising constant for the parameter posterior conditioned on model

H, is the conditional marginal likelihood of interest required in Equation 5.17. Thus,

given that we can approximate the marginal likelihood, we can thus approximate

the model posterior as follows:

Algorithm outline:

1. For h = 1, . . . ,Hmax,

(a) Approximate p(y1:n|H = h) and p(θ|y1:n,H = h), the marginal likelihood

(see Section 5.4.1) and parameter posterior (see Section 3.3.1, page 78)

conditioned on h states, via SMC samplers.

2. Approximate p(H = h|y1:n), the model posterior, via the approximation of

p(y1:n|H = h) and model prior p(H).

5.4.1 Approximating p(y1:n|H)

In addition to sampling from a sequence of distributions πb, b = 1, . . . , B, SMC

samplers can be used to approximate their respective normalising constants, Zb.

As presented in Section 3.2.2, SMC samplers work on the principle of providing

weighted particle approximations of distributions through importance sampling and

resampling techniques. For a comprehensive exposition of SMC samplers, we refer

the reader to Del Moral et al. (2006).

The first part of Algorithm 7 (page 77) presents the formulation of SMC

samplers within the HMMs framework. We now make it explicit however that the

quantities obtained via SMC samplers are conditional on H underlying states being

assumed. The main output of the SMC samplers algorithm is a series of weighted

sample approximations of πb, namely {θib,W i
b |H}Ni=1, where N is the number of

samples used in the SMC approximation. The approximation of the ratio between

consecutive normalising constants can then be found as:

Zb
Zb−1

≈ Ẑb
Zb−1

=
N∑

i=1

W i
b−1w̃b(θ

i
b−1) :=W b. (5.20)

This ratio corresponds to the normalising constant for un-normalised weights at

iteration b (that is the denominator in Equation 3.24 in Algorithm 7). ZB , can thus

be approximated as:

ẐB = Ẑ1

B∏

b=2

W b (5.21)
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which, remarkably, is an unbiased estimator of the true normalising constant (Del

Moral, 2004). Equation 5.21 can also be more condensely expressed by only consid-

ering the ratio of normalising constants at resampling times. We refer the reader

to Del Moral et al. (2006) for more details regarding this reduction in calculation,

which may be more beneficial with respect to computational storage. Note that the

normalising constant, Zb, corresponds to the the following quantity

πb(θ) =
ϕb(θ)

Zb
, (5.22)

where ϕb is the unnormalised density. We can thus approximate the marginal like-

lihood by simply recording the normalising constants for the weights, W b, at each

iteration of our SMC algorithm.

As discussed in Chapter 3, there is a great deal of flexibility with the SMC

implementation and some design decisions are necessarily dependent upon the model

considered. We have found that a reasonably straightforward strategy works well

for the class of HMMs which we consider without the need for application specific

tuning. An example implementation, similar to that discussed in Nam et al. (2012b)

and in Section 3.3.1 and 3.4.1 (page 78 and 82 respectively) is followed. This imple-

mentation consists of the use of a linear tempering schedule, asymmetric priors for

the transition probability vectors, relatively flat priors for the emission parameters

and Random Walk Metropolis Hastings proposal kernels. Details of specific imple-

mentation choices are given for representative examples in the following section.

5.5 Results

This section applies the proposed methodology to a variety of simulated and real

data. All results have been obtained using the approach of Section 5.4 with the

following settings. N = 500 samples and B = 100 iterations have been used to

approximate the sequence of distributions. Additional sensitivity analysis has been

performed with respect to larger values of N and B which we found further reduced

the Monte Carlo variability of estimates, as would be expected, but for practical

purposes samples of size 500 were sufficient to obtain good results. αh is a H-long

hyperparameter vector full of ones, except in the h-th position where a ten is present.

This has been set arbitrary based on our belief and encourages the aforementioned

persistent behaviour in the underlying MC typically associated with HMMs; other

hyperparameters are of course available for other beliefs. The linear tempering

schedule and proposal variances used have not been optimised to ensure optimal
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acceptance rates. Promising results are obtained with these simple default settings.

A uniform prior has been assumed over the model space in approximating

the model posterior. We consider selecting the maximum a posterior (MAP) model,

that is argmaxh=1,...,Hmax p(H = h|y1:n), which indicates the strongest evidence for

the model favoured by the observed data.

5.5.1 Simulated Data

We consider simulated data generated by two different models; Gaussian Markov

Mixture (GMM) and Hamilton’s Markov Switching Autoregressive model of order

r (HMS-AR(r), Hamilton (1989)). The first model has been chosen due to its

relative simplicity and connection to Gaussian mixture distributions such that the

Gaussian distributions have state dependent means and variances dependent on the

underlying Markov Chain. In addition, the computer code for the SHMM method

proposed by Chopin (2007) is available for such a model and thus comparisons can

be made. The latter, as presented in Equation 3.34 on page 81, can be used to

model Econometric GNP data (Hamilton, 1989) and brain imaging signals (Peng

et al., 2011), as explored in Chapters 3 and 4 respectively. HMS-AR models induce

dependency on previous observations via an autoregressive nature.

For various scenarios under these two models, Figures 5.1 and 5.3 present

an example realisation of the data from the same seed (left column) and the model

selection results from 50 simulations using different seeds (right column). Changes

in state occur at times 151, 301 and 451. We consider a maximum of five states,

Hmax = 5, as we believe that no more than five states are required to model the

business cycle data example we will consider later, and the simulations are designed

to reflect this.

The following priors have been implemented for the state dependent mean

and precision (inverse of variance) parameters: µh
iid∼ N(0, 100), 1

σ2
h

iid∼ Gamma(shape =

1, scale = 1), h = 1, . . . ,H. For the HMS-AR model, we consider the partial auto-

correlation coefficients (PAC, ψ1) in place of AR parameter, φ1, with the following

prior, ψ1 ∼ Unif(−1, 1). As discussed in Section 3.4.1 (page 82), the use of PAC

allows us to maintain stationarity amongst the AR coefficients more efficiently (AR

polynomial roots lying within the unit circle). Baseline proposal variances of 10

have been used for each parameters’ mutation step which decrease linearly as a

function of sampler iteration. For example, the proposal variance
σ2µ
b

is used for µh

mutations.
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Gaussian Markov Mixture

Figure 5.1 displays a variety of results generated by a GMM model under the pro-

posed parallel SMC methodology. In addition, we compare our model selection

results to the SHMM approach as proposed in Chopin (2007) where computer code

for a GMM is freely available1. Recall that one of the key differences between the

SHMM and proposed parallel SMC approach is that model selection inference is per-

formed on the augmented MC via inference on X̃t = (Ht,Xt). The same transition

probabilities and emission parameters are however being estimated. The following

settings have been utilised for the SHMM implementation; N = 5000 samples have

been used to approximate the sequence of distributions defined as π̃b = p(θ, x̃1:b|y1:b)
with respect to the augmented MC, Hmax = 5 as the maximum number of states

possible and one SMC replicate per dataset. The same prior settings under the

proposed parallel SMC samplers have been implemented. Other default settings

in the SHMM code such as model averaging being performed have been utilised.

The model posterior approximations from this approach are displayed alongside the

parallel SMC posterior approximations.

Figures 5.1(a) and 5.1(b) concern a simple two state scenario with changing

mean and variance simultaneously. From the data realisation, it is evident that two

or more states are appropriate in modelling such a time series. This is reflected in the

model selection results with a two state model being significantly the most probable

under the model posterior from all simulations, and always correctly selected under

MAP. However, uncertainty in the number of appropriate states is reflected with

some small probability assigned to a three state model amongst the simulations.

These results indicate that the proposed methodology works well on a simple, well

defined toy example. Results concur with the SHMM framework; a two state model

is most probable for all simulations, and less model uncertainty is exhibited.

Figure 5.1(c) and 5.1(d) displays results from a similar three state model,

where different means correspond to the different states with subtle changes in

mean present, for example around the 151 time point. Such subtle changes are of

interest because the GNP data also contains subtle changes in mean. The correct

number of states is significantly the most probable under all simulations, and always

correctly identified under MAP selection. In contrast under the SHMM approach,

more variability is present amongst the simulations. A three state model is largely

the most probable, although some approximations display a four or two state model

also being the most probable. Such variability is reflected in the MAP selection with

1http://www.blackwellpublishing.com/rss/Volumes/Bv69p2.htm
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two and four states being selected in addition to the majority of three state models.

Figure 5.1(e) and 5.1(f) displays results from a challenging scenario of changes

in both subtle mean and variance, independently of each other, with four states be-

ing present. The SMC methodology is unable to correctly identify the number of

states, with three states being the most probable and most selected model from the

majority of the simulations. However, given the example data realisation, it is not

particularly surprising that such a result has been obtained; it is not entirely evident

that the realisation is generated from a four or even three state model. This under-

fitting in the number of states is suspected to have occurred due to the segment of

data from 451 to 512 being too short and associated with the previous segment of

data from the previous state. In light of this challenging scenario, greater variability

is present in the model posterior with significant probability assigned to two and

four state models, in addition to the majority of probability assigned to a three

state model. The SHMM also performs similarly, with significant probability being

assigned to two state and three state models, and negligible probability assigned to

four state models.

Figure 5.1(g) and 5.1(h) presents results from a one state GMM model, a

stationary Gaussian process. The interest in this particular scenario is whether our

methodology is able to avoid overfitting even though a true HMM is not present.

The model selection results highlight that overfitting is successfully avoided with

a one state model being most probable under the model posterior for all simula-

tions and always the most selected under MAP. The SHMM method, in contrast,

attaches substantial probability to a two state model over a one state model, and

is nearly always selected under MAP. The successful avoidance of overfitting under

the proposed SMC methodology compared to the SHMM methodology is another

advantage of the presented methodology.

We also consider comparing the samples approximating the true emission

parameters under the two methods. We consider the presented data scenarios of

Figures 5.1(a) and 5.1(c) where the proposed SMC and SHMM method both concur

with respect to the number of underlying states identified via MAP. In order to

allow fair comparisons between the two approaches and the truth, the same labelling

procedure has been utilised; namely by ordering the means (µ1 < µ2 for example).

Table 5.1 displays the averaged posterior means and standard error for each emission

parameter over the 50 simulations. We observe that the SMC methodology is more

accurate in estimating the true value, and the standard error is smaller compared to

the estimates provided by SHMM. This is as expected since the SHMM methodology

requires sampling the underlying state sequence which ultimately induces additional
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(b) GMM Model Selection Results, 2 states
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(c) GMM Data, 3 states, ({µ1 = 0, σ2
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2 = 1}, {µ3 = 5, σ2
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(d) GMM Model Selection Results, 3 states
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(h) GMM Model Selection Results, 1 state

Figure 5.1: Model Selection Results for variety of Gaussian Markov Mixture Data.

Left column shows examples of data realisations, right column shows the model

selection results; boxplots of the model posterior approximations under the parallel

SMC and SHMM approaches, and percentage selected according to MAP. Results

are from 50 realisations.



µ1 µ2 µ3 σ1 σ2 σ3

Truth 0 1 – 1 2 –

SMC 0.00

(0.06)

0.99

(0.14)

– 1.00

(0.04)

2.03

(0.10)

–

SHMM 0.05

(0.18)

0.94

(0.23)

– 1.06

(0.19)

1.97

(0.21)

–

Truth 0 1 5 1 1 1

SMC 0.00

(0.09)

1.00

(0.08)

5.00

(0.08)

1.00

(0.06)

1.01

(0.05)

1.01

(0.06)

SHMM 0.70

(0.19)

1.50

(0.38)

3.51

(33.86)

1.01

(0.06)

1.01

(0.06)

1.07

(0.35)

Table 5.1: Averaged posterior means and standard error for each emission parame-

ter over the 50 simulations for the two data scenarios considered. We compare the

proposed parallel SMC and SHMM method. Averaged standard errors are denoted

in the parentheses. The same labelling procedure of the states has been utilised

to allow valid comparisons between the two methods and the true parameter val-

ues. Results indicate that the SMC approach outperforms the SHMM method with

greater accuracy in approximating the true values and smaller standard errors.

sampling error into the standard error of the estimates. This does not occur under

the parallel SMC approach.

Figure 5.2 displays box plots of the posterior means (5.2(a) and 5.2(c)) and

standard error (5.2(b) and 5.2(d)) of the emission parameter estimates for all 50

simulations. The posterior mean box plots indicate further that the proposed paral-

lel SMC approach is generally more accurate and centered around the true emission

parameter values (horizontal red dotted lines) across all simulations. The SHMM

estimates are generally less precise with greater variability in the values present.

Similarly, the standard error box plots indicate that the standard error is less under

the proposed SMC methodology compared to the SHMM method, presumably due

to the lower dimension of the sampling space resulting from the absence of the state

sequence.
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Figure 5.2: Boxplots of the posterior means and standard error for each emission parameter over 50 simulations. Red dotted values

denote the value of the emission parameter used to generate the simulated data in the posterior mean box plots. We compare

the results under the two approaches, parallel SMC and SHMM. We observe that the proposed SMC approach fares better with

posterior means centered more accurately around the true values, and the standard error for the samples being smaller.



These additional results indicate that more accurate estimates are obtained

under the proposed SMC approach, compared to the existing SHMM method, in

addition to identifying the correct model more frequently. This is a result of the Rao-

Blackwellised estimator provided by the SMC samplers framework and despite more

samples being used under the SHMM approach. As fewer samples are required to

achieve good, accurate estimates, the proposed parallel SMC method would appear

to be more computationally efficient.

In addition, while not directly comparable, the runtime for the SMC samplers

approach for one time series was approximately 15 minutes to consider the five

possible model orders using N = 500 samples (implemented in R (R Development

Core Team, 2011)), while it takes approximately 90 minutes for the SHMM approach

with the default N = 5000 particles (implemented in MATLAB (MATLAB, 2012)).

Hamilton’s Markov Switching Autoregressive Model of order r

Figure 5.3 shows results from a HMS-AR model with autoregressive order one; we

assume that this autoregressive order is known prior to analysis although the pro-

posed methodology could easily be extended to consider model selection with respect

to higher AR orders. The following results were obtained using data generated using

a two state model, with varying autoregressive parameter, φ1, and the same means

and variance used for each scenario (µ1 = 0, µ2 = 2, σ2 = 1). Interest lies in how

sensitive the model selection results are with respect to φ1.

For small values of φ1 (for example φ1 = 0.1, 0.5) indicating small depen-

dency on previous observations, our proposed methodology works well with the

correct number of true states being highly probable and always the most selected

according to MAP. Relatively little variability exists in the approximation of the

model posterior. However, as φ1 begins to increase and tend towards the unit root,

for example φ1 = 0.9, we observe that more uncertainty is introduced into the model

selection results, with greater variability in the model posterior approximations and

alternative models being selected according to MAP. However, as the data realisa-

tion in Figure 5.3(g) suggests, the original two state model is hard to identify by eye

and thus our methodology simply reflects the associated model uncertainty. These

results indicate that the proposed model selection method works for sophisticated

models such as HMS-AR models, although the magnitude of the autoregressive na-

ture evidently affect results.
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(b) HMS-AR Model Selection Results, 2 states,

φ1 = 0.1
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(c) HMS-AR Data, 2 states, φ1 = 0.5
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(d) HMS-AR Model Selection Results, 2 states,

φ1 = 0.5
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(e) HMS-AR Data, 2 states, φ1 = 0.75
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(f) HMS-AR Model Selection Results, 2 states,

φ1 = 0.75
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(g) HMS-AR Data, 2 states, φ1 = 0.9
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(h) HMS-AR Model Selection Results, 2 states,

φ1 = 0.9

Figure 5.3: Model Selection Results for variety of HMS-AR(1) data with µ1 =

0, µ2 = 2, σ2 = 1 and varying φ1. Left column shows examples of data realisations,

right column shows the parallel SMC model selection results from 50 realisations;

approximations of the model posterior, and percentage selected according to MAP.



5.5.2 Hamilton’s GNP data

We now return to the GNP dataset which has featured throughout this thesis.

Recall that Hamilton’s GNP data (Hamilton, 1989) consists of differenced quarterly

logarithmic US GNP between 1951:II to 1984:IV. Following Hamilton (1989) and

Aston et al. (2011), a two state HMS-AR(4) model was assumed in Chapter 3 to

model yt, the aforementioned transformed data, in order to analyse and identify the

starts and ends of recessions. The two underlying states correspond to “Contraction”

and “Expansion” states with respect to the typical definition of a recession; two

consecutive quarters of contraction.

Whilst such a model works well in practice for recession inference, we inves-

tigate whether a two state HMS-AR(4) model is indeed appropriate. We assume the

autoregressive order of four, is known a priori relating to some dependence on past

observations within the year. We assume a maximum of five possible underlying

states in the HMM framework (Hmax = 5) as we believe that the data arises from

at most five possible states for the particular duration considered.

The following priors have been utilised: for the means, µh
iid∼ N(0, 10), h =

1, . . . ,H, precision (inverse variance) 1
σ2
∼ Gamma(shape = 1, scale = 1), PAC

coefficients ψj
iid∼ Unif(−1, 1), j = 1, . . . , 4. A uniform prior has been used over

the number of states H. As in the simulated data analysis, the baseline proposal

variance is 10 which diminishes linearly with each iteration of the sampler.

Figure 5.4 displays the corresponding dataset and model selection results

from fifty different SMC replicates. The model selection results, Figure 5.4(b),

demonstrate that there is uncertainty in the appropriate number of underlying states

with non-negligible probability assigned to each model considered and variability

amongst the SMC replication results. Some of the alternative models seem plau-

sible, for example a one-state model given the plot of the data and the additional

underlying states modelling the subtle nuances and features in the data. However,

a two state model is the most probable the majority of the time according to MAP.

In addition, the distribution appears to tail off as we consider more states, thus

indicating that the value of Hmax used is appropriate. In conclusion, the two state

HMS-AR(4) model assumed by Hamilton (1989) does seem adequate in modelling

the data although this is not immediately evident and uncertainty is associated with

the number of underlying states.
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(b) Model Selection Results for GNP data

Figure 5.4: Model selection results for Hamilton’s GNP data under the proposed

model selection methodology. 5.4(a) displays the analysed transformed GNP data.

5.4(b) displays the model posterior approximations from 50 SMC replications, and

percentage selected under MAP.



Sensitivity Analysis

This section briefly performs sensitivity analysis with respect to different SMC con-

ditions for our GNP model selection results. Figure 5.5 displays these sensitivity

analysis results (boxplots of the posterior distributions from different seeds), under

new conditions involving a different number of samples, and different hyperparame-

ters associated with the prior. The latter set of conditions are of particular interest

as Bayesian model selection results are known to be sensitive to choice of prior and

hyperparameters in the literature (see Hoeting et al. (1999) for example). All other

SMC settings as presented in Figure 5.4(b), remain unchanged (for example the

number of distributions considered, the use of a linear tempering schedule).

The first panel on the left displays the model posterior with the use of 1000

samples as opposed to 500 samples in our approximations of the distributions. We

observe that there is little change in the posterior compared to the original analysis

as presented in Figure 5.4(b). Thus our model selection results remain fairly robust

to further number of samples being utilised. We stress that this is conditional on

other settings remaining unchanged, and for this particular dataset.

More noticeable changes in the model posterior arise when considering hy-

perparameters associated with more diffuse priors on the model parameters. Such

changes include greater variability in the estimates of the model posterior proba-

bility, and ultimately the model conclusions drawn from the resultant distribution.

The second panel considers a more diffuse prior associated with the transition prob-

abilities, namely αh, the H lengthed vector of mostly ones, contains a five in the

h-th co-ordinate (previously set as ten in Section 5.5). Under such a setting, more

probability is assigned to models with a larger number of underlying states, with the

mode of the posterior shifting from two to three states. Such a change in posterior

is suspected to be due to the underlying MC being less persistent in the same state

under this prior choice, and thus the underlying MC is able to move between states

more frequently. This latter remark consequently allows more subtle features of the

GNP data to be modelled by the additional states.

The third panel considers a diffuse prior for the state-dependent means,

namely µh
iid∼ N(0, 100), h = 1, . . . ,H. We observe that the posterior becomes posi-

tively skewed with a parsimonious one-state model being the mode. This behaviour

is suspected to have arisen as the prior is very diffuse such that it extends beyond

the scope of the data, and due to the potential diversity of the initial sample, one

state will capture the global behaviour of the time series, with additional underlying

states failing to capture the finer nuances present unless in the correct region. Due

to the variance associated with this prior, low probability is associated with this
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region.

The final and fourth panel considers sensitivity with respect to global preci-

sion by considering the prior λ ∼ Gamma(1, 2). We observe that the model distribu-

tion is slightly less peaked towards a two-state model, with some of this probability

being assigned to a three-state model. However, the mode of the posterior still re-

mains at two and the probabilities associated with the other models remaining the

same as in original analysis. A potential explanation for more evidence towards a

three-state model is that larger precision values are sampled under this prior con-

figuration and there are more samples with smaller global variances. Consequently,

more states are required to model that data appropriately, each with different means

associated with them.

Our sensitivity results thus demonstrate that prior specification does influ-

ence our HMM model selection results which is no different to other Bayesian model

selection methods (see Hoeting et al. (1999) for a good overview). Care must there-

fore be taken in prior specification as the model posterior, and the inference we

perform on it, are very sensitive to such specification.

5.6 Conclusion and Discussion

This chapter has proposed a methodology in which the number of underlying states

in a HMM framework, H, can be determined by the use of parallel Sequential Monte

Carlo samplers. Conditioned on the number of states, the conditional marginal likeli-

hood can be approximated in addition to the parameter posterior via SMC samplers.

By conditioning on a different number of states and thus model, we can obtain sev-

eral conditional marginal likelihoods. These conditional marginal likelihoods can

then be combined with an appropriate prior to approximate the model posterior,

p(H|y1:n), of interest. The use of SMC samplers within a HMM framework results in

an computationally efficient and flexible framework such that the underlying state

sequence does not need to be sampled unnecessarily compared to other methods

which reduces Monte Carlo error of parameter estimates, and complex design algo-

rithms are not required. In comparison to MCMC based methodologies, our simple

yet effective SMC based algorithm does not need to be assessed as to whether it has

reached convergence, or any application specific tuning.

The proposed methodology has been demonstrated on a variety of simulated

data and GNP data and shows good results, even in challenging scenarios where

subtle changes in emission parameters are present. Results on the GNP data have
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Figure 5.5: Boxplots of model posterior for the GNP data under different SMC set-

tings. We consider the use 1000 samples in the approximation of distributions (first

panel on the left), a transition probability vector prior of ph
iid∼ Dirichlet(αh), h =

1, . . . ,H where αh is a H length vector of ones except for the hth element where a

five is present (second panel), a mean prior of µh
iid∼ N(0, 100), h = 1, . . . ,H (third

panel), and a precision prior of λ ∼ Gamma(1, 2) (fourth panel). Results indicate

as with other Bayesian model selection methods, our posterior is sensitive to the

choice of hyperparameter.



further confirmed that a two state HMS-AR model assumed in previous studies

and analysis is appropriate, although the uncertainty associated with the number

of underlying states has now been captured. In the settings considered, the method

performs at least as well as other state of the art approaches in the literature such

as the SHMM approach proposed in Chopin (2007).

From a modelling perspective, the model selection results presented in this

thesis have assumed a uniform prior over the collection of models considered but

there would be no difficulty associated with the use of more complex priors. Perhaps

more important in the context of model selection is the specification of appropri-

ate priors over model parameters, which can have a significant influence on model

selection results, as demonstrated by the sensitivity analysis results presented in

Figure 5.5. Such sensitivity on the prior is common to all Bayesian model selection

methodologies and stresses the fact that some sensitivity analysis should always be

conducted with respect to prior specification on model selection results. In deter-

mining suitable hyperparameters and reducing some sensitivity of the prior on the

model posterior, it would be worth investigating an empirical Bayes approach or

introducing a prior associated with the hyperparameters themselves (a hierarchical

structure). Empirical Bayes’, in which hyperparameters are estimated from the data

itself, is a feasible, intuitive approach although the methodology no longer remains

fully Bayesian. By implementing priors on the hyperparameter, this retains the

overall Bayesian philosophy and should not provide any real difficulty with respect

to implementation, although this does increase the computational cost.

From the perspective of computational efficiency and statistical estimation,

it is desirable to identify a value of Hmax which is sufficiently large to allow for good

modelling of the data but not so large that the computational cost of evaluating all

possible models becomes unmanageable (noting that the cost of dealing with any

given model is an increasing function of the complexity of that model) and stable

estimates with relatively small standard errors (achieved by guaranteeing that a

reasonable number of observations are associated with the state and its parameters).

Such aspects are associated with the length of data and the order of the HMM and

thus need to be considered in determining Hmax.

We consider two areas of further research regarding the methodology pre-

sented in this chapter. Having proposed a method in which we are able to deter-

mine the number of unknown states, the next natural step is to embed this infor-

mation within existing HMM methodologies, for example the changepoint methods

presented in this thesis. The most straightforward approach is to determine an

estimate of the number of states from the model posterior (for example, the maxi-
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mum a posterior estimate Ĥ = argmaxH=1,...,Hmax p(H|y1:n)), and simply condition

our existing HMM methodologies on this estimate. For example, in the case of the

changepoint probability, we compute P (τ (kCP) ∋ t|y1:n) = P (τ (kCP) ∋ t|y1:n, Ĥ).

The second, more advantageous approach is to account for the model poste-

rior in our applications and perform model averaging effectively. In the case of the

changepoint probability, this would lead to the following formulation,

P (τ (kCP) ∋ t|y1:n) =
Hmax∑

h=1

P (τ (kCP) ∋ t|y1:n,H = h)P (H = h|y1:n). (5.23)

This latter approach is particularly attractive as our changepoint estimates are now

able to account for a degree of model uncertainty, in addition to model parameter

uncertainty. As our methodology can also be potentially used in the uncertainty of

autoregressive orders, this could also be similarly accounted for in the changepoint

estimates, for example in Chapter 4. Due to the parallelised nature of the SMC

based methodology proposed in this chapter, this model averaging procedure could

also be performed in an efficient manner.

This chapter has focused on a retrospective, offline context where all data is

available prior to analysis. The second path of further research is to consider model

selection in an online scenario where data is made available incrementally. Under

such a scenario, the sequence of distributions would be defined as,

π′b(θ) ∝ l(θ|y1:b,H)p(θ|H) b = 1, . . . , n (5.24)

where l(θ|y1:b,H) is the partial likelihood with respect to the incremental obser-

vations available up to time b. This is in the spirit of Sequential HMM (Chopin,

2007). The normalising constants for this new sequence of distribution are the partial

marginal likelihoods Z ′
b = p(y1:b|H). In turn, these can be used in approximating the

partial model posterior p(H|y1:b). By defining the sequence of distributions as above

under the SMC samplers framework, this would provide an online approach which

does not require sampling the underlying state sequence (leading to a reduction in

sampling variance), and which retains many of the implementation procedures and

benefits presented in this chapter.
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Chapter 6

Quantifying the Uncertainty of

Autocovariance Changepoints

Liz Lemon: But that cookie jar says “mom” on it.

Jack Donaghy: Er, I don’t think so. I’ve always viewed it

as an upside down “wow”.

“The Collection”, Episode 2.03, 30 Rock, Matt Hubbard

6.1 Introduction

This thesis has thus far focused on changepoint (CP) methods regarding changes in

mean and variance predominantly. This is a result of work in CP detection and es-

timation predominantly dedicated to changes in mean, trend (regression), variance,

and combinations there of. However, non-stationarity can also arise from changing

autocovariance structure and potentially exhibited in financial time series (Cho and

Fryzlewicz, 2012) and oceanography (Killick, 2012) for example. However, there

is comparatively little CP literature dedicated to such changes. In addition, those

methods which do exist for such changes often provide different estimates and many

fail to capture explicitly the uncertainty associated with these estimates. As argued

and demonstrated in Chapter 3, there is a need to assess the plausibility of esti-

mates provided by different autocovariance CP methods and this can be performed

by quantifying the uncertainty associated with the estimates.

Certain changes in autocovariance can be modelled adequately by the general

finite state Hidden Markov Model framework presented throughout this thesis, and

thus the methodologies presented in Chapters 3 and 5 are still applicable. More

specifically, it is possible to consider CPs arising from piecewise autoregressive (AR)
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processes by modelling the time series as a Markov Switching AR model where the

AR coefficients are state dependent in addition to means and variances.

However, changes in autocovariance can also arise from piecewise moving

average (MA) or piecewise generalised autoregressive conditionally heteroscedastic

(GARCH) time series. However, the corresponding Markov Switching MA and

Markov Switching GARCH models have posterior Markov chains which require

the entire history of the underlying state sequence for analysis. Consequently, the

methodologies presented in Chapters 3 and 5 cannot be applied since they assume

finite dependence on previous states. We stress that to the best of our knowledge,

exact CP methods for from piecewise MA and GARCH models do not exist with

approximations being necessary (see for example Berkes et al. (2004); Tahmasbi and

Rezaei (2008)).

One approach is to approximate the time series as a piecewise AR process

regardless of how it may be generated. Under the HMM framework, the use of

a Markov Switching AR model would induce the finite dependency necessary for

analysis. Approximating by an AR process, forms the basis of the Automatic Piece-

wise Autoregressive Modelling procedure (AutoPARM, Davis et al. (2006)), which

as detailed in Section 2.8 (page 25), models observed time series as piecewise AR

processes with varying orders and AR coefficients to capture the changing autoco-

variance. Changepoints are identified via optimisation of the Minimum Description

Length criteria (Rissanen, 1978) which provides the best segmentation configura-

tion with respect to the CP locations, and the corresponding AR models for each

segment. However the parametric assumption of piecewise AR processes is a strong

assumption and may not always be appropriate, for example in the case of piecewise

MA processes although it has been shown empirically to work well in some MA cases.

Uncertainty is implicitly captured via asymptotic arguments in obtaining consistent

estimates of the CP locations, conditional on the number of CPs being known and

assuming a true piecewise AR structure, and thus not reported explicitly.

An alternative approach is to consider the time series in an alternative do-

main such as the frequency domain, and consider CPs in the associated periodograms

of the time series. Periodograms are estimates of spectra which describe the autoco-

variance structure of a time series at different frequency bands. Representations in

the frequency domain can be achieved in a variety of different manners, each with re-

spect to different sets of basis functions, and consequently leading to different trans-

formations. These basis functions include sinusoidal functions (Fourier transform,

Condon (1937)), Smooth Localised complex Exponential functions (SLEX trans-

form, Ombao et al. (2002)), and wavelets (wavelet transform, Daubechies (1990)).
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In addition, the SLEX and wavelet basis functions possess a time-localisation prop-

erty which permits spectra with time varying behaviour to be considered. Such

basis functions are thus ideal in considering CPs and non-stationarity in time series.

In comparison, the sinusoidal functions of the Fourier transform are global, and are

thus inadequate in capturing non-stationarity in time series. The short time Fourier

transform (Allen, 1977), is one possible solution in utilising the Fourier transform

analysis in a non-stationary context. This transform considers analysing the time

series in small time windows specified by the user, thus allowing for time varying

spectral structure. However, this transform requires specifying a bandwidth and is

still inadequate in modelling discontinuities.

Ombao et al. (2001) propose the Auto-SLEX method which is an automatic

statistical procedure which simultaneously segments the time series (thus providing

the optimal CP configuration), and provides the periodogram estimate of a time

varying spectrum via the use of SLEX basis functions. Under a SLEX transforma-

tion, this provides a library of different orthonormal basis representations (corre-

sponding to different CP configurations), each with different partitions at several

frequency bands. A cost function for a particular CP configuration is computed

which is the sum of the cost functions for each segment as a result of the assumed

configuration. The optimal CP configuration is that which minimises the cost func-

tion. However, Auto-SLEX only considers partition configurations where segments

have dyadic length (that is an integer power of two) which constrains the locations

of CP estimates. As there is no reason to assume or guarantee that segments have

dyadic length and that CPs occur at the constrained set of location estimates, such

an approach does not seem adequate for the datasets of interest.

Choi et al. (2008) propose a sequential CP detection method for changes in

autocorrelation structure which is rooted in considering the time series in the fre-

quency domain. By performing a short time Fourier transform or wavelet transform,

periodograms from consecutive windows of data are compared against each other

with a similarity statistic being computed. It is this similarity statistic which is

used to determine whether a CP has occurred by assessing over time whether this

process drops below a specified threshold.

Alternatively, Cho and Fryzlewicz (2012) consider modelling time series un-

der the Locally Stationary Wavelet (LSW) framework, where the building blocks of

the time series are the localised wavelets at different frequencies and locations. Un-

der the LSW framework, the Evolutionary Wavelet Spectrum (EWS) describes the

autocovariance structure of a time series at different scales (frequency bands) and

locations. Autocovariance CPs in the time series thus correspond to changes in the
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scale processes of the EWS and vice versa. Cho and Fryzlewicz (2012) analyse each

scale process independently for CPs via a non-parametric test statistic (an extension

of the circular binary segmentation algorithm), and then combine CP results from

each scale to obtain a single set of results for the observed time series. This post-

processing step is necessary as a CP in the time series can appear at several different

scales of the periodogram, and thus it is necessary to correct for the possible over

detection of a CP. The non-parametric test statistic places less restriction on the

time series considered although several tuning parameters are required under this

approach and so care is required. Uncertainty for CP estimates is captured via the

use of asymptotic arguments in obtaining consistent estimates.

This chapter proposes a methodology to quantify the uncertainty of auto-

covariance CPs. Building upon the existing wavelet-based approach of Cho and

Fryzlewicz (2012), we model the time series as a LSW process and perform our anal-

ysis using the wavelet periodogram. We derive a joint density for scale processes of

the raw wavelet periodogram which can be embedded into a Hidden Markov Model

(HMM) framework. By modelling the periodogram as a HMM, this allows a variety

of existing CP methods to potentially be applied (for example changes in state in

the Viterbi sequence (Viterbi, 1967)), with our focus being that of quantifying the

uncertainty of CPs as proposed in Nam et al. (2012b) and in Chapter 3.

By considering time series in the frequency domain, and more specifically

at different locations and frequencies under the wavelet transform, this may allow

time series exhibiting changes in autocovariance to be more readily considered. This

includes piecewise MA processes, which as remarked by Nason et al. (2000), have a

piecewise constant EWS.

We motivate the proposed methodology with an oceanographic application,

as presented in Figure 1.3 (page 7). In oceanography, historic wave height data is

often used to determine storm season changes. Identifying such changes in storm

seasons provides a better understanding of the data for oceanographers which may

help them in planning future maintenance work of equipment such as offshore oil

rigs. Changes in autocovariance structure are associated with these storm season

changes, and thus autocovariance CP methods are employed in determining these

changes. However, there is evidently ambiguity associated with these changes, such

as their number and location, which traditional CP methods often fail to capture.

By quantifying the uncertainty associated with such changes, we can thus address

the ambiguity associated with storm season changes.

The structure of this chapter is as follows: Section 6.2 provides the motivation

for the proposed methodology. Section 6.3 provides background into wavelet analysis
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which is involved in the proposed methodology. Section 6.4 details the proposed

wavelet based HMM framework and modelling approach. Section 6.5 applies the

proposed framework to a variety of simulated data and the oceanographic dataset

as presented in Figure 1.3 (page 7). Section 6.6 concludes the chapter.

6.2 Motivation

Let y1, . . . , yn denote a potential non-stationary time series, observed at equally

spaced discrete time points. We assume in this chapter that the non-stationarity

arises due to a varying second-order structure such that for any lag v ≥ 0, there

exists a τ such that

Cov(Y1, Yv) = . . . = Cov(Yτ−1, Yτ−v) 6= Cov(Yτ , Yτ−v+1) = . . . = Cov(Yn−v+1, Yn),

and that the mean remains constant. In situations where the mean is not constant,

pre-processing of the data can be performed. We refer to τ as a CP. Changes

in second-order structure can be constructed easily; for example by a piecewise

autoregressive moving average (ARMA) process.

As demonstrated in Chapter 3, one approach in modelling time series exhibit-

ing non-stationarity such as changes in mean and variance is via Hidden Markov

Models (HMMs), and are extensively used in CP analysis (for example Chib (1998),

Aston et al. (2011)). We retain the same notation and framework as in Section 2.12

(page 35) and throughout this thesis.

It is possible to model certain types of autocovariance changes under the

HMM framework. For example, one can consider a generalised Markov Switching

Autoregressive Moving Average model of order r and q, MS-ARMA(r, q), which we

define as follows.

Yt =

r∑

r′=1

δXt,r′Yt−r′ + ǫt +

q∑

q′=1

κXt,q′ǫt−q′ ǫt ∼ N(0, σ2Xt
). (6.1)

Here, δXt,r′ , r
′ = 1, . . . , r are state-dependent AR coefficients, κXt,q′ , q

′ = 1, . . . , q

are state-dependent MA coefficients, µXt denotes a state-dependent mean and σ2Xt

is a state-dependent innovation variance.

When q = 0, this reduces to a Markov Switching Autoregressive model which

retains finite dependency on the underlying state sequence under analysis (the state

dependent emission depends only on a finite number of previous underlying states

and observations). This permits standard algorithms associated with HMMs such
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as computation of the likelihood via the Forward Backward equations (Baum et al.,

1970) and the methodologies presented in Chapter 3 and 5 to be applied. However,

assuming an autoregressive structure is a strong assumption and somewhat limits the

type of behaviour that can be modelled under such a model. For example, changes

in autocovariance structure which are a result of changing moving average behaviour

will not be captured fully under a Markov Switching Autoregressive model.

One misguided approach in modelling data exhibiting such behaviour would

be to include a Moving Average component (q 6= 0). However, upon introducing this

Moving Average structure, the emission density becomes dependent on the entire

history of underlying state sequence X1:t and previous observation Y1:t−1, and thus

the model loses its Markovian structure. For example, consider the case of a MS-

ARMA(1,1) model. The model can be expressed as follows:

Yt = δXt,1Yt−1 + κXt,1ǫt−1 + ǫt

Then, ǫt = Yt − δXt,1Yt−1 − κXt,1ǫt−1

Via recursions, Yt = δXt,1Yt−1 + ǫt + κXt,1(Yt−1 − δXt−1,1Yt−2

− κXt−1,1

[
Yt−2 − δXt−2,1Yt−3 − κXt−2,1(. . .)

]
)

Thus the state-dependent emission density of Yt depends on Y1:t−1 and X1:t. As

the entire history of the underlying state sequence needs to be recorded, the model

loses its Markovian structure and standard inference methods such as computing the

likelihood via filtering cannot be performed. This loss of the Markovian structure is

also applicable for Switching GARCH models, as described in Frühwirth-Schnatter

(p.383, 2005). Approximations are thus required in order to perform inference re-

garding such models.

One potential approach is to model the time series as a Markov Switch-

ing AR process, regardless of how it is potentially generated, with the AR order

approximating the dependence structure. This is a common approach even in a

non-HMM framework, for example, as observed in the AutoPARM approach (Davis

et al., 2006). Alternatively, it may also be possible to consider the time series in

an alternative domain, for example as observed in Ombao et al. (2001) and Cho

and Fryzlewicz (2012). This chapter will investigate the potential of transforming

the problem to an alternative domain, namely the wavelet domain, which permits a

time and frequency decomposition of the time series.
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6.3 Wavelets

Wavelets are compactly supported oscillating functions which are used in a variety

of scientific areas including signal processing (Rioul and Vetterli, 1991), Statistics

(Abramovich et al., 2000) and data compression (Salomon, 2004). Statistical appli-

cations include time series analysis, density estimation and non-parametric regres-

sion (see Abramovich et al. (2000) for a good introductory paper). Applications

predominantly focus on the Discrete Wavelet Transform (DWT), due to the dis-

crete and finite nature in which data is collected. The DWT is analogous to the

Fast Fourier Transform (FFT) in that instead of sinusoidal functions at different

frequencies forming an orthonormal basis, it is translations and dilations of a speci-

fied wavelet function which forms the orthonormal basis. Wavelet analysis therefore

permits a time series or function to be equivalently represented at different scales

(frequency bands) and locations.

A graphical representation of the DWT is demonstrated in Figure 6.1, with

respect to the simplest possible mother wavelet ψ(x), the Haar wavelet. An or-

thonormal basis is formed from dyadic translations and dilations of the mother

wavelet which are denoted by {ψj,k(x)}j,k∈Z. j and k are known as the scale and lo-

cation in the literature and correspond to the dilation and translation factors. These

translated and dilated versions of the mother wavelet, {ψj,k(x)}j,k∈Z, are referred to

as daughter wavelets (the red curves in Figure 6.1 where only the non-zero behaviour

has been displayed). In turn, the function of interest f(·), can be written as a linear

combination of daughter wavelets ψj,k, where dj,k represents the contribution of the

corresponding daughter wavelet. This thus provides a scale and location decompo-

sition of the function where the latter property arises from the localised behaviour

of the wavelets. In contrast, the FFT provides only a scale decomposition and not

location wise due to the global nature of the sinusoidal basis functions considered.

As the data considered in this thesis is of a temporal nature, we shall focus

our review on wavelet methods and analysis concerning time series data. Section

6.3.1 reviews the Discrete Wavelet Transform (DWT), an algorithm which provides

the wavelet decomposition of a time series. However certain disadvantages exist

with the DWT, especially with respect to CP analysis. Thus the Non-Decimated

Wavelet Transform (NDWT), an extension of the DWT, is reviewed in Section 6.3.2.

Finally, Section 6.3.3 reviews the Locally Stationary Wavelet (LSW) process frame-

work which permits time series with varying second-order structure (variance and

covariance) to be considered. We refer interested readers to Vidakovic (1999), Per-

cival and Walden (2007) and Nason (2008) for comprehensive overviews of wavelets
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Figure 6.1: Graphical representation of the Discrete Wavelet Transform using the

Haar mother wavelet. The function of interest f is equivalently represented as a

linear combination of daughter wavelet {ψj,k(x)}j,k∈Z, where the daughter wavelets

are translations and dilations of the Haar mother wavelet ψ(x). This representation

allows decomposition of the function at different scales j (frequency bands) and

locations k.

in Statistics and time series analysis.

Wavelet analysis is associated with functions that are square integrable, that

is f(·) ∈ L2(R). A wavelet is more formally defined as follows.

Definition 5. ψ(·) ∈ L2(R) is defined to be a wavelet function (mother wavelet) if

it satisfies the following conditions.

1. The admissibility condition

Cψ =

∫

R

|Ψ(ω)|2
|ω| dω <∞

where Ψ(ω) is the Fourier transformation of ψ(x). That is Ψ(ω) = 〈ψ(x), exp(iωx)〉 =∫
R
ψ(x) exp(−iωx)dx.

2. Ψ(0) =
∫
R
ψ(x)dx = 0.

152



3. The dyadic translations and dilations of the wavelet ψ(·), form an orthonormal

basis of L2(R). These translated and dilated versions are of the form:

ψj,k(x) = 2−
j
2 (2−jx− k) j, k ∈ Z

j and k are noted as scales and location parameters.

Condition 1 results in ψ(·) having exponential decay over L2(R) which per-

mits localised behaviour to be captured. Condition 2 ensures that ψ(·) possess an

oscillating behaviour such that the area of the function is equal to 0 and therefore

this oscillating behaviour is controlled. Condition 3 states that shifts and stretches

(translations and dilations) of ψ(·) form an orthonormal basis of L2(R) in which

functions of interest lie. The scale parameter j corresponds to the frequency band

that will be captured by ψj,k, and at the respective location k.

A variety of wavelets exist, each with varying degrees of smoothness and

localised support. The wavelets that are commonly considered in statistical appli-

cations are Daubechies’ Compactly Supported wavelets; a family of wavelets which

have compact finite support. However other wavelets also exist, for example Shan-

non’s Wavelets, the Mexican Hat wavelet and Meyer’s Wavelets (Vidakovic, 1999,

pp. 60–80) which have exponential decay. The smoothness of a wavelet is classified

by the number of vanishing moments it possesses. This is defined as follows:

Definition 6. The mother wavelet function ψ(·) is said to have v ∈ Z+ vanishing

moments if

∫

R

xmψ(x)dx = 0

holds for m = 0, 1, . . . , v.

As v increases, the mother wavelet becomes smoother and has a larger sup-

port. A variety of wavelets with various vanishing moments from Daubechies’

Compactly Supported wavelet family (which are consequently further divided into

Daubechies’ Extremal Phase and Least Asymmetric wavelets) are presented in Fig-

ure 6.2. A consequence of the vanishing moment property is that in representing

a polynomial function with degree (v − 1) or less, the wavelet representation will

consist of zeroes. This leads to sparse wavelet representations and it is this sparsity

which is part of the attraction of wavelet analysis in a variety of applications. The

sparseness of this representation is determined by the number of vanishing moment

the chosen mother wavelet possesses.
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Figure 6.2: Examples of mother wavelet functions with various vanishing moments.

These are: Haar wavelet with v = 1 (top left), Daubechies’ Least Asymmetric

wavelet with v = 4 (top right), Daubechies’ Extremal Phase wavelet with v = 4

(bottom left), and Daubechies’ Extremal Phase wavelet with v = 10 (bottom right).

The main backbone of wavelet analysis is Multiresolution Analysis (MRA,

see Section 3.3, p. 51 Vidakovic (1999) for further details). This permits f(·) ∈
L2(R) (a square integrable function) to be approximated at different resolutions

and equivalently via the orthonormal basis, {ψj,k(x)}j,k∈Z; translations and dilations

of the mother wavelet, ψ(x). In obtaining the approximations of f(·) at different

resolutions (scales), this involves translation and dilations of the father wavelet φ(x).

The scaling equation, φj(x) =
∑

k∈Z hk2
− j

2φ(2−jx−k), describes how the functions

are related at different resolutions (scale j). The coefficients {hk}k∈Z are known as

the low-pass (averaging) filter.

The mother and daughter wavelets, ψ(x) and ψj,k(x) can also be expressed in

terms of the father wavelet φ(x), namely ψj,k(x) =
∑

k∈Z gk2
− (j−1)

2 φ(2−
(j−1)

2 x− k).
The coefficients {gk}k∈Z are known as the high-pass filter respectively. The quadra-

ture mirror relation states the relationship between the high-pass filter {gk}k∈Z, and
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the low-pass filter {hk}k∈Z, as follows.

gk = (−1)kh1−k k ∈ Z. (6.2)

This thesis will focus on the use of the Haar mother wavelet in analysis which has

many advantages including its simplicity and intuitiveness. The proposed method-

ology in this chapter can however be extended to the use of other mother wavelet

in Daubechies’ Compactly Supported wavelet family. More specifically, the Haar

wavelet has the corresponding father scaling wavelet

φ(x) =

{
1, 0 ≤ x < 1;

0, otherwise.
. (6.3)

From the scaling equation, this gives rise to the low-pass filter coefficients,

h0 = h1 =
1√
2
and hk = 0 for all other values of k ∈ Z. From the quadrature mirror

filter relationship (Equation 6.2), the corresponding high-pass filter coefficients are

g0 = 1√
2
, g1 = − 1√

2
, and gk = 0 for all remaining values of k ∈ Z. The mother

wavelet function is thus derived as

ψ(x) =
∑

k∈Z
gkφ0(x) =

∑

k∈Z
gk2

1
2φ(2x− k) = φ(2x)− φ(2x− 1) (6.4)

=





1, 0 ≤ x < 1
2 ;

−1, 1
2 ≤ x < 1;

0, otherwise.

. (6.5)

6.3.1 Discrete Wavelet Transform (DWT)

The Discrete Wavelet Transform (DWT) is an efficient, fast procedure which trans-

forms a dyadic length time series observed at equally spaced points, y = y0:n−1 =

(y0, . . . , yn−1), n = 2J for J ∈ N
+, into an equivalent wavelet representation de-

fined by the scaling and detail coefficients, cj,k and dj,k for j = 1, . . . , J , k =

0, . . . , 2J−j − 1. These coefficients denote the contribution of the father and daugh-

ter wavelet at respective scales in the equivalent representation. More specifically,

the wavelet representation consists of,

y⋆ =
(
{cJ,k}1k=0, {dJ,k}1k=0, {dJ−1,k}3k=0, . . . , {d1,k}2

J−1−1
k=0

)
= (cJ ,dJ , . . . ,d1) .

That is, the detail coefficients from all scales j = 1, . . . , J , and the scaling coeffi-

cients at the coarsest scale j = J . Each coefficient vector, cj and dj, contains 2
J−j

elements for j = 1, . . . , J . The total number of elements in the complete wavelet
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representation y⋆, is thus n. This wavelet representation is an equivalent repre-

sentation of the original time series y, such that the ||y⋆||2 = ||y||2 where ||z||2 is

the L2-norm of vector z. This is more formally known as Parseval’s relation in the

literature and states that the energy of the original signal is retained under the new

wavelet representation.

This wavelet decomposition can be efficiently computed by performing Mal-

lat’s Pyramid algorithm (Mallat, 1989). The general principal is that one sets

c0 = y, and computes cj and dj from cj−1, for j = 1, . . . , J via the use of the

low and high-pass filters {hk}k∈Z, {gk}k∈Z. That is, coarser scale scaling and detail

coefficients are computed from the scaling coefficients from the previous finer scale.

More formally, the algorithm recursions are of the form:

cj+1,k =
∑

l∈Z
hlcj,l+2k =

∑

l∈Z
hl−2kcj,l.

dj+1,k =
∑

l∈Z
gl−2kcj,l. (6.6)

The algorithm can also be expressed in terms of filter and decimation operators.

Let H = {hk}k∈Z and G = {gk}k∈Z denote the low and high-pass filter operators.

These have the following effects on sequences.

Definition 7. For a doubly infinite sequence (. . . , z−1, z0, z1, . . .), the operator H
has the following effect on the sequence

(Hz)k =
∑

n∈Z
hn−kzn. (6.7)

Similarly, the operator G has the following effect,

(Gz)k =
∑

n∈Z
gn−kzn. (6.8)

The binary decimation operator D0, has the following effect on a sequence.

Definition 8. The binary decimation operator D0 is defined such that it chooses

every even element of the sequence. That is

(D0z)j = z2j . (6.9)

These operators are defined with respect to doubly infinite sequences. It is noted

however that in the DWT, we have a finite dyadic length sequence. In applying these

operators to finite length sequences, the periodic and symmetric boundary condi-
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tions are commonly implemented within the wavelet community (see pages 55-57 Na-

son (2008)). Such conditions effectively repeat and reflect the sequence around the

origin respectively; that is (. . . , zn−2, zn−1, z0, z1, z2, . . .) and (. . . , z1, z0, z0, z1, . . .).

Equations 6.6 can thus be written in terms of these filter and decimation

operators,

cj = D0Hcj−1 dj = D0Gcj−1 j = 1, . . . , J. (6.10)

Letting c0 = y = y0:n−1, then Equation 6.10 can also be expressed with regards to

the original time series,

cj = (D0H)jc0 dj = (D0G)(D0H)j−1c0 j = 1, . . . , J. (6.11)

Figure 6.3 demonstrates Mallat’s Pyramid algorithm in practice on a sim-

ple short time series using a Haar wavelet. Recall that corresponding Haar filter

coefficients are h0 = h1 =
1√
2
, g0 =

1√
2
, g1 = − 1√

2
and zeroes elsewhere in the corre-

sponding filters. It is noted that Parseval’s relation is satisfied with ||y⋆||2 = ||y||2.
In addition, the wavelet decomposition is sparse compared to the original time series

with several zeroes being present in the decomposition. This sparser representation

is part of the attraction of the wavelets, particularly in the data compression com-

munity. Due to the non-overlapping nature of the filters on the observations at each

scale (a result of the orthogonal transform), the DWT can also remove some of the

unknown dependent structure in the time series (see p. 341 of Percival and Walden

(2007) for further details). This is also another benefit of wavelet analysis.

As the DWT is effectively a change in basis representation into the wavelet

domain, the DWT can consequently be expressed in terms of matrix and vector

notation where the matrix represents the change in basis transformation. That is

y⋆ = Ky (6.12)

where y⋆,y are n length column vectors and K is an n × n matrix. The entries

of K are the effective high and low pass-filter coefficients with respect to being

applied to the data y directly. As the DWT is an orthogonal transformation, K

is consequently an orthogonal matrix. Whilst this matrix representation provides

another perspective of the DWT, it is seldomly considered in performing the DWT

due to its higher computational cost compared to Mallat’s Pyramid algorithm; the

computational cost of Mallat’s Pyramid algorithm and the matrix operation are

respectively O(n) and O(n2).
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Figure 6.3: Example of the DWT in practice on a toy time series. This figure demon-

strates how Mallat’s Pyramid algorithm is used to efficiently compute the wavelet

decomposition associated with the DWT. A Haar wavelet has been used with the

following filter coefficients: h0 = h1 =
1√
2
, g0 =

1√
2
, g1 = − 1√

2
and zeroes elsewhere

in the corresponding filters. The observed time series y = (4, 4, 3, 3, 3, 1, 2, 2) has

the following wavelet decomposition y⋆ = ( 11√
2
, 3√

2
, 1, 4, 0, 0, 2√

2
, 0).

However, the matrix representation illustrates well that an inverse DWT

does exist such that one can recover the original time series y, if provided with the

wavelet decomposition y⋆, and the mother wavelet used in obtaining this wavelet

decomposition. In terms of matrix notation, this results in

y = K−1y⋆ = KTy⋆. (6.13)

With regards to Mallat’s Pyramid algorithm perspective, the inverse transform ex-

presses cj−1 in terms of cj and dj , j = J, . . . , 1. That is, finer scale scaling coeffi-

cients are calculated from coarser scale scaling and detail coefficients. In terms of

the filter and decimation and operator notation, it is necessary to pad out inter-

mediary sequences due to the number of coefficients halving from finer to coarser
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scales. This is achieved by defining the inverse of the binary decimation operator,

D−1
0 , which inserts zeroes between each element in the vector that it is applied to.

Consequently the inverse DWT is provided by

cj−1 = HD−1
0 cj + GD−1

0 dj j = J, . . . 1. (6.14)

For individual coefficients, this results in the expression,

cj−1,l =
∑

k∈Z
hl−2kcj,k +

∑

k∈Z
gl−2kdj,k. (6.15)

The wavelet representation obtained by the DWT is specific to the wavelet basis

that one transforms onto. Consequently, modifications of the DWT exist which

lead to alternative orthonormal bases being considered. For example, in the DWT

presented in this section, a decimation operator is performed at each step which

takes forward only the even elements of a vector, and discards the odd elements.

However, it is also possible to perform the reverse; retain the odd elements and

discard the even. This thus leads to a different wavelet representation with respect

to the new basis. This can be further extended such that a mixture of odd and

even decimation takes place, with the sequence of even-odd decimation operations

performed being recorded. This again leads to another wavelet basis and is termed

ǫ-decimated DWT in the literature. We refer the reader to the aforementioned

reference texts with more details regarding modifications of the DWT. However,

decimation is an important part of the DWT in order for the transform to remain

orthogonal.

One disadvantage of the DWT is that it is not translation equivariant in that

a shift in the time series does not correspond to a shift by the same amount in the

wavelet decomposition. This is demonstrated successfully in Figure 6.4, where the

DWT has been performed on both a block test function and a shifted version of this

function (to the left by 75 observations). The plots, which are typical in the wavelet

community, displays only the detail coefficients of the wavelet decomposition y⋆

at their respective scales and locations (the observations that they are computed

from). Such sensitivity of the wavelet decomposition to the orientation of the data

is not desired. In addition, the location of CPs in the test function can become

lost in the wavelet decomposition obtained, dependent on the orientation of the

data. For example, the second jump in both versions of the time series analysed

appears in the unshifted DWT analysis (Figure 6.4(b)) but does not appear in

the shifted DWT representation (Figure 6.4(d)) when considering the finest scale
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coefficients (resolution level nine). Such sensitivity to the orientation of the data

and the potential obscurance of CPs quantities in the wavelet decomposition is

not desirable for CP problems of interest. These issues are addressed in the non-

decimated Discrete Wavelet Transform.

6.3.2 Non-Decimated Wavelet Transform (NDWT)

The non-decimated wavelet transform (NDWT, also known as the Stationary Wavelet

Transform, Nason and Silverman (1995)) can be thought of “filling in the gaps” that

is resultant from the DWT and interpreted in several different manners. Firstly, as

the name suggests, the NDWT does not perform the decimation at each step. Con-

sequently, the same number of scaling and detail coefficients are retained at each

scale with the number of coefficients at each scale being equal to the length of the

time series analysed. This retention of coefficients thus fills in the gaps. Alterna-

tively, the NDWT can be thought of as performing the DWT on every possible shift

configuration of y and ordering the coefficients obtained in a systematic manner (for

example, time ordered with respect to the moving window of observations the filter

is performed on). By considering these overlapping filter windows of observations,

compared to the non-overlapping orthogonal filter windows in the DWT, this fills

in the gaps that is lost under the DWT. This retention of additional coefficients

provides an over complete, redundant representation of the data and consequently

means the NDWT is not an orthogonal transform. There is therefore no unique

inverse NDWT in which the original time series can be recovered when given the

wavelet representation from a NDWT.

In defining the NDWT, the high and low-pass filter operations defined in

Definition 7 need to be modified such that we retain the same number of coefficients

at each scale. This is achieved by defining the new set of filter operators.

Definition 9. The non-decimated wavelet transform uses low and high-pass filters

which are defined recursively as

H[0] = H = {hk}k∈Z G[0] = G = {gk}k∈Z
H[r] = D−1

0 H[r−1] G[r] = D−1
0 G[r−1].

The effective filter is therefore the original filter with numerous zeroes between each

element. The NDWT can thus be defined in terms of these new filters.

Definition 10. Let c′j and d′
j be the over-complete scaling and detail coefficients at

scale j respectively from a NDWT. Then the coarser scaling and detail coefficients

160



0 200 400 600 800 1000

−
5

0
5

10
15

20

Blocks Test Function

Index

D
at

a

(a) Blocks Test Function

Wavelet Decomposition Coefficients

Standard transform Haar wavelet
Translate

R
es

ol
ut

io
n 

Le
ve

l

9
8

7
6

5
4

3
2

1
0

0 128 256 384 512

(b) A DWT of Blocks Test Function

0 200 400 600 800 1000

−
5

0
5

10
15

20

Shifted Blocks Test Function

Index

D
at

a

(c) Shifted Blocks Test Function

Wavelet Decomposition Coefficients

Standard transform Haar wavelet
Translate

R
es

ol
ut

io
n 

Le
ve

l

9
8

7
6

5
4

3
2

1
0

0 128 256 384 512

(d) A DWT of Shifted Blocks Test Function

Figure 6.4: A Discrete Wavelet Transform on the blocks test function and a shifted

version of the blocks test function. This demonstrates that the DWT is not trans-

lation invariant as a shift in the data does not correspond to a shift in the wavelet

representation. Such sensitivity to the orientation of the data may not be desirable

for CP analysis.



at the next coarser scale are defined recursively by

c′j = H[j−1]c′j−1 d′
j = G[j−1]c′j−1 j = 1, . . . J. (6.16)

where c′0 = c0 = y = y0:(n−1).

The general principle of the DWT where coarser scale coefficients are computed

from finer scale coefficients still exists within the NDWT algorithm, although no

decimation occurs. This results in the overcomplete wavelet decomposition y′ =

(c′J ,d
′
J , . . . ,d

′
1) where both c′j and d′

j contain n = 2J elements for all j = 1, . . . , J . y′

thus has n(J+1) elements. Due to the retention of coefficients and more calculations

being involved, the NDWT evidently has a higher computational cost of O(n log2 n)
compared to the DWT, although this is still considered to be fast. An equivalent

matrix representation of transformation also exists. Namely,

y′ = K′y, (6.17)

where y′ is a n(J + 1) lengthed column vector, y is a column vector of length n,

and K′ is a n(J + 1) × n matrix. The entries of K′ are the effective high and

low-pass filter coefficients when applied to the observations. However, K′ is not

an orthogonal matrix and an inverse does not exist. Consequently, this further

illustrates that inverse NDWT is not possible straightaway.

An example of the NDWT is demonstrated on the aforementioned blocks

test function in Figure 6.5. Observe that the wavelet decomposition plots (right

column) retains the same number of coefficients present at each scale, thus providing

the overcomplete representation. We note that a shift in the test function data now

results in a shift in the wavelet representation. Hence the NDWT is translation

invariant. We also note that the location of the jumps in the function are retained

and much clearer in the NDWT output, regardless of the orientation of the data.

This property should therefore be useful with regards to CP analysis compared to

a DWT decomposition.

The NDWT seems more relevant and useful in the context of CP analysis

in contrast to the DWT, as it provides a much more complete picture of the data

and the location of any CPs present. However the transform is not orthogonal

and the coefficients are no longer independent due to the overlapping nature of

the wavelet filters considered. However, this dependence structure amongst the

coefficients is known and it is determined from the mother wavelet used in analysis.

This suggests it can therefore be incorporated into statistical analysis. The NDWT

is powerful and utilised in the construction of Locally Stationary Wavelet processes,
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(d) A NDWT of Shifted Blocks Test Function

Figure 6.5: A Non-Decimated Wavelet Transform on the blocks test function and

a shifted version of the blocks test function. This demonstrates that the NDWT

is translation invariant as a shift in the data corresponds to a shift in the wavelet

representation. This removes sensitivity of results to the orientation of the data.

In addition, coefficients are retained such that the same number of coefficients is

present in each scale of the representation.



a framework which allows time series with time-varying autocovariance structures

to be considered. Such a framework may therefore be useful if we want to consider

changes in autocovariance structure more actively.

6.3.3 Locally Stationary Wavelet processes

One common approach in modelling and representing stationary time series is in

the frequency domain via Fourier analysis. As alluded to earlier, the basis functions

under this representation are sinusoidal functions at different frequencies, defined

globally over the entire scope of the time series. However, such a representation is

not appropriate or adequate for time series exhibiting non-stationarity due to its

global nature not capturing these localised features.

The Locally Stationary Wavelet (LSW) framework is a popular wavelet based

modelling framework for non-stationary time series with a time varying second-

order, covariance structure (Nason et al., 2000). The motivation for such a frame-

work is that whilst time series may not be stationary over the entire scope of the data

(globally), it may be stationary in smaller time windows (locally). This localised

stationarity is achieved via the use of wavelets and the localised behaviour property

they possess. Associated with the LSW process is the Evolutionary Wavelet Spec-

trum (EWS) which provides a decomposition of the autocovariance structure at dif-

ferent scales (frequencies) and locations. Recent applications of the LSW framework

include forecasting (Fryzlewicz et al., 2003), classification (Fryzlewicz and Ombao,

2009) and CP identification (Cho and Fryzlewicz, 2012).

The main building blocks of the LSW framework are more specifically discrete

non-decimated wavelets. Due to the local nature of wavelets, this makes them apt

for capturing the local stationarity in the time series compared to other potential

basis functions (for example, sinusoidal functions of Fourier analysis). In defining

the LSW process, we first need to define non-decimated wavelet vectors. Let {hk}k∈Z
and {gk}k∈Z be the aforementioned low and high-pass filter. The associated discrete

wavelet vector at scale j ≥ 1 is represented by

ψj = ( 0. . ., ψj,0, ψj,1, . . . , ψj,(Nj−1),
0. . .), j = 1, . . . .

where 0. . . denotes an infinite long zero vector. These vectors are compactly sup-
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ported with Nj <∞ non-zero entries. These vectors are computed recursively via

ψ1,l =
∑

k

gl−2kδ0k = gl l = 0, 1, . . . , N1 − 1

ψj+1,l =
∑

k

hl−2kψj,k l = 0, 1, . . . , Nj+1 − 1 j + 1 = 2, 3, . . .

where Nj = (2j − 1)(Nh − 1) + 1. δ0k is the Kronecker delta and Nh is the finite

number of non-zero elements in {hk}k∈Z.
For example, in the case of Haar wavelets at scale 1 and 2,

ψ1 = ( 0. . ., g0, g1, 0. . .) = ( 0. . .,
1√
2
,− 1√

2
, 0. . .)

ψ2 = ( 0. . ., h0g0, h1g0, h0g1, h1g1, 0. . .) = ( 0. . .,
1

2
,
1

2
,−1

2
,−1

2
, 0. . .).

These are the effective filter coefficients when applied directly to the observations

and also populate the transform matrices K and K′.

ψj denotes the non-decimated wavelet vector at scale j, where ψj,k denotes

the kth non-zero entry of ψj . ψj,k(t) = ψj,(k−t) denotes the (k − t)th non-zero

element in ψj. This can also be interpreted as the kth non-zero element in a shifted

version of ψj by amount t.

Under the DWT, {ψj}∞j=1 is an orthonormal set of shifted vectors if we shift

them by multiples of dyadic amounts 2j . This results in an orthonormal transform.

However, the NDWT lifts this restriction such that the wavelet vectors can be

shifted by any desired amount, not necessarily dyadic. As a result, the discrete non-

decimated wavelet vectors {ψj}∞j=1 are no longer orthonormal, but an overcomplete

collection of shifted vectors.

Following Fryzlewicz and Nason (2006), we define a LSW process as follows.

Definition 11. {Yt}nt=1 for n =, 2, . . . , 2J , J ∈ N+ is said to be a Locally Stationary

Wavelet (LSW) process if the following mean-square representation exists,

Yt =
J∑

j=1

∑

k∈Z
ψj,k(t)Uj

(
k

n

)
ξj,k (6.18)

where j ∈ N and k ∈ Z denote the scale and location parameters respectively. ψj =

{ψj,k}k∈Z is a discrete, real-valued, compactly supported, non-decimated wavelet vec-

tor with support lengths Lj = O(2j) at each scale. ξj,k is a zero-mean, orthonormal,

identically distributed incremental error process (that is E[ξj,k] = 0,E[ξj,kξl,m] =

δjlδkm).
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For each j ≥ 1, Uj(z) : [0, 1]→ R is a real valued, piecewise constant function

with a finite (but unknown) number of jumps. Let Nj denote the total magnitude of

jumps in U2
j (z), the variability of function U2

j (z) is controlled so that:

• ∑∞
j=1 Uj(z) <∞ uniformly in z.

• ∑J
j=1 2

jNj = O(log n) where J = ⌊log2 n⌋.

A consequence of this definition is that the LSW process assumes Yt has mean

zero for all t due to the non-zero mean error process. Analogous to classical Fourier

time series analysis, the Evolutionary Wavelet Spectrum, {U2
j (

k
n
)}Jj=1 characterises

the autocovariance structure of Yt at different scales (frequency bands) and locations.

This characterisation is unique up to choice of mother wavelet, ψ(·).
As {U2

j (
k
n
)}Jj=1 describes the second-order structure of the time series and

the time series is assumed to be locally stationary, U2
j (

k
n
) is constrained to evolve

gradually and slowly for each j in order to maintain this local stationarity. Under

the definition of a LSW process presented, this is in a piecewise constant manner

maintained by the final two conditions. This permits processes exhibiting piecewise

second-order structures to be modelled. In general, Nason et al. (2000) only require

U2
j (

k
n
) to be a Lipschitz function for all j instead of the final two conditions pre-

sented in the definition above. This consequently means LSW processes can have

second-order structures which are not piecewise, thus giving rise to different types of

data. However, this thesis will focus on time series exhibiting piecewise covariance

structure.

If one specifies a spectrum {U2
j (

k
n
)}Jj=1, a generating mother wavelet ψ(·)

and a parametric distribution for the error process (for example Gaussian), it is

possible to simulate data according to the LSW framework. For example Figure

6.6(a) displays a user specified EWS with a piecewise constant power structure

(power denotes the contribution to the autocovariance at that particular scale and

location). An LSW process instance has been simulated according to this specified

EWS as displayed Figure 6.6(b). We observe that power at finer scales of the

EWS (higher resolution level) corresponds to higher frequency behaviour in the

time series and vice versa for power placed at coarser scales (lower resolution level).

Where there is no power at a location at all scales in the EWS, this results in

observations being equal to zero in the time series and no variation being present.

The important aspect to note however is that a change in the EWS corresponds to a

change in autocovariance structure of the simulated time series Yt. Thus, instead of

performing autocovariance CP analysis on the time series, we consider performing

CP analysis on the power structure of the EWS, or rather an estimate of the EWS.
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(c) Raw Wavelet Periodogram
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(d) Smooth, Corrected, Wavelet Periodogram

Figure 6.6: Example of an Evolutionary Wavelet Spectrum (EWS, 6.6(a)), an

LSW process simulated according to the specified EWS (6.6(b)), and the raw and

smoothed corrected wavelet periodogram estimates of the EWS (6.6(c) and 6.6(d)).

A change in autocovariance structure in the simulated time series corresponds to a

change in the EWS and its periodogram estimate.



We are typically not presented with the EWS from which the observed time

series has been generated. Instead, we are more commonly presented an observed

time series and required to estimate the EWS if the LSW framework is appropriate.

An estimate of the EWS can be obtained by considering the square of the empirical

detail coefficients from a NDWT on {Yt}nt=1. That is

U2
j

(
k

n

)
≈ Ij,k = D2

j,k =

(
n∑

t=1

ψj,k(t)Yt

)2

. (6.19)

This estimate is referred to as the raw wavelet periodogram. For a sequence of

random variables Y1:n, we denote the corresponding unknown detail coefficients from

a NDWT as D̃1:n = (D̃1, . . . , D̃n), D̃k = {Djk}Jj=1, and the corresponding unknown

raw wavelet periodogram as I1:n = (I1, . . . , In), Ik = {Ijk}Jj=1. We use their lower

case counterparts to denote observed, empirical values of them.

I1:n and D̃1:n can be thought of as a multivariate time series consisting of

J = ⌊log2 n⌋ components at each location with each component denoting a different

scale. Due to the use of NDWT and its overlapping wavelets both within and across

scales, a dependence structure is present within both of these multivariate time

series.

The raw wavelet periodogram for the presented simulated LSW time series

is displayed in Figure 6.6(c). We note that the CPs in the observed time series

correspond directly to changes in power in scale processes of the periodogram (the

same on-off power behaviour is present at resolution level eight and five of the

periodogram). Thus in considering changes in autocovariance structure, it is possible

to consider changes in the estimated power structure in the scale processes of the

periodogram, I1:n. It is this primary idea that forms the main motivation of the

methodology proposed in this chapter.

It is worth noting that the raw wavelet periodogram is a biased estimate of

the EWS. More specifically,

I1:n = AU2
1:n

where U2
1:n is the J ×n matrix representation of the EWS, and A is a J ×J matrix

based on the inner product between the autocorrelation wavelets. An effect of this

biased-ness is that a leakage effect occurs in that power at finer scales will diffuse

into the coarser scales. Consequently, CPs defined at finer scales may protrude into

the coarser scales and in general, the raw wavelet periodogram may not provide an

accurate estimate of how the power is truly distributed across scales (see resolution
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level seven of Figure 6.6(c) for example which exhibits some slight on-off behaviour

from resolution level eight). In obtaining an unbiased estimate of the EWS, the

corrected periodogram is considered,

Ĩ1:n = A−1I1:n.

Similar to the periodogram estimate of the frequency spectrum in classical Fourier

analysis of time series, the raw wavelet periodogram is also not a consistent esti-

mator. Thus in obtaining a consistent unbiased estimate, smoothing (a method of

denoising) is typically performed on the raw wavelet periodogram prior to correction

by A−1. We refer the reader to Nason et al. (2000) regarding the specifics of the

smoothed, corrected periodogram estimate.

The smoothed, corrected version of the raw wavelet periodogram presented

previously is displayed in Figure 6.6(d). We observe that the smoothed corrected

periodogram estimate is a much more faithful representation of the true spectrum

and how the power is truly distributed across the scales. For example, see resolution

level eight and five where the on-off power behaviour is much more explicit, and all

other resolution levels feature some fluctuation in power, including non-negative

power. The smoothed corrected version of the periodogram is therefore often used

as an estimate of the EWS with regards to the true spectral structure.

However, with regards to the CP problems of interest in this thesis, we are

not necessarily interested in which scale of the EWS the CP may occur, but whether

a CP occurs across the scales of the EWS at a location. In turn, accurate estimation

of EWS with respect to how the autocovariance structure is decomposed over scales

is of little interest compared to whether a change in power across scales occurs at

a certain location. As a result, the raw wavelet periodogram can be considered

in CP analysis as it still permits accurate CP detection with respect to the time

location, but does not indicate the true spectral power structure. This latter point

is usually not of interest when considering CPs in the observed time series. The

proposed methodology of this chapter thus focuses on analysis of the raw wavelet

periodogram as opposed to the smoothed, corrected periodogram. This has many

advantages for our analysis including the fact that an explicit distribution for the

raw wavelet periodogram can be computed which is more difficult for the smoothed,

corrected periodogram. The raw wavelet periodogram is also analysed in the CP

approach proposed by Cho and Fryzlewicz (2012).

The LSW framework is a powerful tool in modelling locally stationary time

series with time varying autocovariance structure, and can provide an alternative
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wavelet representation for time domain models such as piecewise MA processes. A

natural question to pose therefore is whether it is possible to consider a HMM frame-

work within the LSW framework. Such a proposed hybrid framework may allow us

to consider changes in autocovariance structure more actively, whilst utilising a large

multitude of existing HMM based CP methods. This includes the HMM based CP

method proposed in Chapter 3 in quantifying the uncertainty of CPs. This LSW-

HMM framework may thus allow us to consider the uncertainty of autocovariance

CPs, an area which has received little to no attention.

6.4 Methodology

As previously described, our goal is to quantify the uncertainty of autocovariance

CPs for a time series by considering its spectral structure. Quantities of interest

include the CP probability P (τ ∋ t|y1:n) (CPP, the probability of a CP at time

t), and the distribution of number of CPs within the observed time series P (M =

m|y1:n). Other CP characteristics such as joint or conditional CP distributions are

also available using the proposed methodology.

As detailed in Section 6.3.3, the raw wavelet periodogram characterises how

the autocovariance structure of a time series evolves over time if a LSW process is

assumed. Consequently, we perform analysis on the periodogram to quantify the

uncertainty of autocovariance CPs. This is achieved by modelling the periodogram

via a HMM framework, and quantifying the CP uncertainty via the existing HMM

approach proposed in (Nam et al., 2012b) and Chapter 3. In proposing the new

methodology, several challenges need to be addressed.

Firstly, the multivariate joint density of Ik is unknown and needs to be

derived. This density captures the dependence structure introduced by the use of

the NDWT in estimating the periodogram. The derivation of this joint density and

its embedding in a HMM modelling framework is detailed in Section 6.4.1. As the

model parameters, θ, associated with the HMM framework are unknown, these need

to be estimated and we turn to Sequential Monte Carlo samplers (SMC, Del Moral

et al. (2006)) in considering the posterior of the parameters as in Chapters 3 and

5. These model parameters can be shown to be directly associated with the EWS.

An example SMC implementation is provided in Section 6.4.2. Section 6.4.3 details

some aspects concerning the computation of the distribution of CP characteristics.

Section 6.4.4 provides an outline of the overall proposed approach.

There are many advantages to considering the observed time series under

the LSW framework. In particular, time series exhibiting piecewise second-order

170



structure can be more readily analysed under this framework compared to a time-

domain approach. For example, for a piecewise moving average processes, the associ-

ated EWS has a piecewise constant structure at each scale; a sparser representation

where the discontinuities can be analysed with fewer issues potentially arising from

changes in mean methods. This sparser representation is not possible in the time-

domain.

By combining the use of wavelets in conjunction with an HMM framework,

we can systematically induce a dependence structure in the HMM framework by

selecting a suitable number of scale process of the periodogram to analyse, compared

to choosing an arbitrary dependence structure in a time-domain approximation.

We assume in this chapter that the error process in the LSW model is Gaus-

sian, that is ξj,k
iid∼ N(0, 1). This leads to Yt being Gaussian itself and is commonly

referred to as a Gaussian LSW process. Recall from Section 6.3.3 that our EWS is

piecewise constant. That is,

U2
j

(
k

n

)
=

H∗∑

s=1

u2j,s1Us(k) j = 1, . . . , J, (6.20)

where u2j,s are some unknown constants, and Us, s = 1, . . . ,H∗ is an unknown disjoint

partitioning of 1, . . . , n over all scales j simultaneously. Each Us has a particular

EWS power structure associated with it, such that consecutive Us have changes in

power in at least one scale. H∗ denotes the unknown number of partitions there are

in the EWS, and ultimately correspond to the segments in the data and in turn the

number of CPs.

We now propose the LSW-HMM modelling framework in quantifying the

uncertainty of autocovariance CPs under the assumptions outlined above.

6.4.1 LSW-HMM modelling framework

Recall that the raw wavelet periodogram, an estimate of the EWS, is provided by

the square of the empirical wavelet coefficients under a NDWT,

U2
j

(
k

n

)
≈ Ij,k = D2

j,k =

(
n∑

t=1

ψj,k(t)Yt

)2

. (6.21)

We consider modelling the raw wavelet periodogram at a single location k over the

different scales j. We adopt the convention that j = 1 is the finest scale, and

j = 2, . . . , J as the subsequent coarser scales (where J = ⌊log2 n⌋). Within-scale

dependence induced by the NDWT can be accounted for by the HMM framework.
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We refer to the collection of J periodogram coefficients at a particular time point as

Ik = {Ij,k}j=1,...,J (random variable) and d̃2
k = {d2j,k}j=1,...,J (observed, empirical)

from here onwards.

Note that under the definition of the transform above, the wavelet coefficients

at location k are a function of observations in the future. For example, the above

equation can be rewritten as

D1,k =
1√
2
(Yk+1 − Yk) 1 ≤ k ≤ (n− 1)

D1,n =
1√
2
(Y1 − Yn)

for scale one of the Haar wavelet. However, it is also possible to re-write the above

equation and transform in terms of past observations by relabelling the time label.

Namely D1,k ← D1,k+1 for scale one of the Haar wavelet. A similar relabelling

procedure exists for other scales and other wavelets.

We next turn to deriving the joint density of Ik.

Distribution of Ik

Recall that since we have assumed an LSW model and Gaussian innovations, Yt is

Gaussian with mean zero. By performing a wavelet transform, the wavelet coeffi-

cients Dj,k are Gaussian distributed themselves with mean zero. The use of NDWT

however induces a dependence structure between the coefficients Dj,k. We consider

in particular, D̃k = {Dj,k}j=1,...,J , the coefficients across J scales considered at a

given location, k. Thus,

D̃k ∼ MVN(0,ΣDk ) k = 1, . . . , n,

where ΣDk specifies the covariance structure between the wavelet coefficients at lo-

cation k across the J scales considered. The subsection below discusses how ΣDk can

be computed from the spectrum U2
j (

k
n
).

As Ik = D̃2
k = (D2

1,k, . . . ,D
2
J,k), the following result can be established.

Proposition 1. The density of Ik is,

g(d̃2
k|ΣDk ) = g(d21,k, . . . , d

2
J,k|ΣDk )

=
1

2J
∏J
j=1 |dj,k|

∑

a1,...,aJ={+,−}
f

(
a1|d1,k|, . . . , aJ |dJ,k|

∣∣∣∣0,ΣDk
)
, (6.22)

where f(·|0,ΣDk ) is the joint density corresponding to MVN(0,ΣDk ).
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Proof. This is based on a change of variables argument detailed further in Section

6.A.1 (page 200).

We can thus use the joint density of wavelet coefficients, D̃k, to deduce the joint

density for the squared wavelet coefficients Ik = D̃2
k. A similar joint density can

be computed if we consider each scale process of the periodogram across all time

locations, that is Ij = {Ij,k}nk=1, although the order of computation increases expo-

nentially.

Computing ΣDk

We next turn to the problem of accounting for the dependence between the wavelet

coefficients, induced by a NDWT. This dependence structure feeds into the joint

densities of D̃k and Ik. Recall that the EWS characterises the autocovariance struc-

ture of the observation process for any orthonormal incremental process as follows

(Nason et al., 2000):

Cov(Yt, Yt−v) =
∑

l

∑

m

U2
l

(m
n

)
ψl,m(t)ψl,m(t− v).

It is possible to compute this autocovariance quantity without knowing the entire

EWS due to the compact support of wavelets, that is the product ψl,m(t)ψl,m(t− v)
will only be non-zero for some values of v.

As the following proposition demonstrates, the autocovariance structure of

the observations also feeds into the covariance structure of the wavelet coefficients.

Proposition 2. For a LSW process, the covariance structure between the pair of

wavelet coefficients, Dj,k and Dj′,k′, of a NDWT is of the following form:

Cov(Dj,k,Dj′,k′) =
∑

t

∑

v

ψj,k(t)ψj′,k′(t− v)Cov(Yt, Yt−v). (6.23)

Proof. See Section 6.A.2 (page 202).

We can thus deduce the covariance structure for the wavelet coefficients D̃k, Σ
D
k ,

from the EWS. Similar to the autocovariance structure of the observation series,

only a finite number of covariances in the summation are needed to evaluate ΣDk
due to the compact support property associated with wavelets. Consequently, the

entire EWS does not need to be known to calculate the covariance between the

wavelet coefficients of D̃k.
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More specifically, one can show that to compute ΣDk , the covariance structure

of the wavelet coefficients at location k, the power from locations k−2(Lj−1), . . . , k
for scale j = 1, . . . , J needs to be recorded where Lj denotes the number of non-zero

filter elements in the wavelet at scale j (see Section 6.A.3, page 203).

Example 6.4.1. Computing ΣDk when provided with the EWS, U2
j (

k
n
).

We assume n = 4 and the Haar mother wavelet as the generating wavelet in this

example. Thus J = 2 and recall that the wavelet vectors for the two scales are

ψ1 = ( 0. . ., 1√
2
,− 1√

2
, 0. . .) and ψ2 = ( 0. . ., 12 ,

1
2 ,−1

2 ,−1
2 ,

0. . .). Let the pre-specified EWS

have the following matrix form.

U2
1:4 = {u2j,k}j=1,2, k=1,2,3,4 =

[
1 1 2 2

2 2 2 2

]

We begin by computing the variances and covariances between observations (that is

Cov(Yt, Yt−v)) which feed in directly to the covariance of the coefficients, Dj,k. Due

to the finite support of wavelets, it is only necessary to consider 0 ≥ v ≥ 3. Hence,

using Equation 6.23,

Var(Y1) =

Scale 1︷ ︸︸ ︷
u21,1ψ

2
1,1 + u21,2ψ

2
1,2 +

Scale 1︷ ︸︸ ︷
u22,1ψ

2
2,1 + u22,2ψ

2
2,2 + u22,3ψ

2
2,3 + u22,4ψ

2
2,4

= 1 ·
(

1√
2

)2

+ 1 ·
(
− 1√

2

)2

+ 2 ·
(
1

2

)2

+ 2 ·
(
1

2

)2

+ 2 ·
(
−1

2

)2

+ 2 ·
(
−1

2

)2

= 1 + 2 = 3.

Similarly,

Var(Y2) = 3.5 Var(Y3) = 4 Var(Y4) = 3.5,

recalling that the U2
1:4 loops round to the beginning when k → n = 4. Similarly the

other covariances are computed as follows,

Cov(Y1, Y2) =

Scale 1︷ ︸︸ ︷
u21,1ψ1,1ψ1,2+

Scale 2︷ ︸︸ ︷
u22,1ψ2,1ψ2,2 + u22,2ψ2,2ψ2,3 + u22,3ψ2,3ψ2,4

= 1 · 1√
2
· − 1√

2
+ 2 · 1

2
· 1
2
+ 2 · 1

2
· −1

2
+ 2 · −1

2
· −1

2

= −0.5 + 0.5− 0.5 + 0.5 = 0.

Cov(Y2, Y3) = 0 Cov(Y3, Y4) = −0.5
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Cov(Y1, Y3) =

Scale 2︷ ︸︸ ︷
u22,1ψ2,1ψ2,3 + u22,2ψ2,2ψ2,4

= 2 · 1
2
· −1

2
+ 2 · 1

2
· −1

2

= −0.5− 0.5 = −1
Cov(Y2, Y4) = −1
Cov(Y1, Y4) = u22,1 · ψ2,1 · ψ2,4 = −0.5.

These variances and covariances regarding the observations consequently feed into

the computation of the variance and covariances between the wavelet coefficients as

demonstrated in Proposition 2. For example,

Var(D1,1) = ψ2
1,1Var(Y1) + ψ2

1,2Var(Y2) + 2ψ1,1ψ1,2Cov(Y1, Y2)

=
1

2
· 3 + 1

2
· 3.5 + 2 · −1

2
· 0 =

13

4

Var(D2,1) = ψ2
2,1Var(Y1) + ψ2

2,2Var(Y2) + ψ2
2,3Var(Y3) + ψ2

2,4Var(Y4)

+ 2 [ψ2,1ψ2,2Cov(Y1, Y2) + ψ2,2ψ2,3Cov(Y2, Y3) + ψ2,3ψ2,4Cov(Y3, Y4)

+ ψ2,1ψ2,3Cov(Y1, Y3) + ψ2,2ψ2,4Cov(Y2, Y4) + ψ2,1ψ2,4Cov(Y1, Y4)]

=
1

4
· 3 + 1

4
· 7
2
+

1

4
· 4 + 1

4
· 7
2

+ 2

[
1

4
· 0 + −1

4
· 0 + 1

4
· −1

2
+
−1
4
· −1 + −1

4
· −1 + −1

4
· −1

2

]

=
7

2
+

1

2
= 4

Cov(D1,1,D2,1) = ψ1,1ψ2,1Var(Y1) + ψ1,1ψ2,2Cov(Y1, Y2) + ψ1,1ψ2,3Cov(Y1, Y3)

+ ψ1,1ψ2,4Cov(Y1, Y4) + ψ1,2ψ2,2Var(Y2) + ψ1,2ψ2,3Cov(Y2, Y3) + ψ1,2ψ2,4Cov(Y2, Y4)

=
1

2
√
2
· 3 + 1

2
√
2
· 0 + −1

2
√
2
· −1

+
−1
2
√
2
· −1

2
+
−1
2
√
2
· 7
2
+

1

2
√
2
· 0 + 1

2
√
2
· −1

=
1

4
√
2
.

Thus for k = 1, the corresponding covariance matrix between the coefficients is

ΣD1 =

[
13
4

1
4
√
2

1
4
√
2

4

]
.

175



The HMM framework

Having derived a joint density for the wavelet periodogram, we now turn our atten-

tion to the question of how this can be incorporated appropriately within a HMM

framework. The J multivariate scale processes from a raw wavelet periodogram

can be modelled simultaneously via a single HMM framework with a multivariate

emission density. That is, at location k, we consider Ik = {Ij,k}j=1,...,J , and model

it as being dependent on a single underlying, unobserved Markov chain (MC), Xk,

which takes values from ΩX = {1, . . . ,H} with H = |ΩX | <∞,

p(xk|x1:k−1, θ) = p(xk|xk−1, θ) k = 1, . . . , n (Transition)

Ik|{X1:k−1, I1:k−1 = d̃2
1:k−1} ∼ g(Ik = d̃2

k|xk−2(LJ−1):k, θ) k = 1, . . . , n (Emission)

The HMM framework assumes that the emission density of Ik is determined

by the latent process Xk, such that the process follows the Markov property and

the I1:n are conditionally independent given X1:n. This latter remark allows us

to account for some of the within-scale dependence induced by a NDWT via the

underlying MC. H denotes the number of underlying states the latent MC, Xk,

can take and corresponds to different data generating mechanisms, for example

“stormy” and “non-stormy” seasons in the motivating oceanographic application.

Under our setup, this corresponds to the number of unique power configurations

over the disjoint partitioning U1, . . . ,UH∗ . That is H ≤ H∗ is the number of states

that generate the H∗ partitions, with some partitions possibly being generated by

the same state. We assume in our analysis that H is known a priori, as we want

to give a specific interpretation to the states in the application, that of “stormy” or

“non-stormy” seasons. However as discussed in Chapter 5 and Zhou et al. (2012);

Nam et al. (2012a), the number of states can be deduced via the existing use of

SMC samplers and we examine this assumption in Section 6.5.2 with regards to

our oceanographic application. We assume that the underlying unobserved MC,

Xk, is first order Markov, although extensions to a higher order Markov Chain are

permitted via the use of embedding arguments.

The state-dependent emission density, g(Ik|Xk−2(LJ−1):k), is that proposed in

Equation 6.22, with the covariance structure ΣDk being dependent on Xk−2(LJ−1):k.

Rather than estimating entries of ΣDk directly, we instead estimate the powers, u2j,s
as in Equation 6.20, that feed directly into and populate ΣDk . More specifically, we
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estimate state-dependent powers u2j,s in

U2
j,Xk

(
k

n

)
=

H∑

s=1

u2j,s1[Xk=s] j = 1, . . . , J. (6.24)

This state-dependent power structure is equivalent to the piecewise constant EWS

as in Equation 6.20. As Xk is permitted to move freely between all states of ΩX , we

are able to reduce the summation limit in Equation 6.20 to H from H∗. Returning

to previous power configurations in the EWS is therefore possible, with a change

in state corresponding to a change in power in at least one scale. ΣDk is dependent

on the underlying states of Xk from times k − 2(LJ − 1), . . . , k (see Section 6.A.3)

and thus the order of the HMM is 2LJ − 1. We highlight again that in the case

when future observations or observations are considered and thus future states of the

underlying MC, it is always possible to relabel the time order such that it depends

only past quantities.

Here, θ denotes the model parameters that need to be estimated which con-

sists of the transition matrix P and the aforementioned state-dependent power

U2 = {U2
·,1, . . . , U

2
·,H}, where U2

·,s = {u2j,s}Jj=1 for all s ∈ ΩX , is associated with

the emission density. We can thus partition the model parameters into transition

and emission parameters, θ = (P, U2). As θ is unknown, we turn to SMC samplers

(Del Moral et al., 2006) for their estimation.

6.4.2 SMC samplers implementation

This section outlines an example SMC implementation in approximating the param-

eter posterior, p(θ|d̃2
1:n,H) via a weighted cloud of N particles, {θi,W i|H}Ni=1, since

θ = (P, U2) is unknown. As highlighted in Section 3.2.2 (page 67), SMC samplers

provide an algorithm to sample from a sequence of connected distributions via im-

portance sampling and resampling techniques (Del Moral et al., 2006). Analogous to

the sequence of distributions defined in Chapter 3 and 5, we can define the following

sequence of distributions,

πb(θ) ∝ l(θ|d̃2
1:n,H)γbp(θ|H) b = 1, . . . , B, (6.25)

where l(θ|d̃2
1:n,H) denotes the likelihood with respect to the periodogram, and

p(θ|H) as the prior of the model parameters. {γb}Bb=1 denotes a non-decreasing

tempering schedule such that γ1 = 0 and γB = 1. As with the other sequence

of distributions sampled via SMC samplers in this thesis, this sequence of distri-

butions similarly does not need the latent state sequence to be sampled. This is
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because under the HMM framework, the likelihood can be computed exactly via

the Forward-Backward Equations (Baum et al., 1970) which does not require sam-

pling the latent state sequence. This has many advantages, including a reduction in

Monte Carlo sampling error.

Section 6.A.5 (page 204) provides a detailed outline of the example SMC

implementation used within our framework. We proceed in a similar fashion as

that presented in Section 3.4.1 and Chapter 5 in that we consider the transition

probability row vectors, ps, s = 1, . . . ,H forming the transition matrix P, indepen-

dently from the inverse state dependent powers 1
u2j,s

, j = 1, . . . , J, s = 1, . . . ,H. The

re-parametrisation of the state dependent powers to its inverse is analogous to the

re-parametrisation of variance to precision (inverse variance) in typical time-domain

models (see Section 3.4.1 for example). In practice, the series we consider will all

contain at least a small portion of variation, and as such issues regarding zero or

infinite power for particular frequencies will not arise.

We initialise by sampling from a Dirichlet and Gamma prior distribution

respectively for transition probability vectors and inverse state dependent powers,

and mutate according to a Random Walk Metropolis Hastings Markov kernel on the

appropriate domain for each component, namely on the logit scale for the transition

probability vectors since they are non-negative and must sum to one, and on the log-

scale for the non-negative inverse powers. There is a great deal of flexibility within

the SMC samplers framework with regards to the type of mutation and sampling

schemes from the prior. The example implementation presented is in no way the

only implementation or optimal with respect to optimising mixing and acceptance

rates. However, this design provides results which appear sensible without a great

deal of manual tuning.

6.4.3 Exact CP distributions

Having formulated an appropriate HMM framework to model the periodogram d̃2
1:n,

and accounting for unknown θ via SMC samplers, it is now possible to compute the

CP distributions of interest. As detailed in Section 3.2.1 (page 60), it is possible to

compute exact CP distributions, such as P (τ (kCP) ∋ t|d̃2
1:n, θ,H), conditional on θ

via Finite Markov Chain Imbedding (FMCI) in a HMM framework (see Aston et al.

(2011) and references therein). In particular, the use of the kCP and k′CP variables

under the generalised CP definition denoting the sustained nature of regimes, also

correspond to the sustained nature of the EWS such that it evolves gradually to

maintain local stationarity. This sustained nature also has an intuitive interpretation

in the oceanographic application with a storm season deemed to be in progresses
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when there are several consecutive “stormy” measurements.

6.4.4 Outline of Approach

An outline of the final algorithm is as follows:

1. Perform a NDWT to time series y1:n, n = 2J , J ∈ N to obtain the wavelet

periodogram. Let d̃2
1:n denote the periodogram, a J multivariate time series.

2. Assuming H underlying states, model d̃2
1:n by a HMM framework with the

corresponding joint emission density (Equation 6.22). This joint density also

accounts for the dependence structure between scale processes.

3. Account for the uncertainty of the unknown HMM model parameters, θ, via

Sequential Monte Carlo samplers. This results in approximating the posterior,

p(θ|d̃2
1:n,H), by a weighted cloud of N particles {θi,W i|H}Ni=1.

4. To obtain the CP probability of interest, approximate as follows. Let kCP

denotes the sustained condition under a generalised CP definition (see Chapter

3), and P (τ (kCP) ∋ t|d2
1:n, θ

i,H) to be the exact CP distribution conditional

on θi. Then the CP probability is,

P (τ ∋ t|y1:n) ≡ P (τ (kCP) ∋ t|d̃2
1:n,H) ≈

N∑

i=1

W iP (τ (kCP) ∋ t|d̃2
1:n, θ

i,H).

(6.26)

That is, the weighted average of conditional exact CP distributions with re-

spect to different model parameter configurations.

P (M = m|y1:n) ≡ P (M (kCP) = m|d̃2
1:n,H) follows analogously.

Computationally, it is not possible to consider all J scales of the periodogram as the

order of the HMM increases exponentially and the intended Markovian structure

becomes lost (see Section 6.A.4, page 204 for further details). Consequently, we ap-

proximate the periodogram by considering J∗ ≤ J finer scales of the periodogram,

a common approach in time series analysis (see for example Cho and Fryzlewicz

(2012)). This restricts our attention to changes in autocovariance structure associ-

ated at higher frequencies which seems more appropriate in the oceanographic data

of interest. This should therefore not hinder our proposed methodology with regards

to the motivating oceanographic application.

We assume that the choice of analysing wavelet used for the transform is

known a priori, and is the same as the generating wavelet. However, this is often
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unknown and we note that wavelet choice is an area of ongoing interest with the effect

between differing generating and analysing wavelets for EWS estimation investigated

in Gott and Eckley (2013).

The assumption of dyadic lengthed data, n = 2J , J ∈ N, is typically unrealis-

tic in real statistical applications. We stress that this assumption is made through-

out the wavelet literature and is only required when performing the NDWT in order

to estimate the EWS. It is not required for the proposed HMM-based modelling

framework. To address scenarios where this assumption is not satisfied, we propose

performing two common approaches in the wavelet literature; truncate the data so

that it becomes dyadic in length, or “pad out” the beginning and/or end of the data

with white noise or a constant so it becomes dyadic in length (Ogden, 1997, p. 116).

In the latter case, it suffices to only analyse the part of the periodogram which

corresponds to the original data for CP analysis under the proposed LSW-HMM

framework. Future work may want to explore the use of maximal overlap discrete

wavelet transform (MODWT) (see Whitcher et al. (2000) and Choi et al. (2008)),

where the dyadic length assumption is not required. However, such a transform re-

mains undeveloped with respect to the established LSW framework. Alternatively,

if only J∗ ≤ J scales are of interest, then it is possible to relax the dyadic length

restriction and consider time series of length n = C · 2J∗

where C ∈ N+, due to the

J∗ scale wavelets having smaller support than th J scale wavelets. Nevertheless, the

datasets considered in this chapter are of dyadic length.

6.5 Results and Applications

We next consider the performance of our proposed methodology on both simulated

and oceanographic data.

We first consider simulated white noise and MA processes with piecewise

second-order structures. White noise processes are considered and compared to a

time-domain HMM approach because this type of process can be modelled exactly

in the time-domain with no approximation being necessary. Hence our proposed

wavelet method should compliment it. The potential benefit of the proposed wavelet

approach is then demonstrated on piecewise MA processes in which an exact time-

domain HMM is not possible without some sort of approximation taking place.

We also return to the oceanographic application concerned with determining

changes in storm season from wave height data. In addition to quantifying the uncer-

tainty of storm season changes, we demonstrate concurrence with estimates provided

by other autocovariance CP methods and those provided by expert oceanographers.
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The R package wavethresh (Nason, 2012) has been used to obtain the raw

wavelet periodogram in analysis.

6.5.1 Simulated Data

We consider simulated processes of length 512 and with defined CPs (red dotted

lines at times 151, 301 and 451). We initially compare our proposed method to a

time-domain Gaussian Markov Mixture model on the time series itself, regardless

of how the data is actually generated and statistical features present. In the case of

the piecewise MA data, such a model mis-specification is a possible approximation.

We assume state dependent means and variances under this time domain model,

that is Yt|Xt ∼ N(µXt , σ
2
Xt
).

In generating our results, the following SMC samplers settings have been

used; N = 500 samples to approximate the defined sequence of B = 100 distribu-

tions. The hyperparameter for the s-th transition probability vector, αs, is a H-long

vector of ones with 10 in the s-th position which encourages the underlying MC to re-

main in the same state. The shape and scale hyperparameters for the inverse power

parameters priors are αλ = 1 and βλ = 1 respectively. These hyperparameters have

been arbitrarily set. A linear tempering schedule, that is γb = b−1
B−1 , b = 1, . . . , B,

and a baseline line proposal variance of ten which decreases linearly with respect to

the iteration of the sampler, are utilised.

The simulated data considered arises from two possible generating mecha-

nisms in the time-domain, and we thus assume H = 2 in our HMM framework,

and kCP = 20, k′CP = 10 for the required sustained change in state under our CP

definition. J∗ = 3 scale processes of the periodogram under a Haar LSW framework

are considered, a computationally efficient setting under the conditions presented.

In the case of the time-domain Gaussian Markov Mixture, the following priors

are considered in the SMC implementation: µs
iid∼ N(0, 10), 1

σ2s

iid∼ Gamma(shape =

1, scale = 1), s = 1, 2.

Gaussian White Noise Processes with Switches in Variance

The following experiment concerns independent Gaussian data which exhibits a

change in variance at defined time points. It is well known that the corresponding

true EWS is U2
j (

k
n
) =

σ2
k

2j
, j = 1, . . . , J . A change in variance thus causes a change

in power across all scales simultaneously. The corresponding EWS for such data

is presented in Figure 6.7(a). This type of data can be modelled exactly in the

time domain via a Gaussian Markov Mixture model. A realisation of the data and
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corresponding CP analysis are displayed in Figure 6.8. The top panel is a plot of the

simulated data analysed. The second and third panel display the CPP plot under

the wavelet and time-domain approaches respectively. The fourth panel presents

the distribution of the number of CPs from both approaches.

We observe that our proposed methodology has peaked and centred CPP

around the defined CP locations and provides similar results to the time-domain

approach. This type of CPP behaviour provides a potential indication of the CP

location estimates. In some instances, the wavelet approach outperforms the time-

domain approach, for example the CP associated with time point 301 is more certain.

We note that there is some significant CPP assigned to the first few time points under

the wavelet approach. This arises due to a label identifiability issue common with

HMMs (see Scott (2002), states are identifiable up to the permutation of them).

As such, an additional CP is often detected at the start of the data and this is

reflected in the CP distribution. Disregarding this artefact, we observe that three

CPs occurring is almost certain under the wavelet approach. This is in accordance

with the time-domain approach and truth.

The results demonstrate that there is potential in providing an alternative

method when dealing with this type of data as the wavelet based method identifies

CPs near the defined locations. However some differences and discrepancies do exist

between the proposed wavelet approach, the truth and time-domain approach. In

particular, the CPP under the proposed approach is slightly offset from the truth.

However, these estimates are still in line with what we might observe in the time

series realisation and compares favourably to the time-domain approach.

Piecewise MA processes - Piecewise Haar MA processes

The following scenario considers piecewise MA processes with changing MA order,

variance and both simultaneously. We consider in particular piecewise Haar MA

processes where the coefficients of the MA process are the Haar wavelet coefficients

with a piecewise constant power structure in the EWS being present. Such processes

are the types of data that our proposed methodology should perform well on and

for which time-domain HMM methods require some approximation. In this case, we

approximate the observed time series by modelling it as Gaussian Markov Mixture

model, ignoring any of the autocorrelation present in the time series. This incorrect

modelling approach is also equally applicable when dealing with real data where the

“true” model is unknown. We later account for the autocorrelation present in the

series by introducing some AR structure (page 188)

Stationary Haar MA processes have constant power structure in a single
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(a) EWS for White Noise process
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(b) EWS for Haar MA (changing order)
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(c) EWS for Haar MA (changing variance)
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(d) EWS for Haar MA (changing order and vari-

ance)

Figure 6.7: Corresponding Evolutionary Wavelet Spectrum for the Simulated White

Noise (6.7(a)) and Haar Moving Average processes (6.7(b) – 6.7(d)) considered in

Section 6.5.1.
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Figure 6.8: Changepoint results (CPP plot and distribution of number of CPs) for

simulated Gaussian white noise data with a change in variance (1 and 4, see Figure

6.7(a) for corresponding EWS). 1st panel presents the simulated data analysed. 2nd

and 3rd panel displays the CPP plots under the wavelet and time-domain approaches

respectively. 4th panel presents the distribution of number of CPs. The proposed

methodology compliments the time-domain approach and concurs with the truth.



scale j′ of the EWS, namely U2
j (

k
n
) = 1[j=j′]σ

2, j′ ∈ {1, . . . , J}, and a Haar

generating wavelet, where σ2 is the time-domain innovation variance of the process.

The equivalent time-domain representation of this model is a MA(2j
′ − 1) process

with innovation variance σ2 and MA coefficients determined by the Haar wavelet

at scale j′. Piecewise Haar MA processes can thus be constructed by considering

piecewise constant EWS. Changes in power across scales correspond to changes in

MA order and changes in power within-scales correspond to changes in variance of

Yt. Figures 6.7(b) – 6.7(d) display the corresponding EWS we shall be considering

for simulated Haar MA processes. Nason et al. (2000) remark that any MA process

can be written as a linear combination of Haar MA processes, hence highlighting a

potentially more favourable representation in the wavelet domain.

Figure 6.9 considers a change in order from MA(1) ↔ MA(7) and constant

variance σ2 = 1. The associated EWS is presented in Figure 6.7(b). These results

show the real potential of the proposed method in that it outperforms the time

domain approach. Under the proposed wavelet approach, the CPP are centred

and peaked around the defined CP locations, with additional CP potentially being

present corresponding to the subtle nuances arising in the data. The potential

presence of additional CPs is also reflected in the distribution of the number of CPs

with probability assigned to these number of CPs. In contrast, the time-domain

method is unable to identify these CPs completely due to the highly correlated

nature and change of autocovariance present in the the data. This thus demonstrates

that there is an advantage in considering the CP problem in the wavelet-domain over

the time-domain, in light of incorrect model specification.

Figure 6.10 displays CP results for a Haar MA process with constant order,

changing innovation variance (MA(3), σ2 = 1, 5). This is achieved by changing

power within a single scale of the EWS as demonstrated in Figure 6.7(c). Results

indicate that both the wavelet and time domain approach perform reasonably well

with the CPP peaked and centred around the defined CP, and assigning a significant

amount of probability to the true number of CPs after the necessary correction has

taken place. The wavelet domain also appears to be less sensitive to false CPs

potentially occurring, for example the CP detected in the time domain approach at

around 250. It is surprising how well the time domain approach performs despite the

presence of autocorrelation in the time series. However, its acceptable performance

is likely to be due to the underlying MC capturing some of the autocorrelation

present in the time series, and the change in variance being a dominant feature

of the data which can be successfully modelled by the Gaussian Markov Mixture

model.
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Figure 6.9: Changepoint results for piecewise Haar MA data with a change in order,

constant variance (change in power across scales → MA(1) ↔ MA(7), σ2 = 1,

see Figure 6.7(b) for corresponding EWS). 1st panel presents the simulated data

analysed. 2nd and 3rd panel displays the CPP plots under the wavelet and time-

domain approaches respectively. 4th panel presents the distribution of number of

CPs. The wavelet-domain approach is successfully able to identify the defined CP

locations, in addition to other CPs. This is reflected in the distribution of the

number of CPs. The time-domain fails to identify the CP characteristics however

due to high autocorrelation present in the data and the change within it.
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Figure 6.10: CP results for piecewise Haar MA data with a change in innovation

variance, constant order (change in power within a scale → MA(3), σ2 = 1, 5, see

Figure 6.7(c) for corresponding EWS). 1st panel presents the simulated data anal-

ysed. 2nd and 3rd panel displays the CPP plots under the wavelet and time domain

approaches respectively. 4th panel presents the distribution of number of CPs. Re-

sults largely concur with the truth and time approach, with some discrepancies

present (offset peaked CPP around defined CP location). However, this is still in

line with the behaviour of the data.



Figure 6.11 considers the case of changing power between scales. This results

in a piecewise MA process with varying order and innovation variance (MA(1),

σ2 = 1 ↔ MA(7), σ2 = 5). The associated EWS is presented in Figure 6.7(d).

We observe that both the wavelet and time domain approach perform well with

CPP peaked and centred around the defined CP locations, and true number of CPs

being the most probable after discarding the artefact at the beginning of the time

series. However, the wavelet approach is generally more certain for all potential

CP locations than the time domain approach. Again, the good performance of the

time domain approach is suspected to be because the change in variance dominants

the change in covariance, and this is successfully captured by the Gaussian Markov

Mixture framework.

Further piecewise MA simulations were performed with respect to different

power configurations at different scales (results not shown here). Under these sce-

narios, the proposed methodology shows similar performance to those presented in

this section by outperforming or compared favourably to the approximating time-

domain approach.

Markov Switching Autoregressive Switching Approximation It is clear

from Figures 6.9 - 6.11 that the simulated Haar MA processes considered exhibit

autocorrelation in the time series. Consequently, a Gaussian Markov Mixture model

may not be an appropriate model as it captures little to no autocorrelation structure

potentially present. In an attempt to capture some of this autocorrelation structure,

we propose an alternative time domain modelling approach for the Haar MA time

series. Namely, we consider an extension of Hamilton’s Markov Switching Autore-

gressive model of order r, HMS-AR(r), as defined earlier (Equation 3.34, page 81).

This extension is of the following form:

at = Yt − µXt (6.27)

at =

r∑

p=1

φp,Xtat−p + ǫt ǫt ∼ N(0, σ2Xt
), (6.28)

where the mean, innovation variance and AR coefficients are state dependent with

respect to the underlying chain. The state dependent AR coefficients thus allow

us to consider changes in autocovariance structure which is not possible under the

original HMS-AR(r) model. We refer to this HMS-AR(r) model with switching AR

coefficients as Hamilton’s Markov Switching Autoregressive Switching model with

order r, HMS-ARS. Note that the HMS-ARS(r) model allows us to model piecewise
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Figure 6.11: CP results for piecewise Haar MA data with a change in order and

variance (change in power across scales → MA(1), σ2 = 1 ↔ MA(7), σ2 = 5,

see Figure 6.7(d) for corresponding EWS). 1st panel presents the simulated data

analysed. 2nd and 3rd panel displays the CPP plots under the wavelet and time

domain approaches respectively. 4th panel presents the distribution of number of

CPs. Both the wavelet and time domain perform well in identifying the location and

number of the defined CPs. However, the wavelet approach appears to fare better

with greater certainty in the potential CP location estimates.



AR processes with switching mean, innovation variance and AR structure. Note

that although the AR order is fixed under the HMS-ARS(r), changes in AR order

can be achieved by setting the corresponding AR coefficients to zero. An alterna-

tive modelling approach would also be the Markov Switching AR model defined in

Equation 6.1 (page 149) where q = 0.

Figures 6.12 – 6.14 present the CP results assuming a HMS-ARS(4) model in

the time domain for the same Haar MA processes considered in Figures 6.9 – 6.11.

An autoregressive order of four has been chosen arbitrary and sufficiently large

enough to account for some of the autocorrelation structure present in the time

series. The same SMC settings have been used in obtaining the results (N = 500

particles, B = 100 distributions, linear tempering schedule et cetera).

We observe that the HMS-ARS approximation method provides promising

results for all three data realisations, with CPP centred and peaked around the

defined CP locations, and the correct number of CPs being the most probable from

the distribution of number of CPs. This alternative time domain approximation

clearly outperforms assuming a Gaussian Markov Mixture, and is clearly a more

suitable model as a time-domain approximation.

The HMS-ARS time domain approximation also performs as well as the

LSW-HMM approach, with greater certainty on the current number of CP locations

present and their respective locations in some instances. This thus poses the ques-

tion as to why one would want to consider the proposed wavelet based approach for

analysis. We argue that whilst the HMS-ARS approach performs on a par with

the LSW-HMM approach, the latter may be more robust to model mis-specification

as we do not need to worry as to whether any autocorrelation is present in the

time series since this is modelled automatically under the proposed approach. In

addition, under the HMS-ARS approach, a suitable AR order needs to be deter-

mined in modelling any potential autocorrelation present. This is systematically

accounted for under the proposed LSW-HMM framework by modelling the peri-

odogram directly, and a dependency order in the underlying MC is systematically

deduced from the choice of analysing wavelet and the number of periodogram scales

considered. Finally, the HMS-ARS framework may not correctly identify changes in

AR or MA order as it relies on the associated coefficients being set to zero. The pro-

posed wavelet approach is able to account for these changes in order more explicitly

by considering the change in power configuration across scales of the periodogram

and EWS.
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Figure 6.12: CP results for piecewise Haar MA data with a change in order (change

in power across scales → MA(1), σ2 = 1 ↔ MA(7), σ2 = 1, see Figure 6.7(b) for

corresponding EWS). Analysis assumes a HMS-ARS(4) in the time domain. 1st

panel presents the simulated data analysed. 2nd displays the CPP plots under the

HMS-ARS(4) time domain approach. 3rd panel presents the distribution of number

of CPs.

6.5.2 Oceanographic Application

We now return to consider the oceanographic data example introduced in Section

6.1. Clearly there is ambiguity as to when storm seasons start and the number that

have occurred. Hence there is particular interest in quantifying the uncertainty of

storm seasons. We therefore apply our proposed methodology to the data from a

location in the North Sea.

The analysed data is plotted in the top panel of Figure 6.15 along with

CP estimates from existing change in autocovariance methods namely, Cho and

Fryzlewicz (2012) (CF, blue top ticks) and Davis et al. (2006) (AutoPARM, red

bottom ticks). The data consists of differenced wave heights measured at 12 hour

intervals from March 1992 - December 1994 in a central North Sea location.

The following inputs have been used to achieve the presented CP results in

Figure 6.15: J∗ = 2 corresponding to higher frequency time series behaviour (where
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Figure 6.13: CP results for piecewise Haar MA data with a change in innovation

variance, constant order (change in power within a scale → MA(3), σ2 = 1, 5, see

Figure 6.7(c) for corresponding EWS). Analysis assumes a HMS-ARS(4) in the time

domain. 1st panel presents the simulated data analysed. 2nd displays the CPP plots

under the HMS-ARS(4) time domain approach. 3rd panel presents the distribution

of number of CPs.

changes are expected), and H = 2 states have been assumed reflecting the belief

that there are “stormy” and “non-stormy” seasons. Assuming two states also aids

ocean engineers in interpreting the model; we validate this assumption later on.

The same SMC samplers settings utilised in the simulated data analysis have been

used (N = 500 particles, B = 100 distributions, linear tempering schedule). Under

a sustained CP definition, kCP = 40 and k′CP = 30, have been used to reflect the

general sustained nature of seasons (seasons last for at least a few weeks).

Ocean engineers have indicated that it is typical to see two changes in storm

season each year occurring in the Spring (March-April) and Autumn (September-

October). The results displayed in Figure 6.15 concur with this statement; five

and six storm season changes are most likely according to the number of CPs dis-

tribution, and with the CPP being centred and peaked around these times. The

uncertainty encapsulated by the number of CP distribution demonstrates that there

are potentially more or fewer storm seasons than five or six, although these are less
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Figure 6.14: CP results for piecewise Haar MA data with a change in order and

variance (change in power across scales → MA(1), σ2 = 1 ↔ MA(7), σ2 = 5, see

Figure 6.7(d) for corresponding EWS). Analysis assumes a HMS-ARS(4) in the time

domain. 1st panel presents the simulated data analysed. 2nd displays the CPP plots

under the HMS-ARS(4) time domain approach. 3rd panel presents the distribution

of number of CPs.

certain, along with the corresponding locations.

Results also concur with CP estimates from the other two methods, with

our method highlighting another possible configuration. A few discrepancies exist,

for example the CP estimated in the middle of 1993 and 1994 according to CF and

AutoPARM. These potential changes in state do not seem sufficiently sustained for

a change in season to have occurred and thus our methodology has not identified

them. Lowering the associated values of kCP and k′CP, does begin to identify these

as CP instances, in addition to others. However, we justify our values of kCP and

k′CP by the sustained nature of storm seasons.

Changes identified in the middle of 1992 and end of 1994 by CF and Au-

toPARM are suspected to be due to an insufficient number of states to account

for these more subtle changes. This suggests that HMM model selection methods

may be worth implementing in order to assess whether the two state assumption

of “stormy” and “non-stormy” seasons is adequate in modelling the observed wave
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height data.

Model Selection on North Sea data

Figure 6.16 displays the model selection results obtained via the parallel SMC based

HMM model selection approach proposed in Chapter 5. In particular, the top panel

displays boxplots of posteriors from fifty different SMC runs, and the bottom panel

presents the percentage of a model being selected via maximum a posterior. These

results are achieved using the SMC inputs as described in Section 6.5.2 and we

consider a maximum of three underlying states (Hmax = 3) due to the belief that

at most three states are required to model the data.

We observe that in nearly all SMC replications, a two state HMM model is

assigned almost all probability, and the remaining small amount of probability is

assigned to a three state model. The additional third state may thus be capturing

the more subtle features associated with the changes identified in the middle of 1992

and end of 1994, although there is relatively little evidence for this third state being

needed. In addition, no probability is assigned to a one state model which suggests

that a HMM framework is appropriate in modelling the data. Consequently under

these posterior approximations, a two state model is selected almost always under

MAP.

In the SMC instance where posterior probabilities appear as outliers from

the other approximations (for example when the posterior is split almost equally

between a two and three state model), this is suspected to be due to sampling

error and suggests running the SMC sampler with more samples present (currently

N = 500). More SMC replications would also provide further confidence in these

model selection results. However, these model selection results provide initial strong

evidence that a two state HMM is appropriate in modelling the wave height data.

6.6 Discussion

This chapter has proposed a methodology for quantifying the uncertainty of autoco-

variance CPs in time series, an area which has received little to no attention in the

CP community. This is achieved by assuming a Locally Stationary Wavelet frame-

work and considering the estimate of the Evolutionary Wavelet Spectrum which

fully characterises the potentially varying second-order structure of a time series.

By appropriately modelling this estimate as a multivariate time series under a Hid-
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Figure 6.15: Changepoint results for North Sea data. Top panel displays the anal-

ysed data and the CP estimates from existing approaches (CF= blue top ticks,

AutoPARM= red bottom ticks). Middle and bottom panel display the CPP plot

and distribution of number of CPs respectively under the proposed methodology.

This corresponds to the start of storm seasons and the number of them. Analysis

considers the two finest scales of the wavelet periodogram (J∗ = 2), and assumes

two underlying states (H = 2) reflecting “stormy” and “non-stormy” seasons.
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Figure 6.16: Model selection on the North Sea data presented in Figure 6.15 using

the parallel SMC model selection approach proposed in Chapter 5. Top panel dis-

plays boxplots of the model posteriors from 50 SMC runs, bottom panel displays

the percentage selected according to maximum a posterior.

den Markov Model framework and deriving the corresponding multivariate emission

density, we can quantify the uncertainty of CPs by the methodology proposed in

Chapter 3.

Results on a variety of simulated data indicate that the methodology works

well in quantifying the uncertainty of CP characteristics. Application to white noise

data show that the proposed methodology compliments the equivalent exact time

domain approach. The real advantage of our proposed methodology potentially

lies in considering piecewise MA processes which are not readily analysed using

the HMM framework in the time-domain without some approximation taking place.

For such data, the wavelet approach outperforms a time-domain approximation

method which ignores the autocorrelation structure present, and performs on a

par with an approximation which accounts for at least some of the autocorrelation

via autoregressive coefficients. We believe our proposed wavelet approach is more

robust to model mis-specification with less concern as to whether a autocorrelation

structure is present, the order of autoregressive nature required and changes that

may occur within it.
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This methodology has also been applied to an oceanographic dataset, namely

wave height data, where interest lies in determining changes in storm season. Such

changes correspond to changes in second-order structure where there is also interest

in the uncertainty of these changes due to the inherent ambiguity of storm seasons.

Our method has showed accordance with various existing CP methods including

expert ocean engineers. Our methodology allows us to assess the plausibility and

performance of CP estimates and provide further information in planning future

operations.

A few discrepancies do exist between the various methods, a potential re-

sult of the sustained CP definition implemented and number of states assumed in

our HMM. However, the settings used to achieve the results seem valid given the

oceanographic application and are more intuitive in controlling CP results compared

to abstract tuning parameters and penalisation terms present in other CP methods.

In addition, supplementary model selection results indicate that the number of un-

derlying states assumed in generating our CP results is valid.

Extensions of this work include investigating piecewise MA processes further

with subtle changes in the piecewise constant EWS structure being associated with

changes in MA coefficients and order. Other types of EWS structures, not necessar-

ily piecewise constant in structure could also be further investigated. This may thus

extend the types of data and changes in the resultant time series we can consider,

and ultimately whether new types of data could be readily analysed which may not

be permissible in the time domain.

We note that an offset appears to occur in the CPP from the defined CP

locations under the proposed approach, for example Figure 6.8. In assessing whether

this lag is specific to the data analysed or due to the proposed methodology, Figure

6.17 displays a summary of the CPP from 50 different sets of analysis for white

noise processes. The main black line denotes the median CPP, the grey region is the

interquartile range, and the red vertical line denotes the defined CP location. The

top and bottom panel display the summary CPP plots for the proposed wavelet and

time domain approach respectively. The summary CPP under the wavelet approach

indicates that the offset is systematic rather than data specific. This is suspected to

be due to wavethresh performing some slight re-ordering of the coefficients when

computing the periodogram, and indeed the new reordering procedure may cause the

detected CP to be off. This offset also appears in Haar MA simulations and a similar

offset in Cho and Fryzlewicz (2012) which also utilises wavethresh to compute

the periodogram. Future work may thus want to explore this offset further and

whether a correction mechanism could be developed to correct for it as necessary.
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Figure 6.17: Summary of CPP from 50 simulated white noise processes under the

proposed wavelet approach (top panel) and time domain approach (bottom panel).

The main black line denotes the median CPP from the 50 sets of analysis, and the

grey region is the interquartile range of the CPP.

Nevertheless, the summary CPP still provides a good approximation of the CP

behaviour in an alternative wavelet manner. This plot also highlights that the CP

detected at the beginning of the data is systematic (there is no variation in its

location or probability), thus suggesting further that it is possible to correct for it.

In contrast, the time domain plot does not exhibit an offset in CPP, with the

CPP being peaked and centred around the defined location. This is not particularly

surprising since we are modelling the observed time series directly (no transfor-

mation) and exactly (no approximation taking place). This highlights if anything,

further confidence in that the CP time domain methodology presented in Chapter

3.

The LSW-HMM framework presented assumes that all dependence between

wavelet coefficients is captured for by conditioning on the underlying MC. This is a

strong assumption and may want to be relaxed if one does not believe it is adequate.

This could be performed by devising an autoregressive model such that dependency

on a finite number of previous wavelet coefficients is incorporated into the emission
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density. This additional dependency could be easily incorporated into the framework

(similar to the Markov Switching AR models considered in this thesis) but does

add additional complexity. Note that the autoregressive order and coefficients are

dependent on the EWS and the mother wavelet used for analysis.

The current LSW framework assumes that the observed time series is mean

zero and constant with prior detrending occurring before analysis is performed.

However, as exhibited throughout this thesis, non-stationarity can also arise from

changes in mean. As demonstrated in Chapter 4, it is important to account for

changes in mean and trend within a unified framework in analysis.

A potential path for future research is thus to modify the current LSW

framework such that the orthonormal incremental noise process ξj,k, is no longer

mean zero and is dependent on k, µk say. This thus allows non-zero mean processes

to be considered, and also LSW processes which permit changes in mean. More

specifically, the modified framework could potentially take the form:

Yt =

∞∑

j=1

∑

k∈Z
ψj,k(t)ǫj,k ǫj,k

iid∼ N

(
µk, U

2
j

(
k

n

))

=
∞∑

j=1

∑

k∈Z
ψj,k(t)

[
µk + Uj

(
k

n

)
ξj,k

]
ξj,k

iid∼ N(0, 1)

=

∞∑

j=1

∑

k∈Z
ψj,k(t)Uj

(
k

n

)
ξj,k

︸ ︷︷ ︸
LSW as presented in Equation 6.18

+

∞∑

j=1

∑

k∈Z
ψj,k(t)µk

︸ ︷︷ ︸
Mean component

. (6.29)

As the father scaling wavelet coefficients capture the behaviour of the mean of a time

series in standard wavelet analysis, it is suspected that statistical analysis will now

focus on the behaviour of c̃1:n, where c̃k = {cj,k}Jj=1 are the father scaling wavelet

coefficients from a non-decimated wavelet transform.

Figure 6.18 presents results from a preliminary study involving simulated

piecewise MA processes where changes in mean, variance and autocovariance are

exhibited in the time series. Figure 6.18(a) displays an example realisation of such

a process with changes in mean and MA order occurring at times 201, 513 and 713,

and a change in variance occurring at 513. The left column of Figure 6.18(b) presents

information from standard LSW analysis, namely the periodogram and an estimate

of the EWS from 250 data realisation, both concerning the mother detail wavelet

coefficients d̃1:n, whereas the right column presents information concerning the fa-

ther coefficients c̃1:n from a single realisation and averaged across 250 realisations.

It is clear that a change in autocovariance and variance structure still corresponds

199



to changes in the power configuration of the EWS estimate (both within and across

scales due to changes in variance and autocovariance), but also that the changes in

mean transpires in the c̃1:n coefficients at the corresponding locations in a similar

fashion with changes in “power” occurring in scales of the “periodogram”. This

suggests that a methodology similar to that proposed in this chapter is a potential

path of further research. In addition, by providing separate channels in which dif-

ferent types of changes are reported from could provide a better understanding of

the data.

By considering the modified version of the LSW framework as detailed in

Equation 6.29 and considering analysis of father scaling coefficients c̃1:n, this could

thus potentially provide a powerful unified framework such that changes in mean

and autocovariance can be considered simultaneously in the wavelet domain.

6.A Appendix

6.A.1 Joint density of Ik = (I1,k, I2,k, . . . , IJ∗,k)

The following section considers the generalised version of computing the density of

a transformed random vector. X and Y denote standard random vectors here with

no connections to the HMM or wavelet framework. This material is taken from

Grimmett and Stirzaker (2001). As Y = (Y1 = X2
1 , Y2 = X2

2 ) = T (X = (X1,X2))

is a many-to-one mapping, direct application of a standard change of variable via

the Jacobian argument (Grimmett and Stirzaker, 2001, p. 109) is not permissible.

In the one-dimensional case, the following proposition is proposed.

Proposition A-1. Let I1, I2, . . . , In be intervals which partition R
2, and suppose

that Y = g(x) where g is strictly monotone and continuously differentiable on every

Ii. For each i, the function g : Ii → R is invertible on g(Ii) with the inverse function

hi. Then

fY (y) =
n∑

i=1

fX(hi(y))

∣∣∣∣h′i(y)
∣∣∣∣,

with the convention that the ith summand is 0 if hi is not defined at y, and h′i(·) is
the first derivative of hi(·).

Proof. See (Grimmett and Stirzaker, 2001, page 112).

Therefore,
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(b) Periodogram (d̃2
1:n, top left panel) and father coefficients (c̃1:n, top right panel) associated with

Simulated MA data. Bottom left and right respectively display an estimate of the EWS (averaged

250 periodograms from 250 different simulated time series), and the averaged father coefficients.

Figure 6.18: Wavelet analysis for a simulated MA process with change in mean,

variance and covariance.



Proposition A-2. For Y = (Y1, Y2, . . . , Yn) = (X2
1 ,X

2
2 , . . . ,X

2
n)

fY(y) = fY(y1, . . . , yn) =
1

2n
∏n
i=1 |xi|

∑

a1,...,an∈{+,−}
fX (a1|x1|, . . . , an|xn|) .

Proof. Applications of Propositions A-1 and Corollary 4 (Grimmett and Stirzaker,

2001, p. 109).

6.A.2 Computing ΣDk , the covariance structure of D̃k

This section outlines how the covariance structure of D̃k = (D1,k . . . ,DJ∗,k), can be

computed from the Evolutionary Wavelet Spectrum U2
j (

k
n
).

Proposition A-3. The autocovariance structure for the observation process, Yt,

can be characterised by the Evolutionary Wavelet Spectrum as follows:

Cov(Yt, Yt−v) =
∑

l

∑

m

U2
l

(m
n

)
ψl,m−tψl,m−t+v .

Proof. See proof of Proposition 1 in Nason et al. (2000).

Proof of Proposition 2 (page 173). As LSW processes are assumed to have mean

zero, E[Yt] = 0, then it follows that the wavelet coefficients are mean zero themselves

since they can be seen as a linear combination of Gaussian observations. Thus

E[Dj,k] = E[Dj′,k′ ] = 0. Then

Cov(Dj,k,Dj′,k′) = E[Dj,kDj′,k′ ]− E[Dj,k]E[Dj′,k′ ] = E[Dj,kDj′,k′]

= E

[(∑

t

Ytψj,k−t

)(∑

s

Ysψj′,k′−s

)]

= E

[∑

t

(∑

l

∑

m

Ul

(m
n

)
ψl,m−tξl,m

)
ψj,k−t

×
∑

s

(∑

p

∑

q

Up

( q
n

)
ψp,q−sξp,q

)
ψj′,k′−s

]

=
∑

t,l,m,s,p,q

Ul

(m
n

)
ψl,m−tψj,k−tUp

( q
n

)
ψp,q−sψj′,k′−sE[ξl,mξp,q]

By definition,

E[ξl,mξp,q] =

{
1, iff l = p, m = q;

0, otherwise.
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Thus,

Cov(Dj,k,Dj′,k′) =
∑

t,l,s,m

U2
l

(m
n

)
ψl,m−tψl,m−sψj,k−tψj′,k′−s

=
∑

t

ψj,k−t
∑

s

ψj′,k′−s
∑

l

∑

m

U2
l

(m
n

)
ψl,m−tψl,m−s.

Let s = t− v, then

Cov(Dj,k,Dj′,k′) =
∑

t

ψj,k−t
∑

t−v
ψj′,k′−t+v

∑

l

∑

m

U2
l

(m
n

)
ψl,m−tψl,m−t+v

=
∑

t

ψj,k−t
∑

v

ψj′,k′−t+v
∑

l

∑

m

U2
l

(m
n

)
ψl,m−tψl,m−t+v

=
∑

t

∑

v

ψj,k−tψj′,k′−t+vCov(Yt, Yt−v).

Thus,

Cov(Dj,k,Dj′,k′) =
∑

t

∑

v

ψj,k−tψj′,k−t+vCov(Yt, Yt−v). (6.30)

6.A.3 Determining how much of the EWS one needs to know to

compute ΣDk

In determining how much of the EWS needs to be known when computing the

covariance structure at location k, we consider the following lines of logic. Let Lj
denote the support for the wavelet at scale j (number of non-zero filter coefficients

in ψj). The number of non-zero product filtering coefficients, ψl,m−tψl,m−t+v , is

greatest when no lag is present (v = 0) and thus we consider the variance of the

wavelet coefficients and observations process, Var(Dj,k) and Var(Yt) respectively. In

addition, the number of non-zero product terms will be greatest for the coarsest

scale considered, J∗, with corresponding support LJ∗

Var(Dj,k) will be dependent on observations Yk, . . . , Yk−(Lj−1) for any scale

j = 1, . . . , J∗. Thus for the coarsest scale Var(DJ∗,k) will be dependent on observa-

tions Yk, . . . , Yk−(LJ∗−1). The variance for the most distant observation Yk−(LJ∗−1) is

dependent on the power from the following locations: k−(Lj−1)−(Lj−1), . . . , k−
(Lj − 1), for scale j. The coarsest scale requires the most power feeding into it:

U2
J∗

(
k−2(LJ∗−1)

n

)
, . . . , U2

J∗

(
k−(LJ∗−1)

n

)
. For the most recent observation Yk at the

coarsest scale, the following power needs to be known U2
J∗

(
k−(LJ∗−1)

n

)
, . . . , U2

J∗

(
k
n

)
.
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Thus to compute ΣDk , the covariance structure of the wavelet coefficients at

location k, we must record the power from the locations k − 2(Lj − 1), . . . , k for

scale j = 1, . . . , J∗.

6.A.4 Order of HMM with respect to analysing wavelet and J∗

We briefly comment on the behaviour of the order of the HMM as we consider more

scales and different choices in analysing wavelet. Recall that the order of the HMM

is associated with the analysing wavelet considered and J∗, the number of scales

considered. More specifically, the HMM order is 2LJ∗ − 1.

For the case of the Haar wavelet, where Lj = 2, 4, 8, 16 for j = 1, 2, 3, 4, the

corresponding order of the induced HMM is 3, 7, 15, 31 for J∗ = 1, 2, 3, 4. Similarly,

Daubechies Extremal Phase wavelets with two vanishing moment has the following

supports Lj = 4, 10, 22, 46 for j = 1, 2, 3, 4. The induced order of the HMM is

thus 7, 19, 43, 91 for J∗ = 1, 2, 3, 4 scale processes respectively. Thus by considering

coarser scales and smoother analysing wavelets, the order of the induced HMM

grows exponentially which causes computational problems eventually. The use of a

Haar wavelet and only considering a few finer scale processes is thus advocated.

6.A.5 SMC samplers example implementation

This section describes more explicitly the SMC samplers implementation described

in Section 6.4.2 (page 177). Defining l(θ|d̃2
1:n,H) as the likelihood, and p(θ|H) as the

prior of the model parameters, we can define the following sequence of distributions,

πb(θ) ∝ l(θ|d̃2
1:n,H)γbp(θ|H) b = 1, . . . , B, (6.31)

where {γb}Bb=1 is a non-decreasing tempering schedule such that γ1 = 0 and γB = 1.

We could therefore sample from the sequence of distribution {πb}Bb=1 as follows:

Initialisation, Sampling from π1 = p(θ|H): Assume independence between the

transition probability matrix, P and the state dependent power, U2.

p(θ|H) = p(P|H)p(U2|H). (6.32)

Transition Probability matrix, P: Sample each of the H transition prob-

ability rows ps = (ps1, . . . , psH), s = 1, . . . ,H independently from a Dirich-

let prior distribution. As HMMs are typically associated with persistent

behaviour in the same underlying state, asymmetric priors encouraging
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persistent behaviour are generally implemented. That is,

ps
iid∼ Dir(αs) s = 1, . . . ,H

p(P|H) =
H∏

s=1

p(ps|H),

where αs is the associated hyperparameter encouraging persistency.

State Dependent Power, U2: Sample each of the state dependent inverse

power for each scale independently from a Gamma distribution. That is,

λj,s =
1

u2j,s

iid∼ Gamma(αλ, βλ) j = 1, . . . , J∗, s = 1, . . . ,H

p(Λ =
1

U2
|H) =

J∗∏

j=1

H∏

s=1

p(
1

u2j,s
|H),

where αλ and βλ are associated shape and scale hyperparameters.

Mutation and Reweighting, approximating πb from πb−1: We consider Ran-

dom Walk Metropolis Hastings proposal kernels on different domains given the

constraints of the parameters; P is a stochastic matrix, u2j,s are non-negative.

We consider mutating and updating components of θ separately, using the

most recent value of the components (akin to Gibbs sampling). In particular,

we consider the following mutation strategies to move from θib−1 to θib, for

particle i at iteration b.

Transition Probability matrix, P: Consider each of theH transition prob-

ability rows ps separately, and mutate on the logit scale. That is, we

propose moving from ps to p
P
s via:

Define the current logits: ls =

(
ls1 = log

ps1
psH

, . . . , lsH = log
psH
psH

= 0

)
,

Proposal logits: lPs = ls + ǫl ǫl ∼ MVN(0,Σl), with lPsH = 0,

Proposal probability vectors: pPs =

(
exp lPs1∑H
n=1 exp l

P
sn

, . . . ,
exp lPsH∑H
n=1 exp l

P
sn

)
,

where Σl is a suitable H ×H proposal covariance matrix.

State Dependent Power, U2: Consider each of the state dependent inverse

powers for each scale independently, and mutate on the log scale. That
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is we propose moving from λj,s to λ
P
j,s via:

λPj,s = exp(log λj,s + ǫλ) ǫλ ∼ N(0, σ2λ), j = 1, . . . , J∗, s = 1, . . . ,H,

where σ2λ is a suitable proposal variance.

Reweighting: From Equation 3.17 (page 72), one can show that under gen-

eral conditions of SMC samplers, the re-weighting formula for particle i to

approximate πb is:

W i
b =

W i
b−1w̃b(θ

i
b−1, θ

i
b)∑N

i=1W
i
b−1w̃b(θ

i
b−1, θ

i
b)

with w̃b(θ
i
b−1, θ

i
b) =

πb(θ
i
b−1)

πb−1(θ
i
b−1)

=
l(θib−1|d̃2

1:n,H)γb

l(θib−1|d̃2
1:n,H)γb−1

.

Final Output: We have a weighted cloud of N particles approximating the pa-

rameter posterior:

p(θ|d̃2
1:n,H) ≈ {θiB ,W i

B |H}Ni=1 ≡ {θi,W i|H}Ni=1. (6.33)
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Chapter 7

Discussion and Future Work

Farmer Hoggett: That’ll do, pig. That’ll do.

Babe (1995), George Miller and Chris Noonan

7.1 Summary of thesis

This thesis has presented aspects and methodologies in quantifying the uncertainty

of changepoints (CPs). This is often overlooked compared to detection and esti-

mation of CPs, but is nevertheless important in expressing the plausibility of CP

estimates and assessing the performance of different CP methods.

The core methodology in quantifying the uncertainty of CPs (see Chapter 3)

draws on the use of Hidden Markov Models (HMMs), Finite Markov Chain Imbed-

ding (FMCI) and Sequential Monte Carlo samplers (SMC). The combination of the

three leads to a flexible efficient methodology which does not require sampling the

latent sequence and in which inference on a variety of CP characteristics is possible.

Incorporation of additional trend and error process structures can also be embedded

into this framework with ease (see Chapter 4).

This methodology has been extended into the wavelet framework via the use

of the Locally Stationary Wavelet framework (see Chapter 6) . By transforming the

time series into the wavelet domain, a joint density between wavelet processes of

a periodogram is derived. Consequently, this can be embedded and modelled by a

wavelet-based HMM framework which allows for the quantification of autocovariance

CP uncertainty in a more robust manner compared to time domain approaches. In

general, the quantification of uncertainty regarding autocovariance CPs has received

little attention in the literature.

A methodology in determining the unknown number of underlying states of
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a HMM has also been proposed (see Chapter 5). This utilises the existing SMC

framework in a simple efficient manner, such that no additional computations are

required in approximating the model posterior. This proposed methodology has

been shown to either outperform or perform on a par compared to an existing state

of the art method.

These methodologies have been applied to datasets form Econometrics, Neu-

roimaging and Oceanography. Results indicate promise and potential in the pro-

posed methodologies, concurring with CP estimates supplied by experts and other

methods, and providing further evidence of model assumptions used in existing

studies. However, the main gain of these results and proposed methodologies is

that we have captured the CP uncertainty explicitly, highlighting that other CP

configurations may also have occurred.

7.2 Future Work

There are a variety of potential paths for future research, many of which have already

been outlined in the concluding sections of their respective chapters. In addition,

the following may provide fruitful future research.

7.2.1 Changepoints for multivariate time series

The methods presented in this thesis concern univariate time series. However, mul-

tivariate time series are also common, for example when data is measured at several

locations over time, or the multi-subject brain imaging dataset considered in Chap-

ter 4. In addition to a temporal structure being present, dependence between the

individual time series can also exist which may correspond to the spatial structure

between sites for example. However, multivariate CP methods remain relatively

undeveloped compared to univariate CP methods. Existing works in CPs for mul-

tivariate time series include Kiefer (1959), Srivastava and Worsley (1986), Davis

et al. (2006) and Cheon and Kim (2010). Like the univariate time series methods

considered in this thesis, these multivariate approaches often do not quantify the

uncertainty of CPs explicitly.

However, the methodology presented in Chapter 6 considers a multivariate

time series by analysing multiple scale processes of the periodogram simultaneously.

This is despite a univariate observed time series being considered originally. Con-

sequently, we have been able to consider quantifying the uncertainty of CPs in the

original univariate time-domain series by analysing a multivariate time series in the

wavelet domain. There is thus no real reason as to why time-domain multivariate
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time series cannot be considered under the multivariate HMM framework presented

in Chapter 6 and modified as necessary, for time-domain usage.

Section 3.4 (page 121) of MacDonald and Zucchini (1997) outline the main

framework for multivariate HMMs (multiple observation time series, a single under-

lying Markov chain) and the significant results. However, rather surprisingly, the

applications and research of multivariate HMMs remains rather sparse (see Zucchini

and Guttorp (1991) for one early application). It would therefore be beneficial to

spearhead the use of multivariate HMMs, both in modelling multivariate time series

and CP analysis.

An initial step for further research is to extend the Gaussian Markov Mixture

Model to a Multivariate Normal Markov Mixture model. This multivariate model

is intended to have mean vector and covariance matrix which are state dependent

in the most general case. That is, for a multivariate time series of J components,

yt = (y1,t, . . . , yJ,t), the corresponding emission distribution would be:

yt|(Xt = xt)
iid∼ MVN(µxt ,Σxt) t = 1, . . . , n (7.1)

where µxt is a J length column vector, and Σxt is a J × J symmetric, positive

definite covariance matrix. Under such a setup, at least some of the entries of

the mean vector and the covariance matrix would change in response to a change

in underlying state. In addition to capturing changes in mean and variance by

the corresponding entries, changes between the covariance structure between time

series can also be captured by state-dependent off diagonal entries of Σxt , another

potential type of change to consider. In estimating these quantities, SMC samplers

can still be employed with the Cholesky decomposition of Σxt being considered in

maintaining its positive definite constraint. Further research may then extend to

a Markov Switching Vector Autoregressive model, a Vector Autoregressive model

which contains (state dependent) autoregressive parameters. This would thus allow

further temporal structure to be incorporated.

For the J multi-subject functional Magnetic Resonance Imaging dataset con-

sidered in Chapter 4, we discussed the possibility of capturing a global effect which

all subjects encounter, and a subject specific effect. Under the initial multivariate

HMM framework presented in Equation 7.1, this could be captured by constructing

the state-dependent mean vector as follows,

µxt = gxt + ηxt t = 1, . . . , n (7.2)

µj,xt = gxt + ηj,xt j = 1, . . . , J, (7.3)
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where gxt is a J length vector with entries gxt to denote the global effect and ηxt =

(η1,xt , . . . , ηJ,xt)
T which contains subject individual effects. µxt = (µ1,xt, . . . , µJ,xt)

T

consequently captures both global and individual effects. All vectors are state de-

pendent with respect to different stimuli conditions, and it may be reasonable to

assume that Σxt is diagonal due to subjects and scans typically being independent

of one another.

7.2.2 Changepoint uncertainty in light of missing data

This thesis has considered time series data which is complete and does not exhibit

missingness. However, missing data is a common occurrence in time series; for ex-

ample consider missing measurements in the wave height data considered in Chapter

6 due to a temporary defect in the sensor. Rubin (1976) provide a good introduc-

tory paper in missing data. This is an area which to the best of my knowledge has

received little attention (see Vidal et al. (2008) for some research in the computer

vision community). Nunes et al. (2012) have recently indicated their own initial

statistical research in this area.

The use of HMMs, and indeed Hidden Semi Markov Models, are one ap-

proach in dealing with missing observations (see for example Bahl et al. (1983);

Yu and Kobayashi (2003)) with the Expectation-Maximisation algorithm (Demp-

ster et al., 1977) for parameter estimation used in both the HMM and missing data

community. Consequently, it seems natural to continue using the HMM framework

in both modelling CPs and dealing with missingness. Under the definition of how

a CP is typically defined under the HMM framework, the problem may be more

straightforward as we are less interested in the missing observation itself, but rather

the corresponding underlying state. It is envisaged that accounting for the potential

partial state sequence in the missing data regions is the core idea, with a (sustained)

change in state corresponding to the CP.

However, the uncertainty of CPs is even more apparent in the case of missing

data and thus needs to be captured. Research will focus on p(xt⋆ |y1:n) and conse-

quently P (τ ∋ t⋆|y1:n), where t⋆ is the location of a missing observation. Similar

to the core methodology presented in this thesis, the uncertainty of the CPs corre-

sponds to the uncertainty regarding the partial state sequence. As a result the FMCI

mechanism and Markov Chain theory surrounding the evolution of the underlying

Markov Chain will no doubt be valuable resources in tackling this problem.

In addition, Knight et al. (2012) have investigated the effect of missing obser-

vations and data collected at irregular times on the estimation of the Evolutionary

Wavelet Spectrum under the Locally Stationary Wavelet framework. This could
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also potentially be useful in considering time series with autocovariance CPs where

missingness is present.

7.2.3 Forecasting Changepoints

This thesis has considered CP analysis in a retrospective manner where all estimation

and detection is performed with hindsight. However, CPs can also occur in the

future and thus forecasting CPs may also be of interest. Developing forecasting CP

methods may indicate when to be aware that a system will potentially change in

the future and if one needs to prepare for these possible changes.

Forecasting using HMMs have currently been explored by Pesaran et al.

(2006); Meligkotsidou and Dellaportas (2011), with the former accounting for the

presence of CPs both within the data and potentially beyond the scope of the data.

However, these place focus on the observation series and derive predictive densities

of the form f(yn+1:n+q|y1:n), for a q-step ahead forecast where q ∈ N+. Within the

context of CPs and under the HMM framework however, focus will shift onto the

future of the underlying state sequence, and thus predictive densities with respect

to underlying MC, for example p(xn+1:n+q|y1:n), are of greater focus. This shift in

focus is similar to that of CPs in missing data with inference of how the MC behaves

in the future in order to obtain predictive CP densities P (τ (kCP) ∋ t+ q|y1:n). For

the standard change in state definition of a CP, this leads to standard Markov

Chin theory with the underlying MC being considered as a standard MC since no

observations are available to indicate how it may perform in the future. For the

generalised sustained definition of CP, waiting time distributions via FMCI (Aston

and Martin, 2005, 2007) for a standard MC are the equivalent framework to consider.

As part of the forecasting frameworks and predictive CP distributions devel-

oped, it would also be useful to incorporate the retrospective CP results obtained

thus far. For example, if past CPs have occurred around the same time of year,

then it may be possible to incorporate this information into our analysis such that

a CP is favoured in this same time of year in the future. The use of time inhomo-

geneous transition probabilities may aid with such incorporation which the FMCI

mechanism can handle with ease. In addition, information pertaining to the dura-

tion of segments between CPs may be incorporated in some manner, with the use

of Hidden Semi Markov Models providing a natural solution since this provides an

explicit manner in which one can specify the distribution of state durations.
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