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Abstract

Cooperation and coordination between agents are fundamental processes for in-
creasing aggregate and individual benefit in open Multi-Agent Systems (MAS).
The increased ubiquity, size, and complexity of open MAS in the modern world
has prompted significant research interest in the mechanisms that underlie co-
operative and coordinated behaviour. In open MAS, in which agents join and
leave freely, we can assume the following properties: (i) there are no centralised
authorities, (ii) agent authority is uniform, (iii) agents may be heterogeneously
owned and designed, and may consequently have conflicting intentions and in-
consistent capabilities, and (iv) agents are constrained in interactions by a com-
plex connecting network topology. Developing mechanisms to support cooper-
ative and coordinated behaviour that remain effective under these assumptions
remains an open research problem.

Two of the major mechanisms by which cooperative and coordinated be-
haviour can be achieved are (i) trust and reputation, and (ii) norms and con-
ventions. Trust and reputation, which support cooperative and coordinated
behaviour through notions of reciprocity, are effective in protecting agents from
malicious or selfish individuals, but their capabilities can be affected by a lack of

information about potential partners and the impact of the underlying network
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structure. Regarding conventions and norms, there are still a wide variety of
open research problems, including: (i) manipulating which convention or norm
a population adopts, (ii) how to exploit knowledge of the underlying network
structure to improve mechanism efficacy, and (iii) how conventions might be
manipulated in the middle and latter stages of their lifecycle, when they have
become established and stable.

In this thesis, we address these issues and propose a number of techniques
and theoretical advancements that help ensure the robustness and efficiency
of these mechanisms in the context of open MAS, and demonstrate new tech-
niques for manipulating convention emergence in large, distributed populations.
Specifically, we (i) show that gossiping of reputation information can mitigate
the detrimental effects of incomplete information on trust and reputation and re-
duce the impact of network structure, (ii) propose a new model of conventions
that accounts for limitations in existing theories, (iii) show how to manipu-
late convention emergence using small groups of agents inserted by interested
parties, (iv) demonstrate how to learn which locations in a network have the
greatest capacity to influence which convention a population adopts, and (v)
show how conventions can be manipulated in the middle and latter stages of

the convention lifecycle.
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CHAPTER 1

Introduction

Cooperative and coordinated behaviour are fundamental to increasing individual
and aggregate welfare in Multi-Agent Systems (MAS)!. By cooperation, we
mean the process by which agents select strategies while potentially incurring
personal costs in order to attain mutual benefit; and by coordination the process
by which agents act in such a way that they do not cause other agents to incur
unnecessary costs. Both are key factors in allowing large populations of agents to
interact in complex environments while reducing the ability of malicious agents
to exploit individuals for personal gain. A wide variety of fields have significant
interest in the mechanisms of cooperation and coordination, including biology,
economiics, sociology and computer science (Axelrod, 1986). The study of such
behaviour serves two purposes (Lakkaraju & Gasser, 2008): (i) revealing how
these processes have emerged in the natural world (e.g. Bolton et al. (2005); Fehr
& Fischbacher (2004); Lotem et al. (1999); Riolo et al. (2001); Young (1993))

and (ii) increasing levels of coordinated and cooperative behaviour among agents

1We adopt the convention of MAS indicating both singular and plural usage throughout
this thesis.
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in artificial societies (e.g. Ebadi et al. (2008); Hales (1979); Shen et al. (2004);
Walker & Wooldridge (1995)). In this thesis, we are primarily concerned with
a specific kind of MAS, in which agents can join and leave freely. Such open
systems embody particular properties that can reduce the efficacy of mechanisms

for supporting coordinated and cooperative behaviour.

1.1 Open Multi-Agent Systems

MAS are an increasingly pervasive paradigm in real-world domains (Mamidi
& Chang, 2012; Shieh et al., 2012), and the need for scalable, distributed
mechanisms for increasing coordinated and cooperative behaviour has seen a
corresponding increase in research activity (Durfee, 2001; Purvis et al., 2006).
Open MAS characterise an enormous set of domains found in the real world,
including Peer-to-Peer (P2P) networks, social networking and media, and many
economic markets. In recent years, as computational capacity and connectivity
have increased, these systems have become increasingly widespread and com-
plex. Since agents join or leave freely, systems can be expected to contain large
dynamic populations, complex connectivity structures, heterogeneous agent ar-
chitectures, heterogeneous and potentially conflicting agent intentions, and ho-
mogeneous levels of authority (Sycara, 2008). Developing mechanisms for en-
couraging cooperative and coordinated behaviour that remain effective under
these assumptions remains an open research problem.

Each of these features present specific challenges to mechanisms that pro-
mote desirable behaviour. Since populations are potentially large, any solution
must be entirely decentralised, and agents joining and leaving freely may mean
that many agent architectures and capabilities are present in the system. These
agents may further be intermediaries for a variety of stakeholders (Ramchurn
et al., 2005). Accordingly, we cannot assume the ability to mandate behaviour
conducive to cooperation or coordination across the population, and successful

mechanisms should be robust to proportions of the population not adhering to
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behavioural assumptions beyond that of basic rationality. Since agents can join
or leave freely, determining agent identity accurately may also be difficult.

In addition, the underlying network structures that constrain agent interac-
tions and communications often exhibit complex properties (Albert & Barabdsi,
2002; Newman & Girvan, 2004) that significantly alter the dynamics of societies
built upon them (Albert et al., 2000; Delgado, 2002; Kittock, 1993; Pirzada &
Mcdonald, 2006; Tomassini et al., 2007). Consequently, while we assume uni-
form levels of agent authority, some agents may attain considerably more influ-
ence or power by virtue of their connectivity and the local network structure

surrounding them.

1.2 Supporting cooperative and coordinated be-
haviour

Two established techniques for encouraging desirable behaviour in open MAS
are (1) norms and conventions, which consider the interactions between agents
in aggregate, and (ii) trust and reputation, which consider individual agents
and ways to protect them from malicious or selfish agency. Many approaches
for both (i) and (ii) are entirely decentralised and subsequently are suitable for
application to open MAS. It should be noted that while we focus on norms, con-
ventions, trust and reputation in this thesis, a large number of other mechanisms
have been proposed for supporting coordinated or cooperative behaviour. For
example, tags are a lightweight and effective mechanism in domains with low
probabilities of repeat interaction (Griffiths, 2008), and organisational struc-
tures and patterns that specify agent authorities and roles are successful in
closed systems (Zambonelli et al., 2001). Contracts have also been proposed as
ways of constraining agent behaviour in return for guarantees on system prop-
erties (Dellarocas, 2000). These techniques are successful in given domains but

are not fully applicable to the challenges of open MAS domains that we consider.
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1.2.1 Norms and conventions

Norms and conventions are socially adopted rules or standards of behaviour that
reduce costs to agents associated with conflicting strategies and goals (Kittock,
1993), encourage cooperative behaviour between agents (Axelrod, 1986), reduce
the ability of malicious agents to disrupt the system (Perreau de Pinninck et al.,
2009) and reduce the computational burden of action selection for individuals.
Conventions are socially accepted standards of behaviour. There is no obligation
to act according to the convention, but instead there exists an understanding
that not to act in that way will potentially result in costs to the agent and the
society through malcoordination. Norms incorporate an element of obligation,
such that those who do not adhere to the norm might be punished. In many open
MAS domains, considerations of time-variance and system complexity mean
that conventions or norms cannot be designed a priori (Salazar et al., 2010b).
Open research problems include the generation, propagation, manipulation, and

establishment of desirable norms and conventions in real time.

1.2.2 Trust and reputation

In trust and reputation mechanisms, agents assess the probability that another
agent will carry out its obligations. Trust and reputation systems thus protect
agents from selecting interaction partners which might reduce utility (Bucheg-
ger, 2005). Trust systems have been extensively investigated and have shown
considerable success (e.g. Pirzada & Mcdonald (2006); Sabater et al. (2006)).
The best-performing systems tend to incorporate a wide variety of information
sources in calculating a trust assessment, limiting their applicability in domains
with potentially anonymous agents and constrained resources (e.g. Huynh et
al. (2006)). Reputation, often seen as a socially-accepted trust assessment of an
individual, is an important component in systems where an individual’s knowl-
edge of a potential interaction partner is insufficient to calculate a reliable trust

assessment. There are a number of open research questions relating to reputa-
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tion systems, including the effects of incomplete information on system efficacy,

and whether reputation can be used as a predictor of convention adherence.

1.3 Local interactions and information propaga-
tion

As illustrated in Figure 1.1, local interactions between agents underpin the oper-
ation of both of these mechanisms: trust and reputation mechanisms constrain
action or partner selection towards those most likely to be beneficial to the
agent, and conventions and norms restrict action selection towards those likely
to result in behaviour that is beneficial for the society and, on average, the

agent.
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Figure 1.1: Illustration depicting conceptual organisation of research topics for
cooperative and coordinated behaviour in open MAS.

Consequently, we require an understanding of factors that underlie partner

and action selection choices in local interactions, such that we can (i) increase
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the efficacy and efficiency of mechanisms for convention and norm emergence,
and trust and reputation systems, and (ii) exploit this knowledge to design new
mechanisms more suited to the difficulties of open MAS domains.

Agent decision making processes are, for the most part, based on information
gathered during interactions within the system. Consequently, the propagation
of this information, whether explicitly by agents or through observation of agent
behaviour, plays a major role in determining agent behaviour (e.g. Ghanem
et al. (2012); Salazar et al. (2010b); Villatoro & Sabater-Mir (2011)). The
transmission of information such as reputation and trust assessments, agent
action selections, or agent identity, is fundamental to the effective operation of
mechanisms that support cooperation or coordination. Agents only have access
to local information about the system in which they are participating, and this
can lead to partial or out-of-date information on which to base decisions.

Open MAS are also typically constrained by underlying network structures
that limit communication and the potential interaction partners for an agent.
The structural properties of these networks are highly complex and remain only
partially understood. However, such network structures mediate information
propagation and therefore have a significant impact on agent interaction deci-
sions.

Understanding how information propagation and network structure alter
the efficacy of typical mechanisms for establishing cooperative or coordinated

behaviour is therefore fundamental, and forms a central theme in this thesis.

1.4 Problem definition

In this thesis, we investigate how mechanisms that support cooperative and co-
ordinated behaviour, specifically trust, reputation, norms and conventions, can
be made robust to the characteristic properties of open MAS discussed above, by
exploiting knowledge regarding (i) information propagation through the system

and (ii) the underlying network structure that mediates this propagation.
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1.5 Objectives of the thesis

The overall objective of this thesis is to develop an understanding of how mech-
anisms for supporting trust, reputation, norms, and conventions can be effec-
tively applied in open MAS in order to encourage cooperative and coordinated
behaviour.

In detail, this thesis aims to do the following.

1. Explore how information propagation and network structure affect the
emergence of cooperative and coordinated behaviour and develop strate-
gies that support cooperative and coordinated behaviour robust to the
challenges of open MAS, including decentralisation, homogeneous levels

of agent authority, and complex network connectivity structures.

2. Identify modifications to simple trust and reputation mechanisms that (i)
impart robustness in response to issues caused by insufficient information
propagation and (ii) mitigate variance in efficacy caused by the underlying

network structure.

3. Identify limitations in current research and models of convention emer-
gence and develop a model of convention emergence that accounts for
features of convention behaviour not typically described by current ap-

proaches.

4. Develop techniques for manipulating (i) which convention or norm a so-
ciety adopts and (ii) levels of convention or norm adherence which are

robust to the challenges of open MAS.

5. Identify methodologies for exploiting knowledge of the network structure
to increase the efficacy of mechanisms that support cooperative and coor-

dinated behaviour.
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1.6 Contributions of the thesis

In this thesis we make 6 primary contributions, as follows.

1. We show that incomplete information and topological structure can sig-
nificantly affect the operation of simple reputation mechanisms, and sub-
sequently reduce levels of cooperative behaviour. We apply gossiping al-
gorithms using simple aggregation rules to reduce the levels of incomplete
information and show that this aids the establishment of cooperative be-
haviour. We characterise the configurations under which (i) incomplete
information is a problem, and (ii) gossiping algorithms are applicable, and
present an analysis of the effect of topological structure on gossiping effi-
cacy. We show that uncertainty regarding agent strategies, for example in
a highly varied population, can increase selfishness in a society, motivating

the need for convention and norms.

2. We present a technique for manipulating convention adherence in popu-
lations of agents with uniform levels of authority, by inserting Influencer
Agents, and show that (i) small numbers of Influencer Agents are suffi-
cient to manipulate the emergent dominant convention, and (ii) Influencer
Agents provide significant gains in both the number of agents adhering to

a convention and the speed of convergence.

3. We analyse the impact of topological structure on Influencer Agent effi-
cacy and show how different topological classes can significantly alter the
quality and size of conventions that emerge. We develop a methodology
for learning the specific metrics of a given network that predict Influencer
Agent efficacy, and use this methodology to identify four specific met-
rics that are effective in predicting influence across a range of real-world
networks. We build prediction models to identify particularly influential
locations by exploiting knowledge of the underlying network structure.

Applying these models allows significant gains in agent influence. We
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demonstrate the insufficiency of typical synthetic network generation al-
gorithms in modelling structures found in the real world, and show that
the wide variety of structures found in such domains require adaptive

mechanisms for efficient exploitation.

4. We identify several limitations in the descriptive power of the current
theory of convention emergence and use aspects of convention emergence
literature from several fields to synthesise a formalism for describing con-
vention emergence in open MAS. We show how several established models

for investigating convention emergence can be expressed in this formalism.

5. We use our convention formalism to (i) develop a general definition of con-
ventions and norms, and (ii) define a wide variety of metrics of convention
quality, support and stability, and show how these allow a more detailed
analysis of conventions that enables us to characterise domains in which
we either cannot attain or do not desire a single convention across the

entire population.

6. We use our model of convention emergence to evaluate the effects of
rewards, Influencer Agents, and incentives and sanctions on convention
emergence at different stages in the convention lifecycle. We show that
Influencer Agents are effective at manipulating conventions in the middle
and late stages of emergence, provided there is a minimal level of popula-

tion churn.

1.7 Structure of the thesis

The remainder of this thesis is structured as follows. For those unfamiliar with
cooperation and coordination in open MAS, Chapter 2 introduces the key con-
cepts and discusses relevant contributions in the literature. As discussed above,
issues of network structure topology underpin much of the work presented in

this thesis, and we provide a detailed introduction to the area in Appendix A.
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Detailed literature reviews are contained within the relevant subsequent chap-
ters as necessary, and readers familiar with open MAS and the study of network
structures can omit these background discussions.

The remaining chapters present the main contributions of this thesis. Chap-
ter 3 deals with trust and reputation mechanisms, while Chapters 4, 5, 6, and
7 deal with conventions.

In Chapter 3, we report on our investigations into the impact of incom-
plete information and network structure on cooperative behaviour supported
by simple reputation mechanisms, and whether gossiping can mitigate negative
effects.

We introduce our work on conventions and norms in Chapter 4, which re-
views the current state of convention research and identifies several limitations.
We define a formalism with which typical models of convention emergence can
be described, and develop (i) a definition of conventions and (ii) a set of metrics
defining convention support, stability and quality, which account for these lim-
itations and facilitate future research. A detailed introduction to conventions
is contained within this chapter, and we discuss concepts used throughout the
remaining chapters of the thesis.

In the subsequent chapters, we address three areas for research identified in
Chapter 4, namely, (i) how to manipulate which convention is adopted in dis-
tributed open MAS (Chapter 5), (i) how to exploit knowledge of the underlying
network structure when manipulating convention emergence (Chapter 6), and
(iii) how to manipulate convention emergence in the middle and latter stages of
the convention lifecycle (Chapter 7). Each of these chapters deals with largely
independent work, although there is some overlap in concepts (for example, the
usage of the Influencer Agent mechanism).

We discuss our conclusions, limitations of our work, and directions for future
research in Chapter 8. Appendix B describes how typical models of convention

emergence can be expressed in the formalism introduced in Chapter 4.
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CHAPTER 2

Background and related work

This chapter reviews the essential related work that underpins this thesis and
introduces motivating application domains. While this chapter includes only a
high-level discussion of core concepts, detailed discussion of related work is intro-
duced in subsequent chapters as necessary. In particular, Chapter 3 is primarily
concerned with trust and reputation, and Chapter 4 discusses conventions in
detail.

Within this chapter, Section 2.1 introduces coordination and cooperation,
and discusses their desirability in open MAS. Sections 2.2 and 2.3 introduce
trust, reputation, and conventions respectively, which are the key mechanisms
investigated in this thesis. Finally, we include three case study scenarios in
Section 2.4 to illustrate how the concepts included in this thesis might be applied

in the real world.

11
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2.1 Cooperative and coordinated behaviour

Cooperation and coordination are fundamental mechanisms for increasing aggre-
gate welfare in open MAS (Jennings, 1993). We discuss typical characterizations

in this section.

2.1.1 Coordination

Agents can be said to be coordinated when they select their decisions to reduce
costs associated with unnecessary overlap or conflict. Without coordination
agents can waste limited resources or fail to achieve goals that require collective
effort (Durfee, 2001). Coordinated agents are likely to be more efficient (Salazar
et al., 2010b), even if not working on a shared objective.

Research into coordination between agents is often approached through the
use of the coordination game (Shoham & Tennenholtz, 1997), where typical
payoffs are shown in Table 2.1(a) (Sen & Airiau, 2007). Agents receive positive
and equal payoff for selecting the same strategies, and negative and equal payoff
for choosing differing strategies. The coordination game thus minimally encap-
sulates the fundamental tensions at the heart of a wide variety of interactions in
open MAS. The quintessential social instruments for establishing coordinated

behaviour are conventions, which we discuss in detail in Section 2.3.

Table 2.1: Payoff matrices for the (a) coordination game and (b) Prisoner’s
Dilemma.

2.1.2 Cooperation

Cooperation is typically considered a stronger form of coordination, in which

agents interact to achieve mutual benefit, while potentially incurring a small

12
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personal cost. Cooperation has been studied in a wide variety of fields, includ-
ing economics and evolutionary biology, and is typically investigated using the
Prisoner’s Dilemma (PD), a minimal representation of the dilemma at the heart
of cooperation (Table 2.1(b)). Nowak (2006) considers cooperation from an evo-
lutionary standpoint, in which selfish individuals forgo reproductive potential
to aid each other, and thus increase the chances of any individual in the group
as a whole reproducing. Nowak defined 5 mechanisms by which cooperation
can arise in evolutionary systems: (i) kin selection, (ii) direct reciprocity, (iii)
indirect reciprocity, (iv) network reciprocity, and (v) group selection. Kin se-
lection does not translate easily to the computational domain, but the other
mechanisms are rich sources for research in open MAS, and are introduced be-
low. There are a number of limitations in this approach: it is not clear whether
these rules are complete, in the sense that they describe all possible ways in
which cooperation might be evolutionarily selected for. Furthermore, they are
grounded in the evolutionary viewpoint, and this is clearly only an approxima-
tion of agent processes in typical open MAS. Nonetheless, they provide a useful

starting point for developing mechanisms that encourage cooperative behaviour.

1. Direct reciprocity
Direct reciprocity is the mechanism by which an agent that cooperates
with another individual can expect cooperation back from that same indi-
vidual in return, and is neatly encapsulated by the aphorism “you scratch
my back, and T'll scratch yours”. (Nowak & Sigmund, 2005) In repeated
PDs, Axelrod (1987) has shown that the tit-for-tat strategy, in which
agents reproduce the action their last partner selected, performs extremely

effectively.

2. Indirect reciprocity
Direct reciprocity, while effective at supporting cooperation, requires re-
peated interactions between the same two individuals. This cannot be

guaranteed in many systems, particularly in open MAS domains with

13
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large populations. Indirect reciprocity is a mechanism by which agent a,
after cooperating with agent b, can expect reciprocal cooperation in return
from some other agent ¢!, and is typically supported through notions of

trust and reputation.

. Network reciprocity

While many early investigations focused on well-mixed populations (e.g.
Axelrod (1986), Nowak & Sigmund (1998)), in real-world domains agent
interactions are constrained by an underlying network structure that re-
sults in some agents interacting more than others, and precludes many
agents from interacting with more than a small group at all (Nowak,
2006). Consequently, local communities can form that allow cooperative

behaviour to flourish when it would not otherwise do so in a well-mixed

group.

. Group selection

In a similar way to groups of agents that reciprocate due to their topolog-
ical position, groups that form as a result of other processes may also fa-
cilitate cooperative behaviour. For example, agents forming groups based
on tags, which represent observable markings or traits, have been shown

to effectively support cooperative behaviour (Hales & Edmonds, 2005).

Nowak’s rules provide a strong theoretical underpinning for designing mech-

anisms that support cooperative behaviour in open MAS. Trust and reputation

mechanisms, which work via direct and indirect reciprocity, have seen consider-

able success in a wide variety of domains (e.g. Huynh et al. (2006), Pirzada &

McDonald (2006), Sabater et al. (2006)). Chapter 3 investigates how inaccurate

reputation assessments can undermine indirect reciprocity in open MAS. Con-

ventions and norms, which are underpinned by a system of mutual expectations,

can be used to support direct and indirect reciprocity and provide a mechanism

n other words, “you scratch my back and someone else will scratch mine”. (Nowak &
Sigmund, 2005)

14
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by which group selection can act (i.e. wherein a group is defined by conven-
tion adherence). These are investigated in Chapters 4, 5, 6, and 7. Chapter
4 introduces various concepts of convention membership and how to identify
groups of agents. Network reciprocity clearly influences cooperative processes
in all systems constrained by an underlying network structure, and the effect of
network structure underpins much of the work presented in this thesis.

At the heart of research into cooperation and coordination is the dilemma:
Why would agents act for mutual benefit when it is in their interest to act
selfishly? Trust and reputation, and norms and conventions, are two key mech-
anisms by which cooperative and coordinated behaviour can be attained, and
it is these we investigate in this thesis. Coordination and cooperation are in-
trinsically linked: if agents mutually cooperate, then they have coordinated as

well, but the converse is not necessarily true.

2.1.3 The importance of local interactions

Agent-based systems operate under the assumption of a population of indepen-
dent and autonomous entities making decisions in a distributed manner. These
interactions can be described as local in the sense that they are based on a non-
global view of information and cause non-global effects on the environment. In
aggregate, local interactions can become system-wide trends, defining the be-
haviour of the system. While many MAS can be designed from a top-down
perspective, as the complexity and size of the system increase this approach
becomes increasingly difficult. Mataric (1993) notes that the top-down view
limits exactly the type of interactions that result in complex behaviour in na-
ture: “the global behaviour of complex systems |[...] is determined by the local
interactions of their constituent parts”. As a result, much MAS research focuses
on manipulating the choices of individuals with a view to changing the system-
wide trends that result. In this thesis, we focus on manipulations designed to
engender cooperative or coordinated behaviour. We are primarily concerned

with two mechanisms for altering the choices of agents in local interactions:

15



2. Background and related work

trust and reputation (Chapter 3) and conventions and norms (Chapters 4, 5,
6, 7). Many other mechanisms exist, such as biasing partner-selection through
tags (e.g. Griffiths (2008)), but we have chosen to investigate trust, reputation,
norms and conventions since these are (i) major mechanisms for cooperative
and coordinated behaviour and (ii) highly complementary: trust and reputa-
tion manipulate partner selection and norms and conventions manipulate action

selection, meaning that the two classes of mechanism can be used in parallel.

2.2 Trust and reputation

Trust and reputation are highly successful mechanisms for supporting coopera-
tive and coordinated behaviour (Josang et al., 2007; Nowak & Sigmund, 1998;
Pirzada & Mcdonald, 2006; Ramchurn et al., 2005). Trust has been subject
to many attempts at definition and we adopt the definition of Ramchurn et
al. (2005): “Trust is a belief an agent has that the other party will do what it
says it will (being honest and reliable) or reciprocate (being reciprocative for the
common good of both), given an opportunity to defect to get higher payoff”.

Trust encourages acts of direct reciprocity, and accordingly requires signif-
icant historical interaction data for accurate assessments (which can limit its
accuracy and applicability). Instantiations of trust in MAS often make use of
multiple dimensions of information (Huynh et al., 2006; Sabater et al., 2006)
including that of reputation, typically defined as a socially known and accepted
assessment of trustworthiness. The reputation component of trust and reputa-
tion systems thus allows societies to benefit from indirect reciprocity. Indirect
reciprocity has been shown to be a greater force in encouraging cooperative
behaviour than direct reciprocity in domains with a low probability of repeat
interaction (Bravo & Tamburino, 2008). Given that many open MAS domains
display this property, reputation is likely to be far more effective than simple
trust mechanisms.

Trust and reputation systems that have exhibited the most promising re-
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sults also tend to be the most architecturally complex (Huynh et al., 2006;
Sabater et al., 2006). Given the properties of open MAS systems, such mech-
anisms may not be as suitable as those that have less complex requirements.
However, while robust systems tend to incorporate more complex architectures,
systems have been demonstrated that are remarkably simple and support coop-
erative behaviour in low-overhead environments. For example, image scoring,
initially proposed by Nowak and Sigmund (1998), is a simplified model of rep-
utation that exhibits low space and time complexity and promotes cooperation
through indirect reciprocity. Similarly, Pirzada and Mcdonald (2006) exploit
domain-specific insights to develop a low-overhead trust model applicable to
communication routing in ad-hoc networks. The Pirzada and Mcdonald model
is highly domain specific, and therefore not applicable to open MAS systems
in general. Image scoring is perhaps the most applicable lightweight reputation
mechanism available, but it is likely to be vulnerable to the challenges of open
MAS. We investigate this further in Chapter 3.

Trust and reputation, while useful mechanisms for supporting cooperation,
are not universally applicable as a solution to cooperative and coordinated be-
haviour in open MAS. They do not perform well in systems in which agents
can be anonymous (since it is necessary to be able to link a single individual
to an interaction history or reputation assessment), and they do not provide
an account of how agents can coordinate their actions, or what action to select.
Norms and conventions are a useful complementary mechanism that account for

these limitations.

2.3 Norms and conventions

Conventions are generally thought of as socially accepted expectations of be-
haviour, and represent an aggregation of a population’s choices in its individual
interactions. System designers are typically concerned with reducing the cost

associated with malcoordination between agents, and conventions are a useful
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abstraction for analysing the behaviour of large numbers of agents, to support
this aim.

A wide variety of definitions have been proposed in the literature. Lewis (1969)
defines a convention as a regularity in the behaviour of a population in repeated
iterations of the same situation, subject to constraints such as the proportion of
agents that conform to the regularity and the proportion of agents that expect
others to conform. Goyal (1997) describes conventions as an arbitrary solution
to a social problem, wherein individuals only conform because they expect oth-
ers to conform. Shoham and Tennenholtz (1997) approach conventions from
a game-theoretic perspective, defining a convention as a restriction of agents’
decisions to a single choice in a given coordination game. Kittock (1993) con-
siders a convention to exist when a high proportion of agents use the same given
strategy. There is little universal agreement on what constitutes a convention,
or conventional behaviour, and the theory of convention emergence is under-
developed past the initial emergence phase. In Chapter 4, we propose a new
formalism of conventions that unifies the above definitions into a cohesive frame-
work that describes what conventional behaviour is and allows investigation into
the entire convention lifecycle, which was previously not possible.

It is important to distinguish between conventions and norms, which also
represent socially-accepted rules governing behaviour, but are generally consid-
ered to include an obligation to act according to the norm. Norms are thus
a stronger form of convention, with mechanisms to encourage norm emergence
typically including incentives or sanctions to motivate agent adherence (Agotnes
et al., 2009; Axelrod, 1986; Modgil et al., 2009; Perreau de Pinninck et al., 2009;
Savarimuthu et al., 2007; Sethi & Somanathan, 2002). Such mechanisms may
require additional agent-level or society-level components, which may not always
be practical. How sanctions and incentives can be practically applied remains an
open research problem, with typical approaches including ostracism of defecting
agents (e.g. Villatoro et al. (2011)). In this thesis, we focus on the behaviour

of conventions without the additional element of obligation found in norms,
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although we do investigate lightweight sanctions and incentives in Chapter 7.
Conventions and norms can be viewed either as rules that are explicitly
reasoned upon using some representative language, or as implicit phenomena
that emerge from the choices of agents in repeated interactions. Each char-
acterisation involves a number of areas for investigation: (i) using explicitly
represented norms, fundamental concerns involve representation, reasoning and
mechanisms for enforcement (e.g. Alechina et al. (2012), Boella & Torre (2004),
Boella & Tosatto (2012), Modgil et al. (2009)), and (ii) considering implicit
norms, research has focused on how norms emerge dynamically, the impact of
network structure, and questions of enforcement (e.g. Axelrod (1986), Pujol et
al. (2005), Salazar et al. (2010b), Sen & Airiau (2007), Villatoro et al. (2009a)).
In this thesis we are concerned with the second characterisation, which sees
social processes such as observation, imitation, and information propagation as
key mechanisms by which agents coordinate strategy selection and shared and

implicit norms and conventions subsequently emerge.

2.3.1 Online and offline generation

Conventions can be generated either online or offline. In this thesis, we are
primarily concerned with conventions that emerge online. Offline generation
is not, in general, suited to open MAS domains due to lack of knowledge of
society characteristics, time-variance, and issues of computational tractability.
Conventions generated offline tend to lack robustness to environmental change.

Relatively little research has considered the online generation of conventions.
Recently, Morales et al. (2011) presented work on generating conventions using
historical data on the success of a given convention. They situate agents in
an abstract traffic model and use monitoring agents to determine the efficacy
of imposed conventions. A machine-learning algorithm generates new conven-
tions as necessary and these are communicated to the agents in the environment.
Their approach is one of the few to address the generation of norms and conven-

tions, and there are parallels between their monitoring agents and our proposed
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Influencer Agents (see Chapter 5). However, their model requires a central au-
thority to process convention data and generate new conventions, rendering it

unsuitable to our domains of interest.

2.3.2 The El-farol bar problem and sub-conventions

Typical models of convention emergence, including those used by Walker and
Wooldridge (1995), Sen and Airiau (2007), Salazar et al. (2010b) and Kit-
tock (1993) all assume that the ideal goal is that of a single convention being
agreed upon across the entire population. The El-farol bar problem, initially
proposed by Arthur (1994) and extensively investigated since (e.g. De Cara et
al. (1999)), provides a useful thought experiment for when multiple conventions
might be ideal. The problem posits a population of individuals that wish to
visit a bar on one day of a week, with the best night being when the number of
other agents at the bar falls within a given range (i.e. not too empty, and not
too full). The ideal situation occurs when exactly 1/7th of the population goes
on each night of the week. Even in domains where a single convention is in-
deed the ideal situation, population size, network effects or other environmental
conditions may render this goal unattainable.

The El-farol bar problem illustrates the major limitation with much of the
current theory on conventions, in that they assume that the ideal or attainable
goal in a system is to emerge a single convention. As a result, they provide a
very limited account of how multiple conventions might co-exist, how to identify
which convention might be better than another that is co-existing, or how to
destabilise undesirable conventions. These are only a sub-set of the problems
that may arise when dealing with conventions in open MAS, demonstrating the
need for research in this area.

There is very little research currently addressing these problems. Goyal (1997)
discusses a model in which conventions are non-exclusive, in that agents can
hold more than one convention simultaneously. Agents are situated on a 1-

dimensional lattice, and there are only two possible conventions, but Goyal
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analytically concludes that a medium cost of flexibility (i.e. the cost of simulta-
neously holding two conventions) can allow two conventions to co-exist. How-
ever, the use of a 1-dimensional lattice and a highly restricted convention space
significantly reduce the applicability of these results, and we cannot therefore
conclude how or if conventions might co-exist in general open MAS. There has
also been some research into how sub-conventions can be destabilised in pursuit
of a single dominant convention (e.g. Boyer & Orlean (1992), Villatoro (2011)),
but little exploration beyond this.

The limitations in typical characterisations of conventions described above
are analysed in detail in Chapter 4, where we propose a new definition of con-

ventions which mitigates these flaws in traditional thinking.

2.3.3 Norms

Norms are generally considered to be a stronger form of conventions in that
they embody an element of obligation. Norms may not be an arbitrary solution
to an otherwise indistinguishable set of social choices (as conventions are), since
the presence of the obligation means that norms can be used to support unique
cooperative choices that would not otherwise be chosen (e.g. in the Prisoner’s
Dilemma). Norms are enforced using sanctions or incentives, and there has been
significant research interest in their efficacy. Axelrod’s seminal investigation of
norms (Axelrod, 1986) modelled agent strategies as a combination of boldness
and vengefulness, in which boldness indicated the agent’s propensity to violate
a norm, and vengefulness the agent’s willingness to punish observed violations
(at personal cost). Axelrod found that such sanctioning behaviour could create
stable norm emergence, but subsequent investigations have cast doubt on the
scalability of the results. Specifically, Galan (2005) has shown that Axelrod’s
norms may not be stable over long time periods, and Mahmoud (2011) has shown
that the introduction of network topologies constraining agent interactions can
also destabilise cooperative norms. How sanctions can be realistically applied

remains an open research problem and is likely to be highly-domain specific, if
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possible at all. The most general form of sanctioning is likely to be ostracism,
but it is unclear how this might be effectively implemented in open MAS.
Theoretical work has shown both sanctioning and incentives to be effective
in enforcing norms, from Axelrod’s original investigation (1986), to Villatoro’s
ostracism through reputation spreading (Villatoro et al., 2011). Oliver (1980)
concludes that incentives are effective at motivating small numbers of agents to
cooperate, while sanctions are more effective (although they may be cyclical in
efficacy) at motivating uniform cooperation at the expense of possibly generating

hostilities that undermine the cooperation.

2.4 Case Study Scenarios

There are a variety of domains which can be characterised as open MAS, and
are constrained by the properties discussed in Section 1.1. In this section, we
introduce selected domains to which the research in this thesis is particularly ap-
plicable. It should be noted that while these scenarios are intended to motivate
the research described in this thesis, our work is not targeted to a particular
domain. Instead, we aim to address specific open issues that are typical of
scenarios such as these, including how to exploit knowledge of the underlying
network structure or how to manipulate convention emergence (see Section 1.6

for more details).

2.4.1 Scenario 1: distributed resource-limited domains

Many real-world open MAS domains are characterised by a large number of
resource-limited (e.g. computational or bandwidth) agents interacting. These
represent additional constraints on top of those we discussed in Section 1.1, such
as large, heterogeneous populations and complex connecting network topologies.

Quintessential examples include Mobile Ad-hoc Networks (MANETS), Ve-
hicular Ad-hoc Networks (VANETS), and wireless sensor networks. It has been

shown that ad-hoc networks often exhibit a scale-free degree distribution (Sen,
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2008) (see Appendix A for details), and network connectivity analysis has been
shown to be successful in improving mechanism efficacy (Daly & Haahr, 2007).
Trust and reputation mechanisms are highly applicable (Buchegger, 2005; Grif-
fiths et al., 2008), but may be limited by issues of anonymity, malicious manip-
ulation of trust assessments, and resource constraints.

The connection properties of these domains make it challenging to achieve
cooperation. MANETS exhibit scale-free properties in their connections (Sen,
2008), and VANETS exhibit extremes of sparse connectivity (e.g. a free-flowing
motorway) and high levels of clustering (e.g. a traffic jam). Many typical ap-
plications, such as data sharing, imply that the number of interactions between
agents is significantly higher than the population size, but dynamic or large
populations may also result in situations with a very low probability of repeat

interactions between pairs of agents.

2.4.2 Scenario 2: social networking and media

Social networking and media have seen explosive growth in recent years and are a
rich source of data for research into social processes such as norm and convention
emergence, language evolution, and innovation or idea diffusion. Research into
social media usage is useful in that deeper understanding of natural social pro-
cesses can inform artificial society design (for example, trust, reputation, norms,
and conventions are all biologically-inspired mechanisms), and also provide in-
sight into how to support desirable behaviour in human societies (Singh et al.,
2009). For example, applications in human society include (i) incentivising con-
tributions to crowd-sourced datasets (such as Wikipedia), (ii) encouraging the
emergence of mutually beneficial conventions, (iii) influencing groups to adopt
a given convention, or (iv) encouraging users to switch to a preferred brand or
propagating marketing information. Regarding the emergence of conventions,
social media have enabled a variety of innovations, including notification of an
individual’s safety after emergencies, gathering data on ongoing situations, and

propagating health and safety information (Merchant et al., 2011).
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Agent-based systems have been proposed as a feasible methodology for mod-
elling marketing phenonema too complex for traditional approaches (Rand &
Rust, 2011), and much research has focused on the influence mazimisation prob-
lem, which is concerned with determining how best to target limited resources
at k individuals to maximise diffusion through the population (e.g. Chen et
al. (2009), Hartline et al. (2008), Kempe et al. (2005), Goyal & Bonchi (2011)).

Finally, as we discuss further in Appendix A, research into real-world net-
work structures and how they influence agent interaction processes may require
realistic datasets, and social media have afforded researchers access to much
more accurate and complete datasets than previously available (Gjoka et al.,

2010).

2.4.3 Scenario 3: Peer-to-Peer (P2P) systems

P2P systems are characterised by large numbers of decentralised entities inter-
acting directly with each other and exist in a wide variety of domains, including
file sharing, instant messaging, collaboration in the workplace, and distributed
computation (Shue et al., 2003). As such, they encompass both computational
and natural MAS domains. Typical challenges inherent in P2P systems include
a lack of centralised authority, complex connectivity networks, and anonymity
of individuals. Shue et al. (2003) provide a detailed overview of P2P systems,
noting that ensuring the security and anonymity of peers remains a central
research question. The structure and typical application of P2P systems ren-
der them highly applicable to open MAS research. For example, BitTorrent, a
popular filesharing protocol, has been shown to have the structure of n-person
cooperative dilemmas (Ruberry & Seuken, 2012), and many file-sharing net-

works have uniform levels of authority and are entirely decentralised.
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2.5 Conclusions

In this chapter we have introduced the essential concepts that underpin the
work presented in this thesis. Cooperation and coordination are key processes
for increasing the aggregate welfare of agent societies, and in this thesis we focus
on two major mechanisms for encouraging such behaviour: trust and reputation
(Chapter 3) and norms and conventions (Chapters 4, 5, 6, 7).

Nowak’s rules for cooperation (discussed in Section 2.1.2) provide a useful
analytical starting point for describing the mechanisms behind the promotion
of cooperative behaviour, and underpin the processes for both major mecha-
nisms investigated in this thesis. A number of research questions remain open
for both trust and reputation, and norms and conventions. Firstly, in Section
2.2 we discuss the need for supporting cooperation through indirect reciprocity.
This raises questions regarding the accuracy of reputation assessments, partic-
ularly in the context of open MAS domains, and we investigate this in Chapter
3. Secondly, we discuss in Section 2.3.2 limitations with current theories of con-
vention. Effectively applying mechanisms for norm and convention emergence
requires resolution of these limitations, since it is highly likely that a single
convention will not be an attainable goal in large open MAS. We discuss this
in Chapter 4, and subsequently identify further directions for research which
underpin the rest of the thesis.

This chapter should be seen as a broad introduction. Where relevant, we
include further detailed background discussion of these concepts throughout this
thesis. For example, Chapter 3 discusses trust and reputation in more detail and
Chapter 4 provides a detailed analysis of research into convention emergence.
We have provided an overview of network concepts and background literature

in Appendix A for those unfamiliar with the field.
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CHAPTER 3

Trust, Reputation and Gossiping

As discussed in Chapter 1, trust and reputation are fundamental mechanisms for
protecting individuals from selfish or malicious behaviour in open MAS. In such
systems, we can expect complex network structures and extremes of information
availability (i.e. there may exist systems in which agents have insufficient infor-
mation and systems in which agents have incomplete information, since they
cannot feasibly observe all occurring interactions). In this chapter, we use a
simple model of reputation to investigate the effects of incomplete information
and underlying network structure on levels of cooperation in a population. We
show that insufficient or incomplete information can undermine the efficacy of
reputation and allow selfishness to dominate. We apply a simple gossiping algo-
rithm to supplement observation of agent behaviour and show significant drops

in levels of selfishness in the population.
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3.1 Introduction

Many typical approaches to increasing levels of cooperative behaviour in highly
decentralised open MAS domains have involved biasing interactions towards
cooperative individuals. Such mechanisms serve two purposes: (i) protecting
agents from individuals likely to engage in selfish behaviour and (ii) increasing
the aggregate welfare of the population. The structure of many MAS domains
implicitly creates incentives for selfish behaviour, such as free-riding in BitTor-
rent and other P2P networks (Ruberry & Seuken, 2012), or energy conservation
in wireless sensor networks (Galstyan et al., 2004).

Trust and reputation mechanisms, which incorporate observations and indi-
vidual experience to aid decision making, introduce this bias into agent partner
selection through direct (trust) and indirect (reputation) reciprocity (Nowak &
Sigmund, 2005). An agent who has cooperated in the past is more likely to
receive reciprocal cooperation from others. In domains in which the identity
of interaction partners is known, trust and reputation can facilitate significant
increases in aggregate welfare, but their efficacy is directly related to the quality
and quantity of information available about individuals in the population (Som-
merfeld et al., 2008). Trust, which is based on direct observations of behaviour,
can only be effective once historical interaction data are available. Reputation,
which relies on observation or propagation of third-party agent behaviour, may
be undermined by incomplete information, in which agents make decisions based
on unrepresentative sets of observations. Direct and indirect reciprocity involve
feedback effects: a cooperative action can cause many subsequent cooperative
actions, and vice versa. Consequently, decisions made on incomplete informa-
tion may be incorrect, in the sense that given full information the agent would
have acted otherwise, and these mistakes will be amplified by the feedback of
reciprocity.

Network topology also plays a significant role in the dynamics of trust and

reputation mechanisms. By definition, agents are constrained to interact only
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with their direct neighbour set, and interaction behaviour can only be observed
by those directly connected. Networks can support isolated communities of
cooperators (Nowak & Sigmund, 2005) and the role of network structure in
facilitating information propagation is well studied (e.g. Glinton et al. (2010),
Newman (2003), Wang (2003)).

Trust and reputation mechanisms are highly suited to open MAS domains,
and present a useful setting for investigating the impacts of incomplete informa-
tion and network structure on levels of emergent cooperative behaviour. In this
chapter, we empirically analyse the conditions under which mechanism efficacy
is reduced and demonstrate a possible mechanism, namely gossiping, to mitigate
the effects of incomplete information and exploit the ease of information trans-
mission in typical network structures. Specifically, we show that incomplete
information can result in inaccurate reputation assessments that subsequently
reduce cooperation, and that the underlying network structure significantly in-
fluences emergent behaviour, both positively and negatively depending on the
configuration. We supplement trust and reputation with gossiping, which can
be used as a substitute for direct observation of interactions and has a low space
and time complexity, using one of four aggregation rules. We show that gossip-
ing can reduce selfishness in the population by up to 25%, and is particularly

effective on real-world networks.

3.2 Background

In this section, we present background information and discussion relating to
trust and reputation in general, image scoring, our adopted model of reputation,

and gossiping.

3.2.1 Trust and reputation

Trust and reputation is an area that has seen significant research interest. As

discussed in Chapter 2, we adopt the definition of trust as “a belief an agent
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has that the other party will do what it says it will (being honest and reliable)
or reciprocate (being reciprocative for the common good of both), given an
opportunity to defect to get higher payoft” (Ramchurn et al., 2005). Other
definitions are also commonly used, the most notable of which defines trust as
the probability that an agent will fulfil its obligations (Teacy et al., 2012). The
incorporation of probability into the definition of trust has allowed mechanism
designers to incorporate a range of statistical tools, such as Hidden Markov
Models (Vogiatzis et al., 2010) or Bayesian Networks (Regan et al., 2006; Teacy
et al., 2012).

The latter definition has become dominant over recent years, and trust and
reputation models have been designed that provide robust assessments in a wide
variety of situations. Notably, HABIT (Teacy et al., 2012) and BLADE (Regan
et al., 2006) can be used independent of the representation of behaviour that
agents use. These models differ from the image scoring model adopted in this
chapter in that they generate an assessment of the probability that an agent
will fulfil their obligations (i.e. they adopt the second definition), whereas im-
age scoring simply provides an indication of how selfish or cooperative a given
potential interaction partuner is (i.e. we adopt the former definition).

These systems are also robust to inaccurate or malicious assessments, since
the statistical methods employed take into account the uncertainty of infor-
mation regarding potential interaction partners. The robustness of trust and
reputation systems to inaccurate assessments is a key concern (Josang, 2012),
and the model of reputation that we adopt (namely, image scoring) does not
incorporate any mechanisms to mitigate this effect. However, dealing with in-
accurate assessments in this way does not increase the accuracy of assessments,
but rather allows agents to identify and mitigate inaccuracies. The gossiping
algorithm we propose as a mechanism to deal with inaccurate reputation assess-
ments, on the other hand, increases the certainty and accuracy of assessments
in the first place, before statistical measures would be needed.

Models for trust and reputation proposed in recent years, as discussed in
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Chapter 2, are typically highly complex. Teacy et al. (2012) discuss the trade-off
between accuracy and necessary time or computational resources. Their pro-
posed model, HABIT, can scale depending on requirements and can be specified
to individual domains. However, there remain constraints on the computational
requirements of their model and the image scoring and gossiping mechanisms
investigated in this chapter have far reduced computational and temporal com-
plexities.

There are, to our knowledge, very few systems that have combined trust and
reputation with gossiping mechanisms to increase the accuracy of assessments.
Perhaps the closest to the work presented in this chapter is that of GossipTrust,
introduced by Zhou and Hwang (2007). In GossipTrust, agents repeatedly gos-
sip reputation values. The authors propose formal constraints on the accuracy
of reputation assessments, and agents gossip until a given assessment has con-
verged. Furthermore, all agents gossip, as opposed to the gossip mechanism
proposed in this chapter, in which only observers to an interaction gossip. As
a result, GossipTrust requires significant communications overheads compared
to the system we investigate here. All nodes must reach consensus in Gossip-
Trust, and while this is clearly good for guaranteeing robustness to incomplete
information, our results with gossiping (Section 3.5.5) suggest that this is not
necessary to gain significant improvements in mechanism efficacy. Finally, the
authors do not test the effects of different aggregation rules for gossiping infor-
mation, and only present results from one network. In this chapter, we propose
and evaluate a number of aggregation rules for gossips and present results from

a wide variety of network classes.

3.2.2 Image scoring

While many reputation mechanisms have been proposed, they rarely address
fully the challenges posed by decentralised MAS domains. To investigate the
challenges posed by incomplete information and the effect of underlying network

structure, we require an implementation of reputation with low computational
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and bandwidth overheads.

Nowak and Sigmund introduced and extensively investigated image scoring,
a simple instantiation of reputation modelling indirect reciprocity, in which co-
operation emerges without requiring subsequent interactions between the same
individuals (Nowak & Sigmund, 1998; Nowak & Sigmund, 2005). This property
is key to its suitability in open decentralised systems. Each agent maintains an
image score for each individual it interacts with or observes interacting. Co-
operative actions increase the image score by one, and selfish actions decrease
it by one. When deciding whether to cooperate or not, an agent compares its
strategy, an integer, with the perceived image score of the potential partner (if
no data is available, it is assumed to be zero). If the strategy is less than or equal
to the image score, the agent cooperates. A population of n agents participate
in m interactions each round, and the best performing strategies are reproduced
using a genetic algorithm to provide the strategy set for the subsequent round.
More detail of the model is given in Section 3.3.

Nowak and Sigmund found that cooperation emerges, but is often cyclical as
non-cooperative agents invade populations of unconditionally cooperative agents
and gain higher payoffs, causing the population to be subsequently dominated
by conditionally cooperative agents, who are in turn superseded by uncondi-
tionally cooperative agents. Agents in the setup used by Nowak and Sigmund
are randomly chosen and paired from the entire population for interactions,
with the total number of interactions per round (m) being at most one order of
magnitude larger than the number of agents in the population (n).

While image scoring is effective at supporting cooperation, we can identify
situations in which it might be undermined by agents having incomplete or in-
sufficient information regarding potential interaction partners. Firstly, if there
are a large number of interactions per round compared to the number of agents
(i.e. a high ratio of m/n), agents may have only observed a proportion of the
interaction history of a potential interaction partner. If the observed subset

of interactions is unrepresentative, this may result in a decision that the agent
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would not have taken given complete information. Similarly, if there are rel-
atively few interactions (i.e. a low ratio of m/n), or agents have only recently
entered a system, then agents may have insufficient information with which to
make accurate decisions. In this chapter, we evaluate the extent to which these
hypotheses are correct (i.e. that both low and high numbers of interactions
cause increases in selfishness due to incomplete or insufficient information), and
propose gossiping as a mitigating solution.

We note that an image score is not directly equivalent to reputation. Typical
definitions of trust incorporate the notion that a trust value is the probability
that an agent will fulfil its obligations (Teacy et al., 2012), and reputation is
typically defined as a socially-accepted trust value. An image score does not
represent the socially-accepted probability that an agent will fulfil its obliga-
tions, but instead is a value that indicates, approximately, how cooperative or
selfish an agent has been in the past. As such, image scores can be seen as a

proxy for reputation.

3.2.3 Gossiping

Gossiping algorithms, initially introduced by Frieze and Grimmet (1985), per-
form data aggregation and spreading in distributed systems. Loosely modelled
on the dynamics of human gossip, they are effective at spreading information
through networks and have low space and time complexity and minimal band-
width requirements when compared to traditional spreading mechanisms (Fer-
nandess & Malkhi, 2007; Kempe & Kleinberg, 2003). They have previously
been applied to constrained trust and reputation problems (Bachrach et al.,
2008; Ramchurn et al., 2004; Zhou & Hwang, 2007), and can efficiently aggre-
gate trust values without the need for complex data structures.

Typically, gossiping algorithms involve individual agents selecting a single
partner and communicating a piece of information regarding a single topic or an
individual (in our usage, an individual’s image score). Agents therefore receive

a number of gossips from different sources for a single topic or subject, and use
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an aggregation rule to incorporate this information into their knowledgebase.
A wide variety of implementations of gossiping have been proposed, and we
describe our instantiation in Section 3.3.5.

Gossiping is an attractive solution to the problems inherent in local percep-
tion of information by agents. Sommerfeld et al. (2007) have extensively investi-
gated gossiping in humans and show that gossiping of information is an effective
substitute for direct observation. Sommerfeld et al.’s subsequent work (2008)
demonstrates that gossip is robust to propagation of inaccurate information,
and concludes that humans use a majority rule: if the majority of gossips are
positive, then the individual forms a positive opinion of the subject. The low
overheads, high robustness when exposed to inaccurate information, and ability
efficiently to spread and aggregate information in decentralised domains make

gossiping highly applicable to our model.

3.3 Incorporating gossiping into image scoring

As discussed above, we adopt image scoring as a simplified model of reputation
with which to investigate issues relating to incomplete information and the
impact of network topology. These factors were identified in Section 1.5 as
important areas for investigation. In this section, we introduce the image scoring
model and describe how to incorporate a simplified gossiping mechanism with
which to reduce the impact of incomplete information and mitigate any negative

effects on cooperation as a result of the network structure.

3.3.1 Image scoring model

We reproduced the original setup used by Nowak and Sigmund (1998) as follows:
each agent i is associated with a strategy k;, chosen uniformly at random in
the range [—5,6]. Each agent maintains image scores I, for each agent a it
has observed interacting. Image scores are initialised at 0 and constrained to

the range [—5,5]. Each round, m pairs of agents are randomly chosen from
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a population of n agents, with one agent being designated as the donor and
the other as the recipient. If the donor’s strategy is less than or equal to its
perception of the image score of the recipient, kgonor < Irecipient, then it confers
a benefit b on the recipient at a cost c to itself. We adopt the valuesof b =1,¢ =
0.1, as used by Nowak and Sigmund (1998). An agent assumes an image score of
0 if it has no data on the recipient. If the donor donates (cooperates), then the
observers of that interaction increase their perception of the donor’s image score
by one (the recipient’s image score remains the same). If the donor does not
cooperate, the perceived image score of the donor, as held by the observers, is
reduced by one. An agent’s strategy k; thus represents the degree of selfishness
of potential interaction partners that that agent is willing to cooperate with.
Image scoring, as described above, provides a lightweight model of reputa-
tion. Originally, Nowak and Sigmund used it to investigate indirect reciprocity
and demonstrate how cooperation can emerge in systems with a low probability
of repeat interaction. In this chapter, we use it to investigate issues surround-
ing the application of reputation mechanisms in open MAS, and demonstrate
that incomplete or insufficient information and the underlying network struc-
ture can all significantly alter the efficacy of indirect reciprocity in supporting
cooperative behaviour. The lightweight nature of image scoring, and it’s min-
imal representation of indirect reciprocity, render it highly applicable to open

MAS and our investigation.

3.3.2 Observability of interactions

Nowak and Sigmund consider both complete and partial observability of in-
teractions. In the partial observability settings, a number of agents (10 in
Nowak and Sigmund’s configuration) are chosen at random to observe each
interaction. We model partial observability using an observability parameter,
o, in the range [0, 1], as the probability of each neighbour being selected to ob-
serve. If N; denotes the set of neighbours for a given agent i, then, on average,

0 X | Ngonor U Nyecipient| Observers are selected at random for each interaction.
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Observations are assumed to be perfect, in that the interaction is observed fully
without noise. Given n = 100, an observability of o = 0.1 is equivalent on a
completely connected topology to the original setup of Nowak and Sigmund.
Observability, in the static connection topologies investigated in this thesis, can
be viewed as a simple abstract model of typical resource constraints, or inter-

mittent hardware or communications failure.

3.3.3 Reproducing the population

After m interactions have been performed, offspring are generated in propor-
tion to an agent’s final aggregate payoff. If agent a; has fitness f;, where f;
is equal to its net benefit (i.e. the sum of the positive and negative payoffs in-
curred in individual interactions), then F' is the net population benefit such that
F = Z?:o fi- An agent will produce n x f;/F offspring. The strategy of the
offspring is an exact copy of the parent strategy, with a small probability u of
mutation such that the strategy is set to a random value (we adopt the value
of = 0.001 used by Nowak and Sigmund). Nowak and Sigmund found that
strategies do not converge to a single value except for when o = 1 and p = 0, but
instead go through cycles as selfish agents become dominated by conditionally
cooperative agents (called discriminators by Nowak and Sigmund), who only
help other cooperative individuals. These agents are then superseded by un-
conditionally cooperative agents (also called altruists by Nowak and Sigmund),
who are subsequently invaded by selfish agents (called defectors by Nowak and
Sigmund).

Using reproduction in this model serves two purposes: (i) it allows us to
replicate Nowak and Sigmund’s original model and results, and (ii) it is an
efficient way to determine which strategies gain the greatest aggregate payoff in

response to a wide variety of population strategy distributions.
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3.3.4 Strategy space delineation

Nowak and Sigmund characterise the strategy space as: & < 0 denotes coop-
eration, since agents will interact with most other agents, and & > 0 denotes
defection (also called selfish by Nowak and Sigmund). We further divide the
cooperative strategy space into unconditionally cooperative (=5 < k < —2) and
conditionally cooperative (—2 < k < 0). We describe interaction choices as
follows. We refer to interactions in which an agent cooperated based on its
perceived image score of the recipient, when it should have defected based on
the actual image score, or vice-versa, as misclassified interactions. An interac-
tion is called incorrect cooperation if an agent cooperates when it should have
defected. An incorrect defection is an interaction in which an agent defects (i.e.
does not donate to the recipient) when it should have cooperated. The num-
ber of misclassified interactions is the sum of the incorrect cooperations and
incorrect defections. Incorrect defections are undesirable since they reduce the
donor’s image score, leading to fewer subsequent donations to the donor. Incor-
rect cooperations are undesirable since they allow selfish agents to gain higher
payoff, and become more likely to be reproduced.

The absolute value of an agent’s image score that is maintained (to allow
calculation of misclassified interactions) includes any incorrect cooperations or
defections that that agent has made — it is the result of an agent’s actual
actions rather than how they should have acted given complete information.
It should be noted that whether an interaction is labelled incorrect or not is
based on a global view of the system (since it is determined by comparing an
agent’s decision with what they would do based on perfect knowledge of their
interaction partner), and that an individual cannot know whether their choice

is “correct” or not based on their local view of the system.
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3.3.5 Gossiping mechanism

Gossiping is an appealing solution to the problem of incomplete information,
and can supplement direct observation of interactions to increase the availabil-
ity of information regarding potential interaction partners. In this section, we
describe how our simple gossip mechanism is incorporated into image scoring in
order to test its efficacy in supporting image scoring and promoting cooperative
behaviour.

Our simple gossip mechanism spreads perceived image scores as follows: each
agent maintains a queue of received gossips, which are processed in a separate
gossip phase. After an interaction, each observer starts a gossip with probability
ogp (observer gossip probability) by sending a gossip packet to a randomly
chosen neighbour. The probability of any given agent starting a gossip thus
depends both on o, the probability it is chosen as an observer, and on ogp, the
probability that an observer starts a gossip. Each gossip packet contains the
image score of the donor, as perceived by the gossip starter, the unique ID of
the donor, the unique ID of the gossip starter, and a time to live (TTL).

Every gossipRate interactions, there is a gossip phase. Each agent in turn
updates their image score values for each agent that they have received gos-
sips about using some update rule, and propagates the gossip with TT Ly, =
TTL; — 1 to a single randomly chosen neighbour that does not yet have the
gossip. The process is repeated until 7T L = 0. It is assumed that an agent can
check if a neighbour has received a gossip already.

We propose four update rules that gossip receivers can use to incorporate

received gossip information.

1. Aggregate Average (AA): The agent replaces its perceived image score
for agent i with the average of its previous perceived score for i and the

values contained in all the received gossips concerning i.

2. Average Replace (AR): The agent replaces its perceived image score for

agent ¢ with the average of the values contained in all received gossips
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concerning .

3. Majority Replace (MR): The agent replaces its perceived image score for
agent ¢ with the median value contained in all received gossips concerning
1. As noted above, it is thought that this is approximately how humans

process gossip (Sommerfeld et al., 2008).

4. Most Recent (MRec): The agent replaces its perceived image score for ¢

with the most recent value received, through gossips, concerning .

Agents have incomplete information regarding interaction partners because
they are unable to observe every interaction that a partner has engaged in. By
introducing gossiping, we aim to increase the amount of information available
so that individuals can make more accurate decisions without having to increase
the number of observations they make. In this way, gossiping supplements (and,
in some cases, substitutes) direct observation of agent behaviour. As such, levels
of incomplete information should fall and, subsequently, cooperative behaviour

will increase.

3.4 Experimental Setup

We model two primary situations in which incomplete information may un-
dermine the efficacy of reputation: (i) when there is a very low probability of
having observed any interactions, such as when first entering a system, and (ii)
when there is a very low probability of observing a complete set of interactions.
We model the first situation using a low ratio of interaction rate to popula-
tion size, and the second situation using a very high ratio of interaction rate
to population size. Nowak and Sigmund used parameters of n = {20, 50,100}
and m = {125,200,300,500,1000} (where n is the population size and m is
the number of interactions per timestep), which is sufficient for modelling the
first situation but limited for the second. To investigate the latter, we simu-

lated m = {1000, 5000, 10000, 20000, 50000} for n = 100 (i.e. a maximum ratio of
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m/n = 500). Weuse o = 0.1, =0.001,b =1, and ¢ = 0.1, and unless otherwise
stated, we use an observer gossip probability of ogp = 1.0 and gossipRate = 1.
Since the diameter of the networks we generate in our simulations is typically
less than 5 we use a TTL of 5. We performed a number of simulations scaling
the population to n = 1000 to allow us to test the effects of group size.

We situate agents on a variety of network structures. We replicate Nowak
and Sigmund’s completely connected topology, and implement random (such
that each pair of nodes is connected with probability p), scale-free and small-
world synthetic networks'. Scale-free networks are generated using the Eppstein
and Wang (2002) algorithm and small-world networks using Kleinberg’s gener-
ation algorithm (2000). Additionally, we use 8 network samples created using
Breadth-First Search (BFS) (see Appendix A and Chapter 6 for detailed dis-
cussion of BFS) from the Enron email dataset and the arXiv general relativity
section collaboration network? to corroborate our results on networks that are
structurally closer to those found in the real world. We use BFS, and not other
network sampling algorithms, since (i) although it is known to be biased towards
high degree nodes, it accurately retains the local network structures within the
sample (Gjoka et al., 2010), and (ii) it is intended only to be used as a check for
generality of our results rather than a full investigation on real-world networks.

Our investigation focused on two main metrics: the strategy distribution for
the population and the number of misclassified interactions. The results given
are averaged over 20 runs for each parameter configuration, giving a standard
deviation that ranges from 1-14%. We used ¢t = 10000 generations of evolu-
tion. Due to the cyclic nature of strategies identified by Nowak and Sigmund,
analysing results at an arbitrarily chosen generation (e.g. the final generation
of ¢ = 10000) is unlikely to provide a representative view of the simulation.

Accordingly, we present results averaged over the course of the simulation.

L Generated using the Java Universal Network/Graph Framework
http://jung.sourceforge.net/
2Both datasets are taken from http://snap.stanford.edu/data/
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3.5 Results and discussion

In this section, we characterise the impact of incomplete information and net-
work structure on image scoring, by investigating parameter settings that model
the two vulnerable situations for reputation mechanisms identified above. We
subsequently introduce gossiping and quantify the extent to which it can aid

the emergence of cooperative behaviour.

3.5.1 Incomplete information due to high interaction rate

Initially, we evaluate the effect of high ratios of m/n. As discussed above, a high
interaction rate relative to the number of agents increases the probability that
agents will have incomplete information regarding potential interaction partners
— although they will have observed a much higher number of interactions,
the observability parameter keeps the proportion of unobserved interactions the
same. Consequently, while the agent may have increased certainty regarding an
interaction partner, the interactions that the agent has not observed may also
be enough to cause incorrect decisions to be taken. In this section, we show
that the latter is the case and that the increased number of observations does
not necessarily increase the certainty of an image score assessment.

Figure 3.1(a) shows the effect on the population strategy distribution of
varying m, the number of interactions each round, using n = 100 agents, o = 0.1
(i.e an average of 10 agents observing each interaction), b = 1,¢ = 0.1, u = 0.001,
and a fully-connected network. This is equivalent to Nowak and Sigmund’s
original setup. The society is highly cooperative at m = 1000 (i.e. m/n = 10),
with less than 10% of agents adopting selfish strategies (i.e. k > 0). Figure
3.2 shows the average strategy over time under this configuration, with the
horizontal lines delineating selfish (above the top line), conditionally cooperative
(between the two lines), and unconditionally cooperative (below the bottom
line) strategies. We can clearly see the cyclic behaviour noted by Nowak and

Sigmund. At m = 1000, 32 interactions were misclassified per round on average,
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Figure 3.1: (a) Strategy classifications and (b) levels of misclassified interactions,
using a completely connected topology, for n = 100,0 = 0.1, x = 0.001, while
varying m. Both the proportion of selfishness in the population and the levels
of misclassified interactions rise with greater numbers of interactions.

i.e. a misclassification rate of 3.2%. As m increases, there are increases in (i)
the levels of selfishness and (ii) the proportion of misclassified interactions.
Figure 3.1(b) plots the percentage of interactions that were misclassified over
the entire simulation. When m = 50000 (i.e. m/n = 500), 40% of the popu-
lation has adopted a selfish strategy and 5.7% of interactions are misclassified
(i.e. an average of 2850 per round). The proportion of misclassified interac-

tions falls slightly between m = 20000 and m = 50000, despite an increase in
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Figure 3.2: Average strategy over time, sampled every 100 generations, for
m = 1000, for a representative run from Figure 3.1. In this run, the population
is predominantly cooperative, and the cycles in agent strategy are clearly visible.
The population does not converge on a steady-state.

selfishness. We believe that the strategy distribution of the population is an
important determinant of levels of incomplete information. Recall that image
scoring, through indirect reciprocity, induces a feedback effect in which cooper-
ative actions cause subsequent cooperative actions, and vice-versa for defection.
In a highly cooperative society, a choice by a donor to cooperate is likely to
be correct (due to the high numbers of cooperators) even if made on the ba-
sis of highly incomplete information. The same is true, vice-versa, for defecting
societies. However, when the strategy distribution is mixed, uncertainty regard-
ing a recipient’s strategy is higher, and subsequently choices made on the basis
of incomplete information are more likely to be incorrect. This is evident in
the results for m = {20000, 50000}, in which selfishness rises by 9%, while the
proportion of misclassified interactions drops by 1%.

Figure 3.3 separates the misclassification of cooperative and defective ac-
tions for the results shown in Figure 3.1(b). At m = 1000, 0.24% of cooperative
actions are incorrect — in all interactions in which a donor donated, only 0.24%
would have been defections had the donor had complete information. Con-

versely, of all the interactions in which the donor defected, 26.4% would have
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m CC SF SW Ran

S 1P S 1P S 1P S 1P
1000 0.13 | 3.71 091 | 1.2 ] 0.01 | 0.1 || 0.03 | 2.0
5000 0.10 | 3.76 || 0.005 | 1.8 || 0.02 | 0.3 || 0.01 | 0.4
10000 || 0.21 | 5.71 || 0.004 | 1.1 || 0.03 | 0.4 || 0.02 | 0.3
20000 || 0.30 | 6.94 || 0.006 | 1.1 || 0.06 | 0.6 || 0.02 | 0.2
50000 || 0.39 | 5.93 || 0.01 | 2.2 0.11 | 0.6 || 0.04 | 0.2

Table 3.1: Selfish proportion of population (S) and Percentage of Incorrect
interactions (IP) for Completely Connected (CC), Scale Free (SF), Small World
(SW) and Random (Ran) networks while varying m, when n = 100. All other
parameters are as Figure 3.1.

been cooperative had the donor had complete information. This corroborates
the discussion above, since the society is more than 90% cooperative. As m
rises, the proportion of defections that are misclassified rises (to a peak of 58%)
and then falls, as the rising proportion of selfish agents reduces the probability
that an interaction partner is cooperative, and subsequently that the decision
to defect is incorrect.

These results demonstrate two relationships: the proportion of (i) misclas-
sified interactions and (ii) selfish strategies both increase as m/n increases. We
believe that incomplete information is a key component of the mechanism by
which the increasing interaction rate results in reduced support for cooperative

behaviour.

3.5.2 Effect of network structure

It is also important to investigate the relationship between network structure
and the impact of incomplete information. We initially investigate random,
scale-free and small-world networks. Random networks are a useful middle
ground between completely connected networks and scale-free or small-world
networks, which are known to model features of networks found in the real
world (Albert & Barabdsi, 2002). Instead of pairs of agents being chosen ran-
domly, the donor is now selected at random from the population and the recip-
ient is chosen at random from the donor’s neighbour set.

In random networks, each pair of agents is connected with probability p.
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Figure 3.3: Interactions misclassified as proportion of interaction type for sim-
ulation runs in Figure 3.1. The proportion of cooperations that are incorrect
is the number of interactions in which the donor donated incorrectly divided
by the total number in which the donor donated (as opposed to divided by the
total number of interactions for the donor).

Assuming an undirected graph, p = 0.1, and n = 100, each agent is connected
to 4.95 neighbours on average. Given that sparse connectivity is a feature of
many open MAS; it is useful to evaluate the effect of varying p. Figure 3.4(a)
plots the strategy distribution for the same configuration as in Figure 3.1(a),
but situated on a random network. Selfishness dominates at p = 0.01, since
there are so few agents observing interactions that indirect reciprocity cannot
take hold. Cooperation takes hold as p rises to 0.1, but selfishness again rises as
p increases up to 0.5. For these values of p, there are sufficient neighbours that
incomplete information, due to any given neighbour only observing a small sub-
set of a potential recipient’s history, becomes significant. Figure 3.4(b), which
plots the levels of misclassified interactions, demonstrates this: at p = 0.5,
2.09% of interactions are misclassified, whereas there are negligible misclassified
interactions at p = 0.01. Random networks show statistically significant differ-
ences in the levels of selfishness compared to completely connected networks.
T-values for a two-tailed t-test range from 0.031 at m = 1000 to 6.37 x 10~2°
at m = 50000, demonstrating that the introduction of network topology has

significantly affected the operation of image scoring.
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Figure 3.4: (a) Strategy classifications and (b) levels of misclassified interactions,
using a random topology, varying p, with m = 1000. Results are given for
n = 100,0 = 0.1, and p = 0.001.

1 T T T 2 T T T
Unconditianally Cooperaive &3 1o Incdrrect Cooperation E5CE3
Conditionally Cooperative Eazeca Incorrect Defection £ze=zes |
09 Selfis 18 Total Misclassified Interactions wws
17
08 16
2 1s
07 g 14
5 g 13
< o 7 E o2
& g
5 05 }:I,f 8 1
& R o % 2 o9
g 5 22 £
S 04 g’«_%] e 3;3} 5 o8
H e - = o 7 g o7
03 1 e 5 o it e o 15 os 3
o i b b o i g o 5
] o s 2 & f g o8 =
02 = 3 5 b 2l (e 1 o4 =
- .
01 & 2 5 i = i {4 o2 gt i o - o 4
b 5% b ey i 5 B b et
32 ¢ 5 55 o o 04 % ] ] o X 5 o
o B 3 o % % i o b % 13 R B o
1000 5000 10000 20000 50000 75000 1000 5000 10000 20000 50000 75000
m - number of interactions/round m - number of interactions/round

(a) (b)

Figure 3.5: (a) Strategy classifications and (b) levels of misclassified interactions,
for scale-free topology, varying m, using 1000 edges in total, and with all other
settings as Figure 3.4.
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Scale-free networks show strong support for cooperative behaviour, as il-
lustrated by the results shown in Figure 3.5(a). Although a certain number
of interactions are required to initially support cooperative behaviour (i.e. at
m = 1000), as m rises we no longer see the characteristic rise in selfishness
observed in completely-connected or random networks. Unconditional coop-
erators in particular are dominant, suggesting that the structure of scale-free
networks allows groups of agents to cooperate with reduced vulnerability to
selfish invaders. Figure 3.5(b), which shows the misclassified interactions for
data in Figure 3.5(a), corroborates this: with a maximum total proportion of
misclassified interactions of 1.13% at m = 1000.

Scale-free topologies are known to have beneficial properties regarding infor-
mation propagation and robustness to untargeted malicious action. For exam-
ple, Delgado (2002) used a model of social convention emergence to show that
complex (i.e. scale-free and/or small-world) networks are more efficient than reg-
ular graphs with the same average node degrees, and that scale-free networks
are as efficient at spreading information as fully-connected graphs. Barabasi and
Albert (2002) also noted the remarkable fault-tolerance of scale-free networks.
The robustness of scale-free networks is partially derived from their clustering:
there are highly-internally connected groups with relatively few links to the rest
of the population. In the context of our investigation, we hypothesise that this
grouping effect allows image scoring to act with a much smaller average connec-
tivity, since there will be many such groups in which agents are highly visible to
other agents within that group. As discussed previously, visibility of agents is
important for the efficacy of image scoring. We use the term wvisibility to denote
the combination of observability and topological connectivity, since both influ-
ence how many agents might observe an interaction. Sen (2008) demonstrated
the existence of scale-free topological structure in mobile ad-hoc networks, and
many other real-world networks are known to be scale-free (Albert & Barabdsi,
2002). The robustness of image scoring on scale-free networks is thus highly

important, as it demonstrates the broad applicability of the technique.
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3.5.3 Incomplete information due to low interaction rate

Scaling the ratio of m/n to high values means that agents are likely to have
incomplete information regarding the set of interactions a potential recipient
has participated in. This represents a vulnerable configuration, as our previous
results show, but agents are also likely to be vulnerable when this ratio is very
low. Under this configuration, while agents may have complete information
regarding a potential recipient’s history, there may be insufficient historical data
to make accurate decisions. This is particularly true when agents first enter a
system.

Figure 3.6 shows the strategy distribution with n = 100, and m = {125,300}
(i.e. a ratio of m/n = {1.25,3}), across a variety of synthetic networks. For the
majority of network classes, selfishness dominates within the population. The
proportion of selfish agents is particularly high for m = 125, and tends to de-
crease as m increases to 300. This supports our hypothesis that the interaction
history is insufficient at low levels of m, reducing the ability of indirect reci-
procity to support cooperation. Small-world networks appear to significantly
support cooperative behaviour, and we believe this is because these networks
make agent interactions highly visible to potential future donors. Our results
suggest that both configurations that we examine, namely (i) a very high rate
of interactions, and (ii) a very low rate of interactions, are vulnerable settings in
which indirect reciprocity is less effective due to either incomplete information
(as in configuration (i)) or insufficient information (as in configuration (ii)).

We learn three important lessons from the results from the previous sections:

1. The level of incorrect interaction choices is dependent on the
probability of having witnessed a recipient’s interactions.
This probability is based on a number of factors, including the degree of a
node, the observability in the population, and the number of interactions.
We observe higher proportions of incorrect interaction choices in both

vulnerable situations, namely, when the interaction rates are high and
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Figure 3.6: Comparison of population strategy distribution over 4 classes of
topology: Completely Connected (CC), Scale-Free (SF), Random (Ran), and
Small World (SW), using m = {125,300} and n = 100. There are clear dif-
ferences in population behaviour between topological classes, with scale-free
being particularly conducive to selfish behaviour. Small-world networks appear
highly supportive of cooperative behaviour, which may be due to the effects of
clustering.

when the interaction rates are low.

2. Incomplete information has an observable effect on levels of
emergent cooperation.
Nowak and Sigmund (1998) note that when moving from their initial
model, equivalent to an observability of o = 1, to an observability of
o = 0.1, a larger number of interactions are needed to establish coop-
eration. Our results corroborate this and establish that higher levels of
incomplete information (whether caused by low node degree or high num-

bers of interactions) lead to more selfish societies.

3. The levels of cooperation are highly dependent on the underly-
ing topological structure of the social network.
Random graphs, and to a lesser extent, scale-free networks, significantly
reduce the detrimental effects of incomplete information and aid the emer-

gence of high levels of cooperation.
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3.5.4 Larger population sizes

Proportion of population

Network Parameter | UC | CC S

Eppstein | 1000 edges | 0.33 | 0.20 0.46
Eppstein | 5000 edges | 0.36 | 0.23 0.39
Eppstein | 10000 edges | 0.41 | 0.25 0.32
Kleinberg CE1 0.42 | 0.26 0.31
Kleinberg CE5 0.43 | 0.20 0.36
Kleinberg CE10 0.34 | 0.30 0.35

Table 3.2: Strategy distribution for various scale-free and small-world networks.
UC is Unconditionally Cooperative, CC is Conditionally Cooperative, and S is
Selfish. CE is the Clustering Exponent, n = 1000, and m = 1000. Results are
given for o = 0.1, u = 0.001.

Our results so far are limited in the sense that we have only simulated 100
agents. In this section, we briefly describe the results from simulations involving
a population size of 1000.

As Table 3.2 shows, scaling up the population to n = 1000 agents introduces
a smoothing effect. Overall, the model behaviour is very similar to when n =
100. The influence of incomplete information appears slightly reduced, but the
populations are more evenly distributed with selfishness remaining significant.
Interestingly, the support that small-world networks displayed for cooperative
behaviour is no longer present, and selfishness levels are similar to scale-free
networks. Scaling the number of edges in scale-free networks slightly reduces
the level of selfishness, corroborating our hypothesis regarding visibility of agent
interactions.

Our results show significant levels of selfishness across a variety of configu-
rations. We conclude that there are three primary influences on levels of self-

ishness:

1. Underlying network topology
Selfishness is significant in scale-free networks (structurally closest to the
real world), but small-world networks are particularly supportive of coop-
erative behaviour. Small-world networks have low shortest path lengths

and high clustering, implying a higher probability of connection between
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observers of an interaction and potential interaction pairs>.

. Interaction rate

At very low rates (i.e. m = 125), there is not time for indirect reciprocity
to take hold and selfishness increases (i.e. image scoring suffers from a
cold start problem). As m increases selfishness is slightly reduced (down
to 1.07% at m = 1000), but again rises as we approach m = 50000 (up
to 31.4%). At low and high values of m, there is a higher probability of
an agent having insufficient information with which to make an accurate
assessment of a potential partner. As a result, the efficacy of image scoring
is drastically reduced, and selfishness rises. These represent vulnerable

configurations for reputation mechanisms.

. Population strategy distribution

A population with an equal strategy distribution increases the effect of
incomplete information, by increasing the uncertainty about a potential
partner’s strategy and making a decision based on incomplete information
more likely to be incorrect. This has important implications for mech-
anisms that aid the emergence of social norms and conventions, which
reduce the strategy choices available to agents. In systems with high lev-
els of normative control, incomplete information is reduced due to lower
uncertainty about agent strategies, and reputation mechanisms may sub-
sequently become more effective. Accordingly, we focus on conventions

and norms for the remaining chapters of this thesis.

3.5.5 Introducing gossiping

In this section, we present results from implementing gossiping and the effect

of the aggregation rule adopted. Table 3.3 compares levels of selfishness in the

population for the same configuration as Figure 3.1, except that agents gossip

3Recall that although observers may be connected with the recipient of an interaction, they
only update the score of the donor. For the observation to be of use, the observer must then
also interact with the donor.
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Selfishness

Topology m ogp =10 \ ogp =1 Diff.

Completely-Connected | 125 0.540 0.418 0.122
Completely-Connected | 300 0.324 0.221 0.103
Scale-free 125 0.613 0.479 0.134
Scale-free 300 0.512 0.330 0.182
Random 125 0.569 0.527 0.042
Random 300 0.424 0.256 0.168

Table 3.3: Comparison of the average proportion of selfish agents in the pop-
ulation for the runs in Figure 3.6, when agents either do not gossip (i.e. when
ogp = 0) or gossip using the Average Replace update rule (i.e. when ogp = 1).

Selfishness
Topology || ogp =0 ogp =1 max. Diff.
AA \ AR\MR\MReC\
Enron-1 0.29 0.33 | 0.20 | 0.33 | 0.04 0.25
Enron-2 0.31 0.35 ] 0.22 | 0.33 | 0.19 0.12
Enron-3 0.33 0.38 | 0.25 | 0.18 0.21 0.15
Enron-4 0.39 0.20 | 0.25 | 0.21 | 0.16 0.23
arXiv-1 0.33 0.39 | 0.21 | 0.19 | 0.15 0.18
arXiv-2 0.34 0.50 | 0.10 | 0.30 | 0.15 0.24
arXiv-3 0.34 0.40 | 0.19 | 0.35 | 0.22 0.15
arXiv-4 0.27 0.21 | 0.16 | 0.33 0.19 0.11

Table 3.4: The effect of gossiping on selfishness in real-world network samples
with the population using each individual update rule (i.e. Aggregate Average
(AA), Average Replace (AR), Majority Replace (MR), or Most Recent (Mrec)).
Results are shown for ogp = 1,n = 1000, and m = 1000.

and use our Average Replace update rule.

Figure 3.7 shows the strategy distribution using our update rules together
with a control configuration with no gossiping, on a scale-free topology with
m = 1000. Finally, Table 3.4 shows the results from using gossiping on the
real-world network samples, with n = 1000.

On average over the 4 update rules, 331.7 million gossips were started, with
1.436 billion gossip packets sent over 10 million interactions, or 143 packets per
interaction. Agents adopted a new image score for a given individual 496.4
million times. On average, a single gossip causes 1.50 image score changes.
Aggregate Average is the only rule to incorporate the agent’s current image

score perception of the gossip subject, whereas the other three rules only take
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Figure 3.7: Strategy distribution using gossiping with m = 1000, on a scale-
free network with 1000 edges, while varying the update rule that agents use
to update their image score from received gossips. All of the aggregation rules
support a drop in selfish behaviour.
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into account the gossips received about a given gossip subject. A gossip using the
Aggregate Average rule causes, on average, 1.09 image score changes, whereas
the other rules cause 1.67 (Average Replace), 1.63 (Most Recent), and 1.60
(Majority Replace) changes in image score respectively. Clearly, update rules
that do not incorporate the current perception of the subject’s image score
perform better. That Most Recent performs as well as the others suggests that
many of the updates are for when agents have no information (i.e. they assume
an image score of 0), and the gossip provides initial data to make a choice with.
Aggregate Average incorporates the assumption of an image score of 0, biasing
the resultant updated value. These results suggest that gossiping is a useful
mechanism by which new entrants to a system can start interacting quickly
without having to observe the population to gain sufficient information.

In the real-world network samples, Aggregate Average still performs poorly,
but Most Recent gives the most consistently beneficial results. These results are
given for m = 1000, and as such agents are likely to have very little or no infor-
mation on potential interaction partners. The Most Recent rule is equivalent
to allowing each of the gossip recipients to act as an observer of the interaction
being gossiped about, and thus reduces the number of interactions necessary
for indirect reciprocity to take hold. This corroborates our conclusion that gos-
siping is a particularly useful supplement to reputation for new entrants to a
system, or in systems characterised by high levels of population churn. While
the difference gossiping makes in the real-world networks is generally larger than
in the synthetic networks, sometimes the introduction of gossiping results in an
increase in selfishness (particularly with Aggregate Average, though never with
Most Recent). Why this is the case requires further investigation, but these
results imply careful consideration must be given to how agents incorporate
information attained through gossiping.

From these results, we can conclude the following;:

1. Gossiping significantly reduces levels of selfishness in the society.

On average, the introduction of gossiping reduces levels of selfishness by
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around 10% in the synthetic networks and around 18% in the real-world

network samples.

. There does not appear to be a relationship between the number
of interactions and the reduction in selfishness, whereas there is
one between network structure and gossip efficacy.

The real-world network samples and scale-free synthetic networks in par-
ticular show significant reductions in selfish behaviour. Given the ubiquity
of scale-free degree distributions in real-world open MAS domains, these
results suggest that gossiping can be practically applied. Random net-
works are not as conducive to gossiping as other network classes, which
may be a consequence of their reduced clustering. As argued above, clus-
tering increases the probability of observations being useful, and since gos-

sips are a substitute for direct observation this property translates across.

. All update rules except Aggregate Average show a statistically
significant decrease in selfishness (a = 0.05).

In the synthetic networks, Aggregate Average performs worse than the
other update rules, whereas the other update rules perform fairly equally.
In the real-world network samples, Most Recent performs consistently and
with the greatest reduction in selfish behaviour, but the other update rules

occasionally result in an increase in selfish behaviour.

3.5.6 Gossiping without observation of interactions

A key feature of our model is the observation of interaction results by the neigh-

bours of the participants. Observers underpin indirect reciprocity through two

mechanisms: (i) updating their own perception of the donor’s image score, for

use in subsequent interactions with the donor, and (ii) gossiping information re-

garding the donor to other individuals who may also subsequently interact with

the donor. In some domains, we may not be able to assume that interactions

are observable. In such cases, we would like to know whether image scoring
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Figure 3.8: The population strategy distribution when neighbours cannot ob-
serve interactions with either gossiping (ogp = 1) or no gossiping (ogp = 0), for
n = 100, and averaged over all networks and network samples.

is still effective at promoting indirect reciprocity, and if not, whether gossiping
can recover that efficacy. Nowak and Sigmund note that reduced observability
means that a larger number of interactions are required to sustain cooperation.

Accordingly, we performed simulations in which interactions were not ob-
servable. Only the recipient, therefore, updates their perceived image score for
each interaction, and only recipients or donors start gossips. Figures 3.8 and
3.9 show the strategy distribution, averaged over all network topologies, for a
no-observation configuration with m = 1000 and n = {100, 1000} respectively.
Selfishness dominates, and we witness a sharp increase in misclassified interac-
tions: with 100 agents, 3% of interactions are misclassified, compared with 0.6%
for the identical configuration with observation.

From these results, we can see that gossiping retains some efficacy but only
produces around a 10% decrease in selfishness for n = 100, falling to less than
5% for n = 1000. Since gossips are now only started by interaction participants,
fewer gossips regarding each agent are circulated. This reduces the efficacy
of aggregation rules, and makes errors in perception more likely to be prop-
agated (if agents receive any gossips at all). We see this in the misclassified

interaction data where there is no statistically significant drop in misclassified
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Figure 3.9: The population strategy distribution when neighbours cannot ob-
serve interactions with either gossiping (ogp = 1) or no gossiping (ogp = 0), for
n = 1000, and averaged over all networks and network samples.

interactions when introducing gossiping, despite the fall in selfishness. The de-
crease in selfishness for n = 1000 is lower than for n = 100. We believe this to
be a result of each agent having an increased neighbourhood size (due to the
increase in population size), which combines with the sparser rate of gossips to
mean that agents frequently do not benefit from gossiping. Interestingly, the
number of unconditional cooperators falls with the introduction of gossiping,
while the number of conditional cooperators rises. We believe that the presence
of gossiping allows conditional cooperators to make more accurate choices, while
unconditional cooperators are consistently exploited by the large proportion of

selfish agents.

3.5.7 Gossiping with high cost of cooperation

Throughout our results, the cost of giving cooperation is kept at one tenth the
benefit of receiving cooperation. The cost of cooperation has been the subject
of much research (e.g. Ohstuki et al. (2009)), and it is important to investigate
whether gossiping can help support cooperation in the face of a low benefit/cost
ratio. Figure 3.10 shows the strategy distribution, averaged across all network

topologies, for ¢ = {0.1,0.5,0.9}, and n = 1000.
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Figure 3.10: Population strategy distribution while increasing the cost of coop-
eration for populations with no gossiping, averaged across all network topologies.
Results are given for m = 1000,0 = 0.1, x = 0.001.

Image scoring appears to be ineffective at supporting cooperative behaviour
as the cost of cooperation rises past half the benefit conferred. The high cost
of cooperation means that it is evolutionarily advantageous for agents to defect
consistently. The introduction of gossiping mitigates this effect partially at ¢ =
0.5, but appears entirely ineffective at ¢ = 0.9. At ¢ = 0.5, the introduction of
gossiping allows those agents that are cooperative to make accurate assessments
regarding which (small) subset of agents they may cooperate with. However,
at ¢ = 0.9, this benefit is overcome by the cost of cooperation, and there is
very little incentive for agents to cooperate at all. As such, in this case gossips
will simply confirm the selfishness of potential recipients, rather than support

cooperation in the face of selfishness.

3.6 Conclusions

Highly decentralised open MAS require robust, low-cost mechanisms for sup-
porting cooperation and protecting individuals from selfish or malicious be-
haviour, particularly for new entrants to a system. We have investigated two

issues that can influence the efficacy of image scoring as a simplified model
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operation for populations which gossip, averaged across all update rules and
network topologies. Results are given for m = 1000,0 = 0.1, u = 0.001.

of reputation in settings that closely model those found in practical domains,
namely (i) incomplete information and (ii) underlying network structure. Our
results show that incomplete information can undermine the feedback effects
that indirect reciprocity introduces into a system and subsequently increase the
levels of selfishness in the population, whereas network structures found in the
real world act to mitigate selfishness.

In detail, we have shown that (i) incomplete information can significantly
undermine lightweight reputation mechanisms, with up to 62% of defection ac-
tions (using a completely connected network topology) taken incorrectly, and
(ii) that the underlying network topology has a significant influence on levels of
selfishness in the population. We applied gossiping algorithms and showed that
(iii) they reduce levels of selfishness by up to 25%, with the biggest gains found
on topologies sampled from real-world networks. We found that (iv) simply
using the most recently gossiped information about a potential partner results
in the most consistent benefits, suggesting that gossiping may be particularly
useful for agents first entering a system. Gossiping is not effective in all situa-
tions: when the cost of cooperation is high, or there is no external observability

of agent interactions, the efficacy of gossiping is drastically reduced.
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Both extremes of the ratio m/n represent vulnerable situations for simple
reputation mechanisms. Our results are corroborated on real-world network
samples, but we note that our investigation in this area is limited. For fu-
ture work, we plan to repeat the entire analysis on real-world networks, and
determine the risks of incomplete information in such settings.

An effect to note from our results is that of the visibility of interactions on
the levels of cooperation observed. Many open MAS domains are characterised
by sparse topologies and our results appear to show that the efficacy of im-
age scoring is reduced in such settings. Implementing gossiping with the Most
Recent update rule shows significant reductions in selfishness, and is equiva-
lent to increasing the visibility of interactions (for example by increasing net-
work connectivity). Gossiping has been applied successfully within the specific
topological challenges of VANETSs (Bako et al., 2007; Costa et al., 2008) and
MANETSs (Buchegger, 2005), and also within the domain of reputation mech-
anisms (Bachrach et al., 2008; Mundinger & Le Boudec, 2006). Our results
with no observability demonstrate the challenges of supporting cooperation in
systems with low interaction visibility. In future work, we aim to extend our
gossiping mechanism to cope better in systems with low observability of inter-
actions.

Our results suggest that a key component driving incomplete information
is the strategy distribution of the population. In populations where there is
significant uncertainty regarding the strategy of a potential interaction partner,
there is a higher chance of decisions made on the basis of incomplete informa-
tion being incorrect (when compared to the decision that would have been made
with complete information). Conventions and norms, which reduce the popula-
tion strategy distribution, may therefore be useful mechanisms in conjunction
with trust and reputation. Furthermore, while trust and reputation are effective
mechanisms for protecting individuals from malicious behaviour, their perfor-
mance is limited in systems with anonymity and they do not provide an account

of how agents can solve coordination problems (in which agents must agree on
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a solution from a potentially large set of indistinguishable options). We explore

conventions and norms in detail in the remaining chapters of this thesis.
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CHAPTER 4

Conventions

Trust and reputation are effective mechanisms for manipulating partner se-
lection, but they do not perform well in systems with potentially anonymous
agents, and they do not provide an account of which actions an agent should
select to most effectively coordinate or cooperate with others. Conventions are a
particularly effective mechanism for manipulating action selection, and they are
the focus of the remainder of this thesis. In this chapter, we review the literature
surrounding the emergence and establishment of conventions, and identify sev-
eral limitations in typical models of conventions. To address these limitations,
we define a formalism within which distinct models of convention emergence
can be expressed and easily compared. We subsequently propose a new defi-
nition of convention that accounts for several of the limitations identified, and
define metrics of a convention’s support, stability and quality. Furthermore, we
identify three areas for future research: (i) determining how populations might
be manipulated to adopt a given convention, (ii) how to exploit topological in-

formation to refine mechanisms that support convention emergence, and (iii)
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how to manipulate established conventions that are in the middle and latter
stages of the convention lifecycle. These research areas are considered in detail

in Chapters 5, 6 and 7 respectively.

4.1 Introduction

While trust and reputation are effective mechanisms for protecting individ-
uals from malicious behaviour, their performance is limited in systems with
anonymity. Furthermore, they do not provide an account of how agents might
coordinate their actions. The use of conventions has shown particular promise
as a distributed mechanism for coordinating interactions (Boyer & Orlean,
1992; Delgado, 2002; Goyal, 1997; Pujol et al., 2005; Vylder, 2007; Walker
& Wooldridge, 1995). Conventions can promote desirable behaviour in large,
heterogeneous populations with uniform levels of authority. In this chapter, we
survey the current state of thought in research into conventions, and propose
a formalisation which can describe a variety of open MAS models focusing on
convention emergence. We identify a number of limitations in traditional char-
acterisations used in the agents community and areas where research questions
remain. The subsequent chapters of this thesis deal with three of these limita-
tions in detail: specifically, (i) how to manipulate convention emergence in open
MAS domains (Chapter 5), (ii) how to exploit knowledge of network structure
to improve mechanism efficacy (Chapter 6), and (iii) the amenability of conven-
tions to manipulation in the middle to latter stages of the convention lifecycle
(Chapter 7). We use language and notation from our formalism to describe
models used in experiments in the remainder of the thesis.

While significant understanding of conventions has been attained, limita-
tions of current models of convention emergence reduce their applicability in
large dynamic real-world MAS. Specifically, existing models are typically un-
able to describe the quality, support or stability of a convention, or account

for how multiple conventions might co-exist. Furthermore, there has been lim-
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ited research into the middle and latter stages of the convention life cycle. In
this chapter, we begin by reviewing the conceptual foundations of conventions
(Section 4.2) and the current state of the art (Section 4.3) and identify the lim-
itations. We then propose a conceptual framework for conventions and show
how common existing models can be expressed within it to allow direct com-
parison. Our framework comprises an interaction formalism (Section 4.4) and
a rich definition of conventions and metrics (Section 4.5) that significantly ex-
tends existing approaches to address important limitations. Finally, Section 4.6

concludes the chapter and identifies future directions.

4.2 The foundations of conventions

Conventions are generally thought of as socially accepted expectations of be-
haviour, and represent an aggregation of a population’s choices in its individual
interactions. System designers are typically concerned with reducing the cost
associated with malcoordination between agents, and conventions are a useful
abstraction for analysing the behaviour of large numbers of agents, to support
this aim.

There have been a wide variety of definitions proposed in the literature.
Lewis (1969) defines a convention as a regularity in the behaviour of a popu-
lation in repeated iterations in the same situation, subject to constraints such
as the proportion of agents that conform to the regularity and the proportion
of agents that expect others to conform. Goyal (1997) describes conventions
as an arbitrary solution to a social problem, wherein individuals only conform
because they expect others to conform. Shoham and Tennenholtz (1997) ap-
proach conventions from a game-theoretic perspective, defining a convention as
a restriction of agents’ decisions to a single choice in a given coordination game.
Kittock (1993) considers a convention to exist when a high proportion of agents

use the same given strategy.
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4.2.1 The role of expectations

Uniting these definitions is the theme of mutual expectation in repeated itera-
tions in similar situations: agents make choices based on the expected choices
of others. As such, conventions are primarily necessary where agents’ decisions
involve externalities, in which the individual’s choice (and utility) depends par-
tially or wholly on the choice of others, and vice-versa (Schelling, 1973). In
such systems, conventions provide a mechanism for (i) generating a set of mu-
tual expectations that resolve coordination problems, and (ii) influencing agent
strategy selection towards mutually and societally beneficial outcomes.

Consider the El Farol bar problem (Arthur, 1994; De Cara et al., 1999), in
which agents must decide on which day of the week to visit a bar. Each agent
desires the number of other individuals present to be within a certain range, such
that the bar is not too empty or too busy. There is no salient difference between
any of the days, and an agent’s decision is based purely on its expectation of
what others will do. However, their decisions are in turn also based on such
expectations. This loop of mutual expectations leads to infinite regress without
resolution if there are no external factors to break it. Lewis (1969) called these
expectations n'" order expectations, such that “I expect that you expect me to
do z” is a second-order expectation.

Lewis (1969), and many subsequent works on convention emergence (e.g.
Young (1993), Garrod (1994), and Boyer & Orlean (1992)), identify two prin-
cipal mechanisms by which higher order expectations can be generated and

subsequently resolved: salience and precedence.

e Salience is some feature of a potential choice that marks it out as more
likely to be chosen by others. Lewis (1969) notes that this may not be

an advantageous feature, but merely marked out as noticeable by some

property.

e Precedence is a special form of salience: the choice is more expected be-

cause it has been previously observed. Young (1993) identifies precedence
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as the primary driver behind the emergence of conventions, through “grad-

ual accretion”.

Schelling (1973) was among the first to argue that either salience or prece-
dence is necessary to break the infinite loop resulting from reasoning on higher-
order expectations. Boyer and Orlean (1992) take this further, arguing that
coordination problems cannot be solved using purely individual rationality, due
to this regress. Shoham and Tennenholtz (1997) discuss the concept of socially
rational choices, which embody the idea of an optimal choice for the society.
Such a choice might manifest as the highest expected aggregate utility, or some
other notion of best for the society, which may or may not be consistent with
individual rationality. Conventions are a way of facilitating socially-rational de-
cisions when agents are given a set of choices that are otherwise indistinguishable
(and thus not amenable to decisions based on individual rationality).

Lewis (1969), Garrod (1994), and Boyer and Orlean (1992) all argue that
conventions are self-reinforcing. Once a set of mutual expectations is created,
subsequent choices based on those expectations serve to increase their strength.
Lewis (1969) uses the analogy of a fire: “under favorable conditions, a sufficient
concentration of heat spreads and perpetuates itself”. Existing research into
convention emergence has thus focused on two main questions: (i) what con-
ditions are favourable for convention emergence, and (ii) how can an emerging
convention become established throughout a population?

The above discussions indicate limitations in existing definitions of conven-
tions, in that (i) they assume near-universal conformity is either an ideal or
attainable goal, disregarding situations in which we desire or can only attain
multiple (or partially adopted) conventions (i.e. Section 4.2 and typically held
definitions of conventions), (ii) they provide no way to quantify the desirabil-
ity of conventions (i.e. whether agents or designers prefer one convention over
another) or their potential for establishment (Section 4.2, and the lack of quan-
tifiable metrics in works discussed), and (iii) they provide no way to fully de-

scribe the evolution of a convention from uncoordinated individual choices to
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the emergence of an aggregate consensus (Section 4.2.1: the majority of work
examines the processes of initial emergence), which is an important step towards

developing effective mechanisms for managing conventions.

4.2.2 The convention life cycle

A complete theory of conventions must account for the evolution of a conven-
tion from a set of uncoordinated behaviours between interacting agents to the
establishment of regular, expected choices. There have been a number of efforts
investigating the mechanisms through which this occurs, but limited attempts
to unify the results into a single cohesive framework. Hollander and Wu (2011)
provide an overview of norms-related literature (norms being a form of con-
vention in which adherence is motivated through sanctions or incentives), and
outline a norm life cycle containing several processes: creation, transmission,
recognition, enforcement, acceptance, modification, internalisation, emergence,
forgetting, and evolution. Their view of the life cycle is focused on the agent
perspective, while we consider the convention life cycle from the perspective of a
convention as an entity in itself. Strictly speaking, in this thesis we focus on the
emergence phase in the characterisation presented by Hollander and Wu (2011),
and we do not discuss agent specific processes such as internalisation, forgetting,
or the representation of conventions or norms.

At the beginning of the convention life cycle, salience or precedence causes a
given strategy or choice to be selected with greater regularity than others. The
expected utility of a strategy is a form of salience, since choices with a higher
expected utility are more likely to be selected than those with lesser utility.
Assuming that agents have different interaction partners over time, the mutual
expectations that arise from salience and precedence will spread. At some point
such a strategy is considered a convention, and typically system designers hope
that it will spread throughout the population.

Research into how salience and precedence contribute to convention emer-

gence has seen significant attention (e.g. Lewis (1969), Sen & Airiau (2007), Vil-
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latoro et al. (2009a)), but there has been little research on the process by which
a convention grows or dissipates once a system of mutual expectation emerges,
or on how it might become established across a whole population. Much work in
the area adopts the convention definition proposed by Kittock (1993), in which
a convention exists when a proportion of the population (typically 90-100%)
adheres to it a proportion of the time (again, typically considered to be 90—
100%). However, this offers little insight into the middle and latter stages of the
convention life cycle, and is insufficient for domains in which such high levels of
adherence to a single convention are either undesirable or unattainable.

We identify three possible states that a convention can attain: (i) estab-
lishment as dominant convention, (ii) co-ezistence with other conventions, or
(iii) destabilisation and dissipation. The typical definitions, such as that of Kit-
tock (1993), are concerned purely with establishment, and do not consider the
conditions under which co-existence and destabilisation might occur (or whether
they are desirable or not). We therefore consider the convention life cycle as
only partially understood: the forces of precedence and salience that generate
the initial set of mutual expectations that eventually form a convention are
well documented (Lewis, 1969; Vylder, 2007; Young, 1993; Young, 1996), but
the middle and latter stages of convention emergence have seen only limited
research (notable examples include Villatoro (2011), Hollander & Wu (2011),
and Boyer and Orlean (1992)). Moreover, the typically adopted definitions and
models of conventions do not account for more than one convention existing in
a population (with some exceptions, such as De Cara et al. (1999) and Villa-
toro (2011)), and do not support quantitative analysis of a convention’s quality,
support or stability. In the next section, we review the major research contri-
butions relating to conventions, and describe how they fit within the convention

life cycle.
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4.3 Perspectives on conventions

In this thesis, we are concerned with the adoption and (online) adaption of
conventions in the absence of a central authority. Various researchers have con-
sidered off-line design of conventions (Agotnes & Wooldridge, 2010; Shoham
& Tennenholtz, 1995) and centralised imposition of conventions (Boman, 1999;
Grizard et al., 2007), but these tend not to be applicable to open MAS domains
due to limited knowledge of society characteristics, time variance, and computa-
tional difficulty. It is important to distinguish between conventions and norms,
which also represent socially-accepted rules governing behaviour, but are gener-
ally considered to include an obligation to act according to the norm (Agotnes
et al., 2009; Axelrod, 1986). Norms are a stronger form of convention, typically
using incentives and sanctions to motivate adherence. In this chapter we focus
on conventions, but believe that our conceptual framework could be generalised

to norms in future work.

4.3.1 Conventions in agent systems

Walker and Wooldridge (1995) were among the first to investigate convention
emergence in agent-based systems. Walker and Wooldridge developed an ab-
stract model in which agents with a finite memory of past interactions select
strategies in repeated interactions. The authors focused on designing a strategy
update function that enables efficient conventions to emerge. They conclude
that a simple majority rule, in which agents select the strategy that they have
observed in others the most, performed best. it is important to note that their
results are difficult to generalise: the model focuses on an idiosyncratic illustra-
tive scenario (agents scavenging food in an open area) and uses a small conven-
tion space (4 possible conventions). Their formalism is also limited, particularly
with respect to open MAS, by orienting metrics with respect to individual runs
of a system (i.e. implying a clearly defined start- and end-point for a system).

However, their contributions mark an important starting point in defining a
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unifying formalism for describing the emergence of conventions.

How agents select their strategy has a significant role in convention emer-
gence, and has been further examined in detail by Vylder (2007) and Shoham
and Tennenholtz (1997)!, among others. Walker and Wooldridge (1995) also
proposed metrics for the speed of convention convergence, and the number of
strategy changes agents make. Their work was an important first step in de-
termining quantitative descriptions, but was limited by its assumption that a
single convention across the entire population was both the ideal outcome and
possible to attain. As such, their work corroborates the power of precedence
but offers no insight into the latter stages of the convention life cycle, or into
the potential co-existence of multiple conventions.

Kittock (1993) demonstrated that conventions can emerge from pairwise
interactions between agents, and identified the influence of the underlying net-
work structure constraining interactions. More recent work has considered the
interplay between network structure and convention emergence (Delgado, 2002;
Griffiths & Anand, 2012; Mukherjee et al., 2008; Pujol et al., 2005; Savarimuthu
et al., 2007; Villatoro et al., 2009a), and it is clear that a full understanding of
conventions requires consideration of network effects. We discuss this further in
Section 4.5.7. The link between network structure and convention emergence is
only partially understood, and we investigate how to exploit knowledge of the
network structure to manipulate convention emergence in Chapter 6.

Salazar et al. (2010a) consider convention emergence in the language coordi-
nation domain. Conventions can emerge from propagation of partial convention
seeds (i.e. partial lexicons), with agents selecting which seeds to incorporate
based on precedence in previous interactions (Salazar et al., 2010b; Salazar
et al., 2010a). However, this requires that conventions be expressible in partial
form, which is not possible in many domains. In Chapter 5, we show that with

certain network topologies, the language coordination domain does not converge

IShoham and Tennenholtz (1997) show that a Highest Cumulative Reward (HCR) update
rule, in which agents select the strategy that has performed best overall in their memory, is
highly effective at supporting convention emergence.
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on a single shared lexicon, but instead agents form communities with high levels
of internal coordination (Franks et al., 2013). Such situations are not accounted
for by the typical definitions of conventions.

Convention emergence is often illustrated by considering coordination games,
such as the rules of the road (Sen & Airiau, 2007; Morales et al., 2011). As with
the language coordination scenario, the ideal is for every agent to adhere to the
same convention, but this may be unrealistic. As the multitude of conventions
in real-world traffic systems shows, it is not necessary for a single global con-
vention to pervade for high levels of local coordination to emerge. However,
the cost of inappropriate or inefficient sets of conventions is very high. Sen and
Airiau (2007) model social learning through repeated coordination games, show-
ing that: (i) a convention can emerge through anonymous private interactions,
(ii) a very small proportion of agents can influence which convention emerges,
and (iii) isolated sub-populations can maintain divergent conventions when they

co-interact a small proportion of the time (up to 20%).

4.3.2 Lewis’ analysis of convention

Lewis (1969) provided one of the first and most detailed examinations of con-
ventions to date, which aimed to precisely define and analyse conventions in
a general form, including tacit non-agreed conventions (as considered in this
thesis). Lewis defines a convention as a regularity R in the behaviour of a pop-
ulation engaging in repeated interactions in which the following properties are

satisfied in a proportion of at least dy of the interactions.
1. At a minimum, a proportion of d; individuals conform to R.

2. At a minimum, a proportion of dy expects a minimum proportion of d;

individuals to conform to R.

3. At a minimum, a proportion of d3 individuals have approximately the

same preferences regarding the potential decisions that can be made.
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4. At a minimum, a proportion of d4 individuals would prefer that at least

one additional individual conform to R, given that d; already conform.

5. At a minimum, a proportion of d5 individuals would prefer that, if at least
! individuals already conform to R’ (where R’ is a possible regularity
such that an agent cannot conform to both R and R’), then at least one

additional individual conform to R’.

The degree of conventionality of a regularity (i.e. a candidate convention) can
thus be defined as a tuple (dy, d1, da, ds, ds, d5), indicating how strictly the def-
inition holds. Lewis argues that the ideal convention has degree (1,1,1,1,1,1),
such that all members of the population adhere all the time, expect others to
adhere all the time, have approximately the same preferences, and so on. Prop-
erty 4 requires that the more individuals conform to R, the more desirable it is.
Property 5 captures that R is a single arbitrary choice among many alternatives,
and that there is no reason for R to be established beyond that of precedence.
That is, an alternative regularity R’ exists with the same properties as R (al-
though with a different degree of conventionality), and that the context in which
R and R’ exist can therefore be considered a coordination problem.

As argued above, we might not desire a single convention as the ideal out-
come. We must therefore handle Property 4 with care, as it logically results in
only one convention. Similarly, Property 5 requires modification, since there are
a number of situations in which a given regularity may be more or less intrinsi-
cally desirable beyond the number of agents conforming (e.g. in the Prisoner’s
Dilemma). Property 3 is limited in that absent the social pressures of a con-
vention an agent’s choice may be different; that is, there may be a difference
between the action an agent prefers and that implied by convention.

The definition presented here omits a further property that Lewis (1969)
identifies for a convention, namely that it must be common knowledge. Recent
research, notably Sen and Airiau (2007), Walker and Wooldridge (1995), and

Shoham and Tennenholtz (1997), has shown that private learning can result
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in conventions emerging, indicating that common knowledge is not necessarily
a prerequisite of convention emergence. Young (1993) also demonstrates that
complete knowledge of a convention is not required for a convention to emerge,
since incomplete information may be a primary driver of convention change.

Lewis’ definition identifies a number of important properties: (i) that a
convention requires a regularity of behaviour across multiple instances of a given
situation, and (ii) that a system of mutual expectation regarding behaviour is
necessary for a convention to become established.

While Lewis’ definition assumes the ideal of a single convention across the
entire population, a small modification generalises the definition effectively to
include situations in which multiple co-existing conventions are desirable, such
as the El Farol bar problem. Rather than defining a convention with respect to
the whole population, a convention can be defined with respect to those that
currently conform to it. With this restriction Properties 1-5 hold within the
convention (retaining the limitations identified above): of those that adopt a
convention, we expect everyone to conform, we expect that everyone expects
everyone else to conform, and so on. Note that this formulation implies that a
single agent can be in a convention with itself. This modification is the basic
inspiration underpinning our conceptual framework of conventions presented in
this chapter.

Many subsequent definitions have included less formal constraints on what
can and cannot be regarded a convention. Perhaps the most commonly used in
the context of agent-based systems are those proposed by Shoham and Ten-
nenholtz (1997) and Kittock (1993). The former describe conventions as a
restriction on the choices available to individuals, and the latter describes a
convention as existing when a significant proportion of the population chooses
a given strategy a significant proportion of the time. Both of these definitions,
with the caveats listed above, are implied by adopting a modified form of Lewis’
definition. In the former, a behaviour that is a regularity among a group of indi-

viduals who have mutual expectations about members of the group conforming
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necessarily constrains which actions the agents will consider (especially in the
absence of differentiation by salience). In the latter, the equivalence follows by

definition.

4.3.3 Convention research in other fields

There is a variety of research in other fields relating to convention emergence,
particularly in the psychological and economic domains. Human populations
are particularly adept at efficiently emerging conventions without explicit agree-
ment, and incorporating insights from these fields into the theory of conventions
typically used in agents research may yield significant benefits. In this section,
we focus on the work of Garrod (1994), whose experiments with humans pro-
vides significant insight into how convention emergence occurs in our society,
and Boyer and Orlean (1992), who discuss convention behaviour and manipula-
tion in the latter stages of the convention lifecycle. The latter is a particularly
under-investigated area in open MAS. We use the results from these works in
the development of our definition and metrics of convention, and in investigating
how to manipulate convention emergence in the latter stages of the convention
lifecycle (Chapter 7) respectively.

Garrod (1994) investigated human convention emergence, using an exper-
iment in which people evolve coordinated description languages when solving
problems. Volunteers are paired and play a maze game in which they must
describe maze positions to the other player in order to prevail. The volunteers
were divided into two groups: one in which individuals remained in the same
pair for the duration of the experiment (9 iterations of the maze game), while
the other group changed pairing each game (within the community represented
by the group). Analysis of the language used to describe the maze shows three
categories of representation used by pairs: (i) line, such as “first row and third
column”, (ii) path, such as “two along from you”, and (iii) matriz, in which verti-
cal and horizontal lines are named according to a scheme such as that from chess

(e.g. “C4”). Within each category, there are a number of different instantiations
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of representation.

Pairs in the community group took longer to agree than the isolated pairs.
However, their representation (a form of matrix) was agreed across the entire
community, despite communication only being local between pairs. Conversely,
isolated pairs quickly agreed on a representation, but the representations were
wildly divergent between pairs. From the experiment results, Garrod (1994)

concluded the following.

1. There is a local coordination process between individuals in a pair, by
which local precedence and salience have a strong influence on the repre-

sentation that is chosen.

2. When the community has agreed on a representation, players have a
stronger preference to act according to convention than to the constraints

of local precedence and salience.

3. When two players meet with conflicting chosen representations, the rep-
resentation that tends to get chosen (mostly implicitly) is that which is

represented most frequently in the joint history of the players.

4. The community group explores potential representations more widely at
the beginning than the isolated pairs group, before settling on a single

representation across the entire community.

5. The local coordination process between individuals, which incorporates
precedence and salience, leads to a global coordination process as those
individuals interact with others in the population and “infect” them with

their preferences.

6. An important component of the community convention emergence is the
ability of individuals to monitor their communicative success — typically
modelled in the agents community through reinforcement learning and/or

a personal interaction history.
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7. High simulated population churn, achieved by pairing individuals with
others in such a way that they do not form a community with repeated
interactions, decreased the levels of coordination drastically. This has

significant implications for open MAS with high levels of population churn.

Garrod (1994) argued that the results are a consequence of community effects
rather than the influence of a given individual, since there is not sufficient time
in the experiments for an individual to gain influence or standing within the
group. However, the influence of an individual over a population is complex
with respect to conventions, since precedence creates feedback effects, and any
one action might propagate significant changes through a population. As such,
it is not appropriate to entirely disregard the potential influence of individuals in
convention emergence, although the results suggest that community effects can
transcend individual actions. We use the influence of individuals as the basis
of our Influencer Agent mechanism, which is explored in subsequent chapters.
The setup used by Garrod is equivalent to a population connected by a fully-
connected network, which also would not imbue any individual with special
standing from network effects?.

There are relatively few investigations into the latter stages of convention
establishment. Omne of the most detailed was presented by Boyer and Or-
lean (1992), who attempt to account for how an established convention can be
superseded by a preferable one. They identify four situations that can overcome

the reinforcement feedback effects of an established convention.

1. Convention collapse. If the environment (including the population of
agents) is drastically and suddenly altered, the previously established con-
vention may lose its force of precedence and provide room for new con-

ventions to become established.

2. Ezxternal invasion. When a new group with an alternate convention joins a

population, the force of precedence already present in the new group allows

2We investigate this type of special standing in Chapter 6.
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the alternate convention to gradually undermine the currently established

one.

3. Translation. If there is a possible new convention that is compatible with
the previous convention, then the costs associated with adopting the new
convention are removed and the new convention can become established

more easily.

4. Collective agreement. If a sufficient proportion of the population explicitly
agrees to collectively adopt a new convention it can easily become estab-
lished. Boyer and Orlean (1992) note that this requires the existence of
a central authority, and since this is impractical for open MAS we do not

consider this route to convention change.

Boyer and Orlean (1992) also conclude that the best way for a new con-
vention to become established is to begin in a localised space and progressively
invade the rest of the population. This is a form of “gradual accretion of prece-
dence” (Young, 1993).

There has been little research into co-existing sub-conventions, with the
notable exception of Villatoro and Sabater-Mir (2011) who propose social in-
struments as a way of identifying and mitigating less desirable sub-conventions,
that might be supported by self-reinforcing underlying network structures. How-
ever, they assume that sub-conventions are necessarily those that we want to
destabilise, and do not consider the potential desire to support co-existing sub-
conventions.

The contributions of Boyer and Orlean (1992) and Villatoro and Sabater-
Mir (2011) are concerned with how conventions might be manipulated by in-
terested parties in order to support the adoption of desirable behaviour across
the population. However, research in this area is limited and there are, to
our knowledge, no proposed mechanisms for manipulating which convention a

population adopts in open MAS. Such a mechanism is the focus of Chapter 5.
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4.3.4 The convention life cycle revisited

Based on the above discussion, we propose the following view of the life cycle of
a typical convention. First, agents engaging in local interactions select strate-
gies based on intrinsic salience or an assessment based on previous interactions
(either observed or experienced). As precedence accumulates for one strategy
over another, more agents choose it and its momentum increases. Under typical
definitions, such as that of Kittock (1993), this continues until some proportion
of the population choose that strategy some proportion of the time, at which
point it is considered an established convention. However, based on the defi-
nition of Lewis (1969), we can consider it a convention with a given degree of
conventionality at almost any point, with the degree of conventionality gradually
strengthening. In practice, conventions will either become established, co-exist,
or destabilise. Although the beginning of this process, by which the forces of
salience and precedence combine to form regular behaviours, is well described
in the literature, beyond that point there has been comparatively little work.
The behaviour of conventions in the middle and latter stages of the convention
lifecycle, and how they might be manipulated, is the focus of Chapter 7.

The preceding sections demonstrate the limitations in current approaches to
convention emergence in open MAS. While there are a variety of useful contribu-
tions, they tend to be investigated with respect to disparate models, and it can
be difficult to generalise or draw conclusions across multiple works. While there
have been some attempts to propose a framework within which to place these
contributions (most notably Walker and Wooldridge (1995)), unifying conven-
tion theory into a cohesive whole remains an open research question. Current
definitions of conventions fail to take into account the possibility that a sin-
gle convention may not be a desirable or attainable ideal, and there has been
relatively little work that incorporates research from other fields (such as psy-
chological research on convention emergence in human society) or investigates a
convention’s behaviour after its initial emergence. There is therefore a clear need

for (i) a unifying formalism with which different models of convention emergence
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can be expressed and directly compared, (ii) a definition of conventions which
takes into account these limitations and incorporates as much of the current
thinking, across fields, as possible, and (iii) the definition of metrics that can be

used to quantify convention behaviour throughout the convention lifecycle.

4.3.5 Illustrative examples

Throughout this chapter we will refer to a number of example scenarios to
illustrate our approach: the coordination game domain; a coordination game
which incorporates interaction history; the language domain; the donation game;
and the El Farol bar problem (as introduced in Section 4.2). In particular, the
language domain and the coordination game domain are used experimentally
in the remainder of this thesis and are therefore described in more detail in
subsequent chapters (specifically, Chapters 5 and 6 for the language domain

and Chapters 6 and 7 for the coordination game domain).

‘ Go ‘ Yield ‘ 0 ‘ 1
Go | -1,-1 3,2 0] 44 |-1,-1
Yield | 2,3 | 1,1 1| -1-1] 44

(a) (b)

Table 4.1: Payoff matrices for the social dilemma (a) and coordination game

(b).

Sen and Airiau (2007) investigate social dilemma and coordination games, illus-
trated by two cars approaching an intersection, where each driver must decide
whether to yield or go. In the social dilemma formulation (Table 4.1(a)) one
driver yielding and the other going is the most preferable outcome. In the co-
ordination game (Table 4.1(b)) the preferred outcome is both agents choosing
the same strategy, such as driving on the same side of the road.

Villatoro et al. (2009b) propose a variation of the traditional coordination
game, that we refer to as the historical coordination game. In this setting the

payoff that agents receive is determined by the number of times a strategy has
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been selected by the interaction participants, i.e. it is dependent on the joint
histories of the participants rather than solely on their instantaneous strategy
selections.

Salazar et al. (2010b) consider convention emergence in the language coor-
dination domain, in which agents are associated with a lezicon (see Figure 5.1
in Chapter 5, where we introduce the model in more detail), namely a set of
mappings from words to concepts. There are 10 possible words, and 10 pos-
sible concepts, (i.e. 10'° possible lexicons), and agents share partial lexicons
along with quality estimates based on interaction history, such that the popu-
lation eventually agrees on a single shared lexicon. Language is a natural way
of illustrating convention emergence, and incorporates realistic assumptions re-
garding convention space size. Clearly, a single lexicon in use by the entire
population is the ideal outcome, but in large populations whose interactions are
constrained by some underlying network structure this goal may be unreachable.
This hypothesis is confirmed in Chapter 5, where we investigate manipulating
conventions in the language coordination domain.

We also illustrate aspects of our approach with the donation game used by
Nowak and Sigmund (1998), in which agents are selected for pairwise asymmet-
ric interactions. One agent is denoted the donor, and the other the recipient,
such that the donor must decide whether to confer a benefit b on the recipient
at personal cost ¢ (it is assumed that b > ¢). This model is introduced and

investigated in greater detail in Chapter 3.

4.4 Interaction formalism

As described above, research on convention emergence in agent-based systems
has been set in disparate domains with very different properties, making it diffi-
cult to directly compare results. This section outlines the interaction formalism
that forms the base of our conceptual framework, within which we can describe

and compare commonly used models of conventions. The formalism is loosely
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‘ Category ‘ Notation and definition | Description
Population Ag=A{1,..,N} The population of agents.
N The size of the population.
Social network | G = (4g, F) The underlying social network con-

straining interactions between agents.
Ag is the set of nodes (i.e. agents),
and E is the set of connections between
them.

Neighbourhood | N(Ag,) The set of agents with which an agent
Ag, can communicate.

Table 4.2: Basic notation used in our formalism for describing open MAS models
concerned with convention emergence.

based on work by Walker and Wooldridge (1995), although we have incorpo-
rated significant modifications to allow description of different models in a single
unified approach. We describe our formalism with reference to the example sce-
narios introduced above. For clarity, the notation introduced in this section is
summarised in in Tables 4.2, 4.3, and 4.4. We use this formalism to describe
the models used in the remainder of this thesis using consistent language and
notation. The work in the remainder of this thesis also explores the behaviour
of conventions that co-exist, and does not make the assumption that a single
convention is the ideal or attainable goal.

We assume a population of agents, Ag = {1,..., N}, situated on some un-
derlying network structure G = (Ag, E), where Ag is the set of nodes in the
network, and E is the set of connections between agents (we assume a directed
network for full generality). We assume that agents can only interact with oth-
ers in their neighbourhood, defined as the set of agents with which an agent
has a direct connection. We denote the neighbourhood of a given agent Ag, as
N(Ag.). The set of agents and the set of edges may both vary significantly over
time. An edge connecting agent a to agent b represents that ¢ may communicate
with or interact with b.

Agents participate in a given MAS by interacting with zero or more other

agents®. Every participant in an interaction engages by selecting an appropri-

3Walker and Wooldridge (1995) note the existence of agent actions that do not involve
other individuals, but do not include them in their model. We define interactions as involving
at least one agent (rather than at least two agents) since our definition of a convention as a
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ate strategy. Each agent receives a (potentially different) payoff, dependent on
the strategy chosen, joint interaction history, and environmental configuration.
Agents update their internal strategy selection based on information gained dur-
ing the interaction (e.g. payoff, knowledge of other agents’ strategies if available,
etc.). In a coordination game a strategy might represent driving on the left or
right, driving through amber lights or stopping, or yielding to traffic from a
given direction. In the language coordination domain, a strategy is a mapping
of words to concepts. In both domains, an interaction involves two agents, with
the payoff being determined by comparison of the strategies chosen, with payoff
highest when the strategies align. Alignment, in this context, means strategies
that complement each other. In the language coordination domain, strategies
align when agents use the same mapping of words to concepts, and so can un-
derstand each other. In a coordination game, it may not be the same strategy
that is needed, but complementary strategies that most efficiently coordinate
the agents involved, such as one agent yielding to the driver on the right and

the other driving onwards.

4.4.1 Dimensions

For many domains, there are multiple dimensions of strategies over which agents
must reason. Considering the road traffic example, agents must decide whether
to drive on the left or the right, and whether to consider amber lights passable
or not. We make the modelling assumption that the interactions in which agents
make these selections are independent, in that an agent’s choice of whether to
drive on the left or the right does not affect its decision of whether to stop at
amber lights. There may exist situations in which this assumption does not
hold, but we maintain that such situations can be abstractly represented in our
model in a form that does not violate this assumption (i.e. as a single ‘composite’
dimension ). To incorporate the notion of dimension into our formalism, we

assume a set of dimensions D, and define a set of strategies that agents can

recurring standard of behaviour does not necessarily mandate multiple agents.
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select with respect to a given dimension d as:

Ya={o1,...,05, }

where s4 is the number of strategies characterising dimension d. In the example
above, we have Y44, = {left, right} and X, per = {g0, stop}. Note that different
dimensions may have different numbers of possible strategies. For the purposes
of discussion, we call each o; a strategy, but we also use the term to represent
more conceptual notions, such as ideas or linguistic mappings. Interactions are
defined with respect to a given dimension, with all participants constrained to

the set of strategies available in that dimension.

4.4.2 Roles

Agent interactions are often asymmetric, in the sense that each agent plays a
different role in the interaction. Commonly considered asymmetric interactions
include the donation scenario introduced above (Nowak & Sigmund, 1998), and
determining when a driver should yield at a junction (Sen & Airiau, 2007).
Other real-world examples of asymmetric interactions abound, such as auctions,

task allocations, etc. Each dimension is associated with a set of roles:

Rg=A{r1,...,rp,}

where pg is the number of roles for dimension d. The set of all roles is denoted
R.

The strategies an agent can select are constrained by the role it fulfils in
an interaction. Similarly, the visibility of information regarding the agent and
its choice is defined by the role. Agents use information from interactions to
update their strategy selection algorithms and to inform future decisions. The
information an agent might receive (depending on the domain) includes the

identity of others in the interaction, their strategy selection, their individual
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payoff and their overall utility over some number of previous interactions (for
example, lexicon quality estimates in the language coordination game). To
describe the various observability constraints in different settings, we define a
role as a tuple:

r=(ID,S,P,U,p)

where the boolean properties ID, S, P,U specify whether an agent’s identity
(ID), strategy selection (.9), payoff received (P), and overall utility (U) are
observable, and p is the probability that the tuple of values will be observed.
That is, for an agent a fulfilling role 7.y = (true, true,true, true, 1) in an inter-
action, all other agents in the interaction will, with probability 1, know agent
a’s identity, the strategy it selected, the payoff it received, and its overall utility
across all previous interactions (or the last m interactions depending on memory
limitations and the domain).

The agents that receive this information may not be explicitly part of the
interaction. For example, Axelrod (1986) and Nowak and Sigmund (1998) incor-
porate external observers into each interaction, such that each observer receives
information on (in these cases) participants’ strategy selections, without actu-
ally selecting a strategy themselves. In our formalism, external observers can
be represented as participants in an interaction, fulfilling a role of observer. In
most situations, information relating to observers is private, but situations exist
in which observers also influence the outcome of an interaction directly. For ex-
ample, in Axelrod’s model of meta-norms (Axelrod, 1986), observer agents must
decide whether to punish defections, and if they are subsequently observed to
not punish, they themselves may be punished.

To illustrate our roles concept, consider the donation game (see Section
4.3.5 (Nowak & Sigmund, 1998)). In our formalism, the roles of donor, recipient

and observer can be represented as:

Tdonor = {(ID = true, S = true, P = true,U = false,p = p)
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Trecipient = (ID = false, S = false, P = false,U = false,p = 0)
Tobserver = (ID = false,S = false, P = false,U = false,p = 0)

where p is the probability of observation. Subsequent work has proposed that
observers can use the recipient’s identity in combination with the donor’s choice
to aid their strategy update (Milinski et al., 2001). This can be incorporated

by allowing the recipient’s identity to be observed:
Trecipient = (ID = true, S = false, P = false,U = false,p = p)

We assume that its role determines the set of strategies from which an agent
may select, but there may also be strategies that can be selected in multiple
roles (for example, consider the many road situations in which stopping is a

valid strategy). As such, we define the set:

Ed,Q = {01, "',Usd,QHQ € P(Rd)

as the strategies that can be selected in a given dimension d for a given com-
bination of roles @ (i.e. P(R4) denotes the power set of R,;), where sq ¢ is the
number of such strategies. A strategy can subsequently be specified as selectable
in multiple roles (i.e. strategies can be selected in defined arbitrary sub-sets of
the set of roles). We can now redefine the set of strategies for a dimension
as the union of the strategies selectable in each role that comprises the given

dimension:

RS U Y

r€Ry
In summary, agents engage in an interaction in a given dimension by select-
ing a strategy from the set of strategies available for the role which the agent is
fulfilling in that interaction. The notion of dimension allows us to distinguish
between independent situations in a given domain in which different strategy

selections may be appropriate. The notion of a role allows us to describe in-
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Dimensions

D
Ed = {0'1, e Ogy }

Sd

The set of dimensions in which interac-
tions can occur.

The set of strategies that can be used
in a given dimension d.

The number of strategies that are avail-
able in a given dimension d.

Roles

R

Ry = {le ~~~,7’pd}

r=(ID,S,PU,p)

Pd

Ed,Q = {0’1,...,051()‘@ S P(Bd)}

The set of roles that can be assigned to
agents in interactions.

The set of roles that can be selected in
a given dimension d.

A role defining whether agent iden-
tity ID, strategy selection S, payoff re-
ceived P, and utility U are observable,
with p being the probability that the
tuple of values is observed.

The number of roles that exist in a
given dimension d.

The set of strategies that can be se-
lected in dimension d for any role r € @,
where @ is a subset of of the power set
of Rd.

Interaction

I= <d~, <A.‘117 (717T1>7 ceey <Agm OnyTn, >>

n
parg(t) — 1

obs,(t) — 1

The set of all interactions.

An interaction, defined by the dimen-
sion d in which it is set, and a set of
tuples of agents, the strategies they se-
lected (if the interaction has been per-
formed), and the roles to which they are
assigned.

The number of participants in an inter-
action.

The set of interactions that agent = par-
ticipated in at time ¢.

The set of interactions that agent x ob-
served at time t.

Interaction Regime

IR :Nx P(Ag) x P(E) x R—1

A function which generates the set of in-
teractions to occur in a given timestep.

Table 4.3: Model level concepts and notation used in our formalism for describ-
ing open MAS models concerned with convention emergence.

teractions in which agent choices are asymmetric, such that each agent has a

different set of strategies from which to select.

4.4.3 Interactions

An interaction involves the strategy selections of one or more agents being com-

pared and each agent receiving some payoff. The comparison of strategies and

subsequent payoff may be either an internal agent process or an external process,

defined by the environment. An interaction is a tuple containing the dimension

in which it occurs, and further tuples defining each participating agent, the
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strategy they select, and the role they are assigned?:

I= <da <Ag1, 017T1>7 ) <Agna OnyTn, >>

where n is the number of agents participating in the interaction. The set of all
interactions is denoted I. For simplicity, we use this representation to describe
the interaction before the strategies are selected (such that each o; term is not
bound) and after the participants have selected their strategies. In the language
coordination domain, an example interaction before strategy selection might be

denoted as:

I, = (Communication, (Ag1, 01, Speaker), (Aga, o2, Hearer))

while after strategy selection, the interaction might become:

I, = (Communication,(Agy, Table — Conceptl, Speaker),

(Aga, Chair — Conceptl, Hearer))

4.4.4 Interaction regime

We assume, as with most formalisms and models of MAS, that time can be
modelled as discrete steps. In each timestep, a number of interactions are per-
formed. To describe which interactions are performed in a given timestep and

which agents are participants, we define an interaction regime function:

IR:Nx P(Ag) x P(E) x R — P(I)

This function takes a timestep, the population of agents, the edges connect-
ing those agents, and an interaction probability ip € [0,1], and returns a set

of interactions to be performed during the timestep. Note that although we

4For clarity of discussion, we say that a role is assigned to an agent, but in reality a role is
likely to be defined by the situation in which an agent interacts. For example, we might say
that an agent that wants to communicate with another is assigned the role of speaker.
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define this function with respect to a given timestep, it allows for asynchronous
interaction regimes since we do not assume that every agent interacts in any
given timestep®. We use the interaction probability to allow our formalism to
describe the various interaction regimes in common models of MAS. For ex-
ample, Salazar et al. (2010b) assume that every agent interacts at least once
in a timestep, whereas Nowak and Sigmund (1998) assume a given number of
interactions happen each timestep, with agents chosen randomly each time (i.e.

|[IR(t, Ag, E,p)| = m, where m is constant).

4.4.5 Agent memory

In a similar manner to Walker and Wooldridge, we assume that agents maintain
an internal memory in which all available details of the interactions the agent
has observed or participated in are stored. An entry in the memory of agent x

for a given interaction ¢ is given by:

mﬁ(z) = <d7 <A917 0'177"1,p1,U1>, eeey <Agn70na Tnapnaun>>

That is, an agent may record (if the situation allows) the dimension in which
the interaction occured, the agents that participated, the role that each agent
fulfilled, the strategies that were selected, the payoffs that the agents received,
and their overall utilities. Recall that whether these data are observable is
defined by the role assigned to each agent. We assume that observers to any
interaction are selected from the union of the neighbour sets of the participants
in the interaction (illustrated in Figure 4.1). We write par,;(t,r) to denote the
set of interactions in which agent x fulfilled role r at time ¢, and, for simplicity,
obs,(t) to denote the set of interactions that agent = observes during timestep

t%. The notation obs,(t) is thus equivalent to par,(t,observer). The set of all

5There is a significant body of research concluding that results from simulations with
synchronised interaction regimes may not be generalisable to the real world, in which we
would expect asynchronous interactions (Page, 1997).

6Note that this differs from Walker and Wooldridge, who use obs() to denote the number
of times an agent has observed a given strategy.
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Figure 4.1: Example showing how the observation set is determined. Here, all
agents except D are considered observers of the interaction between agents A
and B, since they are connected to at least one of the participants.

agent memories is denoted M, and the set of memories of agents that engaged
in interaction ¢ is denoted M;. We denote the number of times an agent x has
observed strategy o; in dimension d as obsHist, q4(0;), and the number of times

an agent = has used strategy o; in dimension d as usedHist, 4(0;).

4.4.6 Agent payoff

The payoff an agent receives is a function of the interaction in question and
the memories of the agents involved, although different scenarios may ignore
some aspects, dependent on the specific dimension and role in question (e.g. in
the coordination game agents’ memories do not affect the payoff). The payoff
received by an agent = in dimension d when fulfilling role r is therefore given
by:

Pygr:IxPM)—R

The implementation of this function may be either a payoff matrix, or de-
termined by how many times a given strategy has occurred in agent memories,
or dependent on the identities of the participants, depending on the domain
in question. Note that our formalism allows for different payoff functions in
different dimensions or roles of the convention space. For example, in the image
scoring scenario, the recipient receives a benefit b if the donor donates, the donor
incurs a separate cost ¢, and observers receive no payoff (Nowak & Sigmund,
1998).

With respect to agents there are two important processes to consider: (i)
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the process by which an agent selects their strategy in a given interaction, and
(ii) the process by which an agent learns from the interactions it engages in
(including as an observer).

Strategies are chosen using a function, which maps an interaction and the
agent’s memory to a strategy. The agent’s choice therefore depends (if the model
allows) on the dimension in which the interaction occurs, the agent’s role, its

memory, and the other agents in the interaction:

88p.dr t IX M= Xy,

After each interaction, the participants can update their internal strategy se-
lection mechanisms based on their payoff, memory, and other interaction details
(dependent on the domain). For example, Sen and Airiau (2007) use learning
algorithms such as Q-learning (Waktins, 1989) or WoLF (Bowling, 2001) to up-
date strategy selection choices. We assume that any other learning processes
occur in this function, such as updating the memory with the available data
from the most recent interaction. The strategy selection update function is
defined as:

SUgdr i M XTI X85, 47> 8554,

4.4.7 Expressing pre-existing models

In the previous section, we defined a formalism within which many common
models of convention emergence can be expressed. The next section uses this
formalism to define our model of convention emergence. To demonstrate the
ability of this formalism to describe other models we include an account of how
(i) Sen and Airiau’s model of private learning (Sen & Airiau, 2007), (ii) Walker
and Wooldridge’s investigation into the effect of strategy update rules (Walker &
Wooldridge, 1995), and (iii) Villatoro et al.’s convention emergence with history-
based payoffs (Villatoro et al., 2009b) can all be represented in this formalism

in Appendix B. We also provide an example of the comparative analysis that
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Memory My The internal memory of an agent x.

M The set of memories of all agents.
mg (i) = (I;, P(R)) A single entry of a memory for a given
interaction 7.

M; The set of memories of agents that en-
gaged in interaction i.

obsHisty q4(0;) The number of times an agent x has
observed strategy o; in dimension d.
usedHisty q(0;) The number of times an agent x has
used strategy o; in dimension. d

Payoff function Pyar:IxPM)—R The payoff that agent x receives in an
interaction in dimension d when fulfill-
ing role r.

Strategy selection | ssyq,: I x M= g, An agent x’s strategy selection function
for an interaction in dimension d and
role r.

Strategy update Stz dr: M XTI X 8554, 8554, | The function an agent x uses in dimen-
sion d and role r to update its strat-
egy selection function given participa-
tion in, or observation of, an interac-
tion.

Table 4.4: Agent level concepts and notation used in our formalism for describ-
ing open MAS models concerned with convention emergence.

is possible when expressing models in our formalism.

4.5 Defining conventions

In this section we present our view of conventions using the interaction formalism
defined above. Our model supports a more nuanced view than has typically been
considered in the context of agent-based systems, and enables us to characterise
conventions throughout their life cycle.

We view conventions as a standard of behaviour that adhering agents are
likely to follow with significant probability. As such, an agent can be in a
convention with itself, or with a very small number of other agents. However,
such conventions are likely to be regarded as being of poor quality. We show
how previous definitions of convention emergence can be expressed in our model.
Using our definition of conventions, and the subsequently defined metrics of
convention quality, support and stability, conventions can be fully analysed from
the initial stage of mutual expectation through to one of the three possible end-

states: establishment, co-existence, or destabilisation.
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We adopt this definition of conventions for the remainder of this thesis, and
investigate the entire lifecycle of conventions. Specifically, Chapter 7 explores

convention behaviour in the middle and latter stages of the convention lifecycle.

4.5.1 Motivating arguments

A convention is generally thought of as a socially-accepted standard of be-
haviour, but precise definitions, in the context of agent-related research, tend
to be limited. As noted above, conventions are typically accepted as established
when some proportion of the population adheres to the convention some propor-
tion of the time (with 90% or 100% being typical thresholds) (Kittock, 1993). In
addition to the limitations of this definition noted above (e.g. assuming that a
single convention is either desirable or attainable), it also leads to a binary view:
conventions are either established or not, and we do not have any way of evalu-
ating candidate conventions before they are accepted as established. In order to
effectively reason about conventions and sub-conventions, we adopt a definition
of convention that is purposefully broad and encompasses system states which
would not traditionally be classed as containing conventions. Based on this def-
inition we subsequently define a number of quality and support metrics. This
leads to a more intuitive notion of convention with which we can determine (i)
the desirability of a convention, (ii) the stability of a convention, (iii) the set
of agents that are most influential on convention adoption, and (iv) the set of
agents that should be targeted to most effectively aid the emergence of a given
convention. QOur aim is to provide a framework in which the process of how
populations move from a set of agents acting disparately and independently to
a set of agents with a desirable set of coordinated strategies can be effectively
described. Such a description will enable the development of more effective
approaches for manipulating (both encouraging and discouraging) convention
emergence.

Note that all subsequent definitions in this section are assumed to be for

a given dimension, and as such can be written with a subscript d in multi-
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dimensional convention spaces. The definitions can further be applied to each
individual role r. For simplicity, we omit d and r, and define the given measures
for domains with one dimension and one role. Generalisation to |D| > 1 and

|R| > 1 is trivial.

4.5.2 Basic definitions

We begin by distinguishing between sets of agents that select a given strategy
in a given timestep and those who do not. The set of agents that have chosen

a given strategy o € ¥ at time ¢ is given by:

chosen(o,t) = {x|x € Ag A self ,(i,t) = o|i € pary(t)}

where self ,(i,t) is the strategy chosen by agent x in interaction ¢ in timestep ¢,
and par, (t) returns the set of interactions that x participated in during timestep
t. Walker and Wooldridge (1995) use this to define a convergence measure (here
slightly modified to fit our notation), namely the fraction of agents using the

most popular strategy at time ¢:

maz{|chosen(o,t)| | o € £}

conv(t) = Ag|

However, this metric is insufficient for our purposes, as the intuition behind
it is that convergence increases until all agents use a given strategy. We derive

a more flexible convergence measure below.

4.5.3 Agent adherence and membership

Before defining conventions and measures of convention quality and support,
we require a way of defining whether we consider an agent to be a member of a
convention or not, and of establishing the existence of a convention.

The exact strategy an agent will select at any given timestep is uncertain,

since most learning algorithms incorporate some degree of exploration such that
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100% adherence to a single strategy is unlikely to occur. It is useful to quantify
an agent’s adherence to a strategy ¢ as the probability of that agent choosing
¢ at time t:

adh(z, ¢,t) = P(x € chosen(d,t))

We subsequently define the set of conventions ®; that exist in a population

at time ¢t as follows:
¢ € O, < Tz :z € chosen(p,t) A adh(z,d,t) > v

That is, a given strategy o is considered to be a convention at time ¢ if
there is at least one agent using that strategy with a probability greater than
some threshold v. We use ¢ to denote a strategy that is also a convention
(i.e. it is used by at least one agent with probability greater than 7), and a
strategy that may or may not be a convention as ¢. This distinction allows us
to separate strategies selected by chance, exploration or some other process and
those selected with sufficient frequency to be considered conventions.

We define the average adherence to a strategy o to be the mean adherence
across the agents that chose o in a timestep:

Z adh(z,o,t)

xE€chosen(o,t)

averageAdh(o,t) = chosen(o. )]

We assume that the temporal variance of adh is low, such that an agent that
satisfies adh(z, ¢,t) > 7 at time ¢ is also likely to satisfy it at ¢t + 1 (Walker and
Wooldridge (1995) discussed that strategy change typically incurs a cost to the
agent, and so expect the number of strategy changes needed before a convention
was established to be minimised). Note that since strategy selection is likely
to be relatively complex, we cannot easily establish the exact adherence of an
agent. We can estimate adherence based on the agent’s interaction history, by

considering the proportion of the last n interactions in which the agent selected
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Using adherence, we define a convention as established if the average ad-
herence is greater than the convention establishment threshold B, a model-wide
parameter:

estbl(¢,t) <= ¢ € Oy A averageAdh(p,t) >

That is, a convention is established iff, considered over all the agents that
selected the strategy in that timestep, the average adherence is greater than (.
Given the definition of Kittock (1993) we might set 8 = 0.9 or § = 1.0. Note
that unlike Kittock we might consequently consider a convention with only one
or two adherents as established, but it would score particularly poorly in our
metrics of convention quality, support and stability, which we define later in this

section.

4.5.4 Convention membership sets

Now that we have defined adherence and the conditions under which we consider
a convention to be established, we can usefully define the extent to which agents
are part of a convention. We propose that agents can be either: (i) members of
a convention, in that they currently adhere to it with probability greater than
B, or (ii) users of a convention, in that they used the convention strategy in the
current timestep but do not satisfy the adherence criteria. We can further split
the set of members into those who are active and used the convention strategy in
the current timestep, and those who are passive and did not use the convention
strategy in the current timestep.

Let activeMember(z, ¢) denote that agent z adheres to an established con-

vention ¢ at time t:

activeMember(xz, ¢, t) <= estbl(¢,t) Ax € chosen(¢,t) A adh(x,d,t) > S

That is, agents that satisfy active Member(z, ¢,t) not only adhere to the estab-

lished convention but also used that strategy in that timestep. Passive mem-
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bership is defined as:

passiveMember(x, p,t) < estbl(o,t) Nz ¢ chosen(p,t) A adh(z, ¢, t) > 5

A passive member is an agent whose adherence to the convention is greater
than the threshold, but who has not selected that strategy in the current
timestep. For example, an agent who has selected strategy a for the last 9
timesteps, but explores another strategy in the current timestep by choosing
strategy b, will have an adherence of 0.9 to a. It therefore constitutes a passive
member of a in the current timestep.

An agent is therefore a member of a convention if it is a passive or active

member:

member(z, p,t) <= (activeMember(x,p,t) V passiveMember(z, ¢,t))

Then the convention membership set for a given convention at time ¢ is given
by:
membership(¢,t) = {member(z,d,t)|x € Ag, ¢ € D}

We can denote an agent that is not part of a convention, but used the strategy

defining the convention, as:

user(z,d,t) <= estbl(p,t) A x € chosen(p,t) A adh(z, d,t) <

The set of agents that are users of a convention is therefore defined as:

usership(o,t) = {user(z, d,t)|x € Ag, ¢ € O}

An agent that neither used the strategy nor adheres to the convention is con-

sidered a non-user:

nonuser(z, ¢,t) <= estbl(¢,t) N x ¢ chosen(¢,t) A adh(x,d,t) < S
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Thus the set of non-users is given by:

nonUsership(p,t) = {nonuser(x, ¢,t)|r € Ag,¢ € &;}

and similarly for non-members:

nonMembership(p,t) = {nonuser(x, ¢, t) V user(z,d,t)|x € Ag, ¢ € O}

There are some practical advantages to being able to describe agents in these
terms. It is clear that we need a way of describing which agents are members of
a convention, but the ability to define usership may allow us to target mecha-
nisms for encouraging convention adherence to those most likely to benefit, or
to analyse the population state. This, in turn, suggests that designers might
target such mechanisms at the set of (i) members, (ii) non-members, (iii) users,
or (iv) non-users, or any combination thereof. There are hypotheses supporting
the targeting of each, and in future work it will be useful to empirically eval-
uate the effectiveness of such targeting. In the rest of this thesis, we focus on
supporting and manipulating convention emergence by targeting non-members,
but we believe that our work may be refined by altering the targeted set. For
example, in Chapter 5 we use small groups of agents to encourage non-members
to adopt a given convention, and it may be possible to increase their efficacy by

targeting (for example) users alone.

4.5.5 Support of conventions

Now that we have defined a convention, adherence, and membership, we can de-
fine various metrics that encompass a more nuanced view of convention quality,
desirability, size, and stability than that provided by previous formalisations.
We have already defined average adherence as the average adherence over all
the agents that chose that strategy in a given timestep, but using the notions

of member and user we can determine several other useful quantities. With a
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slight abuse of notation, we write x(¢, t) to denote any one of membership(¢,t),
usership(o,t), nonMembership(p,t), nonUsership(¢,t), or any union or inter-

section thereof. We can thus generalise the definition of average adherence as:

> adh(z,¢,t)

z€X(¢,t)

Ix(¢,1)]

averageAdh, (¢,t) =

For example, we might calculate averageAdh,empership(@,t), and compare it
with averageAdhysership(®,1).

While the number of conventions needed to establish an ideal coordinated
system is variable and potentially unknown, it is useful to calculate how many
agents are a member of some convention. With this in mind, we can define the

convention membership ratio for the whole population:

_ Hz|member(x, ,t) A € Dy}
B N

cmr(t)

Thus a emr(t) = 1 represents a population in which every agent is a member
of an established convention, and e¢mr(t) = 0 indicates a population with no
established conventions.

We now have a set of functions that allow us to describe:

1. To what degree agents support a convention. The adherence measure
allows us to distinguish between a set of identical strategies being selected

by chance, and a set of strategies being selected with high probability.
2. The number of established conventions in a population.
3. The fraction of agents currently adhering to a convention.

4. How many agents are becoming adherents: the average adherence measure
does not assume that a convention is established. As such, it encapsulates
those agents that have (say) 50% adherence — still high, and therefore

perhaps worthy of targeted actions to encourage full adherence.
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4.5.6 Quality and stability of conventions

When selecting a strategy, an agent has two sources of relevant information: its
own personal experience, and its observations of how other agents act (assuming
observability of interaction choices). We call the former personal preference and
the latter social preference. In our conceptual framework, the social preference
is that determined by information gained when fulfilling the observer role in an
interaction. We denote the strategy selected by agent x’s personal experience
as pery q.r, and that selected by its social experience socg q,». These are defined
with respect to a dimension d and a role r, such that agents can learn a different
strategy for each role and dimension (i.e. s0¢; 4 speaker Selects a strategy for an
agent x based on information received on agents fulfilling the speaker role, when
x is fulfilling the observer role). In many domains, system designers also expect
agents to engage in some ezploration of the strategy space. The process of
strategy selection discussed here relates to selection after the agent has decided
not to explore.

Intuition regarding conventions and norms illustrates the distinction between
social and personal choice: typically, we imitate others (i.e. choose social prece-
dence) on entering a new system, when we have relatively little experience,
and subsequently place more weighting on personal preference as we gain more
experience.

Ideally, we would like the strategy selected by each choice to be the same,
implying that the choice suggested by convention is the best choice for the
agent and vice-versa. If this is true for all agents in the convention, then the
convention can be considered stable, as no agent is likely to act otherwise.

We define an agent’s dissonance as an indication of whether there is a dif-

ference between that agent’s personal and social strategy preferences:

diss(z) = 0 if per(z) = soc(x)

1 otherwise
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We can then define average dissonance over the population:

Z diss(x)

z€X(¢,t)

averageDiss, (¢,t) =  x(et)]

An important measure of convention quality is the benefit an agent gains
from adhering to it. In the investigation of convention emergence in humans
performed by Garrod (1994), an individual gains the most benefit (i.e. any
benefit at all) from selecting the strategy most represented in the joint history
of the interaction participants. An agent can estimate this by inspecting its own

interaction history. The relative benefit an agent x gets by selecting o is:
relBen(o,x) = Py(0) — histScore(o, x)

where histScore(o,x) is the payoff x estimates it will gain based on its own
interaction history and P, (o) is the actual payoff = attains for selecting o. Note
that this benefit will change depending on which neighbour the agent interacts
with, and that it is not always positive. For example, consider driving on the
left or right. As a thought experiment, one can imagine a time when there was
no convention on which side to drive. The relative benefit of people adhering
to an emerging convention of driving on one side would be large, given the
experience of not knowing which side people would drive on. However, once the
convention is established, the additional benefit of adhering is low, and we do
not notice the additional payoff we get by being part of the convention. Were we
to defect, however, and drive on the “wrong side”, we would incur significant
negative payoff. If an agent that has a history of mixed choices is situated
next to agents adhering strongly to one convention, then the relative benefit of
selecting a strategy not defined by the convention is likely to be negative, as
the payoff will be zero but the histScore will be positive. The relative benefit
therefore encapsulates that conventions are social choices, in that an agent must

consider not just its own choice of strategy but also that of those it interacts
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with. Finally, we can also define relBen, (o) as the average relative benefit the

agent set y attains by selecting strategy o.

Z relBen(o, x)

z€X(¢,t)

relBen, (o) = XG0

While a number of these metrics are not fully computable in practical sce-
narios, estimates for each of them can be obtained. Given that the question
of whether a convention exists or not, and determining its quality, support or
stability, are inherently uncertain processes in the real world, we consider it
reasonable to estimate these metrics. Our notion of conventions and related
metrics is defined in a formalism within which a wide variety of models of con-
vention emergence can be expressed. As such, our metrics can be calculated in
these models for detailed analysis of their behaviour. We expect that analysis
of such systems using our metrics will reveal additional details about the na-
ture of conventions from which novel mechanisms for manipulating convention

emergence can be designed.

4.5.7 Linking connection topology with conventions

As discussed in Section 4.3, topological influences on conventions are significant.
By incorporating notions from social network analysis, we can further extend
our framework for describing conventions.

While a set of agents that are entirely disconnected in the social network
topology may be considered part of the same convention, it is intuitive to assert
that a convention with all adherents as members of a single connected compo-
nent of the network is in some way stronger or preferable. Certainly, it is more
difficult for non-adherents to destabilise a convention in which the adherents
are strongly connected and thus able to preferentially interact with other ad-
herents. We can therefore define a measure comp, (¢, t) to represent the number

of connected components in the subgraph containing only agents from the given
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set, i.e. {v € x(¢,t)NV}. A useful example would be compmembpersnip(,t), the
number of connected components in the network defined by agents that have an
adherence greater than § to the convention. If compmempership(@,t) = 1, then
it is likely to be a convention highly resistant to external invasion. Indeed, it
seems intuitive that the ideal situation is for all conventions that exist to have
COMPmembership = 1. For clarity of discussion, we will call a connected compo-
nent in the sub-graph defined by the agents in membership(¢,t) a convention
component.

Other notions from network analysis are also applicable. Costa and Da
Rocha (2006) proposed extending notions of degree and clustering coefficient
from single nodes to sub-graphs. These generalisations do not require the sub-
graph to be connected. As such, we can directly apply these metrics to the
connected components of the subgraphs defined by the membership sets. That
is, we can directly define the degree and clustering coefficient of a convention,
using the set of agents that are members, or the degree or clustering coefficient
of the set of users of a convention.

The degree of a convention membership set corresponds to the number of
non-member agents that can be directly interacted with; a useful indicator of a
convention’s ability to further spread. The clustering coefficient of a convention
membership set corresponds to the extent to which members are likely to inter-
act with other members, a key property for convention stability. Furthermore,
Costa and Da Rocha (2006) introduce the neighbourhood of a sub-graph, as
the set of nodes that are connected to the sub-graph, plus the set of nodes in
the sub-graph itself. We might then further define the fringe of a sub-graph as
the neighbourhood of the sub-graph with the nodes in the sub-graph removed.
The fringe of a convention component therefore corresponds to the nodes that
members of the convention component might interact with that use a different
convention or strategy, and thus are likely to be good candidates for targeted
mechanisms to aid convention emergence.

In many convention emergence scenarios, agents interact randomly with their
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neighbours. Given that the greatest payoff is attainable when an agent’s neigh-
bours use the same convention, we can expect that a connected component with
a single convention will be most stable when its internal connectivity is greater
than its connectivity to the rest of the network. This is similar to the typical def-
inition of community structure in a social network (Newman & Girvan, 2004),
such that a convention that is topologically mapped onto strong community
structures is likely to be the most stable.

Clearly, the study of the underlying network structure should reveal signifi-
cant insight into the nature of conventions. We make a first step in evaluating
this hypothesis in Chapter 6, where we investigate to what extent knowledge
of the network structure can improve the ability of individuals to manipulate

which convention a population adopts.

4.6 Conclusions and further work

In this chapter, we have given an overview of the state of the art in research
regarding convention emergence, and identified a number of limitations that
impede a full quantitative understanding of convention emergence in large de-
centralised populations of individuals. In response, we have defined a conceptual
framework for describing open MAS with conventions, and illustrated how ex-
isting convention emergence formulations can be easily expressed in it to enable
comparison. We propose a new definition of conventions that allows for the co-
existence of multiple conventions and facilitates analysis of conventions before
they are traditionally accepted as being established. Our proposed set of met-
rics for describing convention quality, adherence and stability aims to support
analysis of the middle to latter stages of the life cycle of conventions. Our future
work will aim to analyse typical models of convention emergence within our con-
ceptual framework. It is our expectation that such analysis will yield detailed
insight into the nature of conventions, allowing us to design novel mechanisms

for (i) determining which conventions are desirable, (ii) identifying those we
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wish to destabilise, (iii) supporting the emergence of desirable conventions, and
(iv) determining a configuration of coordinated and co-existing conventions in
populations where we may not be able to or may not wish to establish a single
convention.

The conceptual framework presented in this chapter is a first step, in which
we re-orient the traditional agent-based perspective regarding conventions to
more closely fit the view of reqularities as suggested by Lewis (1969), in which
an agent has a significant probability of repeatedly choosing a given action. As
such, we consider a wider variety of behaviour as conventional, and can use
our metrics of quality, adherence and stability to determine how desirable each
convention is. Our metrics also provide natural ways to quantify the conventions
at which it might be useful to target supporting mechanisms, and it is our aim
to evaluate this in future research. We envisage useful applications for our
framework in a wide variety of domains, including social media and marketing,
mechanisms for protecting conventions from external invasion, and mechanisms
for destabilising undesirable conventions. In subsequent chapters in this thesis,
we adopt the syntax of our formalism for describing the agent interaction models
that we use. Appendix B also provides examples of how the formalism can
describe common models of convention emergence.

There have been very few attempts to provide a unifying framework for con-
vention emergence in open MAS. The most applicable proposal, that of Walker
and Wooldridge (1995), oriented its formalism with respect to runs of a system,
implying a well-defined start and end point for a system. This significantly re-
duces its applicability to open MAS. Walker and Wooldridge also defined very
few metrics for quantifying properties of conventions, and focused on conven-
tion convergence and the number of strategy changes that agents make. These
metrics assume that a single convention is the ideal or attainable goal, which
may not be the case. The formalism described in this chapter does not rely on
a notion of runs, does not assume a single convention is ideal or attainable, and

defines many more metrics to quantify a wide variety of convention properties.
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To our knowledge, there are no other convention frameworks that address these
issues and are therefore suited to convention emergence in open MAS.

The work in this chapter suggests a wide variety of directions for future re-
search, including evaluating targeting mechanisms for convention emergence at
a specific group (i.e. users, non-users, and so on), extending the work on link-
ing topological structure with convention behaviour, and examining the set of
metrics described here in established models of convention emergence to deter-
mine whether or not they provide any insight into the behaviour of conventions.
These extensions are outside the scope of this thesis, and in subsequent chap-
ters we focus on investigating the manipulation of conventions. Specifically,
Chapter 5 focuses on whether conventions can be manipulated in open MAS
at all, Chapter 6 determines the extent to which knowledge of the underlying
network structure can be exploited, and Chapter 7 determines the extent to
which conventions can be manipulated in the middle and latter stages of the life

cycle.
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CHAPTER b

Manipulating conventions using Influencer Agents

In the previous chapter, we discussed a number of limitations with the current
theory of conventions and identified directions for future research. One area for
investigation which has seen limited attention is the manipulation of conven-
tions. In this chapter, we investigate how conventions might be manipulated in
open MAS. We propose the Influencer Agent (IA) mechanism, in which a small
proportion of agents with specific goals and strategies are inserted into the pop-
ulation in order to manipulate which convention the society adopts. We show
that small proportions can be highly effective, and demonstrate that exploiting
topological features can improve efficacy. IAs are a fundamental mechanism in
the remaining chapters of this thesis: in Chapter 6, we investigate how exploit-
ing knowledge of the underlying network structure can improve IA efficacy, and
in Chapter 7 we show how IAs can be used to manipulate conventions in the
middle and latter stages of the convention lifecycle, and empirically analyse the

efficacy of equipping IAs with sanctions and incentives.
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5.1 Introduction

Conventions are known to encourage high levels of coordination, but efficiently
manipulating which convention emerges remains an open research problem.
Considerations of limited knowledge of society characteristics, time variance,
and computational difficulty often preclude the ability to generate and impose
high quality conventions a priori. Mechanisms that encourage online generation
and adoption of appropriate conventions often assume the ability to universally
incorporate additional structures into agent or society architecture. In this the-
sis, we assume heterogeneous ownership of agents (Chapter 1) and that agents
are able to join and leave freely at run-time. Subsequently, we cannot rely on
adding additional structures into agent architectures, or make any guarantees
that the proportion of agents adopting a particular mechanism will be sufficient
to ensure feasibility. Similarly, we cannot assume that we can impose society-
level structures on the system. As such, we require a model of how purely
rational agents might be manipulated into adopting high quality conventions
and otherwise aided in increasing levels of coordination within the system.

In this chapter, we propose inserting a small number of agents, with specific
conventions and strategies, such that the population as a whole, through their
normal rational selection of actions, is guided towards the adoption of high
quality conventions. We call these inserted agents Influencer Agents (IAs), and
show that a small proportion of IAs in an artificial society can efficiently aid
the generation and propagation of high quality conventions. This mechanism of
manipulating convention emergence does not require any assumptions of agent
behaviour beyond rationality, and to our knowledge does not currently exist in
this form in the literature.

To demonstrate the IA mechanism, we adopt a model of convention emer-
gence in the language coordination domain, primarily defined by Salazar et
al. (2010b). Agents are associated with individual lexicons, mappings from

words to concepts, with which they attempt to emerge a single shared lexicon by
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communicating and sharing partial lexicons. The emergence of a shared lexicon
constitutes the emergence of a convention. For a full description of the model,
see Section 5.4. We rely extensively on Salazar et al.’s work to demonstrate our
TA mechanism. The model that they present incorporates realistic assumptions,
such as complex connecting topologies and very large convention spaces. Very
few models of convention emergence use such large convention spaces, and by
using this property the demonstration of IA efficacy is less likely to be due to
chance. Furthermore, Salazar et al. have presented extensive results showing
that simple agent strategies can lead to high-quality convention emergence, and
the quasi-continuous nature of the convention space (as opposed to the discrete
convention spaces of the majority of models) allows us to measure the extent
of an TA’s efficacy, as opposed to a binary observation of whether they were
successful or not.

We discuss the IA concept, the research that inspired it, and possible strate-
gies with which TAs can be equipped in Sections 5.2 and 5.3. Section 5.4 details
our experimental setup, and Section 5.5 establishes baseline model behaviour
and presents results demonstrating the efficacy of the IA concept. Finally, Sec-

tion 5.6 discusses conclusions and directions for future work.

5.2 Influencer Agents

We define an Influencer Agent (IA) as an agent inserted by any interested party
(typically the system designer or manager) with the specific goal of influencing
and aiding the emergence of appropriate conventions, for example to increase
the aggregate utility of an artificial society. Initially, we are concerned with
facilitating the emergence of a single, high quality convention, but IAs might
also be used to block the emergence of certain conventions or coordinate the
emergence of multiple appropriate conventions (such as in the El-Farol Bar
problem (Arthur, 1994)). This is further discussed in Section 5.5.6. IAs were

inspired by a number of contributions in the literature that include the notion
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of a small proportion of unprivileged agents influencing the aggregate behaviour
of an entire artificial society.

Our initial inspiration is based on the work of Garlick and Chli (2009), who
created an agent-based model to investigate the effects of curfews in civil distur-
bances. While their domain of interest is very different to ours, they consider
two important concepts: (i) a small proportion of policemen agents attempting
to influence the society towards peaceful outcomes, and (ii) a notion of social
influence based on communication between agents. They found that restricting
communication, and thus influence, could significantly change the outcome of
the model, and that free communication allowed agents to direct large popu-
lations towards their preferred outcome (i.e. rebellion or peace). Given that
we expect few limitations on communication in our domains beyond the usual
factors of noise and agents failing or leaving, this may translate to realistic open
MAS domains.

While exploring how agents with fixed convention adherence (i.e. that use
one strategy without possibility of changing) affect the conventions that emerge,
Sen and Airiau (2007) found that four agents fixed on one strategy (of two al-
ternatives) was sufficient to influence a population of 3000 agents to adopt that
strategy. These results suggest that small numbers of agents can heavily in-
fluence large groups of self-interested individuals. However, Sen and Airiau’s
model is limited by three assumptions: (i) there are only two possible conven-
tions, (ii) agents are randomly paired from the whole population rather than
constrained by an underlying network structure, and (iii) interactions are pri-
vate. With the intention of moving the model towards more realistic settings,
we adopt a domain with many potential conventions (10'° with the parameter
settings used in Section 5.5 where we discuss our results) and situate agents
within a connecting topology.

Yu et al. (2010) show that small sets of informed individuals can guide large
groups towards coordinated outcomes, with the aim of solving problems of dis-

tributed consensus. However, their approach requires significant additional com-
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ponents of agent architecture. Similarly, Oh and Smith (2008) discuss using a
subset of agents in a population as leaders for other agents in multi-agent learn-
ing for resource allocation problems, such that the agents who follow them are
saved the computational burden and other costs of convention generation. The
authors argue that this approach aids convention emergence in highly dynamic
societies since new agents can employ social learning rather than environmental
exploration when entering the system. Our contribution has some similarities
here, in that IAs are analogous to leader agents, and similarly bear costs asso-
ciated with convention emergence (although in our current formulation IAs do
not generate conventions, this being an area for future investigation).

Axelrod’s model of norm emergence (Axelrod, 1986) requires observing agents
to punish norm violators, and results in high levels of emergent cooperation.
However, the model considers populations in which (i) the entire population is
able to punish norm violators, (ii) agents are not situated on a network that
constrains their interactions, and (iii) the convention space is limited to two
dimensions.

Grizard et al. (2007) consider a system that links reputation assessments
with cooperative social norms, where control agents are injected to monitor
agents and sanction their behaviour (if necessary) by reducing their reputation,
which leads to ostracism effects. They obtain encouraging results, but require
the imposition of society-level components. Despite homogeneous authority
and large populations, individual agents can clearly have a significant effect on
emergent social dynamics.

Little work has been done on the generation of conventions themselves. Re-
cently, Morales et al. (2011) have presented work on generating conventions
using historical data on the success of a given convention. They situate agents
in an abstract traffic model and use monitoring agents to determine the efficacy
of imposed conventions. A machine-learning algorithm generates new conven-
tions as necessary and these are communicated to the agents in the environment.

Their work is one of few to address the generation of norms and conventions
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and there are parallels between their monitoring agents and our IAs. However,
their model requires a central authority to process convention data and generate
new conventions, whereas our IAs act independently and attempt to influence

nearby agents to a given convention.

5.3 Strategies for IAs

We consider systems in which all agents have uniform levels of authority, and
thus we cannot elevate the privileges or abilities of any inserted IAs above the
rest of the population. However, there is still potential for significant influence.
We can identify a number of potential strategies IAs might use: (i) lead-by-
example, (ii) incentives and sanctions, and (iii) information propagation. We
present an overview of these potential strategies below, but in the remainder
of this chapter we are only concerned with leading-by-example as a means to
explore the feasibility of the TA concept (we investigate agents with incentives

and sanctions in Chapter 7).

Lead-by-Example: Sen and Airiau (2007) use a model of private interactions
that introduced the notion of small sets of agents with fixed strategies
being able to affect the norms adopted in a relatively large population.
This implies that IAs may be able to choose strategies that enable them
to lead-by-example, interacting with other agents using actions determined
by high quality conventions. Agents observe these actions and incorporate
them into their own strategies, allowing the convention to spread through-
out the population. Additional targeting of where to insert high-influence
agents (e.g. by using topological information such as node degree (Chen
et al., 2009; Kempe & Kleinberg, 2003)) might further increase the efficacy
and robustness of this strategy, although this was not considered by Sen

and Airiau.

Incentives and Sanctions: Both incentives and sanctions have been exten-

sively studied in the literature over a wide variety of fields, and both are
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known to play a significant role in the emergence and enforcement of so-
cial norms. Oliver (1980) concludes that incentives are an effective way
to motivate small groups, whereas sanctions are more effective at gen-
erating unanimous cooperation once a small group has been established
(though at the expense of potentially generating hostilities that will dis-
rupt such cooperation). The model of civil violence described by Garlick
and Chli (2009) sanctions agents by restricting communications, and their
results show that this significantly influences the normative outcome!.
Axelrod (1986) showed that punishment for norm violation could create
stable cooperative populations, although more recent investigations have
cast doubt on the scalability of results from this model (Galan & Izquierdo,
2005; Mahmoud & Keppens, 2011). Despite this, sanctions and incentives
remain powerful tools for aiding convention and norm emergence. Imple-
mentation of sanctions and incentives is likely to be domain-specific, and
it is not intuitively clear how IAs might be able to effectively incorporate

these notions into their strategies.

Information Propagation: It has long been accepted that information prop-
agation plays a lead role in social dynamics. For example, Garlick and
Chli’s restriction of communications inherent in imposing a curfew had
significant effects. Similarly, gossiping of information can replace the need
for direct observation of interactions (Sommerfeld et al., 2007), which is
a core component of many of the convention emergence models discussed
above (e.g. Shoham & Tennenholtz (1997), Walker & Wooldridge (1995)).
TAs could be used to propagate trust and reputation assessments, high
quality conventions, or other useful information, and could even block or

otherwise disrupt communications from non-compliant agents.

In the remainder of this thesis we focus primarily on the strategy of lead-

by-example as a demonstration of the feasibility of the notion of IAs (although

1Note that this influence is not always towards the preferred outcome, with the direction
the population takes being dependent on its current state.
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we investigate the use of IAs with sanctions and incentives in Chapter 7). We
aim to confirm the hypothesis that small proportions of agents in a popula-
tion can significantly influence convention emergence in an artificial society. As
such, the agents that we consider are as simple as possible in terms of strategy.
Specifically, the IAs we propose are identical to the other agents in the popula-
tion, except that they do not adapt their behaviour in response to conventions
proposed by others (instead, they adhere only to their own, fixed convention).
Informally, we view such IAs as attempting to lead-by-example. This use of
TAs relies on the rationality of agents: IAs attempt to propagate high quality
conventions, and agents adopting these conventions avoid costs associated with
malcoordination.

TAs represent a model in which a small proportion of inflexible agents spread
a given convention for the duration of the simulation. We also present a sec-
ond model, in Section 5.5, in which we give a specific initial convention to a
(potentially larger) proportion of agents and then let them continue as normal.
These alternatives apply to different potential real-world situations; the latter
being a good fit for domains in which we can temporarily influence a large set of
agents, and the former being more suited to situations in which we can insert a
small number of agents explicitly under our ownership and control. In Section
5.5, we use the latter model in some of our simulations when validating certain
aspects of our TA model. However, in this chapter we are primarily interested
in characterising and quantifying the effects small groups of agents can have on
populations many times their size, rather than the effects of groups of flexible

agents adopting and adapting an initially implanted convention.

5.4 Experimental setup

Our experimental setup is based on that used by Salazar et al. (2010b), with
some elaboration where details of the original configuration are unspecified.

Agents are situated within a network structure that constrains the selection
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of neighbours with whom they can communicate, and the properties of this
structure have a significant impact on population behaviour (see Appendix A
for details). In this chapter, we focus on evaluating IAs using synthetic small-
world and scale-free networks, which are intended to reflect features of realistic
domains (Albert & Barabdsi, 2002). In subsequent chapters we validate IAs
on real-world networks and examine the extent to which synthetic networks
are useful models of real-world network structures. We describe many of the
features of our experimental setup using the formalism introduced in Chapter
4. Summaries of the notation used can be found in Tables 4.2, 4.3, and 4.4.

The strategy of each agent is represented using a lexicon, a mapping from
words to concepts. We denote the set of words as W and the set of concepts
as C. We assume that |[W| = |C|. We denote the set of mappings in a lexicon
from elements of W to elements of C' as M. We assume, for simplicity, that
|M| = |W|. Each agent starts with a randomised lexicon, meaning that each
element of W is mapped to a randomly selected element of C' (such that multiple
words may map to the same concept).

Agents attempt to communicate with each other using their lexicons, and
track the success of their communications. Furthermore, they also exchange and
update their lexicons in a manner analagous to a distributed genetic algorithm.
Agreeing on a shared lexicon allows agents to communicate effectively with each
other, and reduces costs associated with miscommunication. As such, a shared
lexicon represents our notion of a convention. For simplicity, in this chapter
we calculate convention adherence (see Chapter 4) using a history length of 1:
agents either adhere to a convention or they do not. The membership set of a
convention thus consists of all agents that currently use that lexicon. We refer to
the (potentially partial) lexicons that agents communicate as convention seeds,
since they have the potential to become established conventions. Figure 5.1
illustrates the lexicon structure and agent communications.

In this domain, there are many potential conventions? with an intrinsic qual-

2There are w® possible conventions, where w is the number of words and ¢ is the number
of concepts (Salazar et al., 2010b).
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Lexicon Communication

Words | Concepts

“square” = . @

“CirC|ew * . @ @
“triangle” = M ®

Yine® _’ / Speaker Hearer

Figure 5.1: Tllustration of a lexicon and a simple communication action.

ity metric called lexicon specificity. The specificity of a lexicon is the proportion
of words that identify a single concept, such that a one-to-one mapping gives a
specificity of 1, while a two-to-one mapping gives 0.5 specificity. To calculate
specificity for a single concept in a lexicon, we use the formula S, = ﬁ, where
S, is the specificity of concept ¢ and W, is the set of words that identify that
concept. If no words identify a concept then S, = 0. The specificity of a lexicon

is defined as the average of the specificity of all concepts, or formally:

2 Se

S = ceC
]|

There may exist multiple conventions of the same quality, in which case it
does not matter which one the agents choose as long as they agree. Adhering
to a convention allows an agent to avoid the cost associated with being unable
to communicate successfully with others. Given the potential size of lexicons,
it is not practical for agents to propagate entire vocabularies. This means that
agents have incomplete information about other agents’ lexicons, and can thus
only estimate their quality. We do not know a priori if an ideal lexicon exists
in the population. Convention emergence is thus a highly challenging problem
in the language domain, making it a useful setting for the investigation of con-
vention emergence dynamics. We note that the results of Salazar et al. (2010b)
show efficient and fast convergence to a high quality convention, but require
extensive additional architecture (such as components for self-protection and
internal noise generation to increase lexicon diversity) to be built into agents.

In our investigation, we have replicated the core components of the convention
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spreading mechanism introduced by Salazar et al. (2010b) of information trans-
fer and selection. We assert that these components will be universally adopted
by agents that are rational: agents will choose the best convention they can
based on the available information, and attempt to reduce costs associated with

73 We use this domain

malcoordination by spreading their “way of doing things
to investigate the ability of small numbers of unprivileged IAs to influence the

behaviour of a population.

5.4.1 Interaction regime

Within each timestep of the simulation, there are three phases: (i) agent com-
munication, (ii) lexicon spreading, and (iii) lexicon update. The communica-~
tion, spreading, and updating actions are split into separate loops to prevent
unforeseen synchronisation effects, such as agents updating their lexicons from
out-of-date information. The full interaction regime for the simulation is shown

in Algorithm 1.

Communication

In the first phase, every agent in turn fulfils the role of speaker. The speaker
selects a random neighbour, fulfilling the role of hearer, and sends them a one-
word communication about a concept. The payoff for the speaker is 1 if both
agents choose the same strategy (i.e. have the same mapping) and 0 otherwise.
For the hearer, the payoff is always 0. An agent’s communicative efficacy is the
average payoff over the last 20 timesteps (discussed in more detail in Section
5.4.4). Note that Salazar et al. (2010b) define communicative efficacy as the
difference between successful (understood) and unsuccessful (not understood)
communications, calculated every 20 timesteps. We use the normalised form for

clarity of analysis.

3Spreading of conventions can also be interpreted observationally, such that agents receiv-
ing a convention from another can be said to be observing that agent’s convention.
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Spreading

After all agents have acted as a speaker in a timestep, each agent is in turn
given a chance to send their lexicon (either partially or completely) to all their
neighbours. We assume that agents update their lexicons based on information
provided by others (i.e., there is no centralised authority). Consideration must
be given to the synchronicity of the agent update processes. Given the literature
concerning the limitations of synchronous strategy update (Page, 1997; Szabd
& Fath, 2007), we use an asynchronous probabilistic update model: during each
timestep, an agent sends lexicon information (see below) with probability psend,
and updates its lexicon based on received information with probability pupdate-
This differs from Salazar et al. (2010b) who combine both probabilities into a
single value for spreading. They do not explicitly state when agents initiate their
update processes, or whether they are synchronised, but the model presented
in Salazar et al. (2008) suggests that agents update after a given number of
timesteps with a given probability.

Salazar et al. (2010b) consider two potential mechanisms for lexicon spread-
ing: Complete transfer (also called Copy transfer) and Partial transfer. In
complete transfer, agents send their entire lexicons to their neighbours. This
should only be seen as an idealised scenario — in practice, it is likely that re-
source constraints such as bandwidth will mean that only partial transfer is
possible, and we therefore focus on partial transfer. Salazar et al. (2010b) state
that their partial transfer mechanism is based on recombination techniques from
evolutionary algorithms literature, but they give no further detail.

We define partial transfer using a two-point crossover mechanism that mir-
rors two-point crossover in genetic algorithms, in which two points are selected
in the parent gene strings. Everything between those two points is swapped,
generating two offspring. In our case, we generate a single offspring, in the form

of a new lexicon, using the following mechanism:

1. Each agent is associated with an integer [, individually chosen uniformly
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at random at the start of the simulation, that defines the lexicon transfer
length. This represents the number of mappings an agent will try to spread
from its lexicon to other agents (i.e. [ = |W| corresponds to complete
transfer). For simplicity, we assume that all agents have the same number

of words and concepts in their lexicons.

2. When an agent decides to initiate a partial transfer, it selects a random

start point, a, in its lexicon such that a +1 < |W/.

3. Then, [ mappings are selected from the lexicon starting at mapping a, and

are communicated to the neighbour set of the agent.

4. If a recipient chooses to incorporate these mappings in the update phase
then it replaces [ mappings in its own lexicon, starting at a, with the

received mappings.

Updating

When selecting which of the incoming partial lexicons to incorporate into their
own lexicon, agents can use either random or elitist strategy update func-
tions (Salazar et al., 2010b). Random strategy update selects between each
incoming convention seed uniformly at random, whereas the elitist strategy up-
date picks the seed with the highest quality. Salazar et al. (2010b) assume
that agents send a quality valuation with the convention seeds, and that this
is honest. In our investigation we adopt this assumption, but note that this is
idealistic. The quality valuation for a lexicon (whether partial or complete) is
the sum of the communicative efficacy and specificity for the full lexicon, and
so the two components are evenly weighted.

An agent’s strategy is encapsulated by the population-wide variables psenq
and pypdate, the agent-specific variable [, its individual lexicon, and the agent-
specific update strategy of random or elitist.

TAs are modelled as agents with a fixed lexicon: they attempt to propagate

their own lexicon as normal (which may or may not be shared with other TAs),
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Algorithm 1 Interaction regime

1
2
3
4:
5:
6
7
8
9

//1 is set of interactions

: //Communication Phase
: for all Agent € Population do

Partner < getRandomN eighbour(Agent)
I+ TU(LC,(Agent, oy, Speaker), (Partner,cs, Hearer))

: end for

: //Spreading

: for all Agent € Population do
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

r + randomDouble()
if r < pSend then
Inew < (LC, (Agent, o1, Sender))
10
for all Neighbour € Agent.getNeighbours() do
Inew < Inew U (Neighbour, o;, Receiver)
1+ 1+1
end for
I+ TU ey
end if
end for

//Updating
for all Agent € Population do
r < randomDouble()
if r < pUpdate then
I+ IU(LC,{Agent,o1,Updater))
end if
end for
return [
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but will discard any incoming partial lexicons, regardless of their quality. Unless
otherwise specified, IAs are all given the same initial lexicon. In practice there
is likely to be an upper bound on how many agents it might be practical to
insert into a system. For example, there might be a limit of a proportion of
0.05 IAs in a population (e.g. 50 agents out of 1000) that it is realistic to insert.
However, for evaluation purposes we performed simulations with proportions up
to 0.4. While such proportions are likely to be impractical, they are useful in

characterising the behaviour of the model.

5.4.2 Roles, dimensions and observability

There is one dimension in this domain, which we call LC (for language coor-
dination), with each possible lexicon representing one strategy. There are five
roles: in a communication interaction, there is a speaker and hearer, in a lexi-
con propagation interaction, there is a sender and several receivers, and in an
update interaction, there is an updater. The interaction regime returns inter-
actions that satisfy the following properties: the first NV interactions consist of
pairs of agents fulfilling speaker and hearer roles, such that every agent in the
population is chosen as speaker once. Subsequently, each agent is chosen with
a probability psenq to act as sender, with each of its neighbours designated as
a receiver. Finally, each agent is chosen with probability pypdate to perform
strategy update. The full set of roles is therefore R = {speaker, hearer, sender,
receiver, updater}.

An agent’s broadcast of its mappings is equivalent to the neighbours of that

agent observing their strategy, identity and payoff. Thus,

Rspeaker = Rhearer = (ID = true, P = true, S = true,U = false,p = 1)

For sender/updater interactions, the sender propagates their strategy (which is
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partially incorporated in the strategy update function):

Rsender = (ID = true, P = true, S = true,U = true,p = 1)

The updater and receiver roles are anonymous:

Rypdater = (ID = false, P = false,S = false,U = true,p = 0)

Ry cceiver = {(ID = false, P = false, S = false,U = true,p = 0)

5.4.3 Network topology

Agents are situated on a connecting topology which constrains communications
to the immediate neighbour set. We use the Java Universal Network/Graph
library (version 2.0.1)* to generate connecting topologies.

Our scale-free topologies are generated using the Eppstein and Wang power-
law generator (Eppstein & Wang, 2002). This differs from Barabdsi and Al-
bert’s (1999) model of incremental growth, by instead evolving a graph with
constant size and density using a Markov process. The algorithm takes three
parameters, the total number of vertices n, the total number of edges e, and the
number of edge insertions/deletions r. We use a value of r = 1000000.

Small-world topologies are generated using the Kleinberg small-world gen-
erator (Kleinberg, 2000). In this model, an m X n lattice is augmented with a
number of extra connections chosen with probability p o< d~%, where « is the
clustering exponent, a parameter to the model, and d is the lattice distance be-
tween the two nodes being considered for a new edge. Our implementation here
differs from Salazar et al. (2010b), who generated small-world topologies using
the Watts-Strogatz beta model and scale-free topologies using the Barabasi-
Albert model. More recent versions of JUNG do not include a generator for the
Watts-Strogatz model. There are significant structural differences in networks

generated by each model, most notable of which is that the Kleinberg generator

4http://jung.sourceforge.net/
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tends to produce significantly lower clustering coefficients and networks with
low numbers of edges. The two main parameters to this algorithm are lattice
size and clustering exponent, and we use the default configuration in which each
node is augmented with one extra connection. Unless otherwise stated, we use

a 10 x 100 lattice with a clustering exponent o = 5.

5.4.4 Metrics

There are a number of important metrics which help characterise the efficacy

and efficiency of convention emergence:

1. Communicative efficacy: The average communicative efficacy of the sys-
tem at each generation measures the ability of agents to communicate with
each other effectively, and thus acts as a proxy for the level of coordination

within the system.

2. Dominant convention membership: As our results show, it is rare that
all agents agree upon a single lexicon. The number of agents sharing the
most commonly used lexicon is one indication of the level of convention

adherence in the population.

3. Distance of the most common lexicon from the initial IA lexicons: The
distance between two lexicons is defined as the number of mappings which
are different. We are interested in the ability of TAs to influence the
convention that is adopted throughout the entire population. If the most
commonly used lexicon in the population is that used by the IAs, then

the distance is zero and we can consider the IAs to have been successful.

4. Number of conventions with given membership: Considering the number of
conventions and their sizes allows us to explore their evolution over time.
For example, if there are 1000 conventions of size 1, then each agent has
its own unique lexicon. One group of 750 agents and many other groups

of small size would indicate one dominant, commonly-used convention,
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Parameter Value
Number of mappings in lexicon 10
Psend 0.001
Pupdate 0.001
t (Timesteps) 100000
n (Population Size) 1000

Table 5.1: Default parameters used for the simulation configuration.

but with the rest of the population fragmented without strong convention

emergence.

5.4.5 Simplifying assumptions

We make two main simplifying assumptions, namely that (i) the underlying
connecting topology is static, and (ii) our agents are homogeneous (aside from
the minor differences of IAs).

Static connecting topologies are known to induce different system dynamics
than dynamic topologies (Brandt & Sigmund, 2005), and consequently there are
limits to how far we can generalise our model to domains characterised by high
levels of churn. However, there is relatively little work on modelling dynamic
topologies, and defining how a topology is likely to change over time is likely to
involve incorporating domain-specific assumptions about agent or environment
behaviour. Such modifications are outside the scope of this thesis, although
an investigation of the efficacy of IAs under population churn is presented in
Chapter 7.

There has been significant work on dealing with agent heterogeneity, but
it remains an open research area. Typical approaches involve specifying agent
communication languages and protocols, although there is a risk of increasing
barriers to participation, particularly for agent societies with disparate levels
of agent complexity (Dellarocas & Klein, 2000). Singh (2000) argues that the
majority of existing communication languages are insufficient for application in

open MAS domains, which tend to exhibit high levels of agent autonomy and
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heterogeneity. Extending our contributions to populations of heterogeneous

agents is discussed in Chapter 7 but is beyond the scope of the current work.

5.4.6 Configuration

Unless otherwise stated, we use t = 10000 with both elitist and random strategy
update, on a variety of networks that reflect features of real-world domains. This
is a basic implementation of the model of Salazar et al. (2010b), without the
additional components of innovation, self-protection, or noise. Since we consider
copy transfer to be impractical, we use partial lexicon transfer only. Results are

averaged over 30 runs, using the parameter values specified in Table 5.1.

5.4.7 Differences from Salazar et al.

The model implemented here is very similar to that used by Salazar et al..
Specifically, we have implemented their model exactly except that agents do not
incorporate the components of self-protection, or innovation. Agents therefore
consist of the minimal set of components from Salazar et al. necessary for
convention emergence to occur within the model. Our TA mechanism is entirely
novel and we use different synthetic network generators and parameter settings
for the network structures constraining agent interactions. In Sections 5.5.1
and 5.5.2, we evaluate the basic model as used by Salazar et al. without our TA
mechanism or Salazar et al.’s components of self-protection or innovation, and
corroborate a number of their results. All results presented after these sections
are entirely novel and do not incorporate any further aspects of Salazar et al.’s

work.

5.5 Results and discussion

We organise our results as follows. Initially, we report the baseline system be-
haviour without IAs and evaluate the impact of the underlying network topol-

ogy. We subsequently introduce TAs and quantify the extent to which they can
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be used to manipulate convention emergence, and compare their efficacy with
our second model discussed in Section 5.3. Finally, we evaluate the effect of
targeting IA location by degree, and the impact on IA efficacy if IAs are given

imperfect conventions to propagate.

5.5.1 Convention emergence without Influencer Agents

Figure 5.2(a) plots average communicative efficacy over time for 1000 agents
on a scale-free network with 10000 edges, while varying the proportion of elitist
strategies. Recall that an agent using an elitist strategy will use the lexicon seed
with the highest quality evaluation (out of all of those it has received) to update
its own lexicon. Even proportions of elitist strategies are plotted with symbols,
while odd proportions are plotted as dashed lines. Increasing the proportion of
elitist agents significantly increases the rate of gains in communicative efficacy
and its final value. Between elitist proportions of 0.8 and 0.9, the gains are signif-
icant (ov = 0.05) when using a two-tailed T-test (p = 0.0316). We see no further
gains with elitist proportions of 1.0. This may be a result of the exploration
effect that random lexicon selection agents introduce. There are a number of
reasons why the population does not converge on a single, universal convention.
When using 10000 edges, networks are rarely fully connected and the probabil-
ity of 100% adherence to the same convention is negligible. Furthermore, we
use low probabilities for lexicon spreading and update, and low-degree nodes
are unlikely to receive many partial lexicons with which to update. Low-degree
nodes are therefore unlikely to adhere to the dominant lexicon by ¢ = 10000,
resulting in less than 100% communicative efficacy.

This is illustrated in Figure 5.2(b), which plots the membership of the most
common lexicon (i.e. the dominant lexicon) over time and shows that the dom-
inant lexicon membership is larger with Elitist = 0.9 than FElitist = 1.0, al-
though the difference is not significant (p = 0.3528). Interestingly, Salazar
et al. (2010b) reported increased system performance when incorporating no-

tions of controlled noise into agents’ internal convention generation, which adds
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Figure 5.2: (a) Average communicative efficacy, and (b) dominant convention
membership using a scale-free topology with 1000 agents and 10000 edges, with
varying proportions of elitist and random lexicon update strategies in the pop-
ulation. Elitist strategies result in significant gains in coordination levels and
convergence time.
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weight to the hypothesis that a small proportion of random agents aids system

performance.

5.5.2 The effect of network topology without Influencer

Agents

It is important to investigate the effects of network topology on the dynamics of
our model. Figure 5.3(a) plots the results of simulations on scale-free networks
with random lexicon selection agents and edge counts from 1000 (very low) to
100000 (very high). With 1000 edges, convergence is fast to a stable average
communicative efficacy of around 0.4. As the number of edges increases, the
rate of convergence slows as the higher edge count results in larger neighbour
sets. With larger neighbour sets, the number of individuals with whom an agent
has to agree on a convention is increased, hence the slower convergence.

Figure 5.3(b) shows results using the same parameters as in Figure 5.3(a),
but with fully elitist populations. The number of edges strongly influences both
the speed of convergence and the final communicative efficacy reached, with
agents in a network with 100000 edges reaching a perfect lexicon. This is sig-
nificant, since it corroborates results presented by Salazar et al. (2010b), and
also indicates the significant role that the underlying communication topology
plays in convention emergence. A number of factors are influenced by the num-
ber of edges in a scale-free topology, including average node degree and average
shortest path length. Given a larger number of edges, agents will not only have
larger local neighbourhoods, but will also have shorter average path lengths to
a larger cross-section of the society. Both factors allow high quality conventions
to be spread to a larger subset of the population more efficiently.

Figure 5.4 shows the average communicative efficacy for populations situated
on a small world topology while varying the clustering exponent (CE). We can

clearly see that (i) elitist populations are significantly more efficient than random

5The total number of edges in a scale-free network is the main parameter for the Eppstein
& Wang generating algorithm we use (Eppstein & Wang, 2002).

126



5. Manipulating conventions using Influencer Agents

E=1000 —+—
E =5000 —x—
E =10000 —x—
09 E = 100000 —&—
0.8
>
] 07
k]
]
2 086
T
©
S 05
€
§
o 0.4 o et NSRRI SIS R
S MMW
g N el
g o3 v WZ:Z%W
<< WWWWWW
0.2 KT VMWW = = kil i
. ol BEBU—UU
W I
0.1 HpEeet
0
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
t - Timesteps
(a)
1 ST Ieciek itk At s E - 1000
CEb E = 5000 —*—
e 94****x*%%%*'*%%%vé%Xx%%%%*%%%%%%véxxﬁéx E=10000 - % -
T e E = 100000 &
.‘B X}é ><><></ SR HEKHA KA S X HEKE XK KRR HEKH AKX
; ¥« %
0.8 By /(

Average Communicative Efficacy

0
0

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
t - Timesteps

(b)

Figure 5.3: Average communicative efficacy for a population of 1000 (a) random
selection and (b) elitist selection strategy agents while varying the total number
of edges in a scale-free topology.
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Figure 5.4: Average communicative efficacy for 100% elitist and 100% random
lexicon selection populations on small-world networks while varying the Clus-
tering Exponent (CE).

selection populations, (ii) the clustering exponent has a negligible effect, and (iii)
convergence is slower on small-world networks than scale-free networks (shown
in Figure 5.3), as reported by Salazar et al. (2010b). We believe that the faster
convergence on scale-free networks is due to the presence of hub nodes, which
connect disparate clusters and allow information to spread more effectively than
on networks that lack these features (Albert & Barabasi, 2002).

Figure 5.5 shows the membership over time for the dominant convention.
Figure 5.5(a) shows results for 100% random and 100% elitist populations on
a small-world network while varying the clustering exponent. On small-world
networks we witness fragmented populations, with around 100 to 150 agents
adhering to the dominant convention at ¢ = 10000. As noted in Section 5.4, we
use the default Kleinberg small-world network generator configuration, which re-
sults in networks with relatively few edges. We see the behaviour on small-world

networks replicated in scale-free networks with similar edge numbers (Figure
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Figure 5.5: Dominant convention membership for (a) 100% elitist and 100%
random lexicon selection populations on small-world networks while varying
the Clustering Exponent (CE) and (b) comparable scale-free and small-world
networks.
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Timestep | Number of groups of size ACE
0 1000 x 1 0.0

1000 922 x 1,25 x2,2x4,4%x5 0.135

10000 298 x 1,28 x2,11x3,5x4,1x5,1x6, 0.706

1%x8,2%x9,1x10,1x12,1x13,1x14,1x17,1x 18,1 x 19,

1x23,1x28,1x31,1x37,1x40,1x47,1x66,1x77,1x104
50000 34x1,1x2,1x22,1x23,2x25 1x27,1x29,1x31,1x32, 0.757
1 x 106, 1 x 644
100000 | 33 x1,1x20,1x22,4x23,1x28,1x29,1x41,1x735 0.934

Table 5.2: Number of groups (n) of size (s), and average communicative efficacy
(ACE), at various timesteps (presented as n x s), for a fully elitist population
of 1000 agents situated on a scale-free topology with 10000 edges.

5.5(b)). Due to the constrained y-axis, the plot for 5000 edges is only partially
shown, and we note that results for this configuration are similar to other runs
with higher numbers of edges. Simulations with ¢ = 500000 show that popula-
tions with up to a 0.2 proportion of elitist agents have still not converged by
the end of the simulation, but higher proportions do all converge.

To analyse the evolution of the population in more depth, we can evaluate
the size of the membership groups for each convention. Initially we expect there
to be 1000 lexicons, each with 1 adherent. For the purposes of this chapter, we
assume that the ideal outcome is 1 convention with 1000 adherents. Table 5.2
details five snapshots of the system at ¢t = 0, 1000, 10000, 50000, 100000, using
fully elitist populations on a scale-free network with 10000 edges for a single
representative run. Figure 5.6 plots the latter four snapshots, but due to the
difficulty of clearly plotting the whole dataset these figures are for illustrative
purposes and only show a subset of the data. The x-axis corresponds to group
size and the y-axis shows the number of conventions with a given membership at
that time. At ¢ = 1000, a large number of co-existing conventions have emerged
with a small number of adherents. The plots for ¢ = 50000 and ¢t = 100000 show
the dominant evolutionary pattern: a single convention begins to dominate
and grows steadily throughout the simulation, while the rest of the population
remains fragmented. There is one secondary group of around 100 agents at
t = 50000, but this has dissipated by ¢ = 100000. The dominant convention

converges at around 735 members.
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Figure 5.6: Distribution of agent lexicon groups at t = 1000, 10000, 50000, and
100000, using a fully elitist population of 1000 agents situated on a scale-free
topology with 10000 edges. The scales of the axes change between graphs for
clarity of illustration. Figures are ordered in time from left to right and top
to bottom. A single lexicon quickly emerges with the majority of individuals
adhering; the remaining agents are split between fragmented groups of largely
homogeneous size.
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o

Figure 5.7: Visualisation of group growth of the most dominant lexicon (by the
end of the simulation) for a typical run at t = 250, 10000, 50000 and 100000 on
a scale-free network. Agents using the lexicon in question are plotted dark, and
their direct neighbours are plotted light. No other agents are plotted. Edges
between two directly connected agents using the dominant lexicon are plotted
dark. Figures are ordered in time from left to right and top to bottom.
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Figure 5.7 contains four visualisations of the evolution of groups during a
typical run on a scale-free topology with 10000 edges. Each image shows only
the agents using the lexicon that eventually becomes dominant (dark), or those
that are directly connected to them (light). Edges are coloured dark if the agents
connected by that edge are both using the dominant lexicon. Note that since
the set of agents displayed in each image is different, the layout of the network
is different between images and we therefore cannot use these images to infer
results based on node position. While the large numbers of agents and edges
between them mean that the images are cluttered, we can make the following

observations by visualising the evolution of the groups in this way:

1. Initially, agents adhering to a lexicon are rarely directly connected but also
are rarely more than 1 hop apart. We believe that the nature of partial
lexicon spreading and update results in a correlation between topologi-
cal and lexical distance. Lexicons are unlikely to have any mappings in
common initially due to the large convention space, but since spreading
of lexicons is solely between neighbours, agents at opposite ends of the
network are unlikely to be exposed to the same convention unless agents

along the path between them also adhere.

2. Lexicons that go on to become dominant usually gain one or more high-
degree adherents early on in the simulation, such that a large subset of

the population gets exposed to the lexicon early on.

3. The nodes that are not part of the dominant lexicon at the end of the

simulation tend to be low-degree nodes on the fringe of the network.

4. The set of agents using a lexicon is rarely constant, and agents join and
leave the lexicon convention constantly in the early stages. The lexicon
that eventually dominates is distinguished therefore by having more agents

join it each timestep than leave it.

5. The lexicon that eventually becomes dominant already exists in the pop-
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ulation at ¢ = 250. Although the use of partial transfer makes this seem
surprising, we hypothesise that this is due to a combination of (i) low up-
date and spreading rates and (ii) an agent a using a lexicon successfully
implies that other agents will update using a’s seeds, spreading a’s lexi-
con throughout the population (even though a might subsequently alter

its own lexicon).

Analysis of the previous data suggests that the behaviour of the model on
scale-free and small-world networks is markedly different. Scale-free networks
are characterised by a single dominant group and the existence of fragmented
sets of agents that do not adhere to the dominant convention. These agents
typically exhibit the low node degrees that characterise locations at the fringes
of the network. Conversely, in small-world networks the population tends to
split into a few smaller groups, each one achieving high average levels of internal
coordination. We have included the group data for small-world networks in the
first column of Table 5.5, and therefore do not reproduce it here.

Convention emergence is faster and of higher quality in populations of elitist
agents. Given that choosing the best convention is a rational decision, it is
safe to assume that populations can be modelled as fully elitist. As such, in
the remainder of this chapter we use an elitist proportion of 1.0. The results
presented above suggest that an elitist proportion of 0.9 performs at least as
well, but this would run contrary to our assumption of agent rationality and
therefore is outside the scope of this investigation.

Our results corroborate those presented by Salazar et al. (2010b), who
showed that populations converge to a high quality convention when using eli-
tist lexicon update strategies. Small-world networks converge more slowly than
scale-free networks, although the convergence speed on the small-world net-
works presented here is significantly slower than that presented by Salazar et
al. (2010b). While these results validate our model and implementation with
respect to Salazar et al. (2010b), we use different network topology generation

algorithms. Our results on scale-free networks exhibit similar trends, suggesting
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that the Barabési-Albert and Eppstein & Wang algorithms generate networks
with similar topological features. However, the behaviour we observe on small-
world networks is markedly different. We believe this to be due to significant
structural differences between networks generated by the Watts-Strogatz and

Kleinberg models.

5.5.3 Introducing IAs

Having established the baseline behaviour of the system, we introduce a small
proportion of IAs to determine (i) whether they can influence the dominant
convention towards that proposed by the IAs and (ii) whether they provide
any other benefits, in terms of speed of convergence and quality of convention,
beyond being able to manipulate which convention the population agrees upon.
To simplify analysis, we assume that IAs have a high quality lexicon (i.e. 1.0
specificity) and that all IAs share the same lexicon. IAs are randomly placed in
the network. As discussed later in Section 5.5.5 and Chapter 6, the location of
TAs does affect their ability to influence the population. However, initially we
are only concerned with confirming their feasibility in general.

Figures 5.8(a) and 5.8(b) plot average communicative efficacy and dominant
convention membership respectively, over time for varying proportions of IAs on
a scale-free network with 10000 edges. Small proportions of IAs (up to propor-
tions of 0.005, or 5 TAs in our population of 1000) result in significant increases
in the rate of communicative efficacy gain, but not in final value reached. It
may be that the increased speed is due to the presence of a high quality lexicon
at the start of the simulation, which we discuss in Section 5.5.4. With 100 IAs
(i.e. a proportion of 0.1) all runs end with the IA lexicon being accepted as the
dominant convention. However, this is unlikely to be a practical proportion of
TAs to use. In Section 5.5.5, we show that targeting IA placement by degree
results in significant increases in influence, and we explore the impact of topo-
logical targeting in detail in Chapter 6. When placed randomly, five IAs (i.e.

a proportion of 0.005) result in 43% of runs ending with the IA lexicon being
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Figure 5.8: (a) Average communicative efficacy, and (b) dominant convention
membership for varying proportions of IAs that are initialised with same high
quality lexicon. Results are shown for a scale-free network topology with 10000
edges. The non-TA population is entirely elitist. TAs result in moderate increases
in coordination and large increases in dominant convention membership.
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accepted as the dominant convention.

This corroborates Sen and Airiau’s (2007) results, in which four fixed-strategy
agents was sufficient to influence a population of 3000 agents in a model with
two possible conventions. In 46% of runs (i.e. an additional 3%) the dominant
lexicon differs by at most 2 mappings from the IA lexicon (i.e. the lexicons have
a distance of 2), and the majority of runs which do not end in convergence to
the TA lexicon have a distance of 9 or 10. As such, either the TA lexicon is
adopted or an entirely distinct lexicon becomes dominant. We believe this to be
due to early group dynamics: if a large group initially adopts a non-TA lexicon,
then TAs will be less able to influence this group. The additional 3% of runs
that end with a close match to the IA lexicon being adopted are likely a result
of the partial transfer mechanism.

Between TA proportions of 0.0 and 0.005 (i.e. between 0 and 5 TAs in 1000
agents), the change in average communicative efficacy is not significant (p =
0.2564) but the gain in dominant convention membership is significant (p =
0.03730). Between proportions of 0.0 and 0.01 (i.e. an addition of 10 TAs into a
population of 1000), we find significance in both the gains in communicative ef-
ficacy and the dominant convention membership, (p = 0.01254 and p = 0.00064
respectively). These results suggest that IAs can give significant benefits to a
population beyond simply manipulating the convention that emerges.

Figures 5.9(a) and 5.9(b) show the average communicative efficacy and dom-
inant convention membership respectively, for the same configuration as Fig-
ure 5.8, but with very high proportions of IAs. As noted above, we consider
these proportions to be impractical for real-world application, but they are use-
ful for understanding the dynamics of the approach. There are further gains
in the dominant convention membership and the speed of convergence to the
upper bound of lexicon adherents, and a minor gain in the speed of convergence
for average communicative efficacy, but we see significant diminishing returns
(given that each dataset represents an additional 100 IAs).

Figures 5.10(a) and 5.10(b) show the average communicative efficacy and

137



5. Manipulating conventions using Influencer Agents

dominant convention membership, respectively, for the same configuration as
Figure 5.8, but on small-world networks. While the trends are similar, the con-
vergence rate and dominant convention membership are both lower. Controlling
convention emergence on small-world networks requires more IAs than on scale-
free networks, but costs may be reduced through more refined IA strategies
or topological targeting. Our results suggest that the presence of hubs, a key
feature of scale-free networks, reduces convergence time.

Since average communicative efficacy is a proxy for the level of coordination,
we cannot say that TAs are increasing the levels of coordination in these systems.
However, we are not just interested in increasing levels of coordination, but
also in (i) determining the extent to which we can affect which convention is
adopted by a society, (ii) increasing adherence to the dominant convention,
and (iii) exploiting the impact small groups of agents can have on much larger

populations. Our results suggest positive outcomes to all three objectives.

5.5.4 Inserting agents versus inserting conventions

The introduction of TAs into the population entails two major differences in the
configuration of the model: (i) the existence of a small proportion of agents
with a fixed strategy, and (ii) the existence of a high quality lexicon in the
population at the start of the simulation. We are interested in manipulating
convention emergence using the former, and thus we need to quantify the effects
of the latter without the existence of fixed-strategy agents in the population.
Accordingly, in this section we replace IAs with agents that are given the same
high quality initial lexicon, but in all other respects are identical to regular
agents (i.e. they propagate and update their lexicon as normal). For clarity of
discussion, we call these agents HQ (high quality) agents. These simulations are
an implementation of the second model defined in Section 5.3, in that rather
than using a small proportion of inflexible agents to continuously propagate a
convention, we instead imbue a certain proportion of standard agents with a

high quality convention and determine how this affects convention emergence.
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Figure 5.9: (a) Average communicative efficacy and (b) dominant convention
membership for very high proportions of IAs that are initialised with same high
quality lexicon. Results are shown for a scale-free network topology with 10000
edges. The non-IA population is entirely elitist.
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Figure 5.10: (a) Average communicative efficacy and (b) dominant convention
membership for varying proportions of IAs that are initialised with same high
quality lexicon. Results are shown for a small-world network topology. The
non-IA population is entirely elitist.
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Figures 5.11(a) and 5.11(b) show average communicative efficacy and dom-
inant convention membership, respectively, while varying the proportion of HQ
agents on a scale-free network. Comparing with Figure 5.8, we observe simi-
lar behaviour for values between 0.01 and 0.1 (i.e. practical proportions). For
proportions of 0.005, there is no significant difference in dominant convention
membership (p = 0.7798). Comparing a proportion of 0.01 (i.e. 10 agents), the
dominant convention membership is significantly different (p = 0.01653), with
HQ agents performing better than TAs. Increasing the proportions, we observe
TAs gaining slightly more adherents (743 with IAs compared to 726 with HQ
agents) with high significance (p = 2.642 x 10716). Even at high proportions
of HQ agents (and comparing with Figure 5.9(b)), the differences are slight but
in favour of TAs. However, with HQ agents we cannot control which convention
emerges. With IAs, we can control the emergent convention and further see
marginal gains in the metrics discussed above.

When inspecting communicative efficacy, the differences between ITAs and
HQ agents are only significant at proportions of 0.05 and above (p = 1.057 x
10~°%). Gains in communicative efficacy do not scale linearly with the proportion
of HQ agents inserted. As Figure 5.11(a) shows, we do not see any major im-
provements in average communicative efficacy on scale-free networks, even with
very high proportions of HQ agents. On small-world networks (Figure 5.12), we
observe the opposite: increasing the proportion of HQ agents results in increases
of communicative efficacy. It is not clear whether HQ agents increase the upper
bound of communicative efficacy that the society can attain due to the slower
convergence rates on small-world networks, but there are significant increases
in the speed of convergence. Seeding populations on small-world networks with
high quality conventions might therefore reduce the additional costs associated
with controlling conventions discussed above. Comparing Figures 5.11(a) and
5.9(a), we observe that IAs result in much faster convergence than HQ agents
at high proportions.

Table 5.3 shows results for statistical significance tests comparing the domi-
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Figure 5.11: (a) Average communicative efficacy, and (b) dominant convention
membership for varying proportions of agents initialised with the same high
quality lexicon. Results are shown for a scale-free network topology with 10000
edges.
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TA proportion
HQ proportion || 0.4 [ 0.3 0.2 ] 0.1 [ 0.05 [ 0.01 | 0.005
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0.005 o o o o o ° °

Table 5.3: Statistical significance resulting from a t-test of the levels of dominant
convention membership exhibited with different proportions of IA or HQ agents,
with a = 0.05, where e represents non-significant differences, and o significant
differences.
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Table 5.4: Statistical significance resulting from a t-test of the average com-
municative efficacy exhibited with different proportions of IA or HQ agents,
with a = 0.05, where e represents non-significant differences, and o significant
differences.

nant convention membership between HQ and TA agents on a scale-free network
with 10000 edges. If the p-value is significant, with o = 0.05, the entry is marked
o, otherwise, the entry is marked e. We can see that 300 HQ agents (a propor-
tion of 0.3) is statistically indistinguishable from 100 IAs (a proportion of 0.1),
while 5 HQ agents are statistically indistinguishable from both 10 and 5 IAs. At
very low proportions, the effects of HQ and ITA agents are difficult to distinguish.
Table 5.4 shows, in the same format as Table 5.3, statistical significance tests
for average communicative efficacy for the same set of runs. Low proportions of
TAs and HQs are still indistinguishable, but IAs see significant gains over HQ

agents as the proportions increase.
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Figure 5.12: Average communicative efficacy for varying proportions of agents
given a high quality lexicon at the start of the simulation, situated on a small-
world network topology.

5.5.5 Effect of position of IAs in the network

Previous results are given for IAs placed randomly in the network. A great deal
of research (e.g. Chen et al. (2009), Kempe & Kleinberg (2003)) has acknowl-
edged that high-degree nodes are likely to be more influential than low-degree
nodes. To confirm whether topological properties influence the effectiveness of
TAs, we ran simulations in which IAs are (for simplicity) given a high quality
lexicon initially and placed according to node degree.

When placing a 0.005 proportion of IAs at locations with the highest node
degree in a scale-free topology, 66% of runs ended with the dominant lexicon
being at most a distance of 2 from the initial TA lexicon (which we term a win).
The average distance over 30 runs is 2. This represents a 20% increase in the
average distance over random placement. Placing IAs by lowest node degree,
we observe only 20% of runs ending in wins, and the average distance over 30

runs is 7.
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On both scale-free and small-world topologies, a 0.01 proportion of IAs (i.e.
10 agents in 1000), placed by highest node degree, is enough to result in 100%
of runs ending with a win, demonstrating the power of topologically-informed
placement. Using knowledge of topological properties such as node degree, IAs
may be able to incorporate re-wiring strategies to move themselves to more
influential positions in the connecting topology of an artificial society, and we
consider how to exploit topological knowledge in Chapter 6.

Figures 5.13(a) and 5.13(b) show the average communicative efficacy and
dominant convention membership respectively for varying proportions of TAs
when placed by node degree on a scale-free network. Figures 5.14(a) and 5.14(b)
show the corresponding results for a small-world network. As before, IAs ex-
hibit diminishing returns at high proportions (i.e. 0.1 to 0.4), implying that the
gains we see at low proportions are close to the upper bound. At these high
proportions, placement by node degree does not lead to significantly different
values for our metrics than random placement, and so we have not included
these data. It is interesting to note that the number of agents adhering to
the dominant convention falls slightly when placing agents by node degree (as
opposed to randomly), despite the ability of IAs to control which convention
emerges increasing.

Table 5.5 shows group data for representative runs inserting IAs by node
degree on small-world networks. For clarity, the group sizes between which we
aggregate group numbers change between cells. As discussed above, agents form
small groups rather than adhering to a single dominant convention. Inserting 5
TAs has a small effect, with larger dominant group size and more large groups.
Between 5 and 10 IAs, there is a more profound impact on group formation, with
more large groups and three groups with 100 or more agents. The data illustrate
the slower emergence of conventions on small-world networks, but despite this

IAs still have a visible and beneficial effect.
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Timestep Number of groups of size
IA=0.0 IA =0.005 IA=0.01
0 1000 x 1 995 x1,1x5 990 x 1,1 x 10
1000 902 x 1 897 x 1 909 x 1
28x2<s<4 3I9x2<s<4 33x2<s<4
2x5 2x5 1x12
10000 673 x 1 681 x 1 635 x 1
T6x1<s<d 69 x1<s<d 65 x1<s<d
19x5<s<15 2l x5 <s<8 18 x5<s<15
1x22 2 x 20 1x15,2x17
1x25
50000 368 x 1 320 x 1 47 x 1
6l x1<s<5b 6l x1<s<5b 28x1<s<15
41 x5<s<1h | 14x5<s<15 |2x15<s<50
Tx15<s<25 | 16x15<s<35 | 8x50<s<100
1 x 27 1x42 1 x100,1 x 107
100000 | 171 x 1 6x1 2x1
28x1<s<5b Fxl<s<b Fxl<s<b
54xb5h<s<25 | 14x5<s<5h0, | 16 x5 < s <50
10x25<s<45 | 7Txb0<s<8, | 7x50<s<100
1 x 46 1x89 1x100,1 x 114,1 x 115

Table 5.5: Number of groups (n) of size (s) at various timesteps (presented
as n X s) for representative runs with a 0.0, 0.005, and 0.01 proportion of IAs
inserted by highest node degree on a small-world network topology.
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Figure 5.13: (a) Average communicative efficacy, and (b) dominant convention
membership for varying proportions of IAs when placed in the network by node
degree. Results are shown for a scale-free network topology with 10000 edges.
The non-TA population is entirely elitist.
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Figure 5.14: (a) Average communicative efficacy, and (b) dominant convention
membership for varying proportions of IAs when placed in the network by node
Results are shown for a small-world network topology. The non-IA
population is entirely elitist.

degree.
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5.5.6 IAs with imperfect conventions

For simplicity, we have so far assumed that IAs use ideal lexicons. Realistically,
it may not be possible to identify ideal conventions a priori. In this section,
we investigate the effects of IAs using randomly generated lexicons. These are
likely to be of poor quality: in a sample of 200 randomly generated lexicons,
the average specificity was 0.521 (with standard deviation 0.129). Since the
population is elitist, these lexicons are unlikely to be adopted, but it is important
to explore whether they impede the emergence of high quality conventions. In
the real world, we expect that IAs will be able to adapt and thus still aid the
emergence of high quality conventions.

Figure 5.15(a) shows the dominant convention membership, on a scale-free
topology, for TA proportions from 0.0 to 0.1. All TAs are given the same ran-
domly generated lexicon. Initially, there is little difference between runs, as the
average quality of lexicons in the whole population is also poor. As the system
progresses the runs start to diverge, with higher proportions of TAs resulting
in significantly fewer agents adopting the dominant lexicon. Interestingly, a
proportion of 0.001 performs slightly better than a proportion of 0.0, but the
difference is not statistically significant. Figure 5.15(b) shows results using the
same configuration as Figure 5.15(a), but instead with each TA given a different
randomly generated lexicon. As we increase the numbers of [As with poor qual-
ity lexicons we see a decrease in the dominant convention membership, but the
magnitude of the decrease is smaller when [As propagate different poor quality
lexicons. A small set of IAs propagating poor quality lexicons can be viewed as
equivalent to a low level of noise in the model. When IAs have different poor
quality lexicons, increasing the proportion of IAs increases the level of noise,
with corresponding detrimental effects. Conversely, when the IAs use a single
poor lexicon, increasing the proportion of TAs constitutes a coordinated mali-
cious effort by the IAs to disrupt convention emergence, and the detrimental
effects are larger.

Figures 5.16(a) and 5.16(b) show the average communicative efficacy for

149



5. Manipulating conventions using Influencer Agents

1000 IA=00 ——
IA =0.001 %
IA =0.005 %
900 IA=0.01 —B-
IA=0.05 —=—
IA=0.1 --0
800
o
G 700
8 IR
g e
£ 600 o
c : — e OECOOCOOO0REE0
o g )0600063099
€ 500 > 0000
e
©:
S 40 X
1 X i.g@
g Vo>
§ 300
[a]
200
100 Heo2gn
gun

0
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

t - Timesteps
(a)
1000 IA=0.0 ——
IA =0.001 ---x--—-
IA=0.005 ---%---
900 IA=001 &
IA=0.05 - = -
IA=0.1 --¢
800
700

600

500

400

300

Dominant Convention Membership

200

100

048
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
t - Timesteps

(b)

Figure 5.15: Number of agents using most common lexicon on scale-free topology
with 1000 agents and 10000 edges, while varying proportion of IAs. In (a) TAs
are given the same random (and therefore, on average, poor quality) lexicon,
whereas in (b) TAs are given different, unique random lexicons.
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Figure 5.16: Average communicative efficacy for (a) scale-free and (b) small-
world networks while varying the proportion of IAs. TAs are given the same
random lexicon.
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scale-free and small-world topologies respectively, with IAs given the same poor
quality lexicon. Increasing the number of IAs with poor lexicons significantly
reduces the level of average communicative efficacy. On scale-free topologies
the communicative efficacy actually increases from IA proportions of 0.05 to
0.1. This may be due to the effect of the communicative efficacy between [As
themselves, being given the same lexicon, beginning to have a significant impact
on the overall average.

Analysis of the data shows significant differences in system dynamics be-
tween individual runs, where before (in configurations discussed in the previous
sections) there had been no significant differences between runs. Table 5.6 shows
the group evolution in three representative runs which we have classified as good,
bad or average according to the number of agents adopting the dominant con-
vention by the end of the simulation. For clarity of presentation, some groups
have been aggregated between intervals instead of listing every individual value.
We can see that while the fragmentation of the population into groups is roughly
similar at the start of the simulation, as time progresses the bad run remains
highly fragmented and with a much smaller dominant group than that attained
in the good run.

There are only two differences between these individual runs, given that
they all have the same parameter settings: (i) the set of lexicons given to agents
at the beginning, and (ii) the connecting topology and location of IAs, which
are random. One of these factors must account for the disparity in convention
emergence between individual runs. Simulations without IAs do not show such
a significant disparity between individual runs, so the differences in runs can-
not be due to the set of lexicons given to regular agents, and we can focus our
analysis on the lexicons given to IAs. We measured the average distance of IA
lexicons from their neighbouring agents’ lexicons, and the average specificity of
these lexicons, reasoning that these are the two main properties that will affect
convention emergence due to lexicon differences. However, we found no statis-

tically significant difference between the runs. Therefore, the only remaining
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Timestep Number of groups of size

Bad run Average run Good run
0 950 x 1, 1 x 50 950 x 1, 1 x 50 950 x 1, 1 x 50

1000 886 x 1 864 x 1 862 x 1
2x1<s<20 | 22x1<s<20 |30x1<s<20
1 x 52 1 x50 1 x 52

10000 309 x 1 331 x 1 625 x 1
TOx1<s<20 | THx1<s<20 | T2x1<s8<20
Ox20<s<h0, | 8x20<s<b0 | 1x20<s<50
1 x 50 1 x51 1 x51
1 x64 1 x 58

50000 44 x 1 48 x 1 51 x 1
4x1<s<20 4x1<s<20 0x1<s<?20
4x20<s<b0, | 6x20<s<50 | 9%x20<s<50
6x50<s<90 | 3xb0<s<90 | 1x52
1 x 346 1 x 481 1 x 593

100000 | 41 x 1 40 x 1 34 x1
3x1<s<?20 2x1<s<?20 O0x1<s<?20
5x20<s<h0, | 7Tx20<s<50,|9%x20<s<50
6x50<s<90, | 3xb50<s<90, | 1x51
1 x 445 1 x 566 1 x 640

Table 5.6: Number of groups (n) of size (s) at various timesteps (presented as
n x s) for representative bad, average, and good runs, for an IA proportion of
0.05 inserted randomly on a scale-free network topology with 10000 edges. TAs
are given the same random, and therefore poor quality, lexicon.
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explanation for the differences between the runs is the difference in connecting
topology and the placement of IAs on that topology. These results therefore
corroborate other work implicating network structure in convention emergence

dynamics (e.g. Pujol et al. (2005), Villatoro et al. (2009a)).

5.6 Conclusions and future work

Our results show that small groups of unprivileged agents can effectively and
significantly influence the emergence of conventions within open MAS. When
agents are able to generate high quality conventions to spread to the population,
we find that just 5 randomly placed TAs in a population of 1000 can influence
the rest of the population to use their conventions 43% of the time. When we
place each TA according to highest node degree, we can influence the rest of the
population to use the IA convention 100% of the time with only 10 IAs in a
population of 1000.

Our results with TAs with poor quality lexicons show that this influence
goes both ways, such that convention emergence can be fragmented and almost
entirely eliminated with the same small proportion of TAs who use poor quality
conventions. We note that these results also imply that topological properties
have a major influence on the emergence of conventions. Scale-free networks are
particularly conducive to high quality convention emergence, but our results
suggest that the cost of convention manipulation on small-world networks is
higher, and convergence is much slower. It may be possible to place IAs at
highly influential locations to increase the probability of convention emergence.
In the next chapter (Chapter 6), we propose a methodology for learning the
best locations at which to place IAs in any given network, and show that IAs
can be significantly more effective when placed using topological knowledge.

The strategy investigated for IAs here is very simple, namely that of attempt-
ing to propagate a single high quality convention. In Chapter 7 we explore IAs

in more depth by equipping them with incentives and sanctions, and determine
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the extent to which they can manipulate established conventions.

Our results imply that malicious or faulty agents can disrupt convention
emergence with ease, and demonstrate the fragility of convention emergence
in open MAS. That malicious agents could use dishonest quality valuations or
attempt to block the propagation of high quality convention seeds in order to
fragment convention emergence conflicts with our desire to minimise intrusive
additions or impositions on agent behaviour. This is especially so as such ac-
tion is typically dealt with either through self-protection (as with Salazar et
al. (2010a)) or the use of social mechanisms such as sanctions or incentives. We
will therefore likely be forced to compromise on non-intrusiveness to deal with
the practicalities of malicious behaviour, but we still do not require assumptions

about the form this self-protection will take for the above results to hold.

155



CHAPTER 0

Determining agent influence

In the previous chapter, we demonstrated how to manipulate conventions using
the Influencer Agent (IA) mechanism. An interesting result of the investigation
was that targeting IAs using node degree can significantly increase their efficacy.
In this chapter, we explore whether this result can be generalised, and how
topological information can be exploited to increase IA efficacy. We propose a
methodology for learning the network value of an agent, in terms of the extent
to which it can influence the rest of the population. We quantify its success and
show that exploiting knowledge of the network structure using our methodology
can significantly increase the efficacy of IAs. We evaluate our methodology in the
context of two agent-interaction models: (i) the language coordination domain
introduced in Chapter 5 and (ii) a coordination game domain based on work
presented in Chapter 4. The latter model also forms the basis of the work
presented in Chapter 7. A summary of the major network concepts used in this

chapter can be found in Appendix A.
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6.1 Introduction

Modern application domains for open Multi-Agent Systems (MAS) are typi-
cally constrained by an underlying network connecting individual agents. A
wide variety of research has shown that these networks display rich structure
that significantly influences the dynamics of agent interactions and the flow of
information (e.g. Easley & Kleinberg (2010), Fagyal et al. (2010), Mossel &
Roch (2010), Sen (2008), Villatoro et al. (2009a)). The structure of a network
can mean that some individual locations are significantly more important than
others, by virtue of being able to influence large proportions of a population,
controlling the flow of information through a network, or connecting disparate
communities of individuals (as with the vital hub nodes in scale-free networks (Li
et al., 2005)). Determining the importance of individual locations is thus a key
research question in a variety of fields including computer science, biology, chem-
istry, sociology and economics (Chen et al., 2009; Kempe & Kleinberg, 2003;
McDonald, 2007). In this chapter, we focus on location importance in terms of
influence: the extent to which an individual can manipulate the choices of the
rest of a population due to its location. We propose a novel methodology for
learning the network value of a node requiring only (i) a way of estimating the
effective influence an agent exerts on a population and (ii) the ability to sample
a portion of the network. Our methodology can be used online and can be used
to predict influence across a wide variety of domains. By online, we mean that
our methodology can be applied to active open MAS by learning from agent
interactions as they occur. As such, it is more generally applicable than typ-
ical mechanisms formulated to solve the influence maximisation problem (see
Section 6.2.1 for more details).

We apply three instantiations of our methodology: (i) determining which
of fourteen metrics of location are effective heuristics for influence, (ii) unsu-
pervised learning of influence using principal components analysis, and (iii)

supervised learning of influence using linear regression models. We evaluate our
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methodology on a variety of synthetic and real-world networks, and show that
four out of fourteen of our chosen metrics of location effectively predict node
influence across a highly heterogeneous range of networks. To evaluate our ap-
proach we use two common domains concerned with convention emergence: (i)
Salazar et al.’s (2010b) language emergence and (ii) a coordination game, such as
that used by Sen and Airiau (2007). Conventions typically emerge through the
“gradual accretion of precedence” (Young, 1996), due to the existence of feed-
back effects in which an agent’s choice in an interaction influences the choices
of agents in the future. Investigating influence using convention emergence thus
has two advantages: (i) it provides a natural measure of influence, since the
actions of a highly influential agent are more likely to be reproduced in the rest
of the population than those of a less influential agent, facilitating research into
the impact of network structure on influence, and (ii) it is a domain in which
research into influence can be usefully applied to improve existing techniques.
In this chapter we also provide an in-depth discussion of network sampling tech-
niques and the overheads inherent in applying our methodology and calculating

each topological metric.

6.2 Background

In this section, we review current approaches to determining influence. A variety
of information from Chapter 2 and Appendix A is also relevant, but is not

reproduced here.

6.2.1 Influence propagation

One of the earliest investigations into influence was contributed by Domingos et
al. (2001), who attempted to define the network value of an individual by mod-
elling a market as a Markov random field. More typically, influence has been
investigated in the context of the Linear Threshold or Independent Cascade

models (Kempe & Kleinberg, 2003), in which nodes in a network are considered
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to be either active or inactive, where active could represent believing an idea or
adopting a convention. A node can switch from inactive to active either based
on how many of its neighbours are currently active, or by an active node target-
ing it for activation. In such models, researchers have investigated how to find
k individuals that maximise the number of nodes eventually made active in the
network. This is known as the influence mazimisation problem. While in gen-
eral this problem is NP-hard, approximate solutions using degree and distance
centrality heuristics have shown good results, and Watts (2002) has shown that
high-degree nodes are more likely to cause cascade effects, corroborating the as-
sumption that node degree is a useful metric of influence. Kempe et al. (2003)
show that a greedy algorithm can achieve results within a known bound (63%)
of the optimal while being computationally tractable (although the approach is
still computationally expensive). Chen et al. (2009) propose a computationally
cheap alternative using a degree-discount heuristic, in which the nominal degree
of a node is discounted when one or more of its neighbours has already been
chosen. The influence maximisation problem has been extensively investigated
(e.g. Goyal & Bonchi (2011), Hajian & White (2012)), but the extent to which
these results generalise to other open MAS domains is unknown. Khrabrov and
Cybenko’s (2010) recent study concluded that node in-degree did not in fact
correlate with user influence in the Twitter social network, placing empirical
data at odds with the success of node degree in the work on influence maximi-
sation. Although this is an isolated disagreement with the idea of node degree
indicating influence, we hypothesise that there are various facets of influence
propagation that the influence maximisation problem does not capture. Our
methodology mitigates this by learning a statistical model of influence from the
available empirical data.

Fagyal et al. (2010) investigate the role of network structure in language
change, and further validate the assumption of node degree being an important
indicator of agent influence. They also conclude that peripheral nodes play an

important role in keeping norms stable, demonstrating that network features
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other than node degree deserve investigation. Determining influential users in
real-world social networks has been a popular research topic due to the potential
applications for marketing and PR (Kempe et al., 2005). Trusov et al. (2010)
have attempted to tractably measure influence in real-world social networks
using log-in activity, and Hartline et al. (2008) provide a useful example of how
influence research can be applied in the real world.

We are aware of only a small number of contributions that explicitly investi-
gate the role of agent influence in realistic open MAS domains other than social
media. Sen and Airiau (2008) investigate convention emergence with private
interactions, and show that 4 agents in a population of 3000 can influence the
population to adopt a given convention (from two alternatives). Although they
do not model an underlying connecting topology, their results demonstrate the
significant influence that small proportions of agents can have in open MAS.
Other investigations have also shown that a small number of individuals can

influence a population of agents (Oh & Smith, 2008; Yu et al., 2010).

6.3 Methodology for learning influence

In this section we present a general methodology for predicting the influence
of an agent at a given location within a network. We assume the existence of
a measure of influence, to be chosen depending on the domain, and a network
G < V,E >, where V is a set of agents and E is a set of edges that constrain
the permitted communications between agents. We also assume the ability to
sample properties of locations within the network, and either global knowledge
of the network or (more practically) the ability to sample smaller sub-networks
around the nodes in question.

The offline instantiation of our methodology is as follows:

1. If necessary, sample a sub-graph Gy C G from the network around selected
locations to obtain a portion of the network of interest. In cases where

the domain involves very large populations, this may be required to allow
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practical application of the methodology.

. Sample a representative set S C V of n locations within the network!,

where n << |V|, where representative implies sampling nodes of both

high and low influence.

. Choose a measure of influence, and a model of influence propagation.

. Compute the influence of an agent located at each of the locations in S,

on the rest of the population (e.g. by running multiple simulations of the

influence model).

. Calculate topological location metrics for all nodes in V.

. Build a prediction model using the topological metrics and the estimated

influence of agents placed at locations in S to predict which network loca-
tions are highly influential, and use it to predict the influence of all nodes

inV.

Algorithm 2 summarises the methodology.

Algorithm 2 Methodology for learning node influence

=
IS

Gy + sampleSubGraph(Q)

Sa, < sampleNodes(Gs,n)

I« Array() //Array of measured influence

L + Array() //Array of Location metric values
for all V; € S, do

I[i] + simulatelIn fluenceModel(Gs,V;) //Get influence of node V;
L[i] + calculate M etricV alues(Gs, V;)

end for
M < buildPredictionModel(I, L)
for all V; € G, do

print(M.predictV alue(V;))

: end for

To perform this methodology online, we modify step 3 as follows. Rather

than running multiple simulations for each sampled node, select a measure of

influence that can be measured online (e.g. if investigating Twitter, one might

1f step 1 is performed, then V = Vs and E = Eg. To simplify presentation, we omit the

subscript.
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choose the number of re-tweets) and measure sufficient data for building the
prediction model.

The main computational expense in our methodology is the calculation of
topological metrics for all nodes in V' and, if used, the influence model simu-
lations for each location in S, which is O(|S||E|k), where k is the number of
simulation cycles. Depending on the size of S this can be significantly less than
using the full network, which is O(|V||E|k). Additionally, step 1 allows us to
use a sample of the network to estimate influence, reducing the computational
expense of the methodology. We recognise that the expense of computing loca-
tion metrics is varied and might be high, and while we do not explicitly account
for this within the methodology, we discuss local and approximation algorithms

for our selected metrics in Section 6.4.

6.3.1 Selecting representative node samples

In order to effectively predict influence our methodology requires a sample of
nodes that reflect the range of influence and topological metrics in the network.
If the influence distribution is highly skewed then a random sample will not be
representative (we discuss this further in Section 6.7). Therefore, we propose
selecting a sample by stratifying nodes using degree. Since degree is known to be
indicative of influence (Chen et al., 2009), our hypothesis is that this approach
will give a more representative sample in terms of influence.

To obtain a stratified sample, we divide the network into bins, and sort the
nodes by degree. In this chapter we use 10 bins, with a threshold of [V|/10
nodes per bin, where |V| is the number of nodes in the network. We add all
nodes of each degree into the current bin, starting with the lowest degree nodes,
until the threshold is reached. If adding all nodes of a given degree pushes a
bin over the threshold, we do not split the remainder but add all nodes of the
same degree. We then sample an equal number of nodes from each bin, until

we have reached our required sample size.
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Figure 6.1: Degree distribution of an Enron-SNS network sample, where the
dotted lines denote the boundaries of each bucket when applying our stratified
sampling technique.

6.4 Topological metrics

In this section, we introduce the metrics which we hypothesise may aid in pre-
dicting node influence, and discuss their computational tractability. There are
a huge number of possible metrics that can be calculated for any given node
in a network. We have selected 14 metrics that are commonly found in the
literature and have attractive hypotheses for being predictive of influence. For
metrics where we have not provided an explicit reference, it is because the metric

is either of a trivial nature (e.g. node degree) or very commonly used.

6.4.1 Metrics

There are a wide variety of metrics that quantify the structural properties of
a given location in a network. Assuming a network, G < V, E >, and a given
node v; € V, we hypothesise that the following metrics may be implicated in

determining influence.

1. Degree centrality

If N(v;) denotes the set of neighbours for v;, then node degree centrality
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k; = |N(v;)|. Intuitively, the more nodes that v; can directly communicate
with, the more of the population that node can directly influence?. Degree

centrality is trivial to compute with local information.

2. Local Clustering Coefficient (LCC)
The Local Clustering Coefficient measures the extent to which the neigh-
bours of v; are connected to each other. If e;; € E denotes an edge between
v; and vj, vi,v; € V, then

2lej

(v, v € N(v),ej5 € B

Initially introduced by Watts and Strogatz (1998), LCC is a useful measure
of community structure in a network. A node v; with a high LCC is likely
to be able to influence the local cluster in which it is embedded more
effectively than nodes external to the cluster, and choices by neighbours

of v; are more likely to be reinforced by v; in subsequent interactions.

3. Average Neighbour Degree (AND)
Average Neighbour Degree measures the average degree centrality of the
neighbours of a node. While a given node may not be intrinsically in-
fluential itself, communicating with a neighbouring influential neighbour

may allow further opportunities for manipulating a population. We define

AND as
2v;eN (o) 1V (05)]

AND() = =500

4. Edge Embeddeddness and Overlap (EE/EO)
Edge embeddedness and overlap are two related measures that determine
the extent to which the endpoints of an edge are embedded within a cluster

of nodes. Edge embeddedness is defined as

EE(eij) = [N (vi) [ N(v))]

2 An intuition effectively encapsulated by the aphorism “It’s not what you know, but who
you know”.
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Edge overlap is subsequently defined as

EE(SM)

EO(e;j) = W

Since these metrics are defined on a per-edge basis, we use three measures

of each metric for a given node:

(a) Average (AEE/AFEQ): The average embeddedness or overlap will be
highest when a node is highly embedded within a local cluster, provid-

ing opportunities to influence a small group of nodes simultaneously.

(b) Highest (HEE/HEO): Taking the maximum embeddedness or overlap
indicates whether a node has any edges highly embedded within a
cluster, while allowing for the node itself to be connected to a wide

variety of other nodes or clusters.

(¢) Lowest (LEE/LEO): An edge with low embeddedness or overlap may
connect disparate clusters of nodes, allowing the nodes on each end-

point to influence across disparate communities in a network.

5. Average Shortest Path Length (ASPL)
Given a geodesic, or shortest, path between two nodes v;,v; € V, defined
by a set of edges Eqp(vi,v;) € E, the average shortest path length for v;

is given by
Evje‘/\vi | Espi(vi, v5)
V-1

ASPL(’UZ) =

Assuming a node’s influence diminishes as the number of hops increases, a
node with low ASPL may be able to indirectly influence a larger proportion

of the population than a node with a correspondingly higher ASPL.

6. Betweenness Centrality (BC)
Node centralities are a class of metrics that attempt to measure various
facets of importance of a node. The betweenness centrality of v; specifi-

cally measures the number of shortest paths in a network that pass through
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v;. If o)y is the set of shortest paths that exist from v; to vy, and oz (v;)

is the set of shortest paths from v; to v, that pass through v;, then

Oik\U;
BC(v;) = 3 ()] |1>|
V;,V5,0, €EV,0; v # Uk ik

Betweenness centrality is a useful measure of how much information is
likely to flow through node v;, given that communications are likely to
be along shortest paths. As such, a node with high betweenness has the
ability to manipulate the information flow in a network more effectively

than a node with low betweenness.

. Closeness Centrality (CC)
Closeness Centrality is a measure of how quickly information can spread
from a given node. If SPL(v;,v;) indicates the shortest path between v;

and vj;, then CC is calculated as

1
Z’UjGV\’Ui ISPL(UZ) Uj)|

Since the assumption of information transfer following shortest paths may
not hold in all domains, it may also be useful to calculate random walk
centralities, which follow the identical definitions as above but use random
walks instead of shortest paths. However, calculating these measures can

be prohibitively expensive.

. Eigenvector Centrality (EC)

Initially proposed by Bonacich (1987), eigenvector centrality is calculated
using the eigenvector of the largest eigenvalue given by the adjacency
matrix representing the network in question. A node is central if it is
connected to other nodes that are central, and the measure takes into
account both direct and indirect connections between nodes. Google’s
PageRank algorithm is a variant of EC, and this supports our intuition

that EC may effectively estimate influence.
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Each entry a., ., in the adjacency matrix A is 1if e;; € E and 0 otherwise.

The eigenvector centrality of a node v; is subsequently calculated as

1
EC(%) = X Z Ay, v; X EC(UJ)

v €N (v;)

where A\ is a constant.

. Hyperlink-Induced Topic Search (HITS)

Initially introduced by Kleinberg (1999), HITS attempts to measure hubs
and authorities in a network. The motivation behind Kleinberg’s work
is that in any given WWW search topic, there are a number of pages
that contain authoritative information and a number of pages that link to
many authorities. As such, HITS is a recursive measure in which hubs are
nodes that connect to many authorities and authorities are nodes that are
pointed to by many hubs. A page that ranks highly under this algorithm
can be said to be more influential. We incorporate this metric into our

work to test this hypothesis.

The algorithm to calculate HITS is quite involved in comparison to the
other metrics discussed, so we do not reproduce it here. It is fully described

in Kleinberg (1999).

In total, we evaluate 14 metrics for the extent to which they determine node

influence. Broadly, each metric can be linked to influence as follows. Eigenvec-

tor Centrality (EC), Betweenness Centrality (BC), Closeness Centrality (CC),

Hyperlink-Induced Topic Search (HITS), and Average Shortest Path Length

(ASPL) all measure the ability of a node to manipulate information flow in a

network. Local Clustering Coefficient (LCC), embeddedness, and overlap mea-

sure the extent to which a node is part of a cluster of nodes. Highly clustered

areas of networks have efficient internal information propagation, and a node

that is very central to such a cluster is likely to be able to influence that cluster

more effectively. Degree centrality is a measure of how many nodes a given
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individual is able to directly influence, and Average Neighbour Degree (AND)
is a measure of how many nodes a given individual can indirectly influence to a

depth of 2.

6.4.2 Computational tractability

While a number of these metrics are highly tractable, some of them require
either, or both, of (i) global knowledge of the network, and (ii) significant
computational resources. In typical on-line analysis of MAS networks these
properties are unlikely to be attainable. The following discussion evaluates the
computational costs and data requirements of each of our chosen metrics.

Node degree, local clustering coefficient, edge embeddedness, edge overlap,
and neighbour degrees are all easily computable with local knowledge. The most
significant concerns are the centrality measures, which have typically required
both global knowledge of the network and significant computational resources.

Edge betweenness is used in the Girvan and Newman (GN) algorithm for
finding community structure (Gregory, 2008). Edge betweenness is a measure
of the number of shortest paths between all nodes that contain a given edge,
computable in O(mn) with global knowledge of a network with n nodes and
m edges. Gregory (2008) proposed a local measure, h-betweenness, which only
considers paths of maximum length h. Computation subsequently involves a
breadth-first search (BFS) of depth h around the node in question, and then
computing the betweenness on the BFS-sampled sub-graph. While Gregory pro-
vides strong results demonstrating the technique’s efficacy when substituted into
the GN algorithm, there are no results on the actual accuracy of the estimation.
Marsden (2002) uses a similar technique, defining an egocentric betweenness
centrality using the neighbours of a node, equivalent to 1-betweenness in Gre-
gory’s measure. Marsden found that the ranking of nodes given by egocentric
betweenness and the traditional global betweenness is very similar, but only
evaluated fairly simple networks.

Andersen et al. (2007) have demonstrated a technique for calculating the
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Sampling mech. BC EC CC
h=2]h=3|h=2]h=3]h=2]h=3
BFS 090 | 096 | 0.36 | 042 | -0.37 | 0.41
SNS 075 | 093 | 0.14 | 0.36 | -0.49 | 0.62
MHRW 0.02 | 0.02 | 050 | 0.61 | -0.72 | -0.74
MHRWDA 0.02 0.02 0.51 0.61 -0.73 | -0.74

Table 6.1: Correlation between estimated centrality using Gregory’s h-
betweenness concept and actual centrality, for Betweenness Centrality (BC),
and applying the technique to Eigenvector Centrality (EC) and Closeness Cen-
trality (CC), averaged over 15 networks for each sampling technique (see Section
6.5 for more details).

PageRank of a node, which is a variant of Eigenvector Centrality (EC), using
only local information. The technique requires examination of O(e~!) nodes
for a given error bound of e. Interestingly, the paper notes the potential of
PageRank for approximating influence in a network.

Closeness centrality is computable in either O(n3) or O(nm + n?logn) (de-
pending on the algorithm used) given global knowledge, and faster for certain
network classes. Eppstein and Wang (2004) have demonstrated a fast approxi-
mation algorithm for computing closeness centrality, but this still requires global
knowledge.

To our knowledge, there are no known local algorithms for HITS, but Gol-
lapudi et al. (2007) have demonstrated a highly effective approximation al-
gorithm for HITS-like ranking algorithms that demonstrates considerable ef-
ficiency gains. The original proposal for HITS (Kleinberg, 1999) calls for deter-
mining an initial seed set of around 200 nodes (in the context of finding pages
on the world wide web), and then performing a limited snowball sampling (see
Section 6.5) around this set. HITS does not require global knowledge of the
network, but still has highly non-local information requirements.

We performed a series of tests for determining the accuracy of centrality
estimation using Gregory’s h-betweenness technique (Gregory, 2008). For each
node, we calculated the actual centrality measure and an estimation on the sub-
graph induced by BFS around the node depth-limited to h = {2,3}. Table 6.1

presents the correlation between the estimation and actual value. Each sampling

169



6. Determining agent influence

Local Data Global Data

Metric Computable | Approximatable | Fast approx.

Degree

Local Clustering Coefficient
Edge embeddedness

Edge overlap

Average Neighbour Degree
Betweenness Centrality
Closeness Centrality
Eigenvector Centrality
HITS

v

ST I N NI NI NN

NN

v

Table 6.2: Computational and information requirements for the calculation of
each metric that we hypothesise might predict node influence.

technique was used to sample 15 networks of size 1000 from each of the three
full networks we consider (see Section 6.5 for more details on the sampling
mechanisms). Note that Gregory’s method was proposed only for betweenness-
centrality, which shows the best correlations. The other centrality measures
are included for completeness, but show much poorer estimation accuracy. For
closeness centrality, this is by definition, since CC measures the inverse of the
sum of the shortest path length to all other nodes, and with h = 2 the path
length is either 1 or 2 for all nodes. The technique used for sampling the network
clearly has a significant impact on the efficacy of the estimation technique,
implying that (i) estimating graph measures in this way is highly sensitive to
the local topological structure, and (ii) that each sampling technique reproduces
unique subsets of the structural properties of the full network.

Table 6.2 summarises the computational tractability of these metrics. For
clarity, we have categorised HITS as requiring global information, but note that
it requires sampling of a portion of the global network rather than the entire

network itself.

6.5 Network sampling

In this section, we discuss common approaches to sampling networks from real-

world datasets. We analyse their efficacy in reproducing properties of the net-
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work being sampled, and describe the properties of networks sampled using each

technique from the datasets that we use in this chapter.

6.5.1 Network sampling techniques

A wide variety of synthetic network generators have been proposed, but tend to
be poor models of real-world networks (Leskovec et al., 2008; Newman, 2003).
To demonstrate the applicability of our methodology, we require datasets rep-
resenting networks found in real-world domains. Real-world networks typically
exhibit two limiting properties: (i) they can be very large, beyond any size that
is practically usable in a large number of simulations, and (ii) they contain a
wide variety of rich structural properties that cannot be reproduced by current
synthetic network generation algorithms (we demonstrate this in Section 6.7).
We cannot typically expect to use global knowledge of the network to determine
influential nodes in practical applications. As such, sampling a portion of the
network is often a necessary step in our methodology.

Careful consideration must therefore be given to the sampling technique.
Ideally, we would like the structural properties of the sampled sub-network to
be as close as possible to the network that it is sampled from, for important
metrics such as clustering coefficient or average degree, and other significant
metrics such as degree distribution or edge embeddedness distribution.

There are a number of possible sampling techniques that can be used. Each
starts at a random node, and progressively adds nodes to a seed set until a

threshold is reached.

1. Breadth-first search (BFS)
In each iteration of BF'S, all the neighbours of seed-set nodes that are not

already in the seed set are added, until the threshold is reached.

2. Snowball-sampling (SNS)
SNS proceeds identically to BFS, except within each iteration, if adding

all the new neighbours to the seed-set would push the seed set past the
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threshold, then neighbours are chosen randomly from those available until

the threshold is reached.

3. Random-walk (RW)
A random walk adds one node at a time, by following a random traversal
through the network from the start node. Each neighbour is chosen with

uniform probability.

4. Metropolis-Hastings Random Walk (MHRW)
MHRW is a random-walk with transition probabilities biased away from
high-degree nodes, in an attempt to generate a uniform sampling (in terms
of degree) of nodes from the network. It was initially investigated in this
context by Gjoka et al. (2010), who demonstrated that MHRW produces a
uniform sampling of nodes from the full network and effectively preserves
the node degree distribution, known to be a key component in the study

of complex networks (Gjoka et al., 2010).

5. Metropolis-Hastings Random Walk with Delayed Acceptance
(MHRW-DA)
MHRW-DA is the same as MHRW but with a further modification of tran-
sition probabilities to reduce the likelihood of re-visiting nodes. Initially
introduced by Lee et al. (2012), MHRW-DA covers more of the network

when sampling, increasing the estimation accuracy.

6. Albatross sampling
Introduced by Jin et al. (2011), Albatross sampling is a random walk with
modified transition probabilities and a chance of randomly jumping to
another node in the network, in order to gain greater coverage and avoid
problems associated with sampling networks with multiple connected com-

ponents.

BFS, SNS and RW are all known to be biased towards high-degree nodes,

distorting the degree distribution and the structure of the sampled network
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away from that of the full network (Gjoka et al., 2010). However, BFS and SNS
produce good coverage of the local area around the start node, and so retain local
structure. As such, they are subject to greater variation between samples, but
may be useful for ensuring that a wide variety of structural properties are tested.
MHRW, MHRW-DA and Albatross have all been shown to converge towards the
node degree distribution exhibited in the full network being sampled. For all
these sampling methods, there are no guarantees about the reproduction of any

other metrics or structural properties.

6.5.2 Technique efficacy

In order to evaluate the efficacy of each sampling technique, we sampled 15
graphs of 1000 nodes per sampling technique for each of three networks (for
a total of 225 networks). In this thesis, we use the following networks: (i)
a peer connection network from Gnutella (a P2P file-sharing platform), (ii)
the Enron email dataset, and (iii) the arXiv general relativity section collab-
oration network®. The Enron and arXiv networks are both based on human
interactions, but are generated by very different processes: the Enron dataset
represents email communications, while arXiv is based on more formal links
made through research collaborations. Conversely, Gnutella is a computational
network representing links in a P2P system. Since these networks are generated
by very different processes they display varied structural properties, allowing
us to evaluate our methodology on a range of structures. The Gnutella and
Enron networks are directed, but MHRW, MHRW-DA and Albatross sampling
all explicitly only consider undirected networks. Consequently, we treat each
network as undirected.

The high-level metrics are summarised in Tables 6.3, 6.5 and 6.4. The global
clustering coefficient (GCC) is the average of the clustering coefficients for each
node. Diameter describes the longest shortest path-length between a pair of

nodes in the network. Centralization is a measure of how much heterogeneity

3All taken from the Stanford large dataset collection, http://snap.stanford.edu/data/
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exists in a graph (Dong & Horvath, 2007): if we define the density of a network

as
mean(k)

Density = 1
n—

where k denotes node degree, then we can define centralization as

maz(k)

Centralization = — Density

Centralization indicates the extent of variation of node degree in the network
— a low centralization indicates that most nodes have a similar connectiv-
ity, whereas high centralization implies a higher degree of structural variation
throughout the network. While this measure is mainly practically applied in
biological studies, it is useful here as an indication of the extent to which a
mechanism has generated a uniform sampling.

From examination of the data in Tables 6.3, 6.5 and 6.4, we can see that no
single technique produces an ideal sample. As discussed above, BFS and SNS
are known to be highly biased towards high-degree nodes, but produce good
coverage of localised areas in a network. The standard deviation between sam-
plings is highest using these techniques, indicating a large variation in structural
properties between samples. The centralisation is also very high using BFS and
SNS, indicating that a much higher level of internal hetereogeneity is introduced
by using these sampling techniques. MHRW and MHRW-DA tend to have the
lowest standard deviation between samples, and produce networks with met-
ric values such as average degree, clustering coefficient and centralisation much
closer to the full network than SNS and BFS. However, the diameter of MHRW
and MHRW-DA is far higher than in the full graph, which we hypothesise is
due to the random walk nature of these techniques covering large areas of the
network. Given that these sampled networks clearly no longer display the small-
world property, we cannot assert that many of the structural properties of the
full network are reproduced, beyond the node degree distribution. Albatross

sampling also displays low variance between samples, and produces networks
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(a)

Figure 6.2: Structure of an example network sample produced by (a) Snowball
sampling (SNS) and (b) MHRW sampling.

with centralisation values closest to that of the full network.

However, Albatross sampled networks appear to be very sparse, with low
edge numbers, average degrees, and clustering coefficients. There do not appear
to be any consistent differences between SNS and BFS, beyond that SNS tends
to produce network samples with lower average degrees — perhaps indicating
that SNS is slightly less biased towards high degree nodes. However, SNS can
often produce distorted network structures depending on the initial node chosen.
Figure 6.2a shows a SNS network sample where the first node sampled has a very
large degree, resulting in a star-shaped sample with unrepresentative node de-
gree distribution and clustering coefficient. Figure 6.2b shows a MHRW sample
of the same network, clearly showing a more homogeneous network structure.

If we are to claim that our methodology works in a general sense, we must be
careful to analyse as many network structures as possible. We believe that the
best approach is to use a portfolio of network samples derived using a variety
of sampling techniques. Using BFS or SNS allows us to apply our methodology
on samples which are more representative of localised areas of the full network,
and the higher variance between samples indicates a wider variety of structural

properties will be analysed. Using MHRW or MHRW-DA allows analysis of
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Sampling tech. Nodes Edges Avg.Degree CC Diameter | Centralization
None 62586 147892 4.726 0.005 Inf. 0.001
BFS 1009.2 (7.73) 1246 (95) 2.47 (0.18) | 0.026 (0.005) | 6.93 (0.80) | 0.03 (0.004)
SNS 1000 (0) 1197.8 (54.5) | 2.40 (0.11) | 0.02 (0.008) | 7.33 (0.98) | 0.034 (0.008)
MHRW 1000 (0) 1122.3 (13.1) | 2.24 (0.03) | 0.008 (0.004) | 36.4 (4.4) | 0.005 (0.001)
MHRWDA 1000 (0) 1120.1 (10.8) | 2.24 (0.02) | 0.007 (0.003) | 38.7 (3.22) | 0.005 (0.001)
Albatross 1000 (0) 353.5 (22.8) | 0.71 (0.05) | 0.002 (0.003) Inf. 0.004 (0.001)

Table 6.3: Important global metrics for network samples produced by applying
each sampling technique to the Gnutella network, averaged over 15 repeats.
Standard deviation is in brackets.

samples in which we can be sure that the node degree distribution is closer to
that of the full network, but we cannot make any assertions about other prop-
erties. Given that the diameter is so much larger in network samples produced
using these techniques, it is likely that there are other as-yet undocumented
biases introduced. Albatross sampling appears to produce more homogeneous
samples, but these are far sparser than the full network, and highly disconnected
when n = 1000, and so we do not feel that analysis on these networks would be
helpful in this context.

Therefore, in the remainder of this thesis, we sample, from each of the
Gnutella, Enron, and arXiv datasets, 5 network samples using SNS, 5 network
samples using MHRW, and 5 network samples using MHRW-DA, making a total
of 45 networks with which to test our methodology. In this chapter, we also

initially include a number of synthetic networks for comparison:

1. Scale-free networks generated using Eppstein’s power-law generation al-
gorithm (Eppstein & Wang, 2002). We use two Eppstein power-law net-

works, generated with 1000 nodes and 5000 and 10000 edges respectively.

2. Small-world networks generated using Kleinberg’s algorithm (Kleinberg,
2000). We generate Kleinberg small-world networks of 1000 nodes, with
a clustering exponent of 1, and a maximum of 1, 3 or 7 additional edges

per node.

Comparing the properties of the real-world networks (Tables 6.5, 6.4, 6.3)

with the synthetic network properties in Table 6.6 illustrates the significant
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Sampling tech. Nodes Edges Avg.Degree CcC Diameter | Centralization
None 36692 183831 10.02 0.497 13 0.037
BFS 1255 (291) | 16584 (6242) | 26.2 (6.5) | 0.55 (0.04) | 3.8 (0.8) 0.66 (0.2)
SNS 1000 (0) 7751 (3760) 15.5 (7.5) | 0.44 (0.13) | 4.5 (0.92) 0.51 (0.31)
MHRW 1000 (0) 4480 (443) 8.96 (0.89) | 0.52 (0.03) | 11 (1.41) 0.10 (0.02)
MHRWDA 1000 (0) 4495 (255) 9.00 (0.51) | 0.52 (0.02) | 10.6 (1.04) 0.10 (0.02)
Albatross 1000 (0) | 733.6 (41.2) | 1.47 (0.08) | 0.32 (0.02) Inf. 0.07 (0.01)

Table 6.4: Important global metrics for network samples produced by apply-
ing each sampling technique to the Enron network, averaged over 15 repeats.
Standard deviation is in brackets.

Sampling tech. Nodes Edges Avg.Degree CcC Diameter | Centralization
None 5242 14496 5.526 0.530 17 0.014
BFS 1006 (2.93) | 4065 (512) | 8.08 (1.02) | 0.58 (0.01) | 8.5 (0.79) 0.06 (0.01)
SNS 1000 (0) 3663 (405) | 7.32 (0.81) | 0.53 (0.04) | 8.67 (1.18) 0.06 (0.01)
MHRW 1000 (0) 3561 (413) | 7.12 (0.83) | 0.57 (0.02) | 14.3 (1.04) 0.05 (0.01)
MHRWDA 1000 (0) 3190 (394) | 6.38 (0.79) | 0.58 (0.02) | 15.5 (1.41) 0.04 (0.01)
Albatross 1000 (0) | 1851 (193) | 3.70 (0.39) | 0.45 (0.02) Tnf. 0.03 (0.00)

Table 6.5: Important global metrics for network samples produced by apply-
ing each sampling technique to the arXiv network, averaged over 15 repeats.
Standard deviation is in brackets.

Generated graphs averaged over 15 repeats, standard dev. in brackets
Network Nodes Edges Avg.Degree cC Diameter | Centralization
Eppstein-5000 | 1000 (0) 5000 (0) 10 (0) 0.02 (0.00) 6 (0) 0.026 (0.00)
Eppstein-10000 | 1000 (0) | 10000 (0) 20 (0) 0.035 (0.00) 6 (0) 0.04 (0.00)
Kleinberg-1c | 1000 (0) | 2991 (2.66) | 5.98 (0.01) | 0.001 (0.00) | 7 (0) 0.004 (0.00)
Kleinberg-3c 1000 (0) | 4899 (12.3) | 9.78 (0.02) | 0.03 (0.00) | 5.2 (0.41) 0.01 (0.00)
Kleinberg-7c 1000 (0) | 8629 (15.8) | 17.2 (0.03) | 0.05 (0.00) 4 (0) 0.012 (0.00)

Table 6.6: Important global metrics for networks produced by the Eppstein and
Kleinberg network generators, averaged over 15 repeats. Standard deviation is
in brackets. For the Eppstein networks, the number annotation after Eppstein
indicates the number of edges. For the Kleinberg networks, the “-¢” annota-
tion indicates the additional number of extra connections (a parameter to the
algorithm) that was used to generate the network.
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differences between the real world and synthetic networks. This is best demon-
strated by inspecting the clustering coefficient, which is far higher in real-world
networks. This is indicative of the structural differences between these networks
and the insufficiency of common network generation algorithms in modelling
real-world domains. The synthetic generation algorithms produce consistently
structurally similar graphs. For example, over 200 generated Eppstein power-
law networks, using identical configurations, the standard deviation for node
degree is 0 and the standard deviation for clustering coefficient is 0.001.

We note that the usage of static network structure (and constant population
sizes) is a limitation of our work, given our aspiration to study open systems
in which we can expect the population and network structure to vary over
time. However, the study of dynamic networks is underdeveloped and given
the differences between synthetic static networks and real-world networks, we
cannot assume that we could guarantee generality when introducing dynamism
into our study. Further, in this chapter we are interested in demonstrating the
feasibility and efficacy of the methodology. As such, adapting the methodology

to work on dynamic networks is clearly a consideration for future work.

6.6 Experimental setup

To evaluate our methodology for learning influence, as described in Section 6.3,
we use two major models of convention emergence in open MAS, namely, Salazar
et al.’s language coordination (Salazar et al., 2010b), and the coordination game
(described, for example, in Sen & Airiau (2007)). In each experiment, we insert
a single fixed-strategy Influencer Agent (IA) at a randomly chosen location, and
measure the extent to which the population converges on the strategy of the IA.

We apply our methodology as follows. From each of the Gnutella, Enron and
arXiv networks described above, we sample 45 sub-networks of 1000 nodes using
SNS, MHRW and MHRW-DA. We sample 50 locations, using either random or

stratified-by-degree sampling, and run our simulation 20 times for each location,
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giving a total of 1000 simulation runs per sub-network. After each simulation,
we measure the extent to which the agent at this node influenced the rest of
the population, and calculate each of the fourteen topological metrics for that
location. We use Principal Components Analysis (PCA) for unsupervised learn-
ing and fit Linear Regressions (LR) for supervised learning. We then run new
simulations using the location predicted as most influential by each model, and
determine the extent to which influence has increased against random sampling.

We use the Java Universal Network/Graph Framework?* in our simulations
and Cytoscape® for off-line structural analysis of networks. Statistical analyses

are performed using R® and Weka'.

6.6.1 Language coordination domain

The first domain that we use to learn node influence is Salazar et al.’s (2010b)
language coordination, as described in Chapter 5. Recall that in this domain
agents attempt to establish a social convention in the form of a shared vocab-
ulary. Over time a shared lexicon, a set of mappings from words to concepts,
emerges. We run each simulation for 50000 timesteps, and each agent propa-
gates their lexicon with a probability of 0.01 and updates their lexicon with a
probability of 0.01. By the end of a typical simulation run 600-800 agents have
adopted the dominant lexicon (see Section 5.5 for a more detailed analysis of
the population’s behaviour in this domain).

In this domain, we define an agent’s influence as the similarity between its
lexicon (L) and final dominant lexicon in the population (L) using Jaccard’s
similarity coefficient: J(L, L") = |L N L'|/|L U L’|, where a similarity of 1 implies
that agents use an identical lexicon, and 0 implies there are no mappings in

Ccominon.

4http://jung.sourceforge.net/

Shttp:/ /www.cytoscape.org/
Shttp://www.r-project.org/
"http://www.cs.waikato.ac.nz/ml/weka/
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6.6.2 Coordination game domain

To corroborate our results in the language coordination domain, we use a model
of convention emergence loosely based on Sen and Airiau’s private learning (Sen,
2008) and Walker and Wooldridge’s model of convention emergence with local
information (Walker & Wooldridge, 1995), with modifications based on the work
described in Chapter 4. Each timestep, every agent in turn engages in an inter-
action with a randomly chosen neighbour, using a coordination game with ten
possible choices (see Table 6.7 for the payoff function, Py 4,). Since social imi-
tation and information propagation are fundamental processes in the emergence
of conventions, we split strategy selection for each agent into two mechanisms:
(i) personal, based on the individual’s direct interaction history, and (ii) social,
based on the interactions an individual has observed (see Section 4.5.6 for de-
tails). When selecting a strategy, agents choose uniformly at random between

personal and social choices.

0 1 |...] 9
0| 44 |11 ... |-1-1
T[-11] 44 | .. |11
9| -1-1|-1-1|... | 44

Table 6.7: Payoff structure for the 10-action coordination game.

In typical real-world open MAS, we can assume that agents will have a
wide variety of goals, architectures and internal algorithms. To model this het-
erogeneity, we use a variety of strategy selection mechanisms. For personal
experience, agents’ strategy selection (ss;q,) and update (sugq,) functions
are implemented using either a Q-learning algorithm (Waktins, 1989) or WoLF-
PHC (Bowling, 2001). When selecting a strategy based on social experience, an
agent’s ss; 4, and sug 4, functions are implemented using either Q-learning,
WoLF-PHC, Highest Cumulative Reward (HCR) (Walker & Wooldridge, 1995),
or Most Recently observed (MR). At the start of the simulation, each agent is

initialised with a mechanism for personal and a mechanism for social choice
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chosen uniformly at random, giving a total of 8 possible agent configurations.
Agents explore in 10% of interactions by selecting a strategy uniformly at ran-
dom.

The ideal goal is for the population to converge to a state in which every
agent selects the same strategy, resulting in population-wide coordination. In
practice, we find that around 3 or 4 strategies persist as co-existing conventions,
each having similar numbers of adherents. We define a “win” as a simulation
run in which the dominant strategy (i.e. the strategy or lexicon with the highest
number of adherents) is that used by the IA, and use the normalised number
of wins over 20 simulation repeats as our metric of influence. Due to the co-
existence of conventions with similar adherence numbers, the exploration of
agents, and the higher possibility of a win being the result of chance, influence

is harder to measure accurately in this domain.

6.7 Results

We structure the results of evaluating our methodology as follows: initially, we
focus on the language coordination domain, and analyse the predictive power of
each individual metric. Subsequently, we analyse the results of learning influ-
ence prediction models, and demonstrate that refining models learnt from the
initial individual metrics can significantly improve accuracy. We corroborate
our results in the coordination game domain, and finally use our results from

both domains to derive the properties of an ideal measure of influence.

6.7.1 Targeting IAs using individual metrics

Inspecting the extent to which individual metrics predict influence may allow
us to refine our models, and analysis of the correlations between each metric
and influence reveals that Degree, EC, HEE, and HITS all robustly correlate
with influence over all networks. These metrics are statistically significantly

correlated in over 90% of the networks (with correlations ranging from 0.68 in
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the arXiv networks to 0.27 in the Enron networks), whereas the other metrics
statistically significantly correlate only in isolated networks (on average, in 48%
of networks). Correlating with influence in isolated networks is likely to be
due to unique network structures, and these metrics are less likely to indicate
influential nodes in the general case. This corroborates previous research on
the link between node degree and influence (e.g. Chen et al. (2009)), but to our
knowledge this is the first time that EC, HEE and HITS have been shown to
predict influence.

Ranking nodes by each of the four identified metrics results in significant
overlap over the top 5 nodes — with 7.8 unique nodes over the top 5 for each
metric (a 0.39 proportion, standard deviation 0.15), where disjoint sets would
give 20 unique nodes. While each metric selects roughly similar sets as being the
most influential, their relative rankings are unique. Figure 6.3 plots normalised
EC, HEE and HITS against degree, from which we can see the correlations.
Interestingly, HEE and HITS clearly bisect the population, which may be useful
for splitting a population into influential and non-influential nodes, while EC
has an approximately linear relationship with degree.

Table 6.8 shows the average lexicon similarity and the number of wins for
placing an IA at the location that maximises each heuristic, where a win is
defined as a simulation run in which the dominant lexicon in the population has
at most 2 different mappings from the TA lexicon. Results are averaged over
each class of network sample. We see significant gains across all four metrics,
particularly in the arXiv and Enron networks. With random placement, an
agent is only able to successfully influence the population 2 times in 100, but
placing by heuristic can increase this to 60 times in 100. There is no consistency
in which metric performs best across network samples, and this is likely to be
due to unique network structures in each class of network.

The synthetic networks show very few gains in influence using targeted place-
ment, and very few of the metrics significantly correlate with influence for these

networks. We believe that the networks generated by current synthetic genera-
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Figure 6.3: Correlation of HEE, EC, and HITS with node degree in an example
arXiv-SNS network sample.

tion algorithms are too homogeneous for any given location to gain significant
influence over others, and our results demonstrate that, since the potential for
influence is so much lower, the synthetic networks used here are poor models of
networks found in the real world. Accordingly, we focus only on the real-world

network samples for the remainder of this thesis.

6.7.2 Targeting IAs using learnt models

We subsequently apply our methodology by learning three models: (i) the Prin-
cipal Component (PC) that most correlates with influence, (ii) a Linear Regres-
sion (LR) model on all 14 metrics, and (iii) a linear regression model on Degree,
EC, HEE and HITS (4LR), which are the best 4 heuristics as discussed above.
We consider two sampling approaches for selecting a representative set of nodes:
random and stratified (as described in Section 6.3).

We trained our model as follows. For each combination of sampling technique

(i.e. SNS, MHRW and MHRW-DA) and network (i.e. arXiv, Enron, Gnutella),
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Network Average lexicon similarity Number of wins (normalised)
Degree | HE EC | HITS | Random || Degree | HE EC | HITS | Random

arXiv-SNS 0.58 054 | 0.6 | 0.54 0.16 0.47 0.41 | 0.5 | 0.40 0.03
arXiv-MHRW 0.54 0.6 0.56 | 0.58 0.18 0.41 0.50 | 0.47 | 0.42 0.02
arXiv-MHRWDA 0.6 0.58 | 0.56 | 0.48 0.16 0.5 0.5 0.47 | 0.37 0.02
Enron-SNS 0.58 0.56 | 0.48 | 0.54 0.16 0.45 0.47 | 0.34 | 0.42 0.02
Enron-MHRW 0.62 0.48 | 0.55 | 0.63 0.16 0.55 041 | 044 | 0.56 | 0.02
Enron-MHRWDA 0.56 0.58 | 0.6 | 0.6 0.16 0.47 0.47 | 0.6 | 0.6 0.02
Gnutella-SNS 0.4 0.3 0.38 | 0.5 0.18 0.30 0.18 | 0.25 | 0.41 0.06
Gnutella-MHRW 0.22 0.18 | 0.2 0.38 | 0.16 0.08 0.05 | 0.06 | 0.21 0.02
Gnutella-MHRWDA | 0.3 0.2 0.3 0.34 | 0.18 0.2 0.06 | 0.17 | 0.18 0.04
Eppstein-5000 0.35 0.40 | 0.17 | 0.265 | 0.19 0.4 0.33 | 0.05 | 0.1 0.1

Eppstein-10000 0.46 0.32 | 0.20 | 0.25 0.23 0.25 0.2 0.05 | 0.2 0.15
Kleinberg-CE1-1c 0.31 0.21 | 0.14 | 0.2 0.19 0.25 0.13 | 0.05 | 0.1 0.25
Kleinberg-CE1-3c 0.25 0.22 0.31 | 0.29 0.23 0.2 0.13 0.2 0.23 0.14
Kleinberg-CE1-7¢ 0.37 0.3 0.16 | 0.244 | 0.23 0.3 0.23 | 0.07 | 0.13 0.14
Kleinberg-CE10-1c 0.19 0.16 | 0.15 | 0.28 | 0.27 0.1 0.1 0.1 0.2 0.1

Kleinberg-CE10-3c 0.15 0.17 | 0.19 | 0.28 0.2 0.07 0.1 0.1 0.17 0.12
Kleinberg-CE10-7c 0.44 0.17 | 0.25 | 0.26 0.29 0.37 0.17 | 0.17 | 0.1 0.12

Table 6.8: Average lexicon similarity and number of wins for placing a single
fixed-strategy agent (TA) either at a location maximising one of the chosen
metrics or randomly. The best performing placement strategies are in bold. In
the Kleinberg networks, the “CE” annotation indicates the clustering exponent
(a parameter of the algorithm) used to generate the network.

there are five network samples, from which 50 nodes are selected for TA place-
ment either randomly or using stratification. We divide the data on how in-
fluential each location is in each network sample into four network samples for
training, and one network sample for testing, for each possible combination of
the five networks into four and one. Once trained, we measured the correlation
between the predicted influence and measured influence for the testing data (to
gain an estimation of the accuracy of our technique). Finally, we train the model
on all available data for a network sample, and use it to predict which locations
might be most influential. We evaluate this prediction by running simulations
with an IA at the location predicted as maximising influence.

Table 6.9 shows the average correlations between predicted influence and
actual influence for the test data, demonstrating that models learnt on ran-
domly sampled nodes are particularly poor at predicting influence. Learning on
stratified data shows high correlations, indicating higher quality models. This
corroborates our hypothesis that there are relatively few nodes of influence in
a network, with the majority having similar and low influence. Consequently, a

random node sample is unlikely to select many high influence nodes, which re-
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duces the quality of learnt prediction models. A random node sample is therefore
not representative in terms of influence, and so the stratified approach should be
used. Figure 6.4 plots the predicted influence in an arXiv-SNS network sample
using the LR model on a stratified node sample, and we can clearly see that
less than 10% of the nodes account for almost all the influence. The Gnutella-
MHRW network sample does not fit a linear regression model using randomly
sampled data, since the majority of nodes are zero-valued for many of the met-
rics. This occurs for nodes of very low degree, and is an extreme example of the
effect discussed above.

To evaluate the efficacy of each prediction model, we place an TA at the
location predicted as most influential by each model, and repeat the simulations.
Table 6.10 shows the average lexicon similarity and normalised number of wins
using models learnt on stratified node sampling. We have omitted results for
models learnt using random node sampling, since they are less effective: across
all networks, the average lexicon distance is 0.35 (standard deviation 0.1) and
the average proportion of wins is 0.2 (standard deviation 0.12). Nodes selected
as influential by the models learnt from random node sampling exhibit less than
half the influence of those selected by either individual heuristics or the models
learnt from stratified sampling, indicating that random sampling of nodes does
not give a sufficient range of influential nodes to learn accurate models.

Targeting IAs using locations predicted as influential by learnt models based
on stratified data results in significant gains in influence. In the arXiv, Enron
and Gnutella-SNS network samples, these increases are roughly equal to that
gained by placing by single metric over random placement. In the arXiv and
Enron network samples, the best performing model is 4LR, indicating that the
other metrics are unlikely to contribute significantly to influence prediction. We
believe that 4LR is learning which metric is best to place by, given the results
in Table 6.8, since the results from placing by 4LR are roughly equivalent to
placing by the best performing metric (out of the four) for each network sample.

In Gnutella, 4LR is always outperformed by PC or LR, indicating that met-
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Random Stratified
Network PC LR 4LR | PC LR 4LR
arXiv-SNS -0.08 0.164 0.19 | 0.71 0.91 0.90
arXiv-MHRW 0.018 0.10 0.11 0.67 0.93 0.92
arXiv-MRHWDA -0.03 0.34 0.08 | 0.75 0.88 0.86
Enron-SNS -0.03 0.16 0.13 | 0.69 0.80 0.85
Enron-MHRW -0.10 0.17 0.21 0.71 0.88 0.87
Enron-MHRWDA 0.08 0.06 -0.03 | 0.73 0.90 0.89
Gnutella-SNS -0.01 0.03 -0.10 | 0.33 0.67 0.58
Gnutella-MHRW 0.02 - - 0.44 0.75 0.65
Gnutella-MHRWDA | 0.09 -0.15 0.06 | 0.36 0.73 0.52

Table 6.9: Correlation of each learnt model with measured influence, using
separate training and test data, over each class of network sample and learnt on
both random and stratified node sampling. Bolded entries indicate the highest
correlation for that network sample.

rics other than Degree, EC, HEE and HITS are indicative of influence in these
networks. Moreover, the linear combination of metrics in each of these net-
work samples outperforms placement by single metrics. The Gnutella network
samples show a reduced potential for influence compared to the samples from
the Enron and arXiv networks, and exhibit lower edge counts, average degree,
and clustering coefficients, and higher diameters. All these properties reduce
the ability of an agent to exert influence, and may provide an indication of the
likely efficacy of our methodology prior to application.

Our results suggest that if computational expense is an issue, targeting by
Degree (or EC, HEE or HITS) will yield significant gains in influence, but if
computational expense is less important, then applying our methodology results
in further gains. If our methodology is applied using online measurements of
influence (i.e. not requiring repeated simulations), the computational cost is

significantly reduced.

6.7.3 Targeting IAs in the coordination game domain

The results given above suggest that agents can attain significant gains in in-
fluence by exploiting knowledge of the topological structure connecting agents.
However, the results given so far are only for the language coordination do-

main, and to demonstrate generality it is necessary to test the extent to which
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arXiv-MHRW
arXiv-MHRWDA

Network Average lexicon similarity Number of wins (normalised)
pPC LR 4LR | Random || PC LR 4LR | Random
arXiv-SNS 0.44 | 0.42 | 0.58 | 0.16 0.34 | 0.30 | 0.50 | 0.03

0.5 0.32 | 0.62 | 0.18
0.34 | 0.38 | 0.6 0.16

0.42 | 0.20 | 0.55 | 0.02
0.22 | 0.27 | 0.50 | 0.02

Enron-SNS
Enron-MHRW
Enron-MHRWDA

0.62 | 0.32 | 0.68 | 0.16
0.2 0.5 0.58 | 0.16
0.34 | 0.16 | 0.52 | 0.16

0.56 | 0 0.62 | 0.02
0.30 | 0.36 | 0.53 | 0.02
0.21 | 0.06 | 0.43 | 0.02

Gnutella-SNS
Gnutella-MHRW
Gnutella-MHRWDA

0.18 | 0.46 | 0.36 | 0.18
0.4 |04 |024 |0.16
0.38 | 0.36 | 0.36 | 0.18

0.03 | 0.37 | 0.24 | 0.06
0.27 | 0.29 | 0.10 | 0.02
0.25 | 0.24 | 0.22 | 0.04

Table 6.10: Average lexicon similarity and normalised number of wins when
placing an TA at a location chosen by the predictive models. The best performing
placement strategies are shown in bold.
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Figure 6.4: Predicted influence for each node in an example SNS sample from
the arXiv network. Less than 10% of the individuals in the network account for
almost all of its influence.
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agents can gain influence from targeting placement according to a prediction
model based on topological characteristics in another domain. Accordingly, in
this section we present results from targeting IAs within the coordination game
domain described in Section 6.6.2. We initially target locations predicted as in-
fluential by each of the four single metrics previously identified in Section 6.7.1.
We build new prediction models with data generated from running coordination
game domain simulations for the same (stratified by degree) node sets as those
used in Section 6.7.2. This allows us to directly compare the quality of models
learnt using different agent interaction processes and metrics of influence. In
contrast, in Section 6.7.4 we use the actual models learnt in Section 6.7.2 in
the coordination game domain to determine the extent to which these models
predict influence across domains.

Table 6.11 shows the results from placing a single IA at the location max-
imised by each heuristic metric identified in Section 6.7.1. We can see roughly
similar trends, in that the arXiv and Enron network samples see significant
gains in influence while the Gnutella samples exhibit relatively small gains. The
gains in influence are not as large as in the language coordination domain and
this is likely to be because the combination of multiple co-existing conventions
with similar numbers of adherents, agent exploration, and reduced convention
space size result in a domain in which influencing the population is more diffi-
cult. It may also be that the scope for influence, as imbued purely by network
structure, is reduced in this domain simply due to its inherent mechanisms.
Nonetheless, there is still clearly potential for targeting individual locations for
gains in influence.

Table 6.12 shows the normalised number of wins attained by applying the
influence learning methodology using the coordination game and the coordina-
tion game domain. While increases in influence are clearly evident, with similar
trends as those observed in the language coordination domain, the scale of in-
fluence gain is reduced, and is smaller than the gain obtained when placing

by single heuristics compared to random placement. As discussed above, there
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Network Number of wins (normalised)
Degree | HEE | EC HITS | Random

arXiv-SNS 0.43 0.33 | 0.41 | 0.40 0.11
arXiv-MHRW 0.39 0.35 | 0.40 | 0.36 0.10
arXiv-MHRWDA 0.43 0.42 | 0.38 | 0.33 | 0.09
Enron-SNS 0.38 0.40 | 0.33 | 0.38 | 0.10
Enron-MHRW 0.45 0.39 | 0.37 | 0.47 | 0.10
Enron-MHRWDA 0.42 0.38 | 0.48 | 0.48 | 0.09
Gnutella-SNS 0.28 0.23 | 0.23 | 0.35 | 0.09
Gnutella-MHRW 0.18 0.12 | 0.15 | 0.18 | 0.12
Gnutella-MHRWDA | 0.12 0.23 | 0.25 | 0.18 0.08

Table 6.11: Normalised number of wins when placing an IA at a location selected
by maximising each of the four heuristic metrics identified in Section 6.7.1 in the
coordination game domain. Best performing metrics are highlighted in bold.

Network Number of wins (normalised)
PC | LR | 4LR | Random
arXiv-SNS 0.13 | 0.16 | 0.25 | 0.11
arXiv-MHRW 0.18 | 0.14 | 0.26 | 0.10
arXiv-MHRWDA 0.17 | 0.12 | 0.22 | 0.09
Enron-SNS 0.10 | 0.13 | 0.23 | 0.10
Enron-MHRW 0.12 | 0.10 | 0.24 | 0.10
Enron-MHRWDA 0.11 | 0.14 | 0.23 | 0.09
Gnutella-SNS 0.13 | 0.17 | 0.15 | 0.09
Gnutella-MHRW 0.23 | 0.19 | 0.15 | 0.12
Gnutella-MHRWDA | 0.19 | 0.16 | 0.13 | 0.08

Table 6.12: Normalised number of wins when placing an IA at a location cho-
sen by the predictive models, using the coordination game domain. The best
performing placement strategies are shown in bold.
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are a number of reasons for this (including agent exploration, smaller conven-
tion space and increased probability of similarly sized co-existing conventions).
Accordingly, the variance in IA efficacy is much higher between identically con-
figured runs, and there is more noise in the data learnt by the methodology.
The predictions of influence are consequently less likely to be accurate.
Furthermore, there are only ten discrete strategies in the coordination game
domain, and switching strategies can involve non-trivial costs. In particular,
given that a number of conventions co-exist with similar membership sizes, an
agent being influenced to a given strategy can directly result in subsequent costs
if that agent interacts with a neighbour adhering to a different convention. In
the language coordination domain, the convention space is quasi-continuous and
switching convention is less likely to incur costs (consider that if an agent alters
one mapping in a lexicon, that mapping may not be used in a communication
for some time). This leads to two effects: (i) agents are less likely to incur
costs as a result of altering convention in the language coordination domain,
leading to increased likelihood of being successfully influenced (as opposed to
being influenced, incurring a cost and switching to another strategy), and (ii)
in the coordination game domain the methodology has to learn on the number
of absolute wins, rather than the more fine grained measure of lexicon distance.
As a result of the second issue, the learning algorithms have less detailed data

on which to learn, further reducing the efficacy of the methodology.

6.7.4 Using learnt models in other domains

A major component of our hypothesis regarding the poorer results in the co-
ordination game domain is that the data available is less suitable for accurate
learning. To test this, we re-ran simulations in the coordination game domain,
but placed IAs at the position predicted as most influential by the models learnt
using data from the language coordination domain, which had resulted in models
that appeared to predict more influential locations.

Table 6.13 plots the normalised number of wins attained in these exper-
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Network Number of wins (normalised)
PC LR 4LR | Random
arXiv-SNS 0.3 0.21 | 0.37 | 0.11
arXiv-MHRW 0.16 | 0.19 | 0.35 | 0.10
arXiv-MHRWDA 0.16 | 0.15 | 0.30 | 0.09
Enron-SNS 0.40 | 0.14 | 0.76 | 0.10
Enron-MHRW 0.28 | 0.45 | 0.26 | 0.10
Enron-MHRWDA 0.15 | 0.15 | 0.55 | 0.09
Gnutella-SNS 0.11 | 0.1 0.36 | 0.09
Gnutella-MHRW 0.19 | 0.13 | 0.19 | 0.12
Gnutella-MHRWDA | 0.19 | 0.21 | 0.20 | 0.08

Table 6.13: Normalised number of wins gained by placing an IA at a location
chosen by the predictive models learnt on the language coordination data, using
the coordination game domain. The best performing placement strategies are
shown in bold.

iments. We can clearly see that using these models does result in gains in
influence, despite using a model learnt on data from a different domain. This
suggests that (i) the models learn intrinsic influence relating to the network
structure itself, rather than as a result of the specific behavioural patterns ex-
hibited by agents situated on the network, and (ii) that, to some extent, these
models can be used to predict influence even when the behaviour of agents in
the targeted domain is significantly different to that used to generate the data
that teaches the models.

However, there are a number of interesting points exhibited in the data.
Firstly, the gains in influence are, on average, less than those attained when
using predictions within the same agent interaction domain. This may be either
due to the coordination game domain having less potential for influence, or
that the different agent behaviour models have different influence characteristics
which undermines the predictions. Secondly, there is far higher variation in the
results, especially with respect to the Enron network samples. We believe this
to be a result of the coordination game domain itself having far higher variation
in the outcomes of individual simulation runs. Finally, the Gnutella network
samples display inconsistent behaviour in terms of which learnt models are best,

and the learnt models appear to have fairly similar predictive power in this
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context.

Overall, we can conclude that learnt models for predicting influence from
topological metrics, for the large part, do translate between different interaction
domains. If a target domain does not have easily definable on-line influence
metrics or off-line agent models, it may therefore be possible to use a simple
interaction domain, such as the language coordination setting, to generate data

on which to apply our methodology and still retain significant efficacy.

6.7.5 Deriving the properties of an ideal influence metric

These results demonstrate the importance of choosing an appropriate metric of
influence. The interaction domains evaluated in this chapter both show similar
gains in influence for placement by single metrics but differing gains in influence
using learnt models. As discussed above, a major component of this disparity
is due to the influence metric in the coordination game domain (i.e. the number
of exact “wins”) containing less information about the effect of the TA. We can
subsequently hypothesise the properties that an ideal influence metric would

exhibit, as follows.

1. Continuous: An ideal influence metric measures the extent of an agent’s
influence, and not simply whether it has influenced the majority of the

population.

2. Proportional: An ideal influence metric maps linearly to the influence that

an agent has exerted.

3. FEase of measurement: An ideal influence metric is easily measured. Both
of the metrics for influence described in this chapter are measurable only
with access to data for repeated simulations, however in some cases influ-
ence metrics may be easily measurable online (e.g. the number of re-tweets

on Twitter).

4. Signal to noise ratio: The influence metric in the coordination game do-

main is subject to much higher variance than the metric in the language
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coordination domain since (i) agents explore, and (ii) the smaller conven-
tion space implies that there is a higher probability of a win being the
result of chance. An ideal metric should be particularly robust to noise

and have a low variance in order to increase the accuracy of learnt models.

6.8 Conclusions and further work

In this chapter, we have proposed a methodology for learning the influence of
nodes in a network. We evaluated our methodology using two representative
domains of convention emergence on networks sampled using a variety of tech-
niques from three real-world datasets. We corroborate results in the literature
that degree is highly indicative of influence, and show that Eigenvector Central-
ity, Highest Edge Embeddedness, and HITS are also linked to influence. When
placed at locations selected through application of our methodology, agents gain
significant influence compared to random placement. In the arXiv and Enron
network samples, the 4LR model, learnt on just node degree, EC, HEE, and
HITS, gives gains in influence equivalent to targeting by the individual met-
ric (of those four) that best predicts influence in that network sample. This
indicates that the linear regression model learns which metric most predicts
influence in that network sample. In the Gnutella network samples, the learnt
models typically outperform single metric placement, and, in general, super-
vised learning using linear regression almost always outperforms unsupervised
learning using PCA.

The models learnt on the arXiv and Enron network samples and on the
Gnutella network samples are significantly different, indicating that the struc-
tural characteristics that imbue influence are, to some extent, unique to each
class of network samples (and, potentially, to each individual network sam-
ple). The Gnutella network samples demonstrate (i) that using single metric
heuristics does not guarantee optimal influence, and (ii) that different network

structures exhibit significantly varied ranges of potential influence. We believe
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that the important global network metrics (such as average degree, clustering
coefficient, or diameter) may indicate the potential for maximising influence in
a given network, and we intend to explore this in future work, along with other
agent interaction domains to ensure that our methodology generalises.

As discussed in Section 6.5, the differences in important topological metrics
between different datasets is far greater than the differences in metrics in net-
work samples taken from a single dataset. This implies that each network, and
sub-networks sampled from them, have unique structures that can be charac-
terised by structural analysis. In future work, it may be useful to determine if
different classes of network with similar influence characteristics exist (as ap-
pears to be the case between sub-networks sampled from the Enron and arXiv
datasets), and learn influence models for each class to be applied as necessary.
This would remove, in many cases, the need to apply our full methodology

repeatedly.
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CHAPTER [

Manipulating established conventions

In the previous two chapters, we have demonstrated how to manipulate con-
ventions and how to exploit topological information to increase manipulation
efficacy, but the IA mechanism was only tested during the initial emergence
phase. As discussed in Chapter 4, there has been relatively little research into
the middle and latter stages of the convention lifecycle. At this point, conven-
tions have become established and the forces of precedence make influencing
the population more difficult. In this chapter, we investigate how to manipulate
conventions after establishment, by giving agents one-off rewards, and equipping
TAs with sanctions and incentives to apply in their interactions, in an attempt
to strengthen their influence and overcome the forces of precedence. We show
that, after establishment, IAs are the most effective strategy (out of those in-
vestigated) for manipulating convention adoption, as long as there is a minimal

level of population churn.
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7.1 Introduction

Conventions, socially accepted standards of behaviour, have shown considerable
promise in supporting coordinated behaviour in modern open MAS domains.
As discussed in Chapter 1, we can expect these domains to be characterised by
large, time-varying populations, uniform levels of authority, lack of centralised
control, and a variety of stakeholders inserting agents with heterogeneous ca-
pabilities and goals. Conventions reduce costs associated with malcoordination
and increase social welfare, and are particularly applicable since they can emerge
in a decentralised manner. In Chapter 4, we discussed the significant progress in
understanding the mechanisms by which conventions are established, but there
has been comparatively little progress in understanding their behaviour in what
we term the middle and latter stages of the convention life-cycle.

In particular, there may be a need to manipulate conventions, through either
adding support or destabilisation, once they have become established. We can
identify four major reasons for why interested parties may wish to manipulate
conventions. Firstly, an inferior convention may be dominant in the popula-
tion, in the sense that switching convention may increase levels of coordination.
Secondly, environmental change may necessitate transitioning to a more appro-
priate convention. For example, encouraging “green” behaviour in the face of
climate change illustrates the necessity and difficulty of such convention changes.
Thirdly, an interested party may wish to encourage a more personally beneficial
convention — if we consider brand preference as conventional behaviour, then
each stakeholder has an interest in changing the convention to one favourable
to their brand. Lastly, there may be an inappropriate number of conventions
established to produce optimal behaviour. Typically, this can be interpreted as
there being multiple conventions where the ideal situation is one, but in some
situations (e.g. the El-Farol bar problem (Arthur, 1994)) the ideal goal is the
co-existence of multiple conventions.

Since conventions typically emerge via agents modifying their interaction
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choices in response to previous history, there are significant feedback effects
which can amplify the influence of targeted interventions. Determining which
interventions are most effective is thus key to understanding how to manipulate
conventions. Using a model of convention emergence with realistic assumptions,
including heterogeneous learning mechanisms, complex network structures re-
stricting interactions, and time-varying populations, we examine three mech-
anisms for manipulating conventions: (i) through one-off rewards targeted at
specific individuals, (ii) through a small group of agents introduced into the pop-
ulation by interested stakeholders (that is, using the TA technique introduced
in Chapter 5), and (iii) through a small group of agents applying sanctions and
incentives in interactions in which they participate. The three mechanisms are
embodied in the two strategies that we evaluate in this chapter, namely reward-
ing specific individuals at specific timesteps (i.e. an implementation of the first
mechanism), and using IAs who are equipped with the ability to sanction or
incentivise individuals with whom they interact (i.e. an implementation of the
second two mechanisms).

We show that (i) one-off incentives are most effective when most of the pop-
ulation is undecided and conventions have not become significantly established,
but lose almost all their efficacy as the forces of precedence stabilise and es-
tablish conventions, (ii) small proportions of agents can significantly influence
populations to a given convention, for which incentives provide a small but mea-
surable boost in efficacy, and (iii) sanctions, also applied in interactions by small
proportions of agents, are ineffective, in our model of convention emergence,
at manipulating conventions to any significant degree and are often counter-
productive. Interestingly, this is contrary to some investigations into the role
of sanctions (for example, Axelrod’s (1986) evaluation of the role of sanctions
in enforcing norms), and we discuss this further in Section 7.5.2. We also show
that a minimal rate of population churn, in which agents join and leave the
system, facilitates convention manipulation in systems where conventions are

established and stable.
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7.2 Background

In this section, we review the relevant literature surrounding the manipulation

of conventions and the role of network structure in convention emergence.

7.2.1 Network structure

Network structure has been shown to have significant impact on the behaviour of
conventions. Delgado (2002) has shown that conventions on complex networks
(i.e. those that have scale-free degree distributions and logarithmically bounded
shortest path lengths) emerge as efficiently as on fully connected networks, and
Pujol et al. (2005) have shown that clustered networks allow more stable conven-
tions to emerge under a wider range of conditions than non-clustered networks.
High degree nodes are known to be important (e.g. Albert & Barabési (2002),
Chen et al. (2009)), and have been shown to play a more influential role in con-
vention emergence than low-degree nodes (Franks et al., 2013) (as demonstrated
in Chapters 5 and 6).

Given that we consider MAS in which agents join and leave freely, we can rea-
sonably expect real-world instantiations to exhibit dynamic network topologies,
with both the set of individuals and the connections between them changing
over time. However, investigation into dynamic network topologies is still in its
infancy, and accurately modelling dynamic topologies is likely to require a deep
understanding of the domain-specific mechanisms that generate topological fea-
tures. Consequently, static networks are used in the majority of research as a
useful middle-ground between well-mixed populations and dynamic networks.
While algorithms for generating dynamic networks that exhibit complex prop-
erties exist (e.g. Gonzalez et al. (2006)), there has been relatively little research
into their efficacy in modelling specific domains, and we cannot therefore guar-
antee their generality. Accordingly, in this thesis we focus on time-invariant

network topologies.
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7.2.2 Manipulating conventions

Compared with the process of convention emergence, there has been compar-
atively little research into how conventions might be manipulated. Sen and
Airiau (2007) demonstrated that a small proportion of agents can influence so-
cieties many times as large, but only used two possible conventions. Garlick and
Chli (2009) have shown that “policemen” agents can be effective at limiting so-
cial unrest in an agent-based model. In Chapter 5, we extended these ideas and
introduced the Influencer Agent (IA) concept, in which a small proportion of
agents are inserted with goals and strategies chosen specifically to influence the
population to adopt appropriate conventions (Franks et al., 2013). We show in
Chapter 5 that (i) IAs can significantly manipulate which convention emerges in
a population, even with a large convention space, and (ii) positioning IAs using
topological information can significantly increase their efficacy. Villatoro (2011)
proposed local network rewiring and observation of neighbouring agents’ actions
as possible mechanisms for undermining meta-stable subconventions, with the
goal of emerging a single unified convention across the entire population. Given
the self-reinforcing nature of conventions, manipulation after establishment may
be difficult.

Boyer and Orlean (1992) have examined convention manipulation from a
socio-economic perspective, and propose four situations in which convention
change might occur: (i) a general collapse may alter the existing convention
structure, (ii) an external group adhering to an alternate strategy may invade
the population, (iii) a certain compatibility between conventions may reduce
transition costs!, and (iv) individuals may agree to change conventions through
collective agreement. Since situation (iii) does not translate effectively into
many convention emergence models, and situation (iv) in most cases requires
a centralised authority, we consider situations (i) and (ii) as the most directly

applicable to MAS research.

ITransition costs may be environmental, as in the costs associated with switching which
side of the road a country drives on, or personal, as when an individual switches convention
and subsequently encounters an individual using a contrary convention.
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These both represent special cases of a change in the environment, which we
consider to include the payoff function, the agent population, the set of strate-
gies available, and the underlying network structure constraining interactions
between agents. Depending on the domain, some or all of these may be open to
manipulation by interested parties. Targeted changes to the payoff structure can
encourage agents to pick alternate strategies, and external invasion by groups
of agents demonstrates to other individuals the efficacy of alternate strategies.
Both techniques then trigger the precedence feedback loop and may allow the

targeted strategy to gain adherents.

7.3 Mechanisms for manipulating convention
emergence

To effectively manipulate conventions, we potentially only need to encourage a
small proportion of agents to act as desired, and subsequently allow the forces of
precedence to propagate the choice throughout the population. We can do this
in one of two ways: (i) encouraging the agent to choose an action by altering
the reward it gets from its choices, or (ii) altering the behaviour that the agent
observes and incorporates into its calculations on precedence. In this chapter,
we explore strategies designed to implement one or both of these mechanisms.
Specifically, we identify two strategies that implement (i) alteration of agent
rewards, (ii) alteration of observed behaviour, and (iii) both alteration of re-
wards and behaviour. We propose one-off incentives to reward agents for cer-
tain choices, the insertion of small groups of agents in the form of TAs, with
single fixed strategies, and equipped with incentives and sanctions for the inter-
actions in which they participate. The use of IAs corresponds to instantiations,
at different parameter settings, of strategies (ii) and (iii), while one-off incen-
tives implements strategy (i). We believe these to be realistically implementable
strategies: for example, a variety of companies already use one-off rewards or

employed individuals to aid brand propagation (Delre et al., 2010) in a manner
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analogous to strategies (i) and (ii).

IAs are an attractive solution to problems of convention emergence since
they are applicable to highly decentralised systems, do not require modification
of agent architectures, strategies or goals, and are effective at manipulating pop-
ulations many times their size. Therefore, IAs are highly suited for practically

applying incentives and sanctions in several real-world domains.

7.4 Model of convention emergence and experi-
mental setup

To evaluate our strategies for manipulating conventions, we require a model
of convention emergence that accounts for the kind of conventions typically
observed in open MAS. Specifically, we assume that agents use heterogeneous
learning algorithms, incorporate notions of social imitation, are situated on
realistic network structures, and that the population changes over time.

Our model of convention emergence is loosely based on Sen and Airiau’s
model of private learning (Sen & Airiau, 2007) and Walker and Wooldridge’s
model of convention emergence with local information (Walker & Wooldridge,
1995). The interaction regime (IR) is defined as follows: each timestep, every
agent in turn engages in an interaction with a randomly chosen neighbour, with

the payoff function (P, 4,) using a coordination game with ten possible choices

(Table 7.1).
0 1 ... 9
0 44 |-1,-1]... |11
T 11] 44 [ ... |11
9| 11|11 ... | 44

Table 7.1: Payoff structure for coordination game.

A variety of research has demonstrated two key sources for information on

which to base decision making (e.g. Sen & Airiau (2007), Young (1996)), namely,
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(i) personal, using an individual’s direct interaction history, and (ii) social, using
the interactions that an individual has observed but not directly participated
in. We model this by splitting an agent’s learning along these lines, with sepa-
rate mechanisms selecting a choice based on each source. In a given interaction,
agents choose between personal and social choice according to a system-wide
parameter «, where o = 0 indicates that agents will always use personal ex-
perience alone to make strategy selections, a = 1 indicates social choice alone,
and « = 0.5 indicates an agent will randomly choose between personal and
social experience, using each roughly half the time. Research on the role of
social imitation in convention emergence is limited: personal experience is suf-
ficient for convention emergence (Sen & Airiau, 2007), but observation of be-
haviour has also been shown to be an effective mechanism by which norms can
emerge (Axelrod, 1986). Young has argued that observation of behaviour is key
to propagating information regarding established conventions (Young, 1996).
Parameterising the system with « facilitates exploration of the impact of social
observation and imitation in the emergence and manipulation of conventions.

With regards to social experience, we use the parameter obs to determine
the proportion of the neighbours of interaction participants that observe the
results of interactions. When obs = 0 only the participants of an interaction will
know the results, whereas when obs = 1 every neighbour observes the outcome.
When obs = 0.5 exactly half of the neighbours are randomly chosen to observe
an interaction.

In typical real-world open MAS, we can assume that agents will have a wide
variety of goals, architectures, and internal algorithms. To model this hetero-
geneity, we use a variety of strategy selection mechanisms. For personal experi-
ence, agents’ strategy selection (ssy 4.) and strategy update (sug 4) are imple-
mented using either Q-learning (Waktins, 1989) or WoLF-PHC (Bowling, 2001).
When selecting a strategy based on social experience, an agent learns using ei-
ther Q-learning, WoLF-PHC, Highest Cumulative Reward (HCR) (Shoham &

Tennenholtz, 1997), or Most Recently observed (MR). At the start of the sim-
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ulation, each agent is initialised with the mechanisms for personal and social
choices chosen uniformly at random, giving a total of 8 possible agent configu-
rations. Agents explore in 10% of interactions by selecting a strategy uniformly
at random.

We situate agents on an underlying network structure that restricts their
interactions to immediate neighbours. The impact of network structure on ag-
gregate population behaviour is significant and, as discussed above, has been
shown to influence the emergence of conventions in a variety of ways. Conse-
quently, using realistic networks is fundamental to ensuring the generality of
our results. As in Chapter 6, we use the arXiv general relativity collaboration
network and a P2P network formed using the Gnutella file-sharing program,
and we also use the email network of an EU institution?.

These networks are too large to practically be used in simulations, and so we
sampled networks of 1,000 nodes using Snowball Sampling (SNS), Metropolis-
Hastings Random Walk (MHRW) (Gjoka et al., 2010), and Metropolis-Hastings
Random Walk with Delayed Acceptance (MHRWDA) (Lee et al., 2012). SNS
provides good local coverage of a network but has been shown to be biased to-
wards high-degree nodes (Gjoka et al., 2010). MHRW provides a uniform sam-
pling and preserves the degree distribution of sampled networks (Gjoka et al.,
2010), but in our experiments we have found that it does not necessarily preserve
the small-world nature of networks (i.e. where the characteristic path length of
networks is bounded by the logarithm of the number of nodes). MHRW-DA fol-
lows MHRW, except that it modifies the transition probabilities of the random
walk to reduce the chance of traversing parts of the network that have already
been visited (Lee et al., 2012). While ideal sampling techniques, which preserve
every structural feature of interest from the sampled network, do not exist, we
believe the combination of SNS, MHRW and MHRWDA allows us to test our
strategies for manipulating conventions on a large set of realistic structures.

We create one network sample using each sampling algorithm on each dataset,

2Al taken from the Stanford large network dataset collection
http://snap.stanford.edu/data
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resulting in 9 distinct networks on which we evaluate our strategies.

IAs are modelled as agents with a single fixed strategy, namely the strat-
egy that is being targeted for manipulation. As discussed above, one of our
strategies for manipulating conventions is equipping IAs with sanctions and
incentives. This is instantiated by each IA being able to modify the payoff
received by interaction participants in any interaction containing an IA. If the
interaction participant chooses the IA strategy (i.e. both agents choose the same
strategy), then the TA multiplies the payoff received by the partner by a factor of
incentive = {1,2,5,10}. If the interaction partner chooses a different strategy
(and the agents do not subsequently coordinate), then the IA can multiply the
payoff by the partner received by a factor of sanction = {1,1.5,5,10}. Recall
that this payoff will be negative due to non-coordination. Note that for the first
non-trivial multiple, we use 2 for incentives and 1.5 for sanctions. Since sanc-
tions are likely to be applied more often (in any interaction, there are 9 possible
“wrong” choices, but only 1 “correct”), we are more interested in determining
if small sanctions have any effect, since these will result in lower expenditure.
As a result, we evaluate sanctions using 1.5 as an arbitrary multiplier that is
lower than 2.

One-off incentives are modelled by giving each targeted agent a single payoff
of size r = 5,10,50,100 for the targeted strategy, as though that agent had
selected the targeted strategy in an interaction. Since the typical payoff for
choosing a coordinated strategy is 4 (that is, when no sanctions or incentives
are applied), these values of r equate to 1.25, 2.5, 12.5, or 25 times the max-
imum payoff receivable in interactions. These are therefore much larger than
the incentives applied by IAs, but differ in that they only occur once in the
simulation.

In typical real-world domains, we can expect the population to change sig-
nificantly over time as agents join and leave. We model this using a simple
instantiation of population churn, with the following limiting constraints: (i)

we do not change the network structure over time and (ii) we hold the popula-
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tion size constant. Dynamic network structures, while more realistic, are diffi-
cult to accurately model. Given the importance of realistic network structures
noted above, we believe that introducing dynamic network topologies would
undermine the generality of our work. Consequently, we model churn using
a parameter PC = {0,0.001} that represents the proportion of churn in the
population: each timestep PC' agents are entirely reset (i.e. their personal and
social experience is deleted and new learning algorithms are chosen). As such,
this simple model of population churn allows us to test the effect of new agents
on the forces of precedence, but not the effects of changing network structure.

The proportion of interactions in which an agent selects a given strategy s
over the last 20 interactions is called the adherence of that agent to s. Following
Lewis’ definition of convention as a regularity in behaviour (see Chapter 4 for
more detail), we call a strategy a convention if at least one agent has an adher-
ence of at least 0.9. Such agents are members of the convention. To evaluate the
efficacy of our manipulations, we measure a convention’s membership, the num-
ber of members, and its rank in terms of membership. To measure the relative
cost of each of our strategies, we also calculate the total expenditure in terms
of the amount of additional payoff awarded to agents throughout the simula-
tion. Although this is an abstract measure in our model, in real-world domains
incentives will typically translate into costs for the incentivising party — for ex-
ample, companies promoting brand adherence may reward targeted individuals
with products, with each product having a cost to the company. Since we make
no assertions on how our payoff structures translate to real-world value, we use
total expenditure as a guide for ranking the relative efficiency of our strategies.

We use 4000 timesteps in all simulations, and statistical significance is tested
using Pearson’s Correlations with a confidence of 95%. Data for each manip-
ulation strategy is averaged over 30 runs for each configuration given on each
network. Unless otherwise stated, we use a = 0.5, 0bs = 1.

Table 7.2 summarises the parameter settings used for experiments presented

in this chapter.
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Parameter Values Description
3 10 Number of possible strate-
gies/conventions
@ {0,0.5,1} Probability of using social experience in
strategy selection
obs {0,1} Probability of each neighbour observing
an interaction
Social sug g, WoLF-PHC Strategy update for social experience
Q-Learning
HCR
Most Recent
Personal sug g, | WoLF-PHC Strategy update for personal experience
Q-Learning
G arXiv-SNS Network structures used
arXiv-MHRW

arXiv-MHRWDA
Gnutella-SNS
Gnutella-MHRW
Gnutella-MHRWDA
EU-Email-SNS
EU-Email-MHRW
EU-Email- MHRWDA

incentive {1,2,5,10} Incentive factors applied by TA
sanction {1,1.5,5,10} Sanction factors applied by TA
r {5,10,50, 100} One-off rewards
PC {0,0.001} Population churn
t 4000 Simulation length

Table 7.2: Table showing the key parameters used throughout simulations in
Chapter 7

7.5 Results

We consider three primary configurations of our model in which to test our
strategies for manipulating conventions. The first configuration is with no pop-
ulation churn, and we introduce our strategies at ¢ = 0. This represents an
idealised situation — there are no pre-existing conventions and no agents have
any historical data on which to base their decisions. In our second configura-
tion, we introduce each strategy individually at ¢ = {500, 1000, 1500}. In this
setting, conventions are either already established or on their way to becoming
established, and the forces of precedence are therefore far stronger. Finally, in

our third configuration we introduce a small amount of population churn and
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apply each strategy individually at ¢ = {500,1000,1500}. This setting is the
most realistic of the three, with conventions pre-existing in a population and
agents joining and leaving over time. We first present an overview of the general

behaviour of our model and subsequently treat each configuration separately.

7.5.1 Baseline behaviour

Initially, we analyse the general behaviour of our model without applying any
of our strategies for convention manipulation.

Figures 7.1(a), 7.1(b), and 7.1(c) show the 5 top strategies, in terms of the
number of agents that adhere to the strategy more than 90% of the time, for
individual representative runs from the SNS network samples from each dataset.
For reasons of space, we have omitted results for the MHRW /MHRWDA sam-
ples, but note that they display substantially the same behaviour as the SNS
samples. We can see that the conventions that emerge (recall that we call any
strategy with at least one member adhering to it 90% of the time a conven-
tion) stabilise in terms of adherents after around 1000—1200 timesteps, and
that although one convention may dominate, there is always at least one other
convention with a non-trivial number of adherents. Our model thus produces a
set of conventions that co-exist and are stable. We have plotted each figure up
to t = 2000 since the system stabilises and no further significant changes occur.
The fluctuations in convention membership are largely due to the effect of agent
exploration. For comparison, Figure 7.2 shows the membership for the top 5
strategies for a run with an identical configuration as Figure 7.1(c) except that
agents do not explore, which leads to membership counts being far more stable.

There are interesting differences in the behaviour between each network type.
The arXiv network samples converge on a stable set of conventions around 200
timesteps earlier than the EU-Email and Gnutella network samples, and display
a transition period during which convention membership starts rising rapidly
and then stabilises. Conversely, the Gnutella and EU-Email network samples

exhibit constant rises in membership counts until stabilisation, and also give rise
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Figure 7.1: Membership counts for the top 5 strategies on (a) EU-Email-SNS
and (b) Gnutella-SNS networks, and (c¢) arXiv-SNS, using o = 0.5.
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Membership for top 5 strategies, arXiv-SNS, exploration rate = 0
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Figure 7.2: Membership counts for the top 5 strategies on arXiv-SNS with no
agent exploration, and a = 0.5.

to conventions that have much closer membership counts. The arXiv samples
have much higher clustering coefficients than the other network samples (around
0.5 for arXiv compared to 0.005 for Gnutella), and this clustered structure may
account for the faster emergence of conventions (Pujol et al., 2005). Although
there are differences in convergence behaviour between the networks, the macro-
level behaviour is similar: agents converge on a set of co-existing conventions
with up to 350 members (at the very highest) which remain largely stable after
1000—1200 timesteps and for the remainder of the simulation.

Although we test our strategies in the remainder of this chapter with o = 0.5,
such that there is an equal mix of personal and social experience being used by
agents, there are differences in system behaviour evident from using o = 0 or
a = 1. Figures 7.3(a) and 7.3(b) show representative runs on an arXiv-SNS
network sample with each boundary value of a. The other network samples
display substantially the same behaviour, and as such we have omitted detailed

figures for them here. The behaviour with a@ = 0 is similar to a = 0.5, although
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Membership for top 5 strategies, arXiv-SNS, alpha = 0
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Figure 7.3: Figure showing membership counts for the top 5 strategies on arXiv-
SNS with (a) @« =0 and (b) a = 1.
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Prop. Rewarded 0.01 0.1

Reward Amnt. 10 50 100 10 50 100
Random 0.6 (12) 1.2(19) 1.0 (18) | 1.6 (24) 2.6 (70) 2.5 (66)
Degree 0.1 (20) 2.1(34) 2.2(29) | 3.2(34) 4.7(135) 4.7 (206)

Table 7.3: Increase in rank and membership (in parentheses) of targeted con-
vention after rewarding a proportion of individuals at ¢ = 0, selected either
randomly or by highest degree, with a = 0.5.

the membership of each convention is slightly reduced compared with a = 0.5.
When a = 1, and agents use only social experience in determining which strat-
egy to use, convergence is extremely quick and convention memberships only
change gradually after around 200 timesteps. Membership counts for individual
conventions are again slightly lower, and for both & = 0 and a = 1 the total
number of agents that are members of a convention are lower. For the remainder
of this chapter, we use a = 0.5, as we believe it realistic to assume that agents
will take into account both personal and social experience when determining
what strategies to choose.

Figure 7.4 shows the results of introducing population churn on the arXiv-
MHRWDA samples, such that one agent is randomly reset each timestep. We
see two main consequences: (i) conventions are less stable and membership
counts fluctuate more, and (ii) overall membership counts are reduced by up to
150 agents per convention. This is to be expected, since newly joined agents
are not counted as part of any convention until they reach 90% adherence over
their 20 most recent interactions. As such, it takes at least 20 timesteps before

an agent is counted as part of a convention.

7.5.2 Configuration 1: static population with no

pre-existing conventions
One-off incentives

The first strategy we examine is one-off incentives, wherein we reward either 10
or 100 targeted agents (i.e. a proportion of 0.01 or 0.1) by varying amounts, up

to 25 times the size of the maximum payoff attainable in a single interaction.
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Convention membership for arXiv-MHRWDA using PC=0.001
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Figure 7.4: Membership counts for each strategy on the arXiv-MHRWDA sam-
ple with one agent randomly reset every timestep, o = 1. There is a much
greater variability in convention membership, with lower average membership
counts, allowing IAs greater influence over which strategy becomes dominant in
the population.
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Table 7.3 shows that membership of the targeted convention rises, with a
corresponding increase in membership rank with (i) increased reward size and
(ii) increased proportion of agents rewarded. For rewards above 12.5 times the
maximum interaction payoff (i.e. for a reward of over 50), there are no further
gains in rank and these results are statistically indistinguishable (although there
is still a gain in the number of agents adhering to the targeted convention).
Rewards of around 12.5 times the maximum interaction payoff appear to form a
threshold over which there are hugely diminished returns. However, rewarding
more agents continues to be beneficial. The increase in rank and membership
rises proportionally with the total expenditure (i.e. in this case, the reward
amount times the number of agents targeted) up until the threshold mentioned
above. We also see significant gains in targeting high-degree agents compared to
random targeting. This corroborates research demonstrating the importance of
high degree nodes (e.g. Chen et al. (2009)), and rewarding these agents results
in large gains in both convention rank and membership.

To attain a significant increase in convention membership requires large ex-
penditure using one-off incentives, with a maximum average gain of 206 mem-
bers for a total reward expenditure of 5,000 — that is, the targeted convention
gains a maximum of 206 members, and this occurs when the total additional
payoff applied to agents is 5,000 (and is targeted by degree). Although trans-
lating our values for utility to real-world costs is difficult, the fact that this is so
much greater than the reward that agents can attain in individual interactions
suggests that it is impractically costly to apply this form of reward. Although
we only report results for @ = 0.5, we note that the results for o = {0,1} are

statistically indistinguishable from these.

Inserting TAs

Table 7.4 shows the results from inserting either 1 or 50 IAs into a population,
either randomly or placed by node degree. We use o = 0.5, and there is no

population churn. We have indicated the best result in each row in bold, and
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Obs. 0 1

IA Prop. 0.001 0.05 0.001 0.05
Inc. | Sanc. R D R D R D R D
1 1 1.1 (14) 2.2(132) 4.5(202) 4.6 (316) 0.6 (6) 2.1 (132) 4.5 (196) 4.6 (321)
1 15 1.7 (11) 2.8 (132) 5 (187) 5.1 (339) | 1.2 (23) 2.4 (131) 4.8(210) 4.9 (338)
1 5 0.4 (2) 1.0 (86) 3.5 (123) 4.5 (298) 0.6 (5) 0.9 (74) 3.2 (132) 4.8 (332)
1 10 -0.6 (-5) 0.9 (91) 3.2 (112) 4.5 (277) -0.8 (-10) 0.5 (88) 3.4 (128) 4.6 (298)
2 1 1.8 (17) 3.3 (149) 4.9 (235) 5 (394) 0.6 (7) 2.6 (147) 4.2 (262) 4.3 (372)
2 1.5 1.5 (-9) 8.1 (150) 4.7 (263) 4.8 (402) | 1.1 (-1) 3.8 (151) 4.8 (261) 4.9 (399)
2 5 0.7 (18) 1.0 (78) 3.9 (178) 4.3 (351) | 0.8 (22) 1.1 (73) 4.1 (192) 4.2 (331)
2 10 1.0 (2) 1.3 (97) 3.4 (162) 4.4 (308) 0.9 (5) 1.4 (98) 3.7 (144) 4.4 (322)
5 1 0.8 (6) 2.3 (85) 4.4 (222) 4.7 (332) 0.6 (4) 1.2 (78) 4.5 (214) 4.2 (340)
5 1.5 0.6 (6) 1.3 (82) 3.3 (201) 4.6 (321) 0.7 (2) 1.4 (80) 3.9 (228) 4.5 (338)
5 5 0.9 (9) 0.9 (37) 2.9 (198) 4.2 (298) 0.9 (5) 1.1 (90) 3.3 (182) 4.1 (302)
5 10 1.2 (15) 1.0 (73) 2.9 (167) 4.3 (301) | 1.1 (12) 1.1 (72) 3.0 (172) 4.2 (298)
10 1 0.5 (6) 1.4 (107) 3.5 (278) 4.7 (388) | 0.5 (5) 1.9 (78) 3.6 (260) 4.6 (370)
10 15 0.6 (6) 1.5 (116) 3.1 (266) 4.7 (376) | 0.6 (8) 1.3 (77) 2.9 (258) 4.6 (358)
10 5 0.5 (4) 1.1 (104) 3.1 (277) 4.3 (301) 0.5 (3) 0.9 (80) 3.3 (288) 4.3 (312)
10 10 0.9 (4) 1.0 (114) 3.0 (251) 4.1 (299) 0.8 (1) 1.3 (104) 3.3 (248) 4.2 (313)

Table 7.4: Convention rank increase and (in parentheses) membership increase
(over average numbers for simulation runs with no interventions) for the targeted
convention when varying proportions of TAs use incentives and sanctions within
their interactions. IAs are placed either Randomly (R) or by Degree (D). We
use @ = 0.5 and PC' = 0 (i.e. no population churn). The best result, in terms
of membership increase, in each row is shown in bold and the best result in
each column is italicised. “Inc.” indicates incentives, and “Sanc.” indicates
sanctions.

italicised the best result in each column. A number of interesting effects are
exhibited. Incentives are effective, but we witness a similar threshold effect
as with rewards: the best results are attained by doubling the reward of an
agent, but beyond that we observe no further increases in convention rank or
membership.

Conversely, sanctions appear to be counter productive — as we increase
the sanctioning amount, we see statistically significant decreases in convention
rank and membership counts. We believe this to be due to the non-selective
manner of sanctions: a heavy sanction will conclusively deter an agent from
choosing the sanctioned strategy again, but does not give any information about
which strategy should be chosen. This reduces the number of strategies that
an agent will choose from and may push it to choose another (non-targeted)
strategy which subsequently performs successfully. Sanctioning would thus have
the effect of strengthening adherence to other strategies, and only occasionally
would that strengthening effect be for the targeted strategy.

Observability of interactions has no statistically distinguishable effect on
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Placement
Inc. | Sanc. | Random | Degree
1 1 3.6 (65) | 4.6 (80)
1 | 15 | 3.4(82) | 45 (81)
1 5 | 2.1(33) | 4.4 (55)
1 10 2.0 (28) | 4.4 (51)
2 1 3.9 (72) | 4.6 (102)
2 1.5 3.9 (68) | 4.5 (98)
2 5 3.1 (38) | 4.5 (75)
2 10 3.1 (38) | 4.1 (68)
5 1 2.9 (40) | 4.3 (69)
5 | 15 | 2(41) | 45 (73)
5 5 2.6 (25) | 3.6 (53)
5 10 2 (24) 3.5 (26)

Table 7.5: The change in convention rank and membership for the targeted
convention when introducing 10 agents at ¢ = 0 using incentives and sanctions,
placed either randomly or by degree in a static population, with o = 0.5 and
obs = 1.

either convention rank or membership counts, and using one IA placed randomly
gives statistically significant effects in only around 50% of cases (see Table 7.4).
Furthermore, the increases in membership and rank from using incentives, while
statistically significant, are slight, and whether these benefits outweigh the cost
will be highly domain dependent. On average, an TA will participate in at least
4,000 interactions over the course of a simulation. Assuming an equal number
of adherents for each strategy, it will likely apply incentives in, on average, 1
in every 10 interactions (given 10 strategies, and one targeted strategy). This
results in at least 400 interactions where the IA at least doubles the reward
attained by the interaction participant. Assuming a doubling of reward (i.e.
the most effective incentive amount), this results in an additional expenditure
of 800, for (i) an average increase in rank of around 0.3 and (ii) around 50-60
extra convention members. IAs are, however, much more cost effective than
rewards: TAs without incentives will cost around 800 and can add around 130
agents to the targeted convention.

Table 7.5 shows the results from using 10 IAs (i.e. a proportion of 0.01)

under the same configuration. We can see that 10 agents, placed by degree,
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are sufficient to make the targeted convention dominant within the population.
However, the increases in convention membership are smaller, and scaling to
50 TAs results in further significant increases in membership. We see the same
effects regarding sanctions and incentives: sanctions are counter-productive, and
incentives produce a small increase up to a threshold level.

We note that Tables 7.5 and 7.4 show, for small numbers of IAs, a drop
in incentive efficacy as the incentive factor rises. This only occurs for small
numbers of IAs, and only when introduced at t = 0. It is unclear why this is
the case, but this effect does not translate to larger numbers of agents or our
results introducing TAs later on in the simulation. Since we believe that the
latter configuration is more realistic, we leave determination of the mechanism
behind these results to further work.

In summary, we draw the following conclusions when our strategies are ap-

plied in a static population with no pre-existing conventions.

e Both rewards and IAs are highly effective at manipulating conventions
when there are no pre-existing conventions in the population and the pop-

ulation does not change over time.

e Targeting each mechanism by degree facilitates large increases over ran-

dom targeting.

e Sanctions, applied by IAs in interactions, can be counter-productive, which
we believe is due to their non-specific nature. Interestingly, this runs
counter to other investigations into sanctions, such as Axelrod’s (1986)
investigation into norm enforcement. We believe that the reduction of
efficacy in sanctions that we observe to be a result of the increased con-

vention space (as discussed above) and other effects unique to our model.

e One-off rewards applied to individuals can add up to 200 individuals to
the targeted convention for a cost of around 5,000 (or an expenditure of
25 per additional member), while TAs can add around 130 individuals for

a cost of around 800 (or an expenditure of around 6 per agent). TAs are
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Prop. Rewarded 0.01 0.1

Reward Amnt. 10 50 100 10 50 100
Random 0.3 (10) 0.2(1) -0.1(-1)]0.6(13) 0.2(6) 0.5(13)
Degree -0.3 (-5) 0.4 (11) 0.6 (10) | 0.4 (11) 0.6 (9) 0.6 (11)

Table 7.6: Increase in rank and membership (in parentheses) of the targeted
convention (compared to average) after rewarding a proportion of individuals
at t = 500 selected either randomly or by highest degree, and using o = 0.5.

therefore much more cost effective than one-off rewards when manipulating

conventions.

7.5.3 Configuration 2: static population with pre-existing

conventions

The configuration considered in the previous section is an idealised case. In
practical instantiations of open MAS, we can expect the system to have been
running for some time before attempts to manipulate conventions are imple-
mented by interested parties. As such, conventions are likely to already be
established or be in the process of establishment when interventions occur. To
model this, we evaluated one-off rewards and IAs that are inserted into the pop-
ulation at ¢ = {500, 1000, 1500}. As noted in Section 7.5.1, the model transitions
to a stable state between ¢ = 1000 and ¢ = 1200, such that at ¢ = 500 there will
be significant precedence for each convention, and at ¢ = {1000, 1500}, we can
expect conventions to be becoming, or have become, stable and established.
When we introduce one-off rewards of IAs later in the simulation, their
efficacy is drastically reduced. Table 7.6 shows the results for one-off rewards,
and Table 7.7 shows the results for TAs (with Table 7.5 plotting the results for
TAs introduced at ¢ = 0, under the same configuration, for comparison). We
find that the reduction in efficacy is statistically indistinguishable for all three
non-zero values of ¢, indicating that the reduction in efficacy occurs due to
the early and middle stages of convention emergence. IAs perform significantly
better than rewards, and a proportion of 0.01 (i.e. 10 TAs) introduced from

t = 500 onwards facilitates, roughly, an increase of 1 rank in the targeted
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Placement
Inc. | Sanc. | Random | Degree
1 1 1.3 (12) | 1.3 (13)
1 | 15 1(8) |1.3(13)
1 5 | 1.2(13) | 1.5 (19)
1 10 1.6 (16) | 1.2 (15)
2 1 0.8 (10) | 1.4 (15)
2 | 15 1(9) | 1.7(16)
2 5 | 1.8(17) | 1(17)
2 10 0.2 (6) | 1.1 (15)
5 1 1.9 (20) 1(9)
5 | 15 | 2(20) | 1.3(14)
5 5 2.6 (25) 2 (23)
5 10 1 (14) 1.5 (16)

Table 7.7: The change in convention rank and membership for the targeted
convention when introducing 10 agents at ¢ = 500 using incentives and sanctions,
placed either randomly or by degree in a static population, with o = 0.5 and
obs = 1.

convention, when such a proportion introduced at ¢ = 0 results in an increase
of 3 or 4 ranks, and often allows the targeted convention to dominate. Rewards
give no statistically significant increases after ¢ = 500. These results indicate
that as the forces of precedence and mutual expectations become entrenched,
manipulation of conventions becomes correspondingly more difficult. In entirely
static populations manipulating established conventions is likely to be extremely
difficult, but static populations are not a realistic assumption: in typical real-
world open MAS we can expect some degree of population churn over time. We
hypothesise that a non-static population would be considerably more amenable
to manipulation, due to a larger number of agents that have not implacably

settled on a given convention.

7.5.4 Configuration 3: time-varying population with pre-

existing conventions

Our third configuration introduces a small amount of population churn: every
timestep, we reset one agent to represent an agent leaving and a new agent

joining. As discussed in Section 7.4, this is a very simple model of population
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Placement
Inc. | Sanc. | Random | Degree
1 1 1.1 (14) | 3.1 (129)
1 | 15 | 21(21) | 3.1(129)
1 5 | 24(22) | 3.1(88)
1 10 1.9 (29) | 2.9 (92)
2 1 2.2 (39) | 2.9 (123)
2 | 15 | 24(39) | 3(128)
2 5 1.9 (9) | 3.2 (132)
2 10 1.7 (11) | 2.9 (125)
5 1 2.1 (17) | 3.2 (125)
5 | 15 | 22(24) | 3(124)
5 5 2.2 (17) 3 (124)
5 10 2 (13) 2.7 (121)

Table 7.8: The change in convention rank and membership for the targeted
convention when introducing 10 agents at ¢ = 500 using incentives and sanctions,
placed either randomly or by degree in a population with 1 agent being replaced
per timestep, with a = 0.5.

Placement

Prop. Rewarded | Amount | Random | Degree
10 0 (0) 0.4 (36)

0.01 50 0.8 (8) | 0.3 (35)

100 | 1.0 (21) | 1.5 (56)

10 0.6 (8) | 1.2 (40)

0.1 50 1.4 (10) | 1.5 (48)

100 1.3 (9) | 1.4 (43)

Table 7.9: The change in convention rank and membership when applying one-
off rewards to agents at ¢ = 500 with PC = 0.001.

churn, chosen such that we do not run into problems associated with modelling
dynamic network topologies.

Table 7.8 shows the results of inserting IAs at ¢ = 500 with a population
churn of PC' = 0.001, and Table 7.9 shows the results of applying one-off re-
wards at ¢ = 500, also with churn. Population churn appears to allow IAs to
retain their effectiveness when conventions are established or in the process of
becoming established (although there is still a small drop in efficacy), while
rewards only regain marginal effectiveness. One TA is not sufficient to create a
measureable difference (and so we have not shown these results), but 10 IAs are

sufficient to attain significant gains in rank and membership for the targeted
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convention. Under population churn, we see a much higher degree of variance
between results, but there are clear trends. Firstly, incentives are much less
effective than when IAs are inserted at the start of the simulation, whether
with population churn or not. The biggest increases are still gained from the
presence of IAs at all, rather than their manipulation of the payoff structure.

Overall, the presence of population churn and 10 IAs results in a change of
around 3-4 ranks for the targeted convention, which is significantly closer to
the baseline results with TAs introduced at ¢ = 0 and no churn. Placement by
degree results in large increases in convention membership, although we do not
necessarily see such a large increase in convention rank. However, changes in
both rank and membership when placing by degree are statistically significant.
Our results support the intuitive hypothesis that conventions are most easily
manipulated when a large proportion of the society is undecided, and as conven-
tions become more established the potential for influence is drastically reduced.
Rewards and incentives are effective in these early stages, but do not make a
large impact after the early stages of emergence. In the middle and latter stages
of convention establishment, simply attempting to propagate a convention by
consistently adhering to a given convention has the greatest effect assuming a
minimal level of turnover in the population.

We hypothesise that since IAs are present over time, as opposed to the one-
off nature of rewards, they can continue to nudge the population as new agents
join and so can influence convention emergence more efficiently. In this respect,
TAs are equivalent to rewarding individuals small amounts over time rather than
large one-off payments. This hypothesis fits the framework of conventions: the
force of precedence is strengthened, by definition, by repeated choices in inter-
actions. A one-off reward may generate a small number of repeated “correct”
choices, where correct means that the agent uses the targeted strategy, but
if the individual is embedded in a topological area where another convention
dominates, the effect of the reward will quickly dissipate and the precedence of

other conventions takes over. Conversely, IAs generate a large number of iden-
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tical choices over time, and this significantly strengthens the force of precedence
for the targeted strategy over time. Moreover, IAs are more likely to influence
“churned” agents (i.e. newly joined agents) due to their longevity, whereas the

effect of rewards may well have waned by the time a new agent joins.

7.6 Conclusions

In this chapter, we have evaluated a variety of strategies for manipulating con-
ventions in a model with realistic assumptions. We show that one-off rewards
and Influencer Agents (TAs) applying incentives in interactions are highly ef-
fective in the early stages of convention emergence, when large parts of the
population are undecided, but their efficacy quickly wanes as the forces of prece-
dence stabilises conventions. A small group of TAs (essentially corresponding to
Boyer and Orlean’s (1992) external invaders) attempting to propagate a single
convention are much more effective, both in terms of real gains in convention
membership and rank, and in terms of expenditure versus the size of one-off
reward needed to attain significant increases.

The TA technique remains effective throughout the stages of convention es-
tablishment, as long as there is a minimal level of population churn introducing
new individuals into the population. Our results suggest that using many small
interventions is more effective than a small number of large interventions, par-
ticularly in the presence of population churn. In a static population, conventions
appear to be too stable to significantly influence once established, and we believe
techniques to destabilise conventions would be needed in such cases (e.g. such as
Villatoro & Sabater-Mir’s (2011) social instruments). Population churn is a re-
alistic assumption to make in many open MAS domains and our results support
the notion that established conventions in such domains can be manipulated.

Sanctions appear to be almost entirely ineffective, and often result in a
reduction in rank and membership for the targeted convention. We believe that

this is because a sanction only reduces the probability of an individual choosing
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a given strategy, and in a space with a wide variety of strategy choices the
agent may well be encouraged to use other strategies in subsequent interactions
that reinforce a convention other than the one targeted, creating the counter-
intuitive effect. In future work, we plan to investigate the use of more intelligent
sanctioning and rewarding strategies, to target incentives, sanctions and rewards
at those agents that are most likely to be either influential or amenable to

change.
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CHAPTER 8

Discussion and conclusions

The work outlined in this thesis investigates how mechanisms for cooperative
and coordinated behaviour can be applied to the specific challenges of open
multi-agent systems. Broadly, we focus on two factors which underpin the
interaction processes of agents in such systems, that is, information propagation
and network topology. In this chapter, we review the contributions made in this
thesis and (i) discuss the extent to which it has fulfilled its original aims, (ii)
evaluate the major limitations of the work presented and (iii) identify directions
for future research.

Our initial aims, described in Section 1.5, outlined the general directions for
our research. Our objectives were to (i) investigate the role of information prop-
agation and network structure in the emergence of cooperative and coordinated
behaviour, (ii) enhance the robustness of simple reputation mechanisms to the
challenges of open MAS, (iii) identify limitations in current models of convention
emergence and determine how to manipulate conventions and norms, and (iv)

determine how to exploit knowledge of the network structure constraining agent
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interactions. In general, we have fulfilled these aims as follows. Chapters 3 and
6 specifically deal with information propagation and network structure (i.e. our
first objective), and these processes are key themes in Chapters 5 and 7. The
investigations described in Chapter 3 demonstrate gossiping as an effective way
to improve the robustness of reputation mechanisms (i.e. our second objective).
Chapters 4, 5, and 7 present work identifying limitations in current convention
models and propose techniques for manipulating conventions and norms (i.e.
our third objective). The work in Chapter 6 demonstrates how knowledge of

the network structure can be exploited, in fulfilment of our fourth objective.

8.1 Contributions

e Using gossiping to mitigate the negative effects of incomplete
information and underlying network structures
In Chapter 3, we demonstrated that incomplete information and topo-
logical structure can significantly affect the operation of simple reputa-
tion mechanisms. Insufficient and incomplete information are key factors
through which support for cooperative behaviour is undermined in repu-
tation mechanisms, and we have demonstrated two configurations under
which simple reputation mechanisms are particularly vulnerable: (i) when
there is insufficient information about potential partners, such as when
agents are first entering a system, and (ii) when there is incomplete infor-
mation regarding potential interaction partners, such as when there is a
very high rate of interactions. We further identified the overall strategy
distribution of the population as a driver of incomplete information: if
there is a uniform mix of strategies in a population, there is increased
uncertainty over an individual’s strategy and decisions made on the ba-
sis of incomplete information are more likely to be incorrect. Norms and
conventions, which increase the certainty with which certain actions are

selected, are therefore useful techniques to reduce the effects of insuffi-
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cient and incomplete information and increase support for cooperative
behaviour. Gossiping mechanisms are shown to be an effective substi-
tute for direct observation of agent behaviour, and significantly increase
the levels of cooperative behaviour in a system. Our investigations were,
however, limited in two key respects: (i) the population size, and (ii) the
form of the underlying network structure. The majority of experiments
were run with n = 100 agents, and while we validated our contributions
with a small number of experiments with n = 1000, it will be necessary
to perform more large-scale experiments in future work. The majority of
the experiments were performed on synthetic networks, which are poor
models of real-world network structures (as demonstrated in Chapter 6).
We intend to test our techniques on a wide range of real-world networks

in future work.

Developing a new model of convention emergence

In Chapter 4, we identified several limitations in the descriptive power
of the current theory of convention emergence and used aspects of con-
vention emergence literature from several fields to synthesise a formalism
for describing convention emergence in open MAS. The key limitations
are that (i) typical definitions regard a single universal convention as the
ideal goal, when in practice this may not be desirable or attainable, and
(ii) current models do not propose ways of quantitatively measuring a
convention’s quality, support or stability. Furthermore, typical investiga-
tions into convention emergence use disparate models that are not easily
comparable. Our formalism is a response to these limitations in which
many models of convention emergence can be expressed and compared in

a uniform manner.

We subsequently introduce a model of convention emergence that is based
on Lewis’ (1969) idea of conventions as regularities, and which removes the

limitations of assuming that a single convention is the ideal goal. Specifi-
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cally, our model explicitly allows for the co-existence of multiple conven-
tions and can quantify the quality, support and stability of a convention.
Our model facilitates investigations into the middle and latter stages of
the convention lifecycle, which have been previously under-explored. The
work described in Chapter 4 opens up a variety of avenues for future re-
search. Firstly, we propose a number of new metrics describing convention
support, quality and stability, and in this thesis we have started to evaluate
whether they can aid our understanding of the behaviour of conventions
at different points in the lifecycle. Extending this evaluation to the variety
of metrics proposed in Chapter 4 is an important direction for future re-
search. Secondly, we propose linking notions of topological structure into
our metrics (for example, with the notion of connected convention compo-
nents), but an empirical evaluation of whether these additional concepts
are useful or not is beyond the scope of this thesis. Finally, one of our key
aims was to re-orient the definition of conventions to allow for multiple
conventions co-existing as an ideal aim. The quintessential example of
such a system is the El-Farol bar problem (see Chapter 4 for more de-
tails), and evaluating how our approach applies is key to validating its

usefulness.

Using Influencer Agents to manipulate convention emergence

In Chapter 5, we demonstrate the Influencer Agent (TA) concept, which
uses small groups of agents under the direction of interested parties to
control which convention emerges in a population. We show that (i) small
numbers of Influencer Agents are sufficient to manipulate the emergent
dominant convention, and (ii) Influencer Agents provide significant gains
in both the number of agents adhering to a convention and the speed of
convergence. IAs are very simple: they attempt to “lead-by-example”
by perpetually choosing a single strategy. This aids the establishment of
precedence for that strategy, and it consequently quickly spreads through-

out the population. We show that placing agents by degree, a common
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proxy for agent influence, leads to significantly increased efficacy in ma-

nipulating which convention a population settles on.

Using knowledge of the underlying network structure to identify
influential individuals

We further explore targeting the location of TAs in Chapter 6, which pro-
poses a methodology for learning the network value of an individual in
terms of its ability to influence the rest of the population. While corrobo-
rating previous research linking node degree with influence, we also show
that HITS, Eigenvector Centrality, and Edge Embeddedness are strong
predictors of the influence a given individual holds. We build prediction
models to identify particularly influential locations by exploiting knowl-
edge of the underlying network structure. Applying these models allows
significant gains in agent influence. In 2 of the 3 networks we investi-
gate, the best prediction models learn which of the four heuristics iden-
tified above best indicate agent influence. In 1 of the 3 networks, the
best prediction models identified a linear combination of metrics that pre-
dict influence better than any single metric. Finally, we demonstrate the
insufficiency of typical synthetic network generation algorithms in mod-
elling structures found in the real-world, and show that the wide variety of
structures found in such domains require adaptive mechanisms for efficient

exploitation.

Manipulating conventions in the middle and latter stages of the
convention lifecycle

In Chapter 7, we show that population churn is a key process for allowing
established conventions to be manipulated, and analyse the effectiveness
of sanctions, incentives, and one-off rewards in detail. Our approach to
sanctions and incentives, in which they are applied by IAs in individual
interactions, is designed to model how these mechanisms might be real-

istically applied, and we demonstrate that they are, in general, not cost-
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effective. We show that many small interventions are much more effective
at manipulating convention emergence than a small number of large inter-
ventions, and that in static populations none of our proposed techniques
are effective at manipulating conventions once the forces of precedence

have established and stabilised a convention.

8.2 Directions for future research

Aside from the specific future work described for some of the contributions
above, we can identify a number of general directions in which to take the work

developed in this thesis.

e Combining trust, reputation, norms and conventions
In Chapter 3, the strategy distribution of the population is identified as a
potential driver of incomplete information, which subsequently increases
the number of “incorrect” choices that agents make in interactions. These
choices have two consequences: the agent incurs personal costs, and the
level of cooperation in the overall population falls. Norms and conventions,
which reduce the diversity of the strategy distribution of the population,
may be an effective complement to trust and reputation systems in sup-
porting coordinated and cooperative behaviour. In this thesis, we have not
investigated this hypothesis and evaluating the extent to which norms and
conventions aid populations of agents equipped with trust and reputation
mechanisms is therefore a key direction for future research. Supplement-
ing norms and conventions with trust and reputation (i.e. as opposed to
supplementing trust and reputation with norms and conventions) may also
be beneficial, in that agents could decide on whether to adopt a norm or
convention based on the reputation of those already adhering. This would

reduce the influence of agents adopting undesirable conventions.

e Practical validation of our convention formalism and theories of

convention emergence
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The work described in Chapter 4 attempts to re-orient traditional theories
of convention emergence so as to account for several identified limitations.
We propose a formalism with which models of convention emergence can
be described in a unified manner, with the aim of facilitating direct com-
parison. We further propose a new definition of convention and develop
several metrics for describing their quality, stability and support. While
a fundamental first step, practical validation of the usefulness of these
contributions is necessary. For example, it may be valuable to measure
the evolution of convention metrics over time in traditional models (e.g.
Sen and Airiau’s (2007) or Salazar et al.’s (2010b)) and evaluate what
additional insight they provide in the original results. We believe that
empirical experiments into how these metrics change over time may re-

veal much about the nature of convention emergence.

Extending IAs

The preceding three chapters (i.e. Chapters 5, 6 and 7) primarily use the
TA mechanism as a tool for manipulating convention emergence. We have
demonstrated that they are particularly effective, but their implementa-
tion remains simplified. We expect that significant gains in efficacy could
be made with more complex TA strategies, including intra-IA collabora-
tion. Furthermore, we have only tested IAs in two models of convention
emergence. Future work must therefore involve (i) identifying further
strategies IAs can use to influence a population and (ii) determining how

to apply IAs in real-world application domains.

Further validation on real-world networks

A particular focus of this thesis is the effect of the underlying network
structure. For Chapters 3, 5, and part of 6, our investigations were based
on networks generated by synthetic network generators, which attempt to
model features of networks found in the real world (i.e. the small-world and

scale-free properties). While we perform a small number of experiments
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that suggest that these results generalise to real-world networks, we find
in Chapter 6 that synthetic generators create particularly poor models
of real-world networks. While Chapters 6 and 7 demonstrate that the TA
mechanism is generalisable, our work in Chapter 3 requires more validation

on real-world networks before we can truly claim that it can be generalised.

e Linking network structure with conventions
In Chapter 4, we discuss how the metrics that quantify convention sup-
port, stability, and quality might be linked with notions of topological
structure: for example, determining if conventions are more stable when
the network induced by adhering agents is connected. Network structure
is known to have a significant impact on convention emergence (e.g. Pujol
et al. (2005)) and incorporating notions of network structure into our mod-
els of convention emergence is a key step in understanding these processes

more fully.

e Dynamic network topologies
In real-world applications we can also expect network topologies to be
constantly changing: that is, they are dynamic rather than static. We
have not included models of topological dynamism in our research for
two reasons: (i) research into dynamic networks is still in its infancy,
and given our results with static network generators we do not feel that
incorporating notions of topological dynamism would necessarily increase
the applicability of our results, and (ii) the processes which alter network
topology (namely, how and when agents join and leave a network, and
how connections between agents are created) are highly domain-specific
and implementing specific rules for dynamism would reduce the generality
of our work. However, our work is still limited by its use of static network
topologies, and in the future we will investigate the techniques introduced

in this thesis in the context of topological dynamism.

e Further topological extensions
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A minor limitation of our work is that all the networks used are treated as
undirected. While there do exist domains in which edges must be treated
as directed, in many typical open MAS the edge represents reflexive con-
cepts, such as being able to mutually communicate or observe behaviour.
We, in general, believe our work generalises to directed graphs, although
this must be tested in future work. We note one exception to this, namely
that the random-walk based sampling techniques described in Chapter 6
(such as MHRW and MHRW-DA) are not defined for directed graphs,
and substitutes would have to be used. Initial work investigating substi-
tutes for directed graphs does exist, such as that proposed by Wang et
al. (2010).

8.3 Final remarks

In this thesis, we have examined trust, reputation, norms and conventions and
their use in supporting cooperative and coordinated behaviour in open MAS.
We have significantly extended the theory of conventions and shown how they
can be manipulated, using a mechanism highly applicable to the challenges of
open MAS (i.e. Influencer Agents), at all stages of the lifecycle. Conventions
and norms are powerful mechanisms for coordinating large populations, and
our work in Chapter 3 suggests that they can significantly reduce the impact
of incomplete information when used together with techniques for trust and
reputation.

There are two major themes which run throughout this thesis, namely that
of network structure and that of information propagation.

The role of network structure cannot be understated. In each chapter in
this thesis, the underlying network structure had significant impacts on the
behaviour of agent populations. In Chapter 6, we demonstrated that there exists
a huge gap between the structures generated by synthetic network generation

algorithms and those that are found in the real world, and the complexity and
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properties of real-world networks remains an open research area. We believe
that conventions and network structure can be linked, as discussed in Chapter
4, and this linking may illustrate further influences of network structure on the
behaviour of conventions.

The propagation of information throughout a population also has significant
impact. In Chapter 3, the use of gossiping to increase available information
regarding potential interaction partners significantly reduced the levels of self-
ishness. In Chapter 5, TAs manipulate convention emergence by making other
agents observe their strategy selection repeatedly, which then gets propagated
through the population.

These two factors influence the behaviour of agents in all open multi-agent
systems, and determining how they impact mechanisms that support the emer-
gence of cooperative and coordinated behaviour is fundamental to applying such
techniques in open MAS. We believe that the work in this thesis is a key step

towards this goal.
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APPENDIX A

Network structures

Complex network structures underpin the majority of open MAS domains. Ac-
cordingly, a thorough understanding of the impact of network structure is nec-
essary when designing mechanisms for promoting cooperative and coordinated
behaviour. In this appendix, we review the network concepts at the core of
the research presented in this thesis, and review common issues in research
into network structure and its impact on open MAS. While investigation of the
impact of network structure is an important theme throughout this thesis, we

investigate networks in most detail in Chapter 6.

A.1 Introduction

In many investigations into conventions, norms, trust and reputation in multi-
agent systems, agents interact with others that are selected randomly from the
entire population (e.g. Axelrod (1986), Nowak & Sigmund (1998), Vylder (2007)).

This is as an idealised situation, since in practice an agent’s choice of interac-
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tion partner is constrained by notions of connectivity or location. For example,
nodes in a P2P network can only interact with those they are connected to,
and nodes in MANETS or wireless sensor networks can only interact with those
within transmission range. Agents wishing to interact with others outside their
immediate neighbourhood depend on intermediate agents to re-transmit their
communications. The network structures that typically constrain the connectiv-
ity of agents in this way are highly complex (Albert & Barabasi, 2002) and have
a number of common properties, such as power-law connectivity distributions
or logarithmically-bounded path lengths.

Network analysis can significantly enrich understanding of complex sys-
tems in a variety of fields (Stephenson, 1989), including biology (e.g. McDon-
ald (2007)), computer science (e.g. Delgado (2002)), and economics (e.g. Delre
et al. (2010)), and networks have been shown to have significant influence on
the behaviour of agent populations (Cohen et al., 2001; Delgado, 2002; Nowak,
2006; Pujol et al., 2005; Szabé & Fath, 2007; Villatoro & Sabater-Mir, 2011).
We are only just beginning to understand the complexity of networks found in
the real world, and many features remain under-investigated (Abdallah, 2010).

We are interested in understanding how the aggregate behaviour of individ-
ual agents affects the trajectory of the entire society, and as such the study of
MAS is intimately linked with the study of topological structure. The spread
of conventions, social norms and information (such as trust assessments) relies
on the pattern of connections between agents, and the robustness and stability
of these systems is intertwined with their social structure.

Since networks model a wide variety of systems, there is considerable dis-
parity between fields as to the exact interpretation of many terms and concepts.
In this chapter we define the terms and concepts we use in the remainder of
this thesis, so as to avoid confusion. Where not explicitly referenced, definitions
are taken from Easley and Kleinberg (2010), Barabasi and Albert (2002) or
West (1996).
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A.2 Network concepts

This section introduces the core network concepts used throughout this thesis.

A.2.1 Basic definitions

We define a graph G as a set of vertices, or nodes, and a set of edges connecting

those nodes as

G=(V,E)

Graphs can be either directed or undirected, mandating that edges are either
an ordered or unordered (respectively) pair e; = (v;,v;) : v;,v; € V,e; € E.
In this thesis we concentrate on undirected graphs, since (i) we typically define
connections as representing reflexive concepts such as direct communication or
interaction ability and (ii) certain sampling techniques (discussed in Section
A.3.4) do not generalise to directed networks. Edges can be associated with
weights representing concepts such as bandwidth, trust assessments, or geo-
graphic distance. Such graphs are called weighted graphs. In this thesis we
focus on unweighted graphs, and we define most concepts with respect to un-
weighted, undirected graphs, unless otherwise stated.

The degree, k, of a node is the number of edges incident to that node. The
neighbourhood or neighbour set of a node v; contains all those nodes that are

directly connected, such that
N(vi) = {vg : v €V, (vg,vi) € E}

Typically, an agent is only able to directly communicate or interact with
those in its neighbourhood. The degree of a node is equal to the neighbourhood
size k; = |N(v;)].
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Paths

A path between two nodes is an ordered list of nodes defining a traversable
route from one node to another, meaning that every consecutive pair of nodes
in the list must be joined by an edge. The shortest path is the path between two
nodes with the fewest hops, which is also called the geodesic path. We are often
interested in the shortest path length as a useful measure of graph structure,
since small shortest path lengths confer significant benefits on a population
(see below). The diameter of a graph is typically defined as either the average
shortest path length over all pairs of nodes, or the largest shortest path length
over all pairs of nodes. Both are useful metrics, and so we use the definition
that the diameter is the largest shortest path length, so as to measure the upper
bound, and we refer to the average shortest path length as the characteristic

path length (Watts & Strogatz, 1998).

Connectivity

We say a graph is connected if there exists a path between every pair of nodes.
In practice, this may not be the case, in which case we call the largest sub-
sets of nodes that are connected connected components. Typically, in real-world
networks we see one giant component, which may account for upwards of 90%
of the nodes in the graph, with a few small connected components existing
separately. We can further say that a graph is completely connected if every
single node is connected to every other node, in which case there are n(n —1)/2

edges in a graph with n nodes.

Static/Dynamic

Finally, we say that a graph is static if the set of nodes and edges remains
constant throughout the period for which we consider, and dynamic if either or
both sets change (either through addition or deletion) with time. Realistically,
we expect an element of malleability in both the set of nodes and edges, since

agents can join or leave a system, and potentially rewire their connections. The

236



A. Network structures

study of dynamic topologies is less developed than that of static topologies, and
static topologies are often implemented in models as a useful middle ground
between the completely-connected abstract space of idealised situations and the

highly dynamic practicalities of real-world domains.

A.2.2 Global graph properties

The topology of the network through which agents communicate or interact
with each other has important implications for the efficiency of information
propagation, robustness to targeted and random malicious action, and support
for social constructs such as reputation or social norms. Consequently, there
have been varied and extensive attempts to conceptualise the local structure
of connections around a node using more advanced metrics. Although many
metrics are heavily dependent upon each other, they each capture different
aspects of network structure. These properties are used to characterise network

samples throughout the thesis.

Characteristic path length

The characteristic path length is an important metric for quantifying how easily
information can propagate across a network. Typical real-world networks tend
to have proportionally low characteristic path lengths, implying low communi-

cation overheads.

Clustering Coefficient

The local clustering coefficient (LCC), initially introduced by Watts and Stro-
gatz (1998), measures the probability that any given neighbour of a node v; is
also connected to another neighbour of that node. It is thus calculated by taking
the number of edges that exist between the neighbours of v;, which we denote
E;, and dividing by the total number of edges that could exist. Accordingly,

LCC is calculated as
2 x FE;
Cy=———"_
ki(k; — 1)
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For directed graphs, the result is divided by 2. The LCC can also be equivalently
defined in terms of triadic closure, since a neighbour forming a connection to
another neighbour is creating the third side of a triangle consisting of the node
under consideration and the two neighbours.

A high LCC value indicates that most neighbours are also connected to
other neighbours. This often indicates the presence of community structure
(see below for details). A node in a group with significant clustering is highly
visible, in the sense that neighbours can easily communicate with each other
about an individual’s activities even if only a small sub-set actually observe such
activities. Furthermore, information can be propagated very quickly throughout
a highly clustered group, with direct connections between a large proportion of
the agents. Real-world networks are typically highly clustered.

We often refer to the clustering coefficient of an entire graph to characterise
the general structure in aggregate. This can be defined either as the average
LCC over all nodes, or using the ratio of closed triangles to connected triples of
nodes. Both definitions give the same value, and for the purpose of this thesis we
adopt the former definition, such that the Global Clustering Coefficient (GCC)

of a graph G is given by

GCC(@) = % > LCC(v)

v; €V
Average Neighbour Degree and Joint Degree Distribution

Intuitively, nodes with a high degree are likely to be more important than nodes
with a low degree, increasing the connectivity and clustering of a network and
acting as components of many more shortest paths. However, if a highly con-
nected node is connected only to nodes with a low degree, that importance might
be diminished. Conversely, a node connected to many other highly connected
nodes is able to reach a much larger sub-set of the population in only 2 hops.
As such, we need a measure of whether a node tends to be connected to high

degree or low degree nodes. We call this the Average Neighbour Degree (AND),
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defined as

> N(w)

v EN (v;)

AND; =
|N(”z‘)|

cv, v EV

An extension of this idea is the Joint Degree Distribution (JDD), which measures
the probability of a given node of degree k; connecting to nodes of degree k;.
Mislove et al. (2007) approximate this using the degree correlation function k;;,
which maps the degree of node ¢ with the average degree of all nodes connected
to i. This approximation is equivalent to the AND metric, and as such AND
approximates the full JDD. We do not use the JDD as a metric in this thesis
since it is a statistical measure that characterises a full network. Instead, we
use AND, where relevant, as a property of an individual node.

Related to this is the scale-free metric, proposed by Li et al. (2005) as a
response to perceived problems with scale-free characterisations in the literature
(see below for discussion of scale-free networks). The scale-free metric measures
the extent to which a graph displays scale-free properties (Li et al., 2005). It is

defined for a given graph G as

s(G) = (ki x kj)
(vi,v5)EE
If s;naz is the maximum value of this metric for all graphs with an identical

degree distribution as G, then

s(@)

Smam

S(G) =

When this value tends to one, the graph is considered scale-free. Theoret-
ically this measure allows a strong characterisation of how scale-free a graph
structure is, but typically it is impractical to calculate, especially given the
difficulty of determining s,,qz-

Li et al. (2005) have incorporated the node degree distribution and the joint

degree distribution into a single measure — the scale-free metric is maximised
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when highly-connected nodes tend to connect to other highly-connected nodes,
and minimised when highly-connected nodes tend to connect to nodes with low
degree.

Together, these metrics allow us to characterise not just the properties of
single nodes (or entire populations), but the local structure of nodes and edges
around a given node. This local structure has been implicated in a number of
varied and surprising effects, and understanding local network structure is key

to understanding the operation of social processes on that network.

Network heterogeneity and density

The density of a network is the normalised form of the average node degree,
such that a network with density 1 is indicative of a completely connected
clique, and a density of 0 indicates a network with no edges. Density is thus
highly correlated with clustering coefficient.

Network heterogeneity is defined by Dong and Horvarth (2007) as the stan-
dard deviation of node degree values divided by the mean node degree. As
such, it encapsulates the tendency for nodes to be hubs, wherein a high value
indicates that there exist nodes in the network with disproportionately above-
average node degrees. Hubs have been implicated in a wide variety of network
properties, such as the weakness of scale-free networks to targeted attacks and
their converse robustness to random malicious action, and the low characteristic

path lengths of many real-world networks.

A.2.3 Metrics of topological location

In the same way that the properties described above characterise entire net-
works, it is possible to characterise the properties of an individual node and its
location within a network. Node degree, discussed above, is the quintessential
example, but there also exist a huge number of other metrics. We look at these
metrics of individual location in detail in Chapter 6, in which we investigate the

extent to which knowledge of topological structure can be used to increase the
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level of influence that an agent has over the rest of the population. Accordingly,

we give a detailed description of common metrics in Section 6.4.

A.2.4 Network structures

Much research in recent years has focused on the complex structures exhibited
by typical real-world networks. These structures give the networks intriguing
properties, the most important of which are (i) a scale-free degree distribu-
tion, (ii) path lengths bounded by the logarithm of the number of nodes in the
network (i.e. the small-world property) and (iii) highly clustered communities.
Newman (2003) reviews these properties in significant detail. Throughout this
thesis, we use results derived from simulations incorporating real-world network
structures that display these properties. Aside from characterising the structure
of these networks, these properties often provide an explanatory mechanism for

agent interaction behaviour.

Scale-free degree distribution

Real-world networks typically exhibit a power-law degree distribution, where
the probability of a node having a given degree k is given by pr o< k77, with
v being specific to the network in question. Cohen and Havlin (2003) have
shown that scale free networks with 2 < v < 3 have diameter d « IninN, and
Albert and Barabdsi (2002) have shown that a huge variety of real-world net-
works exhibit scale-free degree distributions, including the internet (also shown
by Faloutsos et al. (1999)), the world-wide web, protein folding networks, and
many instantiations of the human social network including sexual contact net-
works and academic collaboration networks. Mislove et al. (2007) have demon-
strated scale-free and small-world (see below) properties in Flickr!, YouTube?,

LiveJournal® and Orkut?.

Lhttp://flickr.com
2http:/ /youtube.com
Shttp://livejournal.com
4http://orkut.com
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In practice, a scale-free degree distribution results in the existence of hub
nodes which have significantly greater than average degree and act to link dis-
parate clusters of individuals. This means that scale-free networks are highly
resistant to randomised malicious action (since the majority of random attacks
will miss the hub nodes) but vulnerable to targeted attacks. Albert et al. (2000)
found that randomly removing 5% of nodes did nothing to change network con-
nectivity, but removing the top 5% most connected nodes doubled the diameter.
In networks that are not scale-free, but instead show an exponential decay in
degree (e.g. random networks), the change in connectivity increases monotoni-
cally with the number of nodes removed no matter what order those nodes are

chosen in.

Small-world path lengths

The term small-world describes networks in which the characteristic path length
is small compared to the number of nodes in a network. In general, the small-
world property is taken to mean that the characteristic path length grows log-
arithmically with the population size (Watts & Strogatz, 1998). Kleinberg’s
model of small-world networks (Kleinberg, 2000) generates graphs on which
nodes can communicate along shortest paths using local information only. Ac-
cordingly, small-world networks have highly desirable properties concerning in-
formation propagation, and most real-world networks exhibit small-world prop-

erties (Wang, 2003).

Community Structure

Especially in the natural world, networks often display community structure:
groups of nodes with high levels of internal connectivity compared to the rest
of the network. These clusters, characterised by large LCCs, facilitate inter-
nal communication between nodes and, due to the high internal connectivity,
render agent behaviour more visible to others. Determining community struc-

ture in networks remains an open research problem, however Newman and Gir-
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van (2004) have demonstrated promising results using edge betweenness met-
rics®. Leskovec et al. (2009) have shown that clusters of nodes remain highly
internally connected and sparsely connected to the external network up to sizes
of around 100 nodes, but after this the structure merges with the larger network
and the community structure disappears. Clustering, and by extension commu-
nity structure, can have significant impacts on agent processes (e.g. Pujol et

al. (2005)).

Other structural properties

A number of other structural properties can be used to characterise typical
real-world networks. For example, Sridharan et al. (2011) have shown that the
embeddedness distribution in online social networks shows a scale-free distri-
bution, and that a random k-tree network model can capture this behaviour,
and Palla et al. (2005) have shown that the size of communities of overlapping
cliques also exhibits a power-law distribution. The full implications of these are
yet to be realised and there are likely to be a wide variety of as yet undocu-
mented structural properties found in real-world networks that impact on the

internal processes of open MAS.

A.3 Issues in topological research

This section discusses typical issues encountered in research into network struc-
ture, and its impact on open MAS. These issues underpin the work presented
in this thesis and demonstrate the significant influence of network structure on

agent systems.

A.3.1 Dynamism of networks

Given that we consider MAS in which agents join and leave freely, we can rea-

sonably expect real-world instantiations to exhibit dynamic network topologies,

5See Chapter 6 for a discussion of betweenness.
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with both the set of individuals and the connections between them changing
over time. However, investigation into dynamic network topologies is still in
its infancy, and accurately modelling dynamic topologies is likely to require a
deep understanding of the domain-specific mechanisms that generate topologi-
cal features. Consequently, static networks are used in the majority of research
as a useful middle-ground between fully-connected populations and dynamic
networks. While there are a small number of algorithms for generating dynamic
networks that exhibit complex properties (e.g. Gonzalez et al. (2006)), there has
been relatively little research into their efficacy in modelling specific domains,
and we cannot therefore guarantee generality. Accordingly, the work in this

thesis focuses on static network topologies.

A.3.2 Impact of network structure in MAS

As discussed above, network structure has significant impact on the behaviour of
agent populations. This section provides a brief overview of work investigating
the importance of the underlying network constraining agents.

Delgado (2002) has shown that the speed of convention emergence is highly
dependent on underlying network structure and that scale-free networks are as
efficient as fully-connected graphs in this context. Kittock (1993) also demon-
strates significant impacts on convention emergence, and Pujol et al. (2005)
have implicated clustering in the efficiency of convention emergence.

Since information propagation is fundamental to mechanisms that support
cooperative behaviour, and since information requirements may be high (Bolton
et al., 2005), the ease of propagation of information in networks characterised by
scale-free degree distributions and small-world path lengths is particularly inter-
esting. Infections are particularly easily spread through such networks (Huang
et al., 2008; Pastor-Satorras & Vespignani, 2001), and Glinton et al. (2010) note
that network structure and density can impact the correctness of beliefs assessed
from uncertain evidence provided by neighbours.

Introducing constraints on agent interactions in the form of overlay networks
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has been shown to support cooperation and increase system efficiency. Cohen et
al. (2001) use a tag-based model of cooperation, equivalent to imposing an over-
lay network constraining agent neighbourhoods, and show subsequent support
for cooperative behaviour in repeated Prisoner’s Dilemmas. Condie et al. (2004)
have shown that modifying the topology in file-sharing P2P networks can give
significant gains in system efficacy and resistance to malicious action.

There has been significant research interest in non-computational fields re-
garding how systems are affected by their constraining network structure, and
whether the location of a node in that structure is predictive of some notion
of power or influence. McDonald (2007) shows that information centrality, a
metric quantifying an individual’s location in a network similar to closeness
centrality (introduced in Chapter 6), is predictive of male reproductive success
in long-tailed manakins. Bonacich (1987) proposes a measure of centrality that
predicts power in exchange networks (networks in which individuals bargain
with items of value), where it has since been shown that traditional centrality
measures were ineffective (Cook et al., 2010). Fagyal et al. (2010) have demon-
strated that both central and peripheral individuals have significant roles in the
spread of linguistic innovations. These results demonstrate the power of network
analysis in enhancing our understanding of complex systems but also illustrate
how different domains are affected in highly disparate ways by the underlying
network. In Chapter 6, we investigate in detail the extent to which knowledge
of network structure can be exploited by designers looking to increase levels of

cooperation and coordination.

A.3.3 Synthetic networks

Many algorithms have been proposed to generate artificial networks that ex-
hibit features of networks found in the real world for research purposes. While
these algorithms are effective at reproducing the few structural properties un-
der consideration, there are currently no algorithms to generate networks that

exhibit the full range of structural properties observed in the real world. Ulti-
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mately, real-world networks tend to be scale-free, small-world and highly clus-
tered, whereas networks generated algorithmically exhibit at most two out of

these three properties.

Erdos-Renyi Random Graphs

Random networks are those in which each pair of nodes is connected with con-
stant probability p. They were initially studied by Erdos and Renyi (1960),
and have been extensively investigated since. While random networks are no
longer thought to be accurate models of real-world networks, their insights have
inspired innumerable contributions since, and they are useful as a baseline for

comparison with networks that display more complex structures.

Barabasi-Albert

Barabasi and Albert proposed a network generation algorithm based on network
growth, in which new nodes are iteratively added to the network through pref-
erential attachment (Albert & Barabdsi, 2002), in which nodes with a higher
degree have an increased probability of connection to new nodes. These con-
cepts are observable in the majority of complex real-world networks, such as
the internet (new websites are more likely to link to well-known sites than those
that are not) and the human social network (well-connected people are further
introduced to more people).

The algorithm proceeds by iteratively adding new nodes (until reaching some
pre-defined size) and connecting each new node to m (where m is a parameter
of the algorithm) existing nodes with a probability proportional to the current
degree of each existing node under consideration. The model generates scale-free
networks with v = 3. The networks are also small-world, with a characteristic

path length that increases with the logarithm of the number of nodes.
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Eppstein power-law

Eppstein and Wang’s (2002) generation algorithm was developed to model the
world wide web without requiring incremental growth. The algorithm proceeds

as follows, while maintaining constant size and density.
1. A random node, v, with degree greater than zero, is chosen.
2. Pick v randomly from the neighbour set of v.
3. Pick another node x at random.
4. Pick a further node y with probability proportional to y’s degree.

5. If x and y are not the same node and there does not exist an edge con-
necting « and ¥y, then add this edge and remove the edge connecting u

and v.

This process is iterated r times, where r is in the order of millions. As
r — 00, the degree distribution of the network tends to a scale-free power law,

with ~ typically around 1.5.

Kleinberg small-world

Kleinberg’s small-world generation algorithm (Kleinberg, 2000) is based on the
observation that short paths in real-world networks are often not only present
but determinable using only local information. Kleinberg’s algorithm starts
with a toroidal lattice of nodes, such that each node has initial degree four, and
adds additional long-range edges between nodes with a probability inversely
proportional to the Manhattan distance between them, i.e. P(connection)
D~%. Kleinberg found that at a = 2, the time for a decentralised greedy

algorithm to find the shortest path between two nodes is O((logIN)?).

A.3.4 Sampling real-world networks

Given the limitations described above concerning algorithmically generated net-

work topologies, several different real-world network datasets have been used in
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research in conjunction with networks generated artificially. Verification of em-

pirical results across generated and real-world datasets support the conclusions

in this thesis, and analysis of the differences between generated and real-world

networks helps identify the limitations and specific properties or motifs of each.

Since real-world networks are typically very large, it is often necessary to

generate smaller samples that reproduce the structural properties observed in

the full network. In this section, we briefly discuss common sampling mecha-

nisms, and we provide a more detailed discussion in Chapter 6.

There are a number of sampling techniques. Each starts at a random node,

and progressively adds nodes to a sample set until a threshold is reached.

1. Breadth-first search (BFS)

In each iteration of BFS, all the neighbours of sample set nodes that are

not already in the sample set are added, until the threshold is reached.

. Snowball-sampling (SNS)

SNS proceeds identically to BFS, except that within each iteration, if
adding all the new neighbours to the sample set would push the sample set
past the threshold, neighbours are chosen randomly from those available

until the threshold is reached.

. Random-walk (RW)
A random walk adds one node at a time, by following a random walk
through the network from the start node. Each neighbour is chosen with

uniform probability.

. Metropolis-Hastings Random Walk (MHRW)

A random-walk with transition probabilities biased away from high-degree
nodes, in an attempt to generate a uniform sampling of nodes from the
network. Initially investigated by in the context of real-world sampling
by Gjoka et al. (2010), who demonstrated that MHRW produces a uni-

form sampling of nodes from the full network and effectively preserves the
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node degree distribution, which is an essential component in the study of

complex networks (Gjoka et al., 2010).

5. Metropolis-Hastings Random Walk with Delayed Acceptance
(MHRW-DA)
Initially introduced by Lee et al. (2012), MHRW-DA is the same as MHRW
with an additional modification of transition probabilities to reduce the
likelihood of revisiting nodes. MHRW-DA covers more of the network

when sampling, increasing the estimation accuracy.

6. Albatross sampling
Introduced by Jin et al. (2011), Albatross sampling is a random walk with
modified transition probabilities and a chance of randomly jumping to
another node in the network, in order to gain greater coverage and avoid
problems associated with sampling networks with multiple connected com-

ponents.

BFS, SNS and RW are all known to be biased towards high-degree nodes,
distorting the structure of the sampled network away from that of the full net-
work (Gjoka et al., 2010). However, BFS and SNS produce good coverage of the
local area around the start node. As such, they are subject to greater variation
between samples but may be useful for ensuring that a wide variety of structural
properties are tested. MHRW, MHRW-DA and Albatross have all been shown
to converge towards the node degree distribution exhibited in the full network
being sampled. There are no guarantees about the reproduction of any other

metrics or structural properties.

A.4 Conclusions

In this appendix, we have described the important features of networks, dis-
cussed the significant role network topology has in agent research, and discussed

typical issues in network research that impact the work described in this thesis.
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The role of network topology cannot be underestimated and is a key theme
throughout this thesis. In particular, we focus on network structure in Chapter
6, and we provide further detailed discussion regarding networks in Sections

6.2.1, 6.4, 6.4.2, and 6.5.
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APPENDIX B

Common convention emergence models

This appendix demonstrates how common models of convention emergence can
be expressed using the formalism developed in Chapter 4. Specifically, we focus
on (i) Sen and Airiau’s (2007) model of social learning with private interactions,
(ii) Walker and Wooldridge’s (1995) model of conventions focusing on strategy
update mechanisms, and (iii) Villatoro et al.’s (2009b) model with interaction
payoff based on agent history. We provide a brief summary of each model before
describing them in detail using our formalism. All the notation we use is defined

in Chapter 4, in which it is summarised in Tables 4.2, 4.3, and 4.4.

B.1 Social learning with private interactions

In the scenario proposed by Sen and Airiau (2007), agents are paired randomly
from the population and engage in a coordination game, analogous to vehicles
meeting at an intersection and deciding whether to yield or go. Interactions

are private, with no external observers, and participants know the payoff and
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strategy of the other participant (although identities are hidden). The payoff
that agents receive is determined by a static payoff matrix. Agents are chosen
as either row or column player (with respect to the payoff matrix), and learn

independent strategies for each situation.

B.1.1 Model description

Using our formalism, we can describe this scenario as follows.

The interaction regime, given in Algorithm 3, returns a set of interactions
with each agent participating at least once (i.e. ip = 1) with a neighbour
chosen uniformly at random. The underlying network structure G is completely
connected in the formulation used by Sen and Airiau (i.e. each agent is connected

to every other agent).

Algorithm 3 Interaction regime for Sen and Airiau’s model of social learning

: //1 is set of interactions
: //d is the current dimension being investigated
: for all Agent € Population do

Partner < get RandomN eighbour(Agent)

I + TUu({d,(Agent,oy,row), (Partner, oe, columny))
end for
return [

NP g W

The agents’ payoffs are given by a static payoff matrix. Sen and Airiau
use two different matrices: (i) a standard coordination game, and (ii) a social
dilemma game. The payoffs are given in Table B.1. Sen and Airiau’s motivating
example of cars meeting at an intersection doesn’t translate to the coordination
game, and accordingly strategies are labelled 1 or 0 instead of go or yield. The
coordination game is analogous to other rules of the road, such as driving on

the left or right.

Since there are two payoff functions, with different equilibria, we split the model
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| 0 | 1 | Go | Yieldy
0 44 |-1-1 Go |-1-1| 32
1] -1-1] 44 Yieldg | 23 | 11
(a) (b)

Table B.1: Payoff matrices for (a) the coordination game and (b) the social
dilemma game.

into two dimensions, each with two roles, such that

D = {junction, coordination}, R{;junction,coordination} = {roW,column}

Both roles have the following possible strategies in their respective dimensions:

Ejunction,{row,colum,n} = {gO,yleld}

2000'rdination,{'r‘ow,colu'rrm} = {17 0}

These dimensions represent the different games used by Sen and Airiau.
The junction dimension involves agents deciding whether to yield or go at a
junction, whereas the coordination dimension involves agents deciding whether
to coordinate their actions, perhaps by selecting a side of the road to drive on
or which side to overtake on. As such, they represent independent interaction
models.

The observability settings for each role are the same, such that

Rrow - Rcolumn = <ID = fCLlSe, S = tT’UG, P= true, U= false,p = 1>

That is, agent strategy and payoff are always observable, but agent identity and
overall utility are private.

Agents update and select their strategies using one of a variety of learning
algorithms, including Q-learning, WoLF, and Fictitious Play. Although agents
are assumed to use the learning technique for each role, the strategies for the

roles are learnt independently (i.e. strategies are learnt either as row player or
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column player). The strategy update and selection mechanisms for agents are
given in Algorithm 4. Recall that sug q,(M,I,s85.4,) is the strategy update
function, which takes the set of agents’ memories (M), the interaction (I), and
the strategy selection function of the agent (ssg.q,) as arguments. For a full
summary of the notation used in this appendix, see Tables 4.2, 4.3, and 4.4 in

Chapter 4.

Algorithm 4 Strategy selection and update for Sen and Airiau’s social learning

//d is current dimension
//learner is one of Q-learning, WoLF, or Fictitious Play
//Strategy update
procedure sug q,(M,1,554.4,)
learner,.update(I, M)
end procedure
//Strategy selection
function ss; 4,(I, M)
return learner,.select(I, M)
end function

_.
=

B.2 Walker and Wooldridge’s convention emer-
gence

Walker and Wooldridge (1995) introduced one of the first investigations into
the role of local information and agent strategy update on convention emer-
gence. They introduce a formalism to describe convention emergence models,
which forms the basis of our formalism, and subsequently use a model of agents
traversing a grid in search of food to investigate the impact of strategy update
rules on convention emergence. Agents move horizontally or vertically along the
grid in search of food, and can see one square ahead. Moving incurs a cost to
the agent’s food budget. If they see an item of food, they move to that square,
and otherwise they move to a randomly selected square. If more than one agent
makes a bid for the same food, and neither agent attacks, then the agent that
takes the food is selected randomly. If one agent attacks another (i.e. attempts

to move to a square with either an agent already occupying it or another agent
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attempting to move there simultaneously, and chooses to attack that agent),
both agents incur a food cost and the agent with the largest food budget wins.

Walker and Wooldridge define four possible strategies for agents to follow
with regards to whether to attack a square: (i) giving precedence to agents in
the square above (i.e. not attacking northwards), (ii) giving precedence to agents
to the left, (iii) giving precedence to the right, or (iv) giving precedence to the
square below. There are four main strategy update functions, broadly based on
which strategies the updating agent has observed as most common. Variations

to these functions give a total of sixteen possible strategy update rules.

B.2.1 Model description

Agent interactions are a little more complex in this model than in other typical
approaches, since agents move around an abstract world, and interactions with
other agents occur as a result of these movements. We assume that individual
movements are dealt with outside of our formalism, since the only part of the
model concerned with conventional behaviour is when two agents wish to eat
the same food, which we call here a conflict. When this occurs, each agent can
either yield or attack the other agent. Whether the agent yields or not depends
on which of the four strategies it selects: Yield up, down, left or right.

The interaction regime for this model is given in Algorithm 5. Since interac-
tions are symmetric, there is only one role, which we call conflicter. Similarly,
there is only one dimension, which for the purposes of this description we call
FoodSearch. The payoff for an agent is not specified, and the costs associated
with attacking and other actions are also unknown.

Agents learn by observing the strategies employed by other agents, but do
not utilise agent identity or payoff. As such, for the conflicter role, only agent

strategy is observable:

Reonfiicter = (ID = false, S = true, P = false,U = false,p =1)
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Algorithm 5 Interaction regime for Walker and Wooldridge’s model of con-
vention emergence

: //1 is set of interactions
: Conflicts + getConflictsFromAgent Movement()
: for all FoodSquare € Conflicts do
Inew < (FoodSearch)
for all Agent € getConflictingAgents(FoodSquare) do
Inew < Inew U (Agent, o1, con flicter)
end for
I+ TUILe
end for
return 1

© %Nk wh

,_.
=

Strategy selection by each agent simply returns the currently adopted strat-
egy, out of the four possible. Strategy update, the focus of Walker and Woold-
ridge’s paper, involves one of sixteen possible update rules, based on four base
rules from which all the variants are created. We reproduce the four base rules
here, but omit full descriptions of all sixteen variants, since generating each vari-
ant is trivial. Algorithms 6, 7, 8, and 9 show the four base rules. We note that
for the “Simple majority with communication by agent type” update mecha-
nism, agents are required to be able determine if other agents in the interaction
are of the same type. We assume this function is available, despite it not being

expressed within our formalism.

Algorithm 6 Walker and Wooldridge’s strategy update rule: Simple majority

1: function suy q,(M,1,555.4,)

2: highestObserved <+ —1

3: for all o € ZFoodSearch,conflicter

4: if obsHisty FoodSearch(0) > highestObserved then
5: highestObserved <— obsHisty poodSearch(0)

6: O; < O

7 end if

8: end for

9: return o;

10: end function
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Algorithm 7 Walker and Wooldridge’s strategy update rule: Simple majority
with memory restart

1: function suy g, (M,1,555.4,)
2: highestObserved <+ —1
3: for all o € ZFoodSea'r‘ch,conflicter
4 if obsHisty FoodSearch(0) > highestObserved then
5: highestObserved <— obsHisty poodSearch(0)
6: O; < O
7 end if

8: end for

9: M+~ &

10: return o,

11: end function

Algorithm 8 Walker and Wooldridge’s strategy update rule: Simple majority
with communication by agent type

1: function suy q,(M,1,554.4,)

2 highestObserved <+ —1

3 //Agents of the same type in the interaction

4 AT + I.getAgentsO fSameType(x)

o: for all o € EFood,S'earch,(:(mfli(n‘,er

6 if obsHist oT FoodSearch(0) > highestObserved then
7 highestObserved < obsHist AT, FoodSearch ()

8

9

;< O
: end if
10: end for
11: return o;

12: end function
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Algorithm 9 Walker and Wooldridge’s strategy update rule: Simple majority
with communication on success

1: function suy g, (M, 1,55 .4.r)
2: highestObserved < —1

3:  //Agents in the interaction

4 AS ¢« I.getAgents()

5: //Agents with a certain amount of success communicate
6:  //their successful memories

T Msyccess < M

8: for each Agent € AS

9: if Agent.isAboveSuccessThreshold() then

10: Misuccess — Msyccess U Agent.getSuccess ful Memories()
11: end if

12: end for

13: for each o € EFoodSearch,conflicter

14: if obsHistyy,.,..... FoodSearch(0) > highestObserved then
15: highestObserved < obsHistpy,,..... FoodSearch ()

16: ;< O

17: end if

18: end for

19: return o;

20: end function

B.3 Payoff based on agent interaction history

Villatoro et al. (2009b) propose a convention emergence scenario in which the
payoff that agents receive is determined by the number of times a strategy has
been selected by the interaction participants. They situate agents on one of
three network topologies: a one dimensional lattice, a scale-free network and
a completely-connected stars network. Agents are associated with a finite size
memory, and cannot observe overall utility, strategy selection, or payoff of others
in interactions. Agents use Q-learning to update their strategies based on their

payoffs.

B.3.1 Model description

Expressing Villatoro et al.’s model is simple using our formalism. The interac-
tion regime (given in Algorithm 10) is identical to that given in Algorithm 3,
except that there is only one possible role, which we term here participant. Villa-

toro et al. model two learning regimes: mono-learning, in which only one agent
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learns in each interaction, and multi-learning, in which both do. For brevity, we
only describe the multi-learning configuration, but note that description of the
mono-learning configuration is trivial'. There are two possible strategies, and
one dimension, such that

2 = {4, B}

R = {participant}

Agents explicitly cannot observe any aspect of their interaction partner’s

choices:

Rparticipant = (ID = false, S = false, P = false,U = false,p = 0)

Algorithm 10 Interaction regime for Villatoro et al.’s model of convention
emergence

: //1 is set of interactions
: for all Agent € Population do
Partner < getRandomN eighbour(Agent)
I + TU(d,(Agent, oy, participant), {Partner, o9, participant))
end for
return 1

AN

The payoff function, the focus of Villatoro et al.’s investigation, is given in
Algorithm 11. The strategy update and selection functions are the same as
for Sen and Airiau’s model, except with the learning algorithm constrained to

Q-learning only.

B.4 [Illustrative comparative analyses

A useful feature of our formalism is that it facilitates comparative analysis of
disparate models of convention emergence from the literature, in order to allow

researchers to identify generalised conclusions despite the apparent differences

1 Briefly, expressing the mono-learning configuration would involve using two roles for each
interaction, where for one of which the agent updates their strategy and for the other the
agent does not.
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Algorithm 11 Payoff function for Villatoro et al.’s model of convention emer-
gence

1: function P, 4,(I,P(M))

2 for each Agent € I.get Agents()

3 Total AActions < obsHist ggent,a(A)
4 Total BActions < obsHist agent,a(B)
5: end for
6

7

8

9

if Total AActions < Total BActions then
obsHisty 4(B)

n Total BActions
obsHist, 4(A)

return
Total AActions

10: end if
11: end function

in models used. In this section, we demonstrate such a comparative analysis,
using Villatoro et al.’s model (2009b) and Sen and Airiau’s model (2007).

Villatoro et al.’s model can be seen as a simplified version of that used by Sen
and Airiau. The key differences to examine are strategy update mechanisms,
observability, and payoff. In terms of observability, Sen and Airiau allow agents
to observe their participant’s strategy and payoff. However, this is only a result
of the use of payoff matrices for the payoff function: if an agent knows its own
payoff and the strategy it chose, it therefore knows what the opponent chose, and
their payoff. Only Fictitious Play actually uses the knowledge of the opponent’s
strategy selections. Restricting strategy update/selection mechanisms to Q-
learning or WoLF therefore renders the observability identical between the two
models for all practical purposes.

In Sen and Airiau’s model, there are two roles in each dimension, where there
is only one in Villatoro et al.’s work. In the coordination game dimension in
Sen and Airiau’s model, agents are rewarded for selecting the same strategy, as
they are in Villatoro et al.’s. The key difference in the reward between the two
models is that Villatoro et al.’s model incorporates an agent’s strategy selection
history in the calculation of payoff. The interaction regimes are identical, save
for the difference in the number of roles. We can therefore directly compare

results, where those results are reported for similar conditions. We find one such
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configuration when each model is run with a completely connected network, all
agents using Q-learning, and (in Villatoro et al.’s case) low memory sizes.
Under these conditions, populations in Villatoro et al.’s formulation take at
least 1000 timesteps to converge (with convergence time increasing with mem-
ory size), whereas Sen and Airiau’s populations converge in just 100. There are
two main differences between the models at this point: the use of a different
number of roles for each dimension and the incorporation of history into payoff
function. It is unclear why having two roles would result in faster convergence,
since it means that each learning algorithm has less information for the same
number of interactions (as compared to using one role), whereas there is an at-
tractive hypothesis for why incorporating history results in slower convergence.
Specifically, incorporating history means that “wrong” choices in the past affect
an agent’s payoff for longer, whether as a result of exploration or adherence
to a convention that no longer holds. As a result, it takes longer for an agent
to receive the full benefit of switching to a new convention in Villatoro et al.’s
formulation, whereas in Sen and Airiau’s model an agent can instantaneously
and completely benefit from a switch in strategy. Expressing each model in our
formalism has thus allowed us to identify specific differences in configuration
and determine which of these might account for observed differences in results
— although empirical evaluation is still necessary to confirm this hypothesis.
Comparison with Walker and Wooldridge’s model is more difficult. While
expressable within our formalism, the interaction regime and payoff structure are
of completely different forms to those used by Villatoro et al. or Sen and Airiau.
However, usage of our formalism allows us to design experiments that test the
impact of each specific difference. For example, Walker and Wooldridge find
that some of their strategy update rules converge in around 300 timesteps. To
test whether this is a comparable rate to that of Sen and Airiau, or Villatoro et
al., we can easily implement the update rules in these other models. However, if
we believe Walker and Wooldridge’s model to be more applicable to our domain

of interest, we can use our formalism to design experiments to examine each
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component individually.

For example, the interaction regime, which determines the rate and par-
ticipants of interactions in the model, can be easily swapped for the regime
from Villatoro et al. or Sen and Airiau. Further simulations will allow us to
determine if the interaction regime has any significant effects on the conver-
gence rate within Walker and Wooldridge’s model. Further, we could alter the
payoff function to use a payoff matrix or Villatoro et al.’s payoff incorporating
interaction history. This would further corroborate or refute the analysis above
regarding the effect of incorporating history into payoff calculations, and allow
us to determine the extent to which the unique payoff structure of Walker and

Wooldridge’s work affects the reported convergence rates.

B.5 Summary

In this appendix, we have shown how three common convention emergence sce-
narios can be expressed in a single unified interaction formalism. By using
a common formalism, many of the features and characteristics of the various
techniques proposed for convention emergence in these scenarios can now be
directly compared, and experiments for illuminating the causes of empirical dif-
ferences between results can be more easily designed. We have demonstrated
this by (i) analysing Sen and Airiau’s (2007) model with respect to that of
Villatoro et al. (2009b), and demonstrating that the use of interaction history
in calculating agent payoff may be a cause for slower convergence and (ii) dis-
cussing experiments that can be run to determine which aspect of Walker and

Wooldridge’s (1995) model results in their faster convergence.
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