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Abstract

Introduction: Postural control is a prerequisite to many everyday and sport-

ing activities which requires the interaction of multiple sensorimotor processes.

As long as we have no balance disorders, the maintenance of an erect stand-

ing position is taken for granted with automatic running control processes. It

is well known that with increasing age or disease balance problems occur which

often cause fall-related injuries. To assess balance performance, posturography

is widely applied in which body sway is traditionally viewed as a manifestation

of random fluctuations. Thus, the amount of sway is solely used as an index

of postural stability, that is, less sway is an indication of better control. But,

traditional measures of variability fail to account for the temporal organisation

of postural sway. The concept of nonlinear dynamics suggests that variability

in the motor output is not random but structured. It provides the stimulus to

reveal the functionality of postural sway. This thesis evaluates nonlinear analysis

tools in addition to classic linear methods in terms of age-related modifications

of postural control and under different standing conditions in order to broaden

the existing knowledge of postural control processes.

Methods: Static posturographic analyses were conducted which included the

recording of centre of pressure (COP) time series by means of a force plate. Linear

and nonlinear methods were used to quantify postural sway variability in order

to evaluate both the amount and structure of sway. Classic time and frequency

domain COP parameters were computed. In addition, wavelet transform (WT),

multiscale entropy, detrended fluctuation analysis, and scaled windowed variance
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method were applied to COP signals in order to derive structural COP parame-

ters. Two experiments were performed. 1) 16 young (26.1 ± 6.7 years), healthy

subjects were asked to adopt a bipedal stance under single- and dual-task con-

ditions. Three trials were conduced each with a different sampling duration: 30,

60, and 300 seconds [s]. 2) 26 young (28.15± 5.86 years) and 13 elderly (72 ± 7

years) subjects stood quietly for 60 s on five different surfaces which imposed

different biomechanical constraints: level ground (LG), one foot on a step (ST),

uphill (UH), downhill (DH), and slope (SL). Additional to COP recordings, limb

load symmetry was assessed via foot pressure insoles.

Results: We found a higher sensitivity of structural COP parameters to mod-

ulations of postural control and partly an improved evaluation of sway dynamics

in longer COP recordings. WT revealed a reweighing of frequency bands in re-

sponse to altered standing conditions. Scaling exponents and entropy values of

COP signals were task-dependent. Higher entropy values were found under the

dual-task and condition ST. The time scales affected under the altered standing

positions differed between groups and sway directions. Mainly larger posturo-

grams were found in the elderly. Age effects were especially revealed in position

ST and concerning medial-lateral COP signals. Load asymmetry was stronger in

elderly subjects for LG, UH, and DH positions.

Discussion: Modifications of multiple time scales corresponds to an interplay

of control subsystems to cope with the altered task demands. The affected time

scales are age-dependent suggesting a change of control processes. Higher ir-

regularity under the dual-task indicates a more complex motor output which is

interpreted as less attentional investment into postural control. Larger complex-

ity is evident for ST in contrast to LG position. ST obviously challenges lateral

sway which is counteracted differently between groups. Load asymmetry suggests

that especially elderly subjects adopt a step-initiation strategy.

Conclusion: A continued application of nonlinear methods is necessary to

broaden the understanding of postural control mechanisms and to identify classi-
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fiers for balance dysfunctions. Structural COP parameters provide a more com-

prehensive indication of postural control system properties between groups and

task demands. COP recordings of at least 60 s are recommended to adequately

quantify COP signal structure. The analysis of postural strategies in everyday

activities increases the ecological validity of postural control studies and can pro-

vide valuable information regarding the development of effective rehabilitation

programs.
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1 Introduction

1.1 Investigation of the Postural Control System

Postural control is a fundamental motor skill which is part of various daily life

and sporting activities. As long as we have no balance disorders, it is taken for

granted to be able to sustain a standing posture and to adapt to changing en-

vironmental conditions. We are not aware of the complexity of postural control

as the underlying control processes are automatically conducted. But, think of

standing on a narrow beam or balancing on a line when we can experience the dif-

ficulty to maintain our stability. Indeed, postural control is a complex motor skill

and can be defined as the act to maintain, achieve or restore a state of balance

(Pollock et al., 2000). Upright stance requires the integration of information from

various sources, including vestibular system, visual and proprioceptive informa-

tion (Horak, 2006; Winter, 2005). “The ability to control our body’s position in

space emerges from a complex interaction of musculoskeletal and neural systems,

collectively referred to as the ’postural control system’ ” (Shumway-Cook and

Woollacott, 2012, p. 161). Years of research have provided a window into the

understanding of the postural control system. However, the mechanisms under-

lying postural stability are not fully understood. It is the aim of this work to

contribute to the understanding of the postural control system. The focus lies on

technical aspects concerning the quantification of motor output variability in pos-

tural tasks. To this end, tools from nonlinear dynamics are evaluated in addition
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Chapter 1: Introduction

to classic linear measures, as they can help to unravel the dynamical1 properties

of postural sway which lead to a better understanding of the underlying control

system. The application of analysis techniques which stem from the discipline

of nonlinear dynamics is appealing as they provide inside into basic phenomena

of movement, including change, stability, variability, and the emergence of new

structure and function (Newell et al., 2006).

In the remaining part of this section the biomechanical framework for the inves-

tigation of postural control is given. The second section of the introduction deals

with the issue of variability as a natural phenomenon of human movements. A

new way of decomposing variability is introduced which delivers promising in-

sight into the organisation of postural control. Subsequently, technical aspects of

the posturographic measurement are considered with comments on standards and

pitfalls which motivate our study protocols. Finally, an overview of the conducted

experiments and their interconnections is given.

1.1.1 Biomechanical framework

The upright stance of a human being can be characterised by small, continuous

displacements. Even normals display postural sway albeit adapting a quiet stance

position. These displacements reflect a complex control process which involves

the integration of sensory information from multiple sources (Oie et al., 2002).

That is, a stable upright position of a healthy human being results from nonlin-

ear (Newell et al., 1993) superposition of vestibular, visual, and somatosensory

systems (Massion, 1992). Cavanaugh et al. (2005) remark that there is no neuro-

physiological evidence which supports true static equilibrium as an achievable or

even desirable behavioural goal. Indeed, it is suggested that postural sway serves

as a mechanism to gather sensory information of the control system (Chagdes

et al., 2009; Slobounov et al., 1998; Riley et al., 1997). According to Hufschmidt

et al. (1980), postural sway reflects random behaviour (white noise) as well as

1The term “dynamic” refers here and in the following to “time-dependent behaviour”.
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Section 1.1: Investigation of the Postural Control System

regulatory activity of the several control loops involved in the maintenance of

balance. Currently it is suggested that postural fluctuations are structured out-

put, containing meaningful information concerning the state of the system, rather

than being random occurrences (Peng et al., 2009).

The study of postural sway has a long history which starts with the measurement

of head oscillations. Today, force plates are commonly used to quantify body sway

(Pollock et al., 2000; Winter, 2005). The output of a force plate yields the centre

of pressure (COP) location in two dimensions: x = medial-lateral (ML) and y

= anterior-posterior (AP) direction (Figure 1.1). The measurement of the COP

Figure 1.1. Exemplary posturographic measurement: Centre of pressure (COP)
fluctuations recorded for 60 seconds [s] on a force plate in two dimensions, medial-
lateral = x and anterior-posterior = y.

position over time - like in a standing task - results in a complex output signal of

the postural control system in which various pertinent cognitive, perceptual, and

motor processes are reflected (Donker et al., 2007; Horak and Mcpherson, 1996).

The COP is the distribution of the total force applied to the supporting sur-

face and its position coincides with the projection of the centre of mass (COM)

on the surface. The COM is a virtual point that is at the centre of the total

body mass and moves when body segments change position. The COP is the

3



Chapter 1: Introduction

most commonly measured variable as it can be easily and directly recorded with

high reliability (Lafond et al., 2004; Ruhe et al., 2010; Piirtola and Era, 2006;

Panzer et al., 1995; Winter, 2005). In contrast, the recording of the COM is more

time consuming and error-prone as it requires very precise measures of all body

segment displacements (Winter et al., 1998). The fluctuation of the COP varies

with the movement of the COM to keep the COM over the base of support (BOS)

(Corriveau et al., 2000). Stability requires that the projection of the COM does

not deviate beyond the BOS (Latash, 1998). Duarte et al. (2011) remark that the

stability limits standing humans are able to use, however, are smaller than the

physical limits which equate the BOS. The two signals, fluctuations of COM and

COP, are distinct but closely related (Murray et al., 1967; Winter, 1995a). When

standing quietly, the difference between COM and COP is small in absolute size

and is proportional to the horizontal acceleration of the COM (Winter, 1995b

and references therein; Equation 1.1). Theoretically, the COP coincides with the

COM at low sway frequencies but has a different frequency content in the part

of the spectrum beyond 1 Hz (Winter, 2005; Blaszczyk, 2008). From a functional

point of view, the difference between COP and COM is not at all negligible as the

COM is the key variable which is controlled by the postural system and the COP

is the controlling variable (Scholz et al., 2007). In other words, the net COP is

the integrated control variable of the COM (Winter, 1995a). The inverted pen-

dulum model, indeed, is the theoretical basis for the relation of the controlled

variable (COM) and the controlling variable (COP) (Panzer et al., 1995; Win-

ter et al., 1998). It provides the analytic relationship between COM, COP, and

the horizontal acceleration of the COM (Winter, 1995b). The following equation

defines this relation and is valid for both, anterior-posterior and medial-lateral

COM direction:

(COP-COM) =

(

(−1) · I
W · h

)

· äCOM (1.1)
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Section 1.1: Investigation of the Postural Control System

with COP = centre of pressure position, COM = centre of mass position, I is the

inertia of the body about the ankle joint, h is the COM height above the ankle

joint, W is the body weight minus the weight of the feet and äCOM denotes the

horizontal acceleration of the COM (Winter et al., 1998).

1.1.2 Static posturography

The quantitative assessment of body sway by means of force recordings is called

posturography. Two approaches can be distinguished: static and dynamic pos-

turography. Dynamic posturography involves the application of external per-

turbations. The present work concentrates on static posturography which aims

at the quantification of postural fluctuations while standing quietly. The most

frequently studied task is to stand as still as possible on a force plate while the

COP is recorded over time (Winter, 1995b; Piirtola and Era, 2006). Note that the

instruction given to the subject (e.g., “stand as still as possible” vs. “stand qui-

etly”) can have an influences on the motor output (Zok et al., 2008; Ruhe et al.,

2010). The COP signal represents the net motor control output which is requi-

site to correct for imbalance (Cavanaugh et al., 2005; Winter, 1995a). Hence, the

analysis of the COP signal can reveal something of the control mechanism where

two main aspects are mainly considered: the investigation of COP signals in order

to distinguish systems or to mathematically model systems. In the present work,

the first aspect is focused with the aim to establish a concrete understanding of

the properties of normal healthy postural control and its modifications with age

under different postural tasks. The degradation of the postural control system

with age is well known (Laughton et al., 2003; Maki and McIlroy, 1996; Salzman,

2010; Woollacott, 1993). It enhances the risk of falls and can be a reason of social

exclusion as the elderly are not able to successfully execute daily life activities

(Era et al., 1997; Frank and Patla, 2003; Horak, 2006; Shumway-Cook et al.,

1997). Adequate postural control strongly depends on the successful integration

of the different sensory information gathered by the somatosensory, visual, and

5



Chapter 1: Introduction

vestibular system (Horak and Mcpherson, 1996; Woollacott, 1993). As ageing is

associated with a decline in the function of the sensory systems (Lord and Menz,

2000; Pasquier et al., 2003; Salzman, 2010), an impaired ability to control posture

is observed with age (Pasquier et al., 2003). A major problem seems to be pos-

tural stability in medial-lateral sway direction, especially in the context of falling

(Lord et al., 1999; Maki and McIlroy, 1999; Mille et al., 2005). Force platform

measurement is widely applied to evaluate balance performance and particularly

to predict falls among the elderly (Nardone and Schieppati, 2010; Mancini and

Horak, 2010; Piirtola and Era, 2006). However, Bigelow and Berme (2011) re-

mark that the benefit of posturography in the clinical screening of older adults

for fall risk is limited by standardisation failures.

With respect to modifications of the postural task, it can be assumed that the

alteration of the basic task - standing quietly with the feet side by side - lead

to changes in the postural dynamics which give a deeper understanding of the

mechanisms underlying postural control. Examples of task manipulations are

eyes closure, secondary task applications or changing the foot placement. It is

mainly suggested that the motion of the COP is sensitive to task manipulations,

e.g., a change of the foot position alters the available BOS which affects stability

(Chiari et al., 2002; Horak, 2006; Kirby et al., 1987). However, conflicting results

make it difficult to draw definite conclusions. For instance, Fraizer and Mitra

(2008) review that studies which investigate the effect of a secondary task on

postural control have provided contradictory results. All three possibilities - no

difference, more or less sway - were reported (Fraizer and Mitra, 2008). One con-

spicuous reason for contradictory results and interpretations is the fact that there

are few common grounds concerning the study of postural control. Studies on

postural control differ widely in terms of the overall experimental set-up and the

applied methods to quantify the system dynamics. Few research work has been

contributed to the definition of recommendations or standards, yet. Forcefully in

the last years, limitations of traditional posturographic methods, on which most
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postural control studies are based, were discussed (for reviews, see Harbourne and

Stergiou, 2009; Stergiou and Decker, 2011). In the course of this discussion, novel

analysis methods are suggested as descriptors of postural control based upon a

new perspective on postural sway variability in particular with respect to static

standing tasks. This will be addressed in the next two sections as it provides the

framework for our studies reported herein.

1.2 Role of Variability in Human Movements

In order to understand human movement one has to consider the phenomenon of

movement variability. Actually, this goes back several years into the 90tes when

Bernstein addressed the question of how the central nervous system (CNS) can

control the many degrees of freedom (DOF). He recognised that humans have

multiple ways to perform a movement in order to achieve a specific goal. The

many DOF result from the large number of joints and muscles which are avail-

able with respect to the kinematics and dynamics. This leads to the problem of

mastering the redundant DOF, known as the motor equivalence problem (Bern-

stein, 1967). As a consequence, even if we try, we never reproduce a movement

in exactly the same way. This was already demonstrated by Woodworth (1899),

who analysed line drawing movements, and was since then confirmed by several

research groups with respect to different applications. Hence, there is no unique

motor solution to a task - or in the words of Bernstein “repetition without repe-

tition” (Bernstein, 1967).

Variability is a natural feature of human movement which arises from the abun-

dance of motor system DOF (Newell and Corcos, 1993). That is, variations in

motor performance can be commonly observed across repeated accomplishments

of a task e.g., the trajectories of the leg movement differ across repeated penalty

shots. Traditionally, these fluctuations are seen as an error in the motor per-

formance with the assumption that mature motor skills (professional players)

are characterised by less deviations from the mean, the standard performance.
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So, experiments on motor learning classically associate a decrease in variability

over the course of practice with learning e.g., improved coordination. The the-

ory of dynamic systems stimulates the reassessment of the concept of movement

variability. One finds strong support from research that variability is essential

rather than detrimental (Davids et al., 2003; van Emmerik and van Wegen, 2000;

Stergiou and Decker, 2011). Hence, variability occupies a functional role which

reflects the adaptability of the system to environmental stimuli and stresses (van

Emmerik and van Wegen, 2002; Lipsitz and Goldberger, 1992; Loosch, 1997). It

helps athletes during practice or rehabilitation to find functional movement solu-

tions in complex environments (Riley and Turvey, 2002). Stergiou et al. (2006)

recognise that mature motor skills and healthy states are associated with an

optimal amount of movement variability that reflects the adaptability of the un-

derlying control system. The optimality in variability can be represented as an

inverted U-shape relationship (Stergiou et al., 2006; Stergiou and Decker, 2011).

On the one hand, a persistent lack of movement variability may indicate rigid,

inflexible motor behaviours with limited adaptability to changing environmental

demands. On the other hand, too much variability is undesirable as it renders

the system more random and unfocused (Stergiou et al., 2006).

1.2.1 Two perspectives of movement variability

The awareness that variability is a natural feature of human movement motivates

the measurement of movement variability. Two perspectives have been estab-

lished in the years of research (Table 1.1). They bring out two different meanings

of variability and two concepts how to measure it with crucial relevance for motor

control studies. Traditionally, measured variables in human movement studies -

concerning steady state conditions - are considered to randomly fluctuate around

a stable mean value. Hence, measurement fluctuations are viewed as unmeaning

white noise which can be eliminated by averaging techniques. In other words,

movement variability is seen as the dysfunctional aspect of human motor be-
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Table 1.1. Two perspectives of movement variability: comparison of traditional
view and new view of variability.

Feature Traditional view New view

Underlying
model

linear model nonlinear model

Signal variability random (white noise) can contain meaningful structure

Quantification amount of variation temporal organisation of variation

Measure e.g., standard deviation e.g., sample entropy

Meaning variability is detrimental: it
presents error in human move-
ments

variability is functional: it is ben-
eficial to movement organisation
and execution

Interpretation experts show reduced variability healthy states: optimal amount of
variability, complex behaviour

Implication:
postural control

less sway is associated with healthy
systems; the output can be pre-
dicted from the input by means of
linear equations and known system
relations

complex interactions are revealed
over several time scales; time evo-
lutionary properties of postural
sway reflect the interaction within
the underlying control system

haviour. Thus, traditional variability measures (e.g., standard deviation) capture

error in the performance with the assumption that experts show reduced vari-

ability (Davids et al., 2003; Harbourne and Stergiou, 2009). Those classic linear

statistical measures, which quantify the magnitude of variation in a signal around

a central point, ignore the temporal ordering of data points. However, signals can

be indistinguishable concerning the amount of variability, but can have a different

structure and vice versa (Figure 1.2). A typical example is the computation of

the standard deviation in order to quantify the variability in a time series. For

instance, stride length fluctuations during gait are classically described by the

amount of variability: one asks how large is the fluctuation around the mean

stride length across several gait cycles. This consideration is based on the as-

sumption that variations occur randomly and independent. As a consequence

the ordering of points (one data point corresponds to the stride length of one gait

cycle), e.g., the correlation structure, is ignored.

Motivated by the concepts of nonlinear systems, a new perspective concerning

movement variability has been established. That is, movement variability is dis-

tinguishable from random behaviour i.e., variations display a meaningful structure
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(van Emmerik and van Wegen, 2000). From a dynamical systems theoretical ap-

proach, variability of performance is considered functional as it helps individuals

to explore their environment and to gain information for actions (Davids et al.,

2003). As a consequence, the temporal structure becomes the facet of interest

which captures the variations in how human movements evolve over time. The

temporal organisation is quantified by the degree to which values emerge in an

orderly manner (Harbourne et al., 2009). This is often done across a range of

time scales to account for different physiological processes. To come back to the

Figure 1.2. Two signals with the same amount of variability quantified by the
standard deviation (SD), but different structure - regular (left panel) versus irreg-
ular (right panel) - quantified by an entropy measure: sample entropy = SaEn (for
further details on SaEn, see Chapter 2).

abovementioned example, stride length fluctuations have been shown to display

a structure rather than occurring randomly (Hausdorff, 2005). This structure

differs between elderly fallers and non-fallers (Herman et al., 2005). Moraiti

et al. (2007) studied the temporal structure of the variations present in an ante-

rior cruciate ligament (ACL) deficient knee during walking and found more pre-

dictability in the motor behaviour of the injured knee compared to the healthy

one. To summarise, healthy gait can be characterised by on optimal amount of

movement variability which allows for flexibility and adaptability (Stergiou and

Decker, 2011).

Stergiou and Decker (2011) remark that the two perspectives of movement vari-

ability have to be seen complimentary since each captures other characteristics
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of the signal. As a consequence, it is important to evaluate the two approaches

simultaneously. Glazier and Davids (2009, p. e2) stress that it “is not to say

that all motor variability is functional, but rather, that not all variability is dys-

functional”. This has to be taken into account when measuring and evaluating

movement variability. The dynamical systems theory approach allows to evalu-

ate the functionality of motor variability which gives rise to new interpretations.

This strongly impacts the perceived importance of variability in physiological

processes, e.g., cardiac dynamics, brain function, and gait. The one-sided linear

perspective - the more variability the less good - has to be reconsidered. Actually,

research supports that it is the structure and not the magnitude of movement

variability that is important in understanding and differentiating normal and

pathological motor functioning (Latash et al., 2002; Harbourne et al., 2009).

1.2.2 Variability of postural sway

In the following we apply the previous remarks about movement variability to

the analysis of the postural control system. The upright stance of a person can

be considered as an unstable position. Even healthy young adults who try to

maintain a quiet stance position exhibit postural sway. Hence, we are never in

exact equilibrium, but our body COM moves around. These fluctuations can be

analysed by a force plate where the COP is measured and taken as an indicator

of postural sway (Figure 1.1).

The classic linear approach leads to the general assumption that the more peo-

ple sway the less good is their balance performance. In other words, increased

sway variability is equalised with less stability. For instance, more stable athletes

are assumed to sway less about a central equilibrium point in a quiet standing

task. As a consequence, postural control studies typically assess sway variability

by calculating the standard deviation or the length of the sway path. Larger

values are then taken as an indicator for less stability. The assumption about

the negative correlation between postural variability and stability is enforced by
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studies of balance impaired subjects who show a larger amount of COP location

variability (e.g., Hufschmidt et al., 1980; Diener et al., 1984). In this context, a

larger amount of postural sway in the elderly is well documented and research

indicates that an increase in postural sway variability can be related to fall-prone

subjects (Blaszczyk et al., 1993; Maki et al., 1994). But, variability does not

mandatory predict instability (van Emmerik and van Wegen, 2000; Newell et al.,

1993). Blaszczyk (2008) remarks that sway variability is not usually a conclu-

sive evidence for instability as other proofs are needed related to the dynamics

of postural control. Hence, a decrease in COP area can be a sign of a better

integration of multisensory inputs but also a sign of an increased body stiffness

associated with fear of falling (Lacour et al., 2008). In accordance with Granata

and England (2007), variability and stability represent different properties within

the motor control process. Variability refers to the ability of the motor system

to reliably operate in a variety of different environmental and task constraints,

whereas stability refers to the dynamic ability to offset an external perturbation.

In this context, van Emmerik and van Wegen (2002) stress the functional aspect

of sway variability as postural movements generate information about the envi-

ronment. Postural sway minimisation can deprive the individual of exploratory

experiences (van Emmerik, 2007; Ko et al., 2003; Lacour et al., 2008). Those

experiences are beneficial in order to effectively respond to an ever-changing en-

vironment (Chagdes et al., 2009; Riccio, 1993). Several years ago, Newell et al.

(1993) already showed that the amount of COP variability is not a sufficient mea-

sure of stability. They compared normal and tardive dyskinetic adults and found

that the two groups are better distinguishable by analysing the structure of the

COP pattern. Similarly, Davids et al. (1999) found higher mean and maximum

COP velocity in the control group than in the ACL-deficient group which should

not be interpreted as greater instability but as indicative of normal exploratory

behaviour. Another example, which shows that the amount of postural sway

does not coincide with the degree of instability, is given by the study of quiet
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stance in Parkinson’s disease patients (Schieppati et al., 1994; Horak et al., 1992;

Romero and Stelmach, 2003). The reduced sway in the patients can be related to

less functional movements in terms of exploratory behaviour (Schieppati et al.,

1994).

As a conclusion, an increased magnitude of output variability quantified by classic

linear measures is not mandatory a sign of instability. The single consideration

of only linear methods is insufficient to predict the status of the postural control

system or to understand control mechanisms. Nonlinear methods derived from

the theory of dynamical systems are necessary to draw conclusions about control

strategies.

1.2.3 Complexity of motor behaviour

When talking of variability generally and of the nature of postural sway variability

specifically, one has to consider the concept of complexity. In the literature one

finds many attempts to unravel the complexity of the postural control system. It

is believed that postural systems which exhibit complex behaviours may be more

stable, flexible, and adaptable (Goldberger et al., 2002). However, complexity is

an elusive concept. According to Duarte and Sternad (2008), it can be associated

with a time evolution that has a rich structure on several time scales and arises

from the many spatiotemporal scales in a biological system. A key signature of

ageing and disease seems to be a reduced complexity in the human system (Lip-

sitz and Goldberger, 1992; Manor et al., 2010; Vaillancourt and Newell, 2002).

In this context, van Emmerik and van Wegen (2002) showed that the proposed

link between disease and loss of complexity cannot be affirmed for all types of

movement dynamics. Hence, a decrease as well as an increase in variability and

complexity may describe changes in behavioural systems due to ageing or disease.

This depends on the specific dynamics of the system that is investigated (Vail-

lancourt and Newell, 2002). Duarte and Sternad (2008) did not find a decreased

complexity in the elderly in a prolonged standing task. One can conclude that
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age effects on complexity are task dependent and obviously depend on the time

scales (short vs. long) included into the analysis. This makes sense as the pos-

tural system consists of various subcomponents which have to interact (Horak,

2006; Manor et al., 2010). Otherwise stated, the control of posture requires a

multiscale organisation.

The term “Complexity” is used and interpreted differently between research

groups. For example, entropy values are believed to positively correlate with

signal complexity (e.g., Chen et al., 2009; Pincus, 1991; Rhea et al., 2011). How-

ever, these measures quantify the degree of regularity of the signal and not di-

rectly its complexity (Goldberger et al., 2002). Completely ordered (low entropy

value) and completely random (high entropy value) signals are both not struc-

turally complex as they admit a very simple description at a global level (Costa

et al., 2005). Hence, a toolbox of measures is needed to explore system com-

plexity rather than a single statistical measure which can give misleading results

Goldberger et al. (2002). In the present work complexity is understood as the

presence of nonrandom fluctuations on multiple time scales which evolve from the

underlying networks of nonlinear interactions within the control system (Duarte

and Sternad, 2008; Lipsitz and Goldberger, 1992). To conclude, it is necessary to

reconsider the relation of postural stability and variability, as well as complexity

more detailed within the emerging dynamical framework of motor control.

1.3 Analysis of Posturographic Data

Posturography is a useful tool to quantify balance performance, inter alia, with

the aim to screen for abnormal balance control (e.g., Piirtola and Era, 2006). In

this context, force plates are widely applied to measure the centre of pressure

(COP) location and in a next step to identify disease-related balance characteris-

tics. In the last years, the usefulness of posturography was discussed extensively

(Visser et al., 2008; Mancini and Horak, 2010; Nardone and Schieppati, 2010).

The authors came to the conclusion that it is rich in information for the clinical
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practitioner and can overcome disadvantages of other common balance assess-

ments. Though, the difficulty remains to decode the information and to find

those changes specific for instability (Blaszczyk, 2008). Posturographic analy-

sis is not new and its applications are widely spread e.g., diagnostic purpose,

therapeutic evaluation, to understand control mechanisms or to investigate the

development of postural control. However, no widespread consensus has emerged

about the methods, techniques, and interpretation of the data (Baratto et al.,

2002). According to Blaszczyk (2008), it is a very sophisticated task to identify

COP characteristics and to compare posturographic results due to the specificity

of the experimental protocol in various laboratories. The lack of standardisation

affects different issues like the test protocol, the measurement device (force plate

vs. pressure plate), data processing and analysis (e.g., Visser et al., 2008; Ruhe

et al., 2010). Already in 1981 at the International Symposium of Posturography

in Kyoto recommendations for standards were made. Since then, several research

groups have produced posturographic data but few steps were made into the

direction of formulating standards for the posturographic measurement. In the

present work, a central aspect of this huge field of problems is addressed which

is data processing and analysis. The aim is to derive recommendations for the

analysis of postural control. Adequate method application is the basis for the

generation of meaningful results and interpretations.

1.3.1 Two types of methods

To parameterise COP fluctuations, measures are needed which best characterise

postural sway and detect differences. Actually, many postural sway measures

exists but there is little common ground for selecting and interpreting these mea-

sures. However, agreement exists about the necessity to consider multiple mea-

sures in order to get insight into the multifactorial nature of postural control. In

this context, Harbourne et al. (2009) remarks that different measures taken to-

gether offer a more comprehensive description of postural control with the ability
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to understand specific characteristics in the system. In the last years, various re-

search groups have shown that two groups of sway measures - referred to as linear

and nonlinear methods due to their underlying models (Table 1.1 in Section 1.2)

- have to be combined to allow for a more holistic view of the variability present

in the postural control system (Duarte and Freitas, 2010; Harbourne et al., 2009;

Kirchner et al., 2012):

(a) Measures of the amount of variability, named global parameters (Table 1.1,

left column).

(b) Measures of the temporal organisation of variability, named structural pa-

rameters (Table 1.1, right column).

Parameters from group (a) are traditionally considered. They interpret all regular

structure present in the signal. However, the underlying hypothesis of “variabil-

ity is equivalent to white noise” is questionable. It includes the assumption that

COP fluctuations are detrimental. But, postural sway can be exploratory as it

generates information from the environment (Chagdes et al., 2009). At this point

it has to be mentioned that not all noise is bad. There are different sorts of noise

labelled with different colours e.g., white, pink, brown or black noise. The colour

denotes the strength of the long-range correlations with black noise corresponding

to a highly structured time series. One has to be specific when talking about noise

in a system. Newell et al. (2006) indicate the failure of previous studies on noise

and motor control, not to state explicitly what kind of noise it is referred to. Typ-

ically, the noise interpretation of variability is related to white noise which means

random occurrences. “The standard strategy has been to equate variability with

noise without examining the type of noise and the structure of the variability”

(Newell et al., 2006, p.10). In contrast to a random occurrence, it could be shown

that COP fluctuations contain meaningful structure (for review, see Stergiou and

Decker, 2011). Newell (1998) already remarks that biological movement signals

can be characterised by a variance profile other than white noise which indicates

that error and variability are not synonymous. It is necessary to complement
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COP parameterisation by a structural analysis in order to unravel hidden pat-

terns in apparently random signals. Nonlinear methods aim at the identification

of sub-units in the posturographic data which can then be related to the under-

lying motor control processes. An overview of the structural parameters which

are considered in the present work is given by Table 1.2. This choice of methods

is based on literature references and on own research findings. More detailed

information on the applied methods is given in Chapter 2. Basic formulas are

presented there. In addition, we refer to the choice of input parameters as the

results strongly depend on them. The present work should contribute to finding

Table 1.2. Overview of methods for the structural analysis of postural sway data
which were considered in this thesis. The third column summarises exemplary
literature concerning the application of the methods.

Method Meaning of interest Literature

Regularity measures:

Single-scale entropy: Ap-
proximate entropy (ApEn)
(Pincus, 1991, 1998), Sam-
ple entropy (SaEn) (Rich-
man and Moorman, 2000)

Degree of regularity:
maximum value for ran-
dom signals

Borg and Lax̊aback (2010);
Cavanaugh et al. (2005, 2007);
Donker et al. (2007); Haran
and Keshner (2008); Lake et al.
(2002); Ramdani et al. (2009,
2011); Rhea et al. (2011);
Roerdink et al. (2006); Stins
et al. (2009)

Multi-scale entropy (MSE)
based on SaEn (Costa et al.,
2002, 2005)

SaEn computed on
successive time scales;
complexity index =
area under the MSE-
curve → high values for
complex signals

Costa et al. (2003, 2007); Duarte
and Sternad (2008); Kang et al.
(2009); Manor et al. (2010)

Correlation structure:

Detrended fluctuation anal-
ysis (DFA) (Peng et al.,
1994), scaled windowed vari-
ance method (SWV) (Can-
non et al., 1997)

Long-range correla-
tions, smoothness of
the signal

Amoud et al. (2007); Blázquez
et al. (2009); Delignières et al.
(2011); Donker et al. (2007);
Doyle et al. (2005); Duarte and
Sternad (2008); Duarte and Zat-
siorsky (2000, 2001); Roerdink
et al. (2006)

Spectral analysis:

Wavelet transform (WT)
(Addison, 2002)

Time-frequency resolu-
tion based on time-
localised basic functions

Bernard-Demanze et al. (2009);
Chagdes et al. (2009); Morales
and Kolaczyk (2002); Uetake
et al. (2004); Zhang (2006)
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an answer to the problem of method selection and application. One example for a

statistical method which aim at the reduction of the large amount of parameters

extracted from COP time series is the principal component analysis (PCA). Up

to date, only few studies followed this approach. So, recommendations are rare

which is also due to the fact that the results seem to depend on the sample (Roc-

chi et al., 2006: healthy vs. Parkinson’s disease subjects) and the task (Schubert

et al., 2012a,b: single- vs. dual-task). In addition, the feature selection process

mostly includes traditional parameters (Chiari et al., 2002; Rocchi et al., 2006).

This is not astonishing as the application of nonlinear methods is not straightfor-

ward. Unknown pitfalls limit the interpretation and further processing. However,

Harbourne et al. (2009) suggest that linear and nonlinear parameters provide dif-

ferent information regarding postural control in sitting infants. Furthermore, it

was shown that traditional measures do not correlate with the complexity index

and that they load on different principal components (Kang et al., 2009; Manor

et al., 2010). Several questions remain, inter alia, what is the practical usefulness

of the methods, which parameters can discriminate between individuals, which

one responds to a change of the task or is sensitive to improved stability, how

has the raw data be processed and how have the methods be adequately applied.

The latter two aspects have to be considered at the beginning of the data analysis

process. They strongly influence the results and in a next step the interpretations

as well as our understanding of postural control. A central aspect is the sampling

duration and frequency which is addressed in the following.

1.3.2 Sampling duration and frequency

The extraction of meaningful information from posturographic data requires ad-

equate signal processing. A key factor which influence the results is the sampling

duration and in combination with the sampling frequency the total length of the

time series (Carpenter et al., 2001; van der Kooij et al., 2011). Looking at this

detail in study protocols, one finds different values ranging from short sampling
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durations (e.g., 15 s) to long-time standing (e.g., 30 minutes). Under clinical

aspects a typical considered standing period is around 30 s, mainly based on the

argument that patients cannot stand for a long time. However, long sampling

durations can be advantageous as the application of long COP recordings has

revealed that high frequency adjustments of COP are superimposed upon very

low frequency oscillations (Duarte and Zatsiorsky, 2001). These low frequency

oscillations are not detectable in short COP recordings. In this context, Newell

(1998) remarks that the length of the recorded COP signal is often not sufficient

to do justice to the analysis of evolutionary properties of the postural dynamics.

In addition, van der Kooij et al. (2011) showed that longer recordings are neces-

sary to achieve stable measure outcomes e.g., frequency parameter decreased as

sample duration increased which confirms the results of Vieira et al. (2009). As

a consequence, extended standing - at least 120 s are recommended - is neces-

sary to fully characterise body sway (van der Kooij et al., 2011) and to reduce

the impact of the transient elements of the COP signal which are found during

the first 20 s (Carroll and Freedman, 1993). Ruhe et al. (2010) conclude that a

sampling duration of 90 s can be expected to yield good reliability for all tradi-

tional COP parameters. However, long sampling durations are criticised as the

effect of fatigue confound the results. Concerning the sampling frequency one

finds again differing values in study protocols. Raymakers et al. (2005) found

significant differences between calculations based on 50 and 10 Hz concerning

traditional COP parameters. Rhea et al. (2011) remark that oversampling can

lead to co-linearities in the signal. But, undervalued sampling frequencies may

not provide an accurate record of the system’s dynamics as postural control oc-

curs at a variety of time scales (Rhea et al., 2011). They themselves propose

that a value above 20 Hz is sufficient based on the Nyquist frequency and the

fact that 10 Hz can be assumed as the upper boundary for voluntary movement

production which was shown by Farmer (1999). Ruhe et al. (2010) conclude that

a sampling frequency of 100 Hz with a cut-off level of 10 Hz appears advisable
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for traditional COP measures. As the sampling duration and frequency influence

COP measure outcomes, it is important to report the used values and to define

standards.

1.3.3 Stationarity

When analysing recordings from living beings one has to assume nonstationary

of the signals. This is due to the fact that temporal changes of the spontaneous

dynamics are natural and unavoidable (Kantz and Schreiber, 2004, Ch2). How-

ever, many methods and results on time series analysis require stationarity which

means that the parameters of the system are independent of time. For example,

the power spectrum is generally computed by a fast Fourier transform which can

give misleading results when applied to nonstationary time series. More gener-

ally, a signal is called stationary “if all joint probabilities of finding the system

at some time in one state at some later time in another state are independent of

time within the observation period” (Kantz and Schreiber, 2004, p.14). Hence,

rare events destroy stationarity conditions unless they occur often enough to be

effective independent of the observed joint probabilities. Many processes are for-

mally stationary when observed infinitely long but behave nonstationary when

recorded over finite time. Experimental research has shown that the COP sig-

nal contains long-range correlations (e.g., Duarte and Zatsiorsky, 2000). Thus,

the recording of COP displacements for a few minutes induces the observation

of a small excerpt of a longer process which suggests an apparent lack of a sta-

tionary condition (Carroll and Freedman, 1993; Carpenter et al., 2001). One do

not find many studies which investigate the phenomenon of stationarity or even

consider it when analysing COP signals. Studies that reported tests of station-

arity provide evidence that the COP time series in quiet upright bipedal stance

is nonstationary (Carroll and Freedman, 1993; Newell et al., 1997). Newell et al.

(1997) remark that while nonstationarity can be a problem from a mathematical

point of view, the one in the COP profile can be seen as a reflection of a skilled
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coordination and control solution to postural regulation. Overall, it is important

not to ignore known nonstationarity. Kantz and Schreiber (2004, Ch2) propose

to have recordings which are much longer than the longest characteristic time

scale which is relevant for the evolution of the system. For the recording of a

COP signal, which is dominated by low frequencies, this is hardly possible. But,

it supports the abovementioned recommendation of the necessity of long-time

standing. Short samples are not sufficient to capture the dominant slow fluctua-

tions so that the true frequency values would be under- or overestimated (van der

Kooij et al., 2011).

1.4 Overview of Studies

In the following an overview of the conducted experiments and their interconnec-

tions is given. Two main experiments were performed under the general aim to

evaluate different methods for the characterisation of sway variability in order to

find adequate descriptors of COP fluctuations and to broaden the understanding

of postural control mechanisms. For this purpose, the first step was to investigate

the requirements for a suitable application of a comprehensive set of analysis tools.

Recommendations were then used to investigate postural control in a practical

setting with importance for the development of e.g., fall prevention or rehabilita-

tion programs. Table 1.3 summarises the studies with respect to their status of

publication and shortly overviews the experimental design.

The purpose of the first study (Section 3.1) was to evaluate the appropriateness

of nonlinear analysis tools in combination with linear methods with respect to

the discrimination of postural fluctuation dynamics under different foci of at-

tention. For this purpose, postural fluctuations were analysed under single- and

a dual-task standing conditions. Standing while performing a cognitive task is

associated with an external focus of attention (McNevin and Wulf, 2002). It with-

draws attention from the actual postural task which enables automatical running

control mechanisms. In contrast, quiet standing is associated with an internal
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Table 1.3. Overview of the conducted studies with their status of publication. A
short description of the experimental design is presented in the third column.

Status Experimental design

Subjects Methods

Study I Published
in Physica
A, 2012,
391:4692-4703

n = 16 young
subjects

Upright stance with and without
performing a cognitive task; Record-
ing of COP for 30, 60, and 300 s

Study II,
Part A

Published in
Human Move-
ment Science,
2013, Epub

n = 13 elderly
subjects

Quiet upright stance on five different
surfaces based on everyday standing
situations; Recording of COP and
pressure distribution under the feet
for 60 sStudy II,

Part B
Not submitted n = 26 young

subjects

focus of attention and close monitoring of postural sway in an attempt to avoid

movements (Wulf and Prinz, 2001). It is hypothesised that the nature of postural

fluctuations differ between single- and dual-task conditions which is reflected in

an altered structure of COP signals. Based on linear measures, an explicit dis-

tinction of postural control mechanisms between single- and dual-task is lacking

(Visser et al., 2008). The main research questions of the first study were, in which

way a comprehensive toolbox contributes to an explicit distinction and how to

formulate a toolbox at all. Referring to the results of the first study, a second

study was conducted which used the already gained experiences and proved its

practicability in an applied experimental design.

The second study (Section 3.2) aimed for the identification of postural strategies

in response to altered stance configurations. Thereby, the different standing po-

sitions are based on everyday situations in an attempt to increase the ecological

validity of postural control studies. The experiment consists of two parts. Part

A comprises the investigation of elderly subjects and Part B the investigation of

young subjects (Table 1.3). The goal was to discriminate between the most often

investigated position of bipedal stance on the level ground and modifications of

it, such us standing on an inclined surface or standing with one foot on a step.
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In this context, standing on an inclined surface is the only position which was

considered in previous studies on postural control (Mezzarane and Kohn, 2007;

Sasagawa et al., 2009; Simeonov et al., 2009). Knowledge of postural control

mechanisms of daily situations is beneficial for the development of effective fall

prevention and rehabilitation programs. In particular, the elderly are the target

group for those programs and were therefore selected as our second experimental

group alongside the young subject group. In addition, it enables the study of

age effects with respect to altered postural demands. It is well known that with

increasing age postural deficits occur (Salzman, 2010). Hence, the comparison

of young and elderly adults is adequate to study the sensibility of methods to

postural changes. It was the objective to broaden the existing knowledge of dif-

ferences in postural control mechanisms between young and elderly subjects and

to derive practical implications.

The thesis is organised as follows: Chapter 2 describes the overall methods which

includes a description of COP recording and data processing. Furthermore, the

mathematical background concerning the analysis of COP time series is given

with basic formulas and equations. Especially, methods used to quantify the COP

signal structure are specified in Chapter 2. Chapter 3 presents the conducted ex-

periments in separate sections. Each section consists of a short introduction and

method description, followed by the presentation and discussion of results with

concluding remarks at the end. Finally, Chapter 4 discusses the overall findings

and gives an outlook. A general conclusion completes this chapter.
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2 General Methods

2.1 Recording of the Centre of Pressure

By means of a force plate (size = 0.3 x 0.4 metre [m], self-manufactured) the

vertical component of the ground reaction force was measured with a sampling

frequency of 1000 Hz. The force plate consists of four force sensors - one in each

corner - which led to the four output signals f1, f2, f3, f4 Newton [N] with f1

corresponding to the force sensor in the upper left corner, f2 in the upper right

corner, f3 in the lower right corner, and f4 in the lower left corner. The data

were transformed into the centre of pressure (COP) location in medio-lateral and

anterior-posterior direction, labelled x and y in the following. The calculation of

the COP location is given by:

x =
f1 + f4 − f2 − f3
f1 + f2 + f3 + f4

and y =
f3 + f4 − f1 − f2
f1 + f2 + f3 + f4

(2.1)

where the common denominator denotes the total force. In the present work, the

COP location (x unit length [UL], y [UL]) is expressed as a fraction of deviation

from the midpoint of the force plate (Figure 2.1). This is the most exact value

as the point of force application can slightly differ. However, the multiplication

by the half length (15 centimetre [cm]) or width (20 cm) of the force plate would

give a good approximation for the COP location in the unit centimetre. The

preprocessing of the COP data comprised the detrending of the mean as the ab-

solute COP position was not controlled. Furthermore, the data were filtered by a

4th order Butterworth filter at a cutoff frequency of 10 Hz to eliminate measure-
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Figure 2.1. Example of the posturographic measurement. A: Schematic force plate
showing the units of the calculated centre of pressure (COP) position. B: Stabilo-
gram representing COP excursions in medial-lateral (x) and anterior-posterior (y)
direction. C: Power spectral density (PSD) plotted against frequency (bottom
panel) for a COPy signal (top panel) of a subject performing the dual-task.

ment noise and downsampled to 100 Hz (Ruhe et al., 2010; Winter, 2005). This

preprocessing implies no great information loss as 95% of sway energy comprises

frequencies up to 1 Hz (Maurer and Peterka, 2005). Furthermore, 10 Hz can be

seen as an upper boundary for voluntary movement production (Farmer, 1999).

However, we controlled the dominant frequency range in our data by a Fourier

transform (FT) before the filtering process was applied.

2.2 Parameterisation of Centre of Pressure Signals

2.2.1 Traditional analysis of postural sway fluctuations

A large number of linear parameters are available for the posturographic analysis

(Duarte and Freitas, 2010; Prieto et al., 1996; Schubert et al., 2012a). We in-

cluded linear parameters out of different domains in order to get a comprehensive

understanding of postural control (Chiari et al., 2002; Rocchi et al., 2004). That
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Section 2.2: Parameterisation of Centre of Pressure Signals

is, we included temporal (standard deviation (SD) [UL], range (R) [UL], mean

velocity (v̄) [UL]), spatiotemporal (length of COP path (LP) [UL], length of nor-

malised COP path called Turn (TP) [UL], area of 95% prediction ellipse (AE)

[(UL)2]) and spectral (p% power frequency fp [Hz]) parameters. It was shown

that in the time domain velocity related measures can better discriminate between

control strategies (Jeka et al., 2004; Prieto et al., 1996; Raymakers et al., 2005).

So we computed mean velocity additional to standard deviation and range which

quantify the size of COP fluctuations. In general, one-dimensional parameters

(temporal, spectral) can reveal sway direction dependent characteristics of COP

displacements and should therefore be considered additional to two-dimensional

(spatiotemporal) parameters. The parameter Turn is a scale invariant measure

and used to prove the results of COP path length. Sway area estimation is a

traditional and widely used method to quantify the size of body sway. An el-

lipse that encloses p% of the observations in the two-dimensional scatter plot is

suitable for this purpose (Sokal and Rohlf, 1994). The literature basically re-

veals two different approaches to compute sway area, that is, calculation of the

confidence and the prediction ellipse (Schubert and Kirchner, n.d.; Rocchi et al.,

2005). However, terminologies are often misused (Schubert and Kirchner, n.d.,

and references therein). We used here the prediction ellipse calculation which

encloses 95% of the observations (COP samples), based on our recently stated

recommendations (Schubert and Kirchner, n.d.). Spectral parameters were de-

rived from the power spectral density (PSD) by approximating the integral with

the trapezoidal rule and then defining the frequency below which p% of the total

power is found (Figure 2.1). We computed three spectral parameters f50, f80

and f95. f50 is the median frequency which is a measure of central tendency.

We suggest that the median is more suitable than the mean frequency as the

PSD has a positively skewed distribution (Figure 2.1, right panel). f95 was cho-

sen to determine the main frequency range. According to Baratto et al. (2002),

f80 best characterises the modifications on the postural control system, so we

27
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included it as well. In order to get an estimator of the PSD in units of [(UL)2/Hz]

Welch’s method was applied to preprocessed COP data. The method splits the

data into z overlapping sections of length w, computes modified periodograms

based on the fast Fourier transform (FFT) and finally averages the resulting pe-

riodograms (Hayes, 1996). This averaging procedure yields better consistency

of the estimated power spectra (Mertins, 2010). For the windowing of sections

a hamming window of size w with 50% overlap was chosen. When the section

length w was not an exact power of two, which is needed for the FFT algorithm,

a zero padding was applied. The length of the FFT is denoted with nfft and is

a power of two. The spectral analysis depends on the algorithm and its input

parameters. One has to balance the relation between w and z: large sections are

necessary to reveal the low frequency content but averaging over a small num-

ber of windows results in an increased PSD estimator variance (Mertins, 2010).

There is no standardisation proposed as the choice of input parameters depends

on the given aims and requirements. The main limitation of the FFT, leading to

misinterpretations of the body sway-frequency content, is the lack of time resolu-

tion e.g., the ability to characterise nonstationarities. This problem could indeed

be faced by a short-time FT which has the disadvantage to degrade spectral

power precision as shorter parts of the recording are analysed. It is not possible

to reach simultaneously a high frequency and time resolution as short windows

have a good temporal allocation but an imprecise spectral power estimation and

vice versa (Addison, 2005; Graps, 1995). There is a need of a technique which

can locate quick signal changes in time and frequency. As a consequence, the

wavelet transform method is widely applied which uses instead of the non-local

sine and cosine basis-functions time-limited waveforms (Addison, 2002; Torrence

and Compa, 1998).
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2.2.2 Wavelet transform method

The wavelet transform (WT) method is a powerful tool to analyse postural sway.

It can highlight the intermittent activity of neuromuscular feedback loops at dif-

ferent time scales (Chagdes et al., 2009; Thurner et al., 2000; Zhang, 2006). Es-

pecially, it is useful to reveal the frequency content of nonstationary signals, like

it is given by the COP time series, as time-localised events are better represented

(Torrence and Compa, 1998). As a consequence, the WT yields more sensitive

and robust results for changes in postural conditions like vision or when com-

paring different groups like young versus old subjects (Bernard-Demanze et al.,

2009; Chagdes et al., 2009; Lacour et al., 2008). Mathematically, the wavelet

decomposition is a convolution of the time series with wavelets of different scales

a and translations b. The input signal is considered to be composed of summed-

elementary wavelets which are time-localised waveforms as the amplitude tends

to zero at some limit. Applying the WT to a COP time series one gets a three-
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dimensional representation of body sway: the scalogram shows the percentage of

energy by a colour code over frequency (y-axis) and time (x-axis) (Figure 2.2).
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Let x(t) denote the time series and ψ(t) the mother wavelet. Then the wavelet

coefficient Wa,b at scale a and time instant b is given by (Addison, 2002)

Wa,b =

∫ ∞

−∞

(

x(t) · ψ∗
a,b(t)

)

dt, ψa,b(t) =
1√
a
· ψ

(

t− b

a

)

. (2.2)

where ∗ denotes the complex conjugate of a function. As proposed by Zhang

(2006) a Coiflet wavelet function (Coif1) was taken as mother wavelet for the

analysis of COP time series. Coiflet wavelet functions are appropriate to analyse

COP data as they are most effective at reducing the low frequency distortion

(Zhang, 2006). The scale values a = 2j (j = level) appoint how much the wavelet

is compressed or stretched compared to the mother wavelet ψ. Low scales cor-

relate with high frequencies as they compress the wavelet. High scales correlate

with low frequencies representing the coarse-scale features in the signal. The fol-

lowing formula gives the relation between scale a = 2j (j = level) and frequency

(Addison, 2002):

fa = (fc · fs)/a (2.3)

with fc = centre frequency of the mother wavelet and fs = sampling frequency of

the signal. For Coif1 it is fc = 0.8 which was computed by fitting a cosine curve

(Figure 2.2). Based on the scale values aj = 2j (j = 1, 1.5, 2, . . . , jmax) one has a

frequency range of (see also Table 2.1)

fa =
fc · fs

[2, 2jmax]
=

0.8 · 100
[2, 2jmax]

=

[

40Hz,
80

2jmax
Hz

]

(2.4)

which corresponds to the time scale range

ta =

[

1

40
s,
2jmax

80
s

]

. (2.5)

The WT outputs the wavelet coefficients Wa,b for the specified scales (Equation

2.2). In a next step the energy content E(j) at level j is computed as the sum of
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Section 2.2: Parameterisation of Centre of Pressure Signals

Table 2.1. Relation between scale a = 2j (j = level) and frequency fa for a
sampling frequency of 100 Hz concerning the mother wavelet Coiflet1 with centre
frequency fc = 0.8. The period ta denotes the corresponding time scale with
ta = 1/fa.

Level j Scale a fa [Hz] Period [s]

5 25=32 2.5 0.4
6 26=64 1.25 0.8
7 27=128 0.625 1.6
8 28=256 0.313 3.2
9 29=512 0.156 6.4
10 210=1024 0.078 12.8
11 211=2048 0.039 25.6
12 212=4096 0.0195 51.2

the squared coefficients for the scale value a = 2j over all time instants (Equation

2.6).

E(j) =
∑

i=1

W 2
j,i. (2.6)

Together with the total energy Etotal we can express the energy content at level

j as a percentage of Etotal:

Etotal =
∑

j=1

∑

i=1

(W 2
j,i) ⇒ E(j)[%] =

E(j) · 100
Etotal

. (2.7)

The elimination of the time information as done in Equation 2.6 is a first approach

to evaluate the information of the WT output. The goal was to quantify the

signal structure. This makes it necessary to analyse different frequency bands

where the WT method yields promising results (Bernard-Demanze et al., 2009;

Chagdes et al., 2009). The reduction of the time-frequency information to only

the frequency resolution do not fully account for the advantage of WT to yield

both, a good time and frequency resolution. However, WT is superior over FFT

concerning the determination of spectral power in frequency bands (Chagdes

et al., 2009; Canal, 2010). Mother and child wavelets better represent the COP
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data locally compared to the smooth and harmonic basis functions used in the

FT analysis.

2.2.3 Nonlinear methods: regularity and scaling properties

Nonlinear methods were used to quantify the dynamical structure of COP profiles.

In this subsection, we present basic formulas and input parameters of nonlinear

methods which quantify the regularity and the correlation structure of a signal.

The selected values for the input parameters strongly influence the outcome of the

methods. As a consequence, the choice of input parameters has to be considered

carefully in order to avoid erroneous results and false interpretation. In the

following, we consider a discrete sampled signal x1, x2, . . . , xN with xi = the ith

sample. N is the total number of samples which is composed of the recording

length L and the sampling frequency fs: N = fs · L.

Regularity: Entropy metrics

To analyse the regularity of a signal, the estimation of the degree of surprise in the

signal by means of an entropy metric can be suggested. The question is, when one

knows the signal up to time t0 how well can its succession be predicted for the time

beyond t > t0. Entropy values grow monotonically with the degree of randomness.

This means that low entropy values correspond to regular or deterministic signals.

A high entropy value can be found for an irregular or completely random signal.

For the analysis of COP time series the most commonly used regularity measures

are the approximate entropy (ApEn) introduced by Pincus (1991) and the sample

entropy (SaEn) introduced by Richman and Moorman (2000). The latter shows

better relative consistency and is less sensitive to the length of data (Chen et al.,

2005). This was the reason to apply SaEn to our data.

Sample entropy is the negative natural logarithm of the conditional probability

that a signal of length N which has repeated itself within a tolerance r for m

points, will also repeat itself for m + 1 points. Thereby, self-matches are not
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allowed. The smaller the value the more regular is the signal as low values

arise from a high probability of repeated sequences in the signal. The matching

tolerance r defines whether points are similar or not which corresponds to the

decision of whether the sequence has repeated itself or not. In order to ease the

comparison across different time series with various magnitudes of fluctuation the

matching tolerance is not a fixed value but is normalised for every time series.

This means that the time series is divided by its standard deviation or that the

matching tolerance (0 < r ≤ 1) is multiplied by the standard deviation of the

signal (SDSignal). Now, we consider a time series which is normalised to unit

variance and detrended by the mean. Let A denote the total number of template

matches in the (m + 1)-dimensional and B in the m-dimensional phase space

within the tolerance r. Then (e.g., Ramdani et al., 2009),

SaEn(m, r,N) = (−1) · log(A(r)/B(r)). (2.8)

The choice of the input parameters m and r is not straightforward and has been

discussed in several papers (Lake et al., 2002; Govindan et al., 2007; Ramdani

et al., 2009). However, the importance of an adequate choice with its influence

on the results is not always considered in papers on COP regularity. According

to Costa et al. (2005), a good choice for the tolerance value is between r = 0.1

and r = 0.2 which corresponds to 10% − 20% of the standard deviation of the

time series. Chen et al. (2006) propose that r has to be large enough in order

to exclude influence from noise but too large an r value has to be avoided for

fear of information loss. In addition, a choice of m = 2 is superior to m = 1 as

it allows more detailed reconstruction of the joint probabilistic dynamics of the

process but m > 2 is unfavourable due to the need of a large recording length

(Chen et al., 2006). As a rule of thumb Borg and Lax̊aback (2010) suggest that

one needs about 10m to 20m data points for the analysis. A more straightforward

and objective approach to find proper input parameters m and r was recently

proposed by Ramdani et al. (2009). The approach uses the confidence intervals
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of SaEn estimates which are based on the theoretical evaluations of Lake et al.

(2002). It first computes the median SaEn values over all COP (increment) data

as a function of r for various values of m. Second, the median of the maximum

relative error Q(m, r) as function of r for different template length m is computed

(Ramdani et al., 2009):

Q(m, r) = max

(

σU (m, r)

U(m, r)
,

σU (m, r)

(−1) · log(U(m, r)) · U(m, r)

)

(2.9)

with U(m, r) = A(r)/B(r) (conditional probability) and σU(m, r) is the standard

deviation of the statistic U (Equation 2.10).

σ2
U(m, r) =

U(m, r) · (1− U(m, r))

B(r)
+

1

B(r)2
·
(

KA −KB · U(m, r)2
)

(2.10)

with KA (KB) = number of pairs of vectors of dimension m+1 (m) which match

within the region r (Ramdani et al., 2009). Finally, m and r are selected so that

they minimise Q(m, r) (Lake et al., 2002).

There are different interpretations of the entropy concerning the degree of reg-

ularity (Borg and Lax̊aback, 2010). On the one hand an irregular signal (high

entropy) is taken as a sign of a healthy system in terms of exploring the phase

space and being prepared for the unexpected whereas a disease state may be rigid

(regular system, small entropy) unable to cope with new challenges. On the other

hand irregularity can be associated with an unstructured system which becomes

less sustainable. This interpretation conflict arises as entropy cannot be directly

linked to complexity: a smaller entropy value does not mean less complex it only

indicates more regularity based on one particular time scale (Duarte and Sternad,

2008).

The multiscale entropy (MSE) algorithm was developed to account for the

multiple time scales inherent in a time series (Costa et al., 2005). It computes

SaEn for consecutive coarse-grained time series. The algorithm starts with the

division of the signal into disjoint windows of size w (w = # samples) which
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equalises the considered time scale. For the original signal it is w = 1 (scale 1)

and the series on scale 2 corresponds to w = 2 (Figure 2.3). Inside each time
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Figure 2.3. Illustration of the first step of the multiscale entropy algorithm: the
generation of coarse-grained time series on scale 2 (left panel) and 3 (right panel).

window the data are averaged which finally leads to the new signal (yk)k (Figure

2.3) with k = 1, . . . , (N − (w − 1)) and

yk =
1

w

j+w
∑

j=a

xj with a = w · (k − 1) + 1. (2.11)

The second step of the algorithm contains the computation of SaEn for a fixed

window size w. The MSE curve is then the plot of SaEn as a function of scale.

Costa et al. (2002) proposed the computation of a complexity index (CI) which

is the estimation of the area under the MSE curve by simply summing up the

entropy values:

CI =

imax
∑

i=1

SaEn(i) with imax = largest scale involved. (2.12)

Fractal properties: scaling exponents

Several studies in the field of COP signal complexity analysis have focused on

the investigation of fractal properties (e.g., Delignières et al., 2011; Duarte and

Sternad, 2008). This includes the analysis of the time-evolutionary character of

the signal and its correlation structure. It has been shown that the data exhibit
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long-range correlations with varying scaling behaviours (e.g., Collins and DeLuca,

1993; Duarte and Zatsiorsky, 2000; Pan et al., 2006; Duarte and Sternad, 2008).

Different methods emerged to study long-range correlations aiming at the esti-

mation of the Hurst coefficient H (Hurst, 1951). In the paper of Delignières et al.

(2006) one finds an overview of fractal methods with basic considerations to their

application. In the following we present two different methods which are applied

in the present work (Table 1.2 in section 1.3).

The detrended fluctuation analysis (DFA) is commonly used to determine

statistical self-similarity of a signal, fractal property respectively. Time series

which appear to be long-memory processes (e.g., 1/f noise) show such a be-

haviour. The method was introduced by Peng et al. (1994) and since then applied

to physiological signals of different kinds, e.g., heart-rate variability (Peng et al.,

1995; Toweill et al., 2000) or gait fluctuations (Dingwell et al., 2010; Hausdorff

et al., 2001). It aims at the investigation of the correlation structure which is

expressed in the scaling exponent α. In the present work the first order DFA

(DFA1 or simply DFA) was applied which implies local linear detrending of the

signal. More generalised versions, namely order-k DFA, may deliver additional

information about the dynamics of a system (Hu et al., 2001; Horvatic et al.,

2011). The DFA algorithm contains the following three steps:

1. Summation of the time series so that the bounded process is converted into

an unbounded process. That is, Yk =
∑k

i=1 xi is the cumulative sum with

k = 1, 2, . . . , N and N = length of the time series which corresponds to the

total number of samples.

2. Yk is divided into non-overlapping windows of equal length w (w = # sam-

ples). In each window Yk is detrended by subtracting the local trend, Yw(k),

which is the least squares straight-line fit of the data in the respective win-

dow. The root-mean-square fluctuation of the integrated and detrended
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time series for a fixed window size w is then given by

Fw =

√

√

√

√

1

N
·

N
∑

j=1

(Yj − Yw(j))2 (2.13)

3. Computation of the scaling exponent α: linear fit to the log-log plot of w

against Fw. A straight line on this log-log graph indicates Fw ∝ wα. This

means, α can be determined by calculating the slope of the resulting straight

line (Figure 2.4). Finally, α can be converted into the Hurst exponent H

(Hurst, 1951).
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Figure 2.4. Illustration of the linear fit (red line) to the log-log plot in order to
find the scaling exponent α (slope of the straight line). The original signal (centre
of pressure recording for 60 seconds) is displayed in green and the shuffled signal
in blue.

DFA is an extension of the (ordinary) fluctuation analysis (FA). It outputs the

scaling exponent α with 0 < α < 1 (fGn) and 1 < α < 2 (fBm). α can be

transformed into the Hurst exponent H according to H = α (fGn) and H =

α − 1 (fBm). It is postulated that one advantage of DFA is its applicability to

nonstationary signals. However, critical remarks were given recently by Bryce

and Sprague (2012). It can be concluded that it is always important to prove

results with another method. This enables a more sophisticated analysis of the

dynamical properties (Kirchner et al., 2012). We enlarge on this issue in Section

3.1 where the application of fractal methods to COP data is evaluated.

An alternative method to determine the correlation structure of COP signals is
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the scaled windowed variance method (SWV) which brings out directly an

estimation of the Hurst exponent Ĥ. Cannon et al. (1997) showed that detrending

of the time series before calculating the statistics yields better estimators. They

propose two different techniques: linear detrending (ld) and bridge detrending

(bd). Here, the version of linear detrending is presented. It includes the following

steps:

1. The discrete signal (xk)k=1,2,...N is divided into non-overlapping windows of

size w. In each window a least squares line is fit to the data (linear trend)

which is then subtracted from the data points in the respective window.

2. In each window wj (j = 1 . . . ⌊N/w⌋) the standard deviation (SD) is com-

puted. Let (yk)k be the detrended signal. The standard deviation in the

jth window of size w is given by

SDwj
=

√

√

√

√

1

w − 1

w+(l−1)
∑

i=l

(yi − ȳ)2 with l = (w · (j − 1)) + 1, (2.14)

where ȳ is the average within each window.

3. For a fixed window size w the average over all standard deviations is com-

puted and denoted with Sw:

Sw =
1

⌊N/w⌋

⌊N/w⌋
∑

j=1

SDwj
. (2.15)

The scaling exponent Ĥ is computed as the slope of the linear fit to the

log-log plot of w against Sw.

Later, in the first study of the experimental series (Section 3.1), we consider all

three versions of SWV: no detrending (nSWV), linear detrending (ldSWV), and

bridge detrending (bdSWV). The three versions only differ with respect to the

first step of the algorithm described above. That is, nSWV contains no detrending

so that the second part of the first step is left out. Bridge detrending means that
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a line which connects the first and the last data point in the respective window is

fitted and then subtracted form the data points in that window (Cannon et al.,

1997).

The application of DFA and SWV implies an adequate choice of window sizes

over which the linear fit is conducted. This choice influences the results and

interpretations of the data and has to be carefully considered (Bryce and Sprague,

2012; Cannon et al., 1997). Section 3.1 addresses this problem and provides

suggestions for the proper application of fractal methods to COP data. Further

theoretical background information on the evaluation of long-range correlations

is given by several research groups (Chen et al., 2002; Delignières et al., 2005,

2006; Eke et al., 2002; Gao et al., 2006; Hu et al., 2001; Malamud and Turcotte,

1999).

2.2.4 Other nonlinear methods

There are several other methods provided by the theory of dynamical systems.

They were partly applied to COP data with equivocal outcomes. For example, the

maximal Lyapunov exponent (LyE) and the correlation dimension (CoDim) are

two dynamical invariants which have to be mentioned at this point. Both, LyE

and CoDim, require that the data are generated by purely deterministic systems.

However, biological systems are not purely deterministic as many stochastic fac-

tors constantly influence them (Peng et al., 2009). Hence, statistics are preferred

which can be interpreted in the case of mixed underlying dynamics such as sam-

ple entropy Ramdani et al. (2009). This was, amongst others, the reason for the

choice of the methods used in the present work.

Another approach is the recurrence quantification analysis (RQA) which is based

on recurrence plots introduced by Eckmann et al. (1987). The literature provides

evidence for meaningful results concerning the analysis of the dynamic properties

of COP time series (Riley et al., 1999; Seigle et al., 2009). However, the addi-

tional evaluation of RQA is beyond the scope of this paper. The reader is referred
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to the presentations of Norbert Marvan and colleagues for detailed statements of

RQA (Marwan et al., 2007; Marwan, 2008, 2011).
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3 Experimental Series

3.1 Evaluation of Centre of Pressure Signal

Characteristics by Linear and Nonlinear

Methods - A Comparison between Single-

and Dual-task Standing Conditions1

3.1.1 Introduction

The maintenance of an erect posture requires a complex sensorimotor control

system. Much can be learned about postural control by the study of postural

fluctuations. Even when healthy individuals try to stand as still as possible the

centre of mass (COM) varies continuously as the human body is never in perfect

equilibrium (Latash, 2008). A stable posture requires the control of the COM to

remain in the base of support (BOS) (Latash, 1998; Duarte and Freitas, 2010).

Small fluctuations around a mean position can be considered natural and are a

sign of healthy systems (van Emmerik and van Wegen, 2000). The investigation

of the underlying control mechanisms - in a clinical as well as scientific context

- have inspired many researchers. In laboratory experiments subjects are mainly

asked to adopt a quiet bipedal stance for a defined period of time (e.g., 30 s).

Their body displacements are then studied via the recording of the centre of pres-

1This section is based on the manuscript entitled “Evaluation of the temporal structure of
postural sway fluctuations based on a comprehensive set of analysis tools” by M. Kirchner et
al. which has been published in Physica A (2012), 391:4692-4703.
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sure (COP) excursions by means of a force plate (Winter, 1995b). Standing is a

motor skill which is prerequisite for several daily life as well as sporting activi-

ties. Thereby it occurs for different temporal periods and frequently includes a

second task e.g., talking to people. The omnipresent existence of dual-tasks poses

the question if postural demands differ in dual- and single-task manipulations.

Single-task paradigms force subjects to concentrate on a quiet position which re-

sults in the avoidance of natural movements (Duarte and Zatsiorsky, 1999). The

authors found different COP migration pattern in a constrained compared to an

unconstrained standing task. The focus on the postural motion itself tends to

actively intervene in the maintenance of a stable posture and hampers automatic

control processes that would allow the motor system to naturally self-organise as

proposed in the “constrained action hypothesis” (for review, see Wulf and Prinz,

2001). Fraizer and Mitra (2008) refer to an unspecific cognitive task of unknown

load which evokes an internal focus of attention uncontrolled by the experimenter.

In contrast, secondary task manipulations come along with an external focus of

attention which lead to a sharing of attentional resources and presumably result

in a change of postural performance (for review, see Fraizer and Mitra, 2008). The

creation of an external focus in order to withdraw attention from the actual task

of controlling ones posture leads to more efficient control Zemková et al. (2009).

Donker et al. (2007) showed that COP irregularity increases when less attention is

invested in posture suggesting more efficiency or automatism of postural control.

Vice versa, an internal focus can have a detrimental effect on postural control

(e.g., Donker et al., 2007; Vuillerme and Nafati, 2007).

Despite years of research, the mechanisms underlying spontaneous body sway

are not completely understood. Discrepancies of study results enhances the dif-

ficulty to draw definite conclusions. Fraizer and Mitra (2008) reviewed that the

comparison between single- and dual-task paradigms leads to various findings

ranging from decreased to increased sway variability in the dual-task up to no

effect. A lack of standardised methods and analysis procedures can partly explain

42



Section 3.1: COP Signal Characteristics under Single- and Dual-task

discrepancies of the results. In addition, the amount of body sway was tradition-

ally solely used as an index of postural stability. Hence, conclusions within one

study are mainly based on few analysis methods or on one group of measures.

Therefore, interpretations are limited and cannot be proved in an overall con-

text concerning the relation of variability and stability (Granata and England,

2007). As described in Section 1.3, the plurality of parameterisation methods

can mainly be separated into two groups: (a) global posturographic parameters

which estimate the overall size of COP excursions, (b) structural posturographic

parameters which describe temporal pattern of body sway. Methods from group

(a) treat COP displacements as a manifestation of random fluctuations so that

larger COP displacements are associated with a less stable balance related to age-

ing and disease. Hence, methods which average out the assumed randomness are

applied. They ignore the temporal orderliness of the signal and do not take into

account dynamical properties of postural fluctuations. The proposed link between

the amount of postural sway and the level of stability is incomplete without the

consideration of nonlinear methods which reveal the time-dependent structure

of COP signals. The concept of nonlinear dynamics suggests that variability in

the motor output is not random but structured, providing the stimulus to reveal

the functionality of postural sway (van Emmerik and van Wegen, 2002; Stergiou

and Decker, 2011). Thus, an increased COP motion is not mandatory a sign of

poorer postural stability (van Emmerik and van Wegen, 2000; Lacour et al., 2008;

Newell et al., 1993). It can be an essential element of healthy dynamics based on

the notion that postural movements are exploratory providing information of the

environment (van Emmerik and van Wegen, 2002; Harbourne and Stergiou, 2009;

Riccio, 1993). The evaluation of the posturographic literature shows a growing

awareness of the limitations of traditional analysis techniques. This stimulates

the development of tools which can characterise the time-dependent structure of

the motor output. It has been shown that methods stemming from the theories

of dynamical systems can detect changes of the postural system with high sen-
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sitivity e.g., the identification of unhealthy states (Lipsitz, 2002; Freitas et al.,

2005; Bernard-Demanze et al., 2009; Harbourne and Stergiou, 2009). So far, there

is few agreement upon the results and their interpretations. van Emmerik and

van Wegen (2002) showed that the functionality of variability is task dependent.

It could be shown that the regularity of the COP time series quantified by an

entropy metric shows a dual-task effect. Haddad et al. (2008) found in an ad-

ditional fitting task a more regular COP signal structure. They concluded that

a regular COP pattern facilitates the successful completion of a supra postural

precision task. On the other hand, an additional cognitive task results in a more

irregular COP signal structure (Cavanaugh et al., 2007; Donker et al., 2007).

Donker et al. (2007) proposed that the more attention is invested in the con-

trol of posture the more regular the COP fluctuations. The additional cognitive

task withdraws the attention from the actual postural task leading to a regular

COP structure. These conclusions are based on an entropy metric determined for

a single time scale which does not allow interpretations concerning signal com-

plexity. Complexity itself, however, is still an elusive concept without a precise

definition (Duarte and Sternad, 2008). Signal complexity, however, is linked to a

rich structure on several time scales (Stergiou, 2003; Duarte and Sternad, 2008).

Healthy states are connected to high system complexity whereas diseased states

are related to low or no complexity (Lipsitz and Goldberger, 1992; Vaillancourt

and Newell, 2002). Postural systems which exhibit complex behaviours are be-

lieved to be more stable or flexible (Goldberger et al., 2002). The phenomenon of

complexity is associated with signals that arise from many spatiotemporal scales

as it can be found in 1/f noise (Diniz et al., 2011). Thus, postural systems which

exhibit complex behaviours are believed to act on various time scales. The anal-

ysis of different frequency bands yields a link between a predominant functional

domain and the control mechanisms (Lacour et al., 2008; Thurner et al., 2000).

In the literature one can find advices which frequency band may be related to

which principal sensory input (e.g., Oppenheimer and Kohen-Raz, 1999; Zhang,
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2006): the low frequency band (< 0.1 Hz) is stuck to visual control, frequencies

in the range of 0.1 − 0.5 Hz are dominated by vestibular activity whereas the

frequency band of 0.5−1 Hz reflects somatosensory activity. These are values for

the orientation and not to be taken as absolute standards. To avoid an a priori

subdivision into the just cited three frequency bands, a spectral analysis of the

COP signals was adopted here.

In the present study COP fluctuation dynamics are quantified by means of dif-

ferent analysis tools. As each posturographic parameter only evaluates a part

of sway characteristics the combination of various methods account for a more

detailed overall impression of postural control mechanisms. We evaluate the per-

formance of different nonlinear methods and their combination in relation to

traditional posturography parameters. The goal is to find methods and their

application requirements for the quantification of COP fluctuations in order to

identify adequate descriptors of postural control and to indicate a suitable com-

position of analysis tools for further studies on postural control. We hypothesise

that dual-tasking effects are reflected in structural changes of centre of pressure

fluctuations.

3.1.2 Methods

Sixteen healthy, young subjects (sex: 9 male, 7 female; age: 26.1 ± 6.7 years;

height: 173.45 ± 11.14 cm; weight: 72.36 ± 13.04 kg) participated voluntarily

in the study. All participants provided written informed consent after being

told about the measurement procedure. The study affords bipedal stance on a

force plate in two different conditions: (A) standing while completing a cognitive

task (dual-task = DT) and (B) standing while concentrating on a quiet position

(baseline-task = BT). Both conditions were conducted consecutively three times

with a rest of one minute between each trial. The sampling duration was different

between the three trials. The applied sampling durations were 35, 65, and 305

seconds [s]. The choice of different sampling durations is motivated by the fact
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that it is not known which signal length is needed to proper analyse the amount

and structure of COP fluctuations (Section 1.3). Short recordings of about 30

to 60 s are mainly used in a clinical setting due to e.g., fatigue. However, the

literature suggests that longer recordings are necessary to achieve stable measure

outcomes (van der Kooij et al., 2011). In condition DT subjects were asked to

memorise a group of icons presented for 10 s (Figure 3.1). Directly afterwards,

they had to identify the missing icon within the next 8 s. The icons involved

were pictures of workaday objects (e.g., chair, car, ball) which were projected on

a wall. Not more than six and not less than four items were presented at once.

The additional attention exercise was simple. It had solely the function to divert

from the actual standing task. During task A subjects were allowed to freely

choose their standing position. They were only given the constraint to remain on

the force plate and not to make a step. In contrast, in condition BT subjects were

Figure 3.1. Top: Example of the dual-task with a set of four items. Bottom,
left: schematic force plate; Bottom, right: example of a stabilogram representing
centre of pressure (COP) excursions in medial-lateral (x) and anterior-posterior
(y) direction for both standing situations (quiet stance = baseline task).

forced to concentrate on their position and to avoid movements. Subjects were

instructed to adopt a hip width stance with their arms relaxed at both sides and

to stare at a point on the wall. The distance between the eyes and the visual field
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(point on the wall or pictures of workaday objects) was unchanged during the

measurement in both tasks as the distance affects postural performance (Prado

et al., 2007). In order to get familiar with the tasks a test trial for each condition

was completed in advance. Subjects were not barefoot but wore their own shoes.

To have homogeneous conditions the footwear was restricted to sports shoes. In

addition, within one subject the shoe was the same in all trials to ensure internal

validity or intertrial comparability. The biomechanical measurement included the

recording of the COP location over time as described in Chapter 2. The first 5 s

of each signal were eliminated from the analysis to avoid impact effects. As the

measurement stops a few seconds before persons were informed about the end of

the trial we did not await end effects. Impact or end effects refer to unwanted

phenomenon in the data due to the simultaneous start (end) of the recording and

telling the participant that the measurement starts (ends). Visual inspection of

the signals suggests an elimination of the first five seconds.

Parameterisation of COP data

A large number of measures are available for the posturographic analysis. An

overall description of the applied methods with its basic formulas can be found

in Chapter 2. An overview of the methods which were considered in the present

study is given by Table 3.1. With respect to the traditional COP parameterisa-

tion temporal, spatiotemporal, and spectral measures were included (Table 3.1;

see also Chapter 2). Spectral parameters were derived from the power spectral

density (PSD) based on the Welch’s algorithm (Hayes, 1996). The section length

w used with the Welch’s method was adapted to the different trial durations:

w = 1000 (30s), w = 2000 (60s), w = 8000 (300s). The number of points (nfft)

for the fast Fourier transform (FFT) was a power of 2 with was reached by zero

padding: nfft = 210 (30s), nfft = 211 (60s), nfft = 213 (300s). To get a better

time-frequency resolution of the signal the wavelet transform method (WT)

was applied. As mother wavelet Coiflet wavelet function (Coif1) was used as pro-
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Table 3.1. Overview of the applied analysis methods with its input parameters.
For further details see Chapter 2.

Method Application details

Global parameters, force plate data:

Temporal (1-dim.): standard deviation (SD), mean
velocity (v̄), range (R)

fs = 100 Hz

Spatiotemporal (2-dim.): length of COP path (LP),
length of normalised COP path called Turn (TP),
area AE (95% confidence ellipse)

fs = 100 Hz

Power spectral density (PSD), Welch’s method: fre-
quency below which 50% (f50) and 80% (f80) of the
total power is found

hamming window, 50% overlap, nfft =
1024 (30s), 2048 (60s), 8192 (300s),
fs = 100 Hz

Structural parameters, force plate data:

Wavelet transform (WT): energy of level j as a per-
centage of the total energy

mother wavelet = Coif1 (fc = 0.8 Hz),
jmax = 11 (30s), jmax = 12 (60s),
jmax = 14 (30s), fs = 100 Hz

Multiscale entropy (MSE): sample etropy (SaEn) on
different time scales i → complexity index (CI)

imax = 6 (30s), imax = 12 (60s), and
imax = 60 (300s), m = 2, r = 0.15
(COP position data) and r = 0.55
(COP increment data), fs = 20 Hz

Scaled windowed variance method (SWV) with lin-
ear detrending applied to COP position data

fs = 20 Hz, window size set: w =
20 : 10 : wmax with wmax = 120 (30s),
wmax = 200 (60s), wmax = 400 sam-
ples (300s)

Detrended flucutation analysis (DFA) applied to
COP increment and position data

fs = 20 Hz, window size set: w =
20 : 10 : wmax with wmax = 120 (30s),
wmax = 200 (60s), wmax = 400 sam-
ples (300s)

posed by Zhang (2006). Coiflet wavelet functions are appropriate to analyse COP

data as they are most effective at reducing the low frequency distortion (Zhang,

2006). In addition, the analysis was performed with another mother wavelet,

namely Bior1.3, to verify the results (Chagdes et al., 2009). The scale values

a = 2j (j = level) appoint how much the wavelet is compressed or stretched com-

pared to the mother wavelet ψ with low scales correlating with high frequencies.

The chosen scaling parameters aj = 2j, j = 1, 1.5, 2, . . . , jmax lead to the following

time scale range (see also Equation 2.4 and Table 2.1 in Chapter 2):

fa =
0.8 · 100
[2, 2jmax]

=

[

40Hz,
80

2jmax
Hz

]

→ ta =

[

1

40
s,

2jmax

80
s

]

. (3.1)
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We excluded the high frequency range, frequencies above the range of interest,

by starting with j = 5 which corresponds to f25 = 2.5 Hz. The largest applicable

level jmax is limited by the recording length of the signal. The following jmax

were chosen: jmax = 11 (30 s), jmax = 12 (60 s), and jmax = 14 (300 s). The

WT outputs the wavelet coefficients Wa,b for the specified scales (Equation 2.2

in Chapter 2). The energy content at level j was determined as the sum of the

squared coefficients over all time instants expressed as a percentage of the total

energy (Equation 2.6 and 2.7 in Chapter 2).

To determine the regularity of the COP signal, sample entropy (SaEn) was

computed (Richman and Moorman, 2000). Entropy values grow monotonically

with the degree of randomness. Low SaEn values arise from a high probability

of repeated template sequences in the data. SaEn computes the negative natural

logarithm of the conditional probability that sequences similar for m points re-

main similar adding one more point (m+1) to the sequence. Thereby, similarity is

defined over a tolerance region r which is multiplied with the standard deviation

of the respective signal (SDSignal). Based on literature references we chose m = 2

and r = 0.15 for COPx and COPy (Borg and Lax̊aback, 2010; Chen et al., 2006;

Costa et al., 2005). This fits to the values we got for r and m using the algorithm

suggested by Ramdani et al. (2009). The authors originally propose the algorithm

to find the input parameters for the SaEn computation of the COP increment

data (COPv). Here, SaEn is computed for both signals, COP and COPv, to

account for the apparent nonstationarity of the COP position signal (Govindan

et al., 2007; Ramdani et al., 2009). Differencing is a method which is often used

to remove nonstationarity from time series (Chatfield, 2004; Kantz and Schreiber,

2004). When (xi)i=1,2,...,N denotes the discrete sampled COP position time series

than the increment time series is defined by (vi)i=1,2,...,(N−1) with vi = xi+1 − xi.

Note that the high frequency content is amplified in the differentiation process.

We followed the algorithm of Ramdani et al. (2009) in order to find appropriate

input parameters m and r (separately for COPvx and COPvy). For this purpose,
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we computed the median SaEn values over the COP increment data for both con-

ditions (BT and DT) as a function of r. Thereby, the range of r values was set to

0.05-0.8 in steps of 0.05. This procedure was conducted for 1 ≤ m ≤ 4 which was

appropriate in our case. Similar to Ramdani et al. (2009), we observed a decrease

of SaEn estimates with an increase of m (Figure 3.2). The convergence of SaEn

curves was seen for m ≥ 2 so that m = 1 was excluded. Furthermore, the m = 2-

curve resulted in error values (Equations 2.9 and 2.10 in Chapter 2) less than the

threshold 0.05 which corresponds to the 95% confidence region. Hence, m = 2

was chosen which led to the selection of r = 0.55 as minimum of the error curve

for COPvx and COPvy (Figure 3.2). The matching tolerance r is higher than the
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Figure 3.2. Choice of the input parameters r and m for the computation of sample
entropy (SaEn).

recommended one for the SaEn calculation of COP position signals. This was

the reason to compute SaEn values for COPv signals with the input parameters

m = 2 and r = 0.15 as well. So the results can be compared and the influence of

different input parameters can be proved. Both signals, COP and COPv, were

downsampled to 20 Hz in advance to exclude time scales smaller than 0.15 s as

these are not the typical time-length scales which was revealed by the spectral

analysis. Downsampling of the signal reduces the size of the data and therefore

speeds the computation up. In addition, downsampling of the signal is necessary

prior to the computation of SaEn as it reduces colinearities (Rhea et al., 2011).

A downsampling to 20 Hz still satisfies the Nyquist-Shannon sampling theorem
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(for further details, see Chapter 2).

As stated earlier (Chapter 2), entropy considered on a single time scale cannot

be directly linked to complexity as a smaller entropy value does not mean less

complex. To quantify the complexity of the COP signal multiscale entropy

(MSE) was applied. The MSE curve is the plot of the entropy values (SaEn) as a

function of scale (Costa et al., 2002). The complexity index is defined as the area

under the MSE curve (Equation 2.12 in Chapter 2). Intuitively, a complex signal

is associated with a time evolution that has a rich structure on multiple scales

(Duarte and Sternad, 2008). With respect to white noise, which is irregular on

small timescales but not structurally complex, the entropy decreases on larger

time scales. In contrast, 1/f noise, a complex signal, yields entropy values which

remain high on different scales (Costa et al., 2005). We applied MSE to COP

position and COP increment data with the abovementioned input parameters

(m, r). Given a signal length of N data points a maximum of imax scales were

included with imax = 6 (30 s), imax = 12 (60 s), and imax = 60 (300 s). This

choice was based on the advice that for m = 2 one needs at least 102 data points

to compute SaEn (Borg and Lax̊aback, 2010). Note that increasing the sampling

frequency only artificially increases the number of data points without adding

information and is thus not an appropriate solution to generate long time series

which are necessary for the analysis of larger time scales. As it was mentioned be-

fore, the assumption of stationarity for COP time series is apparently not correct,

so that the choice of the tolerance region may not be appropriate for every part

of the signal. Thus, SaEn and MSE can give misleading results when “outliers”

are present (Costa et al., 2005). Duarte and Sternad (2008) tried to address this

problem by applying the same tolerance region for all subjects and trials as a

first approach and in a second approach by filtering out drifts and shifts. These

approaches are questionable as the first one makes it difficult to compare results

of different subjects and the second one eliminates important information of pos-

tural sway data. Other approaches include the elimination of the low frequencies
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by filtering techniques (e.g., Manor et al., 2010). However, the low frequency

range contains meaningful information about the postural dynamics as it can be

revealed by a spectral analysis. In the present study, two approaches are followed

to prove the obtained results and to counteract misinterpretations. Despite the

consideration of the increment time series, the correlation of SaEn(1) with the

respective standard deviation was computed. This approach is based on the as-

sumption that large standard deviations due to nonstationarities lead to a not

representative large tolerance region which results in an artificial high regularity

(Costa et al., 2002, 2005).

The analysis of fractal properties, which is the time-evolutionary character

of the signal and its correlation structure, is motivated by the fact that COP

data exhibit long-range correlations with varying scaling behaviours (Collins and

DeLuca, 1993; Duarte and Zatsiorsky, 2000; Pan et al., 2006; Duarte and Sternad,

2008). A comparison of fractal methods leads to the conclusion that the scaled

window variance method (SVW) is superior over the detrended fluctuation analy-

sis (DFA) when analysing scaling properties of fractional Brownian motion (fBm)

processes (Delignières et al., 2005). SWV works properly on fBm but provides

irrelevant results on fractional Gaussian noise (fGn). In contrast, DFA shows

good results for fGn but is only moderately appropriate for fBm series because it

presents systematic negative bias and a high level of variability (Delignières et al.,

2006). Note that each fBm is related to a specific fGn, the series of successive

increments of an fBm, with the same Hurst exponent (Malamud and Turcotte,

1999). One can apply DFA to the differentiated fBm series in order to get better

results. As a consequence, it is crucial to classify the data as fGn or fBm in ad-

vance (Eke et al., 2000). However, one problem is the misclassification near the

1/f boundary (fGn = 0.9, fBm = 0.1) which is partly unacceptable (Delignières

et al., 2006). Under the assumption that the COP time series can be modeled as a

fBm the COP velocity time series can be modeled as a fGn with the same scaling

exponent. There is little accordance within the results of fractal analysis which
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can be traced back to a lack of a full evaluation of methods. One major discussion

point is the existence of a transition point which distinguishes two scaling regions,

a short-term and a long-term region corresponding to persistent (H > 0.5) and

antipersistent (H < 0.5) behaviour of COP fluctuations (Delignières et al., 2011).

This is interpreted as the coexistence of two control mechanisms in the regula-

tion of quiet stance, namely open and closed loop postural control (Collins and

DeLuca, 1993). The critical time point, which separates the two scaling regions,

is seen as an important parameter to differentiate subjects, e.g., young vs. old

(Collins et al., 1995), or conditions, e.g., eyes open versus eyes closed (Collins

and DeLuca, 1995). However, Delignières et al. (2011) remark that not COP

position but COP velocity shows different scaling regions. The application of a

unique method is questionable as the conclusions are often based on the visual

observation of a linear regression in the double-logarithmic plots. In addition, ex-

amples show that time series without long-range dependencies can mimic a linear

fit in log-log plots leading to misinterpretations (Wagenmakers et al., 2004). We

applied DFA and SWV to the COP position time series to be able to prove the

obtained results. All three versions of SWV - no detrending (nSWV), linear de-

trending (ldSWV), and bridge detrending (bdSWV) - were considered (Chapter

2). In addition, DFA was applied to the COP increment time series after having

checked the model assumptions (fBm vs. fGn). As mentioned above, SWV pro-

vides irrelevant results on fGn which was the reason not to apply SWV to COPv.

Generally, we concentrated on the investigation of the long-term scaling region.

That is the inclusion of timescales greater than 1 s which corresponds roughly

to the 95%-power region which was assessed in advance by a Fourier transform.

The reliability of the Hurst exponent estimate (Ĥ) depends on the window sizes

included in the analysis (Cannon et al., 1997). Hence, it is important to evaluate

the stability of the estimation with respect to the respective input parameters.

For this purpose, DFA and SVW were applied to 1000 simulated fBms with dif-

ferent Hurst exponents ranging from H = 0.1 to H = 0.7 in steps of 0.1. We used
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the implemented algorithm in MATLAB to simulate the fBm processes which

follows the proposed algorithm of Abry and Sellan (1996). Three different signal

length L (number of samples) were applied (L = 600, 1200, 3000) which corre-

sponded to our three test durations with fs= 20 Hz. Notice that the exact length

of the COP time series is unknown since an up- or downsampling result in a

modified data length probably without information gain or loss. The reason to

concentrate on the evaluation of Hurst exponents corresponding to antipersistent

correlations (H < 0.5) was that antipersistence can be assumed for COP signals

in the considered time scale range beyond 1 s. The goodness of the estimation

Ĥ was evaluated by the mean squared error (ME) which includes both, bias and

variance:

MEĤ = s2
Ĥ
+ (H − x̄Ĥ).

The choice of window sizes depends on the relevant time scale length of the data

and the total recording time. Small windows contain few samples which results

in statistically less reliable results and can cause bias (Cannon et al., 1997). In

contrast, large windows include much samples but result in a small number of

windows given by the total signal length. However, the inclusion of a small

number of windows yields more variable statistical measures which increases the

variance of Ĥ (Cannon et al., 1997). In the present study, the choice of the window

size set was geared to the suggestion of Cannon et al. (1997). It was adjusted

concerning the three recording durations with respect to the downsampled COP

signal (downsampling to fs = 20 Hz). As a result, the following choice of window

sizes was selected: w = 20 : 10 : wmax (w = window size) with wmax = 120 (30s),

wmax = 200 (60s), and wmax = 400 (300s). The window size set was the same for

DFA and SWV.

Statistics

In order to test for a significant task effect (DT vs. BT), pairwise comparisons

were conducted for the global posturographic parameters (GP) out of the three
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domains (temporal, spatiotemporal, and spectral), the complexity index, SaEn(i)

(i = 1, 6, 10, 30), and the scaling exponents. The consideration of different SaEn

values enables the evaluation of different time scales. SaEn(1) was chosen as

it is classically considered in studies of postural control where the regularity of

COP fluctuations is quantified (e.g., Borg and Lax̊aback, 2010; Ramdani et al.,

2009). Note that SaEn(1) corresponds to different time scales depending on the

sampling frequency used in the respective study. The other scales were chosen

to account for the variety of information given by different time scales (Lacour

et al., 2008; Oie et al., 2002) and were based on the different sampling dura-

tions. However, the choice is otherwise random as it is not known which scales

differentiate best between conditions. To test the data for normality the Shapiro

Wilk test was used as it has good power properties for small samples. In case

of normal distributed data a dependent T-test, and otherwise, the Wilcoxon-test

was applied. The significance level was set to 5%. With respect to the correla-

tion analysis Pearson’s coefficient r or Spearman’s coefficient ρ was determined

according to the requirements. That is, Pearsons’s r was computed in case of

normal distributed data. To accommodate for multiple comparisons, we employ

Holm-Bonferroni adjustments on the obtained P -values (αi = α/(k− i+ 1), k =

# tests). Holm-Bonferroni is the expansion of the Bonferroni correction being a

less conservative and more powerful test procedure. Having conducted k pairwise

tests the global significance level α = 0.05 is adjusted in the following way:

α1 =
0.05

k
, α2 =

0.05

k − 1
, . . . , αi =

0.05

k − i+ 1
.

The smallest obtained P -value is compared to α1. In general, P[i] is compared to

αi with P[i] = the ith smallest P -value as long as H0 can be rejected. H0 refers to

the null hypothesis of no difference between conditions (DT vs. BT) with respect

to (a) temporal GP, (b) spatiotemporal GP, (c) spectral GP, (d) regularity mea-

sures (complexity index and SaEn(i)), and (e) scaling exponents. The aforesaid

statistical analysis was done in SPSS17.0 wheras all the other computations were
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conducted in MATLAB R2008b as well as the compilation of the graphics.

Surrogate data tests

Shuffled surrogate tests allow to investigate the null hypothesis that the time se-

ries is uncorrelated noise by randomly rearranging the data points (e.g., Collins

and DeLuca, 1994). The shuffled signal has the same mean and variance as

the original signal. Randomising the time order of a signal removes temporal

correlations and produces highly irregular time series. A set of 100 surrogates

was constituted for every subject to get empirical statistical bounds (Figure 3.3).

Note that this number of surrogate series is much higher than proposed by e.g.,

Kantz and Schreiber (2004, Ch7). A large number of surrogates yields better
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Figure 3.3. Generation of randomised surrogates by shuffling COP increment
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shuffled signal (right). Estimation of sample entropy (SaEn) and scaling exponent
α (DFA) of shuffled and original signals (middle panels). Definition of empirical
statistical bounds based on 100 surrogate signals (bottom panels).

confidence interval estimations but needs more computational power which is in

case of large sample sizes (subjects) and/ or a large number of tested situations

not appropriate. The surrogate series were generated by randomly shuffling (100

times) the COP increment time series (COPv) with respect to x- and y-direction
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and for both conditions (DT, BT) separately. Multiscale Entropy was computed

for the shuffled series by using the same input parameters as for the original series

(COPv). Statistical comparisons of surrogate SaEn(1) values and original ones

were performed by an individual rank-order test. Since we supposed that the

shuffled series produce higher values of SaEn we performed a one-sided test with

a significance level of 5% (Figure 3.3, bottom, left).

Concerning fractal analysis, DFA was applied to the shuffled COP increment

series (100 surrogates to define empirical statistical bounds). DFA applied to

randomised surrogates should output a scaling exponent of α = 0.5 as it is typ-

ical for white noise processes. SWV was not applied to the shuffled series as it

provides irrelevant results on fGn series. In a second step ldSWV was used to

estimate the scaling exponent of the integrated surrogate series to test the null

hypothesis that the COP position data is an oBm process (H = 0.5) or, in other

words, that the COP position data is uncorrelated. A two-sided rank-order test

was performed for every subject to test the null hypothesis of α = 0.5 or H = 0.5

(Figure 3.3, bottom, right).

3.1.3 Results

In the following significant differences between DT and BT are only reported in

consideration of Holm-Bonferroni adjustments. On overview of all conspicuous

differences (P -value ≤ 0.05) with detailed P -values and values of the test statistic

is given in the Appendix (Table A.1 to A.4).

Traditional posturographic parameters

The traditional parameters out of the time domain led to conspicuous differences

between condition DT and BT in the 60s-trial for v̄y as well as LP, and in the

300s-trial for v̄x (Table 3.2; see Table A.1 in the Appendix). Note that some

parameter values in Table 3.2 are presented on a scale of y ·10−2 which is indicated

with 1 in front of the parameter name (first column). In the frequency domain
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significant differences were mainly observed for the 300s-trial (see Table A.1 in

the Appendix). In addition, one found that 95% of the PSD [(UL)2/Hz] comprises

frequencies below 1 Hz with smaller values of f95 in longer recordings (Table 3.2).

A decrease of the frequency parameters with recording length was obtained for

all cutoff values (50%, 80%, 95%). It was observed in both standing conditions

(DT and BT) with respect to both COP directions (x, y).

Table 3.2. Sample median (inter quartile range) of the traditional posturographic
parameters evaluated for COP data (medial-lateral = x and anterior-posterior =
y) with respect to dual- (DT) and single-task (BT). Significant differences between
the tasks (DT vs. BT) are asterisked:∗ P ≤ 0.05, ∗∗ P ≤ 0.01, ∗ ∗ ∗ P < 0.001.
1Parameters are reported on a scale of y · 10−2.

Traditional parameters: 1-dimensional, time and frequency domain

COPy COPx

30 s 60 s 300 s 30 s 60 s 300 s

1SD
DT 2.75 (1.1) 3.25 (1.6) 3.25 (1.73) 1.4 (1.4) 1.75 (1.5) 1.75 (1.6)
BT 2.6 (1.25) 3.4 (2.48) 3.8 (0.95) 1.3 (1.4) 1.3 (1.35) 2.0 (1.3)

R
DT .14 (.07) .18 (.13) .26 (.23) .08 (.1) .11 (.11) .13 (.15)
BT .13 (.06) .17 (.07) .24 (.07) .07 (.06) .07 (.06) .12 (.06)

1v̄
DT 6.55 (3.3) 6.25 (2.7) 6.4 (3.95) 3.65 (2.22) 3.25 (1.5) 2.95 (2.15)
BT 6.2 (2.38) 6.1 (1.78) 6.65 (3.33) 2.95 (1.73) 2.85 (1.1) 2.5 (1.4)

f50
DT 0.2 (.1) 0.15 (.1)∗∗ 0.085 (.06)∗∗ 0.2 (.17) 0.1 (.17) 0.037 (.05)∗∗

BT 0.2 (.07) 0.1 (.05) 0.024 (.013) 0.2 (.01) 0.074 (.027) 0.024 (.012)

f80
DT 0.49 (.17) 0.34 (.14) 0.24 (.12)∗∗∗ 0.44 (.2) 0.37 (.29) 0.26 (.34)
BT 0.34 (.27) 0.20 (.19) 0.085 (.037) 0.49 (.37) 0.27 (.45) 0.11 (.24)

f95
DT 0.98 (.27) 0.86 (.42) 0.62 (.32)∗∗ 0.88 (.46) 0.82 (.27) 0.7 (.52)∗

BT 0.88 (.61) 0.66 (.4) 0.47 (.26) 0.98 (.68) 0.65 (.35) 0.50 (.33)

Traditional parameters - 2-dimensional

t = 30 s t = 60 s t = 300 s

1LP/t
DT 8.14 (4.98) 7.68 (3.4) 7.85 (4.83)
BT 7.24 (3.46) 7.1 (2.1) 7.54 (3.74)

TP/t
DT 4.0 (1.8) 3.59 (1.22) 3.3 (1.44)
BT 3.86 (1.88) 3.31 (1.52) 2.32 (1.4)

1AE
DT 0.7 (1.1) 0.9 (1.1) 1.0 (1.5)
BT 0.6 (0.5) 0.85 (0.8) 1.5 (1.3)

Wavelet transform

The distribution of the percentage of energy content over frequency revealed an

overall similar shape for both conditions and for all three sampling durations.

That is, most of the energy lay in low frequencies whereas the energy content
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Section 3.1: COP Signal Characteristics under Single- and Dual-task

gradually decreased at the moderate and higher frequencies (Figure 3.4). The

percentage energy approached zero for level j < 6 which can be related to fre-

quencies f > 0.9 Hz according to Equation 2.3 (Chapter 2). The comparison of

different time scales revealed less energy in the low frequency range in condition

DT compared to BT. This relation turned around at a “crossover” point (tcp).

For example, we found that tcp corresponds to level j = 11.5 (f211.5 = 0.028)
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Figure 3.4. Sample mean ± standard error of the percentage energy E[%] (jmax-
level wavelet transform with mother wavelet = Coiflet1) of COP time series with
DT = dual-task (blue line) and BT = baseline-task (green line); x = medial-lateral
and y = anterior-posterior COP direction.

with respect to COPy(300s) (Figure 3.4). Thus, there was more energy at the

moderate frequencies in the DT condition. It leveled out at the shortest time

scales (about j < 6.5 =̂ frequency > 0.9 Hz) where the energy content was low in

both conditions. But, there was still more energy in the DT condition compared

to BT. The location (level j) of tcp was observed to be partly different for COPx

and COPy as well as for the three sampling durations (Figure 3.4). The cross

check of results with the mother wavelet Bior1.3 led to similar findings.
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Analysis of regularity

The results of the MSE analysis are plotted in Figure 3.5. The boxplots show

the complexity index distributed within the sample. The SaEn(i) values are pre-

sented as sample mean ± standard error and are plotted against its respective

scale i yielding the typical MSE curve. The complexity indices of the COP po-

sition data yielded significant differences between condition DT and BT in the

300s-trial (Figure 3.5; see Table A.2 in the Appendix). Looking at the MSE-curve
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progression, it was observed that both curves (DT, BT) started (i = 1) at a simi-

lar low level. Then, they coevally separated and went up until they saturated at a

higher level. That was for COPy around 1.7 (DT), 1.3 (BT) and for COPx around

1.2 (DT), 0.9 (BT). The signal saturation was reached earlier in the x-direction.

The statistical analysis of the condition effect (DT vs. BT) on the SaEn(i) values

led to significant differences partly on the larger scales and not for SaEn(1) (see

TableAIIIExpI in the Appendix). However, considering Holm-Bonferroni adjust-
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ments on the obtained P -values to accommodate for multiple comparisons, only

COPy(300s) revealed significant differences. The complexity indices of the COP

increment data yielded a significant difference for the x-direction in the 30s-trial.

The MSE-curves behaved the other way round compared to the ones of the COP

data: both curves (DT, BT) started (i = 1) at a value around 1 and then went

down converging to zero. It was observed that SaEn(i) values were higher in

condition BT on small time scales. This was especially true for COPvx where

afterwards an approach of lines was visible. For COPvy a cross-over point was

identified where the just cited relation changed, namely SaEnDT(i) > SaEnBT(i).

Significant differences were mainly obtained on scale 1 where after the Holm

Bonferroni adjustment only the 300s-trial is left over with respect to COPvx (see

Table A.3 in the Appendix). In addition, significant differences were yielded for

SaEn(30) concerning COPvy . Similar statistical results were obtained with input

parameters r = 0.15, m = 2, and fs = 20 Hz.

As expected for Gaussian noise the MSE-curves of the surrogate sequences all

showed an exponential decrease. SaEn(1) values of the surrogates were signif-

icantly higher compared to the ones of the original COPv data (for > 90% of

subjects). This was observed for both standing tasks and COP-directions, as

well as for all sampling durations.

The correlation analysis of SaEn(1) and the standard deviation of the respective

signal resulted in significant correlations (P < 0.05) with correlation coefficients

between 0.5 and 0.9.

Correlation structure

The theoretical analysis of the goodness of Ĥ by means of simulated fBm processes

revealed that DFA provides the worst results expressed by higher mean squared

error (ME) values compared to SWV (Figure 3.6). It was observed that an

augmentation of the signal length led to smaller errors (MEĤ values), better
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estimations respectively. For example, the maximum MEĤ over all H is 0.0081

(H = 0.7) in the case of L = 600, 0.0046 (H = 0.7) in the case of L = 1200,

and 0.0015 (H = 0.1) in the case of L = 3000 concerning ldSWV. The decrease

of the error with signal length is true for all methods and for all values of H

ranging from 0.1 to 0.7 in steps of 0.1 (Figure 3.6). Concerning the three different

versions of SWV (n, ld, bd), the lowest MEĤ values were found in the case of

linear detrending (ldSWV) which applies for all signal length and values of H .

As a consequence, only the results of ldSWV were tested later for significant

differences between conditions with respect to COP position time series. With
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respect to COP position data DFA yielded α-values biased to 1 (Figure 3.7 B)

and resulted in some misclassification to fGn (α < 1): the SWV methods worked

and PSD scaling estimations led to fBm processes as it is |β| > 1. Comparing

the three SWV methods similar results were obtained for ldSWV and bdSWV

(Figure 3.7 C). No detrending (nSWV), however, led to smaller values which is

especially true for the short COP recordings (30 and 60 s). Matching the results of

the different recording durations, it was observed that longer recordings resulted

in smaller Ĥ. This applies for all methods and in particular for SWV with

linear or bridge detrending. An additional analysis of the 300s-trial, where we
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compared scaling exponents estimated with and without the inclusion of longer

timescales (> 10s), led to a reduction of Ĥ when the long time scale range

was included. Significantly higher exponents were obtained in condition DT for

several trials (Figure 3.7 C). Concerning the COPv data, DFA yielded in all cases

α < 1 corresponding to fGn processes with Ĥ = α. These results are similar to

the scaling exponents estimated with ldSWV applied to COP position data. In

addition, similar statistical results were obtained when comparing DFA (COPv)

and ldSWV (COP) outcomes (Figure 3.7 C; see Table A.4 in the Appendix). As

expected, the SWV methods led to irrelevant results (biased towards H = 0)

when applied to COPv time series. Shuffling the samples of a signal destroys
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Sample mean ± standard error for Ĥ estimated by means of scaled windowed
variance (SWV) method (ld = linear detrending, bd = bridge detrending, n = no
detrending) applied to COP time series and by means of DFA applied to COPv
time series for both conditions and for the three recording durations. Significant
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its correlation structure. As expected for Gaussian white noise (uncorrelated
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process), the DFA exponent α of the shuffled surrogate sequences (n = 100)

fluctuated around a value of 0.5 with greater bias and variability of the estimation

in the 30s-trial. Best estimations (least bias and variability) were obtained from

the 300s-trial. The surrogate signals were seldom significantly different from their

COPv counterparts concerning the short data sets irrespective of the standing

task. We observed that the null hypothesis of α = 0.5 could be rejected for around

45% of the subjects in the 30s-trial, for around 37% of the subjects in the 60s-

trial, and for more than 90% of the subjects in the 300s-trial. The cumulative sum

of the shuffled COP position data led to Hurst exponents estimated with ldSWV

of around 0.5. This is typical for uncorrelated processes. Again, an improvement

of the estimation with data length, expressed by less bias and variability, could

be observed. The surrogate signals were significantly different from their COP

counterparts for most subjects with respect to the 300s-trials: the null hypothesis

was rejected for around 50% of the subjects in the 30s-trial, for around 32% of

the subjects in the 60s-trial, and for more than 90% subjects in the 300s-trial.

3.1.4 Discussion

The present study compared COP fluctuation characteristics in single- and dual-

task standing conditions in consideration of linear and nonlinear methods. We

addressed the limitations of traditional posturographic parameters by the addi-

tional consideration of structural parameters. Although traditional parameters

have provided an understanding of the net output of the postural control system,

the knowledge of process-related aspects has been neglected. Hence, a decrease of

COP area may suggest a better integration of multisensory inputs but can also be

a sign of an increased body stiffness associated with fear of falling (Lacour et al.,

2008). The aim was to gain suitable descriptors of postural control under the

hypothesis that dual-tasking effects are reflected in a change of the COP signal

structure.
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Traditional analysis

We found little evidence of dual-tasking effects by traditional posturographic pa-

rameters out of the time domain which is in line with previous dual-task study

outcomes (e.g., VanderVelde et al., 2005). Our findings join the existent set of

mixed results found in literature (for review, see Fraizer and Mitra, 2008). The

judgement of balance performance based on those traditional descriptors indi-

cates that the selected dual-task does not impact postural stability in healthy

young subjects. In general, both standing tasks were dominated by low frequen-

cies (f < 1 Hz) which seems to be a common characteristic of static standing

already shown by others (van der Kooij et al., 2011; Maurer and Peterka, 2005;

Vieira et al., 2009). However, higher frequency responses were found under the

dual-task which is in line with former study outcomes (e.g., McNevin and Wulf,

2002). It suggests more frequent postural changes under the dual-task. Thus, an

internal focus (single-task) where subjects focus on their body movements results

in slower movement adjustments. Wulf and Prinz (2001) summarise that a higher

frequency responding seems to be an indication of an exploitation and integra-

tion of the available degrees of freedom and can be associated with unconstrained

systems.

The decrease of frequency parameters with sampling duration agrees with the

results of Vieira et al. (2009). It can be traced back to a better spectral power

precision in the very low frequency band. Longer recordings enable the use of

larger window sizes for the frequency analysis which improves the frequency res-

olution. Thus, the low frequency content is better represented. According to

Kantz and Schreiber (2004, Ch2), signal recordings should be as long as the

longest characteristic time scale. In the case of COP signal recordings in a static

standing task this is hardly possible as the very low frequency range dominates.

In addition, our findings suggest that longer recordings better differentiate be-

tween conditions which can be the result of an improved frequency resolution as

well.
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Wavelet transform

The Wavelet Transform delivers more detailed results compared to the global

frequency parameters concerning the frequency resolution of the COP time se-

ries. Thus, a more functional insight into postural control mechanisms and, in

particular, into the effects of the dual-task is achieved. It can be concluded

that in both standing tasks body sway is controlled not only by a single sensory

system as the percental energy is distributed over a range of time scales. This

conclusion is based on findings related to the assignment of a concrete frequency

range to a sensory system e.g., low frequencies (0 to 0.1 Hz) are stuck to visual

control (e.g., Lacour et al., 2008; Oppenheimer and Kohen-Raz, 1999; Zhang,

2006). We have seen that several time scales show dual-task effects. Hence, the

adaptation to postural modifications affords that the interaction of the sensory

systems which corresponds to the idea of sensory re-weighting (Oie et al., 2002;

Peterka, 2002). In both tasks most of the energy was found in moderate to low

frequency bands (f < 1 Hz) which confirms the results of the global frequency

parameters. A dominant low frequency range (0 to 1 Hz) was related to a higher

contribution of closed-loop mechanisms to body sway control than open-loop

mechanisms (Collins and DeLuca, 1993). Open-loop mechanisms are typically

related to frequencies above 1 Hz (Collins and DeLuca, 1993). In this context,

the observation that frequencies above 1 Hz contribute a higher percentage to the

total power under DT compared to BT suggests that subjects rely more on open-

loop control under DT (Chagdes et al., 2009; Collins and DeLuca, 1993, 1995).

In addition, less energy in the very low frequencies in condition DT suggests a re-

duced exploratory behaviour. Based on the fact that vision stabilises sway at low

frequencies (Shumway-Cook and Woollacott, 2012; Lacour et al., 2008; Nagata

et al., 2001), one can conclude that under DT the nervous system shifts weight

from the visual receptors to the vestibular and somatosensory ones. This result

was also postulated by Chagdes et al. (2009) who compared quiet standing with

eyes open to quiet standing with eyes closed. Hence, it seems that the degree of
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visual feedback in postural control is not only reduced when the eyes are closed,

but also when the eyes are engaged elsewhere which was here the observation of

the images. Overall it can be suggested that under DT subjects adopt a control

strategy related to a decreased energy content in low frequency bands and an

increased energy content in middle frequency bands.

Again, the advantage of longer recordings is visible, such as one achieves better

spectral power precision in the low-frequency range. It appears that the different

considered sampling durations, which results in different signal length, cause the

shift of the change point tcp which is the point where the relation between DT

and BT reverses with respect to the relative energy distribution. The change

of tcp with sampling duration indicates that concrete guidance values for specific

frequency bands depend on the measurement duration. Hence, the determination

of concrete bounds - e.g., visual control up to 0.1 Hz - is questionable. The focus

on only specific time scales can lead to misjudgements.

Analysis of regularity

The application of Multiscale Entropy (MSE) algorithm to COP position time

series indicates that larger time scales mainly discriminate between the BT and

DT. COP fluctuations in y-direction show the discrimination earlier (about i > 5

=̂ time scales > 0.75 s) than COP fluctuations in x-direction (about i > 10 =̂

time scales > 1.5 s). This is a reference to sway direction dependent control mech-

anisms. Higher SaEn values under DT indicate more irregular sway behaviour

which is in line with the results of Cavanaugh et al. (2007) and Stins et al. (2011).

The authors computed entropy values only on a single time scale but found an

effect of a secondary cognitive task on sway regularity. In this context, Donker

et al. (2007) propose a positive relationship between regularity and attentional

investment in postural control. That is, the more regular the COP fluctuations,

manifested in a low entropy value, the more attention is invested to control pos-

ture. It is assumed that the additional cognitive task withdraws attention from
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the postural task (Donker et al., 2007; Roerdink et al., n.d.; Roerdink et al., 2011).

Duarte and Sternad (2008) found higher SaEn values in old compared to young

subjects accompanied by smaller standard deviations of the signal (SDSignal) in

the old subjects. They suggest that a smaller entropy in the young adults can be

traced back to the fact that for time series with a higher standard deviation one

gets a larger tolerance region due to the definition of that region (r· SDSignal).

A larger tolerance region, however, yields similar sequences more easily which

may result in lower entropy values (Costa et al., 2005). We found no significant

differences between conditions concerning the COP parameter SD but negative

correlations between SaEn(1) and SDSignal. This indicates that task differences

may be caused by the sensitivity of the MSE method to “outliers” which change

SDSignal and with it the tolerance region (Costa et al., nd, 2005). Hence, results

of the MSE analysis applied to nonstationary data have to be interpreted cau-

tiously (Duarte and Sternad, 2008). Although, one gets preliminary information

about the relative structure of the time series. In addition, Cavanaugh et al.

(2007) remark that ApEn shows high response stability and precision concerning

inter-trial variability of a standing task and, as Davids et al. (2006) point out,

has fewer limitations than many other measurements on the properties of the

data. Overall, a higher entropy on several time scales indicates a more complex

sway behaviour in condition DT (Costa et al., 2002, 2005; Duarte and Sternad,

2008). This can be explained by the fact that in a quiet standing task subjects

actively monitor their posture and are forced to avoid any motion. This leads to

a “freeze” of position with less explorative behaviour of the environment which

means fewer postural changes (Duarte and Zatsiorsky, 1999). In contrast, postu-

ral fluctuations seem to be conducted automatically by the subjects when their

attention is withdrawn from postural control leading to a more irregular sway

behaviour related to efficiency (Donker et al., 2007; McNevin and Wulf, 2002;

Vuillerme and Nafati, 2007; Zemková et al., 2009). In other words, an increase

in the awareness of the postural task can have a detrimental effect on postural
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control (Donker et al., 2007; Roerdink et al., n.d.). Stins et al. (2011) indicate

that close monitoring of the position is related to more regular COP time series.

Ramdani et al. (2009) found lower SaEn(1) values in an eyes closed compared to

an eyes open standing task referring to a loss of complexity. Not taking into ac-

count different time scales can lead to an incomplete conclusion. We showed that

the analysis of different time scales is important to reveal the true nature of the

task. Thuraisingham and Gottwald (2006) indicate that the degree of complexity

depends on the considered time scales. This statement is underlined by our data.

To respond to the problem of nonstationarity different approaches are recom-

mended in the literature e.g., eliminating “outliers” through filtering techniques

(Costa et al., 2007; Duarte and Sternad, 2008; Manor et al., 2010). However,

spectral analysis has revealed that especially low frequencies dominate COP time

series. Filtering out the dominant frequency range as done by e.g., Manor et al.

(2010) makes it difficult to interpret the results in terms of physiological mean-

ings. As proposed by others (Kantz and Schreiber, 2004; Ramdani et al., 2009;

Govindan et al., 2007), we tried to address the problem of nonstationarity by

the additional consideration of COP increment time series. Applying the SaEn

algorithm to the increment data is basically analysing the high frequency com-

ponents of COP displacements (Govindan et al., 2007). Surrogate tests indicate

nonrandom behaviour of the increment time series. Higher SaEn values estimated

for small time scales (< 1 s) suggests more irregularity in condition BT which

changes to more regularity at larger time scales with respect to COPy. This in-

dicates that stance is controlled differently in the two conditions and, as already

revealed by WT, a change of relation is denoted here. It underlines that in the

time domain velocity related measures are better able to discriminate between

control strategies which agrees with previous findings (Jeka et al., 2004; Prieto

et al., 1996; Raymakers et al., 2005). For instance, Prieto et al. (1996) showed

that velocity variables can better detect age or visual related changes. The exis-

tence of change points where relations reverse, further underlines the importance
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of multiscale resolution analysis in order to avoid misinterpretations.

Correlation structure

With respect to the correlation structure of COP trajectories, the results of the

300s-trial confirm previous findings of an antipersistent process (Ĥ < 0.5) con-

cerning time scales beyond 1 s (e.g., Duarte and Zatsiorsky, 2001; Collins and

DeLuca, 1993). The change point which marks the change from persistent to an-

tipersistent was proposed by Collins and DeLuca (1993) to be 1 s (=̂ 1 Hz). The

authors interpret it as a change from open-loop (persistent process) to closed-loop

(antipersistent process) control. However, the change point is not unequivocal de-

fined and its existence for COP position data is questionable (Delignières et al.,

2003). In addition, it lacks an objective criterion to define the time interval related

to the change of scaling properties. Attempts were made to find an automatic

determination of the transition between successive control mechanisms (Rougier,

1999), but no suitable method has been established, yet. In contrast to the long

recordings, the short signals (30 and 60 s) lead to the conclusion that the COP

trajectories are positive correlated (Ĥ > 0.5) or even uncorrelated (Ĥ = 0.5).

We got similar results for the 300s-trial when the input parameters of the short

recordings were used. That is, the exclusion of time scales beyond 10 s from

the regression analysis on which the estimation of the scaling exponent is based.

This might suggest more than one scaling region for the long-term range accord-

ing to a multifractal process. Multiple scaling regions in the underlying body

dynamics agrees with the observations of Thurner et al. (2000). Alternatively,

it can be interpreted as an artefact of the method as our work with simulated

and surrogate data revealed that the scaling behaviour can be better assessed

in long signals. In general, the problem is the goodness of the scaling exponent

estimation with respect to short time scales as only few window sizes are included

into the regression analysis. Cannon et al. (1997) propose that Ĥ is more reliable

in longer time series (> 29) with the requirement that only one scaling exponent
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is estimated for the whole signal. This is underlined by our results where we

adjusted the properties of the simulated signals to our data requirements (e.g.,

signal length and relevant time scales). One has to mind that the assessment of

the recording duration depends on the relevant information content of the data.

As most of the energy lies in the low frequency band (f99 ≪ 5 Hz) a recording of

30 s consists of about ≪ 150 “relevant” data points. An artificial augmentation

of data points achieved through an increased sampling frequency does not add

more information.

The estimation of the Hurst exponent by means of DFA partly yields misclassifi-

cation to fGn processes which leads to a false interpretation of scaling properties.

As a result, we get a sample mean biased to 1 which is in accordance with other

studies (Duarte and Sternad, 2008) but not with the results of our cross-check

(ldSWV method, DFA applied to COPv). One has to question the results of the

DFA method applied to COP position data as we found that SWV works better

on fBm processes which was shown by Delignières et al. (2006) as well. Note

that this result is only valid for the 1-order DFA and not for higher-order DFA.

Higher-order DFA may better explain the data, especially with respect to long

time scales which means large window sizes or long signal sections where a linear

data fit is probably not the best choice (Hu et al., 2001; Horvatic et al., 2011). A

further evaluation of adequate method application is important to identify those

methods which provide the best scaling exponent estimations. Therefore, it has

to be considered that the estimation depends on signal length, as well as prop-

erties of COP data e.g., nonstationarity or trends (Chen et al., 2002; Hu et al.,

2001). Our results contribute to the problem of sampling duration. Longer sig-

nals are recommended to proper estimate long-range correlations in COP time

series. Longer signals refer to larger sampling durations and not to an increased

sampling frequency which would also yield more data points. In addition, we

could show that the prove of the results by different methods is advisable. As a

rule of thumb our findings suggest that SWV methods are good tools to estimate
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scaling exponents with respect to COP position data and DFA is applicable for

COP velocity data.

Concerning the discussion of underlying postural control mechanisms, the Hurst

exponent can be interpreted in terms of smoothness and correlation properties.

As mentioned above, our results indicate an antipersistent nature (negative cor-

relations) of COP fluctuations in the time scale range beyond 1 s for single- and

dual-task standing conditions. Hence, forward sway is followed by backward sway

and vice versa which indicates that posture is controlled by closed-loop mecha-

nisms over the long-term range (Collins and DeLuca, 1993). In addition, smaller

scaling exponents correspond to stronger negative correlations. Task dependent

adjustments of postural control were reflected in a change of the scaling exponent.

That is, higher values in condition DT which means weaker negative correlations

under the dual-task. This can be interpreted as a decreased probability that

movements away from a relative equilibrium point will be adjusted by corrective

mechanisms back to a stable position (Collins et al., 1995; Collins and DeLuca,

1995). Probably, this is due to less close monitoring of the position as already

proposed by the MSE outcome. In addition, it agrees with the higher contri-

bution of open-loop mechanisms to postural control under the dual-task as it

suggests a greater delay before the activation of closed-loop mechanisms which

was already reported by others (Chagdes et al., 2009; Collins and DeLuca, 1995;

Ramdani et al., 2011). With respect to the smoothness of the signal, larger expo-

nents corresponds to smoother signals which means less abrupt postural changes

(Ramdani et al., 2011). Thus, higher values under DT suggests smoother COP

trajectories or less erratic behaviour which means less abrupt postural changes

and corresponds to weaker negative correlations. Smoother COP dynamics in the

dual-task are in contrast to the results of Donker et al. (2007) who found smaller

scaling exponents under the dual-task, that is, less smooth COP traces. The

authors applied DFA to COP position data. We got similar results with respect

to the 1-order DFA analysis: by trend lower α values under the dual-task. In this
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context, a greater degree of roughness in COP trajectories was found in Parkinson

patients (Morales and Kolaczyk, 2002) and in elderly compared to young subjects

(Duarte and Sternad, 2008). However, Ramdani et al. (2011) found the opposite,

that is, more smoothness of COP trajectories for the elderly. The two studies dif-

fer in the applied methods. Whereas Duarte and Sternad (2008) applied DFA to

COP position data, Ramdani et al. (2011) applied the Central Tendency measure

to COP increment data. To conclude, proper interpretation of scaling exponents

in terms of physiological control mechanisms needs further analysis.

3.1.5 Conclusion

Our general conclusion is that COP fluctuation dynamics differ between standing

in single- and dual-task conditions. Thereby, nonlinear methods in combination

with longer sampling durations have been proven reasonable for the detection

of task effects. Our hypothesis that dual-task effects are reflected in an altered

COP signal structure is confirmed. The investigation of different time scales has

revealed the interdependence of postural control subsystems where the weighting

and regularity of control processes are task-dependent. It can be proposed that

frequency analysis by means of Wavelet Transform is a powerful tool to reveal

control processes and that velocity related measures out of the time domain are

good descriptors alongside position related measures. To adequately evaluate

posturographic data, it is advisable to have sampling durations of at least 60 s

as otherwise misinterpretations may occur due to poor estimations or even bi-

ased excerpts of the whole standing process. However, long standing durations

are not always practicable e.g., in clinical studies with patients who can only

stand for a limited period of time. In addition, one has to consider that differ-

ences of parameter values between short and long trial durations may not only be

due to the goodness of the estimation. Intrinsic properties of the system under

study such as fatigue can also explain differences. Future work has to address the

time-dependent development of posturographic parameters. Given the higher
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discriminative power of nonlinear analysis methods, researchers are advised to

evaluate structural parameters alongside the traditional ones to improve the va-

lidity of posturography. A complementary application of different analysis tools

is needed to yield a comprehensive understanding of postural control mechanisms

and to prove the results.
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3.2 Characterisation of Postural Control

Mechanisms concerning Static Standing on

different Support Surfaces - A Comparison

between Young and Older Subjects2

3.2.1 Introduction

We are living in complex environments which challenge us to adapt the control

of our body position to new situations. A primary requirement for successful

mobility is the ability to control our body in space (Era et al., 1997). It allows us

to be active within our community and is an important component of everyday

activities (Frank and Patla, 2003). It is a well-known phenomenon that elderly

subjects are more likely to have balance disorders which is associated with insta-

bility and a higher risk of falling (Horak, 2006; Maki and McIlroy, 1996; Piirtola

and Era, 2006; Salzman, 2010). Falls often occur during routine daily activities

rather than during high-risk activities like climbing a ladder (Nevitt et al., 1991).

They lead to injury, loss of independence and a diminished quality of life (Jack-

owski, 2008). After a fall the major goal of a balance rehabilitation program is

the return to a good postural stability. Frank and Patla (2003) criticise that bal-

ance training done in sterile environments - e.g., in a laboratory - do not simulate

the challenges one faces naturally in the community. Traditionally, the ability to

stand quietly on the level ground with or without surface translations is studied

in order to assess balance performance. The Romberg test (Romberg, 1853) was

frequently applied to investigate the stability of a person. It demands subjects to

stand as still as possible. Variations of the classic setting, resulting in different

motor outputs, comprise e.g., foot placement like stance width (e.g., Kirby et al.,

1987), sensory condition like eyes closure (e.g., Prieto et al., 1996), secondary

2This section includes results of our manuscript entitled “Effect of altered surfaces on pos-
tural sway characteristics in elderly subjects” by M. Kirchner et al., which has been submitted
for publication to Human Movement Sciences.
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task manipulation like cognitive task (e.g., McNevin and Wulf, 2002). Seldomly,

stance on a surface different from the level ground is analysed. However, common

daily life situations demand standing on various surfaces. Thus, there is a need

to study postural control in situations which approach everyday standing posi-

tions. This would improve the ecological validity of posturography (Visser et al.,

2008). In this context, it could be shown that standing on a ramp affects fast

and slow mechanisms of balance control and alters electromyographic activities of

the ankle muscles in young healthy adults (Mezzarane and Kohn, 2007; Sasagawa

et al., 2009). In a more practical setting Simeonov et al. (2009) found that visual

cues can improve balance control on sloped surfaces of construction workers on

roofs. In the present study, we evaluate further stance configurations with the

attempt to model common daily postures (Figure 3.8) in order to identify func-

tional postural strategies. The size and quality of the base of support (BOS) is an

important biomechanical constraint on balance (Horak, 2006). Kirby et al. (1987)

showed that the foot position influences postural control as it induces different

mechanical constraints. For instance, control mechanisms change when we adopt

a stride position in contrast to side-by-side stance (Winter et al., 1996; Wang and

Newell, 2012). Besides the BOS, joint range constraints, muscle strength, and

sensory information restrict stability limits in human standing (Horak, 2006). It

is suggested that standing on altered surfaces lead to modified postural align-

ments with a new sensorimotor coordination (Nevitt et al., 1991).

Although the postural control system has been studied excessively since years,

control mechanisms are not fully understood, yet. To widen the hitherto under-

standing of postural control, it is suggested to analyse the variability of centre of

pressure (COP) fluctuations in combination with the pressure distribution under

the feet. In the last decade, a promising approach has been established concern-

ing the characterisation of COP time series. That is, the quantification of the

time dependent properties, referred to as the structure of the COP signal, in ad-

dition to the traditional application of linear methods (Harbourne and Stergiou,
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2009; Stergiou and Decker, 2011). Linear methods provide information about

the amount of variability within the signal by employing averaging procedures

under the assumption that variations are random and independent. But, it could

be shown that sway variability contains meaningful structure (e.g., Duarte and

Zatsiorsky, 2000). It is functional rather than detrimental whereby the function-

ality of variability seems to be task dependent (van Emmerik and van Wegen,

2002; Vaillancourt and Newell, 2002). There are suggestions that through ageing

and disease the human movement system tends to show inadequate adaptions to

environmental changes which is reflected in a loss of complexity (Davids et al.,

2003; Costa et al., 2005; Kang et al., 2009). In this context, signal complexity

is associated with a time evolution that has a rich structure on multiple time

scales (Costa et al., 2005; Duarte and Sternad, 2008). However, Duarte and Ster-

nad (2008) did not find a decreased complexity in a prolonged standing task in

old compared to young subjects. It seems that age effects are task specific or

obviously depend on the time scales (short vs. long) included into the analysis.

Horak (2006) pointed out that the constraints in the elderly can affect different

underlying physiological systems. Thus, the age effect can lead to context-specific

changes on different time scales. This is underlined by the findings of Manor et al.

(2010) who showed that multiple time scales are affected in the COP signal of

sensory impaired subjects. Especially, short and long term behaviour of the pos-

tural control system seems to be altered with age (Collins et al., 1995). Generally,

the comparison of postural stability in old and young subjects leads to the finding

that older subjects show an increased amount of postural sway (Abrahamová and

Hlavacka, 2008; Horak, 2006; Maki et al., 1994; Nardone and Schieppati, 2010).

However, it is not well established how the age effect is expressed in altered stance

configurations concerning the functionality of variability in the control system.

Lacour et al. (2008) found age effects only in a dual-task with older subjects

showing a larger sway area than younger subjects. The authors conclude that

traditional posturographic analyses are not sensitive enough to detect age related
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differences. They propose a wavelet transform to get more functional insight

into altered postural control mechanisms. This proposal is emphasised by Kang

et al. (2009) who found no correlation of traditional measures with the complexity

index. Linear and nonlinear measures seem to yield different information on pos-

tural control. In addition, Laughton et al. (2003) found that nonlinear measures

better discriminate between different systems, that is, between elderly fallers and

non-fallers. Overall it can be assumed that the evaluation of age related dif-

ferences in postural control needs the application of both, linear and nonlinear

methods. Nonlinear methods are mandatory in order to evaluate the multiscale

organisation of the postural control system. Postural control needs the complex

interactions among multiple systems, that is, different sensory systems (visual,

vestibular, and somatosensory), the motor system and cognitive processes (Horak

and Mcpherson, 1996). It is known that these systems are affected by ageing (Ho-

rak, 2006; Pasquier et al., 2003). A decline of the functions of the sensory systems

is associated with advancing age leading to postural instability and higher risk

of falls (Era et al., 1997; Lord and Menz, 2000; Pasquier et al., 2003; Sturnieks

et al., 2008). The analysis of different time scales or frequency bands by more

sophisticated methods (e.g., wavelet transform method) is assumed to widen the

understanding of the complexity of the postural control system (Laughton et al.,

2003; Glass and Kaplan, 1993; Thurner et al., 2000).

The present study compares postural fluctuations in young and elderly subjects

under consideration of altered stance configuration. As it is well established that

elderly subjects have more difficulties in the control of posture than young ones

(Laughton et al., 2003; Salzman, 2010), this comparison is adequate to find param-

eters which represent alterations in postural control. The application of different

stance configurations enables to better highlight the age effect as stability limits

are changed and subjects are forced to adapt their postural strategies. For in-

stance, age effects were better revealed in a dual-task context (Bernard-Demanze

et al., 2009; Lacour et al., 2008). In addition, it is assumed that the adapta-
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tion to new sensory conditions is more difficult for older subjects (Nardone and

Schieppati, 2010). The change of the standing position, evoked by the different

surfaces, leads to changes in the proprioceptive input - e.g., ankle joint position is

changed - and imposes biomechanical constraints on postural control. This forces

the subject to change control processes where it can be assumed that different

time scales are affected (Mezzarane and Kohn, 2007). In detail, our hypothesis

is that there is a difference between “quiet upright stance on the level ground”

and “quiet upright stance on altered surfaces” in young, as well as older subjects

expressed in a change of the motor output. In addition, it is hypothesised that

the age has an effect on the motor output in all standing tasks.

3.2.2 Methods

Twenty-six healthy, young adults (sex: 12 male, 14 female; age: 28.15 ± 5.86

years; height: 170.94 ± 10.25 cm; weight: 66.58 ± 11.1 kg) and thirteen elderly

subjects (sex: 5 male, 8 female; age: 72.4 ± 7.2 years; height: 168.5 ± 8.9 cm;

weight: 71.0 ± 13.0 kg) participated voluntarily in the study. The variable age

is significantly different (P < 0.05) between the groups whereas the variables

height and weight are not significant different. The subjects had no neurological

or musculoskeletal diseases. The experimental procedures were approved by the

ethics committee of the Hochschule Fresenius and performed in accordance with

the Declaration of Helsinki. All subjects provided written informed consent. In

advance, the Berg-Balance-Scale (BBS) (Berg et al., 1989; Scherfer et al., 2006)

was applied to the elderly subjects in order to assess their functional status. The

BBS is a widely used balance test (e.g., Blum and Korner-Bitensky, 2008; Muir

et al., 2008; Schädler, 2007). All participants reached ≥ 50 out of 56 points

which suggests a homogeneous group without conspicuous balance deficits. The

subjects were asked to adopt a quiet bipedal stance for 60 seconds [s] on five

different surfaces (Figure 3.8): level ground (LG), right foot on a step of hight 16

cm (ST), downward slope of 12◦ (DH), incline of 12◦ (UH), and slope tilted by
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12◦ with the right foot up (SL). ST, UH, and DH were chosen to model possible

everyday stance configurations e.g., the step height (16 cm) corresponds to the

DIN standard (Deutsches Institut für Normung e.V., 2011). LG is the control

condition to which the other situations are compared. The literature reveals

that standing on level ground is a common studied posture (e.g., Bigelow and

Berme, 2011; Cavalheiro et al., 2009; Piirtola and Era, 2006; Palmieri et al.,

2002; Rocchi et al., 2004). The surfaces were presented in random order and

Figure 3.8. Schematic illustration of each surface condition with an exemplary
COP pattern of an elderly subject (LG = level ground, ST = step, DH = downhill,
UH = uphill, SL = slope).

occurred altogether three times. Prior to testing, subjects were accustomed to

the tasks which includes a test trial in each situation. Subjects had to stand hip

width with the arms relaxed at both sides and had to concentrate on a quiet

position. They were not instructed to stand as still as possible but were allowed

to adopt a comfortable standing position. The sampling duration of 60 s was

chosen because we have seen recently that longer recordings are superior to short

ones (e.g., 30 s) in terms of COP parameterisation (Kirchner et al., 2012). In

order to avoid fatigue, sampling durations greater than 60 s were not applied.

Subjects wore their own shoes while standing on the different surfaces to augment

ecological validity. We paid attention that the shoes were homogeneous between

subjects to ensure internal validity. That means that only sturdy shoes (e.g.,
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sport shoes or the like) were allowed, no high heels or sandals. In addition, the

footwear was the same in all trials concerning one subject which enables a within

subject comparison of the different standing situations.

Data collection and preparation: force plate

The COP location was recorded by means of a force plate as described in Chap-

ter 2. Preprocessing of the data included detrending by the mean, filtering (4th

order Butterworth filter at a cutoff frequency of 10 Hz), and downsampling to

100 Hz (Ruhe et al., 2010). This preprocessing implies no great information loss

as 95% of sway energy comprises frequencies much smaller than 3 Hz which was

identified in advance by a fast Fourier transform. The first and the last second

of each signal were eliminated to avoid impact and end effects. These effects can

have mechanical reasons, e.g., when the command of storing data is set to the

computer, or can be due to the simultaneous start (end) of the recording and

telling the participant that the measurement starts (ends). Visual inspection of

the signals suggests that the elimination of one second is sufficient for this pur-

pose. This resulted in the inclusion of 58s · 100s−1 = 5800 data points into the

analysis. For the parameterisation we chose methods which quantify the overall

amount of sway (global parameters) and those which quantify the structure of

COP displacements (structural parameters) as described in Chapter 2. Global

parameters derived on the basis of linear methods are not sufficient to give a com-

prehensive understanding of the dynamical properties of postural fluctuations as

temporal organisations are ignored (e.g., Stergiou and Decker, 2011). Table 3.3

provides an overview of the involved methods with the application details.

Concerning the global parameters, SD and LP quantify the amount of sway.

Mean velocity can be assumed to discriminate well between postural control

strategies e.g., to reveal age effects (Prieto et al., 1996; Raymakers et al., 2005).

TP is a proper supplement to LP as it is a scale invariant measure. Two frequency

parameters were chosen to account for different frequency bands. According to
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Table 3.3. Overview of the applied analysis methods for the parameterisation of
the COP data with its input parameters. For further details see Chapter 2 and it
is referred to the findings in Section 3.1.

Method Application details

Global parameters, force plate data:

Time domain (1-dim.): standard deviation (SD),
mean velocity (v̄)

fs = 100 Hz

Time domain (2-dim.): length of COP path (LP),
length of normalised COP path called Turn (TP)

fs = 100 Hz

Power spectral density (PSD), Welch’s method: fre-
quency below which 50% (f50) and 80% (f80) of the
total power is found

hamming window of size 2000, 50%
overlap, nfft = 2048, fs = 100 Hz

Structural parameters, force plate data:

Wavelet transform (WT): Energy of level j as a per-
centage of the total energy

mother wavelet = Coif1 (fc = 0.8
Hz), j = 1− 12, fs = 100 Hz

Multiscale entropy (MSE): sample entropy (SaEn) on
different time scales i → Complexity index (CI)

i = 1 − 10, m = 2, r = 0.15 (COP
position data) and r = 0.4 (COP in-
crement data), fs = 20 Hz

Scaled windowed variance method (SWV) with linear
detrending (ld)

fs = 20 Hz, COP position data, win-
dow size: w = 40 : 10 : 200 samples

Detrended flucutation analysis (DFA) fs = 20 Hz, COP increment data,
window size: w = 40 : 10 : 200 sam-
ples

Baratto et al. (2002), f80 can best characterise modifications on the postural

control system. This was proved by f50 (median frequency). Further details on

the choice of parameters is given in Chapter 2.

The mother wavelet function has to be determined in order to apply the wavelet

transform (WT) method. Again, we chose Coif1 as proposed by Zhang (2006).

Coif1 has a centre frequency of fc = 0.8 (Figure 2.3 in Chapter 2). The scale

values (a = 2j, j =level) involved were a = 24 up to a = 212. Low scales correlate

with high frequencies as they compress the wavelet according to fa = [(fc ·100)/a]
which is the corresponding frequency to scale a (Addison, 2002). For the mul-

tiscale entropy (MSE) we computed the sample entropy (SaEn) on scale i = 1

up to scale imax = 10. This ensured that on every scale enough data points

were available for the computation of SaEn. To reduce the data volume, signals
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were downsampled to 20 Hz which still allows to map the typical time-length

scales of the COP signal. For the largest scale involved (imax = 10) we had 116

data points to compute SaEn. This is in the range of the proposal by Borg and

Lax̊aback (2010) for the template length m = 2. MSE was applied to both, COP

position and increment (COPv) data, to account for the apparent nonstationar-

ity of COP time series (Carroll and Freedman, 1993). MSE can give misleading

results when “outliers” are present (Costa et al., 2005). The increment data were

used to cross-check results as they can be considered more stationary (Kantz and

Schreiber, 2004, Ch13). The choice of the input parameters (m, r) for the SaEn

algorithm was geared to the guidelines of Ramdani et al. (2009) and therefore

based on the computation of SaEn(1) (SaEn(i) = value on scale i). With m = 2

we got r = 0.15 for COP position and r = 0.4 for COP increment data. The

correlation structure was analysed based on our previously made experiences

(Kirchner et al., 2012). That is, the scaled windowed variance method with linear

detrending (ldSWV) was applied to COP position data and the detrended fluc-

tuation analysis (DFA) to COP increment data after having checked the model

assumptions (fGn vs. fBm). A time scale range of 2−10 s (w = 40−200 samples)

was chosen as input parameter for both methods (Table 3.3). The choice of a

minimum time scale of 2 s (window size w = 40), in contrast to the previous

proposed one of 1 s, is due to an increase of the critical time interval with age or

modification of the standing task (Collins et al., 1995; Collins and DeLuca, 1995).

Hence, we started with a time scale of 2 s which enables a proper analysis of the

long-term scaling behaviour as it avoids that the short-term scaling region is in-

cluded in the analysis window. The extracted scaling exponents (DFA: α, SWV:

Ĥ) were used to interpret the correlation structure (positive, none, negative) and

the roughness of the signal (the higher the value the smoother the signal). The

analysis of a cross-over point and of small time scales was not considered due to

bad estimations in those cases (Kirchner et al., 2012 and references therein).
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Data collection and preparation: insole pressure measurement

Wireless MedilogicR© foot pressure insoles were used to record the load under

each foot inside the shoe. Data were sampled at 100 Hz and used to quantify the

relative load on each foot for the different standing conditions. For this purpose,

we sum up the pressure values of all sensors per time separately for the left and

right insole and calculate the load ratio (left vs. right). This leads to the discrete

time series {pti} = {(pleft/pright)ti}, i = 1, . . . , T with T = 58s · 100s−1 = 5800.

Then, the mean ratio over time of the more loaded foot to the less loaded foot is

determined. Hence,

pratio =
1

5800
·
5800
∑

i=1

pti (3.2)

which is replaced by (pratio)
−1 in the case of pratio < 1 in Equation 3.2. Note

that the information which foot (left or right) is on average more loaded gets

lost by this replacement. Thus, prior to the replacement, it was noted which

foot dominates for every trial and subject. That is, pratio < 1 corresponds to

a dominant right leg and pratio > 1 to a dominant left leg. A pressure ratio of

pratio = 1 corresponds to equal loaded feet. By means of a one-sample T-test we

test the null hypothesis of equal loaded feet (µ0 = 1). Furthermore, we calculate

the coefficient of variation (CV) of the time series {pti} - denoted with CVp -

in order to determine the amount of variability of loading. A high CV value is

connected with increased load shifting.

Statistics

To determine if there is a significant difference between the control condition LG

and the other surface conditions pairwise comparisons were conducted separately

for the pressure and the COP data. To test the data for normality the Shapiro-

Wilk-Test was used. In case of normal distributed data the dependent T-test

and otherwise, the Wilcoxon test was applied. Two-sided tests were conducted

84



Section 3.2: Postural Control on different Support Surfaces

as the direction of a change was not specified. The significance level was set to

α = 5%. Concerning the pressure data, we tested for a significant task effect

idependently for the different surfaces (LG vs. ST, DH, UH, and SL) concerning

the two parameters pratio and CVp. To account for multiple comparisons we

applied Holm-Bonferroni-adjustments on the obtained P -values (αi = α (k−i+1),

k = # tests). It is α1 = 0.05/2 = 0.025 as we consider two parameters to test for

significant effects. Concerning the COP data, an explorative statistical approach

was conducted due to the large number of parameters. Descriptive P -values (P

≤ 0.05) are reported with respect to the following posturographic parameters:

global COP parameters, complexity index CI, SaEn(1), SaEn(6), and scaling

exponents of DFA and SWV (Table 3.3). We speak of conspicuous differences

when it is P ≤ 0.05.

The statistical analysis of the age effect included paired comparisons between YG

and OG separately for the different standing conditions. Because of the small

sample size of OG compared to YG and mainly a failure of normal distributed

data, the Mann-Whitney-U-Test was applied. Again, descriptive P -values are

reported in an exploratory manner which applies here for pressure and COP

data. We abstained from the statistical analysis of an interaction effect (group

x task) due to the just cited reasons. Interaction effects are only qualitative

reported which means that striking observations are mentioned.

The statistical analysis was done in SPSS17.0 wheras all the other computations

were conducted in MATLAB R2008b as well as the compilation of the graphics.

3.2.3 Results

The results section is separated into the presentation of pressure and COP data.

Both data sets are presented with respect to task and age effects. The investi-

gation of the task effect includes the comparison of LG with any other surface

condition (ST, DH, UH, or SL). The age effect is evaluated by comparing the

data of the two subject groups (YG vs. OG) and is revealed separately for the
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different surface conditions. With respect to the statistical comparison (task and

age effects), an overview of all striking differences, which means a P -value ≤ 0.05,

is given in the Appendix (Table A.5 to A.7). It includes the presentation of the

detailed P -values and the values of the test statistic.

Insole pressure data

With respect to YG, five participants had to be excluded from the analysis be-

cause of missing data due to technical problems with the measurement device.

This means that n = 21 young and n = 13 older subjects were included into the

analysis of the insole pressure data. Equal loading of both feet corresponds to a

pressure ratio of pratio = 1 (Equation 3.2). The results show that in all surface

conditions subjects constantly put more load on one foot. For instance, in condi-

tion LG it is an increase of 1.26 (± 0.15) in the elderly and of 1.19 (± 0.12) in the

young subject group (Figure 3.9). As signified by one-sample T-tests the sample

mean of pratio was significantly different (P < 0.002) from µ0 = 1 in YG and OG

irrespective of the task. In the conditions LG, DH, and UH either the right or

the left foot was constantly more loaded as expressed by the ratio (pleft/pright).

That is, in OG eight subjects put constantly more load on the right (e.g., S1 in

Figure 3.9) and five subjects more on the left foot (e.g., S2 in Figure 3.9). In YG

it is, seven subjects put constantly more load on the right foot, twelve subjects

more on the left foot, and two subjects did not show this consistent pattern as

in LG the left and in DH, UH the right foot was more loaded. As expected,

for ST and SL posture the right foot was unloaded in favour of the left foot in

all participants. Note that the right foot was the upper one in both situations

(Figure 3.8). We found that on average the upper foot bears ≈ 22.2% (OG)

or ≈ 13% (YG) of body weight with respect to ST posture and ≈ 32.5% (OG)

or ≈ 21.7% (YG) of body weight concerning SL posture. This was significantly

different from the load ratio in LG (Figure 3.9). With respect to the amount of

variability, quantified by the coefficient of variation (CVp), we found significantly
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Section 3.2: Postural Control on different Support Surfaces

higher values for ST and SL posture compared to the reference position LG in

both groups. Additional, significant differences between LG and DH, as well as

LG and UH were found with respect to YG, and significantly smaller values for

UH posture compared to LG posture were obtained with respect to OG.

Concerning the age effect, we found in both groups the phenomenon of asym-
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Figure 3.9. Left: Examples of pressure ratios (left vs. right foot) of two elderly
subjects. Middle: Sample mean ± standard error of pratio, which is the load pro-
portion of the more loaded to the less loaded foot (Equation 3.2). Right: Sample
mean ± standard error of the coefficient of variation (CV) of pratio. Presented are
the results of the young (YG; green bars) and the old (OG; blue bars) subject
group. Significant differences after Holm-Bonferroni correction are marked: a =
task effect (LG vs. ST, DH, UH, SL) in YG, b = task effect in OG, + = group
effect (OG vs. YG). Surface abbreviations: LG = level ground, ST = step, DH =
downhill, UH = uphill, SL = slope

metrical loading. In the standing conditions LG, DH and UH the preferred leg

was more pronounced in OG as expressed in higher values of pratio (Figure 3.9,

middle panel). In ST and SL postures, where we have an obvious asymmetry

due to the unloading of the upper foot, YG showed a higher pressure ratio. CVp

revealed an age effect in condition LG with a conspicuous higher value in OG.

In addition, higher values of CVp were observed in OG for DH and UH postures

as well. The comparison of UH and LG led to smaller values in UH for OG and

higher values in UH for YG. This relationship can by trend also be seen for DH

compared to LG.
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Force plate data

Concerning the data of the force plate, all n = 26 young subjects and n = 13

elderly subjects could be included into the analysis.

Table 3.4. Sample median (inter quartile range) of the global parameters with
respect to COP position time series (x = medial-lateral, y = anterior-posterior)
for the different surface conditions (LG = level ground, ST = step, DH = downhill,
UH = uphill, SL = slope). Presented are the results of the young (YG) and the
old (OG) subject group. P -values ≤ 0.05 are reported with a = task effect (LG
vs. ST, DH, UH, SL) in YG, b = task effect in OG, + = group effect (OG vs.
YG). 1SD- and v̄-values are reported on a scale of y · 10−2.

LG ST DH UH SL

Global parameters: 1-dimensional, time domain

1SDx
YG 1.2+ (.63) 3.0a,+ (.75) 1.4+ (.63) 1.6a (.73) 2.3a,+ (.70)
OG 2.0 (1.4) 3.7b (.9) 1.9 (1.1) 1.7 (1.2)b 2.9 (1.7)b

1SDy
YG 3.1 (1.2) 3.3+ (1.6) 2.5a,+ (1.4) 3.1 (.9) 2.6+ (1.3)
OG 3.6 (.9) 4.1 (2.1) 3.5 (1.6) 3.1 (1.6) 3.5 (.7)

1v̄x
YG 3.2 (1.2) 6.8a,+ (1.5) 3.3 (1.6) 3.5 (1.3) 4.5a,+ (1.1)
OG 3.4 (1.3) 12.3b (6.1) 3.6 (2.0) 3.7 (2.0) 5.3b (2.0)

1v̄y
YG 5.1+ (1.7) 8.1a,+ (3.0) 5.7a,+ (2.0) 5.5+ (1.3) 5.2+ (1.3)
OG 6.7 (2.0) 12.1b (7.4) 9.1b (4.5) 8.5b (3.8) 8.5b (4.6)

Global parameters: 2-dimensional

LP
YG 3.8+ (1.1) 6.7a,+ (1.9) 4.3a,+ (1.8) 4.0a,+ (1.1) 4.5a,+ (1.0)
OG 4.78 (1.85) 10.9b (6.2) 6.0b (3.1) 5.7b (2.7) 6.3b (3.0)

TP
YG 204.1 (63.1) 228.6+ (71.8) 212.5 (72.0) 195.5 (43.1) 199.8 (54.4)
OG 173.0 (55.8) 287.3b (53.2) 207.0b (90.8) 256.5b (94.7) 227.4b (54.2)

Global parameters: 1-dimensional, frequency domain

f50x
YG .18+ (.1) .15+ (.09) .16 (.08) .16 (.07) .11a (.07)
OG .10 (.08) .21b (.12) .16b (.10) .11b (.12) .15 (.08)

f50y
YG .11+ (.05) .11 (.05) .15a,+ (.08) .11+ (.03) .11+ (.07)
OG .13 (.04) .16 (.07) .20b (.06) .21b (.14) .21b (.11)

f80x
YG .42+ (.12) .47+ (.26) .39 (.13) .39 (.18) .32a (.15)
OG .29 (.21) .62b (.24) .34 (.18) .29 (.28) .34 (.17)

f80y
YG .22+ (.12) .46a (.18) .38a,+ (.20) .27a,+ (.11) .33a,+ (.25)
OG .34 (.11) .51 (.33)b .46b (.25) .51b (.31) .54b (.26)

Global parameters Table 3.4 presents sample median and inter quartile range of

the global parameters for both groups. Note that SD and v̄ values were multiplied

by 102 for reasons of presentability which means they are represented on a scale

of y · 10−2 in Table 3.4. Conspicuous differences between the control condition
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LG and the other surface conditions, as well as between the two groups are

reported. More details on the statistical results are presented in Table A.5 to A.7

in the Appendix. Compared to the control condition LG, one mainly found an

increase of the parameter values in both groups (Table 3.4). Some results were

conspicuously different, especially for ST versus LG posture and concerning the

parameters mean velocity (v̄) and COP path length (LP). In OG conspicuously

higher TP values were found as well which is not the case in YG. Concerning the

frequency parameters, f50 and f80 mainly yielded similar results where in some

cases conspicuous differences were only obtained in one of the two parameters e.g.,

in YG for COPy and in OG for COPx. In addition, in YG condition ST showed

higher values compared to LG for f80x and smaller values for f50x. Looking

in detail at f80, we found conspicuously higher values compared to LG in all

surface conditions with respect to COPy in both subject groups (Figure 3.10).

Concerning COPx, conspicuously higher values for ST posture were obtained in

OG and a conspicuous decrease of f80x was found for SL posture in YG (Figure

3.10). We found for nearly all global parameters higher values in OG compared to
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Figure 3.10. Sample mean ± standard error of two exemplary global COP pa-
rameters in x- and y-direction for young (YG; green bars) and old (OG; blue bars)
subjects. Left: results of the parameter mean velocity (v̄). Right: results of fre-
quency parameter f80. P -values ≤ 0.05 are asterisked: ∗ ≤ 0.05, ∗∗ ≤ 0.01, ∗ ∗ ∗
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YG irrespective of the standing task (Table 3.4). An exception are the frequency

parameters (f50, f80). Here, we found for COPx higher values in OG concerning

the conditions ST and SL, but lower values concerning the conditions LG, UH, and

DH (Figure 3.10). Similar conspicuous group effects (P < 0.05) were observed

for f80 and f50 where conspicuous differences were mainly obtained for COPy.

Concerning COPx, conspicuous differences were found for LG and ST. The 2-

dimensional global parameters showed mostly a conspicuous group effect for the

parameter LP and not for TP.

Wavelet transform The results of the wavelet transform are presented in Figure

3.11. The percentage of energy content (E [%], see Equation 2.7 in Chapter 2)

was distributed over the frequency range from level jmax = 12 (f212 =̂ 0.02 Hz)

to level j = 5 (f25 =̂ 2.5 Hz) and showed a decrease from the low to the high

frequencies (Figure 3.11). For levels j < 6 the energy content [%] approached

zero. This was true for all surface conditions and was found in both subject

groups. The comparison of the energy distribution between conditions resulted

in different characteristics for the two COP directions, partly with group specific

outcomes. With respect to OG, the situations LG, UH, DH, and SL showed more

percental energy in the low frequency band (j = 11−12) and less percental energy

for j < 11 compared to ST concerning COPx (Figure 3.11, top panel, right). LG

had the least percental energy for 8 ≤ j < 10 which was approached by SL, DH,

and UH for j < 8. In addition, we found the following relation between the two

incline directions: EDH ≤ EUH for 10 < j < 12 and EDH ≥ EUH for 8 < j < 10.

Concerning COPy (Figure 3.11, bottom panel, right), ST had the most percental

energy in the low frequency band (j = 11−12) and the least percental energy for

7 ≤ j < 11 compared to the other surface conditions. The relationship between

DH and UH can be summerised by EDH ≤ EUH for j = 11− 12 and EDH ≥ EUH

for 7 < j < 10. With respect to YG, WT yielded the most conspicuous results

for COPx. Here, we found less weighting of the low frequency band (j = 12) and

more weighting of the middle frequency band (j = 11 − 10) in ST compared to
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the other surface conditions (Figure 3.11, top panel, left). Compared to LG, DH,

and UH postures, we found for SL more weighting of the levels 8 < j < 11 which

corresponds to the frequency band 0.04 < f < 0.3 Hz. Concerning COPy, more

weighting of the levels 9 < j < 11 and less weighting of the lowest and highest

analysed frequencies were observed in LG. Zooming in, the relationship between

DH and UH can be described as EDH ≤ EUH for 8 < j ≤ 11 and EDH ≥ EUH for

6 < j < 8. Comparing the two subject groups, WT mainly revealed a difference
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Figure 3.11. Sample mean ± standard error of energy distributed over frequency
(level = j) of the 12-level wavelet transform (WT). The energy Ej is presented
as a percentage of the total energy (Equation 2.7) with different colours for the
different standing tasks (LG = level ground: blue, ST = step: green, DH =
downhill: red, UH = uphill: light blue, SL = slope: brown). Left: results of
the young subjects (YG). Right: results of the old subjects (OG). Top: results of
COPx (x = medio-lateral). Bottom: results of COPy (y = anterior-posterior).

when ST and LG were considered. Concerning COPx, higher weights in the ST

posture were found in the frequency band j = 11 − 10 with respect to YG and

in the frequency band 5 < j < 10 with respect to OG (Figure 3.11, top panel).

In addition, the difference of SL to the other surface conditions affected other

levels (frequency bands) when OG was considered in contrast to YG. Concerning
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COPy, we found that in OG the energy distribution of condition ST was different

compared to the other conditions which was not the case in YG (Figure 3.11,

bottom panel). Moreover, the crossover point of DH and UH differs between OG

and YG.

Regularity properties Figure 3.12 presents the results of the MSE analysis of

OG in contrast to YG for the different surface conditions. The graphs show SaEn

values plotted against scale i = 1− 10 which corresponds to the time scale range

from 0.15 s (i = 1) up to 1.5 s (i = 10). Two aspects were taken into account.

First, the whole information of the graph was compromised into one value: the

area under the MSE-curve (complexity index, see Equation 2.12 in Section 2).

Second, the shape of the curve was considered. Table 3.5 contrasts the com-

Table 3.5. Sample median (inter quartile range) of the complexity index CI
(approximated area under the MSE-curve) evaluated for COP position (column
1, 2) and increment (column 3, 4) time series (x = medial-lateral, y = anterior-
posterior). Presented are the results of the young (YG) and the old (OG) subject
group in the different stance situations (LG = level ground, ST = step, DH =
downhill, UH = uphill, SL = slope). P -values < 0.05 are indicated with a = task
effect (LG vs. ST, DH, UH, SL) in YG, b = task effect in OG; + = group effect
(OG vs. YG).

CIx CIy CIvx CIvy

Task YG OG YG OG YG OG YG OG

LG 12.52+

(1.74)
10.18
(3.82)

9.89+

(3.28)
12.75
(1.45)

7.72
(1.42)

8.60
(1.91)

9.06+

(1.32)
10.23
(0.89)

ST 15.01+,a

(2.96)
17.46b

(1.73)
14.08a

(2.90)
14.36
(3.54)

10.06a

(0.70)
9.60b

(1.01)
8.99
(0.96)

8.35b

(1.50)

DH 12.33
(3.30)

11.56
(4.49)

12.82+,a

(3.13)
14.87b

(2.95)
8.30+

(1.60)
9.06
(1.59)

9.04+

(1.09)
9.66
(0.85)

UH 12.77
(2.53)

11.34
(4.31)

10.40+

(2.91)
15.16b

(3.85)
8.70a

(1.82)
8.82
(1.19)

9.04
(0.97)

9.81b

(1.45)

SL 11.95
(2.66)

12.83
(2.73)

12.04+,a

(4.06)
15.65b

(3.00)
9.16a

(0.94)
9.80b

(1.84)
8.95+

(0.90)
9.49
(1.51)

plexity index (CI) of YG with the one of OG. Conspicuous P -values are marked

with respect to task and group differences. For more details on the statistics it is

referred to the Appendix (Table A.5 to A.7). With respect to OG, the compari-

son of CI between LG and any other surface condition resulted in conspicuously

higher values for ST concerning COPx and for DH, UH, and SL concerning COPy
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(Table 3.5). The increment data (COPv), on the other hand, yielded conspicu-

ous differences for ST in both COP directions. With respect to YG, conspicuous

differences between CILG and CISurface (Surface = ST, DH, UH, and SL) were

found for ST concerning COPx and for ST, DH, and SL concerning COPy (Table

3.5). COPv yields conspicuous differences in x-direction for ST, UH, and SL. A

conspicuous group effect (OG vs. YG) was found for LG (higher value in YG)

and ST (higher CI-value in OG) with respect to COPx. Moreover, a conspicuous

group effect was observed for LG, DH, UH, and SL (COPy) with higher values in

OG. The increment data yielded conspicuous differences in DH posture for both

COP directions with higher values in OG.
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Figure 3.12. Sample mean ± standard error of sample entropy (SaEn) plotted
against scale (i = 1 − 10) in young (YG) and old (OG) subjects with respect to
the different surface conditions presented in different colours (LG = level ground:
blue, ST = step: green, DH = downhill: red, UH = uphill: light blue, SL = slope:
brown). A, B: MSE of COP position data. C, D: MSE of COP increment data (x
= medio-lateral and y = anterior-posterior).

Additional information were received by taking into account the MSE-curve pro-

93



Chapter 3: Experimental Series

gression. As expected, one can see that SaEn-values increased with scale concern-

ing COP position data (Figure 3.12 A, B) and decreased with scale concerning

COP increment data (Figure 3.12 C, D). Again, we first considered the results of

the two age groups in order to evaluate task effects by comparing the shape of

the graphs of the different standing tasks. In OG lower SaEn values were found

for LG compared to any other surface condition on nearly all scales concerning

COPy displacements with conspicuous differences for SaEn(1) and SaEn(6) (Ta-

ble 3.6). Only the ST position approached LG on higher scales (i = 8 − 10).

In x-direction the ST-graph lay above the other graphs which started (i = 1) at

a similar low value (about 0.5) and then expanded. We found conspicuous task

effects with respect to SaEnx(1) and SaEnx(6) for ST and UH posture (Table

3.6). COP increment data in y-direction yielded similar MSE-curves for DH, UH,

and SL. The ST-graph started at a higher value but then approached the others.

In x-direction the graphs of DH and UH behaved similarly. The SL-graph stayed

above the two for i = 2 − 6 where afterwards it approached their SaEn level.

Concerning condition ST, the MSE-curve started (i = 1) at a lower value but

increased in the middle scale range (i = 2− 6) before approaching the SL-graph.

In YG the highest SaEn-values were found in condition ST with respect to COP

position data. This is true for all analysed time scales with the exception that

for COPx differences were first visible from scale i = 2 on (see also Table 3.6).

Concerning COPx, conspicuous differences of SaEn values between LG and DH,

UH, or SL were found for scale 1, but not for scale 6 (Table 3.6). Concerning

COPy, standing on the level ground led to the lowest SaEn-values and condition

DH yielded higher SaEn values than condition UH. Conspicuous SaEn values

were obtained for ST, DH, and SL postures (Table 3.6). With respect to the

COP increment data in y-direction, we found that ST has the highest values on

scales i = 2 − 4 and the lowest values on scales i = 7 − 10. Condition SL lay

between ST and LG. Concerning COPvx, condition ST yielded the highest val-

ues on scales i = 2 − 10 and the lowest value on scale i = 1. SL led to higher
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values on scales i = 2 − 10 compared to LG, DH and UH. LG is the condition

with the lowest values on scales i = 4 − 10. The comparison of the MSE-curves

Table 3.6. Statistical results of SaEn(1) and SaEn(6) concerning COP position
(row 1−2) and increment (row 3−4) time series (x = medial-lateral, y = anterior-
posterior). P -values ≤ 0.05 are indicated with a = task effect (LG vs. ST, DH,
UH, SL) in YG, b = task effect in OG; + = group effect (OG vs. YG).

SaEn(1) SaEn(6)

LG ST DH UH SL LG ST DH UH SL

COPx + +, b +, a a, b a + +, a, b b

COPy + a, b +, a, b +, b +, a, b + a +, a, b +, b +, a, b

COPvx a, b a a + + a, b a a, b

COPvy + a, b a + b b b

between groups resulted in scale-dependent differences where one has to discern

the two COP directions, x (Figure 3.12, left) and y (Figure 3.12, right), as well as

the category of the data, position (Figure 3.12, top) and increment (Figure 3.12,

bottom). With respect to COP position trajectories we found for the y-direction

more similarities between the conditions in OG and for the x-direction in YG.

Concerning COPy both groups showed minimum values on all scales in condition

LG. This was observed for COPx as well with respect to OG. It was revealed that

for COPx both groups had the highest SaEn-values in condition ST but with

different curve progressions. That is, the MSE-curve was more saturated in OG.

With respect to COPy, condition ST yielded, in comparison to the other surface

conditions, the highest values in YG but not in OG. Conspicuous group effects

for SaEn(1) and SaEn(6) were found for LG and ST with respect to COPx and

for LG, UH, DH, and SL with respect to COPy (Table 3.6). The increment data

in x-direction resulted in similar curve progressions compared between OG and

YG, but only in YG the MSE-curves stayed apart on larger time scales (in OG

the graphs approach each other). Concerning COPvy, the crossover point of the

ST-graph with the other graphs corresponded to different scales in the two age

groups. In OG the crossover took place on scale i = 3 whereas it took place on

scale i = 5 in YG. In addition, condition LG behaved differently compared to
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DH, UH, and SL postures only in OG.

Scaling properties To quantify the scaling behaviour of the COP time series we

applied DFA to COP increment data and SWV with linear detrending (ld) to COP

position data. The results of DFA, which outputs the scaling exponent α, and of

ldSWV, which outputs the scaling exponent Ĥ, were similar. In detail, similar

statistical results were obtained where SWV mainly yielded smaller P -values (see

Table A.5 to A.7 in the Appendix). In addition, scaling exponents estimated with

SWV were throughout larger than DFA-values which was on average a difference

of 0.03 between α and Ĥ. Figure 3.13 shows the results of DFA applied to COPv

with its output parameter α as representative for the scaling behaviour concerning

time scales beyond 2 s. In both age groups, conspicuous differences between LG

and the other surface conditions were mainly found for COPvy (Figure 3.13).

Compared to the control condition LG, α is conspicuously lower in all the other

conditions. The lowest values were obtained for ST posture. Concerning COPvx,

α was conspicuously higher in SL compared to LG posture for YG. In addition, for

YG α was higher in ST, DH, and UH compared to LG posture. Different relations

were obtained for OG. The smallest α value was obtained in condition ST whereas

the other conditions had nearly similar sample means. The comparison of scaling

properties between YG and OG, separately for the different surface conditions,

led to different observations for the two COP directions. Concerning COPvy

we found αYG > αOG irrespective of the surface condition with conspicuous P -

values for LG and UH. Concerning COPvx two cases could be distinguished:

(1) αYG < αOG for the surface conditions LG (P ≤ 0.05), DH, and UH; (2)

αYG > αOG for the conditions ST (P ≤ 0.05) and SL.

3.2.4 Discussion

Two main goals were followed in the present study. First, we addressed the

question of the existence of task specific postural dynamics in young and in elderly
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Figure 3.13. Sample mean ± standard error of the scaling exponent α estimated
by DFA applied to COP increment data (COPv, x = medial-lateral, y = anterior-
posterior). Presented are the results of the young (YG; green bars) and the old
(OG; blue bars) subject group for the different surface conditions (LG = level
ground, ST = step, DH = downhill, UH = uphill, SL = slope). P -values < 0.05
are reported with a = task effect (LG vs. ST, DH, UH, SL) in YG, b = task effect
in OG, + = group effect (OG vs. YG).

subjects. The standing positions were chosen on the basis of everyday situations

in an attempt to increase the ecological validity. Second, it was the aim to

evaluate the effect of age on postural control in the different standing positions.

Thereby, postural control was evaluated through a posturographic measurement

which included the study of the load distribution between the left and the right

limb, as well as the study of COP fluctuations by means of linear and nonlinear

methods in order to get deeper insight into postural control mechanisms. The

discussion starts with the consideration of the load distribution with respect to

the observed task and group effects. Afterwards the results of the force plate

data are evaluated which includes the discussion of linear and nonlinear results

with respect to task and group effects. It was hypothesised that posturographic

parameter values differ between young and elderly subjects. However, it was

unknown how the age effect is expressed in the different surface conditions with

respect to the diverse posturographic measures in consideration of several time

scales.
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Limb load characteristics: task effect

By means of pressure insoles we were able to control limb load symmetry in the

different standing positions. Similar to Blaszczyk et al. (2000), we found limb

load asymmetry in our control condition LG (quiet stance on an even surface,

eyes open) in young and in elderly subjects. Blaszczyk et al. (2000) found an in-

crease of the asymmetry in the elderly in contrast to young subjects which is an

line with our results. In addition, they found an increased load asymmetry when

the eyes were closed compared to eyes open. The authors conclude that asym-

metrical loading is a compensatory adjustment to regain equilibrium (Blaszczyk

et al., 2000). It eases the decision which foot to take for a compensatory step and

can be seen as a preventive strategy to counteract a potential balance loss. In

contrast, Wang and Newell (2012) did not find load asymmetry in young subjects

in side-by-side stance which corresponds to our tested LG posture. But, they

observed asymmetrical loading in a stride position expressed by more load on the

rear foot and pointed to a step-initiation-strategy as well. A stride position was

adopted by our subjects when standing with one foot on a step where we found

a strong unloading of the front leg.

We observed a similar load asymmetry in LG, DH, and UH postures which sug-

gests a consistent control strategy irrespective of the balance demands. The three

positions have in common that the feet are placed side-by-side, but, they can be

characterised by different angles at the ankle joint. A consistent control strategy

is underlined by the fact that subjects, young and old, preferred forcefully one

side in all situations which is either the right or the left limb. The magnitude

of the asymmetry is thereby similar between the three postures within one age

group. Hence, our results do not support the idea that load asymmetry increases

with instability (Wang and Newell, 2012).

The amount of variability in the pressure ratio time series was quantified by the

coefficient of variation (CV). A larger amount of variability in ST and SL postures

compared to LG indicates an increased weight shifting in both groups. Winter
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et al. (1996) found that hip load/unload mechanisms are more frequently applied

in a stride position which is similar to our ST posture. The comparison of CV

values in DH and LG or UH and LG posture shows an increase of CV for the

inclined surfaces in YG and a decrease in OG. This suggests an age-dependent

postural control strategy in response to the altered surface inclination. The de-

crease of variability in the elderly indicates that they avoid load shifting on the

inclined surfaces compared to their behaviour on an even surface. Reasons for it

can be fear of falling, restricted range of motion, or difficulty with lateral stabil-

ity (Laufer et al., 2006; Maki and McIlroy, 1997; Mille et al., 2005). The young

subjects, however, showed an increased variability when standing on the inclined

surfaces compared to the even surface which suggests a higher contribution of

load/unload mechanisms to postural control. But, based on our data analysis

we cannot deduce whether a higher CV value results from more frequent and/or

more pronounced weight shifting. Our findings motivate further analyses on the

loading behaviour in different standing positions in order to better differentiate

and describe postural control strategies.

Limb load characteristics: group effect

Similar to Blaszczyk et al. (2000) we found an increase of the load asymmetry

in the elderly compared to the young subjects in condition LG. Furthermore,

this phenomenon was observed for the surface conditions UH and DH. It seems

that older subjects more rely on the step-initiation strategy (Blaszczyk et al.,

2000; Wang and Newell, 2012). A reason could be the effort to counteract the

timing problem which results from the limited speed of neural and muscular pro-

cesses (Blaszczyk et al., 2000; Mackey and Robinovitch, 2006; Patla et al., 1993;

Sturnieks et al., 2008). Hence, elderly subjects slightly unload one leg which

is in case of a possible instability prepared to make a correction step to regain

balance. In this context, it has to be mentioned that stepping, which belongs to

the category of change-in-support strategies (Horak, 2006), plays an important
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functional role to counteract instability (Maki and McIlroy, 1997) and seems to

be used more in elderly subjects at risk of falling (Adkin et al., 2000). There is

evidence that individuals can influence which strategy they use based on experi-

ence, intention, or expectation (Burleigh et al., 1994). Probably, elderly subjects

use the step-initiation-strategy to prepare themselves to counteract a possible

perturbation. Interestingly, the positive difference between the pressure ratio of

OG and YG is the most pronounced in condition UH. In this standing position

the angle of the ankle joint mainly enables a corrective backward or sideward

step. This might be a more difficult task which is responded by the elderly with

the occupation of a stance position where one leg is strictly more loaded than

the other. In contrast to the abovementioned findings, in situations where sub-

jects are forced to put mainly the weight on one side (position ST and SL), YG

clearly showed more load asymmetry. Apparently, elderly subjects avoid to fully

rely on one leg. This could be due to reduced muscle strength, problems at the

joints (e.g., hip joint arthrosis) or anxiety (Adkin et al., 2000; Laufer et al., 2006;

Pijnappels et al., 2003; Sturnieks et al., 2008). According to Rogers and Mille

(2003), clinical observations show that older individuals are unable to move from

two-legged to one-legged support because of difficulties with controlling lateral

motion of the body. ST and SL posture are similar to one-leg support due to

the strong load asymmetry. Our findings provide evidence that in those standing

positions the load distribution is age-dependent.

With respect to the amount of variability of the pressure ratio time series, an

age-effect is only revealed in LG, UH, and DH postures. In all three standing po-

sitions, higher CV values were observed for the older subject group which indicates

an increased weight shifting. As mentioned above, the elderly reduce variability

and the young subjects increase variability with respect to the comparison of LG

and UH or LG and DH which underlines the existence of age specific control

mechanisms. It suggests that elderly freeze their position and young subjects

adopt more exploratory behaviour to cope with the altered postural demands. A
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freezing of the position is associated with anxiety such as standing on an elevated

surface (Stins et al., 2011). Thus, fear of falling can be assumed a be a crucial

reason for the reduced load ratio variability in the elderly when standing on an

inclined surface.

Wang and Newell (2012) showed that asymmetrical loading on the feet affects the

coordination dynamics which is reflected in an altered COP pattern. By means

of a force plate we investigated COP fluctuation characteristics to get a better

understanding of postural control mechanisms.

Force plate data, global parameters: task effect

A greater amount of COP fluctuation variability in the altered surface con-

ditions, expressed by an increase of the sample median of e.g., LP or SD, suggests

a smaller posturogram when standing on the level ground which can be a sign of

the necessity of larger postural displacements to cope with the modified standing

positions. One has to be cautious with the interpretation as larger posturograms

cannot be directly linked to less stability (Granata and England, 2007; Stergiou

and Decker, 2011). An increased amount of variability can also be a sign of more

exploratory behaviour (Lacour et al., 2008) due to the altered constraints. Ac-

tually, the tendency of smaller SD values for DH and UH postures compared to

LG was observed in both age groups with respect to COPy and in the elderly

subjects with respect to COPx. However, this cannot be confirmed by the LP

values and is not conspicuous, but suggests a reduction of the amount of COP

displacements when standing on an inclined surface. In this context, reduced

sway in Parkinson’s disease patients was related to less functional movements in

terms of exploratory behaviour (Schieppati et al., 1994). This can explain our

findings for COPx - less functional movements in the elderly concerning lateral

sway - and is in line with our statements above concerning the results of the

pressure data. A smaller BOS in the surface conditions DH and UH may explain

the reduced SDy values in both age groups.
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With respect to OG, conspicuously higher v̄y-values were observed in any surface

condition compared to standing on an even surface. This suggests that on average

faster COP displacements along the y-axis are necessary to cope with the altered

demands. In contrast, v̄x is only conspicuously higher for ST and SL postures

compared to LG. In ST and SL postures the constraints along the x-axis are obvi-

ously altered which may explain the change of v̄x. Higher mean velocity of lateral

sway for ST and SL postures was observed in YG as well which underlines our

findings. Our results suggest that velocity variables are sensitive to altered stance

configurations. This agrees with previous findings which indicate that velocity

information is the most accurate form of sensory information to stabilise posture

with velocity variables being better able to detect changes in stance conditions

(Prieto et al., 1996; Jeka et al., 2004; Delignières et al., 2011). The increase of

the sample median of the frequency parameters (f50, f80) suggests a smaller

frequency band in LG which may correspond to less sharp postural commands

or the generation of slower postural saccades. This relation between LG and

any other surface with respect to the frequency parameters holds true for OG

irrespective of the task and the COP direction. Baratto et al. (2002) found that

f80 is a sensitive frequency parameter. We found similar results for COPy but

observed that f50 better discriminates between the tasks (LG vs. ST, DH, UH,

or SL) in case of COPx .

Our findings support the inference that standing with one foot on a step particu-

larly challenges lateral stability. In this context, Sims and Brauer (2000) showed

that a step up task (step of height 15cm) is a greater challenge to balance control

in medial-lateral direction than a step forward task. Similarly, Maki and McIlroy

(1997) propose that a lateral destabilisation complicates the control of compen-

satory stepping. It might be that it is difficult to regain lateral stability with a

stepping reaction. To conclude, step up tasks have to be forcefully considered in

balance tests e.g., in a clinical context. The altered COPy properties observed

when standing on an inclined surface are in line with the findings of Mezzarane
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and Kohn (2007) who showed that standing on an inclined surface challenges

y-sway. Our results suggest task specific COP displacement characteristics where

the two COP directions are affected differently.

Interpretations based solely on global parameters are limited in its exploratory

power concerning postural control mechanisms. Global parameters fail to account

for the temporal structure underlying COP variability. To gain better insight into

the dynamic COP pattern, the application of nonlinear methods is helpful. Mez-

zarane and Kohn (2007) showed that fast and slow mechanisms of balance control,

corresponding to a change in short- and long-term postural control systems, are

affected differently when standing on an inclined surface compared to standing on

level ground. Beyond this comparison, we analysed COP fluctuation pattern in

different standing positions with altered biomechanical constraints and assumed

modifications of postural dynamics.

Force plate data, structural parameters: task effect

The results of the global frequency parameters (f50, f80) are confirmed by the

wavelet transform outcomes that irrespective of the task COP displacements

are mainly characterised by low frequencies. That is, beyond about 1.25 Hz (level

6) the energy approaches zero. Thus, slow postural changes are primarily con-

ducted in both age groups. Furthermore, a decrease of the percentage of energy

is observed from the low to the higher frequencies in all standing tasks and in

both age groups. This underlines that low frequencies mainly contribute to the

organisation of the postural control system. It reinforces the well-established

characteristic that COP displacements are dominated by frequencies below 2 Hz

(Maurer and Peterka, 2005). This is an important fact concerning the analysis of

COP structure as it informs about the relevant time scales of the system which

have to be considered in the further analyses such as MSE (Glass and Kaplan,

1993; Kantz and Schreiber, 2004; Thuraisingham and Gottwald, 2006; Thurner

et al., 2000). We found that the different standing positions affect several time
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scales which support the re-weighting hypothesis of changing sensory weights in

reaction to altered conditions representing a certain type of nonlinearity in the

postural control system (Oie et al., 2002; Chagdes et al., 2009). A change of the

relative weights of frequency bands was already reported in case of a damaged

subcomponent of the balance system (Oppenheimer and Kohen-Raz, 1999). In

addition, Chagdes et al. (2009) demonstrated a re-weighting of frequencies when

comparing standing with eyes open to standing with eyes closed which imitates

cutting-off the visual system. The different surface conditions lead to altered

postural configurations, associated with a change of the proprioceptive input like

a changed ankle joint position, which may explain re-weighting of sensory inputs

(Mezzarane and Kohn, 2007). The proportional distribution of energy over the

frequency range mainly yields a task effect when comparing LG and ST or LG

and SL with respect to COPx. The re-weighting suggests a change of the control

strategy to ensure stability which can be interpreted as the necessity of more

frequent postural changes ST and SL positions. In addition, the just cited task

effect is observed in OG for DH and in tendency for UH as well. Furthermore,

it was found for DH with respect to COPy in the elderly. Normally, upright

stance on an even surface is characterised by a forward leaned body (Mezzarane

and Kohn, 2007). Due to the ankle anatomy, people have a constrained range of

backward motion. In DH posture subjects are further dragged to move forward

which soon results in an unstable position which has to be corrected. Here, the

main goal of the postural control system is the prevention of a potential forward

fall (Mezzarane and Kohn, 2007). Pollock et al. (2000) remark that the human

body has the inherent ability to sense the threat to stability and to use mus-

cular activity to counteract the force of gravity in order to prevent falling. It

can be assumed that subjects more frequently correct their position in condition

DH to counteract unstable positions. However, this is only valid for the elderly

and cannot be confirmed by YG. In this context, Laufer et al. (2006) found that

threat (standing on a lifted surface) has only an effect in elderly and not in young
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adults. Concerning the inclined surfaces we can confirm the results of Mezzarane

and Kohn (2007), that is, EUH > EDH for slow frequencies and EUH < EDH for

the middle frequencies. But, this relation is not much pronounced here and needs

further investigations.

COP characteristics along the y-axis were given by a dominant low frequency

band for ST in the elderly. When standing with one foot on a step elderly sub-

jects obviously conduct mainly slow or few postural changes in y-direction. This

can be traced back to the altered foot placement - similar to a stride position

- which results in a modified BOS and asymmetrical loading of the feet. The

observation of a dominant low frequency band in position ST seems to be specific

for OG and will be discussed later when the age effect is evaluated in more detail.

It seems that a high rate of COP displacements in x-direction and a low rate

in y-direction is necessary to control ST posture. As revealed by the pressure

data, the load distribution in ST posture is characterised by a strong asymmetry.

Wang and Newell (2012) showed that asymmetrical loading on the feet affects

the coordination dynamics and the difficulty raises to stabilise the coordination.

It can be suggested that standing positions similar to ST are suitable to analyse

the postural response in case of challenging conditions.

Multiscale entropy analysis further highlights that it is beneficial to analyse

motor behaviour on different time scales in order to differentiate between situa-

tions. Concerning body sway along the y-axis, we clearly found that standing on

an even surface yields the most regular motor output for all considered time scales.

In terms of the postulated relation between COP regularity and the amount of

attention invested (Donker et al., 2007), it indicates that in condition LG sub-

jects, young and old, invest more attention to control their posture. In all surface

conditions subjects were instructed to concentrate on their standing position.

Hence, our results suggest that this is easier achieved when standing on an even

surface as small entropy values in LG indicate regular COP displacements which

can be interpreted as more structured position control (Ramdani et al., 2011). In
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terms of complexity, which can be associated with a rich structure on several time

scales (Duarte and Sternad, 2008), our results confirm the intuition that postu-

ral control in LG is a less complex motor task compared to standing on altered

surfaces. The young adults show an adjustment of complexity within standing

tasks from ST (highest CI value) to DH, SL, UH, and LG. This is not evident for

OG. However, concerning lateral sway it is vice versa as an adjustment within

standing tasks is observed in OG but not in YG. In particular, ST showed the

most irregular behaviour on all time scales which suggests complex motor output

for COPx. Our results support the idea that a change of complexity is not uni-

directional but organising the dynamics of the motor output is task-dependent

(van Emmerik and van Wegen, 2002; Vaillancourt and Newell, 2002). Again, we

got evidence that the maintenance of lateral stability is more demanding when

standing with one foot on a step. It is for both subject groups the most com-

plex task. Additional to the conclusions of Wang and Newell (2012) that the

postural control system explores more in a staggered or tandem stance, we found

that the explorative behaviour is more irregular compared to LG posture. Wang

and Newell (2012) argued that staggered or tandem stances, which are more dif-

ficult to retain the coordination dynamics, are the less practised postures and

the system needs to learn how to maintain the postural balance. Based on this

interpretation one can conclude that there is a need to practice different postures

in e.g., therapeutic interventions or prevention programs. To prove the obtained

the results of MSE, we have performed the same analysis for the COP increment

data. Increment time series describe the rate of change or the velocity of COP

displacements and are assumed to counteract potential nonstationarities of the

COP signal (Kantz and Schreiber, 2004). Hence, artefacts of the MSE analysis

are limited (Costa et al., 2005). Again, we found task-dependent COP fluctuation

properties. Condition ST is the most conspicuous one irrespective of the sway

direction as it shows task-dependent behaviour on all time scales. Similarly to

the results of the spectral analysis by means of WT, a crossing of MSE-curves was
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found with respect to the comparison of the positions ST and LG. This under-

lines the existence of two different scaling regions, that is, a short- and long-term

region. In addition, MSE outcomes reinforces the difference of the postural dy-

namics between conditions SL and LG with respect to COPx displacements.

The evaluation of the scaling properties by means of DFA and SWV leads to

the conclusion that the long-term behaviour (time scales > 2s) can be charac-

terised by negative correlations irrespective of the task. This is evident in both

subject groups and agrees with previous results (Collins et al., 1995; Collins and

DeLuca, 1995; Duarte and Zatsiorsky, 2001; Duarte and Sternad, 2008; Kirchner

et al., 2012). As it is present in all standing position it seems to be an overall phe-

nomenon of COP fluctuation dynamics. To date, an antipersistent process was

proved for the long-term region in quiet standing with eyes open and eyes closed

(Collins and DeLuca, 1995) and in quiet standing under dual- and single-task

paradigms (Kirchner et al., 2012). To our knowledge, it has not been established

in terms of different surface conditions, yet. The estimated scaling exponents can

be interpreted in terms of smoothness of the time series, that is, larger values

correspond to smoother signals. In addition, they can be interpreted in terms of

the correlation structure. A Hurst exponent of 0.5 corresponds to uncorrelated

data and values smaller than 0.5 correspond to negative correlations with smaller

values being a sign of stronger negative correlations. Concerning COP displace-

ments in y-direction, the altered surface conditions provide smaller scaling expo-

nents compared to LG. Thus, postural fluctuations seem to be more negatively

correlated which was interpreted by Collins and DeLuca (1995); Collins et al.

(1995) as an increased probability that movements away from a relative equilib-

rium point will be adjusted by corrective mechanisms back to the stable position.

Furthermore, Collins and DeLuca (1995) found smaller scaling exponents when

standing with eyes closed compared to eyes open which suggests tighter corre-

lation in the long-term in case of reduced sensory input. More smoothness of

COP trajectories in LG corresponds to less abrupt changes which is equivalent
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to the just referred interpretation and to our abovementioned results (e.g., mean

velocity). Concerning COPx, we observed group specific differences of the scaling

exponent between LG and the other surface conditions which will be discussed

later.

Force plate data, global parameters: group effect

It is well established that the amount of postural sway variability increases with

age (Abrahamová and Hlavacka, 2008; Colledge et al., 1994; Demura et al., 2008;

Maki et al., 1994; Pasquier et al., 2003; Slobounov et al., 1998). We can confirm

this statement as we mainly found higher global parameter values in the el-

derly which corresponds to a higher amount of sway variability. In addition, the

literature reveals that COP mean velocity is a sensitive posturographic param-

eter in terms of finding e.g., age effects (Abrahamová and Hlavacka, 2008; Jeka

et al., 2004; Pasquier et al., 2003; Prieto et al., 1996; Raymakers et al., 2005).

This can be confirmed by our results, that is, mean velocity is a discriminating

parameter for the detection of both: task and age effects. However, the relation

and interrelation between surface modification and age is not straightforward or

linear, especially when the factor sway direction is additionally considered. Con-

cerning YG, v̄y was slightly higher in the altered surface conditions compared to

LG except for ST. In contrast, OG showed a high increase of mean velocity from

LG to any other surface condition. Laufer et al. (2006) remark that surface mod-

ifications (change of the surface height) only affect COP measures for the elderly

and not for the young adults which partly agrees with our results. Concerning

COPx, in ST and SL positions, where the biomechanical constraints related to

lateral stability are obviously altered, we found conspicuous group differences

with respect to v̄ with higher values in OG. Based on these findings, one can

assume that elderly have difficulties with lateral balance control which confirms

the current data (Maki et al., 1994; Mille et al., 2005; Rogers and Mille, 2003).

Stability in medial-lateral direction is seen as a good predictor of falls in older
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subjects (Maki et al., 1994). The authors propose that a decline of balance con-

trol in the elderly affects primarily the lateral sway direction. Altogether, these

findings support the need for therapeutic interventions that focus on the problem

of lateral instability (Rogers and Mille, 2003). Hence, situations which challenge

lateral stability are suitable for tests on postural control in the elderly. The par-

ticularity of the medial-lateral sway direction in condition ST is shown by the

frequency parameters as well. Similar to Williams et al. (1997), we found a lower

median frequency (f50) in the elderly compared to the young adults in a quiet

standing task concerning COPx. This relationship was also observed in DH and

UH positions. But, in condition ST it is vice versa. Lower frequency parameter

values are found in YG which suggests fewer postural changes in the lateral sway

direction in young subjects compared to the elderly when standing with one foot

on a step. This observation is also true in the case of condition SL. The standing

tasks ST and SL can be summarised as positions with high asymmetrical loading

- almost one-leg-stand - where Wang and Newell (2012) already proposed an af-

fection of the coordination dynamics reflected in altered COP fluctuation pattern.

We found evidence that this is age-dependent. The comparison of LG and SL

under consideration of the age effect reveals different postural control strategies in

the two age groups. Young subjects seem to reduce their postural correction rate

in x-direction expressed in a decrease of frequency parameters, whereas elderly

subjects increase it. Williams et al. (1997) conclude that measures of the fre-

quency spectra in the medial-lateral plane are useful as biomarkers of age related

declines in postural control. Similar conclusions can be derived from the study of

Laufer et al. (2006) who found that task and age effects were reflected in a change

of frequency parameters. In contrast to the results of COPx, higher frequencies

were found with respect to COPy in the elderly compared to the young adults

irrespective of the task. Again, age-dependent postural responses were observed

when comparing DH and UH as the rate of postural changes was increased in OG

and reduced in YG. Our results suggest that frequency parameters are task- and
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age-dependent with specific interrelations expressed differently in the two COP

directions.

Force plate data, structural parameters: group effect

We analysed scaling properties by means of DFA and SWV and found negative

correlations in the long time scale range (beyond 2 s) irrespective of the subject

group. Our results support the meanwhile established property of an antiper-

sistent process concerning long-term behaviour of COP displacements which was

previously reported in young and elderly subjects (Collins et al., 1995; Duarte

and Zatsiorsky, 2001; Duarte and Sternad, 2008). With respect to COPy, higher

scaling exponents in OG compared to YG suggest smoother COP signals in the

elderly which underlines the results of others (Collins et al., 1995; Duarte and

Sternad, 2008; Ramdani et al., 2011). However, this relation is only conspicuous

for LG and UH postures and needs further study. Smoother dynamics can be

related to less abrupt changes interpreted as the result of a reduced sensitivity

or reactivity to internal perturbations (Ramdani et al., 2011). In this context,

Collins et al. (1995) found a larger critical time interval in the elderly, which de-

fines the change from a persistent to an antipersistent process, which they related

to a greater delay before the activation of feedback mechanisms occurs. Concern-

ing COPx, an interaction effect of group x task can be proposed. Similarly to

the results of the global frequency analysis, we found an increase of the scaling

exponent from LG to ST in YG and a decrease in OG. Hence, young adults have

smoother postural dynamics in ST compared to LG whereas the elderly increase

corrective adjustments from LG to ST. This results in more negatively correlated

postural dynamics in YG with respect to LG and in OG with respect to ST corre-

sponding to an increase of postural correction movements or less smooth signals.

Again, we found evidence that lateral sway is challenged in the condition ST and

that it is organised differently in the elderly compared to the young subjects.

Looking in more detail at the frequency spectrum by means of thewavelet trans-
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form, we found that for most situations the relative energy distribution over the

frequency range is similar in young and old adults. This fits to the statement of

Colledge et al. (1994) that the relative contributions of the sensory systems to

balance do not change with age. However, the frequency range which differen-

tiates best between the standing tasks differed between YG and OG concerning

COPx. In OG these were higher frequencies than in YG and it affected mainly

all standing tasks whereas in YG only ST and SL were affected. This observation

can be explained by the fact that older subjects have difficulties to adapt to new

sensory conditions (Nardone and Schieppati, 2010). Our results indicate that the

difficulty is expressed in a change of the energy distribution. Similarly, the energy

distribution differs between OG and YG with respect to COPy when comparing

LG and ST. To conclude, our findings suggest group specific strategies to adapt

to the altered standing positions. According to Oie et al. (2002), multiple sen-

sory inputs are dynamically re-weighted to maintain upright stance as sensory

conditions change. We got evidence that this is conducted differently in OG and

YG as different time scales are affected. Collins et al. (1995) found an age effect

concerning the critical time interval which defines the separation of short- and

long-term behaviour of postural dynamics. This can be related to our findings of

a shift of the “critical” time scale range towards higher frequencies in OG and

has to be evaluated in more detail in further studies.

With respect to the results of the mutiscale entropy analysis, condition ST

revealed conspicuous age effects on different time scales. COPx fluctuations were

earlier (smaller time scales) more irregular in OG compared to YG. In contrast,

COPy fluctuations were more regular on larger time scales in OG. These group

differences were also reflected in the increment data which we used, amongst

others, to prove results. The age effect is task-dependent and revealed on short

and long time scales with different characteristics in the two COP fluctuation

directions. Different short and long term behaviour of the postural control sys-

tem of young versus older subjects was already found by Collins et al. (1995).
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Concerning the relationship between age and complexity, a reduced complexity

with age was found by Kang et al. (2009) but not by Duarte and Sternad (2008).

The two studies differ with respect to the conducted standing task. This agrees

with our results as we do not find evidence for a straightforward relationship be-

tween age and complexity. Rather, we observed task dependent age effects with

specific characteristics for the different time scales and COP dimensions. This

underlines the proposal of van Emmerik and van Wegen (2002) who state that

the link between disease and loss of complexity depend on the type of movement

dynamics. Donker et al. (2007) postulate that more regularity suggests that more

attention is invested into the control of posture. This has to be reconsidered with

respect to different time scales. Thuraisingham and Gottwald (2006) point out

that the degree of complexity depends on the time scales under consideration.

Concerning COP position data, it seems that YG mainly modulates y-sway in

reaction to the altered stance configurations and OG mainly x-sway. However,

this can only partly be confirmed by the increment data.

3.2.5 Conclusion

The present study confirms that standing on altered support surfaces results in

modified postural dynamics. We found age-dependent postural control strategies

and learned that the adaptation to altered environmental conditions is organised

differently in x- and y-direction. Our results strongly support a nonlinear rela-

tionship between task and age in consideration of sway direction. The detailed

description of this relation needs the combined analysis of linear and nonlinear

methods. It proved to be reasonable to investigate different time scales in or-

der to evaluate age and task effects. This encourages COP recordings for longer

periods (≫ 30s) which are necessary to analyse the long-term behaviour appro-

priately. The age effect was strongly revealed in the task of standing with one

foot on a step and with respect to COPx. We suggest that tasks which chal-

lenge lateral stability (e.g., condition ST) are beneficial to study age effects. It
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can provide insight into motor control mechanisms which underlie age-associated

impairments. Future work has to show whether therapeutic interventions, which

focus on postural stability enhancement, have a positive effect on lateral stability

under the dynamical systems point of view. In general, previous research has to

bring into focus the evaluation of postural control changes in reaction to a treat-

ment in consideration of different time scales. Our study reveals that the analysis

of load distribution under the feet is a valuable supplement to COP signal eval-

uation. Load asymmetry seems to be a natural phenomenon in human stance.

This is an important point given one-sided disabilities (e.g., hip replacements)

where the system is probably forced to undergo a process of adaptation or motor

relearning. To conclude, the present study reinforces that not one measure of

balance is enough to predict the failure of the system in a given environment.

Effective assessment and rehabilitation of balance disorders will benefit from the

comprehensive analysis of postural control.
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4 General Discussion

The study of postural control has a long history which affords several books

and papers on this topic. However, contradictory results, lack of measurement

standards, and overall an incomplete knowledge of the complex control mecha-

nisms motivates further studies. To get insight into the understanding of postural

control mechanisms the investigation of body sway variability has proven to be

beneficial. Here, the dynamical systems viewpoint has broaden the scope of its

analysis. It expands the research by giving insight into the time-dependent prop-

erties of postural fluctuations. It provides the stimulus to judge sway variability

not simply as detrimental but rather as functional. The present thesis aims at the

identification of appropriate time series analysis measures to characterise sway dy-

namics. Complex interactions of postural control subsystems limit the ability of

traditional linear methods to completely describe the underlying dynamics. The

assessment of postural stability needs a toolbox which includes both linear and

nonlinear methods since different properties of the system have to be quantified.

To understand the “inherent flexibility and creativity of everyday behaviour” the

theory of dynamical systems is required as “nonlinear systems provide an exciting

alternative way of thinking about the emergence of such phenomena that goes

beyond existing approaches” (Newell and Molenaar, 1998, p. 200).
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4.1 Implications for Centre of Pressure Signal

Analysis

The present thesis contributes to the question concerning the selection of mea-

sures to parameterise COP data. Therefore, traditional linear parameterisation

methods of examining variability within the COP signal were supplemented by

nonlinear analysis methods which aim at the characterisation of the signal struc-

ture. A structural analysis is justified due to the fact that the randomness of

data points within the COP time series has been proven to be false in postural

tasks (e.g., Duarte and Zatsiorsky, 2000).

4.1.1 Traditional posturographic parameters of the time

domain

In accordance with previous research (Jeka et al., 2004; Prieto et al., 1996; Ray-

makers et al., 2005), we found the parameter mean velocity, separately com-

puted for the two COP directions, suitable to discriminate tasks (e.g., single

vs. dual) and subjects (young vs. old). Although, the combined consideration

of medial-lateral (x) and anterior-posterior (y) sway in a 2-dimensional COP

parameter (e.g., length of COP path) is convenient, it covers sway direction-

dependent effects. Thus, 2-dimensional COP parameter have to be supplemented

by 1-dimensional parameters. This was especially required to identify age effects

which seem to be particularly expressed in COP x-direction. The primary de-

cline of lateral stability in the elderly has already been reported by others (Maki

et al., 1994; Mille et al., 2005; Rogers and Mille, 2003). Thus, measures evalu-

ated in the lateral sway direction are useful as biomarkers of age related postural

instabilities (Williams et al., 1997). It suggests the necessity to account for both

sway directions in the study of postural control as well as in the treatment of

balance disorders which was here especially proved for elderly subjects. Rogers

and Mille (2003) already propose the need for therapeutic interventions which
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focus on problems of lateral instability in the elderly. One has to identify postu-

ral tasks which challenge lateral sway e.g., the step situation (ST) in our study.

Concerning the parameters COP path length and its scale invariant counterpart

Turn, we recommend to consider both in order to revise the results and to yield

more comprehensive interpretations. The parameter Turn directly quantifies the

amount of twisting and turning of the COP trajectory which proves to be a suit-

able information in postural control studies to reveal task effects (Donker et al.,

2007).

4.1.2 Frequency analysis of centre of pressure signals

Global frequency parameters, e.g., median frequency f50, were found to be sen-

sitive to altered standing tasks as revealed in our experiments. In addition,

parameters of the frequency domain could detect age effects and in particular

task specific differences between the two subject groups. Our results confirm the

conclusions of Williams et al. (1997) and Laufer et al. (2006) that measures of

the frequency spectra can reflect age or task effects. Baratto et al. (2002) propose

that f80 can best characterise the modifications on the postural control system.

We cannot confirm this proposal directly as we have seen that age and task ef-

fects are expressed in low and high frequency bands. Thus, f80 would cover such

information unless other frequency parameters are additionally consulted. Our

study results contribute to the suggestion that global frequency parameters are

not sufficient to quantify COP fluctuations. To account for the different subcom-

ponents of the postural control system, which may act on different time scales,

it is necessary to break down the energy content into frequency bands. In line

with Bernard-Demanze et al. (2009) and Chagdes et al. (2009), we found that the

wavelet transform (WT) yields valuable results for a detailed frequency resolution

and is superior over common spectral analysis methods (e.g., fast Fourier trans-

form). It is known that static standing is dominated by low-frequency postural

sway (e.g., Carpenter et al., 2001; Maurer and Peterka, 2005). Bernard-Demanze
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et al. (2009) remark that in young, healthy subjects there is no power present in

frequencies above 1.5 Hz during quiet standing. We can confirm this and more-

over propose that the interesting frequency band, which contains about 99% of

the spectral power, is well below 3 Hz concerning our tested subjects and tasks.

Based on these facts, it is true to narrow the considered frequency range down

and to concentrate further analyses on larger time scales (low frequency band)

e.g., time scales greater than 1
3
s which corresponds to frequencies below 3 Hz.

Similar to Vieira et al. (2009), we found a decrease of frequency parameters with

increasing sampling duration, which is, 30 s to 60 s up to 300 s. Longer mea-

surements take more of the low frequency components into account (Carpenter

et al., 2001). Thus, larger sampling durations enable a better resolution of the

dominant low frequency band. Short samples are not sufficient to capture the

dominant slow postural fluctuations which results in an under- or overestimated

of the true frequency values (van der Kooij et al., 2011). Hence, absolute fre-

quency values strongly depend on the recording length of the signal. In this

context, it has to be considered that it is not known whether differences between

values are due to a better estimation of the spectral power or due to altered

dynamics of the system e.g., fatigue. The paper of van der Kooij et al. (2011)

addressed this problem and found evidence for a better parameter estimation.

However, their investigated sample was a small number of young, healthy sub-

jects so that conclusions are limited. Further study is needed to address this issue

especially with respect to different subject groups. As a consequence of sampling

duration dependency, identified frequencies with functional significance have to

be considered in light of the measurement duration. This is also true for the des-

ignation of specific frequency bands related to principal sensory inputs which can

be found in literature e.g., 0−0.1 Hz corresponds to visual control, 0.1−0.5 Hz is

dominated by vestibular activity, and 0.5 − 1 Hz reflects somatosensory activity

(Lacour et al., 2008; Oppenheimer and Kohen-Raz, 1999; Zhang, 2006). Those

guideline values have to be considered carefully. The a priori subdivision of the
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frequency spectrum in concrete intervals as done by e.g., Bernard-Demanze et al.

(2009) or Zhang (2006) is not advisable. A detailed frequency resolution has to

be adopted. To conclude, the analysis of the energy distribution over frequency

gives a first insight into which time scales primarily contribute to the COP signal.

These information are important for the further structural analysis as one has to

select which time scales should be considered.

Back in the nineties, Newell and Slifkin (1998) already proposed that the knowl-

edge of the signal structure is important to determine its underlying nature.

Despite a detailed analysis of the frequency spectra by means of the wavelet

transform method, we looked at two other properties, namely regularity and

long-range correlations. Concerning nonlinear methods, the frequency of use has

augmented in the last years. However, a review of literature ensues that mostly

only one measure is considered and often without a careful method evaluation.

That is, the choice of adequate input parameters for the respective algorithm

which includes the a priori determination of the interesting time scale range and

considerations about artefacts and pitfalls.

4.1.3 Evaluation of regularity and complexity using entropy

metrics

Despite the proposal of some authors that entropy metrics such as SaEn or ApEn

can be related to complexity (e.g., Bandt and Pompe, 2002; Rhea et al., 2011),

we found that single scale entropy is insufficient to reveal the underlying nature

of sway variability. It can give misleading results as regards the evaluation of

signal complexity (Duarte and Sternad, 2008). Random signals, which are not

structurally complex, can be considered highly complex by mistake because of

yielding large entropy values. Indeed, our findings support the assumption that

the inclusion of different time scales is invaluable for the evaluation of the dy-

namical properties of COP signals (Costa et al., 2005; Duarte and Sternad, 2008).

According to Costa et al. (2002), MSE is advantageous to quantify the complexity
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of a signal as the behaviour on several time scales is quantified. Complexity of

a signal can be understood as a rich structure on multiple time scales (Duarte

and Sternad, 2008). However, it is not clear which time scales have to be consid-

ered to obtain a useful quantification of signal complexity (Thuraisingham and

Gottwald, 2006; Thurner et al., 2000). As mentioned above, the low frequency

range dominates in a COP signal. Thus, it is proposed that the quantification of

COP signal complexity needs the inclusion of time scales longer than 1 s. Manor

et al. (2010) excluded the large time scale range - time scales longer than 0.13 s -

from the MSE algorithm due to the short sampling durations of 30 s. It remains

questionable in which way their results enable useful interpretations concerning

the complexity and functionality of the postural control system. Notwithstanding

the suggestion of Costa et al. (2002) to use simply the complexity index (area

under the MSE-curve) for the further interpretation of the data, we found that it

is also beneficial to look at the MSE-curve progression. It seems that crucial time

scales - time scales which discern characteristics about motor control strategies -

are group specific (young vs. old) with a dependence on the COP direction. Thu-

raisingham and Gottwald (2006) point out that the degree of complexity depends

upon the time scales under consideration. A proper knowledge of the different

time scales involved is necessary which has previously not been well established

(Thurner et al., 2000). We propose to focus on long time scales where an initial

frequency analysis is advisable to revise the mainly involved frequency range.

To encounter misinterpretations it is recommendable to compute SaEn values for

COP increment signals as well (Govindan et al., 2007; Ramdani et al., 2009).

This enables to reassess the obtained results and reveal possible artefacts of the

algorithm (Govindan et al., 2007; Kirchner et al., 2012). We generalise this pro-

posal by stating that it is advisable to apply the whole MSE algorithm to the

increment signal instead of the sole consideration of a single scale. Here, the study

of different stance configurations reveals interesting behaviours when MSE is ap-

plied to the increment signal. The observed intersections of MSE-curves supports
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the advice to account for the entire curve progression. The sole consideration of

the complexity index would cover differences between COP fluctuation dynamics.

The existence of intersections emphasises that short- and long-term behaviour of

postural fluctuations are organised differently which was already proposed by oth-

ers (Collins and DeLuca, 1993; Mezzarane and Kohn, 2007; Thurner et al., 2002).

The intersection phenomenon can explain contradictory study results where the

estimation of entropy values like SaEn or ApEn is based on different sampling

frequencies. Thus, the considered time scales are not identical which can lead to

contrasting results. To compare results across studies it is important to mention

the input parameters used in the respective algorithm (e.g., sampling frequency,

sampling duration, and time delay) so that one can reproduce the considered time

scale range. Thuraisingham and Gottwald (2006) remark that the same signal

sampled at two different sampling rates would show different behaviour in the

MSE analysis. A reason for that can be that the considered time scales differ

between the two algorithms due to different sampling rates.

When discussing the quantification of COP signal regularity in terms of physi-

ological interpretations, one has to consider the ’regularity-attention-hypothesis’

postulated by Donker et al. (2007). They found that COP regularity is positively

related to the amount of attention invested in postural control which was recently

confirmed by others (Roerdink et al., 2011; Stins et al., 2009, 2011). It is reviewed

that COP regularity decreases when attention is withdrawn from posture (e.g.,

cognitive task) and increases with challenging sensory constraints (e.g., standing

on a foam) (Roerdink et al., n.d.; Roerdink et al., 2011). We can partly confirm

this hypothesis as we found higher irregularity under the dual-task. However,

this was mainly true for large time scales. The findings of Donker et al. (2007)

are based on entropy estimations with respect to a single time scale (SaEn1) and

only under consideration of COP position data. Their hypothesis has to be fur-

ther evaluated in the context of different time scales and with respect to COP

increment data. The latter point is addressed by Roerdink et al. (2011) who come
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to the conclusion that one gets qualitatively similar results for the original and

the increment data. But, we have seen that this can change when multiple scales

are considered. In our study of altered stance configurations most regularity was

found in the situation of bipedal stance on the level ground. In the context of

the regularity-attention-hypothesis this would indicate that the most attention

into the control of posture is invested when subjects stand on the level ground.

Bipedal stance on the level ground (LG), however, can be considered the easiest

or most practiced one of our investigated standing conditions. Our findings con-

trast the proposal that with challenging sensory constraints regularity increases

(Roerdink et al., n.d.). Stins et al. (2009); Schmit et al. (2005) found that balance

experts show less regular COP pattern. Hence, the assumption that standing on

a level ground is the easiest task where subjects are more or less experts is not

supported. Rather, the obtained results have to be interpreted here with respect

to the degree of regularity on multiple time scales. Higher complexity in the mo-

tor output in the altered surface conditions compared to the control condition LG

probably supports that these tasks are more difficult in terms of postural control.

4.1.4 Evaluation of the correlation structure using

fractal-based methods

Similar to the hitherto remarks on MSE analysis, the investigation of scaling

properties or long-range correlations lacks a standard algorithm. In line with

Delignières et al. (2006), our findings lead to the recommendation to apply SWV

to COP position and DFA to COP increment signals. The application of a unique

method is questionable as examples show that time series without long-range de-

pendencies can mimic a linear fit in log-log plots leading to misinterpretations

(Wagenmakers et al., 2004). Again, a cross-check of results is necessary. We

found that DFA applied to COP position data leads to different results (com-

parison of single- and dual-task) than SWV applied to COP position or DFA

applied to COP increment data. As several studies (e.g., Amoud et al., 2007;
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Blázquez et al., 2009; Duarte and Sternad, 2008) have only applied DFA to COP

position data one has to reanalyse the data applying DFA to COP increment

data or furthermore prove the results with SWV. Our findings support earlier

remarks of Delignières et al. (2003) that interpretations with respect to postural

control mechanisms can be misleading due to statistical artifacts. We suggest

that deviating results between studies can be due to the application of different

methods. In addition, one has to mind application requirements and selection of

input parameters for the algorithm. As it is advisable to exclude the smallest time

scales (Cannon et al., 1997), the analysis of the short-range behaviour was not

conducted in the present work. However, Collins and DeLuca (1993) found dif-

ferent scaling exponents comparing short-and long-range behaviour by a diffusion

analysis which was confirmed by e.g., Blázquez et al. (2009). The authors showed

that there is a change from persistent to antipersistent behaviour. This was in-

terpreted as the existence of two postural control modes open- and closed-loop

control (Collins and DeLuca, 1993). The critical time point where the control

modes switch over from one to the other is subject and task specific (Collins

and DeLuca, 1995; Collins et al., 1995). Delignières et al. (2003) questioned the

existence of a switch in the control mode in COP position time series. They

rather found that COP increment data can be characterised by a switch from

persistent to antipersistent behaviour. Thurner et al. (2000) found multifractal

behaviour, which means multiple scaling regions, in COP signals. However, they

only analysed a measurement of 20 s and based the determination of different

scaling regions on visual inspection where they themselves stated that it is not

clear which time scales to look at. Short sampling durations can not adequately

capture long-range correlations (Duarte and Zatsiorsky, 2001; Kirchner et al.,

2012). It has been proposed that the output of healthy systems exhibits com-

plex variability associated with long-range correlations (Vaillancourt and Newell,

2002). However, to assess long-range correlations one needs long COP recordings,

although it has been proposed that fractal methods (e.g., DFA) are applicable
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to short time series (e.g., 5 s) with stable outcomes (Amoud et al., 2007; Doyle

et al., 2005).

4.1.5 Recommendations for sampling duration and sampling

frequency

A remaining problem is the choice of sampling duration which comes along with

the question of an adequate sampling frequency. For example, Pincus (1998) sug-

gests that Approximate entropy (ApEn) can be meaningful applied to short data

sets, namely N > 70 (N = # data points). This proposal can be misleading in

the context of COP recordings. That is, N > 70 may imply that a recording of

1 s with a sampling frequency of 70 Hz is sufficient for the application of ApEn.

However, the physiological meaning of the results is questionable as the typical

time scale length of static standing is well above 1 s. In addition, Amoud et al.

(2007) state that time series as short as 5 s were applicable for DFA in order

to identify differences in postural stability between young and elderly subjects.

However, the physiological interpretation is questionable. Our findings suggest

that for a meaningful evaluation of the structure of the time series a sampling

duration of 30s - mainly applied in past postural control studies - is not suffi-

cient. We found that 60 s is superior to 30 s and sufficient for various analyses,

e.g., task differences and age effects could be adequately revealed on several time

scales. Other research groups recommended at least 120 s (van der Kooij et al.,

2011). This partly fits to our results as we found that extended standing is more

appropriate in order to characterise the complex dynamics of postural fluctua-

tions. According to Kantz and Schreiber (2004, Ch2), one needs recordings which

are longer than the longest characteristic time scale. This is hardly possible in

the case of COP recordings in a static standing task as the low frequency range

dominates. But it supports the necessity of longtime standing. Concerning the

sampling frequency our findings support a downsampling to 20 Hz which can be

motivated by the Nyquist frequency and the fact that 10 Hz is an upper boundary
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for voluntary movement production (Farmer, 1999). There would be no further

advantage of increasing the sampling frequency. To high sampling frequencies

only artificially augment the number of data points and enhance co-linearities in

the signal (Rhea et al., 2011). This proposal is supported by findings which show

that modification of entropy estimation by incorporating a time delay between

successive data templates better characterise the dynamics inherent in the signal

(Deffeyes et al., 2007; Govindan et al., 2007). Note that incorporating a time

delay is like downsampling the signal (Govindan et al., 2007). As the sampling

duration and frequency influence COP measure outcomes, it is important to re-

port the used values. To summarise, the right sampling duration and frequency

have to be chosen in the specific context and have to be based on the typical time

scale length of the signal.

4.2 Practical Implications for Studies on Postural

Control

Postural stability is necessary in various daily life situations and requires flexibil-

ity as well as adaptability to alteration of the situation. The theory of dynamic

systems gives rise to new interpretations of postural fluctuations in terms of a

meaningful and necessary mechanism to adapt to changes of the environment.

We evaluated the applicability of nonlinear methods in combination with tradi-

tional linear parameters in different settings, that is, modification of the standing

task as well as comparison of young and older subjects. We hypothesised that

task and age effects are reflected in an altered COP signal structure.

4.2.1 Task specific postural fluctuation dynamics

We found differing postural fluctuation dynamics in a single- compared to a dual-

task where subjects had to complete a memory task. The additional cognitive

task had the function to decrease the attentional investment in posture. It is

125



Chapter 4: General Discussion

mainly believed that conducting a secondary task forces subjects to delegate pos-

tural control to sensory-motor processes and in case of a cognitive task produces

a change in the allocation of attention (Woollacott and Shumway-Cook, 2002).

Donker et al. (2007) found a positive relationship between the regularity of COP

position signals and the amount of attention invested in postural control mani-

fested in the regularity-attention-hypothesis. This relationship was confirmed by

others (Cavanaugh et al., 2007; Stins et al., 2009, 2011). In general, the authors

showed that COP time series are characterised by more irregularity under a dual-

task which is in line with our results. Note that this relation is only confirmed

for a cognitive secondary task. Haddad et al. (2008) found more regularity when

conducting a supplement motor task. They propose a prospective mechanism

over which postural motions follow a predictable path which enables stable and

flexible task performance (Haddad et al., 2008). The just cited studies have all

in common that they quantify regularity on a single time scale. As pointed out

above, this time scale can differ in case of differing input parameters. To our

knowledge the investigation of multiple time scales was not conducted in dual-

task postural studies. As we found higher irregularity particularly on larger time

scales one can conclude that COP fluctuation pattern are more complex under

the dual-task. This conforms with the assumption of unconstrained standing un-

der the dual-task with a freeing of the degrees of freedom in contrast to a freezing

strategy in the single-task where COP fluctuations may be constrained as sub-

jects are forced to stand quietly (Duarte et al., 2011; Newell, 1998). The process

of freezing and releasing of degrees of freedom (DOF) has been reported in the

course of motor learning (Newell, 1998 and references therein). This view may

explain the more complex COP fluctuations found in the ST position which is

a less practiced situation and therefore the coordination of DOF is not acquired

(Bernstein, 1967). However, our interpretations are limited due to not having

addressed the issue motor learning here. In addition, the modified postural con-

figuration in the ST position imposes other biomechanical constraints compared
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to bipedal stance on the level ground which results in different requirements to

coordinate posture. The benefit of MSE and the consideration of COP increment

data was observed in all of our experiments. This is also true for the other struc-

tural parameterisation methods. It enables to discern characteristics about motor

control strategies used to maintain standing balance under different conditions.

A detailed frequency analysis by means of the wavelet transform method reveals

the weighting of frequencies and how this changes under modified standing tasks.

It highlights relevant frequency bands.

Dual-task effects were mainly not revealed in traditional COP parameters which

contributes to the ambiguous results found in dual-task literature (Fraizer and

Mitra, 2008). But we found an explicit change of the COP signal structure which

indicates different COP fluctuation dynamics. Concerning the altered standing

positions, traditional methods discriminated between the tasks. In the past, ex-

periments have shown that a change of the BOS results in an altered amount

of sway e.g., increase of medial-lateral sway in quiet stance with feet together

compared with other stance widths (Kirby et al., 1987; Henry et al., 2001). We

propose that a change of the BOS alters the amount and structure of sway vari-

ability.

4.2.2 Age effects on postural control

First of all we would like to mention that pressure recordings separately under

the left and right foot provided meaningful results in addition to force plate data.

This is especially the case when analysing different standing positions with al-

tered placements of the feet. It enables the control of load symmetry which was

shown to influence the coordination dynamics (Wang and Newell, 2012). We

found different loading strategies in young and elderly subject. These differences

were task specific. The adaptation of a step-initiation strategy as proposed by

Blaszczyk et al. (2000) and Wang and Newell (2012) was confirmed irrespective

of the subject group, but especially for the elderly. Concerning COP parameter-
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isation, the age effect was clearly shown in a larger amount of postural sway. A

larger posturogram in old compared to young subjects was already demonstrated

by several research groups (Abrahamová and Hlavacka, 2008; Colledge et al.,

1994; Demura et al., 2008; Maki et al., 1994; Pasquier et al., 2003; Slobounov

et al., 1998), however, mainly concerning bipedal upright stance on the level

ground. Our results furthermore indicate that larger postural sway variability

is a common characteristic in the elderly irrespective of the standing position.

The position ST can be associated with difficulties of lateral stability. This was

particularly revealed through the parameter mean velocity and through global

frequency parameters. However, to gain insight into the mechanisms underlying

observed differences, structural COP parameterisation has proven to be essential

which underlines the findings of other research groups (e.g., Bernard-Demanze

et al., 2009; Huisinga et al., 2012b; Laughton et al., 2003; Ramdani et al., 2011).

We found conspicuous differences between young and elderly subjects which were

more deeply expressed in altered standing positions and particularly in ST. A

modification of the standing position affects the stability limits which forces sub-

jects to adapt their postural strategies. It requires the complex integration of

sensory information regarding the position of the body relative to the surround-

ings and the ability to generate appropriate motor responses to control body

movement (Sturnieks et al., 2008). Thereby, the adaptation to new sensory con-

ditions is more difficult for older subjects (Nardone and Schieppati, 2010). In

addition, with increasing age postural stability in medial-lateral sway direction

becomes a major problem, especially in the context of falling (Lord et al., 1999;

Maki and McIlroy, 1999; Mille et al., 2005). Our findings support that tasks which

challenge lateral stability, e.g., standing with one foot on a step, are beneficial

to study age effects. Postural control is an imperative skill for daily life. The

benefit of posturography in the clinical screening of older adults for e.g., fall risk

will be enhanced by the simulation of environmental challenges one faces in the

community.
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4.3 Limitations and Future Directions

The results and interpretations of the present work are mainly based on small

sample sizes. Intersubject variability could not be addressed here. Larger sam-

ple sizes are needed to account for interindividual variability which enables to

better statistically identify parameter groups - parameters which highly correlate

- and to discern different systems (young vs. old, healthy vs. diseased). The

discrimination of different systems needs the application of a comprehensive set

of methods to different subject groups beyond the comparison of young and older

subjects. Such a project would contribute to the investigation of the research

question whether there exists a common source of disabilities related to deficits

in the postural control system. In this context, a further interesting area of ap-

plication is the competitive sports as postural control is a requirement for many

sporting activities. A comprehensive set of methods can enable the specification

of postural control performance across different sports or across athletes within

one sport and can help to define high levels of postural performance. A first study

was conducted by Schmit et al. (2005) who found more irregular COP pattern

in ballet dancers. To address these future directions, one approach has to be to

reanalyse existing data of studies with large sample sizes under the aspect of a

structural COP parameterisation. This was already done by Kang et al. (2009)

and Manor et al. (2010). However, short sampling duration - often applied in

the past - can restrict the structural analysis. For instance, Manor et al. (2010)

applied MSE to an already existing data set where COP measurements last for

30 s. This results in a limited number of considered time scales and therefore con-

strains physiological interpretations. In our experiments the number of trials was

restricted in order to avoid fatigue. Hence, conclusions about retest reliability for

the different posturographic parameters were not possible. However, reliability

is an important aspect in the context of method recommendation as parameters

with a high reliability are preferable. Doyle et al. (2005) addressed this question,

but considered only short sampling durations. It would be interesting whether
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the reliability of parameters is task and group specific and dependent upon the

measurement duration. We propose that longer recordings are needed in order

to reveal properties on long time scales which have been shown relevant for the

study of postural control mechanisms. However, it was not investigated whether

the underlying dynamics change in the course of the recording e.g., as an effect

of fatigue. We tried to avoid this effect by only having young, healthy subjects to

stand for a longer time (300 s). To analyse the influence of fatigue, it is conceiv-

able to quantify the properties of COP fluctuations as a function of time. This

implies the computation of posturographic parameters in a sliding window over

the course of the measurement. However, there is always the problem that both, a

good time resolution (small windows are needed) and a good description of COP

fluctuation characteristics (large windows are needed), is not possible. Such an

analysis a priori requires the investigation of suitable window sizes. Preliminary

results on this problem exist (van der Kooij et al., 2011), however, based on a

small sample with only healthy, young participants. In order to find an adequate

sampling duration it will be necessary to broaden the investigation of long stand-

ing trials in consideration of different subject groups.

We have seen that much can be learned about postural control when considering

a “toolbox” of methods. A comprehensive set of methods is necessary to avoid

misinterpretations as results can be directly proved. It is needed to account for

the different properties of postural dynamics and to find biomarkers of diseased

systems. We recommend that the evaluation of adequate methods has to be

enforced. In particular, the study of a suitable method application needs to be

further addressed. We have clearly seen the benefit of nonlinear methods in order

to reveal the underlying dynamics of the postural control system. However, we

have also seen that a sophisticated selection of the input parameters for non-

linear methods and data preprocessing are not straightforward. An inadequate

method application can lead to misinterpretations as the outcome values might

not reflect the true dynamics. Basic research on this issue is needed, especially
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with respect to the area of application e.g., postural control. One has to keep

in mind that specific time scales are of interest when analysing COP signals. A

challenge will be to find a minimal set of methods which is suitable for the given

standing task and the concerned population. We have shown recently that the

factor loading structure of COP parameters changes under a dual-task (Schubert

et al., 2012a,b). As a consequence, recommendations for the selection of COP

outcome measures have to be adjusted to the experimental design. This is an

important point as for several applications - e.g., diagnosis of balance disorders

- it is beneficial to have a minimal toolbox with the requirement to yield maxi-

mal information about the system. Given an appropriate toolbox, an important

research field is the evaluation of therapeutical interventions or workouts on pos-

tural fluctuation properties in terms of the dynamical systems theory approach.

Future work has to quantify whether a treatment helps patients to return to a

healthy state. Treatment effects have to be compared so that workouts with high

effects on postural stability enhancement can be identified. The evaluation of the

effectiveness of a balance training is also important in the context of the athletic

training where definite conclusions are still missing (Zech et al., 2010). Huisinga

et al. (2012a) addressed this issue in a pilot study and found that postural sway

variability changes as a result of resistance training exercise. However, studies on

treatment effects need an appropriate method application which is the require-

ment for promising results and meaningful interpretations.

The findings of the present work give ideas for future projects on different standing

tasks. They motivate the systematic investigation of postural control in standing

tasks similar to everyday situations additional to the classic analysis of standing

on a level ground. We found meaningful differences between the standing tasks.

A further interesting aspect will be the correlation of the motor output in order

to find a relationship between the standing tasks, inter alia, in terms of motor

learning. The identification of tasks which highly correlate would enable a deduc-

tion from the postural performance in one task to the performance in the other.
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Thus, it can be concluded whether the training of e.g., bipedal stance on the

level ground has an effect on other standing positions. It can help to restrict the

number of standing positions which have to be analysed or trained. Again, large

sample sizes are needed to conduct a meaningful statistical analysis. A challenge

will be that different COP outcome measures will probably yield different rela-

tions. Other future directions are given with respect to models of the postural

control system e.g., the pinned polymer model by Chow and Collins (1995). Ex-

perimental posture data can be used to validate existing models or to find new

models on the basis of nonlinear results.

4.4 Conclusion

The general conclusion of the present thesis is given by the observation that the

study of postural control benefits from a comprehensive set of analysis tools which

includes both linear and nonlinear measures. Our findings support that analysis

techniques from the discipline of nonlinear dynamics are invaluable for the inves-

tigation of postural fluctuations. However, they have to be applied carefully and

interpretations of the obtained results should not be made beyond what nonlin-

ear measures generally quantify. We found evidence that nonlinear measures are

especially sensitive to modifications on postural control so that they can be pro-

posed as biomarkers of diseased systems. Based on our findings we recommend

for the data analysis of COP recordings 1. to consider global and structural pa-

rameters, 2. to account for both sway directions separately, 3. to analyse COP

position and increment data, and 4. to have sampling durations of at least 60 s.

Concerning the application of nonlinear measures to COP time series, some tech-

nical issues have to be respected. We recommend a detailed frequency analysis

in advance to identify relevant time scales. As regards static standing, long time

scales can be expected to be most interesting. The evaluation of multiple time

scales is necessary to yield knowledge of the complex control system. MSE has to

include the consideration of complexity index and curve progression where cross-
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over phenomena have to be taken into account. Concerning the investigation of

scaling properties, it is suitable to apply DFA to COP increment and SWV to

COP position data.

The comparison of different standing positions were proven beneficial in order to

represent modifications on postural control in a given environment. Age-related

changes of postural control strategies with respect to everyday standing posi-

tions can provide insight into motor control mechanisms underlying falls in the

elderly. We found task- and subject-dependent temporal organisations of COP

fluctuations with different strategies concerning the two sway directions. Our data

support that age-associated modifications affect lateral stability. This emphasises

the need for therapeutic interventions that focus on deficits in medial-lateral con-

trol of sway. In this context, our findings enforce that standing with one foot

on a step, which resembles a stride position, has to be further investigated. To

conclude, effective assessment and rehabilitation of balance disorders will benefit

from a comprehensive analysis of postural control which needs a sophisticated

application of methods.
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Scholz, J. P., Schöner, G., Hsu, W. L., Jeka, J. J., Horak, F. B., and Martin, V.

(2007). Motor equivalent control of the center of mass in response to support

surface perturbations. Exp Brain Res, 180:163–179.

Schubert, P. and Kirchner, M. (2013). Ellipse area calculation and their applica-

bility in posturography. Gait Posture, in press.

Schubert, P., Kirchner, M., Schmidtbleicher, D., and Haas, C. T. (2012a). About

the structure of posturography: Sampling duration, parameterization, focus of

attention (part I). J Biomed Sci Eng, 5:496–507.

Schubert, P., Kirchner, M., Schmidtbleicher, D., and Haas, C. T. (2012b). About

the structure of posturography: Sampling duration, parameterization, focus of

attention (part II). J Biomed Sci Eng, 5:508–516.

Seigle, B., Ramdani, S., and Bernard, P. L. (2009). Dynamical structure of center

of pressure fluctuations in elderly people. Gait Posture, 30:223–226.

155



References

Shumway-Cook, A., Baldwin, M., Polissar, N. L., and Gruber, W. (1997). Pre-

dicting the probability for falls in community-dwelling older adults. Phys Ther,

77:46–57.

Shumway-Cook, A. and Woollacott, M. (2012). Motor control. Translating re-

search into clinical practice. Lippincott Williams & Wilkins, 4th edition.

Simeonov, P., Hsiao, H., and Hendricks, S. (2009). Effectiveness of vertical visual

reference for reducing postural instability on inclined and compliant surfaces

at elevation. Appl Ergon, 40:353–361.

Sims, K. J. and Brauer, S. G. (2000). A rapid upward step challenges medio-

lateral postural stability. Gait Posture, 12:217–224.

Slobounov, S. M., Moss, S. A., Slobounova, E. S., and Newell, K. M. (1998).

Aging and time to instability in posture. J Gerontology: biological sciences,

53A:B71–B78.

Sokal, R. R. and Rohlf, F. J. (1994). Biometry. W.H. Freeman, 3rd edition.

Stergiou, N. (2003). Innovative analysis of human movement. Human Kinetics.

Stergiou, N. and Decker, L. M. (2011). Human movement variability, nonlinear

dynamics and pathology: Is there a connection? Hum Mov Sci, 30:869–888.

Stergiou, N., Harbourne, R. T., and Cavanaugh, J. T. (2006). Optimal movement

variability: a new theoretical perspective for neurologic physical therapy. J

Neurol Phys Ther, 30:120–130.

Stins, J. F., Michielsen, M. E., Roerdink, M., and Beek, P. J. (2009). Sway regu-

larity reflects attentional involvement in postural control: Effects of expertise,

vision and cognition. Gait Posture, 30:106–109.

Stins, J. F., Roerdink, M., and Beek, P. J. (2011). To freeze or not to freeze?

affective and cognitive perturbations have markedly different effects on postural

control. Hum Mov Sci, 30:190–202.

156



References

Sturnieks, D. L., George, R. S., and Lord, S. R. (2008). Balance disorders in the

elderly. Neurophysiol Clin, 38:467–478.

Thuraisingham, R. A. and Gottwald, G. A. (2006). On multiscale entropy analysis

for physiological data. Physica A, 366:323–332.

Thurner, S., Mittermaier, C., and Ehrenberger, K. (2002). Change of complexity

patterns in human posture during aging. Audiol Neurootol, 7:240–248.

Thurner, S., Mittermaier, C., Hanel, R., and Ehrenberger, K. (2000). Scaling-

violation phenomena and fractality in the human posture control systems. Phys

Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, 62:4018–4024.

Torrence, C. and Compa, G. P. (1998). A practical guide to wavelet analysis. B

Am Meteorol Soc, 79:61–78.

Toweill, D., Sonnenthal, K., Kimberly, B., Lai, S., and Goldstein, B. (2000).

Linear and nonlinear analysis of hemodynamic signals during sepsis and septic

shock. Crit Care Med, 28:2051–2057.

Uetake, T., Tnaka, H., Shindo, M., and Okada, M. (2004). Two new meth-

ods applicable to center of pressure swing analysis. Anthropological science,

112:187–193.

Vaillancourt, D. E. and Newell, K. M. (2002). Changing complexity in human

behavior and physiology through aging and disease. Neurobiol Aging, 23:1–11.

van der Kooij, H., Campbell, A., and Carpenter, M. (2011). Sampling duration

effects on centre of pressure descriptive measures. Gait Posture, 34:19–24.

van Emmerik, R. E. (2007). Functional role of variability in movement coordina-

tion and disability. In Davis, W. E. and Broadhead, G. D., editors, Ecological

task analysis and movement, pages 25–52. Human Kinetics.

van Emmerik, R. E. and van Wegen, E. E. (2000). On variability and stability in

human movement. J Appl Biomech, 16:394–406.

157



References

van Emmerik, R. E. and van Wegen, E. E. (2002). On the functional aspects of

variability in postural control. Exerc Sport Sci Rev, 30:177–183.

VanderVelde, T. J., Woollacott, M. H., and Shumway-Cook, A. (2005). Selective

utilization of spatial working memory resources during stance posture. Neu-

roreport, 16:773–777.

Vieira, T. M., Oliveira, L. F., and Nadal, J. (2009). Estimation procedures affect

the center of pressure frequency analysis. Braz J Med Biol Res, 42:665–673.

Visser, J. E., Carpenter, M. G., van der Kooij, H., and Bloem, B. R. (2008). The

clinical utility of posturography. Clin Neurophysiol, 119:2424–2436.

Vuillerme, N. and Nafati, G. (2007). How attentional focus on body sway affects

postural control during quiet standing. Psychol Res, 71:192–200.

Wagenmakers, E. J., Farrell, S., and Ratcliff, R. (2004). Estimation and inter-

pretation of 1/fα noise in human cognition. Psychon Bull Rev, 11:579–615.

Wang, Z. and Newell, K. M. (2012). Phase synchronization of foot dynamics in

quiet standing. Neurosci Lett, 507:47–51.

Williams, H. G., McClenaghan, B. A., and Dickerson, J. (1997). Spectral char-

acteristics of postural control in elderly individuals. Arch Phys Med Rehabil,

78:737–744.

Winter, D. A. (1995a). A.B.C. (anatomy, biomechanics and control) of balance

during standing and walking. Waterloo Biomechanics.

Winter, D. A. (1995b). Human balance and posture control during standing and

walking. Gait Posture, 3:193–214.

Winter, D. A. (2005). Biomechanics and motor control of human movement.

John Wiley & Sohns, 3rd edition.

158



References

Winter, D. A., Patla, A. E., Prince, F., Ishac, M., and Gielo-Perczak, K. (1998).

Stiffness control of balance in quiet standing. J Neurophysiol, 80:1211–1221.

Winter, D. A., Prince, F., Frank, J. S., Powell, C., and Zabjek, K. F. (1996).

Unified theory regarding A/P and M/L balance in quiet stance. J Neurophysiol,

75:2334–2343.

Woodworth, R. S. (1899). The accuracy of voluntary movement. Psychological

Review Monograph Supplements, 3:1–19.

Woollacott, M. and Shumway-Cook, A. (2002). Attention and the control of

posture and gait: a review of an emerging area of research. Gait Posture,

16:1–14.

Woollacott, M. H. (1993). Age-related changes in posture and movement. J

Gerontol, 48:56–60.

Wulf, G. and Prinz, W. (2001). Directing attention to movement effects enhances

learning: A review. Psychon B Rev, 8:648–660.
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Appendix

The appendix is organised as follows: the first four tables (Table A.1 to A.4)

present the statistical results with respect to experiment I (Section 3.1) and the

three tables thereafter (Table A.5 to A.7) present the statistical results with

respect to experiment II (Section 3.2).

Table A.1. Statistical comparison of global COP parameters between DT = dual-
task and BT = baseline (sinlge-) task. P -values ≤ 0.05 are reported with the
value of the test statistic (dependent T-test or Wilcoxon-test, two-sided). P -values
> 0.05 are marked with a minus sign (−).

Measure 30s 60s 300s

SDx − − −
SDy − − −
Rx − − −
Ry − − −
v̄x − − Z = −2.3, P = .023
v̄y − Z = −2.1, P = .033 −
LP − Z = −2.2, P = .026 −
TP − − −
AE − − −
f50x − − Z = −2.7, P = .007
f50y − Z = −2.7, P = .007 Z = −3.1, P = .002
f80x − − −
f80y T15 = −2.3 P = .034 − Z = −3.3, P = .001
f95x − − Z = −2.2, P = .028
f95y − − Z = −2.7, P = .007
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Table A.2. Statistical comparison of the complexity index of COP position (CI)
and COP increment (CIv) data between DT = dual-task and BT = baseline
(sinlge-) task. P -values ≤ 0.05 are reported with the value of the test statistic
(dependent T-test or Wilcoxon-test, two-sided). P -values > 0.05 are marked with
a minus sign (−).

Measure 30s 60s 300s

CIx − − Z = −2.0, P = .048
CIy − − T15 = 4.2, P = .001
CIvx Z = −2.8, P = .004 − −
CIvy − − −

Table A.3. Statistical comparison of sample entropy on scale i (SaEn(i), i =
1, 6, 10, 30) between DT = dual-task and BT = baseline (sinlge-) task. P -values ≤
0.05 are reported with the value of the test statistic (dependent T-test or Wilcoxon-
test, two-sided). P -values > 0.05 are marked with a minus sign (−).

SaEn(1)

Trial COPx COPy COPvx COPvy

30s − − − −
60s − − Z = −2.3, P = .023 T15 = −2.5, P = .023
300s − − Z = −2.9, P = .004 −

SaEn(6)

30s − T15 = 2.5, P = .022 − −
60s − − − −
300s − T15 = 3.1, P = .008 − −

SaEn(10)

60s − T15 = 2.5, P = .024 − −
300s T15 = 2.4, P = .03 T15 = 3.6, P = .003 − −

SaEn(30)

300s T15 = 2.4, P = .032 Z = −3.0, P = .003 − Z = −2.6, P = .008

Table A.4. Statistical comparison of scaling exponents (Ĥ , α) between DT =
dual-task and BT = baseline (single-) task. Scaled Windowed Variance method
with linear detrending (ldSWV) was applied to COP position data and Detrended
Fluctuation analysis (DFA) was applied to COP increment data. P -values ≤ 0.05
are reported together with the value of the test statistic (dependent T-test or
Wilcoxon-test, two-sided). P -values > 0.05 are marked with a minus sign (−).

ldSWV, Ĥ DFA, α

Trial COPx COPy COPvx COPvy

30s − T15 = 2.83, P = .013 − T15 = 2.23, P = .042
60s Z = −2.35, P = .019 T15 = 4.09, P = .001 Z = −2.22, P = .027 T15 = 3.53, P = .003
300s − T15 = 2.67, P = .017 − Z = −2.02, P = .043
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Table A.5. Statistical comparison of posturographic parameters between the control condition LG and any other surface condition
(ST, DH, UH or SL) concerning the young subject group (YG). P -values ≤ 0.05 are reported together with the value of the test
statistic (dependent T-test or Wilcoxon-test, two-sided). P -values > 0.05 are marked with a minus sign (−).

Measure LG vs. ST LG vs. DH LG vs. UH LG vs. SL

Pressure measurement (n = 21)

pratio T20 = −11.5, P < .001 − − T20 = −5.9, P < .001
CV T20 = −10.7, P < .001 T20 = −2.9, P = .008 T20 = −2.5, P = .023 T20 = −7.1, P < .001

Force plate data (n = 26)

Global
parameters

SDx T25 = −12.2, P < .001 − T25 = −2.7, P = .013 T25 = −7.1, P < .001
SDy − Z = −2.8, P = .005 − T25 = 2.4 P = .024
v̄x T25 = −15.1, P < .001 − − T25 = −7.4, P < .001
v̄y T25 = −14.3, P < .001 T25 = −4.7, P < .001 T25 = −2.2, P = .036 −
LP T25 = −16, P < .001 T25 = −3.8, P = .001 T25 = −2.3, P = .032 Z = −4.1, P < .001
TP T25 = −2.1, P < .05 − − −
f50x − − − T25 = 3.2, P = .003
f50y Z = −2.3, P = .021 Z = −3.5, P < .001 − −
f80x − − − T25 = 4.0, P = .001
f80y T25 = −7.5, P < .001 T25 = −6.2, P < .001 T25 = −2.7, P = .012 T25 = −4.4, P < .001

Complexity
index

CIx T25 = −5.5, P < .001 − − −
CIy T25 = −7.2, P < .001 T25 = −6.1, P < .001 − T25 = −3.6, P < .001
CIvx Z = −4.5, P < .001 − Z = −3.3, P = .001 T25 = −6.6, P < .001
CIvy − − − −

Sample
entropy

SaEnx(1) − T25 = 2.2, P = .036 T25 = 2.2, P = .036 T25 = 5.0, P < .001
SaEny(1) T25 = −8.2, P < .001 T25 = −5.9, P < .001 − T25 = −5.0, P < .001
SaEnx(6) T25 = −4.3, P < .001 − − −
SaEny(6) T25 = −7.0, P < .001 T25 = −5.4, P < .001 − T25 = −3.2, P = .004
SaEn vx(1) Z = −4.3, P < .001 Z = −2.5, P = .012 Z = −2.3, P = .019 −
SaEn vy(1) Z = −2.5, P = .013 Z = −3.2, P = .001 − −
SaEn vx(6) T25 = −14.6, P < .001 − T25 = −4.1, P < .001 T25 = −7.0, P < .001
SaEn vy(6) − − − −

Scaling
exponent

Ĥx − Z = −2.2, P = .029 Z = −1.7, P = .086 Z = −3.9, P < .001

Ĥy T25 = 14.8, P < .001 T25 = 10.5, P < .001 Z = −2.4, P = .016 T25 = 8.6, P < .001
αx − Z = −2.1, P = .04 − Z = −3.8, P < .001
αy T25 = 13.8, P < .001 T = 10.5, P < .001 Z = −2.5, P = .014 T25 = 8.7, P < .001
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Table A.6. Statistical comparison of posturographic parameters between the control condition LG and any other surface condition
(ST, DH, UH or SL) concerning the old subject group (OG). P -values ≤ 0.05 are reported together with the value of the test statistic
(dependent T-test or Wilcoxon-test, two-sided). P -values > 0.05 are marked with a minus sign (−).

Measure LG vs. ST LG vs. DH LG vs. UH LG vs. SL

Pressure measurement (n = 13)

pratio Z = −3.2, P = .001 − − Z = −3.1, P = .002
CV Z = −3.2, P = .002 − Z = −2.4, P = .019 Z = −3.0, P = .003

Force plate data (n = 13)

Global
parameters

SDx T12 = −6.0, P < .001 − T12 = 2.3, P = .043 T12 = −2.6, P = .024
SDy T12 = −2.2, P = 0.48 − − −
v̄x Z = −3.2, P = .001 − − Z = −3.2, P = .001
v̄y Z = −3.2, P = .001 Z = −3.2, P = .001 Z = −2.6, P = .009 Z = −3.2, P = .001
LP Z = −3.2, P = .001 Z = −3.2, P = .001 Z = −2.3, P = .019 Z = −3.2, P = .001
TP Z = −3.2, P = .001 Z = −3.2, P = .001 Z = −3.2, P = .001 Z = −2.7, P = .007
f50x Z = −3.2, P = .001 Z = −2.0, P = .05 Z = −2.2, P = .025 −
f50y − Z = −2.8, P = .005 Z = −2.8, P = .006 Z = −2.5, P = 012.
f80x Z = −3.2, P = .001 − − −
f80y Z = −2.0, P = .046 Z = −2.6, P = .009 Z = −3.1, P = .002 Z = −2.3, P = .023

Complexity
index

CIx T12 = −9.2, P < .001 − T12 = −2.3, P = .043 −
CIy − T12 = −4.7, P = .001 T12 = −4.8, P < .001 T12 = −3.8, P = .002
CIvx T12 = −4.1, P = .001 − − T12 = −2.5, P = .028
CIvy Z = −3.0, P = .002 Z = −2.1, P = .039 Z = −2.1, P = .034 −

Sample
entropy

SaEnx(1) Z = −3.2, P = .001 − T12 = −2.6, P = .022 −
SaEny(1) T12 = −4.4, P = .001 Z = −3.2, P = .001 T12 = −4.5, P = .001 T12 = −4.4, P = .001
SaEnx(6) T12 = −8.4, P < .001 − T12 = −2.3, P = .037 −
SaEny(6) − T12 = −5.1, P < .001 T12 = −4.5, P = .001 T12 = −3.3, P = .006
SaEn vx(1) T12 = 3.5, P = .005 − − −
SaEn vy(1) T12 = −2.9, P = .013 − − −
SaEn vx(6) T12 = −3.8, P = .002 − − T12 = −2.3, P = .042
SaEn vy(6) T12 = 5.9, P < .001 Z = −2.6, P = .01 T12 = 2.6, P = .02 −

Scaling
exponent

Ĥx Z = −2.3, P = .023 − − −

Ĥy T12 = 9.3, P < .001 T12 = 4.0, P = .002 T12 = 4.4, P = .001 T12 = 2.5, P = .026
αx Z = −2.1, P = .039 − − −
αy T12 = 7.8, P < .001 T12 = 3.3, P = .007 T12 = 3.9, P = .002 T12 = 2.0, P = .067
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Table A.7. Statistical comparison of posturographic parameters between young (YG) and older (OG) subjects separately for the
different standing positions (LG, ST, DH, UH, SL). P -values ≤ 0.05 are reported together with the value of the test statistic (Mann-
Whitney-U-Test, two-sided). P -values > 0.05 are marked with a minus sign (−).

Measure LG ST DH UH SL

Pressure measurement: YG (n = 21) versus OG (n = 13)

pratio − U = 22, P < .001 - U = 66.5, P = .012 U = 61, P = .007
CV U = 77, P = .035 − − − −

Force plate data: YG (n = 26) versus OG (n = 13)

Global
parameters

SDx U = 47, P < .001 U = 58, P = .001 U = 73, P = .003 − U = 102, P = .047
SDy − U = 82.5, P = .009 U = 92, P = .021 − U = 90, P = .018
v̄x − U = 13.5, P < .001 − − U = 72.5, P = .003
v̄y U = 60.5, P = .001 U = 54, P < .001 U = 34.5, P < .001 U = 26.5, P < .001 U = 34.5, P < .001
LP U = 85, P = .011 U = 19, P < .001 U = 51.5, P < .001 U = 44.5, P < .001 U = 40, P < .001
TP − U = 61, P = .001 − − −
f50x U = 73, P = .003 U = 68.5, P = .002 − − −
f50y U = 87, P = .014 − U = 87.5, P = .014 U = 45, P < .001 U = 80.5, P = .007
f80x U = 61.5, P = .001 U = 70, P = .003 − − −
f80y U = 43.5, P < .001 − U = 103.5, P = .05 U = 18.5, P < .001 U = 97, P = .032

Complexity
index

CIx U = 72, P = .003 U = 50, P < .001 − − −
CIy U = 62, P = .001 − U = 62, P = .001 U = 29.5, P < .001 U = 58, P = .001
CIvx − − U = 99.5, P = .037 − −
CIvy U = 58, P = .001 − U = 100.5, P = .04 − U = 87, P = .014

Sample
entropy

SaEnx(1) U = 75, P = .004 U = 55, P < .001 − − −
SaEny(1) U = 70, P = .003 − U = 66, P = 002 U = 39, P < .001 U = 87, P = .014
SaEnx(6) U = 76, P = .004 U = 55, P < .001 − − −
SaEny(6) U = 70, P = .003 − U = 75, P = .004 U = 30, P < .001 U = 60, P = .001
SaEn vx(1) − − − − U = 99, P = .037
SaEn vy(1) U = 58, P = .001 − − − −
SaEn vx(6) U = 103, P = .05 − − − −
SaEn vy(6) U = 66, P = .002 − − − −

Scaling
exponent

Ĥx − U = 92, P = .021 − − −

Ĥy U = 88, P = .015 − − U = 33, P < .001 −
αx U = 103.5, P = .05 U = 94, P = .025 − − −
αy U = 91, P = .02 − − U = 36, P < .001 −
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Zusammenfassung

Einleitung

Die posturale Kontrolle ist eine Voraussetzung für viele Alltagsaktivitäten und

sportliche Bewegungen. Man weiß heute, dass den Kontrollmechanismen eine

komplexe Interaktion sensomotorischer Prozesse unterliegt (Horak and Mcpher-

son, 1996; Oie et al., 2002). Solange keine Gleichgewichtsdefizite vorliegen,

nehmen wir es als selbstverständlich wahr aufrecht Stehen zu können, ohne

uns der Komplexität posturaler Kontrollmechanismen bewusst zu sein. Stu-

dien haben gezeigt, dass es mit zunehmendem Alter zu Defiziten in der pos-

turalen Kontrolle kommt (Pasquier et al., 2003; Woollacott, 1993). Oftmals ist

ein erhöhtes Sturzrisiko die Folge, welches unter anderem mit Verletzungen, einer

eingeschränkten Mobilität sowie einer verminderten Lebensqualität einhergehen

kann (Era et al., 1997; Frank and Patla, 2003). Seit vielen Jahren schon werden

posturographische Untersuchungen durchgeführt mit dem Ziel, posturale Kon-

trollmechanismen abzuleiten und Dysfunktionen im posturalen System zu diag-

nostizieren (Piirtola and Era, 2006). Jedoch sind die Mechanismen, die der pos-

turalen Kontrolle unterliegen, bis heute nicht eindeutig verstanden. Neue Erken-

ntnisse konnten in den letzten Jahren vor allem durch ein erweitertes Verständnis

von Bewegungsvariabilität gewonnen werden (Stergiou and Decker, 2011; Lippens

and Nagel, 2009). Traditionell werden posturale Analysen unter der Annahme

durchgeführt und interpretiert, dass Variabilität eine Art “Rauschen” (white

noise) ist und somit Ausdruck eines Fehlers. Posturale Schwankungen werden als

zufällige, nicht intendierte Abweichungen gesehen (Loosch, 1997). Der Param-
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eter “Schwankungsausmaß” wird zur Diagnostik des statischen Gleichgewichts

herangezogen und bei einer größeren Schwankung wird eine schlechtere postu-

rale Kontrolle diagnostiziert. Im Gegensatz dazu weist der systemdynamische

Modellansatz auf die funktionale Rolle der Variabilität hin (van Emmerik and

van Wegen, 2002). Variabilität ist Ausdruck der Anpassung und Flexibilität und

somit notwendig, um auf ständige Umweltveränderungen reagieren zu können.

Ein erhöhtes Schwankungsausmaß ist demnach nicht ausschließlich ein Zeichen für

Instabilität (Newell et al., 1993). Eine größere Variabilität posturaler Schwankun-

gen kann auch positiv im Sinne von mehr Umweltexploration interpretiert werden

(Lacour et al., 2008). So konnte gezeigt werden, dass posturale Schwankungen

nicht zufällig sind, sondern eine Struktur enthalten (Duarte and Zatsiorsky, 2000),

dessen Charakterisierung zusätzliche Informationen über die Organisation des

posturalen Kontrollsystems liefert (Stergiou and Decker, 2011).

Die vorliegende Arbeit evaluiert nichtlineare Methoden unter dem systemdy-

namischen Ansatz zusätzlich zu den traditionell eingesetzten linearen Methoden.

Ziel ist es, neben der Quantifizierung des Ausmaßes posturaler Schwankungen ihre

Struktur zu charakterisieren, um das Verständnis für posturale Kontrollmecha-

nismen zu erweitern. Die Evaluierung erfolgt zunächst über den Vergleich von

Stehen mit und ohne kognitiver Zusatzaufgabe, wo Studien erste Hinweise auf eine

veränderte COP1 Signalstruktur geben (Cavanaugh et al., 2007; Donker et al.,

2007; Stins et al., 2009). Durch das Betrachten unterschiedlicher Signallängen und

eines umfangreichen Methodenspektrums sollen Anhaltspunkte für die Applika-

tion von nichtlinearen in Kombination mit linearen Analyseverfahren abgeleitet

werden. In einer zweiten Untersuchung werden diese dann in einem angewandten

Studiendesign umgesetzt. Dabei wird die Veränderung posturaler Kontrollstrate-

gien bei unterschiedlichen Standpositionen untersucht, welche alltägliche Situa-

tionen simulieren, unter Berücksichtigung altersbedingter Effekte. Dies ist ein

erster Ansatz zur Erreichung einer hohen ökologischen Validität posturaler Stu-

1COP = centre of pressure: Druckschwerpunkt, vertikale Projektion des Körperschwer-
punktes auf den Boden
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dien (Frank and Patla, 2003; Visser et al., 2008). Erst kürzlich wurde gezeigt,

dass bei älteren Menschen meist interne Auslöser (z.B. Gewichtsverlagerungen)

ursächlich für Stürze sind (Robinovitch et al., 2013). Zudem haben ältere Perso-

nen größere Schwierigkeiten auf Umgebungsveränderungen zu reagieren (Nardone

and Schieppati, 2010). Es ist jedoch bisher unbekannt, wie sich Defizite in der

Gleichgewichtskontrolle älterer Menschen auf die Struktur posturaler Schwankun-

gen auswirken.

Methoden

Statische posturographische Messungen wurden unter unterschiedlichen Standbe-

dingungen durchgeführt. Dabei wurde mit Hilfe einer Kraftmessplatte die Po-

sition des Druckschwerpunktes (COP) in zwei Dimensionen (medial-lateral und

anterior-posterior) über die Zeit aufgenommen. Die COP Zeitreihen wurden dann

mittels linearer und nichtlinearer Methoden analysiert, um neben dem Ausmaß

die Struktur der Variabilität zu quantifizieren. Dies umfasste die Berechnung

traditioneller Zeit- und Frequenz-Parameter (z.B. Schwankweg, Medianfrequenz).

Zudem wurden die Methoden Wavelet Transformation (WT), Multiscale Entropy

(MSE), Detrended Fluctuation Analysis (DFA) und Scaled Windowed Variance

(SWV) zur Evaluierung der COP Signalstruktur appliziert2. Folgende zwei Ex-

perimente wurden durchgeführt.

Experiment I. 16 junge (26, 1 ± 6, 7 Jahre), gesunde Personen sollten einen

aufrechten Stand einnehmen: a) mit kognitiver Aufgabe (dual-task = DT) und

b) ohne Zusatzaufgabe (baseline-task = BT). Die kognitive Aufgabe umfasste

das Merken von Symbolen, wodurch ein externer Aufmerksamkeitsfokus gener-

iert wurde. In Bedingung BT sollten die Personen sich auf einen ruhigen Stand

konzentrieren (interner Fokus) und einen Punkt an der Wand fixieren. Es wur-

den pro Bedingung drei Durchgänge absolviert mit jeweils unterschiedlicher Test-

dauer: 30, 60, und 300 Sekunden [s]. Die posturographischen Parameter wurden

2WT: Spektralanalyse unter Berücksichtigung verschiedener Frequenzbänder; MSE: Regu-
larität der Zeitreihe; DFA, SWV: Korrelation, Glattheit des Signals
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auf statistisch signifikante Unterschiede zwischen DT und BT geprüft. Zusätzlich

zu der experimentellen Untersuchung wurden in einer Simulationsstudie die Güte

der beiden fraktalen Analysemethoden DFA und SWV im Vergleich überprüft.

Als Gütefunktion diente der mittlere quadratische Fehler basierend auf 1000

simulierten Zeitreihen.

Experiment II. 26 junge (28, 2±5, 9 Jahre) und 13 ältere (72±7 Jahre) Proban-

den standen ruhig für 60 s auf fünf unterschiedlichen Untergründen: Ebene (LG),

ein Fuß auf einer Stufe (ST), Bergab (DH), Bergauf (UH), und Schräge (SL).

Zusätzlich zur Erfassung der COP Signale, wurde die Druckverteilung (links ver-

sus rechts) mittels dem Fußdruckmesssystem medilogicR© Sohle (Fa Medilogic)

gemessen. In einem explorativen Ansatz wurden die extrahierten posturographis-

chen Parametern auf statistisch auffällige Unterschiede (p < 0, 05) zwischen der

Kontrollbedingung LG und jeweils einer modifizierten Standposition untersucht.

Darüber hinaus wurden für jede einzelne Standbedingung auf statistisch auffällige

Unterschiede im Gruppenvergleich geprüft.

Ergebnisse

Experiment I. Für die traditionelle COP Signalanalyse ergab sich ein sig-

nifikanter Unterschied in den Frequenzparametern mit höheren Werten für DT.

WT resultierte in einer veränderten prozentualen Energieverteilung auf das Fre-

quenzintervall 0− 1, 25 Hz mit einer höheren Gewichtung der niedrigen Frequen-

zen in BT. Höhere Entropie-Werte wurden in DT auf mehreren Zeitskalen ge-

funden, aber fast ausschließlich auf den großen Skalen. Es zeigte sich ein sig-

nifikant höherer Komplexitätsindex (Fläche unter der MSE-Kurve) in DT im

300s-Versuch. Für beide Standbedingungen ergab sich im 300s-Versuch für Zeit-

skalen über 1 s ein Hurst Exponent kleiner als 0.5 und somit ein anti-persistenter

Prozess beziehungsweise negative Langzeitkorrelationen. Kleinere Werte des

Hurst Exponenten wurden in BT gefunden. Es zeigte sich in den Simulationsstu-

dien, dass der mittlere quadratische Fehler am kleinsten war für SWV appliziert
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auf die COP Zeitreihen.

Experiment II. Veränderte traditionelle COP Parameterwerte ergaben sich

in beiden Gruppen als Antwort auf die modifizierte Standposition. Beson-

ders auffällige Unterschiede wurden für den Vergleich von LG und ST gefun-

den. Diese Auffälligkeit zeigte sich auch bei WT und MSE. Es ergab sich

eine veränderte Gewichtung der Frequenzbänder und höhere Entropie-Werte auf

mehreren Zeitskalen in ST mit einem höheren Komplexitätsindex. Insgesamt

waren die Resultate abhängig von der COP Richtung. Im Gruppenvergleich er-

gaben sich fast ausschließlich höhere traditionelle COP Parameterwerte für die

ältere Gruppe. Eine Ausnahme bilden die Frequenzparameter. Hier zeigte sich

für COPmedial-lateral nur mit Blick auf ST und SL höhere Werte für die ältere

Gruppe. Auffällige Unterschiede im Gruppenvergleich ergaben sich in den un-

terschiedlichen Standbedingungen vor allem für ST und in medial-lateraler COP

Richtung. Die Druckverteilung unter dem Fuß zeigte im Seitenvergleich, dass in

den Situationen LG, DH und UH das Gewicht tendenziell mehr auf eine Seite

verlagert wurde, was deutlicher in der älteren Gruppe zu sehen war. In den

Positionen SL und ST wurde mit über 50 % das untere Bein belastet.

Diskussion

Experiment I. Strukturänderungen in den COP Signalen sind auf unter-

schiedlichen Zeitskalen relevant, wobei längere COP Zeitreihen teilweise besser

zwischen den Situationen differenzieren können. Lange Signale ermöglichen es

das niedrige Frequenzspektrum besser abzubilden (Vieira et al., 2009), welches

in einer statischen Standmessung die größte prozentuale Gewichtung erhält. Die

Veränderung auf verschiedenen Zeitskalen deutet auf eine veränderte Gewichtung

der sensorischen Systeme zur posturalen Kontrolle hin (Chagdes et al., 2009; Oie

et al., 2002). Höhere Entropie-Werte unter der Zusatzaufgabe weisen auf mehr

Irregularität im motorischen Output hin, was frühere Ergebnisse bestätigt (Ca-

vanaugh et al., 2007; Donker et al., 2007; Stins et al., 2009). Weitergehend zeigt
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sich hier eine höhere Komplexität im motorischen Output. Dies bekräftigt die

Hinweise auf eine effizientere Kontrolle wenn die Aufmerksamkeit von der Stand-

aufgabe weg gelenkt wird (Donker et al., 2007; McNevin and Wulf, 2002). Unsere

Ergebnisse bestätigen eine negative Korrelationsstruktur für COP Signale auf

langen Zeitskalen. Eine eindeutige Studienlage zur Veränderung des Hurst Ex-

ponenten unter alternativer Standaufgabe liegt nicht vor. Dies kann auf die Be-

nutzung unterschiedlicher Methoden zurück geführt werden. Eine Überprüfung

der Ergebnisse jeweils durch alternative Analysemethoden ist empfehlenswert.

Experiment II. Das Stehen auf ebenerdigem Untergrund unterscheidet sich

von anderen alltäglichen Standpositionen. Posturale Kontrollstrategien werden

situationsspezifisch angepasst, wobei die strukturellen Veränderungen auf eine

veränderte Gewichtung der sensorischen Systeme zur posturalen Kontrolle hin-

deuten (Oie et al., 2002). Dies findet im Gruppenvergleich auf verschiedenen

Zeitskalen statt, was frühere Ergebnisse unterstützt (Collins et al., 1995). Für

das Stehen auf der Stufe scheint besonders die laterale COP Richtung komplexe

Kontrollmechanismen zu erfordern. Dies ist für Studien zur Sturzgefährdung ein

interessanter Aspekt, da die Verschlechterung der Balance älterer Personen vor

allem die laterale Schwankungsrichtung betrifft (Maki et al., 1994). Die Asym-

metrie in der Druckverteilung deutet auf eine Schritt-Initiierungs-Strategie hin

(Wang and Newell, 2012). Danach wird eine Seite weniger belastet, um somit

schon das Bein für einen möglichen Kompensationsschritt festzulegen. Da dies

stärker in der älteren Gruppe ausgeprägt ist, weist es auf einen Ausgleich von

altersbedingten Defiziten - unter anderem verminderte Reaktion - hin (Mackey

and Robinovitch, 2006; Patla et al., 1993).

Fazit

Die Analyse der Struktur posturaler Schwankungen gemäß nichtlinearer Model-

lkonzepte erweist sich als notwendige Ergänzung zu der rein linearen Betrachtung

des COP Ausmaßes. Es gibt die Möglichkeit Variabilität im motorischen Output
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auch unter dem Aspekt der Funktionalität zu betrachten. Die Untersuchung von

mehreren Zeitskalen ist für das Verständnis von Kontrollstrategien sinnvoll, wobei

berücksichtigt werden muss, dass COP Fluktuationen in statischen Standbedin-

gungen hauptsächlich niederfrequent sind. Eine Fortführung der Applikation um-

fassender Methoden zur Analyse posturaler Schwankungen ist nötig, um Klassi-

fikatoren für Dysfunktionen im posturalen Kontrollsystem zu identifizieren. Dies

kann der Entwicklung von Präventions- und Rehabilitationsprogrammen dienen.

Wichtig wird es sein, neben der praktischen Anwendung Methoden zu evaluieren

und Algorithmen weiter zu entwickeln, um Resultate zu erzielen, welche dann im

physiologischen Sinne interpretiert werden können.
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