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Introduction Proposed solution

Supply-demand balancing act in electricity grids is a very demanding task. It requires
constant monitoring of the network and very fast response to system changes. Poor
regulation might lead to brownouts or even blackouts of the whole country. At the same
time, increasing number of renewables add another layer of complexity due to their
inherent variability in power output. Luckily, recent advancement in communication and
sensing technologies enable the advancement of Smart Grid. It will supply utilities and grid
managers with additional set of tools for maintaining system balance and stability.

A novel method is being developed at Lancaster University, which focuses on Demand Side
Management (DSM) technique using real-time pricing (RPT). It proposes to use state of
the art machine learning techniques - Artificial Neural Networks (ANN) - to control the
total consumption using pricing signal, which is sent to residential Energy Management
Units (EMU). It is expected that increased number of smart appliances and intelligent
Heating Ventilation and Air Conditioning (HVAC) system will contribute in reacting to the
state of electricity network. The main research challenge in this novel technique is to be
able to shed the load without creating even bigger peaks of energy consumption at other
times.

» Implement real-time pricing - this solves cross-subsidies problem and creates control
input to the system.

» Model the relationship between real-time price and electricity demand using Artificial
Neural Networks. Ultimately it should include measured disturbance variables like
weather temperature, humidity, wind speed, etc.

» Implement Neural Network Predictive controller to optimize control inputs (price) for
load balance.

We assume that it is possible to find a highly non-linear relationship between real-time
price and electricity consumption. In particular HVAC system is the main interest. In
general, load profile is highly repetitive and human behaviour tends to form habits. These
are two key points that help artificial intelligence (Al) learn from past experience and
predict future consumption. Neural networks match there criteria.
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Model predictive control (MPC) is very suitable for this application due to the following
HVAC system properties:

Drivers and benefits of Smart Grid » The plant is multi input, multi output system;

» Inputs are constrained;
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» Time constants large enough for MPC to perform in time.
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Conclusion

» The proposed technique is a new electricity balancing tool for utilities.

» HVAC load shifting incurs minimal customer discomfort. Load control might even be
— unnoticed as HVAC system usually has high inertia.

» Increasing number of renewables pose threat to system balance > It is easily scalable - ditferent regions can be isolated.

» Growing demand increases peaks & requires greater capacity » Follows standard economic rules - varying price of electricity.

» Fixed price creates cross-subsidies between users » The technique helps to use assets in the most efficient way.

» Currently users have no means of knowing about system state > Does not require critical mass of participants.

» Demand and price varies hourly and this is expected to worsen in the future » Does not overload communication path as only price signal is sent periodically.
» Design aims to help integrate renewables that have inherently variable output.
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