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Non-Technical Summary 

 
This paper deals with the equilibrium asset pricing implications of uncertainty about the 
propagation of economic crises from one sector of the economy to others. Such crises usually do 
not consist of just a single event, but instead unfold over time in a series of adverse shocks. 
Moreover, whether or not a shock to economic fundamentals marks the beginning of a longer-
lasting economic downturn is typically unknown and can only be assessed better over time, i.e., 
there exists a large amount of uncertainty among market participants concerning the true state of 
the economy. 
 
Although our model is not at all limited in its scope to extreme scenarios, two historical events can 
serve as nice examples for the basic intuition behind our approach. First, ‘Black Friday’ in October 
1929 represented a large negative shock to the stock market, which triggered subsequent negative 
shocks to other sectors of the economy and marked the beginning of the Great Depression lasting 
for about a decade. Similarly, the Lehman default in September 2008 was in itself certainly a 
drastic event, but its negative impact became even stronger due to the fact that it spread through 
the whole economy and lead to the Great Recession, again an extended period of high volatility 
and pronounced economic uncertainty. 
 
To provide a rationale for these patterns of drastic economy-wide crises we propose a model with 
two sectors and two economic states, one representing a ‘crisis’ or ‘bad’ state and the other one 
the ‘normal’ or ‘good’ state. A negative jump in the output of one sector can trigger an economy-
wide crisis, but there are also ‘normal’ non-contagious shocks. The agent in our economy only 
observes the level of output, but not the underlying state, and thus cannot distinguish between 
the two types of jumps, so that the transmission of shocks is accompanied by a high degree of 
uncertainty. However, the investor can infer (noisy) information on the state from observing 
output, since we assume that the bad state is characterized by a much higher frequency of jumps 
and also a lower expected output growth. 
 
While each of the key features of our model – multiple sectors, the propagation of shocks, and 
partial information about the economic state – has already been analyzed on its own in the asset 
pricing literature, we show that the interplay between them produces even richer results and can 
help explain a variety of asset pricing puzzles. In particular, we show that our crisis propagation 
mechanism produces countercyclical correlations of equity returns. Learning about whether shocks 
have transmitted across the economy leads to countercyclical return volatilities. Our model also 
matches the typical return and consumption growth predictability patterns in the data, i.e., returns 
are predictable by the price-dividend ratio whereas consumption growth is not. Furthermore, 
imperfect information about the state of the economy leads to a basically flat ‘term structure of 
equity’ in our model, meaning the term structure of expected returns on claims to single future 
dividend payments with different maturities. Having two heterogeneous sectors substantially 



increases the persistence of price-dividend ratios. Finally, our model can match the equity 
premium with more moderate preference parameters than other jump-diffusion models. 
 
To summarize, we provide evidence that incorporating realistic patterns of economic crises in a 
general equilibrium model can explain a large number of stylized facts of asset markets. Placing 
the model into an international context and thus studying the transmission of crises across 
countries (or continents) and the effect on exchange rates is a potentially interesting application of 
our setup and is left for further research. 
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”Fear is very contagious. You can get fearful in five minutes, but you don’t get

confident in five minutes.”

Warren Buffett on CNBC, March 09, 2009

1 Introduction and Motivation

This paper deals with the equilibrium asset pricing implications of uncertainty about

‘financial contagion’ or, as we will mostly call it later, ‘crisis propagation’. The mechanism

through which shocks are transmitted from one sector of the economy to the other is one

of the special features of our model with two sources for aggregate consumption (‘two

trees’). We distinguish between two types of (negative) shocks to the output of these

trees: shocks of the first type only represent a downward jump in the cash flows of the

respective tree, while shocks of the second type cause a regime switch to a state, where

the likelihood of such large shocks is higher across all sectors. In this sense the crisis is

propagated from one sector in the economy to the other. The transmission of shocks is,

however, accompanied by a high degree of uncertainty, since the state of the economy is

unobservable, i.e., the investor does not know whether there is currently a high or a low

risk of such a jump event event triggering a large-scale and economy-wide crisis.

While each of these key features – multiple Lucas trees, partial information about

the state, and the propagation of shocks – has already been analyzed on its own in the

asset pricing literature, we show that the interplay between them produces even richer re-

sults and can help explain a variety of asset pricing puzzles. The equilibrium asset pricing

dynamics in our model with two trees, two regimes, and learning go far beyond some sort

of ‘average’ of different one-tree and one-regime economies. In particular, we show that

our crisis propagation mechanism produces countercyclical correlations of equity returns.

Learning about whether shocks have transmitted across the economy leads to counter-

cyclical return volatilities. Our model also matches the typical return and consumption

growth predictability patterns in the data. Furthermore, imperfect information about the

state of the economy leads to a basically flat term structure of equity in our model, and

having two heterogeneous trees substantially increases the persistence of price-dividend

ratios. Finally, our model can match the equity premium with more moderate preference

parameters than other jump-diffusion models.

Although our model is not at all limited in its scope to extreme scenarios, two

historical events can serve as nice examples for the basic intuition behind our approach.
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First, ‘Black Friday’ in October 1929 represented a large negative shock to the stock

market, which triggered subsequent negative shocks to other sectors of the economy and

marked the beginning of the Great Depression lasting for about a decade. Similarly, the

Lehman default in September 2008 was in itself certainly a drastic event, but its negative

impact became even stronger due to the fact that it spread through the whole economy

and lead to the Great Recession, again an extended period of high volatility and a large

amount of economic uncertainty. A key insight from the observation of these examples

is thus that these contagion-like phenomena stretch out over a considerable amount of

time. Furthermore, there is often one major event, which starts off a period of crisis with

subsequent major shocks to markets other than the one affected initially.

So when we later on analyze crisis propagation from one sector of the economy

to others in our model, we interpret this spreading of negative shocks as something with

a time dimension, i.e., as something which unfolds over a series of events and a period

of discrete length rather than it being represented by just one major shock which simul-

taneously affects several markets. At the same time, by the fact that such a period is

characterized by multiple negative shocks, it is obvious that crisis propagation is closely

connected to what is called ‘tail risk’, i.e., the risk of the occurrence of low probability,

but high impact events.

Does the mechanism described in the above examples automatically imply that a

pronounced shock to one sector of the economy always triggers a wide-reaching crisis? Not

necessarily, as we argue, since it may well be that such a crash or large (negative) jump

remains restricted to one part of the economy and does not cause the negative shocks to

spread to other markets, i.e., it can be purely idiosyncratic. This in turn implies that we

have to distinguish between the two types of jump-like shocks mentioned above, namely

those which are ‘contagious’, i.e., which cause a regime shift, and those which do not.

The fact that there are these two types of jumps introduces the next modeling

issue. If the agents in the economy could always exactly observe which of the two types

of jumps has occurred, it would be a rather straightforward exercise to factor this into

the computation of equilibrium asset prices and returns. However, it seems more realistic

to assume that the state of the economy and thus the type of a jump is not observable.

This fact is the motivation to include partial (or imperfect) information in our model in

the sense that the investor has to filter the state (‘contagious’ or ‘calm’) from the observ-

able data on output innovations. Our paper documents that, in a model with recursive

preferences, the risk of future contagious jumps together with the imperfect observability

of the state of the economy has first-order effects on asset prices, returns, volatilities, and
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correlations.

Through the mechanism of crisis propagation from one sector to the next described

above our model provides a rationale for the dynamics of economy-wide crises. Most im-

portantly, the features of crisis propagation and incomplete information help us to match

higher moments of asset returns in the data quite well. First, incomplete information

about the state of the economy leads to excess volatility of risky asset returns, i.e., the

volatility of equity returns is substantially higher than the volatilities of the associated

consumption streams. Second, the fact that the degree of uncertainty is higher during

crises than during normal ‘calm’ times makes the return volatilities countercyclical. Fi-

nally, the contagion feature in our model leads to countercyclical comovement between

the sectors in the economy, i.e., the return correlation between the two sectors is higher

when the economy is in a bad state, a stylized fact which has often been documented in

the data1 which can be considered common knowledge by now.2

A large literature3 centers around the predictability of future stock returns given,

e.g., the current price-dividend ratio. Many models, where future excess returns are actu-

ally predictable via the price-dividend ratio, simultaneously suffer from the problem that

they also generate strong predictability of future dividend growth, which is not there in

the data. Also here our model produces results which are almost perfectly in line with

the empirical facts. Expected returns mostly depend on the current probability of jumps,

while consumption growth rates are much more driven by the actual realization of these

jumps. Consequently, equity returns are highly predictable in our model while consump-

tions growth rates are not.

Triggered by the work in Lettau and Wachter (2007) and van Binsbergen, Brandt,

and Koijen (2012) some papers like Wachter (2013) and Belo, Collin-Dufresne, and Gold-

stein (2012) analyze the ‘term structure of equity’, meaning the term structure of expected

returns on claims to single future dividend payments with different maturities. The claim

put forward in van Binsbergen, Brandt, and Koijen (2012) is that this term structure is

downward sloping in a rather pronounced fashion, although Boguth, Carlson, Fisher, and

Simutin (2012) cast some doubt on this result. Overall our model does well with respect

to this over-identifying restriction. The model-generated term structure does not exhibit

a pronounced downward slope as in van Binsbergen, Brandt, and Koijen (2012) or Belo,

Collin-Dufresne, and Goldstein (2012), but is flatter than the one in Wachter (2013),

1See, e.g., Longin and Solnik (2001) and Ehling and Heyerdahl-Larsen (2013).
2See, e.g., the article in the Wall Street Journal by Lauricella (2009).
3See, e.g., Bansal and Yaron (2004) and Cochrane (2008) as well as the references cited therein.
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again a result due to the information structure in our economy.4 It is also worth noting

here that in contrast to Lettau and Wachter (2007) the pricing kernel in our model is

not reverse-engineered to produce a certain term structure of equity, but is derived from

fundamental assumptions about preferences and endowments.

Furthermore and important from a modeling perspective, we do not have to rely

on the usual Peso problem story to explain the equity premium in the presence of jump

risk. This feature of the model is highlighted by the fact that (in absolute values) much

smaller jump sizes than usual are sufficient to match asset pricing moments, since it is the

time dimension of the crisis propagation which mainly generates the results. In our model

a jump size of −6% is sufficient to obtain sensible values for the equity premium and

higher moments of stock returns, whereas models of the type initially proposed by Barro

(2006, 2009) and then taken up by, e.g., Chen, Joslin, and Tran (2012) are built on the

assumption of rare consumption disasters being of the order of −40%, a value which seems

rather implausible given the history of the US economy, even when the Great Depression

is included. Our model thus provides a possible solution to the critique by Constantinides

(2008).

The fact that the investor cannot observe the state of the economy also generates

sizeable diffusive risk premia, i.e., it is not just the jump part of consumption growth

which makes the investor demand a compensation for risk. In this sense our model is

more balanced and realistic than the aforementioned alternative approaches, since it seems

quite reasonable to assume that investors are also concerned about ‘normal’ fluctuations

in aggregate consumption and not just about rare events. Nevertheless, our model is also

able to endogenously produce large jump risk premia due to the propagation feature, i.e.,

due to the fact that jumps in one asset can cause a switch to a regime with higher jump

intensities overall.

Finally, in addition to the time series effects there are also cross-sectional impli-

cations of the risk of a crisis being propagated from one sector to the next. Our model

with two trees allows us to study these effects within one given model economy, instead

of having to compare differently parametrized versions of economies with only one tree.

We observe that the two-tree framework has remarkable implications for the persistence

of price-dividend ratios in the economy. The state variables in our model have relatively

low autocorrelation which we need to get rid of the counterfactual consumption growth

predictability. Nevertheless, the price-dividend ratios – in particular for small assets – are

4The empirical p-values in Belo, Collin-Dufresne, and Goldstein (2012) do not provide very strong
evidence against a flat term structure.
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highly persistent because of the interaction of the two-tree framework with the learning

in the model. Moreover, the degree of persistence is even higher in an economy where the

two trees are different in terms of their parametrization.

Our paper is related to several strands of the literature. First, it deals with a

general equilibrium analysis of ‘multiple-tree’ economies, as discussed by, among others,

Cochrane, Longstaff, and Santa-Clara (2008) and Martin (2013). Second, our paper is re-

lated to the recent debate about disaster risk and the equity premium puzzle pursued by

Barro (2006, 2009), Constantinides (2008), Wachter (2013), Backus, Chernov, and Mar-

tin (2011), and Nakamura, Steinsson, Barro, and Ursúa (2013). The fact that some types

of jumps have contagious effects links our paper to the literature on contagion, network

effects, and propagation of shocks across markets, i.e., to papers like Branger, Kraft, and

Meinerding (2013a), Ait-Sahalia, Cacho-Diaz, and Laeven (2013), Buraschi and Porchia

(2012) and Benzoni, Collin-Dufresne, Goldstein, and Helwege (2011). The powerful ele-

ment of incomplete information about the current state of the economy has been included

in the models proposed by, among others, Veronesi (1999) or Brennan and Xia (2001).

A detailed overview of this literature is provided by Pástor and Veronesi (2009), more

recent papers with recursive preferences include Croce, Lettau, and Ludvigson (2012)

and Collin-Dufresne, Johannes, and Lochstoer (2013). Finally, we employ recursive pref-

erences, which can by now be considered (almost) standard in the asset pricing literature.

This concept was introduced by Epstein and Zin (1989). The continuous-time case is dis-

cussed in detail in Duffie and Epstein (1992a,b) and applied in the context of a long-run

risk model with jumps in Benzoni, Collin-Dufresne, and Goldstein (2011).

In the remainder of the paper we will first present the formal model in Section 2,

followed by a derivation of the equilibrium in Section 3. Section 4 contains a detailed

comparison between the model output and the data. Section 5 concludes the paper. All

proofs and detailed discussions of the technical aspects of the model can be found in the

appendix.
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2 Model

2.1 Consumption Dynamics

We study a Lucas-type endowment economy, where aggregate consumption C is given

as the sum of the outputs of two trees A and B, i.e., C = CA + CB.5 Throughout the

paper we will interpret the trees as two sectors of the economy. At any point in time the

economy is in either of two states. Since our focus is on the pricing implications of the

propagation of shocks, we denote the states by ‘calm’ and ‘contagion’ in the following.

Since we will later assume that the state of the economy is unobservable, it is important

to distinguish between the true model and the model as perceived by the representative

investor who has to filter information about the unobservable state from the data.

Under the true model the consumption dynamics for the trees i = A,B in the calm

state are given by the following jump-diffusion process:

dCi,t
Ci,t−

= µcalmi dt+ σidWi,t + LidÑ
calm,calm
i,t + LidÑ

calm,cont
i,t , (1)

whereas in the contagion state we have

dCi,t
Ci,t−

= µconti dt+ σidWi,t + LidÑ
cont,cont
i,t . (2)

The parameters µji , σi, Li, the intensities of the counting processes6 Ñ j,k
i , and also the

correlation ρ of the two Brownian motions WA and WB are constants. Note that the

diffusive part of output growth is the same in the two states for both trees.

The first key assumption of our model is that shocks to the endowment processes

can be propagated throughout the economy. As can be seen from Equation (1) there

are two types of jump-driven shocks in the calm state. The processes Ñ calm,calm
i collect

‘normal’ consumption shocks to the two trees, which occur rather infrequently and are of

moderate size. In contrast the processes Ñ calm,cont
i represent so-called ‘contagious’ shocks.

Such shocks not only reduce CA or CB immediately, but also trigger a regime switch to the

contagion state shown in Equation (2), which is characterized by high jump intensities for

5The fact that aggregate consumption is written as the sum of the output of the two trees implies
that we treat CA and CB as perfect substitutes, as in Cochrane, Longstaff, and Santa-Clara (2008) and
other papers in the literature on multiple-tree models. Perfect substitutability represents a special case
of a general aggregation function with constant elasticity of substitution.

6The counting processes in our model are not Poisson processes, since the stopping times of different
jump events are not mutually independent, as will become clear below.
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the counting processes N cont,cont
i . In particular we assume λcont,conti ≥ λcalm,calmi +λcalm,conti

for i = A,B. Finally, we assume that regime switches back from the contagion to the calm

state (modeled by the counting process Ñ cont,calm with intensity λcont,calm) do not affect

any of the endowments directly.

Note that the drift rates µji are also allowed to depend on the state. They will in

general be high in the calm state and low in the contagion state, reflecting the fact that

we not only observe more frequent shocks in the contagion state, but also a lower overall

growth rate of output.

The second key assumption of our model is that the state of the economy is un-

observable. Before we describe the setup with incomplete information in detail below, we

will first rewrite the output dynamics for the two trees in a more convenient fashion. Let

the indicator variable pt denote the state of the economy such that if pt = 1, the economy

is in the calm state, and in the contagion state otherwise. The consumption dynamics can

then be reformulated as functions of pt. Under the true model we have

dCi,t
Ci,t−

= µi,tdt+ σidWi,t + LidN
calm,cont
i,t + LidN

calm,calm
i,t + LidN

cont,cont
i,t , (3)

and the state of the economy pt has dynamics

dpt = dN cont,calm
t − (dN calm,cont

A,t + dN calm,cont
B,t ). (4)

The counting processes N calm,calm
i , N calm,cont

i , N cont,cont
i , and N cont,calm introduced in (3)

and (4) have intensities equal to ptλ
calm,calm
i , ptλ

calm,cont
i , (1 − pt)λ

cont,cont
i , and (1 −

pt)λ
cont,calm, respectively, i.e., they are ‘on’ or ‘off’, depending on the state of the economy.

The drift rates in (3) are given by µi,t ≡ ptµ
calm
i + (1− pt)µconti .

As in Cochrane, Longstaff, and Santa-Clara (2008) and Martin (2013), we define

the output share of tree A

sA,t =
CA,t

CA,t + CB,t
.

To make the notation more compact and easier to read we will from now on write sB,t

instead of 1− sA,t. With this the dynamics of aggregate consumption are given by

dCt
Ct−

= [sA,tµA,t + sB,tµB,t] dt+ sA,tσAdWA,t + sB,tσBdWB,t

+ sA,t−LA

(
dN calm,calm

A,t + dN calm,cont
A,t + dN cont,cont

A,t

)

7



+ sB,t−LB

(
dN calm,calm

B,t + dN calm,cont
B,t + dN cont,cont

B,t

)
.

An application of Itô’s Lemma leads to the normalized output share dynamics

dsA,t
sA,t−sB,t−

=
[
µA,t − µB,t − sA,tσ2

A + sB,tσ
2
B + (sA,t − sB,t)ρσAσB

]
dt+ σAdWA,t − σBdWB,t

+
LA

1 + LAsA,t−

(
dN calm,calm

A,t + dN calm,cont
A,t + dN cont,cont

A,t

)
− LB

1 + LBsB,t−

(
dN calm,calm

B,t + dN calm,cont
B,t + dN cont,cont

B,t

)
.

The interpretation here is straightforward. Downward jumps in the output of tree A

reduce its output share, whereas downward jumps in tree B increase it. In order to further

simplify notation, we denote the output share of tree A after a jump in tree A by sA+A,t ≡
sA,t−

1+LA
1+LAsA,t−

. Analogously, after a jump in tree B, sB+
A,t ≡ sA,t−

1
1+LB(1−sA,t−)

.

2.2 Representative Agent

The representative agent has recursive preferences over aggregate consumption. Following

Duffie and Epstein (1992b), we define the indirect utility function as

Jt = Et

[∫ ∞
t

f(Cs, Js)ds

]
,

with the aggregator function

f(C, J) =
βC1− 1

ψ(
1− 1

ψ

)
[(1− γ)J ]

1
θ
−1
− βθJ.

The relative risk aversion, the elasticity of intertemporal substitution, and the subjective

time discount factor are denoted by γ, ψ, and β, respectively. We assume that the agent

has a preference for early resolution of uncertainty, i.e., we assume θ ≡ 1−γ
1− 1

ψ

< 1.

2.3 Learning

As stated above a key assumption of our model is that the state of the economy pt is

unobservable. The agent can only observe the output streams CA,t and CB,t, but not the

true pt. Technically, this means that the agent has to base her decisions on a filtration
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G ⊆ F , where F is the filtration associated with the full information case. Since they

are observable, the processes CA and CB are adapted to the filtration G, but the state

variable p is not.

The agent’s decisions (and thus all equilibrium asset pricing results) depend on the

filtered estimate for pt, denoted by p̂t, which is the conditional expectation of pt, given

the investor’s information at time t, i.e., p̂t = E[pt|Gt]. The dynamics of p̂ are stated in

Proposition 1. The filtered probability p̂t follows the process

dp̂t =
(

(1− p̂t)λcont,calm − p̂t(λcalm,contA + λcalm,contB )
)
dt

+ p̂t(1− p̂t)

(
µcalmA − µcontA

µcalmB − µcontB

)T (
ΣΣT

)−1
ΣAB

(
dŴA,t

dŴB,t

)

+
∑
i=A,B

p̂t−

(
λcalm,calmi

λ̂i,t
− 1

)(
dN̂i,t − λ̂i,tdt

)
(5)

with

ΣAB =

(
σA 0

0 σB

)
and Σ =

(
σA 0

ρσB
√

1− ρ2σB

)
.

A short proof along the lines of Branger, Kraft, and Meinerding (2013b) is given

in Appendix A.1. In (5) Ŵi and N̂i denote the Brownian motions and jump process as

perceived by the investor. They are related to the true processes via

dN̂i,t = dN calm,calm
i,t + dN calm,cont

i,t + dN cont,cont
i,t

dŴi,t = dWi,t + σ−1i (µi,t − µ̂i,t)dt. (6)

The filtered drift rates and the jump intensities for N̂i are given by

µ̂i,t = p̂tµ
calm
i + (1− p̂t)µconti

λ̂i,t = p̂t

(
λcalm,calmi + λcalm,conti

)
+ (1− p̂t)λcont,conti .

Finally the dynamics of the two consumption streams under the investor’s filtration are

dCi,t
Ci,t−

= µ̂i,tdt+ σidŴi,t + LidN̂i,t (i = A,B).

Since our model is formulated in continuous time, the investor can perfectly distinguish

between diffusive noise and jumps. However, she cannot distinguish between different
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types of jumps, i.e., she cannot identify whether a jump in one of the trees has been

contagious or normal. A shock in one of the trees, no matter of which type, thus always

reduces the estimated probability p̂t of being in the calm state. This can be seen from the

last term (the sum) in (5), since by assumption λcont,conti ≥ λcalm,calmi + λcalm,conti , so that

λ̂i,t ≥ λcalm,calmi +λcalm,conti ≥ λcalm,calmi , which makes the second factor in the product after

the summation sign negative. In analogy to our short hand notation for the output shares

after jumps in CA or CB we compactly write p̂A+t ≡ p̂t−
λcalm,calmA

λ̂A,t−
and p̂B+

t ≡ p̂t−
λcalm,calmB

λ̂B,t−

for the value of p̂t after a jump in CA or CB, respectively. Moreover, the estimate for pt

is continuously updated due to diffusive information, since in general the drift rates µji in

the two states will differ.

In order to provide some intuition for the properties of the endowment processes

and the filtering equation, Figure 1 shows simulation paths for CA, CB, p, and p̂ based on

the parameters in the column labeled ‘Benchmark’ in Table 1 and the filtering equation

(5). The first contagion period starting around day 750 (indicated by the true state p

being equal to zero) is triggered by a downward jump in CA (blue line), the second one

around day 3250 by a jump in CB. We can nicely see the mechanics of filtering at work

here, when the probability estimate p̂t also reacts to normal jumps with a substantial

downward change. However, it reverts upwards rather quickly once a jump turns out to

have been non-contagious. Between jumps, filtering from diffusion generates additional

noise in p̂t. The lower graph shows that the prices of the claims to the output of trees

A an B exactly mirror the dynamics of p̂, especially at times of (truly) normal shocks,

which nevertheless lead to a higher estimated probability of being in the contagious state

and thus lower asset prices.

The filtered dynamics under G of aggregate consumption and the normalized out-

put share of tree A are given by

dCt
Ct−

= [sA,tµ̂A,t + sB,tµ̂B,t] dt+ sA,tσAdŴA,t + sB,tσBdŴB,t

+ sA,t−LAdN̂A,t + sB,t−LBdN̂B,t, (7)

and

dsA,t
sA,t−sB,t−

=
[
µ̂A,t − µ̂B,t − sA,tσ2

A + sB,tσ
2
B + (sA,t − sB,t)ρσAσB

]
dt

+ σAdŴA,t − σBdŴB,t +
LA

1 + LAsA,t−
dN̂A,t −

LB
1 + LBsB,t−

dN̂B,t.
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Since the process sA involves the same Wiener processes and jump processes as CA and

CB it cannot provide any news about the state of the economy, and its innovations are

informationally redundant.

Besides the two endowment processes, we will also analyze two equity claims which

we define as claims to levered consumption with cash flows Di = Cφ
i (i = A,B) where

φ > 1.7 We call these claims asset A and B in the following. Under the true model Itô’s

Lemma implies the dynamics

dDi,t

Di,t−
=

(
φµi,t +

1

2
φ(φ− 1)σ2

i

)
dt+ φσidWi,t + ((1 + Li)

φ − 1)dN calm,calm
i,t

+ ((1 + Li)
φ − 1)dN calm,cont

i,t + ((1 + Li)
φ − 1)dN cont,cont

i,t .

whereas from the investor’s perspective

dDi,t

Di,t−
=

(
φµ̂i,t +

1

2
φ(φ− 1)σ2

i

)
dt+ φσidŴi,t + ((1 + Li)

φ − 1)dN̂i,t.

3 Equilibrium

According to Duffie and Epstein (1992a), the representative investor’s pricing kernel ξ is

given by

ξt = βθC−γt e−βθt+(θ−1)(
∫ t
0 e

−vudu+vt), (8)

where vt is the logarithm of the wealth-consumption ratio. So in order to price assets in

this economy, we first need to determine the equilibrium wealth-consumption ratio. vt =

v (sA, p̂) depends on two state variables, the output share sA and the filtered probability

of being in the calm state p̂. 8 To solve for vt, we apply the Bellman equation from Duffie

and Epstein (1992a):

0 = f(Ct, Jt) +DJt,

with D representing the usual differential operator, defined in Appendix A.2. With the

usual conjecture

J =
C1−γ

1− γ
βθeθv,

7Note that some care has to be taken when introducing new assets into the model, since if these assets
provide a non-redundant signal about the state of the economy the filtering problem of the agent would
be different from the start. In order to avoid these issues we work with the levered dividends.

8For the sake of readability, we omit the time index of sA and p̂ in the following.
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we can then deduce the following partial differential equation for v.

Proposition 2. The log wealth-consumption ratio v solves the following partial differential

equation:

0 = e−v(sA,p̂) − β +

(
1− 1

ψ

)
µC −

1

2
γ

(
1− 1

ψ

)
σCC + vsµs +

1

2

(
vss + θ(vs)

2
)
σss

+ vp̂µp̂ +
1

2

(
vp̂p̂ + θ(vp̂)

2
)
σp̂p̂ + (1− γ)vsσCs + (1− γ)vp̂σCp̂ + (vsp̂ + θvsvp̂)σsp̂

+
1

θ
λ̂A

[
(1 + sALA)1−γeθv(s

A+
A ,p̂A+)−θv(sA,p̂) − 1

]
+

1

θ
λ̂B

[
(1 + sBLB)1−γeθv(s

B+
A ,p̂B+)−θv(sA,p̂) − 1

]
,

where µC, σCC, µs, σss, µp̂, σp̂p̂, σCs, σCp̂ and σsp̂ are defined in Appendix A.2.

A detailed proof is given in Appendix A.2, where we also discuss the numerical

solution of this PDE in detail.

We can use the pricing kernel from (8) to price other assets in the economy. Here,

we will focus on the two equity claims with dividend flow (as perceived by the investor)

dDi,t

Di,t−
=

(
φµ̂i,t +

1

2
φ(φ− 1)σ2

i

)
dt+ φσidŴi,t + ((1 + Li)

φ − 1)dN̂i,t.

A Feynman-Kac argument, which is presented in detail in Appendix A.3, leads to partial

differential equations for the log price-dividend ratio of assets A and B, ωA and ωB, as

functions of sA and p̂. These partial differential equations are structurally very similar to

those for the log wealth-consumption ratio v in Proposition 2, so that we can apply the

solution techniques for the latter also here.

4 Comparing the Model to the Data

4.1 Benchmark Calibration

In order to derive quantitative implications we assume the parameter values reported in

the first column of Table 1. The preference parameters γ = 10 and ψ = 2 are in line with

the long-run risk literature, see, e.g., Bansal and Yaron (2004). All other parameters are

chosen to match aggregate US data.
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Since macroeconomic data is available at most on a quarterly basis, it is hard

to calibrate a jump-diffusion model to consumption data. This is especially true for our

paper, since we do not suggest a typical Peso problem story from disaster models like

Barro (2006, 2009). Instead, we choose higher jump frequencies, but more moderate jump

sizes in the spirit of Backus, Chernov, and Martin (2011), who try to match option data

and macroeconomic data, or Constantinides (2008). Each type of shock in the calm state

has an intensity of 0.125 and a size of −0.06. If both trees are equally large, i.e. sA = 0.5,

this implies on average one consumption shock of −0.03 every other year. In the contagion

state, the intensity of consumption shocks is increased to 0.8 in both trees. The diffusion

parameters for output growth σi are set to a moderate level of 0.01, and we assume a

diffusion correlation ρ = 0 for simplicity.9 Together with the drift rates µcalmi = 0.047

and µconti = 0.019, our choices imply an unconditional annual expected growth rate of

consumption of 1.9 percent. The contagion state in our model is assumed to have an

average duration of 1 year, i.e. λcont,calm = 1. The unconditional probabilities of the two

economic states are roughly in line with the time the US economy has spent in NBER

recessions since 1947, which is around 20%.

Finally, the leverage parameter φ = 2.5 and the subjective discount rate β = 0.039

are chosen such that the equity premium and the risk-free rate in the data can be matched

and the price-dividend ratios in the model remain finite.

A natural question arising in a model with two trees is about the economic inter-

pretation of the two endowment processes. In the calibration above, we implicitly assume

that our economy consists of two more or less identical sectors. When the two sectors

have equally large outputs, the sum of these outputs then has dynamics which are similar

to consumption dynamics in the data. However, we can also study the equilibrium with

sectors of different sizes. This is very useful, since, as documented by Cochrane, Longstaff,

and Santa-Clara (2008) and Martin (2013), the spillover effects and the propagation of

shocks depend on the relative size of the trees. In addition to this the interpretation of

the trees as different sectors also gives rise to deeper cross-sectional analyses. We will

therefore also analyze calibrations of the model in which the output processes of the two

trees have different parameters. The calibrations are presented in the remaining columns

of Table 1.

9In addition to being simpler computationally the assumption of ρ = 0 makes any correlation between
the prices of trees an endogenous result generated only by the equilibrium pricing mechanism.
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4.2 Simulating the Model

We use the numerical solutions for the wealth-consumption and price-dividend ratios

to compute model-implied moments of asset returns as functions of sA and p̂. Such an

analysis helps to understand the mechanics of our model, but it does not tell us how well

our model can match actual data. Therefore, we also perform Monte Carlo simulations

of our model. We simulate the two trees on a daily frequency and draw 10,000 random

paths each with a length of 65 years. For simplicity, we set the starting value of sA and

p equal to 0.5 and 1, respectively.10 We then use the model-implied wealth-consumption

and price-dividend ratios to compute time series of prices and returns for all assets, from

which we then compute the statistics reported in the first column of Table 2.

Concerning our model setup one comment is necessary at this point. We are aware

of the fact that the state variable sA in our model is nonstationary so that, strictly

speaking, one cannot analyze the model in the steady state. However, to the best of

our knowledge, there are not many tractable alternative ways of modeling Lucas orchard

economies which would ensure a non-degenerate stationary distribution of the output

share.11 In our model simulations we focus on a time horizon of 65 years, since this seems

comparable to most of the data samples used in the asset pricing literature to date and

the nonstationarity should not matter too much over this period length. Moreover, we

have performed robustness checks where we extended the time window of the simulation

to 500 years. Indeed, the output share sA tends to 0 or 1 in the very long run. However,

only for about 3% of all simulated paths we observe an output share below 0.2 or above

0.8 after 500 years, and of course this percentage is even smaller for more extreme values

of sA. The nonstationarity thus only matters for extremely long horizons, and we claim

that the quantities generated by our model can be compared meaningfully to the data.

Moreover, we will discuss the influence of the output share sA on the asset pricing results

in more detail in Section 4.9.

Table 2 reports the annual means, standard deviations and first-order autocorre-

lations for the fundamental cash flows and for a number of asset pricing quantities for

the data and for our model. In terms of model-generated moments the return correlation

corr(rA, rB) has been computed from monthly returns over a rolling window of four years.

The numbers referring to the aggregate dividend growth and the price-dividend ratio of

10The economy is thus initially assumed to be in the calm state. Choosing p = 0 as the initial value
instead does not affect any of our results, since regime changes are relatively frequent in our model.

11See the discussion of this matter in an earlier working paper version of Cochrane, Longstaff, and
Santa-Clara (2008) or in Menzly, Santos, and Veronesi (2004).
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the market give the moments of the claim to aggregate dividends D = DA +DB.

The values in the columns labeled ‘Data’ are from a number of papers, but mostly

from Benzoni, Collin-Dufresne, and Goldstein (2011), who use U.S. data from 1946 to

2008. The moments for the risk-free rate refer to the 3-month T-bill rate as reported

by Wachter (2013). The statistics on correlations and sectoral dividends are taken from

Ehling and Heyerdahl-Larsen (2013) and, finally, details about the wealth-consumption

ratio and several autocorrelations are taken from either Lustig, van Nieuwerburgh, and

Verdelhan (2013) or Bansal, Kiku, Shaliastovich, and Yaron (2013).

Mean consumption growth is 0.019 as calibrated and consumption growth volatility

is 0.028. These numbers are well in line with the data. In particular, the dataset used in

Barro (2006, 2009) shows that consumption volatilities are low only in subsamples without

realizations of disasters (like the US after World War II). Instead, we try to explain asset

pricing moments with more moderate, but at the same time more frequent consumption

shocks and include these jumps in our samples. The properties of the model with respect

to the volatility of aggregate dividend growth are similar to those for consumption. It is

slightly higher than in the data and also more volatile, but nearly as persistent. However,

our model results are generated including all consumption and dividend shocks in the

sample. For the dividend growth rates of the individual trees, there is no clear empirical

counterpart. Recently, Ehling and Heyerdahl-Larsen (2013) have estimated a standard

deviation of dividends on the industry level of 0.133. Regarding our trees as representing

different sectors of the economy, our model results look consistent with such evidence.

The level of the price-to-fundamentals ratios in our model is roughly in line with

the data. Lustig, van Nieuwerburgh, and Verdelhan (2013), e.g., report a log wealth-

consumption ratio of 4.63 using data from 1952 to 2011, so that the model is a little

bit on the low side here. The level of the price-dividend ratio is matched much more

closely. Furthermore, both the wealth-consumption ratio and the price-dividend ratios

are also quite persistent in our model, with autocorrelations up to 0.74. The volatility of

price-to-cashflow ratios is again somewhat low in the model, for which a look at Figure 2

provides an explanation. The state variable p̂ is much more volatile than the state variable

sA. However, the price-to-fundamentals ratios react to sA much more than to p̂. A more

detailed discussion of the properties of the price-to-fundamentals ratios can be found in

Appendix B.
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4.3 Risk-free Rate

The risk-free rate is obtained as the negative of the drift of the pricing kernel:

Proposition 3. The risk-free rate is given by

rf = β +
1

ψ
µC −

1

2
γ

(
1 +

1

ψ

)
σCC − (1− θ)vsσCs − (1− θ)vp̂σCp̂

− 1

2
(1− θ)v2sσss −

1

2
(1− θ)v2p̂σp̂p̂ − (1− θ)vsvp̂σsp̂

− λ̂A
[
ηjumpA +

1− θ
θ

(
(1 + sALA)1−γeθ(v(s

A+
A ,p̂A+)−v(sA,p̂)) − 1

)]
− λ̂B

[
ηjumpB +

1− θ
θ

(
(1 + sBLB)1−γeθ(v(s

B+
A ,p̂B+)−v(sA,p̂)) − 1

)]
.

For a proof see Appendix A.4.

The risk-free rate in our model comprises the typical terms: the time preference

rate β, the expected growth rate of consumption scaled by the elasticity of intertemporal

substitution, and a bunch of precautionary savings terms which lower the rate and thus

help to resolve the risk-free rate puzzle.

The upper right graph of Figure 2 depicts the risk-free short rate in [sA, p̂]-space.

First of all, the risk-free rate is symmetric and concave in sA. The aggregate consumption

risk is the smallest at sA = 0.5 and so are (the absolute values of) the corresponding

precautionary savings terms. This diversification effect is especially pronounced for jumps.

If sA is close to 0 or 1, aggregate consumption can drop by either 6% or 0% (depending on

which tree exhibits the shock). This risk is perceived far worse by the investor than the risk

of twice as many medium-sized consumption drops if sA is around 0.5. The dependence

of the risk-free rate on the state variable p̂ basically mirrors the expected consumption

growth rate. The interest rate is about 3.1 to 3.8 percentage points smaller for p̂ = 0 than

for p̂ = 1. The convexity is again a result of the uncertainty about the state which has an

additional effect through the precautionary savings terms.

The simulation results in Table 2 show that the standard deviation of the risk-free

rate is about 0.0129, which seems to be in line with US data. The average level of the

risk-free short rate in the simulations is 0.0352 since most of the time p̂ is close to 1.

Depending on which data sample is used, these numbers seems to be in a plausible range.
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4.4 Market Prices of Risk and Risk Premia

The risk premia of all assets follow from the market prices of risk in the economy and

the exposures of the asset prices to the respective risk factors. Appendix A.4 states the

dynamics of the pricing kernel, assuming a solution for the log wealth-consumption ratio

v. From these we can directly determine the market prices of risk.

Proposition 4. The market prices of diffusive risk are

ηdiffA = γsAσA − (θ − 1)vssAsBσA − (θ − 1)vp̂p̂(1− p̂)
(

(µcalmA − µcontA )

(1− ρ2)σA
− ρ(µcalmB − µcontB )

(1− ρ2)σB

)
ηdiffB = γsBσB + (θ − 1)vssAsBσB − (θ − 1)vp̂p̂(1− p̂)

(
(µcalmB − µcontB )

(1− ρ2)σB
− ρ(µcalmA − µcontA )

(1− ρ2)σA

)
.

The market prices of jump risk are

ηjumpi = (1 + siLi)
−γe(θ−1)(v(s

i+
A ,p̂i+)−v(sA,p̂)) − 1,

where i ∈ {A,B}. The jump intensities under the risk-neutral measure, λ̂Qi , equal the phys-

ical intensities λ̂i, multiplied by 1 + ηjumpi . The market price of risk for the (unobservable)

regime switches from the contagion state to the calm state is zero.

The market price of diffusion risk of tree A is depicted in the upper left graph of

Figure 3. Analytically, the proposition shows that the market price of diffusive risk of tree

i comprises three terms. The (standard) first term reflects the contribution of tree i to

aggregate diffusive consumption risk. The second and third term represent the compen-

sation for shocks to the state variables sA and p̂, respectively. Since the representative

agent has a preference for the early resolution of uncertainty, she not only cares about

the local distribution of consumption, i.e., about ‘immediate’ consumption risk, but also

about the fact that the continuation value of her indirect utility depends on state variables

and is hence stochastic. In a world with CRRA preferences where θ = 1, the correspond-

ing market prices of state variable risk would be zero. A decomposition of the numerical

results (not shown here) reveals that the market price of sA-risk is relatively small. The

third term however is numerically large for p̂ close to 0.5. Compared to an economy with

full information, the additional amount of uncertainty dramatically increases the diffusion

risk in the economy and leads to overall high market prices of diffusive risk, especially for

intermediate values of p̂.

The upper right graph of Figure 3 depicts the market price of jump risk of tree A.
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The fact that there is only one market price of jump risk despite there being three different

counting processes driving the output of tree i is of course due to the assumption of partial

information. The investor cannot distinguish between the different types of shocks and

therefore applies the same market price to all of them. Moreover, the market price of risk

for pure regime switches, which do not impact output, is equal to zero when the state

of the economy is latent and unobservable. Therefore, the risk of transitions from the

contagion state back to the calm state does not induce a premium in our model.

Analytically, the market price of jump risk in tree i is a product of two factors. The

first factor, which is numerically larger, is the compensation for the immediate impact of

jumps on the consumption level. It is increasing in the output share of tree i since the

drop in aggregate consumption induced by a drop in tree i is larger if tree i represents a

larger fraction of the economy. The second, smaller factor reflects the impact of jumps on

the continuation utility via the state variables sA and p̂. This factor becomes very large

as p̂ moves towards 1. The impact of shocks on p̂, i.e. the probability update due to any

kind of shock, is the highest if the agent is relatively certain to be in the calm state of the

economy. The threat of contagion is thus priced most strongly if the investor is sure to be

in the calm state. Taken together, the market price of jump risk is a decreasing function

of si and p̂ as shown in the graph.

Given the market prices of risk and the price-dividend ratios of the dividend claims,

i.e. the price exposures to the different risk factors, we can obtain their conditional ex-

pected excess returns. Here we analyze the results for asset A only, since the results for

asset B are completely analogous.

Proposition 5. The local expected excess return of asset A is determined by

ΥA,diff
A ηdiffA + ΥB,diff

A ηdiffB − λ̂AΥA,jump
A ηjumpA − λ̂BΥB,jump

A ηjumpB ,

where the sensitivities with respect to the jump and Wiener processes, ΥA,diff
A , ΥB,diff

A ,

ΥA,jump
A and ΥB,jump

A are given in Appendix A.5.

The derivation is provided in Appendix A.5. The two middle graphs in Figure 3

depict the equity premium for the two dividend claims as a function of sA and p̂. We also

decompose the risk premium of asset A into the jump component and the diffusion com-

ponent. We further decompose the diffusion risk premium into the cash flow component,

the component due to sA and the component due to p̂ in Figure 4.

We analyze the jump risk premium first. As documented by Branger, Kraft, and
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Meinerding (2013a), the fact that consumption shocks and regime switches are coupled

together via contagious shocks increases the jump risk premia disproportionately. How-

ever, this effect is weakened in an economy with only partial information. To get the

intuition, consider first the hypothetical case where the agent has full information, i.e.

she can observe the state of the economy perfectly. With partial information, every shock

induces the same probability update, whereas with full information, there are either con-

tagious jumps (which bring p to 0) or normal jumps (which do not affect p). In the full

information case, the jump sizes of prices are thus effectively stochastic: a shock could

either be contagious (with a larger price impact) or normal (with a smaller price impact).

The jump risk premia in the full information case must therefore contain an additional

risk premium related to the size of the jumps, which is not present with partial informa-

tion. The total jump risk premium is therefore slightly lower in an economy with partial

information, but still quite sizeable although we use rather moderate jump sizes in our

calibration.

The diffusion risk premium can be decomposed into three terms, reflecting the three

different components of the market prices of diffusive risk ηdiffi . The lower right graph of

Figure 4 reveals that the uncertainty about the state of the economy adds a significant

portion to the diffusion risk premium. For intermediate values of p̂, the premium for

diffusive p̂ risk amounts to more than 6% and makes up the largest fraction of the total

diffusion risk premium.

In summary, the analysis of the different types of risk premia shows that both

of our key model assumptions have a strong impact on the equity premium. First, the

existence of contagious shocks helps to generate a sizeable jump risk premium with rather

frequent, but moderate jumps. This answers the concerns which have recently been raised

by Constantinides (2008) or Backus, Chernov, and Martin (2011). Second, the additional

layer of long-run risk introduced by the partial information feature of our model gives rise

to a sizeable diffusion risk premium. Both components of the equity premium are concave

in p̂, i.e. they are large in times of high uncertainty.

The Monte Carlo simulation gives a remarkable average excess return of 5.8 per-

centage points. Note that we include all realizations of negative shocks to the endowment

(and hence to prices) in our sample and do not rely on a Peso problem story here. More-

over, note that the shocks in our model are very moderate, in line with evidence from

Backus, Chernov, and Martin (2011) or Constantinides (2008). The reason for the still

sizeable equity premium lies in our two key model features: contagious shocks increase

jump risk premia disproportionately as has been explained by Branger, Kraft, and Mein-
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erding (2013a). Learning and partial information on the other hand give rise to sizeable

diffusion risk premia as well. Finally note that - although the price to fundamentals ratios

are quite persistent - there is a fair amount of volatility even in the conditional expected

excess return with a standard deviation of roughly 0.01. We will come back to this point

when we analyze the predictability of returns.

4.5 Volatilities

Local second moments of the asset prices follow immediately from the price dynamics.

Exact formulas are provided in Appendix A.5. The upper left graph of Figure 5 shows

the local volatility of asset A as a function of sA and p̂. The Figure also provides a

decomposition into diffusion and jump parts.

As discussed above, uncertainty about the state of the economy induces additional

diffusive volatility. This additional volatility is the highest for p̂ = 0.5. Note that the

output processes themselves have a diffusive volatility of 1%, which, with a leverage pa-

rameter of 2.5, increases to 2.5% for the dividends. The big boost then comes from adding

uncertainty to the model, which produces a local diffusive price volatility of up to 13%.

Jump risk can contribute an equally large amount to the local volatility. On the

one hand, the perceived jump intensity is decreasing in p̂, so that this fraction of the local

volatility is rather high for p̂ close to zero. On the other hand, the impact of jumps on the

estimated probability p̂ and thus on prices in the economy is the largest for intermediate

values of p̂. Hence, the local volatility from jump risk is relatively high for intermediate

values of p̂, but slightly declining as p̂ approaches 0. Again both central features of the

model, contagious shocks and uncertainty about the economic state, are needed to gener-

ate a sizeable price volatility. Under the given calibration, the local volatility can exceed

18% if p̂ is around 0.5 and tree A makes up a large fraction of the economy, i.e. sA is close

to 1.

The simulation results in Table 2 document that the learning feature creates a

significant amount of excess volatility in our model. The standard deviation of the return

of the equity claim A in the simulations is about 0.124, whereas the dividend volatility

is below 0.10. This excess volatility comes to a large extent from the volatility in the

state variable p̂. Besides generating excess volatility per se, the learning mechanism in

our model however also generates an interesting asymmetry in the excess volatility. This

can best be seen from the exemplary sample paths in Figure 1. The noise in p̂ is way

more pronounced for p̂ close to 0 than for p̂ close to 1. The reason is that it is almost
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impossible for p̂ to approach the lower bound 0. Instead, during time periods where no

jump is observed, there is always some drift upwards. If on the other hand p̂ approaches

1, there is no such drift in the other direction so that it is rather improbable for p̂ to take

values significantly below 1.

This asymmetric – and in fact countercyclical – volatility of p̂ is transmitted to the

return volatilities. To show this, we perform a regression exercise on our simulated data.

We aggregate the returns of the risky asset A to obtain time series of monthly returns,

then compute the volatilities of these monthly returns using a one, two, three or four-year

rolling window and hence generate time series of volatilities of monthly returns.12 Next, we

integrate the simulated state variable p̂ over the same 1, 2, 3 or 4 years in order to generate

time series of average estimated probabilities of being in the bad state. Intuitively, these

time series measure the average perceived macroeconomic conditions over the estimation

period. Finally, we regress the return volatilities on the integrated p̂.

The results from this exercise are reported in Table 3. To foster the intuition, we

report annualized figures here. First, note that there is a substantial variation both in

the integrated state variable p̂ and in the return volatilities which puts the integrated

probability as an explanatory variable to a real test. Several studies in the literature have

shown that return volatilities are strongly countercyclical.13 Our model reproduces this

stylized fact in the data. The slope coefficient in the regression for a time window of 1 year

is −0.14 with a p-value below 0.01. If p̂ decreases from 1 to 0.5, i.e. contagion becomes

quite likely to have occurred, the return volatilities go up by (annualized) 7 percentage

points. The result of countercyclical volatilities is robust in various directions. Table 3

also reports the statistics if we extend the correlation window to 24, 36 or 48 months. The

regression coefficient slightly increases in absolute value. We also performed the analysis

with non-overlapping time periods, i.e., we computed one correlation for each year in

the sample and then moved on to the next year. This leaves all the numbers practically

unchanged.

4.6 Correlations

Next, we analyze the correlation between the returns of the two equity claims. Again,

to grasp the whole picture, we have to analyze the conditional local correlations as well

as the simulation results. As shown in the lower right graph of Figure 5, the presence

12The choice of monthly returns is motivated by the analysis in Mele (2007).
13See, e.g., Ehling and Heyerdahl-Larsen (2013) or Mele (2007) for results about US equity returns.
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of state variables generates a nonzero local correlation. For all values of p̂, the fact that

the output of both trees enters aggregate consumption (and thus the pricing kernel)

induces correlation between their prices even though the fundamental cash flows are locally

uncorrelated. This effect has also been documented by Cochrane, Longstaff, and Santa-

Clara (2008) and Martin (2013). Moreover, the overall highest correlation (around 0.75)

is again measured for intermediate values of p̂.

However, the graph also shows that the local correlation is smallest if the investor

is sure to be in the bad state, i.e. if p̂ is close to 0. This seems counterfactual at first glance

given, e.g., the evidence in Longin and Solnik (2001). The mechanism behind this result

is as follows. With partial information every output shock, be it contagious or normal,

has an effect on both the output share of tree A and on the state of the economy. On the

other hand regime switches back from the contagion to the calm state are unobservable,

these transitions do not affect the state variables sA and p̂ locally. If p̂ is close to 0, the

agent expects to see many non-contagious shocks (with relatively small impact on state

variables) or a transition to the good state (with no direct impact on state variables at

all). Since, on top of that, the diffusion correlation ρ is state-independent (and equal to

zero), we observe the lowest local correlation for p̂ = 0.

However, we would like to emphasize that in our opinion the local correlation is

not the proper model-implied quantity to be compared to the data. Instead, we elaborate

on the correlations of monthly returns in our simulated data. To do so, we repeat the

regression exercise from the previous section. Instead of return volatilities, we now use

correlations of monthly returns over 1, 2, 3 or 4 years as the dependent variable.14 The

results from this exercise are reported in Table 4. First of all, there is again a substantial

variation both in the integrated state variable p̂ and in the correlation of monthly returns.

The average correlation is between 0.47 and 0.60. Given that the two dividend processes

are locally uncorrelated, this is already a stunning result. Longin and Solnik (2001) report

an average correlation of 0.52 between monthly returns of US and UK stocks using data

from January 1959 to December 1996. Ehling and Heyerdahl-Larsen (2013) analyze return

correlations between several industries and report an average correlation of around 0.7.

They also show that there is a substantial amount of heterogeneity and time variation in

these correlations.

Both Longin and Solnik (2001) and Ehling and Heyerdahl-Larsen (2013) perform

a battery of tests to show that return correlations are strongly countercyclical. This is

14The choice of monthly returns is motivated by the analysis in Longin and Solnik (2001).
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exactly what our model produces. For a time window of 1 year, the slope coefficient in the

regression is −0.38 with a p-value below 0.01. If p̂ decreases by 50%, i.e. contagion becomes

more likely to have occurred, the monthly correlations go up by 19 percentage points.

Although the local correlations in our model are procyclical, the realized correlations of

monthly returns are highly countercyclical. Locally, all consumption shocks in our model

are uncorrelated. But the jump intensities and also the drift rates depend on the economic

state. Consequently, we see a lot of comovement in asset prices on the downside, but not

so much on the upside, and this behavior cannot be captured by just looking at local

correlations.

We accentuate that it is the interplay between all our key model ingredients that

leads to this result. First of all, the contagion feature together with learning leads to pat-

terns where both risky assets slide into a crisis together and stay there over a longer time

period (see the exemplary sample paths in Figure 1). Second, the possibility of jumps and

their increased frequency in the down state tilts the correlation towards countercyclicality.

This would not be possible in a classical long-run risk setup or a Markov switching model

where only the drift rates of consumption are time-varying. Note that the mechanism to

generate countercyclical correlation in our model is also very different from the one in

Martin (2013). In that paper, sudden ‘correlation spikes’ are generated by rare disasters

like in Barro (2006) together with the usual spillover machinery in a two-tree framework,

whereas we explicitly foreground the time dimension of crisis propagation.

The result of countercyclical correlations is again robust in various directions. Table

4 also reports the statistics if we extend the correlation window to 24, 36 or 48 months.

The regression coefficient decreases in absolute value, but even for a horizon of 48 months

it is still negative at −0.18 and significant. We also performed the analysis with non-

overlapping time periods, i.e., we computed one correlation for each year in the sample and

then moved on to the next year. This leaves all the numbers practically unchanged. Finally,

we repeated the analysis with correlations of weekly returns instead of monthly returns.

As this case is closer to the analysis of local correlations, the results become slightly

weaker. We still observe regression coefficients of −0.35 and −0.17 for time windows of

one and two years, respectively, but for longer time horizons the regression coefficients

become insignificant.
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4.7 Predictive Regressions

To investigate the properties of our model with respect to the predictability of future

excess returns via the current value of the price-dividend ratio we first simulate the en-

dowment processes and the state variable p with monthly increments for a total period

length of 65 years. Then we compute the corresponding monthly price and return time

series for the two risky assets A and B and for the claim to the aggregate dividends

Daggr = DA + DB which we denote as the ‘market portfolio’. Next, we aggregate the

monthly returns to get annual time series. Finally, we run the following long horizon

regressions:
t+h−1∑
τ=t

raggr,τ,τ+1 − rf,τ,τ+1 = α + β waggr,t + εt

where raggr,τ,τ+1 denotes the log return on the aggregate dividend claim from year τ to

year τ + 1, rf,τ,τ+1 denotes the return on a risk-free bond from time τ to time τ + 1 and

waggr,t is the log price-dividend ratio of the aggregate dividend claim at time t. Note that

we proxy rf,τ,τ+1 by integrating the monthly simulated risk-free short rates. We run the

predictive regression for different horizons of h = 1, 2, 4, 6, 8, 10 years.

Table 5 reports the results. Panel A shows the results produced by our model for

a sample length of 65 years.15 Panel B gives the results reported in Wachter (2013) from

a model with time-varying jump intensities. Panel C gives the numbers in the data which

Wachter (2013) estimates for the period from 1947 to 2010.

The betas in our model are extremely close to those reported in Wachter (2013)

and also close to the data, between −0.19 and −0.72. This is not surprising given the fact

that most models with recursive utility and long-run risk variables are able to generate

return predictability. Future average returns in our model depend on the current values

of sA and p̂, i.e. on the expectation of future jumps, and so do current price-dividend

ratios. This creates betas which increase with the regression horizon. The R2 values do

not match the empirical values. But as Wachter (2013) already points out, the R2 would

be considerably higher if we could exclude the realized jumps from our sample. Upon

a jump in the dividend, most of the excess return variation comes from the change in

dividends and not from a movement the price-dividend ratio. Unfortunately, we cannot

do that type of analysis here because jumps are much more frequent in our model than

in Wachter (2013).

We repeat the predictive regressions with consumption growth rates as the left-

15We repeat the procedure described above 1,000 times and report the mean of the estimated betas.
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hand variable, the results are reported in Table 6. The numbers are again closely in line

with the data in the sense that the price-dividend ratio does not predict consumption

growth. This finding is in stark contrast to typical long-run risk models like Bansal and

Yaron (2004), and our model performs even better than the model of Wachter (2013).16

Not only are the betas close to zero and independent of the time horizon of the regression.

On top of that, the R2’s are considerably low and much closer to the data than in other

long-run risk models.

The fact that consumption growth rates are unpredictable both for long and short

horizons has two reasons. First of all, the timing of the shocks cannot be predicted by

the price-dividend ratio at all. But short-horizon consumption growth rates are heavily

affected by the realization of jumps and there are relatively many of them in our sample

because of the rather high jump intensities. This eliminates nearly all predictability for

short maturities. For long-horizon consumption growth, a second effect comes into play.

Our state variable p̂ is not a long-run risk variable in the original sense. Table 2 reports

an annual autocorrelation of 0.46 for p̂ which is way below the autocorrelation of long-run

risk variables like the ones in Bansal and Yaron (2004) or Wachter (2013). Note, e.g., that

the average length of a contagion period is 1 year in our benchmark calibration and that p̂

reverts back to 0 rather quickly once a contagion period has ended (see the paths in Figure

1). The lack of persistence in the state variable p̂ implies that long-horizon consumption

growth rates depend much less on the economic state which prevailed at the beginning

of the period. As a result, long-horizon consumption growth rates are unpredictable, too.

Both the betas and the R2 stay low for very long horizons.

To sum up, our model is thus able to shut down the counterfactually high consump-

tion growth predictability which is introduced by long-run risk in many recent papers.

Nevertheless, we are still able to generate enough return predictability. Finally, we wish to

stress that we do not have to sacrifice much of the autocorrelation of price-to-fundamentals

ratios to achieve this result. E.g., Table 2 reports annual autocorrelations of the price-

dividend ratios of the single trees of 0.74. As will become clear below, we can further

increase the persistence of the price-dividend ratios, especially for small trees, if we make

use of our two-tree setup and allow for heterogeneous trees.

16We redid the analysis with dividend growth instead of consumption growth, and price-dividend ratios
also do not predict dividend growth in our model. The results are not shown to save space.
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4.8 Term Structure of Equity

There is a growing body of literature about the term structure of returns and volatilities

of equity claims. Most prominently, van Binsbergen, Brandt, and Koijen (2012) argue

that the term structure of equity returns and volatilities is downward-sloping. Boguth,

Carlson, Fisher, and Simutin (2012), on the other hand, argue that tiny market frictions

might be the reason for this behavior. Nevertheless, there is a rising number of papers

trying to explain the negative slope, e.g. Lettau and Wachter (2007).

Following Belo, Collin-Dufresne, and Goldstein (2012), we define a dividend strip

to be a claim on the value of the dividend at time T . Its value at time t is given by

V T
A (t) = EQ

t

[
e−

∫ T
t rf,sdsDA,T

]
= Et

[
ξT
ξt
DA,T

]
.

Using standard arguments (see Appendix A.6) we can derive a partial differential equa-

tion for the log price-dividend ratio yA,t = log
V TA (t)

Dt
of this dividend strip. This partial

differential equation has properties similar to the differential equations discussed before,

except that there is now also a time derivative because the maturity of the dividend strip

is finite. We solve it numerically, iterating backwards in time starting from the boundary

condition yTA(T ) = 0. Given the numerical solution of the price-dividend ratio, we derive

the dynamics of V T
A (t) using Itô’s Lemma and compute conditional moments similar to

what we did for the equity claims in Section 3. In the following, we will focus on the local

expected excess return and local volatility as functions of the time to maturity T − t.

Figure 6 depicts the term structures for maturities up to 40 years and for different

values of p̂ between 0 and 1. Results not reported here indicate that there is more variation

due to changes in p̂ than due to sA, we therefore stick to sA = 0.5 in the following

analysis. The term structure of volatilities exhibits a slightly hump-shaped pattern for

p̂ ≥ 0.2. However, the hump decreases in p̂ and for p̂ = 0 the term structure of volatilities

is completely decreasing. The expected excess returns are increasing with maturity for

all p̂ ≥ 0.2, but they seem to stabilize from about 3 years onwards, which is consistent

with the hump in the volatilities around the same maturity. Finally, the term structure

of equity risk premia is completely flat for p̂ = 0.

The mechanism at work here is similar to the one in Croce, Lettau, and Ludvigson

(2012). The term structure of equity returns is typically upward-sloping in long-run risk

models because of the eponymous long-term character of the risk factors involved.17 Croce,

17See the evidence in van Binsbergen, Brandt, and Koijen (2012) or Wachter (2013).
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Lettau, and Ludvigson (2012) however point out that partial information about long-run

risk has the potential to reduce the upward slope or even induce a downward slope.

The reason is that a partially informed agent filters the current value of the long-run risk

variable from observables. These observables (typically consumption or dividends) depend

on both short-run and long-run risk, and so the agent always underestimates the degree of

long-run risk and overestimates the degree of short-run risk in the economy. As a result,

the term structure of equity is twisted and can even become downward-sloping. In our

model, the diffusive and jump risk in the endowment processes can be seen as short-run

risk. Long-run risk is represented by the two state variables sA and p̂. Since these two

variables are only slightly persistent (compare the discussion above), our model does not

show up a large amount of long-run risk to begin with. But in principle, contagious jumps

induce additional long-run risk in the economy. The fact that the agent cannot identify

these contagious jumps perfectly however reduces the effect of these jumps exactly as

in Croce, Lettau, and Ludvigson (2012). Therefore, in contrast to the model of Wachter

(2013), in which the time-varying disaster risk serves as the long-run risk variable, the

term structure of equity yields is approximately flat from 3 years onwards. This intuition

is confirmed by robustness checks where we compute the term structure of equity for

higher diffusion volatilities σA and σB. Higher volatilities imply that the signals CA and

CB are less informative and hence the probability p̂ is estimated with smaller precision.

The effect of learning on the slope of the term structure should be larger in more volatile

economies. Our results indeed show that the term structure of equity becomes flatter with

increasing σA and σB.18

4.9 Autocorrelations and Cross-Sectional Analysis

The above analysis has shown that the success of our model concerning predictive re-

gressions is due to the fact that the price-dividend ratios are rather persistent, although

the state variables themselves are not. This autocorrelation is especially pronounced for

the claims to the individual dividend streams DA and DB as compared to the claim on

18Another way to figure out the intuition behind the term structure of equity is given by the approach
of Lettau and Wachter (2007) who try to explain the term structure of equity and interest rates via
‘reverse engineering’. Their results show that the slope of the term structure of equity can be negative if
the correlations between the market prices of risk and the expected dividend growth rates are negative.
From Figure 3, one can deduce that the correlation between expected dividend growth and the market
price of jump risk is mostly positive. The correlation between expected dividend growth and the market
price of diffusion risk is ambiguous. Altogether, the slope of the term structure of equity is thus positive
and approaching zero for long horizons.
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aggregate dividends DA+DB. We will now elaborate a bit more on this aspect by allowing

for heterogeneity among the two trees.

Our model enables us to study the equilibrium effects of heterogeneity within one

single economy whereas, in a one-tree economy, we could only compare different market

equilibria, depending on the parametrization of that single tree. As will become clear

below, this has first-order consequences for the autocorrelations, but also for expected

returns, return volatilities and correlations.

We do the analysis in two steps. First, we keep the parametrization fixed and stick

to the benchmark calibration, but we change the relative sizes of the trees. Until now,

we started our Monte Carlo simulation with equally large trees, i.e. sA,0 = 0.5. Since

consumption does not move very much, it is very unlikely to reach more extreme values of

sA within the 65 years simulation window. Therefore, we redo the Monte Carlo simulation

with starting values sA,0 equal to 0.67, 0.75, and 0.83, respectively. In the second step, we

allow for parameters different from the benchmark case, but start the simulation with sA

equal to 0.5 again. The parameters for these three additional cases are shown in Table 1.

4.9.1 Different Tree Sizes

The results from the first exercise are reported in the last three columns of Table 2 where

we vary the starting values for sA. Apparently, as the economy becomes more imbalanced,

the price-dividend ratio of the smaller tree B becomes more persistent with first-order

autocorrelation up to 0.82. At the same time, the price-dividend ratio of the larger tree

A becomes less persistent. Nevertheless, the autocorrelation of the market price-dividend

ratio increases to 0.79. The autocorrelation of the wealth-consumption ratio goes up as

well, it reaches 0.57 for the most extreme case. The more imbalanced economies are thus

closer to the data in this respect. The numbers generated by our model are close to what

is usually observed in long-run risk models as shown by Bansal, Kiku, Shaliastovich, and

Yaron (2013).

This autocorrelation pattern has its root in the correlation between the state vari-

ables sA and p̂. To see this, assume for simplicity that the price-dividend ratio of asset B

can locally be approximated by some affine function of the state variables:

eωB,t ≈ atsA,t + btp̂t (9)

Then the time series autocorrelation corr (eωB,t , eωB,t+1) not only depends on the individ-
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ual autocorrelations of sA and p̂, but also on the interaction terms corr(sA,t, p̂t+1) and

corr(p̂t, sA,t+1). Now suppose that asset B is small, i.e. sA is close to 1. In this case, the

correlations corr(sA,t, p̂t+1) and corr(p̂t, sA,t+1) are positive. To see this note that shocks

in CA and CB have asymmetric effects on sA when asset B is small, while the effect on p̂ is

always symmetric. A large negative shock in CA,t reduces both sA,t and p̂t drastically, but

a large negative shock in CB,t increases sA,t only slightly. Since sA and p̂ themselves have

mildly positive autocorrelations, this results in positive correlations corr(sA,t, p̂t+1) and

corr(p̂t, sA,t+1). Moreover, Figure 2 show that the loading at is large and positive if sA is

close to 1. Together with the positive interaction terms corr(sA,t, p̂t+1) and corr(p̂t, sA,t+1),

this gives rise to additional autocorrelation corr (eωB,t , eωB,t+1) as compared to a model

where the two state variables were independent. The somewhat lower autocorrelation of

the large asset A can be explained with a similar argument.

To sum up, in a framework with two Lucas trees and an additional state variable

like p̂, the price-dividend ratios of small trees are more persistent than those of large

trees, which we can also see from the numbers in Table 2. In addition it is not only the

autocorrelation for the small tree which increases (up to 0.82 for very large starting value

of sA), but we also see additional persistence in the price-dividend ratio of the ’market

portfolio’, i.e. the claim to aggregate dividends DA+DB. Thus, the autocorrelation of the

market portfolio is not just a weighted average of the two individual autocorrelations, but

it is tilted towards the autocorrelation of the small tree as the economy becomes more

and more imbalanced.

4.9.2 Heterogeneity with Respect to Cash Flow Dynamics

We finally analyze the implications of heterogeneity between the trees with respect to

their cash flow dynamics. More precisely we look at three additional cases the parameters

for which are reported in the last three columns of Table 1. The asset pricing moments

are summarized in Table 7.

In the first scenario, we change the jump intensities of the trees in the calm state.

The total jump intensity of each tree remains the same. However, tree A now exhibits only

contagious shocks while tree B only suffers from normal jumps. The local distribution of

consumption does not change compared to the benchmark case. However, asset A is now

very ‘toxic’ in the sense that it is very likely to trigger a crisis, while asset B is not. Note

that in this setup learning becomes less important as contagious jumps can be identified

perfectly.
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The second calibration focusses on differences in the jump intensities in the conta-

gion state. Tree A represents a more robust sector of the economy which exhibits a lower

jump intensity in the contagion state, while tree B is very contagion-sensitive with a jump

intensity of 0.95. Again, the local distribution of aggregate consumption does not change

compared to the benchmark case.

Finally, we analyze the impact of the drift rates of the trees. The agent in our model

filters the latent state of the economy from the observation of diffusion and jumps. In this

third variation of the base case we choose the drift rates such that tree A has a larger

drift spread between calm and contagion state than tree B. Observations of realizations

of tree A will thus be more informative about the economic state than those of tree B

and hence tree A will have a higher impact on the state variable p̂. The different influence

on p̂ will thus affect the fraction of systemic risk carried by both assets.

The results in Table 7 show that parameter heterogeneity affects in particular three

moments: the autocorrelation of price-dividend ratios and thus of expected returns, the

expected returns themselves and the return volatilities. The autocorrelation patterns fol-

low from the connection between state variables and price-dividend ratios again. Suppose

asset A is robust and asset B is contagion-sensitive. The loading bt in equation (9) is then

much larger for the contagion-sensitive asset B. Moreover, the output share sA tends to

increase slightly over time. The combination of these two effects explains the extreme au-

tocorrelation of 0.97 in the sample. This finding shows again that it is crucial to have two

Lucas trees in the model. Heterogeneity of the trees with respect to the crisis propagation

mechanism can add another significant portion of autocorrelation and bring the model

even closer to the data.

Parameter heterogeneity also affects expected returns. Consider first the case of a

toxic asset A and a non-toxic asset B where all jumps in tree A are contagious, while all

jumps in tree B are normal. Since the compensation for the risk of contagious jumps is

significantly greater than that for normal jumps, asset A commands a higher jump risk

premium in this case. For the other two cases, we also see an additional risk premium for

asset A. Here, sA also tends to increase slightly over time. As described in the previous

section, risk premia are generally larger for those assets which have a high output share.

In summary, we see the highest risk premium for an asset which has a large spread in the

drift rate µ due to contagion. Its premium can be twice as high as the one for the small

growth spread asset.
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5 Conclusion

In this paper we analyze the general equilibrium pricing effects of uncertainty about the

propagation of shocks in a two-sector economy. This uncertainty relates to the state of the

economy, which can be either calm or contagious, but is unobservable for the investor who

has to filter it from the data. The propagation of shocks itself is modeled by endowment

jumps which simultaneously trigger a regime shift to a bad economic state. It is important

to note that we do not assume some sort of common simultaneous jumps across the two

trees, but we interpret a crisis as something with a distinct time dimension to it, i.e., not

a single event, but a sequence of negative shocks with potentially long-lasting effects on

the economy as a whole.

In our model the two channels of shock propagation and unobservability of the

state generate a number of interesting asset pricing implications, and the endogenously

generated properties of prices, returns, and volatilities fit the data along several dimen-

sions quite well. Via the shock propagation channel we generally obtain higher risk premia

and a lower risk-free rate. Incomplete information about the state of the economy helps

to explain second moments of asset prices. The additional uncertainty increases the dif-

fusion part of return volatilities substantially and helps explaining the excess volatility of

equity returns. Moreover, the return volatilities are highly countercyclical as in the data.

Concerning return predictability the model is close to the data in the sense that future

excess returns are predictable, whereas consumption or dividend growth is not predictable

at all.

Having two trees in the economy allows us to study equilibrium return correlations.

We assume locally uncorrelated fundamentals, so that all the correlation between the two

sectors is generated endogenously by the equilibrium pricing mechanism. The correlation

between the two sectors in our economy is strongly countercyclical, i.e., it increases dra-

matically in the bad, contagious state of the economy relative to the good, calm state. This

is a stylized fact often observed in empirical studies, and our model provides a rationale

for why correlations actually might go up in bad times.

We also study the effects of heterogeneity between the two sectors of the economy

on asset prices. In the base case these sectors are assumed to be identical, but we find

that introducing asymmetry in either the parametrization or in the size of the sectors

is essential for bringing the autocorrelations of the price-to-fundamentals ratios closer to

the data. Note that the state variables in our model have relatively low persistence which

helps us to get rid of the counterfactual consumption growth predictability. It is exactly
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the interplay of our crisis propagation mechanism with the two-tree framework which

helps us bringing the autocorrelations to reasonable levels.

Finally, there is growing interest in the literature in the properties of expected

excess returns and volatilities of claims to a single dividend paid at different times in

the future, the so-called term structure of equity. Our model generates risk premia for

these dividend strips which increase with maturity, but at a decreasing rate, and essentially

become flat from a horizon of 3 years on. The term structure of return volatilities on these

assets is in most scenarios hump-shaped, i.e., tends to decrease with increasing maturity

beyond a certain horizon. It is predominantly the unobservability of the economic state

driving these results, which are well in line with the data.

Overall, our model provides a realistic mechanism through which a crisis can spread

across several sectors of the economy. Topics for future research could be to place the model

in an international context which would introduce exchange rate risk and would allow to

study the differential pricing of equity claims in countries, which are more or less likely

to cause contagious shocks.
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A Proofs

A.1 Filter Equation

The following proof follows along the lines of Branger, Kraft, and Meinerding (2013b). The consumption

dynamics under the full filtration F are given by

(
dCA,t
CA,t−
dCB,t
CB,t−

)
=

(
µA,t

µB,t

)
dt+ ΣAB

(
dWA,t

dWB,t

)
+

 LA

(
dN calm,calm

A,t + dN calm,cont
A,t + dN cont,cont

A,t

)
LB

(
dN calm,calm

B,t + dN calm,cont
B,t + dN cont,cont

B,t

)  ,

where ΣAB =

(
σA 0

0 σB

)
and the Wiener Processes WA,t and WB,t are correlated with correlation ρ.

In order to be able to apply the theorems from Frey and Runggaldier (2010), we rewrite the dynamics

slightly using independent Wiener processes W1 and W2:

(
dCA,t
CA,t−
dCB,t
CB,t−

)
=

(
µA,t

µB,t

)
dt+ Σ

(
dW1,t

dW2,t

)
+

 LA

(
dN calm,calm

A,t + dN calm,cont
A,t + dN cont,cont

A,t

)
LB

(
dN calm,calm

B,t + dN calm,cont
B,t + dN cont,cont

B,t

) 

with Σ =

(
σA 0

ρσB
√

1− ρ2σB

)
and ΣΣT =

(
σ2
A ρσAσB

ρσAσB σ2
B

)
. The relation between the Wiener

processes is given by (
dW1,t

dW2,t

)
= Σ−1ΣAB

(
dWA,t

dWB,t

)
.

The same equation holds for the perceived Wiener processes Ŵ . Under the investor’s filtration G, the

consumption dynamics are(
dCA,t
CA,t−
dCB,t
CB,t−

)
=

(
µ̂A,t

µ̂B,t

)
dt+ Σ

(
dŴ1,t

dŴ2,t

)
+

(
LAdN̂A,t

LBdN̂B,t

)
.

The subjective drift and jump intensity of asset i = A,B are given by

µ̂i = p̂tµ
calm
i + (1− p̂t)µconti

λ̂i = p̂t

(
λcalm,calmi + λcalm,conti

)
+ (1− p̂t)λcont,conti ,

where p̂t denotes the subjective probability of being in the calm state at time t. Note that the diffusion

volatilities and correlations do not depend on the state of the economy and are known to the investor.

The Brownian motions Ŵi are related to Wi via

dŴt = dWt + Σ−1

(
µA,t − µ̂A,t
µB,t − µ̂B,t

)
dt,
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and the observable jumps are given by

N̂i,t = N calm,calm
i,t +N calm,cont

i,t +N cont,cont
i,t , i ∈ {A,B}.

To deduce the filter equation we build on the results of Frey and Runggaldier (2010). Our model can be

viewed as a special case of theirs. The subjective probability of being in the calm state, p̂, can be written

as

p̂ =
σcalm

σcont + σcalm
.

The processes σcalm and σcont then satisfy so-called Zakai equations. Applying Proposition 4.1, Corollary

4.2 and Algorithm 4.3 from Section 4 of Frey and Runggaldier (2010), we obtain the Zakai equations

dσcalmt = −
∑
i=A,B

(
λcalm,calmi + λcalm,conti

)
σcalmt dt+ λcont,calmσcontt dt

+ σcalmt

(
µcalmA , µcalmB

)
(ΣΣT )−1

[
σcalmt

σcontt + σcalmt

(
µcalmA

µcalmB

)
+

σcontt

σcontt + σcalmt

(
µcontA

µcontB

)]
dt

+ σcalmt

(
µcalmA , µcalmB

)
(ΣΣT )−1ΣdŴt

+
∑
i=A,B

(
λcalm,calmi σcalmt−

λcont,conti σcontt− + (λcalm,calmi + λcalm,conti )σcalmt−
− σcalmt−

)
dN̂i,t,

and

dσcontt = −
∑
i=A,B

λcont,conti σcontt dt− λcont,calmσcontt dt

+ σcontt

(
µcontA , µcontB

)
(ΣΣT )−1

[
σcalmt

σcontt + σcalmt

(
µcalmA

µcalmB

)
+

σcontt

σcontt + σcalmt

(
µcontA

µcontB

)]
dt

+ σcontt

(
µcontA , µcontB

)
(ΣΣT )−1ΣdŴt

+
∑
i=A,B

(
λcont,conti σcontt− + λcalm,conti σcalmt−

λcont,conti σcontt− + (λcalm,calmi + λcalm,conti )σcalmt−
− σcontt−

)
dN̂i,t.

We then apply Itô’s Lemma to p̂ = σcalm

σcont+σcalm
. After some manipulations, we arrive at

dp̂t =
(

(1− p̂t)λcont,calm − p̂t(λcalm,contA + λcalm,contB )
)
dt

+ p̂t(1− p̂t)
(
µcalmA − µcontA , µcalmB − µcontB

) (
Σ−1

)T
dŴt

+

(
p̂t−λ

calm,calm
A

λ̂A,t
− p̂t−

)(
dN̂A,t − λ̂A,tdt

)
+

(
p̂t−λ

calm,calm
B

λ̂B,t
− p̂t−

)(
dN̂B,t − λ̂B,tdt

)
.

As we have formulated the dynamics of the consumption trees with respect to the correlated Wiener

processes ŴA and ŴB we will finally rewrite the dynamics for p̂ also in terms of these correlated Wiener
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processes:

dp̂t =
(

(1− p̂t)λcont,calm − p̂t(λcalm,contA + λcalm,contB )
)
dt

+ p̂t(1− p̂t)
(
µcalmA − µcontA , µcalmB − µcontB

) (
ΣΣT

)−1
ΣAB

(
dŴA,t

dŴB,t

)

+

(
p̂t−λ

calm,calm
A

λ̂A,t
− p̂t−

)(
dN̂A,t − λ̂A,tdt

)
+

(
p̂t−λ

calm,calm
B

λ̂B,t
− p̂t−

)(
dN̂B,t − λ̂B,tdt

)
.

Note that (
ΣΣT

)−1
ΣAB =

(
1

(1−ρ2)σA − ρ
(1−ρ2)σA

− ρ
(1−ρ2)σB

1
(1−ρ2)σB

)
.

A.2 Wealth-Consumption Ratio

The representative agent’s value function depends on the filtered probability p̂ and the output share sA

and is given by

Jt = Et

[∫ ∞
t

f(Cs, Js)ds

]
.

As in Duffie and Epstein (1992b), the aggregator f is defined as

f(C, J) =
βC1− 1

ψ(
1− 1

ψ

)
[(1− γ)J ]

1
θ−1
− βθJ.

Following Duffie and Epstein (1992a), the Bellman equation for stochastic differential utility reads

0 = f(Ct, Jt) +DJt. (A.1)

We apply the following functional form for the value function J :

J =
C1−γ

1− γ
βθeθv, (A.2)

where v is a twice differentiable function in both the output share sA and the filtered probability p̂.19

Plugging the guess (A.2) into the aggregator function gives

f(C, J) = θJ
(
e−v − β

)
. (A.3)

19Campbell, Chacko, Rodriguez, and Viceira (2004) show that v is then equal to the logarithm of the
wealth-consumption ratio.
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The infinitesimal generator DJ under the investor’s filtration G follows from an application of Itô’s

Lemma:

DJ =
∂J

∂C
dC +

1

2

∂2J

∂C2
d 〈C〉+

∂J

∂sA
dsA +

1

2

∂2J

∂s2A
d 〈sA〉+

∂J

∂p̂
dp̂+

1

2

∂2J

∂p̂2
d 〈p̂〉

+
∂2J

∂C∂sA
d 〈C, sA〉+

∂2J

∂C∂p̂
d 〈C, p̂〉+

∂2J

∂p̂∂sA
d 〈p̂, sA〉

+
∑
i=A,B

λ̂i

(
(Ci+)1−γ

1− γ
βθeθv(s

i+
A ,p̂i+) − C1−γ

1− γ
βθeθv(sA,p̂)

)
.

Computing the derivatives of J with respect to C, sA and p̂ gives

DJ =

(
1− 1

ψ

)
θJµC −

1

2
γ

(
1− 1

ψ

)
θJσCC

+ vsθJµs +
1

2
θJ
(
vss + θ(vs)

2
)
σss + vp̂θJµp̂ +

1

2
θJ
(
vp̂p̂ + θ(vp̂)

2
)
σp̂p̂

+ (1− γ)θJvsσCs + (1− γ)θJvp̂σCp̂ + θJ (vsp̂ + θvsvp̂)σsp̂

+
∑
i=A,B

λ̂iJ
[
(1 + siLi)

1−γeθv(s
i+
A ,p̂i+)−θv(sA,p̂) − 1

]
,

where we use the shortcuts

µC = sAµ̂A + sBµ̂B (A.4)

σCC = s2Aσ
2
A + s2Bσ

2
B + 2ρsAsBσAσB (A.5)

µs = sAsB
[
µ̂A − µ̂B − sAσ2

A + sBσ
2
B + (sA − sB)ρσAσB

]
(A.6)

σss = s2As
2
B

[
σ2
A + σ2

B − 2ρσAσB
]

(A.7)

µp̂ = (1− p̂)λcont,calm − p̂
(
λcalm,contA + λcalm,contB

)
− λ̂A

(
p̂λcalm,calmA

λ̂A
− p̂

)
− λ̂B

(
p̂λcalm,calmB

λ̂B
− p̂

)
(A.8)

σp̂p̂ = p̂2(1− p̂)2
[

(µcalmA − µcontA )2

(1− ρ2)σ2
A

− 2ρ(µcalmA − µcontA )(µcalmB − µcontB )

(1− ρ2)σAσB
+

(µcalmB − µcontB )2

(1− ρ2)σ2
B

]
(A.9)

σCs = sAsB
[
sAσ

2
A − sBσ2

B − ρsAσAσB + ρsBσAσB
]

(A.10)

σCp̂ = p̂(1− p̂)
[
sA(µcalmA − µcontA ) + sB(µcalmB − µcontB )

]
(A.11)

σsp̂ = p̂(1− p̂)sAsB
[
(µcalmA − µcontA )− (µcalmB − µcontB )

]
. (A.12)

Plugging DJ into the Bellman equation (A.1) gives a PDE for the log wealth-consumption ratio v:

0 = e−v − β +

(
1− 1

ψ

)
µC −

1

2
γ

(
1− 1

ψ

)
σCC (A.13)

+ vsµs +
1

2

(
vss + θ(vs)

2
)
σss + vp̂µp̂ +

1

2

(
vp̂p̂ + θ(vp̂)

2
)
σp̂p̂

+ (1− γ)vsσCs + (1− γ)vp̂σCp̂ + (vsp̂ + θvsvp̂)σsp̂

+
∑
i=A,B

1

θ
λ̂i

[
(1 + siLi)

1−γeθv(s
i+
A ,p̂i+)−θv(sA,p̂) − 1

]
.
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For numerical tractability, we slightly reformulate this PDE. We apply the conjecture

J =
C1−γ

1− γ
βθ
g(K)

K

for J , where g(K) is a twice differentiable function in both the output share sA and the filtered probability

p̂ and K is a positive constant. It relates to the log wealth-consumption via the equation v =
ln

(
g(K)

K

)
θ .

Plugging this guess for J into the aggregator function results in

f(C, J) = θJ

(g(K)
)− 1

θ

K−
1
θ

− β

 .

The infinitesimal generator DJ under the investor’s filtration G again follows from Itô’s Lemma:

DJ = (1− γ)JµC −
1

2
γ(1− γ)JσCC +

g
(K)
s

g(K)
Jµs +

1

2
J
g
(K)
ss

g(K)
σss +

g
(K)
p̂

g(K)
Jµp̂

+
1

2
J
g
(K)
p̂p̂

g(K)
σp̂p̂ + (1− γ)J

g
(K)
s

g(K)
σCs + (1− γ)J

g
(K)
p̂

g(K)
σCp̂ + J

g
(K)
sp̂

g(K)
σsp̂

+
∑
i=A,B

λ̂iJ

[
(1 + siLi)

1−γ g
(K)(si+A , p̂i+)

g(K)
− 1

]
.

Plugging these expressions into the Bellman equation, dividing by J and multiplying by g(K) gives

0 = θ

(
g(K)

)1− 1
θ

K−
1
θ

− θβg(K) + (1− γ)g(K)µC −
1

2
γ(1− γ)g(K)σCC + g(K)

s µs +
1

2
g(K)
ss σss

+ g
(K)
p̂ µp̂ +

1

2
g
(K)
p̂p̂ σp̂p̂ + (1− γ)g(K)

s σCs + (1− γ)g
(K)
p̂ σCp̂ + g

(K)
sp̂ σsp̂

+
∑
i=A,B

λ̂i

[
(1 + siLi)

1−γg(K)(si+A , p̂i+)− g(K)
]
.

After some rearranging of terms this PDE looks as follows

0 = θ
(
g(K)

)1− 1
θ

K
1
θ + g(K)

[
(1− γ)µC −

1

2
γ(1− γ)σCC − θβ

]
+ g(K)

s [µs + (1− γ)σCs]

+ g
(K)
p̂ [µp̂ + (1− γ)σCp̂] + g(K)

ss

1

2
σss + g

(K)
p̂p̂

1

2
σp̂p̂ + g

(K)
sp̂ σsp̂

+
∑
i=A,B

λ̂i

[
(1 + siLi)

1−γg(K)(si+A , p̂i+)− g(K)
]
.

We solve this PDE numerically. First of all, note that this PDE is (approximately) elliptic. Elliptic

PDEs usually require boundary conditions on the whole boundary of the domain where the equation is

supposed to be solved (compare e.g. the classical Dirichlet problem). The solution of the Dirichlet problem

is typically unique and in the interior of the domain as smooth as the coefficients of the elliptic operator.

In contrast, our equation is given without any boundary conditions. A natural way to obtain boundary

conditions would be to let the output share sA and the state variable p̂ tend to 0 or 1 and solve the
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respective equilibria. However, the economies on these boundaries are structurally different from our

economy, e.g. they involve one Lucas tree instead of two. It is thus not self-evident that the solution in

our two-tree economy should converge to the corresponding one-tree solutions.

We do not take a stand on this point here. Oleinik and Radkevich (1973) show that certain elliptic

equations have unique weak solutions even without boundary conditions. Two definitions are needed for

this uniqueness theorem. A PDE is called degenerate at a point on the boundary if the principal part of

the PDE vanishes at this point. A boundary problem is called Keldys-Fichera boundary problem, if parts

of the (potential) boundary are such that there is no positive drift in the direction of the outward normal

vector. If additionally some usual Caratheodory and growth conditions for the coefficients hold (such

that existence of a solution is guaranteed), Oleinik and Radkevich (1973) show that it is not necessary

to impose boundary conditions on those parts of the boundary where a linear elliptic operator becomes

degenerate and the Keldys-Fichera drift condition holds. Based on this theory, Ma and Yu (1989) prove

the existence and uniqueness of weak solutions of a certain type of quasilinear degenerate Keldys-Fichera

boundary problems. If we disregard the nonlocal jump terms for a minute, our PDE satisfies exactly

the required conditions: our elliptic operator is quasilinear (i.e. nonlinear with linear principal part), it

becomes degenerate on the boundary and there is no positive drift in the outward normal direction of

the domain [0, 1] × [0, 1] at any point of the boundary. The nonlocal terms do not change this behavior

of the function v in general because the jump size is zero on the boundary anyway. The paper of Ma

and Yu (1989) thus ensures existence and uniqueness of a weak solution of our PDE.20 A similar case

(although in a different economic context) is analyzed by Pakos (2012). A detailed summary of the theory

of degenerate elliptic operators is also given in the book of Oleinik and Radkevich (1973).

Given the difficulties concerning the boundaries, we solve the PDE for g(K)(sA, p̂) numerically on

a subset of [0, 1]× [0, 1] without boundary conditions using finite differences. Since the solution does not

depend on any boundary conditions, it is not clear that the function v converges to the values which we

could be tempted to assign on the boundaries using economic thinking. Possible boundary conditions in

sA would be the corresponding one-tree economies, boundary conditions in p̂ would be economies where

the agent is totally sure to be in one of the two states. Whether the solution v has a continuous (or even

differentiable) continuation on [0, 1]× [0, 1] is unclear. We leave this question open for future research.

A.3 Price-Dividend Ratios of Dividend Claims

Under the filtration G, the dividends follow

dDi,t

Di,t−
=

(
φµ̂i,t +

1

2
φ(φ− 1)σ2

i

)
dt+ φσidW̃i,t + ((1 + Li)

φ − 1)dN̂i,t,

20A weak solution is by definition an element of the Sobolev space W k,p, i.e. a function in Lp(Ω) whose
weak derivatives up to order k are also in Lp(Ω). In our case, Ma and Yu (1989) show that the unique
solution is an element the Sobolev space W 1,2. In particular, by the Sobolev embedding theorem, it is
thus continuous up to a set of measure zero.
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for i ∈ {A,B}. Let ωA denote the log price-dividend ratio of asset A. For g(ξ,DA, ωA) = ξDAe
ωA , the

Feynman-Kac formula yields
Dg(ξ,DA, ωA)

g(ξ,DA, ωA)
+ e−ωA = 0. (A.14)

Itô’s Lemma gives

Dg

g
= µξ + φµ̂A +

1

2
φ(φ− 1)σ2

A + µω +
1

2

d[ωcA]

dt
+
d 〈ξc, Dc

A〉
ξDAdt

+
d 〈ωcA, Dc

A〉
DAdt

+
d 〈ωcA, ξc〉

ξdt
+ Jump Terms.

Another application of Itô’s Lemma leads to

dωA =

[
ωA,sµs +

1

2
ωA,ssσss + ωA,p̂µp̂ +

1

2
ωA,p̂p̂σp̂p̂ + ωA,sp̂σsp̂

]
dt

+

[
ωA,ssAsBσA + ωA,p̂p̂t(1− p̂t)

(
(µcalmA − µcontA )

(1− ρ2)σA
− ρ(µcalmB − µcontB )

(1− ρ2)σB

)]
dŴA,t

+

[
−ωA,ssAsBσB + ωA,p̂p̂t(1− p̂t)

(
(µcalmB − µcontB )

(1− ρ2)σB
− ρ(µcalmA − µcontA )

(1− ρ2)σA

)]
dŴB,t

+ (ωA(sA+
A , p̂A+)− ωA(sA, p̂))dN̂A + (ωA(sB+

A , p̂B+)− ωA(sA, p̂))dN̂B ,

where, again, the subscripts s, p̂, ss, p̂p̂ and sp̂ denote the first and second derivatives with respect to

state variables sA and p̂. Plugging everything into equation (A.14) and simplifying leads to the following

PDE for ωA:

0 = e−ωA + µξ + φµ̂A +
1

2
φ(φ− 1)σ2

A + ωA,sµs +
1

2

(
ωA,ss + ω2

A,s

)
σss (A.15)

+ ωA,p̂µp̂ +
1

2

(
ωA,p̂p̂ + ω2

A,p̂

)
σp̂p̂ + ωA,ssAsBφσ

2
A − ωA,ssAsBφρσAσB

+ (ωA,sp̂ + ωA,sωA,p̂)σsp̂ + ωA,p̂p̂t(1− p̂t)(µcalmA − µcontA )φ

− ηdiffA

(
φσA + ωA,ssAsBσA − ωA,ssAsBρσB + ωA,p̂p̂t(1− p̂t)

(µcalmA − µcontA )

σA

)
− ηdiffB

(
φρσA − ωA,ssAsBσB + ωA,ssAsBρσA + ωA,p̂p̂t(1− p̂t)

(µcalmB − µcontB )

σB

)
+ λ̂A

[
(1 + ηjumpA )(1 + LA)φeωA(sA+

A ,p̂A+)−ωA(sA,p̂) − 1
]

+ λ̂B

[
(1 + ηjumpB )eωA(sB+

A ,p̂B+)−ωA(sA,p̂) − 1
]
.

For numerical reasons, we solve a transformed version of this PDE again. We define hA = eωA

and multiply the PDE (A.15) by hA. Again, the subscripts s, p̂, ss, p̂p̂ and sp̂ denote the first and second

derivatives with respect to sA and p̂. This leads to the following PDE for hA:

0 = 1 + hAµξ + hAφµ̂A + hA
1

2
φ(φ− 1)σ2

A + hA,sµs +
1

2
hA,ssσss (A.16)

+ hA,p̂µp̂ +
1

2
hA,p̂p̂σp̂p̂ + hA,ssAsBφσ

2
A − hA,ssAsBφρσAσB

+ hA,sp̂σsp̂ + hA,p̂p̂t(1− p̂t)(µcalmA − µcontA )φ

− ηdiffA

(
hAφσA + hA,ssAsBσA − hA,ssAsBρσB + hA,p̂p̂t(1− p̂t)

(µcalmA − µcontA )

σA

)
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− ηdiffB

(
hAφρσA − hA,ssAsBσB + hA,ssAsBρσA + hA,p̂p̂t(1− p̂t)

(µcalmB − µcontB )

σB

)
+ λ̂A

[
(1 + ηjumpA )(1 + LA)φhA(sA+

A , p̂A+)− hA(sA, p̂)
]

+ λ̂B

[
(1 + ηjumpB )hA(sB+

A , p̂B+)− hA(sA, p̂)
]
.

The log price-dividend ratio ωB satisfies an analogous PDE. Note that a similar argument as for

wealth-consumption ratio holds concerning potential boundary conditions for this PDE.

A.4 Pricing Kernel, Market Prices of Risk and Risk-Free Rate

We derive the dynamics of the pricing kernel from the Duffie and Epstein (1992a) result (8), the dynamics

of C in (7) and the following dynamics of v derived via Itô’s Lemma:

dv =

[
vsµs +

1

2
vssσss + vp̂µp̂ +

1

2
vp̂p̂σp̂p̂ + vsp̂σsp̂

]
dt+ vssAsB

(
σAdŴA,t − σBdŴB,t

)
+ vpp̂t(1− p̂t)

(
(µcalmA − µcontA )

(1− ρ2)σA
− ρ(µcalmB − µcontB )

(1− ρ2)σB

)
dŴA,t

+ vpp̂t(1− p̂t)
(

(µcalmB − µcontB )

(1− ρ2)σB
− ρ(µcalmA − µcontA )

(1− ρ2)σA

)
dŴB,t

+ Jump Terms.

The shortcuts µs, σss, µp̂, σp̂p̂ and σsp̂ are defined in (A.6), (A.7), (A.8), (A.9) and (A.12). This implies

dξt
ξt−

=
(
−βθ + (θ − 1)e−vt

)
dt− γµCdt+ (θ − 1)vsµsdt

− (θ − 1)vsγσCsdt+
1

2
(θ − 1)

(
vss + (θ − 1)(vs)

2
)
σssdt

+
1

2
γ(1 + γ)σCCdt+ (θ − 1)vp̂µp̂dt− (θ − 1)vp̂γσCp̂dt

+
1

2
(θ − 1)

(
vp̂p̂ + (θ − 1)(vp̂)

2
)
σp̂p̂dt+ (θ − 1) (vsp̂ + (θ − 1)vsvp̂)σsp̂dt

− ηdiffA dŴA,t − ηdiffB dŴB,t + ηjumpA dN̂A,t + ηjumpB dN̂B,t,

where additionally µC , σCC , σCp and σCs are defined in (A.4), (A.5), (A.11) and (A.10). The market prices

of risk for diffusive risk are given by

ηdiffA = γsAσA − (θ − 1)vssAsBσA − (θ − 1)vp̂p̂(1− p̂)
(

(µcalmA − µcontA )

(1− ρ2)σA
− ρ(µcalmB − µcontB )

(1− ρ2)σB

)
ηdiffB = γsBσB + (θ − 1)vssAsBσB − (θ − 1)vp̂p̂(1− p̂)

(
(µcalmB − µcontB )

(1− ρ2)σB
− ρ(µcalmA − µcontA )

(1− ρ2)σA

)
.

The market prices for jump risk are equal to

ηjumpA = (1 + sALA)−γe(θ−1)(v(s
A+
A ,p̂A+)−v(sA,p̂)) − 1

ηjumpB = (1 + sBLB)−γe(θ−1)(v(s
B+
A ,p̂B+)−v(sA,p̂)) − 1.
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Note that regime switches from the contagion state back to the calm state are not priced. These regime

switches do not have any impact on observable state variables (p̂ and sA). The risk-neutral jump intensities

have the form λ̂Qi = λ̂Pi (1 + ηjumpi ). For future use we abbreviate the drift rate of the pricing kernel as

µξ = −βθ + (θ − 1)e−v − γµC + (θ − 1)vsµs − (θ − 1)vsγσCs

+
1

2
(θ − 1)

(
vss + (θ − 1)(vs)

2
)
σss +

1

2
γ(1 + γ)σCC + (θ − 1)vp̂µp̂ − (θ − 1)vp̂γσCp̂

+
1

2
(θ − 1)

(
vp̂p̂ + (θ − 1)(vp̂)

2
)
σp̂p̂ + (θ − 1) (vsp̂ + (θ − 1)vsvp̂)σsp̂.

Using the PDE (A.13) for v, we can rewrite the drift of the pricing kernel as follows

µξ = −β − 1

ψ
µC +

1

2
γ

(
1 +

1

ψ

)
σCC + (1− θ)vsσCs + (1− θ)vp̂σCp̂

+
1

2
(1− θ)v2sσss +

1

2
(1− θ)v2p̂σp̂p̂ + (1− θ)vsvp̂σsp̂

− θ − 1

θ
λ̂A

[
(1 + sALA)1−γeθ(v(s

A+
A ,p̂A+)−v(sA,p̂)) − 1

]
− θ − 1

θ
λ̂B

[
(1 + sBLB)1−γeθ(v(s

B+
A ,p̂B+)−v(sA,p̂)) − 1

]
.

The risk-free rate in the economy is given by

rf = −µξ − λ̂AηjumpA − λ̂BηjumpB ,

and thus by plugging in µξ we obtain

rf = β +
1

ψ
µC −

1

2
γ

(
1 +

1

ψ

)
σCC − (1− θ)vsσCs − (1− θ)vp̂σCp̂

− 1

2
(1− θ)v2sσss −

1

2
(1− θ)v2p̂σp̂p̂ − (1− θ)vsvp̂σsp̂

−
∑
i=A,B

λ̂i

[
ηjumpi +

1− θ
θ

(
(1 + siLi)

1−γeθ(v(s
i+
A ,p̂i+)−v(sA,p̂)) − 1

)]
.

A.5 Expected Returns, Volatilities and Correlations

The dynamics of the asset price PA = eωADA follow via Itô’s Lemma. We obtain

dPA,t
PA,t−

=
Et[dPA,t]

PA,t−
+ ΥA,jump

A dN̂A,t + ΥB,jump
A dN̂B,t

+

(
ωA,ssA,tsB,tσA + ωA,p̂p̂t(1− p̂t)

(
(µcalmA − µcontA )

(1− ρ2)σA
− (µcalmB − µcontB )ρ

(1− ρ2)σB

)
+ φσA

)
dŴA,t

+

(
ωA,p̂p̂t(1− p̂t)

(
(µcalmB − µcontB )

(1− ρ2)σB
− (µcalmA − µcontA )ρ

(1− ρ2)σA

)
− ωA,ssA,tsB,tσB

)
dŴB,t.
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In the following, we set

ΥA,diff
A = (ωA,ssAsB + φ)σA − ωA,ssAsBσBρ+ ωA,p̂p̂(1− p̂)

(
(µcalmA − µcontA )

σA

)
ΥB,diff
A = (ωA,ssAsB + φ) ρσA − ωA,ssAsBσB + ωA,p̂p̂(1− p̂)

(
(µcalmB − µcontB )

σB

)
,

which can be interpreted as the total sensitivities of asset A with respect to the Brownian shocks ŴA

and ŴB . The total sensitivities ΥA,diff
B and ΥB,diff

B are defined analogously. The sensitivities of asset A

with respect to the jump processes are

ΥA,jump
A = (1 + LA)φeωA(sA+

A ,p̂A+)−ωA(sA,p̂) − 1

ΥB,jump
A = eωA(sB+

A ,p̂B+)−ωA(sA,p̂) − 1

Υcont,calm
A = 0.

For the exposures of asset B, one has to switch ’A’ and ’B’ on both sides of the equations and

replace every derivative ωs by ω1−s = −ωs. The expected return of asset A can be computed as the sum

of expected price change and dividend yield:

Et[dRA,t]

dt
=
Et[dPA,t]

PA,tdt
+ e−ωA,t .

Replacing e−ωA using the differential equation (A.15), computing the expectation of dPA, rearranging

some terms and finally using the expression for the risk-free rate or alternatively multiplying exposures

with the appropiate market prices of risk, the expected excess return of asset A becomes

ΥA,diff
A ηdiffA + ΥB,diff

A ηdiffB − λ̂AΥA,jump
A ηjumpA − λ̂BΥB,jump

A ηjumpB

=

{
(ωA,ssAsB + φ)σA − ωA,ssAsBσBρ+ ωA,p̂p̂(1− p̂)

(
(µcalmA − µcontA )

σA

)}
·
{
γsAσA − (θ − 1)vssAsBσA − (θ − 1)vp̂p̂(1− p̂)

(
(µcalmA − µcontA )

(1− ρ2)σA
− ρ(µcalmB − µcontB )

(1− ρ2)σB

)}
+

{
(ωA,ssAsB + φ) ρσA − ωA,ssAsBσB + ωA,p̂p̂(1− p̂)

(
(µcalmB − µcontB )

σB

)}
·
{
γsBσB + (θ − 1)vssAsBσB − (θ − 1)vp̂p̂(1− p̂)

(
(µcalmB − µcontB )

(1− ρ2)σB
− ρ(µcalmA − µcontA )

(1− ρ2)σA

)}
+ λ̂A

[
(1 + LA)φeωA(sA+

A ,p̂A+)−ωA(sA,p̂) − 1
] [

1− (1 + sALA)−γe(θ−1)(v(s
A+
A ,p̂A+)−v(sA,p̂))

]
+ λ̂B

[
eωA(sB+

A ,p̂B+)−ωA(sA,p̂) − 1
] [

1− (1 + sBLB)−γe(θ−1)(v(s
B+
A ,p̂B+)−v(sA,p̂))

]
.
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The local variance of asset A follows directly from the asset price dynamics:

d 〈PA〉t
(PA,t)2

1

dt
=

(
ωA,ssA,tsB,tσA + ωA,p̂p̂t(1− p̂t)

(
(µcalmA − µcontA )

(1− ρ2)σA
− (µcalmB − µcontB )ρ

(1− ρ2)σB

)
+ φσA

)2

+

(
ωA,p̂p̂t(1− p̂t)

(
(µcalmB − µcontB )

(1− ρ2)σB
− (µcalmA − µcontA )ρ

(1− ρ2)σA

)
− ωA,ssA,tsB,tσB

)2

+ 2ρ

(
ωA,ssA,tsB,tσA + ωA,p̂p̂t(1− p̂t)

(
(µcalmA − µcontA )

(1− ρ2)σA
− (µcalmB − µcontB )ρ

(1− ρ2)σB

)
+ φσA

)
·
(
ωA,p̂p̂t(1− p̂t)

(
(µcalmB − µcontB )

(1− ρ2)σB
− (µcalmA − µcontA )ρ

(1− ρ2)σA

)
− ωA,ssA,tsB,tσB

)
+ λ̂A

(
ΥA,jump
A

)2
+ λ̂B

(
ΥB,jump
A

)2
.

The local correlation between the prices of asset A and B is given by

CorrA,B,t =
d 〈PA, PB〉t√
d 〈PA〉t d 〈PB〉t

.

The local variance of asset B and the local covariance can be computed from the price dynamics of asset

B which are completely symmetric to the dynamics of asset A. The local covariance is given by

d 〈PA, PB〉t
PA,tPB,t

1

dt
= ρ

(
ωA,ssA,tsB,tσA + ωA,p̂p̂t(1− p̂t)

(
(µcalmA − µcontA )

(1− ρ2)σA
− (µcalmB − µcontB )ρ

(1− ρ2)σB

)
+ φσA

)
·
(
−ωB,ssA,tsB,tσB + ωB,p̂p̂t(1− p̂t)

(
(µcalmB − µcontB )

(1− ρ2)σB
− (µcalmA − µcontA )ρ

(1− ρ2)σA

)
+ φσB

)
+ ρ

(
ωA,p̂p̂t(1− p̂t)

(
(µcalmB − µcontB )

(1− ρ2)σB
− (µcalmA − µcontA )ρ

(1− ρ2)σA

)
− ωA,ssA,tsB,tσB

)
·
(
ωB,p̂p̂t(1− p̂t)

(
(µcalmA − µcontA )

(1− ρ2)σA
− (µcalmB − µcontB )ρ

(1− ρ2)σB

)
+ ωB,ssA,tsB,tσA

)
+

(
ωA,ssA,tsB,tσA + ωA,p̂p̂t(1− p̂t)

(
(µcalmA − µcontA )

σA
− (µcalmB − µcontB )ρ

σB

)
+ φσA

)
·
(
ωB,p̂p̂t(1− p̂t)

(
(µcalmA − µcontA )

σA
− (µcalmB − µcontB )ρ

σB

)
+ ωB,ssA,tsB,tσA

)
+

(
−ωB,ssA,tsB,tσB + ωB,p̂p̂t(1− p̂t)

(
(µcalmB − µcontB )

(1− ρ2)σB
− (µcalmA − µcontA )ρ

(1− ρ2)σA

)
+ φσB

)
·
(
ωA,p̂p̂t(1− p̂t)

(
(µcalmB − µcontB )

(1− ρ2)σB
− (µcalmA − µcontA )ρ

(1− ρ2)σA

)
− ωA,ssA,tsB,tσB

)
+ λ̂AΥA,jump

A ΥA,jump
B + λ̂BΥB,jump

A ΥB,jump
B .

A.6 Dividend Strips

The following definitions are taken from Belo, Collin-Dufresne, and Goldstein (2012). A dividend strip is

a claim on the value of the dividend at time T . Thus, its value at time t is given by

V TA (t) = EQ
t

[
e−rf (T−t)DA,T

]
= Et [ξt,TDA,T ] ,
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where we have

DA,T = DA,t exp

[(
φµ̂A,t +

1

2
φ(φ− 1)σ2

A −
1

2
φ2σ2

A

)
(T − t)

+φσA

(
ŴA,T − ŴA,t

)
+ log((1 + LA)φ − 1)

(
N̂A,T − N̂A,t

)]
,

and

ξt,T = βθ
(
CT
Ct

)−γ
e−βθ(T−t)+(θ−1)(

∫ T
t
e−v(su,p̂u)du+v(sT ,p̂T )).

Define yA,t = log
V TA (t)
DA,t

. The Feynman-Kac formula applied to i(ξt, yt, DA,t) = ξtDA,te
yA,t = Et[ξTDA,T ]

yields the following partial differential equation

0 = Di (A.17)

=
∂i

∂t
dt+

∂i

∂ξt
dξt +

∂i

∂yA,t
dyA,t +

∂i

∂DA,t
dDA,t +

1

2

∂2i

∂ξ2t
d 〈ξt〉+

1

2

∂2i

∂D2
A,t

d 〈DA,t〉

+
1

2

∂2i

∂y2A,t
d 〈yA,t〉+

∂2i

∂ξtDA,t
d 〈ξt, DA,t〉+

∂2i

∂ξtyA,t
d 〈ξt, DA,t〉+

∂2i

∂DA,tyA,t
d 〈DA,t, yA,t〉

+
∑
j=A,B

λ̂j,t

(
ξj+t Dj+

A,te
yj+A,t − ξtDA,te

yA,t
)
.

with boundary condition i(ξT , yT , DA,T ) = ξTDA,T which is equivalent to eyA,T = 1. Note that ∂i
∂t is zero.

Using the functional form of i we thus obtain

0 = i · dξt
ξt

+ i · dyA,t + i · dDA,t

DA,t
+ i · 1

2
d 〈yA,t〉 (A.18)

+ i · d 〈ξt, DA,t〉
ξtDA,t

+ i · d 〈ξt, DA,t〉
ξt

+ i · d 〈DA,t, yA,t〉
DA,t

+ i ·
∑
j=A,B

λ̂j,t

(
(1 + ηjumpj )(1 + Lj)

φeyA(sj+A ,p̂j+)−yA(sA,p̂) − 1
)
.

We divide this PDE by i. The dynamics of ξt and DA,t have been given above. The dynamics of yA,t

follow from an application of Itô’s Lemma and have the same form as the dynamics of the log PD ratio ωA

except that the dynamics of yA,t now also include a time derivative. Altogether, the function yA satisfies

a PDE similar to the PDE for the function log PD ratio wA except for the time derivative
∂yA,t
∂t 6= 0. The

dynamics of yA,t follow from Itô’s Lemma:

dyA =

[
∂yA
∂t

+ yA,sµs +
1

2
yA,ssσss + yA,p̂µp̂ +

1

2
yA,p̂p̂σp̂p̂ + yA,sp̂σsp̂

]
dt

+

[
yA,ssAsBσA + yA,p̂p̂t(1− p̂t)

(
(µcalmA − µcontA )

(1− ρ2)σA
− ρ(µcalmB − µcontB )

(1− ρ2)σB

)]
dŴA,t

+

[
−yA,ssAsBσB + yA,p̂p̂t(1− p̂t)

(
(µcalmB − µcontB )

(1− ρ2)σB
− ρ(µcalmA − µcontA )

(1− ρ2)σA

)]
dŴB,t

+ (yA(sA+
A , p̂A+)− yA(sA, p̂))dN̂A + (yA(sB+

A , p̂B+)− yA(sA, p̂))dN̂B ,

where, again, the subscripts s, p̂, ss, p̂p̂ and sp̂ denote the first and second derivatives with respect to sA

44



and p̂. Plugging everything into equation (A.18) leads to the following PDE for yA:

0 =
∂yA
∂t

+ µξ + φµ̂A +
1

2
φ(φ− 1)σ2

A + yA,sµs +
1

2

(
yA,ss + y2A,s

)
σss (A.19)

+ yA,p̂µp̂ +
1

2

(
yA,p̂p̂ + y2A,p̂

)
σp̂p̂ + yA,ssAsBφσ

2
A − yA,ssAsBφρσAσB

+ (yA,sp̂ + yA,syA,p̂)σsp̂ + yA,p̂p̂t(1− p̂t)(µcalmA − µcontA )φ

− ηdiffA

(
φσA + yA,ssAsBσA − yA,ssAsBρσB + yA,p̂p̂t(1− p̂t)

(µcalmA − µcontA )

σA

)
− ηdiffB

(
φρσA − yA,ssAsBσB + yA,ssAsBρσA + yA,p̂p̂t(1− p̂t)

(µcalmB − µcontB )

σB

)
+ λ̂A

[
(1 + ηjumpA )(1 + LA)φeyA(sA+

A ,p̂A+)−yA(sA,p̂) − 1
]

+ λ̂B

[
(1 + ηjumpB )eyA(sB+

A ,p̂B+)−yA(sA,p̂) − 1
]
.

In our numerical solution we do not solve for yA, but for the price-dividend ratio of the dividend strip

itself, i.e. hy,A = eyA . The PDE then changes to the following one:

0 =
∂hy,A
∂t

+ hy,Aµξ + hy,Aφµ̂A + hy,A
1

2
φ(φ− 1)σ2

A + hy,A,sµs +
1

2
hy,A,ssσss (A.20)

+ hy,A,p̂µp̂ +
1

2
hy,A,p̂p̂σp̂p̂ + hy,A,ssAsBφσ

2
A − hy,A,ssAsBφρσAσB

+ hy,A,sp̂σsp̂ + hy,A,p̂p̂t(1− p̂t)(µcalmA − µcontA )φ

− ηdiffA

(
hy,AφσA + hy,A,ssAsBσA − hy,A,ssAsBρσB + hy,A,p̂p̂t(1− p̂t)

(µcalmA − µcontA )

σA

)
− ηdiffB

(
hy,AφρσA − hy,A,ssAsBσB + hy,A,ssAsBρσA + hy,A,p̂p̂t(1− p̂t)

(µcalmB − µcontB )

σB

)
+ λ̂A

[
(1 + ηjumpA )(1 + LA)φhy,A(sA+

A , p̂A+)− hy,A(sA, p̂)
]

+ λ̂B

[
(1 + ηjumpB )hy,A(sB+

A , p̂B+)− hy,A(sA, p̂)
]
.

Given hy,A,t (or its logarithm yA,t) we can derive the process for the price of the dividend strip V TA (t):

dV TA (t) = d (hy,A,tDA,t) = d (eyA,tDA,t) .

Another application of Itôs Lemma (where we suppress time subscripts again) yields the return of the

dividend strip:

Ry,A,t =
dV TA (t)

V TA (t)

= dycA +
dDc

A

DA
+

1

2
d[yc]t +

d 〈ycA, Dc
A〉

DA
+
(

(1 + LA)φey
A+
A −yA − 1

)
dN̂A +

(
ey
B+
A −yA − 1

)
dN̂B

=

[
∂yA
∂t

+ yA,sµs + yA,p̂µp̂ +
1

2

(
yA,ss + y2A,s

)
σss +

1

2

(
yA,p̂p̂ + y2A,p̂

)
σp̂p̂ + (yA,sp̂ + yA,syA,p̂)σsp̂

+φµ̂A +
1

2
φ(φ− 1)σ2

A + yA,ssAsB
(
φσ2

A − φρσAσB
)

+ yA,p̂p̂(1− p̂)
(
µcalmA − µcontA

)
φ

]
dt
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+

[
φσA + yA,ssAsBσA + yA,p̂p̂(1− p̂)

(
(µcalmA − µcontA )

(1− ρ2)σA
− (µcalmB − µcontB )ρ

(1− ρ2)σB

)]
dŴA

+

[
−yA,ssAsBσB + yA,p̂p̂(1− p̂)

(
(µcalmB − µcontB )

(1− ρ2)σB
− (µcalmA − µcontA )ρ

(1− ρ2)σA

)]
dŴB

+
(

(1 + LA)φeyA(sA+,p̂A+)−yA(s,p̂) − 1
)
dN̂A +

(
eyA(sB+,p̂B+)−yA(s,p̂) − 1

)
dN̂B .

Note that the dividend strip is a claim on the time T dividend of asset A. There are thus no

intermediate dividends and thus no dividend yield appearing in the definition of the return. The expected

return of the dividend strip is given by

Et[Ry,A,t]

dt
=
Et[dV

T
A (t)]

V TA (t)

=
∂yA
∂t

+ yA,sµs + yA,p̂µp̂ +
1

2

(
yA,ss + y2A,s

)
σss +

1

2

(
yA,p̂p̂ + y2A,p̂

)
σp̂p̂ + (yA,sp̂ + yA,syA,p̂)σsp̂

+ φµ̂A +
1

2
φ(φ− 1)σ2

A + yA,ssAsB
(
φσ2

A − φρσAσB
)

+ yA,p̂p̂(1− p̂)
(
µcalmA − µcontA

)
φ

+ λ̂A

(
(1 + LA)φeyA(sA+,p̂A+)−yA(s,p̂) − 1

)
+ λ̂B

(
eyA(sB+,p̂B+)−yA(s,p̂) − 1

)
.

Finally, the local variance of the return of the dividend strip satisfies

d
〈
V TA (t)

〉
(V TA (t))2dt

=

(
φσA + yA,ssAsBσA + yA,p̂p̂(1− p̂)

(
(µcalmA − µcontA )

(1− ρ2)σA
− (µcalmB − µcontB )ρ

(1− ρ2)σB

))2

+

(
−yA,ssAsBσB + yA,p̂p̂(1− p̂)

(
(µcalmB − µcontB )

(1− ρ2)σB
− (µcalmA − µcontA )ρ

(1− ρ2)σA

))2

+ 2ρ

(
φσA + yA,ssAsBσA + yA,p̂p̂(1− p̂)

(
(µcalmA − µcontA )

(1− ρ2)σA
− (µcalmB − µcontB )ρ

(1− ρ2)σB

))
·
(
−yA,ssAsBσB + yA,p̂p̂(1− p̂)

(
(µcalmB − µcontB )

(1− ρ2)σB
− (µcalmA − µcontA )ρ

(1− ρ2)σA

))
+ λ̂A

(
(1 + LA)φeyA(sA+,p̂A+)−yA(s,p̂) − 1

)2
+ λ̂B

(
eyA(sB+,p̂B+)−yA(s,p̂) − 1

)2
.

B Properties of Price-to-fundamentals Ratios

To foster some intuition of the properties of the price-to-fundamentals ratio derived above, we look at the

solution of those PDEs when using the benchmark calibration as reported in the first column of Table 1

in the following.

The upper left graph in Figure 2 depicts the wealth-consumption ratio as a function of the state

variables sA and p̂. First of all, it is concave in sA and the largest for sA = 0.5. As the dynamics

in (7) show, aggregate consumption is the least risky for intermediate values of sA, implying that the

wealth-consumption ratio is the largest in this case. More importantly, the wealth-consumption ratio

is monotonically decreasing in p̂. On the one hand, a lower probability p̂ implies a smaller perceived

expected growth rate of consumption and a higher perceived intensity for consumption shocks. In an

economy with recursive utility and a preference for early resolution of uncertainty, both lower expected
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growth rates and higher risk decrease asset prices, and this effect is present in our model as well. On the

other hand, the uncertainty in the economy is the highest for intermediate values of p̂ as can be seen from

equation (5). Both the diffusive volatility and the jump size of p̂ are the largest for p̂ around 0.5. This

additional uncertainty drives down the wealth-consumption ratio. Altogether, the figure however shows

that the first effect is dominating and the wealth-consumption ratio is almost linearly decreasing in p̂.

The lower panel of Figure 2 depicts the price-dividend ratios of the two assets in the [sA, p̂]-

space for the benchmark case. First of all, as already discussed by Cochrane, Longstaff, and Santa-

Clara (2008) and Martin (2013), the price-dividend ratios are monotonic functions of the output share

of the respective tree. In an equilibrium with two Lucas trees, small assets are more valuable from a

diversification perspective. Ideally, the investor would like to hold a diversified portfolio with equal shares

of both trees. Since markets have to clear in equilibrium, the price of the tree with the smaller output

has to go up relative to its cash flow. Looking at dividends (as levered output) instead of output itself

leaves this argument qualitatively unchanged. Finally, similar to the wealth-consumption ratio, the price-

dividend ratios are monotonic and convex in p̂. Note however that the impact of p̂ is much smaller than

the diversification effect through sA. Along the sA dimension the changes in the price-dividend ratio

range from 69% to 72% whereas along the p̂ dimension, the difference is only between 9.3% and 12.7%.
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Benchmark Toxic vs. Robust vs. Large vs.
Identical Non-Toxic Contagion-Sensitive Small Growth

Trees Assets Assets Spread

µcalmA 0.047 0.047 0.047 0.055
µcontA 0.019 0.019 0.019 0.011
µcalmB 0.047 0.047 0.047 0.039
µcontB 0.019 0.019 0.019 0.027
σA 0.01 0.01 0.01 0.01
σB 0.01 0.01 0.01 0.01
ρ 0 0 0 0
LA -0.06 -0.06 -0.06 -0.06
LB -0.06 -0.06 -0.06 -0.06

λcalm,calmA 0.125 0.00 0.125 0.125

λcalm,contA 0.125 0.25 0.125 0.125

λcalm,calmB 0.125 0.25 0.125 0.125

λcalm,contB 0.125 0.00 0.125 0.125
λcont,contA 0.80 0.80 0.65 0.80
λcont,contB 0.80 0.80 0.95 0.80
λcont,calm 1 1 1 1
φ 2.5 2.5 2.5 2.5
β 0.039 0.039 0.039 0.039
γ 10 10 10 10
ψ 2 2 2 2

Table 1: Parameters

The table reports the parameters of the output processes and of the investor’s utility
function. The first column refers to the benchmark calibration discussed in Sections 3 and
4. The other three columns give the parameters for the three cases discussed in Section
4.9.
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Horizon (in years)
1 2 3 4

Panel A: Our Model
β -0.14 -0.15 -0.16 -0.16
R2 0.24 0.30 0.33 0.34
E[p̂] 0.80 0.80 0.80 0.80
σ(p̂) 0.31 0.27 0.24 0.21
E[σ(rA)] 0.09 0.10 0.11 0.11
σ(σ(rA)) 0.09 0.07 0.06 0.05

Table 3: Regressions of Monthly Return Volatilities

The table reports summary statistics and regression coefficients for the regressions of
return volatilities of asset A on the state of the economy as discussed in Section 4.5. The
beta coefficients and summary statistics for the return volatilities are annualized. The
volatilities of returns have been computed from simulated monthly returns using a 1-/2-
/3- or 4-year rolling window. The independent variable is the integral of the state variable
p̂ over that same period. All results have been obtained using the parameters from the
benchmark calibration in the first column of Table 1.

Horizon (in years)
1 2 3 4

Panel A: Our Model
β -0.38 -0.30 -0.23 -0.18
R2 0.09 0.07 0.06 0.06
E[p̂] 0.80 0.80 0.80 0.80
σ(p̂) 0.31 0.27 0.24 0.21
E[corr(rA, rB)] 0.47 0.54 0.58 0.60
σ(corr(rA, rB)) 0.39 0.31 0.28 0.22

Table 4: Regressions of Monthly Return Correlations

The table reports summary statistics and regression coefficients for the regressions of
correlations on the state of the economy as discussed in Section 4.6. The correlations have
been computed from simulated monthly returns using a 1-/2-/3- or 4-year rolling window.
The independent variable is the integral of the state variable p̂ over that same period. All
results have been obtained using the parameters from the benchmark calibration in the
first column of Table 1.
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Horizon (in years)
1 2 4 6 8 10

Panel A: Our Model
β -0.19 -0.27 -0.40 -0.52 -0.62 -0.72
R2 0.03 0.03 0.04 0.05 0.05 0.06

Panel B: Wachter (2013)
β -0.11 -0.22 -0.40 -0.56 -0.69 -0.82
R2 0.04 0.08 0.15 0.20 0.23 0.26

Panel C: Data
β -0.13 -0.23 -0.33 -0.48 -0.64 -0.86
R2 0.09 0.17 0.23 0.30 0.38 0.43

Table 5: Long Horizon Predictive Regressions: Excess Returns

Panel A of the table reports the results from long-horizon predictive regressions∑t+h−1
τ=t raggr,τ,τ+1 − rf,τ,τ+1 = α+ β waggr,t + εt with simulated model data. More specifi-

cally, raggr,τ,τ+1 denotes the log return on the aggregate dividend claim from year τ to year
τ + 1, rf,τ,τ+1 denotes the return on a risk-free bond from time τ to time τ + 1 and waggr,t
is the log price-dividend ratio of the aggregate dividend claim at time t. We proxy rf,τ,τ+1

by integrating the monthly simulated risk-free short rates. The table reports results for
different horizons of h = 1, 2, 4, 6, 8, 10 years. All results have been obtained using the
benchmark calibration from the first column of Table 1. Panel B and C are taken from
Wachter (2013).

Horizon (in years)
1 2 4 6 8 10

Panel A: Our Model
β 0.02 0.03 0.02 0.02 0.02 0.02
R2 0.11 0.08 0.05 0.04 0.04 0.04

Panel B: Wachter (2013)
β 0.02 0.04 0.07 0.10 0.12 0.13
R2 0.01 0.02 0.04 0.05 0.06 0.06

Panel C: Data
β -0.001 -0.006 -0.009 -0.011 -0.016 -0.014
R2 0.0006 0.0137 0.0164 0.0180 0.0268 0.0162

Table 6: Long Horizon Predictive Regressions: Consumption Growth

Panel A of the table reports the results from long-horizon predictive regressions as in Table
5, but growth rates of aggregate consumption as dependent variable. Again, all results
have been obtained using the benchmark calibration from the first column of Table 1.
Panel B and C are again taken from Wachter (2013).
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Figure 1: Sample Paths of our Economy

From top to bottom the graphs in the figure depict exemplary random paths for the
output of the two trees (black and blue line) together with the true state (red line), the
resulting path of the estimated probability p̂ (blue) together with true state (red), and the
resulting paths of the prices of the two assets (black and blue) together with true state
(red). The results have been obtained using the benchmark calibration shown in the first
column of Table 1.
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Figure 2: Wealth-Consumption Ratio, Risk-free Rate, PD Ratios of Assets A and B

The figure depicts the wealth-consumption ratio (upper left picture), the risk-free rate
(upper right picture) and the price-dividend ratios of asset A (lower left picture) and
asset B (lower right picture) as functions of the two state variables sA and p̂. The results
have been obtained using the benchmark calibration shown in the first column of Table
1.
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Figure 3: Market Prices of Risk, Equity Premia of Assets A and B, Decomposition of
Equity Premium of Asset A

The figure depicts the market price of diffusion risk of tree A (upper left picture) and
the market price of jump risk of tree A (upper right picture), the equity premia of asset
A (middle left picture) and asset B (middle right picture) and the decomposition of the
equity premium of asset A into a diffusion risk premium (lower left picture) and a jump
risk premium (lower right picture) as functions of the two state variables sA and p̂. The
decomposition of the equity premium is discussed in Section 4.4. The results have been
obtained using the benchmark calibration shown in the first column of Table 1.
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Figure 4: Diffusion Premia for Asset A

The figure depicts a decomposition of the diffusion risk premium of asset A (upper left
picture), which is also shown in Figure 3, into three components: a cash flow risk premium
(upper right picture), a premium for diffusive sA-risk (lower left picture) and a premium for
diffusive p̂-risk (lower right picture). The independent variables in all graphs are the two
state variables sA and p̂. The results have been obtained using the benchmark calibration
shown in the first column of Table 1.
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Figure 5: Local Volatilities and Correlations

The figure depicts a decomposition of the local return volatility of asset A (upper left
picture) into the local volatility stemming from diffusive risk (upper right picture) and
the local volatility stemming from jump risk (lower left picture). The lower right picture
depicts the local return correlation of asset A and asset B. The independent variables in
all graphs are the two state variables sA and p̂. The results have been obtained using the
benchmark calibration shown in the first column of Table 1.
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Figure 6: Term Structure of Equity for Asset A at sA = 0.5 and for p̂ = 0, 0.2, 0.5, 0.8, 1

The figure depicts the term structures of expected excess returns (left picture) and lo-
cal return volatilities (right picture) of dividend strips on asset A. The term structures
are shown for different p̂ = 0, 0.2, 0.5, 0.8, 1 and a fixed output share of sA = 0.5. The
independent variable in both graphs is the time to maturity (in years) of the dividend
strip. The results have been obtained using the benchmark calibration shown in the first
column of Table 1.
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