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Abstract
Pest risk maps are important decision support tools when devising strategies to minimize introductions 
of invasive organisms and mitigate their impacts. When possible management responses to an invader in-
clude costly or socially sensitive activities, decision-makers tend to follow a more certain (i.e., risk-averse) 
course of action. We presented a new mapping technique that assesses pest invasion risk from the perspec-
tive of a risk-averse decision maker.

We demonstrated the method by evaluating the likelihood that an invasive forest pest will be trans-
ported to one of the U.S. states or Canadian provinces in infested firewood by visitors to U.S. federal 
campgrounds. We tested the impact of the risk aversion assumption using distributions of plausible pest 
arrival scenarios generated with a geographically explicit model developed from data documenting camper 
travel across the study area. Next, we prioritized regions of high and low pest arrival risk via application of 
two stochastic ordering techniques that employed, respectively, first- and second-degree stochastic domi-
nance rules, the latter of which incorporated the notion of risk aversion. We then identified regions in the 
study area where the pest risk value changed considerably after incorporating risk aversion.
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While both methods identified similar areas of highest and lowest risk, they differed in how they de-
marcated moderate-risk areas. In general, the second-order stochastic dominance method assigned lower 
risk rankings to moderate-risk areas. Overall, this new method offers a better strategy to deal with the 
uncertainty typically associated with risk assessments and provides a tractable way to incorporate decision-
making preferences into final risk estimates, and thus helps to better align these estimates with particular 
decision-making scenarios about a pest organism of concern. Incorporation of risk aversion also helps 
prioritize the set of locations to target for inspections and outreach activities, which can be costly. Our 
results are especially important and useful given the huge number of camping trips that occur each year 
in the United States and Canada.

Keywords
Risk aversion, stochastic dominance, decision-making under uncertainty, pest risk mapping, firewood 
movement, pathway invasion model

introduction

Management of invasive species populations often requires making decisions about 
allocating scarce resources for surveillance or eradication of newly detected incur-
sions. To aid in the decision-making process, agencies responsible for monitoring and 
controlling invasive species, such as the USDA Animal and Plant Health Inspection 
Service (APHIS) in the U.S. (APHIS 1999; Lance 2003) or the Canadian Food In-
spection Agency (CFIA) in Canada (CFIA 2001), routinely assess the projected risk 
impacts of alien organisms on biological resources, trade and other economic activities 
(Simberloff 2005, Venette et al. 2010, Magarey et al. 2011). These risk assessments are 
usually based on the best available information about their target organisms. In gen-
eral, knowledge about an organism’s likely behaviour in its new environment is rarely 
complete, so any assessment of the potential risks and impacts includes a considerable 
amount of uncertainty. Consequently, a management decision based on such an as-
sessment is dependent not only on the estimates of pest invasion risk and potential 
impacts but also on how the decision-makers perceive the uncertainty embedded in 
these estimates.

In cases where the need to manage invasive pest populations prompts calls for ir-
reversible, costly or socially sensitive actions, decision-makers tend to follow a more 
certain course of action, thus exhibiting risk-averse behaviour (Gigerenzer 2002, She-
frin and Belotti 2007). Risk-averse behaviour may also be a response to a common 
situation when public appeals to eradicate or slow the spread of a recently detected 
invasive pest do not allow enough time to acquire the data necessary to adequately 
characterize the behaviour of the new invader. Often, the pressure to “do something” 
about expanding pest populations creates another incentive for decision-makers to 
follow a cautious, risk-averse strategy; basically, since resources for managing pest 
populations are limited, choices with a more certain chance of slowing the spread or 
eradicating new pest incursions are more likely to be adopted. Notably, government 
agencies tasked with monitoring and regulating the incursion and spread of unwanted 
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invasive organisms are fundamentally risk-averse and have resources and legal power to 
minimize risks, even at the cost of regulating trade or other related economic activities.

When decision-makers follow a risk-averse strategy, the presence of uncertainty 
in pest risk assessments inevitably changes decision outcomes about managing the 
pests. However, uncertainty has rarely been represented in assessments of new pest 
incursions in a geographical domain. At best, pest risk maps presented uncertainty as 
separate maps or a combination of coarse risk-uncertainty classes (Koch et al. 2009, 
Yemshanov et al. 2009). This kind of risk mapping implicitly places the burden of 
addressing uncertainty on decision-makers which, in turn, may lead to risk-averse 
behaviour, biased assessments and sometimes ignorance (i.e., a wait-and-see strategy if 
the assessment of pest impact is highly uncertain). Ideally, the uncertainty associated 
with the estimated impact of an invasive organism should be directly incorporated 
into the species’ risk map by the analyst, rather than interpreted by the decision-maker 
(Venette et al. 2010).

In this paper, we present a new risk mapping technique that helps quantify uncer-
tainty in pest risk assessments from the perspective of a risk-averse decision maker. We 
consider a particular case of risk mapping when a decision-maker faces the problem of 
prioritizing a set of locations in a geographical domain based on imprecise estimates 
of the likelihood of pest arrival in a given area. Our goal with this paper is to present 
the method of prioritizing uncertain outcomes of ecological invasions that would agree 
with a risk-averse decision-making strategy, and also to explore how the notion of risk-
aversion changes the delineation of pest risk in a geographical domain.

Methods

The risk aversion concept

In general, humans tend to place relatively low weights on uncertain outcomes and 
relatively high weights on certain outcomes (Kahneman and Tversky 1979, Kahneman 
et al. 1982). Prior studies have demonstrated risk aversion in decision-making attitudes 
over a range of anticipated economic losses (Markowitz 1952, Levy and Levy 2001, 
Levy 1998). Risk-averse decision-making is not limited to cases that involve economic 
losses (such as allocation of investment assets), but also applies to the general case of 
how humans perceive valuable outcomes under uncertain conditions. The expected 
utility hypothesis (Arrow 1971, Schoemaker 1982) considers preferences of individuals 
with regard to uncertain outcomes and represents these as a function of the payouts 
(whether in monetary or other valuable equivalents). The expected utility theory im-
plies that rational individuals act to maximize their expected utility (i.e., a monetary or 
non-monetary value that the decision-making agent attributes to a specific asset, service 
or action). When the expected utility value is represented as a function of the payouts 
in a monetary or non-monetary equivalent, this condition implies that the function is 
increasing (i.e., the decision-maker always prefers more to less). Adding the risk aver-
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sion assumption (which implies that individuals prefer the more certain choice of two 
outcomes with the same expected value) adds the condition that the decision-maker’s 
expected utility function (EUF) is concave (Fig.1; a more detailed discussion about risk-
aversion and the concavity of the EUF can be found in Arrow 1971 and Levy 1998).

The notion of risk-averse decision preferences can be embedded into the process of 
mapping risks of pest invasions. In our case, the concept of payoff can be thought as 
analogous to estimating anticipated losses from an invasive organism (or the likelihood 
of an organism’s arrival). Conceptually, the EUF value (Fig. 1) can be interpreted as 
analogous to a decision-making priority that indicates the degree of importance for 
the decision-maker of a particular geographical site that is under risk of infestation. 
Clearly, any rational decision-maker would assign a higher priority to geographical lo-
cations with a higher and more certain likelihood (or anticipated impact) of invasion. 
By adding the notion of risk-aversion we imply that the assessment of pest invasion 
risk should be done from the point of view of a decision-maker whose EUF is concave. 
In short, the notion of risk-aversion means that pest risk assessments (which, in our 
case as well as in general, translate to prioritization schemes) should include some sort 
of penalty for uncertain choices.

The use of the EUF’s concavity assumption for representing risk-averse behaviour 
offers a formal treatment of risk aversion without the need to explicitly define the 
shape of the utility function. Essentially, the concavity condition is a very basic defini-
tion of general risk-averse preferences (i.e., by eliminating the cases when the decision-
maker is risk-neutral or risk-seeking) and does not define a specific range of risk-averse 
preferences (such as moderate to extreme risk aversion). While it is possible to impose 
further restrictive assumptions on the type of risk-averse behaviour – for instance, by 
assuming a particular functional form of the EUF or limiting the degree of risk aver-
sion to an upper and lower bounds (Meyer 1977, Meyer et al. 2009, Hardaker et al. 
2004) – estimating the shape of the EUF in the invasive species management context 
could be problematic given the wide variety of pest invasion problems and the diverse 
spectrum of decision-making skills among pest management professionals.

Prioritizing pest invasion risk under the notion of risk-aversion

We consider a pest risk map that prioritizes geographical locations across a landscape 
based on the likelihood that the pest will arrive at a previously non-invaded locale. 
Ultimately, the assignment of decision-making priorities to a particular geographical 
location may depend on the decision-maker’s perception of uncertainty in the assess-
ment of the impact of the pest invasion. In this paper, we explore how the incorpora-
tion of risk-averse decision preferences changes the prioritization of areas of high and 
low pest invasion risk in a geographical setting. We use distributions of plausible inva-
sion scenarios generated by a stochastic model to predict the movement of an invasive 
organism across a heterogeneous landscape. We then delineate regions of high and 
low risk of pest arrival across the landscape via the application of two simple stochas-
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tic ordering techniques, one of which incorporates the notion of risk aversion. For 
consistency, we use ordering techniques from the same family based on the stochastic 
dominance (SD) rule. Finally, we identify geographical regions in a landscape where 
adding the notion of risk aversion changes the location’s pest risk value considerably.

Stochastic dominance (SD) rule

The stochastic dominance rule is a form of stochastic ordering that compares a pair of 
distributions. The concept was previously applied to compare distributions of invest-
ment portfolio returns in financial valuation studies (Hanoch and Levy 1969, Roth-
schild and Stiglitz 1970) and shares many technical aspects with the partial ordering 
of vectors and majorization theory in statistics (Whitemore and Findlay 1978, Levy 
1992). The SD rule compares two distributions based on their cumulative distribution 
functions, or CDFs (Levy 1998). In our case, we compare two map locations, f and g, in 
a geographical setting. At each location, the multitude of plausible invasion outcomes 
is described by the distributions, f(φij) or g(φij), of the rates of invasive pest arrival, φij, 
at locations f and g (Fig. 2) over an interval of possible arrival rate values, [a; b], where 
a = 0 (i.e., the likelihood of pest arrival is zero) and b = 1 (i.e., the arrival of the pest is 
certain,). The SD test compares the distributions at f and g as represented by their re-
spective cumulative distribution functions,  and . 
Location f dominates g by the first-degree stochastic dominance rule (FSD) if

G(φij) – F(φij) ≥ 0 for all φij, and G(φij) – F(φij) > 0 for at least one φij (1)

Figure 1. The expected utility function (EUF) concept. The EUF value can be interpreted as analogous 
to a decision-making priority that indicates the degree of importance for the decision-maker of a par-
ticular geographical site that is under risk of infestation. Bold line depicts an example of a concave EUF 
that denotes risk-averse decision-making preferences. The concavity condition means that a more certain 
amount of valuables (or degree of importance for the decision-maker) (u(x)) would always be preferred 
over a less certain choice (u(x ± Δx) with the same expected value, x. Dashed line shows an example EUF 
for a risk-neutral decision-maker (i.e., one who is indifferent between more certain and less certain choices 
with the same expected value).
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The FSD rule implies that the CDFs of f and g do not cross each other (Fig. 2A). 
The test for FSD also supposes that a decision-maker will always prefer the “higher-
value” outcome (Levy 1998) at any realization of φij, i.e., will place a greater manage-
ment priority on a location with higher likelihood of pest arrival (depicted by estimates 
of φij) than a location with lower likelihood.

The FSD conditions may fail when differences between G(φij) and F(φij) are small. 
Alternatively, second-degree stochastic dominance (SSD) provides weaker but more 
selective discrimination by comparing the integrals of the CDFs for F(φij) and G(φij): 

 and . Location f dominates the alternative g by SSD if

 for all φij, and

 for at least one φij (2)

The SSD rule implies that the integrals of the CDFs for F(φij) and G(φij) do not 
cross (Fig. 2B). The SSD condition adds the assumption that the decision-maker is 
risk-averse, that is the dominance relationships based on the SSD rule (Eq. 2) satisfy 
the assumption that the decision-maker’s EUF is concave (Levy 1992, Meyer et al. 
2005, Gasbarro et al. 2009, see proofs and more details in Levy 1998 and Levy and 
Levy 2001).

The SSD and FSD tests are pairwise comparisons. However, our study required 
evaluating a set of N multiple geographical locations, or map elements, that consti-
tuted a landscape. For each rule, we applied multiple pairwise stochastic dominance 
tests of map elements to delineate a subset of elements, À1, from the total set N such 
that each element of À1 could not be dominated by any element in the rest of the set, N 
- À1. Formally, a non-dominant subset À1 is equivalent to an “efficient set” in financial 
investment valuation literature (Fishburn and Vickson 1978, Porter et al. 1973, Por-
ter 1978, Post and Versijp 2007). While financial investment analyses often focus on 
evaluating a single non-dominant set and narrowing down the multitude of possible 
investment scenarios to the fewest possible choices, our study required evaluating each 
element (map location) in a set. Hence, we evaluated all nested non-dominated sub-
sets (based on the FSD or SSD rules) in the total set N using the following algorithm 
(Goldberg 1989): After the first non-dominant subset À1 was found, it was assigned 
the highest invasion risk rank of 1 and removed from set N temporarily. Then, the next 
non-dominant subset was found from the rest of the set, N -À1, assigned a risk rank 
of 2, temporarily removed from set N -À1 and so on. The delineation of nested non-
dominant sets continued until all elements in the set N were evaluated and assigned a 
corresponding decision-making priority rank. The final rank values based on the FSD 
and SSD rules were then plotted back to their geographical locations, resulting in a 
map for each SD rule.

The stochastic dominance rule assumes a very broad range of decision-making 
behaviours and has relatively low ability to discriminate small non-dominant sets. To 
improve the discriminative capacity, some alternative metrics have been proposed. 
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The stochastic dominance with respect to a function, or SDRF (Meyer 1977), as-
sumes that the absolute risk aversion measures of the decision-maker lie between ar-
bitrarily defined lower and upper bounds. Another measure, the stochastic efficiency 
with respect to a function, or SERF (Hardaker et al. 2004; Hardaker and Lien 2010), 
ranks risky alternatives in terms of certainty equivalents (CE) while assuming that 
the degree of risk aversion varies within a defined range. The SERF method requires 
making additional assumptions about the functional form of a decision-maker’s ex-
pected utility function and assumes that the decision-maker’s risk aversion metric is 
of the same functional form as those lower and upper risk aversion bounds. Impos-
ing these additional restrictions on risk-averse preferences enables the SERF metric 
to discriminate even smaller non-dominant sets than the stochastic dominance rule 
but requires eliciting the risk aversion bounds from decision-makers and identifying 
the functional form of the EUF. In our risk mapping case, these details about risk-
averse preferences were unavailable, so we opted to use the more generalized but less 
discriminating SSD rule.

Figure 2. First-degree and second-degree stochastic dominance rules: A distributions, f(φij) and g(φij), of 
camper travel probabilities (φij) at two corresponding map locations, f and g B the cumulative distribution 
functions (CDFs), F(φij) and G(φij), of f(φij) and g(φij) in Fig. 1(a). “FSD” indicates the first-degree sto-
chastic dominance conditions are satisfied (i.e., G(φij) and F(φij) do not cross each other) C two additional 
example distributions of pest arrival rates at f and g D in this case, CDFs of f(φij) and g(φij) cross each other 
so that the first-degree stochastic dominance conditions fail e the integrals, ∫∫

ijij

a ija ij dFdG
ϕϕ

ϕϕϕϕ )(,)( , of the 
CDFs. “SSD” indicates the second-degree stochastic dominance conditions are met (i.e., ∫

ij

a ij dF
ϕ

ϕϕ )(  and 

∫
ij

a ij dG
ϕ

ϕϕ )(  do not cross each other).
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Case study

We explored the impact of decision-maker risk-aversion with a North American case 
study that estimates the likelihood of wood-boring forest pests arriving in firewood 
at campgrounds on U.S. federal lands in the 49 U.S. states by travellers from the 
continental U.S. and Canada. The potential for accidental, long-distance transport 
of alien species with recreational travel has become a topic of considerable concern 
in North America (Haack et al. 2010, Tobin et al. 2010, Jacobi et al. 2011, Koch 
et al. 2012). Visitors often bring untreated firewood to parks and campgrounds in 
the U.S. and Canada, and this material has been recognized as a significant vector of 
wood-boring forest pests (CFIA 2011, APHIS 2010, The Nature Conservancy 2011, 
Jacobi et al. 2011). For example, movement of firewood by campers has been deemed 
one of the major causes of the rapid expansion of populations of the emerald ash 
borer, an invasive pest of ash trees (Fraxinus spp.), throughout eastern Canada and 
the U.S. Midwest (Haack et al. 2002, 2010, Kovacs et al. 2010). Overall, recreational 
travel is considered a significant vector of firewood movement: campground surveys 
in various parts of the U.S. indicate that 8–57% of campers bring their own firewood 
from home, frequently travelling distances exceeding 160–320 km and crossing state 
and U.S.-Canada border lines (APHIS 2011). Moreover, staff at national, state and 
provincial campgrounds typically have scarce resources to check campers for firewood 
usage and lack the legal mandate to undertake random checks of firewood in visitors’ 
vehicles. This makes it difficult to enforce preventive measures such as bans on the 
importation and use of outside firewood.

While the problem of moving forest pests with firewood is well recognized (APHIS 
2010, The Nature Conservancy 2011), data on the movement of firewood across North 
America are generally lacking. Therefore, we undertake an alternative approach by ex-
ploring more general travel patterns of campers rather than their actual movement of 
firewood. For this study, we analyzed a 5-year (2004–2009) geographically referenced 
database of campground visits in the United States (including visits from Canada). 
Our primary data source for this study was the National Recreation Reservation Ser-
vice (NRRS), which manages reservations for campgrounds at over 1700 locations 
that are operated by the U.S. Army Corps of Engineers, the USDA Forest Service, the 
National Park Service, and other federal agencies (see full description of the NRRS 
database in Koch et al. 2012). Each reservation record provided information including 
the name and state of the destination campground, reservation date, and the visitor’s 
origin ZIP code (or postal code for Canadian visitors). The NRRS data set provided 
geographic coordinates for the campgrounds, and we assigned geographic coordinates 
for each visitor’s home ZIP code (or postal code) in the data set (ESRI 2009, NRCan 
2010). These records were then used to build a network of pathways that connected 
sets of origin and destination locations across North America (see further details in 
Koch et al. 2012).
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Pathway model

We used the NRRS data set to undertake spatial stochastic pathway simulations of po-
tential movements of invasive pests with firewood carried by campers. Spatial stochas-
tic models have been increasingly used for assessing risks of ecological invasions (Rafoss 
2003, Cook et al. 2007, Pitt et al. 2009, Muirhead et al. 2006, Yemshanov et al. 2009, 
2010). We applied a pathway model that used vector-based information stored in the 
NRRS database to predict movements of recreational travellers to federal campgrounds 
in the U.S., including cross-border visits from Canada. Here, we assumed that there 
is a predictable relationship between camper travel and firewood usage (Jacobi et al. 
2011), so the camper travel pattern is a proxy for the firewood transport pattern.

Our choice of a network-based model was aimed at emphasizing the importance 
of human-assisted movement of invasive organisms over long distances, a phenom-
enon that many classical dispersal models cannot predict well (see Andow et al. 1990, 
Buchan and Padilla 1999, Melbourne and Hastings 2009). The model is conceptually 
similar to that presented in Yemshanov et al. (2012a, b); here, we describe only the 
model updates required for this study.

We used the NRRS dataset to build a matrix of n × n origin–destination locations, 
where each matrix element defined the number of visits for a particular pair of origin–
destination locations (i.e., the total number of reservations between a particular origin 
ZIP code and destination campground). Because the original NRRS records encom-
passed more than 500 000 unique spatial locations, we aggregated the data to a grid 
of 15  × 15 km cells. This aggregation decreased the size of the matrix and reduced the 
computational burden. The NRRS data were then parsed into a set of unique pathway 
segments, each connecting an origin map cell, i, and a destination map cell, j, in the 
network. Subsequently, the cumulative number of visits (based on the NRRS reserva-
tions) for each pathway segment ij were used to build an n × n pathway matrix where 
each element defined the rate, pij, of camper movement (and by extension, firewood-
facilitated pest transport) from cell i to cell j. The pathway matrix stored the pij values 
for all possible pairs of (i, j) cells in the transportation network:

 (3)

where the elements ∑
=

−
n

j
ijp

1
1 describe the probability that camper travel between i 

and j did not occur and
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pij = mijλ  (4)

where mij is the total number of reservations for the origin-destination vector ij and λ 
is a scaling parameter.

Ideally, the scaling parameter λ would define the likelihood that a pest is moved 
with firewood from any location i to j. In fact, knowing the precise value of λ would 
be critical in order to estimate pij exactly. However, our study did not require precise 
estimates of λ because we had the more basic aim of prioritizing the geographical loca-
tions (i.e., map cells) according to their level of risk. In short, our goal was to order the 
full set of map cells in the dimension of high–low relative infestation risk via multiple 
pairwise tests for first- and second-degree stochastic dominance (as described in Eqs. 
1 and 2). In this case, the value of λ needed only to be sufficiently small to ensure that 
the sum of transmission rate values in the Pt matrix rows was below 1:

1
1

≤∑
=

n

j
ijp  (5).

We then used the Pt matrix to generate stochastic realizations of potential move-
ments of campers (and by extension, pest-infested firewood) from a given cell i to other 
cells with recreational travel. With i set as the point of “origin”, the model simulated 
subsequent camper movements from i to other destination cells j by extracting the 
transmission probabilities from Pt associated with i (Fig. 3). The process continued 
until a selected destination node had no outgoing paths or a terminal state was chosen 
based on the elements ∑

=

−
n

j
ijp

1
1 in Pt. Finally, for each pair of origin–destination loca-

tions (i, j), a transmission probability, φij, was estimated from the number of times the 
camper arrived at j from i over K multiple stochastic model realizations

φij = Jij/K  (6)

where Jij is the number of individual pathway simulations where a camper originated 
at i and ultimately arrived at j, and K is the total number of individual simulations 
of pathway spread from i (for this study, K = 2×106 for each i). The values of φij were 
estimated for each (i, j) pair of origin–destination cells, requiring a total of K× [n (n-
1)] pathway simulations.

Prioritizing the geographical locations in the dimension of transmission risk

We used the transmission probabilities φij (which, in relative terms, depict the potential 
of invasive pests to be moved by recreational  travellers) to order the map cells across 
Canada and the U.S. in dimensions of high-low risk. We built separate maps for each 
of the continental 49 U.S. states and nine Canadian provinces (including the Yukon 
Territory). For each potential origin map cell, the model generated a list of other cells 
(with corresponding transmission probabilities φij) to which the movement of camp-
ers (and, in turn, forest pests carried by firewood) was most likely. Since our primary 
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Figure 3. Mapping risks that invasive pests may be carried with infested firewood by campers (the 
analysis summary).

focus was to estimate the risk of pest movement to a particular state or province, we 
rearranged the results so each cell i outside of a state (province) of interest, k, had an 
associated distribution of the transmission probabilities φij (j ∈ k), from that location 
to the state of interest (Fig. 3). In short, this distribution described the degree of the 
location’s invasiveness in relation to the state (province) of interest.
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Assuming that the map for each state (province) of interest k had nk external loca-
tions that could potentially serve as sources of future pest arrivals with camper travel, 
the analysis produced a total (i.e., across all k)of N = ∑

=

k

k
kn

1
distributions of the jij trans-

mission probability values. We then applied the FSD and SSD rules to this superset of 
distributions so that we could order them in the dimension of highest-to-lowest risk of 
transmission from i to k. Thus, each cell i was given two partial risk ranks, rik SSD and 
rik FSD, of pest movement from i to k by campers. Importantly, since partial ordering 
of the distributions of transmission probabilities was done in a single superset (that 
included all sets of outputs representing risks of movement to all k states / provinces 
of interest), the final risk ranks for different states and provinces can be compared one 
with another.

Our next goal was to compare the ranks generated with the FSD and SSD tech-
niques and to explore how much the risk aversion assumption in the delineations 
based on the SSD rule changed the geographical patterns of risk across the study area. 
Because the SSD rule is weaker than FSD and usually produces smaller-size non-dom-
inant sets (Porter 1978, Post 2003), the total number of nested non-dominant sets 
(and subsequently the number of risk ranks) in the two classifications will be different. 
Therefore, we inverted and rescaled the risk ranks rik generated by the FSD and SSD 
techniques to a 0-1 range so the rescaled ranks, r`ik FSD and r`ik SSD denoting the highest 
risks were close to 1 and the lowest risks were close to 0. We then explored differences 
between the rescaled risk ranks generated with the FSD and SSD classifications and 
their variation across the study area. We also plotted the rescaled risk ranks r`ik FSD and 
r`ik SSD as maps, each depicting the risk of pest transport to a particular state (province) 
with recreational travel from elsewhere.

Results

Exploratory geospatial data analysis

Figure 4 depicts example maps of the rescaled risk ranks for Texas and California gen-
erated, using the second-degree stochastic dominance rule. (The maps of risk rankings 
based respectively, on the first- and second-degree stochastic dominance rules for the 
other U.S. states and the Canadian provinces are shown in online Appendices 1 and 
2). The maps suggest some basic geographic trends in campers’ travel behaviour. First, 
the highest-risk out-of-state locations (i.e., from where the movement of infested fire-
wood is the most likely) are usually in close proximity to the state (provincial) border 
or, at longer travel distances, are associated with major urban centres. In addition, 
prominent recreational destinations such as Grand Canyon National Park (AZ) or 
Zion National Park (UT) are also high-risk locations. Notably, there are distinctive re-
gional trends in camper behaviour. For instance, interior states in the mid-western and 
southeastern U.S. are characterized by predominantly local and medium-range travel 
from surrounding areas. While states in these regions have few high-profile recreational 
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destinations such as national parks, they have a dense and fairly uniform network of 
campgrounds, situated near major water bodies or public forest lands, which are used 
more often by casual or short-term campers.

The western U.S. has vast areas of sparsely populated land, and so has a higher 
relative proportion of long-distance sources of campers (and thus potential firewood-
associated pests) than the eastern U.S. The risk of pests being moved by campers re-
turning to Canada is relatively low. However, the largest Canadian cities, such as To-
ronto (ON), Montreal (QC) and Vancouver (BC), have relatively high risks of being 
potential sources of infestations in neighbouring U.S. states.

Differences between risk ranks based on the FSD and SSD rules

We investigated the geographic differences between the risk rank maps based on the 
FSD and SSD criteria. Figure 5 and online Appendix 3 present maps of differences 
in rank values, Δr`ik = r`ik FSD – r`ij SSD, composed for individual states and provinces. 
Overall, the FSD and SSD approaches provided similar delineations of the locations 
ranked with the most extreme risks, i.e., above 0.95 or below 0.05 (Table 1). The great-
est differences between the ranks based on the FSD and SSD criteria were found in 
the areas in the peri-urban and rural zones (since information about camper travel to 
these locations is expected to be less certain because of a lack of well-documented links 
from the NRRS data).

For moderate risk ranks between 0.05 and 0.95, the methods appeared to place 
differing levels of emphasis on certainty in the φij transmission probabilities. The SSD 
approach seemed to decrease the risk rank’s value when the variation of the probability 
(i.e. uncertainty) was high and generally assigned lower rank values than the approach 
based on the FSD rule. This tendency is particularly evident in the range of moderate 

TexasCalifornia

r`ik SSD:
< 0.1

0.1-0.3

0.3-0.5

0.5-0.7

0.7-0.9

> 0.9 

Figure 4. Examples of risk maps depicting the potential of invasive forest pests to be moved by recrea-
tional travelers to the states of Texas and California. The risk rank values are based on the second-degree 
stochastic dominance rule (SSD), which incorporates risk-averse decision preferences. The maps for the 
other U.S. states, Canadian provinces and the Yukon Territory can be found in online Appendix 2.
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ranks 0.05–0.5 (Table 1). For example, almost 90% of ranks assigned to a 0.25–0.5 
range in the FSD classification were classified into the 0.05–0.25 range in the SSD 
classification. Similarly, 72% of low-risk ranks classified within the range of 0.05–0.25 
in the FSD classification had an SSD rank below 0.05, and roughly 83% of locations 
with FSD ranks in the 0.5–0.75 range were assigned lower risk ranking in the SSD 
delineations (Table 1).

Online Appendix 4 presents summaries of the differences, for individual states and 
provinces, between the FSD and SSD ranks allocated to broad rank classes: 0–0.05, 
0.05–0.25, 0.5–0.75, 0.75–0.95 and 0.95–1. Most of the changes in rank values oc-
curred in low–medium rank classes between 0.05 and 0.5, which is consistent with 
Table 1. For many states and provinces, the difference between the FSD and SSD-
based ranks was at least one rank class (e.g., ranks in a 0.25–0.5 range under the FSD 
rule were assigned to a 0.05–0.25 range under the SSD rule).

TexasCalifornia

0.5-0.7

0.3-0.5

0.1-0.3

-0.1 - 0.1

-0.3 - -0.1

r`ik FSD
– r`ik SSD:

Figure 5. Maps of rank differences, Δr`ik = r`ik FSD – r`ik SSD, between the delineations based on first- and 
second-degree stochastic dominance for Texas and California. Positive values indicate that the SSD-based 
risk rank is lower than the FSD-based rank (so adding the notion of risk aversion decreases the risk rank). 
The maps for the other U.S. states, Canadian provinces and the Yukon Territory can be found in online 
Appendix 3.

table 1. Correspondence between the FSD and SSD rank classes as a percent of the map area. The num-
bers in the diagonal show the percentages of the map area where the rank class was the same in both FSD 
and SSD rankings. The largest percentage values in each row are marked on bold.

Risk rank based 
on the FSD rule

Risk rank based on the SSD rule
0–0.05 (lowest) 0.05–0.25 0.25–0.5 0.5-.75 0.75–0.95 0.95–1 (highest)

0–0.05 (lowest) 100
0.05–0.25 72.2 27.7 0.1
0.25–0.5 0.7 89.8 7.7 1.8
0.5–0.75 30.5 52.8 15.0 1.7
0.75–0.95 <0.01 3.5 24.6 71.0 0.9

0.95–1 (highest) 2.6 97.4
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Discussion

The maps in online Appendix 3 suggest that geographical patterns of changes between 
the FSD and SSD rank values, Δr`ik, can be grouped into three general types. The 
first type represents states with very high volumes of out-of-state recreational visits 
(and thus higher risks of pest arrival with infested firewood from elsewhere), such as 
California and Texas (Table 2, Appendix 3). For these states, the high Δr`ik values are 
uniformly distributed in rural and suburban regions across much of the entire central 
and western U.S. However, the difference between the FSD and SSD ranks in large 
urban areas appeared to be small (Fig. 5).

The second type is represented by the mountain and desert states in the western 
U.S. (such as Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington 
and Wyoming), which show a less uniform pattern of Δr`ik values. Most of the highest 
changes in ranks were either associated with large urban areas in the central and eastern 
U.S. or were dispersed across rural and suburban areas in neighbouring states in the 
western U.S. (Appendix 3). This bifurcated distribution of changes in rank is likely 
caused by some campers travelling long distances from the central and eastern U.S. and 
Canada (i.e., for predominantly urban areas), as opposed to shorter-distance travels for 
campers from neighbouring states in the western U.S.

The third group is represented by states in the northeastern U.S. (Connecticut, 
Delaware, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode 
Island, Vermont), more sparsely populated states in the north-central U.S. (North 
and South Dakota), and the most populous Canadian provinces (Alberta, British Co-
lumbia, Ontario and Quebec, Appendix 3). For this group, the highest changes in risk 
ranks were detected only in locations close to the state or provincial border, or in major 
urban areas in the western U.S., such as Denver (CO), Los Angeles (CA), Phoenix 
(AZ) and San Francisco (CA).

The rest of the Canadian provinces, the District of Columbia and Alaska showed 
extremely small changes in the rank values. Note that the risk rank values for these 
states and provinces were very low for both the FSD- and SSD-based delineations. 
The rest of the U.S. states can be characterized by a combination of the geographical 
patterns of high Δr`ik values noted above: relatively uniform allocations across rural 
and peri-urban areas in a sort of “fringe zone” adjacent to the state borders, as well as 
long-distance travel hotspots associated with densely populated urban areas or promi-
nent recreational destinations (e.g., national parks) in the western U.S. (Appendix 3).

Impact of adding the notion of risk aversion

The general impact of adding risk-averse decision preferences can be illustrated (Fig. 6) 
using a simplified delineation of risk ranks in the dimensions of mean transmission 
probability, ijϕ , and its degree of variation, represented by the standard deviation, 
σ(φij). When uncertainty is ignored and the assignment of risk classes is based solely on 
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table 2. State and provincial summaries based on the mean rank values, r`ik FSD and r`ik FSD.

Country State / Province
FSD-based risk rank SSD-based risk rank

Mean r`ik FSD Relative rank Mean r`ik SSD Relative rank
US Texas 0.283 1 0.202 1
US Arkansas 0.251 2 0.184 3
US California 0.246 4 0.202 2
US Missouri 0.246 3 0.167 4
US Tennessee 0.226 5 0.157 5
US Colorado 0.215 6 0.140 7
US Georgia 0.201 8 0.143 6
US Florida 0.205 7 0.128 8
US Illinois 0.197 9 0.121 10
US Iowa 0.185 10 0.123 9
US Oklahoma 0.179 11 0.117 11
US Washington 0.169 12 0.109 15
US Oregon 0.168 13 0.110 14
US Arizona 0.161 15 0.115 13
US Utah 0.151 17 0.116 12
US Kansas 0.166 14 0.100 17
US North Carolina 0.150 18 0.101 16
US Nevada 0.156 16 0.088 20
US Kentucky 0.142 19 0.095 18
US Alabama 0.137 21 0.093 19
US Virginia 0.139 20 0.086 21
US Pennsylvania 0.132 22 0.085 23
US South Carolina 0.121 25 0.085 22
US Idaho 0.127 23 0.081 24
US Ohio 0.121 24 0.062 27
US Mississippi 0.119 26 0.072 25
US New York 0.116 27 0.063 26
US Louisiana 0.113 29 0.062 28
US Maryland 0.114 28 0.057 31
US Indiana 0.111 30 0.058 30
US West Virginia 0.092 32 0.059 29
US Minnesota 0.106 31 0.053 33
US Wisconsin 0.088 33 0.046 34
US Montana 0.073 38 0.054 32
US New Mexico 0.082 34 0.039 36
US Michigan 0.080 35 0.037 38
US Massachusetts 0.078 36 0.033 39
US Nebraska 0.073 39 0.039 37
US New Hampshire 0.067 41 0.044 35
US New Jersey 0.075 37 0.028 41

Canada British Columbia 0.068 40 0.024 43
US Wyoming 0.053 44 0.031 40

Canada Quebec 0.062 42 0.020 44
US South Dakota 0.040 45 0.027 42
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Country State / Province
FSD-based risk rank SSD-based risk rank

Mean r`ik FSD Relative rank Mean r`ik SSD Relative rank

US Connecticut 0.054 43 0.020 45
Canada Alberta 0.028 47 0.012 46

US Maine 0.027 48 0.012 47
Canada Ontario 0.030 46 0.010 50

US Vermont 0.024 49 0.010 49
US North Dakota 0.017 51 0.010 48
US Delaware 0.023 50 0.008 51
US Rhode Island 0.016 52 0.006 52
US Alaska 0.004 53 0.002 53

Canada New Brunswick 0.001 54 0.002 54
Canada Saskatchewan 0.001 55 0.001 55
Canada Manitoba 0.001 56 0.001 56
Canada Nova Scotia <0.001 57 0.001 57

US District of 
Columbia <0.001 58 <0.001 58

Canada Yukon Territory <0.001 59 <0.001 59

the mean probability ijϕ , broad risk ranks can be defined by parallel lines at certain 
constant probability thresholds (i.e., parallel dashed lines in Fig. 6). Adding the notion 
of risk aversion generally implies that between two geographic locations (represented 
by points in Fig. 6) with the same expected mean probability of the pest’s arrival, the 
more certain choice (i.e., the location exhibiting lower variation) will be assigned a 
higher decision-making priority. In turn, the boundaries between risk classes under the 
risk-averse SSD rule (i.e., solid lines in Fig. 6) will always be tilted at an angle, b, below 
90 degrees relative to their corresponding risk-neutral boundaries, since a location with 
the same mean transmission probability ijϕ  as another location, but lower variability 
will receive a higher risk rank under SSD.

Notably, the SSD rule does not restrict the potential range of risk-averse preferences, 
i.e., it does not limit the degree of decision-makers’ absolute risk-aversion. This suggests 
that the SSD rule allows for the possibility that the risk aversion of some decision-makers 
may be very large, such that small differences in the uncertainty of the risk estimates could 
receive unrealistically high importance. To address instances of extreme risk aversion, 
several alternative approaches that limit the potential range of risk aversion have been 
proposed. For example, stochastic dominance with respect to a function (SDRF) limits 
the range of the absolute risk aversion measure to arbitrary chosen limits (Meyer 1977; 
Meyer et al. 2009). Alternatively, stochastic efficiency with respect to a function (SERF) 
restricts the variation of the degree of risk aversion to an arbitrarily defined range but 
ranks risky alternatives in terms of their certainty equivalents (CE) (Hardaker et al. 2004; 
Hardaker and Lien 2010). The SERF method requires making additional inferences 
about the functional form of the expected utility function and adds the restrictive as-
sumption that the measure of risk aversion used is held constant as the level of outcomes 
changes (Hardaker and Lien 2010). Overall, the SERF metric is capable of discriminat-
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ing smaller non-dominant sets than SSD (or SDRF), but this is achieved at the expense 
of imposing strong restrictive assumptions on decision-maker’s risk-averse preferences.

In economic studies, the SSD rule has commonly been considered too coarse to 
be used effectively for practical purposes (Hardaker et al. 2004, Hardaker and Lien 
2010). However, we found the discriminatory power of the SSD rule to be adequate 
for our geographical risk mapping case. Since our study required ranking of all spa-
tial elements in the map (and the total number of map elements was very large), the 
performance of the SSD rule was sufficient to discriminate a large number of nested 
non-dominant sets and identify areas of high and low pest arrival risk with good spatial 
precision. Because the analysis delineated nested non-dominant sets (instead of finding 
a single non-dominant set of the smallest possible size), the impact of lower discrimi-
natory capacity was less noticeable. Also, the magnitude of the variation in pest arrival 
rates in our study was considerably larger than the typical variability of net returns (or 
CE values) in economic efficiency studies, hence the differences between the CDFs 
were more discernible. Note that the discriminatory power of the SSD-based approach 
could be further improved by increasing the number of discrete percentile points in the 

Figure 6. Schematic representation of broad risk classes delineated with the SSD rule, r`ik, in dimen-
sions of the mean camper travel probability, ijϕ , and its standard deviation, σ(φij). b denotes the tilt angle 
between the generalized boundaries of broad risk classes in the point cloud ijϕ - σ(φij) and the horizontal 
line indicates a constant mean transmission rate (φij = const). Dashed lines denote the boundaries between 
hypothetical risk classes in a risk-neutral classification (i.e., b = 0, when risk delineation is independent of 
the amount of uncertainty in the estimates). Points represent individual locations (15×15 km map cells, 
a 10% random subset of all locations).
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calculations of the CDF integrals or by re-sampling the underlying geographical data 
to a higher spatial resolution and thereby increasing the total number of map elements 
in the study area (which would lead to a larger number of nested non-dominant sets).

Technical aspects of an application of the stochastic ordering techniques

In our study, we used the stochastic dominance concept to delineate nested non-domi-
nant sets of map elements, based on a partial order of these elements, in a space defined 
by the distributions of pest transmission rates φij to a state (province) of interest. The 
reliance on a partial order of elements makes this approach relatively stable to errors in 
data and underlying assumptions about the behaviour of the invader. Basically, it takes 
a higher degree of error to alter the partial ordering of elements in the set and change 
the dominance relations between the map elements.

The stochastic dominance concept (SD) provides an attractive framework for as-
sessing risks of pest invasions under uncertainty. In our study, the theoretical attrac-
tiveness of the second-degree stochastic dominance (SSD) lies in its non-parametric 
nature (Fishburn and Vickson 1978). While the SSD rule operates from the general 
perspective of a risk-averse decision-maker (Porter et al. 1973, Meyer et al. 2005), it 
does not require an explicit specification of a decision-maker’s expected utility func-
tion (i.e., defining a numerical “utility” value for every possible invasion outcome that 
a decision-maker may encounter). In fact, the precise determination of the degree of 
risk aversion (as well as the other behavioural aspects of managing invasive pests) is 
problematic as it would require tracking the history of decision-making actions within 
agencies responsible for managing pest incursions, as well as quantifying the associated 
risk preferences. Note that practical applications of the SSD rule still require careful 
consideration of the decision-making problem of interest.

The stochastic ordering techniques used in this study help resolve some trouble-
some issues in assessing invasion risks when knowledge about an invasive organism 
is insufficient for deriving precise estimates of risk. A lack of knowledge about the 
organism’s behaviour in a new environment often causes experts to generate fairly 
coarse assessments (e.g., by assessing risk in vague “high-low” terms or deriving a broad 
distribution of plausible invasion outcomes instead of a single impact value). Although 
experts can discern the meaningful tendencies in the predicted outcome of an invasion 
(such as relatively high or low likelihood of invasion), they are rarely able to assign pre-
cise likelihood values. In techniques based on nested non-dominant sets like the FSD 
and SSD rules, every geographic location of interest is ordered along a risk gradient, 
which makes the issue of assigning precise pest arrival rate values less critical.

The estimation of non-dominant sets with the FSD or SSD rule requires undertak-
ing multiple pairwise tests for stochastic dominance and has a computational complex-
ity on the order of N(N - 1)/2. While calculation of non-dominant sets for large N can 
be computationally demanding, the basic algorithm that checks for non-dominance is 
relatively simple, and can be easily parallelized.
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We must note that the use of nested non-dominant sets for ordering geographic 
locations provides only a partial ranking (so that ranks reflect relative “high-low” posi-
tions only within a given dataset). Since our intention was to develop comparable risk 
rankings derived for the U.S. states, eight Canadian provinces and the Yukon Terri-
tory, we undertook the extra step of aggregating all datasets into a single superset and 
ranking it with the FSD and SSD rules. Thus, the final ranks were mapped within a 
single frame of reference and the ranks for individual states and provinces were com-
parable one with another. While computationally demanding, we believe this method 
addresses a major criticism of risk mapping methods based on a partial ordering: an 
inability to generate a common ranking space. Table 2 shows a comparative level of 
risk that each state (or province) will receive infested firewood with recreational travel-
ers as an average rank values, r`ik of firewood moved to a state (or province) of interest 
from all out-of-state locations as a risk metric. As Table 2 suggests, Texas, Arkansas, 
and California show the highest potential to receive forest pests in camper-transported 
firewood from elsewhere, whereas the District of Columbia, Yukon Territory, Nova 
Scotia, Manitoba and Saskatchewan have the lowest potential. These rankings assume 
a generalized risk of infestation. Knowledge of a specific potential source location for 
an infestation could, of course, change these rankings, but the approach used here to 
incorporate risk aversion in the mapping process would remain applicable.

Incorporation of risk-averse preferences into a delineation of high-risk locations has 
some important implications for the development of broad-scale pest surveys and public 
outreach campaigns. In regions where the areas with high-risk estimates based on the 
SSD rule are uniformly dispersed in relatively close proximity to a state or provincial 
border (such as for Alabama or Pennsylvania, Appendix 2), the development of large-
scale public outreach programs could target nearby states because camper travel is mostly 
local and risk is distributed uniformly in close proximity to the state (or province) of 
interest. Alternatively, if the majority of high-ranked source locations indicate long-dis-
tance travel destinations (such as for the prominent national parks in Utah or Arizona), 
a statewide surveillance program may be inefficient and an alternative effort that targets 
specific high-risk recreation destinations would represent a more effective strategy.

Conclusions

This study demonstrated how the notion of a decision-maker’s risk aversion can be 
incorporated into the process of mapping risks of ecological pest invasions. We believe 
that the approach based on the stochastic dominance rules represents a major step 
forward in model-based assessments of ecological risks because it provides a tractable 
way to incorporate decision-making preferences into the estimates of pest invasion 
risk and consecutively offers the appropriate treatment of uncertainty according to 
the anticipated preferences of decision-makers (the end users of risk assessments and 
maps). Overall, incorporation of risk-aversion adds credibility to the pest risk mapping 
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process, helps narrow the set of geographical locations that would need to be targeted 
for costly inspection and public outreach activities, and could be easily applied to the 
threat of recreational firewood movement in North America.
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Appendix 1

Risk of out-of-state (out-of-province) locations to be the source of forest pests trans-
ported in firewood carried by campers. The risk rank values are based on the delinea-
tion of nested non-dominant sets via the first-degree stochastic dominance rule (FSD). 
The ranks close to 1.0 denote the highest risk of pest arrival and the ranks close to 
0 denote the lowest risk. (doi: 10.3897/neobiota.18.4002.app1) File format: Adobe  
PDF File (pdf ).

Copyright notice: This dataset is made available under the Open Database License 
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) 
is a license agreement intended to allow users to freely share, modify, and use this Dataset 
while maintaining this same freedom for others, provided that the original source and 
author(s) are credited. 
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Appendix 2

Risk of out-of-state (out-of-province) locations to be the source of forest pests trans-
ported in firewood carried by campers. The risk rank values are based on the deline-
ation of nested non-dominant sets via the second-degree stochastic dominance rule 
(SSD), which embeds the notion of risk-averse decision choice. The ranks close to 1.0 
denote the highest risk of pest arrival and the ranks close to 0 denote the lowest risk. 
(doi: 10.3897/neobiota.18.4002.app2) File format: Adobe  PDF File (pdf ).

Copyright notice: This dataset is made available under the Open Database License 
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) 
is a license agreement intended to allow users to freely share, modify, and use this Dataset 
while maintaining this same freedom for others, provided that the original source and 
author(s) are credited. 
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Appendix 3

Maps of differences in the risk ranks based on the first- and second-degree stochastic 
dominance rules, Δr`ik = r`ik FSD – r`ik SSD. Positive values indicate that the FSD-based 
risk rank exceeds the SSD-based rank and vice versa. (doi: 10.3897/neobiota.18.4002.
app3) File format: Adobe  PDF File (pdf ).

Copyright notice: This dataset is made available under the Open Database License 
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) 
is a license agreement intended to allow users to freely share, modify, and use this Dataset 
while maintaining this same freedom for others, provided that the original source and 
author(s) are credited. 
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Appendix 4

Summary of differences between risk rank classes, 0–0.05, 0.05–0.25, 0.25–0.5, 
0.5–0.75, 0.75–0.95 and 0.95–1 in the delineations based on the FSD and SSD 
rules. (doi: 10.3897/neobiota.18.4002.app4) File format: Adobe  PDF File (pdf ).

Copyright notice: This dataset is made available under the Open Database License 
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while maintaining this same freedom for others, provided that the original source and 
author(s) are credited. 
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