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Abstract

Markov Chain Monte Carlo (MCMC) methods have become a workhorse

for modern scientific computations. Practitioners utilize MCMC in many different

areas of applied science yet very few rigorous results are available for justifying

the use of these methods. The purpose of this dissertation is to analyse random

walk type MCMC algorithms in several limiting regimes that frequently occur in

applications. Scaling limits arguments are used as a unifying method for studying

the asymptotic complexity of these MCMC algorithms. Two distinct strands of

research are developed: (a) We analyse and prove diffusion limit results for MCMC

algorithms in high or infinite dimensional state spaces. Contrarily to previous results

in the literature, the target distributions that we consider do not have a product

structure; this leads to Stochastic Partial Differential Equation (SPDE) limits. This

proves among other things that optimal proposals results already known for product

form target distributions extend to much more general settings. We then show

how to use these MCMC algorithms in an infinite dimensional Hilbert space in

order to imitate a gradient descent without computing any derivative. (b) We

analyse the behaviour of the Random Walk Metropolis (RWM) algorithm when

used to explore target distributions concentrating on the neighbourhood of a low

dimensional manifold of Rn. We prove that the algorithm behaves, after being

suitably rescaled, as a diffusion process evolving on a manifold.

vii



Chapter 1

Introduction

1.1 Motivation

The use of Markov Chain Monte Carlo (MCMC) methods for high dimensional and

intractable computations has revolutionised applied mathematics in general and

Bayesian statistics in particular. MCMC has been called one of the ten most impor-

tant algorithms of the twentieth century [Cip00]. Since its first appearance in the

statistical physics literature [MRTT53], MCMC techniques have opened new hori-

zons in various fields of application such as biostatistics, computer science, physics,

economics, finance, and applied statistics.

The power of MCMC methods reside in the simplicity of the underlying

principles and the wide range of applications: in order to (approximately) compute

expectations with respect to a given probability distribution called the target distri-

bution, it suffices to build a Markov chain that is ergodic with respect to this target

distribution and let the Markov chain run long enough. Moreover, the Metropolis-

Hastings algorithm shows that it is straightforward to construct Markov chains that

are ergodic with respect to a given target distribution: the problem is choice! In-

deed, the choice of the Markov kernel can drastically influence the performance of

the algorithm. For complex target distributions, it has become crucial to understand

as precisely as possible how fast the Markov chain converges to equilibrium.

The design, tuning and analysis of efficient Markov chains lead to fascinating

mathematics and rest upon a surprisingly wide range of ideas including represen-

tation theory [DS81; DH92], Fourier analysis [Dia88], micro-local analysis [DL09],

functional analysis [SC97], partial differential equations [BCG08], optimal transport

[EMM12], stochastic partial differential equations [HSVW05; HSV07], Riemannian

geometry [GC11].
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There exists a large literature on MCMC methods and practitioners now

have many different Markov kernels to choose from. In practice, the ease of imple-

mentation and wide applicability have conferred their popularity to random walk

type proposals. A downside of their versatility is however the potential slowness

of their convergence, which calls for an analysis of their performances. In this dis-

sertation, we shall study the behaviour of various random walk type algorithms in

several limiting regime.

1.2 Contributions of the thesis

Some of the research contributions included in this dissertation can be summarised

as follows.

1. We build upon ideas of [MPS11] and develop a framework for proving diffusion

limits for MCMC algorithms that is general enough to tackle infinite dimen-

sional examples. The main result is Proposition 3.3.1. Contrarily to other

approaches, Markov chains that do not evolve at stationarity can be analysed

without difficulties. This framework is subsequently used in chapters 4 and 5

for obtaining infinite dimensional diffusion limits.

2. We significantly extend the analysis of the Metropolis Adjusted Langevin Al-

gorithm (MALA). Our result (theorem 4.2.4) can tackle non product form

target densities and describes infinite dimensional scaling limits.

3. In chapter 5 we design an algorithm that imitates a gradient flow in an infinite

dimensional Hilbert space. The algorithm does not need to compute any gra-

dient. A rigorous analysis (theorem 5.2.2) of the algorithm through a scaling

arguments is obtained.

4. We analyse MCMC methods that are designed to evolve on infinite dimensional

state space. We adopt the ‘optimize then discretize’ viewpoint and produce

an MCMC algorithm whose performances do not degenerate as the dimension

of the discretisation increases.

5. In chapter 6 we analyse MCMC algorithm on target distributions that are

concentrated on the neighbourhood of a low dimensional manifold. To the

best of our knowledge, this is the first time that this setting that often appears

in practice is analysed.

2



6. We develop a method of proof based on a separation of time scales for analysing

MCMC algorithms that can lead to non constant volatility diffusion limits

(theorem 6.2.3).

1.3 Organisation of the thesis

The rest of the dissertation is organised as follows.

• Chapter 2

We give a brief reminder on the MCMC method with special emphasis on

defining the Metropolis-Hastings algorithm on a general space. We then de-

scribe classical results on convergence of Markov chains (different notions of

convergence, Markov CLT, spectral methods, conductance bounds). The con-

cept of Expected Squared Jumping Distance (ESJD), of special importance in

this dissertation, is then introduced. The chapter is concluded by a general

presentation of the scaling limit method for analysing MCMC algorithms.

• Chapter 3

Gaussian measures on infinite dimensional Hilbert spaces are introduced. We

then described how one can define a distribution as a change of probability

with respect to such a Gaussian measure and then find finite dimensional

approximations of it. We then give a very brief introduction to stochastic dif-

ferential equations (SDEs) evolving in a Hilbert space. With the applications

that we have in mind, only a very restricted class of SDEs is described. We

then conclude the chapter by proving a diffusion-approximation result (propo-

sition 3.3.1) that is used at several places in the dissertation for proving infinite

dimensional scaling limit results.

• Chapter 4

This chapter is joint work with Andrew Stuart and Natesh Pillai and is based

on the article [PST12]. We prove a diffusion limit for the output of the

Metropolis Adjusted Langevin Algorithm (MALA) towards a Hilbert space

valued SDE, when applied to N−dimensional approximations of an infinite

dimensional target distribution. This implies, among other things, that the

complexity of the MALA algorithm scales as O(N1/3) with the dimension N of

the approximation. Moreover we show that the speed of the limiting diffusion

is maximized for an average acceptance probability of 0.574, just as in the i.i.d

product scenario [RR98]. Thus in this regard, our work is the first extension of

the remarkable results in [RR98] for the Langevin algorithm to target measures

3



which are not of product form. This adds theoretical weight to the results ob-

served in computational experiments [BR07; RR01; Béd08] which demonstrate

the robustness of the optimality criteria developed in [RGG97; RR98].

• Chapter 5

This chapter is joint work with Andrew Stuart and Natesh Pillai and is based

on the article [PST]. There are many applications where it is of interest to

find global or local minima of a functional

J(x) =
1

2
‖C−1/2x‖2 + Ψ(x) (1.3.1)

where C is a self-adjoint, positive and trace-class linear operator on a Hilbert

space H and Ψ : H → R is a functional of interest. Gradient flow or steepest

descent is a natural approach to this problem, but in its basic form requires

computation of the gradient of Ψ which, in some applications, may be an

expensive or complex task. In addition, when multiple minima are present, it

may be important to include noise within the algorithm in order to allow escape

from local minima. We show in this chapter how a noisy gradient descent can

emerge from certain carefully specified random walks, when combined with a

Metropolis-Hastings accept-reject mechanism, with tunable noise level τ . We

analyse this algorithm through a scaling limit argument.

• Chapter 6

This chapter is joint work with Alex Beskos and Gareth Roberts and is based

on the article [BRT13]. It often happens in applied probability that one needs

to explore a target distribution π that is concentrated on a very narrow subset

of a state space. In this chapter, we consider the continuous setting where

the target distribution π lives in the n-dimensional euclidean space Rn and

concentrates on the neighbourhood of a low dimensional manifold M; this

means that there exists ε � 1 such that the ε-neighbourhood Aε := {x ∈
Rn : d(x,M) < ε} of the manifold M verifies π(Aε) ≈ 1. A Random Walk

Metropolis (RWM) Markov chain will tend to walk along the manifold. The

purpose of this chapter is to quantify this behaviour. In this chapter we focus

on the limiting regime when the thickness ε of the neighbourhood Aε of the

limiting manifoldM converges to zero. The influence of the size of the jumps

is analysed by adopting the Expected Squared Jumping Distance ESJD as

measure of efficiency and by proving diffusion limits. The main finding is that

in the majority of the cases, in order to explore the target distribution, it is

optimal to choose the size of the jumps of the same order of magnitude as the

4



thickness ε. For this choice, we prove a diffusion limit result (Theorem 6.2.3).

This gives quantitative estimates on the complexity of the RWM algorithm

when applied to target concentrating near a manifold. For simplicity, all the

rigorous results are proved for the case where the manifold M is flat. We

present conjectures and numerical illustrations for the general case. To the

best of our knowledge, this is the first time that a diffusion approximation for

MCMC algorithm leads to a diffusion limit with non-constant volatility. The

proof is based on a time-scale separation argument.

1.4 Notation

We use the standard convention whereby capital letters denote random variables,

whereas lower case letters are used for their values. We adopt a slight abuse of

notation by referring to densities as distributions, and where convenient, employ

the measure-theoretic notations µ(A) =
∫
A µ(dx) and µ(f) =

∫
f(x)µ(dx).

Throughout the paper we use the following notation in order to compare

sequences and to denote conditional expectations.

• Two positive sequences {αn}n≥0 and {βn}n≥0 are equivalent, αn ∼ βn, if the

following limit holds limn→∞ αn/βn = 1.

• Two sequences {αn}n≥0 and {βn}n≥0 satisfy αn . βn if there exists a constant

K > 0 satisfying αn ≤ Kβn for all n ≥ 0. The notations αn � βn means that

αn . βn and βn . αn.

• Two sequences of real functions {fn}n≥0 and {gn}n≥0 defined on the same set

D satisfy fn . gn if there exists a constant K > 0 satisfying fn(x) ≤ Kgn(x)

for all n ≥ 0 and all x ∈ D. The notation fn � gn means that fn . gn and

gn . fn.

• The notation Ex
[
f(X, ξ)

]
denotes expectation with respect to ξ conditionally

upon the event X = x.

5



Chapter 2

Probabilistic toolbox

2.1 Markov chain Monte Carlo methods

We assume the reader familiar with the basic Markov Chain Monte Carlo (MCMC)

method [MRTT53; Has70]. See [Tie94; SR93; Dia09] for an introduction, [GRS96;

RC04; Liu08] for book-length treatments and the reference [MT93] for technical de-

velopments. In this section we give a quick reminder of MCMC methods on general

state spaces and introduce the main notations. In this thesis, we will be dealing

with MCMC on infinite dimensional Hilbert spaces and special care is necessary to

properly define the Metropolis-Hastings in such situations.

Consider a measured space (X ,B), a σ-finite probability distribution π on

X and a proposal kernel q(x, dy). For each x ∈ X the quantity q(x, ·) defines

a probability distribution on X . The MCMC algorithm requires an accept-reject

function α : X × X → [0, 1]. If the current state is x, then a candidate y for the

next state is generated from q(x, dy) and accepted with probability α(x, y). The

resulting transition kernel

P (x, dy) = α(x, y) q(x, dy) +
(
1− α(x)

)
δx(dy) (2.1.1)

where δx is the Dirac mass at x and α(x) :=
∫
y α(x, y) q(x, dy) is the mean acceptance

probability at x. The accept-reject function α(·, ·) is chosen so that the transition

kernel P (x, dy) is reversible with respect to the target distribution π,∫
A×B

π(dx)P (x, dy) =

∫
A×B

π(dy)P (y, dx) (2.1.2)

for all measurable subsets A,B ⊂ X . Suppose that there exists a symmetric domi-
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nating measure ν(dx, dy) on X×X and write f(x, y) for the Radon-Nikodym deriva-

tive of the measure π(dx) q(x, dy) with respect to ν(dx, dy). It is proved in [Tie94]

that under the assumption that the accept-reject function α satisfies

α(x, y)f(x, y) = α(y, x) f(y, x) (2.1.3)

the Markov kernel P (x, dy) is reversible with respect to π. The Metropolis-Hastings

algorithms corresponds to the choice

α(x, y) = min
{

1,
f(y, x)

f(x, y)

}
.

The possibility that the denominator of the above ratio is zero is not a concern

since for such pair (x, y) there is zero probability to propose such a move. In such

a situation, any value for the quotient f(y,x)
f(x,y) can be chosen without affecting the

reversibility condition (2.1.3). It should be noted that reversibility with respect to

π does not imply that the Markov chain converges (see next section for the different

notions of convergence) to π. The most usual situation is where there is a common

dominating measure µ with π(dx) = π(x)µ(dx) and q(x, dy) = q(x, y)µ(dy). The

choice ν = µ⊗ µ shows that in this case one can choose

α(x, y) = min
{

1,
π(y)q(y, x)

π(x)q(x, y)

}
.

This remark is implicitly used at several places in this thesis where µ is a Gaussian

measure on an infinite dimensional Hilbert space.

2.2 Convergence of Markov chains

This section is a quick reminder on the different ways of measuring the speed at

which a Markov chain convergences to equilibrium. Since we are mainly interested

in Metropolis-Hastings Markov chains, the focus is on reversible Markov chains. The

main purpose of this section is to show that it is in general extremely difficult to

obtain accurate rates of convergence. In this thesis, we investigate situations where

this analysis becomes possible through diffusion limits arguments.

2.2.1 Convergence theorem

Consider a Markov chain X = {Xk}k≥0 on the state space X with transition proba-

bilities P (x, dy). The Markov chain is assumed to be reversible with respect to the
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probability π,

π(dx)P (x, dy) = π(dy)P (y, dx) ∀x, y ∈ X .

Since X is reversible with respect to π, the distribution π is also a stationary dis-

tribution in the sense that if X0
D∼ π then Xk

D∼ π for k ≥ 1. To measure how

quickly the Markov chain converges to equilibrium, one needs to introduce a metric

on the space of probability distributions on X . A popular choice is the total varia-

tion distance defined by dTV (µ, ν) = supA |µ(A)− ν(A)| where the supremum runs

over all the measurable subsets A ⊂ X . This choice of distance is especially useful

for studying Markov chains since it fits very well with the concept of coupling that

is an important ingredient of many convergence results. It is interesting to notice

(Proposition 3 of [RR04]) that a Markov operator P is always a contraction in the

space of probability measures in the sense that dTV
(
µP, νP

)
≤ dTV (µ, ν) for any

probability measure µ and ν. Under irreducibility and aperiodicity conditions, the

Markov chain X converges to equilibrium in a sense made precise below.

Definition 2.2.1. (Irreducibility and periodicity)

• A Markov chain is ϕ-irreducible if there exists a non-zero σ-finite measure ϕ

on X such that for any subset A ⊂ X with positive measure ϕ(A) > 0, and for

all x ∈ X there exists a positive integer n = n(x,A) such that Pn(x,A) > 0.

• A Markov chain with stationary distribution π is aperiodic if there does not

exist a period d ≥ 2 and disjoint subsets X1, . . . ,Xd of positive π-measure

satisfying P (x,Xi+1) = 1 for all x ∈ Xi (indices modulo d).

The irreducibility condition informally means that any state can be reached

if one waits long enough. The aperiodicity condition means that the Markov chain

does not move following cycles. As in the more classical finite state setting, the

irreducibility and aperiodicity conditions ensure that the Markov chain converges

to equilibrium.

Theorem 2.2.2. (General convergence theorem) Let X be a Markov chain on

a state space X with countably generated σ-algebra. Suppose that the Markov chain

has a stationary distribution π and is ϕ-irreducible and aperiodic.

• For π-a.e. x ∈ X the sequence of probability measures Pn(x, dy) converges

towards π in the total variation distance, limn→∞ dTV
(
Pn(x, ·), π

)
= 0.
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• Let f : X → R a π-integrable function π(|f |) < ∞. For π-a.e. initial state

X0 = x ∈ X , the law of large numbers holds, limn→∞ n
−1
∑n−1

k=0 f(Xj) = π(f)

almost surely. The aperiodicity condition is not needed for this result.

A possible proof (see [MT93]) consists in showing that the irreducibility

condition implies the existence of a small set. One can then use a coupling argument

to finish the proof. The notion of mixing time τ := inft≥0 supµ dTV (µP t, π) ≤ 1
4

is often introduced in the literature. Indeed, since one can prove that the function

d(t) := 2×supµ dTV (µP t, π) is sub-multiplicative d(s+t) ≤ d(s) d(t), once the mixing

time has been reached the Markov chain then converges to equilibrium exponentially

quickly. The conclusion of Theorem 2.2.2 is only qualitative and thus typically of

no great value since it does not describe the speed at which the convergence takes

place. For a more precise description of convergence to equilibrium, we introduce

the notion of uniform and geometric ergodicity.

Definition 2.2.3. (Uniform and geometric ergodicity) Let X be Markov chain

on X with stationary distribution π.

• The Markov chain is uniformly ergodic if there exists a constant M <∞ such

that dTV
(
Pn(x, ·), π

)
≤M ρn for some ρ < 1.

• The Markov chain is geometrically ergodic if dTV
(
Pn(x, ·), π

)
≤ M(x) ρn for

some constant ρ < 1 and function M satisfying M(x) <∞ for π-a.e. x ∈ X .

Markov chains on continuous state spaces are very rarely uniformly ergodic.

In practice, to prove that a Markov chain is geometrically ergodic one can sometimes

use the notion of drift condition, which is a variant of the geometric Foster-Lyapunov

condition [Fos53].

Definition 2.2.4. (Drift Condition) The Markov kernel P satisfies a drift con-

dition if there are constants 0 < λ < 1 and b < ∞, and a Lyapunov function

V : X → [1,+∞] satisfying

PV ≤ λV + b 1C

where C is a small set for the Markov kernel P .

We remind the reader that a small set C ⊂ X for the Markov kernel P is a

set C such that there exist a constant ε > 0, an integer n0 ≥ 1 and a probability

measure ν such that Pn0(x,A) ≥ εν(A) for every measurable subset A ⊂ X and

x ∈ C. The drift condition 2.2.4 quantifies the way in which the process {V (Xk)}k≥0
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behaves as a supermartingale before that the Markov chain X enters the small set

C. On average, the quantity V (Xk) decreases at rate λ when outside of C, implying

(since V (x) ≥ 1) that the Markov chain X returns geometrically quickly to the

small set C. When inside the small set C, a regeneration happens with probability

at least ε. The drift condition 2.2.4 allows it to be shown by a coupling argument

that the chain is geometrically ergodic.

Theorem 2.2.5. Consider a ϕ-irreducible, aperiodic Markov chain X with sta-

tionary distribution π. Suppose that the drift condition 2.2.4 is satisfied for some

constants 0 < λ <1 and b <∞ and a π-a.e. finite Lyapunov function V . Then the

Markov chain X is geometrically ergodic.

Establishing a drift condition is more an art than a general method, though.

The interested reader is referred to [MT93] for a thorough description of this ap-

proach.

To estimate the statistical fluctuation of the estimator SN (f) = N−1
∑N−1

k=0 f(Xj),

it is useful to establish conditions that ensure that a central limit theorem holds. For

reversible Markov chains, a central limit holds as soon as the asymptotic variance

σ2
f is finite.

Theorem 2.2.6. [KV86] (Kipnis-Varadhan) Let X be an ergodic Markov chain

reversible with respect to the probability distribution π and f ∈ L2(π). Suppose that

the chain is started at stationarity X0
D∼ π and that the asymptotic variance exists

and is finite,

lim
N→∞

1

N
Var

(
f(X0) + . . .+ f(XN−1)

)
= σ2

f <∞.

The sequence
√
N
(
SN (f) − π(f)

)
converges weakly to a centred Gaussian distri-

bution with variance σ2
f . On every finite time interval, the sequence of rescaled

processes

BN (t) :=
1√
N

∑
k<tN

(
f(Xk)− π(f)

)
converges in the Skorohod topology to a Brownian motion with variance σ2

f .

Since the quantity 1
N Var

(
f(X0) + . . .+ f(XN−1)

)
also equals Varπ(f)

(
1 +

2
∑N−1

k=1 (1−k/N)ρf (k)
)

where ρf (k) is the correlation at stationarity between f(Xj)

and f(Xj+k), it follows that σ2
f is finite if

∑∞
k=1(1 − k/N)

∣∣ρf (k)
∣∣ < ∞. In other
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words, if the autocorrelation sequence {ρf (k)}k≥1 converges quickly enough to zero,

a Markov central limit theorem holds. Corollary 2.1 of [RR97] shows that geometric

ergodicity 2.2.3 of the reversible chain X is enough to guaranty that σ2
f exists and is

finite for any functional f ∈ L2(π). For non reversible chains, one needs the stronger

assumption that f ∈ L2+ε(π) < 0 for some ε > 0 to ensure that a Markov central

limit theorem holds. In the next section we give an expression for σ2
f in terms of

the spectral decomposition of the Markov operator P .

2.2.2 Spectral analysis and consequences

This section describes the spectral approach to the study of the convergence of

Markov chains. To keep the exposition simple and avoid the subtleties inherent to

the spectral theory of linear operators on general Hilbert spaces, we only consider

the case where the state space is discrete and finite X =
{

1, 2, . . . , n
}

. This limited

setting is general enough to illustrate the main ideas of the general theory. Re-

versibility π(x)P (x, y) = π(y)P (y, x) of the Markov chain X with respect to the

probability distribution π implies that the Markov kernel P can be regarded as a

self-adjoint linear operator, or matrix, on L2(X , π). The operator P acts on func-

tions f : X → R and measures µ on X as µPf =
∑

x,y µ(x)P (x, y)f(y). For any

functions f, g : X → R we have 〈Pf, g〉π = 〈f, Pg〉π where 〈·, ·〉π is the usual inner

product in L2(π).

Since P is a self-adjoint operator in L2(π), there exists an orthonormal eigen-

basis
(
ϕ1, . . . , ϕn

)
of L2(π) with Pϕj = λjϕj for the real eigenvalues λ1 ≥ λ2 ≥

. . . ≥ λn. Since P is a Markov operator, the eigenvalues are less than one in absolute

value. We assume that P is irreducible so that π is the unique invariant distribution;

this ensures that λ1 = 1 with ϕ1 = (1, 1, . . . , 1)/‖(1, 1, . . . , 1)‖L2(π) = (1, 1, . . . , 1)

and λ2 = 1 − λgap < 1. The difference λgap > 0 between the first two eigenvalues

is called the spectral gap of the Markov transition operator P . We also assume that

P is aperiodic, which ensures than λn > −1. In other words, all the eigenvalues λj

for 2 ≤ j ≤ n are strictly less than one in absolute value. With these notations we

have π(f) := Eπ(f) = 〈f, ϕ1〉π for any function f : X → R.

Since the Markov chain is assumed to be reversible with respect to π and

irreducible and aperiodic, the law of large numbers holds. For any function f :

X → R, the sequence SN (f) := (f(X0) + . . .+ f(xN−1))/N converges almost surely

to π(f) as n → ∞. The knowledge of the spectrum of the operator P provides

a quantitative estimate of the convergence of the empirical means to the expected
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value π(f). The function f can be decomposed on the orthonormal eigenbasis of

P in the sense that f = π(f)ϕ1 +
∑n

j=2 αjϕj (with αj = 〈f, ϕj〉π). This implies

that for any time t ≥ 0 we have the decomposition P tf = π(f)ϕ1 +
∑n

j=2 λ
t
jαjϕj .

Notice that the term
∑n

j=2 λ
t
jαjϕj decreases geometrically quickly to zero at rate

ρ = maxnj=2 |λj | < 1. A similar computation would show that for any probability

measure µ the sequence µP t converges at rate ρ to the invariant distribution π.

The quantity ρ is the spectral radius of the restriction P0 of P to the subspace

L2
0(π) =

{
f ∈ L2(π) : π(f) = 0

}
. The definition of uniform ergodicity 2.2.3 shows

that on a finite state space an irreducible ergodic Markov chain is uniformly ergodic

with rate ρ given by the spectral radius of P0. It is common practice in the literature

to study a lazy version Plazy = 1
2

(
I+P

)
of the Markov operator P to ensure that the

eigenvalues of Plazy are non-negative and in this case we have ρ = 1 − λgap. Other

conditions (e.g. Lemma 3.1 of [Bax05]) can sometimes help ensure that eigenvalues

of P are non-negative. The advantage of having non-negative eigenvalues is that

there exists many different techniques for estimating the spectral gap λgap while

it is often more difficult to study the smallest eigenvalue λn. According to the

central limit Theorem 2.2.6, the sequence
√
N
(
SN (f)− π(f)

)
converges weakly to

a centred Gaussian distribution with variance σ2
f . If the Markov chain is started at

stationarity, the variance of
√
N
(
SN (f)− π(f)

)
can also be expressed as

n∑
j=2

(
1 + 2

N−1∑
t=1

(1− t/N)λtj
)
α2
j →

n∑
j=2

1 + λj
1− λj

α2
j =: σ2

f .

This follows from the observation that the variance of
√
N
(
SN (f) − π(f)

)
equals

1
N E

(∑N−1
t=0 f0(Xt)

)2
, with f0 := f − π(f)ϕ1 =

∑n
j=2 αjϕj , and at stationarity we

have E
[
f0(Xi)f0(Xj)

]
= 〈f0, P

|j−i|f0〉L2(π) =
∑n

j=2 λ
|j−i|
j α2

j . Notice that it might

happen that σ2
f < Varπ(f) =

∑n
j=2 α

2
j . Indeed, if all the eigenvalues are positive we

have σ2
f > Varπ(f) for any function f : X → R. Since 0 ≤ 1+λ

1−λ < (2− λgap)λ−1
gap for

−1 ≤ λ ≤ 1− λgap, it follows that the asymptotic variance satisfies

σ2
f ≤ (2− λgap)Varπ(f)/λgap

for any function f . The bound is sharp since it is achieved if f is the multiple of

the second eigenfunction ϕ2. The spectral gap λgap is thus of great importance to

the statistical analysis of MCMC algorithms. The variational characterisation of
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the second eigenvalue

λ2 = sup
L2

0(π)

〈f, Pf〉π/Var(f)

where L2
0(π) is the subspace of functions satisfying π(f) = 0 shows that the spectral

gap λgap = 1 − λ2 can also be expressed as λgap = infL2
0(π) 〈f, (I − P )f〉π/Var(f).

Using the reversibility of the operator P one can check that this also reads

λgap = inf
1

2
Eπ
(
f(X1)− f(X0)

)2
/Varf =: inf D(f)/Varf (2.2.1)

with X0
D∼ π. Notice that in Equation 2.2.1 one does not need to restrict the

set of test functions to L2
0(π) since the term f(X1) − f(X0) is not affected by the

operation f 7→ f − π(f). The quantity D(f) := 1
2 Eπ

(
f(X1)− f(X0)

)2
is called the

Dirichlet form associated to the π-reversible transition operator P . The variational

characterisation of the spectral gap 2.2.1 is useful since it immediately gives an

upper bound for the spectral gap; indeed, the bound λgap ≤ D(f)/Varf holds for

any non trivial test function f . If one considers the set of test functions of the form

f = 1A where A ⊂ X , we quickly arrive to the notion of conductance. Indeed, one

can check that for f = 1A we have D(f) = Q(A,Ac) where

Q(A,Ac) =
∑
x,y

π(x)P (x, y)1A(x)1Ac(y)

is the probability, at stationarity, that the Markov chain jumps from the set A

to its complement Ac. Indeed, this also reads Q(A,Ac) = E
[
1A(Xk)1Ac(Xk+1)

]
with Xk

D∼ π. Also, since Var(f) = π(A)π(Ac) is bigger than min
(
π(A), π(Ac)

)
/2,

one can upper bound the spectral gap by λgap ≤ 2Φ(A) where we have defined

Φ(A) := Q(A,Ac)/min
(
π(A), π(Ac)

)
. This leads to the upper bound λgap ≤ 2Φ

with Φ := infA⊂X Φ(A). Nevertheless, it is often of much greater interest to lower

bound the spectral gap (e.g. to prove that a Markov chain mixes quickly). It was

independently proved in [SJ89] and [LS88] that the quantity Φ also provides a lower

bound for the spectral gap,

Φ2

2
≤ λgap ≤ 2Φ. (2.2.2)

Since the quantity Φ is defined through an infimum, one can generally only find

upper bounds for Φ, which makes the lower bound in the Cheeger’s inequality (2.2.2)

not as useful as one might think at first sight. Indeed, it is nevertheless a great way
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of establishing negative results and prove that the spectral gap is small. In the

same spirit, Proposition 2.16 of [HSV11] shows that the acceptance probability for

Metropolis-Hastings algorithms is related to to spectral gaps through the bound

λgap ≤ 2 inf
x∈X

α(x). (2.2.3)

In equation (2.2.3), the quantity α(x) denotes the acceptance probability of a

Metropolis-Hastings Markov chain as defined in equation (2.1.1). Equation (2.2.3)

already shows that the tuning of the mean acceptance probability of MCMC al-

gorithms is of fundamental importance to the analysis of MCMC algorithms. For

example, if the mean acceptance probability is exponentially small then the spectral

gap is exponentially small. This idea is a motivation for several results of this thesis.

2.3 Optimal proposals

To compare different MCMC algorithms, we need to discuss how to measure the

efficiency of a particular MCMC transition kernel. Consider a target distribution

π on the state space X and two reversible Markov chains X and Y with respective

Markov transition kernel PX and PY . Suppose further that these two Markov chains

are geometrically ergodic so that a central limit holds for any function f ∈ L2(π),

N−
1
2

(N−1∑
0

f(Xi)− π(f)
)
⇒ N(0, σ2

X,f ) and N−
1
2

(N−1∑
0

f(Yi)− π(f)
)
⇒ N(0, σ2

Y,f ).

Naturally, it would be natural to say that the Markov chain X is more efficient

than the Markov chain Y if for any function f ∈ L2(π) the asymptotic variances

σ2
X,f is less than σ2

Y,f . In this case, we say that the kernel PX dominates the kernel

PY in the efficiency ordering and write PX < PY . This is indeed a very strong

condition; in a finite state space setting, two Markov kernels P and Q that are

reversible with respect to a probability distribution π can be ordered as PX < PY

if, and only if, their eigenvalues can be ordered as λPk ≤ λQk for every 1 ≤ k ≤ n

[Mir01; MG99]. It was proved by Peskun [Pes73] for finite state spaces, and by

Tierney [Tie98] for general state spaces, that a sufficient condition for PX < PY is

that PX(z,A) ≥ PY (z,A) for all z ∈ X and subset A ⊂ X with z 6∈ A; in other

words, a sufficient condition for PX < PY is that PX dominates PY off the diagonal.

Indeed, this condition is very strong and not often useful for comparing two Markov

kernels PX and PY . It does happen more often than not that two different Markov

kernels PX and PY reversible with respect to the same target probability measure π
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cannot be compared through this criterion in the sense that one find two functions

f, g ∈ L2(π) such that σ2
X,f > σ2

Y,f and σ2
X,g < σ2

Y,g.

Another solution for comparing two reversible Markov transition PX and PY

reversible with respect to the same target probability π would be to compare their

spectral gaps λgap(X) and λgap(Y ). In view of our discussion of spectral gaps 2.2.2,

we could say that PX is more efficient than PY if the spectral gap λgap(X) of PX

is larger than the spectral gap λgap(Y ) of PY . This is indeed a valid approach but

spectral gaps are notoriously hard quantities to estimate.

In this thesis, we are mainly interested in MCMC methods which proceed

via local moves. In other words, the proposals are small perturbations of the current

state of the Metropolis-Hastings Markov chain. For complex target distributions,

this is often the only type of proposals that can be efficiently implemented and

the scale of the increments often has a dramatic influence on the complexity of

the resulting MCMC algorithm. A simple heuristic suggests the existence of an

“optimal scale”: smaller values of the proposal variance lead to high acceptance

rates but the chain does not move much even when accepted, and therefore may not

be efficient. Larger values of the proposal variance lead to larger moves, but then the

acceptance probability is tiny. The optimal scale for the proposal variance strikes

a balance between making large moves and still having a reasonable acceptance

probability. The next two sections introduces two related approaches to investigating

the “optimal scale” for MCMC algorithms that evolves through local moves.

2.3.1 Expected squared jumping distance

Consider a Markov chain X = {Xk}k≥0 evolving on the Hilbert space X . The

Markov chainX is assumed to be ergodic with invariant probability π. The Expected

Squared Jumping Distance (ESJD) is the expected size of the squared jump size

‖Xk+1 −Xk‖2 between two consecutive steps of the Markov chain X,

ESJD := E
∥∥Xk+1 −Xk

∥∥2
, (2.3.1)

when the Markov chain is assumed to evolve at stationarity Xk
D∼ π. Algebra reveals

that the ESJD can also be expressed as ESJD := 2
(
ρ(0) − ρ(1)

)
where ρ(r) is the

covariance E〈Xk, Xk+r〉. Since at stationarity the quantity ρ(0) = E‖X‖2 depends

on the target probability π only (and not on the Markov kernel), maximising the

ESJD is equivalent to minimising the first covariance coefficient ρ(1) = E〈Xk, Xk+1〉.
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The ESJD has the advantage of being relatively straightforward to study in

situations where it would typically be impossible to obtain meaningful information

on the spectral gap of the Markov kernel or on the Monte Carlo asymptotic variance.

In several cases, the ESJD can be used for analysing situations where the scaling

approach (see section 2.3.2) fails. Indeed, one major disadvantage of the scaling

limit approach is its reliance on asymptotics in the dimensionality of the problem;

the majority of the results obtained through the scaling approach considers high

dimensional limits where each coordinate evolves asymptotically independently from

the others. On the contrary, the ESJD can tackle situations where coordinates are

highly correlated. For example, the article [SR09] gives a non-asymptotic formula

for the ESJD of the Random Walk Metropolis (RWM) algorithm on spherically

symmetric unimodal distributions; as a corollary, it is proved in this case that there

exists a unique scale that maximises the ESJD. In the same line, [She13] gives

conditions under which the 0.234 rule of [RGG97] holds for much more general

target distributions than the one that can be analysed through diffusion limits. The

article [NR11] gives non-asymptotic results for several random walk type MCMC

algorithms with non-Gaussian proposals. In [BRS09], the ESJD is used to analyse

non-product form target distributions that are discretisation of infinite dimensional

probability distributiond; chapter 4 of this thesis gives diffusion limit justifications

of some results of [BRS09].

One should nevertheless keep in mind that the ESJD analysis gives in general

much less intuition on the behaviour of a MCMC algorithm than a scaling limit re-

sult. Indeed, the understanding of the subtle path properties of a MCMC algorithm

that can be gained through a scaling limit result are typically completely unavailable

through an ESJD analysis. As described in [RR01], in many situations a diffusion

limit result can be seen as a rigorous justification for using the ESJD approach.

2.3.2 Scaling analysis of a sequence of Markov processes

The majority of the results presented in this thesis are of the following type. We

consider a sequence of Markov chains xN = {xk,N}k≥0. The Markov chain xN

evolves on a state space XN that might depend on the index N ≥ 1. We are

interested in the asymptotic behaviour of these Markov chains as the index N goes to

infinity, say. To this end, we introduce a sequence of transformations νN : XN → X
that map the different state spaces XN to a fixed state space X . In general, notice

that the transformed process νN (xN ) does not enjoy the Markov property. The

transformation νN is generally chosen so that one can find a diffusive time scale
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∆t = ∆t(N) such that the sequence of time rescaled processes

zN (t) := νN (xbt/∆tc,N )

converges weakly to a limiting X -valued non trivial process z1. If zN converges

weakly to a suitable stationary process then it is natural to deduce that the complex-

ity of the MCMC algorithm based on the Markov chain xN is inversely proportional

to the diffusive time scale ∆t(N). This weak convergence is denoted as zN ⇒ z

in the rest of this thesis. The limiting process z is often described in this thesis

as the solution of a stochastic differential equation. Indeed, more general limiting

processes are possible. We sometimes choose to index the different state spaces and

Markov chain by a parameter ε→ 0 instead of N →∞.

1. The idea of finding diffusion limits for MCMC methods was pioneered by

Roberts and co-workers in [RGG97]; see [RR01] for an overview. In this article,

a target distribution πN on XN := RN with product form

πN (x1, . . . , xN ) =
N∏
i=1

eA(xi) (2.3.2)

is explored through MCMC simulations. If the current position of the Metropolis-

Hastings Markov chain is xk,N = (xk,N1 , . . . , xk,NN ) ∈ RN , the Random Walk

Metropolis (RWM) algorithm proposes a move distributed as x∗ = xk,N+ √̀
N
ξ

where ξ
D∼ N(0, IN ) is a standard Gaussian random variable in RN . The con-

stant ` > 0 is a tuning parameter and the scale 1/
√
N ensures that as the

dimension grows to infinity N →∞ the mean acceptance probability of the al-

gorithm is bounded away from zero and from one. The seminal paper [RGG97]

considers the so called first-coordinate transformation νN : RN → R that maps

a vector x = (x1, . . . , xN ) ∈ RN to its first coordinate νN (x1, . . . , xN ) := x1.

It is proved in this article that under mild assumptions the choice of diffusive

time scale ∆t := 1/N leads to a diffusion limit. In other words, the sequence

of R-valued continuous time processes zN defined as

zN (t) = x
bNtc,N
1

converges in a suitable sense to the solution z of a stochastic differential equa-

tion that is ergodic with respect to the probability distribution eA(x) dx on the

1the notation bxc stands for the largest integer less or equal to x ∈ R, also known as the floor
function

17



real line. The stochastic differential equation that described z is of the form

dzt = h(`)µ(zt) dt+
√
h(`)σ(zt) dWt

where µ : R → R is a drift function and σ : R → R is a volatility function

that both do not depend on the tuning parameter `. The function µ and σ

only depend on the potential A. The speed function h(`) is strictly positive

and converges to zero as ` → 0 and ` → ∞. It has a unique maximum `∗.

This reveals that in order to maximise the efficiency of the algorithm as the

dimension N grows to infinity, one should choose the tuning parameter ` close

to the optimal value `∗. Maybe surprisingly, the optimal value `∗ is the only

value that leads to an asymptotic acceptance probability of 0.234 (to three

decimal places); this gives an easy way for practitioners to tune their RWM

algorithms: choose the size of the jumps so that the mean acceptance proba-

bility is close to 23%. Indeed, this optimal scaling result has only been proven

for very restricted and simple class of target probability distributions and is

not expected to hold for more complicated distributions. MCMC algorithm

targeting probability distributions with multiple modes or exhibiting different

scales or intricate local structures are in general very difficult to tune. The

seminal result of [RGG97] has initiated a large literature on scaling limits

for MCMC algorithms. The articles [RR98; RR01; BDM10; BDM12; NR06]

consider more complex proposals, [Béd07; BR07] study the robustness of the

0.234 rule, [BRS09; BRSV08; BRS09; HSVW05; HSV07; MPS11; SVW04]

uses scaling arguments in infinite dimensional settings, [CRR05; JLM12] study

the initial transient phase, [NR08; NRY12] examine the case of discontinuous

target distributions.

2. In chapter 4 and 5 we consider the following setup. An infinite dimensional

target distribution π on a separable Hilbert space H is discretised. The target

distribution π on H is defined through its Radon-Nikodym derivative dπ
dπ0

(x) ∝
exp

(
− Ψ(x)

)
with respect to a Gaussian measure π0. A discretised version

πN of π is introduced in order to approximate π on the finite memory of a

computer. The discretised version πN of π lives on a finite dimensional linear

subspace of H. A Metropolis Markov chain xN that evolves on XN := H
using local moves (RWM or MALA – defined in the sequel) is used to explore

the target distribution πN . We prove in this thesis that the identity mapping

νN : H → H =: X and a diffusive time scale of the form ∆t := N−γ leads to
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a diffusion limit. More specifically, the sequence of processes zN defined as

zN (t) = xbN
γtc,N ,

where γ > 0 is an exponent whose value needs to be discussed, converges in

a suitable sense to the solution of a H-valued stochastic differential equation

that is ergodic with respect to the probability distribution π.

3. In chapter 6 we consider a sequence of target distributions πε on Rn that

concentrate, as ε goes to zero, on an neighbourhood of a (fixed) manifold M
of dimension strictly inferior to n (the dimension n is fixed while ε→ 0). In this

setting the state space is fixed, X = X ε := Rn. The distribution πε is explored

through a Random Walk Metropolis (RWM) Markov chain xε = {xk,ε}k≥0.

For simplicity, we limit our analysis to the case where the manifold M is

flat i.e is an affine subspace of Rn. We prove that if πε concentrates on a

neighbourhood of thickness ε (to be defined rigorously in the sequel) and the

standard deviation of the jumps of xε is of order ε, the choice of diffusive time

scale ∆t = ε2 leads to a diffusion limit. In other words, we prove that the

sequence of processes zε defined as

zε(t) = xbt/ε
2c,ε,

converges in a suitable sense to the solution z of a Rn-valued stochastic dif-

ferential equation. The limiting diffusion evolves on the limiting manifoldM.

We characterise its invariant distribution.
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Chapter 3

Infinite dimensional methods

3.1 Gaussian measures

3.1.1 Gaussian measures on Hilbert spaces

We give in this section a brief introduction to Gaussian measures on Hilbert space.

See [DPZ92] for a more developed account of the general theory. Let H be a sep-

arable Hilbert space with scalar product 〈·, ·〉 and associated norm ‖x‖2 = 〈x, x〉.
A H-valued random variable X is said to be Gaussian if for any vector v ∈ H the

scalar random variable 〈X, v〉 is a real Gaussian random variable. The mean m ∈ H
is the unique vector satisfying E〈X, v〉 = 〈m, v〉 for any vector v ∈ H. The Gaussian

random variable X is centred if 〈X, v〉 is centred for any v ∈ H. The covariance

operator C is the nonnegative symmetric bilinear map C : H×H → R defined by

C(u, v) = Cov
(
〈X,u〉, 〈X, v〉

)
.

This implicitly defines by duality (Riesz representation) a linear mapping1 C : H →
H defined by C(u, v) = 〈u,Cv〉 = 〈Cu, v〉. The Gaussian distribution on H with

mean µ and covariance C is denoted by N(µ,C). Fernique’s theorem [Fer75] states

that any Gaussian measure enjoys nice integrability properties; there exists an ex-

ponent α > 0 such that E
[

exp
(
α‖X‖2

)]
< ∞. It follows that E[‖X‖2] < ∞ from

which it follows that C : H → H is a trace class operator in the sense that for any or-

thonormal basis {ej}j≥1 of the Hilbert space H we have Tr(C) :=
∑

j〈ej , Cej〉 <∞.

This is because
∑

j〈ej , Cej〉 =
∑

j E〈X, ej〉2 = E‖X‖2. Since a trace class oper-

ator is compact [DS63], the spectral analysis of compact symmetric operators on

1by abuse of notation we use the same symbol to denote the bilinear operator C(u, v) =

Cov
(
〈X,u〉, 〈X, v〉

)
and the associated linear operator C : H → H

20



Hilbert spaces reveals that there exists an orthonormal basis {ϕj}j≥1 and eigenval-

ues2 {λ2
j}j≥1 such that

Cϕj = λ2
j ϕj and Tr(C) =

∑
j≥1

λ2
j <∞.

We refer to this orthonormal eigenbasis as the Karhunen-Loève basis. Any vector

x ∈ H can be decomposed on the Karhunen-Loève basis as

x =
∑
j≥1

xj ϕj (3.1.1)

where xj := 〈x, ϕj〉. This decomposition shows that the centred Gaussian random

variable X with covariance operator C has the same law as the infinite sum

X =
∑
j≥1

〈X,ϕj〉ϕj
D∼

∑
j≥1

λj ξj ϕj (3.1.2)

where {ξj}j≥1 is an i.i.d sequence of standard N(0, 1) Gaussian random variables.

This expansion of the Gaussian random variableX as an infinite sum is usually called

the Karhunen-Loève expansion (see [DPZ92], section White noise expansions). We

now give two examples of particular interest for our purposes.

• Brownian motion

Consider a finite horizon T <∞ and Brownian paths {Wt}t∈[0,T ] on the inter-

val [0, T ]. This defines a centred Gaussian measure on H = L2([0, T ]) since for

any function f ∈ L2([0, T ]) the random variable 〈f,W 〉 =
∫ T

0 f(t)W (t) dt is a

centred Gaussian random variable. Since E[W (s)W (t)] = min(s, t) it follows

that the covariance operator is given by

C(f, g) =

∫∫
[0,T ]2

f(s)g(t) min(s, t) ds dt.

The associated linear operator C is the integral operator that maps a func-

tion f ∈ L2([0, T ]) to the function C(f) ∈ L2([0, T ]) given by C(f)(t) =∫ T
s=0 f(s) min(s, t) ds. One can then find the eigen-decomposition of this in-

tegral operator. The normalised eigenfunctions are ϕk(t) =
√

2/T sin(t/λk)

with eigenvalue λ2
k =

(
T

(k− 1
2

)π

)2
for k ≥ 1 (see [DP05] for details). The

2We choose the eigenvalues to be {λ2
j}j≥1 and not {λj}j≥1 in order to simplify the writing of

the expansion (3.1.2) and emphasise that the eigenvalues are nonnegative
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Karhunen-Loève expansion on L2([0, T ]) of a Brownian motion thus reads

t 7→
√

2T

π

∑
k≥1

ξk

k − 1
2

sin
(

(k − 1

2
)π t/T

)
where {ξk}k≥1 are i.i.d standard Gaussian random variables. In other words,

a Brownian trajectory can be seen as a random superposition of sinusoidal

functions with increasing frequencies.

• Brownian bridge

Similarly, one can consider the Karhunen-Loève expansion of a Brownian

bridge on [0, T ]. Indeed, a Brownian bridge {Bt}t∈[0,T ] on [0, T ] defines a

Gaussian measure on L2([0, T ]) with covariance operator

C(f, g) =

∫∫
[0,T ]2

f(s)g(t)
(

min(s, t)− st

T

)
ds dt

and associated linear operator C(f)(t) =
∫ T
s=0 f(s)

(
min(s, t) − st

T

)
ds. One

can diagonalise this operator and satisfy that the normalised eigenfunctions

are ϕk(t) =
√

2/T sin(t/λk) with eigenvalue λ2
k =

(
T
kπ

)2
for k ≥ 1. The

Karhunen-Loève expansion on L2([0, T ]) of a Brownian bridge thus reads

t 7→
√

2T

π

∑
k≥1

ξk
k

sin
(
kπ t/T

)
where {ξk}k≥1 are i.i.d standard Gaussian random variables (see [DP05] for

details)

3.1.2 Regularity subspaces: the spaces Hr

In the sequel (Chapter 4 and 5), we will be interested in studying a target probability

measure π defined through its Radon-Nikodym derivative

dπ

dπ0
(x) ∝ exp

{
−Ψ(x)

}
(3.1.3)

with respect to a Gaussian measure π0 on a Hilbert space H. Nevertheless, in

the applications that we have in mind, it does happen more often than not that

the function Ψ is not defined on the whole Hilbert space H but only on a smaller

subspace Hr ⊂ H that enjoys better regularity properties. Indeed, the function

Ψ only needs to be defined on the support of π0 for the change of measure that
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defines π to make sense. In this section we describe how to properly define a fam-

ily Hr of such linear subspaces of H and give ways to ensure that the support of

the Gaussian measure π0 is a subset Hr ⊂ H. For r > 0 the space Hr is a strict

linear subspace of H. For r > 0, the space H−r can be interpreted as the dual of Hr.

For every x ∈ H we have expansion (3.1.1) of x on the Hilbert basis {ϕj}j≥1.

Using this expansion, we define Sobolev-like spaces Hr, r ∈ R, with the inner-

products and norms defined by

〈x, y〉r
def
=
∞∑
j=1

j2rxjyj , ‖x‖2r
def
=
∞∑
j=1

j2r x2
j . (3.1.4)

For r ≥ 0, the space Hr is defined as the subset of vectors x ∈ H that have finite

‖ · ‖r norm. Notice that H0 = H and Hr ⊂ H ⊂ H−r for any r > 0. The

Hilbert-Schmidt norm ‖ · ‖C associated to the covariance operator C with eigen-

decomposition Cϕj = λ2
j ϕj is defined as

‖x‖2C =
∑
j

λ−2
j x2

j .

For x, y ∈ Hr, the outer product operator in Hr is the operator x⊗Hr y : Hr → Hr

defined by (x ⊗Hr y)z
def
= 〈y, z〉r x for every z ∈ Hr. For r ∈ R, let Br denote the

operator which is diagonal in the basis {ϕj}j≥1 with diagonal entries j2r. The op-

erator Br satisfies Br ϕj = j2rϕj so that B
1
2
r ϕj = jrϕj . The operator Br lets us

alternate between the Hilbert space H and the Sobolev spaces Hr via the identities

〈x, y〉r = 〈B
1
2
r x,B

1
2
r y〉. Since ‖B−1/2

r ϕk‖r = ‖ϕk‖ = 1, we deduce that {B−1/2
r ϕk}k≥0

forms an orthonormal basis for Hr.

We now describe a sufficient condition that ensures that a Gaussian measure

π0 with covariance C is supported in Hr. For a positive, self-adjoint operator D :

H 7→ H, we define its trace in Hr by

Tr
Hr

(D)
def
=

∞∑
j=1

〈(B−
1
2

r ϕj), D(B
− 1

2
r ϕj)〉r. (3.1.5)

Since TrHr(D) does not depend on the choice of the Hr-orthonormal basis [DS63],

the operator D is said to be trace class in Hr if TrHr(D) <∞ for some, and hence

any, orthonormal basis of Hr. Let us define the operator Cr
def
= B

1/2
r C B

1/2
r . Notice

that TrHr(Cr) =
∑∞

j=1 λ
2
j j

2r. In section 2.1 of [MPS11] it is shown that under the
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condition

Tr
Hr

(Cr) <∞, (3.1.6)

the support of π0
D∼ N(0, C) is included in Hr in the sense that π0-almost every

x ∈ H belongs to Hr. Furthermore, the induced distribution of π0 on Hr is identical

to that of a centered Gaussian measure on Hr with covariance operator Cr. This

means that for ξ
D∼ π0, the following identity E

[
〈ξ, u〉r〈ξ, v〉r

]
= 〈u,Crv〉r holds

for any two functions u, v ∈ Hr. Thus in what follows, we alternate between the

Gaussian measures N(0, C) on H and N(0, Cr) on Hr, for those r for which (3.1.6)

holds.

3.1.3 Change of measure

Our goal is to sample from a measure π defined through the change of probability

formula (3.1.3). As described in section 3.1.2, the condition TrHr(Cr) <∞ implies

that the measure π0 has full support on Hr, that is, π0(Hr) = 1. Consequently,

if TrHr(Cr) < ∞, the function Ψ needs only to be defined on Hr in order for the

change of probability formula (3.1.3) to be valid. In this section we give assumptions

on the decay of the eigenvalues of the covariance operator C of π0 that ensure

the existence of a real number s > 0 such that π0 has full support on Hs. The

function Ψ is assumed to be defined on Hs for some exponent s > 0 and we impose

regularity assumptions on Ψ that ensure that the probability distribution π is not

too different from π0, when projected into directions associated with ϕj for j large.

For each x ∈ Hs the derivative ∇Ψ(x) is an element of the dual (Hs)∗ ∼= H−s of Hs

comprising linear functions on Hs. However, we may identify (Hs)∗ with H−s and

view ∇Ψ(x) as an element of H−s for each x ∈ Hs. With this identification, the

following identity holds,

‖∇Ψ(x)‖L(Hs,R) = ‖∇Ψ(x)‖−s.

This is because ‖∇Ψ(x)‖L(Hs,R) = sup‖y‖s≤1

∑
j λ

2s
j 〈∇Ψ(x), ϕj〉yj and the last ex-

pression can be re-arranged as
∑

j λ
2s
j 〈∇Ψ(x), ϕj〉yj =

∑
j λ
−2s
j 〈∇Ψ(x), ϕj〉(λ4s

j yj).

Similarly, the second derivative ∂2Ψ(x) can be identified as an element of L(Hs,H−s).
To avoid technicalities we assume that Ψ is quadratically bounded, with first deriva-

tive linearly bounded and second derivative globally bounded.

Assumptions 3.1.1. The covariance operator C and function Ψ satisfy the follow-

ing:
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1. Decay of Eigenvalues λ2
j of C: there is an exponent κ > 1

2 such that

λj � j−κ. (3.1.7)

2. Assumptions on Ψ: the function Ψ is defined on Hs for some exponent

s ∈ [0, κ− 1/2). There exist constants Mi ∈ R, i ≤ 4 such that for all x ∈ Hs

we have

M1 ≤ Ψ(x) ≤M2

(
1 + ‖x‖2s

)
(3.1.8)

‖∇Ψ(x)‖−s ≤M3

(
1 + ‖x‖s

)
(3.1.9)

‖∂2Ψ(x)‖L(Hs,H−s) ≤M4. (3.1.10)

Remark 3.1.2. The condition κ > 1
2 ensures that the covariance operator C is

trace class in H since in this case Tr(C) .
∑

j j
−2κ <∞. The same reasoning gives

that the operator Cr is trace-class in Hr for any r < κ − 1
2 . It follows that π0 has

full measure in Hr for any r ∈ [0, κ− 1/2). In particular π0 has full support on Hs.

Remark 3.1.3. The function Ψ(x) = 1
2‖x‖

2
s satisfies assumptions 3.1.1. Indeed, it

is defined on Hs and its derivative at x ∈ Hs is given by ∇Ψ(x) =
∑

j≥0 j
2sxjϕj ∈

H−s with ‖∇Ψ(x)‖−s = ‖x‖s. The second derivative ∂2Ψ(x) ∈ L(Hs,H−s) is the

linear operator that maps u ∈ Hs to
∑

j≥0 j
2s〈u, ϕj〉ϕj ∈ Hs and its norm satisfies

‖∂2Ψ(x)‖L(Hs,H−s) = 1 for any x ∈ Hs.

Since the eigenvalues {λ2
j}j≥1 of C decrease as λj � j−κ, the operator C has

a smoothing; Cαh gains 2ακ orders of regularity in the sense that the Hβ-norm of

Cαh is controlled by the Hβ−2ακ-norm of h ∈ H. Indeed, under Assumption 3.1.1,

the following estimates holds

‖h‖C � ‖h‖κ and ‖Cαh‖β � ‖h‖β−2ακ. (3.1.11)

The proof follows the methodology used to prove Lemma 3.3 of [MPS11]. The reader

is referred to this text for more details. This estimate is used at several places in

the sequel. In chapters 4 and 5 we will consider stochastic differential equations

evolving in Hs with a drift of the form d(x)
def
= −

(
x + C∇Ψ(x)

)
. The methods of

proof that we will be using exploit the fact that the drift function d : Hs → Hs is

a Lipschitz function under mild assumptions on the function Ψ. The next lemma

gives such sufficient conditions.

Lemma 3.1.4. Let assumptions 3.1.1 hold.

25



1. The function d(x)
def
= −

(
x + C∇Ψ(x)

)
is well defined and globally Lipschitz

on Hs,

‖d(x)− d(y)‖s . ‖x− y‖s ∀x, y ∈ Hs. (3.1.12)

2. The second order remainder term in the Taylor expansion of Ψ satisfies

∣∣Ψ(y)−Ψ(x)− 〈∇Ψ(x), y − x〉
∣∣ . ‖y − x‖2s ∀x, y ∈ Hs.(3.1.13)

Proof. See Equation 3.5 of [MPS11].

3.2 Stochastic differential equations in Hilbert spaces

Consider a Gaussian measure on the separable Hilbert space H with covariance

operator C and Karhunen-Loève eigen-basis Cϕj = λ2
j ϕj . The Brownian motion

on H with covariance C is the continuous time stochastic process W : [0; +∞)→ H
defined by

Wt =
∑
j≥1

λjβj(t)ϕj

where {βj}j≥1 is a family of independent real standard Brownian motions. In other

words, each coordinate in the Karhunen-Loève eigen-basis evolves as an indepen-

dent brownian motion. The Brownian motion W is a H-valued centred Gaussian

process with almost-sure continuous paths. It is characterised by its autocorrelation

structure; one can verify that for any two vectors u, v ∈ H the following formula

holds,

Cov
(
〈Ws, u〉, 〈Wt, v〉

)
= min(s, t) 〈u,Cv〉.

This directly follows from the usual Brownian autocorrelation structure Cov(βs, βt) =

min(s, t). At time t > 0 the Brownian motion Wt has a Gaussian distribution with

covariance operator tC. Indeed, if the Gaussian measure N(0, C) has full measure

in Hs, the Brownian motion with covariance C can be seen as a Brownian motion

in Hs. The solution of the H-valued stochastic differential equation

dXt = µ(Xt) dt+ σ dWt (3.2.1)
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where µ : H → H is a drift function, σ ∈ R is a fixed constant and W is a brownian

motion with covariance C is defined as the solution of the integral equation

Xt = X0 +

∫ t

0
µ(Xs) ds+ σWt ∀t > 0. (3.2.2)

The advantage of dealing with a volatility function that is a fixed constant σ ∈ R
is that in order to define the solution to the stochastic differential equation (3.2.1),

one does not need to use the theory of stochastic calculus with respect to Hilbert

space valued continuous martingales; a simple integral equation of the form (3.2.2)

suffices. Since the noise enters (3.2.1) additively, the induced Itô map Θ which

takes Brownian trajectories and initial conditions into solutions is continuous in

the supremum-in-time topology (Lemma 3.2.1). This fact, which would not be

true if (3.2.1) had multiplicative noise, allows us to employ an argument simpler

than the more general techniques often used; for a Lipschitz drift function µ, the

usual Picard iteration approach gives existence and uniqueness of solutions to the

stochastic differential equation (3.2.1). For a fixed time horizon T > 0, the Itô

map Θ : H × C([0, T ],H) → C([0, T ],H), where C([0, T ],H) denotes the linear

space of continuous function from the interval [0, T ] to H, is the function that maps

the pair (x0, w) ∈ H × C([0, T ],H) to the solution x = Θ(x0, w) of the integral

equation xt = x0 +
∫ t

0 µ(xs) ds + σ wt for all t ∈ [0, T ]. We now prove that the Itô

map Θ is continuous if C([0, T ],H) is endowed with the supremum norm ‖x‖∞ =

maxt∈[0,T ] ‖xt‖.

Lemma 3.2.1. (Continuity of the Itô map)

Let H be a Hilbert space and suppose that the drift function µ : H → H is Lipschitz.

The Itô map Θ : H× C([0, T ],H)→ C([0, T ],H) associated to the integral equation

(3.2.2) is continuous if C([0, T ],H) is endowed with the supremum topology.

Proof. The proof follows the Picard iteration approach for proving the Cauchy-

Lipschitz existence and uniqueness theorem of ODE theory. See the proof of Lemma

3.7 of [MPS11] for details.

Lemma 3.2.1 shows that the solutions of the stochastic differential equation

(3.2.1) can be constructed as image under the Itô map Θ of a Brownian motion

in H with covariance C. This explicit construction is at the basis of several weak

convergence results described in chapters 4 and 5.

27



3.3 Diffusion-approximation

The paper [MPS11] developed an approach for deriving diffusion limits for MCMC

methods, using ideas from numerical analysis. In this section we build upon these

techniques to derive a general framework for proving diffusion limits in very general

settings. We prove in particular a general diffusion-approximation result that will

be used at several places in the sequel. We consider a sequence of H-valued Markov

chains xN = {xk,N}k≥0 and a sequence of time steps ∆t = ∆t(N) that converges

to zero. For time t ≥ 0 satisfying k∆t ≤ t < (k + 1)∆t, we define the accelerated

version z̄N of xN and its continuous interpolant zN by{
z̄N (t) = xk,N

zN (t) = (k+1)∆t−t
∆t xk,N + t−k∆t

∆t xk+1,N .
(3.3.1)

Notice that the process zN has continuous sample paths and zN (k∆t) = z̄N (k∆t)

for any indices k,N ≥ 0. In words, the process z̄N is a continuous time and piecewise

constant accelerated version (by a factor 1/∆t) of the process xN . The process zN

is the continuous (piecewise affine) version of the process z̄N . We introduce the

following martingale-drift decomposition of the Markov chain xN ,

xk+1,N − xk,N = dN (xk,N ) ∆t+
√

∆tΓk,N (3.3.2)

where dN : H → H is a deterministic function and ΓN = {Γk,N}k≥0 is a H-valued

martingale difference (i.e. Mn :=
∑

k≤n Γk,N is a martingale). Equation (3.3.2)

is another way of writting the identity xk+1,N − xk,N = E[xk+1,N − xk,N |xk,N ] +(
xk+1,N−xk,N−E[xk+1,N−xk,N |xk,N ]

)
with dN (xk,N ) = E[xk+1,N−xk,N |xk,N ]/∆t

and Γk,N =
(
xk+1,N−xk,N−E[xk+1,N−xk,N |xk,N ]

)
/
√

∆t. In applications, the scal-

ing factor ∆t is chosen such that the drift function dN and the martingale difference

term Γk,N behave well as N →∞. The rescaled martingale WN is defined as

WN (t) =
√

∆t

k∑
j=0

Γj,N +
t− k∆t√

∆t
Γk+1,N (3.3.3)

for k∆t ≤ t < (k + 1)∆t. Notice that the process WN has continuous (piecewise

affine) sample paths. The next proposition is the main result of this section states

that if the sequence WN converges to a Brownian motion and the sequence of

deterministic functions dN converges to a limiting Lipschitz function µ : H → H
then the accelerated process zN converges to the solution of a H-valued stochastic

differential equation. The proof is inspired by the machinery developed to prove the
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main theorem of [MPS11].

Proposition 3.3.1. (General diffusion approximation for Markov chains)

Consider a separable Hilbert space
(
H, 〈·, ·〉

)
, a finite time horizon T > 0 and a

sequence of H-valued Markov chains xN = {xk,N}k≥0. Suppose that the drift-

martingale decomposition (3.3.2) satisfies the following conditions.

1. Convergence of initial conditions: the sequence of initial distributions con-

verges in distribution to a probability measure π that has a finite first moment,

Eπ ‖X‖ <∞.

2. Invariance principle: the sequence (x0,N ,WN ) defined by equation (3.3.3)

converges weakly in H×C([0, T ] to (z0,W ) where z0 D∼ π and W is a Brownian

motion in H, independent from z0, with covariance operator C.

3. Convergence of the drift: there exists a globally Lipschitz function µ : H →
H such that the following limit holds in probability,

lim
N→∞

∫ T

0

∥∥∥dN (z̄N (u))− µ(zN (u))
∥∥∥ du = 0,

with processes z̄N and zN defined by Equation (3.3.1).

Under these three conditions the sequence of rescaled interpolants zN ∈ C([0, T ],H)

defined by equation (3.3.1) converges weakly in C([0, T ],H) to the solution of the

H-valued stochastic differential equation

dz = µ(z) dt+ dW

with initial condition z(0)
D∼ π. Here W is a Brownian motion in H with covariance

C.

Remark 3.3.2. Indeed, the conclusion remains valid if the martingale-drift de-

composition reads xk+1,N − xk,N = C1 d
N (xk,N ) ∆t+C2

√
∆tΓk,N for two constants

C1, C2 ∈ R. In this case and under the same assumptions the sequence zN of rescaled

Markov chains converges weakly to the solution of the stochastic differential equation

dz = C1 µ
(
z(t)

)
dt+ C2 dW .

Remark 3.3.3. There are many scaling limit results for MCMC algorithm available

in the literature. Except notable exceptions [CRR05; JLM12], virtually all these

results [RGG97; RR98; RR01; Béd07; NR11; NRY12; BDM12; BDM10; BRS09;

BPR+13; BPS04] assume that the algorithm is started at stationarity. Proposition
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3.3.1 does not rely on such an assumption. We prove a scaling limit result without

stationarity assumptions in chapter 5.

Proof. The process z̄N (t) verifies

zN (t) = x0,N +

∫ t

0
dN (z̄N (u)) du+WN (t) (3.3.4)

= z0,N +

∫ t

0
µ(zN (u)) du+ ŴN (t)

where the process WN ∈ C([0, T ],H) is defined by equation (3.3.3) and

ŴN (t) = WN (t) +

∫ t

0

(
dN (z̄N (u))− µ(zN (u))

)
du.

Define the Itô map Θ: H × C([0, T ];H) → C([0, T ];H) that maps (z0,W ) to the

unique solution z ∈ C([0, T ],H) of the integral equation

z(t) = z0 +

∫ t

0
µ(z(u)) du+W (t), ∀t ∈ [0, T ].

Equation (3.3.4) thus also reads zN = Θ(x0,N , ŴN ). The proof of the diffusion

approximation is accomplished through the following steps.

• The Itô map Θ : H× C([0, T ],H)→ C([0, T ],H) is continuous.

Since µ : H → H is globally Lipschitz, Lemma 3.2.1 applies.

• The pair (x0,N , ŴN ) converges weakly to (z0,W ).

In a Hilbert space, Slutsky’s theorem [GS01] states that if the sequence of

random variables {An}n∈N converges weakly to the random variable A and the

sequence {Bn}n∈N converges in probability to zero then the sequence {An +

Bn}n∈N converges weakly to A. It is assumed that (x0,N ,WN ) converges

weakly to (z0,W ) in H × C([0, T ],H). Since the quantity
∫ T

0 ‖d
N (z̄N (u)) −

µ(zN (u))‖s du is assumed to converge in probability to 0 as N → ∞ and

ŴN (t) = WN (t) +
∫ t

0

(
dN (z̄N (u)) − µ(zN (u))

)
du, it thus follows that the

sequence (x0,N , ŴN ) converges weakly to (z0,W ) in H×C([0, T ],H) as N →
∞.

• Continuous mapping argument.

The sequence (x0,N , ŴN ) converges weakly in H×C([0, T ],H) to (z0,W ) and

the Itô map Θ: H×C([0, T ],H)→ C([0, T ],H) is a continuous function. The
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continuous mapping theorem thus shows that zN = Θ(x0,N , ŴN ) converges

weakly to z = Θ(z0,W ), finishing the proof of Proposition 3.3.1.

3.4 MCMC on Hilbert spaces

The Bayesian approach to inverse problems is a natural framework for analysing

frequently occurring situations [Fit91; BS09; HSV10; Stu10; CRSW12]. When the

object of interest is a function, the posterior distribution is a measure on a space

of functions. In the examples that we have in mind, the function space of interest

can be endowed with the structure of a Hilbert space. In this section we give a

brief description of several applied problems where this viewpoint is natural. In

these examples the posterior measure π has a density with respect to a Gaussian

reference measure π0 on a Hilbert spaceH. In other words, the posterior distribution

π can be described as a change of measure of the form (3.1.3). For the change of

probability dπ
dπ0

(x) ∝ exp
{
− Ψ(x)

}
to make sense we require that the potential

Ψ : H → R is defined π0-almost surely. The covariance operator of the Gaussian

measure π0 is the linear operator C : H → H. The mean of π0 is denoted by

m ∈ H. The success of using Gaussian priors to model an unknown function stems

largely from the model flexibility they afford. With analogy to the finite dimensional

setting, it is instructive (though not formally correct) to write the prior Gaussian

density as π0(x) ∝ exp{−1
2〈x−m,C

−1x−m〉}, which can also be written π0(x) ∝
exp{1

2〈x−m,Lx−m〉} where the inverse L of −C is known as the precision operator.

Using this notation, the informal expression for the density of posterior distribution

π is

π(x) ∝ exp{−Ψ(x) +
1

2
〈x−m,Lx−m〉}.

In many of our applications L will be a differential operator. We now give several

examples leading to posterior distributions that can be seen as a change of measure

with respect to Gaussian measure living on an infinite dimensional Hilbert space.

More details can be found in [BS09; CRSW12].

• Bayesian Inverse problems

Suppose that one tries to reconstruct an unknown function x ∈ H from ob-

served data y. We assume that the data y ∈ Rd is obtained by applying an

(possibly non-linear) operator G : H → Rd to the function x and adding the
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realisation of mean zero Gaussian random variable with covariance Σ,

y = G(x) + ξ, ξ
D∼ N(0,Σ).

The operator G is sometimes called the observation operator in the applied

literature. Adopting a Gaussian random field priors N(0, C) on the unknown

function x ∈ H, Bayes’ theorem shows that the posterior distribution is a

Gaussian change of measure of the form dπ
dπ0

(x) ∝ exp{−Ψ(x)} with

Ψ(x) =
1

2

∥∥G(x)− y
∥∥2

Σ
.

We have used the standard notation ‖z‖2Σ := 〈z,Σ−1z〉2. The article [BS09]

describes examples including Lagrangian data assimilation and geophysical

modelling where the operator G involves solving a partial differential equa-

tion. In practice, the computation of the quantity G(x) might be very ex-

pensive (e.g. involves solving a PDE) and it is important to design efficient

MCMC algorithms that enjoy high mean acceptance probability. Indeed, it is

computationally very inefficient to consider a proposal x 7→ x′, compute the

quantity G(x′) and then reject the proposal x′.

• Molecular dynamics

A common approach for describing the movement of a molecule is that of a

Brownian dynamics. The atomic position x of the molecule is a vector in RNd

where N is the number of atoms in the molecule and d the spatial dimension.

It is modelled by the Langevin diffusion

dxt = −∇U(xt) dt+
√

2τ dW (3.4.1)

where U : RNd → R is a potential describing the physical system. The process

W is a standard Brownian motion in RNd and τ > 0 the temperature. The in-

variant distribution of this dynamics has a density with respect to the Lebesgue

measure proportional to exp{−U(x)/τ}. For small temperature τ � 1, the

solution of the Langevin diffusion spends most of its time near the minima of

the potential U and transitions between these minima are rare events. The

time between two transitions is exponentially long in the inverse temperature

1/τ [FW12] so that it is computationally infeasible to simply solve the SDE

forward and hope to observe a transition. Instead we may condition on this

rare event occurring. To this end, let T be a finite time horizon and x± de-
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note two minima of the potential U . We consider the Langevin dynamics

(3.4.1) conditioned on the event x(0) = x− and x(T ) = x+. The probability

measure π governing the conditioned Langevin diffusion (3.4.1) has density in

H = L2([0;T ],RNd) with respect to the Brownian bridge measure π0 arising

in the case of vanishing potential U = 0. Girsanov’s theorem gives that the

measure π can be described by a Gaussian change of probability [HSV07] of

the form dπ
dπ0

(x) ∝ exp{−Ψτ (x)} with potential

Ψτ (x) :=
1

2τ

∫ T

0

(1

2

∣∣∇U(xt)
∣∣2 − τ∆U(xt)

)
dt

The Brownian bridge measure π0 is the law of a Brownian bridge with volatility√
2τ starting at x− at time t = 0 and ending at x+ at time T .

• Signal processing

It is often of interest to identify a hidden signal {xt}t∈[0,T ] given some obser-

vation y. In applications of interest, the hidden process x can be modelled

by a Markov process. In the continuous time and continuous state space set-

ting where the hidden process x evolves in Rn, it is convenient to describe its

dynamics by a diffusion of the form

dxt = f(xt) dt+ dWt

and initial condition x0
D∼ ζ. The smoothing problem consists in finding

the distribution of xt given all the observations y available on [0, T ]. In the

case where y consists in discrete observations, this gives rise to conditioned

diffusions very similar to the previous example. Another frequently occur-

ring setting consists in modelling the observation process y as a solution of a

stochastic differential equation of the form

dyt = g(xt) dt+ dBt.

where B is a Brownian motion possibly correlated to W . The smoothing

problem can be formulated as determining a probability measure π on H =

L2([0, T ],Rm) describing the conditional distribution of the hidden process

{xt}t∈[0,T ] conditionally upon the observation process {yt}t∈[0,T ]. Girsanov’s

formula shows that under mild assumption and if the initial distribution ζ is

Gaussian, the distribution π can be described as a Gaussian change of measure

of the form dπ
dπ0

(x) ∝ exp{−Ψ(x)}. Here π0 is a Gaussian measure derived from
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the original problem in the case where the functions f and g are set to zero.

Details can be in [HSVW05; HSV07].

A key idea [SVW04; HSVW05; HSV07; BRSV08; BRS09; CRSW12] for constructing

MCMC algorithms targeting infinite dimensional distribution that are Gaussian

change of measures of the form dπ
dπ0

(x) ∝ exp{−Ψ(x)} is to design proposals based

on discretizations of H-valued stochastic differential equations which are reversible

with respect to either the reference measure π0 or to the full target measure π. The

simplest H-valued diffusion that is reversible with respect to the Gaussian measure

π0 = N(0, C) might be the Ornstein-Uhlenbeck diffusion

dXt = −Xt dt+
√

2 dWt

where W is a Brownian motion inH with covariance C. One of the advantages of de-

signing proposals based on an Ornstein-Uhlenbeck diffusion is that exact discretiza-

tions are available. In other words, there is no need to resort to Euler-Maryama

approximations (or higher order schemes). Consequently, one can design propos-

als that are exactly reversible with respect to π0. An accept-reject mechanism is

then necessary to transform these proposals into an algorithm that is reversible with

respect to π. This line of work is explored in chapter 5. Nonetheless, one of the

drawbacks of proposals based on the Ornstein-Uhlenbeck diffusion is that no infor-

mation contained in the potential Ψ is taken into account. Instead, one can design

proposals that are based on discretisations of the Langevin diffusion

dXt = −
(
Xt + C∇Ψ(Xt)

)
dt+

√
2 dWt.

As proved in [DPZ92; HSVW05; HSV07], this Langevin diffusion is reversible with

respect to the distribution π. Contrary to proposals based on an Ornstein-Uhlenbeck,

the Langevin proposals take into account information contained in the potential Ψ.

If one could construct exact discretisations of the Langevin diffusion, one could in

theory simulate a Markov chain that is exactly reversible with respect to π. Never-

theless, it is in general not possible to construct exact discretizations of a Langevin

diffusion and one thus have to resort to approximations. This leads to algorithms

which do not scale well with the dimensionality of the problem. Questions related

to this phenomenon are investigated in chapter 4.

34



Chapter 4

Scaling Analysis of Metropolis

Adjusted Langevin Algorithm

This chapter is joint work with Andrew Stuart and Natesh Pillai and is based on

the paper [PST12].

4.1 Introduction

Sampling probability distributions πN in RN for N large is of interest in numerous

applications arising in applied probability and statistics. The Markov Chain Monte

Carlo (MCMC) methodology [RC04] provides a framework for many algorithms

which affect this sampling. It is hence of interest to quantify the computational

cost of MCMC methods as a function of dimension N . The simplest class of target

measures for which analysis can be carried out are perhaps product-form target

distributions πN with density of the type

dπN

dλN
(x) = ΠN

i=1f(xi). (4.1.1)

Here λN (dx) is the N -dimensional Lebesgue measure and f(x) is a one-dimensional

probability density function. Thus πN has the form of an i.i.d. product. The scaling

analysis of local move MCMC algorithms evolving on product form densities (4.1.1)

is described in the seminal papers [RGG97; RR98]. Two widely used proposals are

the random walk proposal (obtained from the discrete approximation of Brownian

motion)

y = x+
√

2δZN , ZN ∼ N(0, IN ), (4.1.2)
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and the Langevin proposal (obtained from the time discretization of the Langevin

diffusion)

y = x+ δ∇ log πN (x) +
√

2δ ZN , ZN ∼ N(0, IN ) . (4.1.3)

Here 2δ is the proposal variance, a parameter quantifying the size of the discrete

time increment; we will consider “local proposals” for which δ is small. The Markov

chain corresponding to proposal (4.1.2) is the Random Walk Metropolis (RWM)

algorithm [MRTT53], and the Markov transition rule constructed from the proposal

(4.1.3) is known as the Metropolis Adjusted Langevin Algorithm (MALA) [RC04].

This chapter is aimed at analyzing the computational complexity of the MALA

algorithm in high dimensions.

A fruitful way to quantify the computational cost of these Markov chains

which proceed via local proposals is to determine the “optimal” size of increment δ

as a function of dimension N (the precise notion of optimality is discussed below).

The optimal scale for the proposal variance strikes a balance between making large

moves and still having a reasonable acceptance probability. In order to quantify this

idea, we will carry out a scaling analysis of the MALA algorithm in high dimensions.

The reader is referred to section 2.3.2 for more details on this method. We define a

continuous interpolant zN of the Markov chain xN by

zN (t) =
( t

∆t
− k
)
xk+1,N +

(
k + 1− t

∆t

)
xk,N (4.1.4)

for k∆t ≤ t < (k + 1)∆t. Notice that zN is an accelerated version of xN . In order

to prove a diffusion limit, we choose the proposal variance to satisfy δ = `∆t, with

∆t = N−γ setting the diffusive scale in terms of dimension and the parameter `

a “tuning” parameter which is independent of the dimension N . Key questions,

then, concern the choice of γ and `. If zN converges weakly to a suitable stationary

diffusion process then it is natural to deduce that the number of Markov chain steps

required in stationarity is inversely proportional to the proposal variance, and hence

grows like Nγ . The parametric dependence of the limiting diffusion process then

provides a selection mechanism for `. A research program along these lines was

initiated by Roberts and co-workers in the pair of papers [RGG97; RR98]. These

papers concerned the RWM and MALA algorithms respectively when applied to

the target (4.1.1). In both cases it was shown that the projection of zN into any

single fixed coordinate direction xi converges weakly in C([0, T ];R) to z, the scalar
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diffusion process

dzt = h(`)[log f(zt)]
′ dt+

√
2h(`) dWt (4.1.5)

for h(`) > 0 a constant determined by the parameter ` from the proposal variance.

For RWM the scaling of the proposal variance to achieve this limit is determined by

the choice γ = 1 ([RGG97]) whilst for MALA γ = 1
3 ([RR98]). The analysis shows

that the number of steps required to sample the target measure grows as O(N) for

RWM, but only as O(N
1
3 ) for MALA. This quantifies the efficiency gained by use

of MALA over RWM, and in particular from employing local moves informed by

the gradient of the logarithm of the target density. A second important feature of

the analysis is that it suggests that the optimal choice of ` is that which maximizes

h(`). This value of ` leads in both cases to a universal (independent of f(·)) optimal

average acceptance probability (to three significant figures) of 0.234 for RWM and

0.574 for MALA.

These theoretical analysis have had a huge practical impact as the optimal

acceptance probabilities send a concrete message to practitioners: one should “tune”

the proposal variance of the RWM and MALA algorithms so as to have acceptance

probabilities of 0.234 and 0.574 respectively. However, practitioners use these tun-

ing criteria far outside the class of target distributions given by (4.1.1). It is natural

to ask whether they are wise to do so. Extensive simulations (see [RR01; SFR10])

show that these optimality results also hold for more complex target distributions.

Furthermore, a range of subsequent theoretical analyses confirmed that the optimal

scaling ideas do indeed extend beyond (4.1.1); these papers studied slightly more

complicated models such as products of one dimensional distributions with different

variances and elliptically symmetric distributions ([Béd07; Béd09; BPS04; CRR05]).

However the diffusion limits obtained remain essentially one-dimensional in all of

these extensions.1 In this section we study considerably more complex target dis-

tributions which are not of the product form and the limiting diffusion takes values

in an infinite dimensional space.

Our perspective on these problems is motivated by applications such as

Bayesian nonparametric statistics, for example in application to inverse problems

[Stu10], and the theory of conditioned diffusions [HSV10]. In both these areas the

target measure of interest, π, is on an infinite dimensional real separable Hilbert

space H and, for Gaussian priors (inverse problems) or additive noise (diffusions)

is absolutely continuous with respect to a Gaussian measure π0 on H with mean

1The paper [BR00] contains an infinite dimensional diffusion limit, but we have been unable to
employ the techniques of that paper.
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zero and covariance operator C. This framework for the analysis of MCMC in high

dimensions was first studied in the papers [BRSV08; BRS09; BS09] and is described

in more depth in section 3.1. The Radon-Nikodym derivative defining the target

measure is assumed to have the form

dπ

dπ0
(x) = MΨ exp(−Ψ(x)) (4.1.6)

for a real-valued function Ψ : Hs 7→ R defined on a subspace Hs ⊂ H that contains

the support of the reference measure π0; here MΨ is a normalizing constant. We are

interested in studying MCMC methods applied to finite dimensional approximations

of this measure found by projecting onto the first N eigenfunctions of the covariance

operator C of the Gaussian reference measure π0.

It is proved in [DPZ92; HSVW05; HSV07] that the measure π is invariant

for H−valued SDEs (or stochastic PDEs – SPDEs) with the form

dzt = −h(`)
(
zt + C∇Ψ(zt)

)
dt+

√
2h(`) dWt (4.1.7)

where W is a Brownian motion (see [DPZ92]) in H with covariance operator C

and h(`) > 0 is a positive constant. In [MPS11] the RWM algorithm is studied

when applied to a sequence of finite dimensional approximations of π as in (4.1.6).

The continuous time interpolant of the Markov chain zN given by (4.1.4) is shown

to converge weakly to z solving (4.1.7) in C([0, T ];Hs). Furthermore, as for the

i.i.d target measure the scaling of the proposal variance which achieves this scaling

limit is inversely proportional to N (i.e. corresponds to the exponent γ = 1) and the

speed of the limiting diffusion process is maximized at the same universal acceptance

probability of 0.234 that was found in the i.i.d case. Thus, remarkably, the i.i.d.

case has been of fundamental importance in understanding MCMC methods applied

to complex infinite dimensional probability measures arising in practice. We use the

framework developed in section 3.3 to prove a scaling limit result.

To the best of our knowledge, the only paper to consider the optimal scaling

for the MALA algorithm for non-product targets is [BPS04], in the context of non-

linear regression. In [BPS04] the target measure has a structure similar to that of the

mean field models studied in statistical mechanics and hence behaves asymptotically

like a product measure when the dimension goes to infinity. Thus the diffusion limit

obtained in [BPS04] is finite dimensional.

The main contribution of this chapter is the proof of a diffusion limit for

the output of the MALA algorithm, suitably interpolated, to the SPDE (4.1.7),

when applied to N−dimensional approximations of the target measures (4.1.6) with
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proposal variance inversely proportional to N
1
3 . Moreover we show that the speed

h(`) of the limiting diffusion is maximized for an average acceptance probability

of 0.574, just as in the i.i.d product scenario [RR98]. Thus in this regard, our

work is the first extension of the remarkable results in [RR98] for the Langevin

algorithm to target measures which are not of product form. This adds theoretical

weight to the results observed in computational experiments which demonstrate the

robustness of the optimality criteria developed in [RGG97; RR98]. In particular the

paper [BRSV08] shows numerical results indicating the need to scale time-step as a

function of dimension to obtain O(1) acceptance probabilities.

In section 4.2 we state the main theorem of this section, having defined

precisely the setting in which it holds. Section 4.3 contains the proof of the main

theorem, postponing the proof of a number of key technical estimates to section 4.4.

In section 4.5 we conclude by summarising and providing the outlook for further

research in this area.

4.2 Main theorem

This section is devoted to stating the main theorem of the chapter. We are interested

in infinite dimensional target distributions that can be defined as a Gaussian change

of measure on a separable Hilbert space. Section 4.2.1 describes this family of target

distribution. The reader is referred several times to section 3.1 where the theory of

Gaussian measures on Hilbert spaces is introduced. We then define in subsection

4.2.2 the MCMC algorithm that will be analysed. We then discuss in subsection 4.2.3

how the choice of scaling used in the theorem emerges from study of the acceptance

probabilities. Finally, in subsection 4.2.4, we state the main theorem.

4.2.1 Target distribution

The reader is referred to section 3.1 for background on Gaussian measures. Let H
be a separable Hilbert space with scalar product 〈·, ·〉 and associated norm ‖x‖2 =

〈x, x〉. We consider a centered Gaussian measure π0 with covariance operator C :

H → H. The operator C is trace class and is diagonalisable in an orthonormal

Hilbert basis {ϕj}j≥1 that will be referred to as Karhunen-Loève eigen-basis,

Cϕj = λ2
j ϕj and Tr(C) =

∑
j≥1

λ2
j <∞.

In other words, the eigenvalues of the covariance operator C are {λ2
j}j≥1. Any vector

x ∈ H can be decomposed on the Karhunen-Loève basis as x =
∑

j≥1 xj ϕj where
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xj = 〈x, ϕj〉. This decomposition shows the infinite sum
∑

j≥1 λj ξj ϕj where {ξj}j≥1

is an i.i.d sequence of standard N(0, 1) Gaussian random variables is distributed as

π0. This expansion of the Gaussian measure π0 is usually called the Karhunen-Loève

expansion. Our goal is to sample from a measure π defined through the change of

probability formula

dπ

dπ0
(x) ∝ exp{−Ψ(x)} (4.2.1)

with respect to the Gaussian measure π0. The change of probability is assumed

to satisfy assumption 3.1.1. This means that there exists an exponent s ≥ 0 such

that the support of π0 is included in Hs and that the function Ψ is well defined

on Hs and satisfies various regularity estimates. The Sobolev-like subspace Hs is

rigorously defined in section 3.1.2.

We are interested in finite dimensional approximations of the probability

distribution π. To this end, we introduce the vector space spanned by the first N

eigenfunctions of the covariance operator,

XN def
= span

{
ϕ1, ϕ2, . . . , ϕN

}
.

Notice that XN ⊂ Hr for any r ∈ [0; +∞). In particular, XN is a subspace of

Hs. Next, we define N -dimensional approximations of the function Ψ(·) and of the

reference measure π0. To this end, we introduce the orthogonal projection on XN

denoted by PN : Hs 7→ XN ⊂ Hs. The function Ψ(·) is approximated by the

function ΨN : XN 7→ R defined by

ΨN def
= Ψ ◦ PN . (4.2.2)

The approximation πN0 of the reference measure π0 is the Gaussian measure on XN

given by the law of the random variable

πN0
D∼

N∑
j=1

λjξjϕj = (CN )
1
2 ξN

where ξj are i.i.d standard Gaussian random variables, ξN =
∑N

j=1 ξjϕj and CN =

PN ◦ C ◦ PN . Consequently we have πN0 = N(0, CN ). Finally, one can define the

approximation πN of π by the change of probability formula

dπN

dπN0
(x) = MΨN exp

{
−ΨN (x)

}
(4.2.3)
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where MΨN is a normalization constant. Under the assumptions 3.1.1, the normal-

izing constants MΨN are uniformly bounded and we use this fact to obtain uniform

bounds on moments of functions in H under πN . Moreover, as N goes to infinity,

the sequence of probability distributions πN converges weakly to the distribution π.

This claims are made rigorous in the following lemma.

Lemma 4.2.1. (Finite dimensional approximation πN of π) Under the as-

sumptions 3.1.1 the normalization constants MΨN are uniformly bounded. For any

measurable function f : H 7→ R, we have EπN
[
|f(x)|

]
. Eπ0

[
|f(x)|

]
. The sequence

of probability measures πN converges weakly in Hs towards the probability distribu-

tion π.

Proof. The first part is contained in Lemma 3.5 of [MPS11]. Let us prove that

πN =⇒ π. We need to show that for any bounded continuous function g : Hs → R
we have limN→∞ EπN [g(x)] = Eπ[g(x)] where

Eπ
N

[g(x)] = Eπ
N
0 [g(x)MΨN e

−ΨN (x)] = Eπ0 [g(PNx)MΨN e
−Ψ(PNx)].

Since g is bounded, Ψ is lower bounded and since the normalization constants are

uniformly bounded, the dominated convergence theorem shows that it suffices to

show that g(PNx)MΨN e
−Ψ(PNx) converges π0-almost surely to g(x)MΨe

−Ψ(x). For

this in turn it suffices to show that Ψ(PN x) converges π0-almost surely to Ψ(x) as

this also proves almost sure convergence of the normalization constants. By (3.1.9)

we have

|Ψ(PN x)−Ψ(x)| . (1 + ‖x‖s + ‖PNx‖s)‖PN x− x‖s.

But limN→∞ ‖PN x− x‖s → 0 for any x ∈ Hs, by dominated convergence, and the

result follows.

Fernique’s theorem [DPZ92] implies that for any exponent p ≥ 0 we have

Eπ0[‖x‖ps] <∞. It thus follows from lemma 4.2.1 that for any p ≥ 0

sup
N

{
Eπ

N [‖x‖ps] : N ∈ N
}
< ∞.

This estimate is repeatedly used in the sequel. Notice that the probability distribu-

tion πN is supported on XN and has Lebesgue density2 on XN equal to

πN (x) ∝ exp
(
− 1

2
‖x‖2CN −ΨN (x)

)
. (4.2.4)

2For ease of notation we do not distinguish between a measure and its density, nor do we
distinguish between the representation of the measure in XN or in coordinates in RN
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In formula (4.2.4), the Hilbert-Schmidt norm ‖ · ‖CN on XN is given by the scalar

product 〈u, v〉CN = 〈u, (CN )−1v〉 for all u, v ∈ XN . The operator CN is invertible

on XN because the eigenvalues of C are assumed to be strictly positive. The quan-

tity CN∇ log πN (x) is repeatedly used in the text and in particular appears in the

function µN (x) given by

µN (x) = −
(
PNx+ CN∇ΨN (x)

)
(4.2.5)

which, up to an additive constant, is CN∇ log πN (x). This function is the drift of

an ergodic Langevin diffusion that leaves πN invariant. Similarly, one defines the

function µ : Hs → Hs given by

µ(x) = −
(
x+ C∇Ψ(x)

)
(4.2.6)

which can informally be seen as C∇ log π(x), up to an additive constant. In the se-

quel, Lemma 4.4.1 shows that, for π0-almost every x ∈ H, we have limN→∞ µ
N (x) =

µ(x). This quantifies the manner in which the function µN is an approximation of

the function µ.

The next lemma gathers various regularity estimates on the function Ψ(·)
and ΨN (·) that are repeatedly used in the sequel. These are simple consequences of

assumptions 3.1.1 and proofs can be found in section 3.1 and 3.2 of [MPS11].

Lemma 4.2.2. (Properties of Ψ) Let the function Ψ(·) satisfy assumptions 3.1.1

and consider the function ΨN (·) defined by equation (4.2.2). The following estimates

hold.

1. The functions ΨN : Hs → R satisfy the same conditions imposed on Ψ given

by equations (3.1.8), (3.1.9) and (3.1.10) with constants that can be chosen

independent of N .

2. The function C∇Ψ : Hs → Hs is globally Lipschitz on Hs: there exists a

constant M5 > 0 such that

‖C∇Ψ(x)− C∇Ψ(y)‖s ≤M5 ‖x− y‖s ∀x, y ∈ Hs.

Moreover, the functions CN∇ΨN : Hs → Hs also satisfy this estimate with a

constant that can be chosen independent of N .

3. The function Ψ : Hs → R satisfies a second order Taylor formula3. There

3We extend 〈·, ·〉 from an inner-product on H to the dual pairing between H−s and Hs.
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exists a constant M6 > 0 such that

Ψ(y)−
(

Ψ(x) + 〈∇Ψ(x), y − x〉
)
≤M6 ‖x− y‖2s ∀x, y ∈ Hs.(4.2.7)

Moreover, the functions ΨN (·) also satisfy this estimates with a constant that

can be chosen independent of N .

Remark 4.2.3. Regularity Lemma 4.2.2 shows in particular that the function µ :

Hs → Hs defined by (4.2.6) is globally Lipschitz on Hs. Similarly, it follows that

CN∇ΨN : Hs → Hs and µN : Hs → Hs given by (4.2.5) are globally Lipschitz with

Lipschitz constants that can be chosen uniformly in N .

4.2.2 The algorithm

The MALA algorithm is defined in this section. This method is motivated by the

fact that the probability measure πN defined by equation (4.2.3) is invariant with

respect to the Langevin diffusion process

dzt = µN (zt) dt+
√

2 dWN
t , (4.2.8)

where WN is a Brownian motion in H with covariance operator CN . The drift

function µN : Hs → Hs is the gradient of the log-density of πN , as described by

equation (4.2.5). The idea of the MALA algorithm is to make a proposal based

on Euler-Maruyama discretization of the diffusion (4.2.8). To this end we consider,

from state x ∈ XN , proposals y ∈ XN given by

y − x = δ µN (x) +
√

2δ (CN )
1
2 ξN where δ = `N−

1
3 (4.2.9)

with ξN =
∑N

i=1 ξi ϕi and ξi
D∼ N(0, 1). Notice that (CN )

1
2 ξN

D∼ N(0, CN ). The

quantity δ is the time-step in an Euler-Maruyama discretization of (4.2.8). We

introduce a related parameter

∆t := `−1δ = N−
1
3

which will be the natural time-step for the limiting diffusion process derived from

the proposal above, after inclusion of an accept-reject mechanism. The scaling of ∆t,

and hence δ, with N will ensure that the average acceptance probability is bounded

away from 0 and 1 as N grows. This is discussed in more detail in section 4.2.3.

The quantity ` > 0 is a fixed parameter which can be chosen to maximize the speed

of the limiting diffusion process: see the discussion in the introduction and after the
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main theorem below.

We will study the Markov chain xN = {xk,N}k≥0 resulting from Metropoliz-

ing this proposal when it is started at stationarity: the initial position x0,N is

distributed as πN and thus lies in XN . Therefore, the Markov chain evolves in XN ;

as a consequence, only the first N components of an expansion in the eigenbasis of

C are non-zero and the algorithm can be implemented in RN . However, the analysis

is cleaner when written in Hs. The acceptance probability only depends on the first

N coordinates of x and y and has the form

αN (x, ξN ) = 1 ∧ π
N (y)TN (y, x)

πN (x)TN (x, y)
= 1 ∧ exp

(
QN (x, ξN )

)
(4.2.10)

where the proposal y is given by equation (4.2.9). The function TN (·, ·) is the density

of the Langevin proposals (4.2.9) and is given by

TN (x, y) ∝ exp
{
− 1

4δ
‖y − x− δµN (x)‖2CN

}
The local mean acceptance probability αN (x) is defined by

αN (x) = Ex
[
αN (x, ξN )

]
. (4.2.11)

It is the expected acceptance probability when the algorithm stands at x ∈ H. The

Markov chain xN = {xk,N}k≥0 can also be expressed as{
yk,N = xk,N + δµN (xk,N ) +

√
2δ (CN )

1
2 ξk,N

xk+1,N = γk,Nyk,N + (1− γk,N )xk,N
(4.2.12)

where ξk,N are i.i.d samples distributed as ξN and γk,N = γN (xk,N , ξk,N ) creates a

Bernoulli random sequence with kth success probability αN (xk,N , ξk,N ). We may

view the Bernoulli random variable as γk,N = 1{Uk<αN (xk,N ,ξk,N )} where Uk
D∼

Uniform(0, 1) is independent from xk,N and ξk,N . The quantity QN defined in

equation (4.2.10) may be expressed as

QN (x, ξN ) = −1

2

(
‖y‖2CN − ‖x‖

2
CN

)
−
(

ΨN (y)−ΨN (x)
)

(4.2.13)

− 1

4δ

{
‖x− y − δµN (y)‖2CN − ‖y − x− δµ

N (x)‖2CN
}
.

As will be seen in the next section, a key idea behind our diffusion limit is that, for

large N , the quantity QN (x, ξN ) behaves like a Gaussian random variable indepen-

dent of the current position x.
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In summary, the Markov chain that we have described in Hs is, when pro-

jected onto XN , equivalent to a standard MALA algorithm on RN for the Lebesgue

density (4.2.4). Recall that the target measure π in (4.1.6) is the invariant measure

of the SPDE (4.1.7). Our goal is to obtain an invariance principle for the continuous

interpolant (4.1.4) of the Markov chain xN = {xk,N}k≥0 started in stationarity, i.e,

to show weak convergence in C([0, T ];Hs) of zN (t) to the solution z(t) of the SPDE

(4.1.7), as the dimension N →∞.

4.2.3 Optimal scale γ = 1
3

In this section, we informally describe why the optimal scale for the MALA pro-

posals (4.2.9) is given by the exponent γ = 1
3 . For product-form target probability

described by equation (4.1.1), the optimality of the exponent γ = 1
3 was first ob-

tained in [RR98]. For further discussion, see also [BRS09]. To keep the exposition

simple in this explanatory subsection we focus on the case Ψ(·) = 0. The analysis

is similar with a non-vanishing function Ψ(·), because absolute continuity ensures

that the effect of Ψ(·) is small compared to the dominant Gaussian effects described

here. Inclusion of non-vanishing Ψ(·) is carried out in Lemma 4.4.3.

In the case Ψ(·) = 0, straightforward algebra shows that the acceptance

probability αN (x, ξN ) = 1 ∧ eQN (x,ξN ) satisfies

QN (x, ξN ) = −`∆t
4

(
‖y‖2CN − ‖x‖

2
CN

)
.

For Ψ(·) = 0 and x ∈ XN , the proposal y is distributed as y = (1 − `∆t)x +√
2`∆t(CN )

1
2 ξN . It follows that

‖y‖2CN − ‖x‖
2
CN = −2`∆t

(
‖x‖2CN − ‖(C

N )
1
2 ξN‖2CN

)
+ (`∆t)2 ‖x‖2CN

+ 2
√

2`∆t(1−∆t) 〈x, (CN )
1
2 ξN 〉CN .

The details can be found in the proof of lemma 4.4.3. Since the Markov chain

xN = {xk,N}k≥0 evolves in stationarity, for all k ≥ 0 we have xk,N
D∼ πN = N(0, CN ).

Therefore, with x
D∼ N(0, CN ) and ξN

D∼ N(0, CN ), the law of large numbers shows

that both ‖x‖2
CN

and ‖(CN )
1
2 ξN‖2

CN
are of order O(N), whilst the central limit

theorem shows that 〈x, (CN )
1
2 ξN 〉CN = O(N

1
2 ) and ‖x‖2

CN
− ‖(CN )

1
2 ξN‖2

CN
=

O(N
1
2 ). For ∆t = `N−γ and γ < 1

3 , it follows

QN (x, ξN ) = −(`∆t)3

4
‖x‖2CN +O(N

1
2
− 3γ

2 ) ≈ −`
3

4
N1−3γ ,
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which shows that the acceptance probability is exponentially small of order exp
(
− `3

4 N
1−3γ

)
.

The same argument shows that for γ > 1
3 we have QN (x, ξN ) → 0, which shows

that the average acceptance probability converges to 1. For the critical exponent

γ = 1
3 the acceptance probability is of order O(1). In fact Lemma 4.4.3 shows that

for γ = 1
3 , even when Ψ(·) is non-zero, the quantity QN (x, ξN ) can be approximated

by a Gaussian random variable N(− `3

4 ,
`3

2 ). This approximation is key to derivation

of the diffusion limit. In summary, choosing γ > 1
3 leads to exponentially small

acceptance probabilities: almost all the proposals are rejected so that the expected

squared jumping distance EπN [‖xk+1,N − xk,N‖2] converges exponentially quickly

to 0 as the dimension N goes to infinity. On the other hand, for any exponent

γ ≥ 1
3 , the acceptance probabilities are bounded away from zero: the Markov chain

moves with jumps of size O(N−
γ
2 ) and the expected squared jumping distance is of

order O(N−γ). If we adopt the expected squared jumping distance as measure of

efficiency, the optimal exponent is thus given by γ = 1
3 . This viewpoint is analyzed

further in [BRS09].

4.2.4 Statement of main theorem

The main result of this chapter describes the behavior of the MALA algorithm

for the optimal scale γ = 1
3 ; the proposal variance is given by 2δ = 2`N−

1
3 . In

this case, Lemma 4.4.3 and 4.4.4 show that the local mean acceptance probability

αN (x, ξN ) = 1∧eQN (x,ξN ) is such that QN (x, ξN ) converges to Z`
D∼ N(− `3

4 ,
`3

2 ) in the

Wasserstein metric. As a consequence, the asymptotic mean acceptance probability

of the MALA algorithm can be explicitly computed as a function of the parameter

` > 0,

α(`)
def
= lim

N→∞
Eπ

N [
αN (x, ξN )

]
= E

[
1 ∧ eZ`

]
. (4.2.14)

This result is rigorously proved as Corollary 4.4.5. We then define the “speed func-

tion”

h(`) = `× α(`). (4.2.15)

Note that the time step made in the proposal is δ = `∆t and that, if this is accepted

a fraction α(`) of the time, then a naive argument invoking independence shows that

the effective time-step is reduced to h(`)∆t. This is made rigorous in theorem 4.2.4

which shows that the quantity h(`) is the asymptotic speed function of the limiting

diffusion obtained by rescaling the sequence of Metropolis-Hastings Markov chains

{xN}N≥1.
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Theorem 4.2.4. (Main theorem) Let the reference measure π0 and the function

Ψ(·) satisfy assumptions 3.1.1. Consider the MALA algorithm (4.2.12) with initial

condition x0,N D∼ πN . Let zN (t) be the piecewise linear, continuous interpolant of

the MALA algorithm as defined in (4.1.4), with ∆t = N−
1
3 . Then zN (t) converges

weakly in C([0, T ],Hs) to the diffusion process z(t) given by

dzt = −h(`)
(
zt + C∇Ψ(zt)

)
dt+

√
2h(`) dWt (4.2.16)

with initial distribution z(0)
D∼ π.

We now explain the following two important implications of this result.

• Since time has to be accelerated by a factor (∆t)−1 = N
1
3 in order to observe

a diffusion limit, it follows that in stationarity the work required to explore

the invariant measure scales as O(N
1
3 ).

• The speed at which the invariant measure is explored, again in stationarity, is

maximized by choosing ` so as to maximize h(`); this is achieved at an aver-

age acceptance probability 0.574. From a practical point of view, this shows

that when dealing with target distributions that are discretisations of infinite

dimensional Gaussian change of measure, one should “tune” the proposal vari-

ance of the MALA algorithm so as to have a mean acceptance probability of

0.574. This result holds mainly because we are considering target distribu-

tions that are dominated by their Gaussian components i.e. the functional Ψ

appearing in the change of probability formula (4.2.1) has nice growth and

regularity properties. Indeed, for more complex target distributions, there is

no reason why such an optimality result should hold.

The first implication follows from (4.1.4) since this shows that O(N
1
3 ) steps of

the MALA Markov chain (4.2.12) are required for zN (t) to approximate z(t) on a

time interval [0, T ] long enough for z(t) to have explored its invariant measure. To

understand the second implication, note that if Z(t) solves (4.2.16) with h(`) ≡ 1

then, in law, z(t) = Z
(
h(`)t

)
. This result suggests choosing the value of ` that

maximizes the speed function h(·) since z(t) will then explore the invariant measure

as fast as possible. For practitioners, who often tune algorithms according to the

acceptance probability, it is relevant to express the maximization principle in terms

of the asymptotic mean acceptance probability α(`). Figure 4.2.4 shows that the

speed function h(·) is maximized for an optimal acceptance probability of α? =

0.574, to three decimal places. This is precisely the argument used in [RR98] for the

case of product target measures and it is remarkable that the optimal acceptance
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probability identified in that context is also optimal for the non-product measures

studied in this section.
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Figure 4.1: Optimal acceptance probability = 0.574

4.3 Proof of main theorem

In subsection 4.3.1 we outline the proof strategy and introduce the drift-martingale

decomposition of our discrete-time Markov chain which underlies it. In subsection

4.3.2 we use the general diffusion approximation result stated in Proposition 3.3.1

of section 3.3 to prove the main theorem of this paper, pointing to section 4.4 for

the key estimates required.

4.3.1 Proof strategy

To communicate the main ideas, we give a heuristic of the proof before proceeding

to give full details in subsequent sections. Let us first examine a simpler situation:

consider a scalar Lipschitz function µ : R → R and two scalar constants `, c > 0.

The usual theory of diffusion approximation for Markov processes [EK86] shows that

the sequence xN =
{
xk,N

}
of Markov chains

xk+1,N − xk,N = µ(xk,N ) `N−
1
3 +

√
2`N−

1
3 c

1
2 ξk,
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with i.i.d. ξk
D∼ N(0, 1) converges weakly, when interpolated using a time-acceleration

factor of N
1
3 , to the scalar diffusion dzt = `µ

(
zt
)
dt+

√
2` dWt where W is a Brow-

nian motion with variance Var
(
W (t)

)
= ct. Also, if γk is an i.i.d. sequence of

Bernoulli random variables with success rate α(`), independent from the Markov

chain xN , one can prove that the sequence xN =
{
xk,N

}
of Markov chains given by

xk+1,N − xk,N = γk
{
µ(xk,N )`N−

1
3 +

√
2`N−

1
3 c

1
2 ξk
}

converges weakly, when interpolated using a time-acceleration factor N
1
3 , to the

diffusion

dzt = h(`)µ
(
zt
)
dt+

√
2h(`) dWt

where the speed function is given by h(`) = `α(`). This shows that the Bernoulli

random variables
{
γk
}
k≥0

have slowed down the original Markov chain by a factor

α(`). The proof of theorem 4.2.4 is an application of this idea in a slightly more

general setting. The following complications arise.

• Instead of working with scalar diffusions, the result holds for a Hilbert space-

valued diffusion. The correlation structure between the different coordinates is

not present in the preceding simple example and has to be taken into account.

• Instead of working with a single drift function µ, a sequence of approximations

µN converging to µ has to be taken into account.

• The Bernoulli random variables γk,N are not i.i.d. and have an autocorrela-

tion structure. On top of that, the Bernoulli random variables γk,N are not

independent from the Markov chain xk,N . This is the main difficulty in the

proof.

• It should be emphasized that the main theorem uses the fact that the MALA

Markov chain is started at stationarity. This in particular implies that xk,N
D∼

πN for any k ≥ 0, which is crucial to the proof of the invariance principle as

it allows us to control the correlation between γk,N and xk,N .

The rigorous proof of the main result 4.2.4 is based on Proposition 3.3.1. To

this end, we need to introduce a martingale-drift decomposition of the Markov chain

xN = {xk,N}k≥0 and obtain a good understanding of the accept-reject mechanism

of the MALA algorithm. The acceptance probability of proposal (4.2.9) is equal to

αN (x, ξN ) = 1∧eQN (x,ξN ) and the quantity αN (x) = Ex[αN (x, ξN )] given by (4.2.11)
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represents the mean acceptance probability when the Markov chain xN stands at

x. For our proof it is important to understand how the acceptance probability

αN (x, ξN ) depends on the current position x and on the source of randomness ξN .

Recall quantity QN defined in equation (4.2.13). The main observation underlying

the proof of our main result is that QN (x, ξN ) can be approximated by a Gaussian

random variable

QN (x, ξN ) ≈ Z` (4.3.1)

where Z`
D∼ N(− `3

4 ,
`3

2 ). These approximations are made rigorous in Lemma 4.4.3

and Lemma 4.4.4. Therefore, the Bernoulli random variable γN (x, ξN ) with suc-

cess probability 1∧ eQN (x,ξN ) can be approximated by a Bernoulli random variable,

independent of x, with success probability equal to

α(`) = E
[
1 ∧ eZ`

]
. (4.3.2)

Thus, the limiting acceptance probability of the MALA algorithm is as given in equa-

tion (4.3.2). We now introduce the drift-martingale decomposition of the Markov

chain xN . Recall that ∆t = N−
1
3 . With this notation we introduce the drift function

dN : Hs → Hs given by

dN (x) =
(
h(`)∆t

)−1E
[
x1,N − x0,N |x0,N = x

]
(4.3.3)

and the martingale difference array {Γk,N : k ≥ 0} defined by Γk,N = ΓN (xk,N , ξk,N )

with

Γk,N =
(
2h(`)∆t

)− 1
2

(
xk+1,N − xk,N − h(`)∆t dN (xk,N )

)
. (4.3.4)

The normalization constant h(`) defined in equation (4.2.15) ensures that the drift

function µN and the martingale difference array {Γk,N} are asymptotically indepen-

dent from the parameter `. The drift-martingale decomposition of the Markov chain

{xk,N}k then reads

xk+1,N − xk,N = h(`) dN (xk,N ) ∆t+
√

2h(`)∆t Γk,N . (4.3.5)

In order to use the general diffusion-approximation result given by Proposition 3.3.1,

one needs to quantify how close the approximate drift function µN (·) is from the

limiting drift function µ(·) defined by equation (4.2.6) and prove a Brownian scaling
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limit for the sequence of processes WN ,

WN (t) =
√

∆t

k∑
j=0

Γj,N +
t− k∆t√

∆t
Γk+1,N (4.3.6)

for k∆t ≤ t < (k + 1)∆t. This is done in Lemma 4.4.6 and Proposition 4.4.9.

4.3.2 Proof of main theorem

The proof of Theorem 4.2.4 consists in checking that the three conditions needed

for Proposition 3.3.1 to apply are satisfied by the sequence of drift-martingale de-

compositions 4.3.5 of the MALA Markov chains (4.2.12) evolving in the separable

Hilbert space Hs. The key estimates are proved in section 4.4.

1. By Lemma 4.2.1 the sequence of probability measures πN converges weakly in

Hs to the probability measure π that verifies Eπ‖X‖s <∞.

2. Proposition 4.4.9 below proves that (x0,N ,WN ) converges weakly in Hs ×
C([0, T ],Hs) to (z0,W ), where W is a Brownian motion in Hs with covariance

Cs independent from z0 D∼ π.

3. Proposition 4.2.2 below shows that µ : Hs → Hs is a Lipschitz function. Since

the Markov chain xN = {xk,N}k≥0 evolves at stationarity (and thus xk,N
D∼ πN

for all k ≥ 0), we have

E
∫ T

0

∥∥∥dN (z̄N (u))− µ(zN (u))
∥∥∥
s
du . ∆t

∑
k∆t≤T

E
∥∥∥dN (xk,N )− µ(xk+1,N )

∥∥∥
s

= ∆t
∑

k∆t≤T
E
∥∥∥dN (x0,N )− µ(x1,N )

∥∥∥
s
. T × E

∥∥∥dN (x0,N )− µ(x1,N )
∥∥∥
s

. E
∥∥∥dN (x0,N )− µ(x0,N )

∥∥∥
s

+
∥∥∥µ(x0,N )− µ(x1,N )

∥∥∥
s
.

Lemma 4.4.6 implies that the drift function dN (x) verifies limN EπN
∥∥dN (x)−

µ(x)
∥∥
s

= 0. Also, since the function µ(·) is globally Lipschitz in Hs, we have

that E
∥∥µ(x0,N−µ(x1,N )

∥∥
s
. E

∥∥x0,N−x1,N
∥∥
s
→ 0. This implies that, as N →

∞, the quantity
∫ T

0

∥∥∥dN (z̄N (u))−µ(zN (u))
∥∥∥
s
du converges in expectation and

thus in probability to zero.

The three assumptions needed for Proposition 3.3.1 to apply are satisfied, which

concludes the proof of Theorem 4.2.4.
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4.4 Key Estimates

Subsection 4.4.1 contains some technical lemmas of use throughout. In section 4.4.2

we study the large N Gaussian approximation of the acceptance probability and

establish that this acceptance probability is asymptotic independent of the current

state of the Markov chain. This approximation is then used in subsections 4.4.3

and 4.4.4 to give quantitative versions of the heuristics dN (·) ≈ µ(·) The section

concludes with subsection 4.4.5 in which we prove an invariance principle for WN

given by (4.3.6).

4.4.1 Technical lemmas

The first lemma shows that, for π0-almost every function x ∈ Hs, the approximation

µN (x) ≈ µ(x) holds as N goes to infinity.

Lemma 4.4.1. (µN converges π0-almost surely to µ) Let assumptions 3.1.1

hold. The sequences of functions µN : Hs → Hs satisfies

π0

({
x ∈ Hs : lim

N→∞
‖µN (x)− µ(x)‖s = 0

})
= 1.

Proof. It is enough to verify that for any x ∈ Hs the quantity ‖PNx − x‖s = 0

and the quantity ‖CPN∇Ψ(PNx) − C∇Ψ(x)‖s = 0 converge to zero as N goes to

infinity.

• Let us prove the first equation. For x ∈ Hs we have
∑

j≥1 j
2sx2

j <∞ so that

lim
N→∞

‖PNx− x‖2s = lim
N→∞

∞∑
j=N+1

j2sx2
j = 0. (4.4.1)

• To prove the second equation one can start by using the triangle inequality,

‖CPN∇Ψ(PNx)− C∇Ψ(x)‖s ≤ ‖CPN∇Ψ(PNx)− CPN∇Ψ(x)‖s
+ ‖CPN∇Ψ(x)− C∇Ψ(x)‖s.

The same proof as Lemma 4.2.2 reveals that CPN∇Ψ : Hs → Hs is globally

Lipschitz, with a Lipschitz constant that can be chosen independent from N .

Consequenly, Equation (4.4.1) shows that ‖CPN∇Ψ(PNx)−CPN∇Ψ(x)‖s .
‖PNx − x‖s → 0. Also, since z = ∇Ψ(x) ∈ H−s we have ‖∇Ψ(x)‖2−s =∑

j≥1 j
−2sz2

j < ∞. The eigenvalues of C satisfy λ2
j � j−2κ with s < κ − 1

2 .
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Consequently,

‖CPN∇Ψ(x)− C∇Ψ(x)‖2s =

∞∑
j=N+1

j2s(λ2
jzj)

2 .
∞∑

j=N+1

j2s−4κz2
j

=

∞∑
j=N+1

j4(s−κ)j−2sz2
j ≤

1

(N + 1)4(κ−s) ‖∇Ψ(x)‖2−s → 0.

Next lemma shows that the size of the jump y − x is of order
√

∆t.

Lemma 4.4.2. Consider y given by (4.2.9). Under assumptions 3.1.1, for any

p ≥ 1 we have

Eπ
N

x

[
‖y − x‖ps

]
. (∆t)

p
2 · (1 + ‖x‖ps).

Proof. Under assumption 3.1.1 the function µN is globally Lipschitz on Hs, with

Lipschitz constant that can be chosen independent from N . Thus

‖y − x‖s . ∆t(1 + ‖x‖s) +
√

∆t ‖C
1
2 ξN‖s.

We have Eπ0
[
‖C

1
2 ξN‖ps

]
≤ Eπ0

[
‖ζ‖ps

]
, where ζ

D∼ N(0, C). From Fernique’s theorem

[DPZ92] it follows that Eπ0
[
‖ζ‖ps

]
< ∞ so that the expectation Eπ0

[
‖C

1
2 ξN‖ps

]
is

uniformly bounded as a function of N , proving the lemma.

4.4.2 Gaussian approximation of QN

In this section we prove several preliminary results that shed some lights on the

Gaussian behaviour of the quantity QN . These estimates are at the heart of the

proof of Theorem 4.2.4. Recall the quantity QN defined in Equation (4.2.13). This

section proves that QN has a Gaussian behavior in the sense that

QN (x, ξN ) = ZN (x, ξN ) + iN (x, ξN ) + eN (x, ξN ) (4.4.2)

where the quantities ZN and iN are equal to

ZN (x, ξN ) = −`
3

4
− `

3
2

√
2
N−

1
2

N∑
j=1

λ−1
j ξjxj (4.4.3)

iN (x, ξN ) =
1

2
(`∆t)2

(
‖x‖2CN − ‖(C

N )
1
2 ξN‖2CN

)
(4.4.4)
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with iN and eN small. Thus the principal contributions to QN comes from the

random variable ZN (x, ξN ). Notice that, for each fixed x ∈ Hs, the random variable

ZN (x, ξN ) is Gaussian. Furthermore, the Karhunen-Loève expansion of π0 shows

that for π0-almost every choice of function x ∈ H the sequence
{
ZN (x, ξN )

}
N≥1

converges in law to the distribution of Z`
D∼ N(− `3

4 ,
`3

2 ). The next lemma rigorously

bounds the error terms eN (x, ξN ) and iN (x, ξN ): we show that iN is an error term

of order O(N−
1
6 ) and eN (x, ξ) is an error term of order O(N−

1
3 ). In Lemma 4.4.4

we then quantify the convergence of ZN (x, ξN ) to Z`.

Lemma 4.4.3. (Gaussian Approximation) Let p ≥ 1 be an integer. Under

assumptions 3.1.1 the error terms iN and eN in the Gaussian approximation (4.4.2)

satisfy

(
Eπ

N [|iN (x, ξN )|p
]) 1

p
= O(N−

1
6 ) and

(
Eπ

N [|eN (x, ξN )|p
]) 1

p
= O(N−

1
3 ).

(4.4.5)

Proof. For notational clarity, without loss of generality, we suppose p = 2q. The

quantity QN is defined in Equation (4.2.13) and expanding terms leads to

QN (x, ξN ) = I1 + I2 + I3

where the quantities I1, I2 and I3 are given by

I1 = −1

2

(
‖y‖2CN − ‖x‖

2
CN

)
− 1

4`∆t

(
‖x− y(1− `∆t)‖2CN − ‖y − x(1− `∆t)‖2CN

)
I2 = −

(
ΨN (y)−ΨN (x)

)
− 1

2

(
〈x− y(1− `∆t), CN∇ΨN (y)〉CN

− 〈y − x(1− `∆t), CN∇ΨN (x)〉CN
)

I3 = −`∆t
4

{
‖CN∇ΨN (y)‖2CN − ‖C

N∇ΨN (x)‖2CN
}
.

The term I1 arises purely from the Gaussian part of the target measure πN and

from the Gaussian part of the proposal. The two other terms I2 and I3 come from

the change of probability involving the function ΨN . We start by simplifyng the

expression for I1, and then return to estimate the terms I2 and I3.

I1 = −1

2

(
‖y‖2CN − ‖x‖

2
CN

)
− 1

4`∆t

(
‖(x− y) + `∆t y)‖2CN − ‖(y − x) + `∆t x)‖2CN

)
= −1

2

(
‖y‖2CN − ‖x‖

2
CN

)
− 1

4`∆t

(
2`∆t[‖x‖2CN − ‖y‖

2
CN ] + (`∆t)2[‖y‖2CN − ‖x‖

2
CN ]
)

= −`∆t
4

(
‖y‖2CN − ‖x‖

2
CN

)
.
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The term I1 is O(1) and constitutes the main contribution to QN . Before analyzing

I1 in more detail, we show that I2 and I3 are of order N−
1
3 ,

(
Eπ

N
[I2q

2 ]
) 1

2q
= O(N−

1
3 ) and

(
Eπ

N
[I2q

3 ]
) 1

2q
= O(N−

1
3 ). (4.4.6)

• We expand I2 and use the bound on the remainder of the Taylor expansion of

Ψ described in Equation (4.2.7),

I2 = −
{

ΨN (y)− [ΨN (x) + 〈∇ΨN (x), y − x〉]
}

+
1

2
〈y − x,∇ΨN (y)−∇ΨN (x)〉

+
`∆t

2

{
〈x,∇ΨN (x)〉 − 〈y,∇ΨN (y)〉

}
= A1 +A2 +A3.

Equation (4.2.7) and Lemma 4.4.2 show that

Eπ
N

[A2q
1 ] . Eπ

N
[‖y − x‖4qs ] . (∆t)2q Eπ

N
[1 + ‖x‖4qs ] . (∆t)2q =

(
N−

1
3

)2q
,

where we have used the fact that EπN [‖x‖4qs ] . Eπ0 [‖x‖4qs ] <∞. Assumption

3.1.1 states that ∂2Ψ is uniformly bounded in L(Hs,H−s) so that

‖∇Ψ(y)−∇Ψ(y)‖−s =
∥∥∥∫ 1

0
∂2Ψ

(
x+ t(y − x)

)
· (y − x) dt

∥∥∥
−s

(4.4.7)

≤
∫ 1

0
‖∂2Ψ

(
x+ t(y − x)

)
· (y − x)‖−s dt ≤M4

∫ 1

0
‖y − x‖s dt.

This proves that ‖∇ΨN (y) −∇ΨN (x)‖−s . ‖y − x‖s. Consequently, Lemma

4.4.2 shows that

Eπ
N

[A2q
2 ] . Eπ

N
[
‖y − x‖2qs · ‖∇ΨN (y)−∇ΨN (x)‖2q−s

]
. Eπ

N
[
‖y − x‖4qs

]
. (∆t)2q Eπ

N
[
1 + ‖x‖4qs

]
. (∆t)2 = N−

2q
3 .

Under assumptions 3.1.1, for any z ∈ Hs we have ‖∇ΨN (z)‖−s . 1 + ‖z‖s.
Therefore we have EπN [A2q

3 ] . (∆t)2q and

(
Eπ

N
[I2q

2 ]
) 1

2q
.
(
Eπ

N
[A2q

1 +A2q
2 +A2q

3 ]
) 1

2q
= O(N−

1
3 ).

• Lemma 4.2.2 states CN∇ΨN : Hs → Hs is globally Lipschitz, with a Lipschitz

constant that can be chosen uniformly in N . Therefore,

‖CN∇ΨN (z)‖s . 1 + ‖z‖s. (4.4.8)
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Since ‖CN∇ΨN (z)‖2
CN

= 〈∇ΨN (z), CN∇ΨN (z)〉, the bound (3.1.9) gives

Eπ
N [
I2q

3

]
. ∆t2q E

[
〈∇ΨN (x), CN∇ΨN (x)〉q + 〈∇ΨN (y), CN∇ΨN (y)〉q

]
. ∆t2q Eπ

N
[
(1 + ‖x‖s)2q + (1 + ‖y‖s)2q

]
. ∆t2q Eπ

N
[
1 + ‖x‖2qs + ‖y‖2qs

]
. ∆t2q = N−

2q
3 ,

which concludes the proof of Equation (4.4.6).

We now simplify further the expression for I1 and demonstrate that it has a Gaussian

behaviour. We use the definition of the proposal y given in Equation (4.2.9) to

expand I1. For x ∈ XN we have PNx = x. Therefore, for x ∈ XN ,

I1 = −`∆t
4

(
‖(1− `∆t)x− `∆t CN∇ΨN (x) +

√
2`∆t (CN )

1
2 ξN‖2CN − ‖x‖

2
CN

)
= ZN (x, ξN ) + iN (x, ξN ) + B1 + B2 + B3 + B4.

with ZN (x, ξN ) and iN (x, ξN ) given by Equation (4.4.3) and (4.4.4) and

B1 =
`3

4

(
1−
‖x‖2

CN

N

)
B2 = −`

3

4
N−1

{
‖CN∇ΨN (x)‖2CN + 2〈x,∇ΨN (x)〉

}
B3 =

`
5
2

√
2
N−

5
6 〈x+ CN∇ΨN (x), (CN )

1
2 ξN 〉CN

B4 =
`2

2
N−

2
3 〈x,∇ΨN (x)〉.

The quantity ZN is the leading term. For each fixed value of x ∈ Hs the term

ZN (x, ξN ) is Gaussian. Below, we prove that quantity iN is O(N−
1
6 ). We now

establish that each Bj is O(N−
1
3 ),

Eπ
N [
B2q
j

] 1
2q = O(N−

1
3 ) j = 1, . . . , 4. (4.4.9)

• Lemma 4.2.1 shows that EπN [
(
1 −

‖x‖2
CN

N

)2q
] . Eπ0 [

(
1 −

‖x‖2
CN

N

)2q
]. Under

π0, the random variable
‖x‖2

CN

N is distributed as
ρ2

1+...+ρ2
N

N where ρ1, . . . , ρN are

independent and identcally distributed N(0, 1) Gaussian random variables.

Consequently, EπN [B2q
1 ]

1
2q = O(N−

1
2 ).

• The term ‖CN∇ΨN (x)‖2q
CN

has already been bounded while proving EπN [I2q
3 ] .(

N−
1
3

)2q
. Equation (3.1.9) gives the bound ‖∇ΨN (x)‖−s . 1 + ‖x‖s and
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shows that EπN
[
〈x,∇ΨN (x)〉2q

]
is uniformly bounded as a function of N .

Therefore EπN
[
B2q

2

] 1
2q = O(N−1).

• We have 〈CN∇ΨN (x), (CN )
1
2 ξN 〉CN = 〈∇ΨN (x), (CN )

1
2 ξN 〉 so that

Eπ
N

[〈CN∇ΨN (x), (CN )
1
2 ξN 〉2q

CN
] . Eπ

N
[‖∇ΨN (x)‖2q−s · ‖(CN )

1
2 ξN‖2qs ] . 1.

By Lemma 4.2.1, one can suppose x
D∼ π0 and 〈x, (CN )

1
2 ξN 〉CN

D∼
∑N

j=1 ρjξj

where ρ1, . . . , ρN are independent and identically distributed N(0, 1) Gaussian

random variables. Consequently
(
EπN

[
〈x, (CN )

1
2 ξN 〉2q

CN

]) 1
2q

= O(N
1
2 ), which

proves that EπN
[
B2q

3

] 1
2q = O(N−

5
6

+ 1
2 ) = O(N−

1
3 ).

• The bound ‖∇ΨN (x)‖−s . 1 + ‖x‖s ensures that
(
EπN

[
B2q

4

]) 1
2q

= O(N−
2
3 ).

Define the quantity eN (x, ξN ) = I2 + I3 +B1 +B2 +B3 +B4 so that QN can also

be expressed as

QN (x, ξN ) = ZN (x, ξN ) + iN (x, ξN ) + eN (x, ξN ).

Equations (4.4.6) and (4.4.9) show that eN satisfies
(
EπN

[
eN (x, ξN )2q

]) 1
2q

=

O(N−
1
3 ). We now prove that iN is O(N−

1
6 ). By Lemma 4.2.1, EπN [iN (x, ξN )2q] .

Eπ0 [iN (x, ξN )2q]. If x
D∼ π0 we have

iN (x, ξN ) =
`2

2
N−

2
3

{
‖x‖2CN − ‖(C

N )
1
2 ξN‖2CN

}
=
`2

2
N−

2
3

N∑
j=1

(ρ2
j − ξ2

j ).

where ρ1, . . . , ρN are i.i.d N(0, 1) Gaussian random variables. Since E
[{∑N

j=1(ρ2
j −

ξ2
j )
}2q]

. N q it follows that EπN
[
iN (x, ξN )2q

] 1
2q = O(N−

2
3

+ 1
2 ) = O(N−

1
6 ), which

ends the proof of Lemma 4.4.3

The next lemma quantifies the fact that ZN (x, ξN ) is asymptotically independent

from the current position x.

Lemma 4.4.4. (Asymptotic independence) Let p ≥ 1 be a positive integer and

f : R → R be a 1-Lipschitz function. Consider any error terms eN? (x, ξ) satisfying

limN→∞ EπN
∣∣eN? (x, ξN

∣∣p = 0. Define the functions f̄N : R → R and the constant

f̄ ∈ R by

f̄N (x) = Ex
[
f
(
ZN (x, ξN ) + eN? (x, ξN )

)]
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and f̄ = E[f(Z`)]. The function fN is highly concentrated around its mean in the

sense that

lim
N→∞

Eπ
N
[
|f̄N (x)− f̄ |p

]
= 0.

Proof. Define the function F : R× [0;∞)→ R by F (µ, σ) = E
[
f(ρµ,σ)

]
with ρµ,σ

D∼
N(µ, σ2). The function F satisfies

∣∣F (µ1, σ1) − F (µ2, σ2)
∣∣ . |µ2−µ1| + |σ2−σ1|

for any choice µ1, µ2 ∈ R and σ1, σ2 ≥ 0. Indeed,

∣∣F (µ1, σ1) − F (µ2, σ2)
∣∣ =

∣∣E[f(µ1 + σ1 ρ0,1) − f(µ2 + σ2 ρ0,1)
]∣∣

≤ E
[
|µ2 − µ1| + |σ2 − σ1| · |ρ0,1|

]
. |µ2 − µ1| + |σ2 − σ1|.

We have Ex[ZN (x, ξN )] = E[Z`] = − `3

4 while the variances are given by Var
[
ZN (x, ξN )

]
=

`3

2

‖x‖2
CN

N Var
[
Z`
]

= `3

2 . Therefore, using Lemma 4.2.1,

Eπ
N
[∣∣f̄N (x)− f̄

∣∣p] = Eπ
N
[∣∣Ex[f(ZN (x, ξN ) + eN? (x, ξN )

)
− f(Z`)

]∣∣p]
. Eπ

N
[∣∣Ex[f(ZN (x, ξN )

)
− f(Z`)

]∣∣p] + Eπ
N [|eN? (x, ξN )|p

]
= Eπ

N
[∣∣F (−`

3

4
,Var

[
ZN (x, ξN )

] 1
2 )− F (−`

3

4
,Var

[
Z`
] 1

2 )
∣∣p]

+ Eπ
N [|eN? (x, ξN )|p

]
. Eπ

N
[∣∣Var

[
ZN (x, ξN )

] 1
2 −Var

[
Z`
] 1

2
∣∣p] + Eπ

N [|eN? (x, ξN )|p
]

. Eπ0

∣∣∣{‖x‖2CN
N

} 1
2 − 1

∣∣∣p + Eπ
N [|eN? (x, ξN )|p

]
→ 0.

In the last step we have used the fact that if x
D∼ π0 then

‖x‖2
CN

N
D∼ ρ2

1+...+ρ2
N

N where

ρ1, . . . , ρN are i.i.d Gaussian random variables N(0, 1) so that Eπ0

∣∣∣{‖x‖2CNN

} 1
2−1

∣∣∣p →
0.

Corollary 4.4.5. Let p ≥ 1 be a positive. The local mean acceptance probability

αN (x) defined in Equation (4.2.11) satisfies

lim
N→∞

Eπ
N [|αN (x)− α(`)|p

]
= 0.

Proof. The function f(z) = 1 ∧ ez is 1-Lipschitz and α(`) = E[f(Z`)]. Also,

αN (x) = Ex
[
f(QN (x, ξN ))

]
= Ex

[
f(ZN (x, ξN ) + eN? (x, ξN )

]
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with eN? (x, ξN ) = iN (x, ξN )+eN (x, ξN ). Lemma 4.4.3 shows that limN→∞ EπN [eN? (x, ξ)p] =

0 and therefore lemma 4.4.4 gives the conclusion.

4.4.3 Drift approximation

This section proves that the approximate drift function dN : Hs → Hs defined in

Equation (4.3.3) converges to the drift function µ : Hs → Hs of the limiting diffusion

(4.2.16).

Lemma 4.4.6. (Drift Approximation) Let assumptions 3.1.1 hold. The drift

function dN : Hs → Hs converges to µ in the sense that

lim
N→∞

Eπ
N
[∥∥dN (x)− µ(x)

∥∥2

s

]
= 0.

Proof. Recall that {ϕj}j≥1 is an orthonormal basis of the Hilbert space H. For

notational convenience we introduce the quantity ϕ̂j = j−sϕj so that {ϕ̂j}j≥1 is an

orthonormal basis of Hs. The approximate drift dN is given by Equation (4.3.3).

The definition of the local mean acceptance probability αN (x) given by Equation

(4.2.11) show that dN can also be expressed as

dN (x) =
(
αN (x)α(`)−1

)
µN (x) +

√
2`h(`)−1(∆t)−

1
2 εN (x)

where µN (x) = −
(
PNx+ CN∇ΨN (x)

)
and the term εN (x) is defined by

εN (x) = Ex
[
γN (x, ξN ) C

1
2 ξN

]
= Ex

[(
1 ∧ eQN (x,ξN )

)
C

1
2 ξN

]
.

To prove Lemma 4.4.6 it suffices to verify that

lim
N→∞

Eπ
N
[∥∥(αN (x)α(`)−1

)
µN (x)− µ(x)

∥∥2

s

]
= 0 (4.4.10)

lim
N→∞

(∆t)−1 Eπ
N
[
‖εN (x)‖2s

]
= 0. (4.4.11)

• Let us first prove Equation (4.4.10). The triangle inequality and Cauchy-

Schwarz inequality show that(
Eπ

N
[∥∥(αN (x)α(`)−1

)
µN (x)− µ(x)

∥∥2

s

])2
. E[|αN (x)− α(`)|4] · EπN [‖µN (x)‖4s]

+ Eπ
N

[‖µN (x)− µ(x)‖4s].

By Remark 4.2.3 µN : Hs → Hs is Lipschitz, with a Lipschitz constant that

can be chosen independent of N . It follows that supN EπN [‖µN (x)‖4s] < ∞.
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Lemma 4.4.4 and Corollary 4.4.5 show that E[|αN (x)−α(`)|4]→ 0. Therefore,

lim
N→∞

E[|αN (x)− α(`)|4] · EπN [‖µN (x)‖4s] = 0.

The functions µN and µ are globally Lipschitz onHs, with a Lipschitz constant

that can be chosen independent from N , so that ‖µN (x)−µ(x)‖4s . (1+‖x‖4s).
Lemma 4.4.1 proves that the sequence of functions {µN} converges π0-almost

surely to µ(x) in Hs and lemma 4.2.1 show that EπN [‖µN (x) − µ(x)‖4s] .

Eπ0 [‖µN (x)−µ(x)‖4s]. It thus follows from the dominated convergence theorem

that

lim
N→∞

Eπ
N

[‖µN (x)− µ(x)‖4s] = 0.

This concludes the proof of the Equation (4.4.10).

• Let us prove Equation (4.4.11). If the Bernoulli random variable γN (x, ξN )

were independent from the noise term (CN )
1
2 ξN , it would follow that εN (x) =

0. In general γN (x, ξN ) is not independent from (CN )
1
2 ξN so that εN (x) is

not equal to zero. Nevertheless, as quantified by Lemma 4.4.4, the Bernoulli

random variable γN (x, ξN ) is asymptotically independent from the current

position x and from the noise term (CN )
1
2 ξN . Consequently, we can prove in

Equation (4.4.13) that the quantity εN (x) is small. To this end, we establish

that each component 〈ε(x), ϕ̂j〉2s satisfies

Eπ
N [〈εN (x), ϕ̂j〉2s

]
. N−1Eπ

N
[〈x, ϕ̂j〉2s] +N−

2
3 (jsλj)

2. (4.4.12)

Summation of Equation (4.4.12) over j = 1, . . . , N leads to

Eπ
N
[
‖εN (x)‖2s

]
. N−1Eπ

N [‖x‖2s]+N−
2
3 Tr
Hs

(Cs) (4.4.13)

. N−
2
3 ,

which gives the proof of Equation (4.4.11). To prove Equation (4.4.12) for a

fixed index j ∈ N, the quantity QN (x, ξ) is decomposed as a sum of a term

independent from ξj and another remaining term of small magnitude. To this

end we introduce{
QN (x, ξN ) = QNj (x, ξN ) +QNj,⊥(x, ξN )

QNj (x, ξN ) = − 1√
2
`

3
2N−

1
2λ−1

j xjξj − 1
2`

2N−
2
3λ2

jξ
2
j + eN (x, ξN ).

(4.4.14)
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The definitions of ZN (x, ξN ) and iN (x, ξN ) in Equation (4.4.3) and (4.4.4)

readily show that QNj,⊥(x, ξN ) is independent from ξj . The noise term satisfies

C
1
2 ξN =

∑N
j=1(jsλj)ξjϕ̂j . Since QNj,⊥(x, ξN ) and ξj are independent and z 7→

1 ∧ ez is 1-Lipschitz, it follows that

〈εN (x), ϕ̂j〉2s = (jsλj)
2
(
Ex
[(

1 ∧ eQN (x,ξN )
)
ξj
])2

= (jsλj)
2
(
Ex
[
[
(
1 ∧ eQN (x,ξN )

)
−
(
1 ∧ eQ

N
j,⊥(x,ξN ))] ξj])2

. (jsλj)
2Ex
[
|QN (x, ξN ))−QNj,⊥(x, ξN )|2

]
= (jsλj)

2Ex
[
QNj (x, ξN )2

]
.

By Lemma 4.4.3 EπN
[
eN (x, ξN )2

]
. N−

2
3 . Therefore,

(jsλj)
2Eπ

N [
QNj (x, ξN )2

]
. (jsλj)

2
{
N−1λ−2

j Eπ
N [
x2
jξ

2
j

]
+N−

4
3Eπ

N [
λ4
jξ

4
j

]
+ Eπ

N [
eN (x, ξ)2

]}
. N−1 Eπ

N [
(jsxj)

2ξ2
j

]
+ (jsλj)

2(N−
4
3 +N−

2
3 )

. N−1 Eπ
N [〈x, ϕ̂j〉2s]+ (jsλj)

2N−
2
3 ,

which finishes the proof of Equation (4.4.12).

4.4.4 Noise approximation

We remind the reader that the family {ϕ̂j := j−sϕj}j≥1 is an orthonormal basis of

Hs while {ϕj}j≥1 is an orthonormal basis of H. Recall the definition (4.3.4) of the

martingale difference Γk,N . In this section we estimate the error in the approximation

Γk,N ≈ N(0, Cs) where Cs has been defined in section 3.1.2 as the covariance of π0

when seen as a Gaussian measure on Hs. To this end we introduce the covariance

operator

DN (x) = Ex
[
Γk,N ⊗Hs Γk,N |xk,N = x

]
.

For any x, u, v ∈ Hs the operator DN (x) satisfies E
[
〈Γk,N , u〉s〈Γk,N , v〉s |xk,N =

x
]

= 〈u,DN (x)v〉s. The next lemma gives a quantitative version of the approxi-

mation DN (x) ≈ Cs.

Lemma 4.4.7. Let assumptions 3.1.1 hold. For any pair of indices i, j ≥ 0 the
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operator DN (x) : Hs → Hs satisfies

lim
N→∞

Eπ
N ∣∣〈ϕ̂i, DN (x)ϕ̂j〉s − 〈ϕ̂i, Csϕ̂j〉s

∣∣ = 0 (4.4.15)

and, furthermore,

lim
N→∞

Eπ
N ∣∣Tr
Hs

(DN (x))− Tr
Hs

(Cs)
∣∣ = 0. (4.4.16)

Proof. The martingale difference ΓN (x, ξ) is given by

ΓN (x, ξ) =α(`)−
1
2γN (x, ξ) C

1
2 ξ (4.4.17)

+
1√
2
α(`)−

1
2 (`∆t)

1
2

{
γN (x, ξ)µN (x)− α(`)dN (x)

}
.

We only prove Equation (4.4.16); the proof of Equation (4.4.15) is essentially identi-

cal but easier. Remark 4.2.3 shows that the functions µ, µN : Hs → Hs are globally

Lipschitz and Lemma 4.4.6 shows that EπN
[
‖dN (x)− µ(x)‖2s

]
→ 0. Therefore

Eπ
N
[
‖γN (x, ξ)µN (x)− α(`)dN (x)‖2s

]
. 1, (4.4.18)

which implies that the second term on the right-hand-side of Equation (4.4.17) is

O
(√

∆t
)
. Since TrHs(D

N (x)) = Ex
[
‖ΓN (x, ξ)‖2s

]
, Equation (4.4.18) implies that

Eπ
N
[∣∣α(`) Tr

Hs
(DN (x))− Ex

[
‖γN (x, ξ) C

1
2 ξ‖2s

]∣∣] . (∆t)
1
2 .

Consequently, to prove Equation (4.4.16) it suffices to verify that

lim
N→∞

Eπ
N
[∣∣Ex[‖γN (x, ξ) C

1
2 ξ‖2s

]
− α(`) Tr

Hs
(Cs)

∣∣] = 0. (4.4.19)

We have Ex
[
‖γN (x, ξ) C

1
2 ξ‖2s

]
=
∑N

j=1(jsλj)
2Ex
[(

1 ∧ eQN (x,ξ)
)
ξ2
j

]
. Therefore, to

prove Equation (4.4.19) it suffices to establish

lim
N→∞

N∑
j=1

(jsλj)
2Eπ

N
[∣∣Ex[(1 ∧ eQN (x,ξ)

)
ξ2
j

]
− α(`)

∣∣] = 0. (4.4.20)

Since
∑∞

j=1(jsλj)
2 <∞ and

∣∣1∧ eQN (x,ξ)
∣∣ ≤ 1, the dominated convergence theorem

shows that (4.4.20) follows from

lim
N→∞

Eπ
N
[∣∣Ex[(1 ∧ eQN (x,ξ)

)
ξ2
j

]
− α(`)

∣∣] = 0 ∀j ≥ 0. (4.4.21)
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We now prove Equation (4.4.21). As in the proof of Lemma 4.4.6, we use the

decomposition QN (x, ξ) = QNj (x, ξ) + QNj,⊥(x, ξ) where QNj,⊥(x, ξ) is independent

from ξj . Therefore, since Lip(f) = 1,

Ex
[(

1 ∧ eQN (x,ξ)
)
ξ2
j

]
= Ex

[(
1 ∧ eQ

N
j,⊥(x,ξ))ξ2

j

]
+ Ex

[
[
(
1 ∧ eQN (x,ξ)

)
−
(
1 ∧ eQ

N
j,⊥(x,ξ))]ξ2

j

]
= Ex

[
1 ∧ eQ

N
j,⊥(x,ξ)]+O

({
Ex
[
|QN (x, ξ))−QNj,⊥(x, ξ)|2

]
}

1
2

)
= Ex

[
1 ∧ eQ

N
j,⊥(x,ξ)]+O

({
Ex
[
QNj (x, ξ)2

]
}

1
2

)
.

Lemma 4.4.4 ensures that, for f(·) = 1 ∧ exp(·),

lim
N→∞

Eπ
N
[∣∣Ex[f(QNj,⊥(x, ξ))

]
− α(`)

∣∣] = 0

and the definition of QNi (x, ξ) readily shows that limN→∞ EπN
[
QNj (x, ξ)2

]
= 0.

This concludes the proof of Equation (4.4.21) and thus ends the proof of Lemma

4.4.7.

Corollary 4.4.8. More generally, for any fixed vector h ∈ Hs, the following limit

holds,

lim
N→∞

Eπ
N ∣∣〈h,DN (x)h〉s − 〈h,Csh〉s

∣∣ = 0. (4.4.22)

Proof. If h = ϕ̂i, this is precisely the content of Lemma 4.4.7. More generally, by

linearity, Lemma 4.4.7 shows that this is true for h =
∑

i≤N αiϕ̂i, where N ∈ N is a

fixed integer. For a general vector h ∈ Hs, we can use the decomposition h = h∗+e∗

where h∗ =
∑

j≤N 〈h, ϕ̂j〉s ϕ̂j and e∗ = h− h∗. It follows that∣∣∣(〈h,DN (x) h〉s − 〈h,Csh〉s
)
−
(
〈h∗, DN (x) h∗〉s − 〈h∗, Csh∗〉s

)∣∣∣
≤
∣∣∣〈h+ h∗, DN (x) (h− h∗)〉s − 〈h+ h∗, Cs (h− h∗)〉s

∣∣∣
≤ 2‖h‖s · ‖h− h∗‖s ·

(
Tr
Hs

(DN (x)) + Tr
Hs

(Cs)
)
,

where we have used the fact that for an non-negative self-adjoint operator D :

Hs → Hs we have 〈u,Dv〉s ≤ ‖u‖s · ‖v‖s · TrHs(D). lemma 4.4.7 implies that

EπN [TrHs(D
N (x))] < ∞ and assumption 3.1.1 ensures that TrHs(Cs) < ∞. Con-

sequently, limN→∞ EπN
∣∣〈h,DN (x) h〉 − 〈h,Csh〉

∣∣ is less than a constant multiple of

limN→∞ EπN
∣∣〈h∗, DN (x) h∗〉 − 〈h∗, Cs h∗〉

∣∣ + ‖h − h∗‖s, which equals ‖h − h∗‖s.
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Therefore, we have

lim
N→∞

Eπ
N ∣∣〈h,DN (x) h〉 − 〈h,Csh〉

∣∣ . ‖h− h∗‖s.
Because ‖h− h∗‖s can be chosen arbitrarily small, the conclusion follows.

4.4.5 Martingale invariance principle

This section proves that the process WN defined in Equation (4.3.6) converges to a

Brownian motion.

Proposition 4.4.9. Let assumptions 3.1.1 hold. Let z0 ∼ π and WN (t) the process

defined in equation (4.3.6) and x0,N D∼ πN the starting position of the Markov chain

xN . Then

(x0,N ,WN ) =⇒ (z0,W ), (4.4.23)

where =⇒ denotes weak convergence in Hs × C([0, T ];Hs), and W is a Hs-valued

Brownian motion with covariance operator Cs. Furthermore the limiting Brownian

motion W is independent of the initial condition z0.

Proof. Remember that we have defined the quantity ϕ̂j = j−sϕj so that {ϕ̂j}j≥1 is

an orthonormal basis of Hs. As a first step, we show that WN converges weakly

to W . As described in [MPS11], a consequence of proposition 5.1 of [Ber86] shows

that in order to prove that WN converges weakly to W in C([0, T ];Hs) it suffices

to prove that for any t ∈ [0, T ] and any pair of indices i, j ≥ 0 the following three

limits hold in probability, the third for any ε > 0,

limN→∞ ∆t

kN (T )∑
k=1

E
[
‖Γk,N‖2s |Fk,N

]
= T Tr

Hs
(Cs) (4.4.24)

limN→∞ ∆t

kN (t)∑
k=1

E
[
〈Γk,N , ϕ̂i〉s〈Γk,N , ϕ̂j〉s |Fk,N

]
= t 〈ϕ̂i, Csϕ̂j〉s(4.4.25)

limN→∞ ∆t

kN (T )∑
k=1

E
[
‖Γk,N‖2s1{‖Γk,N‖2s≥∆t ε} |Fk,N

]
= 0 (4.4.26)

where kN (t) = b t∆tc, {ϕ̂j} is an orthonormal basis of Hs and Fk,N is the natural

filtration of the Markov chain {xk,N}. The proof follows from the estimate on

DN (x) = E
[
Γ0,N ⊗ Γ0,N |x0,N = x

]
presented in Lemma 4.4.7 For the sake of

simplicity, we will write Ek[ · ] instead of E[ · |Fk,N ]. We now prove that the three

conditions are satisfied.
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• Condition (4.4.24)

It is enough to prove that lim E
∣∣∣{ 1

bN
1
3 c

∑bN 1
3 c

k=1 Ek
[
‖Γk,N‖2s

]}
−TrHs(Cs)

∣∣∣ = 0

where

Ek
[
‖Γk,N‖2s

]
= Ek

N∑
j=1

[
〈ϕ̂j , DN (xk,N )ϕ̂j〉s

]
= Ek Tr

Hs
(DN (xk,N )).

Because the Metropolis-Hastings algorithm preserves stationarity and x0,N D∼
πN it follows that xk,N

D∼ πN for any k ≥ 0. Therefore, for all k ≥ 0 we have

TrHs(D
N (xk,N ))

D∼ TrHs(D
N (x)) where x

D∼ πN . Consequently, the triangle

inequality shows that

E
∣∣∣{ 1

bN
1
3 c

bN
1
3 c∑

k=1

Ek‖Γk,N‖2
}
− Tr
Hs

(Cs)
∣∣∣ ≤ Eπ

N
∣∣∣Tr
Hs

(
DN (x)

)
− Tr
Hs

(Cs)
∣∣∣→ 0

where the last limit follows from Lemma 4.4.7.

• Condition (4.4.25)

It is enough to prove that

lim Eπ
N
∣∣∣{ 1

bN
1
3 c

bN
1
3 c∑

k=1

Ek
[
〈Γk,N , ϕ̂i〉s〈Γk,N , ϕ̂j〉s

]}
− 〈ϕ̂i, Csϕ̂j〉s

∣∣∣ = 0

where Ek
[
〈Γk,N , ϕ̂i〉s〈Γk,N , ϕ̂j〉s

]
= 〈ϕ̂i, DN (xk,N )ϕ̂j〉s. Because xk,N

D∼ πN

the conclusion again follows from Lemma 4.4.7.

• Condition (4.4.26)

For all k ≥ 1 we have xk,N
D∼ πN so that

Eπ
N
∣∣∣ 1

bN
1
3 c

bN
1
3 c∑

k=1

Ek[‖Γk,N‖2s1‖Γk,N‖2s≥N
1
3 ε

]
∣∣∣ ≤ Eπ

N ‖Γ0,N‖2s1{‖Γ0,N‖2s≥N
1
3 ε}

.

Equation (4.4.17) shows that for any power p ≥ 0 we have supN EπN
[
‖Γ0,N‖ps

]
<

∞. Therefore the sequence {‖Γ0,N‖2s} is uniformly integrable, which shows

that

lim
N→∞

Eπ
N ‖Γ0,N‖2s1{‖Γ0,N‖2s≥N

1
3 ε}

= 0.
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The three hypothesis are satisfied, proving thatWN converges weakly in C([0, T ];Hs)
to a Brownian motion W in Hs with covariance Cs. Therefore, Corollary 4.4 of

[MPS11] shows that the sequence
{

(x0,N ,WN )
}
N≥1

converges weakly to (z0,W ) in

H× C([0, T ],Hs). This finishes the proof of Proposition 4.4.9.

4.5 Conclusion

We have studied the application of the MALA algorithm to sample from measures

defined via density with respect to a Gaussian measure on Hilbert space. We prove

that a suitably interpolated and scaled version of the Markov chain has a diffusion

limit in infinite dimensions. There are two main conclusions which follow from this

theory: firstly this work shows that, in stationarity, the MALA algorithm applied

to an N−dimensional approximation of the target will take O(N
1
3 ) steps to explore

the invariant measure; secondly the MALA algorithm will be optimized at an aver-

age acceptance probability of 0.574. We have thus significantly extended the work

[RR98] which reaches similar conclusions in the case of i.i.d. product targets. In

contrast we have considered target measures with significant correlation, with struc-

ture motivated by a range of applications. As a consequence our limit theorems are

in an infinite dimensional Hilbert space and we have employed an approach to the

derivation of the diffusion limit which differs significantly from that used in [RR98].

This approach was developed in [MPS11] to study diffusion limits for the RWM

algorithm.

There are many possible developments of this work. We list several of these.

• In [BPR+13] it is shown that the Hybrid Monte Carlo algorithm (HMC) re-

quires, for target measures of the form (4.1.1), O(N
1
4 ) steps to explore the

invariant measure. However there is no diffusion limit in this case. Identifying

an appropriate limit, and extending analysis to the case of target measures

(4.2.3) provides a challenging avenue for exploration.

• In the i.i.d product case it is known that, if the Markov chain is started

“far” from stationarity, a fluid limit (ODE) is observed [CRR05]. It would be

interesting to study such limits in the present context.

• Combining the analysis of MCMC methods for hierarchical target measures

[Béd09] with the analysis herein provides a challenging set of theoretical ques-

tions, as well as having direct applicability.

• It should also be noted that, for measures absolutely continuous with respect

to a Gaussian, there exist new non-standard versions of RWM [BS09], MALA
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[BRSV08] and HMC [BPSSS11] for which the acceptance probability does not

degenerate to zero as dimension N increases. These methods may be expensive

to implement when the Karhunen-Loève basis is not known explicitly, and

comparing their overall efficiency with that of standard RWM, MALA and

HMC is an interesting area for further study.

• It is natural to ask whether analysis similar to that undertaken here could be

developed for Metropolis-Hastings methods applied to other reference mea-

sures with a non-Gaussian product structure. In particular the Besov priors

of [LSS09] provide an interesting class of such reference measures, and the pa-

per [DHS12] provides a machinery for analyzing change of measure from the

Besov prior, analogous to that used here in the Gaussian case. Another in-

tertesting class of reference measures are those used in the study of uncertainty

quantification for elliptic PDEs: these have the form of an infinite product of

compactly supported uniform distributions; see [SS12].
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Chapter 5

Gradient flow without gradient

This chapter is joint work with Andrew Stuart and Natesh Pillai and is based on

the paper [PST].

5.1 Introduction

There are many applications where it is of interest to find global or local minima of

a functional

J(x) =
1

2
‖C−1/2x‖2 + Ψ(x) (5.1.1)

where C is a self-adjoint, positive and trace-class linear operator on a Hilbert space

H. The functional J : H → R has been written under the form (5.1.1) in or-

der to emphasise that it can be seen as a perturbation of the quadratic potential

x 7→ 1
2‖C

−1/2x‖2. This remark is especially important in infinite dimensional set-

tings where the operator C will play the role of the covariance operator of a Gaussian

measure. Gaussian measures in infinite dimensional spaces are the natural analogue

of the Lebesgue measures in finite dimensional settings. Gradient flow or steepest

descent is a natural approach to this problem, but in its basic form requires compu-

tation of the gradient of Ψ which, in some applications, may be an expensive or a

complex task. In addition, when multiple minima are present, it may be important

to include noise within the algorithm in order to allow escape from local minima.

The purpose of this chapter is to show how a noisy gradient descent can emerge from

certain carefully specified random walks, when combined with a Metropolis-Hastings

accept-reject mechanism, with tunable noise level τ . Furthermore, the algorithms

that we study are Markov chain-Monte Carlo methods which are reversible and in-

variant with respect to a probability measure πτ (for which probability maximizers

occur where J is minimized) and are hence of interest in their own right; the noisy
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gradient descent provides a way to analyze the efficiency of the resulting algorithms.

In the finite state [KGV83; Čer85] or finite dimensional context [Gem85;

GH86; HKS89] the idea of using random walks, with accept-reject, to perform global

optimization is a well-known idea which goes by the name of simulated-annealing;

see the review [BT93] for further references. The novelty of our work is that the

theory is developed on an infinite dimensional Hilbert space, leading to an algorithm

which is robust to finite dimensional approximation: we adopt the “optimize then

discretize” viewpoint (see [HPUU08], Chapter 3). We emphasize that discretizing,

and then applying standard simulated annealing techniques in RN to optimize, can

lead to algorithms which degenerate as N increases. The diffusion limit proved in

[MPS11] provides a concrete example of this phenomenon for the standard random

walk approach to sampling the measure πτ . The work in this chapter shows that

small changes in the standard random walk algorithm can result in large efficiency

gains when sampling the measure πτ , and relatedly when minimizing J via simulated

annealing.

The algorithms we construct have two basic building blocks: drawing sam-

ples from the centred Gaussian measure N(0, C) and evaluating Ψ. By judiciously

combining these ingredients we generate (approximately) a noisy gradient flow for J

with tunable temperature parameter controlling the size of the noise. In finite dimen-

sions the basic idea behind simulated annealing is built from Metropolis-Hastings

methods which have an invariant measure with Lebesgue density proportional to

exp
(
−J(x)/τ

)
. By adapting the temperature τ ∈ (0,∞) according to an appro-

priate cooling schedule it is possible to locate global minima of J . The essential

challenge in transfering this idea to infinite dimensions is that there is no Lebesgue

measure. This issue can be circumvented by working with measures defined via

their density with respect to a Gaussian measure, and for us the natural Gaussian

measure on H is

πτ0 = N(0, τ C). (5.1.2)

The quadratic form ‖x‖2C := ‖C−
1
2x‖2 is the Cameron-Martin norm corresponding

to the Gaussian measure πτ0 . Given πτ0 we may then define the (in general non-

Gaussian) measure πτ via its Radon-Nikodym derivative with respect to πτ :

dπτ

dπτ0
(x) ∝ exp

(
−Ψ(x)

τ

)
.

Note that if H is finite dimensional then πτ has Lebesgue density proportional to
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exp
(
−J(x)/τ

)
.

Our basic strategy will be to construct a Markov chain which is πτ invari-

ant and to show that a piecewise linear interpolant of the Markov chain converges

weakly (in the sense of probability measures) to the desired noisy gradient flow in

an appropriate parameter limit. To motivate the Markov chain we first observe that

the Ornstein-Uhlenbeck diffusion in H given by{
dz = −z dt+

√
2τdW

z(0) = x
(5.1.3)

whereW is a Brownian motion inH with covariance operator equal to C, is reversible

and ergodic with respect to πτ0 given by (5.1.2) [DPZ96]. If t > 0 then the exact

solution of this equation is given by

z(t) = e−tx+

√(
τ(1− e−2t)

)
ξ

=
(
1− 2δ

) 1
2x+

√
2δτξ. (5.1.4)

where ξ is a Gaussian random variable drawn from N(0, C) and δ = 1
2(1 − e−2t).

Given a current state x of our Markov chain we will propose to move to z(t) given

by this formula, for some choice of t > 0, or equivalently δ ∈ (0, 1
2). Notice that if

Ψ = 0, πτ = πτ0 , and therefore the auto-regressive (AR(1)) process (5.1.4) converges

to the Gaussian invariant measure πτ0 . For a nontrivial functional Ψ such that πτ is

absolutely continuous with respect to πτ0 , one needs an “accept-reject” mechanism

to adjust for the change of measure and converge to the invariant measure πτ . The

“proposed move” x 7→ y :=
(
1 − 2δ

) 1
2x +

√
2δτξ given by equation (5.1.4) will be

accepted or rejected with probability found from pointwise evaluation of Ψ given

by,

αδ(x, ξ) = 1 ∧ exp
(
−1

τ

(
Ψ(y)−Ψ(x)

))
. (5.1.5)

(see Section 5.2 for more details) resulting in a Markov chain {xk,δ}k∈Z+ . This

Markov chain corresponds to the preconditioned random walk method P-RWM in-

troduced in [BRSV08], one of a family of Metropolis-Hastings methods defined on

the Hilbert space H and reversible and invariant with respect to πτ . See also section

3.4 for motivations behind this choice of proposals.

From the output of the P-RWM Metropolis-Hastings method we construct a
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continuous interpolant of the Markov chain defined by

zδ(t) =
1

δ
(t− tk)xk+1,δ +

1

δ
(tk+1 − t)xk,δ (5.1.6)

for tk ≤ t < tk+1 with tk
def
= kδ. In other words, the process zδ is a continuous and

accelerated (by a factor 1/δ) version of the Markov chain xδ. The main result of

the chapter is that as δ → 0 the Hilbert-space valued process zδ converges weakly

to z solving the Hilbert space valued SDE

dz = −
(
z + C∇Ψ(z)

)
dt+

√
2τdW. (5.1.7)

This diffusion is reversible, ergodic and satisfies a law of large numbers with respect

to the measure πτ [DPZ92; HSVW05; HSV07]. Since small ball probabilities under

πτ are maximized when centred at minimizers of J , the result thus shows that the

algorithm will generate sequences which concentrate near minimizers of J . Varying

τ according to a cooling schedule then results in a simulated annealing method

on Hilbert space. Weak convergence results for the approximation of stochastic

equations in infinite dimensions may be found in the numerical analysis literature.

For the heat equation and variants see [Sha03; DP09; GKL09; KLL12], for dispersive

and nondispersive wave problems see [Hau10; dBD06] and for delay equations see

[BS05; BKMS08]. These papers rely on use of the Kolmogorov equation to establish

weak convergence and do not typically deliver convergence on pathspace, but rather

convergence of functionals at a given fixed time. In contrast our approach proves

weak convergence on pathspace, and does not use the Kolmogorov equation; rather

we use the machinery developed in section 3.3 that is based on an invariance principle

for Brownian motion in Hilbert space [Ber86], coupled with the preservation of weak

convergence under continuous mappings. However, our approach does not deliver

rates of weak convergence.

Let us give a heuristic to see why the gradient flow emerges through the

pointwise computation of Ψ and the accept-reject mechanism. Note that for δ � 1

we have − 1
τ

(
Ψ(y) − Ψ(x)

)
≈ −

√
2δ
τ 〈Ψ(x), ξ〉 so that we see from (5.1.5) that the

acceptance probability can be approximated by

αδ(x, ξ) ≈ 1 ∧ exp
(
−
√

2δ

τ
〈Ψ(x), ξ〉

)
. (5.1.8)

This induces a bias towards accepting moves for which the the Gaussian random

variable ξ, which is independent of x, aligns with the negative gradient of Ψ. For-

malizing this heuristic is the content of Section 5.3.
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Because the SDE (5.1.7) does not possess the smoothing property, almost

sure fine scale properties under its invariant measure πτ are not necessarily reflected

at any finite time. For example if C is the covariance operator of Brownian motion

or Brownian bridge then the quadratic variation of draws from the invariant mea-

sure, an almost sure quantity, is not reproduced at any finite time in (5.1.7) unless

z(0) has this quadratic variation; the almost sure property is approached asymptot-

ically as t → ∞. This behaviour is reflected in the underlying Metropolis-Hastings

Markov chain P-RWM which approximates (5.1.7), where the almost sure property

is only reached asymptotically as k →∞. In section 5.4 of this chapter we will show

that almost sure quantities such as the quadratic variation under P-RWM satisfy a

limiting linear ODE with globally attractive steady state given by the value of the

quantity under πτ . This gives quantitative information about the rate at which the

P-RWM algorithm approaches statistical equilibrium.

One might wonder why we constructed the proposals based on the discretiza-

tions of an Ornstein-Uhlenbeck diffusion while we could just have considered dis-

cretizations from a Brownian motion. A standard random walk method S-RWM

would use the proposal

x+
√
δτ ξ , (5.1.9)

in place of (5.1.4), which is the discretization of a Brownian motion in H with

covariance C. This, however, leads to the accept-reject formula

αδ(x, ξ) = 1 ∧ exp
(
−1

τ

(
J
(
x+
√
δτξ
)
− J(x)

))
in place of (5.1.5). Unfortunately J(x) is almost surely infinite with respect to x

drawn from πτ if H is infinite dimensional; consequently the S-RWM algorithm is

only defined after finite dimensional approximation of the space but not well defined

as a infinite dimensional Hilbert space valued MCMC algorithm. From this point

of view, P-RWM is the right generalization of the random walk proposal from finite

dimensions since it does not suffer from any such restriction. We return to this point

in Section 5.6.

Section 5.2 contains a precise definition of the Markov chain {xk,δ}k∈Z+ ,

together with statement and proof of the weak convergence theorem that is the

main result of the chapter. Section 5.3 contains proof of the lemmas which underly

the weak convergence theorem. In section 5.4 we state and prove the limit theorem

for almost sure quantities such as quadratic variation; such results are often termed

“fluid limits” in the applied probability literature. An example is presented in
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section 5.5. We conclude in section 5.6.

5.2 Main theorem

This section contains a precise statement of the algorithm, statement of the main

theorem showing that piecewise linear interpolant of the output of the algorithm

converges weakly to a noisy gradient flow, and proof of the main theorem. The

proof of various technical lemmas is defered to section 5.3.

5.2.1 P-RWM algorithm

The reader is referred to section 3.1 for background on Gaussian measures. Let H
be a separable Hilbert space with scalar product 〈·, ·〉 and associated norm ‖x‖2 =

〈x, x〉. We consider a covariance operator C : H → H that is trace class and

diagonalisable in an orthonormal Hilbert basis {ϕj}j≥1 that will be referred to as

Karhunen-Loève eigen-basis,

Cϕj = λ2
j ϕj and Tr(C) =

∑
j≥1

λ2
j <∞.

In other words, the eigenvalues of the covariance operator C are {λ2
j}j≥1. Any vector

x ∈ H can be decomposed on the Karhunen-Loève basis as x =
∑

j≥1 xj ϕj where

xj = 〈x, ϕj〉. Consider a potential function Ψ : H → R. We assume that the pair

(C,Ψ) satisfies assumption 3.1.1. This means that there exists an exponent s ≥ 0

such that for every τ > 0 the support of the Gaussian measure πτ0 := N(0, τC) is

included in Hs and that the function Ψ is well defined on Hs and satisfies various

regularity estimates. The Sobolev-like subspace Hs is rigorously defined in section

3.1.2. As described in section 3.1, one can define the operator Cs : Hs → Hs such

that the Gaussian measure N(0, C) in H can also be described as the Gaussian

measure N(0, Cs) in Hs. One can define a probability distribution πτ on H through

the formula

p. i
τ

dπτ0
(x) ∝ exp{−Ψ(x)/τ}. (5.2.1)

Notice that the support of πτ is included in Hs for every temperature τ > 0.

We now define the Markov chain in Hs which is reversible with respect to

the measure πτ given by equation (5.2.1). This is the Metropolis-Hastings method

introduced in [BRSV08] and refered to there as the P-RWM algorithm. Let x ∈ Hs

be the current position of the Markov chain. The proposal candidate y is given by
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(5.1.4), so that

y =
(
1− 2δ

) 1
2x+

√
2δτ ξ where ξ = N(0, C) (5.2.2)

and δ ∈ (0, 1
2) is a small parameter which we will send to zero in order to obtain

the noisy gradient flow. In equation (5.2.2), the random variable ξ is chosen to be

independent of x. As described in [BRSV08] (see also [CDS12; Stu10]), at temper-

ature τ ∈ (0,∞) the Metropolis-Hastings acceptance probability for the proposal y

is given by

αδ(x, ξ) = 1 ∧ exp
(
−1

τ

(
Ψ(y)−Ψ(x)

))
. (5.2.3)

For future use, we define the local mean acceptance probability at the current posi-

tion x via the formula

αδ(x) = Ex
[
αδ(x, ξ)

]
. (5.2.4)

The chain is then reversible with respect to πτ . The Markov chain xδ = {xk,δ}k≥0

can be written as

xk+1,δ = γk,δyk,δ + (1− γk,δ)xk,δ (5.2.5)

with yk,δ =
(
1− 2δ

) 1
2 xk,δ +

√
2δτξk. Here the ξk are iid Gaussian random variables

N(0, C) and the γk,δ are Bernoulli random variables which account for the accept-

reject mechanism of the Metropolis-Hastings algorithm,

γk,δ
def
= γδ(xk,δ, ξk)

D∼ Bernoulli
(
αδ(xk,δ, ξk)

)
. (5.2.6)

The function γδ(x, ξ) can be expressed as γδ(x, ξ) = 1I{U<αδ(x,ξ)} where U
D∼ Uniform(0, 1)

is independent from any other source of randomness. The next lemma will be re-

peatedly used in the sequel. It states that the size of the jump y − x is of order√
δ.

Lemma 5.2.1. Under assumptions 3.1.1 and for any integer p ≥ 1 the following

inequality

Ex
[
‖y − x‖ps

] 1
p . δ ‖x‖s +

√
δ .

√
δ
(
1 + ‖x‖s

)
holds for any δ ∈ (0, 1

2).

Proof. The definition of the proposal (5.2.2) shows that ‖y − x‖ps . δp ‖x‖ps +
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δ
p
2 E
[
‖ξ‖ps

]
. Fernique’s theorem [DPZ92] shows that E

[
‖ξ‖ps

]
< ∞. This gives the

conclusion.

5.2.2 Main theorem

Fix a time horizon T > 0 and a temperature τ ∈ (0,∞). The piecewise linear inter-

polant zδ of the Markov chain (5.2.5) is defined by equation (5.1.6). The following

is the main result of this section. Note that “weakly” refers to weak convergence of

probability measures.

Theorem 5.2.2. Let assumptions 3.1.1 hold. Let the Markov chain xδ start at

fixed position x∗ ∈ Hs. Then the sequence of processes zδ converges weakly to z in

C([0, T ];Hs), as δ → 0, where z solves the Hs-valued stochastic differential equation{
dz = −

(
z + C∇Ψ(z)

)
dt+

√
2τdW

z0 = x∗
(5.2.7)

and W is a Brownian motion in Hs with covariance operator equal to Cs.

For conceptual clarity, we derive Theorem 5.2.2 as a consequence of the general

diffusion-approximation result that is the content of Proposition 3.3.1. To this end,

one needs to establish a martingale-drift decomposition of the Markov chain xδ,

xk+1,δ = xk,δ + dδ(xk,δ) δ +
√

2τδ Γδ(xk,δ, ξk) (5.2.8)

where the approximate drift dδ and volatility term Γδ(x, ξk) are given by

dδ(x) = δ−1 E
[
xk+1,δ − xk,δ |xk,δ = x

]
(5.2.9)

√
2τδ Γδ(x, ξk) = γδ(x, ξk)

{
(
√

1− 2δ − 1)x+
√

2τδ ξk
}
− dδ(x) δ.

Notice that
{

Γk,δ
}
k≥0

, with Γk,δ
def
= Γδ(xk,δ, ξk) = (2τδ)−1/2

(
xk+1,δ−xk,δ−E

[
xk+1,δ−

xk,δ |xk,δ
])

, is a martingale difference array in the sense that Mk,δ =
∑k

j=0 Γj,δ is

a martingale adapted to the natural filtration Fδ = {Fk,δ}k≥0 of the Markov chain

xδ. The parameter δ represents a time increment. We define the piecewise linear

rescaled noise process by

W δ(t) =
√
δ

k∑
j=0

Γj,δ +
t− tk√

δ
Γk+1,δ for tk ≤ t < tk+1. (5.2.10)
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In order to apply Proposition 3.3.1, one needs to show that as δ goes to zero

the sequence of drift functions dδ(·) converges to a limiting drift function µ(x) :=

−
(
x+C∇Ψ(x)

)
and that the rescaled noise process W δ converges weakly to a Brow-

nian motion as δ goes to zero. We now rigorously prove that the three conditions

necessary for Proposition 3.3.1 to hold are satisfied.

1. Convergence of initial conditions: this is obvious since for any value of δ

the Markov chain xδ starts at the fixed position x0,δ = x∗.

2. Invariance principle: lemma 5.3.7, proved in section 5.3.5, shows that

under assumptions 3.1.1 the sequence of processes W δ converges weakly in

C([0, T ],Hs) to a Brownian motion W in Hs with covariance Cs. Since the

starting position x0,δ = x∗ is deterministic, this indeed implies that the se-

quence of pairs (x0,δ,W δ) converges weakly inHs×C([0, T ],Hs) to the random

variable (x∗,W ).

3. Convergence of the drift: we prove that the quantity
∫ T

0

∥∥dδ(z̄δ(u)) −
µ(zδ(u))

∥∥ du converges to zero in expectation as δ → 0 where z̄δ is the piece-

wise constant interpolant of xδ accelerated by a factor 1/δ and µ(x) = −
(
x+

C∇Ψ(x)
)
. To this end, we bound the quantity

∥∥dδ(z̄δ(u))− µ(zδ(u))
∥∥ by the

sum of
∥∥dδ(z̄δ(u))−µ(z̄δ(u))

∥∥ and
∥∥µ(z̄δ(u))−µ(zδ(u))

∥∥. Lemma 5.3.3, proved

in section 5.3.2, shows that under assumptions 3.1.1 the sequence of approxi-

mate drift function dδ(·) satisfies the bound ‖dδ(x)− µ(x)‖ps . δ
p
2 (1 + ‖x‖2ps )

for any integer p ≥ 1. This shows that
∫ T

0

∥∥dδ(z̄δ(u)) − µ(zδ(u))
∥∥ du is less

than a constant multiple of δ3/2
∑

kδ<T (1 + ‖xk,δ‖2s) and the a-priori estimate

of Lemma 5.3.6 shows that this quantity converges to zero in expectation as

δ → 0. To finish, one needs to show that
∫ T

0

∥∥µ(z̄δ(u)) − µ(zδ(u))
∥∥ du con-

verges to zero in expectation. Since the drift function µ(·) is globally Lipschitz

on Hs and Lemma 5.2.1 states that E‖xk+1,δ − xk,δ‖ . δ
1
2

(
1 + ‖xk,δ‖

)
it fol-

lows that E
[ ∫ T

0

∥∥µ(z̄δ(u)) − µ(zδ(u))
∥∥ du] is less than a constant multiple of

δ3/2 E
[∑

kδ<T (1+‖xk,δ‖s)
]
. The a-priori estimate of Lemma 5.3.6 again shows

that this quantity goes to zero in expectation.

In conclusion, we have proved that under assumptions 3.1.1 the diffusion approxi-

mation result presented in Proposition 3.3.1 can be applied. This finishes the proof

of Theorem 5.2.2.
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5.3 Key estimates

This section contains the proof of various technical lemmas which are used in the

previous section.

5.3.1 Acceptance probability asymptotics

This section describes a first order expansion of the acceptance probability. The

approximation αδ(x, ξ) ≈ ᾱδ(x, ξ) where

ᾱδ(x, ξ) = 1−
√

2δ

τ
〈∇Ψ(x), ξ〉1I{〈∇Ψ(x),ξ〉>0} (5.3.1)

is valid for δ � 1. The quantity ᾱδ has the advantage over αδ of being very simple

to analyse: explicit computations are available. This will be exploited in section

5.3.2. The quality of the approximation (5.3.1) is rigorously quantified in the next

lemma.

Lemma 5.3.1. (Acceptance probability estimate)

Let assumptions 3.1.1 hold. For any integer p ≥ 1 the quantity ᾱδ(x, ξ) satisfies

Ex
[
|αδ(x, ξ)− ᾱδ(x, ξ)|p] . δp (1 + ‖x‖2ps ). (5.3.2)

Proof. Let us introduce the two 1-Lipschitz functions h, h∗ : R→ R defined by

h(x) = 1 ∧ ex and h∗(x) = 1 + x 1{x<0}. (5.3.3)

The function h∗ is a first order approximation of h in a neighbourhood of zero and

we have

αδ(x, ξ) = h
(
− 1

τ
{Ψ(y)−Ψ(x)}

)
and ᾱδ(x, ξ) = h∗

(
−
√

2δ

τ
〈∇Ψ(x), ξ〉

)
where the proposal y is a function of x and ξ, as described in equation (5.2.2). Since

h∗(·) is close to h(·) in a neighbourhood of zero, the proof is finished once it is

proved that − 1
τ {Ψ(y)−Ψ(x)} is close to −

√
2δ
τ 〈∇Ψ(x), ξ〉. We have Ex

[
|αδ(x, ξ)−

ᾱδ(x, ξ)|p
]

. A1 +A2 where the quantities A1 and A2 are given by

A1 = Ex
[∣∣h(− 1

τ
{Ψ(y)−Ψ(x)}

)
− h

(
−
√

2δ

τ
〈∇Ψ(x), ξ〉

)∣∣p]
A2 = Ex

[∣∣h(−√2δ

τ
〈∇Ψ(x), ξ〉

)
− h∗

(
−
√

2δ

τ
〈∇Ψ(x), ξ〉

)∣∣p].
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By Lemma 3.1.4, the first order Taylor approximation of Ψ is controlled,
∣∣Ψ(y) −

Ψ(x)−〈∇Ψ(x), y−x〉
∣∣ . ‖y−x‖2s. The definition of the proposal y given in equation

(5.2.2) shows that ‖(y − x) −
√

2δτξ‖s . δ‖x‖s. Assumptions 3.1.1 state that for

z ∈ Hs we have 〈∇Ψ(x), z〉 .
(
1+‖x‖s

)
· ‖z‖s. Since the function h(·) is 1-Lipschitz

it follows that

A1 = Ex
[∣∣h(− 1

τ
{Ψ(y)−Ψ(x)}

)
− h
(
−
√

2δ

τ
〈∇Ψ(x), ξ〉

)∣∣p] (5.3.4)

. Ex
[∣∣Ψ(y)−Ψ(x)− 〈∇Ψ(x), y − x〉

∣∣p +
∣∣〈∇Ψ(x), y − x−

√
2δτξ〉

∣∣p]
. Ex

[
‖y − x‖2ps + (1 + ‖x‖ps) · (δ ‖x‖s)p

]
. δp (1 + ‖x‖2ps ).

Lemma 5.2.1 has been used to control the size of Ex
[
‖y−x‖p

]
. To bound A2, notice

that for z ∈ R we have |h(z) − h∗(z)| ≤ 1
2 z

2. Therefore the quantity A2 can be

bounded by

A2 . Ex
[
|
√
δ 〈∇Ψ(x), ξ〉|2p

]
. δp Ex

[
(1 + ‖x‖2ps ) ‖ξ‖2ps

]
(5.3.5)

. δp (1 + ‖x‖2ps ).

Estimates (5.3.4) and (5.3.5) together give equation (5.3.2).

Recall the local mean acceptance probability defined by αδ(x) = Ex[αδ(x, ξ)] in

equation (5.2.4). Define the approximate local mean acceptance probability by

ᾱδ(x)
def
= Ex[ᾱδ(x, ξ)]. We now use Lemma 5.3.1 to approximate the local mean

acceptance probability αδ(x).

Corollary 5.3.2. Let assumptions 3.1.1 hold. For any integer p ≥ 1 the following

estimates hold,

∣∣αδ(x)− ᾱδ(x)
∣∣ . δ (1 + ‖x‖2s) (5.3.6)

Ex
[ ∣∣αδ(x, ξ) − 1

∣∣p] . δ
p
2 (1 + ‖x‖ps) (5.3.7)

Proof. Let us prove equations (5.3.6) and (5.3.7).

• Lemma 5.3.1 and Jensen’s inequality give equation (5.3.6).

• To prove (5.3.7), one can suppose δ
p
2 ‖x‖ps ≤ 1. Indeed, if δ

p
2 ‖x‖ps ≥ 1, we have

Ex
[∣∣αδ(x, ξ) − 1

∣∣p] . 1 ≤ δ
p
2 ‖x‖ps ≤ δ

p
2 (1 + ‖x‖ps),
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which gives the result. We thus suppose from now on that δ
p
2 ‖x‖s ≤ 1. Under

assumptions 3.1.1 we have ‖∇Ψ(x)‖−s . 1 + ‖x‖s. Lemma 3.1.4 shows that

for all x, y ∈ Hs we have
∣∣Ψ(y) − Ψ(x) − 〈∇Ψ(x), y − x〉

∣∣ . ‖y − x‖2s. The

function h(x) = 1 ∧ ex is 1-Lipschitz, αδ(x, ξ) = h
(
− 1

τ [Ψ(y) − Ψ(x)]
)

and

h(0) = 1. Consequently,

Ex
[∣∣αδ(x, ξ) − 1

∣∣p] = Ex
[∣∣h(− 1

τ
[Ψ(y)−Ψ(x)]

)
− h(0)

∣∣p]
. Ex

[
|Ψ(y)−Ψ(x)|p

]
. Ex

[
|〈∇Ψ(x), y − x〉|p + ‖y − x‖2ps

]
. (1 + ‖x‖ps) · Ex

[
‖y − x‖ps] + Ex

[
‖y − x‖2ps

]
.

By Lemma 5.2.1, for any integer β ≥ 1 we have Ex
[
‖y − x‖βs

]
. δβ‖x‖βs + δ

β
2

so that the assumption δ
p
2 ‖x‖ps ≤ 1 leads to

Ex
[∣∣αδ(x) − 1

∣∣p] . (1 + ‖x‖ps) · (δp‖x‖ps + δ
p
2 ) + (δ2p‖x‖2ps + δp)

. (1 + ‖x‖ps) · (δ
p
2 + δ

p
2 ) + (δp + δp) . δ

p
2 (1 + ‖x‖ps).

This finishes the proof of Corollary 5.3.2.

5.3.2 Drift estimates

The main result of this section is a quantitative bound on the difference between

the approximate drift function dδ(·) and the limiting drift function µ(x) = −
(
x +

C∇Ψ(x)
)
.

Lemma 5.3.3. (Drift estimate)

Let assumptions 3.1.1 hold and let p ≥ 1 be an integer. Then the following estimate

is satisfied,

‖dδ(x)− µ(x)‖ps . δ
p
2 (1 + ‖x‖2ps ). (5.3.8)

Moreover, the approximate drift dδ is linearly bounded in the sense that

‖dδ(x)‖s . 1 + ‖x‖s. (5.3.9)

Before giving a proof of Lemma 5.3.3, we establish a preliminary result on

the approximate acceptance probability ᾱδ(x, ξ). We will use these explicit com-

putations, together with quantification of the error committed in replacing αδ by
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ᾱδ, to estimate the mean drift (in this section) and the diffusion term (in the next

section).

Lemma 5.3.4. The approximate acceptance probability ᾱδ(x, ξ) satisfies√
2τ

δ
Ex
[
ᾱδ(x, ξ) · ξ

]
= −C∇Ψ(x) ∀x ∈ Hs.

Proof. Let u =
√

2τ
δ Ex

[
ᾱδ(x, ξ) · ξ

]
∈ Hs. To prove 〈u, v〉 = −〈C∇Ψ(x), v〉. To

this end, use the decomposition v = α∇Ψ(x)+w where α ∈ R and w ∈ H−s satisfies

〈C∇Ψ(x), w〉 = 0. Since ξ
D∼ N(0, C) the two Gaussian random variables

ZΨ
def
= 〈∇Ψ(x), ξ〉 and Zw

def
= 〈w, ξ〉

are independent. Indeed, (ZΨ, Zw) is a Gaussian vector in R2 with Cov(ZΨ, Zw) = 0.

It thus follows that

〈u, v〉 = −2 〈Ex
[
〈∇Ψ(x), ξ〉1{〈∇Ψ(x),ξ〉>0} · ξ , α∇Ψ(x) + w〉

]
= −2 Ex

[
αZ2

Ψ1{ZΨ>0} + Zw ZΨ1{ZΨ>0}

]
= −2α Ex

[
Z2

Ψ1{ZΨ>0}

]
= −αEx

[
Z2

Ψ

]
= −α〈C∇Ψ(x),∇Ψ(x)〉 = 〈−C∇Ψ(x), α∇Ψ(x) + w〉

= −〈C∇Ψ(x), v〉,

which concludes the proof of Lemma 5.3.4.

We now use this explicit computation to give a proof of the drift estimate Lemma

5.3.3.

Proof of Lemma 5.3.3. The function dδ defined by equation (5.2.9) can also be ex-

pressed as

dδ(x) =
{(1− 2δ)

1
2 − 1

δ
αδ(x)x

}
+
{√2τ

δ
Ex[αδ(x, ξ) ξ]

}
(5.3.10)

= B1 +B2,

where the mean local acceptance probability αδ(x) has been defined in equation

(5.2.4) and the two terms B1 and B2 are studied below. To prove equation (5.3.8),

it suffices to establish that{
‖B1 + x‖ps . δ

p
2 (1 + ‖x‖2ps )

‖B2 + C∇Ψ(x)‖ps . δ
p
2 (1 + ‖x‖2ps ).

(5.3.11)
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We now establish these two bounds.

• Lemma 5.3.1 and Corollary 5.3.2 show that

‖B1 + x‖ps =
{(1− 2δ)

1
2 − 1

δ
αδ(x) + 1

}p
‖x‖ps (5.3.12)

.
{∣∣(1− 2δ)

1
2 − 1

δ
− 1
∣∣p +

∣∣αδ(x)− 1
∣∣p} ‖x‖ps

.
{
δp + δ

p
2 (1 + ‖x‖ps)

}
‖x‖ps . δ

p
2 (1 + ‖x‖2ps ).

• Lemma 5.3.1 shows that

‖B2 + C∇Ψ(x)‖ps =
∥∥√2τ

δ
Ex[αδ(x, ξ) ξ] + C∇Ψ(x)

∥∥p
s

(5.3.13)

. δ−
p
2

∥∥Ex[{αδ(x, ξ)− ᾱδ(x, ξ)} ξ]
∥∥p
s

+
∥∥√2τ

δ
Ex[ᾱδ(x, ξ) ξ] + C∇Ψ(x)︸ ︷︷ ︸

=0

∥∥p
s
.

By Lemma 5.3.4, the second term on the right hand is equal to zero. Conse-

quently, Cauchy Schwarz’ inequality implies that

‖B2 + C∇Ψ(x)‖ps . δ−
p
2Ex[

∣∣αδ(x, ξ)− ᾱδ(x, ξ)∣∣2]
p
2

. δ−
p
2

(
δ2(1 + ‖x‖4s)

) p
2

. δ
p
2 (1 + ‖x‖2ps ).

Estimates (5.3.12) and (5.3.13) give equation (5.3.11). To complete the proof we

establish the bound (5.3.9). The expression (5.3.10) shows that it suffices to verify√
2τ

δ
Ex[αδ(x, ξ) ξ] . 1 + ‖x‖s.

To this end, we use Lemma 5.3.4 and Corollary 5.3.2. By Cauchy-Schwarz,

∥∥∥√2τ

δ
Ex
[
αδ(x, ξ) · ξ

]∥∥∥
s

=
∥∥∥√2τ

δ
Ex
[
[αδ(x, ξ)− 1] · ξ

]∥∥∥
s

. δ−
1
2 Ex

[
(αδ(x, ξ)− 1)2

] 1
2

. 1 + ‖x‖s,

which concludes the proof of Lemma 5.3.3.

5.3.3 Noise estimates

In this section we estimate the error in the approximation Γk,δ ≈ N(0, Cs) in Hs

where Cs has been defined in section 3.1.2 as the covariance of N(0, C) when seen
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as a Gaussian measure on Hs. To this end, let us introduce the covariance operator

Dδ(x) of the martingale difference Γδ,

Dδ(x) = E
[
Γk,δ ⊗Hs Γk,δ |xk,δ = x

]
.

For any x, u, v ∈ Hs the operator Dδ(x) satisfies

E
[
〈Γk,δ, u〉s〈Γk,δ, v〉s |xk,δ = x

]
= 〈u,Dδ(x)v〉s.

The next lemma gives a quantitative version of the approximation Dδ(x) ≈ Cs.

Lemma 5.3.5. (Noise estimates)

Let assumptions 3.1.1 hold. For any pair of indices i, j ≥ 1, the martingale difference

term Γδ(x, ξ) satisfies

|〈ϕ̂i, Dδ(x) ϕ̂j〉s − 〈ϕ̂i, Cs ϕ̂j〉s| . δ
1
8 ·
(
1 + ‖x‖s

)
(5.3.14)

|Tr
Hs

(
Dδ(x)

)
− Tr
Hs

(
Cs
)
| . δ

1
8 ·
(
1 + ‖x‖2s

)
. (5.3.15)

Proof. The martingale difference Γδ(x, ξ) defined in equation (5.2.9) can also be

expressed as

Γδ(x, ξ) = ξ + F (x, ξ)

where the error term F (x, ξ) = F1(x, ξ) + F2(x, ξ) is given by

F1(x, ξ) = (2τδ)−
1
2
(
(1− 2δ)

1
2 − 1

) (
γδ(x, ξ) − Ex[γδ(x, ξ)]

)
x

F2(x, ξ) =
(
γδ(x, ξ)− 1

)
· ξ − Ex

[
γδ(x, ξ) · ξ

]
.

We now prove that the quanity F (x, ξ) satisfies

Ex
[
‖F (x, ξ)‖2s

]
. δ

1
4 (1 + ‖x‖2s) (5.3.16)

• We have δ−
1
2

(
(1− 2δ)

1
2 − 1

)
. δ

1
2 and |γδ(x, ξ)| ≤ 1. Consequently,

Ex
[
‖F1(x, ξ)‖2s

]
. δ ‖x‖2s (5.3.17)

• Let us now prove that F2 satisfies

Ex
[
‖F2(x, ξ)‖2s

]
. δ

1
4 (1 + ‖x‖

1
2 ). (5.3.18)
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To this end, use the decomposition

Ex
[
‖F2(x, ξ)‖2s

]
. Ex

[
|γδ(x, ξ)− 1|2 · ‖ξ‖2s

]
+ ‖Ex

[
γδ(x, ξ) · ξ

]
‖2s

= I1 + I2.

The Cauchy-Schwarz inequality shows that I1 . Ex
[
|γδ(x, ξ)−1|4

] 1
2

where the

Bernoulli random variable γδ(x, ξ) can be expressed as γδ(x, ξ) = 1I{U<αδ(x,ξ)}

where U
D∼ Uniform(0, 1) is independent from any other source of randomness.

Consequently

Ex
[
|γδ(x, ξ)− 1|4

]
= Ex

[
1I{γδ(x,ξ)=0}

]
= 1− αδ(x)

where the mean local acceptance probability αδ(x) is defined by αδ(x) =

Ex[αδ(x, ξ)] ∈ [0, 1]. The convexity of the function x→ |1− x| ensures that

∣∣1− αδ(x)
∣∣ =

∣∣1− Ex
[
αδ(x, ξ)

]∣∣ ≤ Ex
[∣∣1− αδ(x, ξ)∣∣] . δ

1
2 (1 + ‖x‖)

where the last inequality follows from Corollary 5.3.2. This proves that I1 .

δ
1
4 (1 + ‖x‖

1
2 ). To bound I2, it suffices to notice

I2 = ‖Ex
[
γδ(x, ξ) · ξ

]
‖2s = ‖Ex

[(
γδ(x, ξ)− 1

)
· ξ
]
‖2s

. Ex
[
|γδ(x, ξ)− 1|2 · ‖ξ‖2s

]
= I1

so that I2 . I1 . δ
1
4 (1 + ‖x‖

1
2 ) and Ex

[
‖F2(x, ξ)‖2s

]
. δ

1
4 (1 + ‖x‖

1
2 ).

Combining equation (5.3.17) and (5.3.18) gives equation (5.3.16).

Let us now describe how equations (5.3.12) and (5.3.13) follow from the estimate

(5.3.16).

• We have E[〈ϕ̂i, ξ〉s〈ϕ̂j , ξ〉s] = 〈ϕ̂i, Cs ϕ̂j〉s and Ex[〈ϕ̂i,Γδ(x, ξ)〉s〈ϕ̂j ,Γδ(x, ξ)〉s] =

〈ϕ̂i, Dδ(x) ϕ̂j〉s with Γδ(x, ξ) = ξ + F (x, ξ). Consequently,

〈ϕ̂i, Dδ(x) ϕ̂j〉s − 〈ϕ̂i, Cs ϕ̂j〉s = Ex[〈ϕ̂i, F (x, ξ)〉s〈ϕ̂j , F (x, ξ)〉s]

+ Ex[〈ϕ̂i, ξ〉s〈ϕ̂j , F (x, ξ)〉s]

+ Ex[〈ϕ̂i, F (x, ξ)〉s〈ϕ̂j , ξ〉s].

We have |〈ϕ̂i, F (x, ξ)〉s| ≤ ‖F (x, ξ)‖s and Cauchy Schwarz’s inequality proves
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that

Ex[〈ϕ̂i, F (x, ξ)〉s〈ϕ̂j , ξ〉s]2 ≤ Ex[‖F (x, ξ)‖s ‖ξ‖s]2 . Ex[‖F (x, ξ)‖2s].

It thus follows from equation (5.3.16) that

|〈ϕ̂i, Dδ(x) ϕ̂j〉s − 〈ϕ̂i, Cs ϕ̂j〉s| . Ex
[
‖F (x, ξ)‖2s

]
+ Ex

[
‖F (x, ξ)‖2s

] 1
2

. δ
1
8 (1 + ‖x‖s),

finishing the proof of (5.3.12).

• We have TrHs(Cs) = E[‖ξ‖2s] and TrHs(D
δ(x)) = E[‖Γδ(x, ξ)‖2s]. Estimate

(5.3.16) thus shows that

|Tr
Hs

(
Dδ(x)

)
− Tr
Hs

(
Cs
)
| =

∣∣E[‖Γδ(x, ξ)‖2s − ‖ξ‖2s]
∣∣

=
∣∣E[‖ξ + F (x, ξ)‖2s − ‖ξ‖2s]

∣∣
.
∣∣E[〈2ξ + F (x, ξ), F (x, ξ)〉s

∣∣ . E[‖2ξ + F (x, ξ)‖s ‖F (x, ξ)‖s]

. E[4‖ξ‖2s + ‖F (x, ξ)‖2s]
1
2 · E[‖F (x, ξ)‖2s]

1
2

.
(

1 + δ
1
4 (1 + ‖x‖2s)

) 1
2 ·
(
δ

1
8 (1 + ‖x‖s))

)
. δ

1
8 (1 + ‖x‖2s),

finishing the proof of (5.3.13).

5.3.4 A-priori bound

We prove in this section an a-priori bound of the Lp norm of the Markov chain

xδ. This shows among other things that the rescaled process zδ given by equation

(5.1.6) does not blow up in finite time.

Lemma 5.3.6. (A priori bound)

Consider a fixed time horizon T > 0 and an integer p ≥ 1. Under assumptions 3.1.1

the following bound holds,

sup
{
δ · E

[ ∑
kδ≤T

‖xk,δ‖ps
]

: δ ∈ (0,
1

2
)
}
< ∞. (5.3.19)

Proof. Without loss of generality, assume that p = 2n for some potitive integer

n ≥ 1. We now prove that there exist constants α1, α2, α3 > 0 satisfying

E[‖xk,δ‖2ns ] ≤ (α1 + α2k δ)e
α3k δ. (5.3.20)
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Lemma 5.3.6 is a straightforward consequence of equation (5.3.20) since this implies

that

δ
∑
kδ<T

E[‖xk,δ‖2ns ] ≤ δ
∑
kδ<T

(α1 + α2k δ)e
α3k δ �

∫ T

0
(α1 + α2 t) e

α3 t <∞.

For notational convenience, let us define V k,δ = E
[
‖xk,δ‖2ns

]
. To prove equation

(5.3.20), it suffices to establish that

V k+1,δ − V k,δ ≤ K δ ·
(
1 + V k,δ

)
, (5.3.21)

where K > 0 is a constant independent from δ ∈ (0, 1
2). Indeed, iterating inequality

(5.3.21) leads to the bound (5.3.20), for some computable constants α1, α2, α3 > 0.

The definition of V k shows that

V k+1,δ − V k,δ = E
[
‖xk,δ + (xk+1,δ − xk,δ)‖2ns − ‖xk,δ‖2ns

]
(5.3.22)

= E
[{
‖xk,δ‖2s + ‖xk+1,δ − xk,δ‖2s + 2〈xk,δ, xk+1,δ − xk,δ〉s

}n
− ‖xk,δ‖2ns

]
where the increment xk+1,δ − xk,δ is given by

xk+1,δ − xk,δ = γk,δ
(

(1− 2δ)
1
2 − 1

)
xk,δ +

√
2δ γk,δξk. (5.3.23)

To bound the right-hand-side of equation (5.3.22), we use a binomial expansion and

control each term. To this end, we establish the following estimate: for all integers

i, j, k ≥ 0 satisfying i + j + k = n and (i, j, k) 6= (n, 0, 0) the following inequality

holds,

E
[(
‖xk,δ‖2s

)i(‖xk+1,δ − xk,δ‖2s
)j(〈xk,δ, xk+1,δ − xk,δ〉s

)k]
(5.3.24)

. δ(1 + V k,δ).

To prove equation (5.3.24), we separate two different cases.

• Let us suppose (i, j, k) = (n−1, 0, 1). Lemma 5.3.3 states that the approximate

drift has a linearly bounded growth so that
∥∥E[xk+1,δ − xk,δ |xk,δ

]∥∥
s

= δ ×
‖dδ(xk,δ)‖s . δ (1 + ‖xk,δ‖s). Consequently, we have

E
[(
‖xk,δ‖2s

)n−1
〈xk,δ, xk+1,δ − xk,δ〉s

]
. E

[
‖xk,δ‖2(n−1)

s ‖xk,δ‖s
(
δ (1 + ‖xk,δ‖s

)]
. δ(1 + V k,δ).

This proves equation (5.3.24) in the case (i, j, k) = (n− 1, 0, 1).
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• Let us suppose (i, j, k) 6∈
{

(n, 0, 0), (n − 1, 0, 1)
}

. Because for any integer

p ≥ 1,

Ex
[
‖xk+1,δ − xk,δ‖ps

] 1
p
. δ

1
2 (1 + ‖x‖s)

it follows from Cauchy-Schwarz inequality that

E
[(
‖xk,δ‖2s

)i (
‖xk+1,δ − xk,δ‖2s

)j (
〈xk,δ, xk+1,δ − xk,δ〉s

)k]
. δj+

k
2 (1 + V k,δ).

Since we have supposed that (i, j, k) 6∈
{

(n, 0, 0), (n−1, 0, 1)
}

and i+j+k = n,

it follows that j + k
2 ≥ 1. This concludes the proof of equation (5.3.24),

The binomial expansion of equation (5.3.22) and the bound (5.3.24) show that

V k+1,δ − V k,δ . δ (1 + V k,δ).

This proves equation (5.3.21), which concludes the proof of Lemma 5.3.6.

5.3.5 Invariance principle

Combining the noise estimates of Lemma 5.3.5 and the a priori bound of Lemma

5.3.6, we show that under assumptions 3.1.1 the sequence of rescaled noise processes

defined in equation 5.2.10 converges weakly to a Brownian motion.

Lemma 5.3.7. (Invariance Principle)

Let assumptions 3.1.1 hold. Then the rescaled noise process W δ(t) defined in equa-

tion (5.2.10) converges weakly in C([0, T ];Hs) to a Hs-valued Brownian motion W

covariance operator Cs.

Proof. As described in [Ber86] [Proposition 5.1], in order to prove that W δ converges

weakly to W in C([0, T ];Hs) it suffices to prove that for any t ∈ [0, T ] and any pair

of indices i, j ≥ 0 the following three limits hold in probability,

limδ→0 δ
∑
kδ<t

E
[
‖Γk,δ‖2s |xk,δ

]
= t · Tr

Hs
(Cs) (5.3.25)

limδ→0 δ
∑
kδ<t

E
[
〈Γk,δ, ϕ̂i〉s〈Γk,δ, ϕ̂j〉s |xk,δ

]
= t 〈ϕ̂i, Csϕ̂j〉s (5.3.26)

limδ→0 δ
∑
kδ<T

E
[
‖Γk,δ‖2s 1I{‖Γk,δ‖2s≥δ−1 ε} |xk,δ

]
= 0 ∀ε > 0. (5.3.27)
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We now check that these three conditions are indeed satisfied.

• Condition (5.3.25): since E
[
‖Γk,δ‖2s |xk,δ

]
= TrHs(D

δ(xk,δ)), lemma 5.3.5

shows that

E
[
‖Γk,δ‖2s |xk,δ

]
= Tr
Hs

(Cs) + eδ1(xk,δ)

where the error term eδ1 satisfies |eδ1(x)| . δ
1
8 (1 + ‖x‖2s). Consequently, to

prove condition (5.3.25) it suffices to establish that

lim
δ→0

E
[∣∣δ ∑

kδ<T

eδ1(xk,δ)
∣∣] = 0.

We have E
[∣∣δ ∑kδ<T eδ1(xk,δ)

∣∣] . δ
1
8

{
δ · E

[∑
kδ<T (1 + ‖xk,δ‖2s)

]}
and the

apriori bound presented in Lemma 5.3.6 shows that

sup
δ∈(0, 1

2
)

{
δ · E

[ ∑
kδ<T

(1 + ‖xk,δ‖2s)
]}

<∞.

Consequently limδ→0 E
[∣∣δ ∑kδ<T eδ1(xk,δ)

∣∣] = 0, and the conclusion follows.

• Condition (5.3.26): lemma 5.3.5 states that

Ek
[
〈Γk,δ, ϕ̂i〉s〈Γk,δ, ϕ̂j〉s

]
= 〈ϕ̂i, Csϕ̂j〉s + eδ2(xk,δ)

where the error term eδ2 satisfies |eδ2(x)| . δ
1
8 (1 + ‖x‖s). The exact same

approach as the proof of Condition (5.3.25) gives the conclusion.

• Condition (5.3.27): from Cauchy-Schwarz and Markov’s inequalities it follows

that

E
[
‖Γk,δ‖2s 1I{‖Γk,δ‖2s≥δ−1 ε}

]
≤ E

[
‖Γk,δ‖4s

] 1
2 · P

[
‖Γk,δ‖2s ≥ δ−1 ε

] 1
2

≤ E
[
‖Γk,δ‖4s

] 1
2 ·
{E[‖Γk,δ‖4s]

(δ−1 ε)2

} 1
2

≤ 1

ε2
δ2 · E

[
‖Γk,δ‖4s

]
.

Consequently we have

E
[∣∣∣δ ∑

kδ<T

E
[
‖Γk,δ‖2s 1I{‖Γk,δ‖2s≥δ−1 ε} |xk,δ

] ∣∣∣] ≤ 1

ε2
δ2
{
δ · E

[ ∑
kδ<T

‖xk,δ‖4s
]}
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and the conclusion again follows from the a priori bound Lemma 5.3.6.

5.4 Quadratic variation

As discussed in the introduction, the SPDE (5.1.7), and the Metropolis-Hastings

algorithm P-RWM which approximates it for small δ, do not satisfy the smoothing

property and so almost sure properties of the limit measure πτ are not necessarily

seen at finite time. To illustrate this point, we introduce in this section a functional

V : H → R that is well defined on a dense subset of H and such that V (X) is

πτ -almost surely well defined and such that P
(
V (X) = 1

)
= τ for X

D∼ πτ . The

quantity V corresponds to the usual quadratic variation if π0 is the Wiener measure.

We show that the quadratic variation like quantity V (xk,τ ) of a P-RWM Markov

chain converges as k → ∞ to the almost sure quantity τ . We then prove that

piecewise linear interpolation of this quantity solves, in the small δ limit, a linear

ODE (the “fluid limit”) whose globally attractive stable state is the almost sure

quantity τ . This quantifies the manner in which the P-RWM method approaches

statistical equilibrium.

5.4.1 Definition and properties

Under assumptions 3.1.1, the Karhunen-Loéve expansion and the strong Law of

Large Numbers show that π0-almost every x ∈ H satisfies

lim
N→∞

N−1
N∑
j=1

〈x, ϕj〉2

λ2
j

= 1.

This motivates the definition of the quadratic variation like quantities

V−(x)
def
= lim inf

N→∞
N−1

n∑
j=1

〈x, ϕj〉2

λ2
j

and V+(x)
def
= lim sup

N→∞
N−1

n∑
j=1

〈x, ϕj〉2

λ2
j

.

When these two quantities are equal the vector x ∈ H is said to possess a quadratic

variation V (x) defined as V (x) = V−(x) = V+(x). Consequently, π0-almost every

x ∈ H possesses a quadratic variation V (x) = 1. It is a straightforward consequence

that πτ0 -almost every and πτ -almost every x ∈ H possesses a quadratic variation

V (x) = τ . Strictly speaking this only coincides with quadratic variation when

C is the covariance of a (possibly conditioned) Brownian motion; however we use
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the terminology more generally in this section. The next lemma proves that the

quadratic variation V (·) behaves as it should do with respect to additivity.

Lemma 5.4.1. (Quadratic Variation Additivity)

Consider a vector x ∈ H and a Gaussian random variable ξ
D∼ π0 and a real number

α ∈ R. Suppose that the vector x ∈ H possesses a finite quadratic variation V (x) <

+∞. Then almost surely the vector x+αξ ∈ H possesses a quadratic variation that

is equal to

V (x+ αξ) = V (x) + α2.

Proof. Let us define VN
def
= N−1

∑N
1
〈x,ϕj〉·〈ξ,ϕj〉

λ2
j

. To prove Lemma 5.4.1 it suffices

to prove that almost surely the following limit holds

lim
N→∞

VN = 0.

The Borel-Cantelli lemma shows that it suffices to prove that for every fixed ε > 0

we have
∑

N≥1 P
[∣∣VN ∣∣ > ε

]
< ∞. Notice then that VN is a centred Gaussian

random variables with variance

Var(VN ) =
1

N

(
N−1

N∑
1

〈x, ϕj〉2

λ2
j

)
� V (x)

N
.

The Markov’s inequality yields that P
[∣∣VN ∣∣ > ε

]
. ε−4 E

[
V 4
N

]
. 1

N2 from which it

follows that
∑

N≥1 P
[∣∣VN ∣∣ > ε

]
<∞, finishing the proof of the lemma.

5.4.2 Large k behaviour of quadratic variation for P-RWM

The P-RWM algorithm at temperature τ > 0 and discretization parameter δ > 0

proposes a move from x to y according to the dynamics

y = (1− 2δ)
1
2x+ (2δτ)

1
2 ξ with ξ

D∼ π0.

This move is accepted with probability αδ(x, y). In this case, Lemma 5.4.1 shows

that if the quadratic variation V (x) exists then the quadratic variation of the pro-

posed move y ∈ H exists and satisfies

V (y)− V (x)

δ
= −2(V (x)− τ). (5.4.1)
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Consequently, one can prove that for any finite time step δ > 0 and temperature

τ > 0 the quadratic variation of the MCMC algorithm converges to τ .

Proposition 5.4.2. (Limiting Quadratic Variation) Let assumptions 3.1.1 hold

and {xk,δ}k≥0 be the Markov chain of section 5.2.1. Then almost surely the quadratic

variation of the Markov chain converges to τ ,

lim
k→∞

V (xk,δ) = τ.

Proof. Let us first show that the number of accepted moves is infinite. If this were

not the case, the Markov chain would eventually reach a position xk,δ = x ∈ H such

that all subsequent proposals yk+l = (1 − 2δ)
1
2 xk + (2τδ)

1
2 ξk+l would be refused.

This means that the i.i.d. Bernoulli random variables γk+l = Bernoulli
(
αδ(xk, yk+l)

)
satisfy γk+l = 0 for all l ≥ 0. This can only happen with probability 0. Indeed, since

P[γk+l = 1] > 0, one can use Borel-Cantelli lemma to show that almost surely there

exists l ≥ 0 such that γk+l = 1. To conclude the proof of the proposition, notice

then that the sequence {uk}k≥0 defined by uk+1 − uk = −2δ(uk − τ) converges to

τ .

5.4.3 Fluid limit for quadratic variation of P-RWM

To gain further insight into the rate at which the limiting behaviour of the quadratic

variation is observed for P-RWM we derive an ODE “fluid limit” for the Metropolis-

Hastings algorithm. We introduce the continuous time process t 7→ vδ(t) defined

as continuous piecewise linear interpolation of the the process k 7→ V (xk,δ); for

tk ≤ t < tk+1 we define

vδ(t) =
1

δ
(t− tk)V (xk+1,δ ) +

1

δ
(tk+1 − t)V (xk,δ ). (5.4.2)

Since the acceptance probability of P-RWM approaches 1 as δ → 0 (see Corollary

5.3.2) equation (5.4.1) shows heuristically that the trajectories of of the process

t 7→ vδ(t) should be well approximated by the solution of the (non stochastic)

differential equation

v̇ = −2 (v − τ) (5.4.3)

We prove such a result, in the sense of convergence in probability in C([0, T ];R):

Theorem 5.4.3. (Fluid Limit For Quadratic Variation) Let assumptions 3.1.1

hold. Let the Markov chain xδ start at fixed position x∗ ∈ Hs. Assume that x∗ ∈ H
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possesses a finite quadratic variation, V (x∗) <∞. Then the function vδ(t) converges

in probability in C([0, T ],R), as δ goes to 0, to the solution of the differential equation

(5.4.3) with initial condition v0 = V (x∗).

As already indicated, the heart of the proof of the result consists in showing that

the acceptance probability of the algorithm converges to 1 as δ goes to 0. We prove

such a result as Lemma 5.4.4 below, and then proceed to prove Theorem 5.4.3. To

this end we introduce tδ(k), the number of accepted moves:

tδ(k)
def
=
∑
l≤k

γl,δ,

where γl,δ = Bernoulli(αδ(x, y)) is the Bernoulli random variable defined in equation

(5.2.6). Since the acceptance probability of the algorithm converges to 1 as δ → 0,

the approximation tδ(k) ≈ k holds. In order to prove a fluid limit result on the

interval [0, T ] one needs to prove that the quantity
∣∣tδ(k)−k

∣∣ is small when compared

to δ−1. The next lemma shows that such bounds hold uniformly on the interval

[0, T ].

Lemma 5.4.4. (Number of Accepted Moves) Let assumptions 3.1.1 hold. The

number of accepted moves tδ(·) verifies

lim
δ→0

sup
{
δ ·
∣∣tδ(k)− k

∣∣ : 0 ≤ k ≤ Tδ−1
}

= 0

where the convergence holds in probability.

The proof of Lemma 5.4.4 consists in showing first that for any ε > 0 one can find

a ball of radius R(ε) around 0 in Hs,

B0(R(ε)) =
{
x ∈ Hs : ‖x‖s ≤ R(ε)

}
,

such that with probability 1− 2ε we have xk,δ ∈ B0(R(ε)) and yk,δ ∈ B0(R(ε)) for

all 0 ≤ k ≤ Tδ−1. As is described below, the existence of such a ball follows from

the bound

E[ sup
t∈[0,T ]

‖x(t)‖s ] < +∞ (5.4.4)

where t 7→ x(t) is the solution of the stochastic differential equation (5.2.7). For the

sake of completeness, we include a proof of equation (5.4.4). The solution t 7→ x(t) of

the stochastic differential equation (5.2.7) satisfies x(t) =
∫ t

0 d
(
x(u)

)
du+

√
2τ W (t)

for all t ∈ [0, T ] where the drift function µ(x) = −
(
x+C∇Ψ(x)

)
is globally Lipschitz
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on Hs, as described in Lemma 3.1.4. Consequently ‖µ(x)‖s ≤ A(1 + ‖x‖s) for some

positive constant A > 0. The triangle inequality then shows that

‖x(t)‖s ≤ A
∫ t

0

(
1 + ‖x(u)‖s

)
du+

√
2τ‖W (t)‖s. (5.4.5)

By Gronwall’s inequality we obtain

sup
[0,T ]
‖x(t)‖s ≤ (AT + sup

[0,T ]
‖W (t)‖s)

[
1 +ATeAT

]
. (5.4.6)

Since E[sup[0,T ] ‖W (t)‖s] <∞, the bound (5.4.4) is proved.

Proof of Lemma 5.4.4. The proof consists in showing that the the acceptance prob-

ability of the algorithm is sufficiently close to 1 so that approximation tδ(k) ≈ k

holds. The argument can be divided into 3 main steps. In the first part, we show

that we can find a finite ball B(0, R(ε)) such that the trajectory of the Markov chain

{xk,δ}k≤Tδ−1 remains in this ball with probability at least 1− 2ε. This observation

is useful since the function Ψ is Lipschitz on any ball of finite radius in Hs. In the

second part, using the fact that Ψ is Lipschitz on B(0, R(ε)), we find a lower bound

for the acceptance probability αδ. Then, in the last step, we use a moment estimate

to prove that one can make the lower bound uniform on the interval 0 ≤ k ≤ Tδ−1.

• Restriction to a Ball of Finite Radius

First, we show that with high probability the trajectory of the MCMC algo-

rithm stays in a ball of finite radius. The functional x 7→ supt∈[0,T ] ‖x(t)‖s is

continuous on C([0, T ],Hs) and E
[

supt∈[0,T ] ‖x(t)‖s
]
<∞ for t 7→ x(t) follow-

ing the stochastic differential equation (5.2.7), as proved in equation (5.4.4).

Consequently, the weak convergence of zδ to the solution of (5.2.7) encapsu-

lated in Theorem 5.2.2 shows that E
[

supk<Tδ−1 ‖xk,δ‖s
]

can be bounded by a

finite universal constant independent from δ. Given ε > 0, Markov inequality

thus shows that one can find a radius R1 = R1(ε) large enough so that the

inequality

P
[
‖xk,δ‖s < R1 for all 0 ≤ k ≤ Tδ−1

]
> 1− ε (5.4.7)

for any δ ∈ (0, 1
2). By Fernique’s Theorem there exists α > 0 such that

E[eα‖ξ‖
2
s ] < ∞. This implies that P[‖ξ‖s > r] . e−αr

2
. Therefore, if {ξk}k≥0

are i.i.d. Gaussian random variables distributed as ξ
D∼ π0, the union bound
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shows that

P
[
‖
√
δξk‖s ≤ r for all 0 ≤ k ≤ Tδ−1

]
& 1− Tδ−1 exp(−αδ−1r2).

This proves that one can choose R2 = R2(ε) large enough in such a manner

that

P
[
‖
√
δξk‖s < R2 for all 0 ≤ k ≤ Tδ−1

]
> 1− ε (5.4.8)

for any δ ∈ (0, 1
2). At temperature τ > 0 the MCMC proposals are given by

yk,δ = (1 − 2δ)
1
2xk,δ + (2δτ)

1
2 ξk. It thus follows from the bounds (5.4.7) and

(5.4.8) that with probability at least (1− 2ε) the vectors xk,δ and yk,δ belong

to the ball B0(R(ε)) = {x ∈ Hs : ‖x‖s < R(ε)} for 0 ≤ k ≤ Tδ−1 where radius

R(ε) is given by R(ε) = R1(ε) +R2(ε).

• Lower Bound for Acceptance Probability

We now give a lower bound for the acceptance probability αδ(xk,δ, ξk) that

the move xk,δ → yk,δ is accepted. Assumptions 3.1.1 state that ‖∇Ψ(x)‖−s .
1 + ‖x‖s. Therefore, the function Ψ : Hs → R is Lipschitz on B0(R(ε)),

‖Ψ‖lip,ε
def
= sup

{ |Ψ(y)−Ψ(x)|
‖y − x‖s

: x, y ∈ B0(R(ε))
}
<∞.

One can thus bound the acceptance probability αδ(xk,δ, ξk) = 1 ∧ exp
(
−

τ−1[Ψ(yk,δ) − Ψ(yk,δ)]
)

for xk,δ, yk,δ ∈ B0(R(ε)). Since the function z 7→
1∧ e−τ−1z is Lipschitz with constant τ−1, the definition of ‖Ψ‖lip,ε shows that

the bound

1− αδ(xk,δ, ξk) ≤ τ−1 ‖Ψ‖lip,ε ‖yk,δ − xk,δ‖s
≤ τ−1 ‖Ψ‖lip,ε

{
[(1− 2δ)

1
2 − 1] ‖xk,δ‖s + (2δτ)

1
2 ‖ξk‖

}
.
√
δ (1 + ‖ξk‖s)

holds for every xk,δ, yk,δ ∈ B0(R(ε)). Hence, there exists a constant K = K(ε)

such that α̂δ(ξk) = 1−K
√
δ (1+‖ξk‖s) satisfies αδ(xk,δ, ξk) > α̂δ(ξk) for every

xk,δ, yk,δ ∈ B0(R(ε)). Since the trajectory of the MCMC algorithm stays in

the ball B0(R(ε)) with probability at least 1− 2ε the inequality

P[αδ(xk,δ, ξk) > α̂δ(ξk) for all 0 ≤ k ≤ Tδ−1] > 1− 2ε.

holds for every δ ∈ (0, 1
2).

93



• Second Moment Method

To prove that tδ(k) does not deviate too much from k, we show that its ex-

pectation satisfies E[tδ(k)] ≈ k and we then control the error by bounding the

variance. Since the Bernoulli random variable γk,δ = Bernoulli(αδ(xk,δξk)) are

not independent, the variance of tδ(k) =
∑

l≤k γ
l,δ is not easily computable.

We thus introduce i.i.d. auxiliary random variables γ̂k,δ such that∑
l≤k

γ̂l,δ = t̂δ(k) ≈ tδ(k) =
∑
l≤k

γl,δ.

As described below, the behaviour of t̂δ(k) is readily controlled since it is a

sum of i.i.d. random variables. The proof then exploits the fact that t̂δ(k) is

a good approximation of tδ(k).

The Bernoulli random variables γk,δ can be described as γk,δ = 1I
(
Uk <

αδ(xk,δξk)
)

where {Uk}k≥0 are i.i.d. random variables uniformly distributed

on (0, 1). As a consequence, with probability at least 1− 2ε, the random vari-

ables γ̂k,δ = 1I
(
Uk < α̂δ) satisfy γk,δ ≥ γ̂k,δ for all 0 ≤ k ≤ Tδ−1. Therefore,

with probability at least 1 − 2ε, we have tδ(k) ≥ t̂δ(k) for all 0 ≤ k ≤ Tδ−1

where t̂δ(k) =
∑

l≤k γ̂
l,δ. Consequently, since tδ(k) ≤ k, to prove Lemma 5.4.4

it suffices to show instead that the following limit in probability holds,

lim
δ→0

sup
{
δ ·
∣∣t̂δ(k)− k

∣∣ : 0 ≤ k ≤ Tδ−1
}

= 0. (5.4.9)

Contrary to the random variables {γk,δ}k≥0, the random variables {γ̂k,δ}k≥0

are i.i.d. and are thus easily controlled. By Doob’s inequality we have

P
[

sup
{
δ ·
∣∣t̂δ(k)− E[t̂δ(k)]

∣∣ : 0 ≤ k ≤ Tδ−1
}
> η

]
≤ 2

Var
(
t̂δ(Tδ−1)

)
(δ−1η)2

≤ 2
δT

η2
.

Since E[t̂δ(k)] = k ·
{

1 −K
√
δ (1 + E[‖ξk‖s])

}
, equation (5.4.9) follows. This

finishes the proof of Lemma 5.4.4.

We now complete the proof of Theorem 5.4.3 using the key Lemma 5.4.4.

Proof of Theorem 5.4.3. The proof consists in proving that the trajectory of the

quadratic variation process behaves as if all the move were accepted. The main
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ingredient is the uniform lower bound on the acceptance probability given by Lemma

5.4.4.

Recall that vδ(kδ) = V (xk,δ). Consider the piecewise linear function v̂δ(·) ∈ C([0, T ],R)

defined by linear interpolation of the values v̂δ(kδ) = uδ(k) and where the sequence

{uδ(k)}k≥0 satisfies uδ(0) = V (x∗) and

uδ(k + 1)− uδ(k) = −2δ (uδ(k)− τ).

The value uδ(k) ∈ R represents the quadratic variation of xk,δ if the k first moves

of the MCMC algorithm had been accepted. One can readily check that as δ goes

to zero the sequence of continuous functions v̂δ(·) converges in C([0, T ],R) to the

solution v(·) of the differential equation (5.4.3). Consequently, to prove Theorem

5.4.3 it suffices to show that for any ε > 0 we have

lim
δ→0

P
[

sup
{∣∣V (xk,δ)− uδ(k)

∣∣ : k ≤ δ−1T
}
> ε

]
= 0. (5.4.10)

The definition of the number of accepted moves tδ(k) is such that V (xk,δ) = uδ(tδ(k)).

Note that

uδ(k) = (1− 2δ)ku0 +
(
1− (1− 2δ)k

)
τ. (5.4.11)

Hence, for any integers t1, t2 ≥ 0, we have
∣∣uδ(t2)− uδ(t1)

∣∣ ≤ ∣∣uδ(|t2 − t1|)− uδ(0)
∣∣

so that

∣∣V (xk,δ)− uδ(k)
∣∣ =

∣∣uδ(tδ(k))− uδ(k)
∣∣ ≤ ∣∣uδ(k − tδ(k))− uδ(0)

∣∣.
Equation (5.4.11) shows that |uδ(k)− uδ(0)| .

(
1− (1− 2δ)k

)
. This implies that

∣∣V (xk,δ)− uδ(k)
∣∣ . 1− (1− 2δ)k−t

δ(k) . 1− (1− 2δ)δ
−1 S

where S = sup
{
δ ·
∣∣tδ(k) − k

∣∣ : 0 ≤ k ≤ Tδ−1
}

. Since for any a > 0 we have

1− (1−2δ)aδ
−1 → 1− e−2a, equation (5.4.10) follows if one can prove that as δ goes

to 0 the supremum S converges to 0 in probability: this is precisely the content of

Lemma 5.4.4. This concludes the proof of Theorem 5.4.3.

5.5 Numerical results

This section presents numerical simulations for the minimisation of a functional

J(·) defined on the Sobolev space H1
0 (R) ⊂ C0([0, 1]) ⊂ L2(0, 1). Functions x ∈

H1
0 ([0, 1]) are continuous and satisfy x(0) = x(1) = 0. For a given real parameter
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λ > 0, the functional J : H1
0 ([0, 1]) → R is composed of two competitive terms, as

follows:

J(x) =
1

2

∫ 1

0

∣∣ẋ(s)
∣∣2 ds +

λ

4

∫ 1

0

(
x(s)2 − 1

)2
ds. (5.5.1)

The first term penalises functions that deviate from being flat, whilst the second

term penalises functions that deviate from one in absolute value. Critical points of

the functional J(·) solve the following Euler-Lagrange equation:

ẍ+ λx(1− x2) = 0 with x(0) = x(1) = 0. (5.5.2)

Clearly x ≡ 0 is a solution for all λ ∈ R+. If λ ∈ (0, π2) then this is the unique

solution of the Euler-Lagrange equation and is the global minimizer of J . For each

integer k there is a supercritical bifurcation at parameter value λ = k2π2. For

λ > π2 there are two minimizers, both of one sign and one being minus the other.

The three different solutions of (5.5.2) which exist for λ = 2π2 are displayed in

Figure 5.5, at which value the zero (blue dotted) solution is a saddle point, and

the two green solutions are the global minimizers of J . These properties of J are

overviewed in, for example, [Hen81]. We will show how these global minimizers can

emerge from an algorithm whose only ingredients are an ability to evaluate Ψ and

to sample from the Gaussian measure with Cameron-Martin norm
∫ 1

0 |ẋ(s)|2ds. We

emphasize that we are not advocating this as the optimal method for solving the

Euler-Lagrange equations (5.5.2). We have chosen this example for its simplicity, in

order to illustrate the key ingredients of the theory developed in this chapter.

The P-RWM algorithm to minimize J given by (5.5.1) is implemented on

L2([0, 1]). Recall from section 5.1 that the Gaussian measure N(0, C) may be iden-

tified by finding the covariance operator for which the H1
0 ([0, 1]) norm ‖x‖2C

def
=∫ 1

0

∣∣ẋ(s)
∣∣2 ds is the Cameron-Martin norm. In [HSVW05] it is shown that the Wiener

bridge measure W0→0 on L2([0, 1]) has precisely this Cameron-Martin norm; indeed

it is demonstrated that C−1 is the densely defined operator − d2

ds2
with domain

D(C−1) = H2([0, 1]) ∩ H1
0 ([0, 1]). In this regard it is also instructive to adopt the

physicists viewpoint that

W0→0(dx) ∝ exp
(
− 1

2

∫ 1

0

∣∣ẋ(s)
∣∣2 ds) dx

although, of course, there is no Lebesgue measure in infinite dimensions. Using an

96



Figure 5.1: The three solutions of the Euler-Lagrange equation (5.5.2) for λ = 2π2.
Only the two non-zero solutions are global minima of the functional J(·). The dotted
solution is a local maximum of J(·).

integration by parts, together with the boundary conditions on H1
0 ([0, 1]), then gives

W0→0(dx) ∝ exp
(1

2

∫ 1

0
x(s)

d2x

ds2
(s) ds

)
dx

and the inverse of C is clearly identified as the differential operator above. See

[CH06] for a basic discussion of the physicists viewpoint on Wiener measure. For

a given temperature parameter τ the Wiener bridge measure Wτ
0→0 on L2([0, 1]) is

defined as the law of
{√

τ W (t)
}
t∈[0,1]

where {W (t)}t∈[0,1] is a standard Brownian

bridge on [0, 1] drawn from W0→0.

The posterior distribution πτ (dx) is defined by the change of probability

formula

dπτ

dWτ
0→0

(x) ∝ e−Ψ(x) with Ψ(x) =
λ

4

∫ 1

0

(
x(s)2 − 1

)2
ds.

Notice that πτ0
(
H1

0 ([0, 1)
)

= πτ
(
H1

0 ([0, 1)
)

= 0 since a Brownian bridge is almost

surely not differentiable anywhere on [0, 1]. It is for this reason that the algorithm is

implemented on L2([0, 1]) even though the functional J(·) is defined on the Sobolev

space H1
0 ([0, 1]). In terms of assumptions 3.1.1(1) we have κ = 1 and the measure πτ0

is supported on Hr if and only if r < 1
2 . note also that H1

0 ([0, 1]) = H1. Assumption
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3.1.1(2) is satisfied for any choice s ∈ [1
4 ,

1
2) because Hs is embedded into L4([0, 1])

for s ≥ 1
4 . We add here that assumptions 3.1.1(3-4) do not hold globally, but only

locally on bounded sets, but the numerical results below will indicate that the theory

developed in this chapter is still relevant and could be extended to nonlocal versions

of assumptions 3.1.1(3-4), with considerable further work.

Following section 5.2.1, the P-RWM Markov chain at temperature τ > 0 and

time discretization δ > 0 proposes moves from x to y according to

y = (1− 2δ)
1
2 x + (2δτ)

1
2 ξ

where ξ ∈ C([0, 1],R) is a standard Brownian bridge on [0, 1]. The move x → y is

accepted with probability αδ(x, ξ) = 1∧exp
(
−τ−1[Ψ(y)−Ψ(x)]

)
. Figure 5.5 displays

the convergence of the Markov chain {xk,δ}k≥0 to a minimiser of the functional J(·).
Note that this convergence is not shown with respect to the space H1

0 ([0, 1]) on which

J is defined, but rather in L2([0, 1]); indeed J(·) is almost surely infinite when

evaluated at samples of the P-RWM algorithm, precisely because πτ0
(
H1

0 ([0, 1)
)

= 0,

as discussed above.

Figure 5.2: P-RWM parameters: λ = 2π2, δ = 1.10−2, τ = 1.10−2. The algorithm
is started at the zero function, x0,δ(t) = 0 for t ∈ [0, 1]. After a transient phase,
the algorithm fluctuates around a global minimiser of functional J(·). The L2 error
‖xk,δ − (minimiser)‖L2 is plotted as a function of the algorithmic time k.

Of course the algorithm does not converge exactly to a minimiser of J(·), but

fluctuates in a neighbourhood of it. As described in the introduction of this section,
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in a finite dimensional setting the target probability distribution πτ has Lebesgue

density proportional to exp
(
− τ−1 J(x)

)
. This intuitively shows that the size of

the fluctuations around the minimum of the functional J(·) are of size proportional

to
√
τ . Figure 5.5 shows this phenomenon on log-log scales: the asymptotic mean

error E
[
‖x− (minimiser)‖2

]
is displayed as a function of the temperature τ . Figure

5.6 illustrates Theorem 5.4.3. One can observe the path {vδ(t)}t∈[0,T ] for a finite

time step discretization parameter δ as well as the limiting path {v(t)}t∈[0,T ] that is

solution of the differential equation (5.4.3).

Figure 5.3: Mean error E
[
‖x− (minimiser)‖2

]
as a function of the temperature τ .

5.6 Conclusion

There are different perspectives on the material contained in this chapter, including

optimization, numerical analysis and statistics. We now detail these perspectives.

• Optimization: We have demonstrated a class of algorithms to minimize the

functional J given by (5.1.1). The assumptions 3.1.1 encode the intuition that

the quadratic part of J dominates. Under these assumptions we study the

properties of an algorithm which requires only the evaluation of Ψ and the

ability to draw samples from Gaussian measures with Cameron-Martin norm

given by the quadratic part of J . We demonstrate that, in a certain parameter

limit, the algorithm behaves like a noisy gradient flow for the functional J

and that, furthermore, the size of the noise can be controlled systematically.
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Figure 5.4: P-RWM parameters: λ = 2π2, τ = 1.10−1, δ = 1.10−3 and the algorithm
starts at xk,δ = 0. The rescaled quadratic variation process (full line) behaves as the
solution of the differential equation (dotted line), as predicted by Theorem 5.4.3.
The quadratic variation converges to τ , as described by Proposition 5.4.2.

Thus we have constructed a simulated annealing algorithm on Hilbert space,

and connected this to a diffusion process (SDE), a connection made in finite

dimensions in [GH86]. The advantage of constructing algorithms on Hilbert

space is that they are robust to finite dimensional approximation. We turn to

this point in the next bullet.

• Numerical Analysis: The algorithm that we use is a Metropolis-Hastings

method with an Ornstein-Uhlenbeck proposal which we refer to here as P-

RWM. The proposal takes the form for ξ ∼ N(0, C),

y =
(
1− 2δ

) 1
2x+

√
2δτξ

given in (5.1.4). As described in the introduction, the proposal is constructed

in such a way that the algorithm is defined on infinite dimensional Hilbert

space and may be viewed as a natural analogue of a random walk Metropolis-

Hastings method for measures defined via density with respect to a Gaussian.

Let us contrast this with the standard random walk method S-RWM with

proposal

y = x+
√

2δτξ.
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Although the proposal for S-RWM differs only through a multiplicative factor

in the systematic component, and thus implementation of either is practically

identical, the S-RWM method is not defined on infinite dimensional Hilbert

space as mentioned in the Introduction. This turns out to matter if we com-

pare both methods when applied in RN for N � 1, as would occur if approx-

imating a problem in infinite dimensional Hilbert space: in this setting the

S-RWM method requires the choice δ = O(N−1) to see the diffusion (SDE)

limit [MPS11] and so requires O(N) steps to see O(1) decrease in the objective

function, or to draw independent samples from the target measure; in contrast

the P-RWM produces a diffusion limit for δ → 0 independently of N and so

requires O(1) steps to see O(1) decrease in the objective function, or to draw

independent samples from the target measure. Mathematically this last point

is manifest in the fact that we may take the limit N → ∞ (and work on the

infinite dimensional Hilbert space) followed by the limit δ → 0.

• Statistics: The target distribution πτ can be viewed as a posterior distribu-

tion in the context of Bayesian inverse problems, and nonparametric regression

in particular. Here the goal is to perform statistical estimation of an unknown

function from observations subject to noise. The measure πτ0 is the prior dis-

tribution which quantifies the information the statistician has (from experts,

knowledge about the regularity of the function, etc) before observing the data.

The functional Ψ denotes the log-likelihood. S-RWM algorithms of the kind

discussed in this chapter are routinely implemented in applied statistics for

drawing samples from the measure πτ . Our results demonstrate that it is im-

mensely beneficial to modify these algorithms to the P-RWM algorithm, which

we have derived using the “optimize then discretize” point of view; this will

result in an O(N) increase in the efficiency of the algorithm when implemented

on finite dimensional approximation spaces of dimension N .
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Chapter 6

Random walk on ridge densities

This chapter is joint work with Alex Beskos and Gareth Roberts and is based on

the paper [BRT13].

6.1 Introduction

In often happens in applied probability that one needs to explore a target distri-

bution π that is concentrated on a very narrow subset of a state space X . This

informally means that there exists a small subset A ⊂ X where the mass concen-

trates in the sense that π(A) ≈ 1; smallness can be given several interpretations. In

a discrete setting, this is very common. Examples include the sampling of contin-

gency tables, the sampling of a q-colouring of a graph, the Ising-Potts model on a

lattice at low temperature.

In this chapter, we consider the continuous setting where the target distri-

bution π lives in the n-dimensional euclidean space X = Rn and concentrates on

the neighbourhood of a low dimensional manifold M; this means that there exists

ε � 1 such that the ε-neighbourhood Aε := {x ∈ Rn : d(x,M) < ε} of the mani-

fold M verifies π(Aε) ≈ 1. A Random Walk Metropolis (RWM) Markov chain will

tend to walk along the manifold. The purpose of this chapter is to quantify this

behaviour. While it has often been suggested in the literature to use tempering or

adaptive methods to handle these ridges [Nea01; HST01], they remain a celebrated

challenge for new Monte Carlo methods [CMMR12]. These strong geometric fea-

tures commonly occur in non-identifiable models. A frequently occurring situation

is the following. An unknown vector x ∈ Rn is measured through a possibly non-

linear function f : Rn → Rd with d < n. Since the dimension d of the observation is

strictly less than the dimension n of the unknown data x ∈ Rn, there is generally no
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hope to perfectly reconstruct the data: information is lost through the low dimen-

sional measurement. This leads to non-identifiability issues. An additive Gaussian

noise of intensity ε might then corrupt the measurement f(x). The noisy and low

dimensional observation y ∈ Rd of the unknown data x ∈ Rn can thus be modelled

by the equation y = f(x) + ξ with ξ
D∼ N(0, ε2Id). In the absence of noise (i.e the

case ε = 0) and without prior knowledge on the data, any vector belonging to the

set M := {z ∈ Rn : f(z) = y} is equally likely to have given rise to the observation

y. Under mild assumptions 1 on the measurement function f : Rn → Rd, the subset

M is a manifold of dimension n − d. The dimension of the manifold M can infor-

mally be thought of as the dimension of the non-identifiability. By imposing a prior

distribution π0 on the unknown data, we create weak identifiability. Compressed

sensing [Don06; Can08], ‘large p small n’ problems [FHT09; Tib96] and Bayesian

approach to inverse problems [Stu10; Fit91] can be seen as variations on the same

theme.

In this chapter we focus on the limiting regime when the thickness ε of

the neighbourhood Aε of the limiting manifold M converges to zero. To this end,

we introduce a family πε of distributions on Rn and a limiting manifold M. The

distribution πε concentrates on neighbourhood of thickness ε of M. A rigorous

definition is given below. We use the Random Walk Metropolis (RWM) algorithm

to explore πε. The influence of the size of the jumps is analysed by adopting the

Expected Squared Jumping Distance ESJD as measure of efficiency. The main

finding (see Theorem 6.2.1 and discussion that follows) is that in the majority of

the cases, in order to explore πε it is optimal to choose the size of the jumps of the

same order of magnitude as the thickness ε. For this choice, we prove a diffusion

limit result (Theorem 6.2.3). This gives quantitative estimates on the complexity

of the RWM algorithm when applied to target concentrating near a manifold. For

simplicity, all the rigorous results are proved for the case where the manifold M
is flat. The diffusion limits that are proven in this section are local in nature;

we thus believe that analogous results hold for general manifold since any smooth

manifold can be regarded as flat (first order approximation) in the neighbourhood

of any point. These conjectures for the general case are discussed with numerical

illustrations in section 6.6. To the best of our knowledge, this is the first time

that a diffusion approximation for MCMC trajectories leads to a diffusion limit

with non-constant volatility. The related article [JLM12] investigates the diffusion

limit of an empirical system of particles where each coordinate can be seen as a

one dimensional MCMC algorithm. The interaction is done through the global

1e.g. assumptions that ensure that the implicit function theorem holds.
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accept-reject mechanism common to the whole system. The measure valued limiting

diffusion of [JLM12] also has a non constant diffusion coefficient; while related, their

result describing a limiting flow of measures is very different from our diffusion limit

that described the diffusive behaviour of a single MCMC trajectory. Our proof is

based on a time-scale separation argument that borrows ideas from [NRY12].

6.2 Main Results

6.2.1 Distributions concentrating near a manifold

As explained above, the rigorous results are proved in the case when the manifold

is flat i.e. an affine subspace of dimension nx of Rn = Rnx × Rny . We will model

this scenario as follows. For each ε > 0 we consider the target distribution πε :

Rnx × Rny 7→ R with density with respect to the n-dimensional Lebesgue measure

πε(x, y) = π(x)πε(y|x) = eA(x) eB(x,y/ε)/εny , (6.2.1)

with ε > 0 being ‘small’ and nx + ny = n. The x-marginal has density eA(x)

independently of the parameter ε > 0. This is a scaled version of the probability

distribution π1 with density eA(x)eB(x,y). Notice that as ε → 0, the sequence of

distributions πε concentrates on the linear subspace M := {(x, y) ∈ Rnx × Rny :

y = 0}. The linear subspaceM has dimension nx. As described in the introduction,

the dimension nx can be thought of as the dimension of the non-identifiability; the

dimension ny can be thought of as the effective dimension of the (possibly noisy)

observation. The term B(x, y/ε) shows that the parameter ε can be thought of as

the thickness of the neighbourhood of M where the distribution πε concentrates.

In the situation mentioned in the introduction, the parameter ε also describes the

intensity of the noise. To obtain samples from πε we consider the Random-Walk

Metropolis (RWM) algorithm proposing moves(
X ′ε

Y ′ε

)
=

(
Xε

Yε

)
+ h(ε)

(
Zx

Zy

)
, (6.2.2)

for scaling factor h(ε) and Gaussian noise (Zx, Zy)
D∼ N(0, Inx+ny). The scaling

factor h(ε) describes the size of the jumps of the RWM algorithm. The influence of

h(ε) on the efficiency of the algorithm is analysed in section 6.2.2. When the context

is clear, we write (X,Y ) instead of (Xε, Yε). We introduce the rescaled coordinate
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Uε and the associate rescaled proposal U ′ε,

Uε = Yε/ε and U ′ε = Uε + h(ε)
ε Zy .

Notice that if (Xε, Yε)
D∼ πε then (Xε, Uε) := (Xε, Yε/ε) is distributed as π1 with

density eA(x)eB(x,u). In the sequel, we interchangeably use the random variables

(Xε, Yε) and (Xε, Uε), keeping in mind that Uε := Yε/ε. To finish the description

of the MCMC algorithm, we need to choose an accept-reject function F . One can

choose any (0, 1]-valued function F satisfying the reversibility condition

erF (−r) = F (r) (6.2.3)

for all r ∈ R. We choose to work with a general accept-reject function F for

conceptual clarity and to emphasise that our results do not depend on the usual

Metropolis-Hastings function FMH(r) = min(1, er). The move (X,Y ) 7→ (X ′, Y ′), or

equivalently (X,U) 7→ (X ′, U ′), is then accepted with probability F
(

log πε(X′,Y ′)
πε(X,Y )

)
.

For the usual Metropolis-Hastings accept-reject mechanism, the acceptance prob-

ability indeed also reads a(X,U,Zx, Zy) = min
(
1, πε(X

′,U ′)
πε(X,U)

)
. For target density

(6.2.1) the acceptance probability reads

a(X,U,Zx, Zy) = F
(
A(X ′)−A(X) +B(X ′, U ′) +B(X,U)

)
. (6.2.4)

Notice that any function F satisfying the reversibility condition (6.2.3) is dominated

by the Metropolis-Hasting function FMH in the sense that the inequality F (r) ≤
FMH(r) holds for any r ∈ R.

6.2.2 Expected Squared Jumping Distance

In this section we choose to work with the Expected Squared Jumping Distance

(ESJD) as an index of the efficiency of MCMC algorithms, as it allows for transpar-

ent, explicit calculations. See section 2.3.1 and [RR01; BRS09; PG10] and references

therein for motivations behind the ESJD. Since only the x-coordinate matters in the

limiting regime ε → 0 (because the y-coordinates is of order O(ε) under πε), only

the x-coordinate is taken into account in the definition of the ESJD. Consequently,

we consider instead the modified ESJD instead,

ESJD(ε) = E
[∥∥Xk+1 −Xk

∥∥2
]
.
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The expectation is taken at stationarity (Xk, Yk)
D∼ πε. We analyse the asymptotic

behaviour of the ESJD for different choices of scaling factor h(ε) = εγ .

Theorem 6.2.1. (Asymptotic analysis of the ESJD) Let γ ≥ 0 be a nonneg-

ative exponent. Assume that the scaling factor is of the form h(ε) = εγ. In the

limiting regime ε→ 0 we have

ESJD(ε) � ε2γ+ny max(0,1−γ).

Proof. The proof is routine and thus only sketched. If γ > 1 the mean accep-

tance probability converges to 1 (since the proposed jumps are of size O(εγ) and

πε concentrates on a neighbourhood of thickness ε around M) and consequently

ESJD(ε) ∼ h(ε)2. In other words, for γ > 1 we have ESJD(ε) ∼ ε2γ . In general,

the ESJD(ε) is equivalent to h(ε)2 Eπε
[
F
(
B(X, ε−1Y +ε−1h(ε)Zy)−B(X, ε−1Y )

)]
,

which is proportional to the integral

h(ε)2−dyεdy
∫∫∫

x,y,z
F
(
B(x, y + z)−B(x, y)

)
e
− ‖z‖2

2(h(ε)/ε)2 eA(x)+B(x,y) dx dy dz.

For γ < 1 we have h(ε)/ε→∞ and the triple integral converges to a constant that

does not depend on ε. This shows that for γ < 1 we have ESJD(ε) � h(ε)2−dyεdy =

εdy+γ(2−dy). For γ = 1, the situation is even simpler since the triple integral does

not depend on ε.

The behaviour of ε2γ+ny max(0,1−γ) depends on the dimension ny of the y-coordinate.

Maximisation of the ESJD is equivalent to minimisation of the quantity 2γ +

ny max(0, 1− γ).

• For ny = 1, the optimal exponent is γ∗ = 0 and in this case we have

ESJD(ε) � ε.

• For ny = 2, any exponent 0 ≤ γ∗ ≤ 1 leads to the asymptotics

ESJD(ε) � ε2.

• For ny ≥ 3, the optimal exponent is γ∗ = 1 and in this case we have

ESJD(ε) � ε2.
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An important corollary is that for ny ≥ 3, it is optimal (if the ESJD is

adopted as a measure of effiviency) to choose a scaling factor h(ε) of order O(ε).

In other words, for ny ≥ 3 (i.e. when the effective dimension of the observation is

at least equal to three) it is optimal to choose the jump size h(ε) of the same order

of magnitude as the thickness ε. To go further in this direction, we analyse the

behaviour of the algorithm when the scaling factor is of the form h(ε) = ` ε for some

tuning parameter ` > 0. One can verify that the asymptotic behaviour of the ESJD

as a function of the parameter ` > 0 is given by

lim
ε→0

ESJD(ε, `)

ε2
= `2 E

[
F
(
B(X,U + ` ZY )−B(X,U)

)]
where (X,U)

D∼ π1 is the probability distribution with density eA(x)eB(x,u) and

ZY
D∼ N(0, Iny). There is typically no closed form available for the optimal tuning

parameter `∗ = argmax`
{
` 7→ `2 E

[
F
(
B(X,U + ` ZY ) − B(X,U)

)]}
. Contrary to

previous optimality results [RGG97; RR98; RR01; Béd07], the value of `∗ depends

on the form of the target distribution πε.

6.2.3 Diffusion limit

As described in section 6.2.2, for dimension ny ≥ 3 it is optimal to choose a scaling

factor h(ε) of order O(ε). To go further in this direction, we study in this section

the behaviour of the RWM algorithm, as ε → 0, for a scaling factor of the form

h(ε) = ` ε where ` > 0 is a tuning parameter. In order to state our main result, it

is useful to introduce the quantity

a0(x, `) =

∫
Rny

E
[
F
(
B(x, u+ ` Zy)−B(x, u)

)]
eB(x,u) du (6.2.5)

as well as the time scale T (ε) = ε−2. The quantity a0(x, `) is the limiting acceptance

probability, as ε→ 0, of the RWM algorithm when conditioned on the x-coordinate.

Indeed, one can verify that a0(x, `) can also be expressed as

a0(x, `) = lim
ε→0

Eπε
[
a(Xε, Uε, Zx, Zy) |Xε = x

]
.

As it will become clear from our diffusion limit analysis, the time scale T (ε) is the

natural time scale on which the x-coordinate process {Xε,k}k≥0 evolves. Our main

result states that the accelerated processes

X̃ε,t := Xε,bt·T (ε)c (6.2.6)
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converges weakly, as ε→ 0, to a non-trivial diffusion process. For this reason, T (ε)

is called ‘diffusive time scale’ in the sequel. For a density π on Rn and volatility

function σ : Rn → (0;∞) we introduce the function drift(π, σ2) : Rn → Rn given by

drift(π, σ2) : x 7→ 1

2

(
σ2∇ log π(x) +∇σ2(x)

)
.

Under mild assumptions 2 on the density π and the volatility function σ, the function

drift(π, σ2) is such that the diffusion process

dDt = drift(π, σ2)(Dt) dt+ σ(Dt) dWt

is reversible with respect to the probability distribution π. The case σ ≡ Cst

corresponds to the Langevin diffusion dD = σ2

2 ∇ log π dt + σ dW . For our main

scaling limit to hold, we assume regularity and growth assumptions on the functions

A : Rnx → R and B : Rnx × Rny → R. These conditions are mainly technical.

Assumptions 6.2.2. (Growth and Regularity Assumptions on π)

The first two derivatives of the functions A : Rnx → R and B : Rnx × Rny → R are

bounded by a polynomial of degree p ≥ 1. Moreover, there exists an exponent η > 0

such that the following moment condition holds,

Eπ1

[
(1 + ‖X‖+ ‖U‖)2p+η

]
< ∞, (6.2.7)

where (X,U)
D∼ π1 has density eA(x)eB(x,u).

Assumptions 6.2.2 implies the existence of an integer p ≥ 1 such that the norm

of the quantities A(x) and B(x, u) and their first two derivatives are less than a

constant multiple of
(
1 + ‖x‖+ ‖u‖

)p
. This estimate is used at several places in the

proof of our main result. The main theorem of this section is the following. The

proof is described in section 6.3.

Theorem 6.2.3. Let T > 0 be a fixed finite time horizon. Assume that assumptions

6.2.2 hold and that the RWM algorithm is started in stationarity, (Xε,0, Yε,0)
D∼ πε.

As ε → 0, the sequence of accelerated processes {X̃ε,t}t∈[0,T ] converges weakly in

the Skorohod space D([0, T ],Rnx) to the diffusion process {Dt}t∈[0,T ] specified as the

solution of the stochastic differential equation

dDt = drift
(
π, σ2)(Dt) dt+ σ(Dt) dWt (6.2.8)

2e.g. the functions drift(π, σ2) : Rn → Rn and σ are Lipschitz and linearly bounded
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where W is a standard Brownian motion in Rnx. The local volatility function is

given by σ2(x, `) = `2 a0(x, `). The initial distribution is D0
D∼ π.

The diffusion (6.2.8) is ergodic and reversible with respect to π. The diffusive

time scale T (ε) = ε−2 shows that the algorithmic complexity of the RWM grows as

O(ε−2) as the thickness ε goes to zero. The limiting rescaled ESJD can directly be

read from the volatility coefficient of the limiting diffusion (6.2.8),

lim
ε→0

ESJD(ε, `)

ε2
= E

[
σ2(X, `)

]
where X

D∼ π and σ2(x, `) = `2 a0(X, `). In the case where the function (x, y) 7→
B(x, y) does not depend on the x-coordinate, the limiting acceptance probability a0

does not depend on the local position x anymore, a0(x, `) = a0(`). In this case the

optimal value for the parameter ` is given by `∗ = argmax `2 a0(`), which leads to a

0.234-type optimality result as described in [RGG97]. In general, the optimisation of

the limiting ESJD is difficult. The Dirichlet form [Fuk80] associated to the diffusion

(6.2.8) reads

D(ϕ) :=
1

2

∫
Rnx

∥∥∇ϕ(x)
∥∥2
σ2(x, `) π(dx).

The spectral gap of the diffusion (6.2.8) equals λ = supϕ D(ϕ) where the supremum

runs over the class of smooth test functions satisfying π(ϕ) = 0 and π(ϕ2) = 1. The

maximisation of the ESJD is equivalent to maximising the Dirichlet form over the

class of affine functions. In general, the maximisation of the spectral gap and the

maximisation of the ESJD thus lead to different answers.

In an attempt to reconcile the different notions of optimality, we adopt

slightly more general proposals. The variance of the proposals is allowed to de-

pend on the current position; the tuning parameter ` = `(x) > 0 is now allowed to

depend on the x-coordinate,(
X ′ε

Y ′ε

)
=

(
Xε

Yε

)
+ `(x) ε

(
Zx

Zy

)
. (6.2.9)

In other words, when the RWM Markov chain stands at (x, y) ∈ Rn, a Gaussian

jump of size `(x) ε is proposed. We now state assumptions on the function x 7→ `(x)

that allows diffusion limit results to holds.

Assumptions 6.2.4. (Regularity Assumptions on x 7→ `(x) )
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The function ` is positive, bounded away from zero and infinity. The first two

derivatives of ` are also bounded.

Under the regularity assumption 6.2.4 on the function x 7→ `(x) the analogue

of Theorem 6.2.3 holds. We choose to work in this limited setup so that the proof of

the next theorem is a straightforward adaption of Theorem 6.2.3. The accelerated

version (6.2.6) of the x-coordinate process converges to a diffusion process.

Theorem 6.2.5. Let T > 0 be a fixed finite time horizon. Assume that assumptions

6.2.2 and 6.2.4 hold and that the RWM algorithm is started in stationarity. As

ε → 0, the sequence of processes {X̃ε,t}t∈[0,T ] converges weakly in the Skorohod

space D([0, T ],Rnx) to the diffusion process {Dt}t∈[0,T ] specified as the solution of

the stochastic differential equation

dDt = drift
(
π, σ2)(Dt) dt+ σ(Dt) dWt (6.2.10)

where W is a standard Brownian motion in Rnx. The local volatility function is

given by σ2(x) = `2(x) a0

(
x, `(x)

)
. The initial distribution is D0

D∼ π.

The only difference with Theorem 6.2.3 is the form of the volatility function

σ. As before, the limiting distribution (6.2.10) is reversible with respect to π and

the Dirichlet form reads

D(ϕ) :=
1

2

∫
Rnx

∥∥∇ϕ(x)
∥∥2
`2(x)a0

(
x, `(x)

)
π(dx).

Since the parameter ` = `(x) is a function of the x-coordinate, the optimal choice

`∗(x) for the tuning parameter ` is

`∗(x) := argmax`>0 `
2 a0(x, `). (6.2.11)

As described in [RR12], the choice (6.2.11) maximises the ESJD, the spectral gap

of the limiting diffusion (6.2.10) and the asymptotic variance of MCMC estimators.

6.3 Proof of Theorem 6.2.3

Let us first give a high-level description of the proof. We introduce an intermediate

time scale T̃ (ε) = ε−γ and the sub-sampled process {(sε,k, vε,k)}k≥0 defined as

(Sε,0, Sε,1, Sε,2, . . .) = (Xε,0, Xε,bT̃ (ε)c, Xbε,2 T̃ (ε)c, . . .)

(Vε,0, Vε,1, Vε,2, . . .) = (Uε,0, Uε,bT̃ (ε)c, Uε,b2 T̃ (ε)c, . . .).
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The value of the exponent 0 < γ < 2 is discussed later. The intuition behind the

time scale T̃ (ε) is that on this scale the x-process evolves slowly (i.e. Sε,k ≈ Sε,k+1)

while the y-process has the time to mix (i.e. Vε,k+1 is approximately independent

from Vε,k). The time scale T̃ (ε) is intermediate between the original time scale (i.e.

the non accelerated process) and the diffusive time scale T (ε). We then prove that

the sequence of accelerated processes

S̃ε,t = S
ε,bt·T (ε)/T̃ (ε)c (6.3.1)

converges weakly in D([0, T ],Rnx) to the limiting diffusion (6.2.8). Since the value

of X̃ε,t is close to the value of S̃ε,t, the diffusion limit for the process {X̃ε,t}t∈[0,T ]

easily follows.

We now proceed to the rigorous proof of Theorem 6.2.3. To simplify the

presentation, we assume that the accept-reject function F satisfying equation (6.2.3)

is continuously differentiable with bounded first derivative and second derivative. In

particular, F is a Lipschitz function. We denote by L the generator of the diffusion

process in Theorem 6.2.3. The generator L̃ε of the process S̃ε,t is

L̃εϕ(x, u) = E
[ ϕ(Sε,1)− ϕ(Sε,0)

T̃ (ε)/T (ε)

∣∣Sε,0 = x, Vε,0 = u
]

(6.3.2)

≡ 1

T̃ (ε)
E
[ bT̃ (ε)c−1∑

j=0

Lεϕ(Xε,j , Uε,j)
∣∣Xε,0 = x, Uε,0 = u

]

where Lε is the one-step generator of the process X̃ε,t,

Lεϕ(x, u) = E
[ ϕ(Xε,1)− ϕ(Xε,0)

1/T (ε)

∣∣Xε,0 = x, Uε,0 = u
]
. (6.3.3)

The second equality of equation (6.3.2) follows from the telescoping expansion Sε,1−
Sε,0 =

∑bT̃ (ε)c−1
j=0 (Xε,j+1 −Xε,j). In other words, the generator L̃ε is the average of

the one-step generator Lε over T̃ (ε) steps. The process Xε needs to be accelerated

by a factor T (ε) in order to observe a non trivial diffusion limit. Similarly, since the

process Sε is an accelerated (by a factor T̃ (ε)) version of Xε,the process Sε needs

to be accelerated by a factor T (ε)/T̃ (ε) in order to observe the same non trivial

diffusion limit. For clarity, we now proceed in two steps. First, in section 6.3.1

we prove that the sequence {S̃ε,t}t∈[0,T ] converges weakly, as ε→ 0, to the limiting

diffusion (6.2.8). We then explain in section 6.3.2 how this implies the convergence
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of the sequence {X̃ε,t}t∈[0,T ] to the same limiting diffusion, finishing the proof of

Theorem 6.2.3.

6.3.1 The sequence S̃ε,t converges weakly to the limiting diffusion

(6.2.8)

To prove that the sequence of processes {S̃ε,t}t∈[0,T ] converges weakly in the Skoro-

hod space D([0, T ],Rnx) to the diffusion process (6.2.8), we use an approach based

on generators. We prove that the sequence of generators L̃ε of the processes S̃ε con-

verges (in a sense made precise below) to the generator L of the limiting diffusion

(6.2.8). Since the class C of smooth and compactly supported functions form a core

for the generator L of the diffusion (6.2.8), to prove that the sequence of processes

{S̃ε,t}t∈[0,T ] converges weakly to the diffusion process (6.2.8) it suffices to check that

the following two conditions are satisfied.

1. The sequence of {S̃ε,t, Ṽε,t}t∈[0,T ] is relatively weakly compact under the ap-

propriate topology. To this end, it suffices to prove that for any smooth and

compactly supported test function ϕ ∈ C we have

sup
{
Eπ1

[ ∣∣∣L̃εϕ(X,U)
∣∣∣ ] : ε ∈ (0, 1)

}
< ∞. (6.3.4)

with (X,U)
D∼ π1. This is Equation 8.9 of Theorem 8.2 of [EK86]. This

implicitly uses the fact that if the Markov chain is started at stationarity,

(S̃ε,0, Ṽε,0)
D∼ π1, then for any fixed time t > 0 we also have (S̃ε,t, Ṽε,t)

D∼
(X,U)

D∼ π1.

2. The sequence of generators L̃ε converges to the generator L of the limiting

diffusion (6.2.8) in the sense that for any smooth and compactly supported

test function ϕ ∈ C the following holds,

lim
ε→0

Eπ1

[ ∣∣∣L̃εϕ(X,U)− Lϕ(X)
∣∣∣ ] = 0 (6.3.5)

with (X,U)
D∼ π1. This is Equation 8.13 of Remark 8.3 of [EK86], again using

the fact that if the Markov chain is started at stationarity then for any fixed

time t > 0 we also have (S̃ε,t, Ṽε,t)
D∼ (X,U)

D∼ π1

The conditions (6.3.4) and (6.3.5) are enough to guaranty the convergence of the

sequence of processes {S̃εt}t∈[0,T ] to the limiting diffusion (6.2.8) mainly because the

class of test functions C is representative enough (i.e. it is a core of the generator L
of the diffusion (6.2.8)) in order to characterise weak convergence. For more details
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on this method of proof based on generators, see Chapter 4 of [EK86] and articles

[Béd07; RGG97; RR98].

As a first step toward equations (6.3.4) and (6.3.5), we prove that for test

function ϕ ∈ C the following limit exists, limε→0 Lεϕ(x, u) = A(ϕ, x, u). The limiting

quantity A(ϕ, x, u) is not in general the generator of a Markov process. It is given

by

A(ϕ, x, u) = `2 E
[
F ′(δB)∇x

{
A(x) +B(x, u+ `Zy)

}]
∇ϕ(x) (6.3.6)

+
1

2
`2 E

[
F (δB)

]
∆ϕ(x)

where for notational convenience we have defined δB = B(x, u+`Zy)−B(x, u). The

next proposition, whose proof is postponed to section 6.5.1, gives a quantitative rate

for the convergence of Lεϕ(x, u) towards A(ϕ, x, u).

Proposition 6.3.1. Let assumptions 6.2.2 be satisfied and ϕ ∈ C be a test function.

The following identity holds

Lεϕ(x, u) = A(ϕ, x, u) + e1(x, u, ε) (6.3.7)

with the error term satisfying limε→0 E
∣∣e1(X,U, ε)

∣∣ = 0 where (X,U)
D∼ π1.

Plugging estimate (6.3.7) into the telescoping equation (6.3.2), it follows that the

generator L̃ε verifies

L̃εϕ(x, u) =
1

T̃ (ε)
Ex,u

[ bT̃ (ε)c−1∑
j=0

A(ϕ,Xε,j , Uε,j)
]

+ e2(x, u, ε).

Again, the error term satisfies limε→0 E
∣∣e2(X,U, ε)

∣∣ = 0 with (X,U)
D∼ π1. We now

define a coupling between the original Markov chain (Xε,k, Yε,k)≥0 starting from

Xε,0 = x0 and a new Markov chain {x0, Yx,ε,k}k≥0 starting from the same position

i.e. satisfying
(
Xε,0, Yε,0

)
=
(
x0, Yx,ε,0

)
. Contrarily to the original Markov chain,

the x-coordinate of the new Markov chain remains still. The y-coordinate of the

new Markov chain is a RWM Markov chain targeting the probability distribution

πε(Y ∈ dy |X = x0) on Rny with density proportional to eB(x0,y/ε). The proposals

of the new Markov chain {Yx0,ε,k}k≥0 are

Y ′x0,ε,k = Yx0,ε,k + h(ε)Zy,k . (6.3.8)
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Since h(ε) = `ε, equation (6.3.8) also reads U ′x0,ε,k
= Ux0,ε,k + ` Zy,k where we have

defined the rescaled y-coordinate process Ux0,ε,k := Yx0,ε,k/ε. The rescaled Markov

chain {Ux0,ε,k}k≥0 is a RWM Markov chain with target distribution π1(U ∈ du |X =

x0) that has eB(x0,u) as density. Notice that the same source of randomness Zy,k is

used to construct the two processes {Yε,k}k≥0 and {Yx0,ε,k}k≥0. The accept-reject

mechanism can be described by{
Uε,k+1 − Uε,k = `Zy,k · 1I [ ξk ≤ a(Xε,k, Uε,k, Zx,k, Zy,k) ]

Ux0,ε,k+1 − Ux0,ε,k = `Zy,k · 1I [ ξk ≤ a(x0, Ux0,ε,k, 0, Zy,k) ],
(6.3.9)

where {ξk}k≥0 are i.i.d. random variables uniformly distributed on (0, 1) and inde-

pendent from all other sources of randomness. In other words, the same source of

randomness {ξk}k≥0 is used for the accept-reject mechanisms of the two Markov

chains (Xε,k, Uε,k) and (Xε,x0,k, Ux0,ε,k). The next proposition, whose proof is post-

poned to section 6.5.2, shows that the error committed by replacing Uε,k by Ux0,ε,k

and by fixing the x-coordinate (i.e. by replacing Xε,k by Xε,0 = x) in equation

(6.3.7) in negligible. This is mainly because for k ≤ T̃ (ε) iterations, the heuristic

Xε,k ≈ Xε,0 holds.

Proposition 6.3.2. Let assumptions 6.2.2 be satisfied and ϕ ∈ C be a test function.

Suppose further that the exponent γ has been chosen so that 0 < γ < 1
2p+1 where

p ≥ 1 is given by assumptions 6.2.2. Then the following identity holds

L̃εϕ(x, u) =
1

T̃ (ε)
Ex,u

[ bT̃ (ε)c−1∑
j=0

A(ϕ, x, Ux,ε,j)
]

+ e3(x, u, ε) (6.3.10)

with the error term satisfying limε→0 E
∣∣e3(X,U, ε)

∣∣ = 0 where (X,U)
D∼ π1.

The advantage of representation (6.3.10) over equation (6.3.2) is that the right-

hand side only involves the process {Ux,ε,k}k≥0. In other, we have an expression of

the type L̃εϕ(x, u) = E
[

1
N

∑N−1
k=0 Φ(Ux,ε,j)

]
+ (negligible error) with N = T̃ (ε) and

Φ(·) = A(ϕ, x, ·). Consequently, since {Ux,ε,k}k≥0 is an ergodic Markov chain with

invariant distribution π1(U ∈ du |X = x), the ergodic theorem for Markov chains

shows that L̃εϕ(x, u) converges to E
[
A(ϕ,X,U)

∣∣X = x
]

as ε→ 0. The next lemma

show that E
[
A(ϕ,X,U)

∣∣X = x
]

= Lϕ(x), where L is the generator of the limiting

diffusion (6.2.8).

Lemma 6.3.3. Let L be the generator of the limiting diffusion (6.2.8) and A(ϕ, x, u)

be the quantity defined in equation 6.3.6. For any test function ϕ ∈ C we have
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ideneity holds,

E
[
A(ϕ,X,U)

∣∣X = x
]

= Lϕ(x)

where (X,U)
D∼ π1.

The proof of Lemma 6.3.3 is a routine calculation whose details can be found in

section 6.5.3. It follows that as ε → 0 the quantity L̃εϕ(x, u) converges to Lϕ(x).

This result is the content of the next proposition whose detailed proof can be found

in section 6.5.4.

Proposition 6.3.4. Let assumptions 6.2.2 be satisfied and ϕ ∈ C be a test function.

The following limit holds,

L̃εϕ(x, u) = Lϕ(X) + e4(x, u, ε),

with the error term satisfying limε→0 E
∣∣e4(X,U, ε)

∣∣ = 0 where (X,U)
D∼ π1.

Notice that equation (6.3.5) is a rewording of proposition 6.3.4. To finish the

proof of Theorem 6.2.3 it thus remains to verify if assumptions 6.2.2 are satisfied

then equation (6.3.4) holds. Thanks to proposition 6.3.4, it suffices to check that

E
∣∣Lϕ(X)

∣∣ <∞ with X
D∼ π, which easily follows from assumptions 6.2.2.

6.3.2 The sequence X̃ε,t converges weakly to the limiting diffusion

(6.2.8)

In section 6.3.1 we have proved that the sequence of processes {S̃ε,t}t∈[0,T ] converges

weakly in D([0, T ],Rnx) to the limiting diffusion (6.2.8). This also implies that the

sequence of processes {S̃ε,t}t∈[0,T ] converges towards the same diffusion if one can

establish that the process X̃ε is close to the process S̃ε in the sense that

lim
ε→0

E
[

sup
t∈[0,T ]

∥∥X̃ε,t − S̃ε,t
∥∥ ] = 0. (6.3.11)

By definition of the processes X̃ε and S̃ε we have that X̃ε,t = Xε,bt·T (ε)c and S̃ε,t =

X
ε,bbt·T (ε/T̃ (ε)c·T̃ (ε)c. For any α, β > 0 we have α− β − 1 ≤ bbα/βc · βc ≤ α+ β + 1

and α−1 ≤ bαc ≤ α+1. Choosing α = t ·T (ε) and β = T̃ (ε) leads to the inequality∣∣∣ bt · T (ε)c− bbt · T (ε)/T̃ (ε)c · T̃ (ε)c
∣∣∣ ≤ T̃ (ε) + 2. The triangular inequality and the

bound
∥∥Xε,j+1 −Xε,j

∥∥ ≤ h(ε) ‖Zx,j‖ imply that

sup
t∈[0,T ]

∥∥X̃ε,t − S̃ε,t
∥∥ ≤ sup

0≤i,j≤T ·T (ε)

{∥∥Xε,i −Xε,j

∥∥ : |i− j| ≤ T̃ (ε) + 2
}
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≤
(
T̃ (ε) + 2

)
× sup

{∥∥Xε,j+1 −Xε,j

∥∥ : j ≤ T · T (ε)
}

≤ h(ε)
(
T̃ (ε) + 2

)
× sup

{∥∥Zx,j∥∥ : j ≤ T · T (ε)
}
.

One can then use the following lemma to control the expectation of the supremum

of independent Gaussian random variables.

Lemma 6.3.5. Let {Zj}j≥0 be independent Rd-valued random variables distributed

as Z
D∼ N(0, Id). There exists a constant Cd depending on the dimension d only such

that for any n ≥ 0 the following inequality holds,

E
[

sup
{∥∥Zx,j∥∥ : j ≤ n

}]
≤ Cd

(
1 +

√
log n

)
Proof. For convenience, we introduce the notation Mn = max{‖Zj‖ : j ≤ n}.
Jensen’s convexity inequality shows that for any λ > 0,

eλE[Mn] ≤ E[eλMn ] = E[sup
j≤n

eλ ‖Zj‖] ≤
∑
j≤n

E[eλ ‖Zj‖] (6.3.12)

Since ‖Zj‖ =
(∑d

i=1

∣∣Zij∣∣2)1/2 is less
∑d

i=1

∣∣Zij∣∣ we can use the bound E[eλ ‖Zj‖] ≤(
E[eλ |ξ|]

)d
where ξ

D∼ N(0, 1) is a standard scalar Gaussian random variables. Plug-

ging the bound E[eλ |ξ|] ≤ 2E[eλ ξ] = 2eλ
2/2 into (6.3.12) leads to the inequal-

ity eλE[Mn] ≤ 2dned λ
2/2. Consequently, for any λ > 0 the inequality E[Mn] ≤

d log 2
λ + logn

λ + d
2λ holds. The choice λ =

√
log n directly leads to the conclusion.

Since h(ε) = ` ε, T (ε) = ε−2 and T̃ (ε) = ε−γ , Lemma 6.3.5 shows that

h(ε)
(
T̃ (ε) + 2

)
× E

[
sup

{∥∥Zx,j∥∥ : j ≤ T · T (ε)
}]
→ 0

for any choice of exponent 0 < γ < 1. This finishes the proof of equation (6.3.11)

and concludes the proof of Theorem 6.2.3.

6.4 Proof of Theorem 6.2.5

The proof is entirely similar to the proof of Theorem 6.2.3. We only describe the

modifications necessary to deal with this more general setting. We define the quan-

tites Sε, S̃ε,Lεϕ, L̃εϕ the same way by equations (6.3.1),(6.3.2),(6.3.3). The accep-

tance probability of the move (X,U)→ (X ′, U ′) reads

F ◦ log
(πε(X ′, U ′) pε((X ′, U ′)→ (X,U)

)
πε(X,U) pε

(
(X,U)→ (X ′, U ′)

) )
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where pε
(
(X,U)→ (X ′, U ′) is the likelihood of the move (X,U)→ (X ′U ′). Propo-

sition 6.3.1 still holds but the limiting quantity A(ϕ, x, u) = limε→0 Lεϕ(x, u) now

reads

A(ϕ, x, u) = E
[
F ′(δB)×

(
`2(x)∇x

{
A(x) +B(x, u+ `Zy)

}
+∇x`2(x)

)]
∇ϕ(x)

+
1

2
`(x)2 E

[
F (δB)

]
∆ϕ(x).

The proof uses a Taylor expansion of Lεϕ(x, u) and assumption 6.2.2,6.2.4 is ex-

ploited to give a control on the error terms. Under boundedness assumptions on the

function x 7→ `(x) the coupling Proposition 6.3.2 is still valid and the rest of the

proof is identical to the proof of Theorem 6.2.3.

6.5 Technical lemmas

Under assumptions 6.2.2 the first two derivatives of the functions x 7→ A(x) and

(x, u) 7→ B(x, u) are bounded by a polynomial of degree p. The mean value theorem

shows that

∣∣A(x+ δ)−A(x)−∇xA(x) · δ
∣∣ . (1 + ‖x‖p + ‖x+ δ‖p) ‖δ‖2 (6.5.1)

. (1 + ‖x‖p + ‖δ‖p) ‖δ‖2.

The second inequality is because (α + β)p . αp + βp for any scalars α, β ≥ 0. One

can write a similar bound for the function B,

∣∣B(x+ δ, u)−B(x, u)−∇xB(x, u) · δ
∣∣ . (1 + ‖x‖p + ‖u‖p + ‖δ‖p) ‖δ‖2.(6.5.2)

6.5.1 Proof of Proposition 6.3.1

With the choice of scaling function h(ε) = ` ε, the proposal (X ′, U ′) = (X+`εZx, U+

` Zy) is accepted with probability a(X,U,Zx, Zy) = F
(
A(X ′)−A(X) +B(X ′, U ′)−

B(X,U)
)
. The one-step generator Lε defined in equation (6.3.3) thus also reads

Lεϕ(x, u) = E
[ϕ(X ′)− ϕ(X)

ε2
a(X,U,Zx, Zy)

∣∣(X,U) = (x, u)
]
. (6.5.3)

We then expand the two terms ϕ(X ′)−ϕ(X) and a(X,U,Zx, Zy) in powers of ε and

control the error terms thanks to equations (6.5.7) and (6.5.2). For a smooth and
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compactly supported test function ϕ ∈ C we have

ϕ(x′)− ϕ(x) = `ε〈∇ϕ(x), Zx〉+
`2ε2

2
〈Zx,∇2ϕ(x)Zx〉+O(ε2 ‖Zx‖3). (6.5.4)

where (x′, u′) = (x+ `εZx, u+ `Zy). Equations (6.5.7) and (6.5.2) shows that

A(x′)−A(x) +B(x′, u′)−B(x, u) = δB + `ε〈∇A(x) +∇xB(x, u′), Zx〉

+O
(
ε2(1 + ‖x‖p + ‖u‖p + ‖Zx‖p + ‖Zy‖p)× ‖Zx‖2

)
where the leading term has been defined as δB = B(x, u′)−B(x, u). Plugging this

back into the definition of the acceptance probability a(X,U,Zx, Zy) and exploiting

the fact that by assumptions the function F has its first two derivatives bounded

one obtains

a(x, u, Zx, Zy) = F (δB) + `ε F ′(δB) 〈∇x
{
A(x) +∇xB(x, u′)

}
, Zx〉 (6.5.5)

+O
(
ε2(1 + ‖x‖2p + ‖u‖2p + ‖Zx‖2p + ‖Zy‖2p)× ‖Zx‖2

)
Bringing together the Taylor expansions (6.5.4) and (6.5.5) into the definition of the

one step generator (6.5.3) shows that Lεϕ(x, u) = A(ϕ, x, u) + e1(x, u, ε) where the

errors terms verifies E[e1(X,U, ε)]→ 0 as ε→ 0 and

A(ϕ, x, u) = `2 E
[
F ′(δB)〈∇ϕ(x), Zx〉 〈∇x

{
A(x) +∇xB(x, u′)

}
, Zx〉

]
+

1

2
`2 E

[
F (∆B)〈Zx,∇2ϕ(x)Zx〉

]
.

Since δB = B(x, u + `Zy) − B(x, u) is independent from the random variable Zx,

the quantity A(ϕ, x, u) can also be written as

A(ϕ, x, u) = `2 E
[
F ′(δB)∇x

{
A(x) +∇xB(x, u+ `Zy)

}]
∇ϕ(x) (6.5.6)

+
1

2
`2 E

[
F (δB)

]
∆ϕ(x).

This finishes the proof of Proposition 6.3.1.

6.5.2 Proof of Proposition 6.3.2

For simplicity, in this section we write X0, Y0, U0 instead of Xε,0, Yε,0, Uε,0. Under

the regularity ssumptions 6.2.2 on the function x 7→ A(x) and (x, u) 7→ B(x, u) and

their derivatives one can check that for any smooth and compactly test function

118



ϕ ∈ C the following bounds hold,

A(ϕ, x, u) . 1 + ‖x‖p + ‖u‖p (6.5.7)∥∥∇xA(ϕ, x, u)
∥∥ . 1 + ‖x‖2p + ‖u‖2p.

Therefore, we have E
[∣∣A(ϕ,X,U)

∣∣] <∞ and E
[∣∣∂xA(ϕ,X,U)

∣∣] <∞ for (X,U)
D∼

π1. In view of Proposition 6.3.1, in order to prove Proposition 6.3.2 it suffices to

establish that if the RWM chain is started at stationarity, i.e. (X0, U0)
D∼ π1, then

for any test function ϕ ∈ C we have

lim
ε→0

1

T̃ (ε)

bT̃ (ε)c−1∑
j=0

E
[ ∣∣∣A(ϕ,X0, UX0,ε,j)−A(ϕ,Xε,j , Uε,j)

∣∣∣ ] = 0. (6.5.8)

The expectation is less than the sum of E
∣∣A(ϕ,X0, UX0,ε,j) − A(ϕ,Xε,j , UX0,ε,j)

∣∣
and E

∣∣A(ϕ,Xj , UX0,ε,j)−A(ϕ,Xε,j , Uε,j)
∣∣. We now control each one of these terms

separately.

From the regularity estimate for the function A(ϕ, x, u) presented in equation (6.5.6)

we can deduce that
∣∣A(ϕ,X0, UX0,ε,j) − A(ϕ,Xε,j , UX0,ε,j)

∣∣ is less than a constant

multiple of

(
1 + ‖X0‖2p + ‖Xε,j‖2p + ‖UX0,ε,j‖2p

)
‖X0 −Xε,j‖. (6.5.9)

One can bound the quantity ‖X0−Xj‖ using the fact that ‖Xk+1−Xk‖ ≤ `ε‖Zk‖ for

any k ≥ 0, which leads to the inequality E‖X0−Xj‖ . jε and similarly E‖Xj‖2p .
E‖X0‖2p + jε2p. Plugging this back into (6.5.9) shows that E

∣∣A(ϕ,X0, UX0,ε,j) −
A(ϕ,Xε,j , UX0,ε,j)

∣∣ . j2p+1 ε so that

1

T̃ (ε)

bT̃ (ε)c−1∑
j=0

E
∣∣A(ϕ,X0, UX0,ε,j)−A(ϕ,Xε,j , UX0,ε,j)

∣∣ . T̃ (ε)2p+1.

Since T̃ (ε) = ε−γ , the upper bound also reads ε1−γ(2p+1), which goes to zero for any

exponent γ satisfying 0 < γ < 1
2p+1 .

To finish the proof, we now verify that 1

T̃ (ε)

∑bT̃ (ε)c−1
j=0 E

∣∣A(ϕ,Xε,j , UX0,ε,j)−A(ϕ,Xε,j , Uε,j)
∣∣

also converges to zero as ε goes to zero. Since the difference
∣∣A(ϕ,Xε,j , UX0,ε,j) −

A(ϕ,Xε,j , Uε,j)
∣∣ also equals 1I(UX0,ε,j 6= Uε,j)×

∣∣A(ϕ,Xε,j , UX0,ε,j)−A(ϕ,Xε,j , Uε,j)
∣∣,

equation (6.5.7) shows that
∣∣A(ϕ,Xε,j , UX0,ε,j)−A(ϕ,Xε,j , Uε,j)

∣∣ is less than a con-
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stant multiple of

1I(UX0,ε,j 6= Uε,j)
(

1 + ‖Xε,j‖p + ‖Uε,j‖p + ‖UX0,ε,j‖p
)
.

Since (X0, U0)
D∼ π1, the stationarity of the RWM algorithm and assumption 6.2.2

show that the expectation E[1+‖Xε,j‖p+‖Uε,j‖p+‖UX0,ε,j‖p] is finite and does not

depend on ε. Consequently, the Cauchy-Schwarz inequality implies that E
∣∣A(ϕ,Xε,j , UX0,ε,j)−

A(ϕ,Xε,j , Uε,j)
∣∣ . P

(
UX0,ε,j 6= Uε,j

)1/2
. To finish the proof, it thus remains to verify

that

lim
ε→0

1

T̃ (ε)

bT̃ (ε)c−1∑
j=0

P
(
UX0,ε,j 6= Uε,j

)1/2
= 0.

To this end, we will bound the quantity P
(
UX0,ε,j 6= Uε,j

)
. The definition (6.3.9)

of the coupling between the Markov chains {(Xε,k, Uε,k}k≥0 and {(X0, UX0,ε,k}k≥0

shows that Uε,k = UX0,ε,k if, and only if, the proposals U ′ε,j and U ′X0,ε,j
for j ≤ k− 1

have all been accepted or rejected at the same time. This happens if 1I [ ξk ≤
a(Xε,j , Uε,j , Zx,j , Zy,j) ] = 1I [ ξk ≤ a(X0, UX0,ε,j , 0, Zy,j) ] for all j ≤ k − 1. The

probability P
(
UX0,ε,j 6= Uε,j

)
thus equals

E
[
1−

k−1∏
j=0

(
1−

∣∣a(Xε,j , Uε,j , Zx,j , Zy,j)− a(X0, Uε,j , 0, Zy,j)
∣∣)],

which is inferior to
∑k−1

j=0 E
∣∣a(Xε,j , Uε,j , Zx,j , Zy,j)−a(X0, Uε,j , 0, Zy,j)

∣∣. Since a(x, u, Zx, Zy) =

F
(
A(x + Zx) − A(x) + B(x + Zx, u + Zy) − b(x, u)

)
and F is a Lipschitz function

and one can control the quantity A(x+Zx)−A(x) and B(x+Zx, u+Zy)− b(x, u)

thanks to assumptions 6.2.2, routine algebra shows that E
∣∣a(Xε,j , Uε,j , Zx,j , Zy,j)−

a(X0, Uε,j , 0, Zy,j)
∣∣ is less than a constant multiple of

(1 + ‖X0‖p + ‖Xε,j‖p + ‖Uε,j‖p + ‖Zx,j‖p + ‖Zy,j‖p) · (ε‖Zx,j‖+ ‖Xε,j −X0‖).

By the triangle inequality we have ‖Xε,j − X0‖ . ε
(
‖Zx,0‖ + . . . + ‖Zx,j−1‖

)
.

Therefore, using Cauchy-Schwarz inequality and Holder’s inequality, it follows that

E
∣∣a(Xε,j , Uε,j , Zx,j , Zy,j)−a(X0, Uε,j , 0, Zy,j)

∣∣ . jε and therefore P
(
UX0,ε,j 6= Uε,j

)
.∑k−1

j=0 kε . k2 ε. Because T̃ (ε) = ε−γ , putting all these inequalities together leads
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to the bound

1

T̃ (ε)

bT̃ (ε)c−1∑
j=0

E
∣∣A(ϕ,Xε,j , UX0,ε,j)−A(ϕ,Xε,j , Uε,j)

∣∣ . ε
1
2
−γ . (6.5.10)

Equations (6.5.9) and (6.5.10) together imply that equation (6.5.8) holds. This

finishes the proof of Proposition 6.3.2.

6.5.3 Proof of Lemma 6.3.3

To keep this exposition as simple as possible, we suppose that ` = 1 and nx = ny = 1.

The multi-dimensional case is entirely similar. The proof of Lemma 6.3.3 consists

in verifying that for all x ∈ R the following identity holds,∫
u∈R
A(ϕ, x, u) eB(x,u) du = Lϕ(x) (6.5.11)

where L is the generator of the limiting diffusion (6.2.8), ϕ ∈ C is a test function in

the core of L and A(ϕ, x, u) reads

A(ϕ, x, u) = E
[
F ′(δB)

(
A′(x) + ∂xB(x, u+ Z)

)]
ϕ′(x) +

1

2
E
[
F (δB)

]
ϕ
′′
(x)

where δB = B(x, u+Z)−B(x, u) and Z
D∼ N(0, 1). The proof is a routine calculation

that is based on the symmetry of the Gaussian distribution ,i.e. Z
D∼ −Z for

Z
D∼ N(0, 1), and exploits the fact that the accept-reject function F verifies the

reversibility condition (6.2.3). More specifically, the derivative of equation (6.2.3)

also reads

F (r) = F ′(r) + erF ′(−r) for all r ∈ R. (6.5.12)

This identity also hods for the Metropolis-Hastings function FMH(r) = min(1, er)

but has to be interpreted in the sense of distributions. In the scalar case nx = 1

with ` = 1, the generator of (6.2.8) reads Lϕ(x) = 1
2

(
a0(x)A′(x) + a′0(x)

)
ϕ′(x) +

1
2a0(x)ϕ

′′
(x) where a0(x) := a0(x, 1) is the mean acceptance probability a0(x) =∫

u∈R E[F (δB)] eB(x,u) du. To prove Equation (6.5.11) it suffices to verify that

E
[
F ′(δB)∂xB(x, u+ Z)

]
=

1

2
a′0(x) and E

[
F ′(δB)

]
=

1

2
a0(x). (6.5.13)
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Let us prove that the first identity holds. Assumptions 6.2.2 justify the following

derivation under the integral sign,

∂xa0(x) =

∫
E[F ′(δB)

(
∂xB(x, u+ Z)− ∂xB(x, u)

)
+ F (δB)∂xB(x, u)] eB(x,u) du

Equation (6.5.12) shows that one can F (δB) also equals F ′(δB)+F (−δB)eδB. Since

eδBeB(x,u) = eB(x,u+Z), we have

∂xa0(x) =

∫
E[F ′(δB)∂xB(x, u+ Z)eB(x,u)] du

+

∫
E[F ′(−δB)∂xB(x, u)eB(x,u+Z)] du.

The symmetry of the Gaussian distribution Z
D∼ N(0, 1) then shows that∫

E[F ′(δB)∂xB(x, u+ Z)eB(x,u)] du =

∫
E[F ′(−δB)∂xB(x, u)eB(x,u+Z)].

This concludes the proof of the first identity of (6.5.13). The proof of the second

identity is similar and more simple, and thus omitted.

6.5.4 Proof of Proposition 6.3.4

To prove Proposition 6.3.4 one needs to establish that

lim
N→∞

E
∣∣∣ 1

N

N∑
k=1

A(ϕ,X,UX,k)− Lϕ(X)
∣∣∣ = 0 (6.5.14)

where (X,UX,0)
D∼ π1 and for every x0 ∈ Rnx the process {Ux0,k}k≥0 is a RWM

Markov chain with target distribution π1(U ∈ du |X = x0) = eB(x0,u) du as described

by equation (6.3.9). The bound (6.5.7) implies that E
∣∣A(ϕ,X,U)

∣∣ <∞ so that for

π-almost every x0 ∈ Rnx we have∫
u∈Rny

∣∣A(ϕ, x0, u)
∣∣ eB(x0,u) du <∞.

For such a x0 ∈ Rnx , the ergodic theorem for Markov chain shows that the set Sx0

of starting position Ux0,0 = u0 ∈ Rny such that 1
N

∑N
k=1A(ϕ, x0, Ux0,k) converges

almost surely to Lϕ(x0) has full measure
∫
Sx0

eB(x0,u) du = 1. Consequently, the
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convergence

∣∣∣ 1

N

N∑
k=1

A(ϕ,X,UX,k)− Lϕ(X)
∣∣∣→ 0 (6.5.15)

holds almost surely with (X,UX,0)
D∼ π1. To prove that the convergence actually

holds in L1 as described by equation (6.5.14) it suffices to prove that the sequence{
1
N

∑N
k=1A(ϕ,X,UX,k)−Lϕ(X)

}
N≥1

is uniformly integrable. To this end, one can

prove that the family is bounded in L2,

sup
N≥1

E
∣∣∣ 1

N

N∑
k=1

A(ϕ,X,UX,k)− Lϕ(X)
∣∣∣2 < ∞. (6.5.16)

By stationarity we have (X,UX,k)
D∼ π1 for any k ≥ 0. The generalised mean

inequality thus implies that

E
∣∣∣ 1

N

N∑
k=1

A(ϕ,X,UX,k)− Lϕ(X)
∣∣∣2 ≤ 1

N

N∑
k=1

E
∣∣∣A(ϕ,X,UX,k)− Lϕ(X)

∣∣∣2
.

1

N

N∑
k=1

E
∣∣A(ϕ,X,UX,k)

∣∣2 + E
∣∣Lϕ(X)

∣∣2
. E

∣∣A(ϕ,X,UX,0)
∣∣2 + E

∣∣Lϕ(X)
∣∣2 <∞

where the last inequality follows from the growth assumptions on A and B. This

finishes the proof of the L2-boundedness (6.5.16) which in turn finishes the proof of

Proposition 6.3.4.

6.6 Conjectures

In this chapter, all the proofs of diffusion limit results have been described under the

assumption that the limiting manifoldM is flat. The advantage of this assumption

is that it is relatively straightforward to described the limiting diffusion process

since it is simply a diffusion process evolving on a linear subspace of Rn i.e. there is

no need of stochastic geometry to define the limiting process. In the more general

setting where the limiting manifold M is possibly non-linear, a diffusion limit of

the same type is conjectured to hold. Indeed, since a general manifold is locally

flat and our diffusion limits results are local in nature, all the results proved in

this chapter are expected to hold for non-flat limiting manifolds. In particular, to
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explore a target probability distribution πε concentrated on an ε-neighbourhood of

a limiting manifold M ⊂ Rn with dimension dim(M) ≤ n − 3, a RWM algorithm

should use jumps of size with magnitude O(ε). The resulting Markov chain behaves

like a diffusion walking on the manifold M if time is accelerated by a factor ε−2.

To illustrate this point, we carry numerical simulations on a non-linear toy

problem. We consider the sequence of distributions πε on R2 with density propor-

tional to

πε(x, y) ∝ exp
{
− (x2 + y2/4− 1)2

2 ε2

}
. (6.6.1)

The distribution πε is concentrated on an ε-neighbourhood of the ellipse M :=

{(x, y) ∈ R2 : x2 + y2

4 = 1}. The RWM algorithm with jump of size ε is used to

explore πε. Proposals are given by (x′, y′) = (x + εZx, y + εZy) with (Zx, Zy)
D∼

N(0, I2) and the accept-reject mechanism is given by the usual Metropolis-Hastings

function FMH(r) = min(1, er). A generalisation of Theorem 6.2.3 would imply that

as ε → 0 the algorithmic complexity of this RWM algorithm scales as O(ε−2). To

illustrate this conjecture, the algorithm is started at (Xε,0, Yε,0) = (0, 2) ∈ M and

the hitting time τε := inf{k ≥ 0 : Yε,k ≤ 1} is recorded. It is expected that τε is of

order O(ε−2). Figure 6.6 is Monte-Carlo estimate of E[τε] as ε converges to zero.
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Figure 6.1: RWM algorithm with proposals (x′, y′) = (x + εZx, y + εZy) is used
to explore the target distribution 6.6.1. The algorithm is started at (Xε,0, Yε,0) =
(0, 2) ∈ M and the mean hitting time τε := inf{k ≥ 0 : Yε,k ≤ 1} is analysed. The
blue curve represents the mean hitting time ± two standard deviations. The dotted
red line represents ε−2.
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