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Synopsis 

This thesis examines the numerical representation of stable minimal surfaces. In particular, the 
work presented concentrates on the formulation of a finite element, suitable for the analysis of 
systems subjected to large strains and large displacements. 

In order to obtain an understanding of the physical properties of a minimal surface, and to verify 
the proposed numerical solution algorithms, the surfaces developed by several soap-film models 
are given. The mechanisms involved in the formation of a soap-film (minimal) surface is 
summarised. Several types of minimal surfaces are investigated, including general surfaces 
between rigid boundaries, single minimal surfaces between two frames, and those with internal 
and external flexible boundaries. In addition, the question of the stability of minimal surfaces is 
discussed, in terms of a finite and an infinitesimal perturbation. 

The numerical modelling of minimal surfaces is presented, based initially on the discretisation of 
the form using plane linear (line) and triangular elements. The application of the matrix-based 
element formulations to the vector-based Dynamic Relaxation solution algorithm is described. 
The formulations of the elements are assessed in the context of large strains and large 
displacements. Subsequently, the effects of the violations of the assumptions inherent in the 
derivation of the element stiffness matrices on the accuracy of the numerical solution are 
demonstrated, and measures proposed to maintain the stability of the solution algorithm. The 
numerical solutions to several minimal surfaces are provided, based on the linear and triangular 
element discretisations respectively. 

An intended improvement on the plane linear and triangular element formulations is proposed by 
the derivation of a higher order finite element. A 24 degrees-of-freedom finite element is 
formulated, representing a general curved elastic (or inelastic) geometrically non-linear 
continuum, and modelling the condition of plane stress. The element equations are derived with 
special consideration of the simulation of the effects of large strains and large displacements. An 
appraisal of the quality of the element formulation is made through the application of the Patch 
test and the Eigenvalue test. The solutions to several minimal surfaces are presented, from which 
the effects of the assumptions in the element formulation on the accuracy of the proposed 
numerical solution algorithm are demonstrated. 

xi 



Chapter 1 

Introduction 

"I do not suppose that there is anyone in this room 

who has not occasionally blown a common soap-bubble, 

and while admiring the perfection of its form, 

and the marvellous brilliancy of its colours, wondered 

how it is that such a magnificent object can be so 

easily produced It 1 

Aside from its aesthetic quality, the soap-bubble represents the primordial pneumatic structural 

membrane. Stable minimal surfaces are developed (where possible) by a soap-film when the 

pressure is equal on each side of the SUIface. A minimal surface is characterised by equal and 

opposite principal curvatures (at a point) and by minima in the potential energy and surface area 

for the given boundary conditions (Section 3.2, Chapter 3). The form of the surface complies with 

the principle of virtual work, and is generated by equal stresses (tensile) in all directions. Being 

created in nature, the minimal surface membrane represents an optimal structural system and can 

be used to simulate the forms of surface stressed structures such as tents, air-houses (pneumatics), 

thin shells, and mechanical devices such as sails and balloons. As Boys pointed out I, and Otto 

and his co-workers demonstrated through the work of the Institute of Lightweight Structures 

(University of Stuttgart, Germany), several graceful minimal surfaces can be easily produced 

using soap-films. 

The mathematical classification and definition of minimal surfaces was attempted in the late 18 th 

and early 19 th centuries, by the French geometer Meusnier, and by Young, amongst others 

(Section 3.2, Chapter 3). In the late 19 th, Boys 1 presented a series of three lectures entitled 

"SOAP-BUBBLES and the forces which mould them". The lectures comprised the demonstration 

of several practical experiments to illustrate the phenomenon of surface tension, and the 

1 

Acknowledgement to the text, SOAP-BUBBLES and the forces which mould them., by C.V. Boys, The Science Study 

Series, Heinemann, Number 3, page 19. 
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influences of electricity, wax, and other products on the formation of minimal surfaces. 

The properties of surface tension were exploited by Otto in the 1950's - 1970's to generate 

optimised surface forms, the measurements of which were used to develop the shapes of the 

structural membranes forming, for example, the Munich Olympic Stadium. The generation of the 

surface geometry was termed "form-finding". More precisely, form-finding may be defined as that 

method by which the prestressed equilibrium form is developed. The objective of the form­

finding procedure is to create a model of the intended surface, from which the geometric 

properties can be established (in the form of a cutting pattern) and the response of the structural 

system to externally applied forces and stresses can be assessed. 

In parallel with the work of Otto, Trostel published the closed form solution to the catenoid, and 

addressed the question of stable and unstable mjnimal surfaces (Section 3.6.2.2, Chapter 3). In an 

attempt to add a firmer mathematical basis to the understanding of the formation of minimal 

surfaces in nature, investigations were carried out into the physical properties of the soap-film, 

and the generation of the elasticity of the fluid (Section 3.3, Chapter 3). However, the progress of 

such efforts was contained by the necessary simplifying assumptions made in these purely 

mathematical techniques. 

little previous work has been published on the numerical representation (or form-finding) of 

minimal surfaces. Papers by Ishii and Suzuki, and by Suzuki and Hangai, produced solutions 

based on the assumption of zero mean curvature, and on a finite element discretisation of the 

surface using plane triangular elements, respectively. These numerical solution algorithms 

produced both stable and unstable minimal surfaces (Section 2.1, Chapter 2). However, the 

unstable mjnjmal surface cannot be reproduced by a soap-film model (or a structural membrane). 

A membrane is a geometrically non-linear system. The term "geometrically non-linear" is used to 

denote that changes in the geometry of the surface (which occur during its deformation, due to 

both internal (form-finding) and external (static analysis) forces), must be taken into account 

when defining the equilibrium state. Consequently, an iterative type of solution procedure is 

required, which recognises changes in the directions and magnitudes (where appropriate) of the 

internal and external forces acting on the system, and the changes in the stiffnesses of the surface, 

arising from a change in shape. With the repeated application of the solution algorithm, the 

displacements are reduced and the system becomes geometrically linear as the true equilibrium 

configuration is approached. 

Various algorithms have been proposed to represent numerically the response of geometrically 

non-linear systems (Section 2.2, Chapter 2). Attention was directed initially towards beams, 

frames, cable networks, and other skeletal type systems. The geometrically non-linear analysis of 

membranes and shells was complicated further by the need to represent a continuum. Green and 

Adkin presented a significant work on the theory of plane stress for finite deformations, and the 
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membrane theory for thin shells. However, the application of the theory was restricted to axi­

symmetric problems. Further solutions were developed from the Karman equations for the large 

deflections of plates, and from the Foeppl equations for laterally loaded membranes. However, 

the generality of the solutions were restricted by the adoption of an assumed final configuration 

for the membrane, or ft.at regular geometries, for example (Section 2.3, Chapter 3). 

From the restrictions of these essentially "closed-form" solution approaches, the need to 

discretise a complex system into a number of pre-defined components was realised. Such 

components were termed finite elements, and the method of solution (which was based on the 

discretisation of a system by finite elements) was termed the Finite Element method. 

Unfortunately, subsequent to its inception, the terminology associated with the Finite Element 

method has become somewhat vague. Here, the Finite Element method is taken to be the solution 

algorithm which initially involves the discretisation of the system by a number of finite elements. 

A global stiffness matrix is then compiled, representing the total coupled response of the system. 

Mter applying the boundary conditions, the reduced stiffness matrix is inverted. The resulting 

flexibility matrix is then used to calculate the element nodal displacements. In the case of a 

geometrically non-linear system, this procedure is repeated until the condition of equilibrium is 

satisfied. 

Oden and Sato presented in 1967 the first application of the Finite Element method to the analysis 

of membranes exhibiting finite strains (Section 2.3, Chapter 3). The success of the proposed 

approach was limited however, "by the effects of ill-conditioning. Other finite element approaches 

were developed, including those by, for example, Haug and Powell, and by Argyris, which aimed 

to improve the performance of the overall algorithm, by the careful formulation of the finite 

element. 

Emphasis was placed on the "strain free" rigid body rotation of the element. This term refers to 

the requirement that as the element moves in space without a change in shape (rigid body), the 

finite element formulation should indicate zero straining. However, the strains of an element are 

not obtained directly. The element ft.exibilities are combined with the out-of-balance forces at the 

element nodes, to evaluate the nodal displacements. These properties are then used, with the 

geometric properties of the element, to yield the element strains. The ft.exibility of the element is 

the inverse of its stiffness. Consequently, the adequate representation of the element rigid body 

rotations is a function of the element stiffness terms. The introduction of fictitious stiffnesses into 

the element formulation lead, indirectly, to erroneous (or imaginary) strains which are alleged to 

be induced in the element as it undergoes a rigid body rotation. Therefore, the term "strain free" 

is avoided (where possible) in this thesis, and replaced by "adequate representation". 

The continued development of the Finite Element method led to formulations involving large 

strains and large displacements. However, with an increase in the complexity of the formulations, 
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the sensitivities of the numerical model to large displacements (associated with geometrically 

non-linear systems) rendered difficult the convergence of the system to the condition of 

equilibrium. The finite difference approach to the solution of the non-linear governing partial 

differential equations (describing the deflection response of a membrane) was investigated. The 

algorithm developed by Kao and Perrone (Section 2.3, Chapter 2) was shown to be both efficient 

and relatively insensitive to the assumed starting configuration in the case of the analysis of an 

axi-symmetric circular membrane. However, the need to express the form of the surface in terms 

of partial differential equations limited its application to simple regular membranes. 

In 1965 Day presented the Dynamic Relaxation algorithm (Section 2.4, Chapter 2), and applied it 

to the analytical investigation of complex concrete pressure vessels. The method was founded on 

the D' Alembert principle of a body in motion, and rewritten using a finite difference scheme 

(Section 4.2, Chapter 4). As the analysis of the system was based on the imposition of a pseudo 

oscillation, the approximations of the finite difference formulation failed to compromise the 

accuracy of the solution. The representation of the discrete or continuous system could be 

provided either by using a further finite difference approximation to the characteristic partial 

differential equations, or by a discretisation of finite elements. The simplicity of the algorithm, 

its efficiency and flexibility, have been heralded as the main advantages of the approach. Though 

the system may be represented by a discretisation of finite elements, the solutions presented in 

this thesis are not obtained from the Finite Element Method. 

This thesis presents work in the realm of the numerical modelling of stable minimal surfaces. The 

specific objective of the work is the adequate formulation of an element which is suited to the 

discretisation of a continuous system, whilst representing a state of plane stress, and being 

capable of modelling the effects of large displacements and large strains. Though having a direct 

application to structural membranes, the aspects of cutting patterns and static analysis are not 

discussed. The emphasis of the work is focused, instead, on the rigorous derivation of a doubly 

curved quadratic quadrilateral membrane finite element, for use in conjunction with the Dynamic 

Relaxation Algorithm. 

A critical appraisal is made of the linear and triangular element formulations used most often in 

the analysis of structural membranes (Section 4.3 and Section 4.4, Chapter 4, respectively). The 

assumptions which are inherent in the derivation of the element matrices are highlighted, and the 

adaptation of these matrix-based formulations to the vector approach of the Dynamic Relaxation 

algorithm is described. Certain phenomena related to the inadequacy of the linear and triangular 

element formulations to model large strains and large displacements are demonstrated, and 

measures recommended to prevent their development (Section 4.3.2.2, Chapter 4). The 

effectiveness of the proposed techniques is illustrated by the numerical solutions to several 

minimal surfaces, culminating in the solution to a complex form denoted as "Siegfried's Tent" 
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(Section 4.5.4, Chapter 4). 

The derivation of a higher order finite element is intended as an improvement on the linear and 

triangular element formulations. The general element equations, as they relate to the Finite 

Element method are presented, and the assumptions made, are assessed within the context of the 

analysis of inelastic continua (Section 5.2, Chapter 5). With reference to the outline formulation 

given by Irons and Ahmad, the proposed element is described (Section 5.3.1, Chapter 5), while 

two alternative formulations of the element shape functions are given, based on small and large 

displacement theory respectively (Section 5.3.2, Chapter 5). 

A rigorous mathematical derivation of the expressions describing the strains within a general 

curved surface is offered, with a subsequent demonstration of the order of the strain-displacement 

terms necessary to represent adequately the deformation of the surface (Section 5.6, Chapter 5). 

From this mathematical treatise, expressions for the element matrices are established (Section 

5.7, Chapter 5) with an assessment made of the order of quadrature required to evaluate the 

element integrands. The formulation is concluded by the presentation of the theory to model 

adequately the rigid body rotations in the element geometric stiffness matrix (Section 5.9, 

Chapter 5). 

The quality of the proposed element formulation is assessed on a local level by the application of 

the Patch test and the Eigenvalue test. These single element tests verify the correctness of the 

elastic and geometric stiffness matrices of the element. In addition, the Patch test, when passed, 

indicates that the formulation will converge to the exact solution with mesh refinement. An 

"implicit" Patch test is proposed, and steps recommended to suppress the singular form of the 

element elastic stiffness matrix arising in the case of a flat element (Section 6.2 and Section 6.3, 

Chapter 6). The effects of the approach adopted for the representation of large strains is discussed 

with respect to the form-finding of minimal surfaces (Section 6.4.2.2), in conjunction with the 

combined consequences of geometric and topological distortion of the element. The accuracy of 

the proposed numerical solution method is demonstrated by comparisons with experimental 

models of several minimal surfaces (Section 6.5, Chapter 6). Finally, based on the work presented 

in this thesis, several conclusions are recommended, and possibilities for further investigations 

proposed (Chapter 7). 



Chapter 2 

Recent Developments in the Analysis of Surfaces and of Geometrically 
Non-linear Systems. 

2.1. Introduction - the Mathematical Formulation and the Optimisation of Surfaces. 

A mathematical treatise on the application of differential geometry to the form-finding and to the 

cutting-patterns of air-supported structures has been presented by Williams [2.1]. A method was 

given in which the equilibrium state of the surface and the cutting pattern of the membrane were 

defined simultaneously. A subsequent paper by the same author, presented the mathematical 

solutions to "equal mesh" and to principal curvature cable nets, in addition to that to constant 

tension coefficient surfaces [2.2]. 

Sobotka later published a catalogue of analytical solutions to surfaces generated by "perfectly 

flexible" membranes and cable nets, subjected to vertical loads and suspended in the horizontal 

plane [2.3]. The surface of the hanging form was related to the vertical load by a second order 

differential equation in the out-of-plane co-ordinate. Based on various plan geometries and 

assumed displacement fields, solutions were presented for the maximum sag of the surface, for 

the horizontal components of tension forces, and for the maximum surface tension. 

Several publications have been presented on the optimisation of structural membranes. For 

example, Kostem used a penalty functional on the membrane stresses to determine the optimum 

geometry for single skinned pneumatic roofs, comprising spherical segments and subjected to an 

axi-symmetrical load [2.4]. It was shown that the shallow type of surface was less efficient at 

resisting normal extemalloads. 

The dependencies of the static response and the eigenvalues of a membrane on its shape were 

subsequently investigated by Rousselet [2.5]. Differential operator properties and transformation 

techniques of integral calculus were employed to show that the static response and the 

eigenvalues of the membrane depended in a continuous and in a differentiable way on the shape 

of the membrane. 
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Sutfaces optimised in terms of sutface area and sutface energy were modelled physically using 

soap-films, by Otto and his co-workers from the 1960's. Such sutfaces were termed "minimal 

sutfaces" [2.6].[2.7]. A considerable volume of papers has been published concerned with the 

mathematical description of minimal surfaces (see Bibliography of reference [2.8]). Subject areas 

such as the "Plateau problem", "minimal surfaces and homology", the "theory of currents and 

varifolds", have been addressed. The solutions obtained were, in the most part, esoteric and 

extremely specialised in application. The numerical investigation of minimal surfaces has 

received less attention, however. 

In a paper presented by Ishii and Suzuki, a general minimal surface was expressed through a set 

of non-linear differential equations [2.9]. A finite difference approximation to the non-linear 

equations, in conjunction with the Gauss-Seidel iterative method, was used to obtain the solution 

to the form. The approach was based on the assumption of zero mean curvature at all points on 

the minimal sutface. However, this is only a necessary and not a sufficient condition for the 

description of a stable minimal sutface (Section 3.6.2.2, Chapter 3). 

Suzuki and Hangai applied the finite element method to the analysis of minimal surfaces [2.lO]. 

The first fundamental quantities of the surface were generated from a triangular finite element 

discretisation of the form. The variation of these quantities, combined with an assumed element 

stress field, were used to obtain an expression for the equilibrium of the sutface. This expression 

was solved iteratively by a standard incremental procedure. As in the case of the preceding 

reference, both stable and unstable minimal surfaces were obtained via this approach. 

Bames treated the question of form-finding of minimal surface membranes briefly, using the 

Dynamic Relaxation algorithm and a constant strain triangular element discretisation as the bases 

of the analyses [2.11]. The paper was concerned primarily with the stability of the solution 

algorithm when used to analyse surfaces of neutral equilibrium or quasi-instability, as represented 

typically by minimal surfaces. 

As stated in the Introduction (Chapter 1), this thesis aims to fill the lacunae which exist in the 

accurate representation of general, stable minimal surfaces. By way of a prologue to the subject 

matter, the following aspects related to the analysis of geometrically non-linear systems are 

reviewed in this chapter; 

numerical representation of geometrically non-linear systems, 

analysis of membranes, 

Dynamic Relaxation algorithm, 

aspects of the formulation of a finite element. 
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2.2. Numerical Representation of Geometrically Non-linear Systems. 

Derivations for the elastic and geometric stiffness matrices of a bar, and for the overall global 

stiffness matrix of the complete discretised system, were presented by Turner et at in 1959 [2.12]. 

The theory was initially developed for aeronautical applications. Subsequently, Argyris and 

Scharpf adapted it to the non-linear analysis of prestressed networks [2.13]. Due to the geometric 

non-linearity of the system it was shown that an iterative type procedure was required in order to 

establish the condition of equilibrium. The solution to the surface at equilibrium was achieved 

using a Newton-Raphson method for the solution of a system of non-linear equations. The 

approach required the inversion of the total, global stiffness matrix of the discretisation. 

Results of a similar analysis were presented simultaneously by Haug and Powell [2.14]. It was 

shown that the basic Newton-Raphson procedure may not converge, or may exhibit a slow rate of 

convergence when used as the solution algorithm in the analysis of three-dimensional cable nets. 

A procedure of limiting the maximum admissible nodal displacements, or of scaling the out-of­

balance force vector at each nodal point, was suggested to improve the stability. However, it was 

found that these measures lead to the divergence of the solution in strongly geometrically non­

linear cases. 

An initial value algorithm for the analysis of cable nets was presented by West and Kar in 1973 

[2.15]. A discrete mathematical model was used to represent the cable net. The non-linear response 

of the system was traced through a series of linear solutions, obtained from the Newton-Raphson 

iterative scheme. In the case of each linear solution the governing boundary-value problem was 

solved as a set of initial-value problems. This method therefore dispensed with the need to solve a 

large number of simultaneous equations. Due to the mathematical sensitivities of the initial-value 

algorithm, it was necessary however, to select the displacements of the surface judiciously, in 

order to control the distortion of the surface, as the solution algorithm proceeded. 

Irvine presented analytical solutions to pretensioned cable nets based on a membrane analogy 

approach [2.16]. It was assumed that an orthogonal network of uniform flexible cables was 

replaced by an equivalent membrane, with zero shear resistance. The geometry of the network 

was taken as flat, initially. with the form of the surface dictated by the application of a uniform 

load vector, acting over the whole of the membrane. The differential and the integral equations of 

the equivalent membrane were rearranged and non-dimensionalised, so as to circumvent the use 

of a double Fourier series in the final solution. The resulting single series for the solution to the 

surface of a rectangular membrane was given, and shown to be more rapidly convergent than the 

double Fourier series. It was conceded in the paper however, that the analytical solutions were 

limited in their application, and that the solution accuracy was reduced by the assumption of 

small dispiacements. 
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A curvilinear finite difference energy formulation was applied by Kwok [2.17), to the 

geometrically non-linear analysis of general thin shells of arbitrary geometry. Based on the thin 

shell theory subjected to the Kirchoff's hypothesis, finite difference techniques were used to 

replace the partial derivatives which appeared in the energy functional, with algebraic 

expressions. The adoption of a curvilinear finite difference algorithm, relaxed the condition of 

regular mesh spacing. Consequently, the requirement that the grid lines were parallel to the co­

ordinate axes, usually encountered in the finite difference algorithm, was dispensed with. The 

Newton-Raphson iterative method was used to solve for the non-linear displacements of the 

surface. Several solutions to the static response of thin elastic shells subjected to an external load 

vector were presented, showing good agreement with the available analytical solutions. The 

accuracy of the approach was limited directly, however, by the inability of the finite difference 

approximation to represent accurately the continuous response of the shell. 

The application of the Finite Element method to the analysis of geometrically linear and 

geometrically non-linear systems has appeared extensively in the literature. For example, Brebbia 

and Connor presented a review of the works which investigated the (assumed) linear buckling 

response of beams, plates, and membranes, based on the Finite Element method [2.18]. 

Furthermore, a summary of the works concerned with the linearised incremental and with the 

mathematical iterative techniques for determining the geometrically non-linear behaviour of a 

system were also presented. 

In 1975 Bathe, Ramm, and Wilson presented a paper which gave a consistent summary of, and an 

evaluation and a comparison of, the fully non-linear formulations which had been derived in 

order to represent the geometric non-linearity of a system [2.19]. These formulations also included 

the effects of large displacements and large strains. Two different approaches which had been 

pursued in the incremental non-linear Finite Element analyses were highlighted - the Eulerian (or 

Updated Lagrangian) and the Total Lagrangian approaches. In the Eulerian procedure, the static 

and the kinematic variables were referred to an updated configuration (or co-ordinate system) at 

each iteration. Adopting the Total Lagrangian approach, all static and kinematic variables were 

referred to an initial configuration. It was concluded by Bathe et al that the Total Lagrangian 

formulation was computationally more efficient when considering the geometrically non-linear 

system as a continuum. 

A definitive paper by Wood and Zienkiewicz was published in 1977, presenting a combination of 

the Total Lagrangian formulation with a continuum approach, for the geometrically non-linear 

analysis of beams, frames, arches, and axi-symmetric shells [2.20]. In the derivation of the non­

linear equations of equilibrium, it was shown that in the Total Lagrangian formulation, the 

internal work of the system was a function of the variation of the linear and the non-linear parts 

of Green's strain. The equilibrium equations of a single element were considered initially, with 
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the equations of equilibrium for the complete system established under the conditions of nodal 

equilibrium and nodal compatibility. Expressions were developed for the vectors of equivalent 

nodal loads due to body forces and surface tractions, and for a prescribed internal element stress. 

A "tangent" stiffness matrix was derived in which the large displacement and the geometrically 

non-linear stiffness terms were included. 

The Newton-Raphson iterative scheme was adopted as the solution algorithm, and was applied to 

the non-linear equations of equilibrium to solve for the displacements of the system. A load 

increment procedure was proposed in order to define the complete equilibrium path. The overall 

solution procedure was demonstrated by the implementation of an in-plane "paralinear" 

isoparametric element, yielding accurate results when compared with the analytical solutions to 

an elastically loaded column, to hinged and clamped arches, and to a spherical cap. The approach 

of Wood and Zienkiewicz [2.20] was subsequently applied to several examples of the 

geometrically non-linear analyses of shells subjected to large strains and to large rotations 
[2.21],[2.221,[2.231. 

2.3. Analysis of Membranes. 

A significant work on the theory of elastic membranes was published by Green and Adkins [2.25]. 

The theory of plane stress for finite deformations, and the membrane theory for thin shells were 

developed. The application of the theory was confined to axi-symmetrical problems. In this case, 

the equations governing the deformation of the surface reduced to a system of ordinary 

differential equations. These equations were then integrated using numerical methods. 

Boyer and Gutkowski adopted the theory of Green and Adkins to investigate the deformation of 

liquid filled membranes, in which the inflation pressure acting on the membrane was not constant 

[2.26]. The governing equations of the membrane were solved using a method of successive 

approximations - the Picard method. It was shown, by a comparison of the numerical solution 

with the experimental, that if the membrane deformations were small, the presented mathematical 

formulation was invalid. Furthermore, it was found that the method of successive approximations 

exhibited a slow rate of convergence when used to solve the governing large deformation 

equations of the membrane. 

Several papers have been published on alternative analytical solutions to the deformation of 

membranes. For example, Kondo and Uemura investigated the mechanical behaviour of an 

orthotropic rectangular membrane subjected to uniform lateral pressure [2.27]. The Ritz and the 

Galerkin methods, based on the principle of stationary potential energy in the finite deformation 

theory, were used to obtain the geometrically non-linear relationships between the lateral pressure 

and the membrane deformations and stresses. It was assumed that the membrane possessed little 

bending stiffness and resistance to compressive stresses, and that no wrinkling occurred. The 
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effects on the membrane deformations and stresses of various parameters, including initial sag, 

aspect ratio of the membrane, orthotropic elastic constants and the principal directions of 

elasticity, were investigated. However, the proposed approach was limited by the necessary 

anticipation of the deformation modes of the membrane prior to the analysis. In this way the form 

of the membrane was dictated. 

Nachman presented solutions to the geometrically exact equations of pressurised axi-symmetric 

membranes [2.28]. A derivation of the geometrically exact, axi-symmetric equations of equilibrium 

for an elastic membrane material, with completely general stress-strain laws, was given. The 

generality of the method was enhanced by the explicit choices of the axi-symmetric reference 

configuration, from which the analysis was commenced. An estimate of the deformation mode 

was also required, however. Results pertaining to a membrane in the form of a spherical cap were 

presented, and showed the effects of various stress-strain laws on the performance of the 

membrane. 

Two papers have been published on the application of the geometrically non-linear zero moment 

theory of thin shells to the analysis of membranes undergoing large deformations. In the first 

paper by Sibgatullin, a circular membrane with a movable rigid centre, subjected to a pressure 

differential, was considered [2.29]. The Karman equations for the large deflections of circular 

plates were employed to define the equilibrium of the membrane. With the final membrane shape 

defined by truncated Chebyshev polynomials, it was shown that as the size of the rigid inclusion 

increased, the error in the membrane solution decreased. 

In the second paper by Kabrits and Kolpak, a similar method was used to investigate a plane 

rectangular membrane [2.30]. Two approaches were described, with one based on a variational 

principle, and the other on a finite difference representation of a rudimentary membrane element. 

It was shown that the necessary modelling of the complicated stress field in the corners of the 

membrane, increased the complexity of the analytical solution considerably. As in the case of the 

preceding approach of Sibgatullin, an estimate of the final form of the surface was required. 

Seide presented an alternative formulation for the large displacement analysis of rectangular 

membranes loaded by uniform pressure [2.31]. The approach was established on the large 

deflection equations for laterally loaded membrane plates (with little or zero bending stiffness) 

developed by Foeppl. The coupled non-linear membrane equations were expanded by means of 

the Fourier series in terms of the lateral deflection and the Airy stress function. An infinite 

number of coupled non-linear cubic equations in the deflection function coefficients were 

obtained. These were truncated and solved by means of an iterative procedure. In excess of one 

hundred equations were necessary in order to establish a solution of sufficient accuracy, leading 

to a computationally expensive solution algorithm. 



Literature Review. 12 

The application of the "Framework" method to the geometrically non-linear analysis of 

transversely loaded membranes was presented by Alien and Al-Qarra [2.32]. In this method, the 

solid continuum of the elastic membrane was replaced by a pin-jointed truss. The elements of the 

truss were arranged in a definite pattern, and possessed appropriate values of elastic stiffness and 

natural force in order to represent accurately the substituted continuum. The solution to the 

displacements of the membrane were obtained through an iterative type procedure, relying on the 

inversion of the global stiffness matrix of the complete equivalent "framework". The approach 

was shown to work effectively for the calculation of deflections and stresses of transversely 

loaded membranes, but was limited to the case of flat, regular geometries and to small membrane 

strains. 

Oden and Sato presented the first application of the Finite Element method to the analysis of 

membranes exhibiting finite strains in 1967 [2.33]. A triangular finite element was formulated for 

the analysis of large displacements and finite strains in elastic membranes of arbitrary shape. The 

element was taken to be plane, and to be defined with straight sides. It was assumed that the node 

points of the element were sufficiently close together to permit the displacement fields within 

each element to be approximately linear functions of the local nodal co-ordinates. The 

deformation of the continuous body was described by the Lagrangian strain tensor, while the 

geometrically non-linear stiffness relationship was derived from the principle of virtual work.. 

The Newton-Raphson scheme was applied to the global stiffness matrix of the discretised surface 

to solve for the element nodal displacements. Solutions to several membranes, obtained using this 

approach, were presented. It was found, however, that an improper choice of starting values for 

the undetermined nodal displacements could lead to ill-conditioned stiffness matrices and to no 

solution. 

A subsequent paper by Haug and Powell described a quadrilateral membrane element [2.34]. The 

element was warped in three-dimensional space, with straight sides, and was based on the 

isoparametric principle. An expression for the metric tensor describing the straining of the 

element in any deformed geometry, and applicable to the case of large deformations, was derived. 

A "prestress element" was defined, possessing zero elastic stiffness, and formulated so as to 

remain in a prescribed, isotropic state of stress, irrespective of the element deformations. The 

element was therefore presented as suitable for the analysis of constant stress inflated forms and 

minimal surfaces. The solutions to the geometrically non-linear surfaces presented in the paper 

were solved for by the Newton-Raphson iterative scheme. The proposed method was described 

by the authors as being theoretically consistent and computationally efficient. No measure of the 

accuracy of the approach was given, however. 

An alternative finite element formulation was presented by Argyris et ai, and was termed the 

"Natural Approach" [2.35],[2.36]. The method was based on the use of separate rigid body 
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displacements and natural (or strain inducing) deformations for the description of the current state 

of the finite element. The "natural approach" was devised in order to derive, in an exact and in a 

simple manner, the geometrical stiffness matrix of an element, which was suitable for application 

to the analysis of systems undergoing large displacements, but small strains. Subsequently, the 

effects of large strains were introduced into the formulation through the Green's measure of strain 

[2.361. 

Using the proposed "natural approach", it was necessary, however, to separate the components of 

the rigid body and the natural displacements from the general displacement vector, prior to the 

calculation of the element matrices. It was suggested by Argyris et al that for general curved 

elements, the rigid body modes may prove difficult to define accurately. In order to overcome this 

difficulty, it was shown that an arbitrarily shaped element could be represented by a set of 

regularly shaped sub-elements. The elastic and the geometric stiffness matrices of the finite 

element were then obtained by the integration, over the strain energy, of the local sub-elements. 

As a consequence, an extra approximation (and therefore, error) was introduced into the 

formulation, the effects of which increased with an increase in the distortion of the element. 

In addition to that work presented by Kabrits and Kolpak [2.301, various alternative procedures 

have been proposed for the geometrically non-linear analysis of membranes, in which the finite 

difference method was adopted as the basis of the solution algorithm. For example, several papers 

have been published on the analytical solutions to the deformations of membranes, where the 

finite difference method was used to solve the governing differential equations of the response of 

the system [2.37),[2.381.[2.391.[2.401. 

Kao and Perrone presented a non-linear relaxation method to solve the governing partial 

differential equations which described the deflection response of an axi-symmetric circular 

membrane [2.411. The governing equations of the membrane were rewritten in a finite difference 

format. The equilibrium of the surface was obtained using the derivative of the finite difference 

equations as "relaxation operators", in order to reduce systematically the out-of-balance force 

vector at each grid point to a value close to zero. It was shown that the algorithm was efficient 

and relatively insensitive to the assumed starting configuration of the membrane. The approach 

was only applicable, however, to surfaces for which the differential equations could be defined 

explicitly. 

The generalised finite difference method was used by Tworzydlo to analyse membrane shells 

undergoing large deformations [2.421. A "star" type pattern was adopted for the finite difference 

grid in order to permit the analysis of arbitrary geometries. The differential equations of the 

membrane shell were obtained from an equation of motion involving the first Piola-Kirchoff 

stress resultant tensor and a viscous damping tensor. These non-linear equations, rewritten in the 

proposed finite difference format, were solved initially by the Newton-Rapshon scheme, and 
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separately by the viscous relaxation method of Webster [2.42]. The overall algorithm, based on 

both the Newton Raphson scheme and the viscous relaxation method, was shown to produce good 

results, but to be computationally inefficient. 

An application of the finite difference method to the analysis of membranes, in the form of the 

Dynamic Relaxation algorithm, was presented by Barnes and Wakefield, and Barnes [2.43].[2.11]. A 

summary of the work presented in these papers is given in Chapter 4. 

2.4. Dynamic Relaxation Algorithm. 

Several alternative numerical solution algorithms have been proposed for the analyses of discrete 

and continuous surfaces, and geometrically non-linear systems [2.44],[2.45],[2.46].[2.47]. However, 

efficiency studies conducted by Barnes [2.44] and by Lewis [2.48] concluded that the Dynamic 

Relaxation algorithm was the more expedient method in the cases of the form-finding and static 

analysis of lightweight tension structures. 

The Dynamic Relaxation algorithm was first presented in a paper published in 1965 in "The 

Engineer" [2.49]. The algorithm was devised by the author of the paper, A.S. Day, as a solution 

method for the analytical investigation of complex prestressed concrete pressure vessels 

comprising nuclear reactors. Used mainly at the time for structural problems, which depended 

essentially on the solution of governing differential equations, the author concluded that the 

Dynamic Relaxation algorithm could be applied to solutions based on both finite elements and 

finite differences. The main disadvantages of the method were given as the derivation of the time 

interval for the integration of the fundamental finite difference equations, and the need to 

establish the damping factor necessary to attenuate the pseudo oscillations of the system. 

Conversely, the simplicity of the algorithm, and the ease with which the method could be 

implemented with existing analytical software to solve complex problems, were heralded as the 

main advantages [2.49]. 

Methods for determining the critical damping factor and the optimum time increment were 

presented by Rushton in 1968 [2.50]. It was found that, when analysing a fiat plate subjected to 

tensile stress, the stress function followed the vibration of the fundamental mode of the plate 

closely, from which the critical damping factor could be calculated. In addition, the critical time 

interval, below which the algorithm remained stable, was related to the square of the smallest 

finite difference mesh interval by a factor of t. A method for optimising the algorithm when 

adopting an irregular mesh interval was also presented [2.50]. Using this approach, artificial 

(unequal) masses were introduced at the nodal points, such that the time increment throughout the 

mesh adopted the minimum value possible for the current mesh intervals. In this way, the rate of 

convergence of the solution algorithm was enhanced. 
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In 1970, Day and Bunce applied the Dynamic Relaxation scheme to the analysis of cable 

networks, and presented a comparison of the algorithm with the matrix method approach [2.51]. It 

was found that for the case of the "skeletal" type of structures with several degrees of freedom, 

the matrix method approach was uneconomical due to the large bandwidth of the global stiffness 

matrix of the system. Day and Bunce also highlighted the fact that if the element prestresses were 

assumed to be zero, such that the geometric stiffness matrix was a null matrix, and the stiffness of 

the system was derived from elasticity only, then the global stiffness matrix of the cable network 

was singular. In the case of the Dynamic Relaxation Algorithm with Viscous Damping, it was 

shown that a singularity in the stiffness of the surface, failed to affect the solution, as only the 

elastic stiffness terms were used in a remote or in a tertiary sense to calculate the current element 

forces. An approximate upper-bound on the time increment was also given by the least value of 

the quantity ~ M.L , where M was the nodal mass, L the current length, A the cross-sectional 
A.E 

area, and E the elastic modulus of the element used in the analysis. 

An alternative Dynamic Relaxation procedure was suggested by Cundall and applied to rock 

mechanics problems [2.52]. Using the revised procedure, the pseudo oscillations of the system 

were attenuated by Kinetic Damping (Section 4.2, Chapter 4). It was found that in arresting the 

system using technique, a generally more stable and a more rapidly convergent solution 

algorithm was obtained. Furthermore, the revised procedure was shown to be particularly 

appropriate to the analysis of systems exhibiting large "local disturbances", such as geometrically 

non-linear surfaces undergoing large displacements and large strains. The application of both the 

Viscous Damping and the Kinetic Damping procedures to the investigation of cable networks, 

can be found in references [2.53], [2.54], and [2.55]. 

More recently, Zhang and Yu have presented a modified adaptive Dynamic Relaxation ("maDR") 

algorithm, based on the viscous damping approach [2.56]. In this case, the damping coefficient was 

based on a function of the current system configuration, the internal element force, and the mass 

matrix. The numerical stability of the "maDR" algorithm was assured through the mass matrix, 

the terms of which were given by the Gerschgorin theorem. When applied to the analyses of 

elastic-plastic plate bending, and to the wrinkling of circular plates, it was shown that the 

"maDR" algorithm was stable and displayed a small increase in computational efficiency, when 

compared with the standard viscously damped Dynamic Relaxation algorithm. 

A mathematical treatise on the convergence of the Dynamic Relaxation algorithm to the solution 

of a set of simultaneous linear equations was presented by Wood in 1971 [2.57]. A comparison was 

made between the Dynamic Relaxation algorithm and the degenerated Chebyshev method, which 

it closely resembles. It was shown, through the calculation of the spectral radius of the iteration 

matrix of each approach, that the convergence of the Dynamic Relaxation algorithm was assured 

in this case, and that it gave a faster rate of asymptotic convergence by a factor of ..J2 when 
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compared with the Chebyshev method. 

In 1984 a similar paper was published in which the convergence of the Dynamic Relaxation 

algorithm for problems ofaxi-symmetric loading of elastic shells of revolution was investigated 

[2.581. The convergence of the solution algorithm was proved by showing that as the time, t, 

tended to infinity, the kinetic energy and the potential energy of the shell tended to zero. 

2.5. Aspects of the Formulation of a Finite Element. 

2.5.1. The "Isoparametric" Approach. 

Ergatoudis, Irons, and Zienkiewicz introduced a new "family" of "Isoparametric" elements in 

1968 [2.59]. From the developments of the Finite Element method and from the establishment of 

the principles of the technique, it was found that the derivation of the matrices of an element 

followed a prescribed path, once the shape functions had been selected. It was suggested, 

therefore, that the possibilities of improving the finite element approximation were confined to 

the development of new shape functions. The impetus behind the "Isoparametric" approach, was 

the formulation of elements which may, if desired, have curved sides. 

A derivation of the isoparametric shape functions was provided by Ergatoudis et al. It was shown 

that the convergence criteria of an element were satisfied by the new approach - that a state of 

constant strain could be satisfied by the element formulation, and that the displacements were 

continuous between adjacent elements. The elastic stiffness matrix of a general plane element, 

based on the isoparametric shape functions, was given. Quadrilateral elements with eight and 

twelve nodes were used to represent a cantilever beam which was subjected to a vertical load at 

the free end, and a moment at the encastre' end. It was shown that significant improvements in the 

accuracies of both the stress and the displacement solutions were obtained with the curved 

isoparametric elements, when compared with the standard triangle and quadrilateral. 

A subsequent paper by Irons and Zienkiewicz gave some of the basic definitions used in the 

isoparametric formulation, and indicated the progress and the range of applications of the 

approach [2.60]. In particular, the fundamental relationship between the "parent" and "curvilinear" 

elements was described. Furthermore, the basic isoparametric definition was presented - "the 

same shape functions are used to define the element co-ordinates, as were used to define the 

variation of the unknown" (displacements). The extension of the isoparametric approach to the 

analysis of general curved non-linear systems has been illustrated in several publications. 

For example, Ahmad, Irons, and Zienkiewicz presented a comprehensive paper on the application 

of curved isoparametric finite elements to the analysis of thick and thin shells [2.61]. The 

limitations of the current alternative techniques applicable to the analysis of shells, such as 

shallow curvatures, and the omission of shear deformation effects, were shown to be overcome 
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through the adoption of the curved isoparametric formulation. However, the application of the 

isoparametric approach to curved, three dimensional elements, was found to lead to ill­

conditioning of the global stiffness matrix of the discretised system, as the thickness of the shell 

was reduced. 

Webster presented a curved two-dimensional finite element with nodal derivatives, based on the 

isoparametric approach [2.62]. A four node quadrilateral element was developed in which the 

displacement components at each node, and the first derivative of the displacements with respect 

to the local co-ordinates, were taken as the element degrees-of-freedom. When compared with the 

theoretical solutions to a straight and to a curved cantilever beam, the proposed finite element 

model showed good agreement. It was commented by the author however, that elements in which 

nodal derivatives comprise some of the element degrees-of-freedom, suffered the disadvantage of 

not being suitable for those cases where strain discontinuities existed at the element interfaces, 

such as the cases of material or thickness changes. 

Papers by Parisch [2.63] and by Skvortsov and Khazanov [2.64] presented works on the use of the 

isoparametric formulation to investigate shells undergoing large displacements and exhibiting 

elasto-plastic material behaviour (large strains). These papers, in conjunction with that of Wood 

and Zienkiewicz [2.20], illustrated the suitability of the isoparametric approach to the analysis of 

curved systems subjected to large displacements and large strains. 

2.5.2. Patch Test. 

Irons formally presented the "Patch Test" in a paper in 1965 [2.65]. The test was devised in order 

to verify that an arbitrary "patch" of assembled elements reproduced exactly the behaviour of an 

elastic solid material, when it was subjected to boundary displacements, or to boundary 

equivalent nodal forces, which were consistent with a state of constant straining. Several papers 

have been published on the Patch Test, dealing with both the theory and with the implementation 

of the test. 

For example, Irons and Razzaque presented work which showed that the Patch Test provided a 

necessary condition for the convergence of a discretised system to the exact solution with mesh 

refinement [2.66]. A comprehensive list of the applications of the Patch Test to various element 

formulations was also presented in the same paper. 

At the same time, Strang presented a mathematical treatise on the Patch Test [2.67]. In reference 

[2.67] it was suggested that the Finite Element method amounted to a special case of the 

Rayleigh-Ritz technique. The modifications of the Ritz procedure which had been made in order 

to achieve an efficient Finite Element system were examined. In doing so, the effects of irregular 

meshes, non-conforming elements, and numerical integration, on the accuracy of the finite 

element solution were considered. Ultimately, Strang gave mathematical support to the Patch 
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Test by showing that the convergence of a numerically integrated finite element was conditional 

on the element passing the test. 

A further mathematical treatise by Fraeijs de Veubeke showed that the Patch Test was contained 

in the variational formulations of the Finite Element method, and illustrated the Validity of the 

Patch Test for conforming elements (or elements possessing a full complement of the 

displacement terms in the derivation of the shape functions) {2.68]. However, it was also shown 

that non-conforming elements only passed the Patch Test when they became exactly conforming 

under a common state of uniform stress. 

The question of non-conforming elements and the Patch Test was investigated further by 

Stummel {2.69]. Stummel showed that an approximation of the solutions to a simple one­

dimensional boundary value problem by a mesh of non-conforming finite elements, passed the 

Patch Test, but did not converge to the exact solution of the problem with mesh refinement. 

Subsequent to the papers by Fraeijs de Veubeke {2.68] and Stummel [2.69], a wealth of literature 

was published in the defence of the Patch Test [2.70].[2.711.[2.72]. 

Of particular note was a paper by Taylor et ai, in which it was shown that the work of Stummel 

(2.69] was in error, and that the Patch Test was applicable to both conforming and non-conforming 

finite elements [2.73]. It was also shown that the Patch Test was a necessary and a sufficient 

condition for finite element convergence with mesh refinement. 

1.5.3. Technique of Reduced Integration. 

The technique of reduced, or selective, integration was first proposed by Doherty, Wilson, and 

Taylor in 1%9 [2.74]. The procedure was devised in order to alleviate the effects of "parasitic 

shear" in the pure bending mode of the four node plane quadrilateral element. It was found that 

by reducing the order of the numerical integration algorithm for the shear strain component, the 

accuracy of the finite element in bending was enhanced significantly. 

Zienkiewicz, Taylor, and Too, applied the technique to the analysis of plates and shells using an 

isoparametric degenerated shell element [2.75]. The degenerated shell element had been shown to 

work well in the case of thick shells, but became ill-conditioned as the thickness was reduced. 

Zienkiewicz et al showed that very accurate solutions to thin laterally loaded plates and shells 

could be obtained by calculating the direct and shearing strains using the technique of reduced 

integration. It was shown further that the stiffness of the displacement based elements was 

reduced as the order of the numerical integration was reduced. In addition, the convergence of the 

numerically integrated elements was shown to be guaranteed in all cases, provided that the order 

of the integration technique allowed sufficient accuracy in the calculation of the integrand, such 

that the volume of the element was evaluated exactly. 
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A paper similar to that of Zienkiewicz et al [2.75] was presented subsequently by Pawsey and 

Clough [2.76]. Whereas Zienkiewicz et al [2.75] recommended a uniform reduced integration 

technique, Pawsey and Clough proposed a selective integration scheme for calculating the 

stiffness matrix of the finite element. Using the proposed selective integration approach, each 

component of the strain energy was evaluated separately, with a different Gaussian integration 

rule for each contributing term, so as to optimise the performance of the element. It was 

commented further, that when using the techniques of selective or reduced integration, the 

integration procedure must evaluate exactly the energy associated with the element constant 

strain states, in order to assure convergence of the solution with mesh refinement. In addition, a 

warning was given, regarding the implementation of the approaches, in that deformation modes 

could exist, for which zero strain energy was given when adopting a low order of numerical 

integration. Such a phenomenon was realised in the form of a singular element stiffness matrix. 

Zienkiewicz and Hinton addressed the reasons why the reduced integration technique yielded an 

improvement in the accuracy of the finite element formulation [2.77]. It was shown that an 

optimum number of sampling or "Gauss" points existed, for which the strains of the element were 

calculated with increased accuracy. The optimal Gauss points were found to coincide with an 

order of numerical integration which was one order below that necessary to calculate the 

integrand "exactly". The improvement in the accuracy of the strain calculations was shown to be 

achieved through an optimisation of the error in the numerical integration algorithm. 

The techniques of reduced and selective integration have been used to improve the accuracy and 

the performance of mixed formulation finite element models, where a combination of 

displacement and stress degrees-of-freedom were invoked as the total element degrees-of­

freedom [2.78],[2.79]. Furthermore, the problem of shear or membrane "locking" in curved elements 

arising from the adoption of low order shape functions in the element formulation, was shown to 

be overcome by the under-integration of the shear terms comprising the overall element strains 

[2.80]. Publications have also been presented on the efforts to optimise the reduced integration 

algorithm, and to eliminate or evade the undersirable effects of the technique. 

For example, Stander and Wilson presented an eight point, modified reduced integration scheme, 

which was applied to a four node, plane quadrilateral element [2.81]. It was found, however, that 

the weights associated with the eight point integration rule took optimal values which made the 

modified rule resemble very closely the standard 2><2 Gauss. The eight point rule therefore 

required twice the computational effort of the four point rule to produce similar results. 

A paper by Sandhu and Singh [2.82] proposed a method to circumvent the limitation of the reduced 

integration technique highlighted by Pawsey and Clough [2.76] (who revealed that it could be used 

only on a selective basis, in order to avoid a singular form of the stiffness matrix comprising zero 

energy modes), The approach was based on the inclusion of additional terms in the element shape 
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functions, such that the singularity of the element stiffness matrix was eliminated. A technique 

was suggested for the derivation of the additional terms which were just sufficient to achieve the 

desired effect, without generating an over-stiff element formulation. 

2.5.4. Requirement of Strain Free Rigid Body Motion. 

In the derivation of the displacement functions used to construct the stiffness matrix of a finite 

element, the satisfaction of several conditions were shown generally to be required. Firstly, the 

displacement functions should contain all the lower terms of a complete polynomial, in order to 

ensure monotonic convergence of the finite element solution with mesh refinement. Secondly, a 

minimum degree of element compatibility should be maintained between adjacent elements - in­

plane and out-of-plane displacement components. Finally, rigid body motions of the element 

should be represented accurately, and therefore should be strain free. The final requirement was 

included to ensure the internal equilibrium of the element. 

A great number of papers have been published on the aspect of strain free rigid body motions of a 

finite element. For example, Haisler and Stricklin considered the rigid body displacements of 

curved elements in the analysis of shells [2.83]. It was shown that the explicit inclusion of strain 

free rigid body motions in the displacement function of a curved finite element, where the 

displacement function was defined as a truncated power series, was not necessary for "practical 

problems". This was done by demonstrating that the internal energy associated with a vertical 

rigid body displacement of an element, approached zero as the change in slope between the 

element nodes became sufficiently small. This work was rather limited in its rigour however, as 

only a single type of rigid body motion was considered. 

Mebane and Stricklin presented an implicit representation of strain free rigid body modes for the 

case ofaxi-symmetric shells of revolution [2.84]. The suggested method was based on the careful 

selection of the terms of the polynomials used to relate the element nodal displacements to the 

displacements at any arbitrary point within the element. The implicit strain free rigid body modes 

were shown to be much better represented when adopting a quadratic displacement function as 

opposed to a linear one. Furthermore, the same rigid body modes were shown to be revived with 

mesh refinement, when the displacement functions were not adequate to model them. It was 

stated that a relatively fine discretisation of elements was required, in order to include implicitly 

the strain free rigid body deformation modes of the element with sufficient accuracy. Such a 

condition, rendered the proposed approach computationally inefficient, particularly in the 

analyses of geometrically non-linear systems. 

Papers published by Cantin and Clough [2.85], and by Cantin [2.86], illustrated the explicit 

"inclusion" of the strain free rigid body deformation modes in the element displacement vector of 

a curved element, used to represent a cylindrical shell. In this case, expressions for the actUal 
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rigid body deformations were established, and were subtracted from the combined displacements 

of the element, to leave only the true, strain inducing components. It was shown that curved 

elements corrected by the proposed method, showed a significant improvement in the accuracy of 

the solution to problems in which some rigid body displacements of the elements were required. 

The approach was, however, only applicable to axi-symmetric systems, discretised by regularly 

shaped elements. 

In addition to the papers of Cantin and Clough [2.85] and Cantin [2.86], several additional papers 

have been published on the explicit inclusion of strain free rigid body motions in curved shell 

elements [2.87].[2.88].(2.89],[2.90]. The techniques proposed were all subjected to the constraints of 

regular surface, or axi-symmetric geometries, however. 

A paper by Jagannathan, Epstein and Christiano presented work in which it was shown that the 

exclusion of the higher order terms in the strain-displacement relationships of the element 

formulation (based on the Total Lagrangian approach), gave rise to the induction of fictitious 

strains when the element was subjected to a rigid body rotation [2.91]. It was conceded, that 

though the Total Lagrangian formulation was computationally more efficient than the Eulerian, 

especially when analysing systems subjected to large strains and large displacements, the 

inclusion of the higher order strain-displacement terms lead to stiffness matrices that contained 

displacement gradients which were to the third or fourth powers. It was suggested further that 

these elements were difficult to formulate. An example of a simple beam element was presented 

in the paper to illustrate the effects of including or omitting the higher order strain-displacement 

terms in the element stiffness matrix. In conclusion, it was shown that, in general, all of the 

second order terms of the strain-displacement relationship of the element formulation, needed to 

be retained in order to model accurately the response of a system subjected to large strains and 

large displacements, and to negate the strains induced by rigid body motions. 

A test which checked for strain free rigid body motions of a finite element, and for the legitimacy 

of it for use in a geometrically non-linear analysis, was proposed by Yang and Chiou [2.92]. The 

test was based on the observations of common physical phenomena, and stated that when a finite 

element with initial (natural) forces was subjected to a rigid body motion, the initial forces of that 

element had to rotate or translate with the rigid body motion, while their magnitudes remained 

unchanged. 

A complementary paper was subsequently published by Lui and Yang giving an eigenvalue 

procedure to establish the correctness of a geometrically non-linear finite element [2.93]. In 

addition, a method was proposed to include explicitly the strain free rigid body rotations of a 

geometrically non-linear finite element, subjected to initial stress. It was necessarily assumed 

that, in the incremental equation of equilibrium of the finite element, the stiffness terms of the 

element and the element equivalent nodal loads remain unchanged in direction, during the 
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iterative step. As a consequence of this assumption, pseudo strains were induced into the element 

when it was subjected to a rigid body rotation. For the case of a simple plane linear beam 

element, it was demonstrated that the disparity in the element nodal forces prior and subsequent 

to the application of the rigid body rotation, could be written as a fictitious (or a strain inducing) 

stiffness matrix. A subtraction of this stiffness matrix from the total stiffness matrix of the 

element was undertaken in order to suppress the strains induced by the rigid body rotation of the 

element. 

2.5.5. Remedies to Other Element Deficiencies, and Additional Measures of Element 

Accuracy. 

MacNeal presented a "catalogue" of element deficiencies or failure modes which were shown to 

exist in the various derivations of the four node membrane element, and which could be found 

equally in a general finite element formulation [2.94]. The primary element failure modes included 

"spurious mechanisms" arising from the under integration of the element stiffness integrand, 

"shear locking" caused by the presence of a dominating in-plane shear strain during an in-plane 

bending deformation, "Poisson's ratio locking", and "trapezoidal locking" occurring in slender 

beams. In addition, a failure of the Patch Test was cited as a collective failure mechanism, 

implying that the rigid body modes and the constant strain states of the element formulation were 

improperly represented. 

The failure modes of shear and membrane locking were addressed by Braissoulis [2.95]. In a paper 

concerned with the displacement continuous, or Co, type plate, shell, and beam elements, it was 

shown that the stiffness terms which induced the locking phenomenon, could be extracted from 

the general element stiffness matrix. The proposed approach was similar to that of Liu and Yang 

[2.93] which was concerned with the explicit inclusion of strain free rigid body rotations (Section 

2.5.4). Though effective in a linear element formulation, the work presented by Braissoulis [2.95], 

was not applicable to the geometrically non-linear case. 

In the papers by Zienkiewicz, Taylor, and Too [2.75], and by Pawsey and Clough [2.76], the 

techniques of reduced or selective integration were also shown to be effective in alleviating the 

shear locking and the membrane locking phenomena. However, spurious modes were found to 

degrade the performance of the element as a result of this approach. 

Cook and Zhao-Hua presented a paper which showed that "static condensation" could be used to 

suppress the spurious modes arising from the use of reduced or selective integration [2.96]. The 

procedure consisted of detecting the erroneous stiffness terms which cancelled with the legitimate 

ones, and which thus permitted the formation of the zero strain deformation modes. The 

offending terms were then removed by condensing of the appropriate degrees-of-freedom, giving 

rise to a reduced order for the element stiffness matrix. It was also shown that similar results were 
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obtained by applying a factor, with a magnitude of greater than unity, to the stiffness terms of the 

spurious modes. 

A comprehensive mathematical treatise on the derivation of a curved degenerated shell element 

was presented by Vu-Quoc and Mora [2.97]. In this work it was shown that the filtering of spurious 

zero energy modes, arising from the technique of reduced integration, could be achieved through 

the introduction of a small perturbation to the under integrated element stiffness matrix. The 

perturbation was taken as a fraction of the maximum absolute value of the diagonal coefficients 

of the element stiffness matrix. In the case of systems which exhibited a high level of geometric 

non-linearity, it was found, however, that the filtered element was slower to converge than the 

same element with unfiltered spurious modes. Furthermore, the accuracy of the filtered element 

was shown to be compromised when the numerical solution was compared with the analytical. 

The effects of initial element stress on the development of spurious zero energy modes, was not 

considered in either the paper by Cook and Zhao-Hua [2.96] or in that by Vu-Quoc and Mora [2.97]. 

In a letter to the Editor of the Journal of Sound and Vibration, Fried highlighted the possible loss 

of accuracy in curved isoparametric finite elements [2.98]. It was shown that as the element 

distortion increased, the order of the error in the strain energy of the element was reduced. 

Furthermore, the same error was shown to increase as the element side nodes moved away from 

the mid-point of the element sides. In a study by Henshell, Walters and Warburton, it was shown 

that the error in the strain energy was attributed to the existence of a pole in the expression for the 

element strains [2.99J. The presence of the pole Gust outside the physical element) caused the 

strain energy of the element to take unrealistic values at certain locations within the element. 

Consequently, the accuracies of the solutions obtained using distorted isoparametric elements 

was poor. 

In a subsequent paper by Celia and Gray, it was shown that the pole mentioned by Henshell, 

Walters and Warburton, was generated by the assumption that the element side nodes remained 

at, or very near to, the centre of the interval (defined by the element side) in the derivation of the 

element shape functions [2.UlO]. An improved isoparametric transformation was proposed in 

which, the element side nodes in the global and natural spaces were at the same relative location. 

The true relative position of the side nodes were then used in the derivation of the element shape 

functions to provide a compatible mapping between the global and the natural spaces. Applied to 

a plane two-dimensional quadratic element, it was shown that the proposed transformation 

yielded a consistently low error in the strain energy of the element as the position of the element 

side node was varied. 

Several additional papers have been published related to the effects of distortion on the accuracy 

of finite elements. For example, Robinson presented work on distortion measures for the plane 

four node quadrilateral element [2.101]. It was shown that the element shape paranleters defined in 
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the paper could be related directly to the Jacobian matrix of the element. Tests were also given 

which could be implemented to illustrate the amount of warping of the element, and to detect re­

entrant angles in the element geometry. 

The results of a series of tests on the accuracy and on the robustness of certain shell finite 

elements for the linear elastic and for the geometrically non-linear problems were published in a 

paper by White and Abel [2.102]. Based on the results of the tests, it was concluded that an element 

derived using the Total Lagrangian formulation, and with characteristic matrices evaluated by the 

technique of reduced integration, was the least sensitive to geometric distortion. In addition it was 

found to exhibit the highest level of accuracy, when used to analyse several geometrically non­

linear systems. 

2.6. Summary. 

As presented in Chapter 4, the element formulation proposed by Turner [2.12] and adapted by 

Argyris and Scharpf [2.13) to the geometrically non-linear analysis of prestressed networks, has 

been used, in conjunction with the Dynamic Relaxation algorithm, to provide a low-order 

approximation to the solution of stable minimal energy forms. In addition, the non-linear 

equilibrium equations, and the Total Lagrangian formulation presented by Wood and 

Zienkiewicz [2.20], in association with the outline element formulation given by Irons and Ahmad 

[2.24], have been employed to represent numerically the geometrically non-linear and the 

continuous response of arbitrarily shaped elastic membranes (Chapter 6). 

The work done by Day and Bunce [2.51] on the analysis of cable networks, with modifications to 

the Dynamic Relaxation algorithm to include Kinetic Damping proposed by Cundall [2.52], have 

been drawn upon. Contributions from Barnes related to the re-initialisation of the algorithm 

subsequent to an energy peak when using the Kinetic Damping scheme [2.55], and to the 

maximum time interval which could be employed to ensure the numerical stability of the solution 

algorithm [2.53], have also been adopted. The suggestion made by Day [2.49] that the Dynamic 

Relaxation algorithm could be applied to solutions based on finite elements (in addition to those 

established on finite differences), has provided the impetus to combine finite elements with a 

(predominantly) non-matrix approach solution algorithm. 

The Patch Test has been used extensively to assess the validity and the accuracy of the existing 

and proposed element formulations. The technique of reduced integration, recommended in place 

of selective integration by Zienkiewicz et al [2.75], has been adopted in order to reduce the 

sensitivity of the high-order membrane finite element (formulated in Chapter 5) to large 

displacements and rapid changes in the element geometry. 

Furthermore, the principles presented in references [2.91], [2.92], and [2.93], have been 

implemented to include explicitly the strain free rigid body motion of the proposed element, 

while the techniques presented in the papers by Celia and Gray [2.U)0], and by White and Abel 

[2.102], have been used to assess and to improve the quality of the finite element formulation. 
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Chapter 3 

Experimental Solutions to Stable Minimal Surfaces. 

3.1. Introduction. 

This chapter presents the following aspects related to the modelling of stable minimal surfaces: 

a historical summary of "minimal surfaces", 

the mechanisms involved in the formation of a soap-film, 

descriptions of the apparatus for the experimental measurements of surfaces and of the 

modelling technique, 

the experimental solutions, and the question of the stability of minimal surfaces. 

3.2. Historical Summary of "Minimal Surfaces" [3.1]. 

Minimal surfaces are described as three-dimensional surfaces whose mean curvature, H, is zero at 

all points on the surface. Minimal surfaces can therefore be characterised mathematically as, 

H _ kl+k2 ... 0. 
2 

where k 1 and k 2 are the principal curvatures of the surface at the point of interest. 

eqn(3.2.1) 

From eqn(3.2.I), for a surface to be a minimal surface, the two principal curvatures, kl and k 2, 

can be seen to be of equal magnitude and of opposite sign. Consequently, all non-flat minimal 

surfaces are locally anti-clastic, or have the shape of a saddle surface. 

The relationship between the geometrical classification of "minimal surface" and eqn(3.2.1) is 

based on the requirement that the surface with a minimum area (within a given boundary) must 

necessarily comply with eqn(3.2.1} for all points on the surface. This finding is attributed to the 

French geometer Meusnier and was published in a paper in 1785. Furthermore, surfaces 

possessing a minimum area are minimal surfaces, but minimal surfaces are not necessarily 

surfaces of minimum area - in general for the minimal surface, ms 1, there exists another surface, 

ms2, which is local to ms 1, but possesses a smaller surface area when bounded by the same 
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boundary contour. This is often the case when one of the lamellae comprising the surface ms 1 is 

removed, for example. 

The connection between the minimal surface and a surface of minimum area, can be realised 

through the physical theory of soap-films. This constitutes part of the phenomenological theory of 

capillary action, published in 1805 by Young, and derived later from the principle of virtual work 

by Gauss [3.1]. 

The principle of virtual work can be stated as [3.1]; 

(i) "the stable states of equilibrium (or states of rest) of a physical system are characterised ill 

that, in such a state, the potential energy of the system is smaller than in any other possible 

(or "virtual") local state", 

(ii) "the equilibrium states of a physical system are the stationary states of its potential energy". 

According to the work by Gauss (1880) a soap-film can be analysed as a physical system, where 

the potential energy of the surface is proportional to its area, given that the factor of 

proportionality is a material constant. The surfaces of minimum area can therefore be described 

as the mathematical models of a soap-film in a state of stable equilibrium. It is thus appropriate to 

use soap-film models as analogues to stable minimal surfaces. 

3.3. Mechanisms Involved in the Formation of a Soap-film [3.2]. 

The formation of the soap-film and the regulation of its behaviour are controlled by the principle 

of virtual work given above. In the case of a soap-film, the energy of the surface is described in 

terms of the surface tension of the constituent liquid. Considering the case of water initially, the 

surface tension of the liquid is generated by the forces of attraction between the separate 

molecules and the imbalance of these forces on the boundary of the surface. The effect of the 

forces of attraction is to transform the liquid film, located at the interface between the liquid 

(water) and the external medium (air), into an elastic film which tends to minimise its own area, 

and consequently to minimise the energy of the surface tension taken over a unit area. It is 

assumed in this case that the existence of gravity and of a pressure differential across the surface, 

are ignored and so do not contribute to the energy of the surface. The effects of adding a soap or a 

detergent material to water are summarised below [3.3]. 

In contrast to the polar molecules of water, the molecules of a soap or of a detergent consist 

typically of long, slender, non-polar hydrocarbon chain with a highly polar oxygen-rich group 

attached at one end. When such molecules are added to water, they tend to migrate to the surface 

of the liquid, and orientate themselves so that their non-polar ends are protruding through the 

liquid film. This has the effect of reducing the surface tension of the liquid and increasing the 

general elasticity of the surface. 
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When the layer of soap molecules is stretched however, by a moving wire for example, the 

surface tension is increased, due to a temporary decrease in the number of soap molecules per 

unit area. This has the effect of giving the surface additional stabilising elastic properties, very 

much like a prestress in a structural membrane. Furthermore, the addition of a soap material or a 

detergent to water limits the thinness of the film made from a soap-water solution to the length of 

two soap molecules stacked end to end. By combining the above effects, it is therefore possible to 

establish a thin elastic membrane, spanning a given contour, when a thin wire contour is dipped 

into a soap solution. 

3.4. Soap-film Formulation [3.1]. 

In the case of all of the experimental solutions presented subsequently, the fundamental 

constituent of the soap-film solution is a commercially available detergent, "Pustefix", produced 

by Messrs. Dr. Rolf Hein KG, Tuebingen, Stuttgart, Germany. The "Pustefix" solution consists 

mainly of a negatively charged detergent, in conjunction with chemical products, wetting agents 

and a thickening substance. In addition, the mixture also contains a dissolving agent and a 

bacteriacide. It is highlighted in reference [3.1] that the substances listed above are not 

chemically pure. A solution which is chemically very pure has been found, in the past, to produce 

very much more stable surfaces. However, such solutions are not available commercially. 

To increase the workability of the "Pustefix" solution, a solvent in the form of distilled water is 

added, along with glycerine to improve the durability of the film. In the case of the surfaces 

presented in Plates 3.1 - 3.13, the "Pustefix" solution is diluted in the ratio of one part "Pustefix" 

to two parts of distilled water, with 10% of glycerine (by volume). Conversely, for the two 

dimensional surfaces (Plates 3.14 - 3.19) a total of approximately 30% of glycerine was added in 

order to enhance the stability of the soap-film further. 

3.5. Minimal Surface Apparatus [3.1]. 

In order to make a permanent record of the minimal surface forms described by the soap-film 

models, the soap film must be sufficiently durable. The durability of the surface film can be 

enhanced by altering the chemical composition of the solution as described in the preceding 

section. In addition, the durability of the surface can be augmented by protecting the model from 

air turbulence, and by placing it in a dust free environment, possessing a high degree of humidity 

and a low temperature. 

The purpose-built apparatus, illustrated by the schematic diagram presented in Figure 3.1, has 

been designed according to the above criteria at the Institute of Lightweight Structures (IL), 

University of Stuttgart, Germany. This apparatus has been used to make the permanent records of 

the soap-film models, Plates 3.1 - 3.19, presented in this chapter. A brief description of the main 

details of the apparatus is given below. 
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The air-conditioned chamber (3), into which the soap-film model (6) is placed, comprises four 

vertical glass walls and two acrylic sheets, located at the base and at the top, connected and 

sealed with rubber gaskets. A steel frame is used to support the chamber, on top of which a 

height-adjustable spindle (5) is located. The latter projects into the chamber and supports the 

"model ring". The "model ring" comprises a thin aluminium frame and a Perspex ring through 

which screw tappings can be made, and is used to support the model under investigation. It is 

capable of rotating through 36()0 in the horizontal plane, and through 1800 in the vertical plane, to 

permit viewing of the model from all angles. 

A container holding the soap solution (11) is located beneath the model and can be lifted in the 

air-conditioned chamber for immersion of the model. External to the rear side of the chamber, a 

parallel light projector is located (l), with a 35 mm camera (8) placed external to the opposite 

side. To aid the measurement of the geometry of the soap-film surfaces from the photographs, a 

transparent measuring grid (9), with centimetre divisions, and a ground screen (10), are 

suspended inside the air-conditioned chamber, in front of the parallel light projector and the 

camera respectively. The shadow of the model is therefore projected on the ground screen, from 

which the permanent record is made. The light source is provided by a high pressure mercury 

vapour lamp. 

A reservoir of cooling water (12) is located behind the main body of the apparatus, from above 

which cool air is extracted. The cooling water is continuously circulated by a diaphragm pump 

(2), and vapourised by two multi-nozzle tubes (4) positioned in the side of the air-conditioned 

chamber. The descending water vapour ensures a good circulation of cooling air in the chamber 

without disturbing the model. The vibrations of the water pump and of the cooling unit are 

isolated from the chamber by rubber bearings, to prevent blurring of the photographs and the 

possible destruction of the soap-film. 

3.6. Soap-films. 

3.6.1. Model Construction. 

Minimal surfaces which are formed from a soap solution are termed "self-generating" [3.1] 

surfaces - no extemalloading is used to dictate the geometry of the form. The shape of the model 

(and therefore the geometry of the surface) is a function of the boundary. The boundary in the 

physical model (comprising rigid wires, deformable threads, or intersecting lamellae) may 

deviate from the ideal (assumed) form adopted for the numerical representation of the surface, 

due to the practical tolerances of forming the physical boundary. Consequently, disparities 

between the experimental and numerical solutions are introduced. A further error can an also be 

incurred by the effects of the self-weight of the soap-film. For this reason, and for the practical 
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consideration of the immersion of the model, suitable overall dimensions of the model have been 

recommended as 150 mm - 200 mm [3.1]. 

In the case of the models illustrated in Plates 3.1 - 3.9, a thin copper wire, with a diameter of 1.25 

mm, is used to form the "rigid" boundary of the surface. The wire is bent into shape and soldered 

at the two free ends to form a "closed" boundary. The influences of the boundary on the geometry 

of the soap-film surface can be minimised by the use of a thin wire for this purpose [3.1]. However, 

the adoption of a wire which is too thin can lead to errors in the physical model, arising from 

deformations of the boundary due to the effects of the surface tension of the soap-film. 

The models illustrated in Plate 3.10 and Plate 3.11 represent an elliptical form of the catenoid 

shown in Plates 3.7 - 3.9. The use of thin wire to form the boundaries of the elliptical models 

leads to difficulties in the theoretical definition of the boundary of the physical model which 

deviate from the assumed elliptical shape. The initially straight wire tends to form a circle when 

the two ends are joined, an effect arising from the natural stiffness of the wire. Therefore the wire 

needs to be deformed plastically in order to achieve the desired shape. This procedure is found to 

be impractical. 

The design of the more complicated model illustrated in Plate 3.10 and Plate 3.11, is based on the 

requirements that the boundaries are geometrically accurate, that they are concentric, and that 

they are made from a thin material, so as to keep the distortion of the soap-film surface to a 

minimum. In addition it is also required that the separation of the boundaries can be measured 

accurately. 

The model comprises two Perspex discs with the profile of the ellipse engraved by a computer 

controlled lathe, to a depth of 3.0 mm, and to a width of 1.0 mm. Into each groove a vertical 

copper strip is inserted and soldered together at the two free ends. The copper strip projects 

approximately 2.0 mm above the surface of the Perspex disc, and provides the fixed boundary for 

the soap-film. The Perspex discs are connected by two threaded bars, along which the lower disc 

can be moved in order to increase or to decrease the separation of the discs. 

A thin acrylic thread is used to form the boundaries of the of the models illustrated in Plates 3.16 

- 3.19. The boundary threads are supported by four Perspex stanchions, which are, in turn, located 

on a circular base plate of the same material. The stanchions are positioned in the form of a 

square. The boundary thread, which is used to generate the hole in the soap-film (Plates 3.17 -

3.19), is formed as a loop at the end of a long thread, and suspended above the centre of the 

surface from an additional stanchion. 
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The boundaries of the surfaces illustrated in Plates 3.20 - 3.22 are established in a similar manner 

to that described in the preceding paragraph. The physical modelling of the surface illustrated in 

Plates 3.20 - 3.22 is acknowledged to the Institute of Lightweight Structures (IL), University of 

Stuttgart, Germany (Section 3.6.4.2). 

3.6.2. Experimental Solutions. 

3.6.2.1. General Surfaces with Rigid Boundaries. 

The soap-film surface illustrated in Plate 3.1 and Plate 3.2 has overall dimensions on plan of 

152.5 mm x 232.0 mm. The longer side of the model possesses a discontinuity of slope at 

approximately the mid-point, giving rise to an overall depth of the model of 31.8 mm. 

The wire frame is not precisely rectangular (Plate 3.1 and Plate 3.2). In particular, it is shown that 

at the extreme right of the model (as viewed in Plate 3.1) the boundary wire appears much thicker 

than in other regions, indicating a distortion of the frame out of the plane of the photograph. 

Similar features can be seen in Plate 3.2, and lead to errors in the measurement of the soap-film 

surface profile. The low value for the ratio of the length of the longer side of the model to the 

depth out-of-plane, gives rise to a surface of slowly changing curvatures. 

Plate 3.3 and Plate 3.4 illustrate a similar surface to the preceding example. In this case however, 

the discontinuity of slope is located at approximately the mid-point of the shorter side. The model 

overall dimensions are 126.0 mm x 188.7 mm on plan, with an overall depth of 63.5 mm. 

In order to satisfy eqn(3.2.1), the soap-film surface can be seen to exhibit rapidly changing 

principal curvatures. This leads to an almost vertical surface at the discontinuities of slope in the 

boundary of the model, as illustrated in Plate 3.3. Consequently, the soap-film surface is obscured 

by the boundary wire in this region. A measurement of the surface profile of the model is also not 

possible at the left side of the model (as viewed in Plate 3.3), due to the pOSitiOning of the 

supporting wire to the "model ring". 

Plate 3.5 and Plate 3.6 present the experimental solution to a curved, sinusoidal type of boundary. 

The overall dimensions of the model are 124.0 mm x 146.0 mm on plan, with an overall depth of 

106.0 mm. 

It was intended that the model should be symmetrical about each principal plane. However, the 

obvious disparity in the geometry of the boundary in the foreground and in the background when 

viewing the model along the principal axes, Plate 3.5 and Plate 3.6, illustrates, again, the 
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difficulties in producing an accurate, curved (non-circular) boundary, when formed from a thin 

wire. The resulting soap-film surface is, nevertheless, characterised by curvatures of similar 

magnitude in the principal directions. 

An error has been introduced when photographing the soap-film surface (Plate 3.5, Plate 3.6), by 

not ensuring that the wire model was positioned vertically in the air-conditioned chamber of the 

apparatus. The error is realised by a difference between the position of the central point of the 

soap-film surface in the global z direction, when viewing the model along the two principal axes. 

The profiles of the soap-film surface as given by Plate 3.5 and by Plate 3.6, possessing this error, 

have been used in Chapter 4 (Figure 4.12 (a)&(b), Figure 4.22 (a)&(b»and in Chapter 6 (Figure 

6.21, Figure 6.22), for comparison of the experimental and numerical solutions. 

In the case of the three examples presented above, the soap-film surfaces have been obtained by 

the total immersion of the wire models in the soap solution, and by their subsequent withdrawal. 

No further manipulations of the models, including the breaking of superfluous lamellae, are 

required in these cases. 

3.6.2.2. Single Minimal Surfaces Between Two Frames and the Question of the Stability of 

Minimal Surfaces. 

Two unconnected frames can be joined by a soap lamella exhibiting a single minimal surface. 

Such a minimal surface, when generated between two concentric rings, is an axi-symmetric 

surface, or a surface of revolution (plate 3.7). The shape of the surface is termed a catenoid and 

can be generated geometrically by rotating a catenary line around a vertical axis. The surface was 

described by Euler in 1744 and is the only minimal surface which is, at the same time, a surface 

of revolution. 

The height of the catenoid has a maximum attainable value, as given by the separation of the 

rings. For the case of the catenoid formed between two circular rings of the same diameter, the 

maximum separation is directly proportional to the radius of the rings. A classical solution to the 

surface description of the catenoid, for the axi-symmetric case of two circular rings of differing 

diameters connected by a soap-film (with equal pressures on each side), has been presented by 

Trostel [3.4]. This solution is summarised below. 

Considering the case of a ring of radius r - ra, and a concentric ring of radius r - ri, with the 

separation of the rings denoted as h, the surface of the soap-film can be described by the 

expression, 
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eqn(3.6.2.2.1) 

where z is the position of a circle of radius f, which describes part of the surface of the 

catenoid, above the ring of radius f = fa, and where Cl is a constant of integration. 

Writing..L - ~, Cl -= C 10 and,.!l =: ~,eqn«3.6.2.2.l) can be rewritten as, 

fa _ Ta [~_ ~ :-1 [ ~ J ] 
{ - Cl cosh eqn(3.6.2.2.2) 

Cl 

Several values of Cl can be selected to generate a family of curves, relating the separation of the 

rings, h, to the ratio .!.L [3.4]. However, due to the characteristics of the hyperbolic cosine curve 
Ta 

expressed in eqn(3.6.2.2.2), if T - T; is given, h cannot be selected arbitrarily. For example, in the 

case of two circular rings of equal diameter such that' _ .!l - ..L - 1.0, eqn(3.6.2.2.2) is 
Ta Ta 

written as, 

eqn(3.6.2.2.3) 

To find the maximum attainable separation of the rings, it is necessary to maximise the preceding 

equation with respect to Cl. With a trial method of solution, ~ is maximised at the value of 

1.3255, with C; - 0.552. Therefore, for the case of a single surface, generated between two 

circular rings of equal diameter, the maximum attainable separation is 1.3255 times the radius of 

the rings. 

Physical model experiments conducted at the Institute of Lightweight Structures (IL), University 

of Stuttgart, Germany, have also shown that the maximum attainable separation of the equal 

diameter rings. is approximately 1.3 times the ring radius [3.1]. An example of these experiments 

is presented in Plate 3.7. In this case two 80.0 mm diameter concentric rings were used to 

generate the form. 

The rings are initially placed at a separation of 1 - 2 mm. and the complete model immersed in 

the soap solution. Upon removal of the model from the soap solution, the lower ring was 

displaced in a vertical direction by approximately 25 mm, so that it remained concentric with the 

upper one. yielding a minimal surface. The minimal surface which is obtained from this 

procedure is shown in Plate 3.8. 
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This minimal surface comprises four lamellae - a vertical lamella filling the right region of the 

model, and generating a surface between the wires used to support the rings, and two symmetrical 

lamellae, one commencing from the upper and from the lower ring respectively, and connected 

by a fourth horizontal lamella, located at the mid-point between the rings. 

Breaking the vertical lamella yields the minimal surface illustrated in Plate 3.9. This surface 

clearly possesses a lower surface area than the minimal surface illustrated in Plate 3.8. The 

catenoid is obtained by removing the horizontal lamella shown in Plate 3.9, and can be described 

as a minimal surface with a minimum surface area for the wire boundary configuration (Plate 

3.7). A comparison of 3.9 with Plate 3.7 clearly illustrates the statement presented in Section 3.2-

"minimal surfaces are not necessarily surfaces of minimum area". 

It is suggested in reference 3.2 that an infinite-dimensional space can be established, in which the 

set of all two dimensional surfaces that span wire contours, exists. An area functional can then be 

defined which associates an area with each point on the surface, such that a change in the 

geometry of the surface, changes the value of the area functional. At equilibrium, the two 

dimensional surface describes a critical state for the area functional, which may be classified as a 

local maximum, local minimum, or as a point of inflection (saddle point) [3.2]. 

If the area functional is at a local minimum the condition of the state of equilibrium of the surface 

is described as "stable". Conversely, a point of inflection reflects an unstable equilibrium state -

the application of a small perturbation (displacement) to the surface gives rise to a change in the 

geometry of the surface, such that it does not return to its original form. In this case the surface 

adopts a configuration with a lower energy, and which can be considerably different to the 

original one. The subsequent paragraphs describe the manifestation of stable and unstable 

surfaces. 

It is suggested here that the classification of the stability of the equilibrium state of the surface 

can be assessed by two criteria - the geometry of the surface subsequent to the application of a 

finite perturbation, and the geometry of the surface after the application of an infinitesimal 

perturbation. 

For example, in the case of the catenoid minimal surface, the boundary rings may be placed at the 

maximum separation. A finite perturbation in the form of a displacement causing a small increase 

in the separation of the rings, can lead to the catenoid soap-film surface breaking, and forming 

two independent minimal surface discs in the upper and lower rings. The original minimal 

surface is clearly not recovered after the removal of the perturbation, indicating the instability of 

the original catenoid surface in this case. It is further suggested here that a surface which is 

classified as "unstable" when it is subjected to a finite perturbation can be formed by using a 

soap-film model. The "unstable" equilibrium state which is defined by an infinitesimal 

perturbation is described below. 
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In the case of the catenoid, the geometric requirement given by eqn(3.2.1) can be expressed 

diagrammatically, as illustrated by Figure 3.2 [3.2]. 

r = rj 

h (a) a 

z 

1 
r = ra 

Figure 3.2 • Diagrammatic Representation of Eqn(3.2.1). 

At z - ¥, the curvature of the surface in the horizontal plane can be seen to be measured by 

the radius of the catenoid r = a, describing the surface at that point. It follows that, in order to 

satisfy eqn(3.2.1), the curvature of the surface in the vertical plane is similarly described by a 

circle of radius a. It is suggested in reference [3.2] that the parameter a (taken as the radius of the 

circle in this case) varies from zero to infinity. However, if a > r, where r is the radius of the 

rings used to form the catenoid, then a minimal surface cannot be formed if eqn(3.2.1) is to be 

satisfied. In the case that a - r , the sides of the catenoid are vertical, indicating that h (a ) ... 0 and 

that the rings are in contact (Figure 3.2). 

Due to the nature of the hyperbolic cosine curve describing the surface geometry of the catenoid, 

it is found that as a is decreased from a - r the separation of the rings, h (a), increases until a 

maximum value of separation is attained. As a tends to zero, h (a) also tends to zero. The 

relationship between a and h (a) is presented in Figure 3.3 [3.2]. 

It is shown that for a single value of ring separation, h (a), two values of a are obtained, 

indicating the possible existence of two minimal surfaces (Figure 3.4). It was conjectured by 

Plateau, and subsequently proven, that the minimal surface with the smaller value of a is an 

"unstable" minimal surface, and cannot be modelled using a soap-film [3.2]. It is suggested here 

that such minimal surfaces are unstable when subjected to an infinitesimal perturbation - as the 

soap-film surface is developed both the surface geometry and the soap-film itself are in a state of 

flux, which is sufficient to make the surface pass through the configuration given by the lower 

value of a, and to continue to the stable state at a - a 1 (Figure 3.3). 
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Therefore, the condition of equilibrium classified as "unstable" when the surface is subjected to 

an infinitesimal perturbation, cannot be illustrated by a soap-film model. In addition, the 

preceding example clearly shows that eqn(3.2.1) is a necessary, and not a sufficient, condition for 

a surface to be a stable minimal surface. Instead, the condition of minimum surface energy (or 

minimum surface area) must be satisfied. 

The minimal surface illustrated in Plate 3.12 and Plate 3.13, is obtained from the model shown in 

Plate 3.10 and Plate 3.11. The boundaries of the model are given by ellipses, and the resulting 

minimal surface constitutes a more general form of the catenoid. Three models of this type have 
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been investigated. Two of the models are described by a minor axis diameter of 80.0 mm, and by 

major axis diameters of 120.0 mm and 160.0 mm, respectively. These dimensions give the values 

for the ratio of the major axis diameter to the minor axis diameters, of 1.5 and 2.0 respectively. In 

the case of the third model, the minor axis diameter is 66.5 mm, with the corresponding major 

axis diameter equal to 200.0 mm. The soap-film surface illustrated in Plate 3.12 and Plate 3.13 is 

generated in the manner described below. 

The Perspex blocks which are visible on the underside of the lower sheet of Perspex in Plate 3.11, 

are unscrewed down the threaded rods to a pre-determined level below the top sheet of Perspex -

65.0 mm, 78.0 mm, and 70.0 mm for the three models described above, respectively. The lower 

sheet of Perspex is next raised to meet the top sheet, and wedged into position so that a gap of not 

greater than 10 mm existed between the two sheets. The complete model is then immersed in the 

soap-solution. 

After removing the superfluous lamellae, which typically forms between the threaded bars and 

the copper ellipses, the lower Perspex sheet is carefully lowered onto the pre-positioned Perspex 

blocks. With equal rotations of these blocks, the lower Perspex sheet is lowered in order to 

increase the separation of the ellipses. At this intermediate stage, photographs are taken (Plates 

3.10 - 3.13). Subsequently the separation of the ellipses is increased, until the soap-film surface 

collapses, and fills the upper and lower ellipses, respectively. At the point of collapse the 

separation of the ellipses is measured. An average value for the measurements of the separation, 

made using this technique, are presented in Table 4.8 (Section 4.5.3), Chapter 4. 

3.6.2.3. Minimal Surfaces with Internal and External Flexible Boundary Elements. 

A comparison of Plate 3.14 with Plate 3.15 shows the effect of increasing the length of the 

boundary threads on the form of a plane minimal surface. Prior to the immersion of the model in 

the soap solution, the threads are adjusted to the required lengths. and are unstressed (ignoring 

self-weight). Withdrawing the model from the solution reveals a soap-film surface spanning 

between the boundary threads. The boundary threads are uniformly stressed, and their geometries 

define an arc, which is also given by the equation of a circle [3.1]. 

From Plate 3.14 and Plate 3.15 the adoption of boundary threads which are significantly longer 

than the distance between the fixed boundary points at the corners of the model, can be seen to 

lead to the merging of the boundary threads in the vicinity of these points. This feature arises as 

the soap-film attempts to minimise its surface area, and therefore to minimise its surface energy, 

in order to satisfy the condition of equilibrium. 

To obtain the minimal surfaces illustrated in Plates 3.16 - 3.19, a similar procedure to that 

described above is adopted. In this case however, the external boundary threads (spanning 

between the fixed boundary points), are chosen to have unequal lengths, in order to show the 
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more general form of the plane minimal surface (Plates 3.16 - 3.19). The hole in the soap-film is 

introduced by placing the loop on the surface, and by ensuring that the thread is completely 

wetted initially (Plate 3.16). Subsequently, the soap-film inside the loop is broken by a blunt, dry 

object (a sharp object simply punctures the film, which then immediately self-repairs). 

In order to equilibriate the form, the loop is immediately stressed by the surface tension of the 

soap-film, and adopts the form of a circle (Plate 3.17). Due to the nature of the soap-film solution, 

the stressed loop moves freely about the surface, without affecting either the form of the loop, or 

the form of the boundary threads. This phenomenon is illustrated in Plate 3.18, and reflects, in 

addition to the circular form of the boundary threads, the uniform and the constant surface tension 

exhibited by the soap-film. This feature is also shown by Plate 3.19, where effectively two 

minimal surfaces are generated by the introduction of a loop in the corner region of the original 

soap-film. 

Plates 3.20 - 3.22 illustrate the general three-dimensional minimal surface, "Siegfried's Tent". 

The model comprises nine fixed boundary points, and the same number of boundary threads. The 

surface is characterised by rapidly changing curvatures, generated primarily through the adoption 

of a high central mast head. The co-ordinates of the fixed boundary points, and the lengths of the 

boundary threads, are presented in Table 4.9 (Section 4.6, Chapter 4). Further details related to 

the conception of the model can be found in reference [3.5]. 

Plate 3.20 and Plate 3.21 illustrate the minimal surface spanning the given boundary contour, 

represented by a soap-film surface. Plate 3.22 show the same surface, described using a 

hexagonal tulle. In this case, the shape of the hexagonal patterns of the fabric are kept constant 

during the stretching of the tulle between the boundary contours. This condition is required in 

order to model the condition of uniform surface stress [3.5]. 

3.6.2.4. Acknowledgement. 

The copies of the Plates 3.20 - 3.22, supplied by the Institute of Lightweight Structures (IL), 

University Stuttgart, Germany, are gratefully acknowledged. These Plates may be identified 

under the following IL references: Plate 3.20 ~ 5.20.132, Plate 3.21 ~ 5.20.122, Plate 3.22 ~ 

5.20.110. 
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Plate 3.1 - General Surface with Rigid Boundaries· z -x C~ntral Flane. 
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Plate 3.2 . General Surface with Rigid Boundaries· z -y Central FJane. 
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Plate 3.3 . General Surface with Rigid Boundaries· z -x Ol"ntral Flane. 
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Plate 3.4· General Surface with Rigid Boundaries· z-y C~ntral Flane. 
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Plate 3.5· General Surface with Rigid Boundaries· 2 -x Central f I.lme. 

5,· ,) 
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r 

Plate 3.6· General Surface with Rigid Boundaries· z -y Central Flane. 
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• 

Plate 3.7 . Catenoid Surface (80. mm Diameter Rings, h :: 53.0 mm). 
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• 

Plate 3.8 . Multiple Lamellae Minimal Surface· Four Lamellal~. 
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• 

Plate 3.9· Multiple Lamellae Minimal Surface· Three Lamellae. 
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• 

Plat 3.10· Physical Model to Generate a Single Minimal Surface 

Between two Elliptical Rings. 

6l 
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• 

Plate :tll· Physical Model to Generate a Single Minimal Surface 

Between two Elliptical Rings. 

(i2 
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Plate 3.12 . Single Minimal Surface Between two Elliptical RinBs. 
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PI te :1.13 - ingle Minimal Surface Between two Elliptkal Rings. 
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Plate 3.14 - 2-dimensional Minimal Surface Bounded by 

External Flexible Boundar.y Elements. 

65 

• 
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• 

• 

Plate 3.15 - 2-dimensional Minimal Surface Boundc!d by 

External ~lcxible Boundary Elements. 
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• 

• 

Plate 3.16 - 2-dimensional Minimal Surface Bounded by 

Internal and External Flexible Boundary Elements. 

(Internal Boundary Elements Unstressed.) 

• 
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• 

Plate 3.17 - 2-dimensional MinimaJ Surface Boundl~d by 

Internal and External Flexible Boundary Elements. 

63 

• 
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• 

• • 

Plate 3.18 . Feature of Constant and Uniform Surface Stress. 
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• 

• 

Plate 3.19 - 2-dimensional Minimal Surface Bounded by 

Internal and External Flexible Boundary Elements. 

(Formation of Two Minimal Surfaces.) 

70 
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• 

Plate 3.20 - "Siegfried's'Tent (Soap-film Model). 
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• 

Plate 3.21 - "Siegfried's'Tent (Soap-film Mode)). 
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• 

Flute 3.22 - "Siegfried's'Tent (Hexagonal TuJle M(Jdel). 
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Chapter 4 

Numerical Modelling of Minimal Surface Membranes Using 
Linear and Triangular Elements. 

4.1. Introduction. 

It is suggested that the sub-division of a continuous system is often necessary so as to obtain an 

understanding of the behaviour of the complete continuum, when it is subjected to a series of 

boundary conditions [4.1]. An adequate model may be obtained by using a limited number of well 

defined components. Alternatively, the sub-division may be continued indefinitely such that the 

mathematical phenomenon of an infinitesimal may be used. This usually results in the 

manipulation of a set of differential equations, which may be solved to obtain a "continuous" 

solution to the problem. 

Success has been achieved in the case of vaults and sails, where it has been shown that the Biot­

Savart law (used in electro-magnetic theory) may be applied to calculate the state of stress in the 

vault or sail, when it is subjected to a dominant load case [4.2]. However, in general, difficulty is 

encountered when generating the necessary differential equations. This is particularly pertinent in 

the case of stable minimal surfaces used to model structural membranes, where extremely 

complex forms may render the generation of the governing equations of the surface impractical. 

For example, the accurate mathematical description of the surface represented by a soap-film 

model, is only possible for a few special cases [4.3].[4.4]. 

Therefore, discretisation of the surface into a finite number of components with known properties 

is desirable. In doing so an approximation is made. The aim of the discretisation must be such as 

to minimise the error of the approximation, as the number of components or variables is 

increased. Ultimately, therefore, in the limit, the true continuous solution is reached. 

Furthermore, the behaviour of the finite components (elements) is controlled by a finite number 

of parameters and degrees of freedom. Thus, as the element size tends to zero, in the limit, the 

error in the individual element must also tend to zero, if an accurate solution is to ensue. 
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In this chapter the discretisation of the stable minimal energy surface is undertaken using linear 

and triangular elements respectively. The condition of equilibrium is solved for by the Dynamic 

Relaxation algorithm with Kinetic Damping. The derivation of the characteristic matrices of both 

the linear and triangular elements are summarised. The assumptions which are inherent in these 

formulations have been highlighted, along with the effects these can have on the performance of 

the elements when used to analyse systems exhibiting large strains and large displacements. 

Measures to improve the stability and the performance of the triangular element formulation are 

proposed. 

Several parametric studies are also presented, related to the accuracy and to the stability of the 

solution method. Finally, a comparison is made between the numerical solution to (obtained 

using both linear and triangular element discretisations), and the experimental measurements of, 

three soap-film models, representing stable minimal surfaces. The numerical solutions to minimal 

surfaces of revolution and to a more general surface are also presented. 

4.2. Dynamic Relaxation Algorithm. 

The Dynamic Relaxation algorithm is based on the principle that any body which is in motion 

will come to rest only when it is at a state of equilibrium. The system is forced into a pseudo 

oscillation, with equal amplitude about the equilibrium position. Both the frequency and the 

amplitude of the fictitious dynamic motion are controlled artificially. As illustrated subsequently, 

this is achieved through the components of stiffness and of out-of-balance force at each node of 

the discretisation, and by the associated nodal mass. 

The motion of the system is described by the 0' Alembert principle, written as, 

eqn(4.2.1) 

or, 

eqn(4.2.2) 

and, 

eqn(4.2.3) 

where the subscripts pq refer to the pth node in the qth direction. q can take the values 

1 ~ 3, corresponding to the global axis directions { x , y , z }, respectively. The remaining 

coefficients are defined below. 

~ is the extemalload vector, including terms representing the effects of surface prestress 

or initial strains, 
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!ia is the nodal stiffness selected from the terms of the element stiffness matrix, 

!!2!L is the out-of-balance nodal force (or residual), 

Mpq is the fictitious nodal mass, 
.. 

5 pq is the nodal acceleration, 

5pq is the nodal velocity, 

5pq is the nodal displacement. 
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Kinetic Damping has been shown to be a more stable and a more rapidly convergent technique of 

damping the pseudo dynamic oscillations of the discretised system, when compared with the 

Viscous Damping approach (eqn(4.2.l» [4.10]. Using this technique the system is allowed to 

vibrate freely without attenuation of displacement or frequency. During this motion the kinetic 

energy of the entire system is monitored. As the system passes the equilibrium configuration the 

kinetic energy of the system is maximised. 

When a maximum value is observed the current oscillation is halted. The pseudo motion is then 

restarted from this new configuration. As more peaks in the kinetic energy of the system are 

detected, the proximity of the system to the true equilibrium configuration is increased. The 

procedure culminates in the minimisation of the sum of the kinetic and potential energies of the 

system at equilibrium. Using this approach, eqn(4.2.2) may be written more simply as, 

eqn(4.2.4) 

The acceleration term given in the right side of eqn(4.2.4) is written as the variation of the 

velocity over the time increment 5t using a central difference approximation, such that, 

eqn(4.2.S) 

Substitution of eqn(4.2.5) into eqn(4.2.4) leads to the following recurrent equation for the nodal 

. t+~ 
velocity, 5pq , as, 

• t+ flt • t flt s:. 
s:. 2 s:. -2+Rt ut 
upq - upq '::l!!L --Mpq eqn(4.2.6) 

In order to ensure numerical stability of the solution algorithm, the following expression has been 

suggested [4.11], 

eqn(4.2.7) 

or, 

eqn(4.2.8) 
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Substitution of eqn(4.2.8) into eqn(4.2.6) gives, 

5pq T = 5pq 2" + Rnnt . t+ 61 . t- f)t [2 1 
-=- 5t·~ 

eqn(4.2.9) 

The velocities at time 1+ ~ can be used to calculate the current nodal displacements as in, 

eqn(4.2.1O) 

Therefore, through the recurrent use of eqn(4.2.4), eqn(4.2.9) with eqn(4.2.1O), the pseudo 

dynamic behaviour of the structure is defined. During each iterative cycle, the current kinetic 

t+ 61 
energy of the system, U" 2" is monitored and compared with the preceding value, denoted 

respectively as, 

eqn(4.2.11) 

and, 

eqn(4.2.12) 

where N is the total number of nodes of the discretised system. 

An energy peak. is deemed to have occurred during the time interval t -¥ S; t S; t +2f when the 

t+ f)t t- f)t 

magnitude of UIe 2" is less than that of UIe 2. If it is assumed that the kinetic energy peak 

occurs at the time t* ,where t- ~ S; t* S; 1+ ~ , it may be estimated that t* is at the mid point 

of the interval, I -~ S; t S; t +~, such that t * - t. 

Alternatively, a parabola may be fitted through the current and the two previous values of the 

I_f), ,_361 
kinetic energy (Ut 2", U" 2), yielding an improved estimate of the true position of the 

kinetic energy peak, written as [4.12J, 

1* - t - ex. 51 =- I - 5/* eqn(4.2.13(a» 

where, 

eqn(4.2.13(b» 
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. The pseudo dynamic motion may be restarted therefore, from the configuration described by the 

following expression [4.12]; 

eqn(4.2.14) 

Using eqn(4.2.9) and eqn(4.2.13), eqn(4.2.14) may be rewritten as, 

fit . t+fll [l Itl' _ It 1+...,.... It"""" It R I 2 
u u.l. - (1 + ex) u .I.' 5t + ut ' ex ' ~ 

5t .~ 
eqn( 4.2.15) 

Through the recurrent use of eqn(4.2.4), eqn(4.2.9) and eqn(4.2.1O), the condition of static 

equilibrium of a system can be satisfied by damping its pseudo dynamic behaviour. The pseudo 

dynamic behaviour of the system has been shown to be controlled by the components of both 

stiffness and of out-of-balance force at each node of the discretisation. 

4.3, Linear Element Discretisation. 

4.3.1. Introduction. 

The linear or line element represents the most basic of the element formulations. As described in 

the subsequent paragraphs, it is defined with translational degrees of freedom only, and with a 

constant cross-section. A minimal surface may be discretised using a mesh of intersecting linear 

elements which are approximately orthogonal. In this case the uniform stress characterising a 

minimal surface is modelled by the imposition of a constant and equal tension in all internal 

elements of the discretisation. 

The stiffness of the surface is obtained from the summation of both the elastic and geometric 

stiffness matrices of the individual elements. The element elastic stiffness matrix, [KE C ], is 

given as the rate of change of the axial force of the element with the axial displacement. The 

geometric stiffness matrix, [K c/ ], represents the non-linearity of the system. This additional 

stiffness is activated by the combination of axial tension in the element with displacements 

normal to its longitudinal direction. A linear (line) element, suitable for the analysis of minimal 

energy forms, is illustrated in Figure 4.1 [4.13], 
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Figure 4.1 - Geometry, Degrees-of-Freedom, and Forces of the Linear Element. 

where, u 10 v I, W 10 are the displacements of node 1 in the global directions x, y , Z , and are 

denoted by the vector, ~h, 

X I, Y I, Z 1 are the co-ordinates of node I in the global directions x, Y : z , and are denoted by 

the vector, X 10 and, 

e 1 is the vector of nodal loads written in the global directions x, Y, z as, 

e 1 - {P Ix , P ly, P lz}. 

The element is assumed to remain straight during all modes of deformation, and to model a state 

of constant strain. The derivations of the element matrices may be found in reference [4.13]. They 

are summarised in the subsequent section for reasons of completeness, and to highlight certain 

aspects which are significant. 

4.3.2. Geometrical, Displacement and Loading Matrices. 

The position of an element in the global {x, Y , z} space is given by the vector, 

eqn(4.3.2.1) 

where,!, j,!, are unit vectors aligned with the global co-ordinate directions {x, y, z}. 

The length of the element, I , may be written simply as, 

I - ..J (x 1 - x 2)2 + (y 1 - Y 2)2 + (z 1 - Z 2)2 • eqn(4.3.2.2) 
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The direction of the element, assumed to be in the longitudinal sense, may be specified by the 

unit vector [C'], where [C'] is expressed as, 

[ 

Cx 

[C'] = cy 

Cz 

eqn(4.3.2.3) 

and, cx , cy , and Cz are the direction cosines of the element corresponding to the global 

x , y , z directions. 

By defining the elongation of the element as the natural deformation, f>N, and the axial force in 

the element as the natural force, PN, the following relationships may be written in matrix form; 

eqn(4.3.2.4(a» 

and, 

[fd - -[C'] . PN ; eqn(4.3.2.4(b» 

or, 

eqn(4.3.2.5(a» 

and, 

eqn(4.3.2.5(b» 

where, 

eqn(4.3.2.6) 

and is a transformation matrix between the natural and global co-ordinate systems. 

4.3.3. Elastic Stiffness Matrix, [ KE C ] 

Given that the natural co-ordinate system of a one-dimensional element lies in the direction of the 

element, the natural elastic stiffness, KN , is obtained from the expression, 

eqn(4.3.3.1) 

where, E, is the elastic modulus, and, A , the cross-sectional area, of the element. 

Eqn(4.3.3.1) may be transformed to the global co-ordinate directions using eqn(4.3.2.6), as [4.14], 

eqn(4.3.3.2) 
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yielding the elastic element stiffness matrix [KEC ] as, 

eqn(4.3.3.3) 

4.3.4. Geometric Stiffness Matrix, [ K (/ ] 

The geometric stiffness matrix, [KaC 
], recognises the contribution of the natural element force 

to the total stiffness of the element. Unlike the elastic stiffness matrix which relies on a change in 

the length of the element, the matrix [K aC 
] responds to a change in the orientation of the 

element in the global {x, y • z} space. A summary of the derivation of the geometric stiffness 

matrix, [ K aC ] [4.13], is presented below. 

Figure 4.2 illustrates a linear element possessing a natural force, PN • prior and subsequent to the 

application of the global displacements vectors ~h and fu. 

Figure 4.2 • Derivation of the Geometric Stiffness of the Linear Element. 

The displacement vectors ~1 and ~ can be resolved into components which are parallel and 

orthogonal to the natural co-ordinate of the element, as, 

(5;) - (5;) par + (5; ) orth eqn(4.3.4.1) 

where; - 1, 2, corresponding to the element nodes, and 

(5;}par - [e][e]' . (5;) , eqn(4.3.4.2) 

with, 

{5;}orth - (5;) - (5;}par ... [ [1 3] - [e][e]t ] . (5;) . eqn(4.3.4.3) 

[/3] is a 3x3 identity matrix. 
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The rotation of the element is measured by the expression, 

eqn(4.3.4.4) 

The natural force PN acting with the displacement vector {5'} , generates a moment M', as 

M' .PN ·1 {5' JI (Figure 4.2). This moment is equilibriated by the nodal loads PI and P 2, 

where, 

PI == -P ; P 2 = +P , eqn(4.3.4.5) 

with, 

- PN P = -1- . (5'). = PN . ec, , eqn(4.3.4.6) 

where ec, is the angle of rigid body rotation. 

Writing eqn(4.3.4.5) and eqn(4.3.4.6) in matrix form yields the matrix [PG)' as in, 

PN [-{5' J 1 PN [( [13] - [e][e]') -( [13] - [e][e]' )j 
[PG) - I (5') - I -( [13] - [e][e]') ([13] _ [e)[e]') . (5;) 

From eqn( 4.3.4.7) the geometric stiffness matrix is written as, 

P
N 

[( [13] - [cUe]') -( [13] - [C][C], )j 
[K OC ] .. I -( [13] _ [e][e]') ([13] - [e][e]' ) 

eqn(4.3.4.7) 

eqn(4.3.4.8) 

The total element stiffness matrix, [K,C], is obtained by the summation of eqn(4.3.3.3) with 

eqn( 4.3 .4.8), yielding, 

[

[Kt subC] -[K, sUbC]l 
[K,c] .. [KE

C
] + [KoC] - -[K,subC] [K,subC] J eqn(4.3.4.9) 

where the sub-matrix [KtsubC
] is given by, 

[K C] _ EA - PN . [e)[e]' + !4- [13] . 
t sub I , eqn( 4.3.4.10) 

Assuming symmetry, the terms of the stiffness sub-matrix, [K,subC
], may be written as, 
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Ku = EA - PN 2 PN . 
K22 = EA - PN 2 PN. 

I • Cx + -1-' Z • Cy + -Z-' 

K33 = EA - PN 2 PN . 
K12 = 

EA - PN = K21 1 • Cz + -1-' 1 • Cx Cy 

K13 -
EA - PN 

- K31; K23 .., 
EA - PN = K32 I • Cx Cz I 

• cy Cz 

eqn(4.3.4.11) 

The inclusion of the geometric stiffness matrix, [K aC 
], is vital to the analysis of a system 

undergoing large displacements and large strains for two reasons. Firstly, it represents an 

additional element stiffness generated by a combination of the out-of-plane displacements of the 

element with the element natural force. Secondly, it takes into account a change in the stiffness of 

the element arising from elastic straining. 

4.3.5. Adoption of the Linear Element Formulation with the Dynamic Relaxation 

Algorithm. 

4.3.5.1. Solution Procedure. 

In the Dynamic Relaxation algorithm the component of out-of-balance force at each element 

node is divided by the direct component of the element stiffness (~), in order to calculate the 

-L... t+ I)t 
nodal velocity 5pq T (eqn(4.2.9». The stiffness term which appears in the denominator of 

eqn( 4.2.9) represents the direct stiffness components of all the elements meeting at the node p . 

Eqn(4.3.3.3) and eqn(4.3.4.9) show that the elastic and the geometric stiffnesses of a linear 

element are given by two 6x6 matrices. The required stiffness term, ~ (eqn(4.2.9», should be 

obtained initially therefore, by the summation of the element stiffness matrices corresponding to 

the node p to form the matrix [Kp C ]. This matrix should then be inverted to yield the direct 

flexibility terms, taking into account the coupling effects of all the element degrees-of-freedom. 

Since the determinant of the stiffness matrix of an unconstrained element is zero, it follows that 

the inversion of the matrix [Kp C ] cannot be calculated. It is proposed therefore that only the 

corresponding diagonal terms of the element stiffness matrices are summed at the node p. The 

reciprocal of each of these figures (representing the direct stiffnesses in the directions, x, y , and 

z), are then used in eqn(4.2.9) to obtain the velocities of the nodes at each end of the element in 

the corresponding global directions. The resulting flexibility term is uncoupled therefore. 

The selection of only the diagonal terms of the element stiffness matrices, can be shown to be an 

efficacious and a legitimate means of controlling the pseudo dynamic motion of the discretised 

system (Section 4.5). Only the first three terms of eqn(4.3.4.1l) need to be calculated for 
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substitution into the Dynamic Relaxation algorithm therefore. Furthermore, this procedure 

dispenses with the need to invert an element stiffness matrix (or a global stiffness matrix 

representing the complete discretisation) 1 . 

The effects of using the decoupled diagonal element stiffness terms only, are two fold. Firstly, the 

sensitivity of the element formulation to large displacements is reduced. Secondly, the minimum 

time increment necessary to maintain the numerical stability of the algorithm is increased as the 

nodal stiffness ~ is reduced (eqn(4.2.7». The rate of convergence of the solution algorithm to 

the condition of equilibrium is enhanced therefore. 

The solution procedure for the Dynamic Relaxation Algorithm with the linear element 

formulation is summarised below. 

The surface is discretised into an adequate number of elements initially. They are arranged in the 

form of an orthogonal mesh, in which the element natural co-ordinate direction is aligned with 

either of the principal stress directions. The initial lengths of the elements are calculated 

according to eqn(4.3.2.2), and maintained as the current length. 

Within each iterative cycle, the global stiffnesses of the elements are established and assigned to 

the element nodes, using the first three terms of eqn(4.3.4.11). Dynamic Relaxation uses the 

technique of the relaxation of residuals at each node in turn. Consequently, the current nodal 

velocities and nodal displacements, given by eqn(4.2.9) and by eqn(4.2.l0), respectively, are 

calculated as a function of the nodal out-of-balance force vector (eqn(4.2.2) and eqn(4.2.3». 

Consistent with the current vector of nodal dispIacements, the geometry of the surface is updated, 

and an evaluation of the total kinetic energy of the system is made (eqn(4.2.11». This iterative 

cycle is repeated until a peak in the total kinetic energy of the system is identified. 

The nodal velocities are then reset to zero, and the lengths of the elements updated in accordance 

with the current surface geometry. The analysis is re-commenced from the new element 

configurations. This procedure is reiterated until the out-of-balance force vectors, corresponding 

to all the internal degrees-of-freedom of the discretisation, are less than, or equal to, the error 

residual, Er. 

Conversely, all of the elastic stiffness terms presented in eqn(4.3.3.3) must be included when calculating the change in 
the element natural force, PN , arising from the elastic straining of the element. IT eqn(4.3.3.3) is used, the natural force 
PN is transformed into the global {x,y, z} directions directly. Alternatively, the elongation of the element may be 
calculated from the nodal disp1acements. Using Hook's Law, the natural force PN can then be calculated and resolved 
subsequently into the global {x , y , z} directions. 
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4.3.5.2. Aspects of the Linear Element Formulation. 

In the derivation of the geometric stiffness matrix, [K c/ ] (Section 4.3.4) it is assumed that the 

direction and the magnitude of the element nodal load, PN , remain unchanged after the element 

has undergone a rigid body rotation (Figure 4.2). It is shown that as a consequence of this 

assumption a pair of fictitious loads, {P 1, P U, are required in order to maintain the equilibrium of 

the element. The vector addition of PN and P 2 at the element node 2', gives the magnitude of the 

updated nodal force PN ' as "';pN 2 + p2 (eqn(4.3.4.5». 

The magnitudes of the forces PN and PN' are clearly different. Subsequent to a rigid body 

rotation the nodal forces PN and PN ' should be identical however. The fact that there is a 

difference between the magnitudes of the forces indicates that an error is present in the 

formulation of the geometric stiffness matrix, [K CC ]. The error arises through the necessary 

assumption that the direction and magnitude of the element nodal forces remain unchanged 

during the incremental step of the solution algorithm. Theoretically, the direction of the nodal 

forces varies with the element direction as a continuous function of time. The disparity between 

the forces PN and PN' can be used as one measure of the ability of the incremental solution 

procedure to model the continuous response of a system discretised by the current linear element. 

The error introduced into the geometric stiffness matrix, [K CC ], is manifested in the form of 

fictitious stiffness terms. These terms, in conjunction with the displacement vector {,o'} 

(eqn(4.3.4.4» (describing the rigid body rotation of the element) account directly for the disparity 

between the nodal forces PN and PN '. The error is shown to reduce with a decrease in the 

equilibriatiog force P and thus with a decrease in the angle of the rigid body rotation, ec r 
(eqn(4.3.4.6». The linear element formulation can therefore be described as accurate for small 

angles of rigid body rotation only. 

However, it is shown subsequently, that in the case of the proposed higher order finite element 

formulation, the fictitious terms in the element geometric stiffness matrix (arising from a 

violation of the assumption of small rigid body rotations) fail to affect significantly the 

correctness of the numerical solution obtained using Dynamic Relaxation (Section 6.4.3.3 of 

Chapter 6). Using the same arguements and, given that the error in the formulation of the 

geometric stiffness matrix does not induce numerical instability therefore, an accurate numerical 

solution to the system can be obtained when using a geometric stiffness matrix of the type 

derived in Section 4.3 with the Dynamic Relaxation algorithm. 

4.3.6. Summary· Linear Element Formulation. 

The following points are summarised regarding the adoption of the linear element formulation 

(Section 4.3.4) with the Dynamic Relaxation Algorithm (Section 4.2): 



Linear and Triangular Elements. 87 

i) The linear element is adapted to the Dynamic Relaxation algorithm by using only the 

diagonal terms of the element stiffness matrix, [Kt C], in order to control the time increment 

of the iterative step and the magnitude of the nodal displacements. 

ii) The geometric stiffness matrix, [K aC 
], is accurate for small angles of rigid body rotation 

only. 

The numerical solutions to stable minimal energy forms obtained from the linear element 

formulation with the Dynamic Relaxation algorithm are presented in Section 4.5 of this chapter. 

4.4. Triangular Element Discretisation. 

4.4.1. Introduction. 

In order to model a state of uniform surface stress, the linear element formulation presented in the 

preceding section assumes that the elements remain orthogonal and that they are aligned in either 

directions of the principal stresses, Ox and ay. If the elements deviate from the condition of 

orthogonality during the application of the solution algorithm, the uniform pretension within the 

elements no longer models a state of constant surface stress, but an approximation to it. An 

increase in the violation of the condition of orthogonality causes the numerical solution to drift 

from the truly minimal form. 

In the case of surfaces whose boundaries are not rectangular on plan or whose boundaries exhibit 

rapidly changing curvatures, it may not be possible to define initially or to maintain an orthogonal 

discretisation of linear elements prior to, or during, the form-finding procedure. It is required 

therefore, to find the level of element (linear) pretension which models a state of uniform stress 

within the surface, when the elements are orientated arbitrarily in space. 

4.4.2. Element Formulation. 

4.4.2.1. Introduction. 

The plane constant strain triangular element in its original form has six degrees-of-freedom [4.141. 

These comprise two (U, V) translations at each node, within a local two-dimensional co-ordinate 

system (Figure 4.3(a». The element stiffness matrices (elastic and geometric) and the vector of 

equivalent nodal loads may be obtained through the adoption of an assumed displacement field 

and the minimisation of the total potential energy of the discretised system [4.141. This may be 

described as a standard Finite Element method approach to the generation of the characteristic 

matrices of the element. However, with two degrees of freedom at each node, the element is only 

applicable to two-dimensional problems. Provision of the third translational degree-of-freedom at 

each node increases significantly the complexity of the element formulation. 
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Figure 4.3 - Constant Strain Triangular Element. 

(a) Original Form - 6 Degrees-or-Freedom Formulation. 

(b) Alternative Form - 3 Degrees-or-Freedom Formulation . .. 
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Figure 4.4 - LocaI Co-ordinate System of the Plane Triangular Element. 
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Alternatively, the degrees-of-freedom of the triangular element can be reselected as the change in 

lengths of the element sides [4.16]. Such an approach is valid in this case since the triangular 

element exhibits a state of constant strain. The strains defined at all points within the element, and 

those on the boundary of the element, are identical therefore. The continuum based triangular 

element can be represented by a triplet of discrete pseudo cables simulating the geometry and the 
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mechanical properties of the original continuous element [4.16]. The formulation of the element 

using this approach is summarised below. 

The typical element illustrated in Figure 4.3(b) is shown in the local X, Y co-ordinate system. 

The elastic properties and stress state of the element are defined within the local co-ordinate 

system, and thus move with the surface as it is displaced. So that the elastic stiffness terms and 

the vector of equivalent nodal loads (defining the element stress field) are represented correctly, it 

is necessary that the element sides (i = 1, i = 2, i = 3) are numbered anti-clockwise as shown 

(Figure 4.3(b». In addition, it is required that the angles (et. e2, e3 ) are measured in a similar 

manner. The formulation and the evaluation of the characteristic matrices of the element are 

carried out in a local planar system of co-ordinates. This is established in the manner described 

below. 

4.4.2.2. Element Local Co-ordinate System. 

It is assumed that the local X co-ordinate direction is aligned with the element side i III 1 (el - 0, 

Figure 4.3). The angles 62 and 63 are measured relative to the local X co-ordinate. The rigid body 

rotation of the element is modelled correctly therefore. as the local element strains move with the 

element under this type of motion. and are a function of the angles eb e2• and 63, 

The local Z co-ordinate direction is defined normal to the surface of the element and calculated 

as. 

Z; - it x31 = eqn( 4.4.2.1) 

where {{Xl. Y 1. zIl. {X2. Y2, Z2 i. {X3. Y3. Z3}} are the global co-ordinates of the element 

side intercepts {i 3, i J. {i 10 i 2l, {i 2. i 3i respectively. 

The vector Y; defining the direction of the local Y co-ordinate, is given by the cross product of 

the vectors Z-;. with X-:.. X-:. is a vector in the local X direction. The transformation matrix, [A], 

relating the local co-ordinate system to the global co-ordinate system. is obtained from the 

components of the unit vectors in the local X , Y, and Z directions. X"".. f t,. Z"" • and is written as. 
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eqn(4.4.2.2) 

As the triangular element is fiat, only transformation into the local X, Y plane is necessary. The 

direction cosines describing the vector i tr are not required therefore. A reduced transformation 

matrix, [Ar ], may thus be written in the form, 

eqn(4.4.2.3) 

If the position of a point P on the element is denoted by the vector Kt,. in the global co-ordinate 

system (Figure 4.4), such that, 

Kt,. -= {xp i + yP 1 + zP If } , eqn(4.4.2.4) 

where i, 1. and Is., are unit vectors in the global x, y, and z, co-ordinate directions 

respectively, 

then the position vector of the same point P in the local system of co-ordinates, Ktr I, is written as, 

eqn(4.4.2.S) 

Using an equation of the form of eqn( 4.4.2.5) therefore, an element described in the global 

system of co-ordinates may be transformed into the local X , Y plane. 

4.4.2.3. Generation of Element Matrices. 

Appendix 4-A presents a formulation to relate the surface strains in an inclined direction to the 

vector of local principal strains {EjT - { EX, Er, 'YxY }. If the direct strain in the element side i is 

denoted as Ej, then from Appendix 4-A, 

Ej - EX cos2 6 j + Er sin2 6 j + 'YxY sin 6 j cos 6 j , eqn( 4.4.2.6) 
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where, 6; is the anti-clockwise angle between the element side i and the local X axis, and 

i -= 1 ~ 3. EX and Er are the direct strains in the local X and Y directions respectively, 

with ')'xy the local shear stress. 

Application of eqn( 4.4.2.6) to each side of the element leads to three equations of the form, 

eqn(4.4.2.7(a» 

eqn(4.4.2.7(b» 

eqn(4.4.2.7(c» 

where aj - cos2 6 j , bj = sin2 6j, and Cj == sin 6 j cos 6 j • Ej = }, in which f>j is the extension 
I 

of the element side i , and lj is the unstrained length of the element side i , respectively. 

By writing the expressions given in eqn(4.4.2.7(a)-(c» in a determinant form, 

EX - -Er - Yxr = 1 

b l Cl El a I Cl El al b 1 El al bl Cl 

b2 C2 E2 a2 C2 E2 a2 b2 E2 a2 b 2 C2 

b3 C3 E3 a3 C3 E3 a3 b3 E3 a3 b 3 C3 

eqn(4.4.2.8) 

the solution to the local principal strains {EX, Er, 'Yxr} may be obtained in the manner outlined 

below. 

al bl Cl 

Defining det [A] - a2 b2 C2 then, from eqn(4.4.2.8), 
a3 b3 C3 

1 
EX - .........,,.;,...,....... det [A] 

or, 

b l Cl El 

b 2 C2 E2 

b3 C3 E3 

eqn(4.4.2.9) 

eqn(4.4.2.10) 
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Similar expressions can be established for the strains ey and YXY • 

The vector of principal strains {E}, can be written therefore in matrix form as, 

... 1 
det lA] 

... 1 
det [AJ 

or 

[

(b2C3-b3C2)!1-1 (b3CI-bIC3)12-1 (blC2-b2CI)!3-1 

(a3c2-a2c3)!1-1 (alc3-a3cJ}12-1 (a2 c l- a l c2)13-1 

(a2b3-a3b2)11-1 (a3bl-alb3)12-1 (alb 2- a 2 b l)!3-1 
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]{~} 
eqn( 4.4.2.11) 

where [Btr] is a transformation matrix between the element side extensions {61, 62, ~ and 

the vector of local element strains {E}, and {6tr } is the vector of side extensions {61, 62, 63}. 

The element stresses can be calculated as, 

{
OX} [dll d12 0 

{a}... ay - d21 d22 0 
'txy 0 0 d33 

{ 2 } -[E][B'W J. eqn( 4.4.2.12) 

where the matrix [E] is the elasticity matrix relating the element strains to the element 

stresses. 

Assuming isotropic plane stress and that the element remains in tension, the coefficients of [E] 

may be written as, 

d33= E 
(2 (1+u» . 

eqn( 4.4.2.13) 
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The contribution of elastic straining to the vector of side forces of the element, {T}, (or the forces 

in the pseudo cables) can therefore be obtained from, 

eqn(4.4.2.14) 

where V is the volume of the element under consideration. 

The element elastic stiffness matrix [KE tr ] can be obtained directly from the definition that 

{T} - [KE tr 1 {5tr}. Thus, with reference to eqn(4.4.2.14), [KE tr ] may be written as, 

eqn( 4.4.2.15) 

During the form-finding procedure it is often desirable to maintain the stresses within the element 

at prescribed values, whilst taking into account changes in the element geometry. Denoting the 

constant stress state as {oc} and pre-multiplying both sides of eqn(4.4.2.12) by [BtrjT and V, 

leads to the expression, 

eqn( 4.4.2.16) 

Comparing eqn(4.4.2.16) with eqn(4.4.2.14) yields, 

eqn( 4.4.2.17) 

where {Tc} is the vector of element side forces representing an invariant state of element 

stress, {oc} t as the element deforms. The geometry of the element is described by the 

matrix [Btr]. 

The geometric stiffness matrix [ K er ] is obtained from the pseudo cable analogy . The terms of 

[ K er 1 are written as a function of the element side forces {Tc} (assuming an invariant stress 

field), the length of the pseudo cables, and the element orientation in the global {x, y, z} space 

for each pseudo cable i (eqn(4.3.4.9». The diagonal terms are therefore given as, 

T. T· [ K pc 1 ci Cl C 2. 
all j - T - T xi , 

T . T . 2 _ Cl Cl C .• T-T; yl' 

T. . T . 2 _ Cl Cl C • T - ---r:- 2i , 
I 'i 

eqn( 4.4.2.18) 
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where ex i, C Y i, and c: i are the direction cosines of the of the pseudo cable i in the global 

x , y , z co-ordinate directions, and i-I ~ 3. 

The total stiffness matrix of the triangular element [ Kt IT ] is therefore written as, 

[K,lT 1 - [KEIT] + [Kc/""], eqn( 4.4.2.19) 

4.4.2.4. Summary. 

The continuum based triangular element may be represented therefore by a triplet of pseudo 

cables possessing the elastic and geometric properties described by eqn(4.4.2.18) and by 

eqn(4.4.2.19). The invariant stress field of the element is represented by natural forces in the 

pseudo cables (eqn(4.4.2.17». These forces can be tensile or compressive, dependent on the 

geometry and the orientation of the triangular element. 

4.4.3. Adoption of the Triangular Element Formulation with the Dynamic Relaxation 

Algorithm. 

4.4.3.1. Solution Procedure. 

The solution procedure for the Dynamic Relaxation Algorithm with the triangular element 

formulation is summarised below. 

i) Discretise the surface into an adequate number and into a suitable arrangement of elements, 

For each element it is required further to: 

ii) Calculate the normal vectors and establish the local system of co-ordinates (eqn(4.4.2.1) 

and eqn( 4.4.2.2», 

ill) Transform the element from the global to the local co-ordinate systems (eqn(4.4.2.5», 

iv) Calculate the element side lengths. If the analysis is at the first loop after a kinetic energy 

peak has been detected, then the these calculated lengths are set as the initial current side 

lengths, and the nodal displacements set at zero, 

v) Calculate the element elastic stiffness matrix [KEIT] (eqn(4.4.2.15» and extract the 

diagonal terms KEIT 1 .. KE" 22, and,KE" 33, 

vi) Calculate the element side tensions (eqn(4.4.2.17», assuming an invariant stress field. 

Within the Dynamic Relaxation algorithm, for each node, it is required to: 

vii) Treat the element side as pseudo cables, calculate the diagonal geometric stiffness terms 

(eqn(4.4.2.18», 
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viii) Calculate the nodal out-of-balance force vector, 

ix) Calculate the nodal velocities and the nodal displacements, in the global {x, y , z} co­

ordinate directions, 

x) Calculate the total kinetic energy of the system, and update the surface geometry according 

to ix), 

xi) If a kinetic energy peak is detected, return to ii), else viii), 

xii) Continue the process until the out-of-balance force vector, at every node, is less than or 

equal to the error residual Er. 

4.4.3.2. Aspects of the Triangular Element Formulation and the Stability and Convergence 

of the Solution Algorithm. 

4.4.3.2.1. Introduction. 

The iterative time step and the element formulation are recognised as factors which affect directly 

the numerical stability of the Dynamic Relaxation algorithm. An adequate value of the time step 

51 must be used to ensure that sufficient samples of the algorithm are made during a complete 

cycle of the pseudo oscillation of the surface, in order to negate instability. This condition is 

satisfied when the discrete sampling of the algorithm represents adequately the continuous 

response of the discretisation. Such a condition is represented mathematically by eqn( 4.2.7). 

The effect of the element formulation on the numerical stability and on the rate of convergence of 

the numerical algorithm, is described below. The assumptions which are inherent in the 

derivation of the equations of the characteristic matrices (Section 4.4.2), are shown to have 

significant effects on the performance of the element formulation. These effects are demonstrated 

by the solutions to systems undergoing large strains and large displacements. 

4.4.3.2.2. Constant Element Strains. 

The triangular element models a state of constant strain such that changes in the rate of straining 

of the surface may occur across element boundaries only. The characteristic of constant element 

strains can cause a buckling type of instability. This feature is most pronounced in the numerical 

algorithm as the value of the error residual Er (at which the condition of equilibrium is assumed 

to be satisfied) is reduced. It can be demonstrated by the analysis of the simple example surface 

illustrated in Figure 4.5. 

The surface has overall plan dimensions of 24.m and 16.m in the global x and y directions 

respectively. It is discretised by 48 triangular elements. The geometrical boundary conditions are 

given in Table 4.1. A uniform surface stress vector, {oc}, has been assumed, corresponding to 
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Ox - Oy .. 5.xl(}Hi kN.m-2 and 'txy .. O. kN.m-2. The stiffness of the surface is derived from 

prestress only. while a uniform thickness of the membrane of l.xlO-3m is adopted. 

as 

c. I 

x, " 
O.l~ 

, -- J,V 

I.W 

Table 4.1 - Boundary Conditions. 

Nodes 2,30 3,31 4,32 5,33 6,34 

z co-ord. (m) 6.000 12.000 18.000 12.000 6.000 

Figure 4.5· Simple 3·Dimensional Surface· Example 4.1. 

Using the solution procedure described in Section 4.3.5.1. and assuming that Br = 0.1% of the 

maximum pseudo cable force, the condition of equilibrium is satisfied after 423 iterations. If, 

however, the value of Br is reduced to 0.025% of the maximum pseudo cable force, for example, 

the condition of equilibrium cannot be satisfied when using the same procedure (Section 4.3.5.1). 

Instead it is found that in attempting to reduce the magnitude of the error residual throughout the 

surface, the elements buckle about the equilibrium position. Subsequent to the onset of this 

phenomenon, after each deformation cycle, the elements can be shown to maintain an 

approximately constant surface area and a constant out-of-balance force vector. Increasing the 

number of admissible iterations of the Dynamic Relaxation algorithm fails to improve the 

accuracy of the solution significantly, and may lead to numerical instability. In order to satisfy 
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the condition of equilibrium to the required accuracy ( 0.025% of the maximum pseudo cable 

force) the procedure described below has been devised. 

Following the approach outlined in Section 4.3.5.1 initially, the membrane is permitted to vibrate 

about the equilibrium position with reducing amplitude and out-of-balance force vector. The 

element side forces are updated as the geometries of the elements change according to 

eqn(4.4.2.17). Mter a specified number of kinetic energy peaks, a revised routine is adopted. As 

described subsequently, in this procedure, the element side forces are held constant, while 

changes in the geometry of the element are permitted. 

As the elastic modulus of the membrane, E, is assumed to be zero the element side forces remain 

unaffected by elastic straining of the surface (eqn(4.4.2.14)). Similarly, if the matrix [Btr] is held 

constant, no changes in the element side forces will occur due to changes in the geometry of the 

element (eqn( 4.4.2.17». 

The element matrices [8"], calculated at the end of the initial routine are adopted for the 

remainder of the analysis therefore. The terms in these matrices are held constant (in the revised 

procedure) irrespective of any further changes in the geometries of the elements. Subsequent to 

the adoption of the revised procedure, the surface is equilibriated using the direction cosines and 

the natural forces of the pseudo cables as before. The magnitudes of the element natural forces 

are a function of the matrix, [Brr], and are fixed, therefore. They are consistent with the stress 

field and with the element geometries at the end of the initial routine. 

By keeping the element side forces constant during the revised routine, the condition of uniform 

stress is relaxed temporarily. The surface is less constrained therefore. Consequently, the revised 

procedure can be shown to permit the satisfaction of the condition of equilibrium to a greater 

accuracy. In the case of the Example 4.1 (Figure 4.5), a reduction in the error residual, Er, to a 

value of l.xlo- lO % of the maximum pseudo cable force has been achieved. 

At equilibrium, the natural forces in the pseudo cables combined with the final geometry of the 

triangular element, may no longer satisfy the required condition of uniform surface stress, 

however. A measure of the deviation of the surface stress from the constant stress state at 

equilibrium can be obtained as outlined below. 

For each element;, the vector {Teq}; and the matrix [Beq" JT i are related, at equilibrium, by the 

expression (eqn(4.4.2.17», 

eqn(4.4.3.1) 

where the subscript eq refers to the equilibrium state, and the natural forces Te 1, Te 2, and 

Te 3 are those at the end of the initial solution procedure. 
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The vector of element stresses, at equilibrium, can thus be obtained through the equation, 

eqn(4.4.3.2) 

The vector of stress deviations for the element i are therefore given as, 

eqn(4.4.3.3) 

- - -
NRPF i1ax max i1aymax i1'txy max i1ax i1ay i1'tXY 5z (NRPF) centre 

1 40.40% 45.04% -29.11 % 21.61 % 13.22 % 9.80% 11.20498 m (32.4 %) 

2 4.43% 36.65 % -11.65 % 5.23% 7.07% 4.96% 9.92173 m (17.3 %) 

3 4.92% 11.69 % -8.31 % 3.68% 2.53% 2.76% 9.04275 m (6.7 %) 

4 2.49% 9.22% -7.46% 2.31 % 2.70% 2.32% 8.87468 m (4.9 %) 

5 1.89% 6.47% -4.89% 1.52% 2.09% 1.48% 8.67688 m (2.6 %) 

10 1.60% 2.75% 1.84% 0.82% 0.86% 0.70% 8.51619 m (0.3 %) 

20 1.13% 1.41 % 0.79% 0.43% 0.46% 0.37% 8.48213 m (0.1 %) 

50 0.51 % 0.25% 0.55 % 0.09% 0.12% 0.12% 8.46113 m (0.1 %) 

60 0.28 % 0.23 % 0.50 % 0.04 % 0.10 % 0.10 % 8.46079 m • 

70 0.07% 0.23% 0.44% 0.03% 0.11 % 0.10% 8.46125 m (0.1 %) 

90 0.12% 0.27% -0.34% 0.08% 0.13 % 0.09% 8.46347 m (0.1 %) 

100 0.13% 0.29% -0.32% 0.10% 0.13% 0.09% 8.46493 m (0.1 %) 

Table 4.2 • Variation of Surface Accuracy with NRPF • Example 4.1. 

Table 4.2 presents the deviations of the local principal stresses from the condition of uniform 

surface stress for the Example 4.1 (Figure 4.5). The results are quoted as a function of the number 

of kinetic energy peaks, NRPF, detected during the implementation of the initial solution 

procedure. The range 1:s: NRPF:S: 100 has been assumed. The maximum element stress 

deviations are given (i1ax max, i1ay max, and i1'txy max), with the absolute averages (~ax, ~ay, and 

~'txy), taken over all the elements. 
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The numerical estimate of the central node z co-ordinate, 5z (NRPF) centre, obtained as a function 

of the repeat factor, NRPF, is also given. The disparity between the magnitude of 

5z (NRPF) centre and the accurate solution (assumed) is presented in parentheses in the final 

column of Table 4.2.2 

The deviations in the principal stresses are presented as maximum percentage values, and as 

absolute averages of the percentage deviations over all elements of the discretisation. Since the 

prescribed shear stress .xy is zero (in order to model the condition of uniform surface stress) the 

percentage deviation, ~.xy, is based on the average of the two direct principal stresses ax and 

ay. The initial surface of the numerical model is assumed to be in the plane of the boundary. 

As more kinetic energy peaks are permitted within the initial procedure (Section 4.3.5.1) (in 

which both the element side forces and the nodal displacements are updated) the magnitudes of 

the terms in the vector (Aa); are shown to reduce significantly (Table 4.2). As demonstrated 

below, the proximity of the numerical solution to the truly minimal surface is increased 

consequently. 

By assuming a single kinetic energy peak (NRPF = 1) prior to the adoption of the revised routine, 

the condition of uniform stress is satisfied to within 45. % (approximately) (Table 4.2). The 

maximum of the average stress deviations is 21.6 %. In addition the central node z co-ordinate of 

the surface is accurate to within 68. % (approximately). 

Assuming NRPF = 10, the accuracy of the surface geometry is increased to 99.3 % at the centre 

(for the discretisation presented in Figure 4.5). The maximum element stress deviation is reduced 

to 2.75 %, with the maximum of the average stress deviations given as <1. %. Increasing the 

number of admissible kinetic energy peaks to 50 realises a further, though a less marked, 

enhancement in the accuracy of the surface (Table 4.2). 

At NRPF = 60 the central node z co-ordinate attains a minimum value (taken as the true value for 

the Example 4.1). The corresponding deviations in the element stresses are also shown to be at a 

minimum (in general). As the number of admissible kinetic peaks is augmented from 60 to 100 

(and therefore the number of applications of the initial procedure is augmented) the deviations in 

the element stresses increase. Furthermore, the surface is shown to drift from the true solution 

(assumed). An explanation of this loss of accuracy from the numerical solution is proposed 

below. 

2 

The triangular element formulation (Section 4.4.2) can be shown to give an over estimate of the z co-ordinates of the 
minimal surface when compared with the experimental solution. The accurate estimate of the central node z c0-

ordinate is assumed to be the minimum value of those solutions obtained for the range 1 ~ NRPF ~ 100 therefore. 
Consequently, in the case of the discretisation illustrated in Figure 4.5. the accurate numerical solution to the central 
node z co-ordinate is assumed to be 8.46079 m. 
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As the number of admissible kinetic energy peaks is increased beyond 60, the assumption of 

constant strains (in the triangular element formulation) forces the elements of the discretisation to 

buckle about the equilibrium position (Section 4.4.3.2.2). Mter further iterations of the initial 

solution procedure the buckling modes of the discretised surface begin to interfere with the 

pseudo oscillations of the numerical model (described by the Dynamic Relaxation algorithm). 

This phenomenon induces erroneous peaks in the kinetic energy of the system. Numerical 

inaccuracies and instabilities are therefore introduced into the numerical solution (Table 4.2). 

89 

Table 4.3 - Boundary Conditions (Symmetrical). 

Nodes 2,90 3,91 4,92 5,93 6,94 

z co-ord. (m) -6.156 -10.944 -14.364 -16.416 -17.100 

Figure 4.6 - Simple J-Dimensional Surface - Example 4.2. 

The results of a similar analysis conducted on the surface illustrated in Figure 4.6 (Example 4.2) 

are presented in Table 4.4. 
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The surlace has overall plan dimensions of 40.m and 50.m in the global x and y directions 

respectively. It is discretised by 160 triangular elements. Table 4.2 presents the geometrical 

boundary conditions of the surface. The remaining elastic and surface constants are assumed to be 

the same as those given in the case of Example 4.1. The initial surface of the numerical model is 

assumed to be in the plane of the boundary. (The accurate numerical solution to the central node 

z co-ordinate of the surlace is taken as -9.14950 m.) 

- - -
NRPF llax max llaymax ll'txr max llax llay ll'txr 5z (NRPF) centre 

1 3.47% 5.59% -3.95 % 2.38% 1.91 % 1.01 % -9.27298 m (1.3 %) 

2 26.94% 22.10% -7.36 % 9.10% 6.66% 2.12% -9.24207 m (0.9 %) 

3 7.16% 7.11 % -2.99% 3.62% 2.56% 0.90% -9.22861 m (0.8 %) 

4 4.07% 4.97% 2.72% 2.84% 2.03% 0.74% -9.22762 m (0.8 %) 

5 3.70% 2.16% -2.11 % 1.91 % 1.18 % 0.52% -9.21387 m (0.6 %) 

10 1.85% 0.58% -1.06 % 0.67% 0.49% 0.34% -9.19938 m (0.5 %) 

20 0.76% 0.48% 0.68% 0.32% 0.32% 0.25% -9.18458 m (0.3 %) 

50 0.35% 0.33% 0.56% 0.10% 0.17% 0.12% -9.16496 m (0.2 %) 

100 0.19% 0.28% 0.34% 0.06% 0.12% 0.06% -9.15548 m (0.1 %) 

180 0_17 % 0.37% 0.20 % 0.08 % 0.08% 0.04% -9.14950m -

Table 4.4 • Variation of Surface Accuracy with NRPF • Example 4.2. 

Though a direct comparison between Table 4.2 and Table 4.4 cannot be made (due to the 

dissimilarities of the surfaces and of the boundary conditions of Example 4.1 and Example 4.2) 

the following additional observations can be made, common to both sets of results; 

i) Using NRPF = 10 the central node z co-ordinate of both example surfaces are accurate to 

within 1. % when compared with the same surface described using NRPF = 100. 

ii) A maximum stress deviation of 1. % generates less than a 0.5 % error in the central node z 

co-ordinate when the corresponding figure is compared with the accurate numerical 

solution. 

ill) A critical value of NRPF exists, beyond which, numerical inaccuracy and instability may 

corrupt the solution. In the case of Example 4.1 the critical value of NRPF is 60, and for 

Example 4.2 is 180. 
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iv) For the examples investigated, the accuracy of the surface may be related to the condition of 

uniform stress and the element discretisation. This is done by expressing the element size as 

a percentage of the overall dimensions of the surface. This figure is then related to the 

maximum of the average element stress deviations. The procedure is described more fully 

below with reference to a specific example. 

The discretisation illustrated in Figure 4.5 is characterised by an initial element size 

corresponding to 16.67 % and 25.0 % of the surface dimensions in the global x direction and y 

direction respectively. Similarly, the element size in Example 4.2 is 10.0 % and 12.5 % of the 

corresponding surface dimensions, respectively. 

The maximum of the average element stress deviations, 0.26 %, corresponds to an error in the 

central node z co-ordinate of 0.1 % (Table 4.2, Example 4.1). In the case of the Example 4.2 the 

same surface accuracy can be achieved with a maximum of the average element stress deviations 

of 0.13 % (Table 4.4). 

The maximum of the average stress deviations in the surface of Example 4.1 and of Example 4.2 

(0.26 % and 0.13 % respectively), may be related to the maximum element size ~max (25.0 % 

and 12.5 % respectively), by a factor of approximately 100 (96.2 in both cases) therefore. 

Consequently, the maximum of the average element stress deviations (expressed as a percentage) 

must not exceed ~ ~~%) if the resulting numerical model is to be accurate to within 0.1 % of 

the same surface discretisation, but equilibriated with "uniform stress".3 

Through this approach, a measure of the accuracy of the discretisation may be made via the 

magnitude of the maximum of the average principal stresses and the relative size of the elements 

of the discretisation. 

4.4.3.2.3. Assumption of SmaH Strains. 

In the preceding section it is has been shown that the constant strain characteristics of the element 

can result in a locking type of phenomenon. A "softening" of the element formulation, by 

releasing the constraint of constant surface stress during the latter part of the analysis, permits the 

full equilibrium of the surface to a high level of accuracy. However, violation of the assumptions 

inherent in the element formulation can also be shown to lead to numerical instability and to a 

loss of convergence. 

3 

In Example 4.1 the state of "uniform stress" is sssumed to exist when -0.10 % s: AaID8X :S: +0.10 %, and for Example 
4.2 when -0.08 % s: Aamu s: +0.08 %. The ranges of Acrnu presented here have been found to be the minimum 
attainable values for Example 4.1 and Example 4.2 respectively. 
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Appendix 4-A summarises the derivation of the relationship between the principal strains and the 

strains in an inclined direction (used to generate the element strain-displacement expressions 

(eqn(4.4.2.11))). In the derivation of this relationship it is assumed that the strains {Ex, Ey , 'YxyJ 

are smalL such that the angles e and 8' (Figure 4-A.1) are approximately equal (Appendix 4-A). 

A measure of the effect of this assumption can be made by comparing the numerical solution with 

the exact solution to a particular problem. This procedure is known as the "Patch Test". (The 

basis of the test is described more fully in Chapter 6.) 

A suitable "patch" of elements is illustrated in Figure 4.7. The numerical model (Figure 4.7) is 

intended to represent a thin plate or membrane subjected to axial tension in the global x 

direction. The axial tension is applied through an external stress, Ox' The nodes 1 and 5 are free 

to displace in the global y direction so as to permit the accurate modelling of the Poisson's ratio 

effect (Figure 4.7). 

0, I 2 3 4 

Feq1 

4. 

8 
Feq2 • 

4. 

12 
Feq1 

~ -,- 11,- --, 
0,1 4. 4. 4. eX'" 

Y,V 

Figure 4.7· "Patch" of Triangular Elements with Boundary Conditions. 

The magnitude of the external stress, Ox, is assumed to be 3.xlO+5 kN.m-2 It is represented by the 

equivalent nodal loads Feq1 and Feq 2 (600 kN and 1200 kN respectively, Figure 4.7), derived 

using the shape functions of the six degree-of-freedom triangular finite element [4.18]. A value of 

l.xlo-3 m is adopted for the thickness of the plate. The elastic modulus, E, is assumed to be a 

variable (but constant for all elements). Poisson's ratio, '0, is taken as 0.1 

Through the selection of different values of the elastic modulus, E , the amount of straining in the 

plate can be varied. A comparison may thus be made between the exact and the numerical 

solutions to the element stresses and the displacements of the nodal degrees-of-freedom, as the 
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strains of the model are increased. The disparity between the numerical and exact solutions can 

be used as a measure of the ability of the triangular element formulation (Section 4.4.2) to model 

large strains. The results of this study are presented in Table 4.5. 

Elastic Modulus E Maximum Stress Error Maximum Displacement Error Exact Strain Ex 

l.xl()+8 kN.m-2 0.013 % 0.20% 0.3 % 

l.xlo+7 kN.m-2 0.14% 1.91 % 3.0% 

l.xl~ kN.m-2 1.80% 7.67% 30.0% 

3.xlo+5 kN.m-2 3.37% 34.1 % 100.0% 

l.xlo+5 kN.m-2 8.91 % 84.0% 300.0% 

Table 4.5· Patch Test Results for the Discretisation Dlustrated in Figure 4.7. 

As the strains in the model increase, the errors in the numerical solutions to the element stresses 

and to the nodal displacements, are shown to increase also (Table 4.5). The accumulation of error 

in the numerical solution can be attributed to the violation of the assumption of small strains in 

the element formulation, directly. The violation of this assumption is shown to induce much 

larger errors in the numerical solution to the nodal displacements, than to the element stresses. 

For example, in the case of a strain of 300.0 % the maximum error in the nodal displacements is 

84.0 %. Conversely, the error in the element stresses is only 8.91 % (Table 4.5). 

A significant error in the nodal displacements of an individual element can cause the element to 

collapse, or to invert, as the apex node passes through the side opposite to it. As demonstrated 

below, this phenomenon can be induced through large membrane strains occurring during the 

form-finding procedure (where element strains may readily exceed 100. %). 

The surface illustrated in Figure 4.8(a) has overall dimensions of 24.m and l6.m in the global x 

and y directions respectively, and is discretised by 768 triangular elements. The element width 

and height are approximately equal to unity (initially) for all elements. The boundary conditions 

of the numerical model are similar to those described in the case of Example 4.1, but with the 

exception that the maximum z co-ordinate is 3.0 m. The initial surface of the form is described 

using Hermitian polynomials [4.21] with the factor As _ 0.5 4. 

4 

Those curves defined by the Hermitian polynomial are controlled by the z co-ordinate and by the slope of the curve at 
the end points. The latter has been taken as the z co-ordinate divided by the dimension of the elements in the direction 
of the curve. In order to inftuence the shape further, the factor As has been applied to the slopes at each end. 
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The condition of uniform stress is given as CJx = CJy = 5.e-H> kN.m-2 and 'txy = O. kN.m-2• A 

thickness of the 1.xlO-3 m has been assumed for the membrane. The stiffness of the membrane is 

derived from prestress only. 

Using the solution procedure proposed in Section 4.4.3.2.2 the surface is equilibriated after 399 

iterations (Figure 4.8(a». The maximum error residual, Er, is 0.025 % of the maximum pseudo 

cable force, and the surface stress is uniform to within 2.12 %. 

:~: .. ~,: .... :.~";:. !~ .• ~ 

x, u 

o r: y,V 
z, w 

Figure 4.8(a) - Equilibriated Surface (Example 4.1) - As = 0.5 [4.21]. 

If the initial surface is defined with As = 1.12 [4.21] (such that it is more remote from the final form 

than when As = 0.5 [4.21]) the equilibriated surface shown in Figure 4.8(b) is obtained. In this case 

783 iterations are required to equilibriate the surface to the same error residual (0.025 % of the 

maximum pseudo cable force). The condition of uniform stress is not satisfied however. This is 

demonstrated by a value for the maximum element stress deviation of 420.48 %. 

Significant distortions of the elements of the discretisation are shown to occur during the form­

finding procedure (Figure 4.8(b». The poor representation of the condition of uniform stress in 

the case of the surface illustrated in Figure 4.8(b), and the geometrical disparity between the 

solutions (Figure 4.8(a) and Figure 4.8(b» can be attributed to errors in the element nodal 
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displacements (predominantly). These errors are induced by a violation of the assumption of 

small strains in the element formulation 5 . 

,', • 4'" , " •• ' , 
.. , ... ,. , •.••.. ,,,.t 

z, w 

Figure 4.8(b) - Equilibriated Surface (Example 4.1) - As = 1.12 [4.21], 

IT the value of As [4.21] is increased to 1.125 (reducing the proximity of the initial surface to the 

equilibriated form further) the errors in the nodal displacements cause a number of elements 

comprising the discretisation to invert. The inversion of any element immediately yields an 

erroneous topology for the discretisation. This introduces additional errors into the numerical 

model and causes the solution algorithm to diverge. 

The inversion of an element may be visualised as a fold in the material of the surface. In the case 

of a soap-film surface, folds of this type are not generated. The numerical representation of a 

minimal (soap-film) surface is in error therefore, when the phenomenon of element inversion 

occurs. 

5 

In the solution represented by Figure 4.8(b), the magnitudes of the element strains have been increased (when 
compared with the strains in the preceding solution (Figure 4.8(a))) by reducing the proximity of the initial surface to 
the equilibriated form. 
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Minimal surfaces have been investigated with the triangular element formulation (Section 4.4.2) 

previously [4.19]. The surfaces investigated in reference [4.19] were bounded by flexible elastic 

cable elements. In this case, the inversions of certain triangular elements of the discretisation 

were attributed to the motions of the flexible boundaries (which were not in equilibrium with the 

membrane) being out of phase with the motions of adjacent triangular elements. It was 

recommended that on detecting an inverted element, a load may be applied to the offending apex 

node to reverse the inversion and so correct the topology of the discretisation [4.19]. 

It is proposed here however, that the phenomenon of element inversion is a form of numerical 

instability, which should not occur during the application of the solution algorithm. Therefore, 

mther than attempting to correct the topology of the discretisation subsequent to the inversions of 

the elements, the surface strains should be controlled so as to prevent the onset of this form of 

instability . 

This may be achieved simply, by treating the form-finding procedure as a special case of static 

analysis. The surface is subjected to a tensile prestress only, as before, but the element strains are 

assumed to contribute to the equilibrium of the surface. Thus, the elastic modulus of the surface 

is assumed to be non-zero. Consequently, the element stresses are a function of the initial 

(desired) stress distribution and the stresses induced by the element strains. The magnitudes of 

the element strains are controlled by changes in the geometry of the surface and (in addition) by 

the updated element stresses as described below. 

If an element, i, (comprising a discretisation) is subjected to a large positive strain6 the 

magnitudes of the tensile stresses in this element are increased. Furthermore, the elements 

immediately adjacent to the element i will be subjected to negative strains, giving rise to 

decreases in the magnitudes of the tensile stresses in these elements (assuming they remain 

stable). 

In order to establish equilibrium, the geometry of the surface (and therefore of the elements) must 

change. The large imbalance of stresses in the plane of the surface cause the stretched element to 

contract and the compressed elements to expand. Subsequent to this cycle of expansion and 

contraction, the sizes of the elements are unchanged (approximately). The sustained collapse and 

enlargement of adjacent elements (central region of Figure 4.8(b» is negated therefore, and the 

stability of the solution algorithm is maintained. The stability of the solution algorithm is 

enhanced further by the contribution of the elastic stiffness terms to the overall stiffness of the 

6 

In the form-finding of stable minimal energy forms, adjacent elements are usually subjected to similar strains. An 
individual element may be subjected to a large positive (or negative) strain as a result of the effects of the solution 
algorithm becoming unstable. Errors introduced into the numerical solution, by a violation of an inherent assumption in 
the element formulation for example, can have a similar consequence. 
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surface. 

The mathematical application of this approach is outlined below. 

At the time t = i 5t , the vector of element side forces (T E p, may be given by the expression, 

(eqn(4.4.2.9) & eqn(4.4.2.12», 

eqn(4.4.3.4) 

where; is the current iterative loop, and n is the maximum number of admissible loops. 

The vector of element side forces, (TEl', is a function of the elasticity of the surface, 

denoted by the subscript E. 

The first term on the far right side of eqn(4.4.3.4) constitutes the element side forces describing 

the initial (desired) element stresses. The term in the summation sign gives the contribution of the 

elastic straining of the element to the element side forces at each iterative step. The element 

stresses are given by the vector {OEl', written as, 

! 
t.O itn [ 1] ! t -i 5t [ {l3tr}! t -i t)t _ {S':.tr}!'·(i-l)t)t ] (OEl' ... {Oe} + f:1 [D] [Btr u 

eqn(4.4.3.5) 

If it is found at the time interval t = i l3t that the element stresses are negative, it is assumed that 

the element has wrinkled. In this case the offending principal direct stress(es) is set to zero and 

the shear stress prescribed according to the Mohr's circle of stress. The revised vector of element 

stresses, {ow}, are then used to recalculate the vector of element side forces {T w }, as, 

! 
t - i fit 

{TwP "" V [BtrJ1 (owP. eqn(4.4.3.6) 

The remainder of the analysis follows a similar procedure to that outlined in Section 4.4.3.1. 

Due to the contribution of the element strains to the element stress vector, {OEP. the condition of 

uniform stress is violated at equilibrium (generally). As demonstrated below, by re-imposing the 

constant stress vector. {oe}, and re-equilibriating the surface, the condition of uniform stress can 

be represented more closely. 
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Table 4.6 presents the maximum and the average element stress deviations for the surface 

illustrated in Figure 4.8(a). The results are presented for the first five re-impositions (NGl = 1-75) 

of the constant stress vector, {oc}. The numbers of iterations of the solution algorithm to achieve 

equilibrium (NIT) for each re-imposition of the vector {oc} are presented in the second column 

(Table 4.6). 

The initial surface of the form is defined with As -= 1.12 [4.21]. A value of 5.xlo-HJ kN.m-2 has been 

assumed for the elastic modulus of the membrane, with Poisson's ratio'\) =0.1. The error 

residual, Er, is taken as 0.025 % of the maximum pseudo cable force. 

- - --
NG/ Nrr Acrx lD8X Acry lD8X A'txy lD8X Acrx Acry A'txy 

1 1392 18.35 % 17.76% 12.99% 1.85 % 1.51 % 1.06% 

2 1208 2.31 % 2.23% 1.65% 0.20% 0.19% 0.14% 

3 899 -0.31 % -0.31 % 0.23% 0.03% 0.03% 0.02% 

4 627 -0.38 % -0.37 % -0.17 % 0.02% 0.02% 0.01 % 

5 505 -0.39% -0.38 % -0.18 % 0.01 % 0.02% 0.Q1 % 

Table 4.6· Variation of Element Stress Deviation with NG/ (E -5.xl0+6 kN.m-2). 

The maximum element stress deviation is shown to converge to 0.4 % (approximately). Figure 

4.8(b) illustrates the solution to the same surface in which the elastic modulus, E, was assumed to 

be zero. In this case the maximum element stress deviation was 420.48 % at eqUilibrium. 7 The 

disparity between the maximum element stress deviations of the solutions can be attributed to the 

effects of the violation of the assumption of small strains in the element formulation. By 

including elasticity in the solution algorithm it is shown that the effects of a violation of this 

assumption are negated. 

As demonstrated below a minimum value of elastic modulus, E, should be adopted which will 

maintain the numerical stability of the solution algorithm and maximise its rate of convergence to 

the conditions of equilibrium and uniform surface stress. 

The results presented in Table 4.6 are based on a conservative value of E so as to illustrate the 

application of the revised procedure. If the elastic modulus of the surface is reduced to 5.xlQ+5 

kN.m-2, the results given in Table 4.7. are obtained. The solutions presented in Table 4.6 and in 

7 

The initial surface of the numerical model was described with As - 1.12 [4.21] in both cases. 
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Table 4.7 converge to the same final definition of the surface. The latter solution (Table 4.7) 

demonstrates a saving of 48 % in computational effort over the former (Table 4.6) however. 

The minimum value of E which will ensure numerical stability of the solution algorithm can be 

used as a measure of the complexity of the form. Thus, as the intricacy of the geometry of a 

surface is increased (by the application of additional boundary conditions) the minimum value of 

E necessary to ensure the numerical stability of the solution algorithm is similarly augmented, 

and vice versa. 

- - --
NG/ Nrr l1ax malt Aaym&X A'txymalt Aax Aay A'txy 

1 1566 1.93 % 1.87 % 1.48% 0.20% 0.17% 0.12% 

2 823 -0.38 % -0.37 % -0.17 % 0.01 % 0.02% 0.01% 

Table 4.7· Variation of Element Stress Deviation with NG/ (E - 5.x1o+5 kN.m-2). 

4.4.4. Summary· Triangular Element Formulation. 

The following points are summarised from the studies presented in the preceding sections, 

regarding the triangular element formulation. 

i) The characteristic of constant element strain can lead to a buckling type of phenomenon. 

This may result in the divergence of the numerical algorithm. 

ii) By releasing the constraint of uniform surface stress in the numerical model after a specified 

number of kinetic energy peaks (NRPF), the buckling type of phenomenon associated with 

the constant strain element can be prevented. A critical value of NRPF exists beyond which 

the accuracy of the solution is reduced. 

ill) The accuracy of the equilibriated surface can be related to the condition of uniform stress 

and the element discretisation in the following way - the maximum of the average stress 

deviations in the surface (expressed as a percentage) must not exceed Ao~(%) if the 

resulting surface is to be accurate to within 0.1 % of the same surface discretisation, but 

equilibriated with uniform stress. (Aa III8X is the maximum element size (maximum overall 

dimension». 

iv) By violating the assumption of small element strains errors in the numerical solution can be 

induced, which may lead to the divergence of the solution algorithm. The effects of a 

violation of this assumption can be negated by introducing elastiCity into the numerical 

model. 
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4.5. Verification of the Numerical Solution Methods. 

4.5.1. Introduction. 

Soap-film models may be adopted as useful physical analogues to stable minimal energy forms. 

In this section the results of investigations into the accuracy of the numerical representation of 

various soap-film models is presented. 

4.5.2. Single Minimal Surfaces with Fixed Boundaries. 

4.5.2.1. Linear Elements. 

Figure 4.9 shows the equilibriated surface of the soap-film model illustrated in Plates 3.1 & 3.2 

(Example 4.3). The surface of the model is sub-divided into an orthogonal mesh with element 

lengths corresponding to 1.25 % of the overall x dimension of the model in the global x direction, 

and 2.00 % of the of the overall y dimension in the global y direction. A mathematically defined 

initial surface has been assumed, based on the Hermitian polynomial with the factor A.s - 7.0 [4.21]. 

The stabilising factor M - 2.0 8 [4.21] has been adopted with the error residual Er equal to 0.025 % 

of the element pretensions 9. The element pretensions are taken as 50. kN in all elements. The 

elasticity of the surface is assumed to be zero. 

The condition of equilibrium is satisfied after 467 iterations, with a corresponding Cpu time of 

871.3u 10 . The main curvatures of the surface along the two central planes z -x and z -y are 

shown in Figure 4.1O(a) and Figure 4.1O(b). Excellent agreement is demonstrated between the 

numerical and the experimental solutions. The deviation of the solutions (experimental and 

numerical) in certain regions of Figure 4.1O(a) may be attributed to differences in the assumed 

and in the actual boundary conditions, arising from a distortion of the wire model. 

8 

The factor AA [4.211 is applied to all the stiffness terms of the discretisation. An increase in the geometric stiffness of the 
surface is obtained therefore. This is achieved without increasing the pretensions in the elements and thus increasing 
the out-of-balance forces at the element nodes. The numerical stability of the solution algorithm is enhanced in this 
way, therefore. 

9 

The error residual Er equal to 0.025 % of the element pretensions has been assumed for all subsequent examples unless 
otherwise stated. This also applies in the case of the triangular element disccetisation, where the natural forces in the 
pseudo cables are used as the basis for the error residual. 

10 

All Cpu times are quoted for a "Spare-!" Sun W orkstation. 
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o 

Figure 4.9 - Equilibriated Surface (Example 4.3). 
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Figure 4.10(a) . Accuracy of Equilibriated Surface (Example 4.3) . z -x Central Plane. 
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Figure 4.10(b) . Accuracy of Equilibriated Surface (Example 4.3)· z-y Central Plane. 
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Figure 4.ll(a) shows the equilibriated surface of the soap-film model illustrated in Plates 3.3 & 

3.4 (Example 4.4). The discretisation and the initial form of the surface are shown in Figure 

4.11 (b). The boundary of the numerical model has been assumed to be rectangular on plan with 

the same overall dimensions of the physical model. Using a simple algorithm, the initial surface 

of the form has been discretised by a set of equally spaced elements (approximately). The 

elements are assumed to be in the plane of the boundary which is aligned with the global x 

direction (Figure 4.11(b». 

The mesh size in the global x direction is 1.35 % of the overall x dimension, and 1.6 % of the 

corresponding dimension in the global y direction. The element pretensions and elastic constants 

of Example 4.3 have been assumed in this case. During the form-finding procedure the nodes on 

or outside the boundary of the surface are assumed to be fixed in position and at a state of 

equilibrium. 

The condition of equilibrium is satisfied after 2674 iterations and a corresponding Cpu time of 

l2988.lu (given for the complete discretisation). The equilibriated surface is illustrated in Figure 

4. 11 (c) (with all the elements of the discretisation displayed). Figure 4.11(a) shows only the 

elements which are assumed to contribute to the formation of the numerical solution to the soap­

film surface. The main curvatures of the surface along the two central planes z -x and z -y are 

shown in Figure 4.12(a) and Figure 4. 12(b) respectively 11 . 

The central area of the surface is shown to be distorted in the numerical solution (Figure 4.12(a) 

and Figure 4. 12(b». The tendency of the linear elements to follow geodesic lines over the 

surface, results in a high concentration of elements in in the region where the slope of the surface 

changes sign. The density of elements is shown to increase in the direction of the principal 

curvatures (Figure 4. 11 (a», giving rise to the "pointed" form of the numerical solution. 

Nevertheless, good agreement between the numerical and the experimental solutions is 

demonstrated (Figure 4.12(a) and Figure 4. 12(b». 

11 

The discrepancy between the numerical and the experimental boundaries may be attributed to the modelling technique, 
as outlined in Section 3.6.2.1, Chapter 3. An additional approximation is present in the numerical solution therefore. 
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Figure 4.11 - Equilibriated Surface (Example 4.4). 
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Figure 4.12(b) • Accuracy of Equilibriated Surface (Example 4.4) • z -y Central Plane. 
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Figure 4.13 shows the equilibriated sutface of the soap-film model illustrated in Plates 3.5 & 3.6 

(Example 4.5). The model is rectangular on plan. The boundaries at the narrow ends of the model 

possess a discontinuity of slope at the mid-point and form a deep "V" shape (Figure 4.13). 

Consequently, high local curvatures are produced in these regions. 

Herrnitian polynomials are used to describe the initial sutface of the form, with the factor 

A.s = 0.5 [4.21]. For this case (case 1), an orthogonal mesh elements is placed over the top part of 

the model only. Conversely, the sutface planes in the "V" shaped ends are modelled simply by 

uni-directional elements (Figure 4.13). The mesh size is assumed to be 1.1 % in the global x 

direction and 2.0 % in the global y direction of the overall dimensions of the model, respectively. 

A value of 4. has been assumed for the stabilising factor A.A [4.21]. The condition of equilibrium is 

satisfied after 1594 iterations and a corresponding Cpu time of 3069.5u. 

The principal curvature in the central z -y plane of the model is shown to be represented very 

accurately by the current discretisation (Figure 4. 14(b». In the case of the z-x plane however, a 

significant disparity between the numerical and the experimental curvatures can be observed in 

the vicinity of the "V" shaped boundaries (Figure 4.l4(a». The combined effects of the 

propensity of the linear elements to follow geodesic lines over the surface and an inadequate 

representation of the "V" shaped regions of the surface, can be attributed to the disparity referred 

to previously and illustrated in Figure 4. 14(a). 

In order to improve the accuracy of the numerical representation of the soap-film surface 

(Example 4.5) an alternative approach is adopted and referred to as case 2. In this case an 

orthogonal mesh of elements is placed across the top of the model as before, but two additional 

orthogonal meshes of elements are used to discretise the "V" shaped regions at the ends of the 

model (Figure 4.15). Consequently, three planar type sutfaces are adopted to describe the initial 

surface of the numerical model, comprising a total of 11488 elements. The element constants are 

taken as for the previous case. 

Equilibrium of this form is achieved after 1267 iterations with a corresponding Cpu time of 

3116.7u (Figure 4.15). The results of this approach are presented graphically in Figure 4.16(a) 

and Figure 4.16(b). It can be seen that the sutface is over-constrained, particularly in the end 

regions of the model where the numerically achieved surface is "pulled away" from the 

experimental soap-film surface. 
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Figure 4.13 • Equilibriated Surface (Example 4.5). 
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Figure 4.15 - Equilibriated Surface (Example 4.5). 
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Figure 4.17 • Equilibriated Surface (Example 4.5). 
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The solutions from the studies "case 1" and "case 2" suggest that more careful modelling (with 

elements placed partly over the top and partly over the end planes) is required in order to enhance 

the accuracy of the numerical model (case 3, Figure 4.17). The condition of equilibrium for this 

case is satisfied after 2213 iterations and a corresponding Cpu time of 5483.7u. The equilibriated 

surface is illustrated in Figure 4.17, with the main curvatures in the z -x and z -y planes shown in 

Figure 4.18(a) and Figure 4.18(b) respectively. 

An improvement in the accuracy of the numerical solution is achieved through the adoption of 

the discretisation illustrated in Figure 4.17. This solution (Figure 4.18(a) and Figure 4.18(b» is 

not unique however. As demonstrated by a comparison of the solutions obtained from case 1, 

case 2 and case 3, it is sensitive to both the number and the position of the linear elements. 

The number and the position of the linear elements may be varied in order to achieve an accurate 

solution to a known form (Figure 4.17). By simply increasing the number of linear elements in 

the discretisation however, an accurate solution to the minimal surface may not be obtained 

necessarily. 

4.5.2.2. Triangular Elements. 

The equilibriated surface of the soap-film model illustrated in Plates 3.1 & 3.2 (Example 4.3) is 

shown in Figure 4.19. A discretisation of triangular elements with dimensions equal to 10 % 

(approximately) of the overall dimensions of the physical model in the global x and y direction 

respectively, has been adopted (Figure 4.19). The surface is therefore sub-divided with 24 

elements along the greater length and 16 elements in the orthogonal direction 12 . The initial 

surface of the numerical model has been generated mathematically using Hermitian polynomials 

O"A - 2.0 [4.21] ). 

It is assumed that 75 kinetic energy peaks (NRPF = 75) are permitted prior to the commencement 

of the revised routine (Section 4.4.3.1). The condition of uniform stress is modelled as 

crx - cry - l.xl()+6 kN.m-2 and 'txy .. O. kN.m-2. The thickness of the membrane is taken as 

l.xlo-3m. 

The condition of equilibrium is satisfied after a total of 589 iterations and a corresponding Cpu 

time of 111.4u. At equilibrium the condition of uniform stress is represented within a maximum 

surface stress deviation of 0.38 %, and a maximum of the average element stress deviations of 

0.04 %. The numerical solution to the surface is presented graphically in Figure 4.20(a) and 

12 

By increasing the number of elements comprising the discretisation, the description of the surface is not altered 
significantly. The term "significantly" is taken to mean a change of greater than 0.02 % in the z co-ordinate of any node 
arising from an increase in tlle number of elements of the discretisation. 
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Figure 4.20(b) as profiles of the central planes of the membrane, z-x and z-y respectively. 

Small deviations of the numerical solution from the experimental solution can be observed 

(Figure 4.20(b». The disparities between the numerical and the experimental solutions arise 

(predominantly) from the effects of the characteristics of the discretisation (Figure 4.19) given 

below. 

The triangular elements are plane and therefore provide a linear piecewise approximation to the 

curved profile of the surface. Furthermore, in the z -x central plane the surface is described at the 

apex nodes only. This is not the case in the orthogonal direction where information is provided at 

two nodes of each element (Figure 4.19). Consequently, the numerical solution exhibits the 

marked discontinuities of slope in the z-y central plane (Figure 4.20(a» which are not identified 

in the z -x central plane (Figure 4.20(b». 

Nevertheless, a coarse discretisation of plane triangular elements (Figure 4.19) can provide an 

improved numerical solution to a curved minimal surface (when compared with the linear (line) 

element discretisation (Figure 4.9» for the following reasons: 

(i) the condition of uniform surface stress can be represented adequately by the continuum 

based triangular element formulation (Section 4.4.2). Consequently, arbitrarily shaped 

elements may be used to discretise the surface as opposed to an orthogonal mesh of linear 

elements. Large changes of the internal geometry of the discretisation can tolerated 

therefore, while maintaining the condition of uniform surface stress 13 , 

(ii) the magnitudes of the natural forces in the pseudo cables (representing the sides of the 

triangular element) are not constant (necessarily). Instead they relate the geometries of the 

triangular elements to the vector of surface stresses, {oe}, (eqn(4.4.2.17». Therefore, 

geodesic lines (which can cause a distortion of the numerical solution) are not necessarily 

simulated by the pseudo cable elements comprising the triangular element formulation. 

Example 4.4 and Example 4.5 demonstrate the implementation of the triangular element 

formulation with the Dynamic Relaxation algorithm further. 

13 

IT the elasticity of the surface is assumed to be non-zero (in order to maintain the numerical stability of the solution 
algorithm for example) then changes in the geometry of the element will affect the condition of uniform surface stress 
(represented by the vector (Oe}) (eqn(4.4.3.5». The condition of uniform stress can be recovered in this case by re­
applying the vector {oe} and re-equilibriating the surface repeatedly (Section 4.4.3.2.3). 
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Figure 4.19 • Equilibriated Surface (Example 4.3). 
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The equilibriated surface of the soap-film model illustrated in Plates 3.3 & 3.4 (Example 4.4) is 

shown in Figure 4.21. Due to the complexity of the form a relatively fine discretisation of the 

surface has been adopted. Thus, the triangular elements possess dimensions of up to 3.5 % of the 

associated overall dimension of the physical model. The non-symmetrical form of the boundary 

is modelled by a layer of irregularly shaped elements, permitting a regular mesh of elements 

within the main body of the surface (Figure 4.21). The total number of elements is 1124. 

The initial surface of the numerical model has been defined using Hermitian polynomials with 

As = 2. [4.21]. It is assumed that 100 kinetic energy peaks (NRPF = 100) are permitted prior to the 

commencement of the revised routine (Section 4.4.3.1). This relatively high value is adopted in 

order to reduce the magnitude of element stress deviations arising from the poor aspect ratios of 

some elements 14 . The remaining surface constants are taken as for Example 4.3. 

The condition of equilibrium is satisfied after a total of 840 iterations and a corresponding Cpu 

time of 300.0u. The condition of uniform surface stress is represented adequately (at equilibrium) 

with the maximum element stress deviation equal to 1.09 %, and the maximum of the average 

element stress deviations equal to 0.09 %. 

Figure 4.22(a) and Figure 4.22(b) show the profiles of the central z-x and z-y planes of the 

membrane respectively. Good agreement is demonstrated between the numerical and the 

experimental solutions. (As before, the discrepancy between the two solutions in certain regions 

of Figure 4.22(a) and Figure 4.22(b) may be attributed to errors in the physical model.) The 

triangular element discretisation is shown to provide an improvement in the accuracy of the 

numerical solution to the soap-film surface when compared with the linear element discretisation 

(Figures 4.36 (a) & (b) with Figures 4.26 (a) & (b». 

14 

Due to the trigonometric terms which comprise some of the characteristic matrices of the triangular element 
formulation (eqn(4.4.2.ll) and eqn(4.4.2.17», errors are introduced into the numerical solution when the angles!h and 
63 (Figure 4.3), approach 0 or 2 n. 
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Figure 4.23 shows the equilibriated surface of the soap-film model illustrated in Plates 3.5 & 3.6. 

A fine discretisation of elements has been assumed in order to model accurately the high 

curvatures of the surface. Consequently, the numerical model comprises 20 elements in the global 

y direction (5. % of the overall y dimension) and 34 elements in the global x direction (2.9 % of 

the overall x dimension). The initial surface is generated using Hermitian polynomials with 

factor As = 3. [4.21). It is assumed that 75 kinetic energy peaks (NRPF = 75) are permitted prior to 

the adoption of the revised procedure (Section 4.3.3.1). 

A total of 1028 iterations are required to equilibriate the form with a corresponding Cpu time of 

296.6u. The central z-x and z-y planes are plotted in Figure 4.24(a) and Figure 4.24(b) 

respectively. 

A disparity of approximately 0.8 mm (constituting an error of around 11 %.) is shown to exist 

between the numerical and the experimental solutions at the centre of the model (Figure 4.24(b». 

As presented below, an explanation related to the measurement of the physical soap-film sUlface 

rather than to the numerical modelling technique is proposed for the disparity between the two 

solutions. 

The numerical model assumes that the soap-film surface commences at the centre-line of the wire 

frame of the physical model. Conversely, measurements of the physical soap-film surface have 

been taken using the inside of the wire frame as the datum. 

The actual location of the soap-film on the wire frame is defined such that a vector in the plane of 

the membrane is normal to the surface of the boundary. In the case of a boundary comprising a 

tube (circular wire) the soap film moves around the wire until this vector passes through the 

centre of radius of the tube. Therefore, as the curvatures of the membrane change (normal to the 

boundary), the location of the soap-film on the wire frame changes also. 

In the case of the surface illustrated in Plates 3.5 & 3.6, the soap-film is approximately vertical at 

the boundary with the discontinuity of slope (Plate 3.5). Therefore, the soap-film is attached to 

the top surface of the wire frame at this point. An over-estimate of the z co-ordinate of the 

surface is thus made, equivalent to the radius of the tubular frame (0.625 mm). Consequently. the 

central node z co-ordinate of the numerical model may be amended to (7.820 mm - 0.625 mm) :::: 

7.2 mm. The error between the numerical solution and the experimental solution is reduced to 3 

% (approximately) subsequently. The remaining co-ordinates of the numerical solution may be 

amended pro rata. 
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Figure 4.23 - Equilibriated Surface (Example 4.5). 
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4.5.3. Single Minimal Surfaces Between Two Independent Frames. 

Two independent frames may be connected by a single soap lamella to form a minimal surface 

(Plate 3.7). The classical solution to a single surface formed between two circular rings of equal 

diameter is summarised in Section 3.6.2.2, Chapter 3 [4.20]. 

In order to assess the accuracy of the numerical solution method further, three surfaces of the type 

illustrated in Plate 3.7 are analysed. The ring diameters are assumed to be 40 mm, 80 mm, and 

150 mm. The same surface discretisation is used in each case, with 24 elements around the 

circumference of the surface and with eight rows of elements in the vertical direction (Figure 

4.25(a». The initial surface of the form is taken to be cylindrical for each example (unless 

otherwise stated). The constant stress vector foc}, is defined as, Ox = Oy = l.xl0+6 kN.m-2 and 

'txy = O. kN.m-2• At equilibrium the condition of uniform stress is satisfied to within 1. % in all 

cases. 

During the experimental modelling of the catenoid surface, if the maximum attainable separation 

of the rings is exceeded, the soap-film collapses inwards and breaks. The membrane then fills the 

upper and lower rings, causing them to become disconnected (Section 3.6.2.2, Chapter 3). As 

demonstrated below, in the case of the numerical model, the criterion to establish the maximum 

attainable separation of the rings is based on this phenomenon. 

Figure 4.25(a) shows the equilibriated surface between two 80 mm diameter rings at the 

maximum attainable separation of 53.0 mm. Using this equilibriated form as the initial surface 

but extended to 53.1 mm, an attempt is made to equilibriate the updated model. Figures 4.39 (b) -

(d) show the progressive collapse of the surface. The collapse of the surface is caused by the rings 

exceeding the maximum value of separation. In the case of the 80 mm diameter rings, the 

maximum attainable separation of 53.0 mm corresponds to a value of the factor J!max _ Z max 
ra 

(Section 3.6.2.2, Chapter 3) of 1.325. 

Using this approach the remaining two examples, (40 mm and with the 150 mm diameter rings) 

both yield J!max - 1.315. These results correspond to less than a 1. % deviation from the classical 

solution (Section 3.6.2.2, Chapter 3). 
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Figure 4.25 - (a) Catenoid - 80 mm Rings at Maximum Separation (53.0 mm). 

(b) - (d) Progressive Collapse of Catenoid Surface (Separation = 53.1 mm). 

Three examples using concentric elliptical rings, for which the closed form solution does not 

exist, have also been investigated. The minor axis of the ellipse is maintained at 80 mm while the 

major axis diameter has assumed values of 120 mm, 160 mm, and 240 mm respectively. The 

surface discretisation is taken as for the circular ring examples, except that 36 elements are used 

around the circumference of the surface. For the example where the major axis diameter is 120 

mm the initial surface is assumed to be in the plane of the boundary (forming a cylindrical type 

surface between the two rings). In the case of the remaining examples, the initial surfaces are 

obtained as scaled versions of the equilibriated surface, established between the 120 mm major 

axis ellipses. 

If the initial surface of the numerical model is assumed to be in the plane of the boundary (for the 

examples where the major axis diameter exceeds 120. mm) the solution algorithm becomes 

unstable 15 . Similarly, in the case of the smallest ellipse, if the assumed ring separation is too 

15 
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great (but less than the maximum) numerical instability can result. As described below, the form 

of the numerical instability can cause a misrepresentation of the surface, and a false indication 

that the maximum attainable ring separation has been achieved. 

Figure 4.26(a) shows the surface between two elliptical rings with a major axis diameter of 120 

mm in each case. The initial surface has been assumed to be in the plane of the boundary 

(cylindrical type). The ring separation is 58.5 mm. The surface is illustrated after 10 iterations 

(NIT = 10) with no kinetic energy peaks and AA = 10 [4.21] • 

Figure 4.26 - (a) Surface Exhibiting Numerical Instability. 

(b). (d) Equilibriated Surfaces at Maximum Attainable Ring Separation 

Major Axis Diameters of 120 mm, 160 mm, and 240 mm, Respectively. 

A comparison of Figure 4.26(a) with Figure 4.25(d) suggests that the modes of surface collapse 

are dissimilar. Particular attention is drawn to the central region of the surface shown in Figure 

4.26(a) where it can be seen that the surface has tended to buckle and wrinkle. 

By using a smaller ring separation, an equilibriated surface with uniform element stress can be 

established. This surface is then extended to give a new initial surface for the subsequent increase 

in ring separation. The surface resulting from this approach is shown in Figure 4.26(b). The 
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maximum ring separation is 62.8 mm. This value of separation can be compared with the 

misrepresented maximum separation of 58.5 mm, and constitutes an increase of around 7 %. 

Therefore, in the case of the ellipses in which major axis diameter is 120 mm, 

~max = 6Jl = 1.57. In the examples where the major axis diameters are 160 mm and 240 mm, it 

is found that ~max = 6Jo~ = 1.71 and ~max = 71o~ = 1.83, respectively. The corresponding 

surfaces are illustrated in Figure 4.26(c) and Figure 4.26(d) respectively. 

Given the solutions to the examples presented above, an expression for obtaining intermediate 

values of ~max may be written as, 

~max = 
Zmax 

rmin 

[ 
r ] 0.25 [ r ] 0.5 

-183.085 + 366.575 ~ - 130.486 ~ 

eqn(4.5.3.1) 

where Z max is the maximum attainable separation of the rings. r max and r min are the major 

axis and minor axis radii respectively, used to describe the ellipse. Eqn(4.5.3.1) is shown 

graphically in Figure 4.27. 

1.9 
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Figure 4.27 Variation of ~max with ~~ (eqn(4.S.3.1». 
mm 

Differentiation of eqn(4.5.3.1) leads to, 

dz max 
(fQ= 

91.644 _ 65.243 
a 0.75 a O.5 

eqn( 4.5.3.2) 
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where a is the ratio 'max. 
'min 
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Equating the right hand side of eqn(4.5.3.2) to zero leads to ~maxmax = 1.859 at 'max ;;:: 3.893. 
'min 

This compares with the value of ~max = 1.325 for the case of the circular concentric rings 

('max = 1.). 
'min 

The maximum attainable separation may be increased when the rings are of an elliptical shape 

instead of circular (for the same minor axis diameter). As the major axis diameter of the elliptical 

rings is increased the extremes of the surface (in the direction of the major axis diameter) assume 

horizontal positions. Therefore, these areas are almost redundant in terms of enhancing the 

maximum attainable separation of the rings for a constant value of minor axis diameter. This is 

demonstrated by the levelling of the plot of ~:: against ~max (Figure 4.27). 

Table 4.8 presents a comparison of the numerical with the experimental solutions to the minimal 

surfaces generated between two circular and between two elliptical rings, illustrated in Figure 

4.25 and Figure 4.26. An adequate representation of the maximum attainable separation of the 

rings is demonstrated by the proposed numerical model. 

Solution Numerical Experimental 

'max Zmax (mm) ~max zmax (mm) ~max Error 
'min 

1.5 62.8 1.57 61.7 1.54 1.8% 

2.0 68.3 1.71 66.9 1.67 2.4% 

3.0 73.3 1.83 60.9 1.82 0.5% 

Table 4.8 • Comparison of Numerical Solution with Experimental (Elliptical Rings) 16 • 

4.5.4. Minimal Surfaces with Internal and External Flexible Boundary Elements. 

Those surfaces whose boundaries are flexible and fixed at a minimum number of points to 

maintain equilibrium. comprise an additional group of minimal energy forms. The numerical 

solutions to the surfaces shown in Plates 3.14 - 3.19 are presented in this section. The membrane 

16 

Due to the constraints of the modelling apparatus, the minor axis diameter. 'min. of the physical model in which ~: 
= 3.0 is 33.325 mm. Consequently, the maximum attainable separation is 60.9 mm. 
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is discretised by triangular elements, representing a state of constant surface stress. The boundary 

elements (linear (line) in this case) are assumed to act in an elastic manner such the strains in 

these elements induce natural forces. 

Consequently, the shape of the surface is controlled by both the position of the fixed boundary 

points (as before), and the length of the boundary elements. Figure 4.28 shows the effect of 

increasing the lengths of the boundary elements on the final form. The lengths of the elements are 

increased by reducing the elastic modulus of the boundary elements progressively. 

:~., : -. .. ~ • :"~' .-'~ ~.~. ' ~ ~ ,t:,' t ~ ~ ~ ~ I : ~ :: ~ i I I -l i ,: t . I ' 1 {0I t': -'- :. : I • ':, ~ I' t, ~ , : : t . : , " ~:- t ~ i! :: I : I ~. l.l " t t:,: +! I ' I ~ ,: ;;~. If l' J t t; :r 

• • ~ • _ ... '": : I , , ~ ~ • T';' ~ , . 

Figure 4.28 (a) - (d) 

Surface Forms Generated by Increasing the Length of the Boundary Elements. 

(External Boundary Elements Only). 

The numerical solutions presented in Figure 4.28 (a) - (d) can be compared with the experimental 

solutions illustrated in Plates 3.14 & 3.15. The element stresses in all of the examples illustrated 

in Figure 4.28 are uniform to within 0.01 %. In the case of the experimental solution the 

individual boundary cables exhibit a constant natural force. The natural forces in the boundary 

elements of the numerical model vary by up to 3 % (approximately). This figure can be reduced if 

a finer discretisation of elements is adopted. (The initial prestress of the boundary elements has 
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been assumed to be zero). 

If the boundary elements become too long then a minimal surface cannot be formed between the 

actual fixed boundary points (Figure 4.28(d». Instead the boundary cable elements merge and 

new "fixed" boundary points are generated by the minimal surface. These are marked as "bp" in 

Figure 4.28(d). This phenomenon can also be recognised in the physical models (Plate 3.15). 

The numerical solutions to plane membranes with internal and external boundary elements of 

varying length are presented in Figure 4.29. 

Figure 4.29 (a)· (d) 

Surface Forms Generated by Increasing the Length of the Boundary Elements. 

(External and Internal Boundary Elements). 

The internal boundary elements are shown to form a linear piecewise approximation to a circle 

(Figure 4.29). In the numerical model the natural forces of the internal boundary elements vary 

by less than 0.03 %. In the case of a pure circle (Plate 3.17) the natural forces are constant. 

Consequently, the numerical model may be seen to provide an excellent approximation to the 

physical modeL 
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Figure 4.30 shows the effect of assuming that the internal boundary cables are remote from the 

centre of the membrane as the length of the boundary elements are increased. 

, I .. ~ ~... i "" + .. I ... + -{o .. ... +' i .. + + , + '-I 1 ,"'" • i .. • r 1 
t.,..T""t,. ... T".~tTTt .. T'7 ... ~T ,""T. i't.tt+++i.t. t. -:1"i~I~ttji . liL-lir-f>i1--tltj.li ,( H·"~""+"'.T .. "t ......... .,.r..-.'T;'t j I 

(a) I (b) 

Figure 4.30 (a), (b) 

Anti-symmetric Forms Generated by Increasing the Length of the Boundary Elements. 

(External and Internal Boundary Elements). 

It is demonstrated that the boundary elements achieve maximum lengths when the inner circle 

comes into contact with the external boundaries. In this case the shape of the external boundaries 

remain unchanged. They continue to describe an arc whose form is given by the equation of a 

circle. This feature is also shown experimentally in Plate 3.19. 

4.5.5. A General 3-dimensional Minimal Surface with Flexible Boundary Elements -

"Siegfried's Tent". 

The experimental solution to the surface illustrated in Plates 3.20 - 3.22 is presented in this 

section. The form is characterised by a surface of rapidly changing curvatures and by flexible 

boundary cables of specified unequal lengths and determinable positions in space. The surface is 

established through the imposition of the condition of a constant surface stress (approximately) 
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and the equilibrium state of the boundary and internal elements. The numerical representation of 

the form is described below. 

The surface is discretised by 1240 constant strain triangular elements constituting 2046 degrees­

of-freedom. A total of 140 linear elements, placed between nine boundary points (of fixed 

position), form the flexible boundaries of the mode1. The initial surface of the numerical model 

(Figure 4.31) has been obtained in two stages. 

The initial shape of the boundary cables have been established first. From physical models it is 

known that the boundary cables take the form of part of a circle. It is assumed further that the 

positions of the boundary cables in the global z direction vary linearly between the fixed 

boundary points. The lengths of the boundary cables are underestimated at this stage. This is done 

so that the correct lengths may be achieved at equilibrium, subsequent to the elastic straining of 

the linear elements. Using these assumptions the initial shapes of the boundaries of the model are 

estimated. The positions of the membrane elements (obtained as described below) constitute the 

second stage of the initial surface description. 

Assuming an initially flat surface, the co-ordinates of the element side intercepts in the global xy 

plane are selected. The criterion for this is to generate a greater density of elements in zones of 

high curvature, and of lower density of elements in areas where less rapidly changing curvatures 

are anticipated. The boundary elements are next raised to their initial positions, at which they are 

assumed to be fixed. Consequently, the number of degrees-of-freedom of the numerical model is 

reduced temporarily. 

The pseudo cables (representing the sides of the triangular elements) are next replaced by linear 

elements (for the purposes of establishing the initial surface only). The linear elements are 

assumed to possess a constant and uniform pretension throughout. Consequently, the surface is 

analysed as a linear element model initially. To prevent the surface from being distorted by the 

linear elements following geodesic lines, movements of the surface nodes are permitted in the 

global z direction only. The surface is therefore equilibriated in a partial sense, with the condition 

of equilibrium in the global xy plane ignored temporarily. The resulting initial surface is 

illustrated in Figure 4.31. The triangular elements are reinstated subsequently. 

Due to the complexity of the form the revised procedure (Section 4.4.3.2.3) is adopted in order to 

maintain the stability of the solution algorithm. The elastic modulus of the surface is thus 

assumed to be 3.xl~ kN.m-2, and Poisson's ratio 'U to be 0.1. A thickness of l.xlo-3 m is 

assumed for the membrane. The uniform stress vector {oc} is given as ox" ay - 5.xl()+6 kN.m-2 

and 'to%)' - O. kN.m-2. 

The geometric and elastic properties of the boundary cables are assumed to be constant between 

the fixed boundary points. The areas of the boundary cables are taken as unity throughout, except 

in the case of the cable f-g (Figure 4.32) where it is assumed to be 2.2xlo+3 m2• The elastic 
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modulus of all boundary cables is 1.0 kN.m-2• A list of the assumed element prestresses is given 

in Table 4.9. 17 

After a total of 20,000 iterations (NGI = 40), corresponding to a Cpu time of 20707.3u, the 

surface illustrated in Figure 4.32 is obtained. The condition of equilibrium is satisfied globally to 

within an error residual, Er, equal to 0.25% of the maximum pseudo cable force. Due to the 

merging of the boundary cables g-h and f-g in the vicinity of the mast head (g), some elements of 

the discretisation collapse (while remaining stable). The effects of the poor aspect ratio of these 

elements introduce errors into the numerical solution. Consequently, local equilibrium of the 

surface is not achieved at some nodes of the discretisation. A global satisfaction of the condition 

of equilibrium can be assumed however. 

Table 4.9 presents a summary of the boundary cable forces at equilibrium (NGl = 40). The natural 

forces in the linear elements comprising each boundary cable are constant at equilibrium (NGI = 

40). This is with the exception of the cable f-g. A 4 % (approximately) deviation in natural force 

from the mean value (given in Table 4.9) exists in this boundary cable at equilibrium (NGl = 40) 

18 • Also given in Table 4.9 is a comparison between the numerical and the experimental values 

of the lengths of the boundary cable (b.c.!.). 

Table 4.10 gives the values of the maximum and the average element stress deviations for the 

first four and for the last two re-impositions of the uniform stress vector, {oe} (NGl = 1--74,39, 

and 40). The low magnitudes of the average element stress deviations indicate that the condition 

of uniform surface stress is represented adequately at equilibrium (NGl = 40, Table 4.10). 19 In 

addition, the lengths of the boundary cable f-g are given as a function of the number of re­

impositions of the uniform stress vector {oe} (NGl)· The magnitudes of the maximum element 

stress deviations and the increases in the length of the boundary cable element f-g indicate the 

substantial straining of the surface during the initial stages of the form-finding procedure 

(NGl -1~5). The numerical solution given in Figure 4.32 may be compared with the 

experimental solution shown in Plates 3.20 & 3.21. 

17 

The boundary cable data has been selected so as to provide good agreement between the required (experimental) and 
the numerical boundary cable lengths. This has been achieved through an iterative procedure. using both the area and 
the prestress of the boundary elements as variables to control the lengths. 

18 

The variation of the natural forces along the boundary cable f-g may be attributed to the adoption of an insufficient 
number of elements to represent the curvatures of the cable adequately. 

19 

It is inferred through the magnitudes of the maximum element stress deviations. that the condition of uniform surface 
stress is not represented adequately at equilibrium (NGr = 40). However. the highest element stress deviations appear in 
the collapsed elements in the vicinity of the mast head (g) and therefore do not contribute significantly to the complete 
numerical solution (Figure 4.32). 
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Boundary Force at b.c.!. (m) b.c.I. (m) 

Cable Prestress (kN) Equilibrium (kN) (Numerical) (Experimental) Error 

(NGI =40) 

a-b 0.1900xlo+5 0.1900x1O+5 9.438 9.437 0.01 % 

b-c O.1900xl0+5 0.1900xl0+5 10.178 10.178 0.% 

c-d 0.1889xlo+5 0.1889xlo+5 12.254 12.254 0.% 

d-e 0.1307xlo+5 0.1307xlo+5 7.322 7.322 0.% 

e-f 0.1319xlo+5 0.1319xlo+5 7.043 7.043 0.% 

f-g O.2270x 1 0+5 0.3386xlo+5 12.491 12.500 0.07% 

g-h 0.1240xlo+5 0.124OXlo+5 7.769 7.769 0.% 

h-i 0.1341xlo+5 0.1341xlo+5 7.162 7.162 0.% 

i-a 0.1912xlo+5 0.1912xlo+5 10.184 10.184 0.% 

Table 4.9 . Boundary Cable Data. 20 

- - -
NGl tlax max tlaymax tl-cxr max l1ax l1ay I1-cXY b.c.I. f-g (m) 

1 79.63 % -99.74% 74.18 % 4.95% 9.24% 4.78% 9.019 

2 -49.55 % -95.31 % -37.97 % 2.58% 5.68% 2.89% 9.758 

3 -37.51 % -69.06% 21.85 % 1.69% 3.97% 1.87% 10.342 

4 -27.57 % -57.89 % 19.52% 1.17% 2.93% 1.30% 10.787 

39 -0.98% -7.54% 2.55 % 0.07% 0.15% 0.08% 12.489 

40 -0.95 % -7.45% 2.51 % 0.07% 0.14% 0.08% 12.491 

Table 4.10 • Variation of Element Stress Deviation with NGI. 

20 

The boundary cable references given in Table 4.9 refer to Figure 4.32. 



Linear and Triangular Elements. 145 

Figure 4.31· "Siegfried's" Tent. 

Initial Surface. 
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g 

g 

d 

Figure 4.32 . "Siegfried's" Tent. 

Equilibriated Surface. 
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H the elasticity of the surface is assumed to be non-zero (during the form-finding procedure), the 

magnitudes of the maximum element stress deviations can be used to assess the proximity of the 

equilibriated surface to the local minimal surface. The elements in which the highest element 

stress deviations occur identify the areas of the discretisation in which need to be revised. The 

basis of the approach is described below. 

A measure of the straining of the surface can be made by observing the changes in the element 

stresses during the form-finding procedure. As the surface approaches the condition of uniform 

stress, the magnitude of the surface strains (and therefore of the element stress deviations) reduce. 

However, if the form cannot represent a minimal surface (due to the choice of the boundary 

conditions for example) then a straining the surface occurs after each re-imposition of the 

constant stress vector fOe}. As illustrated below, if the surface is over-constrained the magnitude 

of the strains are equal (approximately) after each re-imposition, and represent the collapsing and 

breaking of the surface. 

The flexible boundary cables of the surface illustrated in Figure 4.31 are replaced by straight lines 

of fixed boundary points between the points a ~ i. The surface is subjected to a uniform surface 

stress, given by the vector fac}. At equilibrium, the element stress deviations presented in Table 

4.11 are obtained. The results are given for the first five re-impositions of the constant stress 

vector fac} (NG/ - 1~5). 

- - --
NG/ Aax max Aaymax A'txymax Aax Aay A.xy 

1 -60.09% -76.61 % 38.67 % 3.17% 3.95% 2.76% 

2 -46.16% -46.09% -25.55 % 2.45% 2.86% 2.01 % 

3 -39.54% -41.47 % -19.82 % 2.33% 2.70% 1.86% 

4 -36.11 % -39.70 % 18.15 % 2.21 % 2.59% 1.73 % 

5 -34.25 % -39.16% 16.40% 2.12% 2.50% 1.64% 

Table 4.11- Variation of Element S~ Deviation with NGJ. 

The convergence of the maximum element stress deviation to 39 % (approximately) indicates that 

a minimal surface is not developable with the assumed boundary conditions. The relatively low 

average direct stress deviation of 2.5 % (relative to the maximum of 39 % (approximately» 

suggests that areas of the form represent local minimal surfaces however. The maximum element 

stress deviations may be reduced by partially relaxing the over-constraining boundary conditions. 
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In the case of the surface illustrated in Figure 4.32, a minimal surface cannot be established with 

the boundary conditions given in Table 4.9. This is demonstrated by the merging of the boundary 

cables g-h and f-g in the vicinity of the mast head (g) (Figure 4.32). Through a sufficient revision 

of the current topology, the separation of the boundary cables g-h and f-g may be detected and the 

local minimal surface obtained 21 . The separation of the boundary cables is indicated by the 

convergence of the maximum element stress deviations (corresponding to the elements around 

the mast head (g) (Figure 4.32) to minimum values. In this way the geometry of a general 

surface with flexible boundaries (which are initially too long) can be amended to obtain the 

minimal surface which is local to the original topology. 

4.5.6. Summary - Verification of Soap-film Models. 

The following points are summarised regarding the verification of the soap-film models presented 

in the preceding section. 

i) A linear element discretisation of the form can provide an accurate solution to the surface 

when the principal curvatures are low. A large number of linear elements is required to 

model the surface accurately. 

ii) Linear elements with uniform and constant pretensions tend to follow geodesic lines over 

the surface. This can give rise to distortion of the final form. With careful modelling an 

accurate solution can be achieved to a known surface. 

ill) A numerical model using triangular elements can produce an accurate solution to a minimal 

surface when compared with the experimental solution. A relatively coarse discretisation of 

arbitrarily shaped elements can be used. 

v) The introduction of elasticity into the form-finding procedure has been shown to be 

successful in maintaining the stability of the numerical solution algorithm when the surface 

is subjected to large strains and to large displacements. 

iv) A method has been proposed, based on the maximum and average element stress deviations, 

for assessing the proximity of the current form to the local minimal surface. The same 

approach can be used modifying the existing boundaries of the current form in order to 

obtain the minimal swface which is local to the original topology. 

21 

A minimal surface can be obtained by either lowering the mast head (g) or decreasing the length of the boundary cable 
fog. 
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4.6. Appendix 4-A • Strains in an Inclined Direction. 

In a system of 2-dimensional strains, the direct and shearing strains can be calculated in any in­

plane direction provided that the direct and shearing strains in two mutually perpendicular 

directions are known [4.17). A summary of the proof of this statement is presented below. 

The flat rectangular element of elastic material, illustrated in Figure 4-A.1., has side intercepts 

OABC and is located in the local XY plane. The position of a point on the boundary of the 

element is defined as Xl. It is assumed that the element is subjected to a general displacement 

vector ~I 22 . 

Eysin e 

sine 

Y, V 
'YXY sin e 

I 
B 

I 
C 

~----------------~--~--~----------~~X,U 

cos e Excos e 

Figure 4-A.l- Plane Element Subjected to a Displacement Vector ~I. 

The length of the diagonal OB is assumed to be unity, while the angle subtended by OB to the X 

axis is denoted by 8. The undeformed lengths OC and OA may thus be written as cos e and sin 8 
respectively. 

Subsequent to the application of the displacement vector QI the element strains to the deformed 

shape aNB/CI (Figure 4-A.l). In the strained condition, the side OA extends by a small amount 

Ey sin e and OC by a small amount EX cos 8. Due to the shearing strain, the side OA rotates 

through a small angle ')'xr, to OA' (Figure 4-A.l). 

22 

Both X I and fi are given in the local co-ordinate system as indicated by the superscript I . 
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In the strained condition, the point B moves to B' by an amount EX cos e + "tXY sin e in the 

direction ~C, and by an amount £y sin e in the direction OA (Figure 4-A.l). These two 

components may be transformed to give the movement of the point B in the direction OB, 13 OB , 

as, 

13 OB = (Ex cos e + "tXY sin e ) cos e + Er sin2 e 
eqn(4-A.l) 

By assuming that the strains {EX, Er, 'YxY} are small, and that the angles e and et (Figu;e 4-A.l) 

are approximately equal, it follows that the movement, BOB, is the direct strain E
OB in the 

direction OB, arising from the vector of strains {E}. Therefore, from eqn(4-A.l), 

cPB = EX cos2 e + Ey sin2 e + Yxy cos e sin e . 
eqn(4-A.2) 
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Chapter 5 

24 Degrees-of-Freedom Quadratic Quadrilateral Finite Element for 
the Investigation of Stable Minimal Energy Forms - Element 

Formulation. 

5.1. Introduction. 

In order to move away from the restrictions and the assumptions of the plane type of elements 

summarised in Section 4.3 and Section 4.4 of Chapter 4, the element formulation presented in 

this chapter is proposed for the analysis of stable minimal energy forms. The element is doubly 

curved and suited to the analysis of systems subjected to both large displacements and large 

strains, and which are characterised by surfaces of rapidly changing curvatures. 

In this chapter the following aspects of the element formulation are presented: 

the derivation of the general element equations as they relate to the Finite Element method 

(Section 5.2), 

a description of the proposed element (Section 5.3.1), 

the derivation of the element shape functions assuming both small and large nodal 

displacements respectively (Section 5.3.2 and Section 5.3.3) 

the derivation of the relationship between the natural, local, and global co-ordinate systems, 

and of the expressions for the element local strains (Section 5.4 and Section 5.5 

respectively), 

the generation of the element elastic and initial stress stiffness matrices, and of the element 

equivalent nodal force vector (Section 5.7), 

the techniques of numerical (Gauss Quadrature) and of reduced integration (Section 5.8), 

the adequate representation of rigid body rotations of the element in the geometric stiffness 

matrix, [Kat 1 (Section 5.9). 
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5.2. Derivation of the General Element Equations. 

5.2.1. General Expression for the Potential Energy of an Elastic Continuum. 

The derivation of the general element equations is presented in this section. As demonstrated 

below, the derivation is based on the minimisation of the total potential energy of the discretised 

system [5.1]. 

In the case of a general three-dimensional body in which it is assumed that all six components of 

stress act in a linear elastic manner, the vector of body stresses {a}, may be written as, 

{ a} - {ax , ay, az • 'txy, 'tyz , 'tzx }, eqn(5.2. 1. 1) 

where ax , ay, az are the principal direct stresses, and .xy, .yz,.zy are the principal shear 

stresses. 

The vector of corresponding strains, { E }, is, 

eqn(5.2.1.2) 

If it is assumed initially, that a first order approximation to the strains may be made, then, 

Ex - t, Ey - *' and Yxy - "* + "* etc., where u, v, w are the global displacements at a 

point in the body, corresponding to the global x, y, z directions. 

The vectors of stresses, { a }, and of strains, ( E), are related by the expression. 

(<1 I - [E I {{ El - {E. I} + (<1. I 

- [E ]( E) - [ E ]{ Eo } + { ao } 

or - [E ] { 00 } + { ao }, eqn(5.2.1.3) 

where. {oo }, is the vector of initial stress, and, [E 1, is the matrix of isotropic or 

anisotropic elastic constants 1 . 

The vector of initial stress. { CJo }. can be used to represent the prestress applied to a fabric membrane in order to 
establish the surface of the form. and, at the same time. to invoke sufficient out-of-plane stiffness to prevent the onset 
of aero-elastic ftutter. 
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The increment of strain energy generated when a unit volume of material is subjected to an 

infinitesimal distortion, may be written as 2, 

eqn(5.2.1.4) 

Taking the variation of the strain energy with respect to each of the strains, eqn(5.2.1.5) may be 

written in the form, 

eqn(5.2.1.6) 

Collecting the terms of eqn(5.2.1.6) into matrix form and substituting eqn(5.2.1.3), yields, 

{ ~;} m {a} m [E]{£}-[E ]{£,,}+{a.}. eqn(5.2.1.7) 

Integrating eqn(S.2.1.7) and discarding the superfluous constant of integration, leads to an 

expression for the strain energy per unit volume as, 

Uo = i (e}T [E ) (e) - (e Y [E ) {eo} + {e jT {ao } eqn(S .2.1. 8) 

Denoting { F } as the vector of body forces per unit volume, and {<p } as the vector of surface 

traction per unit area acting on the boundaries of the volume gives, 

eqn(S.2.1.9) 

2 

Changes in the vector, {o}, arising from an infinitesimal strain increment {&:} are discarded as a necessary 
approximation in order to simplify the remaining formulation (eqn(S.2.1.4». Consequently, when the strain energy of 
the distorted volume is calculated, the additional strain energy due to the strains, {&:}, acting on the stresses 
generated by those strains, ( 00 ), are ignored. For example, if the strain increment { &:} is subdivided into s sub­
increments and applied to a unit volume of material, it is assumed that after the application of each sub-increment, the 
material stress is held CODStant at the initial value until the last sub-increment has been applied. 

During the form-finding of a minimal surface membrane, it is effective to assume that the elastic modulus of the surface 
is zero, and hence lE] - O. From eqn(S .2.1.3) a variation in strain can be seen not to produce a variation in stress when 
the elastic modulus is zero. Therefore, eqn(S.2.1.4) may be rewritten as, 

BUo - {o + 00 }{ &: jT 

- {(J){ 5e}T + {50 }{ 5e jT 

- {o}{ 5e}T 

- {ox&:x +OyflEy ....... "tu&Yu} eqn(S .2.1.5) 

when [E] -0. 

Hence, with the assumption that the elastic modulus of the surface is zero, no approximation is made when calculating 
the strain energy of a distorted element in the case of the form-finding of continua. 
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assumed positive when acting in the positive co-ordinate directions. The generalised functional of 

the total potential energy of the volume can be written as [5.8], 

Op - f rot [ ~ I E IT [E ]{ El - lE Y [E ]( Eo I + lE Y I ". I 1 dV 

- f Mt 16 Y I F I dV - f,Wf«' 16 Y I <I> I dS. eqn(S.2.1.10) 

where { 5} is the vector of volume displacements. 

The vector of displacements, {5}, in the surface integral is calculated at the position that the 

surface traction is applied. The first integral represents the strain energy and hence energy stored, 

while those remaining represent lost potential energy when the body and surface forces are 

displaced in the direction in which they act. 

5.2.2. Application of the Assumed Displacement Field. 

The adoption of the principle of minimum potential energy automatically invokes the 

displacements of the system as the primary unknowns. This is particularly suited to a mechanics 

type problem where the initial boundary conditions may be prescribed and where the system is 

statically indeterminate. The application of an external load vector causes displacement of the 

system, which in turn generates strains and ultimately a change in stress. For systems undergoing 

small displacements, the governing equations of equilibrium need to be solved once only, as the 

magnitudes of the dispIacements are deemed not to cause significant changes to the geometry and 

stiffness of the system. Conversely, for systems exhibiting large displacements, a non-linear 

analysis procedure is necessary, where the governing equations of equilibrium are applied 

repeatedly. 

According to the principle of stationary potential energy, it is required that rIp, eqn(5.2.1.1O), 

assumes a stationary value. This is achieved when the displacements of the system (described by 

the nodal degrees of freedom comprising the discretisation), take the appropriate values. 

Therefore, it is required that eqn(5.2.1.1O) is rewritten with the nodal degrees of freedom as the 

unknown variable. This may be achieved as explained below. 

In the case of a general body. the displacement of an arbitrary point within the body may be 

defined as, 

{51 - {u,v,w} = [N ](5);, eqn(5 .2.2.1) 

where (51; is a vector of nodal generalised displacements, and the right hand side of 

eqn(5.2.2.1) represents the assumed displacement field within the body. The matrix, [N ], 
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describes a normalised interpolation scheme, valid for any of the generalised nodal 

displacements [5.14]. The vector (5 h may possess both translational and rotational 

displacements according to the description used for the nodal degrees of freedom. 

The terms of eqn(5.2.1.2) describing the element strains, may be collected into a matrix form 

(after substitution of eqn(5.2.2.1» and written as, 

(E) - [B] {5};, eqn(5.2.2.2) 

where [B ] contains differentials of the assumed displacement field [N ] {5} i . 

Eqn(5.2.2.2) may describe all six components of strain. In the case of the analysis of thin elastic 

continua, the three components of strain describing plane stress are sufficient 3 . 

Substitution of eqn(5.2.2.1) and eqn(S.2.2.2) into eqn(S.2.1.1O) (and assuming that the vectors, 

(F) and {~}, are zero (eqn(S.2.1.9», with an assumed displacement field {51 = [N ] (5 h), leads 

to an expression for the total potential energy of one element, TIp e , of the form, 

np , - t { 5 },r [ J." [B IT [E ][ B I dV 1 (5 /; 

- { 5}; T J [B]T [ E ] { Eo 1 dV + {5 h T J [B]T {ao } dV 
vol vol 

eqn(S.2.2.3) 

The total potential energy of the system is calculated as the sum of the total potential energies of 

the individual elements comprising the discretisation. Therefore, if a system is discretised into m 

elements, the total potential energy of the system, TIp s , may be written as, 

np. -[ tnp'1- {D jT (P ) eqn(S.2.2.4) 

The vector { D } is the "system vector" of nodal displacements, and is obtained as the vector 

summation of the corresponding terms of the element displacement vectors (5J; to generate a 

"system array". Similarly, the element matrices held in the square parentheses of eqn(S.2.2.4) 

may be rearranged and summed to give an expression for the total internal potential energy of the 

system. Therefore, eqn(S.2.2.3) may be rewritten in the form of eqn(5.2.2.4) for the complete 

system, discretised by m elements as, 

3 

The assumption of plane stress is valid for the category of problem being investigated, and simplifies the element 
formulation from three dimensions to two. The magnitude and direction of the principal strain components are thus 
taken to be invariant with the thickness of the surface. 
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np , ~ {D 1" [ ~ [ f"" [B]T [E ][ B I dV ] j 1 (D) 

- {D jT i.; [ f""' [B IT [E ]{ .. } dV 1 j 

+ {D jT i.; [ f rot [B IT { "o} dV ] j - {D } {P } . 

eqn(S.2.2.5) 

Hence, the system may be replaced by a discretisation of elements whose potential energy is a 

function of the overall vector of nodal degrees of freedom, { D }. In order to obtain a stationary 

value of np s, and therefore to establish an expression for the equilibrium of the system, it is 

necessary to differentiate eqn(S.2.2.5) with respect to all the nodal degrees of freedom, and set the 

resulting expressions to zero. This may be written as, 

da7J
1

S 
- 0., dJlr; - 0., ....... , dJkns - 0., eqn(S.2.2.6) 

where n is the number of degrees of freedom of the discretisation. 

By applying eqn(5.2.2.6) to eqn(5.2.2.5) and rearranging the result, the equation of equilibrium 

for the complete system is, 

~i - m [f [B]T [E ] [B ] dV 1 { D } - ~i - m [f [B Y [E ] { Eo} dV 1 
vol i vol i 

,_ I· 

+ ~; [ - J." [B]T { "o} dV ], + (P ) 

eqn(S .2.2. 7) 

The expression within the summation sign on the left side of eqn(5.2.2.7) represents the element 

elastic stiffness matrix, [KEel. The integrals on the right side denote the components of the vector 

of element nodal forces, {le }. They simulate initial surface strains and stresses, respectively, 

such that, 
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If,} - .t [ f"" [B 1" [E ]{ €o} dV 1, -.t [ fro, [B]T { cr"} dV 1, 
eqn(5.2.2.8) 

The difference between the left side and the right side of eqn(5.2.2.7) constitutes an unbalanced 

or residual force vector. { R }. 

5.3. 24 Degrees-of-Freedom "Isoparametric" Quadrilateral Element. 

5.3.1. Introduction to the "Isoparametric Formulation". 

The co-ordinate system used within the isoparametric formulation may be described as intrinsic 

or natural. To illustrate the principle of a natural co-ordinate system. it is convenient to consider 

a straight bar with length L • whose longitudinal axis is assumed to be aligned with the global x 

co-ordinate direction. The centre of the bar is at the origin and the ends at ± ~ . Another co­

ordinate system is established along the centre-line of the bar. denoted as~. where ~ is defined as 

~ - ~. such that ~ has the limits + 1 and -1. H the co-ordinate system ~ remains attached to the 

centre-line of the bar. and describes the position of a point along that axis only (regardless of the 

orientation of the bar in the global co-ordinate system). then ~ is termed a "natural co-ordinate". 

In isoparametric formulation. the same interpolation functions are used to describe both the 

element geometry and displacements within the element. Two-dimensional "Isoparametric 

elements" are formulated using a conventional natural co-ordinate system ~. 11. As described 

below. the application of a natural co-ordinate system makes it possible to generate elements 

which are non-rectangular and which may have curved sides 4 . 

Figure 5.1(a) shows a plane four noded isoparametric quadrilateral element in global {x. y} 

space. Figure 5.1(b) illustrates the same element but in the natural {~. T\J space. The mapping 

procedure relates. in this case, an arbitrarily shaped quadrilateral element to a square element 

with side lengths of 2 units. For a four noded element. the axes ~ and 11 pass through the mid­

points of opposite sides as shown. In general ~ and T\ will not be orthogonal and are not required 

to be parallel to the global {x. y} axis system. 

The mapped element (Figure 5.1(b» is of a regular shape and therefore standard mathematical 

procedures such as differentiation and integration can be applied. The distorted element shown in 

Figure 5.1(a) is mapped to the square element (Figure 5.1(b» by a set of interpolation (or shape) 

4 

A discussion of the advantages of the "Isoparamelric" approach is presented in Section 2.5.1, Chapter 2. 
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functions. The shape functions (in the case being considered) relate the global {x, y} space to the 

isoparametric {~, T\J space. In conjunction with other standard techniques (such as the chain rule 

for differentiation), they provide a change of variable. 

An element formulation termed the "Natural Approach", which is based primarily on the use of 

vector algebra to relate the global and natural co-ordinate systems directly, can be found in 

reference [5.3] 5 . In the case of the formulation presented subsequently, expressions are derived 

which relate the natural, the local and the global co-ordinate systems. These relationships are then 

used to establish the local element strains (Sections 5.5 & 5.6). 

s 

o 

~=+{).5 ~=+1 

I 1/1'\=+1 
3 

• 
~-----­--- ... --~ 

4 

, -------1"- O. 

\ : ' 
----t----~----j----L'x \ i j 

--1'\=-0.5 

I 
1 

4 

1 

(a) 

1\ 

0 

(b) 

1 

2 ----1'\=-1 

J 

r-
3 

1 

1 
2 

'-

Figure 5.1 - (a) Four-Node Isoparametric Quadratic Quadrilateral Element 

in Global { x. y } Space. 

(b) Plane Isoparametric Element in {~, 11 } Space. 

A resume of the "Natural Approach" is provided in Section 2.3, Chapter 2. 
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5.3.2. Element Description. 

The 24 degrees-of-freedom isoparametric quadratic quadrilateral element has eight nodes, each 

with three translational displacements, {u, v, w}, Figure 5.2(a). The element is chosen to be two 

dimensional (constant thickness) so as to model plane stress, but in general, it may be curved in 

three dimensional space. The element shape is described according to the position of the nodes in 

the global x, Y ,z space, which are located at the four corners and at arbitrary positions along 

each of the element sides. The element illustrated in Figure 5.2(a) is a distorted form of the 

quadrilateral "parent" element shown in Figure 5.2(b). 

7 6 S T 
s 4 2a 

2 3 1 
I- 2b -I (b) 

11 
I_ 1 ~ 1 _I 

7 6 S 

Bc S L4 
0 

2 3 (c) 

Figure 5.2 • (a) 24 DOF Isoparametric Quadratic Quadrilateral Element. 

(b) Parent Element. (c) Mapping into a Square. 

By adopting a general mapping function,[S.4] the global co-ordinates of a point within the ele­

ment, may be written as, 

Ns 0 8] o Ns 
o 0 Ns 

Xs 
Ys 
Zs 

eqn(S.3.2.1) 

such that, NI, N 2, ....... N s are the element shape functions corresponding to node I, node 2 

....... , node 8 respectively, and similarly {Xl. Y I. Z I} •.......• {xs. Ys. zs} are the global nodal 

co-ordinates. 

The mapping described in eqn(S.3.2.1) relates a unit square in isoparametric co-ordinates (~. 11 ), 

Figure S.l(c), to the quadratic quadrilateral element in (x. Y. z ) co-ordinates defined by the eight 

sets of nodal co-ordinates {x 10 Y 10 z 1 } •.•••••• , { x s. Y 8. Z 8 }. The mapping is an interpolation 

scheme which describes any point (X. y, Z ) within the distorted element (Figure 5.2(a» when 
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the corresponding (~, 11 ) co-ordinates are given from the mapped element (Figure 5.2(c». 

According to the definition of the isoparametric formulation, the global displacements within the 

element are described by the same interpolation algorithm. Therefore, eqn(5.3.2.1) may be 

rewritten in terms of the nodal displacements as, 

{BjT = {u,v,w} 

::: [N ]{Ul,Vl,Wl, ....... ,us,vs,ws} 

eqn(5.3.2.2) 

where { U, V, W } are global displacements within the element in the x, y , and z directions 

respectively. 

5.3.3. Element Shape Functions. 

5.3.3.1. Introduction· Small Displacement Theory. 

The derivation of the element shape functions denoted in eqn(5.3.2.1) as N .. N 2, ....... , N s (or as 

NJ It N3 2, ...... , NS s in the case of the small displacement theory) is summarised in this section. 

The order of the element under consideration is quadratic, where the element geometry and 

element displacements vary with up to the second power the natural co-ordinates, (~, 11 ). As 

demonstrated subsequently, this allows for a pseudo linear variation in the element strains 

(Section 5.6). Consequently, changes in the surface strains may occur within each element and 

across element boundaries. As demonstrated below, the element shape functions are based on a 

characteristic interpolation polynomial. 

In the case of a quadratic element (Figure 5.2(a», an interpolation polynomial, applicable to both 

the element shape and displacements, may be written as,[5.4] 

eqn(5.3.3.1) 

The nodal co-ordinates of the distorted element can be expressed in terms of the natural co­

ordinates of the mapped element ( ~, 11 ) with the limits (±1, ±1 ) (Figure 5.2(a), Figure 5.2(c». It 

is shown in the subsequent paragraphs, that the successive substitution of the natural co-ordinates 

of the element nodes into eqn(S.3.3.1) leads to eight simultaneous equations, with the coefficients 

( a It a 2, ...•... , as) as the unknowns. 

Assuming that the displacement B is interpolated according to eqn(5.3.3.1), with the vector of 

nodal displacements {()}; as the basis for the scheme, then, from eqn(5.3.3.1), 

B - {ajT{i} - {ijT{a} eqn(5.3.3.2) 
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where, 

{ a V - {a .. a2, ........ ,as} , 

and, 

By substituting the natural co-ordinates of each of the element nodes into eqn(5.3.3.2) the vector 

of known nodal displacements, (5);, is related to the assumed interpolation polynomial, <1>;, by 

the expression, 

( 5); .. [CS ]( a i, eqn(5.3.3.3) 

where [ Cs ] is a square matrix containing coefficients with values of either (O, ±l i, and written 

as, 

[CS] _ 

1 -1 -1 1 I 1 -1 -1 
1 0 -1 0 0 1 0 0 
1 1 -1 1 -1 1 -1 1 
11010000 
11111111 
10100100 
1 -1 1 1 -1 1 I -1 
1 -1 0 1 0 0 0 0 

eqn(5.3.3.4) 

From eqn(5.3.3.3), 

eqn(5.3.3.5) 

Back substitution of eqn(5.3.3.5) into eqn(5.3.3.2) yields, 

( 5) - {i jT [ Cs ]-1 ( 5); - {n i { 5 }; eqn(5.3.3.6) 

where {n } is a row vector of the form (N s 1. N s 2, ....... , N S 8), with NS i the shape function for 

element node i (i - I -+ 8). Expressions for all the element shape functions {n} are given in 

Table 5.1 [5.15). 

Therefore, the co-ordinate or displacement of any point within the element may be calculated as, 

;-8 
5 - .r, N; ( ~, 11 ) 5i , ,-I eqn(5.3.3.7) 

where 5i represents the displacement components u, v and w, and N; (~, 11 ) is calculated 

at the point of interest, as defined by the mapped element. Similar expressions can be ob­

tained for the global co-ordinates, y and z. 
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Element Node Shape Function 

NS 1 i (1-~)(1-11)(-~-11-1) 
NS2 t(1_~2)(1-11) 

NS 3 i (1+~)(l-11)(~-ll-l) 
NS4 t ( 1 + ~ ) ( 1 -1l2 ) 

NS s i (1+e)(l+ll)(e+ll-l) 

NS6 ~ (1_~2)(1+11) 

NS 7 t (l-~)( 1 +11)( -~+1l-1) 

NS s t ( 1 - ~ ) ( 1 -112 ) 

Table 5.1 - Shape Functions for 14 DOF Quadratic Quadrilateral Element. 

(Small Displacement Theory.) 

5.3.3.2. Large Displacement Theory. 

164 

The derivation of the shape functions given in Table 5.1 is based on small displacement theory, 

as denoted by the superscript s. In this case the position of the side nodes are assumed to remain 

at. or very close to, the centre of the element side. However, in the analysis of highly flexible 

systems, large displacements may occur, which can cause the side nodes to move significantly 

from the central position. The resulting violation of this assumption can lead to a loss of 

accuracy, and in some cases, no solution, due to the induced numerical instability and arithmetic 

errors (Section 6.2.3, Chapter 6). 

It has been shown [5.17], that as the side nodes of the element move away from the centre of the 

interval, the mapping defined by the element shape functions becomes distorted. Thus, the 

quadratic shape functions, which are usually parabolic when represented graphically, tend to a 

skew form, and the isoparametric co-ordinate transformation is no longer valid. This distortion 

generates errors in the co-ordinate transformation, between the natural (e , 11) and the local 

(X , Y ) co-ordinate systems given by the Jacobian matrix [J] (eqn(5.5.7.6)). Significant 

deviations of the side nodes from the centre of the element side can result in the derivative of the 

shape functions becoming zero and in a singular form of the Jacobian matrix [J]. 

Cella and Gray [5.17] have proposed an improved isoparametric transformation to overcome the 

difficulties outlined above. The approach, as applied to two dimensional elements, is described in 
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full in reference [5.17]. For completeness however, a summary of the principles behind the theory 

is presented in the subsequent paragraphs. This is followed by the extension of the approach to 

the three dimensional case, as presented below. 

The positions of the side nodes in the natural ( ~ , 11 ) space, are determined using the criterion 

that they minimise magnitudes of the derivatives of the Jacobian matrix, [J]. It is shown [S.17] that 

this may be achieved by locating the side nodes, such that the relative position of the side node 

along the edge of the element on which it occurs, is the same in the global (x ,Y ,Z ), and the 

natural (~, 11), spaces. The procedure is demonstrated for a typical edge of the plane two­

dimensional element in Figure 5.3, in which Xi represents the position vector of the element node 

i. 

y 

0 

/23 1~ -=-
Tt / 2 

L< 0 

/ 12 1+13 
-=-

2 

x 

Figure 5.3 - (a) 2-Dimensional Quadratic Quadrilateral Element. 
(b) Mapping into { ~, 11 } Space. 

(-1,1) (y,1) (1,1) 

p7 p6 pS 

(-1,6) pS p4 (l,~) 

oL---+--- ~ 

pi p2 p3 

H,-1) (a,-I) (1,-1) 

Figure 5.4 - 3-Dimensionai Quadratic Quadrilateral Element 

Mapped into a Square in the { ~, 11 } Space. 

(1,1) 

( 1.13) 

(1,-1) 
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By repeating the same procedure for the remaining three sides of the quadrilateral element, the 

nodal locations in the natural ( ~ , 11 ) space, and illustrated in Figure 5.4, are obtained. Therefore, 

assuming the interpolation polynomial given in eqn(5.3.3.1), and with reference to eqn(5.3.3.3), 

the matrix [C ] may be written as, 

1 -1 -1 1 1 1 -1 -1 

1 a -1 a 2 -a 1 -a,2 a 
1 1 -1 1 -1 1 -1 1 

1 1 13 1 13 132 13 132 

[C] = 1 1 1 1 1 1 1 1 eqn(5.3.3.8) 

1 'Y 1 r 'Y 1 r 'Y 
1 -I 1 1 -1 1 1 -1 

1 -1 8 1 -8 82 8 -82 

where [ C ] is a general matrix, relating the element nodal co-ordinates in the natural (~ ,11) 

space, Figure 5.4, to the coefficients { aI, a2, ... ,a8} of eqn(5.3.3.1). 

Substituting the matrix [C ] for [CS] in eqn(5.3.3.6), yields the set of large displacement 

element nodal shape functions as given in Table 5.2. 

Element Node Shape Function 

NI - ({ -1 + ~ 2 ( -1 +!l ) ( 1 + ~ +!l + Cl!l - Cl 8 + ~ 8 » 
4(I+Cl)(I+8) 

N2 - « -1 + ~) (l + ~)( -1 +!l » 
2(-I+a)( I+Cl) 

N3 ( 1 + ~)( -I +!1 )( -1- a ~ + ~ + ~ ~ -!1 + a!1 ) 
4 ( -1 + Cl) ( 1 + 13 ) 

N4 ( 1 + ~ ) ( -I +!1 ) ( 1 + 1] ) 
2 ( -I + 13 ) ( 1 + (3) 

Ns -« 1 + ~ )( 1 +!l )( 1 - ~ + ~ ~ - ~ 1-!l + 1!l » 
4(-1+13)(-1+'Y) 

N6 (-1+~)(1+~)(1+!l) 
2(-I+'Y)( 1+'Y) 

N7 ( -1 + 5 ) ( 1 +!l ) ( -1 - 5 +!l + I!1 + ~ e - le) 
4(1+'Y)(-1+8) 

Ns -«-l+~)(-I+!l)( 1+!l» 
2 (-1 + 8)( 1 + 8) 

Table 5.2 - Shape Functions for 24 DOF Quadratic Quadrilateral Element. 

(Large Displacement Theory.) 
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It remains to find the location of the side nodes in the natural co-ordinate system (~ , 11 ), as 

defined by the values {a, 13, y, e J, (Figure S.4). Adopting a similar procedure to Cella and 

Gray,[5.l7] but extending the approach to three-dimensional space, the side nodes of the element 

can be located as explained below. 

Considering first the location of the element node P 2 and the corresponding value of a (Figure 

5.4), the position vector of the nodes PloP2,P3, may be written in terms of the natural co­

ordinates, with 11 .... -I, as, 

eqn(S.3.3.9(a» 

where, 

_ i - 3 • i .. 3 • j; d - i io3 * j; 
x - 1: Ni (~) Xi , Y - 1: Ni (~) Yi, an, z" ~ Ni (~) zi . 

i-I i-I i-I 

eqn(S.3.3.9(b» 

and the shape functions Ni· (~), with; = I, 2, 3, are taken from a one dimensional 

quadratic element presented below. 

Figure S.S represents the side of the element PI, P 2, P 3 in both the global and natural co-ordinate 

systems. 

p2 

(a) ___ -: .. ~ X 

-1 +1 

(b) •• ------------------~.~--------•• ---.... ~ 

Figure s.s • (a) 2-Dimensional Quadratic Line Element. 

(b) Mapping into {~} Space. 
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The shape functions Ni· (~) may be drawn from the polynomial, 

where i-I, 2, 3, and ~1 - -I, ~2'" a, ~3'" +1, and are written as, 

Nl.(~) _ (-I+~)(-a+g) 
2( l+a) 

• J: (_I+g2) 
N2 (~) - «-I+a)(1+a) 

N • ( J:) _ - « 1 + g )( -ex. + g » 
3 ~ 2 (-1 + a) 

168 

eqn(5.3.3.1O) 

eqn(5.3.3.11(a» 

eqn(5.3.3.11(b» 

eqn(5.3.3.11(c» 

The location of any point along the element side PI, P 2, P 3 can be seen to depend only on the 

position of the three nodes PhP2, and P3, and the natural co-ordinate ~. This ensures that the 

adjacent elements are compatible, and that the shape functions are continuous in the displacement 

terms (or are Co continuous). 

The requirement of equal relative positions of the side node in the global and natural co-ordinate 

systems, may be written mathematically as,[5.17] 

a 

I di; 
-1 ---+1 

eqn(5.3.3.12) 

I d~ 
-1 

The integrals on the right side of eqn(5.3.3.12) may be calculated explicitly. Those on the left 

side may be rewritten in terms of the natural co-ordinate ~, so that, 

eqn(5.3.3.13) 
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Writing. 

~x - X 3 - XI. 5x - x 2 - XI, 

eqn(S.3.3.14) 

and substituting eqn(S.3.3.9(b» into eqn(5.3.3.13) together with eqns(S.3.3.l1 (a)-(c» and 

eqn(5.3.3.14), yields, 

a 

I V ( I a ~2 + I b ~ + le) d ~ 
I(a)- _a+l=O 

+1 2 ' eqn(S.3.3.1S(a» 

I "<t.~' + f. ~ + f, ) d~ 
where, 

I a - I 2 2 { [( 1 + a ) ~x - 25x ]2 
(I-a) 

+ [( I +a) A, -2lI, I' + [(I +(1),1, -2l\, I' }. eqn(S.3.3.IS(b» 

J. - (I~ot') { [(I+a),1r -2lIxl 

+ [( I +ot)A, -26, I + [( I +ot),1, -2l\, I } eqn(S.3.3.1S(c» 

and, 

eqn(S.3.3.1S( d» 

As demonstrated below, the integrals given in equations eqn(S.3.3.1S(b)-(d» may be computed 

by completing the square of the integrand.[S.l8] 

-.J (I a ~2 + I b ~ + le) - ~-( ~-+-2Ta-1 b-

a 
-) 2-1 a-+-(-f;-: ---4-;-: 2-)-1/ a 

- {Ta "'/2(~) + A 2 

given that. I ( ~ ) - ~ + {ia ' and, A 2 - ( f!- - fia22 
). 

Using a standard mathematical result,[S.19] 

eqn(S.3.3.16) 
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a 

I "(fa ~' + t. ~ + t, ) d~ -

JJ.P- "A21a + 12( ~ )Ia + ~;lfaIOge [I (~) + "A2+ 12( ~ >] 

Substitution of the definitions for I ( ~ ) and A 2 into eqn(5.3.3.17) leads to, 

a 

Therefore. eqn(S.3.3.1S(a» may be simply written as,[5.17] 

I ( a) _ g ( a) - g ( -1) _ a + 1 _ O. 
g(1)-g(-I) ~ 

170 

a 

-1 

eqn(5.3.3.17)6 

+ 

a 

-1 

eqn(S.3.3.18) 

eqn(S.3.3.19) 

where g ( a) is the value of the integral of the numerator of eqn(S.3.3.1S(a» with the value 

of a substituted for ~, and similarly for the remaining terms. 

The Secant Method [5.20] may be used to solve eqn(S.3.3.19) iteratively, such that, 

a(n + 1) _ a(n) - I ( a(n) ) [ a(n) - a(n - 1) 1 
I ( a(n) ) - I ( a(n - 1) ) 

eqn(S.3.3.20) 

For the continuous real function I ( a ), the solution procedure is commenced by bracketing the 

real root between approximations a(n) and a(n -1), in order that I ( a(n) ) and I ( a(n -1) ) have 

opposite signs.[S.20] 

Through the adaptation of eqn(5.3.3.1S(a» to the remaining three sides of the quadrilateral 

element. the preceding formulation, as summarised in eqn(5.3.3.20), can be used to obtain the 

remaining values of (3, "t, and a. These values may then be substituted into the shape functions 

given in Table 5.2. When the values of {a, tl, 1, a} are equal to zero, the shape functions 

presented in Table 5.2 revert to those in Table 5.1. Results related to the application of the 

modified shape-functions (Table 5.2) to the form-finding of an elastic continua, are presented in 

Section 6.2.3, Chapter 6. 

6 

In order to avoid. negative or zero log. VA 2 + f2( ~ ) > f ( ~). This implies that A 2 must be positive or that 
2 • 

!;- - If/; 2 > 0.. In the case tbat fa < 1.. A 2 may be negative. This phenomenon can be avoided by scaling the 
Ja 4 a 

global co-ordinates of the discretised system. such that when squared the magnitudes of .1x and 6x are greater than 
unity. 
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5.4. Element Local Co-ordinate System. 

The contributions to the vectors describing force, {le}, stiffness, [K/], and initial stress, {ao}, 

from each element comprising the discretisation are required (eqn(S.2.2.7) and eqn(S.2.2.8». 

Consequently, expressions relating the global (in which the overall system is defined) and the 

local (in which the vector quantities of each element are calculated) co-ordinate systems, are 

required. 

In general the proposed element is curved. Therefore, the local co-ordinate systems vary 

continuously across the surface of the element. (This feature is not present in the case of a plane 

element, where only a single local co-ordinate system is defined.) For the purposes of calculating 

the characteristic matrices of the 24 degrees-of-freedom quadrilateral element, local co-ordinate 

systems are constructed at the element nodes, and also at the element Gauss Points (Section 5.8). 

The development of the element local co-ordinate systems is presented in the subsequent 

paragraphs. 

Two base vectors are established at each point of interest initially. As described below, they are 

derived such that they are tangential to the middle surface of the element. 

The base vector~, aligned with the natural co-ordinate direction ~, (Figure 5.2(a» may be given 

as [5.5).[S.6], 

eqn(5.4.1) 

where, {i, 1, ! }, are coincident with the direction of the global co-ordinate system 

{ x, y, z} respectively. 

Substitution of equations of the form given in eqn(S.3.3.7) into eqn(S.4.1) gives, 

~ [i_S aN· i-SaN- i-SaN· 1 
c; - .r. ~ Xi i + .r. ~ Yi 1 + .r. -:uf- Zi Is.. • ,-I u., ,-I u., ,-I u., eqn(5.4.2) 

Similarly, a base vector in the natural co-ordinate direction 11 may be established and written as, 

... [i · 8 aN; . i ·8 aN; . i .8 aNi 1 
T\ - .1: --;s;;- Xi.!. + .1: --;s;;- Yi l + .1: ~ Zj Is.. • eqn(5.4.3) ,.1 UII ,-I UII ,.1 UII 

As the element may be curved in three dimensions, it is not necessarily true that ~ and T1 are 

orthogonal vectors 7 . It is necessary, therefore, to use these base vectors to generate an 

orthogonal system of local co-ordinates. 

7 

A special case Irises when the element is rectangular with straight sides, in which case the vectors ~ and T1 are 
orthogonal. 
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Following the approach suggested by Irons,[5.7] a unit vector can be defined in the local X 

direction as i, 

eqn(5.4.4) 

The vectors Y and i are next established, such that X, Y, and i are orthogonal unit vectors. 

The base vectors ~ and 11 lie in a plane at the local point of interest. Since by eqn(5.4.4), X is 

parallel to this plane, the cross product of ~ and 11 generates a vector Z orthogonal to i, and 

written as, 

where, 

i 
i -8 aNi .r, ~Yi 
I -1 v~ 

i -8 aNi . r, ~Yi 
1-1 vlJ 

If 
i-8 aNi .r. ~Zi 
I -1 v~ 

i-8 aN . .r, --:d- Zj 
1-1 vlJ 

eqn(5.4.5) 

eqn(5.4.6) 

The local co-ordinate system is completed by generating the vector Y, normal to the vectors i 
and i. This may be written as, 

Y-ixx -+ Yo. ixx 
I i X xl ' eqn(S.4.7) 

where, i x X may be calculated in a similar manner to eqn(S.4.6). 

This procedure is repeated at each node and at the element Gauss Points. 

However, the approach described above, based on eqn(5.4.4), can be shown to produce an 

erroneous element formulation. The errors in the terms of the element characteristic matrices 

arise as the requirement that the directions of the element local co-ordinates are a function of the 

orientation of the element in the global space only (and not of the geometry of the element in 

addition), is not upheld 8 . The dependence of the preceding approach on both the orientation and 

the shape of the element is demonstrated by the element illustrated in Figure 5.6. The local co­

ordinate systems at each of the element nodes, for a flat element in the global x, y plane, (a) 

prior, and (b) subsequent, to a clockwise rotation through an angle of ~, are displayed. 

8 

The effects of the element geometry are related to the element characteristic matrices. through the lacobian of the 
transformation (Section 5.5). 
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Y7 
Y6 Ys 

y,* 
I Y.* s r.:* 

7 

X7 X6 

1'\ 
Xs 

Y.* X* X* X* 
Ys LY, 2 I S 7 

0 

Xs o ~ X4 X; r:-~ YI Y2 

XI X2 X3 

(a) 

(b) X* s 

Figure 5.6· Local Co-ordinate Systems· (a) prior, and (b) subsequent, 

to the Application of a Clockwise Rigid Body Rotation. 

The local co-ordinate systems in Figure 5.6(a) and (b) are clearly dissimilar, and are influenced 

by both the orientation and shape of the element, rather than by its orientation alone. The 

orientation of the (rotated) element in the global x, y plane can be seen to be indeterminate, and 

to vary across its surface (Figure 5.6(b». 

In the approach suggested by Irons,[S.7) the vector ~ is normalised to yield the local co-ordinate 

direction X (eqn(5.4.4». However, the vector ~ (eqn(5.4.2» is dependent on the geometry of the 

element. Consequently, the local co-ordinate system demonstrates a similar dependence (Figure 

5.6 (a) & (b». As described below, an alternative method of establishing the element local co­

ordinate system, is to select an additional base vector of unit length, in a direction which is 

independent of the element geometry [S.21). 

A unit vector in the global y direction may be selected as the additional independent base vector. 

Thus, as before, the vector t in the local Z direction can be constructed using the cross product 

of the two base vectors ~ and 1\. Defining the additional independent base vector as, 

i- (Oi+li+O!J, 

the vector in the local X direction, X, may be calculated as, 

X -1 x Z. 

Thus, the unit vector in the local Y direction, i, may be calculated as before, 

'1-ixx. 

eqn(5.4.8) 

eqn(5.4.9) 

eqn(5.4.10) 
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Considering the element described in Figure 5.6, the local vector normal to the element surface, 

t, may be written as, 

t- (OL+01+Zr!J eqn(5.4.11) 

where, Z r is a positive real number. 

Consequently, the vector K is given as (eqn(S.4.9», 

x- L 1 ! 
o 1 0 == ZrL+01+O! eqn(5.4.12) 
o 0 Zr 

where, { L. 1.! }, are aligned with the global co-ordinate directions, {x, y, z}. 

From eqn(S.4.12), the vector X can be seen to coincide with the global x direction, at any point 

on the surface of the element Similarly, computing Y .. Z x K, yields the local vector y, acting 

in the same direction as the global y direction, at any point on the surface of the element 

Therefore, since the geometry of the element is not constant, the fact that the vectors X and Y are 

invariant across the surface of the element, infers that they are independent of the element 

geometry. Conversely, dependence exists on the vector normal to the surface of the element, t, 
and the chosen additional vector, 1. 
By adopting this approach, Figure 5.6 may be redrawn, giving the revised sets of local co­

ordinate systems at the element nodes as shown in Figure 5.7, 

r r r r r r Y6 Ys Y1 Yg r., Y7 r r 
X7 X6 r 

11 
Xs r r r r r Xl Xg X7 Yg 

L~ 
r 

Y2 

r r r 
f;-.Y6 

r 
Xg o l; X4 X2 r r r r l; 11 Y1 Y2 

Y3 Y3 
r 

X6 

r r r 
Xl X2 X3 r 

Ys 

(8) r 
Xs 

Figure 5.7. 

Revised Local Co-ordinate Systelm - (8) prior, and (b) subsequent, 

to the Application of 8 Clockwise Rigid Body Rotation. 
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Thus, regardless of the orientation of the element in the global x ,y plane, a unique set of local 

co-ordinate axes is defined at the element nodes (Figure 5.7). 

In general, as the element rotates in the global { x , y , z J space, the vector Z becomes, 

Z = (Zti + Z11 + ZTtkJ eqn(5.4.13) 

where Z t, Z 1, and Z Tt are the components of the vector Z in the global ( x , y ,z J space, 

and may take the value of a real number including zero. 

Consequently, in general, X *~ and Y *y. Instead, they are defined by the successive 

application of eqn(S.4.13), eqn(S.4.9) and eqn(S.4.lO), at each point of interest 9 . 

The vector i (eqn(5.4.8», aligns the element variables with the global x direction (when the 

element is fiat and orientated in the global xy plane). However, the components of the vector i 
may be chosen arbitrarily (but with constant magnitudes within each element), so as to permit the 

modelling of direction dependent characteristics 10 . 

The adoption of the general approach described by eqn(5.4.l3), eqn(5.4.9) and eqn(S.4.lO), 

produces an improved element formulation. This is demonstrated by the solutions to the Patch 

Test (Section 6.2, Chapter 6). 

5.5. Change of Variable for Differentiation. 

The displacements within the element are written as functions of the natural co-ordinates ( ~, 11 ) 

(eqn(5.3.3.7». However, it is required to calculate the strains based on the general local co­

ordinate system and not the normalised natural co-ordinates. Therefore, a change of variable is 

necessary, relating the differentiation with respect to the local co-ordinate, X and Y, to the 

differentiation with respect to the natural co-ordinate, ( ~,11 ). Though strain is a vector quantity, 

equations of the form of eqn(5.3.3.7) are differentiable scalar functions of pOSition (~,11) 

(N; - f ( ~, 11 ) and ( ~,11 ) are scalar quantities in the range -1 S; ( ~, 11 ) S; +1). In the subsequent 

paragraphs, the derivation of the change of variable for differentiation is summarised [5.7]. 

The scalar quantity, n, is established at the position (~,11 ), (where n may be a component of 

displacement in the global x direction, for example). If the position of n is moved from ( ~, 11 ) to 

( ~ + d~, 11 + d11 ) the change in n, dU, is given as, 

9 

When the base vector ~ coincides with the local X direction and the element is rectangular. the preceding approach. 
and the approach by Irons,[5.7] produce the same definition for the local co-ordinate systems across the surface of the 
element. Therefore. the method proposed by Irons may be seen as a special case of the general solution. 

10 

The ability to pre-select the direction of the vector 1 is significant to the analysis of structural membranes. where the 
membrane material may possess orthotropic properties. 
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dn "" ~. dl; + ~. dTl eqn(S.S.l) 

A change in position of dl; implies a shift in position given as ~ . d~. Resolving this shift into the 

local X and Y directions yields, 

dX ~ = ~. i d~ and dY ~ = ~. f dl; . eqn(S.S.2) 

Similarly, in the natural co-ordinate direction Tl, a change in position by dTl gives, 

and 
-+ .. 

dY" -= Tl.YdTl· eqn(S.S.3) 

Rewriting eqn(S.S.l) in terms of the local element co-ordinate system yields, 

dQ = an an dY . dX + dY . dY , eqn(S.S.4) 

where, dX ... dX~ + dX" and, dY .. dY ~ + dY" 

Substitution of eqn(S.5.3) and eqn(S.5.2) into eqn(S.5.4), and rearranging the resulting expression 

gives, 

[ 
~ .. an ~.. an 1 [-+.. an -+.. an 1 dQ .. <;.xdY+<;.Y dY dl;+ Tl.XdY+Tl.Y dY dTl 

-~.d~+~.dTl eqn(S.5.5) 

Collection of common terms in eqn(S.5.5) leads to the matrix formulation,[s.7] 

~ ~.i ~.f dX an] [ an] ~ - [ii.i ii. f ] ~~ , 
eqn(S.5.6) 

or more usefully, 

[ 
-+ .. 

1 Tl . Y 

- det[J] -Tt . i [

an] ~.f ~ ~.i 1 ~ , eqn(5.S.7(a» 

where, 

[~.i [J] - Tt. X !'~l Tl·Y 
eqn(5.5.7(b» 

The square matrix in eqn(S.S.7(b» is termed the Jacobian, and has the effect of a scaling factor, 

relating the mapped element of Figure S.2(c) to the distorted parent element illustrated in Figure 

S.2(b). Calculation of the determinant of the Jacobian matrix yields the area of the element. 
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5.6. Using the Jacobian to Compute Local Strains. 

In the present formulation the primary unknowns are the nodal displacements. Compilation of an 

overall system array generates displacements in the fixed global co-ordinate system, permitting 

the description of the element, and hence system, rigid body motions. It has been suggested that, 

when computing local strains at discrete points within the element, based on global 

displacements, variation in the local X and Y co-ordinate directions may be ignored.[S.7] This 

results in the global displacements being interpreted onto the local axes, which are assumed fixed 

in direction, at the point of interest. A summary of this approach is presented below. 

By transforming the components of the global displacements at the element nodes into the local 

X direction, the local deflection U is given as, 

=X' [N]{f>};. eqn(5.6.1) 

Assuming small displacements, the local direct strain in the local X direction" EX - ~, may be 

written as [5.7], 

iJU iJ[ X . [N ] { f>}; ] 
<IX - iJx 

eqn(5.6.2) 

Since X is a unit vector, it is simple to show that eqn(5.6.1) may be rewritten as, 

eqn(S.6.3) 

Differentiating eqn(5.6.3) yields, 

axT + """"CJr [N ]{ f>}; . eqn(S.6.4) 

The first term on the right side of eqn(S.6.4) indicates zero strain under rigid body motion 

(necessary in order to satisfy the conditional requirement of a valid element [5.8]). In reference 

[5.7] it is suggested that the second term of the expression is zero for all cases of displacement, 

since the displacement vector {f>}; is given at discrete points. Consequently, the variation of 

{ f> } i is zero. However, as described below, the magnitude of the third term on the right side of 

eqn(5.6.4) is primarily dependent on the curvature of the element, irrespective of whether the 

global displacement vector { f>}; describes rigid body motion or not. 
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'T 
The differential aIx is a measure of the curvature of the element. Therefore, if the element has 

straight sides. the magnitude of the final term of eqn(5.6.4) will be zero, and is independent of the 

displacement field. (5 h. Conversely, if the element exhibits curved sides, the final term will 

yield a non-zero value even though the displacement vector ( 5 h describes rigid body motion. 

Therefore. it is suggested that this term of the expression must be neglected, as a necessary 

assumption [s.71. 

A more rigorous investigation is presented below, in which it is shown that this assumption is not 

intrinsic. It is shown explicitly that the computation of local strains does not depend on variation 

in the orientation of the local X, Y axes, to the end of providing a true description of the state of 

strain within an elastic continuum 11 . 

Examination of eqn(5.6.1) indicates that the dot product transforms the global displacements 5; 

into displacements in the local co-ordinate system. Subsequently these are differentiated to give 

the local strains. An alternative formulation it is proposed in which the local element strains are 

calculated by the differentiation of the global displacements with respect to the local co-ordinates 

prior to transformation into the local co-ordinate system. 

In order to show the validity of the approach presented in reference [5.7] and that proposed 

above, a general elastic continuum is examined with respect to the global co-ordinate system. 

Figure 5.8 shows a general elastic continuum, where, K. is the position vector of the point Po, and 

~ is an assumed general displacement vector, given in global co-ordinates as, 

K. -(xi+Yi+z!) 

§ - (ui + vi + w!). 

eqn(S.6.5(a» 

eqn(S.6.S(b» 

Using the definition for strain given by Green,[S.9] €a, the strain induced in the continuum at the 

point Po ( ~, 11 ). due to a displacement vector ~. may be given in terms of the distance squared as, 

11 

ds 2 - ds 2 ",.. _ 0 

-v 2 ds
0

1 eqn(5.6.6) 

where dso is a given initial infinitesimal arc length on the surface at the point Po in the 

direction of the natural co-ordinate ~. and ds is the arc length after application of the 

assumed displacement field §. (When calculating the straining of the arc dso due to a global 

When calculatina element properties such IS stiffness and equivalent nodal forces which rely on the integration of a 
continuous functiooal, the effects of the variation in the orientation of the local X. Y co-ordinate directions cannot be 
ignored. They may be included by the adoption of discrete ssmplina. however. For example. Gauss Quadrature is used 
to compute the inleJl'ls Jiven in cqn(5.2.2.7). In this method the functional is evaluated at discrete locations within the 
element, to Jive the exact (continuous) solution when sufficient Gauss Points are used (Section 5.8). 
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displacement vector { ~ }, it is assumed that the rate of straining along the arc is constant.) 

z,w 

x,u 

, .... 
" ...... , , 

I 
I 

I 
I ~"""-1f-~ 

, 
I 
I ---.. ~- , ........ J 

11' 

Figure 5.8 - General3-Dimensional Elastic Continuum Subjected to 
a Displacement V ector ~ 

The position vector K may be written as a function of the curvilinear co-ordinates (~, 11 ). For a 

constant value of 11, and assuming that the expression for K is differentiable, then, 

eqn(5.6.7(a» 

Taking d~ as unity, the square of the original arc length, dso may be calculated as,[5.9] 

dso 2 - dK 0 dK - tot, eqn(5.6.7(b» 

and ofds as, 

ds 2 _ d(X +~) 0 d(X +~) 
()~ ()~ 

-[t+l]·[t+l] 
-tot+2Iot+lo~. eqn(5.6.7(c» 

Substitution of eqn(5.6.7(b» into eqn(5.6.7(c» yields, 

ds
2 

- dso
2 + 2lo t + lot· eqn(5.6.8) 

Substitution of eqn(5.6.8) into eqn(5.6.6) and making use of eqn(5.6.7(b», leads to the expression 

for the strain in the continuum at the point P , Ea P , as, 
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eqn(S.6.9) 

2 ax 
~ 

2 

in which the dot product in eqn(5.6.7(b» is given in terms of scalar quantities, i.e., as the 

square of the modulus of t. 
The second term in the numerator of eqn(5.6.9) is a higher order term and may be neglected 

initially, leading to the expression for the first order approximation to Green's strain, Eo, as in, 

eqn(5.6.10) 

ax 
~ 

2 

Differentiating K (eqn(S.6.S(a» and § (eqn(S.6.5(b» with respect to the natural co-ordinate ~, 

gives, 

ab {au " + av l' + aw k } dt - ~- ~ ~-' 

and, 

ax _ { ax; + .2t l' + az k } . 
~ ~- dl; ~-

Therefore, from eqn(S.6.11) and eqn(5.6.12), 

ab . ax {au ax + av ~ + aw az } 
dt -ar- ~~ ~dl; ~~' 

Substituting eqn(5.6.13) into eqn(5.6.10) gives, 

~p = { ~ ~ + ~ * + ~ * } 
ax -ar 

2 

where eqn(5.6.14(a» describes the strain in the ~ direction. 

eqn(S.6.11) 

eqn(5.6.12) 

eqn(5.6.13) 

eqn(5.6.14(a» 

As described below, in order to simplify the following mathematical analysis, a special case of 

the general solution (eqn(5.6.14(a))) is considered. 

If it is assumed that the local X co-ordinate direction is aligned with the natural co-ordinate, ~, 

then the vectors ~ and i are orthogonal (Figure S.8). Consequently, the vector product ~ • i - O. 

By substituting this result into eqn(S.S.7(a», the strain in the ~ direction, £Gp (eqn(5.6.14(a))), 
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can be shown to correspond to the local direct strain in the X co-ordinate direction. Therefore, 

denoting the local direct strain in the X co-ordinate direction as, ~~, this can be written as, 

,,~p _ aU 
'"'tI - dX . eqn(S.6.l4(b» 

Given that * -~ (eqo(5.4.1)), and using the simplifying assumption that X' - m' 
(eqn(5.4.4», then from eqn(5.6.1O(a», 

aB 
- aU _ _--':~::..:2.-_ - dX - -

ax 
~ 

ax 
_SJr:;..;&.-_ = 

ax 
~ 

·X eqn(S.6.14(c» 

ax 
~ 

In order to calculate the local strain, Eo P , of an elastic continuum, subjected to an assumed global 

displacement field {~}, it can be seen from eqn(5.6.14(c» that the global displacements must be 

first differentiated with respect to the natural variable. Subsequently, this result is transformed to 

the local axes. This is done by computing the dot product l . i. The calculation is completed 

by the application of a further transformation, as given by eqn(S.S.7(a». This transformation 

arises from the change of variable for differentiation, which is required when calculating the 

strains from partial derivatives, Ex:::: t, for example. By adopting this approach, an expression 

for the local strain, ~~, is derived below. 

Using the notation of Figure S.8, eqn(S.6.1) may be rewritten as, 

eqn(S.6.1S(a» 

which, upon differentiation of the displacement term with respect to the local variable X gives, 

eqn(5.6.15(b» 

or, using the result from eqn(5.6.3), yields, 

eqn(S.6.1S(c» 

Considering the first term on the right side of eqn(S.6.1S(b)) initially, and rewriting eqn(S.S.7(a» 

in terms of the global displacement vector ~, yields, 

~.Yl 
~.X 

eqn(S.6.16) 
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Assuming. as before. that X and f are orthogonal vectors such that X -1t. and f" I ~I . it 
follows that, 

and 
--+ A 

(l1· X )=O. eqn(S.6.17) 

Therefore, substituting eqn(S.6.17) into eqn(5.6.16) gives an expression for the pseudo local 

. aB 12 
stralIl, (Jj(' as , 

aB 1 [ 1i' rJ ~ 
dX == (1i'Y)(~'i) u~ 

_ 1 aB 
(~'X) ~. 

eqn(S.6.18) 

By substituting eqn(5.6.11) into eqn(5.6.18) and the resulting expression into eqn(S.6.15(b», the 

local strain ~f is written as, 

~-[ (lx){ ~i+*l+~k} j.x. eqn(S.6.19) 

Rewriting the dot product in the denominator of eqn(5.6.19), (~ . X), with eqn(S.4.1) and 

eqn(S.4.4) gives, 

(~. X) - Lt 
I ~I 

[ *]' + [ *]' + [ *]' 
- --7-===============-

'-'[*l'+ [*]'+ [*l' 

-'-' [ *]' + [ *]' + [ *]' eqn(S.6.20) 

12 

The tenn "pseudo" is used here. since eqn(S.6.18) expresses variation of global displacements with respect to the local 
co-ordinate system. prior to transformation to the local system of co-ordinates yielding the true local strain. 
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Given that, in the current notation, ~ = l ' the final term in eqn(S.6.20) can be seen to represent 

the magnitude of the base vector ~. Substituting this result into eqn(5.6.19) gives, 

au _ [ dX 
ax 
~ 

'X 1 

eqn(5.6.21) 

in which the magnitude of 4 may be written as, 

eqn(S.6.22) 

and the angle, ex, between vectors 4 and i given as, 

4'X cosex - - ..... _-"-"--- eqn(5.6.23) 

From the definition I X I - 1, and substituting for 4 (eqn(5.6.2I(b»), and for X (eqn(5.6.20(b» 

and eqn(5.4.4», into eqn(5.6.23), leads to, 

----,1,--;- { du i + dV l' + dW k} • _1_ { dX i + ~ l' + dz k} 
,- ~- ~ ~- ~- d~ ~-

~ I~I 
cosex - ....:.----!..------------:-------------

141 

- ....:.----!..----------------------------

1 1 - -- ----=-- [ 
dU dX + dV ~ + dW dz 1 
~~ ~~ ~~ . eqn(5.6.24) 
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Therefore, noting that I ~ I = l ' the cosine of the angle between the two vectors 4. and i, 

a., may be written as, 

cos a. _ _....;;1'---__ ----::..1_ 
[ 

dU dX + av ~ + dW dZ 1 
~~ ~dl; ~~ . 

eqn(5.6.25) 

Substitution of eqn(S.6.22) and eqn(S.6.2S) into eqn(S.6.2l) yields, 

eqn(5.6.26) 
2 

Eqn(5.6.26) can be seen to be identical to eqn(S.6.l4(a», and therefore to validate eqn(5.6.l4(c». 

Consequently, by comparing eqn(5.6.l4(c» with eqn(5.6.26), it has been shown that in order to 

calculate the local strain of an elastic continuum, E(;P, subjected to an assumed global 

displacement field, ~, the global displacements must first be differentiated with respect to the 

local variable, prior to transformation to the local co-ordinate system. 

Returning to the formulation presented in reference [5.7] in which eqn(S.6.1S(a» has been 

presented as, 

u-i·~-~·i. eqn(5.6.15(a» 

Differentiation of eqn(5.6.l5(a» with respect to the local co-ordinate direction X, leads to the 

expression for the local strain in the local X direction as [5.7], 

dU aB. i + B' ai dX - or- - (JX. eqn(5.6.27) 

Comparisons of eqn(5.6.27) with eqn(5.6.15(b» and eqn (5.6.26) with eqn(5.6.14(c» demonstrate 

that the additional term on the right side of eqn(5.6.27), which has been suggested in reference 

[5.7], is superftuous and should not be included in the formulation for the expression of the local 

strain due to an imposed global displacement vector. 

In the preceding derivation, it has been assumed that the base vector 1 is aligned with the local X 

co-ordinate direction. The relaxation of this simplifying assumption to obtain a general form of 

the solution, leads to the formulation presented in Appendix 5-A. It is shown in Table 5-A.2 

(Appendix 5-A) that eqn(5.6.15(b» is valid in the general case. 

Furthermore, in the formulation presented thus far in this section, it has been convenient to 

disregard the second term of the numerator of eqn(5.6.9). In Appendix S-B it is shown that, 
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regardless of the magnitude of the assumed displacement vector { Q }, the higher order terms of 

the expression for strain must be included when calculating the total strain of an elastic 

continuum. 

However, the expressions for strain in the form of eqn(S.6.26), eqn(S-B.7) and eqn(5-B.8), are 

only applicable to "homogeneous strains", where "homogeneous" means that, within the element 

considered, the state of strain is constant throughout that element, though the strains may be finite 

rather than infinitesimal. 

Ford [5.10], presented a derivation for the case of "Finite Homogeneous Strains" in a solid body, 

and remarked that the case of non-homogeneous strains is mathematically impractical. 

Consequently, though the element formulation may describe up to a linear variation in strain, the 

expression relating the global displacements to the local strains assumes that those strains are 

constant across the element. Therefore, it is proposed here, that up to a pseudo linear variation of 

strain may be described by the present formulation. 

5.7. Derivation of Element Matrices. 

5.7.1. Element Local Elastic Stiffness Matrix. 

The generation of the terms of the local element elastic stiffness matrix [KE e ] is presented in 

this section. 

From the term on the left side of eqn(S .2.2.7), [ KE e ] may be written as, 

[ KE -] - f"'" [B ]T [E J[ B ] dV. eqn(5.7. 1. 1) 

Matrix [B ] eqn(S.2.2.2), relates the element global displacements to the element local strains. 

From eqn(5-B.8), and eqn(5-B.7), the local strain in the local X direction, ~f t , is given as, 

aU t _ aU + 1 [ [ au]2 + [ aV]2 + [ aw ]2] 
dX dX2 dX dX dX eqn(5.7.1.2) 

The first term of eqn(5.7.1.2) represents the linear contribution to the total strain of the 

continuum, and may be written as, 

eqn(5.7.1.3) 

where, [ho ] is an element matrix relating the global displacement vector { Q} to the first 

order contribution of strain to ~f t • 
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The term in parentheses on the right side of eqn(S.7.1.2), representing the non-linear (second 

order) contribution of strain, ~f ho ,to ~f t , is written as, 

~~ho _ [bL 1 { ~} • eqn(5.7.1.4) 

where, [bL ] is an element matrix of similar form to [ba ]. 

Substituting eqn(S.7.1.3) and eqn(S.7.1.4) into eqn(S.7.1.2) gives, 

j.' - [ [b, 1 + [bLl 1 { !i} ~ [b 1 { ~} 
For the situation of plane stress, eqn(S.7.l.S) may be written as, 

where, 

and, 

{ E} - { :r } -[ [B, 1 + [BLl 1 { 3} . 

- [81 { 3} .. 

EX - ~ + t [ [~r + [Ir + [~rJ· 

Ey - ~ + ~ [ [ ~ r + [ ~ r + [ ~r r ]. 

with, { 5 } i, the global displacement vector of the element i . 

eqn(S.7.l.S) 

eqn(S.7.1.6) 

Therefore, for a thin elastic continuum subjected to large strains and large displacements, the 

local element elastic stiffness matrix, [ KEr ] ,is given by the expression, (eqn(S.7. 1. 1», 

eqn(S.7.1.7) 
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5.7.2. Derivation of the Strain· Displacement Matrix [BD l. 

The first order contribution to the total strain given by eqn(S.7.1.3), may be rewritten in the form, 

eqn(5.7.2.1) 

By rewriting the displacement vector, {fl.}, in terms of the element shape functions and the 

natural co-ordinate system (eqn(S.6.1», eqn(S.7.2.1) may be expressed in the form, 

aU [ji-8 aNj(~,11) . ji-8aNj(~.11) . 
--:nr - .'- d'v Ui 1. + .'- dX Vi 1 0.1\ , _1:A , -1 

+ its aNi ( ~,11) Wj If 1 . {XT } . eqn(S.7.2.2) 
i-I dX 

The local co-ordinate unit vector at element node i, {X h may be given as, 

pt h - { Xi i i + Xi;i + X'i! } 

Substituting eqn(S.7.2.3) into eqn(5.7.2.2) yields, 

aU _ its Xi. aNi ( ~,11) ui + its Xi i aNi~; 11) vi 
dX i-I' dX j - 1 

ii-8 XAk aNi ( ~,1'\ ) . 
+.'- i dX w, . 

, -1 

Similarly, 

av ii-8 yA j . aN; ( ~,1'\) u. i -8 A. aN; ( ~,1'\ ) 
"""'y -.'- , dY , + E yJ i ay Vi 
OI 1-1 ;-1 

ii-8 yAk aN; ( ~,1'\) 
+ '- i dY Wi • i-I 

au i i-8 A. aN; ( j: n ) ii-8 xAJ' aN; ( ~, 1'\ ) 
dY - '- X'i ':>' 'I Ui + '- i ay Vi 

; -1 dY ;-1 

and, 

eqn(5.7.2.3) 

eqn(S.7.2.4) 

eqn(5.7.2.5) 

eqn(5.7.2.6) 

eqn(5.7.2.7) 
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Therefore, the matrix, [Bo ], representing the small strain-displacement theory (eqn(S.7.1.6», 

may be written as, 

[Bo ] = 

eqn(5.7.2.8) 

which, multiplied by the displacement vector { u 10 VI, w 1, •.... u 8, v 8, W 8 }, gives the 

first order contribution to the local strains, ex, er, and 'YxY • 

Equations of the form given by eqn(S.S.7(a», may be substituted into eqn(S.7.2.8) to give 

[Bo ] - [BD ( ~, II )] only. 

5.7.3. Non-linear Strain Displacement Matrix [BL ] 

The second order (non-linear) contributions ({e0 2
}) to the local strains, (e) (eqn(S.7.1.6», are 

given by, 

t [ [ ~] ,+[ ~] '+[ ~ ]'] 
{ .. ,} - t [ [ * ]'+[ ~ ],f~'tT ] 

[~][ *H~][ ~H~][~] 
eqn(S.7.3.1) 

Following a similar procedure to Zienkiewicz,[S.ll] the higher order strains, {e0 2} (eqn(S.7.3.1», 

may be expressed in the form, 

{ F!121 - t [ {~~ r {~~ ~T 1 J { L\y jT {L\x jT 
[ 

{L\x} 1 
{ L\y } 

- t [A][L\], eqn(5.7.3.2) 
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h {A}T = [ au av aw 1 }T - [au av aw 1 were ux dX' dX' dX ,and, ( ~y dV' dV' dY . 

Taking the variation of eqn(5.7.3.2) gives, 

eqn(S.7.3.3) 

Examination of the matrices [A ] and [ ~ ], reveals the following properties, 

d{ tJ.x jT { 
0 

} 1 [ {tJ.x} 1 
d[ A ] [ ~] - { 0 } d{ tJ.y jT { tJ.y } 

d{ tJ.y jT d{ ~x }T 

... { tJ.X}T { 0 } 1 
{O} { tJ.y Y 

{ tJ.y jT {tJ.x Y 
[ d{~X}l d{ ~y } ... [A ] d[ ~ ] . 

eqn(5.7.3.4) 

Substitution of eqn(5.7.3.4) into eqn(5.7.3.3) yields, 

d{ eO 2) .. [A ] d{ tJ.} .. [A ] [ [G ] d{ f> h ] ' eqn(S.7.3.S) 

where, as described below, [G ] is a matrix relating the local displacement derivatives, { *' ~, .... , ~ } to the global nodal clisplacements { f> }; • 

The matrix [ tJ. ] (eqn(5.7.3.2», may be written as, 

(llY = [~.*. ~'%. ~~.~. ~,:] . eqn(5.7.3.6(a» 

Substitution of equations of the form of eqn(S.7 .2.4), yields, 

j - 8 .... aN j - 8 A. aN j - 8 AA: aN .1: X' j di-( ~,11 ) Ui + .E Xl i -i-(~' t'\ ) Vi + .E X i ---n:::-(~, t'\ ) Wi 
,-I ,_lOA ,_lOA 

i-8 .... aN· i-8 A· aN- i-8 ... aN· .1: Y' i d'i-( ~,11 ) Uj + E yl i ---:rJ-( ~,11 ) Vi + .r. yA: i -rJ-( ~,11 ) Wi 
, _ 1 i-I OA , - 1 OA 

i-8 .... aN· i-8 A. aN· i-8"'A: aN· .1: Z' i di-( ~, 11 ) Uj + .E Zl j -W-' ( ~, 11 ) Vi + .r. Z i ~( ~, t'\ ) wi ,-I ,_loA ,_lOA 

[~] - ;-8 A. aN; i-8 A. aNi i-8 At aN· 
.EX' i'dY( ~,11) Ui + .EXl i"""y (~, t'\) Vj + .LX i--nTy' (~,11) Wj 
, -1 , -1 01 , -1 01 

i-8 A. aNi ;-8 A· aNi i-8"'A: aN· .r. Y'; "'O'Y'( ~,11 ) Uj + r. yl i --nr( ~, t'\ ) Vi + .L y j --:rr:-( ~, t'\ ) Wj 
, -1 i -1 01 , -1 01 

j -8 .... aN j -8 .... aN- j -8... aN· .r. Z' j crY-( ~,11) Uj + r. Z' i --m-y' (~,1l ) Vj + .r. ZA: i --.vr-y' (~,11 ) Wj 
, -1 i -1 01 , -1 01 

eqn(5.7.3.6(b» 
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From the expression in parentheses on the right side of eqn(S.7.3.5) the matrix [G ] is obtained 

therefore as, 

[G ] -

eqn(S.7.3.7) 

with the corresponding global displacement vector,{ 5}, as given by eqn(S.3.2.2) 

The relationship between the non-linear local element strains and the element global 

displacement vector, {5}, may be written as. 

eqn(5.7.3.8) 

Therefore, by comparing eqn(S.7.3.8) with eqn(5.7.3.5) the expression for the second order strain 

displacement matrix. [BL ]. is obtained as, 

[BL ] - [A ] [G ] • eqn(5.7.3.9) 

with the matrix [G ] as defined by eqn(5.7.3.7) and the matrix [A ] byeqn(5.7.3.2) 

The matrix [A ] (eqn(5.7.3.4» may be written as a function of the element global displacements 

as given by the definitions of { ~, ~k ........ , ~~ } in eqn(S.7.3.6(b». Consequently, the non-

linear terms of the element stiffness matrix. [ KE e ] ,can be seen to be linearly dependent on the 

nodal displacements, described by the vector ( 5); [5.11]. 

5.7.4. Element Initial Stress StitTness Matrix. 

Based on the principle of virtual work, Zienkiewicz [5.111 has suggested the following relationship 

for the element initial stress stiffness matrix. or geometric matrix. [K a e ]. 

[Kae ]d{5}; -J d[BLY (OD) dV. 
vol 

eqn(5.7.4.1) 
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where, 

Taking the variation of the matrix [BL ]T (eqn(S.7.3.9» with respect to the displacement vector 

{5 li' yields, 

d[ BL ]T - { d[ A ][ G ] + [A ] d[ G ] r eqn(S.7.4.2) 

By substituting eqn(S.7.4.2) into eqn(S.7.4.1), and noting that d[ G ] = 0 and that 

{ d[ A ] [G ] jT = [G ]T d[ A ]T ,gives, 

[ K a e ] d{ 5; } ... J [ G]T d[ A ]T {oo } dV. 
vol 

eqn(S.7.4.3) 

Substitution of the definition for the matrix [A ] (eqn(S.7.3.2» into the part of eqn(S.7.4.3) 

written as d[ A ]T {oo }, gives, 

d[ A l' {Oo} - [ d~ W d{ 1;} :i!: n { ~; } 
[ 

d{ ax } Ox + d{ ay } 'txy 1 
- d{ Ay } ay + d{ Ax 1 'txy 

[

Ox [/3] d{ ax } + 'txy [/ 3 ] d{ ay } 1 
- 'txy [/3 ] d{ ax } + ay [/3 ] d{ ay } 

where [ 13 ] is a 3><3 identity matrix. 

Substituting for d{ a} (eqn(S.7.3.S», into eqn(5.7.4.4), yields, 

d[ A ]T {oo } - [M ] [ G ] d{ 5; } , 

where the matrix [M ] is given as, 

eqn(S.7.4.4) 

eqn(S.7.4.5) 
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eqn(5.7.4.6)13 

Substitution of eqn(5.7.4.5) into eqn(5.7.4.3) leads to the expression for the element initial stress 

(or geometric) stiffness matrix, [K r/ ], as, 

[ K ae ] = J [ G ]T [M ] [ G ] dV 
vol 

eqn(5.7.4.7) 

where the matrix [G ] is a function of the natural co-ordinates~, 1'\ (eqn(5.7.3.7» 14 . 

The total element stiffness matrix, [ Kt e ], is obtained as the sum of the large displacement elastic 

stiffness matrix, [KEe ] (eqn(5.7.1.7», and the initial stress stiffness matrix, [Kae ] eqn(5.7.4.7), 

as in, 

eqn(5.7.4.8) 

5.7.5. Element Equivalent Nodal Forces. 

The general formulation for the vector {le} has been presented in eqn(5.2.2.8). More 

specifically, in the case of a continuum undergoing large displacements and large strains, the 

surface stress vector, { OD }, is represented (for each element) by the vector, { le}, written as, 

13 

{ le } - - f [jj f {oo } dV, 
vol 

eqn(5.7.5.1) 

where, the expression for the matrix [B] is given in eqn(5.7.1.6) and 

{oo }T - {oxo, 0yo, 'txyo} - {oxo, OYo, 'txyo}· 

In the case of an elastic continuum, the matrix [M ] is identical for both the local and global systems of co-ordinates, 
since the stress vector { 0 0 } is fixed to the membrane and moves with it. Therefore, in this case, eqn(5.7.4.6) may be 
rewritten as, 

eqn(5.7.4.9) 

Consequently, eqn(5.7.4.6) does not need transformation to the local co-ordinate system in order to give the local 
element initial stress stiffness matrix ( K r/ ]. 

14 

In the derivation of the initial stress stiffness matrix,[ Kat] (eqn(S. 7.4. 7», it has been assumed that the stresses within 
the element remain constant during elastic straining (eqn(5.7.4.1». Consequently, the formulation of the matrix, 
[ K ae ], is (in general) applicable to systems subjected to small strains and to small rotations. However, if the elastic 
modulus' of the membrane is set to zero (which is usual in the case of form-finding) no approximation to the stress 
stiffness matrix is made arising from the violation of the assumption of small strains. The effects of the assumption of 
small rotations are negated by the removal of the erroneous terms from the stiffness matrix, [ Kat ] (Section 5.9). 
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s.s. Numerical Integration. Gauss Quadrature. 

S.S.l. Introduction. 

Due to the complexity of the element matrices, [B ] (eqn(5.7.1.6», [A ] (eqn(5.7.3.4)), and [G ] 

(eqn(S.7.3.7», the integrals representing the elastic and geometric element stiffness matrices, 

[KE e ] (eqn(5.7.1.7» and [Kae ] (eqn(S.7.4.3» cannot be evaluated, in practice, using explicit 

mathematical techniques. Therefore, a numerical integration algorithm is adopted. 

The most widely used form of numerical integration in the field of the finite element analyses, is 

Gauss Quadrature. Its popularity is based on the fact that it is the most accurate of the quadrature 

formulae in "ordinary use" [5.12]. 

The accuracy of the method is obtained by selecting the ordinates, for substitution into the 

algorithm, at the optimum position for accuracy of the approximation. Therefore, if it is required 

b 

to calculate the definite integral, I f (x ) dx, the method by Gauss provides the locations of the 

ordinates, such that the interval (a, b) is sub-divided to give the greatest possible accuracy. 

The derivation of Gauss Quadrature, for the interval-IS: x S:l, may be found in reference [S.13]. 

It is shown that, to minimise the error of the algorithm, the points of sub-division of the interval 

(a, b), should not be equidistant, but symmetrically placed with respect to the mid-point of the 

interval of integration. Also, it may be shown that Gauss Quadrature gives an exact solution to 

b 
the definite integral If (x) dx, when the function f (x), is a polynomial of order (2n - 1) or 

lower, where n is the order of quadrature used.[5.12] For example, if 2x2 quadrature is adopted, 

then a polynomial of 0 3 or less will be integrated exactly by Gauss Quadrature. 

5.8.2. Order of Quadrature Required. 

The terms comprising the vector of element shape functions { N } have been derived according to 

the interpolation polynomial (Section 5.3), 

eqn(S.3.3.I) 

Clearly, eqn(5.3.3.1) is an expression in two variables (~,ll ), both of 0 2, resulting in quadratic 

element shape functions (Table 5.1). Substitution of the shape functions into the equation for 

[ Kt t J for example, leads to an integrand with maximum 0 3, obtained by expressions of the form 

aN ~~! n) . aN ~' T) ) • 

Therefore, exact integration of the integrand may be achieved through the use of 2x2 Gauss 

Quadrature. However, the criterion that the rank of the stiffness matrix, in general, must not be 

greater than the number of sampled strains in the element must be satisfied also. If the rank of the 
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stiffness matrix is greater than the number of sampled strains, then the element stiffness matrices, 

[KEe ], and [K (/ ], may exhibit spurious mechanisms (or zero energy modes) [5.14]. The 

phenomenon of a zero energy mode is explained below. 

The element global nodal displacements may be related to the element local strains, through the 

expression (Section 5.7), 

{£}-[B]{5};. eqn(5.7.1.6) 

If the magnitudes of the stresses in the vector of initial stress, {ao }, are zero, then the strain 

energy Uo (eqn(5.2.1.8», may be rewritten as, 

eqn(5 .8.2.1) 

The general element elastic stiffness matrix, [KE e 1, is calculated using Gauss Quadrature, in 

which the interval of integration is sampled at locations which minimise the error of the 

numerical solution, known as Gauss Points. If the location of the Gauss Points and the mode of 

element distortion given by the displacement vector, {5 h, are such that the strains 

{ £ } - [ ii ] { 5 } i, are zero at all the sampling points, then the strain energy of the element will be 

zero also. Since the strain energy U 0, is zero for the particular displacement vector {5} i, it 

follows that the determinant of the matrix [B ] is zero also (eqn(5.7.1.6». Consequently, from 

eqn(5.8.2.1), the determinant of the element elastic stiffness matrix, [KEe ] is similarly zero. 

It is expected that an element will exhibit zero strain energy when the displacement vector { 5 } i , 

describes rigid body motion. However, if the strain energy is zero for a displacement vector 

which does not describe rigid body motion, then the existence of a spurious mode or zero energy 

mechanism, has been detected. This is typically the result of the application of a Gauss rule of 

insufficient order. An element which displays zero energy mechanisms is said to be rank deficient 

[5.14] 15 • The rank of a stiffness matrix is detennined as described below. 

In the case of an eight noded quadrilateral element, with only two translational degrees of 

freedom at each node, {u, v}, three rigid body modes are modelled. These comprise two 

translational and one in-plane rotation. Therefore, with 16 degrees of freedom, the rank of the 

element stiffness matrix is 13. If 2><2 Gauss Quadrature is used, then sampling the strains 

15 

The rank deficiency of a matrix can be demonstrated by factorisation. The resulting upper-triangular element displays 
zeros below the leading diagonal. The number of rows possessing all zero coefficients is a direct measure of the rank 
deficiency of the element. 
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{ EX, Ey, Yxr } (plane stress), at each Gauss Point, leads to a maximum admissible rank. of 

2x2x3 = 12 for the element stiffness matrix. Thus, with the 2x2 Gauss rule, the eight noded, 16 

degree of freedom element, exhibits one zero energy mechanism, which is shown in Figure 5.9. 

r 
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(b) Possible "Hour-glass" Mechanism. 

Figure 5.9 • P~ble Zero Energy Mechanism for 

16 DOF Quadrilateral Element.[5.14] 

This particular mechanism is suppressed by adjacent elements, through the requirements of 

displacement (or cO) compatibility. 

The stiffness matrix representing the eight noded quadrilateral element with three translational 

degrees of freedom at each node, {u, v , w}, possesses a maximum admissible rank of 12 when 

evaluated using 2x2 Gauss Quadrature 16. With 24 degrees of freedom, the eight noded element 

may display up to six rigid body modes, incorporating three translations and three rotations. 

Therefore, the element stiffness matrix possesses a rank of 18. By comparing the admissible and 

the actual ranks of the element stiffness matrix, it can be seen that the use of 2x2 Gauss 

Quadrature leads to a rank deficiency of six. This implies the existence of six zero energy 

mechanisms. 

Conversely, by adopting 3><3 Gauss Quadrature, then with nine sampling points and three strains 

at each point, a maximum admissible rank of 27 is obtained for the element stiffness matrix. This 

is significantly greater than the required value of 18. Selection of the 3x3 Gauss rule removes the 

possibility of zero energy mechanisms, as required. However, the computational effort is clearly 

increased when compared with the 2x2 quadrature. Furthennore, during the fonn-finding of an 

16 

The admissible rank of the element stiffness matrices of the four and eight noded elements are the same since. in both 
cases, the condition of plane stress is represented and 2><2 Gauss Quadrature is employed. Consequently. only three 
strains are sampled at four Gauss points in each element. 
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5.9. Adequate Representation of Rigid Body Rotations in tbe Element Stiffness Matrix, 

[K ae ]. 

5.9.1. Introduction. 

It is the requirement of any finite element formulation that, if a displacement vector which 

describes rigid body motion is applied to the element, the resulting motion does not induce strains 

(or forces at the element nodes). Satisfaction of this requirement not only illustrates that the 

element is able to model fundamental phenomena which may exist in the analysis of a system, 

but also, that as the finite element mesh is refined, convergence to the exact solution is assured. 

As demonstrated in Section 6.4.3.3, Chapter 6, these considerations are significant in the case of a 

linear element formulation and small displacement theory. 

It is generally recognised that both the elastic stiffness matrix, [KEe ], and the stress stiffness 

matrix, [K ae ] of general non-linear finite elements, generate zero nodal forces under the 

application of a displacement vector describing rigid body translation only. Furthermore, the 

same results are true when an element, which possess elastic stiffness only, is subjected to a 

displacement vector representing small rigid body rotations. Large rigid body rotation, in general, 

are not represented as strain free for an element with elastic stiffness only. This is since the usual 

expressions describing the strain of an elastic continuum are approximate, and only include up to 

the quadratic displacement terms. Retention of all higher order terms in the expression for the 

direct and shear strains would result in the general strain free rigid body translation and rotation 

of an element with elastic stiffness only.[S.14] In such a case, it would be possible to translate, 

rotate and strain an element with finite displacements, from any location in the global space and, 

provided the straining component of the displacement vector remained constant, the strain energy 

would similarly remain constant, and at a minimum. 

Conversely, in the case of an element possessing initial stress (or geometric) stiffness alone, only 

translational rigid body modes yield zero strain energy. This is demonstrated by conducting an 

eigenvalue analysis (Section 6.3, Chapter 6) on an element stress stiffness matrix, [K ae ], from 

which three zero eigenvalues are obtained, as opposed to the required six which are displayed by 

the elastic stiffness matrix, [KE e ]. By displaying the corresponding eigenvectors, it is shown 

that the three zero eigenvalues correspond to two in-plane and one out-of-plane rigid body 

translations. As described below, the loss of the three zero eigenvalues, whose eigenvectors 

describe rigid body rotation, can be attributed to the modelling of the internal stress of the 

element. 

Any stress state, described typically at the Gauss points, may be represented by a set of 

equivalent forces, acting at each of the element nodes. During the application of the rigid body 

rotation vector {§} Rr it is required that the magnitude of the element nodal forces remain 
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unchanged, in order to describe the internal stress of the element consistently, and to maintain the 

internal equilibrium of the element. In addition, a change in direction of the forces, equal to that 

defined by the rigid body motion of the element, is required. 

During both the eigenvalue analysis, and the incremental step of the analysis of a geometrically 

non-linear system, the magnitudes and directions of the nodal forces at the end of the iterative 

step are assumed to be the same as at the start of it. Consequently, as the element undergoes a 

rigid body rotation, additional fictitious nodal forces are generated by the change in direction of 

the element (given by the orientation of the element prior and subsequent to the application of the 

rigid body rotation vector, (§}Rr), while the directions of the element nodal forces remain 

unchanged. Thus, after the application of the vector {§} Rr, the nodal forces become inconsistent 

with the stress state within the element. The difference between the assumed values of the nodal 

forces before, and after, rigid body rotation, is treated as an external load vector. The external 

load vector can be assumed to induce strains into the element. These strains then give rise to 

non-zero eigenvalues which are associated with the rigid body rotations of the element. 

Conversely, when the displacement vector {Q} R describes rigid body translation alone, the 

direction and orientation of the element remains unchanged. Therefore, the assumption that the 

magnitudes and directions of the element equivalent nodal forces are constant, is valid. Thus, 

rigid body translation is strain free, as illustrated by the three zero eigenvalues mentioned 

previously. 

Lui and Yang [S.22] have proposed a "General Eigenvalue Test for Non-linear Finite Elements". 

The theory presented in reference [5.22] may be used to include strain free rigid body rotation 

explicitly for non-linear finite elements with prestress. The relevant sections of the paper by Lui 

and Yang[S.22] are summarised below. 
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Figure 5.11 [5.22] • Path of a General Finite Element During an Incremental Solution. 



24 Degrees-of-Freedom Quadratic Element - Element Formulation. 199 

Figure 5.11 shows a general finite element as it passes from an initial configuration Co, through a 

known equilibrium configuration, C 10 and finally to a neighbouring desired equilibrium 

configuration C 2. It is assumed that C 2 is incrementally close to C 1. 

For each finite element, an incremental equation of eqUilibrium may be written as the element 

moves from configuration Cl to C 2, and is given as, 

eqn(5.9.1.1) 

where; 

{ ~} I ; is the displacement vector as the finite element moves from C 1 to C 2, 

---- I 1 I 1 [KEe ] and [Kat] are the elastic and stress (geometric) stiffness matrices 

respectively, as evaluated at the configuration C 1> and, 

{ f e } 12 and {f e } 11 are the nodal force vectors as given at configuration eland C 2. 
The requirement that the equivalent nodal forces remain consistent with the internal equilibrium 

of the element during rigid body rotation, may be written as, 

{ f e } 12 = [R ]r {f e } 11 eqn(5.9.1.2) 

where [R ]r is a rotation matrix describing the rigid motion of the element. 

For purely translational rigid body motion, the matrix [R ]r becomes the identity matrix. For 

rigid body rotation angles which are small, the diagonal terms of eqn(5.9.1.2) remain as unity, 

with the other terms either zero or a function of the angle of rigid body rotation. Therefore, the 

right side of eqn(5.9.1.1) describes the vector of additional fictitious nodal forces, generated by 

the rigid body rotation of the element. A relationship between these additional nodal forces and 

the displacement vector describing rigid body rotation, (§) Rr , may be written as, 

eqn(S.9.1.3) 

where the matrix [K ae lex is termed the external stiffness matrix [5.22]. 

The terms of this matrix may be obtained by extracting the nodal displacement variables from the 

expressions for the additional fictitious nodal forces given by the left side of eqn(S.9.1.3). 

By subtracting the external stiffness matrix [Kat ]ex from the stress stiffness matrix, [K ae ] 1
1
, 

the internal [5.22] stiffness matrix, [ Kat ]in may be obtained as, 

[Kat ];n ,. [Kat] 11 - [Kae lex eqn(S.9.1.4) 

When performing an eigenvalue analysis on the internal stress matrix, [K a e ]in, a full 

complement of six zero eigenvalues is obtained, with the associated eigenvectors displaying three 
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rigid body translations, plus three rigid body rotations (Section 6.3, Chapter 6). Therefore, 

through the use of eqn(S.9.1.2) to eqn(5.9.1.4), the fictitious stiffness terms generated when the 

element undergoes a rigid body rotation, can be suppressed explicitly in the formulation of a 

non-linear finite element, subjected to prestress. 

Reference [5.22] presents an application of this approach to a simple in-plane, two dimensional 

beam element. However, it is possible to extend the same theory to the curved quadrilateral 

element, formulated in the preceding sections of this chapter. The main differences in the 

extended application of this theory to that given in reference [5.22], are as follows: 

- the definition of the rigid body rotation angle. er. necessary to generate the matrix, [R ]r , 

and, 

- the terms of the external stiffness matrix, [ K a e lex. 

5.9.2. Definition of the Rigid Body Rotation Angle, er 

In the case of a plane two dimensional element (Figure 5.12), the rotation matrix, [R ]r8, may be 

written as, 

1 -er 0 0 
er 1 0 0 

[R ]r8 - 0 0 1 -er eqn(5.9.2.1) 

0 0 er 1 

where eR - v
A L vB , with v A the displacement in the direction y 1 at node A, and vB 

similarly at node B. L is defined as the length of the bar at configuration Cl. (Angles of 

small rotation are assumed in the above.) 

1 1 
y,v 

2 2 
x,u 

~~ ____________ ~ ____________ ~ 1 1 
X,U 

Figure 5.12 [S.22} • Beam Finite Element Subjected to a Rigid Body Rotation, er. 
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However, for a general curved finite element, rigid body rotation may occur about three local 

axes - about a vector normal to the middle surface of the element, and about two orthogonal 

vectors tangential to the middle surface. Calculation of the rigid body rotation angle, er, is 

clearly dependent on all of the element nodal degrees of freedom. Thus the initial problem is to 

assess the contribution of the individual nodal displacements to the overall element rigid body 

rotation angle, er. Considering rotation about a vector normal to the middle surface of the 

element initially, an assessment of the magnitude of the angle, 6r
ip , is made in the subsequent 

paragraphs. 

A plane quadratic element is shown in Figure 5.13, prior and subsequent to the application of a 

general displacement vector {§}. 

r-----e -----1 
1 765 1 
, 1') I 
I I 

+8 l;4f 
I 0 , , , 
I 
I 1 2 3 , B 
&. .. ----_-----J 

Y,V 

L-----.... x,u 
o 

Figure 5.13 ··Plane Quadrilateral Finite Element Subjected to 

a General Displacement Vector,~. 

where the element numbered with the superscript "0" is the original undeformed element 

subjected to the rigid body translation components of {§} only. The superscript "r" indicates 

the original element with both the rigid body translation and suggested rigid body rotation 

components of {§j applied, while the element with the superscript "t" denotes the original 

element subjected to all the terms of the displacement vector {§}, i.e. rigid body translation, 

rigid body rotation, and the strain inducing terms. 
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It is postulated that during the deformation of the original element, both rigid body translation 

and rigid body rotation occur (Figure 5.13). Both types of rigid body displacements may be 

subtracted from the overall displacement vector to find the straining components of the vector 

{~. 

When considering rigid body rotation in the finite element formulation, a fictitious increase in 

strain energy may be observed, with an increase in the angle of rigid body rotation. This is 

illustrated in Figure 5.14 which shows the strain energy associated with the variation of rigid 

body rotation angle er for a plane quadratic element. The ordinate has been expressed as a 

percentage of the strain energy generated by a unit strain in both the global x and y directions. 
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Figure 5.14· Associated Strain Energy with Variation in Rigid Body Rotation, er. 

When the general displacement vector, {§}, exhibits zero rigid body rotation, it can be seen that 

the strain energy of the deformed element is a minimum (Figure 5.14). Consequently, as 

described below. by monitoring the strain energy of an initially undefonned element subjected to 

a variable angle of rigid body rotation, an assessment of the amount of rigid body rotation 

contained within the displacement vector, (~, may be made. 

As a first estimate, the evaluation of the characteristic matrices of the undeformed element is 

performed using the original orientation of the element. Thus it is only the nodal displacements 

which are amended with the varied angle of rigid body rotation. For example, with reference to 

eqn(S.8.2.1), the strain energy, Uo , generated within a finite element when subjected to a general 

displacement vector, {~. may be written as, 

Uo - t [ [B ]{~ ] T [E ][ B ](ID eqn(5.9.2.2) 
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In order to assess the contribution of the rigid body rotation to the displacement vector (fll, 

eqn(5.9.2.2) may be rewritten here as, 

eqn(5.9.2.3) 

where {~(er)} is a displacement vector describing the rigid body rotation of the element, as 

a function of the rotation angle er. The matrix [B s ] has been substituted for [11] in 

eqn(5.9.2.2), as it is assumed that no initial nodal displacements occur prior to the 

application of the displacement vector (&. 

The value of the matrix [B s ] is held constant and is based on the original undeformed element. 

As the vector {~(er)} is varied, the strain energy of the deformed element is monitored, until a 

minimum value is reached, with a corresponding value of er . 

When comparing the results for er using this approach, with the known imposed rigid body 

rotation angle, good agreement is obtained provided the displacement vector (& describes small 

strains and small rotations. Since the matrix [B s ] is linear and only dependent on the first order 

terms of the strain-displacement relation, the higher order components of strain are not 

represented. This may result in an under-estimate of the strain energy of deformation. Thus, a 

false strain energy minimum can be encountered, giving an erroneous measure of the rigid body 

rotation angle, er . 

An alternative formulation is suggested below therefore, which seeks to minimise the error 

induced by the violation of the assumptions inherent in the derivation of the matrix [Bs ], whilst 

maximising the strain energy within the element. 

Instead of establishing the matrix [Bs ] (eqn(5.9.2.3» on the undeformed element in its original 

orientation, the terms of the matrix, [Bs ], may be written as a function of the rigid body rotation 

angle, er. In this case, the undeformed element is rotated through an angle er, and the matrix 

[Bs(er )] is calculated, based on the updated element configuration. Consequently, eqn(5.9.2.3) 

may be rewritten as, 

eqn(5.9.2.4) 

By writing the matrix [Bs ] as a function of the rigid body rotation angle, er, it is possible to 

maximise the components of local strain in the deformed element, with respect to the 

displacement vector, {&, and the rigid body rotation angle, er. This, in turn, yields a maximum 

value of the strain energy of deformation. As demonstrated by the subsequent examples, the 

strain energy induced through any displacement terms in the vector {& corresponding to those of 
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the rigid body rotation type, is not sufficient to give a false strain energy maximum. 

Figure 5.15 presents the strain energy for a plane square element, subjected to a unit strain in both 

the global x and y directions. The strain energy, U 0 , is quoted as the sum of the strain energies at 

the four element Gauss points, based on the elastic constants as presented in Figure 5.15. 
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Figure 5.15 • Strain Energy of Plane Element Under Uniform Unit Strain. 

The element is now subjected to an additional, arbitrary, rigid body translation, and a rigid body 

rotation of O.75c (- er true). The relationship between the rigid body rotation angle, er, as applied 

to the undeformed element (in the global xy plane), and the strain energy (eqn(5.9.2.4» of the 

deformed element, is presented in Figure 5.16. 
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Figure 5.16 • Example 5.1 

Associated Strain Energy with Variation in Rigid Body Rotation, er. 

As the rigid body rotation angle is increased from QC to O.75c , the strain energy can be seen to 

tend to the known exact value (Figure 5.16). The true (maximum) value is observed when er 
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corresponds to the accurate value of the rigid body rotation. 

The following examples are included to show the application of this procedure to elements of a 

similar undeformed shape to that shown in Figure 5.15, but under the application of various 

displacement vectors {~. The elements are considered to remain in the global x, y plane. The 

cases illustrated in Figure 5.17 (a)-(c) are assumed to have the same constants of elasticity as 

given in Figure 5.15, and the same notation as in Figure 5.13. The displacement vectors of each 

example (Figure 5.17 (a)-(c» are presented in Appendix 5-C. 
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Associated Strain Energy with Variation in Rigid Body Rotation, er. 
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Associated Strain Energy with Variation in Rigid Body Rotation, er. 
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Figure S.17(c)· Example 5.4 

Associated Strain Energy with Variation in Rigid Body Rotation, er. 

The product of the element matrix [B s], calculated subsequent to the application of the rigid body 

rotation terms given in the displacement vector {§} to the undeformed element, with the net 

displacement {§} - ~ (er)} has been shown (Examples 5.2 - 5.4) to lead to a maximisation of the 

strain energy of the deformation, when the rigid body rotation angle er is represented accurately. 

An adequate estimate of the rigid body rotation angle er can therefore be made through this 

iterative type of approach. From these results, an algebraic expression is proposed below which 

relates explicitly the element nodal displacements, {§}, to the angle of rigid body rotation, er, 
through the element natural base vectors, ~ and Ti. 
Considering the angle of rigid body rotation, er ip , about a vector normal to the middle surface of 

the element, constructed at the origin of the natural co-ordinate system, (~, 11), it is postulated that 

the magnitude of the angle er ip may be related to the change in the direction of the base vectors -e 
-+ 

and 11 as, 

e ip - (.1; + .1TI) 
r - 2 ' eqn(5.9.2.5) 

where .1~ is the angle through which the base vector ~ is moved, subsequent to the 

application of the displacement vector {§} (Figure 5.18). Similarly, .1Ti is the angle through 

which the base vector Ti is moved, due to the vector {§}, as shown in Figure 5.19. 

A comparison of eqn(5.9.2.5) with the results obtained through the maximisation of eqn(5.9.2.4), 

for the examples shown in Figure 5.16 and Figure 5.17(a)-(c) are presented in Table 5.4. 
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Example. er ip (eqn(5.9.2.4)max) er
ip (eqn(5.9.2.5» Error in eqn(5.9.2.5). 

5.1 0.75 e 0.75 e 0.% 

5.2 0.31 e 0.32c 0.8% 

5.3 0.080 e 0.062c 22.5% 

5.4 0.20e 0.23 e 15.0% 

Table S.4 • Accuracy of eqn(S.9.2.5) in Estimating er ip • 

A wide range of error values can be seen to exist for the examples tested (Table 5.4). This feature 

may be attributed to the violation of the assumption of uniform strain. For example, in writing 

eqn(5.9.2.5), it has been assumed that the strains in the local element directions X , Y, are equal or 

of similar magnitude. The elements in Example 5.3 and Example 5.4 (Figure 5.17(b) and Figure 

5.17(c), respectively) are not characterised by deformation modes which generate a state of 

uniform strain. Thus, as illustrated by the error measures presented in Table 5.4, it can be seen 

that violation of the implicit assumption in eqn(5.9.2.5), leads to the generation of relatively large 

errors in the estimate for er ip . 

However, in case of the form-finding of an elastic membrane subjected to a constant stress field, 

uniform straining within individual elements may be closely approximated with mesh refinement. 

Thus, eqn(5.9.2.5) may closely estimate the angle of rigid body rotation, 6,ip, when a global state 

of constant strain exists, or when the element size tends to zero. 

The derivations of the expressions for fl~ and flTl involving the nodal displacements of the 

element, are given below. The expression for ~~ is presented initially. It is convenient to 

calculate the angle change fl~ in an additional local co-ordinate system, tangential to the middle 

surface of the element, at the natural co-ordinate location (~, 11) = (0, 0) (Figure 5.18). 
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Figure S.18 • An Element Subjected to a Rigid Body Rotation, Or ip • 

The Component A~. 

where ~ and ~' are base vectors prior and subsequent to the application of the global 

displacement vector {§} respectively. 

The vector t, normal to the middle surface of the element is defined by eqn(5.4.5). Using 

eqn(5.4.4) and eqn(5.4.7), the local co-ordinate directions Ke and Ye, may be described similarly. 

Taking the axis of the vector Z as the origin of the local co-ordinate system (Kf" Yf,), the base 

vector ~ may be transformed into the Ke, Ye plane, as (eqn(S.4.4», 

{Xf.l} {xei * + x~ ~ + Xe
t *} 

Yel - Yei* + y~~ + Yf,k* eqn(5.9.2.6) 

where the superscripts, i, j and k, correspond to the global directions x, y and z, and 

X f,lo Y f,l are the local co-ordinates of the base vector ~. 

After application of the general displacement vector, {§}, it is assumed that the vector ~ moves 

into a new direction ~/, as shown in Figure S.18. The base vector ~/, may be similarly transformed 

into the local co-ordinate directions, Xf" Yf" and written as, 
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+Xl~} 
+ Y~k~ 

eqn(5.9.2.7) 

where U, v and w are the components of the global displacement vector, {§}, in the 

directions x, y and z, respectively. Assuming that the angle of the rigid body rotation is 

small, ~~, may be given as, 

~~::::: YS2- YSl 

I ~I 
eqn(5.9.2.8) 

A similar procedure may be adopted for calculating the term dTl (eqn(5.9.2.5». In this case, 

however, the local co-ordinate direction, Xt'!' is aligned with the base vector Tl (Figure 5.19), such 

that, 

ax 
"d[ 

eqn(5.9.2.9) 
ax 
~ 

where K is the position vector of the centre of the element in global co-ordinates. 
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Flgure 5.19 • An Element Subjected to a Rigid Body Rotation, er ip • 
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Thus, the unit vector, Y", in the local co-ordinate direction, Y", may be written as, 

Yll = eqn(S.9.2.10) 

where Z is as given in eqn(S.4.5) 

The base vectors, li and li', may be transformed into the local co-ordinate system with 

eqn(S.9.2.9) and eqn(S.9.2.1O). Assuming small angles, Ali may be written in a similar manner to 

eqn(S.9.2.8), as, 

Ali = y 1)2 - Y 1)1 

lli I 
eqn(5.9.2.11) 

where, 

and, 

Y _ yA i ax + yA i au + Y j.EL + Y j ~ + Y k az + y k aw 
,,2 " dl\ 1) CJTf "dT\ 1) v 1\ 1) CJTf 1) <n\ 

Therefore, substitution of eqn(S.9.2.8) and eqn(S.9.2.11) into eqn(S.9.2.S) yields an expression 

for the angle of in-plane rigid body rotation, 8r ip , in terms of the nodal displacements, as 

8 iP
-

I
[ r -"2 eqn(S.9.2.I2(a» 

or, more usefully, 

e,~ ~ t [(;/1 ~+ (il ~+ (il £+ (:1 t+ (11 ~+ (~'I ~l 
eqn(S.9.2.12(b) 

The angles of rigid body rotation about a pair of orthogonal vectors tangential to the middle 

surface of the element, 8r x and 8r Y , may be obtained in a similar manner. An accurate estimate 

of this type of rigid body rotation may be obtained by calculating the change in direction of the 

vector i, normal to the surface of the element. The rigid body rotation, 8r x, about the local co­

ordinate direction Xx (Figure 5.20), is derived below. 
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Figure S.20 • An Element Subjected to a Rigid Body Rotation, er x . 
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The proposed axis of rigid body rotation, Xx, may be established using an equation of the type 

given in eqn(S.4.4). Prior to the application of the rigid body rotation er
x , a vector normal to the 

middle surface of the element, Zx, may be obtained as a vector product of ~ and Tt (eqn(5.4.5». 

The updated normal vector, Zx', may be calculated as, 

Zx' - eqn(5.9.2.13) 

which, by evaluating the determinant, gives, 

1, , - [ ~ dz +~ aw + dv dz + dv aw _~ dz -~ dw dv dz dv dw 1 . 
x dl; cnr ~ dJf ~ cnr ~dJf ctTl ~ ctTl ~-cnr ~-d11 ~ 1. 

or, 

[ 
dx dz + dx aw + du dz + du dw _ dx dz dx dw du dz du dw 1 . 

- ~~ ~dJf ~(}jf ~dif (}jf~-cnr~-dif~-dif~ 1 

+ [ dx k+ dx dv + du k+ du dv - dx ~- dx dv du.a du dv 1 k 
~~~(}jf~d11~cnrd11~dif~~~~~-

eqn(5.9.2.14) 

Zx' - zx,j i - zx'j 1 + ZX'k Is. eqn(5.9.2.15) 
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The expression for Zx' given in eqn(S.9.2.1S), contains terms such as *~, ~~, etc., 

which are clearly products of the differentials of the element nodal displacements. Assuming that 

the rate of change of the interpolated displacements across the element are small, the second 

order terms of this type may be neglected as a necessary simplification. 

With reference to Figure S.20, and using an equation of the form given in eqn(S.4.7), the vector 

Yx , may be expressed as, 

eqn(S.9.2.16) 

The vector Zx may be expanded to give (eqn(S-A.7», 

Zx -{ (**-~*)J. -(**-** II + (*~-**)!} 
- { Zx; i - Zx j i + Zx k ! } eqn(S.9.2.17) 

Eqn(S.9.2.16) and eqn(S.9.2.17) may be used to transform the vector Zx into the local Zx, Yx 

plane. For example, given that the co-ordinates Zx 1, Y X 1 describe the end of the vector ~ (point 

1 (Figure S.20» in the local ix, Yx plane, the transformation may be written as, 

{~;:} - {YX;ZX; _I :':L + Y~kZXk} eqn(S.9.2.18) 

Similarly, the vector Zx' may be transformed into the same plane, Z"x, Y x, to give the local co­

ordinates of the point 2 (Figure 5.20), as, 

{
zx21 {iXiZX'i - ixjZx'j + iXkZX'k} 
Yx2f - yxiZx,j - yxjzx'j + yxkZx'k eqn(S.9.2.19) 

where ix i , ix j , and ix k are the respective direction cosines of the vector Zx , and the terms 

ZX'i ,zx'j ,andZx'k are as presented in eqn(S.9.2.14). 

Assuming small rotations, eqn(S.9.2.18) and eqn(5.9.2.19) may be used to obtain an expression 

for the rigid body rotation angle er x, in terms of the element nodal displacements, as, 

e x - YX2 - YX1 
r - ZXI eqn(S.9.2.20) 

or, 
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e,X = I ~X I [YX
i 

[ ~%l\'+~~-~~-!* 1 
y j [ dx dw + dz du dx dw dz du 1 

- x ~<hf dif~-(JJf~-~dtf 

+Yx.[ ~*+~*-~~-~tll eqn(5.9.2.21) 

Adopting a similar procedure, the rigid body rotation angle about the local Yx axis, Or f , may be 

written as, 

O f -
r -

eqn(5.9.2.22) 

where XXi, Xx j , and XXk, are the direction cosines of the local co-ordinate direction Xx . 
Therefore, the total angle of rigid body rotation, Or T may be estimated by eqn(5.9.2.12(b», 

eqn(5.9.2.21) and eqn(5.9.2.22), as, 

eqn(5.9.2.23) 

Thus, with reference to eqn(5.9.1.3), the expressions given for Or ip , er
x , and Or f in terms of the 

element nodal displacements (eqn(5.9.2.12(b», eqn(5.9.2.21), eqn(5.9.2.22», may be used to 

calculate the tenns of the matrix [Kat ]ex as outlined below. 

5.9.3. Generation of the Terms of the External Stiffness Matrix [ Kat ]tx. 

Considering initially a rigid body rotation through a small angle Or ip , the corresponding rotation 

matrix, [R VP (eqn(5.9.1.2», may be written as, 

1 _it Or ip ij Or ip 

[R ],ip - it Brip I _ii O,ip eqn(5.9.3.1) 
-ij Brip ii Brip 1 

where ii, i j , and i k are the respective direction cosines of the vector i (Figure 5.19), in 

the global x, y and z directions. 



24 Degrees-of-Freedom Quadratic Flement - Element Formulation. 214 

Substituting eqn(5.9.3.1) into the general equation, eqn(5.9.1.2), yields the vector of nodal forces, 

{ le hp 1

2
, written as, 

At . "". . 
Z 8r 'P F IXl + F If! - Z' 8r 'P Fill 

-ij 8r
ip F IXl + ii 8r

ip F Iyl + Fill 

2 

( le hp I :::: eqn(5.9.3.2) 

""k' A.. 
F 8X8 - Z 8r 'P F 8Y8 + Z' 8r 'P F 8Z8 
~ • A· • 

Z 8r 'P F 8X8 + F 8y8 - Z' 8r 'P F 8Z8 

-ij 8r
ip F 8X8 + ii 8r

ip F 8y8 + F 8Z8 

where F lXI, F IYI, and F IZI, are the equivalent nodal forces for the element node 1 in the 

local directions X I, Y I , and Z I, respectively. 

The additional fictitious nodal forces generated through the application of the rigid body rotation 

described by 8r ip , is given by a similar form to that of the left side of eqn(5.9.1.3). Thus, 

At A. 

(-Z F IYI + Z' F IZI ) 

Ak "". 
(Z F IXl - Z' Fill) 

( -ZJ F IXl + ii F IYl ) 

{ le hp 12 - [R ]r ip {le} 1I :::: 8r
ip 

( _ik F 8Y8 + ij F 8Z8 ) 

( ZAk F A. 

8X' - Z' F 8Z8 ) 

( -ii F 8XB + ii F 8YB ) 

eqn(5.9.3.3) 

The rigid body rotation angle 8r
ip (eqn(5.9.2.12(b», may be expressed explicitly in terms of the 

element nodal degrees offreedom, through equations of the type given in eqn(5.3.3.7), such that. 
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eqn(S.9.3.4) 

Writing eqn(S.9.1.3) with eqn(5.9.3.3) and eqn(5.9.3.4), yields the coefficients of the external 

stiffness matrix, [ K c/ lex ip , due to the rigid body rotation angle er ip • This is done by extracting 

the coefficients corresponding to the element nodal displacements and recompiling them to 

generate a 24 x 24 stiffness matrix. 

For example, the first three terms of the first row of the matrix [ Ko e lex ip , may be written as, 

[K .'(1.1) lu" - f (_it FlY' +ii F IZ') [ i~' la~; + i,' la~; ]. 

- t (_it FlY' + ii F~,) [ i<, la~; + i,t la~; ]. 
eqn(5.9.3.5(a» 

while the final term of the matrix [K ot ]tx ip , is given by, 

- t (-ii F ,,0+ i' F gy,) [ i.' ,a~i + i/ ,a~i 1 

eqn(5.9.3.5(b» 

A similar procedure may be adopted to obtain the contribution of a small rigid body rotation, 

8r
X , about the local Xx axis to the total external stiffness matrix, [K ae ]ex. In this case the 
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rotation matrix, matrix, [R ]r X , is given as, 

1 _XXk er
x Xx j er

x 

[R ]r X = X"x k ar
x 1 _XXi er

X eqn(5.9.3.6) 
_x"xi er

x X j a x x r 1 

The additional fictitious nodal forces resulting from a rigid body rotation of magnitude er x , may 

be written as, 

A k A • 

(-Xx F Iyl + Xx) F IZl ) 
A k A • 

(Xx F IXl - XXi F lZl ) 

(_Xxi F IXl + X"x i F lYl ) 

{ f e } x 12 - [R ]r x {f e } 1I :::: ex r 

A k A • 

(-XX F ayB + Xx) F 8ZB ) 
A k A • 

(Xx Fax8 - XXi F 8Z8) 

(_Xxi F 8.\'8 + X"x i F 8YS) 

eqn(5.9.3.7) 

2 

where { le }x I is the vector of equivalent nodal forces subsequent to the application of ar
x . 

Rewriting the rigid body rotation angle er
x (eqn(5.9.2.21) in terms of the element nodal 

displacements (eqn(5.3.3.7», leads to the following expression for ar
x ; 

n - a aN Un [ ". m - 8 aN m "m - 8 aN 1 ar
x :::: 1: --;r;- -yx} 1: -:S;;-Zm + yxk 1: ~Ym 

n-I v~ I ~ I m-I Vll m-I VII 

+ nt
a 

aNn Un [ yxi mf8 ~zm - Yx k mf8 ~Ym 1 
n-I dill Zx I m-I V~ m-I v~ 

[ yxi mf8 aNm Zm - yx k mta 
aNm Xm 1 

m_Idll m-I~ 

[ 
Aim~aaNm y"k m- aaN 1 -yx LJ -:n:-Zm + x E --:s?Xm 

m-I v~ m-I v~ 

[

A. m..;: 8 aNm " . m - 8 aN 1 -Yx' LJ ~Ym + yx} r, --:.r:!fJ-xm 
m - I VII m-I V'I 

[

A. m - 8 aN m A • m - a aN 1 
Yx' 1: --::re-Ym - Yx J 1: --;r?Xm 

m -I v~ m -I v~ 

eqn(5.9.3.8) 



24 Degrees-of-Freedom Quadratic Flement - Element Formulation. 217 

Writing eqn(S.9.3.7) and eqn(S.9.3.8) in the form of the general equation, eqn(5.9.1.3), yields the 

coefficients of the external stiffness matrix, [K c/ Jex x, generated by a rigid body rotation of 

magnitude 6r x . 

For example, the first term of the first row of the matrix [K ae ]ex X , is given as, 

eqn(S.9.3.9) 

where, 

and, 

In the case of rigid body rotation about the local Yx axis (Figure 5.20),the rotation matrix, 

[R ]r Y , may be written as, 

[R ]r f 
-

Yxj 6r
f 

_YXi err 
1 

eqn(S.9.3.10) 

With reference to eqn(5.9.1.3), the additional fictitious nodal forces resulting from the application 

of a rigid body rotation of magnitude er r , may be written as follows; 

A le A 

( -Y x F If' + Y x j F IZ' ) 
A k. A • 

(Yx FIX' - Yx l F lZ I ) 

( -yx j 
FIX' + Yx i F If' ) 

( f e }y 12 - [R ]r Y (f e ) 11 z erf 

eqn(5.9.3.11) 
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Writing eqn(5.9.2.22) in terms of the element nodal displacements, and substituting the resulting 

expression, with eqn(5.9.3.11), into the general equation, eqn(S.9.1.3), yields the coefficients of 

the external stiffness matrix, [K ae lex Y , due to an angle of rigid body rotation, er Y. Thus, the 

first term of the first row of the matrix [K ae ]exx , may be written as, 

[ _YXk F IYl + r"x j F IZI J [ 
[K ae(1,l)lex Y - [Kae lexY(A) + [Kae lex Y (B)] 

I Zx I 
eqn(S.9.3.12) 

where, 

and. 

Finally, by combining the coefficients of the type described in eqn(S.9.3.5(a)&(b», eqn(S.9.3.9), 

and eqn(5.9.3.12), the total external stiffness matrix, [K r/ lex is obtained as, 

eqn(5.9.3.13) 

where the matrices [ K a e lex ip , [ Ko e lex X • and [ K (/ lex Y , correspond to the components of 

the matrix [K (1 e lex, arising from rigid body rotation in a plane normal to the middle 

surface of the element (at (J;, 11) - (0,0», and about the local axes Xx and Yx , respectively. 

Substituting eqn(S.9.3.13) into eqn(S.9.1.4) gives an expression for the element internal stiffness 

eqn(5.9.3.14) 

The results relating to the theoretical approach presented in this section are given in Section 6.3, 

Chapter 6. 
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5.10. Appendix S-A - General Form of the Solution to the Direct Element Strain ~¥. 

The elastic continuum illustrated in Figure 5-A.l, is subjected to a general displacement vector 

~ •. The strain at the point po· , €G p • • , is given in the general form, as in eqn(5.6.6), with the 

current notation (Figure 5-Al) as, 

€GP.· = eqn(5.6.6) 

where ds· and dso '" 2, are the infinitesimal arc lengths at the point of interest, prior and 

subsequent to the application of the displacement vector ~* , respectively. 

z,w 

t­I', 
I " I ...... , ... , 
• • 

, , , , , , 
" . " . \ , \, , 

, 

Figure S-A.l • General3-Dimensional Elastic Continuum Subjected to 

a Displacement V «tor ~ 

It is required to calculate the local strain, ~,in the direction of the vector X·, at the location 

Po'" . Given that dso • is an initial infinitesimal arc length, on the surface at the point po· in the 

local direction X· , then, 

ds
• 2 ax· 

o ---ax eqn(5-AI) 

Similarly, if the point po· moves to a new location, p. after application of the displacement 

vector ~. , then the square of the strained infinitesimal arc length, ds· , may be written as, 

lis. '1 _ a( X· + B·) . a( X· + B· ) 
aX aX eqn(5-A2) 
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Substitution of eqn(5-A.1) and eqn(S-A.2) into eqn(5.6.29) gives, 

or, to the first order, 

a5* . ax* a5* a5* 
2ax ax+ax'ax 

EQPa' = -=-~~-~-~~ 

2 

aK* 
ax 

aK* 
ax 

2 

2 

From the form of eqn(S.6.l5(a» it may be written that, 

u* = §* • X'" , 

and the direct strain in the local X direction from the form of eqn(S.6.1S(b» as, 
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eqn(5-A.3(a» 

eqn(S-A.3(b» 

eqn(5-A.4) 

eqn(5-A.5) 

By a comparison of eqn(5-A.3(b» with eqn(5-A.S) it is shown that if eqn(5.6.1S(b» is to be valid 

for calculating the direct local strain, ~~ (or in the current notation a£'" ) in the general case, 

then the following equality 

aK* 
X'" - ax eqn(5-A.6) 

aK'" 
2 

aX 

must hold true. 

Considering initially the left side of eqn(S-A.6), in the case of a general curved quadrilateral 

element in the global {x, y, z } space (Figure 5-A.l), the local co-ordinate base vectors may be 

calculated from eqn(5.4.1), eqn(5.4.9), eqn(5.4.1O), with eqn(5.4.13). For example, the co­

ordinate direction Z* may be written as, 

z- -~xiia [~* -td{jl 
-[ ~* -~H~jl + [ ~*' -~~j! eqn(5-A.7) 

Assuming that 1 - { 01. + 11 + 0 ! }, the base vector X* may be given by, 
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x- -i x z. -[ t ~ -~ ~ 1 i + 01 - [ ~ * -~ * 1 k 

eqn(5-A.8) 

The left side of eqn( 5-A.6) is therefore written as X" - I ~ I 
addition, the local base vector 1* may be expressed as, 

, with X" given by eqn(5-A.8). In 

r-z.xx--[[t*-~*l [~*-~*lli 
+ [[ ~* -~*]' + [~~ - ~~],ll 
+[[t~-~~l [t*-~*ll! 

eqn(5-A.9) 

Calculation of the right side of eqn(5-A.6) requires the Jacobian matrix describing the 

transformation between the local and natural co-ordinate systems, eqn(5.5.7(a». The vector K* 

may be rewritten as, 

K* = x*l + yOOl + z*!. eqn(5-A.1O) 

where x * , y. and z· are scalar quantities and the components of the vector K * in the global 

{ x , y • z } space. 

As demonstrated below, the terms x *, y * and z.. may be substituted successively into 

eqn(5.5.7(a» to obtain the components of the vector a~ . in terms of the natural co-ordinates ~ 
and 11. 

Substituting x* into eqn(5.5.7(a» leads to, 

ax· 1 [ Ti . y* ax * - ~. yOO ax * 1 
ax - ( ~ . X· )( 1\ . y. ) - (1\' X* )( ~. y. ) a~ cm 

eqn(5-A.11) 

imil· . be b . ed fay· d az· S ar expreSSlons may 0 tain or aX an ax' 

In the general case, since the unit vector, X, is not aligned with the base vector ~, then the vector 

y is not orthogonal to the vector ~ (Figure 5-A.l). Thus it no longer follows that -e. Y:::: O. 

Therefore, all the terms in eqn(5-A.ll) must be included in the expression for the differential 

ax· d imil' I fi ay· d az· 
component ax ,an s ar y or ax an ax' 
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Using the following notation, 

~ = ~; i + ~j 1 + ~k Is. , Tt = 11; i + ll j 1 + llk Is. , 

eqn(5-A.12) 

the dot products in eqn(5-A.ll) may be written as, 

~ 'x* = _1_ [ (~; )( X ; * ) + (~j )( X j * ) + (~k ) (X k * ) ] 

I ~I 
eqn(5-A.13(a» 

Tt, y* ... _1_[ (11; )(zj* )(Xk*) - (Xj* )(Zk*»_ 

I 1\ I 
(l1 j )(Z;* )(XI:* )_(Xi* )(Zl:* »+(l1 k )(Zi* )(xj* )_(Xi* )(Zj*»] 

eqn(5-A.13(b» 

1\ 'X* - _1_ [ (11; )( X; * ) + (Tt j )( X j * ) + (Tt k )( X 1:* )] 

I 1\ I 
eqn(5-A.13(c» 

~'y* ... _1_[ (~; )«zj* )(Xk*) - (Xj* )(Zk*»_ 

I ~I 
(~j )(Z;* )(Xk* )-(X;* )(Zk* »+(~k )(Z;* )(Xj* )-(X;* )(Zj*»] 

eqn(5-A.13(d» 

By writing eqns(5-A.13(a-d» with eqn(5-A.7), with eqn(5-A.8) and with eqn(5-A.9), and 

substituting the resulting expression into eqn(5-A.ll), a general equation is obtained for the 

differential component a;; . (This expression is not included here for reasons of brevity). The 

ay* az· . d' irnil' components ax and aX may be obtame 10 a s ar manner. 

The complexity of the general algebraic form of the right side of eqn(5-A.6) renders the explicit 

mathematical proof of the equality suggested in this equation, impractical. However, a numerical 

example may be used to illustrate the validity of eqn(5-A.6). 

Thus, considering the general curved quadrilateral element described in Figure 5-A.2, the co­

ordinates of the eight nodes are given in parentheses in the global co-ordinate system as shown. 

In addition the co-ordinates of the Gauss Points (Section 10.2 of the current chapter) are given in 
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the natural (~, tlJ space. The base vectors ~ and 11 are also shown with the local X co-ordinate 

directions at each of the Gauss Points. 

(8.,9.,11.) 

z 

y 

x (4.,3.,4.) 

Figure S-A.2 - General3-Dimensional Curved Quadrilateral Element. 

ax* 
CJX 

The coefficients comprising the vectors){* and ----
2 

(eqn(S-A.8), given mad' -I ~ 1 ,and eqn(S-A.ll», 

at the four element Gauss points (Section 5.8, Figure 5-A.2), are presented in Table 5-A.1. A 

comparison of the left side and the right side of eqn(5-A.6) is made in Table 5-A.2. 



24 Degrees-of-Freedom Quadratic Element - Element Formulation. 

Component Terms Gauss Point 1 Gauss Point 2 Gauss Point 3 Gauss Point 4 

axt ax~ 
~ -dil 0.7001583 9.4645193 2.9520329 4.7985421 

~az taz dil- ~ -3.8780513 2.4076056 3.7450884 -2.6072570 

~. x· -1.3798822 3.1357372 0.7708134 0.6086970 

-. A. 
T\'Y 0.9310003 4.1723607 4.4576337 2.3872591 

-. A. 
T\'X 2.0276869 -2.1918383 -1.3155410 2.0024447 

~. y. -2.9024215 0.4164495 3.6774681 -2.0172717 

ax· i -s aNi 
3.1124970 2.8373375 0.6378043 -= 1:~Xi 1.2286701 

a~ i-I 

ay. i-saN· 
0.2905818 2.1195201 -2.0057115 -= 1:CJtYi -2.4861726 

a~ i-I 

az· i-SaN· 
-0.4839456 -= 1:CJtZi -1.6240201 1.2550200 0.1011159 

a~ i-I 

ax· i -s aN-
-1.3873537 -- - 1: dij-Xi -0.1124956 2.0464879 1.6376550 

<hl i-I 

ay· i -s aNi 
0.7974814 2.9112901 2.5691710 2.3755785 -- 1:difYi <hl i-I 

az· ; -s aN; 
3.4369155 3.2882204 1.1802548 -- 1:difZ; 2.0807796 <hl i-I 

ax" 
Table S-A.l- CoeIIicients .fthe vectorsA" and 1 ;-1' 

ax" 
Gauss Point X" dX 

1~12 
1 0.17767141 +01 +0.9840899! 0.17767141 + 01 + 0.9840899! 

2 0.96913501 +01 -0.2465307! 0.96913501 +01 -0.2465307! 

3 0.61904781 +01 -0.7853533! 0.61904781 + 01 - 0.7853533! 

4 0.87867421 +01 +0.4774220! 0.87867421 +01 + 0.4774220 ! 

Table S-A.2 - A Comparison of the Left Side and the Right Side of eqn(S.A.6). 
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By comparing the solutions given in Table 5-A.2, the equality presented in eqn(5-A.6) is shown 

to be true. Consequently, it is proposed that the validity of eqn(5.6.15(b» is demonstrated 

implicitly for the general case. 
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5.11. Appendix 5-B - Necessary Inclusion of the Higher Order Terms of the Expression for 

Strain when Calculating the Total Strain of an Elastic Continuum. 

The higher order term, ~ ho, is written as (eqn(S.6.9», 

2 ax 
~ 

2 

Expansion of the dot product in the numerator of eqn(5-B.1) leads to, 

{ 
du du + dV dV + aw dw } 
~~ ~~ ~~ aU ho ... ~ ~ __________ ~ 

dX 2 
ax 
~ 

2 

Considering the first product in the parentheses of eqn(S-B.2), and substituting 

displacement u into eqn(5.5.6) yields, 

[ ~ 1 [~ . X ~ . f 1 [* 1 t ... tt·x n· f ¥r- . 

eqn(S-B.l) 

eqn(S-B.2) 

the scalar 

eqn(S-B.3) 

By adopting the assumptions that i = rtr with y" I * I · then global displacement u is 

equivalent to the local displacement U. Therefore, the first term on the left side of eqn(5-B.3) 

(with eqn(S.5.7(a» may be written as, 

du ... aU _ (l? • X) au 
~ ~ <; dX' 

Substitution of eqn(5.6.20) into eqn(5-B.4) leads to, 

au _ dX dU 
~ ~ dX' 

Similarly, expressions may be derived for ~ and~, where, 

av _ ax 
d{ ~ 

av and aw = ax 
dX' '~ -at 

aw ox- . 

Rewriting eqn(5-B.2) with eqn(S-B.S) and eqn(S-B.6) yields the familiar expression, 

~ .. - i [ [ ~ l' + [ ~ l' + [ ~ 1']· 

eqn(5-B.4) 

eqn(5-B.5) 

eqn(5-B.6) 

eqn(5-B.7) 
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The total direct strain in the local X direction, ~¥ t , may therefore be given as, 

au t au au ho 

dX ="dX+"dX ' eqn(5-B.8) 

and similarly for strains in the other local directions, Y and Z. 

The contribution of the terms given by eqn(5-B.7) to the total strain of an elastic continuum 

subjected to a global displacement vector { §. }, is demonstrated by the membrane illustrated in 

Figure 5-B.l. 

1\ 

X,U 

Figure 5-8.1- General2-Dimensional Elastic Continuum Subjected to 

a Displacement Vector Q 

For simplicity, the membrane is assumed to be two dimensional with the global and local axes as 

indicated in Figure 5-B.l. It is assumed also that the global displacement vector, { §.}, describes a 

radial stretching of the membrane. 

To reduce the complexity of the calculations further, the point A is assumed to move to the new 

location A·, after application of { §. }, such that the local axes, rotated through ninety degrees, are 

parallel with the global co-ordinate system (Figure 5-B.l). Given that the membrane is discretised 

by a set of infinitesimally small quadratic quadrilateral elements, so that, at the point A, the 

global displacement vector describes displacements in the Y direction as non-zero, and those in 

the x direction as zero, then the analysis continues as described below. 

Rewriting eqn(5-B.8) for the two-dimensional problem given in Figure 5-B.l, the element strain 

in the local X direction may be given as, 
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_ aU + 1 [ [ au]2 + [ av ]2] OX 2" OX dX . eqn(S-B.9) 

Writing { §} as, 

{§} = { u i + v 1 } , eqn(5-B.1O) 

then, 

()() {au. av. } (}x= dX'£+dX 1 . eqn(S-B.ll) 

where, i, 1 are unit vectors aligned with the global axes x , y . 

Given that, ~ " y - 0., and invoking the lacobian Matrix given in eqn(S.S.7(a», then, 

au _ 1 (-+" y") au 
dX det[J] 1\ ~ , eqn(5-B.12) 

and, 

av. 1 (Ti"y)av 
CJX det[JT ~ , 

1 -+ " ; -8 aN; 
... deiVT (1\ " Y) ;~l ~ . Vi . eqn(5-B.13) 

where the final form of eqn(5-B.13) may be obtained by using eqn(5.3.3.7) and 

eqn(S.3.2.2). 

Since in the vicinity of the point A, v is zero throughout the element, eqn(5-B.13) may be 

rewritten as, 

av 
dX A 

... O. 

Substituting eqn(5-B.14) into eqn(5-B.ll) yields, 

~-{ *1+01} 
Noting that, at the point A , 

i I. -{ 0i + 11 } , 

eqn(5-B.14) 

eqn(S-B.lS) 

eqn(5-B.16) 

with the substitution of the right hand side of eqn(5-B.IS) and eqn(5-B.16) into eqn(5.6.15(b», 

and making use of eqn(S.6.21), gives, 
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au 
dX A 

= 0 .. 

Similarly, at the point A, given that, 

~k - ~~ . Y, and, Y - { -11 + 01} , 

then, 

Therefore, substitution of eqn(5-B.17) and eqn(5-B.19) into eqn(5-B.9) yields, 

~r A - t [ -* ]' A 

228 

eqn(5-B.17) 

eqn(5-B.18) 

eqn(5-B.19) 

eqn(5-B.20) 

Eqn(5-B.20) indicates that, regardless of the magnitude of the global displacement vector { ~}, 

the higher order terms of strain as given by eqn(5-B.7) must be included if the overall strains of 

the membrane are to be represented adequately, and therefore the true equilibrium state 

described, by the proposed numerical model. This is demonstrated further by the fact that the 

omission of such higher order terms would result in eqn(5-B.20) being equal to zero (irrespective 

of the magnitude of the vector ( ~ }) as the first order term does not appear on the right side. 
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5.12. Appendix S-C - Displacement Vectors for Examples 5.2, 5.3, and 5.4 (Figure 5.17 (a)­

(e». 

The displacement vector, fi, corresponding to the element illustrated in Figure 5.17(a) (Example 

5.2), is given as, 

U 1, VI 
+5.75, +3.25 

U2, V2 +7.50, +4.50 
U3, V3 +8.00, +6.50 
U4, V4 +7.00, +6.30 

fi - - +6.50, +6.00 Us, Vs 

U6, V6 +6.00, +6.40 

U7, V7 
+4.50, +4.75 

Us, Vs 
+6.00, +4.30 

where {Ui' Vi} (i - I -7 8), are the displacements in the global x and y co-ordinate 

directions respectively, at the element nodes. (The nodal displacements, Wj, corresponding 

to the global z direction, are assumed to be zero.) 

In the case of the element illustrated in Figure 5.17(b) (Example 5.3), fi is, 

fi-

0.00,0.00 
+4.00,0.00 
+6.00,0.00 
+5.00, +0.50 
+4.00, +1.00 ' 
+ 1.00, +2.00 
+2.00, -1.00 
+1.00,~.50 

and of the element illustrated in Figure 5.17(c) (Example 5.4), fi is, 

0.00,0.00 
+2.00, 0.00 
+4.00, 0.00 
+2.00,0.00 
0.00, 0.00 
0.00,0.00 
0.00,0.00 
0.00,0.00 
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Chapter 6 

24 Degrees-of-Freedom Quadratic Quadrilateral Finite Element for 
the Investigation of Stable Minimal Energy Forms -

An Appraisal of the Quality of the Element Formulation. 

6.1. Introduction. 

The general finite element theory is based on the assumptions that the element shape functions 

satisfy certain continuity requirements, and that the integrals contained in the equations 

describing the discretisation, are calculated exactly [6.1]. In addition. the ability of the element to 

represent accurately a desired response, relies extensively on the assumptions made during the 

formulation. The selection of the degrees of freedom, describing either translation or rotation, and 

the location and number of element nodes, are some of the variables which directly influence the 

suitability of an element to a particular application. 

For example, the omission of rotational degrees of freedom and a lack of continuity of slope in 

the shape functions of a shell element, may lead to significant errors when analysing a thick shell 

structure or plate. The error decreases however with a reduction in the thickness of the shell, as 

there is an increased reliance on pure membrane action and a reduction in bending stiffness. 

The consequences of the failure to fulfill the requirements which validate the basic finite element 

theory, and the effect of subsequent assumptions made during the element formulation, can be 

assessed by the "Patch Test" and the "Eigenvalue Test". The results of these fundamentally 

"single element" tests are presented in the following two sections of this chapter. The 

implementation of the element formulation with the Dynamic Relaxation algorithm is discussed, 

and an assessment is made of the inherent assumptions in the derivation of the element equations 

in this respecL The quality of the element formulation is also appraised in a global sense through 

the investigation of several minimal surfaces presented in the latter part of the chapter. 
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6.2. Patch Test. 

6.2.1. General Formulation. 

The concept of the Patch Test is simple, and may be expressed as in the subsequent statement - if 

it can be verified that an arbitrary "patch" of elements reproduces exactly the behaviour of a 

linear elastic solid material when it has been subjected to boundary conditions which are 

consistent with a state of constant straining, then both the necessary and the sufficient conditions 

for the convergence of the finite element discretisation to the exact solution with mesh 

refinement, are obtained [6.2]. 

A patch of elements is analysed and a solution obtained for the nodal displacements. It is required 

that, for the Patch Test to be passed, the computed displacements agree exactly with those 

obtained from a mathematical or closed form solution 1 . The application of the Patch Test is 

described below. 

A small number of elements are assembled into a "patch" such that at least one node of the 

discretisation lies within (but not on) the boundary of the patch. Furthermore, this node must be 

shared by two or more elements so that one or more common element boundary exists. The patch 

is subsequently provided with sufficient constraints (placed on the nodal displacements) in order 

to prevent the rigid body motion of the complete discretisation. The internal nodes are neither 

constrained nor loaded. The unconstrained boundary nodes are loaded with a consistently derived 

nodal force vector {Feq }, representing the uniform stress vector, {a}, (Appendix 6-A). 

The numerical solution to the element nodal displacements is obtained through the compilation of 

the global stiffness matrix [Ktg] initially. The matrix [Ktg] represents the elastic and the 

geometric stiffness of the complete "patch" of elements. The displacement constraints are applied 

by the removal of the appropriate rows and columns (corresponding to the constrained degrees­

of-freedom) from the matrix [Ktg]. This operation generates the reduced stiffness matrix [K/ed l. 

An LV decomposition algorithm [6.1] is used to invert the matrix [K,red]. The resulting flexibility 

matrix is post-multipled by the vector of equivalent nodal forces {Feq}, yielding the required 

numerical solution to the element nodal displacements. 

A suitable patch of elements is illustrated in Figure 6.1. The numerical model is intended to 

represent a thin plate or membrane, subjected to an axial tensile stress, ax -1500. kN.m-2, in the 

global x direction. The elastic modulus of the plate, E, is assumed to be l.xl0+4 kN.m-2, with 

Poissons's ratio, 1>, equal to 0.1. The thickness of the plate is taken as l.xlo-3 m. In addition to 

The pbrue "agree euctly" permits only deviations in the solutions which can be attributed to computational noise or 
rounding errors. 



Quality of the Element Formulation. 235 

the externally applied stress, Ox, a prestress has been applied to all elements of the discretisation 

in the global x and y directions. The magnitude of the prestress is equivalent to l.x1~ % of the 

elastic modulus of the plate 2 . 

2. ,. 1. 
-I- .,. 

3. 

2 

CD 

3. 
.. ,-
4 

12 

2. 

3. 

--I Feq 5 

5 

<Y Feq 8 

8 

---13 14 Feq 14 

---G) Feq 22 

22 

34 35 Feq 35 

4. 3. 

Lx .. 
3. 

~q 1=-1.75kN, Feq9=-7.00kN, ~q24=-2.00kN, ~q5=+ l.00kN, 

~q8=+4.00kN, ~q14=+2.00kN, ~q22=~q8, ~q 35 =~q 5 
27,0 w displacements constrained at nodes I, 5, 27, and 35. 

Figure 6.1 • General Patch of Quadratic Quadrilateral Finite Elements. 

3. 

1. 

1. 

1. 

1. 

1. 

The numerical solution to the element nodal displacements (Figure 6.1) is presented in the last 

two columns of Table 6.1. As described below, the exact solution to the displacements is 

obtained from the fundamental theory of elasticity. 

In the case of in-plane, uni-directional loading, the plate can be treated as a wide bar. 

Consequently, the stiffness of the plate in the x direction is ~x , where Ax is the cross-sectional 
x 

area and Lx the length of the plate 3 [6.7J. Using a simple stiffness approach therefore, the total 

. f th lat' th dir tt' •. as Ox Ax Lx Ox Lx In ddi' extension 0 e p em ex ec on, ex, IS gtven ex - E Ax - -E-' a non, 

Poisson's ratio, U, gives the extension of the bar in the y direction, ey , as ey _ - t> ex [6.7J. 

2 

An explanation of the inclusion of this additional prestress is presented in Appendix 6-B. 
3 

'Ibe Ct08l-sectiOnal area of the plate. A x. is calculated as ~e pr~uct o~ the dimension of the plate in the y direction 
with the thickneu of the plate. The leDgth of the plate. Lx • 18 the dimension of the plate in the x direction (Figure 6.1). 
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The extension of the plate is represented by a state of constant strain. The values of the 

displacements within the plate are thus proportional to the extensions ex and ey . Consequently, if 

a point p is at the position, x - xp ' where xp -l:r-, then the displacement of the point p in the x 

d· . s:. • s:. ex Lx ex 
rrecbon, Up, IS Up - Lx 3 - 3' 

Based on this approach, the exact solution to the displacements of the plate at the positions of the 

element nodes is obtained. The exact solution is presented in the second and third columns of 

Table 6.1. 

By comparing column 2 with column 4, and column 3 with column 5, small disparities between 

the exact and the numerical solutions to the displacements of the axially loaded plate (Figure 6.1) 

can be identified (Table 6.1). These disparities can be attributed to rounding errors and to the 

conditioning of the global stiffness matrix, [Ktplate] 4 • Consequently, it is demonstrated that the 

element formulation presented in the preceding chapter passes the Patch Test. 

Node Exact Displacements (m) Calculated Displacements (m) 

; Ujex v·ex 
I u· cai 

I Vjcai 

1 0.00000000 -0.12000000 0.00000000 -0.11999976 

2 0.45000000 -0.12000000 0.44999955 -0.11999976 

3 0.90000000 -0.12000000 0.89999909 -0.11999976 

4 l.35000000 -0.12000000 1.34999864 -0.11999976 

5 1.80000000 -0.12000000 l.79999818 -0.11999976 

6 0.22500000 -O.(Y9750000 0.22499977 -0.09749980 

7 1.12500000 -0.09000000 1.12499886 -0.08999982 

8 1.80000000 -0.09000000 1.79999820 -0.08999982 

9 0.00000000 -0.06750000 0.00000001 -0.06749987 

10 0.45000000 -0.07500000 0.44999955 -0.07499985 

11 0.90000000 -0.67500000 0.89999909 -0.06749986 

12 1.35000000 -0.06000000 1.34999864 -0.05999988 

13 1.57500000 -0.06000000 1.57499841 -0.05999988 

14 1.80000000 -0.06000000 1.79999818 -0.05999988 

15 0.37500000 -0.06000000 0.37499962 -0.05999988 

Table 6.1 • Patch Test Results (Figure 6.1) • continued. 

4 

The mapitude of the condition Dumber of the global stiffness matrix, [Kt plate ], is discussed in Appendix 6-B. 
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Node Exact Displacements (m) Calculated Displacements (m) 

i Uja Via Ui cal v/al 

16 1.20000000 -0.04500000 1.19999879 -0.04499991 

17 0.15000000 -0.03000000 0.14999985 -0.02999994 

18 0.30000000 -0.04500000 0.29999970 -0.04499991 

19 0.67500000 -0.03750000 0.67499932 -0.03749992 

20 1.05000000 -0.03000000 1.04999893 -0.02999994 

21 1.27500000 -0.03000000 1.27499871 -0.02999994 

22 1.80000000 -0.03000000 1.79999818 -0.02999994 

23 - -0.00750000 - -0.07499985 

24 0.00000000 -0.01500000 0.00000001 -0.01499997 

25 0.37500000 -0.02250000 0.37499962 -0.02249995 

26 0.97500000 -0.01500000 0.97499902 -0.01499997 

28 0.22500000 0.00000000 0.22499917 -0.00000001 

29 0.45000000 0.00000000 0.44999955 -0.00000001 

30 0.67500000 0.00000000 0.67499932 -0.00000001 

31 0.90000000 0.00000000 0.89999909 -0.00000001 

32 1.05000000 0.00000000 1.04999893 -0.00000001 

33 1.20000000 0.00000000 1.19999879 -0.00000001 

34 1.50000000 0.00000000 1.49999955 -0.00000001 

3S 1.80000000 0.00000000 1.79999818 -0.00000001 

Table 6.1 - Patdl Test Results (Figure 6.1) - continued. 

6.2.2. An "Implicit" Patdl Test for Geometrically Non-linear Finite Elements. 

The Patch Test can demonstrate the ability of the element formulation to model accurately the 

condition of constant strain. It is usually applied to the situation of geometrically linear elasticity, 

where it is assumed that the external load vector acts in the plane of the discretisation, and that 

the geometries of the elements arc flat (Section 6.2.2). The standard Patch Test does not assess 

the correctness or the convergence of the out-of-plane (or geometrically non-linear) response of 

the element formulation however. 

A Patch Test could be devised based on the closed form, or the semi-analytical solutions to the 

displacements of a laterally loaded rectangular plate. However, significant approximations are 

made during the derivation of the appropriate governing equations [6.6]. The solutions from the 

closed form. or semi-analytical approaches arc not sufficiently rigorous therefore to adopt as the 

basis of comparison with the solution from the finite element formulation. Consequently, an 
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"implicit" Patch Test for geometrically non-linear finite elements is proposed below. 

If the Patch Test is passed in a geometrically linear elastic sense, then the convergence of the 

finite element model to the exact solution with mesh refinement is ensured [6.2]. Therefore, if it 

can be shown that a geometrically non-linear finite element model converges to the exact 

(predicted) solution with mesh refinement, then the "implicit" Patch Test is passed. Consequently, 

the correctness of the geometrically non-linear finite element formulation is demonstrated. The 

application of the proposed "implicit" Patch Test is described below. 

" 

X._ 
o. J r<::::'" , --. , .. 
I._ 

Table 6.2 - Boundary Conditions (Symmetrical). 

Nodes 2, 82 3,83 4,84 5,85 6,86 7,87 

z co-ord. (m) 0.500 1.000 1.500 2.000 2.500 3.000 

Figure 6.2 - Surface Discretised using Quadrilateral Elements - Example 6.1. 

The surface illustrated in Figure 6.2 is defined by the overall dimensions of 24.m and 16.m in the 

global x and y directions respectively. The initial element sizes are assumed to be equal (on 

plan). Tb surface is subjected to a uniform stress vector, {ao }, defined by ax = ay = 5.xl()+6 

.m- 2 and ".t). - O. .m- 2. The stiffness of the surface is derived from prestress only, while the 

thickne s of the membrane is assumed to be l.xlO-3m. The geometrical boundary conditions of 

the surface are presented in Table 6.2. The condition of equilibrium is satisfied to an error 

re idual, Er, equal to 0.025 % of the maximum element equivalent nodal force. 

Figure 6.3 shows the variation of the global z co-ordinate of the central node of the membrane at 

equilibrium (Figure 6.2), with the number of elements used to discretise the surface. As the 

number of elements is increased from four to 216, the solution to the central node z co-ordinate 
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of the surface is shown to converge rapidly and asymptotically from an under-estimate of the 

exact (predicted) solution to a solution of 1.535 m (approximately). 

The convergence of the numerical solution to the exact (predicted) solution with mesh refinement 

is demonstrated (Figure 6.3). Consequently, it is recommended that, in the case of the proposed 

geometrically non-linear element formulation (Chapter 5), the "implicit" Patch Test is passed 5 . 

155 

(ill) (iv) (v) 
1.5 

(ii) 

g 1.45 

S .. 1.4 ~ 

~ 1.35 
N 

~ 1.3 (i) = (4. US1 m) 

~ 
(ii) = (16. 1.481 m) 

(ill) = (24. 1.514 m) 

(iv) = (96. 1.526 m) 

(v) = (216. 1.531 m) 

1.15 
0 50 100 150 200 250 

Number of Quadrilateral Elements. 

Figure 6.3 - Variation of the Centre Node z Co-ordinate with the Number of Elements. 

6.2.3. Effects of the Assumptions of Small Displacements in the Derivation of the Element 

Shape Functions. 

Section 5.3.3 of the preceding chapter outlines the mathematical bases behind the generation of 

the element shape functions. In the case of the shape functions derived using the small 

displacement theory (Section 5.3.3.1 Chapter 5), it is assumed that the position of the element 

side nodes remain at or very close to the centre of the element side on which the node appears. 

The standard Patch Test (Section 6.2.1) can be used to assess the magnitude of the error induced 

in the numerical model as this assumption is increasingly violated. The error is measured through 

a non-dimensional norm, 1 e I. As demonstrated beloW, the results of this study can be used to 

5 

The solutions to the element nodal displacements presented in this and the preceding section (Table 6.1, Figure 6.3), 
have been based on the calculation of the integrands (representing the element stiffness matrices and equivalent nodal 
force vectors), by the technique of reduced integration (Section 10.2 0: Ch~pter 5). A numerical 2x2 Gauss integration 
scheme has been adopted, rendering the element elastic and geometn~ stiffness matrices rank deficient, and prone to 
exhibit spurious zero energy modes. The proposed element formula~on (Chapter 5) is shown therefore to pass the 
standard Patch Test and the "implicit" Patch Test when the element Ultegrands are evaluated using the technique of 
reduced integration. 
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determine an upper bound limit to the admissible deviation of the side nodes from the central 

position. 

An appropriate basis for the error norm, I el, is the disparity between the numerical and the exact 

strains. By assuming a plane stress element of constant thickness, t, the error norm, I el, may be 

written as [6.3], 

1 e 12 - t I I [(£) nume. - {E} uact r [E I [ {E} nume. - (£) "''',) dX dY 

eqn(6.2.3.1) 

where {E} nume. and {E} exact are the numerical and the exact strain vectors respectively, 

and where [E] is the matrix of elastic constants. 

A suitable patch of elements is presented in Figure 6.4. The numerical model is intended to 

represent a thin plate or membrane, subjected to an axial tensile stress, 0' x' in the global x 

direction. The stress, O'x, is simulated by a vector of equivalent nodal forces, given by equations 

of a similar form to that of eqn(6-A.4) (Appendix 6-A). The patch of elements is assumed to 

deform in a symmetrical and a geometrically linear manner. In addition, the initial stress and the 

initial displacements of the plate are assumed to be zero 6 . Consequently, the strains within a 

typical element, k, may be calculated from a simplified form of eqn(5.7.1.6) written as, 

6 

{E} -! :;) -! ~) -[Ba (~, 1'\)]k (l) h 
'YxY k 'Yxy k 

eqn(6.2.3.2) 

where the matrix [Ba (~, 1'\)]k contains the linear terms of the strain displacement 

relationships, and ( l) } k represents the vector of nodal displacements corresponding to the 

element k. 

In the situation that the initial stress is zero, the stiffness of the plate is derived from elasticity only. Furthermore, the 
matrix [BL ] has been shown to be linearly dependent on the element nodal displacements (Section 5.7.3, Chapter 5). 
Therefore, by assuming that the initial displacements within the plate are zero, the element matrix [B L ] is a null 
matrix (initially). Consequently, the element strains are a function of the small strain displacement matrix, [Bo J, only 
(Section 5.7.1, Chapter 5). 
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Substituting eqn(6.2.3.2) into eqn(6.2.3.1), and rewriting the resulting expression in terms of the 

natural co-ordinates, (~, 1\), gives 7 • 

7 

+1 +1 

'e ,2 _ I I [ [B 0 (~ ~) ltf 6 it nume. - [ B 0 (~.~) It! 6 h "'''' ) T [E 1 . 
-1 -1 

[ [BD (l;,l1)]kf l) it nume. - [Ba (~, 11) h{ l) it exact J det [J] d ~ d 11 

eqn(6.2.3.3) 

where ( l) } A: nume. and { ~ } A: exact are the numerical and the exact vectors of element nodal 

displacements, respectively. 
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Since the matrix [Bo 11: is a function of the natural co-ordinates, (~, T\l, a change of variable is required in order to 
evaluate the integral given in eqn(6.2.3.l). It can be shown that dX dY - det [Jl d l; d 11 [6.5]. The coefficient, 
det lJl, is the determinant of the Jacobian matrix, lJl, (eqn(5.5.7(b), Chapter 5) and is a scaling factor that yields the 
area of the distorted parent element (Figure 5.2(a), Chapter 5). dX dY. from the area of the mapped clement (Figure 
5.2(c), Chapter 5), d ~ d 11. 

1. 

1. 

1. 

1. 
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As demonstrated below, the effects of the violation of the assumption of small displacements in 

the derivation of the element shape functions given in Table 5.1 (Chapter 5), can be investigated 

d 
by monitoring the error norm, I e l , as the ratio d ~ is varied for the element nodes 2, 4, 10, 12, 

18, and 20 (Figure 6.4). Figure 6.5 shows the error norm in the strain calculation, I el, for the 

variation of the ratio ~ ~ in the range 0.1 ~ ~ ~ ~ 0.9. The element node is considered to be at 

the centre of the side when ~ ~ = 0.5. The error norm, I e l , is presented using a logarithmic 

scale, and is obtained as the sum of the error norms at nine Gauss points for the element 3 (Figure 

6.4) 8 . The strains which are calculated using the shape functions based on the small 

displacement theory (Section 5.3.3.1), produce the variation of the error norm, I el, with the ratio 

~ ~ , represented by the dashed line in Figure 6.5. 
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The error norm is shown to be constant at approximately 0.25xl0-6 (loglO (0.25xl0-6) = -6.6) for 

d 1 d 1 d 1 
the range 0.25 < d2 < 0.75. At exactly d2 = 0.25 and d2 = 0.75 the error norm tends to infinity 

8 

Nine Gauss points (3)<3 quadrature) have been adopted in this case, in order to minimise the error from the numerical 
integration technique, and therefore to prevent cOl1Uption of the strain based error norm, 1 e I, by the under integration 
of the element integrands. 
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and arithmetic errors are indicated 9 . For values of ~ ~ < 0.25 and ~ ~ > 0.75, I e I returns to a 

stable (though unacceptably high) value of approximately 0.35xl0+4 (loglO (0.35xlO+4) ... 3.5). 

It is recommended therefore, that the application of the shape functions derived with the 

assumption of small displacements, is only valid within the range 0.25 < ~~ < 0.75. Beyond 

these limits large errors are introduced into the finite element formulation. 

The solid line shown in Figure 6.5 reflects the results obtained through the application of the 

large displacement theory to the derivation of the element shape functions (Section 5.3.3.3, 

Chapter 5). A consistently low value for the error norm, I e I (approximately O.28xl~ 

dl 
(loglO (O.28xlO-6) ... -6.55», is obtained across the range 0.05 S; d2 S; 0.95. The stable 

magnitude of I el, indicates the suppression of the errors induced through the application of the 

small displacement theory (dashed line, Figure 6.5). Consequently, the validity of the shape 

functions derived using large displacement theory (Section 5.3.3.3, Chapter 5) is demonstrated as 

the element side nodes are displaced from the central position (~~ - 0.5). 

In the preceding example (Figure 6.4 and Figure 6.5), large nodal displacements have been 

assumed to cause the element side nodes to move in the plane of the edge of the element. Such 

displacements may be described as those generating a topological distortion. This does not result 

in a change of the shape of the element. The effects of geometric distortion (causing a change in 

the element geometry), on the accuracy of the proposed element formulation (Chapter 5), are 

illustrated below. 

In the case of the simple patch of elements illustrated in Figure 6.6, the element side nodes are 

moved through the equal ratios ~ and ~. The nodal displacements are normal to the edge of 
a21 a2s 

the element on which the node is positioned, and generate the geometric distortions of the 

elements illustrated in Figure 6.6. In addition, prior and subsequent to the displacement, the side 

nodes are assumed to remain in the centre of the respective element side. 

9 

Cella and Gray have shown that if it is assumed that the side node remains at the centre of the element side in the 
derivation of the element shape functions. then the derivative of the shape functions with respect to the natural c0-

ordinates. (~, ttJ, becomes zero at some location within the element. [6.8]. This has the effect of yielding a zero 

determinant for the Jacobian matrix. [I] (eqn(5.5.7(a))). Consequently, when calculating the local strain. -Wo 
(eqn(5.7.2.4). Chapter 5) for example. with eqn(5.5.7(a», the reciprocal of the determinant of the Jacobian. det [I], 
induces a solution of infinity. 
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Figure 6.7 illustrates the results of the Patch Test for the values of dd ll = dd Is ranging from 0 to 
21 2s 

0.5 10 . It is shown that the element formulation based on shape functions derived using large 

displacement theory (Section 5.3.3.3), is insensitive to the geometric distortion of the element. 

For example, the log of the error norm, I el, is shown to increase by a small amount, from -6.5 to 

around -5.5 in the range Os: ~ - ~ S:0.5 (Figure 6.7). Consequently, the accuracy of the 
a21 a2s 

overall numerical solution is not compromised significantly by the effects of the errors generated 

through a geometric distortion of the elements. 

6.2.4. Summary. 

From the studies presented in this section, the following points can be highlighted: 

i) The Patch Test is passed for the case of geometrically linear elasticity (Figure 6.1, Table 

6.1). 

ii) Convergence to the exact (predicted) solution is achieved with mesh refinement. 

Consequently, the "Implicit" Patch Test is passed for the geometrically non-linear case 

(Figure 6.2). 

ill) The proposed element formulation is valid for the analysis of systems undergoing large 

displacements, in which the large displacements cause a topological distortion (Figure 6.5). 

iv) The error in the proposed element formulation is insensitive to large geometric distortions 

(in the range 0 s: ~ - ~ s: 0.5, Figure 6.7). 
a21 alf 

6.3. Eigenvalue Test. 

6.3.1. General Formulation. 

The Eigenvalue Test may be used in addition to the Patch Test to assess the correctness of a finite 

element formulation. Whereas the Patch Test is able to check that a state of constant strain can be 

modelled and so assure convergence to the exact solution with mesh refinement, the Eigenvalue 

Test can detect zero energy or spurious deformation modes, and can assess the ability of the 

element to model rigid body motion adequately [6.41. The eigen-problem is formulated as 

described below [6.5]. 

10 

al of du d f dls ha been limi'~'" . fOS' th .... The v ues Tu an 0 er;; vc ~ to a maxnnum 0 . m e current UlveStigation. Ul order to reflect 

an acceptable upper bound on the geometric distortion of the elements. 
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The vector of element nodal forces (f e) may be related to the vector of resulting nodal 

displacements (6) i, through a factor A, such that, 

eqn(6.3.1) 

or, 

eqn(6.3.2) 

where {Aj} is a vector of scaling factors, or "eigenvalues" of the stiffness matrix [Kt e]. 

There are as many eigenvalues of the matrix [Kt e] as there are degrees-of-freedom. Associated 

with each eigenvalue is an eigenvector {5v};, which describes the deformation mode of the 

system (the finite element in this case). The eigenvalue gives the stiffness of the respective 

deformation mode. It is not necessary that all of the eigenvalues are different. Instead, the 

eigenvectors with the same eigenvalues may illustrate a symmetric mode. If each of the 

eigenvectors, {5v };, is normalised such that {5v }; T {5v }; = I, then premultiplication of 

eqn(6.3.2) by {5v }; T yields, 

eqn(6.3.3) 

or, 

2Uo ; - Aj eqn(6.3.4) 

where U 0; is the strain energy associated with the deformation mode described by the 

eigenvector {5v}; and the eigenvalue A; . 

An eigenvalue analysis is usually performed on a single element stiffness matrix with all of the 

element degrees-of-freedom unrestrained. Therefore, [Kt e] in eqn(6.3.3) is the complete element 

stiffness matrix. It should be found that the value zero is returned for the eigenvalue A; when the 

corresponding eigenvector {5vh represents any rigid body deformation mode (eqn(6.3.4». 

A count of the number of zero eigenvalues (or strain free deformation modes) may be used as a 

direct measure of the correctness of the element formulation. In the case of an element formulated 

with three translational degrees-of-freedom at each node, six zero eigenvalues are required to 

show that all of the rigid body modes are represented adequately. These comprise three 

translational and three rotational modes. The Eigenvalue Test is passed if the correct number of 

zero eigenvalues are obtained from an eigenvalue analysis performed on the element stiffness 

matrix, [Kt e]. 
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The element formulation presented in the preceding chapter has been assessed further, through 

the solutions to a series of Eigenvalue Tests 11 . In order to display the eigenvectors clearly, a 

square, flat element has been assumed (unless stated otherwise). The "reference" element is taken 

to have a side length of l.m, with the side nodes positioned at the mid-points of the intervals. A 

value of unity is assumed for the thickness of the element, while (where applicable) the elastic 

modulus and the Poisson's ratio are taken to be l.xI()+O kN.m-2 and 0.1, respectively. The 

prestress in the element is specified individually for each test, along with the orientation of the 

element in the global {x , y • z} space. The descriptions of various Eigenvalue Tests are presented 

below, with the respective eigenvalues given in Table 6.3. 

Eigenvalue Test 1 (Eig.l): The results of the Eigenvalue Test on the elastic stiffness matrix 
--1 

[KE e] of the reference element are presented in the second column of Table 6.3. The reference 

element is orientated in the global x,y plane, such that the element natural co-ordinate directions, 

{~, ll}, are aligned with the global co-ordinate directions, {x, y}, respectively. 

The initial displacements of the element are assumed to be zero, such that the matrix [BL ] is a 

null matrix (eqn(5.7.3.9), Chapter 5). Consequently, the elastic stiffness matrix, [KEe]l, is 

derived from small displacement theory only (eqn(5.7.1.7), Chapter 5). The numerical integration 

of eqn(5.7.1.7) has been carried out using 3><3 Quadrature 12. 

An eigenvalue analysis of the matrix [KEe ]1 yields eleven zero and thirteen non-zero eigenvalues 

(Table 6.3). The eleven zero eigenvalues represent six strain free rigid body deformation modes 

and five superfluous spurious modes. As described below, the superfluous zero eigenvalues reflect 

the lack of coupling between the in-plane and the out-of-plane terms in the element elastic 

stiffness matrix [KE e] I, and represent spurious strain free out-of-plane deformation modes. 

It is demonstrated in Appendix 6-B (Section 6.7.1) that in the case of a flat element, orientated in 

the global:xy plane, the out-of-plane components of the element elastic stiffness matrix, [KE e] 

(derived from small displacement theory), are zero. Consequently, any deformations out of the 

plane of the element appear as strain free (A; - 0), since the stretching of the middle surface 

(arising from the lateral deformation) is not represented. Subsequent to the suppression of the 

strain free rigid body modes of the element (by the removal of the appropriate rows and columns 

of the matrix [KE e]I), the reduced elastic stiffness matrix [KEred]1 remains singular therefore, 

11 

The eigenvalues and the eigenvectors have been obtained using the Matlab computational package [6.9J. Details of the 
calculation of the eigenvalues and the eigenvectors of a matrix as performed by the Matlab package are presented in 
Appendix 6-C. 

12 

A 3><3 Quadrature rule has been assumed in this case in order to suppress any spurious deformation mode arising from 
the under integration of the element integrands (Section 5.10.2, Chapter 5). 
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irrespective of the magnitude of the in-plane stiffness components. 

Two procedures presented in the Eigenvalue Tests, Eig-2 and Eig-3, illustrate the use of pre­

conditioning as an effective means of negating the initially singular nature of the element elastic 

stiffness matrix [KE e ( 

Eigenvalue Eig-l Eig-2 Eig-3 Eig-4 Eig-5(a) Eig-5(b) Eig-6 

1 O. O. O. O. O. O. O. 

2 O. O. O. o. O. O. O. 

3 O. O. O. o. O. O. O. 

4 O. O. O. O. 0.4795 O. O. 

5 O. O. O. O. 0.4795 O. O. 

6 O. O. O. O. 0.4795 O. O. 

7 O. 0.0087 0.0007 O. 0.4795 0.4795 0.6561 

8 O. 0.1283 0.0244 O. 0.4795 0.4795 0.6667 

9 O. 0.1283 0.0244 O. 0.4795 0.4795 0.9490 

10 O. 0.1371 0.0271 O. 0.6667 0.6667 0.9724 

11 O. 0.2858 0.0502 O. 0.6667 0.6667 1.0000 

12 0.1603 0.3880 0.1631 O. 0.6667 0.6667 1.0000 

13 0.3005 0.5198 0.3156 0.3005 1.8539 1.0000 1.0941 

14 0.3005 0.5658 0.3156 0.3005 1.8539 1.0000 1.0941 

15 0.4774 0.5658 0.4957 0.4667 1.8539 1.0000 2.2121 

16 0.5327 0.7488 0.6834 0.4897 1.8539 1.8541 2.5863 

17 1.0181 1.1471 1.0493 0.9091 1.8539 1.8541 2.6667 

18 1.3333 1.3240 1.3333 1.2121 1.8539 1.8541 3.6842 

19 1.6461 1.3240 1.6600 1.6461 2.6667 2.6667 3.7749 

20 1.6461 1.6332 1.6600 1.6461 2.6667 2.6667 4.4282 

21 2.0343 1.7921 2.0365 1.8335 2.6667 2.6667 4.4282 

22 2.0598 1.9303 2.0601 1.9239 5.3333 5.3333 5.3333 

23 4.4001 3.9896 4.4128 4.4001 5.3333 5.3333 9.4912 

24 4.4001 3.9896 4.4128 4.4001 5.3333 5.3333 9.4912 

Table 6.3 - Conditional Eigenvalues for a Quadratic Quadrilateral Element. 

Eigenvalue Test 2 (Eig-2): As demonstrated below, a non-singular form of the reduced elastic 

stiffness matrix, [KEred]l, can be established by specifying a fictitious (temporary) geometry for 

the reference element. 

The geometry of the element described in the preceding test is revised initially, by the 

prescription of fictitious values of ±O.2m. for the z co-ordinates of the mid-side nodes. The signs 
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of the z co-ordinates are selected so that the element geometry resembles a saddle form. 

Consequently, the vector normal to the middle surface of the element is characterised by a 

direction which varies with the natural co-ordinates {~, 111. The corner nodes are located in the 
-2 

global xy plane. The eigenvalues of the pre-conditioned elastic stiffness matrix, [KE e] , are 

presented in Table 6.3. 

It is shown that six zero eigenvalues are returned for the matrix [KEt']2, corresponding to three 

translational and to three rotational strain free rigid body modes. The five superfluous zero 

eigenvalues displayed by the matrix [KE e]1, are suppressed by the components of the local in­

plane element elastic stiffness terms acting in the local Z co-ordinate direction. These 

components are induced as outlined below. 

The introduction of out-of-plane curvature to the surface of the element has the effect of invoking 

the terms of the unit vectors X and f representing the global z direction. These terms 

(corresponding to the element nodes) are denoted as i k i and as fk i respectively, where i is the 

element node number (i - 1 ~ 8). In the situation that the element is curved the (first order) 

strains, ~~, and ~,comprise components which act in the global z direction. The magnitudes 

of these components are proportional to the terms Xk i and fk i (eqn(6-B.4), Appendix 6-B). 

Consequently, the strains induced by a lateral deformation are accounted for (in part) by 

components of the strains derived from the small displacement theory (first order, Section 5.7.2, 

Chapter 5) 13 . 

Eigenvalue Test 3 (Eig-3): It is shown below, that the assumption of non-zero values for the 

initial element nodal displacements can be used to suppress the five superfluous zero eigenvalues 

present in the elastic stiffness matrix [KE e ]1. 

The general element elastic stiffness matrix, [KE e] has been shown to be linearly dependent on 

the element nodal displacements (Section 5.7.3, Chapter 5). As demonstrated in Appendix 6-0, 

the out-of-plane stiffness terms can be invoked therefore, through the assumption of a fictitious 

initial displacements, acting in the global z direction. If a fictitious (initial) displacement of 0.05 

m is applied to the mid side nodes of the reference element, (Eig-l), in the positive z direction, 

the eigenvalues presented in Table 6.3 are obtained for the elastic stiffness matrix [KE e ]3. 

Six zero eigenvalues are returned for the matrix [KE e]3. It is shown that the magnitudes of the 

first five non-zero eigenvalues are relatively small, however. The associated eigenvectors may be 

13 

The same effects are not achieved if the element remains flat and is rotated about the global x or y co-ordinate axes. In 

this case the out-of-plane components of the (first order) strains ~, and ~. cancel as the direction cosines are 

constant over the surface of the element. 
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seen to tend to zero energy modes therefore. By increasing the magnitude of the fictitious 

displacements, it can be demonstrated that the tendency of the deformations modes identified 

with the first five non-zero eigenvalues, to act as mechanisms, can be eliminated. A comparison 

of the eigenvalues in the second and in the fourth columns of Table 6.3 shows that, in general, the 

stiffnesses of the element deformation modes are increased by the application of an assumed 

vector of initial displacements. 

Eigenvalue Test 4 (Eig-4): The technique of reduced integration is used to improve the accuracy 

and the rate of convergence of the isoparametric finite element formulated in Chapter 5. An 

assessment of the effects of using reduced integration when calculating the element elastic 

stiffness matrix, [KE e], are made through the eigenvalue analysis presented below. 

The elastic stiffness matrix [KEet, representing the element described in Eig-l, but with the 

element integrands calculated using reduced 2x2 Gauss Quadrature, is characterised by the 

eigenvalues given in Table 6.3. Of the twelve zero eigenvalues, six represent the rigid body 

deformation modes of the element. The remaining zero eigenvalues indicate that six spurious 

mechanisms are represented in addition. 

The introduction of changes in the element shape, (Eig-2), or of a vector of initial displacements, 

(Eig-3), fail to reduce the number of superfluous zero eigenvalues. Consequently, the spurious 

mechanisms described by the matrix, [KEet, cannot be attributed to the presence of zero stiffness 

terms out of the plane of the element. Instead, they are generated through the under integration of 

the element integrands, arising from the application of the technique of reduced integration. This 

proposal is confirmed by an appraisal of the rank of a general elastic element stiffness matrix 

evaluated using 2x2 Gauss Quadrature, (Section 5.8.2, Chapter 5). It is shown that the matrix is 

rank deficient by an order of six, inferring the existence of six spurious mechanisms (Ai - 0.). 

Eigenvalue Test 5 (Eig-5): The concept of the Bigenvalue Test has been used further to assess 

the adequate representation of rigid body deformation modes, and to investigate the possible 

existence of mechanisms, in the formulation of the geometric (or initial stress) stiffness matrix 

[Kae ]. 

Adopting the geometry described in the Bigenvalue Test Eig-l, it is assumed that the element is 

prestressed as in, Ox - CJy - +1. kN.m-2, and 'txy = O. kN.m-2. The element integrands are 

evaluated using the technique of reduced integration. Using the basic formulation for [K a e] 

(Section 5.7.4, Chapter 5), an eigenvalue analysis yields only three zero eigenvalues in the case 

of the geometric stiffness matrix, [K a e] 1 (Eig-S(a), Table 6.3). The associated eigenvectors can 

be shown to represent the strain free rigid body translation deformation modes. 

Repeating the analysis subsequent to the adequate representation of the element rigid body 

rotation modes (Section 5.9, Chapter 5), returns six zero eigenvalues. The eigen~ectors associated 
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with the zero eigenvalues represent three translational and three rotational rigid body deformation 

modes. The results of the latter eigenvalue analysis performed on the geometric stiffness matrix 

[K ae ]2 are presented in the penultimate column of Table 6.3 (Eig-S(b). 

The theory defining explicitly the adequate representation of the rigid body rotation modes of the 

element, (Section 5.9, Chapter 5), is validated therefore. Furthermore, despite the use of the 

technique of reduced integration (2)<2 Gauss Quadrature) to evaluate the element integrands 

(describing the geometric stiffness matrices, [Kae]l and [Kae]2), the eigenvectors associated with 

the zero eigenvalues comprise no spurious deformation modes. 

Eigenvalue Test 6 (Eig-6): The eigenvalues of an element stiffness matrix, [KTe], obtained by 

combining [KE e ]4 with [K ae ]2, are presented in the last column of Table 6.3. It is shown that six 

of the twenty-four eigenvalues are zero. When comparing the solutions to the eigenvalue analyses 

Eig-4 and Eig-6, it is demonstrated, that the addition of the stress stiffness matrix [K a e]2 to the 

elastic stiffness matrix [KE e ]4 effectively suppresses the spurious modes in [KEe]4, generated 

through the adoption of the technique of reduced integration. 

The eigenvectors associated with the eigenvalues given in the last column of Table 6.3 are 

presented in Figures 6.10 (a)-(d). The undeformed element is shown in outline only, by a solid 

dark line. The deformed element is shaded, with equally spaced "contours" to aid visualisation of 

the particular mode shape. (The "contour" lines are not intended to represent the borders of 

additional quadrilateral elements.) 

The mode shapes associated with the six zero eigenvalues are illustrated in Figure 6.8(a), and 

represent the rigid body deformation modes of the element. They are manifested by a series of 

linear combinations of the three rigid body translation modes with the three rigid body rotation. 

Of the remaining eighteen deformation modes, numbers 8, 11, 12, 17, and 22 are identified as 

representing a series of deformation modes of both the syn-clastic and the anti-clastic types. A 

combination of these mode shapes may be seen to occur locally across the surface of a minimal 

energy form. 

6.3.2. Summary. 

The following points can be summarised from the results presented in this section: 

i) In the case of a fiat, rectangular quadrilateral element without initial stress, spurious 

deformation modes may occur, irrespective of the order of Quadrature used to evaluate the 

element integrand. The spurious modes arise from a lack of coupling between the in-plane 

strains and the out-of-plane deformations of the membrane in the small displacement theory 

(Section 5.7.2, Chapter 5). A suppression of the spurious deformation modes can be 

achieved by distorting the element, or by introducing fictitious (initial) displacements to the 
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element (Eigenvalue Tests Eig-2 and Eig-3 respectively). 

ii) The adoption of the technique of reduced integration can cause the elastic element stiffness 

matrix [KEe] to display zero energy modes (Eigenvalue Test Eig-4). An elimination of the 

zero energy modes can be achieved by the introduction of an initial stress to the element 

(Eigenvalue Test Eig-6). 

ill) Subsequent to the application of the theory to include explicitly the strain free rigid body 

rotation modes of the element (Section 5.9, Chapter 5), six zero eigenvalues values are 

obtained for the geometric stiffness matrix [K (/12 CEigenvalue Test Eig-S(b». The zero 

eigenvalues represent the rigid body translation and rigid body rotation element 

deformation modes. 

iv) Subject to pre-conditioning, (Eigenvalue Tests Eig-2 and Eig-3), the element formulated in 

Chapter 5 passes the Eigenvalue Test. 

v) Several of the deformation modes exhibited by the proposed element formulation (Figures 

6.10 (a)-(d» are suited to the analysis of minimal energy forms 14 . 

14 

The eigenvectors of a matrix are not unique, unlike its eigenvalues. Instead, the magnitudes of the eigenvectors can be 
altered, for example, by performing a co-ordinate transformation on the matrix, or by assigning a different value to the 
arbitrary eigenvector arising subsequent to the decomposition of the matrix [6.11]. Consequently, the deformation 
modes displayed in Figures 6.10 (a)-(d) are only indicative of a perhaps wider family. comprising combinations of the 
basic eigenvectors. 
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Figure 6.8(a)· Associated Eigenvectors for Eigeovalues 1·6. 
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Figure 6.8(b) - Associated Eigenvectors for Eigenvalues 7-12. 
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6.4. Adoption of the 24 Degrees-of-Freedom Quadrilateral Element with the Dynamic 

Relaxation Algorithm. 

6.4.1. Solution Procedure. 

The quadrilateral finite element formulated in the preceding chapter, is used in conjunction with 

the Dynamic Relaxation algorithm as described below. 

The element nodal stiffnesses are calculated according to eqn(5.7.4.8). For each element the total 

stiffness matrix [Kt e] is transformed into the global {x, y, z} co-ordinate directions, and the 

appropriate diagonal terms summed at the respective element nodes to give the terms !l!!L 
(eqn(4.2.4)). The vectors of element equivalent nodal forces {le} (eqn(5.7.5.I» are similarly 

calculated in the local co-ordinate system and transformed into the global co-ordinate directions. 

All of the terms of the element vector {f e} are assigned to the relevant element nodes. These are 

added to the contributions from adjacent elements, to give the out-of-balance force vector, or 

residual force~, for each node of the discretised system (eqn(4.2.4». 

Through the application of eqn(4.2.9) and of eqn(4.2.1O) the nodal displacements are obtained as 

a function of ~ and of~. The nodal co-ordinates are updated as in, 

{x,y,zp - {x,y,zP-l + (~P eqn(6.4.1.1) 

where j is the current iteration number. 

At each iteration the element matrix [Kt e] and the element vector {f e} are recalculated, based on 

the revised surface geometry. As before, Kinetic Damping is used to attenuate the oscillations of 

the discretised surface. The solution method is stopped when all the nodal force residuals, ~, 

are acceptably close to zero. 

6.4.2. Effects of the Element Formulation on the Solution Procedure. 

6.4.2.1. Sensitivity to Larae Geometric Chanaes· 

The 24 degrees-of-freedom element (Chapter 5) is highly sensitive to large geometrical changes. 

This feature, when combined with the generation of relatively large geometric and topological 

distortions allowed for in the Dynamic Relaxation algorithm, leads to rapid variations in the 

magnitudes and directions of the element stiffness terms and equivalent nodal force vectors. 

Consequently, large changes are induced in the magnitudes and directions of the element nodal 

displacements. Numerical instability of the solution algorithm can arise therefore, particularly 

during the initial stages of the form-finding procedure. 
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By the selection of only the diagonal terms of the element stiffness matrix, [Kte], to control the 

iterative step of the solution algorithm, the sensitivity of the element can be reduced 15 • The 

element sensitivity is decreased further by the adoption of the technique of reduced integration 

(Section 5.8, Chapter 5). 

Paradoxically, the decoupling of and the softening of the element stiffness matrix [K/] (through 

the selection of the diagonal terms only), has the secondary effect of increasing the tendency to 

instability of the solution algorithm. This phenomenon arises as the diagonal terms underestimate 

the exact stiffnesses of the element. Consequently, the element nodal displacements are 

overestimated (eqn(4.2.9), Chapter 4). If the element nodal displacements are overestimated 

significantly, the solution algorithm may become unstable. The technique of scaling the nodal 

stiffnesses (Section 4.3.6, Chapter 4), can be adopted to restore the stability of the algorithm. 

6.4.2.2. Assumption of Large Strains. 

The expression for the element equivalent nodal force vector, {le} (eqn(5.7.5.1», has been 

shown to be a function of the matrix [B] - [BD] + [Bd· The matrix [Bd is linearly dependent on 

the element nodal displacements, and represents part of the geometric non-linearity of the system 

(eqn(5.7.3.9». Therefore, at equilibrium, the magnitudes of the terms held in the vector {le} are 

based on the element stress vector {aD}, and the elment geometry through the matrix [Bol. In 

addition, the history of element nodal displacements contribute (in a non-linear sense) to the 

terms of the vector, {le}, through the matrix [Bd· 

Assuming that the surface has displaced in order to satisfy the condition of equilibrium, the 

equilibriated surface geometry is similarly a function of both the stress vector, {aD}, and the 

element nodal displacements. Consequently, if the stress vector, {aD}, is applied to the same 

equilibriated surface, but with the nodal displacements reset to zero (such that the matrix 

[Bd - [0]), the condition of equilibrium is no longer satisfied. 

Furthermore, if the form-finding procedure is commenced from two different initial surfaces, for 

a particular set of boundary conditions, dissimilar solutions to the same surface are obtained. This 

phenomenon arises as a result of the differing displacement histories of the two solutions, leading 

to differing element equivalent nodal force vectors {le}, based on the accumulated nodal 

displacement terms in the matrix [BL 1 of each solution. 

However, at equilibrium, if it is assumed that there is no displacement history, a non-uniform 

stress vector, {aD I}, exists therefore (at each of the element Gauss Points (Section 5.8», which is 

15 

This effect is achieved in a similar manner to that in the case of the linear and triangular elements (Section 4.3, Chapter 
4). 
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in equilibrium with the current (equilibriated) element geometry 16 . As demonstrated below, by 

comparing the required surface stress vector, (ao ), with the non-uniform stress vector, (ao'), the 

vector of element stress deviations, (do), can be obtained. 

Assuming the use of 2 x 2 Gaussian Quadrature (Section 5.8, Chapter 5), the vector of element 

nodal forces, (fe) (eqn(5.7.5.1)), may be written as, 

(fe) z: J [BY (ao ) dV 
1'0/ 

;-4 
= L [11]/ (ao ); det [J]; . t . Wt; eqn(6.4.2.2.1) 

; -1 

where t is the thickness of the element, and Wt; is the weight associated with the Gauss 

point i. 

Considering each Gauss point individually and pre-multiplying both sides of eqn(6.4.2.2.1) by 

the matrix [B]; , it follows that, 

(fe l); .. [.8]; [.8]/ (00 ); det [J1; . t . Wt; eqn( 6.4.2.2.2) 

where the vector (fe'); is the vector of pseudo loads representing the relationship between 

the element geometry, the nodal displacement history, and the stress vector (ao );, at the 

Gauss point i, and is written as (fe'); = [B); (fe);. 

If it is assumed that the matrix [.8]j describes the geometry and the displacement history of an 

element at equilibrium, then neglecting the displacement history (such that [.8]j - [Bo];), yields 

the expression, 

16 

(fe l); = [Bo]; [Bo]jT (ao'); det [J]; . t . Wt; 

or, 

(00
1); - 1 [ [Bo]j [Bo]/ ] -1 (fel); 

det [J]; . t . Wtj 
eqn(6.4.2.2.3) 

where (ao I); is the vector of non-uniform stress that must be applied to the element Gauss 

Point, i, at the commencement of the form-finding procedure, in order to obtain an 

equilibriated surface upon the first iteration of the solution algorithm. 

The term. "displacement history". refers to the displacements which the elements (surface) undergo during the form­
finding procedure. H there is no displacement history. the surface is at equilibrium at the first iteration of the numerical 
algorithm. and the matrix [B L] is a null matrix. 
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The vector of element stress deviations at each Gauss point i, {Ila};, may be written simply as, 

eqn(6.4.2.2.4) 

As demonstrated below, if the magnitude of the terms in the vector of element stress deviations, 

(Ila);, are found to be unacceptably high, then the re-imposition of the required stress vector, 

{ao };, and the subsequent satisfaction of the condition of equilibrium, can be used to improve the 

stress distribution within the surface. (Moreover, by using this approach, the same solution to the 

surface is obtained if two different initial geometries are assumed at the commencement of the 

form-finding procedure.) 

Figure 6.2 shows the equilibriated surface generated in conjunction with the boundary conditions 

given in Table 6.2. The initial surface of the form has been described using Hermitian 

polynomials with the factor As ., 2 17 , while the numerical stability of the solution algorithm is 

ensured with AA - 2 [6.10]. The condition of uniform stress, (ao );, is given as Ox - ay - 5.xl0-6 

kN.m-2, and "txy - O. kN.m-2• The thickness of the membrane is assumed to be l.xlO-3 m, with 

the elasticity matrix [E] taken as a null matrix. The error residual, Er, is assumed to be 0.025 % 

of the maximum equivalent nodal force 18 . The maximum and the average element stress 

deviations (at the Gauss points) are presented in Table 6.4 (overleaf) for the first five and for the 

tenth global re-impositions (NG/ - 1 ~ 5, 10) of the uniform stress vector {ao};. 

Subsequent to the re-imposition of the uniform stress vector (ao);, the magnitudes of the element 

stress deviations are shown to reduce in general (at equilibrium). The reductions in the 

magnitudes of the element stress deviations reflect the increasing proximity of the form to the 

truly minimal surface. Furthermore, as NGI is increased the changes in the maximum and the 

average element stress deviations (when compared with the preceding values at equilibrium), 

tend to zero. As described below, the values to which the element stress deviations converge, can 

be used as a measure of the adequacy of the discretisation, in a similar way to that described in 

the case of the triangular elements (Chapter 4). 

If the equilibriated surface is not a minimal energy form, the re-imposition of the uniform stress 

vector {ao }; induces relative nodal displacements. These displacements are related to the element 

stresses through the non-linear strain displacement matrix, [BL], at each Gauss Point, i 

(eqn(6.4.2.2.2) and eqn(6.4.2.2.3)). Therefore, by monitoring the element stress deviations, areas 

of an inappropriate discretisation, or areas where the boundary conditions will not permit the 

17 

The coefficient, As, is defined in footnote 4, Chapter 4. 
18 

The error residual, Br, equal to 0.025 % of the maximum element equivalent nodal force, has been assumed for all 
subsequent examples, unless otherwise stated. 
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generation of a minimal energy form, can be highlighted. 

- - --NGr Nrr dax max daymax d'txymax dax day d'txy 

1 60 -1.00% +8.76% +2.03% +0.26% +0.91% +0.35% 

2 57 +0.52% +4.04% +0.85% +0.18% +0.63% +0.24% 

3 53 +0.31% +2.70% +0.46% +0.15% +0.51% +0.18% 

4 74 -0.30% +2.33% -0.39% +0.11% +0.46% +0.14% 

5 57 +0.31% +2.22% -0.36% +0.09% +0.44% +0.13% 

10 63 -0.33% +2.01% -0.32% +0.07% +0.40% +0.10% 

Table 6.4 - Variation of the Maximum and Average Element Stress Deviations 

with the Factor NGr - Example 6.1. 

6.4.3. Performance of the Proposed Element Formulation. 

6.4.3.1. Effects of the Assumption of Quadratic Element Shape Functions. 

261 

Table 6.5 presents the variation in the maximum and the average element stress deviations at the 

element Gauss points for the equilibriated surface illustrated in Figure 6.2 (NGr = 10), and the 

number of elements comprising the discretisation. 

Number of Initial Element - --
Elements Size on Plan Aax IDaX AayIDaX A"txy max Aax Aay A"tXY 

4 12.mx 12.m -0.33% +1.06% -0.04% +0.21% +0.67% +0.04% 

24 4.mx4.m -0.33% +2.01% -0.32% +0.07% +0.40% +0.10% 

96 2.mx 2.m -0.32% +2.83% +0.04% +0.02% +0.15% +0.04% 

216 11mxl 1 m 
~ ~ -0.32% +3.27% -0.42% +0.01% +0.09% +0.03% 

Table 6.5 - Variation of the Maximum and Average Element Stress Deviations 

with Mesh Refinement· Example 6.1. 

As the number of elements is increased, it is shown that the average stress deviations in the 

surface are reduced, so that, with 216 elements the average element stress deviations are < 0.1 % 
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(Table 6.5). With the adoption of a finer discretisation, it should be found that the numerical 

model represents the truly minimal form more closely, with the individual element stress 

deviations tending to zero. Conversely, in certain regions of the surface, the numerical solution 

drifts from the minimal energy form. This is inferred by an increase in the maximum element 

stress deviation, d ay ID8X, as the element size is reduced (Table 6.5). 

The maxima in the stress deviation, day, occur at the Gauss points immediately adjacent to the 

discontinuities of slope in the boundary of the surface (Figure 6.2). It is proposed below that the 

increases in the direct stress deviation day max with a reduction in the size of the element, can be 

attributed to two possible causes. 

Firstly, as the element size is decreased, the contribution of the element nodal displacements to 

the vector of equivalent nodal forces (f e) increases due to the dominance of the matrix [B L] in 

the expression for [B] (eqn(5.7.1.6), Chapter 5). 

Secondly, it is assumed that the element shape functions vary quadratically with the natural co­

ordinates {~, 1'\1 (eqn(5.3.3.1». As the element size is reduced, the elements in the areas around 

the boundary discontinuities (Figure 6.2) become increasingly distorted and constrained. 

Meanwhile, the majority of the elements contribute to the formation of local minimal surfaces 19 . 

With an increase in the element geometric and topological distortion, the element geometry and 

the element displacements no longer vary quadratically. This leads to a violation of the inherent 

assumption in the derivation of the element shape functions. Consequently, an error is introduced 

into the element stiffness matrix [Kt e ], and in the vector of equivalent nodal forces (f e). 

As demonstrated subsequently, in the cases of surfaces bounded by a combination of curves and 

straight lines (which are devoid of discontinuities of slope out of the plane of the surface), the 

violation of the assumption of quadratic element shape functions can be avoided, and the 

associated errors in the numerical solution, eliminated. 

The surface illustrated in Figure 6.9, is characterised by the same elastic and the geometric 

constants assumed for the surface shown in Figure 6.2. This is with the exception that the 

boundary of the surface illustrated in Figure 6.9 is defined by the parabola, 

z _ -0.020833 Y 2 + 0.5 y , eqn(6.4.3.1.1) 

such that Zmax - 3.000 (as before, Table 6.2). The initial surfaces of both examples are generated 

by Hermitian polynomials with the factor As - 2. 

Table 6.6 presents the maximum and the average element stress deviations for the first five and 

for the tenth global re-impositions (NGI - 1 ~ 5, 10) of the uniform stress vector (ao );, for the 

19 

The formation of such local minimal swfaces is indicated by the low average element stress deviations (Table 6.5). 
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surface illustrated in Figure 6.9. By comparing Table 6.6 with Table 6.4, the magnitudes of the 

maximum element stress deviations, dOymax, (and therefore the errors in the numerical solution 

to the truly minimal surface) are shown to decrease when the boundary of the surface is parabolic 

20 

20 

" 

•• 1 /-__ ~7 

0.12 " 
, --- J. Y 

Figure 6.9 . Surface Discretised using Quadrilateral Elements· Example 6.2. 

-- -- --
NGI Nu dOxDl8X dOyDl8X d'tXymax dOx Lloy Ll'txy 

1 94 +0.83% -1.35% -0.40% +0.41% +0.46% +0.13% 

2 88 +0.49% -0.58% -0.22% +0.20% +0.22% +0.08% 

3 83 +0.34% -0.26% -0.13% +0.12% +0.11% +0.05% 

4 76 +0.28% -0.15% +0.09% +0.08% +0.06% +0.04% 

5 60 +0.26% -0.11% +0.08% +0.07% +0.04% +0.04% 

10 52 +0.23% +0.17% +0.08% +0.06% +0.04% +0.03% 

Table 6.6· Variation of the Maximum and Average Element Stress Deviations 

with the Factor N GI • Example 6.2. 

The constraints of the assumption that the element shape functions vary quadratically with the natural co-ordinates 
{l;.1ll. are shown subsequently. to introduce a geometric error into the numerical solution (Section 6 .5.1). 
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6.4.3.2. Combined Effects of Geometric Distortion 21 and of the Assumption of Small 

Displacements in the Element Shape Functions. 

The results of the Patch Test presented in Section 6.2 have shown that the assumption of large 

displacements in the derivation of the element shape functions, produces an element formulation 

exhibiting a low and a stable error norm, I e I (eqn(6.2.3.3», as the side nodes move away from 

the central positions (Figure 6.5). Similar findings are presented in Figure 6.7 for the case of a 

geometric distortion of the element. By adopting the simple example described below, the 

combined effects of the assumptions of small and of large displacements in the derivation of the 

element shape functions, with the geometric distortion of the element, are investigated. 

Considering the membrane illustrated in Figure 6.3, the boundary conditions (Table 6.2) are 

magnified uniformly, such that the maximum z co-ordinate (at nodes 7 and 87) is 6.000m. The 

remaining geometric and elastic constants are assumed to remain unchanged from those given for 

Example 6.1. The initial surface of the numerical model is defined such that the side nodes are at 

the mid points of the respective sides of the elements (approximately). 

-- - --
NGl Nrr ~C1xmax ~aymax ~'txymax ~ax ~C1y ~'txy 

1 120 -3.97% +30.47% -8.05% +1.22% +3.47% +1.16% 

2 126 -2.09% +15.66% +3.81% +0.57% +2.74% +0.82% 

3 93 -1.54% +10.85% +2.25% +0.45% +2.46% +0.64% 

4 98 -1.51% +9.09% +1.06% +0.37% +2.38% +0.55% 

5 95 -1.51% +8.31% -1.29% +0.34% +2.38% +0.50% 

10 99 -1.31% +8.15% -1.75% +0.39% +2.79% +0.56% 

12 105 -1.27% +9.00% +2.36% +0.46% +3.21% +0.68% 

15 110 -1.98% +15.84% +6.04% +0.91% +5.44% +1.32% 

16 Numerical Instability - No Solution. 

Table 6.7· Variation of the Maximum and Average Element Stress Deviations 

with the Factor N GI • Small Displacement Theory. 

Table 6.7 and Table 6.8 present the maximum and the average element stress deviations for the 

surface at equilibrium, when the element shape functions are derived according to the small 

21 

Geometric distortion is defined as a distortion causing a change in the shape of the element. 
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displacement theory (Section 5.3.3.1, Chapter 5), and according to the large displacement theory 

(Section 5.3.3.2, Chapter 5), respectively. 

- - --
NGI NIT dOx max dOymax d-exymax dOx dOy d't'XY 

1 118 -4.04% +29.79% +7.72% +1.02% +3.03% +1.13% 

2 141 -1.88% +13.47% -3.41% +0.56% +2.03% +0.77% 

3 116 -1.08% +8.11% +1.78% +0.44% +1.61% +0.56% 

4 107 -0.85% +6.20% +1.14% +0.32% +1.42% +0.44% 

5 98 -0.85% +5.38% +1.07% +0.24% +1.32% +0.37% 

10 94 -0.90% +4.33% -0.96% +0.21% +1.14% +0.28% 

12 90 -0.92% +4.26% -0.98% +0.22% +1.12% +0.27% 

15 99 -1.02% +3.99% -1.03% +0.24% +1.05% +0.26% 

16 106 -1.05% +3.92% -1.05% +0.25% +1.04% +0.26% 

18 107 -1.13% +3.78% -1.07% +0.27% +1.01% +0.27% 

20 105 -1.22% +3.64% -1.09% +0.29% +0.99% +0.27% 

Table 6.8· Variation of the Maximum and Average Element Stress Deviations 

with the Factor NGI • Large Displacement Theory. 

By comparing Table 6.7 with Table 6.8, it is shown that immediately after the first imposition of 

the uniform stress vector, {ool, (NGI - 1), the disparities between the maximum and average 

element stress deviations are small. This infers that significant movements of the side nodes away 

from the mid point of the interval have not occurred as the surface is equilibriated initially. With 

an increase in the number of re-impositions of the uniform stress vector {ool, the magnitudes of 

the corresponding element stress deviations are shown to diverge however. This is demonstrated 

by the maximum disparities of 88% in the maximum and 144% in the average element stress 

deviations at NGr -10 (Table 6.7 and Table 6.8). 

The divergence of the element stress deviations suggests an increasing violation of the 

assumption of small displacements in the derivation of the element shape functions. After 16 re­

impositions of the stress vector {ool, numerical instability of the solution algorithm occurs for 

the case in which the element shape functions are derived using the small displacement theory. 

Conversely, when adopting the assumption of large displacements, the solution algorithm 
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remains stable and continues to show an improvement in the accuracy of the surface at 

eqUilibrium. (This is indicated by a comparison of the corresponding values presented in the last 

three rows of Table 6.8.) 

From the solution at NGI = 16 it is found that the minimum value of the ratio :~ (Figure 6.4), is 

0.34, with the corresponding maximum value given as 0.66 22 . With reference to the dashed line 

in Figure 6.5 (representing the small displacement theory, in which the system is geometrically 

linear, and the elements are not subjected to geometric distortion), a value of ~~ = 0.34 (or 0.66) 

corresponds to an error norm, I el, of approximately 0.25x1O-6. This value of I e I indicates a 

small loss in the accuracy of the geometrically linear solution, when the assumption of small 

displacements, adopted in the derivation of the element shape functions, is violated. 

This feature is not demonstrated in the geometrically non-linear case, where the combined effects 

of the violation of the assumption of small displacements with those of the geometric distortion 

of the element, leads to large errors in the analysis. The last row of Table 6.7 indicates that these 

errors, present in the evaluation of both the element total stiffness matrix [Kt e] and in the 

evaluation of the vector of equivalent nodal forces (f e), can lead to the numerical instability and 

to the divergence of the solution algorithm ultimately. 

6.4.3.3. EtTects of the Fictitious Stiffness Terms in the Element Geometric Stiffness Matrix, 

[Kae]. 

The theory presented in Section 5.9 (Chapter 5) yields expressions for the fictitious stiffness 

terms which arise when the element undergoes rigid body rotation. To assess the effects of these 

terms on the solution algorithm, the surface illustrated in Figure 6.10 has been investigated 23 • 

22 

The ratio, ~ (Figure 6.4), is used as a measure of the relative position of the element side node. When the side node 

is at the mid-point of the element side ~ - 0.5. 

23 

The correctness of the theory presented in Section 5.9 (Chapter 5) has been demonstrated by an eigenvalue analysis of 
the geometric stiffness matrix representing a fiat rectangular element, orientated in the global xy plane (Section 6.3). 
The arguments formulated in this section assume that the theory presented in Section 5.9 (Chapter 5), eliminates 
adequately the fictitious stiffness terms which are generated by the rigid body rotation of a general curved element, 
however. In order to determine the effectiveness of the theory presented in Section 5.9 (Chapter 5) in this case, an 
eigenvalue analysis has been performed on the geometric stiffness matrix of the element 9 comprising the surface 
illustrated in Figure 6.10 and described in the subsequent paragraph. The solution to this eigenvalue analysis is 
presented in Appendix 6oE. 
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Figure 6.10 - Surface Discretised using Quadrilateral Elements - Example 6.3. 

Residual (kN) Residual (kN) Accumulated Accumulated 

Nrr R.B.R. Included R.B.R. Excluded Disparity Displacement (m) Displacement (m) Disparity 

R.B.R. Included R.B .R. Excluded 

1 20.0000 20.0000 0.% 0.193369 0.193369 0.% 

2 6.3384 5.2173 17.71% 0.515308 0.490498 4.81% 

3 6.5098 4.0471 37.83% 0.967798 0.866913 10.42% 

4 -3.3480 -0.9719 70.97% 1.345508 1.222800 9.12% 

5 -5.4987 -5.4839 0.27% 1.594611 1.454600 8.78% 

38 -3.30xlO-2 1.15xlo-2 65.15% 1.904650 1.904960 0.016% 

Table 6.9 - Comparison of Solutions to Example 6.3. 24 

The surface is square on plan with overall dimensions of 24. m in the global x and y directions. A 

rigid disc (shaded), with a diameter of 8. m is located at the centre of the membrane. The stiffness 

of the membrane is derived from the initial stress (or geometric) stiffness matrix [Kat] only, 

based on the assumed stress field, Ox = Oy = 5.95xlO+3 kN.m-2 and 'txy = O. kN.m-2. A thickness 

of I.xlO-3m has been taken for the membrane, while a value of 1.85 is assumed for the stabilising 

24 

The abbreviation "R.B.R." denotes "Rigid Body Rotation". "R.B.R. Included" refers to the suppression of the fictitious 
stiffness terms in the element geometric stiffness matrix, [Kat ], associated with the rigid body rotation of the element. 
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factor AA [6.10]. The form of the surface (Figure 6.10) is generated through the application of a 

uniformly distributed load to the rigid disc of 3.183 kN.m-2 in the global z co-ordinate direction. 

The distributed load is assumed to be proportioned equally to the element nodes located around 

the circumference of the disc. 

By adopting an error residual, Er, equal to 0.025 % of the maximum element equivalent nodal 

force, both the numerical model with, and the numerical model without the fictitious stiffness 

terms in the element formulation, satisfy the condition of equilibrium after 38 iterations. 

Table 6.9 presents the force residual and the displacement in the global z direction at the element 

node 47 (Figure 6.10), for the cases when the fictitious stiffness terms are included in, and when 

they are excluded from, the element formulation 25 . Results are given for the first five iterations 

and for the final iteration. 

During the initial stages of the form-finding procedure certain disparities are shown to develop 

between the two sets of solutions to the nodal force residual and the nodal displacement (Table 

6.9). As the number of iterations is increased however, the solutions tend to converge, such that, 

at equilibrium, the accumulated vertical displacement of the node 47 deviates by < 0.02%. The 

solutions are also shown to be notably similar when comparing the maximum and the average 

element stress deviations (Table 6.10) for the element 9 (Figure 6.10). The average element stress 

deviations can be seen to be identical to the second place after the decimal point, with the 

maximum disparity in the remaining figures equivalent to 0.37%. 

-- -- --
Rigid Body Rotations I!axmax daymax d'txrmax dax day d'txr 

Explicitly Included 26.55% 32.46% 21.78% 4.46% 4.93% 3.32% 

Excluded 26.49% 32.40% 21.70% 4.46% 4.93% 3.32% 

Disparity 0.23% 0.18% 0.37% 0.% 0.% 0.% 

Table 6.10 • Comparison of Element Stress Deviations for Example 6.3. 

As described below, the convergence of the differing element formulations (with and without the 

adequate representation of the element rigid body rotation modes) to the same solution 

(approximately) is achieved by solving the equations of equilibrium of the surface by the 

Dynamic Relaxation algorithm. 

25 

The element 9 has been highlighted as this element (in conjunction with the symmetric elements 10, 15, and 16), 
undergoes the largest components of rigid body rotation (Figure 6.10). In addition, node 47 (comprising the element 9) 
is subjected to the maximum relative magnitude of displacement in the global Z direction, and therefore to the largest 
out-of-balance force in that direction. 
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The pseudo oscillations of the discretised system are controlled by the out-of-balance force vector 

and by the stiffnesses at the element nodes (eqn(4.2.9), Chapter 4). Consequently, the fictitious 

stiffness terms in the matrix [K a e] (arising from an inadequate representation of the element rigid 

body rotation modes) have the effect of inducing a pseudo oscillation of the surface which is 

different to the oscillation obtained subsequent to the removal of these terms. (The disparities 

between the solutions to the nodal force residual and to the nodal displacement (node 47) for the 

first five iterations of the solution algorithm, demonstrate this feature (Table 6.9)). However, 

because the surface form is generated by the application of a stress vector of constant magnitude, 

the geometry of the surface (at equilibrium) is unique, irrespective of the straining of the surface 

(Table 6.9, NIT = 38). The subsequent paragraph describes how the unique solution to the surface 

is obtained through the Dynamic Relaxation algorithm, even when the pseudo oscillations are 

contaminated by the fictitious stiffness terms of the matrix, [Kae]. 

If the surface overshoots the equilibrium configuration (as a result of the fictitious stiffness terms 

in the matrix, [K ae]), then re-application of the uniform stress vector, {aD} (in conjunction with 

the updated element geometry), has the effect of increasing the proximity of the surface to the 

equilibrium state. For example, as the surface passes the equilibrium position, a peak in the 

kinetic energy of the system is detected. At this point, the nodal velocities are reset to zero, and 

the uniform stress vector, {aD}, is reapplied. The analysis is recommenced from the updated 

configuration. In this procedure the stiffness terms of the matrix, [Kae], define simply how far 

past the true equilibrium position the surface has moved when the kinetic energy peak is 

observed. Therefore, the fictitious stiffness terms in the matrix, [K ae], may cause the surface to 

become remote from the true equilibrium position. Meanwhile, the condition of equilibrium is 

given by the magnitude of the nodal out-of-balance force vectors, ~, only. If the elasticity of 

the membrane is assumed to be zero, the vector, ~, is simply a function of the element 

geometry (and therefore of the surface geometry) and of the uniform stress vector, {aD}. 

Consequently, the fictitious stiffness terms in the matrix, [Kat], affect only the rate of 

convergence of the solution to the condition of equilibrium, and do not contribute to a 

misrepresentation of the equilibriated geometry of the surface. 

By a similar argument the iterative procedure of a geometrically non-linear matrix analysis can 

be shown to suppress the effects of the fictitious stiffness terms in the matrix, [K ae]. In this case 

the surface overshoots the equilibrium configuration by an amount which is defined by the global 

flexibility matrix of the system. In both the Dynamic Relaxation and the matrix iteration analyses 

of an elastic geometrically non-linear system, the effects of the fictitious stiffness terms in the 

matrix, [K a e], are negated, provided that the elastic stiffness matrix of the element is represented 

accurately. In this case the associated fictitious displacements are compensated by a change in the 

element stresses arising from the elastic straining of the surface. A geometrically linear matrix 
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analysis is forced into error however by the fictitious stiffness tenns in the matrix, [K,/]. The 

error arises as the displacements are calculated from a single application of the global flexibility 

matrix of the system. The updated geometry of the system is assumed to be at equilibrium. In the 

Dynamic Relaxation algorithm, an iterative procedure is adopted despite the assumption that the 

system is linear. Therefore, no error is induced by the fictitious stiffness terms in the matrix, 

[K ae ], during the analysis of a linear system by the Dynamic Relaxation algorithm. 

6.4.3.4. Summary. 

The following points can be summarised from the results presented in this section: 

i) The high sensitivity of the element formulation to large geometrical changes can lead to 

rapid variations in the magnitudes and directions of the element stiffnesses and equivalent 

nodal forces, and so induce instability into the solution algorithm. 

ii) The non-linear terms in the strain-displacement matrix, [E], give rise to a vector of element 

stress deviations, {tla};, at each Gauss point i. The adequacy of the finite element 

discretisation, and the proximity of the equilibriated surface to the local minimal energy 

form can be assessed through the magnitude of the components of the vector {tla} i . 

ill) A violation of the assumption of a quadratic variation of displacements and of geometry in 

the element formulation can lead to errors in the element stiffness matrix [Kt e] and in the 

vector of equivalent nodal forces (f e). 

iv) The combined effects of topological and geometric distortions of the element, can amplify 

the errors generated through the violation of the assumption of small displacements in the 

derivation of the element shape functions, when analysing a geometrically non-linear 

surface. 

v) The fictitious terms in the element stiffness matrix, [Koe], associated with the element rigid 

body rotation modes, fail to produce significant errors in a geometrically linear or 

geometrically non-linear solutions, provided that; 

the Dynamic Relaxation algorithm is adopted as the solution algorithm, and 

the terms of the matrix [K ae ] are calculated using the technique of reduced integration. 



Quality of the Element Formulation. 271 

6.5. Verification of the Numerical Solution Method. 

6.5.1. Introduction. 

In this section the results of the investigations into the stability and the accuracy of the solution 

algorithm to various soap-film models are presented. Particular attention is paid to the effects of 

the assumptions which are inherent in the element formulation, on the accuracy of the numerical 

solutions. 

6.5.2. Single Minimal Surfaces with Fixed Boundaries. 

Figure 6.11 shows the equilibriated surface of the soap-film model illustrated in Plates 3.1 & 3.2 

(Example 6.4). The surface is discretised by 216 quadrilateral elements of the type formulated in 

Chapter 5. The element dimensions correspond approximately to 5.55% of the overall x 

dimension of the surface in the global x direction, and to 8.33% of the overall y dimension in the 

global y dimension. The condition of uniform stress is modelled as Ox - Oy = 1.xl<r6 kN.m-2 

and'txy = O. kN.m-2• The stiffness of the surface is derived from prestress only. 

The form-finding procedure is commenced from a mathematically defined initial surface, based 

on the Hermitian cubic polynomial, with the value of As equal to 2.0 26 . In order to ensure the 

numerical stability of the solution algorithm the factor AA = 2.0 [6.10] has been adopted. The 

magnitude of the error residual, Er, has been taken as 0.025 % of the maximum element 

equivalent nodal force. 

An increase in the rate of convergence to both the condition of equilibrium and to the condition 

of (approximately) uniform stress, has been achieved through the introduction of an additional 

factor, AD, into the solution algorithm. Scaling the vector of accumulated nodal displacements, 

{5};Qccum., by the factor, AD, such that AD < 1.0, reduces the contribution of the vector, 

{5};Qccum., to the vector of element equivalent nodal forces, (le J, through the matrix [BLl 

(eqn(5.7.5.1) with eqn(5.7.1.6), Chapter 5). Consequently, the element stress deviations are 

diminished at equilibrium (eqn(6.4.2.2.4». In the current example, a value of AD - 0.6 is 

assumed. (A decrease in this figure gives rise to an inadequate representation of the contribution 

of the large displacement terms to the element strains, and to a loss of convergence of the 

solution algorithm). 

26 

The coefficient, As • is defined in footnote 4. Chapter 4. 



Quality of the Element Formulation. 272 

o 

o 

Figure 6.11 . Surface Discretised using Quadrilateral Elements· Example 6.4. 
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-- -- --
No/ Nrr .6.crx max .6.cry max .6.'txr max .6.crx .6.cry .6.'txr 

1 144 -l.29% +19.24% +4.23% +0.18% +0.56% +0.32% 

2 142 -0.52% +7.32% -l.60% +0.13% +0.25% +0.14% 

3 127 -0.39% +4.75% -0.86% +0.08% +0.17% +0.08% 

4 136 -0.36% +3.93% +0.59% +0.04% +0.12% +0.05% 

5 109 -0.35% +3.41% -0.50% +0.02% +0.10% +0.04% 

6 93 -0.36% +3.38% -0.48% +0.01% +0.10% +0.03% 

7 108 -0.36% +3.18% -0.47% +0.01% +0.09% +0.03% 

8 93 -0.36% +2.96% -0.47% +0.01% +0.09% +0.03% 

9 93 -0.36% +2.75% -0.47% +0.01% +0.09% +0.03% 

10 93 -0.36% +2.54% -0.47% +0.01% +0.09% +0.03% 

20 89 -0.38% +2.23% -0.50% +0.01% +0.07% +0.02% 

Table 6.11 • Variation of the Maximum and Average Element Stress Deviations 

with the Factor N G/ • 
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Table 6.11 presents the maximum and the average element stress deviations for the the first ten 

and for the final (N01 - 20) re-imposition of the uniform stress vector {oo}. Also given is the 

number of iterations required to equilibriate the surface for each re-imposition. With NG/ -10 a 

total of 1138 iterations is required to obtain the surface illustrated in Figure 6.11, corresponding 

to a Cpu time of 21008.9u. Figure 6.12 and Figure 6.13 display graphically the central planes of 

the membrane, Z -x and Z -y, respectively 27 • The numerical solution is plotted at the element 

nodes and also at the intermediate points • so as to represent the curvature of the element. The 

intermediate points are obtained by interpolation, using the element shape functions and the 

element nodal co-ordinates. 

Excellent agreement between the numerical and experimental solutions is demonstrated in the 

z-x central plane (Figure 6.12). In the orthogonal direction however, some disparity between the 

numerical solution and the experimental can be identified. It can be seen, in particular, in the 

vicinity of the discontinuity of slope in the boundary of the model (Figure 6.13). This geometric 

disparity is coincident with the maximum element stress deviations presented in Table 6.11. 

27 

In Figure 6.12 and Figure 6.13, and in subsequent figures of this type. the scale along the ordinate has been exaggerated 
in order to illustrate the accuracy of the numerical solution to the minimal surface more clearly. 
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The condition of uniform stress is approximated to within -0.38% in the global x direction, and 

to within +2.23% in the global y direction (Table 6.11). The maximum of the average element 

stress deviations is given as +0.07%, indicating the existence of at least one local minimal surface 

comprising the overall form. The maximum element stress deviation in the global y direction has 

the effect of over constraining the surface. Consequently, the numerical solution should 

overestimate the z co-ordinates of the surface. The fact that the numerical solution is shown to 

underestimate the z co-ordinates (Figure 6.13), implies that the deviations of the element stresses 

from the condition of uniform surface stress, do not contribute significantly to the disparity 

between the numerical and experimental solutions. In the subsequent paragraphs it is proposed 

conversely, that the constraints of certain assumptions in the element formulation, can be 

attributed to the dissimilarities between the numerical and experimental solutions. 

20 

22 
Element 189. 

j 
24 A 

~ 26 
~ 
~ 
N 28 Element 207. 
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32 
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Figure 6.14 - Accuracy of Equilibriated Surface (Example 6.4) -
z - y Central Plane (part-plot). 

Figure 6.14 illustrates a sub-plot of the numerical solution to the surface given in Figure 6.13 for 

the range y = 130.mm to y = 160.mm. The geometries of the elements 207 and 189 (Figure 6.11), 

defined along the natural co-ordinate ~ =+1. (corresponding to the z-y central plane), are 

presented. At the common boundary of the elements 207 and 189 (point "A" in Figure 6.14), the 

slope of the surface, as given by the numerical solution, is discontinuous. The curvatures of 

adjacent elements (determined by the numerical solution) are shown to be different at the 

common element boundaries, giving rise to a loss of "smoothness" when compared with the truly 

minimal form. This "geometric error" in the numerical model, arises from the assumption that the 

element shape functions are derived from the current element nodes only, and do not take into 

account the effects of the geometries of adjacent elements. 
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The element geometry and the element displacements are assumed to vary quadratically with the 

natural co-ordinates (~, 111 (eqn(5.3.3.7), Chapter 5). The violation of this assumption, arising 

during the numerical representation of the truly minimal form, has been identified with the 

generation of numerical errors in the formulation of the element characteristic matrices (Section 

6.4.3.1). As described below, the constraints of the same assumption can be associated with a 

further error in the geometric representation of the element. 

The geometry of element 207 at ~ = +1., is characterised by a section from y == 160. mm to 

y == 150. mm which is approximately linear (Figure 6.14). The profile then curves sharply, until, 

at the interface with the element 189, the surface of the element 207 is almost horizontal. As the 

side node (at the natural co-ordinate ~ =+1.) is displaced towards the point "A" (Figure 6.14), 

both the topological and (consequently) the geometric distortions of the element can be shown to 

increase. The subsequent paragraph describes how this combined topological and geometric 

distortion of the element may lead to an erroneouS condition of eqUilibrium. 

A vector can be established in the global y direction which is tangential to the middle surface of 

the element 207 at the common boundary with element 189. This vector can be shown to be 

approximately horizontal. Consequently, transforming the vector of equivalent nodal forces, 

{f e }, into the global {x, y , z} co-ordinate directions, and summing the resulting terms to the 

contributions from element 189, gives rise to an erroneous and dominant out-of-balance force 

vector in the global y direction, at the common element boundary. In order to equilibriate the 

form, the surface is displaced in the global y direction (predominantly), until the error residual is 

equal to or less than the specified limit. Therefore, the surface is effectively "pulled away" from 

the truly minimal form (Figure 6.13). 

By comparing Figure 4.34(a) (Chapter 4) with Figure 6.12, and Figure 4.34(b) (Chapter 4) with 

Figure 6.13, the quadrilateral element discretisation can be seen to exhibit a greater disparity 

between the numerical and experimental solutions, than that demonstrated by the triangular 

element discretisation (Figure 4.33, Chapter 4). The triangular discretisation comprises 784 

elements, compared to the 216 quadrilateral elements of the discretisation illustrated in Figure 

6.11. A significant increase in computational effort is required in order to generate the element 

matrices and to calculate the individual terms of the quadrilateral element formulation, however. 

This is reflected by the Cpu times of 111.8u and 21OO8.9u demanded by the triangular and 

quadrilateral element discretisations in order to establish the surfaces illustrated in Figure 4.33 

(Chapter 4) and in Figure 6.11, respectively. The corresponding numbers of iterations are given 

as 589 and 1138. (The error residual, Er, expressed as a percentage of the maximum equivalent 

nodal forces, is the same for both the triangular and quadrilateral element discretisations.) 
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Figure 6.15 shows the equilibriated surface of the soap-film model illustrated in Plates 3.5 & 3.6 

(Example 6.5). 216 quadrilateral elements are used to discretise the surface. The elements are 

arranged such that the initial element size is the same as that adopted in the preceding example 

when measured relative to the overall dimensions of the physical model. The condition of 

uniform stress is modelled as O'x = O'y = l.xlO+6 kN.m-2, and 'txy = O. kN.m-2. The elastic 

modulus of the surface is assumed to be zero, while the thickness of the membrane is taken to be 

l.xlo-3m. 

Due to the rapidly changing curvatures of the surface (Plate 3.5), the numerical stability of the 

solution algorithm cannot be assured by scaling the components of the nodal stiffnesses with the 

factor, A.A [6.10]. Therefore, the procedure described below has been devised in order to enhance 

the numerical stability of the solution algorithm in this case. 

The initial surface is defined mathematically, in the first instance, by Hermitian polynomials, 

with the factor A.s == 4.0. Equilibriating the form in the global z direction only (while suppressing 

displacements in the global x and the global y directions) gives rise to a revised "initial" surface. 

The revised "initial" surface resembles the truly minimal energy form more closely than obtained 

using the Hermitian polynomials. 

In order to reduce the out-of-balance force vector in the global x and the global y directions, 

while maintaining the numerical stability of the solution algorithm, a temporary fictitious 

condition of equilibrium is imposed. This is done by assuming that the out-of-balance force 

vector in the global x and in the global y directions is zero at each element node, until a peak in 

the kinetic energy of the system is detected. All of the terms of the current out-of-balance force 

vector are then calculated, and used to establish the element nodal displacements in the global x, 

y, and z directions. The surface geometry is subsequently updated according to eqn(6.4.1.1). The 

out-of-balance force vector in the global x and in the global y directions are then reset to, and 

maintained at, zero until the next peak in the kinetic energy of the system is observed, when the 

same procedure is repeated. In order to prevent exaggerated deformations of the surface at the 

kinetic energy peaks, the nodal displacements in the global x and in the global y directions are 

scaled by a factor of ~. 

Subsequent to a total of 5500 iterations (Nol -1.), with a corresponding Cpu time of 102774.6u 

(28.5 hours), the surface illustrated in Figure 6.15 is obtained. The maximum and the average 

element stress deviations are presented in Table 6.l2, while the central planes of the surface, z-x 

and z -y , are shown in Figure 6.16 and Figure 6.17 respectively. 
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Figure 6.15 . Surface Discretised using Quadrilateral Elements· Example 6.5. 
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At the termination of the analysis however, the surface is deemed not to be fully equilibriated, as 

it fails to satisfy the criterion established for the maximum error residual, Er, at certain nodes of 

the discretisation. For example, the out-of-balance force in the global x direction is equal to 

+O.1868xlo+1kN, in the global y direction to +O.3054xlo+2kN, and in the global z direction to 

+O.2471xlo+OkN, with the value of Er equal to l.xlO-1 kN (approximately equal to 0.025 % of 

the maximum element equivalent nodal force). These figures correspond to 61.1 %, to 28.8%, and 

to 0.02%, of the values at the commencement of the form-finding procedure, respectively. 

-- - --
~axmax ~aymax ~'txymax ~ax ~ay ~'txy 

+48.82% -8.75% +23.10% +2.37% +0.63% +1.15% 

Table 6.12 • Maximum and Average Element Stress Deviations· Example 6.S. 

Furthermore, the maximum and the average element stress deviations are shown to be large at the 

same stage of the analysis (Nrr ... 5500, Table 6.12). An attempt to reduce the element stress 

deviations (by re-imposing the uniform stress vector (aD)) leads to the numerical instability of 

the solution algorithm. As in the case of the surface illustrated in Figure 6.11, the maximum 

element stress deviations are found to occur in the elements immediately adjacent to the 

discontinuities of slope in the element boundary. The high positive magnitude of the maximum 

element stress deviation in the global x direction is shown to over-constrain the numerical 

representation of the surface in the vicinity of the model boundary (Figure 6.16). Therefore, the 

numerical solution overestimates the z co-ordinates of the surface in this region. 

The discontinuities of slope identified in the numerical solution of the preceding example, can 

also be seen in Figure 6.16 (marked as "A"). However, the effects of the constraints imposed on 

the numerical solution through the assumption of a quadratic variation of element shape functions 

with the natural co-ordinates {~, T\J (eqn(5.3.3.7», and of the positive element stress deviations in 

the global x direction, tend to cancel. Consequently, good agreement between the numerical and 

experimental solutions can be observed (Figure 6.16 and Figure 6.17). However, the numerical 

solution to the surface is not fully equilibriated, and the approximate cancelling of the effects 

mentioned above, must be considered as coincidental. 

An adequate numerical solution to the soap-film surface illustrated in Plates 3.3 & 3.4 has been 

found difficult to establish when adopting a discretisation of quadrilateral elements, formulated in 

the Chapter 5. 

Figure 6.18 (Example 6.6) and Figure 6.19 (Example 6.7) illustrate two alternative discretisations 

of the same physical model. (The initial surfaces of the numerical models are displayed). 
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Figure 6.18 - Surface Discretised using Quadrilateral Elements - Example 6.6. 
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Figure 6.19 - Surface Discretised using Quadrilateral Elements - Example 6.7. 
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A mesh of regularly shaped quadrilateral elements constitutes the main body of the sub-division 

illustrated in Figure 6.18. The sides of the elements in this area are aligned with the directions of 

the principal curvatures of the surface. Around the edge of the model, a series of irregularly 

shaped elements provide the interface between the curved boundary and the internal sub-division. 

These elements are characterised by both varied size and shape (Figure 6.18). The geometries of 

the elements reflect the difficulty encountered in discretising a surface with a fundamentally non­

rectangular plan shape, by a number of quadrilateral elements. 

The discretisation illustrated in Figure 6.19 is based on the assumption that a ring, with degrees­

of-freedom in the global z direction only, is inserted into the centre of the membrane. The 

inclusion of the ring is used to improve the aspect ratio of the elements at the centre of the 

discretisation, and so prevent a corruption of the solution by ill-conditioning. The elements are 

defined by equally spaced radial lines and concentric ellipses (Figure 6.19). 

The global z co-ordinates of the element nodes (except those on the boundary) have been 

established for each discretisation by replacing the current sub-division by linear elements, placed 

between the nodes of the quadrilateral. A uniform pretension is applied to the linear element 

discretisation, and the surface analysed as a cable network. The equilibrium of the surface is 

established in the global z direction only. while displacements in the global x and in the global y 

directions are suppressed. An approximation to the truly minimal form is established in this way. 

It is found that, in the case of the discretisations illustrated in Figure 6.18 and Figure 6.19, no 

solution to the surface is obtained, due to instability of the solution algorithm. The numerical 

instability is induced through the effects of the characteristics of the numerical model described 

below. 

The surface of the numerical model is characterised by rapidly changing curvatures. In addition, 

the modes of pseudo oscillations of the surface, given by the non-linear combination of several 

fundamental modes, and described by the Dynamic Relaxation algorithm, are highly complex. 

For example. five, approximately flat, sub-surfaces can be identified as comprising the overall 

form - a central plane and four symmetrical planes developed in the extremes of the boundary 

(Figure 6.20). Due to the geometry of the form, it is proposed that the four symmetrical sub­

surfaces oscillate almost independently, with the centre of the membrane acting as a point about 

which the surfaces can pivot, and with lines between the centre of the form and the four points of 

inflection on the boundary, acting as axes of rotation. The numerical model is dominated 

therefore, by four relatively flexible and partially decoupled sub-surfaces, in which large nodal 

displacements of similar magnitude occur in the global x, y , and z co-ordinate directions. These 

large nodal displacements can induce rapid changes in the geometries of the elements, and give 

rise to an exaggeration of the out-of-balance force vectors at the element nodes (through the 

contribution of the non-linear strain-displacement matrix [Bd (eqn(S.7.S.l) with eqn(S.7.1.6»). It 



Quality of the Element Formulation. 283 

is demonstrated below, that the sensitivity of the numerical model can be shown to be reduced, 

and the stability of the solution algorithm enhanced by the adoption of a coarse mesh of elements. 

Figure 6.20 (Example 6.8) shows the surface illustrated in Plates 3.3 & 3.4 discretised by four 

quadrilateral elements. Assuming a similar initial surface to that illustrated in Figure 6.19, and a 

uniform stress vector {oo} given as Ox = Oy = 5.xlO+6 kN.M-2, and 'txy = O. kN.M-2, the 

condition of equilibrium can be shown to be satisfied to an error residual, Er, equal to 0.25 % of 

the maximum element equivalent nodal force, in the global x ,y and z co-ordinate directions. The 

technique of imposing a temporary fictitious condition of equilibrium in the x and y directions 

between the kinetic energy peaks, has been adopted, in order to maintain the stability of the 

solution algorithm. 

Table 6.13 presents the maximum and the average element stress deviations for the first five re­

impositions of the uniform stress vector {oo }, with the number of iterations necessary to achieve 

equilibrium after each re-imposition. 

Subsequent to to the first re-imposition of the uniform stress vector, {oo}, (No/ - 1), the 

magnitude of the maximum element stress deviation can be seen to stablise at around +20.0%, 

with the maximum of the average element stress deviations converging to approximately +10.0%. 

These relatively high figures reflect the inability of the numerical model (Figure 6.20) to model 

accurately the curvatures of the truly minimal surface. This is due primarily to an insufficient 

number of elements comprising the discretisation. 

By comparing the numerical solution (based on the discretisation illustrated in Figure 6.20) with 

the experimental solution, the numerical model can be seen to provide an adequate representation 

of the minimal surface illustrated in Plates 3.3 & 3.4 (Figure 6.21 and Figure 6.22) 28 . The 

relatively small disparity between the solutions for such a low number of elements, is indicative 

of the ability of the quadratic element shape functions to define the central orthogonal planes of 

the surface accurately (NGI - 1). At the same time the effects of the inaccuracies of the 

boundaries of the numerical representation of the physical model, counteract those of the element 

stress deviations. 

28 

With the re-imposition of the stress vector {oo}, the element nodes 9, 10, 11, and 12, (Figure 6.20), can be shown to 
move significantly in the plane of the surface. This phenomenon gives rise to topological and (consequently) geometric 
distortions of the elements. Therefore, an error is induced in the numerical solution to the surface. For this reason the 
solution to the surface at N Gf - 1 has been chosen for comparison with the experimental solution. 



Quality of the Element Formulation. 

x. u 

O. Jr<:::' 
+ ~ Y.v 

z. w 

Figure 6.20 . Surface Discretised using Quadrilateral Elements· Example 6.S. 

-- -- --
NGJ Nrr Llax IDax LloyIDax Ll'txr IDax Llax Llay Ll'txr 

1 187 +15.76% +27.71% +15.58% +8.17% +15.52% +8.10% 

2 181 +7.45% -21.48% +10.07% +4.67% +12.72% +5.09% 

3 172 +4.58% -20.62% +7.09% +3.03% +10.92% +3.66% 

4 174 -4.05% -20.16% +5.42% +2.75% +10.01% +3.14% 

5 183 -3.94% -19.87% +5.13% +2.57% +9.45% +2.90% 

Table 6.13 . Variation of the Maximum and Average Element Stress Deviations 

with the Factor N GJ • 
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6.5.3. Minimal Surfaces With Internal and External Flexible Boundary Elements. 

Further numerical solutions to the minimal surfaces shown in Plates 3.14 - 3.19, are presented in 

this section 29 . 

Figure 6.23 illustrates the equilibriated surface to the soap-film model shown in Plate 3.15 

(Example 6.9). The surface is initially sub-divided by sixteen square quadrilateral elements, with 

a sides of length of 4. m and a constant thicknesses of lxlO-3m. A uniform stress vector, {OD}' 

given as ox - cry ... l.xl0+6 kN.m-2 and 'txy - O. kN.m-2 is assumed. The stiffness of the 

membrane is considered to be derived from prestress only. 

The membrane is bounded by linear elements, and is restrained in the global x, y, and z 

directions at the four corner points. The boundary cable elements are assumed to be uniformly 

tensioned initially by a prestress of 7xlO'~3 kN, and to have a constant elastic modulus of l.xl0+4 

kN.m-2• The cross sectional areas of the linear elements are taken to be unity. The initial surface 

of the form is illustrated in the insert in Figure 6.23. 

To ensure the numerical stability of the solution algorithm, the factor AA = 5.0 [6.10] has been 

adopted with AD _1.0 30 , while the error residual, Er, is assumed to be 0.25 % of the maximum 

element equivalent nodal force. Table 6.14 presents the maximum and the average element stress 

deviations for ten re-impositions of the uniform stress vector {OD}' and the numbers of iterations 

required to satisfy the condition of equilibrium. 

A total of 824 iterations, corresponding to a Cpu time of 1l01.7u are required to establish the 

form illustrated in Figure 6.23 (NGI - 10). From the magnitude of the element stress deviations 

(NGI - 1, Table 6.14), and from the distortion of the elements demonstrated by comparing the 

initial and equilibriated surfaces presented in Figure 6.23, a significant straining of the surface 

can be seen to have occurred during the form-finding procedure. 

With the re-imposition of the uniform stress vector {ool the maximum element stress deviation is 

shown to converge to approximately -45.0%, with the maximum of the average stress deviations 

to around +5.1% (Table 6.14). The maximum element stress deviation exists in the elements at 

the four corners of the discretisation, where the boundary elements can be seen to have merged, 

in order to establish an approximation to the minimal energy form (Figure 6.23). The relatively 

high figure to which the maximum element stress deviation converges, is as a result of the 

29 

The relevant figures can be found at the end of this section. 
30 

The factor, AD, is used to scale the vector of accumulated nodal displacements, (fJ); QCcum.' in order to reduce the 
contribution of the vector, {fJ} i accum. , to the vector of element equivalent nodal forces, (f e), through the matrix [B L] 
(eqn(5.7.5.1) with eqn(5.7.1.6), Chapter 5). Consequently, the element stress deviations are diminished at equilibrium 
(eqn(6.4.2.2.4». 
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geometric distortions of the corner elements. As demonstrated below, the excessive geometric 

distortions of the elements, which are characterised by the very large and the very small internal 

angles at the element extremes, give rise to errors in the element formulation. 

If the initial boundary natural forces are increased to 2xlO-H leN, while the other geometric and 

material constants are assumed to remain unchanged, the surface illustrated in Figure 6.24 

(Example 6.10) is obtained. Table 6.15 presents the maximum and the average element stress 

deviations at eqUilibrium, for the first eight re-impositions of the uniform stress vector {oo }. With 

reference to Table 6.15 the condition of uniform stress is shown to be represented very closely 

when the element distortion is low (Figure 6.24). Furthermore, in the case of the surface 

illustrated in Figure 6.23, it is found that at equilibrium (NG/" 10), the natural forces in the 

boundary elements vary by up to 1.8%. This figure may be compared with a zero variation in the 

case of the experimental solution. With the revised boundary element pretensions, the natural 

forces are found to be invariant to the first five digits, or constant to within 0.02%. A comparison 

of the solutions to the surfaces illustrated in Figure 6.23 and Figure 6.24 indicates that the 

contribution of the errors in the numerical solution, arising from large geometric distortions of the 

elements, can be significant. 

Figure 6.25 illustrates the equilibriated surface of the soap-film model shown in Plates 3.17 

(Example 6.11). A total of 60 quadrilateral elements are used to discretise the membrane, with 72 

linear elements representing the flexible boundaries. The initial surface of the form is illustrated 

in the insert in Figure 6.25. To ensure the numerical stability of the solution algorithm, the factor 

AA - 5. [6.10] is adopted. In addition, a value of 0.75 is assumed for the factor AD, in order to 

increase the rate of convergence of the solution to the condition of uniform stress. 

The elastic modulus of the external boundary elements has been taken as l.xlo+2 leN.m-2 and for 

the internal elements as l.xlo-H kN.m-2• In both sets of boundary cables the prestress is assumed 

to be 8.x1o+3 kN, with the cross-sectional area as unity. The membrane is prestressed by the 

vector of uniform stress, fOol, with the magnitudes of the stresses the same as those assumed for 

the preceding example. Table 6.16 presents the maximum and the average element stress 

deviations for ten re-impositions of the uniform stress vector {Oo}, and the numbers of iterations 

required to satisfy the condition of equilibrium after each re-imposition. 

For NGI - 10, a total of 855 iterations is required to establish the form illustrated in Figure 6.25, 

with a corresponding Cpu time of 4123.5u. The maximum element stress deviation can be seen to 

converge to around -12.0% (occurring in the corner elements), with the maximum of the average 

element stress deviations to approximately +1.0%. The less severe geometric distortion of the 

corner elements (Figure 6.25) (compared with the surface illustrated in Figure 6.23) permits an 

improved satisfaction of the condition of uniform surface stress. This is reflected by the reduced 

magnitude of the maximum element stress deviations given in Table 6.16 (cf. Table 6.14). The 
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natural forces in the external boundary elements are found to be constant to within 0.28%, with 

those in the internal boundary elements to within 0.13%, at NGI = 10. These figures suggest good 

agreement between the numerical and experimental solutions. 

Figure 6.26 illustrates the equilibriated surface of the soap-film model shown in Plates 3.19 

(Example 6.12). The discretisation is similar to that in the previous example, except that, the 

central hole in the membrane is translated by -4.m in the global x direction and +4.m in the 

global y direction (Figure 6.26). The elastic modulus of all of the boundary cable elements is 

assumed to be 1.x1()+4 kN.m-2, with the cross-sectional area of the elements taken as unity. The 

prestress in the external boundary elements is given as 1.x10+4 kN, with l.xlO+3 kN in the 

internal. The remaining details are as those adopted for the preceding example. 

Table 6.17 gives the maximum and the average element stress deviations for ten re-impositions of 

the uniform stress vector {OD}' and the numbers of iterations to achieve equilibrium after each 

re-imposition. A total of 1075 iterations, corresponding to a Cpu time of 5176.1u are required to 

establish the form illustrated in Figure 6.26 (Nol -10). 

A significant straining of the surface can be seen to have occurred in the elements in the regions 

marked "A" (Figure 6.26), when the geometries of the elements are compared with those of the 

initial surface (insert, Figure 6.26). For the first seven re-impositions of the uniform stress vector 

{OD}' the maximum element stress deviations in the global x and the global y directions, 

correspond to the elements in these regions. The magnitudes of the stress deviations (Table 6.17, 

1 s: NCI s: 7) reflect the stability of the solution algorithm during the large straining of these 

elements (Figure 6.26). 

In the case of N 01 ~ 8, the effects of the errors in the numerical solution, arising from the 

geometric distortion of the elements at the corners of the discretisation, tend to dominate the 

magnitudes of the element stress deviations. Consequently, the maximum element stress 

deviation is -13.36% with a maximum of the average element stress deviations of +1.20%, at 

NOI -10. The natural forces in the external boundary elements are found to be constant to within 

1.1%, and those in the internal to within 2.3%. These relatively high figures indicate a loss of 

accuracy from the numerical solution, due to the heavy geometric distortion and the poor aspect 

ratios of some elements comprising the discretisation. 

Figure 6.23 can be compared with Plates 3.15, Figure 6.25 with Plates 3.17, Figure 6.26 with 

Plates 3.19. The accuracies of the numerical solutions are demonstrated when comparing the 

element stress deviations and the boundary element natural forces with the values anticipated 

from the physical models. 
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Figure 6.23 • Surface Discretised using Quadrilateral Elements· Example 6.9. 

NGI Nrr i1crxmax i1cry max i1·xr max i1crx i1cry i1·XY 

1 73 -72.47% -72.47% +81.20% +39.90% +39.90% +25.01% 

2 76 -43.77% -43.77% +53.12% +25.84% +25.84% +21.08% 

3 77 -41.26% -41.26% +47.36% +18.73% +18.73% +16.11% 

4 81 -41.94% -41.94% +45.28% +14.25% +14.25% +12.57% 

5 72 -42.49% -42.49% -44.50% +11.23% +11.23% +10.09% 

6 75 -43.09% -43.09% +44.39% +9.14% +9.14% +9.14% 

7 80 -43.72% -43.72% +44.59% +7.64% +7.64% +7.07% 

8 83 -44.32% -44.32% +44.91% +6.53% +6.53% +6.53% 

9 92 -44.84% -44.84% +45.26% +5.72% +5.72% +5.43% 

10 115 -45.25% -45.25% +45.46% +5.10% +5.11% +4.89% 

Table 6.14 • Variation of the Maximum and Average Element Stress Deviations 
with the Factor N Cl • 
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Figure 6.24 . Surface Discretised using Quadrilateral Elements· Example 6.10. 

NGI NIT Llax max Llaymax Ll'txy max Llax Llay Ll'txy 

1 76 -42.70% -42.70% +49.93% +22.56% +22.56% +13.71% 

2 62 -13.23% -13.23% +17.33% +7.28% +7.28% +6.01% 

3 44 -6.24% -6.24% +6.92% +2.58% +2.58% +2.32% 

4 41 -2.56% -2.56% +2.74% +0.96% +0.96% +0.88% 

5 35 -1.01% -1.01% +1.05% +0.36% +0.36% +0.33% 

6 31 -0.39% -0.39% +0.41% +0.14% +0.14% +0.13% 

7 21 -0.15% -0.15% +0.16% +0.05% +0.05% +0.05% 

8 28 -0.05% -0.05% +0.05% +0.02% +0.02% +0.01% 

Table 6.15 . Variation of the Maximum and Average Element Stress Deviations 

with the Factor N Gl • 
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Figure 6.25 • Surface Discretised using Quadrilateral Elements· Example 6.11. 

No/ Nrr ilax IDax ilayIDax il'txy IDax ilax ilay il'txy 

1 127 -84.84% -84.48% +67.73% +32.73% +32.73% +17.51% 

2 112 -51.82% -51.82% +38.76% +19.90% +19.90% +11.31% 

3 106 -31.21% -31.21% +30.84% +12.54% +12.54% +7.14% 

4 84 -24.24% -24.24% +25.74% +8.14% +8.14% +4.70% 

5 73 -21.21% -21.21% +22.13% +5.46% +5.46% +3.24% 

6 73 -18.72% -18.72% +19.26% +3.76% +3.76% +2.28% 

7 80 -16.51 % -16.51% +16.90% +2.65% +2.65% +1.66% 

8 67 -14.80% -14.80% +15.04% +1.91% +1.91% +1.23% 

9 62 -13.33% -13.33% +13.50% +1.41% +1.41% +0.93% 

10 71 -11.92% -11.92% +12.03% +1.04% +1.04% +0.70% 

Table 6.16· Variation of the Maximum and Average Element Stress Deviations 
with the Factor N GJ • 
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Figure 6.26 • Surface Discretised using Quadrilateral Elements· Example 6.12 • 

NGI Nrr .1ax max .1aymax .1'txrmax .1ax .1ay .1'txr 

1 159 -88.32% -88.32% +66.62% +32.70% +32.70% +19.55% 

2 141 -64.04% -64.04% +39.52% +19.16% +19.16% +13.08% 

3 122 -45.87% -45.87% +31.58% +12.12% +12.12% +8.51% 

4 102 -33.86% -33.86% +26.39% +8.01% +8.01% +5.79% 

5 102 -25.47% -25.47% +22.59% +5.49% +5.49% +4.08% 

6 100 -19.56% -19.56% +19.65% +3.88% +3.88% +2.96% 

7 104 -17.53% -17.53% +17.21% +2.81% +2.81% +2.21% 

8 95 -15.89% -15.89% +15.18% +2.08% +2.08% +1.66% 

9 85 -14.56% -14.56% +13.53% +1.58% +1.58% +1.29% 

10 65 -13.36% -13.36% +12.02% +1.20% +1.20% +0.99% 

Table 6.17 • Variation of the Maximum and Average Element Stress Deviations 
with the Factor N G/ • 
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6.5.4. Summary. 

From the results presented in section 6.5, the following points can be summarised: 

i) A violation of the assumption of the quadratic variation of the element geometry and of the 

element displacements with the natural co-ordinates (~, 111 can lead to an error in the 

numerical solution. A similar effect can be observed if an element is subjected to a severe 

geometric distortion in the form of a combination of very small and very large internal 

angles at the element extremes. 

ii) The imposition of a temporary fictitious condition of equilibrium in the global x and in the 

global y directions, can increase the stability of the numerical algorithm. The stability may 

be enhanced further by the adoption of a coarse discretisation of elements. 

ill) The modelling of a surface with a low number of quadrilateral elements can provide an 

accurate numerical solution to a minimal energy form, when the element shape functions 

represent the curvatures of the form adequately. 

iv) Through the investigation of several numerical examples, and by comparing the numerical 

and the experimental solutions, it has been shown that the element formulation derived in 

Chapter 5, is capable of providing a solution to stable minimal surfaces, provided that the 

problems outlined in (i) can be overcome. 
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6.6. Appendix 6·A • Derivation of the Vector of Equivalent Nodal Forces, {Feq }, Describing 

the Unifonn Stress Vector, {a}. 

The vector, fFeq} is obtained from the equation [6.1], 

{Feq} - J [N** f {a} ds, 
surface 

eqn(6·A.1) 

where {a} represents the external uniform stress vector, and is written as 

{a} - fax, ay, 'txy}T. The matrix [N**] contains shape functions drawn from the 

Lagrangian set. 

For example, with reference to Figure 6-A.1, the Lagrangian polynomial may be written as, 

(X-XO) (X-Xi)" .,. (X-Xj_l) (X-Xj+l)' .. (X-Xn ) 
Lj{x) -

(Xj-XO) (Xj-Xl)' .... (Xj-Xj-l) (Xj-Xj+l)' .. (Xj-Xn ) 

eqn(6-A.2) 

where eqn(6-A.2) defines Lj{x) to be unity at X-Xj and zero at X i*j 

1 2~X 3 

• • • 
I~ -I- ~I 

b b 

Figure 6·A.l· Lagrangian Element. 

Thus, considering the element side with the nodes (14), (8), and (5) (Element 2, Figure 6.1), the 

f . N ** N ** N ** b 'tt shape unctions 14 , 8 , 5 may e wn en as, 
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Figure 6·A.2· Lagrangian Shape Functions. 
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eqn(6-A. 3 (a)) 

eqn(6-A.3(b)) 

eqn(6-A.3(c)) 

Substituting eqn(6-A.3(a)) into eqn(6-A.1) and assuming an element thickness of t, gives for 

example, the equivalent nodal force in the global x direction for the node 5 (Figure 6.1), as, 

+b 

f x (x - b ) dx - 1 b 
Feq 5 - 2 t -"'3 CJx t 

-b 2b 
eqn(6-A.4) 

Similar expressions can be obtained for the remaining element nodes (8), (14), (22) and (35). 
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6.7. Appendix 6-B - Contribution of the Out-of-plane Stiffness Components of the 

Geometric Stiffness Matrix [Ko] to the Total Stiffness Matrix, [Kt ]. 

6.7.1. Out-or-plane Elastic Stiffness Components or a Flat Element. 

In the case of a flat rectangular element orientated in the global xy plane, the out-of-plane 

components of the elastic stiffness matrix, [KEplate], are zero. This feature is demonstrated 

below by calculating the direct out-of-plane stiffness component, [KE e (3, 3)], corresponding to 

the W displacement at the element node 1. 

The general element elastic stiffness matrix, [ KE e ] , is given is given by the expression, 

(Section 5.7.1, Chapter 5), 

[ KE'] - fw [B l' [E liB) dV, eqn(5.7.1.7) 

where [ if ] - [Bo ] + [BL ], with [Bo ] and [BL ] the small and large strain-displacement 

matrices, respectively, and [E ] is the matrix of elastic constants. 

If it is assumed that the initial displacements of the element are zero, then the elastic stiffness 

matrix, [KE e], can be written as, 

where the matrix, [Bo ], is given as, 

[Bo] -

A. aNI 
X'I~ 

A. aNI 
Xl I dY" Xl aNI 

IdX'" 
A. aNI 
Y'ldF 

A. aNI YJ ldF 
i l aNI 

I CJY 
Xi aNI fi aNI 

IdY+ IdX 
A· aNI A· aNI 

XJ IdF+YJ Idr Xl aNI+fl aNI lew- Idr 

and (assuming plane stress), the matrix, [E ], is given as, 

[E] - 1:'\)2 

1 '\) 
'\) 1 

o 0 

o 
o 

I-'\) -r-

eqn(6-B.l) 

~ 
Xl aNs 

sdr 

~ 
fl aNB 

BdY 

~ 
Xl aNs fl aNs 

BdY+ BdX 

eqn(5.7.2.8) 

eqn(6-B.2) 
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where, E is the modulus of elasticity, and t) is Poisson's ratio. 

The direct out-of-plane stiffness component, [KE e(3,3)], is obtained by calculating the third 

column of the matrix product, [E ] [Bo ], initially (denoted as [E.Bo (r 1>3)], where r 1 = 1 ~ 3, 

given as, 

E [E.Bo (r 103)] = ~ 
-t) 

At aNI A aNI x 1 ~+t) ytl dY 

it aNI yAt aNI 
t) 1~+ IdY eqn(6-B.3) 

[ 1 d [ i', a~'+f" a~l] 
By multiplying the third column of the matrix, [Bo ], with the column matrix, [E.Bo (r 1,3)], the 

stiffness component, [KEe (3,3)], is obtained as, 

[K e (3 3)] - E J [[ it aN 1 ]2 + 2 t) it yt aN 1 aN 1 + [ yt aN 1 ]2 + 
E , - 1 _ t)2 vol 1 CJX 1 1 CJX -aY 1 dY 

[ 12 u] [[ i', * ]' + 2 i', f' I ~ ~ + [ f' I ~ rJ 1 dV. 

eqn(6-B.4) 

In the situation that the element is flat and orientated in the global xy plane it follows that the 

direction cosines in the global z direction, it 1> and yt 1> are zero. Substitution of these values of 

it 1 and yt 1 into eqn(6-B.4), can be seen to lead to a zero coefficient for the stiffness 

component [KE e (3,3)]. 

6.7.2. Derivation of the Out-of-plane Terms of the Element Geometric Stiffness Matrix 

[K (,el. 

The derivation of the out-of-plane stiffness term [K ae (3, 3)] of the element geometric stiffness 

matrix [K ae ] is presented in this section 31 . It is assumed that the element is of a rectangular, fiat 

geometry and is located in the global xy plane 32 . The orientation of the element is such that the 

local co-ordinate directions coincide with the global co-ordinate directions. 

31 

The term [K (/ (3, 3)] is the direct out-of-plane stiffness component associated with the W displacement at the element 
node 1. The subsequent derivation can be followed to obtain similar expressions for the remaining out-of-plane 
stiffnesses. It can be demonstrated that the remaining out-of-plane stiffness terms along the leading diagonal of the 
geometric stiffness matrix [K (/ ] are non zero. 

32 

If the constraint that the element geometry is rectangular is removed, similar but more complicated expressions than 
those presented subsequently are obtained. 
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The unit vectors Xi, 1;, and ii, at each node i (i = 1 ~8) of the element are thus obtained as, 

Xi = (I i + 0 i + 0 /i), 

Y; = (O 1 + 1 i + 0 /i), 

i; = (O 1 + 0 i + 1 /i). 

eqn(6-B.5(a) 

eqn(6-B.5(b) 

eqn(6-B.5(c) 

The geometric stiffness matrix of an individual element, [Kae], is given by the expression 

(Section 5.7.4, Chapter 5), 

[ K ae ] = J [ G ]T [M ] [ G ] dV 
vol 

eqn{5.7.4.6) 

where the matrix [ G ] is a function of the natural co-ordinates ~, 11 and is written as, 

A. aNI 
X'ldx-(~' 11) Xii a~I ( ~, 11 ) At aNI ~ x Idx-( ,11) At dNs ~ 

~ x s-ax-( ,11) 

yi dN I (~ ) I(}X ,11 Y i I d~ ( ~, 11 ) yt aN I (~ ) IdX ,11 
Ak dNs ~ ~ Y sdX( ,11) 

A. aNI 
Z'Idx-( <';, 11) ii I a~1 ( <';, 11 ) it aN I (<'; ) Idx- ,11 Ak aNs ~ 

~ Z sOX( ,11) 
[G] ... A. aNI Xi I aail ( <';, 11 ) Ak aNI <'; Ak aNs <'; 

X'ldF( <';, 11) x Idr( ,11) ~ x sdF( ,11) 

A. aNI 
Y'ldF(~' 11) y i I afu,1 ( ~, 11 ) At aNI ~ Y Idr( ,11) Ak aNs ~ ~ Y SdF( ,11) 

A. aNI ii I dfu,1 ( <';,11 ) At dNI Ak dNs ~ 
, 

Z'ldF( ~,11) Z Idr(~' 11) ~ z sdF( ,11) 

eqn(5.7.3.7) 

and the matrix [ M ] is given as, 

[ 
ax [/ 3 ] "txy [/3] 1 

[M ] == "tx), [13] ay [/3] , 

ax 0 0 "txy 0 0 
0 ax 0 0 "txy 0 
0 0 ax 0 0 "txy 

== 0 0 0 0 eqn(5.7.4.7) "txy ay 
0 'txy 0 0 ay 0 
0 0 'txy 0 0 ay 

The stiffness component [K ae (3, 3)] is obtained by calculating the third column of the matrix 

product [M] [G ] (denoted as [M.G(r2,3)], where r2 "'1~6), initially. Substituting eqn(6-B.S 

(a)-(c» into eqn(S.7.3.7), and performing the matrix product [M ] [G ], yields the expression for 
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the column matrix, [M.G(r2,3)], as, 

o 
o 

aNI ~ aNI ~ 
crx """'dX('o' 11 ) + 'txy -;W-('o' 11 ) 

o 
o 

aNI ~ aNI ~ 
't.T)' CJX('o' 11 ) + cry -;W-('o' 11 ) 

299 

eqn(6-B.6) 

By multiplying the third column of the matrix [G ] with the column matrix [M.G (r2,3)], the 

stiffness tenn [K (/ (3, 3)] is obtained as, 

[Ka'(3.3)] - f"" [ "x [ ~(e. '1 r + 

aN I aNI ~ [ aN I ~ 12] 
2 'txy """'dX(~' 11 ) dr( 'o, 11) + cry dYe 'o, 11 )J dV . 

eqn(6-B.7) 

The evaluations of the partial derivatives comprising eqn(6-B.3) are presented below. 

Assuming that the side nodes are at the mid-points of the element sides, the shape function 

N I(~' 1'), can be written as (Table 5.1, Chapter 5), 

NI = t (1-~)(l-11)(-~-T\ -1) 

= l (~2 + 112 - ~2 11 - ~ 112 + ~ 11 - 1) eqn(6-B.8) 

The change of variable given in eqn(5.5.7(a» (Chapter 5) is used to express the partial derivatives 

aN 1 d aN I . f al dina (J:,., I """'dX an dY m tenns 0 the natur co-or tes'o' 'v, as, 

eqn(6-B.9(a» 

and, 

eqn(6-B.9(b» 

where (from eqn(6-B.8», * -t (2 ~ -2 ~1l_1l2+T\), eqn(6-B.1O(a» 
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eqn(6-B.10(b» 

In the situation that the global and local co-ordinate directions are aligned and the element is 

rectangular, it can be shown that the vector products ~. Yj and T\. Xj are zero, and that the vector 

products 1i . Yj and ~. Xi are non-zero (where i is the node number, with i = 1~8). 33 

Using these results, and substituting eqn(6-B.9 (a)&(b» into eqn(6-B.7), the (non-zero) geometric 

stiffness term, [K c/ (3,3)], is obtained as 34, 

f [ [ ~ " dNl]2 
[Kc/(3, 3)] = vol Ox 11· y 1 ~ + 

~ " aNI ~ " aNI [~ " aN I ]2] 2 "txy 11 . Y 1 dTl C; • X 1 ~ + ay C;. Xl (}jf dV . 

eqn(6-B.l1) 

6.7.3. Suppression of the Singular Form of the Matrix [KEplale]. 

As demonstrated in Section 6.7.1, in the case of a fiat plate (or membrane), in which the stiffness 

is derived from elasticity only, the out-of-plane components of the elastic stiffness matrix of the 

plate [KEplate] are zero. Consequently, the determinant of the matrix, [KEplate], is also zero. This 

indicates a singular form of the matrix, [KEplate], and infers a condition number of infinity. 

In the preceding section (Section 6.7.2), the introduction of prestress is shown to invoke the 

contribution of the out-of-plane stiffness components of the geometric stiffness matrix [K J'late] 

to the total stiffness matrix [Klplate] (where [K/late] = [KEplate] + [K J'late D. The inclusion of 

these (non-zero) terms has the effect of reducing the condition number of the total stiffness 

matrix. [Ktplate], from infinity. This effect arises as the tendency of the out-of-plane deformation 

modes to act as mechanisms is negated by the appropriate (out-of-plane) terms of the matrix 

[K J'late]. The inverse of the matrix [Ktplate] can be computed therefore. 

In the case of the discretisation illustrated in Figure 6.1, the condition number of the matrix 

[K/late] is reduced to 2.374x1o+8 when a prestress equivalent to l.xl0-4 % of the elastic modulus 

of the plate is assumed in all elements of the discretisation. Consequently. the solution to the 

33 

In the case that the global and the local co-ordinate directions are the same, and the element geometry is rectangular. 
the directions of the element natural co-ordinates. {~. tV. coincide with the directions of the local co-ordinates. 
{X, Y}. Consequently. the vector ~ is orthogonal to~the vecto~.ti. "and the vector 11 is orthogonal to the vector Xi . 
These properties give rise to the zero vector products" . Vi and 1\ . Xi . 

34 

Eqn(6-B.ll) is evaluated using Gaussian Integration (Section 5.8, Chapter 5). 
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element nodal displacements are assumed accurate to the first six digits only [6.12] (based on the 

LU decomposition algorithm [6.1]). 

The condition number of the matrix [Kt plate ] may be reduced further by the adoption of a higher 

element prestress. However, additional errors are then introduced into the elastic solution by the 

terms of the geometric stiffness matrix [K,Plate]. 
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6.S. Appendix 6-C - Calculation of the Eigenvalues and Eigenvectors of a Matrix [6.9) 35 • 

The eigenvalue problem is to determine the non-trivial solutions to the equation, 

A x = AX, eqn(6-C.l) 

where A is an n -by-n matrix, x is a column vector of length n , and A is a scalar. 

The n values of A that satisfy eqn( 6-C.l) are the eigenvalues, and the corresponding values of x 

are the "right eigenvectors". In Matlab the eigenvectors are normalised so that the largest element 

of each eigenvector is unity. 

The generalised eigenvalue problem is to determine the non-trivial solutions to the equation, 

B-IAx=AX, eqn(6-C.2) 

with A replaced by B -I A. 

But since the matrix, B , could be singular, an alternative algorithm, called the "QZ" method, is 

used. The algorithm used in Matlab is described below. 

In the case of real matrices, the real general matrix is converted to a Hessenberg form using 

orthogonal similarity transformations 36 . The eigenvalues and eigenvectors of a real Hessenberg 

matrix are subsequently found using the "QR" [6.11] algorithm. 

The "QR" algorithm performs an orthogonal-triangular decomposition of square or rectangular 

matrices. It expresses the matrix as the product of a real orthonormal matrix and an upper 

triangular matrix. An iterative procedure is adopted to find the eigenvalues. If an eigenvalue is 

not found after 30n iterations then the algorithm gives a warning of no convergence. 

35 

Acknowledgement· some sections of Appendix 6-C have been copied directly from reference [6.9]. 
36 

A Hessenberg matrix is a matrix in which all terms are zero below the first sub-diagonal. 
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6.9. Appendix 6-D - Out-of-plane Stiffness Components of the General Elastic Stiffness 

Matrix, [KE e]. 

The derivation of the out-of-plane stiffness term [K (BJ (3, 3)] of the element stiffness matrix 

[K(BJ] is presented in this section 37 • The element is assumed to be of a rectangular, fiat 

geometry and to be located in the global xy plane. The orientation of the element is such that the 

local co-ordinate directions coincide with the global co-ordinate directions. 

The terms of the large displacement elastic stiffness matrix, [K (BJ], can be obtained by 

assuming that the strain displacement matrix, [Bo], is a null matrix (eqn(S.7.1.6». Therefore, 

from eqn(S.7.1.7), the expression for the matrix, [K (BJ], is obtained as, 

[ K(B"-] = frol [OL]T [E] [BL] dV, eqn(6-D.l) 

where the matrix [BLl represents the large strain displacement equations (eqn(5.7.3.1», and, 

[E ], is the matrix of elastic constants, written as, 

E 
[E]= ~ 

1 u 
u 1 

o 0 

o 
o 

l-u 
-2-

with, E is the modulus of elasticity, and u is Poisson's ratio. 

The matrix [B L] is expressed as the product of two matrices, as in, 

where, 

and, 

37 

[BL ] = [A ] [G ] , 

au av aw 
OX dX dX o o o 

[ A] _ 0 0 0 aU aV aW 
dY dY dY 

au av aw aU av aW 
dY dY dY dX dX dX 

eqn(6-B.2) 

eqn(6-D.2) 

eqn(6-D.3) 

The large displacement terms comprise the out-of-plane elastic stiffness of the matrix, [KE e ]. These terms are 
represented in the matrix [BL] (eqn(5.7.3.9), Chapter 5). Consequently, the subscript (BL) is intended to indicate that 
the large displacement components of the general elastic stiffness matrix, [KE el, are being considered in this section. 
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A. aNt 
X'l"-(JX-(~' 11 ) 

A. aNt 
Xl I""(JX'""( ~,'rn At aNt ~ X I""(JX'""( ,11) Ak aNs ~ ~ X sd:X( ,11) 

A. aNI 
Y' 1"-(1X-( ~, 11 ) 

A. aNI 
yl I""(JX'""(~' 11 ) At aNI ~ Y 1d:X( ,11) At aNs ~ 

~ Y sd:X( ,11) 

ii aN I (~ ) 1d:X ,11 iJ I~(~' 11) Ak aNI ~ Z 1d:X( ,11) Ak aNs ~ ~ Z sd:X( ,11) 

[G] = A. aNI A. aNI At aNI ~ At aNs ~ 
X' l"cW( ~, 11 ) Xl Idr(~' 11) X Idr( ,11) ~ X sdr( ,11) 

A· aNI 
yIIdr(~' 11 ) 

A· aNI ~ 
YJ Idr( ,11) At aNI ~ Y Idr( ,11) At aNs ~ ~ Y s(}Y( ,11) 

A. aNI A. aNI itl~(~' 11) Ak aNs ~ 
, 

Z/ldF(~' 11) Zl I dYe ~, 11 ) ~ Z s(}Y( ,11) 

eqn(S.7.3.7) 

The out-of-plane stiffness tenn [K(Bf(3, 3)], is obtained by calculating the third column of the 

matrix [BL ] = [A ] [G ], initially (denoted as [BL (r 103) ], where r 1= 1 ~ 3), given as, 

{ 
au i k aN I + av yk aN I + aw i k aN I } 
dX 1(JX (JX 1d:X dX 1d:X 

{ 
au i k aN I + av yk aN I + aw it aN I } 
dY Idr CW 1(}Y dY I(}Y 

{ 
au ik aN I + av yk aN I + aw i k aN I + 
dY I(}X dY I(JX dY I(JX 

au i k aNI. + av yk aNI + aw i k aNI} 
dX Idr (JX I(}Y dX IdY 

eqn(6-D.4) 

In the situation that the element is fiat and orientated in the global .x}' plane it follows that the 

direction cosines in the global z direction, Xk 10 and yk 10 are zero, while i k 1 has a value of 

unity. Substitution of these values of i k 1, yt h and i k I into eqn(6-D.4) yields the simplified 

expression, 

awaNI 
dXdX 
aw aNI 
dYdY 

aw aNI aw aNI 
dY(JX+dXdY 

eqn(6-D.S) 
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The calculation of the out-of-plane stiffness term [K (BJ (3,3)] is continued by establishing the 

third column of the matrix product, [E ] [BL ], (denoted as [EBL (r 1,3) D, given as, 

[ aw aN 1 ] [ aw aN 1 ] ox dX +u Of dY 

[ aw aN 1 ] [aw aN 1 ] 
u dXdX + dYdY eqn(6-D.6) 

(1 - 'U) [ aw aN 1 aw aN 1 ] 
2 (W dX + dX ---cw-

By multiplying the third column of the matrix, [BL ], with the column matrix, [EBL (rIo3) ], the 

stiffness term, [K (BJ (3, 3)], is obtained as, 

[ aw aNl]2 + (1- u) [ aw aNI + aw aNI ]2] dV 
dY ---cw- 2 Of <IX aY dY 

eqn(6-D.7) 

From equations of the form of eqn(5.7.2.7) (Section 5.7.2, Chapter 5), the local strain, ~lj, can 

be written as, 

aw i -8 ". aN; ( C;, 11 ) ii-8 z"j aN; ( C;, 11 ) 
~ ,., .1: z'; ax Uj + L.i i dx Vj 
UA , -1 ;-1 

ji-8Z"k. aN;(~,11) . 
+.L.i , ax W, . 

, -1 

with the vectors, i; (for i = I ~ 8), given as, 

if - { i'd. +ii,j +i'f &} 

={ OJ+01+ 1&} 

eqn(6-D.8) 

eqn(6-D.9) 

Substituting the coefficients of eqn(6-D.9) into eqn(6-D.8) leads to expression for the local strain, 

aw dX,as 

eqn(6-D.I0) 

·th . il . I: th 1 a1 . aw Wl a SlO1 ar expressIOn lor e QC straIn, dV' as, 
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aw j - 8 aNj ( ~, 1'\ ) 
"""3Vy - .L ay Wj , 
UI I -1 

eqn(6-D.ll ) 

Substitution of eqn(6-D.1O) and eqn(6-D.ll) into eqn(6-D.7) yields the out-of-plane stiffness 

term, [K (BJ (3, 3)], as a function of the global displacement, w. 
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6.10. Appendix 6-E - Effectiveness of the Suppression of the Fictitious Terms in the General 

Geometric Stiffness Matrix, [K a e l. 

Assuming the surface configuration defined at equilibrium, two Eigenvalue Tests have been 

performed on the stress stiffness matrix [K ae 1 of the element 9 (Figure 6.10). The element matrix 

[K ae] has been formulated with ([K ae ]incl.) and without ([K ae lexcl.) the inclusion of the fictitious 

stiffness terms associated with the rigid body rotation of the element. The first eight eigenvalues 

of the stiffness matrices, [K ae linel. and [K ae ]excl., (listed in ascending order) are presented in 

Table 6-E.1. 

In the case of the element formulation in which the fictitious stiffness terms are not removed, it is 

shown that the eigenvalue analysis returns three zero eigenvalues only (corresponding to the 

translational rigid body modes). The explicit removal of the fictitious stiffness terms from the 

matrix, [K ae], yields the eigenvalues 0.01, 0.03, and 0.60, as approximations to zero (Table 6-

E.l). The proximities of the eigenvalues 4, and 5, to zero, suggest that two of the three rigid body 

rotation modes are represented adequately. By displaying the corresponding eigenvectors it and 

can be shown that these modes represent the out-of-plane type. 

Conversely, the magnitude of the sixth eigenvalue infers that the in-plane rigid body rotation 

mode is not represented adequately. In the derivation of the expression for the rigid body rotation 

angle, er ip, it is assumed that the element strains are uniform and equal in the local X and Y 

directions (Section 5.9, Chapter 5). A violation of this assumption in the case of the element 9 

(Figure 6.10), arising from the irregular geometry of the element, can be attributed to the high 

value for the eigenvalue 6. 

The out-of-plane rigid body rotation modes dominate the terms in the displacement vectors, {51 i , 

of the elements comprising the surface illustrated in Figure 6.10. Consequently, it is 

recommended that the rigid body rotation modes which are most likely to occur during the form­

finding procedure, are represented adequately when the associated fictitious stiffness terms of the 

element matrices, [Kat];, are removed explicitly in accordance with the theory presented in 

Section 5.9, Chapter 5. 

Eigenvalue 1 2 3 4 5 6 7 8 

[K ae]incl. 0.000 0.000 0.000 1.220 1.220 1.220 5.250 5.250 

[Kae]excl. 0.000 0.000 0.000 0.010 0.030 0.600 1.220 3.230 

Table 6-E.l - First Eight Eigenvalues for the Element 9 at Equilibrium - Example 6.3 



Quality of the Element Formulation. 308 

6.11. References. 

[6.1] Zienkiewicz,O.C. 

The Finite Element Method. 

Third Edition, MCGraw-Hill Book Company, 1977. 

[6.2] Irons, B.M., Razzaque, A. 

"Experience with the Patch Test for Convergence of the Finite Element Method." 

The Mathematical Foundations of the Finite Element Method with Applications to Partial 

Differential Equations. Ed. A.K. Aziz, Academic Press, 1972, pages 557-587. 

[6.3] Zienkiewicz, O.c. 

The Finite Element Method. 

Fourth Edition, MCGraw-Hill Book Company, 1989. 

[6.4] Irons, B.M. 

"Testing and Assessing Finite Elements by an Eigenvalue Technique." 

Proceedings of Conference on Recent Advances in Stress Analysis. J.B.C.S.A., Royal 

Aeronautical Society, London, 1968, pages 6-22. 

[6.5] Cook, R.D., Malkus, D.S., Plesha, M.E., 

Concepts and Applications of Finite Element Analysis. 

John Wiley and Sons, 1989, pages 166-170 & 563-565. 

[6.6] Coates, R.C., Coutie, M.G., Kong, F.K. 

Structural Analysis. 

Van Nostrand Reinhold (UK) Co. Ltd., Third Edition, 1988, pages 428-457. 

[6.7] Megson, T.H.G. 

Strength of Materials for Civil Engineers. 

Thomas Nelson and Sons Ltd., 1980, pages 42-43 & 68-70. 

[6.8] Celia, M.A., Gray, W.O. 

"An Improved Isoparametric Transformation for Finite Element Analysis." 

Int. Journal Numerical Methods in Engineering. Volume 20, 1984, pages 1443-1459. 

[6.9] Moler, C., Little, j., Bangert, S. 

Pro-matlab for Sun Workstations, User's Guide. 

The MathWorks, Inc., 1989, pages 3.35-3.37. 



Quality of the Element Formulation. 

[6.10] Lewis, W.J., Gosling, P.D. 

"Computer Modelling of Stable Minimal Surfaces." 

Research Report CE32, University of Warwick, November 1990. 

[6.11] Froeberg, C.-E. 

Numerical Mathematics. 

The Benjamin/Cummings Publishing Company, Inc., 1985, pages 22-24 & 203-206. 

[6.12] Gerald, C.F. 

Applied Numerical Analysis. 

Addison-Wesley Publishing Company., Second Edition, 1978, pages 110-113. 

309 



Chapter 7 

Conclusions and Suggestions for Further Work 

7.1. Conclusions. 

The work presented in this thesis relates to the form-finding of stable minimal surfaces. In 

particular, it is focused on the aspect of the formulation of elements of finite size used to 

discretise a continuum, modelling a state of plane stress. From the studies presented so far, the 

conclusions presented below can be drawn. 

Linear Elements. 

i) In order to represent the uniform stress field of the discretised continuous membrane, the 

linear elements are arranged in the form of an orthogonal mesh, with the element natural 

co-ordinates aligned with the directions of either of the principal direct stresses, and 

subjected to uniform and constant pretensions. Under these conditions, the linear elements 

tend to follow geodesic lines over the surface. This can give rise to distortion of the final 

form. 

ii) A discretisation of linear elements can provide an accurate solution to a minimal surface 

when the principal curvatures are low. A large number of linear elements is required to 

model the surface accurately. With careful modelling, an accurate solution to a surface 

exhibiting high curvatures can be obtained, provided the final form is known. 

Triangular Elements. 

iii) The continuum based triangular element may be represented by a triplet of pseudo cables 

possessing appropriate elastic and geometric stiffness coefficients. The invariant stress field 

of the element is represented by natural forces in the pseudo cables. These forces can be 

tensile or compressive, dependent on the geometry and the orientation of the triangular 

element in the global co-ordinate system. 

iv) The element is characterised by constant strain. This can lead to a buckling type of 

phenomenon, and may result in the divergence of the solution algorithm. If the constraint of 

uniform surface stress in the numerical model is released (after a specified number of 

kinetic energy peaks in the Dynamic Relaxation algorithm), the onset of the buckling type 

phenomenon can be prevented. A critical number of admissible kinetic energy peaks exists, 

beyond which the accuracy of the solution is reduced. An expression has been proposed to 
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relate the geometrical accuracy of the equilibriated surface to the condition of uniform 

stress and the maximum overall dimension of the triangular elements comprising the 

discretised surface. 

v) By violating the assumption of small strains inherent in the triangular element formulation, 

errors can be induced in the numerical solution. These errors occur predominantly in the 

element nodal displacements, and can lead to the inversion of certain elements, and to the 

divergence of the solution algorithm. The effects of the violation of this assumption have 

been shown to be negated by introducing elasticity into the numerical model. 

vi) An accurate solution to a minimal surface can be obtained from a relatively coarse 

discretisation of triangular elements. The degree to which the condition of uniform surface 

stress is satisfied, can be used to assess the proximity of the equilibriated surface to the local 

minimal surface. By modifying the existing boundaries and monitoring the element stress 

deviations, the numerical model can be amended to obtain the minimal surface which is 

local to the original topology. 

24 Degrees-of-freedom Quadrilateral Elements. 

vii) The formulation of a 24 degrees-of-freedom membrane finite element has been presented. 

The element strains are calculated by performing the differentiation of the global 

displacements with respect to the local variable, prior to transformation into the local co­

ordinate directions. 

viii) If the system is geometrically non-linear, such that an iterative technique is used to establish 

the condition of equilibrium, then the fictitious terms in the element geometric stiffness 

matrix fail to corrupt the numerical solution. This applies to both the Dynamic Relaxation 

and matrix inversion based solution algorithms. Conversely, if the system is geometrically 

linear, the matrix based solution algorithms is forced into error by these terms. 

ix) The proposed element formulation is valid for the analysis of systems subjected to large 

displacements, in which the large displacements cause a topological distortion. The strain 

based error norm is insensitive to large geometric distortions. 

x) In the case of a fiat, rectangular element without initial stress, spurious deformation modes 

may occur, irrespective of the order of Gauss quadrature used to evaluate the element 

integrands. A suppression of the spurious deformation modes can be achieved by distorting 

the element, or by introducing fictitious (initial) displacements into the element. The 

adoption of the technique of reduced integration can also cause the element elastic stiffness 

matrix to display zero energy modes. 

xi) The 24 degrees-of-freedom element is highly sensitive to large changes in geometry. 

Therefore, numerical instability can arise, particularly during the initial stages of the form­

finding procedure. Adopting only the diagonal terms of the element stiffness matrices 

reduces the sensitivity of the formulation. The technique of reduced integration has a 
similar affect. 
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xii) When the element shape functions simulate the curvatures of the surface adequately, a small 

number of elements can produce an accurate solution to that minimal surface. If the 

assumption that the element shape functions vary quadratically with the element natural 

co-ordinates is violated, then errors are introduced into the terms of the element stiffness 

matrices and into the vectors of equivalent nodal forces. 

xiii) The combined effects of topological and geometric distortions of the element can amplify 

the errors generated through the violation of the assumption of small displacements. In the 

case of surfaces exhibiting rapidly changing curvatures, the assumption that the element 

shape functions are derived from the current element only (ignoring the elements adjacent 

to it), can lead to a loss of smoothness from the numerical solution. 

xiv) The representation of the non-linear components of the strain displacement relations in the 

element formulation, gives rise to a deviation from the condition of uniform stress at 

eqUilibrium. 

xv) The 24 degrees-of-freedom finite element formulation is too sensitive to be applied 

effectively to the form-finding of minimal surfaces. The derivation of the element equations 

to model accurately the effects of large displacements and large strains has been completed 

successfully. Provided the problems stated in (xi), (xii), and (xiii), can be overcome, an 

accurate solution to a minimal surface can be obtained. 

7.2. Suggestions for Further Work. 

It is recommended that the adaptation of the 24 degrees-of-freedom finite element formulation 

should be investigated further. In particular, the sensitivity of the proposed formulation to large 

changes in in geometry (in terms of geometric and topological distortions) should be examined in 

the context of the Dynamic Relaxation algorithm. 

For example, the number of element degrees of freedom could be decreased (and therefore the 

sensitivity reduced) by limiting the movements of the element nodes to those normal to the 

surface. This proposed simplification is valid in the case of the analysis of an inelastic membrane, 

subjected to a state of uniform stress, as the condition of equilibrium is satisfied in the plane of 

the surface automatically. The vector normal to the surface at the point of interest could be 

constructed at the beginning of each time increment, and used to define the direction along which 

the element node could move. The magnitude of the nodal displacement would be controlled by 

the out-of-balance force vector and the stiffness as before. 

An additional control over the in-plane movements of the element nodes could be achieved by 

making the boundaries of the quadrilateral elements follow geodesic lines. Geodesic lines may be 

defined by a uniformly tensioned cable placed between boundary points. The cable, discretised by 

a sufficient number of linear elements, would be equilibriated by displacements in the plane of 

the surface, such that the surface form remained undistorted. Furthermore, the fabric cutting 

patterns of the membrane could be generated automatically when following this procedure. The 

position of the element nodes along the length of the geodesic line, may be controlled by 

maintaining an equal spacing of the nodes. This type of restraint may prove particularly effective 
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in increasing the stability and convergence of the solution algorithm when applied to the element 

side nodes (which are prone to unnecessarily large displacements in the plane of the surface. 

Furthermore, it is recommended that the triangular element should be resumed, and reformulated 

using the finite element techniques, taking into account the second order strain displacement 

equations. This proposed element formulation, it is anticipated, would negate the effects of the 

violation of the assumption of small strains, present in the triangular element appraised in this 

thesis, and would be less sensitive to changes in geometry than the 24 degrees-of-freedom 

quadrilateral element formulated here. 
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