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Abstract

Modern probability theory, whose foundation is based on the axioms set forth by Kol-
mogorov, is currently the major tool for performance analysis in stochastic systems.
While it offers insights in understanding such systems, probability theory, in contrast
to optimization, has not been developed with computational tractability as an ob-
jective when the dimension increases. Correspondingly, some of its major areas of
application remain unsolved when the underlying systems become multidimensional:
Queueing networks, auction design in multi-item, multi-bidder auctions, network in-
formation theory, pricing multi-dimensional financial contracts, among others. We
propose a new approach to analyze stochastic systems based on robust optimization.
The key idea is to replace the Kolmogorov axioms and the concept of random vari-
ables as primitives of probability theory, with uncertainty sets that are derived from
some of the asymptotic implications of probability theory like the central limit theo-
rem. In addition, we observe that several desired system properties such as incentive
compatibility and individual rationality in auction design and correct decoding in
information theory are naturally expressed in the language of robust optimization. In
this way, the performance analysis questions become highly structured optimization
problems (linear, semidefinite, mixed integer) for which there exist efficient, practical
algorithms that are capable of solving problems in high dimensions. We demon-
strate that the proposed approach achieves computationally tractable methods for
(a) analyzing queueing networks (Chapter 2) (b) designing multi-item, multi-bidder
auctions with budget constraints, (Chapter 3) (c) characterizing the capacity region
and designing optimal coding and decoding methods in multi-sender, multi-receiver
communication channels (Chapter 4).
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Title: Boeing Leaders for Global Operations Professor
Co-director, Operations Research Center
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Chapter 1

Introduction

In this chapter we provide an overview of our non-probabilistic approach to model

uncertainty in a system. We start by presenting a brief history of Probability Theory

with an emphasis on the difficulties associated with performance analysis of systems

modeled using Probability Theory. The discussion of these difficulties allows us to

motivate our approach in the context of modeling uncertainty in complex systems.

We then describe the main machinery of our approach with appropriate examples.

1.1 A Critical View of the History of Probability

Theory

Probability theory has a long and distinguished history that dates back to the be-

ginning of the 17th century. Games involving randomness led to an exchange of

letters between Pascal and Fermat in which the fundamental principles of probability

theory were formulated for the first time. The Dutch scientist Huygens, learned of

this correspondence and in 1657 published the first book on probability entitled De

Ratiociniis in Ludo Aleae. In 1812 Laplace introduced a host of new ideas and math-

ematical techniques in his book Theorie Analytique des Probabilities. Laplace applied

probabilistic ideas to many scientific and practical problems. The theory of errors, ac-

tuarial mathematics, and statistical mechanics are examples of some of the important
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applications of probability theory developed in the 1 9 th century. Many researchers

have contributed to the theory since Laplace's time; among the most important are

Chebyshev, Markov, von Mises, and Kolmogorov.

One of the difficulties in developing a mathematical theory of probability has been

to arrive at a definition of probability that is precise enough for use in mathematics,

yet comprehensive enough to be applicable to a wide range of phenomena. The

search for a widely acceptable definition took nearly three centuries. The matter was

finally resolved in the 1933 monograph of Kolmogorov who outlined an axiomatic

approach that forms the basis for the modern theory. With the publication in 1933 of

Kolmogorov's book Grundbegriffe der Wahrscheinlichkeitsrechnung, Kolmogorov laid

the foundations of an abstract theory, designed to be used as a mathematical model

for certain classes of observable events. The fundamental concept of the theory is

the concept of a probability space (Q, A, P), where Q is a space of points w which

are denoted as elementary events, while A is a o-algebra of sets in Q, and P is a

probability measure defined for all A-measurable events, i.e., for all sets S belonging

to A. Kolmogorov's three axioms form the basis of this theory

1. P(S) 0, VS E A.

2. P(Q) = 1.

3. If Si E A, i > 1, are pairwise disjoint, then P(U 1 Si) = EZP(Si).

Another important primitive of probability theory is the notion of a random variable

as a quantity that takes values with certain probabilities. A key objective of probabil-

ity theory is to estimate the probability distributions of a random variable Y, which

is a function of n primitive random variables X 1 , . . . , Xn, that is Y = f(X 1 , . . . , X,),

given information on the joint probability distribution of the primitive random vari-

ables X 1, . . . , X,. For example, suppose that we are given n independent, random

variables Xi uniformly distributed in [0, 1], and we are interested in evaluating the

distribution the random variable Y = E= 1 Xi. Specifically, we are interested in

the quantity P(Y < t), 0 < t < n. Even for a modest value of n = 10, this is a

16



complex calculation involving convolutions. Perhaps the simplest way to calculate

the Laplace transform of Y, which is the product (because of independence) of the

Laplace transforms of the Xi's and then numerically invert the transform. Note that

in order to estimate a probability of a relative simple event, we need to invoke rather

heavy machinery from complex analysis and inverse of transforms.

The situation we described is not an isolated instance. Consider a single class

queueing network (see Chapter 2), that has been used in the latter part of the 2 0 th

century to model computer and communication networks. Suppose we are interested

in the expected value of the number of jobs waiting in one of the queues in the

network. If the distribution of interarrival and service times is not exponential, we

do not know how to calculate this expectation exactly, and two avenues available to

make progress are simulation and approximation. Simulation can take a considerable

amount of time in order for the results to be statistically significant, and in addition,

if the simulation model is complex as it is often the case, then it is difficult to isolate

and understand the key insights in the model. On the other hand, approximation

methods can potentially lead to results that are not very close to the true answers.

Given these considerations, it is fair to say that after more than 50 years of research

we really do not have a satisfactory answer to the problem of performance analysis

of queueing networks. Kingman [2009], one of the pioneers of queueing theory in the

2 0 th century in his opening lecture at the conference entitled "100 Years of Queueing-

The Erlang Centennial", writes, "If a queue has an arrival process which cannot be

well modeled by a Poisson process or one of its near relatives, it is likely to be difficult

to fit any simple model, still less to analyze it effectively. So why do we insist on

regarding the arrival times as random variables, quantities about which we can make

sensible probabilistic statements? Would it not be better to accept that the arrivals

form an irregular sequence, and carry out our calculations without positing a joint

probability distribution over which that sequence can be averaged?'.

The situation in queueing networks we discussed above is present in other exam-

ples. Shannon [1948b] characterized the capacity region and designed optimal coding

and decoding methods in single-sender, single-receiver channels, but the extension to

17



multi-sender, multi receiver channels with interference is by and large open. Myerson

[1981], in his nobel prize winning work, solved the problem of optimal market design

in single item auctions, but the extension to multi-item case with bidders that have

budget constraints has remained open. Black and Scholes [1973], in their nobel prize

winning work, solved the problem of pricing an option in an underlying security, but

the extension to multiple securities with market frictions has not been resolved. In

all of these and other problems, we see that we can solve the underlying problem in

low dimensional problems, but we have been unable to solve the underlying problems

when the dimension increases.

In our opinion, the reason for this is related to the history of probability theory as

a scientific field. The multi-century effort that led to the the development of modern

probability theory aimed to lay the conceptual and foundational basis of the field.

The primitives of probability theory, the Kolmogorov axioms and the notion of a ran-

dom variable, while powerful for modeling purposes, have not been developed with

computational tractability as an objective when the dimension increases. In contrast,

consider the development of optimization as a scientific field in the second part of

the 2 0 th century. Modern linear optimization originated by Dantzig [1949] had from

the beginning of the field as an objective to solve multi-dimensional problems com-

putationally. Today, we can solve truly large scale structured optimization problems

(linear, conic, mixed integer).

Given the success of optimization to solve multi-dimensional problems, it is natu-

ral, in our opinion, to formulate probability problems as optimization problems. For

this purpose, we utilize robust optimization, arguably one of the fastest growing areas

of optimization in the last decade, to accomplish this. In this effort, we are guided

by the words of Dantzig [1963], who in the opening sentence of his book Linear Pro-

gramming and Extensions writes "The final test of any theory is its capacity to solve

the problems which originated it."

18



1.2 The Building Blocks of our Approach

One of the major successes of probability theory is the development of limit laws. As

an illustration consider the central limit theorem that asserts that if Xi, i = 1, ... , n

are independent, identically distributed random variables with mean A and standard

deviation o-, then as n -+ oc, the random variable Sn = E" Xi is asymptotically

distributed as a standard normal, that is

lim P " < = P(Z <t),
n-+o~o o- - -

where Z is a random variable that obeys the normal distribution with mean 0 and

standard deviation of 1, denoted as Z ~ N(0, 1). The importance of the limit laws in

the theory of probability can be emphasized by quoting Kolmogorov (Gnedenko and

Kolmogorov [1968]): "All epistemological value of the theory of probability is based on

this: that large scale random phenomena in their collective action create strict, non

random regularity."

The key building block in our approach is that rather than assuming as primitives

the axioms of probability theory (Kolmogorov axioms and the notion of a random

variable), we assume as primitives the conclusions of probability theory, namely its

limit laws. Let us give a motivating example. From the central limit theorem

Sn - np

is asymptotically standard normal. We know that a standard normal Z satisfies

P(IZI 5 2) ~ 0.95, P(IZI 3) ~ 0.99.

We therefore assume that the quantities Xi take values such that

n

Xi - ny 1 ro-n,

19



where r is a small numerical constant 2 or 3 that is selected adaptively to make good

fit empirically. In other words, we do not describe the uncertain quantities Xi as

random variables, rather they take values in an uncertainty set

( n

U = (Xi, . .. , zX) xi - np <; rov/n .(1)
1% i= 1

In specific situations we can augment the uncertainty set U by using additional asymp-

totic laws as we illustrate in Section 1.2.2.

1.2.1 The Connection with Optimization

Suppose we are interested in estimating E[f(X1 , .. ., Xn)], where (X 1 , . . . , Xn) are

random variables. Using asymptotic laws of probability, we construct an uncer-

tainty set U. We have already seen an example in Eq. (1.1). Then, we estimate

E[f(X 1 , ... , Xn)] by solving the constrained optimization problems

max f (Xi, 2 , . , Xn)

s.t. (X1, X2 ,.. . ,X) E U,

and

min f (i,x 2 ,. .. )

s.t. (Xi, X2, ... zn) E U.

In other words, we transform the performance analysis question to a constrained

optimization problem, arguably a problem we can solve efficiently in high dimensions,

and we use the asymptotic laws of probability theory, arguably the most insightful

aspect of probability theory, to construct the constrained set in the optimization

problem.

Suppose that we are interested in a design problem involving design parameters

X = (XI, .. . , X) E X and uncertain parameters 6 = (01, .. . , On) and we are interested

20



in solving the problem

max E[f(x, 6)].
xEX

We model the uncertainty of the parameters 6 by the uncertainty set U where the

parameters 0 take values and solve the robust optimization problem

max min f(x, 6). (1.2)
xEX OEU

Robust Optimization (RO) is one of the fastest growing areas of optimization in

the last decade. It addresses the problem of optimization under uncertainty, in which

the uncertainty model is not stochastic, but rather deterministic and set-based. RO

models are typically tractable computationally, but may lead to solutions that are too

conservative. To alleviate conservatism, Ben-Tal and Nemirovski [2000, 1998, 1999],

El-Ghaoui and Lebret [1997], and El-Ghaoui et al. [1998], proposed linear optimiza-

tion models with ellipsoidal uncertainty sets, whose robust counterparts correspond

to quadratic optimization problems. Bertsimas and Sim [2003, 2004] proposed RO

models with polyhedral uncertainty sets that can model linear/integer variables, and

whose robust counterparts correspond to linear/integer optimization models. For a

more thorough review we refer the reader to Ben-Tal et al. [2009], and Bertsimas

et al. [2011].

1.2.2 Constructing Uncertainty Sets

In this section, we outline the principles for constructing uncertainty sets we use in

this paper.

Using Historical Data and the Central Limit Theorem

Suppose that we have estimated the mean y and the standard deviation o of i.i.d.

random variables (x 1,..., X). We expect that the central limit theorem holds, and

we model uncertainty by the uncertainty set given in Eq. (1.1).
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Modeling Correlation and ARCH models

Consider the random variables x = (xi, ... , x) which are correlated. Specifically,

suppose that there are m < n i.i.d. random variables y = (yi,...., y) with mean

p, and standard deviation a1 such that x = Ay + E, where A is an n x m matrix

and E = (61, ... , en) is a vector of i.i.d. random variables that have mean zero and

standard deviation aE. Then, we construct the uncertainty set given by
m n

Ucorr= x x = Ay + E, y -mp , 5 FO-yVm, e>2 IFuvn . (1.3)
i= 1i=

Using the same approach, we also model autocorrelated returns. For instance, con-

sider an AR(q) model given by

yt = ao + ai - yt_1 +... + aq - yt-q + 6t,

where the return at time t depends on the returns of the previous q periods and Et's

are i.i.d noise. To model this, we construct the uncertainty set given by

UAR(q) y yt= ao + al yt-1 + . . . + aq -yt--q + Et, , et < rue -

t=1

Stable Laws

The central limit theorem belongs to a broad class of weak convergence theorems.

These theorems express the fact that a sum of many independent random variables

tend to be distributed according to one of a small set of stable distributions. When

the variance of the variables is finite, the stable distribution is the normal distribution.

In particular, these stable laws allow us to construct uncertainty sets for heavy-tailed

distributions.

Theorem 1. (Nolan [1997]) Let Y , Y2 ,... be a sequence of i. i. d. random variables,

with mean ya and undefined variance. If Y ~ Y, where Y is a stable distribution with
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parameter a E (0, 2) then
n

EY - ny

i=1 3/
nl/a 

Y

Motivated by this result, one can construct an uncertainty set UHT representing

the random variables {Yi} as follows

0n

S Zi - ny

UHT (1 i2, - (1.4)

where F can be chosen based on the distributional properties of the random variable

Y. Note that UHT is again a polyhedron.

Incorporating Distributional Information

In this section, we illustrate how to construct uncertainty sets that utilize knowledge

of the specific probability distribution. We use the idea of a typical set UTypical,

introduced by Shannon [1948b] in the context of his seminal work in information

theory. Specifically, a typical set has two properties:

(a) P [z E UTypical] -+ 1, as n -+ oo.

(b) The conditional pdf h(z) = f(z1i E UTypical) satisfies:

1
- log h(z) + Hf < en,n

for some Hf (the entropy of the distribution) and En -+ 0, as n -+ oc.

Property (a) means that the typical set has probability nearly 1, while Property (b)

means that all elements of the typical set are nearly equiprobable, see Cover and

Thomas [2006]. In order to illustrate this idea with a concrete example, consider a

normal distribution N(p, a) distribution with mean y and standard deviation o. In
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this case, the typical set is given by

UNormal = ( Zn) n- 2
- p <2 <(U2 + ).

j=1
(1.5)

More generally, for a probability density f (.), the typical set is given by

I
n

S logf (zj) +rn -Hf
i - <=1

Of n
(1.6)

Hf = f (x) log f (x) dx,

o7f = f (x) (log f (x) + Hf) 2 dx.

Note that H1 is the entropy of the random variable with pdf f (.). We next show

that Uf-Typical indeed satisfies the properties (a) and (b) of a typical set above, when

F is appropriately chosen.

Proposition 2. Uf-TyPical satisfies

(a) IP [z E UfTypical] -+ g(IF) = 21(F) - 1, as n -+ oo.

(b) The conditional pdf h(z) = f(iz E UfTypi al) satisfies:

1- log h(z) + Hf < 6n,
n

with en-. - 0, as n -+ oo.

Proof. (a) Since the random variables

6ij = log f (zy),

24

Uf-Typical =

where

< r. 7



are independent and identically distributed, we apply the central limit theorem to

obtain that as n -+ 00,
n

Eii + nH
j=1~ N (0, 1),1

from where part (a) follows.

(b) Let i E Uf-Typical. Then,

h(z) = f (zi) f (Z2) ... f (zn).

Therefore, since z E UfTYPica, we have

- log h(z) + Hf = - log f(zj) + Hf < F -+0,
j=1

as n -* o. l

1.3 Overview of the Thesis

In this thesis, we use the proposed approach in the following three areas:

1. Queueing Theory.

In Chapter 2, we use our approach for studying queueing systems (see Bandi et al.

[2011]). Instead of modeling arrivals and services as renewal processes, we model the

queueing systems primitives using uncertainty sets. In this framework, we obtain

closed form expressions for the steady-state waiting times in multi-server queues with

heavy-tailed arrival and service processes. These expressions are not available under

traditional stochastic queueing theory for heavy-tailed processes, while they lead to

the same qualitative insights for independent and identically distributed arrival and

service times. We also develop an exact calculus for analyzing a network of queues

with multiple servers based on the following key principle: a) the departure from a

queue, b) the superposition, and c) the thinning of arrival processes have the same
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uncertainty set representation as the original arrival processes. We show that our

approach, which we call the Robust Queueing Network Analyzer (RQNA) a) yields

results with error percentages in single digits (for all experiments we performed)

relative to simulation, b) performs significantly better than the Queueing Network

Analyzer (QNA) proposed in Whitt [1983], and c) is to a large extent insensitive to

the number of servers per queue, the network size, degree of feedback, traffic intensity,

and somewhat sensitive to the degree of diversity of external arrival distributions in

the network.

2. Mechanism Design.

In Chapter 3, we revisit the auction design problem for multi-item auctions with bud-

get constrained buyers using our approach (see Bandi and Bertsimas [2011]). In this

context, the auctioneer's beliefs on the buyers' valuations of the items are modeled

by uncertainty sets. Moreover, we also leverage the fact that many core concepts

such as incentive compatibility and individual rationality are naturally expressed in

the language of robust optimization. In this setting, we formulate the auction de-

sign problem as a robust optimization problem and provide a characterization of the

optimal solution as an auction with reservation prices, thus extending the work of

Myerson [1981] from single item without budget constraints, to multiple items with

budgets, potentially correlated valuations and uncertain budgets. Unlike the Myerson

auction where the reservation prices do not depend on the item, the reservation prices

in our approach are a function of both the bidder and the item. We propose an algo-

rithm for calculating the reservation prices by solving a bilinear optimization problem

which, although theoretically difficult in general, is numerically tractable. Moreover,

this bilinear optimization problem reduces to a linear optimization problem for auc-

tions without budget constraints and the auction becomes the classical second price

auction. We report computational evidence that suggests the proposed approach (a)

is numerically tractable for large scale auction design problems, (b) leads to improved

revenue compared to the classical probabilistic approach when the true distributions

are different from the assumed ones, and (c) leads to higher revenue when correlations

in the buyers' valuations are explicitly modeled.
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3. Information Theory.

In Chapter 4, we consider the central problem of network information theory of char-

acterizing the capacity region and constructing matching optimal codes for multi-user

channels with interference (see Bandi and Bertsimas [2012b]). We formulate this prob-

lem as a robust optimization problem by combining the ideas of a typical sets and

maximum likelihood decoding. For a single user Gaussian channel, we recover the

known capacity region and at the same time construct the matching optimal code.

The underlying optimization problem becomes a semidefinite optimization problem

with rank one constraints. For a multi-user channel with interference, we character-

ize the capacity region and construct the matching optimal code for the Gaussian

interference, the multi-cast and the multi-access channels by solving a semidefinite

optimization problem with rank one constraints. We further examine how the proba-

bility description of noise affects the nature of the corresponding optimization prob-

lem, and show that for channels with exponentially distributed noise, the optimization

problem becomes a binary, mixed linear optimization problem. While the underlying

optimization problems are NP-hard, we report numerical results that show that the

approach based on semidefinite optimization is computationally tractable for message

book sizes of up to 100,000.

In all these applications, we have implemented the proposed approach and have

included in the thesis tables and figures with computational evidence in concrete

examples in order to show that the approach of stochastic analysis based on opti-

mization is capable of solving problems numerically in ways that, in our opinion, go

beyond the current state of the art of stochastic analysis (see Bandi and Bertsimas

[2012a]). The types of optimization problems that were required to be solved ranged

from linear and semidefinite to discrete, bilinear and rank optimization problems. We

anticipate that this research program, in addition to advancing stochastic analysis,

will also advance optimization as it will reveal new optimization problems that need

to be addressed.
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Chapter 2

Robust Queueing Theory

The origin of queueing theory dates back to the beginning of the 2 0 th century, when

Erlang [1909] published his fundamental paper on congestion in telephone traffic. In

addition to formulating and solving several practical problems arising in telephony,

Erlang laid the foundations for queueing theory in terms of the nature of assumptions

and techniques of analysis that are being used to this day. In the second part of the

2 0 th century, a very substantial literature of queueing theory was developed modeling

queueing primitives as renewal processes.

From the time of Erlang, the Poisson process has played a very significant role

in modeling the arrival process of a queue. When combined with exponentially dis-

tributed service times, the resulting M/M/m queue with m servers is tractable to

analyze in steady-sate. While exponentiality leads to a tractable theory, assuming

general distributions, on the other hand, yields considerable difficulty with respect

to performing a near-exact analysis of the system. The GI/GI/m queue with inde-

pendent and generally distributed arrivals and services is , by and large, intractable.

Currently, there does not exist a method that is capable of producing accurate numer-

ical answers, let alone closed form expressions, for arbitrary distributions. The most

general method, due to Pollaczek [1957], analyzes the performance of the GI/GI/m

queue by formulating a multi-dimensional problem in the complex plane. Gall [1998]

portrays the exceptional difficulty of explicitly characterizing the equations for the

GI/GI/m queue given that their "partial solution can only be derived after long and

29



complex calculations involving multiple contour integrals in a multi-dimensional com-

plex plane". When arrival and service distributions have rational Laplace transforms

of order p (for example Coxian distributions with p phases), the GI/GI/m problem

becomes intractable for higher order p values. Bertsimas [1990] reports numerical

results for queues with up to 100 servers and p = 2 by finding all h = ("mi--i) com-

plex roots to distinct polynomial equations and solving a linear system of dimension

h. The system's dimension, however, increases to 4.5 million when p = 5, hence

illustrating the complexity of the problem under these assumptions.

The situation becomes even more challenging if one considers analyzing the per-

formance of queueing networks. A key result that allows generalizations to networks

of queues is Burke's theorem (Burke [1956]) which states that the departure process

from an M/M/m queue is Poisson. This property allows one to analyze queueing

networks and leads to product form solutions as in Jackson [1957]. However, when

the queueing system is not M/M/m, the departure process is no longer a renewal pro-

cess, i.e., the interdeparture times are dependent. With the departure process lacking

the renewal property, the state-of-the-art theory provides no means to determine per-

formance measures exactly, even for a simple network with queues in tandem. The

two avenues in such cases are simulation and approximation. Simulation can take a

considerable amount of time in order for the results to be statistically significant. In

addition, simulation models are often complex, which makes it difficult to isolate and

understand key qualitative insights. On the other hand, approximation methods can

potentially lead to results that are not very close to the true answers.

Given these challenges, it is fair to say that the key problem of performance

analysis of queueing networks has remained open under the probabilistic framework.

Motivated by this, we propose to use the uncertainty set based framework to model

queueing systems based on optimization theory. Our robust optimization approach

to queueing theory bears philosophical similarity with the deterministic network cal-

culus approach which was pioneered by Cruz [1991a,b] (see also Gallager and Parekh

[1994], El-Taha and Stidham [1999], C.S.Chang [2001], Boudec and Thiran [2001]).

Both methods (a) take a non-probabilistic approach by placing deterministic con-
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straints on the traffic flow and (b) derive bounds on key queueing performance mea-

sures via a worst-case paradigm. There has also been a significant literature on what

is called stochastic network calculus. See Jiang and Liu [2008], Jiang [2012], Ciucu

et al. [20051, Burchard et al. [2011] for an overview. We note, however, that the

primitives of stochastic network calculus are in fact probabilistic, so the similarity,

even at the philosophical level, is significantly smaller. To a lesser degree, there is

also philosophical similarity (in that it is a deterministic and worst-case approach)

with adversarial queueing theory (Borodin et al. [2001], Gamarnik [2003, 2000], Goel

[1999]) which was developed for stability analysis in multi-class queueing networks.

In contrast, our aspiration in this work is to develop a theory of performance analysis,

and thus there is no overlap between adversarial and robust queueing theory beyond

the philosophical level. Beyond their deterministic and worst-case paradigms, signifi-

cant differences can be noted when comparing our framework to the network calculus

approach.

(a) Different Underlying Assumptions: While both methods postulate deter-

ministic constraints over the arrival process, the assumptions are different in

nature. The deterministic network calculus bounds the number of external ar-

rivals nt up to time t by nt A -t + B, where A denotes the traffic rate and B is

a constant accounting for burstiness. In contrast, our assumption on the arrival

process yields different bounds on the number of arrivals nt. In fact, denoting

the arrival time of the nt' job by t, i.e., Ei Ti = t, and applying Assumption

1(a) with tail coefficient aa = 2, we obtain nt - niV/nAIa At < nt + jijAFa,

where ra represents the effect of variability. Writing 62 = nt yields 62 - Arai <

At < J2 + Arai. This implies that J 2 (-Ara + VA 2P2 + 4At) /2, leading to

nt 2 At - t2A2Ira. Similarly, we obtain nt 5 At + t2Aira, which results in the

following bounds on the number of arrivals by time t

|nt - A - tj 5 FaA 3/2 t1 /2 . (2.1)

Note that the way we handle variability is different from the deterministic net-
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work calculus, and is motivated and indeed consistent with the limit laws of

probability (see subsection 2.1.1).

(b) Tighter Bounds for single server queues: It is widely believed that the

network calculus approach can provide overly conservative bounds for single-

server queues. In the words of Ciucu and Hohlfeld [2010] "The deterministic

network calculus can lead to conservative bounds because many of the statistical

properties of the arrivals are not accounted for," and for the stochastic network

calculus "(only) in M/M/1 and M/D/1 queuing scenarios where exact results are

available, the stochastic network calculus bounds are reasonably accurate," (see

also Ciucu [2007]). Our approach, however, provides a bound on the waiting

time for single-server queues that is qualitatively similar to its probabilistic

counterpart (see subsection 2.2.1). Our computations further show that, by

constraining nature via bounding the variability allowed in our uncertainty sets,

we obtain results within often 2-3%, and at most 8% in stochastic queueing

networks (see Section 7).

(c) Generalizability: Our approach generalizes the analysis to more complex queue-

ing systems such as multi-server queues (see subsection 2.2.2) and queueing net-

works with feedback (see subsection 2.4). However, "for GI/GI/m, (m > 1),

stochastic network calculus based analysis remains plain blank" and "feedback

analysis is perhaps the most critical open challenge for stochastic network cal-

culus", as remarked by Jiang [2012]. Furthermore, while the stochastic network

calculus has recently addressed heavy tails in a single-server setting (see Bur-

chard et al. [2012]), our framework is capable of providing closed-form and tight

bounds on the waiting time, while maintaining deterministic assumptions.

Overview of the Chapter

(a) In subsection 2.1, we introduce the notion of a robust queue as an alternative

to the traditional queueing model and propose to replace the renewal process

primitives with uncertainty sets that the arrival and service processes satisfy.
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(b) In subsection 2.2, we analyze the steady-state behavior of single and multi-server

robust queues and obtain closed form expressions for the waiting times, which

carry the same qualitative insights as traditional queueing theory and extend

to include heavy-tailed arrivals and services.

(c) In subsection 2.3, we present an analog of Burke's theorem, where the uncer-

tainty set characterizing the departure process is shown to be the same as the

uncertainty set characterizing the arrival process. This is a remarkable property

of our uncertainty set model which holds in considerable more generality than

the M/M/m queue.

(d) Armed with the analog of Burke's theorem, in subsection 2.4, we develop a

calculus describing the effect of the three operations characterizing queueing

networks on the arrival uncertainty set: arrival superposition, process thinning

which models probabilistic routing, and passing through a queue. This allows

us to exactly characterize the arrival process of any queue that operates in a

queueing network.

(e) In subsection 2.5, we analyze queueing networks with asymmetric heavy-tailed

arrival and service processes. In particular, we provide an extension of our

results in subsections 2.2-2.4 to accommodate the case where arrival and service

times possess different tail behaviors.

(f) In subsection 2.6, we report computational results for multi-server queueing net-

works, which suggest that the proposed approach can be adapted to be within

4-6% from simulation. We also report on the sensitivity of the results as a func-

tion of the number of servers per queue, the network size, degree of feedback,

traffic intensity, and the degree of diversity of external arrival distributions in

the network.
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2.1 The New Primitives

We introduce the notion of a robust queue where we model the arrival and service

processes by uncertainty sets instead of assigning probability distributions.

2.1.1 The Robust Queue Model

We denote the inter-arrival time between the (i - 1)" and ith jobs by T and the

service time of job i by Xi. We seek to analyze the worst case waiting time of

the n'h job which only depends on the services and inter-arrival times of the first n

jobs. In particular, we use the minimal inequalities required to analyze the worst case

waiting time, namely the lower bounding constraints for the arrival process and upper

bounding constraints for the service process. Therefore, we propose the following

n-dimensional uncertainty sets on the arrival and service processes in Assumption 1.

Assumption 1. We make the following assumptions for the inter-arrival and service

times

(a) The inter-arrival times {T 1 , T2 ,..., Tn} belong to

set

(Fa) --

n -(n - k)

i=k+1

(n -

the parametrized uncertainty

>: -a, V 1 < k < n - 11

where 1/A is the expected inter-arrival time, ra is a parameter that captures

variability information, and 1 < aa 5 2 models possibly heavy-tailed probability

distributions.

(b) The service times {X1, X 2,..., X._ 1} for a single-server queue belong to the
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parametrized uncertainty set

U (F) = { (X 1 , X 2 ,.

- (n -k)
EXi -P

., Xn-1) ik (n - <F 8,, V 0 < k <n- 1(n -k)/as -J

where 1/p is the expected service time, r, is a parameter that captures vari-

ability information, and 1 < a, 5 2 models possibly heavy-tailed probability

distributions.

(c) For an m-server queue, we suppose n = vm + r where v and r respectively denote

the quotient and the remainder of the division of n by m. The service times

{Xn-vm, ... , Xn-m} belong to the parametrized uncertainty set

U," (F8) = { X-1 (v - k)
( Xn(vt-m A

(Xn-vm, . I. Xn-m) ii (V-k'a

Note that we assume that both the inter-arrival and service times have bounded

support as seen by letting k = n -I in the sets U', U;', and W. The key idea in the

construction of our uncertainty sets is to make the primitive assumptions follow from

the major conclusions of probability theory, namely its asymptotic laws as opposed to

the probability axioms. In the next section, we propose constructing the uncertainty

sets based on the central limit theorem (CLT) and the stable limit laws.

2.1.2 Construction of Uncertainty Sets

We motivate the construction of these uncertainty sets through probabilistic weak

convergence theorems. These theorems express the distribution of the sum of many

independent and identically distributed random variables as converging to one of a

small set of stable distributions. In particular, we use the Central Limit Theorem

(CLT) to construct uncertainty sets for light-tailed distributions and Stable Limit

35

5 ,,Vk o - 1 .



Laws for heavy-tailed distributions.

Light Tailed Distributions:

Suppose that the inter-arrival and service times are independent and identically dis-

tributed with finite standard deviation o-a and o-, respectively. By the central limit

theorem, as n --+ oo, the random variables

" n-k " n-k
ZTi- AXi-

i=k+1 and i=k+1

oa (n - k)i1/2 a-,(n - k) 1/2

are asymptotically standard normal. We know that a standard normal Z satisfies

P(Z < 2) ~ 0.975, P(Z < 3) ~ 0.995. We therefore assume that the quantities T and

Xi take values such that

" -k n-k
T - ;> -Fa(n - k)/ 2  and xi - < ,(n - k)1 / 2

i=k+1 i=k+1

with ra and r, are variability parameters that can be adapted to ensure a good

empirical fit (see Section 7 for computational results). Note that the tail coefficient

implied by the CLT is aa = as = 2.

Heavy Tailed Distributions:

Under a probabilistic framework, a sequence of random variables {Y} 1 heavy tailed

distributions whose variance is undefined, are associated with heavy-tailed distribu-

tions. Such random variables satisfy the Stable Limit Laws as presented in Theorem

3 (see Nolan [1997]).

Theorem 3. (Nolan [1997]) Let Y 1 , Y2 ,... be a sequence of i.i.d. random variables,

with mean y and undefined variance. If Y ~ Y, where Y is a stable distribution with

parameter a E (1, 2] then
n

EYi - np

=1n l/ a ~ % Y . (2 .2)
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In our framework, the uncertain quantities we consider are bounded (see As-

sumption 1), but we use the specific (n - k)1/ scaling of Eq. (2.2) to motivate the

construction of the uncertainty sets, and associate the term "heavy tails" with the

coefficient a in the scaling. In other words, we use the conclusions of the the Stable

Limit Laws of probability theory, and not its axioms and assumptions. Moreover,

intuitively, by using a value of aa, a, < 2, we allow the inter-arrival and service

times to take larger values when compared to aa, a, = 2, thus, allowing us to model

the heavy-tailed nature.

We note that while the uncertainty sets are motivated by i.i.d. assumptions on the

underlying random variables, (Ti, T2 ,. . ., Tn) E ua does not necessarily imply that

(T 1, T 2 , . . . , Tn) are independent. In summary, the key data primitives characterizing

(a) the arrival process in the queue are (A, ]P, aa);

(b) the service process in the queue are (t, 1P, as).

We first assume that arrival and service processes have symmetric tail behavior, i.e.,

aa = as = a in subsections 2.3-2.5, and then provide the generalized results for the

asymmetric case in subsection 2.6.

2.2 The Multi-Server Robust Queue

In this section, we analyze the robust queue model with a first-come first-served

scheduling policy and a traffic intensity p = A/(mpa) < 1, where m denotes the

number of servers in the queue. We denote by Wn the waiting time of the n" job

in this system. Kingman [1970] provides insightful bounds on the expected waiting

time in steady state for the GI/GI/1 queue

E[W) A - - s, (2.3)
2 1W- p
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and for the GI/GI/m queue

E[W ] A - ' + o-/m + (1/M - 1/ / 2 2 24
n] < _ a -8(2.4)-2 1 - p

While E[Wn] seeks the expected waiting time when nature obeys the axioms of prob-

ability, we seek the highest waiting time when nature is constrained to obey the limit

laws of probability. Assuming inter-arrival times {T}< 1 E Ua and service times

{Xi}i> 1 E U,,, we define the highest waiting time

Wn = max Wn. (2.5)
TEUa,XEU4

and the steady-state worst-case waiting time as

W= lim Wn. (2.6)
n-+oo

We characterize W for robust queues with single and multiple servers for heavy-tailed

arrival and service processes.

2.2.1 Waiting Time in a Single-Server Robust Queue

We consider a robust queue with a single server and provide a closed form expression

for W.

Theorem 4. If {T}; 1 E Ua, {Xi} 1 E UW, a = as= a and p < 1 , then

a - 1 A1'/(1 -) (Pa + r,)a/(a-1)
W < - (1 - p)l/(a- 1) (2.7)

Proof. The waiting time of the n"h job can be expressed recursively in terms of the

inter-arrival and service times using the Lindley recursion (Lindley [1952])

n-1 n

Wn = max (Wn-1 + X.-_1 - Ts, 0) = max [ Xe - E T, 0 . (2.8)
1:j5nl(=j E=j+1
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Thus, I,, can be written as

= max max
XEUS,TEUa 1<j<n-1

= max max
1<j<n-1 XEUSTEUa

(n-1 t(e
(=j
n-1

EXt
t=j

n

STe, 0
,=j+1

n

- T, 0
f=j+1

From Assumption 1, for j < n - 1, the sums of the service times and inter-arrival

times are bounded by

n-1

Xe 5 n+ r. (n -j)1/,
n

Te ;> A - Fa(n - j)/a.1 (2.10)

Combining Eqs. (2.9) and (2.10), we obtain an one-dimensional concave maximization

problem (since 1 < a < 2)

n-1 n

max max EXe - Te
1<j:n-1 X EU8,T EUa f=j E=j+1

Making the transformation x = n - j, Eq. (2.11) becomes

n-1

max max 5
1<j5n-1 XEUS,TEUa e=j

n

Xt - E
t=j+1

Te 5 max # .xl/a - 7-x,

with # = Ia + r, and -y = (1 - p)/A > 0, given p < 1. Hence,

n-1 n

max max 5Xe- T,
1<j<n-1 XEUW,TEUa f=j I=j+1

< max #-x 7.x
1<x<n-1

< max3-x /-y.x
X>O

(2.13)

The maximizer in Eq. (2.13) is given by

( ) /(a-1)
( A(Fa+Fs)

a(1 - p)
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max, (ra + ) (n - j)/a IP
1 j <n-i A (n - j) .

(2.11)

(2.12)

(2.14)



Substituting 3 and y by their respective expressions in Eq. (2.13), we obtain

n-1 ~ -n A1/(1-a) (]P + 1Fs)a/(a-_1)
max max Xe- T < -±(2.15)

1<j:n-1 XEUs,TEUa - /( _ 1/(a-)
f=j t=j+1

Remark on Theorem 4 - Tightness of the bound

We note that the upper bound on the waiting time in Theorem 4 is nearly tight. Let

us first consider the case where the maximizer x* in Eq. (2.14) is an integer, and let

j* = n - x*. The following sequence of inter-arrival times

i= 1,...,* ,

Ti=

1/A - ra/(z*)1-1/4

(2.16)

i = j* + .n

and service times

Xi = I

1/p

(2.17)

i/p + PSA/(X*)~1/

the uncertainty

by

i=j j,...,n-1.

sets in Assumption 1. This can be seen via the partial sums

(n - j)/A - 1'a(n - j)/(z*)1-1/a j = j, ... ,n - 1,

(n - j)/p + Fs(x*)l/a

(n - j)/pu + F.(n - j)/(X*)
1-1/a j = j*..., n - 1,
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n

E Ti
i=j+1

and

E Xi

?=j



and noting that (n - j)/(x*)1-/a < (n - j)/ for all j = j*,... , n - 1. We then

obtain

(Pa + ( +s)(X*)l/a -(1 -p)(n - j)/A j < j*,

EX'I- E Ti =i=j i=j+1
i Zi ( a + Ps)(n - j)/(x*)1-1/ - (1 - p)(n - j)/A j > j*.

Note that, since (Pa + F,)(x*)1/a is a constant with respect to j,

max, (ra + Pa)(x*)1/" - (1 - p)(n - j)/A
isj:j*-1

< (ra + r,)(x*)1/* - (1 - p)(x*)/A

a - 1 A1/(1-) (ra + 7)/(a-1)

The first strict inequality is due to the fact that for j j* - 1 = n - x* - 1, we have

x* < n - j. Moreover, for j > j*, we have n - j n - j*, and given that x* is the

maximizer of Eq. (2.5), we have

(ra + P,)(n - j)/(x*)1 ~1/4 - (1 - p)(n - j)/A

(a+ F,)(n - j)/* - (1 -p)(n - j)/A

5 ('a + F )(x*)1/c - (1 - p)(x*)/A. (2.18)

Therefore, we have shown that when the maximizer x* is an integer, then there exists

a sequence of inter-arrival and service times that exactly achieves a waiting time equal

to the bound in Eq. (2.7). We next show that when the maximizer x* is fractional,

then the actual highest waiting time is within a fraction 0 ((1 - p)Q/(Q-1 )) to the

bound in Eq. (2.7). Note that when x* is fractional, due to the concave nature of

the function in Eq. (2.13), the optimal value j* of Eq. (2.11) is either n - [x*1 or

n - [x*J. Denoting the function in Eq. (2.13) by f (x) = #x'/o - yx with f(x*) given
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by Eq. (2.7), we obtain

0 > f(Fx*)f- (x*)
f (x*)

> f (* + 1) - f (*)
f (x*)

f () - {(* + 1)1/a (X*)1/"} - y} (2.19)

pa/(a-1) a (x* + 1)1-1a (2.20)
aa/(a-1)y1/(a-1) {. 1 -(.0

a/(a-1) a(1 + (#/ay)a/(a-1))1-1/a

aa/(a-1) 1/(a-1) { aY4

pa/(a-1) a ((a7)a/(a-1) + #a/(a-1))1-1/a 7 (2.21)

aa/Co-1 7 1/(a-1) # a7
> 3a/(a-1) a 7 + #_7 (2.22)

-a(
2 a-1)/(a-1)ya/(a-1)-a /(a-1))pa/(a-1)(# + a7) -0 (

Eq. (2.20) follows from Eq. (2.19) by the concavity of g(x) - Xl/a function. Eq.

(2.22) follows from Eq. (2.21) given that (a + b) 1 ~/a < al-i/a + bl-/a. In the same

way we can bound the quantity (f ([x*J) - f (x*)) /f (x*). In summary, we have

shown that the bounds presented in Theorem 4 are nearly tight.

2.2.2 Waiting Time in a Multi-Server Robust Queue

We consider a queue with m parallel servers and denote by A, the arrival time

of the n"h job where A, = Et= Te for every n, and C,, the completion time of

the n'h job, i.e., the time the n"h job leaves the system (including service). The

central difficulty in analyzing probabilistic multi-server queues lies in the fact that

overtaking may occur, i.e., the n/h departing job is not necessarily the nth arriving

job. To address this matter, we introduce the ordered sequence of completion times

C(1) 5 C(2) 5 ... 5 C(n) and define Dn as the nth interdeparture time given by

Dn = C(n) - C(n-1). We briefly review the dynamics of the multi-server queue.

Figure 2-1 depicts a two-server queue and the associated quantities of interest An,
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X., W., C., C(n), and Dn.

Customer Customer
12

Customer Customer Customer
3 4 5

A1  A2  A3  C2  A 4  C 1  A5  C4  C3  C5

C(1) C(2 ) C(3 ) C(4) C(s)

Figure 2-1: Dynamics of a Two-Sever Queue.

Looking at the snapshot of the process for five jobs, the waiting times can be found

as

W 1 = 0, W2 = 0, W 3 = C 2 - A3 = C(1) - A 3,

By induction, we obtain the general expression of the nth waiting time

Wn = max{C(nm) - An, 0}

as is well established (see Kiefer and Wolfowitz [1955]). Notice that Eq.

(2.23)

(2.23)

generalizes the Lindley recursion to the multi-server case. Furthermore, we note that

Cn = An +Wn + Xn= An + Sn, (2.24)

Co=O and C,=A,+X, for 1 < r<m, (2.25)

where Sn = Wn + Xn denotes the sojourn time of the n'h job. Note that Eq. (2.25)
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follows by the fact that the first m jobs do not wait. We now provide a closed form

expression for W.

Theorem 5. If {T}; 1 E U', {X}t 1 E U,8, aa = a, = a and p < 1, then

a -1 A'/(~1-) (Pa + Fs/ml/a)a/(Q')

aa/(a-1)/(
1) . (2.26)

Proof. Our proof proceeds in two steps: we first analyze our system by considering

a scheduling policy that effectively treats the multi-server system as parallel single

servers and leads to a policy where no overtaking occurs. This allows us to obtain an

upper bound on the worst case waiting time; we then show that this upper bound is

indeed achieved by a sample path that leads to no overtaking which shows that the

upper bound is tight. Therefore, let us consider a system where the scheduling policy

does not lead to any overtaking, and consequently leads to an upper bound on the

waiting time. For such a system, we have C(i) = Ci, and therefore by combining Eqs.

(2.23), (2.24)

C(n-m) max {C(n- 2 m), An-m} + Xn-m

<max {max {C(n-3m), An-2m} + Xn-2m, An-m} + Xn-m,

max {C(n- 3 m) + Xn- 2m + Xn, An-2m + Xn- 2m + Xn-m An-m + Xn-_}.

Let n = vm + r, 0 < r < m, where r is the remainder of the division of n by m. Thus,

C(n-m) : max C(n-vm) + ( Xn-km, An-(v-l)m + Xn-km,..., An-m+ Xnm.
k=1 k=1

From Eq. (2.23), the nth waiting time is as follows

Wn max C(n-vm) + Xn. - An, An_(vl)m+ Xn-km - An,. 0.
k=1 k=1

Note that n - vm = r and W, = 0 yielding C(,) 5 C, = A, + X, for all 0 < r < m.
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Then,

v-1 v-1
Wn <max Ar + + ( X(v-k)m+r-An, Am+r + ( X(v-k).m+r- An, ... , 0.

k=1 k=1

Expressing the arrival times as An = E"_1 T for every n, we obtain

Wn max ( X(v-k)m+r(k=1
n V-1

- S T , E X(v-k)m+r
e=r+1 k=1

By substituting f = v - k, the above expression can be re-written as

Wn 5 max (Xm+--(V-10:5j!o-1 f=j

vm+r

(
t=jm+r+1

Te, }0 . (2.27)

Note that if we let m = 1 in Eq. (2.27), we recover Eq. (2.8) for the single-server

case.

Moreover, since {X};>1 E U,an and {T};>1 E la

v-1

ZXem, r ( - I)kV/a

A-

vm+r

I ETe m(v - j)
Tj>A - ml/aFa(v - j)/a,

(2.28)

we obtain

W, 5 max
05j5v-1 { (m1/afa + rs) (v - j)1/a

Sm( - p)
A-(v

Making the change of variables x = v - j, we obtain that

leading to

Wn ! max (ml/"Fa +

W < max { (ml/a +
1<X

Note that the right-hand side is an one dimensional concave maximization problem in

the form of Eq. (2.13), maximized at x* (refer to Eq. (2.14)), with # = ml/Fa + F8
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and y = m(1 - p)/A > 0, given p < 1. Substituting 3 and y by their respective values

in Eq. (2.13) yields Eq. (2.26).

We next present a sequence of inter-arrival times that exactly achieves a waiting

time equal to the bound in Eq. (2.26). Consider the following sequence of inter-

arrival and service times, and assume x* is an integer given by x* = mU + r and let

j*= v - U

1/A i=1.,mj*+ r,

Ti= (2.29)

1 (x)a-a i mj* +r + 1,...,n,

1p i 1..., - 1,

Xim+r { (2.30)

- + -( -)/s j*, . .. ,IV - 1,

and choose Xk = 1/p for all other jobs. As before, these sequences belong to Ua and

Ub1, respectively and also do not allow any overtaking. To see that they do not allow

overtaking, note that a later job always experiences a worse service time and an early

inter-arrival time leading to more waiting time.This concludes the proof.

2.2.3 Implications and Insights

To summarize, we obtain the following characterization of the waiting time in an

m-server queue

a -1 A1/(a-1 ) (Pa + P,/mi/a) a/(a-1)
<a/(a-1) (1 _ p)1/(a-1) (2.31)

where the expression simplifies to Eq. (2.7) for m = 1. We present next the main

implications and insights that follow from this closed form expression.

(a) Qualitative Insights
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The robust queue behaves qualitatively the same as the traditional queue. For in-

stance, the classical i.i.d. arrival and service processes with finite variance can be

modeled by setting a = 2. For the single server queue, Eq. (2.31) becomes

A (Fa + Fs) 2

W = - - p (2.32)
4 (1 - p)

and for the multi-server queue

A (Pa + r./mi/2) 2

Wn =- (2.33)
4 1 - p

Contrasting Kingman's bounds (2.3) and (2.4) with the bounds (2.32) and (2.33),

we observe that they have the same functional dependence on A/(1 - p) and on

the variability parameters Fa, F8/m, (correspondingly o , o/m). In this sense, our

approach leads to the same qualitative insights as stochastic queueing theory.

(b) Modeling Heavy-Tailed Behavior

Our approach allows a closed-form expression for the steady-state waiting time for

all values of a E (1, 2), which include heavy tailed random variables. Observe that

heavier the tail, i.e., the smaller the tail coefficient a, the higher the order of the

waiting time, given its dependence on 1/(1 - p)1/(a-). To illustrate, a decrease in

the tail coefficient from a = 2 to a = 1.5 increases the waiting time by one order

of magnitude. This is in agreement with the stochastic queueing theory literature,

where it is known that the waiting time exhibits a heavy-tailed distribution under

heavy tailed services (see Whitt [2000], Crovella [2000]).

During the past decade, studies have shown the existence of heavy-tailed behavior

in some of the main application areas of queueing theory: (a) Call centers (Barabasi

[2005]), (b) Data centers and cloud computing (Loboz [2012], Benson et al. [2010]),

and (c) Internet (Willinger et al. [1998], Leland et al. [1995], Crovella [1997], Je-

lenkovic et al. [1997], Kumar et al. [2000]). Our closed form results allow practioners

in these application domains to understand the dependence of waiting times on vari-

ous system parameters such as the number of servers m and traffic intensity p.
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2.3 Departure Process of Robust Queues

Understanding the mechanism of the departure process from a queue is central to

analyzing networks of queues. As we discussed in Section 1, renewal arrivals do not

lead to renewal departures with the exception of the M/M/m queue. In contrast, in

our approach, we obtain a characterization of the departure process and show that it

enables network analysis in the same way Burke's theorem enables network analysis

for M/M/1 queues.

2.3.1 Departure Process in a Single-Sever Robust Queue

We consider the single-sever robust queue and seek to characterize the uncertainty

set of the departure process. In Theorem 6, we show that the uncertainty set Ud that

characterizes the sequence of the departure times {Di},"i is a subset of the arrival

process U,.

Theorem 6. Let the inter-arrival times {TiJi 1 E w, and services {Xi};>1 E W,

with aa = a, = a and p < 1. Then the sequence of subsequent inter-departure times

{Di},"_1 belong to the uncertainty set Ud such that

n n -k
A

Ud c (D 1 , D 2 ,. , Dn) ;> -Ta, Vk <n - 1 .

Proof. We first consider the sum of the the inter-departure times from

n. We have

n n

ZDi = Wn+Xn+(Ti,
i=1 i=1

n n

1 max EXZ- (Ti) +(T,
~ Z=3 i=3+1 i=1

n i

- max EX.+ZTI.
1<jjn i=1 /

job 1 to job

(2.35)
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Next note that, from the perspective of the job k + 1, the following two cases arise:

Case 1. When the job k + 1 sees an empty queue, that is W+1 = 0. In this case by

using Eq. (2.35), we have

nnj

Di = max >X +ZTi- (2.36)
k+15jj:nEX+>

i=k+1 z=3 i=k+1

Case 2. When the job k + 1 sees a non-empty queue, that is Wk+1 > 0. In this case,

the job k + 1 waits for a time Wk+1 thus delaying the departure of all subsequent

jobs. Therefore, by again using Eq. (2.35), we obtain an inequality as opposed to an

equality given by
nnj

Di 2 max )X +ZTJ. (2.37)
i=k+1 k+1zj=n i=k+1

By combining Eqns. (2.36) and (2.37), we have

nnj

Di 2 ma EX+ i
k+1$j:5n

i=k+1D =3 =k+1
n

Xn+ :Ti
i=k+1

2(n - k)/A - I'a - (n - k)'/a.

This completes the proof. 0

2.3.2 Departure Process in a Multi-Sever Robust Queue

We generalize the characterization of the departure process uncertainty set to the

multi-server robust queue.

Theorem 7. For an rn-server queue, if {T}i>1 E Ua, {X}i1 E U",, aa = Oz.= a

and p < 1 , then the interdeparture times {Di}< 1 belong to the uncertainty set Ud
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where

n n - k
U {Di - A

d" C; (D1, D2, . .. , Dn) i=k+1 > a, Vk<n-1 (2.38)

-i ~ (n - k)'/

Proof. The proof proceeds in a manner very similar to that of the single server case.

We first consider the sum of the the inter-departure times from job 1 to job n. Letting

n = vm + r, where r is the remainder we obtain by dividing n by m, we have

n n

ZDi = Wn+Xn+(T,
i=1i=

> maX X - vm+r vm+r

- maxnu Xim+r - T + T,
t=j i=jm+r+1 i=1

V jm+r

= max ( X,+ E T. (2.39)

From the perspective of the job k + 1 again, the following two cases arise:

Case 1. When the job k + 1 sees an empty queue, that is W+1 = 0. In this case by

using Eq. (2.39), we have

n v jm+r

S D= max (x-i +( Ti)- (2.40)Di(k+1/n]<j<v
i=k+1 +%= i=k+1

Case 2. When the job k +I1 sees a non-empty queue, that is Wk+1 > 0. In this case,

the job k + 1 waits for a time Wk+1 thus delaying the departure of all subsequent

jobs. Therefore, by again using Eq. (2.39), we obtain an inequality as opposed to an

equality given by

n V jm+r

D D max T5x" + ( Ti- (2.41)
i=k+1 (k+1/nj<v =j i=k+1
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By combining Eqns. (2.40) and (2.41), we have

n jm+r

Di > max E Xi+ Ti
(k+1|nj:j<v

i=k+1 [k=3 1=k+1
vm+r

XV+(Ti
i=k+1

n

i=k+1

" (n - k)/A - I'a - (n - k)'/a.

This completes the proof.

2.3.3 Implications and Insights

To summarize, we obtain that the uncertainty set describing the departure process

from a multi-server queue is a subset of the arrival process, which implies that the

worst case waiting time does not amplify as one proceeds through a network. We

next discuss the implications and insights that follow from this result.

(a) Robust Burke's Theorem: Note that the departure process lies in a uncer-

tainty set which is a subset of the input arrival process. This result allows us

to extend our results on the waiting time n a network setting in the same way

Burke's theorem from the stochastic queueing theory literature allows network

analysis. In particular, we propose an algorithm in Section 2.6 which to perform

network analysis.

(b) While the construction of the arrival uncertainty set using limit laws is motivated

by iid inter-arrival times, membership in Ua does not imply that the inter-

arrival times are independent. Similarly, membership in Ud does not imply

that {D 1 , ... , D,} are independent. This is consistent with stochastic queueing

theory, where the interdeparture times are in general dependent. Our framework

provides a concrete way to bound the departure process.
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2.4 The Robust Queueing Network Analyzer

Consider a network of J queues serving a single class of jobs. Each job enters the

network through some queue j, and either leaves the network or departs towards

another queue right after completion of his service. The primitive data in the queueing

network are:

(a) External arrival processes with parameters (Aj, raj, aa,j) that arrive to each node

j = 1,...,J.

(b) Service processes with parameters (pj, F,,, jaj), and the number of servers

mn, j = 1,..., J.

(c) Routing matrix F = [fij], i, j = 1, . . . , J, where fij denotes the fraction of jobs

passing through queue i and are routed to queue j. The fraction of jobs leaving

the network from queue i is 1 - 3 fig.

In order to analyze the waiting time in a particular queue j in the network, we

need to characterize the overall arrival process to queue j and then apply Theorem

4 for single-server and Theorem 5 for multi-server queues. The arrival process in

queue j is the superposition of different processes, each of which is either a process

from the outside world, or a departure process from another queue, or a thinning of

a departure process from another queue, or a thinning of an external arrival process.

Correspondingly, in order to analyze the network, we need to characterize the effect

that the following operations have on the arrival process:

(a) Passing through a queue: Under this operation, we characterize the departure

process {Di}i> 1 when an arrival process {Ti}i> 1 E Ua passes through a queue.

We have already accomplished this in Theorems 6 and 7 for the single-server

and multi-server queue, respectively, and have shown that {Di};> 1 E Ua when

n -+ oo.

(b) Superposition of arrival processes: Under this operation, m arrival processes

{Tij}>1 E Uj, j = 1, ... , m combine to form a single arrival process. Theorem

8 characterizes the uncertainty set of the combined arrival process.
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(c) Thinning of an arrival process: Under this operation, a fraction f of arrivals

from a given arrival process is classified as type I while the remaining arrivals

are classified as type II. In Theorem 9, we characterize the uncertainty set of

the resulting thinned type I process.

2.4.1 The Superposition Process

Let us consider a queue j that is fed by m arrival processes. Let Uj denote the

uncertainty set representing the inter-arrival times {T }i;>1 from arrival process j =

1,... , m. We denote the uncertainty set of the combined arrival process by up.

Given the primitives (As, ra,j, a), j = 1,..., m, we define the superposition operator

(Asup, Fa,sup, asup) = Combine{ (Aj, Faj,a),j = 1, ... , m

where (ASP, Fa,sp asu,) characterize the merged arrival process {T};> 1.

Theorem 8 (Superposition Operator). The superposition of arrival processes char-

acterized by the uncertainty sets

n n - k
( Ti -

u C ...,Tn) i=k+1 j 1 ,

1n-)/a ~-rj , Vk < n - 1
(n--ak)

(2.42)

results in a merged arrival process characterized by the uncertainty set

" n - k
( Ti -A

uP~= j(Ti ,T/a -nFasup , Vk < n - 1
(n - k)"

where

m ( m )(a-1)/a
M (Ajra/(a-1)

Asup = 1 Aj, asup = a, Fa,Sup ____ /(=c m (2.43)

j=1 EAj=
j=1
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Proof. We first provide a proof for the case where m = 2, and then generalize the

result through induction.

(a) Let {T}i>1 E Uj, j = 1, 2 where Uj is given by Eq. (2.42), that is

ni

A T > (nj - kT) -Aja,j (nj - kj)", j = 1, 2.
i=kj+1

Summing over index j = 1, 2, we obtain

fli nl2

1 S +TA2  2  -1~ + n2 - k2)kk2  (na,i 1 - k)1 /a
i=ki+1 i=k 2 +1

-A 2ra,2 (n2 - k2 )1/0. (2.44)

Without loss of generality, consider the time window T between the arrival of the k"h

and the n'h jobs from arrival process 1, and assume that, within period T, the queue

sees arrivals of jobs (k2 + 1) up to (n 2 - 1) from arrival process 2,

ni n2

T = T1 < E T. (2.45)
i=ki+1 i=k 2 +1

During time window T, the queue receives a total of (ni - ki + n2 - k2) jobs, with

(ni - ki + 1) arrivals detected from the first arrival process (including job k1 ), and

(n 2 - k2 - 1) arrivals from second arrival process. Therefore, period T can also be

written in terms of the combined inter-arrival times {T} 1 as

n
T = Ti, where k = ki + k2 , and n = n i + n2. (2.46)

i=k+1

Combining Eqs. (2.45) and (2.46) yields

n ni n2

(A + A2 )5Ti A, T 1J+A 2  
2

i=k+1 i=ki+1 i=k2 +1
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which by Eq. (2.44) can be written as

n

(A1 + A2) ik T 2 (n - k) - Ara,1 (ni - k1)'/4 - A2]a,2 (n2 - k2 )1/'.
i=k+1

Rearranging and dividing both sides by (A, + A2) and (n - k)11', we ontain

n n - k
E Ti - A

i=k+1 
1/a

(n - k)'/
Fa,sup(n, k), where AS, = A1 + A2, asu = a, and

A 1+A- Fa i
ni - ki 1/a

(ni- ki +n2 -k2)

A2  (F2 n 2 - k2  l/a

A1 + A2  kni - ki + n 2 - k2

By letting
X= n kik , (2.48)

ni, ki +n2 -k2l

the maximum value that PaSUP(n, k) can achieve over the range of (n, k) can be de-

termined by optimizing the following one-dimensional concave maximization problem

over x E (0, 1)

max #xOi/"
zE(o,1)

+ 6 (1 - X) 1/} - (#a/(a-1) + a(a-1))(a-1)/a (2.49)

#A ,aj and 6- A2  r,2
-A 1 + A2 2

Substituting 3 and 6 by their respective values in Eq. (2.49) completes the proof for

m = 2 with

Fa,sup -

[(Aira,1)a/(a-1) + (A21Fa, 2)a/(a1)1 (a-l)/a

A1 + A2

We refer to this procedure of combining two arrival processes by the operator

(A8,,, F,, csasup) = Combine {(A, ra,1, a), (A2 , Fa,2, a)} .
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FaSUP(n, k)
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(b) Suppose that the arrivals to a queue come from arrival processes 1 through (m-1).

We assume that the combined arrival process belongs to the proposed uncertainty set,

with
m-1((-1)

m-1 
E 'Aj a/(~aa-1)

= Aj and I, =,

j=1

Extending the proof to m sources can be easily done by repeating the procedure

shown in part (a) through the operator

(Asup, a,sup, asu) = Combine {(X, Ia, a) , (Am, ra,m, a)}

This concludes the proof. L

2.4.2 The Thinning Process

We consider an arrival process {T} ;>1 in which a fraction f of arrivals are classified

as type I and the remaining are classified as type II. Moreover, since we consider de-

terministic splitting, the values of f are necessarily rational by implementation.Given

the primitives (A, Pa) of the original process and the fraction f, we define the thinning

operator

(Asut Fa,aspit, a) = Split{ (A, ra, a), f}

where (Apuit, Fa,split, a) characterizes the thinned arrival process {T i Ii>1.

Theorem 9 (Thinning Operator). The thinned arrival process of a fraction f of

arrivals belonging to ua is described by the uncertainty set

n T ' I' n k
U,a{TiE} i =k+1 Asiit , (2.50)

plit I~ipli~i_> i1/l -ITa,spt, k <n -1
(n - k)

where A,,it = A -f and Fa,,plit = a -- )
Proof. Consider an arrival process described by Ua and consider the time window
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between the k"h and the nth arrivals. Suppose that a fraction f of these arrivals

are type I arrivals, i.e. , out of the total of (n - k) arrivals excluding the kth job,

(nspit - ksput) are type I arrivals, such that

f = nplt - kst
n - k

Let {Tipt}i denote the inter-arrival times in the thinned arrival process. Note that

nsplit n

L Tisplit = T ,
i=ksplit+1 i=k+1

with equality satisfied when the kth and nth jobs are both classified as type I. By

Assumption 1, we obtain

8 it plit n - k 
a-S, T~it A (l)~a

i=ksplit+1

We obtain the upper bound in Eq. (2.50) by substituting (n - k) by (npit - kspuit)/f.

This concludes the proof. 0

Remark: The superposition and thinning operators are consistent. In fact, it is easy

to check that, for splitting fractions f3 such that f = 1,

Combine SplitI (A, ra, a) , fj , j 1, ... ,m (APO a).

2.4.3 The Overall Network Characterization

Having built an understanding of the superposition, departure and thinning pro-

cesses, we are now in a position to present our approach for performing exact analysis

of queueing networks, which is a major contribution of this paper. We perceive the

queueing network as a collection of independent queues that could be analyzed sep-

arately. We employ the Combine and Split operators in view of characterizing the

effective arrival process to each queue in the network. Knowledge of the effective
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arrival process allows to study the jobs' waiting time at this queue through Theorems

4 and 5 as well as its departure process through Theorems 6 and 7 for a single-server

and multi-sever queue, respectively. Theorem 10 characterizes the effective arrival

process perceived at each queue in the network.

Theorem 10. The behavior of a single class queueing network is equivalent to that

of a collection of independent queues, with the arrival process to node j characterized

by the uncertainty set

n n - k
E TI - -

T (T , ... ,Tn) i=k+1 A, I , J,

(n - k)-

where { 1 , 2 ... ,AIj} and {laj,1a2, ... a,j} satisfy the set of equations for all

j = 1, . ... , J

J

Aj = Aj + (Xifiy), (2.51)
i=1

-(A raj)a/(a 1) + i ai) fi](a-1)/a

Proof. Let us consider a queue j receiving jobs from

(a) external arrivals described by parameters (A,, T aj, a), and

(b) internal arrivals routed from queues i, i = 1, . . . , J resulting from splitting the

effective departure process from queue i by fij. By Theorems 6 and 7, the

effective departure process from queue i has the same form as the effective

arrival process to queue i described by the parameters (Xi, ra,i, a).

The effective arrival process to queue j can therefore be represented as

(Xj, Pa, a) = Combine (A, FaJ, a) , (Split{ (Xi, ra,, a) , }) ,i 1,... ,J}

(2.53)
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By Theorem 9, we substitute the split processes by their resulting parameters and

obtain the superposition of J + 1 arrival processes

(Xj, raj, a) = Combine (A, Fja a), figli iPai 7a) ,i = 1, ... , J

(2.54)

Applying now Theorem 8 yields Eqs. (2.51) and (2.52). L

Note that in our analysis, we have assumed that each queue in the network perceives

one stream of external arrivals. However, Theorem 10 can be extended in the case

where external arrivals are thinned among different queues in the network. This can

be done by adding a node in the network for each thinned external arrival process

and appending its thinning probabilities to the transition matrix F. We now provide

the main insights and implications that arise from Theorem 10.

(a) Network Performance Analysis: Theorem 10 allows us to compute perfor-

mance measures in a queueing network by considering the queues separately. For

instance, the waiting time W at queue j can be determined through Theorems 4 and

5 with an effective arrival parameters (A,, Pa,j, a) and service parameters (pi, P8 , a).

(b) Tractable System Solution: Determining the overall network parameters

(A, F) amounts to solving a set of linear equations. To see this, substitute xj =

(Agra'j)O ) ,for all j = 1, ... , J, in Eqs. (2.51) and (2.52) to obtain the following

linear system of equations

Aj -Aj + Zifij =1 J
i= 1

zj = (AjFa,j)a/(a-1) + fixi j = 1,... ,J.
i=1

Given that the routing matrix F = {fj is sub-stochastic, the linear system of equa-

tions solves for (A,, xz), hence allowing to determine ra,j, for all j = 1, ... , J.
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2.5 Queues with Asymmetric Heavy-tailed Arrival

and Service Processes

In this section, we extend our results in Sections 3-5 for the case of asymmetric heavy-

tailed arrival and service processes, that is, when a, # a,. We present analogs of

Theorems 4-10 that allow us to analyze queueing networks composed of queues with

arbitrary values for aa's and a,'s. In this section, we let 11,=j, denote the indicator

variable defined by

1, if x = y,
11x=1 =

0, otherwise.

We omit the proofs as they are straightforward generalizations of the proofs in The-

orems 4-10.

Waiting Times with aa - as

As discussed in Section 3, we compute the waiting times W by solving the optimiza-

tion problem

max Oxl/a + 6x"/"s - yx, (2.55)

where # = ml/aafa, 6 = F, and -y = m(1 - p)/A. Problem (2.55) is a concave

maximization problem, which can be solved numerically using Newton's method. We

next present a bound on the waiting time, which is asymptotically tight as p a 1,

but not necessarily tight for other p.

Theorem 11. If {T};>1 E Ua, {X j} 1 E U" and p < 1, then

- 1 A/~- (Pa + 1/m)

where Z = min (aa, a,).

Note that the exponent of (1 - p) depends on the T term corresponding to the

heaviest among the arrival and service processes.
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Superposition Process

In Section 5, we have assumed that all the combining arrival processes have the same

value for aa = a. We next consider the case when the arrival streams are characterized

by different a's.

Theorem 12. The superposition of arrival processes characterized by the uncertainty

sets

n n - k

U~a (TI Ti - Au~z ={(T1,... ,T4) Z~k+1 n'' kGn-
i~k ~ > -raj Vk < n - 1

(n - k)l/a ' ' -

results in a merged arrival process characterized by the uncertainty set

" n - k
Ua (T1 T( Ti - AuIW", = (T 1, . .. , T4) ZTk+1 ""/ >i=k+ -Fa,su, Vk < n - 1

(n - k)'/ }
where

m a ( i{ cla . ZVI - (A Pa ,j ) aa /(a a ~ ) ( - 1 )/ a

AP j i=MnCa , fa,aup = r
j=1 :A

j=1

Thinning Process

We note that the split arrival process inherits the aa term corresponding to the

thinned arrival process. Hence, Theorem 9 still holds in this case.

The Generalized Queueing Network

We consider a queueing network and characterize the parameters of the effective ar-

rival processes to each queueing node in the network under the assumption of asym-

metric tail behavior. We observe that the parameter ia,j describing the tail behavior
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of the effective arrival process depends on the tail behavior of all the queueing nodes

that communicate with node j.

Theorem 13. Consider a queueing network with J queues and external arrival pro-

cesses characterized by (Aj, ra,j, aa,j). The behavior of this network is equivalent to

that of a collection of independent queues, with the arrival process to node j charac-

terized by the uncertainty set

n n - k
_.a 1: Ti -a2 c- T,.. i=k+1 A3  ,k<J =1---,J

( k/- a- rj , Vk < n - I
(n -k "

where { 1 ,12 ,... ,Aj} and {Fa,1,Fa,2,..- Xa,J} satisfy the set of equations for all

i= 1

(7a.J-1)/Na~J

(ajj- [ aj) aa,j/(aa,j-1) + Sa,i)aa,i/(a,i-1) . ( la

with Za,j = mina:{i_} 'Oa,i, where {i -+ j} means that node i communicates with node

j in the network with routing matrix F.

We provide the main insights and implications that arise from Theorem 13.

(a) Effect of Heavier Tails: Theorem 13 implies that the tail behavior of the

effective arrival process at a given queue is determined by the "heaviest" tail

among all departure processes arriving to this queue including the external

arrival process to the queue. If all nodes communicate with each other, the tail

behavior of the queueing network is then determined by the heaviest tail among

the external arrival processes.

(b) Tractable System Solution: Note that the set of equations that characterize

the effective arrival process are similar to Eqs. (2.51) and (2.52). The only
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difference in the system for the asymmetric case is the presence of indicator

variables 1
{a,=3aj which isolate the heaviest tail among the merged arrival

processes at any given node. Given that these indicator variables are known

from data, one could think of this system as a linear system of equations (as

for Eqs. (2.51) and (2.52)) with fy = 1{ =a4j - fij. The modified routing

matrix with entries Ai remains sub-stochastic allowing a unique solution to this

system of linear equations.

2.6 Computational Results

In this section, we present computational results to demonstrate the effectiveness of

our approach in analyzing queueing networks. We shall refer to our approach as the

Robust Queueing Network Analyzer (RQNA) in the remainder of this chapter. Our

objectives consist of

(1) comparing the results obtained by RQNA with the results obtained from simu-

lation and the Queueing Network Analyzer (QNA) proposed by Whitt [1983],

and

(2) investigating the relative performance of RQNA with respect to system's network

size, degree of feedback, maximum traffic intensity, and diversity of external

arrival distributions.

In view of comparing our approach to simulation and QNA, we consider instances of

stochastic queueing networks with the following primitive data:

(a) The distributions of the external arrival processes with parameters (Aj, o-a,j, aa,j)

with coefficients of variation ca,j = Ajo j 1,

(b) The distributions of the service processes with parameters (pj, o,,j, aj) with

coefficients of variation c = p0o2 and the number of servers mj, j = 1, . . . , J.

(c) Routing matrix F = [fVi], i,j = 1,... , J, where fij denotes the fraction of jobs

passing through queue i routed queue j. The fraction of jobs leaving the network
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from queue i is 1 - E. f .

To apply RQNA on stochastic queueing networks, we first need to translate the

stochastic primitive data given above into robust primitive data, namely uncertainty

sets with appropriate variability parameters (FajF 8 ,) for each j = 1,... , J. To

achieve this goal, we first describe in subsection 2.6.1 how we use simulation on

a single isolated queue to construct parameters (Pa, F,) given arrival and service

distributions. This enables us to transform the stochastic data into uncertainty sets

over external arrival and service processes. We then present in subsection 2.6.2 an

algorithm that details the procedure employed by RQNA to compute the desired

performance measures for a network of queues. In subsection 2.6.3, we report on the

performance of RQNA in comparison to QNA and simulation, while in subsection

2.6.4, we discuss on the performance of RQNA as a function of various network

parameters.

2.6.1 Derived Variability Parameters

Along the lines of QNA, we use simulation to construct appropriate functions for

the variability parameters. To do so, we consider a single queue with m servers

characterized by (p, aa, Us, a, a8 ) and model its variability parameters (Pa, F,) as

follows

ar a = a and F, = f(p, ca, Us, a,, as). (2.57)

Motivated by Kingman's bound (see Eq. (2.4)), we consider the following functional

form for f(.)

f (p, Us, Ca, aa, as) = (0 + 01 - o2/m + 02 . a 2 m)( - - (a-i)/4,

where a = min{aa, as }. We run simulation over multiple instances of a single queue

while varying parameters (p, Ua, Us, aa, a.) for different arrival and service distribu-

tions. We employ linear regression to generate appropriate values for 60, 01 and 02

such that the values obtained for IV, by Theorem 11 are adapted according to the ex-
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pected values of the waiting time obtained from simulation. We propose two different

adaptation regimes:

(a) Service Distribution Dependent Adaptation Regime where we allow the set of

values

(0, 01,62)

to depend on the service distribution, and

(b) Service Distribution Independent Adaptation Regime where we obtain a single

set of values (00,01,02).

We would naturally expect that knowledge of the specific service distributions leads

to more accurate answers and indeed this is verified by the results below. The mo-

tivation for considering the service independent adaptation regime is that often we

might not know the service time distributions. We also note that we do not perform

an adaptation of the values of (00, 01, 02) for each arrival distribution, since in the

network, we have no prior knowledge of the arrival distribution at a given queue. The

only known distribution at each queue is in fact the service distribution, hence the

proposed adaptation methods. We report the values obtained for both adaptation

regimes in Table 2.1. Using the tabulated values for (0, 01,02), Tables 2.2 and 2.3

(00,1,602) Service Dependent Service Independent
Pareto Normal

00 -0.05 -0.02 -0.063
61 1.09 1.0301 1.072
02 1.11 1.0409 1.068

Table 2.1: Adapted 0 values.

present the percentage errors of the waiting times obtained by Theorem 11 relative

to the expected waiting time values obtained by simulation for a single queue with

multiple servers.

We observe that errors are within 8% and 9.5% of simulation for the single-server and

multi-server queue, respectively. Note that adapting for the different service distri-

butions leads to smaller errors in comparison to the service independent adaptation
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Case Pareto Distribution Normal Distribution

(ca, c ) RQNA* RQNA** RQNA* RQNA**
(0.25,0) 6.812 2.912 6.547 1.185
(0.25,1) -7.314 -3.080 6.483 3.246
(0.25,4) -6.583 -2.708 -7.268 -3.172

(1,0) 7.665 0.982 -5.505 -2.960
(1,1) 6.423 1.357 -6.579 -2.114
(1,4) 6.123 2.485 6.070 -1.532
(4,0) -5.701 -1.729 6.050 1.380
(4,1) -7.839 -1.824 -7.434 -3.084
(4,4) -5.886 -2.231 7.405 1.334

Table 2.2: Percentage errors for single
pendent ** Service Dependent)

server queues using RQNA. (* Service Inde-

Case 3 servers 10 servers

(c2, c2) Normal Pareto Normal Pareto
(0.25, 0) 8.822 -9.356 8.453 -9.269
(0.25, 1) 7.238 -7.957 9.264 -8.839
(0.25, 4) -8.195 9.856 -8.842 8.894

(1, 0) -10.360 -8.833 -8.508 -9.420
(1, 1) -7.985 8.929 -8.583 9.365
(1,4) 8.548 8.255 7.978 9.046
(4, 0) -7.296 7.865 -9.209 9.514
(4, 1) -7.593 -7.913 -8.739 -9.553
(4, 4) -9.372 -8.776 -8.960 -9.338

Table 2.3: Percentage errors for multi-server queues using RQNA.

regime, with errors within 3% and 7.5% for the single-server and multi-server queue,

respectively.

2.6.2 The RQNA Algorithm

Having derived the required primitive data for our robust approach, we next describe

the RQNA algorithm we employ to compute performance measures of a given network

of queues.

ALGORITHM 1. Robust Queueing Network Analyzer

66



Input:] External arrival parameters (Aj, ca,j, Oa,j), service parameters (Pi, asy, a,J),

and routing matrix F = [fij), for i, j = 1, .. . , J. Input also the service times distri-

butions for the case of service dependent adaptation regime.

Output: Waiting times W at each node j, j = 1, ... , J.

1. For each external arrival process i in the network, set 1 a,i = 0a,.

2. For each queue j in the network with parameters (py, us,j, as,j), compute

" (a) the effective parameters (A,, 7 aj, ,j) according to Theorem 13 and set

p3 = )j /pAyj,

" (b) the variability parameter Fs,, = f (pj, a,j, Us,j,a ,j, as,j), and

" (c) the waiting time W at node j using Theorem 11.

3. Compute the total sojourn time of the network by computing

" (a) the set of all possible paths P in the network,

" (b) the fraction f, of jobs routed through each path p E P,

" (c) the corresponding total sojourn time S, across each path p E P by summing

the

" individual waiting times and service times at all nodes associated with this path,

" (d) the total sojourn time in the network S= E, fP$,.

Note that, in Step 2(b), we treat each queue j in the network separately as a single

isolated queue with an effective arrival process described by the variability parameter

Fa,J. Note that we use Pa,j as an input to f(.) in place of the standard deviation.

This is motivated from our use of Fa = Oa for the single queue case (see Eq. (2.57)).

It is also possible to compute F,, using either the service independent or the service

dependent adaptation regime based on whether we know the specific service time

distribution at each queue.
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2.6.3 Performance of RQNA in Comparison to QNA and

Simulation

We consider the Kuehn's Network (see Kuehn [1979]) and perform computations as-

suming queues have either single or multiple servers, with normal or Pareto distributed

service times. Table 2.4 reports the percentage errors between the expected sojourn

times calculated by simulation and those obtained by each of QNA and RQNA, as-

suming all nine queues in the network have a single server. Note that the sojourn

time is defined as the time elapsed between the arrival of a job to the network until

his departure from the network.

We observe that

(a) RQNA produces results that are often significantly closer to simulated values

compared to QNA. Improvements generally range one order of magnitude better

in favor of RQNA.

(b) RQNA is fairly insensitive to the heavy-tailed nature of the service distributions.

In fact, the sojourn time percentage errors for both the Pareto and normally

distributed services are within the same order.

(c) Adaptation of (60, 61,62) to service distribution yields smaller errors up to 6%.

(d) RQNA's performance is generally stable with respect to the number of servers

at each queue, yielding errors within the same range for instances with 3 to 10

servers per queue.

2.6.4 Performance of RQNA as a Function of Network Pa-

rameters

We investigate the performance of RQNA (for the service dependent adaptation

regime) as a function of the system's parameters (network size, degree of feedback,

maximum traffic intensity among all queues and number of distinct distributions for

the external arrival processes) in families of randomly generated queueing networks.
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Case Pareto Normal
(c 2 1 , c2,8) QNA RQNA* RQNA** QNA RQNA* RQNA**
(0.25,0) 22.78 8.281 3.291 15.28 7.786 1.389
(0.25, 1) 18.48 -8.82 -3.478 12.08 8.329 3.869
(0.25,4) 20.13 -7.122 -3.052 11.57 -7.922 -3.882

(1,0) 19.01 8.176 1.056 12.68 -6.367 -3.797
(1, 1) 14.06 6.832 1.799 5.84 -7.125 -2.555
(1,4) 10.15 6.878 2.893 -10.45 7.911 -0.681
(4,0) 21.82 -7.244 -1.934 10.95 6.739 1.290
(4,1) 23.71 -8.729 -2.139 14.18 -9.28 -3.508
(4,4) 17.51 -7.173 -2.974 11.55 9.251 1.671

Table 2.4: Percentage errors on Kuehn's network using RQNA. (* Service Independent
** Service Dependent)

Tables 2.5 and 2.6 report the sojourn time percentage errors of RQNA relative to sim-

ulation as a function of the size of the network and the degree of feedback for queues

with single and multiple servers, respectively. In the case of multi-server queueing

networks, we randomly assign 3, 6 or 10 servers to each of the queues in the network

independently of each other.

% Feedback / No of nodes 10 15 20 25 30
Feed-forward networks 0% 2.86 2.94 3.03 2.92 3.21

20% 3.12 3.25 3.29 3.71 3.64
35% 3.74 3.81 4.02 4.07 4.14
50% 4.42 4.63 4.84 5.23 5.65
70% 4.85 5.16 5.34 5.68 5.86

Table 2.5: Sojourn time percentage errors of RQNA relative to simulation as a func-
tion of the size of the network and the degree of feedback for queues with single server
queueing nodes.

Tables 2.7 and 2.8 present the sojourn time percentage errors for RQNA relative to

simulation as a function of the maximum traffic intensity among all queues in the

network and the number of distinct distributions for the external arrival processes.

Table 2.7 presents the results for networks with only single server queues, while Table

2.8 presents the results for networks in which each queue was randomly assigned 3, 6
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% Feedback / No of nodes 10 15 20 25 30
Feed-forward networks 0% 3.594 3.546 3.756 3.432 3.846

20% 3.696 4.014 4.02 4.392 4.452
35% 4.32 4.776 4.956 5.034 4.878
50% 4.95 4.806 5.358 5.67 6.192
70% 5.016 5.556 5.934 5.958 6.03

Table 2.6: Sojourn time percentage errors of RQNA relative to simulation as a func-
tion of the size of the network and the degree of feedback for queues with multi-server
queueing nodes.

or 10 servers. Specifically, we design four sets of experiments in which we use one type

(normal), two types (Pareto and normal), three types (Pareto, normal and Erlang)

and four types (Pareto, normal, Erlang and exponential) of arrival distributions. We

observe that

(a) Errors are slightly higher for multi-server networks compared to single-server

networks.

(b) RQNA's performance is generally stable for higher degrees of feedback with errors

below 6.2%.

(c) RQNA is fairly insensitive to network size with a very slight increase in percent

errors between 10-node and 30-node networks.

(d) RQNA presents slightly improved results for lower traffic intensity levels. It is

nevertheless fairly stable with respect to higher traffic intensity levels.

(e) The percentage errors generally increase with diversity of external arrival distri-

butions, but still are below 8.5% relative to simulation.

2.7 Concluding Remarks

We revisited in this chapter the problem of analyzing the performance measures of a

single-class queue with multiple servers. While the analysis of the GI/GI/m queue is

still an open problem under traditional queueing theory, we proposed an uncertainty
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# different distributions p = 0.95 p = 0.9 p = 0.8 p = 0.65 p = 0.5
1 3.34 3.26 3.17 3.02 2.72
2 6.38 5.85 5.47 4.87 3.24
3 7.43 7.09 6.04 5.88 4.53
4 7.56 6.98 6.81 6.29 5.18

Table 2.7: Sojourn time percentage errors for RQNA relative to simulation as a
function of the maximum traffic intensity and the number of distinct distributions for
the external arrival processes for single server queueing networks.

# different distributions p = 0.95 p = 0.9 p = 0.8 p = 0.65 p = 0.5
1 4.05 4.092 3.618 3.678 3.228
2 5.082 7.104 6.42 6.108 3.714
3 5.916 6.318 6.9 7.344 5.676
4 7.672 8.644 7.284 6.852 5.37

Table 2.8: Sojourn time percentage errors for RQNA relative to simulation as a
function of the maximum traffic intensity and the number of distinct distributions for
the external arrival processes for multi-server queueing networks.

set model which allows to solve it exactly. In particular, we derive a closed form

expression for the waiting times and extend the analysis to arbitrary networks of

queues through the following key principle: a) the departure from a queue, b) the

superposition, and c) the thinning of arrival processes have the same uncertainty

set representation as the original arrival processes. Our robust model also tackles

heavy-tailed arrival and service processes, yielding closed-form solutions that are not

available under traditional queueing theory. We proposed RQNA to analyze queueing

networks and found that RQNA (with service dependent adaptation regime) yields

results with error percentages in single digits (for all experiments we performed)

relative to simulation and performs significantly better than QNA. Moreover, the

performance of RQNA is to a large extent insensitive to the number of servers per

queue, network size, degree of feedback and traffic intensity, and somewhat sensitive

to the degree of diversity of external arrival distributions in the network. We feel

that the proposed approach allows us to analyze queueing systems in a tractable way

and fulfill the need to obtain both qualitative insights as well numerical tractability

that has eluded queueing theory to a large extent in its over 100 years history. It also
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opens the door to analyze more involved queueing systems. Indeed we have extended

the proposed approach to performance analysis of queueing systems in the transient

domain in Bandi et al. [2012].
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Chapter 3

Robust Optimal Auctions

3.1 Auction Theory

The problem of optimal auction design is a central problem in Economics which arises

when an auctioneer is interested in selling multiple items to multiple buyers with

private valuations for the items. The auctioneer is faced with the task of designing

the rules of the auction so as to maximize revenue, while also incentivizing the buyers

to reveal their true valuations when they participate in the auction. Building on the

work of Vickrey [1961], Myerson [1981] considers the optimal auction design problem

for the sale of a single item to buyers with unlimited budgets. He considers this

problem in a probabilistic setting, that is, he assumes that the buyers' valuations

are drawn from independent, but not necessarily identical, probability distributions.

These distributions are assumed to be common knowledge, so that all buyers and

the auctioneer know the distribution from which each buyer's valuation is drawn. He

obtains a characterization of the optimal solution as a second price auction with buyer

dependent reservation prices, which for the special case of identical buyers, reduces

to that of a second price auction with a single reservation price.

Given the insightful solution of Myerson, there has been extensive work aimed at

solving the following more general auction design problems for buyers with:

(P1) Public budget constraints;
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(P2) Private budget constraints;

(P3) Correlated valuations.

There have been two predominant modeling paradigms in the literature: (a) the

probabilistic approach, also referred to as the Bayesian approach in the literature;

and (b) the adversarial approach, also referred to as the prior-free approach in the

literature. We next present a brief literature review of auction theory with respect to

Problems (P1)-(P3), organized around these predominant modeling paradigms.

3.1.1 Relevant Literature

Auction theory has always been one of the most active areas of Economics and with

the rise of the Internet and E-Commerce, its significance has only increased. In

the past decade, auction theory has also attracted the attention of researchers in

Theoretical Computer Science. In what follows, we organize our review of the relevant

literature around the predominant modeling paradigms mentioned earlier. For a more

comprehensive review, we refer the readers to Klemperer [1999], Krishna [2002], Vohra

[2011] for the Economics and Nisan et al. [2007] for the Computer Science perspective,

respectively.

The Probabilistic Approach

This approach has been widely studied (see Benoit and Krishna [2001], Brusco and

Lopomo [2008], Che and Gale [1996, 2000], Laffont and Robert [1996], Manellia and

Vincent [2007], Pai and Vohra [2008], Thanassoulis [2004], Wilson [1997]). The key

primitive assumptions are:

(a) Buyers' valuations are sampled from a joint probability distribution;

(b) The auctioneer has exact knowledge of this joint distribution;

(c) The auctioneer is risk neutral and seeks to obtain a mechanism in order to max-

imize the expected revenue.
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In this setting, we divide the literature based on the problem that was solved.

Public Budget Constraints (Problem P1):

The analysis of budget constrained auctions was first done by Laffont and Robert

[1996], where they assume that all buyers have the same common knowledge bud-

get constraint and derive the subsidy-free (i.e., payments are non-negative) optimal

auction. Under the same assumption of equal budgets, Maskin [2000] obtained the

optimal auction that maximizes social surplus. Malakhov and Vohra [2004] relaxed

the assumption of symmetrical budgets and obtained the revenue maximizing auction

for the case of two buyers, only one of whom is budget constrained. Chawla et al.

[2010] obtained the first approximation algorithm for the general problem where they

show that a sequential all-pay mechanism is a 4-approximation to the revenue of the

optimal truthful mechanism with a discrete valuation space for each bidder. They

also show that a sequential posted price mechanism is an 0(1)-approximation to the

revenue of the optimal truthful mechanism, when the valuation space of each bidder

is a product distribution that satisfies the standard hazard rate condition. Dobzinski

et al. [2008] show that an adaptive version of the "clinching auction" (Ausubel [2004])

is Pareto-optimal and incentive compatible. Moreover, they show that it is the unique

auction with these properties, when there are exactly two bidders. The more general

problem, however, remains open in the setting of public budget constraints under

probabilistic assumptions.

Private Budget Constraints (Problem P2):

Dobzinski et al. [2008] show that there is no incentive compatible, individual ratio-

nal and Pareto-optimal deterministic auction, for any finite number m > 1 of units of

a single indivisible good and any n > 2 players, when the budgets are private (see also

the discussion in the beginning of Section 3.4. In the same setting, Borgs et al. [2005]

showed that it is impossible to design a non-trivial truthful auction which allocates

all units. Instead they provide the design of an asymptotically revenue-maximizing

truthful mechanism which may allocate only some of the units. Furthermore, Pai
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and Vohra [2008] show several interesting qualitative properties of such auctions by

discretizing the valuation space and formulating a linear optimization problem, whose

dimension is exponential in the number of buyers. Based on these results, there is a

need to consider other notions of optimality in order to obtain numerically tractable

auction mechanisms.

Correlated valuations (Problem P3):

For the case of correlated buyers which was left open by Myerson [1981], some of

the early work was done by Cremer and McLean [1988] who solved it in a weak sense,

that is, using auctions that are individually rational only in expectation. However,

the computational complexity of designing the optimal ex-post individually rational

auction for correlated valuations has been open until recently, when Papadimitriou

and Pierrakos [2011] obtained a polynomial time algorithm for the two buyer case

and established an inapproximability result for three or more buyers.

The Adversarial Approach

The objective in the adversarial approach is to identify a single mechanism that always

has good performance, e.g., under any distributional assumption. There have been

broadly three approaches that have been used so far:

(a) The resource augmentation approach, also known as, the bicriteria approach

which was introduced in Bulow and Klemperer [1996], is based on the observa-

tion that in some cases increasing competition, e.g., by recruiting more agents,

and running the second price auction mechanism increases revenue when com-

pared to running the (optimal) Myerson mechanism in the original setting.

(b) The main idea in the average-case approach is to show that, for a large class of

distributions and settings, there is a single mechanism that approximates the

revenue of the Bayesian optimal mechanism. For example, when the probability

distribution is known, the second price auction mechanism with a particular way

(the so-called monopoly reservation price) of calculating the reservation prices is
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approximately optimal by a constant factor (of 2). Dhangwatnotai et al. [2010]

relaxes the need to know the probability distribution of the valuation and uses

a sampling-based approach to calculate the reservation price. For the case of

correlated buyers, Ronen [2001] proposed a mechanism for the correlated case

that achieves half of the optimum revenue.

(c) The worst-case approach, where the idea is to define an appropriate perfor-

mance benchmark and attempt to obtain mechanisms that approximate this

benchmark on any worst-case valuation vector. Goldberg et al. [2006], in a

negative result, showed that when the adversary knows all of the buyers' val-

uations exactly, then no incentive compatible auction can obtain more than a

vanishingly small fraction of its revenue in the worst case. Under this approach,

it is desirable to identify the right kind of performance benchmarks, but this

problem is still open.

All the aforementioned results have been for the cases of buyers without budget

constraints and, except for the result in Ronen [2001], they all assume independent

valuations. Thus, Problems (P1)-(P3) are open under the adversarial approach.

3.1.2 Motivation and Contributions

Our approach is motivated by two considerations. First, we observe that incentive

compatibility, see Eq.(3.4), and individual rationality, see Eq.(3.6), key properties of

an optimal auction, are inherently robustness properties, that is, properties that have

to hold for all possible valuations irrespective of their probability measure. Such

properties can be naturally modeled using robust optimization.

Second, we perceive certain shortcomings in the classical probabilistic and adver-

sarial approaches that we reviewed in Section 3.1:

(a) In many cases the only information available to the auctioneer is the previous

bidding data. The probabilistic approach chooses to fit a specific probability

distribution to this data, which is, in our view, a model of reality, not reality
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itself. In other words, modeling with probability distributions is not inherent to

the problem, but rather a choice we make in modeling. On the other hand, the

adversarial approach chooses not to make use of this historical bidding data.

(b) Even if the joint probability distribution of the valuations is known or under the

adversarial approach, we have seen in Section 3.1 that Problems (P1)-(P3) are

by and large open with occasional intractability or even impossibility results.

(c) Even in the case of single item auction without budgets solved by Myerson

[1981], there is a possibility of loss of revenue if the auctioneer mis-specifies the

probability distribution. Moreover, under the adversarial approach, not making

use of historical data again may lead to revenue losses.

Given these considerations, we propose to use the uncertainty set based approach

to model the uncertain valuations. Moreover, this approach also allows us to natu-

rally model all the desirable properties (incentive compatibility, individual rationality

and budget feasibility) of optimal auctions as robust optimization constraints. In this

setting, we propose optimal mechanisms for Problems (P1)-(P3) that involve reser-

vation prices, thus extending the work of Myerson from single item without budgets,

to multiple items with budgets, potentially correlated valuations and uncertain bud-

gets. Unlike the Myerson auction where the reservation prices do not depend on the

item, the reservation prices in our approach are a function of both the bidder and

the item. Furthermore, they are calculated by solving a bilinear optimization prob-

lem, which for the special case of auctions without budget constraints, reduces to

a linear optimization problem. The optimal auction mechanism, which is incentive

compatible, individually rational and budget feasible has the structure of a Vickrey-

Clarke-Groves mechanism, as explained further in subsection 3.2.2 Additionally, we

report computational evidence which suggests that the proposed approach:

(a) is numerically tractable for large scale auction design problems, when we use an

algorithm based on the Generalized Benders Decomposition to solve the bilinear

optimization problem. The notion of tractability used, however, is not the same
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as theoretical tractability (polynomial time solvability) developed in the 1970s

(Cook [1971], Karp [1972]). For instance, the Simplex method, which has proven

over many decades to be practically efficient is not theoretically efficient. We

use exactly this notion of practical efficiency: the ability to solve problems of

realistic size relative to the application we address.

(b) leads to improved revenue compared to the classical probabilistic approach,

when the true distributions are different from the assumed ones; and

(c) leads to higher revenues, when the correlations in bidders valuations are explic-

itly modeled.

3.1.3 Structure of the Chapter and Notation

The chapter is organized as follows. In Section 3.2, we introduce our approach to

Problems (P1) and (P3), and present a characterization of the optimal solution. In

Section 3.3, we consider the special case of buyers without budget constraints for

Problems (P1), (P3) and derive further insights. In Section 3.4, we address and solve

Problem (P2). In Section 3.5, we report computational results. In Section 3.6, we

include concluding remarks.

Throughout the rest of the chapter, we denote scalar quantities by non-bold face

symbols (e.g., x E R, k E N), vectors by boldface symbols (e.g., x E R', n > 1.

We will use A = {1, 2, ... , n} to denote the set of buyers and M = {1, 2,.. ., m} to

denote the set of items. We will use the index i to denote the ith buyer and the index

j to denote the jth item.

3.2 Model and Problem Formulation

We consider a setting where n buyers, indexed by i E M, are interested in a set of

m items, indexed by j E M, made available by an auctioneer. Each buyer i E N1

has a valuation v associated with each of the items j E M, which is not known

to the auctioneer. Additionally the buyers are also budget constrained with budgets
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{ B 1 , B 2 , ... , B}. In this section, we assume that the budget constraints are public

knowledge, and we address the case of uncertainty in budgets in Section 3.4.

Before proceeding further, we introduce the following notation. For each item

j E M, let v3 = (vij, v2j,.. . , vn) E R' be the vector of valuations for the jth

item by the n bidders. We let v = (vi, v 2 , ... , vm) denote the concatenation of

the vectors vj, j E M. With a slight abuse of notation, let vi = (vii, vi2 , .. . , Vim)

be the vector of valuations for the ith bidder for all items. In the same vein, we let

v-i,j = (v 1j, . V. , v i+1 ,j,.-. , vnj) E R- 1 be the vector of valuations of all bidders

except i, for item j, Vj E M. And let v-i = (v-i,1, ... , v-i,m) E R(n-1)xm be the

concatenation of the vectors (v-i,)jEM . Finally, we write v E U to denote vj E U,

j E M.

3.2.1 The Robust Optimization Approach

We next introduce the concept of worst case optimality, and show how the resulting

auction design problem can be formulated as a robust linear optimization problem.

As alluded to before, the objective is to maximize the worst case revenue over all

valuation vectors v lying in an uncertainty set U. We introduce the decision variables

XV and pv that represent the allocation and the payment rules, respectively, for all

valuation vectors v E U. That is, if the realized valuation vector is v, then we allocate

a fraction xy of item j to buyer i, and charge a total of py to the ith buyer. Note

that we do not account for payments of buyer i relative to item j, but only account

for the total payment of buyer i.

The allocation and payment rules should be chosen to satisfy the following prop-

erties:

(a) Individual Rationality (IR) : This property ensures that the buyers do not derive

negative utility by participating in the auction when they bid truthfully.

(b) Budget Feasibility (BF) : This property ensures that each buyer is charged within

his budget constraints.
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(c) Incentive Compatibility (IC): This property ensures that the total utility of the

ith buyer under truthful bidding, which is given by

U (vi, v-.) = vi- x i,'V-i) - p "''"")

jEM

ui s iv-i) _ ( ui'v-i)

jEM

=U (u , vj ),

is greater than the total utility that Buyer i derives by bidding any other other

bid vector ui.

The optimal auction design problem with these properties, leads to the following

linear optimization model:

Z* (U) =max W (3.1)

s.t. W-LEpv O, VvEU, (3.2)
iEN(

xii 1, VjEM,VvEU, (3.3)
iEN(

V i - L v iiV- i - v ,vi)i (3 .4 )

jEM jEM

+p'vi'-) < 0 V(vi, vj) E U, V(uj, vj) E U, Vi E N,

p' < Bj, Vi E A, Vv E U, (3.5)

p - Ivij -xv, Vi E M, Vv E U, (3.6)
jEM

xv > 0.

Constraints (3.1) and (3.2) represent the fact that we are interested in maximizing

the worst case revenue. Constraint (3.3) expresses the fact that at most one unit of

item j can be assigned to all bidders. Constraints (3.4), (3.5), (3.6) implement the

IC, BF and IR properties, respectively. We next present the dual problem of (3.1), by
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using the dual variables w,, , ,, ,u,, 6, that correspond to the constraints

(3.2)-(3.6), respectively. The dual problem is given by

min (j,+ ?7,vBi (3.7)
vEU \j=1 i=1/

s.t. G(Vj'vj) + Euij ' i'V-,u, v1 - Vi* Ei,vVi7,vi,ui

ui ui

-Vi- - 6 i,(vi,V) > 0, V(vi, vj) E U,

E'3'V~1ViUi- ZIiViUiV 1 - W(vi'Vj) *+'?i(ViVji)
ui ui

+6i,(vj,vj) = 0, V(vi, v-j) E U,

wy= 1,
vEU

Wv 0, 4V 0, #i, 4,2VUi 2 0, iv > 0,8v > 0.

3.2.2 A Robust Optimal Mechanism

In this section, we present a mechanism, that we call ROM (Robust Optimal Mecha-

nism), that constitutes an optimal solution to the optimization problem (3.1). ROM

consists of Algorithms ROM. a and ROM. b presented in Figures 3-1 and 3-2, respec-

tively. ROM. a which occurs prior to the realization of a specific valuation vector

v, requires as inputs, the uncertainty set U and the budgets {Bi}Eg. Using these

inputs, the following two quantities, which parameterize the auction mechanism in

ROM.b, are calculated:

(a) {r}J gj- We call these quantities reservation prices, with the interpretation

that buyer i needs to bid at least rj for item j, in order to have a possibility of

obtaining a non-zero part of item j;

(b) {X1}j gJIy - We call these quantities nominal allocations, with the interpreta-

tion that the final allocation aly of item j to buyer i when the valuation vector

v is realized, is given by

a"' = X*+ii ii ii
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where y. is calculated in ROM. b.

In the auction mechanism presented in ROM. b, after the bid vector v is realized, the

algorithm calculates the quantities yv that we call final allocations and the payment

p' that player i makes.

Discussion: Insights and Implications

We next present some insights into the auction mechanism presented in Figures 3-1

and 3-2. In particular, (a) we discuss how the bilinear optimization problem used

in ROM.a is related to Problem (3.1); and (b) we present a qualitative description

of the auction mechanism presented in ROM.b and describe its relationship with the

Vickrey-Clarke-Groves (VCG) mechanism.

1. Structure of ROM.a

In ROM.a we compute the reservation prices and nominal allocations, intro-

duced above, that parametrize the actual auction mechanism. We compute

these quantities by solving a bilinear optimization problem, which we obtain

by considering a reduced version of Problem (3.1). In particular, the first two

constraints in the inner optimization problem of (3.8) correspond to the con-

straints (3.3) and (3.5), respectively. The third constraint in the inner opti-

mization problem of (3.8) is a robust optimization constraint and, as we show

in the proofs presented in next section, this constraint allows us to capture the

incentive compatibility and individual rationality constraints of Problem (3.1).

2. Structure of ROM.b

In ROM.b we present the auction mechanism which is carried out when the

bid vector v is realized. The mechanism calculates the final allocations yv by

solving the optimization problem (3.12) where we maximize an affine function

of the social welfare determined by the reservation prices ri 's. Moreover, the

payments py that player i makes are calculated according to Eq. (3.17).

The auction mechanism has the following structural properties:
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Algorithm ROM. a

Input : Uncertainty set U, and budgets B1, ... , B,.
Output : Reservation prices {rly~ m, and nominal allocations {Xjg}<oM

1. Compute the worst case valuation vector z = {Zij}iJjEM and the nominal allo-

cation vector x* = {x }iujE given by

max
{Xst }EAtjEM

S.t.

(z, x*) arg max

Z >Z g
jEAr, jEM

Exij < 1, Vj E M,
iEA

x . vij 5 Bi, Vi E A,
jEM

xis - vi3 5 xij - uij, Vu E U,
jEM jEM

x>0.

3.8)

Vi,

2. Compute = { '*} jEM * = {r7/}7eg >r 0* {6LE} ) given by

min
{Cj,?Wi

+ E riBi
iENr \jEM

s.t. (j + zij -7i + zij -*Oi zij, Vi E N, Vj,
(, 7/, O6 > 0.

where
ii = arg min Ex - uij, Vi E A(.

jEM

;.9)

(3.10)

3. Compute the reservation prices {riy}.ENrJEM given by

(3.11)
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Figure 3-1: Calculation of the reservation prices and the nominal allocations.
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Algorithm ROM.b

Input : Bid vector v = 'r rj EM

Output : Allocation vector {ay. and the payments {Pv}kEN-

1. Check if v E U. If v V U then do not allocate anything to anybody and charge
zero.

2. Calculate the adapted allocations yyy and temporary quantities Yiy,k given by

f yih3 IiEA(,jEM

{YikV }iEAf'\{k},jEM

= arg max yij - (Vi - rj)
iEN jEM

- argmax iEN-\{k} jEM (vj -

where the sets (P, Q1,..., Qn) are given by

y E R nx"'

+ I:

jEM

jEM

Zyi < 1 - X!,
iEK iEG

ij -uij < Bi - Y, Xi - ri
jEM

+ jEM X*, -j - ',

y ij
iEAN\{k}

yij * -ij <

Ba1 - Z4.r,iEM

Bi - E ij rj,
jEM

Vj E M,

Vu E U, Vi E J
(3.14)

Vj EM,

Vu E U 7,Vi E N \ {k}J

(3.15)

3. Compute the allocation vector {aly-LEoJE and the payments {p[}k=1. as fol-

lows

rkj + E -
jEM

+ y - (viS
iEg\{k} jEM

(3.16)

r -- -k (3.17)
jEM

-yS - (vij - r*)
iEK\{k} jEM

, Vk E K.
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(3.13)

Qk =

ay. = yy + xij,

pa = yk-
jEM

Figure 3-2: Calculation of adapted allocations and payments.
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a) The allocation rule has a structure very similar to that of VCG auction

mechanisms, where the items are allocated to a set of bidders so as to

maximize a certain social welfare function. In ROM.b, the social welfare

function is given by

max Zyj - (vij - r*) ,Y iEg jEM

which is parameterized by the reservation prices {rl }.

b) The payment rule given by Eq. (3.17) is again similar to that of a VCG

auction, where each bidder is charged the lowest amount (opportunity cost)

it could have bid to still be part of the winning allocation, all other agents

bids remaining the same. Moreover, as we see in the next section, this

payment rule leads to incentive compatibility as well as to the second

price structure in the absence of budgets as shown in subsection 3.3.1.

c) Unlike the Myerson auction where the reservation prices do not depend on

the item, the reservation prices in ROM are a function of both the bidder

and the item. The existence of budgets leads to this dependence, and we

see in subsection 3.3.1, in the absence of budgets, the reservation prices

only depend on the bidder.

We next present other structural properties of ROM and their corresponding

proofs.

Properties of ROM

In the remaining part of this section, we show that ROM is incentive compatible, bud-

get feasible, individually rational and worst case optimal. The following proposition

helps us in preparing the ground.

Proposition 14. The quantities (z, x*, |* 6*, r*) computed in ROM, satisfy the
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following relations:

x* < 1, Vj E M, (3.18)
iEgr

x -z < B, Vi E A, (3.19)
jEM

xZ -Z z, E xi uj, Vu E U, Vi E N, (3.20)
jEM jEM

xi- r y = x - zij, Vi E N, Vj e M, (3.21)

x - r , < B_ Vi E N, (3.22)
jEM

2~2..~xi-ri = *+ x ;0* .ud (3.23)
iEA jEM jEM iEN \ jEM /

Proof. The relations (3.18)-(3.20) follow from the definition of (z, x*) in (3.8). Indeed,

fixing z, consider the optimization problem

max E E zij
{Xj}iEA,jEM iEA, jEM

s.t. xj 1, Vj E M,
iEA(

Zx - zij 5 Bi, Vi E N,
jEM

xij - zij <_ Exi - Uij, Vu E U, Vi E K.
jEM jEM

By definition x* is an optimal solution to (3.24), and this observation directly implies

(3.18)-(3.20). Now consider another optimization problem

max Y szij
IX'jli~r~jE iEAg jEM

s.t. Zxj 1, Vj E M,
iEg (3.25)

E xij - zij Bi, Vi E K,
jEM

X1j - zZ3 Ex, uij, Vu E U, Vi E K,
jEM jEM
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which differs from (3.24) only in the last family of constraints. Let x be the optimal

solution of (3.25). Since x* is feasible to (3.24), x* is also feasible to (3.25). This

implies that

Z Z zi X i zig . (3.26)
iEn, jEM iEN, jEM

We also have the following constraints that R satisfies

-Zjj - zj u , Vu E U, Vi E M.
jEM jEM

In particular, since z E U, we have

- zij x - zij, Vi E M. (3.27)
jEM jEM

From (3.20) and (3.27), we have

z= Zi, (3.28)
iEK, jEM iEK, jEM

which implies that x* is an optimal solution to (3.25). Now consider an equivalent

formulation of (3.25) given by

max 5 ijzij
{Xi3 }iEA(,jEM iE.A/, IEM

s.t. Exi 1, Vj E M,
iEAr (3.29)

Ix -zij Bi, Vi E K,
jEM

jEM jEM

where 6Y is as defined in (3.10). It is clear that (3.29) is equivalent to (3.25), thus

indicating that x* is an optimal solution of (3.29). The dual of Problem (3.29) is
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given by

minl~ 0 j zx .)
jEM EK jEM (3.30)

s.t. +.-zi-r/i+zy 3 -60 zij, ViE AP, VjE M,

j, ?7i, 64 2 0,

where (j, rj2, O6 correspond to the first, second and third family of constraints, respec-

tively. Let ((*, 'r*, *) be the dual solution corresponding to the primal solution x*.

Then by complementary slackness, we have the following relations

EEM,
iEAr

4'i* . i =i 7 >Bi, Vi E M,
jEM

09*Zj 0* x -Of.ZX IjflEiJsV

jEM jEM

ij- ((j + z 77- + zj y- ) =x- zip, Vi E M, Vj E M. (3.31)

Also, given that x* is optimal to (3.29), we have by strong duality

z y = + (/h*Bi + 0* O fSi . (3.32)
iEA, jEM jEM i \Eg jEM

Now (3.21) and (3.23) follow from (3.31) and (3.32). Finally (3.29) follows from

(3.25), (3.27), and the fact that 9* > 0. This concludes the proof. 0

Proposition 15. [Incentive Compatibility] The total allocation vector {ay}
and the payments {pZY}gY satisfy (3.4), that is, the overall mechanism is incentive

compatible.

Proof. Consider buyer k with a true valuation vector {VkJ}JEM. By bidding {v }

buyer k is allocated a fraction y ''~of item j. From (3.12) and the fact that P

does not depend on any specific valuation vector, we have
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Again from (3.12) we have

{ k,V-k) iE A(JEM - arg max yi - (vi - ,

yEP iEN jEM

which along with (3.33) implies that

i yEkvk) (vNj - r)
iEJV jEM iEAN jEM

.(vij -r*t)

Now let U (u, V-k) denote the utility of buyer k when he bids u = (ui,

the other buyers bid V-k. Then we have

-- Z ak'V-k)

jEM

S (v ,v -)

jEM

ZY(vk vk) r

jEM

kj - (vkvk)

Vkj + I Xkj - Vkj

jEM

jEM

- y (j - v ) (vij - r*j)(3.35)
iEJf\{k} jEM iEA\{k} jEM

i N jEM) i E\{k,} jijM)
iEf%jEM iEA\{kl jEM

+ 5 Xkj Vkj - E kj kj + ~ k
jEM jEM jEM

(3.36)

(v-k) .(i

iEA/'jEM

+ k 5 j - Vkj

j E M jEM

iE\{ } j (v-r)

iEA(\{k} jEM

k+ E X* . *.
' j j k j

jE M

(3-37)
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y V -k) E P.
iE}N,jEM

(3.33)

(3.34)

.U.. um) while

U (Vk, V-k)

jEM



= Z(kv-k) Vj + E 3 Vkj - > Vkvk . Ir * j x *r

jEM jEM jEM jEM

-- Z- (vi - r-) + y kV-k) - (vij - r*)(3.38)
iENA\{k} jEM iEA(\{k} jEM

= U (Vk, Vk) ,

where in (3.35) we combine the first, third and the last terms to obtain the first term

in (3.36). (3.37) follows from (3.34) and (3.38) follows by rearranging terms in (3.37).

This concludes the proof. 0

Proposition 16. [Budget Feasibility] The total allocation vector {ay } Mand

the payments {p'}iEg satisfy (3.5), that is, the overall mechanism is budget feasible.

Proof. The payment of buyer k is given by

p = *y-r + *

jEM jEM

+ S y,- (vij
iEN'\{k} jEM

-y -vkj + Exkj-
jEM jEM

+ y- - (vj
iEAr\{k} jEM

rj - S *. * * -
jEM

-)r ) - S y-(vij - r*j)

iEA(\{k} jEM

Y S* . 0* .il
rkj -- x j -k - j

jEM

r ) -yj - (vij - rj),
iENr jE M

where (3.40) follows by adding and substracting the term E ykj - vkj from (3.39).
jEM

Now from (3.13), we have

{Vki
{yij,k JiEN\{k},jE M Qk,
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which implies that

y - 1 -< 4X, Vj E M,
iEA\{k} iEN

y iJk uij : B- x - ri, Vu E U,Vi E A(\ {k}.
jEM

Thus, by constructing an allocation vector yr such that

y {

0,

Vi E NA\ {k}, Vj E M,

i = k, Vj EM,

we have from (3.41)

i =
iEN\{k}

<1 - 5x , Vj E M,

jEM

B - x - r*,
jEM

(3.42)

Vu E -,Vi E N\ {k}.

Also we have

Ykj ' Ukj = 0 < Bk - k rk,
jEM

where the second part follows from (3.29) from Proposition 14.

imply that yr E P which implies that

11yi . (vi - r*)
iENr jEM

(3.42) and (3.43)

yEj - (vi - r*)
iEN jEM

iEA\{k} jEM

(3.44)
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jEM

(3.41)

57 qij
jEM

jEM

(3.43)

y - (vij - r*y .



Thus, from (3.40) and (3.44), we have

Pk < Y ylj
jEM

Bk,

Vkj + x r -- k x k
jEM jEM

where the last inequality holds because yv E P. This concludes the proof. l

Proposition 17. [Individually Rationality] The total allocation vector {ay },
and the payments {p'}iE satisfy (3.6), that is, the overall mechanism is individually

rational.

Proof. As before, let U (u, V-k) be the utility of buyer k when he bids u. Then from

(3.36), we have

U (vk, V-k)
= n( y -k - - *) -
iEN jEM

(vi - r*)

iEA\{k} jEM

+ E xv /j

jEM
- * x r - + ( x4, -. -k6,

jEM jEM

(3.45)2 M xj M x r + x - * - ,

jEM jEM jEM

where (3.45) follows from (3.44). Now from (3.20) and (3.21) of Proposition 14, we

have

5 x Vkj
jEM

E xS4 - z
jEM

jEM

2 xk-
jEM

-54,* 6. -k
rkjE - M X* - O* -6,

jEM

where the last inequality follows from the fact that x* , 0*, are all non-negative.

Finally this implies that

U (vk, v-k) 0,

Elwhich concludes the proof.
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Proposition 18. [Worst case nature of z] The valuation vector z achieves the

worst case revenue of ROM, that is, the allocations {ay,} . and the payments

{Pz'liEg satisfy (3.2).

Proof. Consider any valuation vector v and consider the payments received by the

auctioneer. The total revenue is given by

keN
= > F y j- + x r -- . 0* 6k

kEN .jEM jEM jEM

iEArf\k} jEM
- 5:1 ij-(i

iEP./\{k} jEM

Now consider the vector y given by

y = yY, Vi E A \ {k}, Vj E M.

Since yv E 'P, it is easy to verify that

S'E Qk.

Thus, from (3.13) we have that

iE{k j .(vij -r)
iEI'.fk} jEM

~& S5Q.(vij -r*2 )
iEK\{k} jEM

E S yy' -(vii - rij)
iEz\{k} jEM

Also from the non-negativity of y , r* - we have

y y - r* > 0.
jEM
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From (3.46) and (3.47), we have

n n m

pk -k j kx*g r* - Ex* . 6* - ii. (3.48)
=1 k=1 j=1 jEM

To finish the proof, we observe that

y = 0, Vi E N, Vj E M,

y = 0, Vi E N \ {k}, Vj E M, Vk E M,

which implies that

n n m

Pk- 2 L kjrkj xkj k Uj
k=1 k=1 j=1 jEM

This concludes the proof. ]

In Propositions 15, 16, 17, and 18, we have shown that ROM is incentive com-

patible, budget feasible, individually rational, and achieves its worst case revenue for

the valuation vector z. We next show that ROM is an optimal mechanism.

Theorem 19. [Main Result] ROM is an optimal mechanism for

(a) finite discrete uncertainty sets,

(b) bounded general uncertainty sets.

Proof.

(a) We first note that for finite discrete uncertainty sets, the problems (3.1) and (3.7)

are linear optimization problems with a finite number of variables and constraints,

and thus they satisfy strong duality. The main idea of the proof then is to construct

feasible solutions to the problems (3.1) and (3.7) with the same value for the objective

solutions and then appeal to strong duality. We begin by constructing a dual-feasible

solution. Let

Z X O 3j=1.m ,n i =1,.

be the quantities defined in ROM.a. Now consider the following assignment of values
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to the dual variables

Vilv-,ui-vi = 0, Vv $ z, Vui,

#i,v-iviUi = 0, Vv $ z, Vui,

#i,2_i)ui,22 = 0, Vv f z, Vui,

Ut

Oi,(fi,2z-) = 6j, Vi E M.

1, ifv=z,

0, otherwise.

/' l, if v = z,

0, otherwise,

if v =z
=v Vj E M.

0, otherwise,

It is easy to verify that this is a dual feasible solution.

The primal feasible solution is calculated by using ROM.b and the feasibility

follows from Propositions 15-17. The equality of the objective function values follows

from Proposition 18. By strong duality, this conlcudes the proof for Part (a).

(b) Consider next a general bounded uncertainty set U. Let z be as defined in (3.8).

Let UD be a discrete subset of U that contains z. Let Q represent the set of constraints

(3.3)-(3.6). Since UD c U, we have the following

max min W < max min W. (3.49)
{x",P"}EQ vEU {xv,pv}EQ VEUD
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By applying Part (a) for UD, we have

max min W =Zp = Z*(UD). (3.50)
{xv,pv}EQ VEUD EA

Since z E U, and by using the allocation and payment rules of ROM. b, we have

max min W ;> Z*(UD). (3.51)
{xv,pv}EQ VEU

Finally from Eqns. (3.49), (3.50) and (3.51), we have

max min W = Z*(UD
{xv,pv}EQ vEU

which shows that the worst case revenue is optimal to (3.1). By using the combination

of Propositions 15-17 shown for a general bounded uncertainty set U, the result

follows. E

3.2.3 Solving ROM

The computationally intensive step in ROM involves solving the bilinear optimization

problems (3.8). Bilinear problems are NP-Hard (Sherali and Alameddine [1992]) for

general uncertainty sets U. However, if the uncertainty set U has a polynomial number

of extreme points, then we can obtain a polynomial time algorithm that solves (3.8).

This follows from Proposition 20 below, where we show that there exists an extreme

point solution to these problems. Thus, we can solve the problems (3.8) in polynomial

time, by simply enumerating all the extreme points.

Proposition 20. There exists an extreme point of U that is optimal to Problems

(3.8).

Proof. The proof follows directly from the observation that both the inner and outer

optimization problems are linear optimization problems. Thus, fixing the inner opti-

mal solution, there always exists an extreme point solution to the outer problem and

vice-versa. 0
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We next describe an algorithm to solve the bilinear optimization problem (3.8). This

algorithm, motivated from the Generalized Benders Decomposition algorithm pre-

sented in Beran et al. [1997], is presented in Figure 3-3.

In Section 3.5, we present empirical evidence showing that for large scale problems

and general uncertainty sets, ROM is numerically tractable.

3.2.4 The Case of Indivisible Items

Until now we considered the case of the auction design problem in which the items

can be divided among the buyers. When the items cannot be divided, then we are

restricted to look for integral allocations of the items to buyers. We next provide a

partial solution to the auction design problem with indivisible items, partial as the

constraints are only satisfied in expectation, by considering a randomized version of

ROM. This mechanism that we call ROM-Ind is presented in Figure 3-4.

Theorem 21. ROM-Ind

(a) is incentive-compatible, budget feasible, and individually rational, all in expecta-

tion;

(b) leads to a revenue of at least Z* (U), in expectation.

Proof. (a) The expected payment E [pi (v)] charged to a buyer i under ROM-Ind, is

given by

E [pi (v)] = a> -
jEM I: ay.

jEM

= p Bi,

which follows from the fact that py is the payment computed by ROM. b which is a

budget feasible mechanism. Thus, ROM-Ind is budget feasible in expectation.
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Algorithm Generalized Benders Decomposition

Input : Problem (3.8), accuracy parameter E.
Output : Approximate optimal solution z.

1. Set parameters UB = oo, LB = 0, k = 0.

2. Compute v4 as follows:

" Compute vi = minv1 .
vEU

" For each i= 2,.... AI

0Vi= min vi.
1(-.Vi,---.Vn)EU

3. While UB - LB > e,

" Solve the inner linear optimization problem (ILP) using v vk.

" Set xk to be an optimal solution of ILP and update the value of UB to
the value of the optimal solution.

" Solve the outer linear optimization problem (OLP) using x = xk.

" Set vk+1 to be an optimal solution of OLP, and update the value of LB to
the value of the optimal solution.

" Increment k.

" Add the constraint EiEAPi < UB to ILP.

" Add the constraint EiE( jEM Xigvji > LB to OLP.

4. Output vk.

Figure 3-3: Generalized Benders Decomposition Algorithm for Problem (3.8).
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Algorithm ROM-Ind

Input : Uncertainty set U, budgets B 1 ,..., Bn, and the bid vector v.
Output : Allocation probabilities {ay.}muKe and payments

1. Using ROM, compute the allocation vector and

2. Allocate the jth item to ith buyer with probability a. and charge

ith buyer.

the prices

to the

jEM

Figure 3-4: Mechanism for Indivisible Items.

The expected utility derived by buyer i is given by

E [Uj (v)] = E [1{item j assigned to buyer i} 'v*ij] - E [pi (v)1
jEM

= E [1{item j assigned to buyer i - vij - pV
jEM

ay >- avij - p
jEM

which is the same as the utility under ROM.b. Therefore, ROM-Ind inherits the

properties of incentive compatibility and individual rationality from ROM, both in

expectation. This concludes the proof.

(b) The expected revenue is given by EgVPly which is at least Z* (U) by Theorem

19.

3.3 Single Item Auctions

In this section, we consider a special case of the auction design problem, in which the

buyers do not have any budget constraints. In the absence of budget constraints, the
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auction design problem for multiple items reduces to the auction design problem for

a single item. Consequently we consider the auction design problem for a single item

without budget constraints. Myerson [1981] solved this problem in a probabilistic set-

ting for buyers with uncorrelated valuations and showed the optimal mechanism takes

the form of a second price auction with a reservation price. We recover Myerson's

result in a more general setting that allows correlated buyers and obtain an optimal

mechanism that also takes the form of a second price auction with a reservation price.

3.3.1 The Robust Optimal Mechanism for Single Item Auc-

tions without Budget Constraints

By specializing ROM to the case Bi = oo, Vi E N and MI = 1, we derive the optimal

mechanism for single item auctions without budget constraints, that we will refer to

as ROM-Si. ROM-Si consists of Algorithms ROM-Si.a and ROM-Si.b presented in

Figures 3-5 and 3-6, respectively. Algorithm ROM-Si.a is obtained from ROM.a, by

setting the budgets to o and taking I MI 1.

Properties and Optimality of ROM-Si

ROM-Si, as a speacial case of ROM, is worst case optimal, individually rational and

incentive compatible. We next show that the allocation (3.57) and payment rules

(3.58) reduce to the "second price mechanism with a reservation price r*", see Vickrey

[1961], Clarke [1971], Groves [1977].

We first present a simplification of ROM-Si. a to calculate the reservation price r*

using a single optimization problem instead of using Eqns. (3.52) and (3.53). Note

that the inner optimization problem of (3.52) given by

max Exi - vi

s.t. Lxi < 1,
iEA

xi >0, ViEPJ
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Algorithm ROM-Si.a

Input : Uncertainty set U.
Output : Reservation price r*.

1. Compute the worst case valuation vector

z = arg min
vEl 

I

max
{t. }iEA

S.t.

z = {zi ieu given by

Txi . vi
iEA<

Lxi 1,
iEA

xz20, ViEsN

2. Compute reservation price r* given by

I.
rmin

r* arg
s.t.

r

r > zi, Vi E g

Figure 3-5: Calculation of the reservation price.

has a simple optimal solution given by

S , +==> vk = maxvi.

Therefore, by combining this observation with Eqns. (3.52) and (3.53), we obtain

that the reservation price r* is given by the following single optimization problem

min
r,v

r

s.t. r > vi, Vi E NJ,

(Vi, V2, . . . , on) E U.

(3.59)

We next present an alternate equivalent version of ROM-Si.b, which has the form

of a second price auction as presented in Figure 3-7. We show the equivalence in

Proposition 22.
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Algorithm ROM-Si.b

Input : Bid vector v = {Vi}iEg, r*.
Output : Allocation vector {ak}kEK and the payments {P }kEK-

1. Calculate the quantities ({yi, ry}EA( {yk , r V Nk\{k) given by

{yy, r} EH

{y-k, r iE\{k}

where

= arg max yi i - ri,
(y,r)EP iEK

arg max Yi - r,
(yr)EP iENA\{k}

Yxj < 1,
iEA

Z ri > r*,
iEA

xi 0,

(3.56)

Vi E Af

2. Compute the allocation vector {al}keg and the payments {pi}keK as follows
Vkk~ n h amnsfvkva olw

av = y, Vk E

iEAf\{k}
ykVi - ri-) - E

iEAK\{k}

Figure 3-6: Calculation of allocations and payments.
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Algorithm Second Price Auction with a reservation price

Input : Bid vector v ={Vi~iE, r*

Output : Allocation vector {av}kEk and the payments {pI}kEK-

1. Reject each buyer i with vi < r*, and let N' = {i e M lvi > r* }.

2. Allocate the item to the buyer h E N' with the highest valuation.

3. Charge buyer h a price given by

Ph = max r*, max vi ,
iE'v\{hl

which corresponds to the second highest valuation greater than r*.

Figure 3-7: The Second Price Auction with a reservation price.

Proposition 22. ROM-Si.b is equivalent to a second price auction with a reservation

price r*.

Proof. In ROM-Si.b, the allocations are computed by solving the linear optimization

problem (3.54). Let

max
{yi,ri}iEg

s.t.
= arg

(yi - vi - ri)

yi < 1,

Er > r*

iEA(

xi 2 0, Vi E M

(3.60)

and therefore, at optimality we have

ry = r*.
iEN(
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Therefore, (3.60) is equivalent to

max
{yl,ri}E"

= arg
s.t. yi< 1,

Z i = r*,
iEN V

xi ;> 0, Vi E

(3.61)

> .

Consider the following feasible solution

if i h,

if i h,

if i 7 h,

if i = h,

where h is equal to one of the solutions of

arg max vi.
iEN(

Clearly, this solution is optimal to (3.61) and therefore to (3.60). Therefore, from

(3.62), the allocation steps are equivalent.

We next consider the payment rule in ROM-Si.b, given by (3.58). If k # h, we

know from (3.62) and (3.63) that

(3.64)yS y vi - ri = yh . vh - rh = vh - r
iEAr\{k}

We next consider the expression y k v- - r k where
E {ki,

iEAr\{k}
{y',k} are defined as

the solutions of the linear optimization problem (3.55). By the same argument that
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led us to (3.62), we have

which implies that

(3-65)y 'Vi - k - h~rh Vh - r*-.
iEAN\{k}

Therefore, from (3.64) and (3.65) we have Pk = 0, if k / h.

When k = h, we have

Phrh+ E
iENr\{h}

irE*+ \
iE.Af\h}

V-~h - rh)-

(YV-h V - r V-h)

We next consider the value of 5 (y' - - rh). We know that, using a similar

iEK\{h}

argument leading to (3.62) and (3.63),

iEN(\{h}

where

h'= arg max vi,
iEAr\{h}

is the buyer with the second highest valuation (after buyer h). Therefore, the payment

charged to buyer h is given by

Ph = Vh'.

This concludes the proof.
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3.3.2 Closed Form Solutions

In this section, we obtain closed form solutions for the worst case optimal revenues

obtained under ROM for (a) single item auctions with and without budgets and (b)

multiple items with equal budgets.

Proposition 23. The worst case optimal revenue R*, for single item auction with n

buyers who do not have budget constraints are as follows:

(a) For uncertainty set

UCT = (V1,...,) -F

n

Z vi - n - p

Vi - < p I,

R* = - -R =rn-

(b) For uncertainty set

vi = f + ni, Vi E A,

n

Znj - n- v

V~n - -y

R* = F +v - .

(c) For uncertainty set

UNormal 2 2 2
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R* = p + ou-
n

~ p + o-, for large n.

(d) For uncertainty set

01 n
log f (vi) - n -pi f

t~f- Tyica={(V1,..Vn) -r7 < -

O'log f N/n

R* = exp (ilogf Clog-f

Proof. (a) The proof follows from the fact that there exists an optimal solution v*

to (3.59) such that v* = v,* Vi, j. For the purpose of deriving a contradiction, suppose

v is an optimal solution such that the components of v are all not equal. Consider

another valuation vector v* such that

n

vi

k = , Vk = 1, ... , n.
n

n n

Since o = vi, the new vector v* is feasible in UCLT. Also the objective value
i=1 i=1

in (3.59) can only decrease under this new valuation vector. Therefore, v* is also an

optimal solution. We also have

n

ovj > np - rovri,
i=1

which has to be an equality at optimality. This concludes the proof.

(b), (c), (d) The proof is similar to (a) and is thus omitted. U

We note that under uncertainty set Uf-Typical the reservation price is equal to exp(H),

where -H is the entropy of the valuation distribution.

Proposition 24. (a) The worst case revenue R* for a single item auction with n
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buyers with budget constraints {Bi}KV , and when the auctioneer assumes that the

valuations come from the uncertainty set UCLT is given by

R* = min { BiIp- .

(b) The worst case revenue R* for an m-item auction with n buyers with equal budget

constraints B, and when the auctioneer assumes that the valuations come from the

uncertainty set UCLT is given by

R* = min nBm p - --- .

Proof. The proof is similar to the proof of Proposition 23(a), and is thus omitted. 0

3.3.3 Comparison with the Myerson Auction

As we showed in Proposition 22, ROM-Si and the Myerson auction have the same

structure, that of a second price auction with a reservation price. However, the

mechanisms differ in the way they calculate the reservation prices. In the case of the

Myerson auction the reservation price is calculated by solving a non-linear equation

1 -F(r)
=F(r) r, (3.66)f (r)

where F(.) is the cdf and f(.) is the pdf of the probability distribution that the

auctioneer assumes the valuations are sampled from. On the other hand, in ROM-Si,

the reservation price is calculated using the linear optimization problem given by Eq.

(3.59).

In this section, we compare ROM-Si and the Myerson auction with respect to the

following three aspects: (a) Computational complexity, (b) Robustness properties,

and (c) Sensitivity to the uncertainty set.
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Computational Complexity

The computationally intensive step in both ROM-Si and the Myerson auction is

the calculation of the reservation price. Once the reservation price is calculated,

both these mechanisms solve linear optimization problems to carry out the auction.

While the Myerson auction solves the non-linear equation (3.66), ROM-Si solves

the optimization problem (3.59) to calculate the reservation price. As long as the

uncertainty set U is convex, this optimization problem is polynomial time solvable.

In particular, when U is a polyhedron, the optimization problem reduces to a linear

optimization problem.

Robustness Properties

The values of the reservation prices obtained by ROM-Si and by the Myerson auction

differ in general. For example, when we use the uncertainty set UCLT with parameters

y and o-, Proposition 23(a) gives r* = p - L ~ p (for large n).

On the other hand, the Myerson auction gives different values of reservation prices

for different distributions. For uniform and exponential distributions, the reservation

prices obtained by the auctions match, while for other distributions, the reservation

prices are different. This dependence of reservation prices on the distribution may

lead to lack of robustness on the part of the Myerson auction, when the assumed

distribution differs from the realized distribution.

In order to study this, we design the following experiments. We first assume that

valuations are normally distributed with parameters y = 1, and o = 0.5, 1, 2 and carry

out ROM-Si and the Myerson auctions with these parameters. Then, we investigate

how these auctions compare with each other, when the realized distributions are

different from the assumed distributions. This is done by computing the quantity

Relative Revenue defined as

ROM-Single Revenue - Myerson Revenue
Relative Revenue = MesnRvue, (3.67)

Myerson Revenues'

which when positive, indicates that the proposed auction results in a greater revenue
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Distribution/(p,o-) (1,0.5) (1,1) (1,2)

Gamma 0.529 0.696 1.038
Beta 0.387 0.507 0.799

Triangle 0.271 0.376 0.526
Uniform 0.498 0.697 0.959

Table 3.1: Myerson vs
distributions with the

ROM-Si : The Relative Revenue, defined in
same mean and standard deviation.

(3.67) for different

Table 3.2: Myerson vs ROM-Si
different standard deviation.

: The Relative Revenue under the same mean but

than the Myerson auction.

In Table 3.1, we compare the expected revenues (obtained by simulation) of the

ROM-Si and of the Myerson auction, when the realized distribution is Gamma, Beta,

Uniform and Triangle with the same mean and standard deviation. We find that

the proposed approach has very significant benefits with revenue improvements in

the range of [27%, 103%]. To amplify this further, we perform another experiment

where we vary the distributions at a slower pace. In particular, we consider a series of

distributions F that are increasingly different from N(1, 0.5) with respect to the value

of total variation distance. The total variation distance between probability measures

. 1 and F 2 is defined as the largest possible difference between the probabilities that

Mean/(p, ) (1, 0.5) [(1, 1) (1,2)
p/4 0.178 0.22 0.335
p,/4 0.053 0.064 0.09

2p_1 -0.176 -0.242 -0.392
3pt -0.312 -0.416 -0.58

Table 3.3: Myerson vs ROM-Si : The Relative Revenue under the same standard
deviation but different mean.
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Standard Deviation/ (p, o-) 1(1,0.5) 1(1,1) 1(1,2)
u-/4 0.108 0.134 0.196
o-/2 0.0357 0.042 0.068

3o-/2 0.0282 0.039 0.062
2- 0.141 0.187 0.261
5a- 0.247 0.334 0.542
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Figure 3-8: Robustness of ROM-Si.

1 and F 2 can assign to the same event, that is,

F1 - 'F2|1TV = sup IF1 (A) - F 2 (A)|.
AEn

We plot the Relative Revenue against the values of total variation distances in Figure

8. We observe that ROM-Si performs better than the Myerson auction when the

total variation distance becomes larger than 0.22.

In Table 3.2, we compare the expected revenues of the ROM-Si and of the Myerson

auction when the distribution is still normal with the same mean but with different

standard deviations. We find that the proposed approach still has potentially signif-

icant benefits in the range of [2.8%, 54%]. In Table 3.3, we investigate the situation

when the realized distribution is again normal with the same standard deviation but

with different means. We find that the results in this case are mixed. When the

realized mean is smaller (larger) than the assumed mean, the proposed approach out-

performs (underperforms) when compared with the Myerson auction. In summary,
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[Lot r* under Myerson r* under UCLT r* under UNormal

1 0.5000 1.4876 1 1.7071
1 1.0000 1.7640 1 2.0000
1 2.0000 2.3145 1 2.4142
2 1.0000 2.7645 2 3.0000
2 2.0000 3.1983 2 3.4142
2 3.0000 3.5634 2 3.7321
2 4.0000 3.7983 2 4.0000
3 2.0000 4.2876 3 4.4142
3 4.0000 4.7645 3 5.0000

Table 3.4: Comparison of reservation prices when valuations obey N(p, a-).

we feel that ROM-Si has stronger robustness properties when the distribution or the

standard deviation is misspecified.

Sensitivity to the uncertainty set

In this section, we compare the reservation prices we obtain when we assume that

valuations belong to the uncertainty set UCLT and UNormal with the reservation prices

we obtain under the Myerson auction when the auctioneer believes that valuation of

the item obeys a normal distribution with mean p and standard deviation a.

In Table 3.4, we present the reservation prices obtained under the Myerson auction,

and under ROM-Si when we use the uncertainty sets UCLT and UNormal. Note the

closeness of the reservation prices under the Myerson auction and under ROM-Si

with UNormal. This is not unexpected given that the UNormal was designed by using

knowledge of the probability distribution.

3.4 Multi-Item Auctions with Private Budgets

Until now we have assumed that the budgets are all known to the auctioneer, which

might not hold in many practical situations. In the absence of budget information,

Dobzinski et al. [2008] shows that there is no deterministic auction that

(a) is individually rational and dominant-strategy incentive compatible,
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(b) makes no positive transfers, and

(c) always produces a Pareto-optimal outcome,

when one uses a probabilistic model to capture the uncertainty in the budgets. In this

section, we propose an uncertainty set based model for handling the uncertainty in

the budgets, that allows us to avoid this impossibility result. In particular, we assume

that the auctioneer has access to an uncertainty set B representing the uncertainty

in the budget vectors. Such an uncertainty set can be constructed using the methods

discussed in Section 2.1. For example, if we have access to the mean pL and the

standard deviation ab of the budgets, then based on the central limit theorem, we

can construct a budget uncertainty set BCLT given by

BCLT - (b, I _rb <i=1 . < ib

With such a model of uncertainty in budgets, the optimization problem that solves

for the worst case optimal auction is given in (3.68). The decision variables xvb

and pv'b represent the allocations and the payments, respectively, for each valuation

vector v E U, and for each budget vector b E B. That is, if the realized valuation

vector is v and the realized budget vector is b, then we allocate a fraction x ' of

item j to buyer i, and charge a total of pv'b to the ith buyer.
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Z* =max W
n

s.t. W < pvb Vv E U,Vb E B,
i= 1

x 1, Vj E M, Vv E U,Vb E B,

( Vj.Xuj,v_j),b (ui,v-i),b (vj. i ,v-j),b
o 1 - . pi - v Z -xi (3.68)

jEM jEM

+p '"~ jb 0, V~i ~)EU ~i ~)E U, Vi E N,7

vpb _ bV-, E ,bp i b v> Vi E N, e u, b e B

jEM

Xv,b > 0.

3.4.1 The Robust Optimal Mechanism for Auctions with Bud-

get Uncertainty

We next present a mechanism to compute an optimal solution to the optimization

problem (3.68). This mechanism, which we refer to as ROM-UB, consists of Algo-

rithms ROM-UB.a and ROM-UB.b, presented in Figures 3-9 and 3-10, respectively.

This mechanism, being an extension of ROM gives rise to a similar structural result,

that is, it is optimal to use reservation prices. Furthermore, the reservation prices can

be computed from a bilinear optimization problem which is computationally difficult

but feasible, in sharp contrast with the impossibility results in Dobzinski et al. [2008]

under probabilistic assumptions on budgets.

Theorem 25. ROM-UB is an incentive-compatible, individually rational and budget

feasible mechanism achieving the worst case optimal revenue of Z*.

Proof. The proof is similar to that of Theorem 19, and is thus omitted. l

3.5 Computational Results

In this section, we address
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Algorithm ROM-UB.a

Input : Valuations uncertainty set U, and budgets uncertainty set B.
Output : Reservation prices {r%}ieg JEM, and nominal allocations {XLE}egJEM-

1. Compute the worst case valuation vector z = {zij}iEgjEM, the worst case budget
vector d = {di}iEg and the nominal allocation vector x* = {x }m~ojE given

by

max
{X' 3 }iEg,jEM

s.t.

= arg max min
VEU bEL3

Ex i
jEM

SSxiivii
iEK, jeM

Exij < 1, Vj E M.
iENr

Ex j -vij ! bi , Vi E NV,
EM

- xi xi - ubj, Vu E U, Vi E M,
jEM

X > 0.

2. Compute

( * 1 *, 6*)

{ }jEM } ,*

= arg{

= {Th}iEM 6=

min D1 + E (7idi +
s .7i + z -jEM +z 2 z
s.t. j + Zij *77i + ZijOi Z.j,

i EXNVe)

Vi E A!, Vj E M7

where

3. Compute the

6 = arg min LI x uij, Vi E N.
jEM

reservation prices { rfij EN,jEM given by

(z, d, x*)

{!i~jEA) given by

I,

(3.69)

Figure 3-9: Calculation of the reservation prices and the nominal allocations.

(3.70)
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Algorithm ROM-UB.b

Input : Bid vector v = {viJ}iuKex,{rZ,}M {XZJa' EKJM ., z, and d.

Output : Allocation vector {ay }E em and the payments {P{}kEN'

1. Check if v E U. If v ( U then do not allocate anything to anybody and charge
zero.

2. Calculate the adapted allocations yi and temporary quantities yyk given by

{ly '}iEAjEM

{yj,~k } iEgV\{k,jEM4

= argmax yij - (vij - r*)
YEP iEA jEM

i argEmax E Myi,. -
Y kiEArfk} JEM

where the sets ('P, Q1,..., Qn) are given by

Ey 3  5 1 - E
iEN iEN

yi, - uij 5 di - L - r
jEM jEM

+ EM Xkj - 7 - f,

y y 1 -Ezy,
iEA\{k} iENr

y ,3 -ij < di - E 5 -r4j,
jEM jEM

Vj E M,

Vu E U,Vi E J
(3.73)

Vj E M,

Vu E U,Vi E N \ {k}

(3.74)

3. Compute the allocation vector {ay}.A and the payments {p[}k as fol-

lows

jEM

*+

jEM

+ -jE (Vi - rMy)
iE./\{k} jEM

E- x1 - *

- y - (vij - r*)
iEA\{k} jEM
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y E R nXm

Qk = Y E Rnxm

(3.75)

(3.76)

, Vk E A.

Figure 3-10: Calculation of adapted allocations and payments.

ay. = yivj + zi*,



n/m 10 ] 20 30 40 [ 50
20 4.2 5.5 8.6 10.2 12.1
40 5.6 9.1 11.0 16.0 15.6
60 7.7 13.5 18.1 20.7 24.7
80 11.1 14.6 20.2 26.2 30.6
100 10.6 17.9 26.6 34.8 45.3

Table 3.5: Computational times (in minutes) of ROM-Si for uncorrelated valuations.

n/m 10 20 [ 30 40 50
20 6.04 8.5 12.3 16.3 16.3
40 9.9 15.4 19.5 23.4 23.4
60 11.02 21.2 28.0 32.1 35.7
80 16.2 24.9 33.4 36.2 51.0
100 17.6 28.7 39.0 53.2 64.3

Table 3.6: Computational times (in minutes) of
with correlation coefficient equal to 0.2.

ROM-Si for correlated valuations

(a) the computational tractability of ROM in multi-item auctions with budgets.

(b) the benefits of incorporating correlations in valuations in the design of auctions

using ROM.

3.5.1 Computational Tractability

The computationally intensive step in ROM is to solve the bilinear optimization

problem (3.8). We have implemented the algorithm presented in Figure 3-3. In this

section, we want to assess the running times of the ROM with uncertainty sets UCLT

and UCorr as n,m and the correlation coefficients vary. In Tables 3.5, 3.6, and 3.7, we

report the average computational times in terms of the number of iterations it took

to solve the problem for (a) uncorrelated valuations, (b) correlated valuations with

correlation coefficient 0.2, and (c) correlated valuations with correlation coefficient

0.4.

From the tables, we observe that the running times are insensitive to the corre-

lation coefficient, while growing approximately linearly in n, m. We feel that these

results indicate that ROM is computationally tractable even for large scale market
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n/m 10 [ 20 30 40 50
20 6.53 9.2 13.3 17.4 17.4
40 10.2 15.6 19.4 24.4 34.3
60 12.8 19.9 28.8 33.9 39.2
80 18.3 29.9 32.7 43.2 52.6
100 20.1 33.1 41.95 60.16 72.5

Table 3.7: Computational times (in minutes) of ROM-Si for correlated valuations

with coefficient equal to 0.4.

design problems.

3.5.2 Effect of Correlations on the Revenue

In this experiment, we demonstrate how incorporating correlation information can

lead to revenue gains. We compare the revenue of the Myerson auction, which ig-

nores any correlation information, with the revenue obtained by using ROM with the

uncertainty set UCorr (see Eq.1.3). We compute the Relative Revenue as defined in

(3.67) and plot it against the value of correlation in Figure 3-11. We observe that

there are significant benefits in incorporating correlation information, which ROM

allows us to do.

3.6 Summary and Conclusions

In this chapter, we revisited the auction design problem for multi-item auctions with

budget constrained buyers by considering a novel modeling approach to model the be-

liefs of the auctioneer. Instead of using probability distributions to model valuations,

or considering a completely adversarial model as in the earlier literature, we consider

an uncertainty set based model for the auctioneer's beliefs about the valuations of the

buyers. These uncertainty sets can be constructed to incorporate any historical or

moment information available to the auctioneer. We then considered the problem of

designing an auction that maximizes the worst case revenue assuming the valuations

lie in the uncertainty set constructed. For such a model and the objective function

considered, we provided a characterization of the worst-case optimal auction for auc-
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Figure 3-11: Effect of Correlations on the Revenue.

tioning multi-items to multiple budgeted buyers. We further considered extensions of

this problem for indivisible items and for buyers with uncertain budgets and provided

mechanisms for these extensions.

The key implications of our results are:

1. The optimal auction has reservation prices that are functions of the uncertainty

set and the budgets, thus extending the structure of the Myerson auction from

single item auctions without budget constraints, to multiple item auctions with

budgets, potentially correlated valuations and uncertain budgets.

2. Unlike the Myerson auction where the reservation prices do not depend on the

item, the reservation prices in our approach are a function of both the bidder

and the item.

3. The mechanism calculates the reservation prices by solving a bilinear optimiza-

tion problem which, although theoretically difficult in general, is numerically

tractable. We presented empirical evidence displaying the numerical tractability
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of our approach.

4. The uncertainty set approach can be used to capture correlations in the buyer

valuations and can also model possible uncertainties in the budgets. We showed

that the nature of the worst case optimal policy does not change with these

extensions.

5. Given the numerical tractability of our approach, it is possible to derive insights

on the properties of the optimal policies. We feel that the two most important

insights are (a) the proposed approach has attractive robustness properties,

when the distributions or the standard deviations of the valuations are mis-

specified, and (b) the knowledge of correlations can be exploited to yield higher

revenue in the auction.
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Chapter 4

Network Information Theory

4.1 Introduction

The central problem of communications is how to transmit information reliably through

a noisy (and thus unreliable) communication channel. Shannon's "A mathematical

theory of communication" published in 1948 marks the beginning of Information

Theory (Verdu [1998], Verdu and McLaughlin [1998], Cover and Thomas [2006]) and

posed the channel coding problem for the first time. In this seminal paper he devel-

oped a framework to precisely define the intuitive notion of information which in turn

makes it possible to mathematically capture the notions of a communication channel

and its capacity. This framework relied heavily on using probabilistic models to de-

scribe various components of the communication system. The information source as

well as the communication channel were both modeled by using probability distribu-

tions. In this framework, Shannon showed (a) there is an upper bound (the so called

channel capacity) for the rate of reliable transmission of information, and (b) there

exists a code that leads to a rate of transmission arbitrarily close to the channel ca-

pacity achieving probabilities of error arbitrarily close to zero. Since then, Shannon's

approach has been used to characterize the fundamental limits of communication

for various kinds of channels. However, the communication limits on many common

channels such as the interference and the multi-cast channels still remain unknown.

And indeed a general theory for communication limits on networks of channels is still
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largely open. Techniques such as random encoding that are effective for single user

channels no longer allow us to characterize the capacity regions of complex channels,

and there is a need to develop widely extendable and structured ways of constructing

the codes.

In this chapter, we propose a methodology that in a wide variety of communi-

cation channels, is capable of (a) characterizing the capacity regions, and (b) at the

same time constructs matching optimal codes. Our approach, which is based on ro-

bust optimization, leads to solving a semidefinite optimization problem with rank

one constraints which we solve, using existing algorithms, as a sequence of regular

semidefinite optimization problems. As an illustration of computational tractability,

we report the exact capacity region for a two-transmitter two-receiver interference

channel, and a multi-cast channel with two receivers, for message-book sizes of up

to 100,000. As expected, our capacity regions are within the best known lower and

upper bounds of the capacity limits reported in literature (see Verdu and McLaughlin

[1998]).

In what follows, we briefly describe the key ingredients of our approach:

(1) Identifying the optimal decoder: The first step involves the identification of an

optimal decoder for a given communication channel. For single-user channels,

it is well known that the Maximum Likelihood decoder is an optimal decoder.

For multi-user channels such as the interference and multi-cast channels, we

construct new optimal decoders.

(2) Typical sets as uncertainty sets: We used the original idea of Shannon [1948a],

that for the purpose of characterizing the capacity region and constructing the

underlying code, it suffices to only consider noise sequences that belong to the

so called "typical set". We next interpret these typical sets as uncertainty sets

in a robust optimization setting. Specifically, we require that the decoding con-

straints found in Step 1, hold for all noise sequences in the typical set. With

this interpretation, the underlying decoding constraints constitute a robust op-

timization problem.
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(3) Reformulation of the robust optimization problem: We reformulate the underly-

ing robust optimization problem as either a binary linear optimization problem

(for non-Gaussian channels) or a non-convex quadratic optimization problem

(for Gaussian channels). For the case of Gaussian channels, we reformulate

the non-convex quadratic optimization problem as a semidefinite optimization

problem with rank constraints. We then use the log-Det method developed in

Fazell et al. [2003] to solve this problem as a sequence of regular semidefinite

optimization problems.

We feel that the identification of optimal decoders for multi-user channels in Step 1

and formulating the coding problem as a robust optimization problem in Step 2, are

decisively new elements in our approach.

4.1.1 Problem Definition and Notation

Throughout the chapter, we denote scalar quantities by non-bold face symbols (e.g.,

x E R, k E N), vector quantities by boldface symbols (e.g., x E R n > 1), and

matrices by uppercase boldface symbols (e.g., A E RnXm, n > 1, m > 1). We denote

scalar random variables as i and vector random variables as z. We use the notation

from Cover and Thomas [2006] for common information theoretic objects.

To make the chapter self-contained, we define the notion of a communication

channel and the related channel coding problem. A communication channel is a

medium on which users send and receive messages. For example, in a single user

Gaussian channel, a sender transmits signal xj E R, but the receiver receives

yJ = Xy + zy, Vj = 1, ... , n,

where the noise zj is distributed according to the normal distribution N (0, o-). In

this chapter we will use zG to denote Gaussian noise and use zG ~ N (0, a - e) to

denote that each component of zG is normally distributed with mean 0 and standard

deviation .

Given a communication channel, a sender seeks to transmit messages from a
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message-book M by coding the messages using codewords of length n, according

to a code C. The inputs of such a code C are:

(a) The length n of the codewords.

1
(b) The number M = |MI - 2nR of codewords. The quantity R = -log 2 M isn

called the rate of the code.

(c) The noise standard deviation o.

(d) The power constraint P of the sender.

math The average probability of error e > 0 (see Eq. (4.1)) the user tolerates.

The outputs of C [n, R, P, o, E] are:

(a) A code-book B, which is a set of M codewords xi, Vi = 1, ... ,M,

(b) A decoding function g : R" -+ {1, 2, ... , M} that maps each received word y to

one of the codewords in B, while satisfying the error-tolerance of e. That is, for

each i = 1, .. , M, we must have

P [g (xi + z) =# i] < 6, (4.1)

where z = [i1, 2 . .... zj , such that ii ~ N (0, o,).

The capacity region of a single user Gaussian channel R, [P, o, c] is the set of all rates

R such that there exists a code C [n, R, P, a, e]. In the next section, we present a brief

review of the information theory literature organized around the results on different

channels.

4.1.2 Relevant Literature

Single User Channel

For the case of a single user communication channel, Shannon [1948a] showed that

there exists a maximum rate Rma associated with every communication channel,
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above which no reliable transmission is possible and below which there exists a code

achieving small error probabilities. In particular, Shannon showed that Rmax is given

by

Rmax = sup I(X, Y),

where I (X, Y) is the mutual information between the random variables X and Y,

and the supremum is with respect to all possible information sources used as inputs

to the channel. He showed that arbitrarily small probability of errors can be achieved

by using random encoding with maximum likelihood decoding, whenever the rate of

transmission is less than Rmax. For the case of the Gaussian channel where the noise

is normally distributed with mean 0 and standard deviation o-, Shannon obtained

that the capacity of the channel is

RGaussian log 1+ (4.2)

where P represents the power constraints of the transmitter.

Multi-User Channels

(1) Multi-access Channels : Gamal and Cover [1980] found various characteri-

zations of the capacity region of the two-user discrete memoryless multi-access

channel. Most useful among those is the expression found by Carleial [1975] for

the capacity region as the convex hull of a union of pentagons. Wyner [1967]

showed (using the suboptimal successive cancellation decoder) that the mem-

oryless Gaussian multiple-access channel admits a very simple capacity region:

the pentagon defined by the single-user capacities of the channels with powers

equal to the individual powers and to the sum of the powers.

(2) Interference Channels : In contrast to the multi-access setting in which

the receiver is interested in decoding the information sent by all the users,

suppose now that we have as many receivers as transmitters and each receiver is

interested in decoding only one of the sources. In spite of many efforts surveyed
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in Verdu and McLaughlin [1998], the capacity region of even the simplest two-

user memoryless Gaussian interference channel remains an open problem. The

only case in which the capacity is known is in the strong interference case,

where each receiver has a better reception of the other user's signal than the

intended receiver (Sason [2004]). The best known strategy for more general

cases is due to Han and Kobayashi [1981]. Etkin et al. [2008] show that a

simple Han-Kobayashi type scheme can in fact achieve rates within 1 bit/s/Hz

of the capacity of the channel for all values of the channel parameters.

(3) Broadcast Channels : Although a general solution for the capacity region

of the broadcast channel is not yet known, considerable progress (surveyed in

Verdu [1998]) has been made in exploring the fundamental limits of various

classes of memoryless broadcast channels. However, the main problem remains

open.

4.1.3 Structure of the chapter

The rest of the chapter is organized as follows. In Section 4.2, we review two key

ideas: maximum likelihood decoding and typical sets. Furthermore, we construct

typical sets for general pdfs f(.). Subsequently, we present the characterization of

the capacity region and corresponding optimal codes as follows:

" single user Gaussian channel in Section 4.3,

" two-user interference channel in Section 4.4,

* multi-cast and multi-access channels in Section 4.5,

" single user and multi-user channels with exponentially distributed noise in Sec-

tion 4.6,

In Section 4.7, we outline the semidefinite optimization approach we use in Gaus-

sian channels (Sections 4.3, 4.4, 4.5) and present computational results for two-user

interference, multi-cast and multi-access channels. In Section 4.8, we present some

concluding remarks.
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4.2 Maximum Likelihood Decoding and Typical

Sets

In this section, we review two key ideas we use in our approach: the idea that max-

imum likelihood decoding is optimal and the notion of a typical set. We consider a

single user channel in which the noise is distributed according a pdf f(.).

4.2.1 Optimality of Maximum Likelihood Decoder

The Maximum Likelihood (ML) decoder is an optimal decoder for any single user

channel (see Cover and Thomas [20061), that is, there always exists an optimal code

which uses ML as the decoding function. An ML decoder is characterized by the

decoding function gML (.) given by

gML (y) = arg maX p [y Xi was sent

n

= arg max hf (y3 - xi).

This allows us to formulate the coding problem as an optimization problem by re-

stricting our attention to codes that are optimal with respect to the ML decoder. In

particular, we constrain the codewords to satisfy the constraints:

xi E X", Vi = 1, . ... , M, (4.3)
n n

rlf (Xij + zj - xgj) 2 f (zA), Vi, i' i Vz E U, (4.4)
j=1 j=1

where U is an appropriately chosen uncertainty set such that

P [z E U) 2 1 - E. (4.5)

Note that Eq. (4.4) are expressed in the language of robust optimization. In particu-

lar, this is an example where robustness is inherent in the problem. That is robustness
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enters the problem, not as a way of modeling uncertainty, but as a natural property

of the problem.

If the codewords are feasible to (4.3) and (4.4), then it is clear to see that the

maximum error probability Perror is constrained by

Perror < P [z ( U]

= 1 - P[z E U]

Note that there are multiple Umathnormaltpical isfy (4.5), therefore, the problem

now reduces to identifying the set U that satisfies (4.5), while also allowing us to

characterize the capacity region using this optimization approach. We show that this

indeed can be done by choosing U to be the so called typical set, which was introduced

in Chapter 1, Eq. (1.6).

4.3 The Single User Gaussian Channel

We consider here a discrete-time memoryless additive Gaussian channel being used

by a single user with average power constraint on the transmitted codewords. Each

use of the channel involves transmitting a signal x E R, which is transformed by the

channel into a signal y E R according to

y = x + z,

where the noise i is drawn independently from a Gaussian distribution with mean 0

and standard deviation a, and is also assumed to be independent of the signal x. The

codewords are subject to an average power constraint P, that is, for any codeword

xi E B we require that

||xiI|2 < n .
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Shannon [1948a] obtained the channel coding theorem that asserts the existence of

codes with rates arbitrarily close to the channel capacity and probabilities of error

arbitrarily close to zero. The proof used the technique of random encoding and max-

imum likelihood decoding, to show that the error probability averaged with respect

to the codebook choice vanishes asymptotically with large code lengths whenever the

transmission rate is less than the channel capacity. Subsequently Feinstein [1954] was

able to obtain an alternate proof of the coding theorem without using the random

encoding technique, although the decoder was again based on the idea of typicality.

Shannon was able to obtain a closed form characterization of the capacity region, as

presented in the following theorem.

Theorem 26 (Shannon [1948a]). In a single-user communication channel with power

constraint P and normally distributed noise with mean 0 and standard deviation o,

the asymptotic channel capacity Rmax is given by

Rmax = - log I+ )
2 U

That is, the user can transmit at any rate R < Rmax with vanishing decoding error-

probabilities as n -+ oo, while for any rate R > Rm , the error-probabilities tend to

1, as n -4 0o.

4.3.1 An Optimization Formulation of the Coding Problem

In this section, we present an optimization formulation of the channel coding problem.

We begin by observing that the maximum likelihood decoder for a single user Gaussian

channel is the minimum distance decoder given by

|Ixi + z - x||1 ;> jzi| Vz E UJo*"ai, Vi, i' $ i, (4.6)
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where UNonnal is the typical set for the Normal distribution (see Eq. 1.5). These

constraints ensure that, if xi was transmitted by the user and was received as

y =xi + z for some z E UNonnal

then the distance between the received codeword y and any other codeword xj' is

greater than the distance between y and xi. Motivated by this, we next present

a robust optimization feasibility problem (see Eqs. (4.94)-(4.99)) that allows us to

characterize the capacity region of a single user Gaussian channel. In particular, the

inputs to the feasibility problem in (4.94)-(4.99) are:

(a) The length n of the codewords;

(b) The rate R of the code;

(c) The standard deviation a of the normally distributed noise;

(d) The power constraint P of the user;

(e) The maximum probability of error e > 0 (see Eq. (4.1)) the user tolerates;

(f) The parameter v > 0 that controls how close (4.18) characterizes the capacity

region.

Given these inputs, we first calculate the following "derivative" quantities:

(a) The parameter 7, which we choose so that

P [I|G|| 5 7] > 1 - e, (4.7)

where zG - N (0, a - e);

(b) The parameter T given by

T - , with ( = -4 < (1 - c (1 - 6 (v, n))) , (4.8)
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where <D (-) is the cdf of a standard normal and

(v, n) = exp -n - 2 , log(1with r = o.2 ((1 + 3v) 2  (1 + 2v)2

2(1+3V)2 U.2

(c) The parameter Mo = (1 + v) - y.

(d) The set of vectors Z = {z1i, z2 , .. . , ZT} with ||zt|| = Mo, t = 1,... , T, and the

property that the Voronoi regions induced by zt are identical geometrically. The

Voronoi region induced by zt is the set of all points on Sn(Mo) closest to zi, i.e.,

V (zt) = {z E Sn(Mo) Izt - zil <; ||z, - zi1, Vs $ t} .

These vectors are the deterministic equivalent to being uniformly distributed

on the surface of Sn(Mo). The construction of such vectors is given in Wyner

[1967].

We define decision variables xi, Vi = 1, . .. , 2 nR and vit, Vi = 1,... , 2 nR, Vt = 1, ... ,

where

1. The variables xi represent the codewords.

2. The variables vit represent binary decision variables that are chosen in a way to

constrain the probability of error. When vit = 1, the set of decoding constraints

(4.11) are satisfied for codeword xi with noise vector zt.
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We consider the following feasibility problem:

|1xi|2 < nP

||Xi - Xk + zt|| + (1 - vit) MO ||zt||,

||xi - xk|| 2 2(9l5,
T

Evit 2 (1 - e) T,
t=1

vit E {0, 1},

Vi = 1, ... 2"nR

Vt, Vi, k # i,

Vi, k =4 i,

Vi,

Vi, t,

Constraints (4.9) impose power constraints on the codewords. Constraints (4.11),

(4.14) ensure that each codeword xi is decoded correctly for at least (1 - e) T of the

noise vectors. Constraint (4.13) ensures that the codewords are separated by a certain

minimum distance to obtain a decoding error probability of at most 6.

We next reformulate the feasibility problem (4.9)-(4.15) as a semidefinite opti-

mization problem with rank constraints, by using the following proposition.

Proposition 27.

(a) Constraint ||xi - Xk + zt|| + (1 - vit) Mo > I|zt|| Vt = 1,... ,T, Vi, k # i, is

equivalent to the constraint

||xi - xk|2 + M02 (1 -vit) 2 (xk - xi)'zt,Vt = 1, ... , T, Vi, k / i.

(b) Constraint vit E {0, 1} is equivalent to the constraint vi = vit.
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Proof. (a) When vit = 1,

||xi - xk + zt|| + (1 - vit) Mo 2: ||zt||

Ixi - Xk + zt|| 2  | IZtl

+-- ||Xi - xk 12 > 2 (xk - xi)' zt.

On the other hand, when vit = 0,

|ixi - Xk + ztlI + (1 - vit) MO > IZtI

+t-> ||xi - xk + zt|| 2! ||zt|| - MO

||xi - Xk + ztI 2 > IztII2 + M2 - 2Mo ||zt||

I> ||xi - Xk||2 + M02 2 2 (xk - xi)' zt,

where the last equivalence follows from ||zt|| = Mo. Therefore,

{Ixi - Xk + zt|| + (1 - vit) Mo 2 I|zt|I}

4-=> {||xi - xk||12 + M2 (1 - Vit) 2! 2 (xk - xi)' zt}

(b) We have that vit E {0, 1} if and only if v2 = vit.

Using Proposition 27, we convert the feasibility problem (4.94)-(4.99) to a non-

convex quadratic optimization problem.

Proposition 28. The set of K quadratic (possibly non-convex) constraints

fk(y) = y'Aky + by + ck < 0, Vk =1,...,K. (4.16)
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is equivalent to the semidefinite optimization problem

Ak Y 0,

Y >- 0

11 1,

rank (Y) = 1,

where

Ak=

1

y

Ck

bA

) (1,y'),
bk

Ak

Proof. The quadratic function fk (-) can be written as

bk 
1

( kAk y

1 ck bkwhere Y = (1, y') , and Ak = . Clearly,
y / bk Ak)

Y1 1 = 1 Y >- 0, and rank (Y)=1.

In addition, Ak e Y = fk(y) 0, Vk = 1,...,K.

On the other hand, given a feasible solution Y to (4.17), because rank(Y) = 1

and Y11 = 1, there exists a vector y such that

1
Y =(,y'),
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and clearly y is feasible to (4.16). This concludes the proof.

Using Propositions 27 and 28, we obtain that the feasibility problem (4.94)-(4.99)

is equivalent to the semidefinite optimization problem (4.18).

min rank (Y)

s.t. Ai e Y < 0,

Bikt 0 Y <K 0,

Ci 0 Y < 0,

Dit o Y = 0,

Y - 0,

(4.18)

Vi = 1, ... 2 "nR,

Vt = 1,. .. , T, Vi, k 7 i,

Vi,

Vi, t,
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where

Ai (p, q)=<

Bikt(p,q)=

Ci(p,q)=

Dit(p,q)=

-nP,

02,1,

ztr,

ztr,

-Ztr,

-Ztr,

-1,

-1,

1,

1,

2

2

0,

(1-e)

-1,

0,

0,

2'

011,

0,

ifp= 1,q= 1,

ifp= 1, q>1,

ifp >1, q=1,

ifVp=q= (i-1)n+1,...,in+1,

otherwise.

if p = 1, q = 1,

ifp= 1, q= (k- 1)n+ 1+r, Vr= 1,...,n,

ifq = 1, p= (k - 1)n+ 1 +r, Vr = 1,...,n,

ifp=1,q=(i-1)n+1+r,Vr=1,...,n,

ifq=1,p=(i-1)n+1+ r,Vr=1,...,n,

ifVp=q= (i-1)n+1,...,in+1,

ifVp=q= (k-1)n+1,...,kn+1,

if q= (k- 1)n+1+r,p= (i-1)n+1+r, Vr= 1

ifq= (i- 1)n+1+r,p= (k- 1)n+1+r, Vr= 1

ifp= 1, q=n 2 + 1 + (i - 1)T+t,

ifq= 1,p=n 2 + 1+(i-1)T+t,

otherwise.

T, ifp=1,q=1,

ifp=q=n 2 + 1+(i-1)T+t,Vt=1,...,T,

otherwise.

if p = 1, q = 1,

ifp=1,q=n 2 +1+(i-1)T+t,

if q = 1, p = n2 + 1 + (i - 1)T + t,

if Vp = q = n2 + 1 + (i - 1)T + t,

otherwise. 138
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We summarize the development by introducing the following algorithm to characterize

the capacity and determine the optimal code.

Algorithm 1 Capacity Characterization and Optimal Coding for the Single User

Gaussian Channel.
Input : R, P7 a, n, V, E.

Output : Rank r*, codewords{xi} 2nR, and auxiliary binary variables {vit} I.

Algorithm :

1. Solve the rank minimization semidefinite optimization problem (4.18) to com-

pute r*, codewords{xi} ,=l and auxiliary binary variables {vit} I.

2. If r* = 1, then R is achievable using the codebook B = {xi} 12 and the minimum

distance decoding function, achieving a decoding error probability of E. That

is,

If r* = 1, then R E R, [P, a, 2e].

3. If r* > 2, then R cannot be achieved on a single user Gaussian channel with

noise standard deviation (1 + 2v)o with probability of error less than or equal

to E (1 - J (v, n)). That is,

If r* > 2, then R g R1 [P, (1 + 3v) u,c (1 - J (v, n))] ,

where

6 (v, n) = exp -n - 2 ,log(I) with r = 2 ((1+3v)2 - (1 + 2v)2)
2(1+3V)2 0,2

-+0, as n -4 oo.

4.3.2 Correctness of Algorithm 1

We establish the following notation for this section. We let Be [z] denote the event

that a decoding error occurs when message i is sent on the channel and noise vector
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z is realized, that is,

S [z) = {3k = i : ||Xi - Xk +i 1| :5 ||z} .

Let 1 { [z] } denote the indicator random variable corresponding to 9i [i], that is,

1{ [] = 1, if ]k - i : ||xi - xkilz||5 ||z||,

0, otherwise.

Let S,(r) = {s E R" s II = r , and let s(r) denote a vector chosen uniformly at

random in S.(r). We next review the following two results from the literature which

will be integral to the proof of correctness of Algorithm 1. Wyner [1967] showed that

a large collection of uniformly random points on a sphere can be used as a proxy for

all the points on the sphere.

Proposition 29 (Wyner [1967]). Let A = {ai, a 2 , ... , aN} be a Voronoi tessel-

lation on Sn(y). Then, Vs E Sn(y), ]a, E A such that Is - ai|| 5 On/, where

0 = -
Nn - Fn

The following result lists two important properties of a vector of independent

normal random variables.

Proposition 30 (see Cover and Thomas [2006]). Let zG ~ N (0, o e).

(a) (Bernstein's inequality) The vectors zG are concentrated in a thin shell of radius

o-/in, that is,

P G112 > 2 - I ep n r - log (1 + r)

In I2u-

(b) (Spherical symmetry) The random vector 6 = zG/ iG| is distributed uniformly

in Sn(1).

(c) Let d be a random variable distributed identically to the norm of 4G, that is,

j~ ||zGII- Then, zG ~' s-n(1).
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We next present a series of propositions that form the components of the proof of

correctness of Algorithm 1.

Proposition 31. Let A, B and C be three single user channels with noise vectors

U A, 6B, zc where 6A, UB are distributed uniformly in Sn(rA) and Sn(rB), respectively,

and ic - N (0, -y - e) . Let {xi} l be the set of codewords. Then,

(a) If rA rB, then

P [3k i :|xi - Xk +| iI r P rl k P i Xi - Xk + B| rBl

(b) P 1k 7 i :|xi -Xk±+6 i rA P [1k i i|Xi -Xk + c I5 izc Ic rA];

(c) P 14k 7 4i Ixi -xk+ AII rA] P [3k i Xi -Xk +Z iC ic Ic > rA]

Proof.

(a) We first show that

if||xi - Xk + i| < |l| , then ||xi - Xk + ai| 5 a| |l|, Va 1. (4.19)

If |lxi - Xk +i z5 |I|iz, then we have

||xi - Xk + azl = Oxi - Xk + z + (a - 1) il

|xi -xk + llz+l|(a - 1) zil

Hil |||+ (OZ - 1)||i|| = a||z21|.

We next consider a sample path WB such that k # i

Then, consider a sample path WA given by

(triangle inequality)

:|xi - Xk + 6jB (wB) rB.

UA (WA ' - B (WB)'
rB

Applying (4.19) with a = r /rB ;_> 1, we have |Xi - xk + af6B (oB)| arB, leading
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to ||Xi - xk + 6A (WA)I I rA. In other words, we have

1 {B0 [6A (WA)]} 1 {i [LB (WB)} - (4.20)

Noting that, if 6UB(WB) is uniformly distributed in S(rB), then fLA(WA) is also uni-

formly distributed in Sn(rA), by taking expectations in (4.20), we have

P [3k i : ||xi - x + SA 1 r)l P 3k 4 i : X - x + enB edB

(b) Let s E S,,(1), and let fi, gi : S' (1) -4 0, 1} be defined as

fA (s) = 1

0,s

9i (S)= 1,

0,

if 3d < rA : ||xi - Xk + ds|| d, for some k $ i,

otherwise.

if ||xi - Xk + rAs|| 5 rA, for some k #: i,

otherwise.

Applying (4.19) with z = d - s and a = rA/d 2 1, we have that if fi (s) = 1, then

g (s) = 1 leading to

Ps's(1) [gi (S) = 1] Pss(1) [fi (s) = 1] . (4.21)

We next consider the event {6i [ds] d - rA . We have

{i [ds] d = rA} == gi (s) = 1.

Furthermore, from Proposition 30c, we know that zc ~ j. s (1) with ~ ||zc ||. Thus,

P [i [.ic] | c|| rl = P [ - (1 r A] (4.23)
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Next observe that, conditioned on i < rA, the event 6 [d - (1)1 implies that

A (s ()) = 1,

leading to

(4.24)

Finally, noting that conditioned on d = rA, 6 ~ s(1). Thus,

PD [4 [6iA]] = Ps,~(l) [B [ds] Id = rA]

(from (4.22))

(from (4.21))

(from (4.23) and (4.24))

(c) The proof is very similar to that of part (b) and is omitted.

Proposition 32. Let C be a code with codebook B and a minimum distance decoding

function. Consider two noises iG - N (0, a- e) and zu uniformly distributed on

Sn(o-'f/d) with o-' < o-. If P [4 [zG)] < e, then

P [K z]] ,1 - exp (-n#)'
with # =

a.2 _ /2 - log (1 + a.2 _ .Q2)

Proof.

Applying Proposition 31c with nA = zu, rA = o' , and zG = zC, we obtain:

P [Bi [zu]] P [i [zG] IIZG|| > -'Fi . (4.25)
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Furthermore,

P [I2II > UV] = p [IIjGII 2 > na' 2]

= P [iG 112 > na 2 _ (na 2 
- na'2 )

= P ||z1G 12 > 2_r

where r = a- '2 . Applying Proposition 30a, we have

IP[I|zG|| >'d-] > 1 - exp (-n#), with r - log (1 + r)

Therefore, we have

P [9 [zG1] = P [G [cA IiGII > a'/F1 'P [i11 >

+ P i [iG G GI O/§J. P i a's0ii]

> P [4 [zG] I G 11>Cln-P[1G11>0/n

> P [& [zu]] -P [||zG|| > o-'V] (from (4.25))

which implies that

P 2G[II >o0 Vn1 - 1-exp (-n#)
(from (4.26)).

0

We next examine certain properties of optimal solutions of (4.18). Let

W = wtlwt - 1 Zt,1+ v
Vt= 1,..., T }

and r (s)= arglex m| Is - wt||.
t=1. e T

Proposition 33. Let e > 0 be the constant used in (4.7), and -y, be as in (4.7). Let

{r*,xi,vitj be an optimal solution of (4.18).

we have

For § uniformly distributed on Sn(-E),
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(a) P [Vk # i : |xi -xk+ s| ] P [vr(s) = 1,

(b) P [vir(§) = 1] 2 1 - E.

Proof.

(a) Constraint (4.11) implies that {xi}$1 satisfy that, for the noise vector zt's in Z

with vit = 1,

||X - xk + zt| 11 || zt|| , Vk / i, 4= I|xi - xk 12 > 2 (xk - Xi, zt) , Vk # i,

4-= ||Xi - xk 112 > 2 (1 + v) (xk - Xi , Wt) , Vk 4 i.

(4.27)

Since {z 1 , z2 ,..., ZT} forms a Voronoi tessellation of Sn((1 + v)yE), the set W also

forms a Voronoi tessellation of Sn(y,). Therefore, letting s be any vector belonging

to S", from Proposition 29 applied to A = W, N = T, A = ye/V/E, we obtain

IIs - Wr(s)|| <; 69V/i, (4.28)

where r (s) = arg mint=,...,T IIs - wti| , with

0 / - 1 + v (4.29)

From (4.13) and (4.29), we have

1+iv
|xi - xkI| I 2\/n( = 20 V/n6.

V
(4.30)
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We now proceed to show that if vir(s) = 1, then ||xi - Xk + s|| 2 |isl|. We have

2 (Xk - Xi, s) = 2 (Xk - xi, (s - wr(s)) + Wr(s))

< 2 (Xk - Xi, Wr(s)) + 2 - lxi - Xk s - Wr(s)|| (Cauchy-Schwartz)

< (1 + V)' ||xi - xk|| 2 + 2- lxi - xk|| 6/ (from (4.27) and (4.28))

= Ixi - x {(1 + v)- Xi -xk + 26\}

< xi - xkll. (i + v) -l xi-XkIl -- V xi-xk|| (from (4.30))

X i - Xk 2

Therefore, if vir(s) = 1, then

2 (xk - Xi , S) |Xi - xk| 11 2 x -xk + S|| 2 |s||.

This implies that PEVk # i : |jxi - Xk + sl 2 2 P [vi (§) =1].

(b) For each i E B, we have

T

t= 1

We have

P Vi,(g) = 1 T (s) = t] =

0 v

= vit.

if Vit = 1,

otherwise,

(4.32)

Moreover, since the set of vectors W forms a Voronoi tessellation of S,(ye), the

Voronoi regions of the points wt E W are identical with the same area. Consequently,

choosing s uniformly induces a uniform distribution for T (s) on the elements of the

set {1,. .. , T}, that is,

1
P = t] = 1 Vt = 146..., T.
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Substituting (4.32) and (4.33) in (4.31), we have

S P [vir(s) =1 (s) = tl P'[T(s) = t]

T

Evit > -T(1 e) T (from (4.14))
t=1

= 1 - E.

Recall that Z, [P, a, E] is the set of all achievable rates on a single user Gaussian

channel with power P, standard deviation of the noise o- and maximum decoding

error probability of e. We are now in a position to present our main result.

Theorem 34. Let r*, {xi} 2n, be an optimal solution of (4.18),

(a) If r* = 1, then R E ?,, [P,a,2e], that is the rate R is achievable using the

codebook B = {xi}| 1 and the minimum distance decoding function, achieving

a maximum decoding error probability of 2e.

(b) If r* > 2, then R I R7 [P, (1I + 3v) a, c'], where c' = (1 - 6 (v, n)) e

6 (v, n) =exp -n - rlog(1+r) with r = u. 2 ((1 + 3v)2 - (1 + 2v) 2

2 (1 + 3v) 2 U.2

-- 0, as n -+ o.

Proof.

(a) We consider a Gaussian channel with noise zG ~ N (0, -e). Prom Proposition 2,

we have

(4.34)

where Uljonral = {s E R" I Is|| <; -Ye }, with ye = Vno2+ FE. We next consider the
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probability of error when a codeword i is sent on the channel

P [49i [,iG1] =P [3k 4 i : ||xi - xk + 49G1 < 14G11

= P [3k = i : ||xi - xk + ZGI: IlGI ZlG|| E (c - dc, c]] dc

+ JP [Ik i : xi - Xk + ZG IiGII IIGII E (c - dc, c]] dc.

We bound the second term as follows :

P[3k $ i : ||xi - Xk + ZGII < NZGII IG|| E (c - dc, c]] dc

] P IllG| E (c - dc, c]] dc = P [iG orma] e.

We bound the first term as follows:

jIP [3k $ i : IIXi Xk + iZGII < 114GI, IlzGII E (c - dc, c]] dc

= N P [3k $ i : IIxi - Xk + iGI! < IIZGII I1ZGII E (c - dc, c]]

-P [1|i|G1 E (c - dc, c]] dc

< P [3k =# i : ||xi - xk +s9 (C)| 11 :C] P [||ZG||1 E (c - dc, c]] dc

< P [Ek # i : IIxi - xk + (YE)I 5 yI P [IlGII E

17 (1

(c - dc, c]] dc

- P vi ) 1 IP [|ZGI E (c - dc, c]] dc

(Prop. 31(b))

(Prop. 31(a))

(Prop. 9(a))

(Prop. 9(b))< ( (1 - E)) P [|ZG|| E (c - dc, c]] dc

< E f P [||G| E (c - dc, c]] dc < E.

(4.36)

From (4.35) and (4.36), we have I? [B [iG < 2E, and the theorem follows.
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(b) To prove this part, we choose a rate R E R, (P, (1 + 3v) ,e'), and then show

that there exists a code that is feasible to Constraints (4.9)-(4.15). Since R E

R (P, (1 + 3v) a, e'), there exists a code C that has an error-probability of 6' on the

channel with Gaussian noise zG ~ N (0, (1 + 3v) a - e), using codewords {xi}2,

satisfying

P [i [ P [ki : IIXi - Xk + zG4G9} < 11

We first show that the codewords {xi}f1n satisfy Eq.(4.13). Consider the probability

of incorrectly decoding xi as Xk on this channel. We have

P [xi decoded as Xk] P [Ijxi + zG - Xk 1 II II

= P [2 (Xk - Xi, zG) jIxi - xk 12

p[ (xk - Xi , zG) > jXi - xkI

(1 + 3v) a l~xj - xIll 2 (1 + 3v) ul

= D 1 - I~ <D .
2 (1 + 3v) o,

Since we know that P [xi decoded as Xk] < P [i [zG]] < c', we have

c' > 1 -<DI
- 2 (1 + 3v) o,

xi - XkII 2 (1 + 3v) a<D-1 (1 - E') = 2 (1 + 3v) (V/n, (4.37)

which implies that (4.13) is satisfied.

We next show that the codewords {xi} 12 satisfy Eqs.(4.11) and (4.14). Let zu

be uniformly distributed in S3(a 1 9 /~), where

a1 = (1+2v)a <(1 +3v),

and let zD be a discrete uniform distribution given by

1
P [zD = Zt I 1, ... , T.
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Consider a zt, and letting ut = oizt/ (1 + v) a, we have ||ut|| = a1V . Let s E

S,(oi/f) such that s is in the Voronoi region V (ut) of ut, that is, s E V (ut).

Applying Proposition 29 to A = {u 1 , .. . , UT}, N = T, A = u1, we obtain

Is - ut| I O'/, (4.38)

T1/n e

' + 2v

- --E ( + .
ST14 N 1 +v

1
ixi - Xkj1 V+ V~

(1+2v) of 1 1

7Y 1+2v 1+v 2vr

(from (4.29))

(from (4.37))

SIXi - Xkjj < 1 + V

1

2 IX -XkhI

(4.39)

Finally, if |Ixi - Xk + zt|| IztI|, then

2 (xk - xi, s) =2 (Xk - xi, (s - Ut) + Ut)

* 2 (xk - Xi, ut) - 2. -Ixi - xk|| - ||s - ut||

*1 + 2v 2IX -Xk12 - 2. xi - xky -I 'v"
~1 + V

Xi - Xk1f 1 +2v

Ix-I x {- 1+ V

Xi - XkI ~ 2 0

x - |

(Cauchy-Schwartz)

(from (4.38))

IXi - XkI (from(

= IXi - Xk 112

which is equivalent to IIxi - xk + s sI| Vs E V (ut) . Therefore,

if ||xi - Xk + zt|| 5 |zt||, then |IX - Xk + sl| ||s|| Vs E V (ut).
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, then Furthermore,

T

t=1

(4.41)

Since the set of vectors {zt} form a Voronoi tessellation, the vectors {ut} also form

a Voronoi tessellation on S (o, uf). Therefore, the Voronoi regions of the points ut

are identical with the same area. Consequently,

(4.42)

Moreover, from (4.40), we have

P [i [u) zu E V (ut)] if 1lx.i.

Substituting (4.42) and (4.43) in (4.41), we have

T

- Xk + ZtII 5 IIztlI}.

(4.44)P [i [i]] > E 1{||Ixi - xk + zt|| 5 ||zt1}.

From Proposition 32 we have,

P [A [li] ] P [00i [G <
1 - J (v, n) -

= E.
1 -6o(v, n)

Therefore, from (4.44), we have

T 1 {||f11Xi - xk + zt| 1 5 || zt|| 11 P [91 [zy]] < E,
t= 1

which implies that the codewords satisfy constraints (4.14).

Recall that the asymptotic capacity region 7? [P, o-] is defined as

R [P, o- = lim Rn [P, -, En], where En -+ 0, as n -- oo.
n-+oo
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Theorem 34 provides an exact characterization of the asymptotic capacity region

while simultaneously constructing the matching code. In his characterization of the

capacity region, Shannon [1948a] used the probabilistic method to show the existence

of matching codes. In the last six decades, there has been substantial research in

constructing codes that are optimal for different regimes of P, a (see Verdu and

McLaughlin [1998] for a comprehensive review).

The codes that we construct by solving (4.18) provides a systematic method for

constructing optimal codes for all parameter values P, o. Moreover, Theorem 34

provides a characterization of the capacity region and optimal coding for the finite n

case. While in this case, our characterization is not tight, we provide explicit bounds

of the error probability for given n and for error probability E.

On the negative side, our characterization of the capacity region is algorithmic in

nature, while Shannon characterized the capacity region in closed form. In addition,

computationally we need to solve large scale NP-hard problems to construct the opti-

mal code. However, we report computational evidence in Section 6 that suggests we

can construct optimal codes up to M = 100, 000 and n = 50 - 60. Most importantly,

as we show in the next section, our algorithmic approach generalizes to multi-user

channels with interference.

4.4 Capacity Region of a Gaussian Interference

Channel

A two-user interference channel is a communication medium in which each user in-

tends to transmit messages taken from their corresponding message books B1 =

{1, 2, ... , M1 } and 32 = {1, 2, .. ., M 2}. User 1 selects message ml = i E 31 and

transmits x1 over the channel, while satisfying the power constraint

x1 2 < p
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User 2 chooses message m2 = k E B2 and transmits x2 that satisfies

x 2X - P2.

The channel introduces noise terms z and z2, and the transmitted messages x! and

xk interfere to give rise to codewords y' and y 2 given by

yi = xk 1x + z1,
2 = 2 + i2,y Xk4-h 2 il~z

which are received by the users. The noise terms iV and z2 are assumed to be Gaussian

noise, and the interference parameters hi 2 and h 2 1 are assumed to be real numbers.

We let ml = i and m 2 = k to denote that Users 1 and 2 transmitted messages

i E Band k E B2 on the channel, respectively.

The channel coding problem for a two-user Gaussian interference channel refers

to the problem of constructing a code with inputs:

(a) The length n of the codewords;

(b) The rates R1, R 2 of the code;

(c) The common standard deviation o- of the normally distributed noises z' and 2;

(d) The power constraints P1 , P2 of the users;

(e) The average probability of error e > 0 (see Eqs.(4.46) and (4.47)) the users

tolerate.

The outputs of Cic [n, R1, R2, Pi, P2 , o, E] are:

(a) The codebooks B1 = {xi , B2 =

(b) The decoding functions h' : R" -+ B1, h2 : Rn - B 2 that map each received

codeword y', y2 to one of the codewords in B1 and B2 , respectively, so that the
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average probability of error satisfies

2nR1 S P [h (yl) f ilm' = i] < e, (4.46)

2nR 2

2nR2  [h 2 (y2 ) = kim 2 = k] < c. (4.47)
k=1

Given these definitions, the capacity region R1c [Pi, P2 , o-, e] is defined as the set of

all rate pairs (R 1, R2) such that there exists a code Cc n, R 1, R 2 , Pi, P2 , 0, E].

4.4.1 Capacity Characterization and Optimal Coding

In this section, we present the algorithm which we use to characterize the capacity

region while simultaneously constructing the optimal code. The algorithm consists

of two parts: (a) the Encoding Algorithm (Algorithm 2), and (b) the Decoding Al-

gorithm (Algorithm 3). A key ingredient in our construction of this algorithm is the

form of the decoder (4.48) that we propose. In this proposal, User 1(2) after receiving

y1 (y 2 ), selects i*(i*) by solving the minimization problems:

i* = arg mm mm ||y' - (x + hi 2x)|,
iE{1,...,M

1 } kE{1,..,M 2 } 1 (4.48)

i2 = arg min min 1y' - (x + h2xk)|.
kE{1,.M 2} [iE{l,..,M}J

In Theorem 40, we show that it suffices to restrict to this decoder in order to con-

struct capacity characterizing codewords. Based on this decoder, we next present the

Encoding Algorithm which involves checking the feasibility of Problem (4.49-4.65).

The inputs to the encoding algorithm are (n, R 1, R2, Pi, P2 , E, v), where the parameter

v > 0 controls how close the algorithm characterizes the capacity region. Using these

inputs, we first calculate the "derivative" quantities: l'e, T, Mo, and the set of vectors

Z = {z 1, z 2 ,... , ZT} as defined in (4.7)-(4.8). The feasibility problem involves the

following decision variables:

1. Variables {xj}Q1 , {x2 R2 that represent the codewords for Users 1 and 2,
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respectively;

2. Binary variables v, V2, V, v2 that are used to identify the subset of codewords

which will be decoded correctly with probability at least 1 - e . In particular:

(a) v = 1, if for codeword i of User 1, the average probability of error is at

most e, that is,

2nR2

2nR2 #i 2 =k] <64,

k=1

and vi = 0, otherwise, where g' (-) is defined in (4.66). The binary vari-

ables v2, Vk = 1,... , 2 nR 2 are defined in a similar fashion.

(b) v' = 1, if whenever ml = i and M 2 = k, User 1 is able to correctly decode

with probability at least 1 - ei, that is,

IP [g' (y') : ijm1 = i, M2 = k] < 'E4

and v1 = 0 otherwise. The variables v , Vi, k are defined in a similar

fashion.

3. Binary variables {v1 t, v2} ' 1 are axillary variables which allow us to constrain

the probability of incorrect decoding for codewords identified by v, vs, Vo2 , V .

In particular, for codewords i, i', k, k' with v1! = 1 and v, k1,

1,kt if ||(x! + h12 x) i- (x, h12 x,)+zIll;>||zt||
vikt

0, otherwise.

We next present Algorithm 3 for decoding, which is parametrized by the quantities

v, V2, V1, o that are computed by Algorithm 2.

In Algorithm 2, constraints (4.49) and (4.50) impose power constraints on the

codewords. Constraints (4.51)-(4.57) implement the decoding constraints for User 1.
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Algorithm 2 Encoding algorithm for two-user interference channel.
Input: n, R 1 , R2, U, P, P2, e, V.
Output: Codewords x , x2, and binary variables oi, V, V1 , V2k, {Vit, 1 t } .

Algorithm:

1. Check the feasibility of the constraints

l|x 2 < nP2
ix~ 2112 < nP2

||xi - xi, + hi2 (xk - xi,) + ztI|+ h(2 X _ - X2) M+ 2ztl,

||x! - xi, + hi 2 (x - x ,)|| 2o-D- 1 (I - e,

kt - 1Vik kV1 < V 1

Vik i

2 nR2

V 1 2n1 2 -v
k=1

2 nR

>vE (1-e .2nR

||x~ - xi, +i h21 (xi - xl,) -+ zt||

||xi - xi, + h21 (x) - xj,)|| 2o-<D1 (1 - ei) ,

V i k f

2nVik

ov~ ( 1- eQ) 2T v.
k=1

2 nRj

5v >(1-EQ1) 2 nR1

2 nR 2

2 2 1 - -

V, Vk, k, Vk, Vikt, Vlkt E {0, 1},

Vi,
Vk,

Vi, i', k, k', t

Vi, i',I k, k',)

Vi, i',I k, k', it,)

Vi, i',I k, k', t,)

Vil k)

Vi,

Vi, i', k, k', t,

Vi, i',7 k, k',

(4.49)
(4.50)

(4.51)

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

Vi, i', k, k', (4.61)

Vi, k,

Vi,

(4.62)

(4.63)

(4.64)

(4.65)Vi, k, t.

2. If the problem defined by constraints (4.49)-(4.65) is feasible, then (R1 , R 2 ) is
achievable and the resulting codewords can be used to transmit messages.
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Algorithm 3 Decoding Algorithm for two-user Interference Channel.

Input : Received codewords y', y2

Output : Messages i*, i;.
Algorithm:

1. Solve

i* =1 (ym) = arg min min | 1y' - (x! + hix2)| ,
i { 1,...,Mi}:v!=1 kE1,...,M2}:Vl =1 k

isll : ==1 g2E m (y2) = arg min min 11y' - (x + h2x1)|
gk ( = kE{1,.M 2 }:=1 LiE{,.,Mi:vk

(4.66)

In particular, constraints (4.51)-(4.54) ensure that, whenever vik= 1 and vik, = 1,

then for at least (I - e4) T of the zt's in Z,

(x1 i + hi 2xi) - (xi, + hi2 x2,) + ztJI > ||zt|I

thus ensuring that for at least (I - 611 T of the zt's in Z, x!+hi2 x +zt is decoded as

i by using the decoding Algorithm 3. Furthermore, constraints (4.55)-(4.57) ensure

that there are at least (I - Ei) 2 nR 1 number of codewords i E B 1 , such that for

each such codeword i, there are at least (I - 4i) 2 n12 codewords k E B2 with the

probability of correct decoding of at least 1 - e. Constraints (4.58)-(4.64) are the

corresponding decoding constraints for User 2.

We next provide a reformulation of the feasibility problem (4.49-4.65) into an

equivalent rank minimization problem with semidefinite constraints. Let

y =(1 , X 2 , V , V , , 1,2 1 2

be the concatenation in a single vector of all the decisions variables in the feasibility

problem (4.49-4.65). Letting Y = yy', note that rank(Y) = 1 and Y >- 0. Using

Propositions 27 and 28, we reformulate the feasibility problem (4.49-4.65) as the

problem of minimizing the rank (Y) subject to linear constraints in Y and Y >- 0.
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r* =min

s.t.

(4.67)rank (Y)

A! 9 Y < 0,
1 .Y < 0,A e Y 0,

B ekt Y 0,

V
1  < V

1

Viki'k't - ik

V
1  < V

1

iki'k't ilk'
T

(v ,,> 1-41 T-v1 v1,ZVkilklt (i-E) ik Vilk'
t=1

V
1 

< V
1

ik-

2 nR 2

v 41-) 2 nR2 .

k=1

2
nRi

ov> 1 -el) .2nR1
i=1

B k e~t*Y 0,

ki'k't k'
T

EViki'k't -k 'k')
t=1

y>-0

if p 1, q = 1,

if p =1, q>1,

if p>1, q = 1,

ifVp=q= (i-1)n+1,...,in +1,

otherwise.
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Vi = 1,).. ., 2"R1,I

Vk = 1, ... , 2 nR2 ,

Vt =1, ... , T, Vi, k, i', k'

Vt=1,...,T,Vik,i',k'

where

A' (p, q)=

-nP 1 ,

0,

0,

1,

0,



-nP 2 ,

0,

A (p,q)= 0,

1,

0,

if p = 1, q = 1,

if p = 1, q > 1,

if p>1, q = 1,

ifVp=q= (k-1)n+1,...,kn+1,

otherwise.
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Biki k't (p, q)=

Biki,,t (p, q)

Ztr,

Ztr,

-Ztr,

-Ztr,

-1,

-1,

1,

1,

2

2

0,

Ztr,

Ztr,

- Ztr,

-1,

-1,

1,

1,

02

2

0,

if p = 1, q = 1,

ifp= 1, q= (k- 1)n+1+r, Vr =1,...,n,

ifq= 1,p=(k-1)n+ I1+r,Vr=1,...,In,

ifp = 1, q = (i - 1)n+ 1 +r, Vr =1,...,n,

ifq= 1, p= (i - 1)n+ 1 +r, Vr = 1,...,n,

ifVp=q= (i-1)n+1,...,in+1,

ifVp=q = (k- 1)n+ I1,...,kn +1,

ifq = (k - 1)nI +r, p =(i - 1)n + 1 +r, Vr = 1,...,n,

ifq = (i- 1)n+ 1 +r, p =(k - 1)n + 1 +r, Vr = 1,...,n,

if p = 1, q = n2 + 1 + (i - 1)T + t,

if q = 1, p = n2 + 1 + (i - 1)T + t,

otherwise.

ifp= 1, q = 1,

ifp= 1, q= (k- 1)n+1 I+r, Vr= 1,...,n,

ifq= 1,p=(k-1)n + I1+r,Vr=1,...,n,

ifp= 1, q= (i- 1)n+1+r, Vr= 1,...,n,

ifq= 1,p= (i- 1)n+1 + r, Vr= 1,...,n,

ifVp=q= (i -1)n+1,...,in +1,

ifVp=q= (k- 1)n+1,...,kn+1,

ifq = (k- 1)n+ 1 +r, p =(i - 1)n+ 1 +r, Vr = 1,...,n,

ifq= (i- 1)n+ 1 +r, p= (k- 1)n+ 1 +r, Vr =1...n,

if p = 1, q = n2 + 1 + (i - 1)T + t,

if q = 1, p = n2 + 1 + (i - 1)T + t,

otherwise.
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We then use the resulting rank minimization problem with semidefinite constraints

in Algorithm 4 that, as we show in Theorem 40, correctly characterizes the capacity

region.

Algorithm 4 Capacity Characterization and Optimal Coding for the Two-User In-

terference Channel
Input : R1 , R 2 , P1 , P2 , a, n, e, v.

Output : Rank r*, codewords {x }' , {x} 1
2
n , and auxiliary binary variables

1 V2 V1 V2 IV1 V2

Algorithm :

1. Solve the rank minimization semidefinite optimization problem (4.67) to

compute r*, codewords {x } 1,l 1 , and auxiliary binary variables

1 V2 V1 V2 V1 V2

2. If r* = 1, then (R 1 , R 2 ) is achievable using the codebooks B1 = {x 1 2nR,
Zx i=1 I

B2 
= _ and the decoding functions (4.66), achieving an average decoding

error probability of 3e + e. That is,

If r* = 1, then (R1 , R 2 ) E IC IPi, P2, , 364 +

3. If r* > 2, then we can conclude using Theorem 40 that, (R 1 , R 2 ) cannot be

achieved on a Gaussian interference channel with noise standard deviation (1+

2v)u with probability of error less than or equal to c (1 - 6 (v, n)). That is,

If r* > 2, then (R1, R2 ) V 1Zc [P1, P2, (1 + 3v) a, E (1 - 6 (v, n))],

where

(v, n) =exp -n - ,log(I+r) with r = o2 ((1 + 3v) 2 - (1 + 2v)2 )
2-(10s V)2 U2

-+0, as n -+ 00.
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4.4.2 Correctness of Algorithm 4

The proof of correctness is similar to the single user case. We let 6i [z] denote the

event that a decoding error occurs when User 1 sends message i and User 2 sends

message k on the channel and noise vector z is realized, that is,

= {i' i, k' (x+- (x, hi 2xi,) + z I|z|}.

Let 1 {i [z]} denote the indicator random variable corresponding to Si [i], that is,

= 1, if 3i' / i, k' :|(x! + hi2xi) - (xi, + hi 2xi,) + z|| ||zl

0, otherwise.

We begin by obtaining the following proposition which are integral to the proof of

our characterization of the capacity region.

Proposition 35.

Consider any sequence of non-negative numbers {a1, a 2 , ... , aN} such that E N 1 ai <

Na. Then, for each fraction f E (0,1), there exists a subset A C {a1,a 2 , ... ,aN} of

size at least f - N such that

1
ai <5 a - ,Vi E A.-- I - f

Proof. Without loss of generality, we assume that f - N is an integer and that the

numbers {ai, a2 ,..., aN} are sorted such that

ai5 a 2  ... aN.

1
It suffices to show that af N 5 a - - We consider the following linear optimization

1-f
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problem

max XfN (4-68)
N

s.t. Exi < aN,
i=1

XfN Xi, Vi < fN,

XfN X xi, Vi > fN,

xi > 0, Vi,

whose dual problem is given by

min aNq (4.69)

s.t. q+pi > 0, Vi < fN,

q-pi>0, Vi>fN,

q+ pi- pi>1,
i>f N i<fN

pi > 0.

Consider the following solution to (4.68) and (4.69)

z = 0, Vi < fN,

x* = a ,Vi > fN,
1-f

*1

q N(1 - f)'

p*=q*, Vi>fN,

p*'=O, Vi<fN.

It is easy to verify that {x } is feasible to (4.68), and q*, {p }_ 1 is feasible to

(4.69) with the same objective value. Therefore, an optimal solution to (4.68) will
1

satisfy x! = 0, Vi < fN and x! = x*N, Vi > fN and thus X*N= a -
r t w u iI - f

Another result we use is due to Shannon [1948a] that essentially says that the
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minimum distance decoder is optimal for single user Gaussian channels.

Proposition 36 (Shannon [1948a]). Let C be a code with codebook B with some

decoding function g (.), that achieves an average decoding error probability of less

than or equal to E on a Gaussian channel with mean 0 and standard deviation A.

Then switching from g (-) to the minimum distance decoder with the same codebook B

also achieves a decoding error probability of less than or equal to E.

We next examine certain properties of optimal solutions {x } 4 ' , {x2}_ 2 of

(4.67).

Proposition 37. Let A, B and C be three channels with noise vectors tA, UB, ZC

where 6UA, fLB are distributed uniformly on the surface of the n-spheres Sn(rA) and

Sn (rB), respectively, and ic ~ N (0, 7e) . Let {xj} j' , {x2flR2 be the set of code-

words, and let Vik = x! + h12x2 . Then,

(a) If rA > rB, then

P [i' $ i, k' :I vik - -i-k' + iA rA] P [i' / i, k' : ||Vik - vik, + fIBII rB

(b) P []i' $ i, k' : IVik - Vi'k' + -Al <I rA

P [i' $ i, k' Ilvik - Vi'k' + ic Hic id !c5 rI ;

(c) P 1[i' i,k' V: vik - Vi'k' + A I 5 rA] <

IP [3i' $ i, k' Ivik - vi'k' + i - HIZc ic > rA.

Proof. Applying Proposition 31 with xi = Vik, Xk = vik' , each of these statements

follow. E

Proposition 38. Let C be a code with codebook B and a minimum distance decoding

function. Consider two noises ZG~ N (0, -e) and zu uniformly distributed on the

ball Sn(o-'Vln) with o-' < -. If P [lk [iG e, Vi E B, then

P [41r-11 < f o.2 - o.,2 - log (1 + .2 _ .-2)
1-exp(-n#)' 2a 2
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Proof. The proof is very similar to that of Proposition 32 and is omitted. l

Proposition 39. Let s be a uniformly chosen in Sn~ye). Let {xi}> , {x } 1
2 be

the set of codewords, and let Vik = x! + h12 x2. Then,

(a) P []i' , i, k' : ||vik - Vilk/ + s| | -Yj e] P I kr(s)

(b) P IV ikrtg) - 1] 1 - f 4.

Proof.

(a) Constraint (4.51) implies that {x} , {x} 1 satisfy that, for the noise vector

zt's in Z with vkt = 1,

Ilvik - Vi'k' + Zt Z! Izt 1 Vk , I Ilvik - Virk, 112 > 2 (Vi'k' - Vik , Zt) , Vk 4 i

= Ivik - vi k' 2> 2 (1 + v) (vi'k' - vik , Wt) , Vk 74 i. (4.70)

We also have, given that ( = -<b- 1 I - C) /VW,

|Ivik - Viikl 2oD 1 (< I - -) --- lvik - Vi/k/, ,| 2vn(. (4.71)

Since {z 1 , z2 , ... , ZT} forms a Voronoi tessellation of Sn((1 + v)y), the set W also

forms a Voronoi tessellation on Sn(y). Therefore, letting s be any vector belonging

to S", from Proposition 29 applied to A = W, N = T, A = YE, we obtain

Is - wr(s)| 15 OVn, (4.72)

where r (s) = arg mint=1 ,...,T |s - wtl , with

0 =(= v (4.73)
/nT1/n 1 + V

From (4.73) and (4.71), we have

V
20Vn :5 -.||vik - virk, . (4.74)1+V
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We now proceed to show that if v'kr(s) = 1, then IVik - Vi/k/ + sil Isi. We have

2 (vi'k' - Vik , s) = 2 (vik' - Vik, (s - w,) + w)

5 2 (virk' - Vik , wr) + 2 -Ivik' - Vikil IS - Wr||

(1 + v)-1 Ivi'k' - Vik 112 + 2. IViIk' - VikII -6x/'n (from (4.72))

Ivik - Vik|II {(1 + V)-1 IVik - Vi'kI| + 26N}

|IVik - Vi'kII {(1 + v)-1 |Ivik - ViIkII + I l|vik - Vik|III

Ilvik - Vi/ki|

Therefore, if v , 1 thenik() = 1 , then

2 (Vi' - Vik , S) 5 IIVik - Vilk'I 11 I == IVik - ik' + Sli ! IlSIl

This implies

(b) Let s be

that P [li' $ i, k' : |IVik - Vi'k/ + s|| 2 ye P I 1 .]

chosen uniformly at random on Sn(YE). We have

T

?[v'k(~ Y 1] P [VLi (§) = 1 IT(~ t] P [Tr (m = ti
t= 1

We have

P [Vkr )1T( t] =

1,0 )

= vis.

if V 1t = 1,

otherwise.

(4.76)

Moreover, since the set of vectors WN form a Voronoi tessellation, the Voronoi regions

of the points wt e EV are identical with the same area. Consequently, choosing s
uniformly at random induces a uniform distribution for r (s) on the elements of the

set {1,... IT}, that is,

1
P [r sT t] = 1 , Vt = 1, ...,I T. (4.77)
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Substituting (4.76) and (4.77) in (4.75), we have

T[vk- 1] T ikA) 1T(mS) t] .WP[T(S m ti

> - -,E" T (from (4.54))
t= 1

1C
I 1- E4.

We are now in a position to present our main result.

Theorem 40. (Capacity Region in a Two User Gaussian Interference

Channel)

(a) If r* = 1, then (R1 , R 2) E RiC P 1, P2 , a, 3 + , that is, (R 1 , R 2 ) is achievable

using the codebooks B1 {xj} ', B2 = {X} 1
2
n and the decoding functions

(4.66), achieving an average decoding error probability of 301 + E.

(b) If r* > 2 then (R 1 , R 2 ) RIC [P, P2 , (1 + 3v) o-, E (1 - (v, n))], where

J (v, n) = exp -n - r - log (1 + r)) , with r = a 2 ((1 + 3v) 2 - (1 + 2v) 2)
\ 2 (1 + 3v) 2 .2

-+ 0, as n - oo.

Proof. (a) We consider a Gaussian channel with noise ZG with each component being

a Gaussian random variable with mean 0 and standard deviation a. We also have

where UlNormal = {s E R" Is I e } , with 7e = v'no.2 + le. Consider the probability

of error for User 1, when User 1 sends message i and User 2 sends message k

P [gi [.G) ] =P [3i' $ i, k' (xl + h12 X2) - (x, + h12X2,) + ZG ZG]

=jIEP [3i' $ i, k' : |Ivik - Vi'k' + ZGII < iG, iG E (c - dc, c] dc

+ P [3i' = i, k' : |IVik - vik' + ZGII < 2G, I1ZGII E (c - dc, c)] dc,
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where Vik = x! + h12x2. The second term can be bounded as follows:

P [3i' i, k' : |Ivik - Vilk' + zGII < IliGII

fP [Il GII E (c - dc, c]] dc = P ziG Normal]1E

We next bound the first term as follows,

P [3i' $ i, k' : |IVik - Vilk' + zGII IzGII , IIGII E (c - dc, c] dc
J0

- jyeIP [si' $ i, k' : Ivik - Vilk' + zcII IiGII I IGII E (c - dc, c]]

-IP [IliGI E (c - dc, c]] dc

f j-P [3i' i, k' : |Ivik - Vilk/ + s (c)I| c] -P [|GII| E

f P []i' i, k' : |Ivik - Viki, + s (74)I :y] P [IPGII

(1

(c - dc, c] dc

Ec - dc, c]] dc

- P [ikr) = 11 -P [I|IGII E (c - dc, c]] dc

1 C- 1)e)- [lOG|| E (c - dc, c] dc

6 ei - P [OlG|| E (c - dc, c]] dc < C4.

From (4.35) and (4.36), we have

P[ei [.iG] -Ze+ (4.79)
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Proceeding further, we have

P [g' (y') #4 ijIm' = i]=
1 2

nR2

k=1

=nR2
k:v1 =1

(from (4.79))

(from (4.56))

P (gi[ [iG]] +1-
k:vk =0

i k [ G

+E1) + j{k : vk1 {Ik : v'g = 1}| - (e

2  2 nR 2 - + + E

= 2,E + E.

= o} .1)
1)

Next, the average decoding error probability of the code is given by

2
nRi

=1 [gW)7 ln =i

i:v =1

ilm = i
i:v! =0

(from (4.57)) - )2R-
= 1 (2 nR

=3e4 + E.

Therefore, (R 1 , R 2 ) E R 10 , P2, o-, 30i + ].

(b) We will show that if (R 1, R2) E RlC [P1, P2 , (1 + 3v) o, E (1 - 6 (v, n))], then r* =

1. Consider a rate pair (R 1 , R2 ) E RlC [P1, P2, (1 + 3v) -, e (1 - 6 (v, n))]. By defini-

tion, there exists a code C with codebooks B1 and B2 and a decoding function g (),

that achieves an average error-probability of E' = E (1 - 6 (v, n)) for each User 1 and
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2, that is,

I 2
nRj

Pni I [g (y') 4 ilm = i] c' (1 -J (v, n)),

2nR 2

nR p [g (y2) :/ k Im2 =k '( v )

In what follows, we restrict ourselves to the analysis of User 1. Applying Proposition

35 with

f = 1 - E, N = 2nR 1 a = e(1 - S(v,n)), and ai = P [g (y 1 ) $ ilm' =i]

we obtain that there exists a subset of codewords T1 C B 1 such that

, Vi,

IP [g (y') $ ilm' = i]
c(1 - (v, n)) =E4

1 - - (1 - 6 (v, n)), Vi E T'

Fl;>(1 -e-1) 2". (4.80)

Fixing some i E F, we have

P [g (y') #4 ilm' = i] = 2n P Ig (y') # li=i 2=k] ! 0 (1 - J (v, n)).
k=1

Applying Proposition 35 with

f = 1 - 10 N = 2nR2 , a -e (- 6 (v,rn))

ak=RP[g(yl)$ijM1 = ijM 2 =k],Vk=1,...,2 nR2,
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we obtain that there exists a subset of codewords B1, 2 C B2 such that

e0 (1 - J (v, n)) 12
P[g (yl) $ ilm 1 = i, m 2 =k],

1 -]2 ( 1 - (v,n)), VkE

B,2| > (1 -e 2nR2.

(4.81)

To summarize, we have obtained that, User 1 is able to use g (-) to decode y'

x! + hi 2xk + zGcorrectly as message i with probability at least 1 - e2 (1 - 6 (v, n)).

Now consider a single user Gaussian channel, call it A, with noise zG where each

component of zG is independent and normally distributed with mean 0 and standard

deviation (1 + 2v) o-. Consider a code for channel A with codebook V given by

V = {vijk = x 1 + h12 x ,, Vkj E Bf, 2, Vi E F ,

with size EET |B,2 |. We will next construct a decoding function R () : R - V for

channel A by using the interference channel decoding function g (-) as follows:

# (y1 ) =xyi) + hi2xhtyi)

where

h (y') = arg min y - (xl(yi) + hi 2x2)
kEB

In words, y (-) computes the message index ml by using g (-) and chooses the message

index m 2 by using a minimum distance criterion. Observe that we have the following

property that j (-) satisfies:

g (y') =i +=> (y') E Vi, where V2= U {Vik'

k'1L3',2

Therefore, using the codebook V and the decoding function # (-) on channel A, we
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have

P [j (vik + zG) E V \ VilVik was sent on A] = P [g (y) # ilm 1 = i, m 2 = k],

(from (4.81))

Furthermore, by taking averages, we have

1

|Y|1 P [j (vik + zG) E V \ Vivik was sent on A] < 6A (1- 6(v, n)),
vikEV

(4.82)

which from Proposition 36 implies that the minimum distance decoder go (-) also

satisfies

1 P [go (vi[9 -- zG) E V\ViVik was sent on A]
|1 v1 kEv

E((1 -6 (v, n)).

Applying Proposition 35 with

f = 1 I- , N = |Vj, a = (1- 6 (v, n)),

aik = P [go (Vik + zG) E V \ Vilvik was sent on A], Vvik E V,

we obtain that there exists a subset of vectors V C V such that

IP [go (vik + G) E V\ViIA sentvik] :5 VVik E ve1 (v, n))
1 -V n1)),i

9 ;> (1-ei) vi.
(4.84)

We now show that (4.84) implies that the quantity |IVik' - VikI| is lower bounded.
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Consider the probability of incorrectly decoding Vik as Vi/k, on channel A, we have

P [Vik decoded as Vilk'] 2 P [Ivik - Vik', + zG I izG III

p ~ (vik - Vik', zG) Ivik - Vi'k' 1
(1 + 3v) a Ivik - Vi/kII| - 2(1 + 3v) o.

(lvik - VikII

2(1+3v)u

Since we know that P [vik decoded as Vi/ki,] 5 6 (1 - J (v, n)), we have

ei (1-I(,n) D|vik - virkaQ
E (I (vn))2 (1 + 3v) a

-=> Ivik - Vik'I 2 (1 + 3v) ao4br (I - e4 (1 - 6 (v, n)))

==> |IVik - Vik' 1| 2 2v/n (1 + 3v) (, (4.85)

which implies that the codewords satisfy the constraints (4.52).

We next show that remaining constraints are also satisfied. Let zu be uniformly

distributed in S" (a, /if), where

a1 = (1+2v)o< (1+3v)a,

and let zD be a discrete uniform distribution given by

1
P [zD = Zt] - - -V T-

T h

Consider a zt and an s E Sn (a, V/ni) such that s is in the Voronoi region V (ut)

of ut = uizt/(1+v)o, that is, s E V(ut).

{ui,... , UT}, N= T, A = oi, we obtain

Is - ut| 5 O'V/ni, for ut

Applying Proposition 29 to A =

1 + 2v
- zt,I1+v
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where 20',v|v <I - VikI| from (4.39). Then, if |Ivik - Vik' + zt| 5 IIztII

2 (Vik, - Vik , S) = 2 (vi - Vik, (s - Ut) + Ut)

> 2 (Vilk' - vik, Ut) - 2 - IVik' - Viki| - ||s - ut||

> 1 + 2v
1 + V

(Cauchy-Schwartz)

IIvi'k' - Viki|| - 2 - ||Vik' - vikII -6'd

|Ivik - Vikl - { +2v IlVik

> |Ivik - Vi'k'I, -

- Ilvik - Vik' 112

(1 + 2v II i
1 + v vi

1+2v

- 1+ v

- Vi/kI, - 2'

- Vi/k/ 1 - , -___v l~- i-1 + V I

+ 2

if Ivik - vik' + zt|| 5 ||zt||, then |Ivik - vik' + S|| 5 |Is|| Vs E V (Ut)

Next, we have P [Sil [zu]] given by

T

IP[eii [.u]] =

t= 1

(4.87)

(4.88)

Since the set of vectors {zt} form a Voronoi tessellation, the vectors {ut} also form

a Voronoi tessellation on Sn (olx/i). Therefore, the Voronoi regions of the points ut

are identical with the same area. Consequently,

(4.89)

Moreover, from (4.87), we have

P [e [iu] Z u

That is,

- vi/k, }

(4.90)
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Substituting (4.89) and (4.90) in (4.88), we have

P[41 [Pu]] 1{||'fxi - Xk + zt|| ||zt||} .
t=1

From Proposition 38 we have,

1 -A (v, n) 1 - J (v, n)

Therefore, we must have that

1{||Vik - Vi'' + zt|| ||zt||} P [eil [zuli 5 E.

t= 1

This implies that the codewords satisfy the constraints (4.51). This observation along

with the repetition of a similar argument from the point of view of User 2 concludes

the proof. E

4.4.3 Remarks on the Optimality of the Decoder (4.48)

The key idea between our characterization of the capacity region of the two user

Gaussian interference channel has been the use of the decoder (4.48). The origin of

this decoder can be intuited from the proof of Part (b) of Theorem 40. Recall that the

proof involved a construction of a "desirable" code for a single user Gaussian channel,

from an arbitrary "desirable" code of a two-user Gaussian channel. Given that we

have a complete understanding of an optimal decoder for a single user channel, this

reduction was essential to the proof. Moreover, this reduction allowed us to identify

the constraints that the codewords of an arbitrary "desirable" code for an interference

channel satisfy. These constraints in turn lead to the optimality of the decoder (4.48)

for the two-user interference channel.
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Noise Typical Set Optimization Problem

Rank minimization with
Gaussian (independent) Ball seminieaconritssemidefinite constraints

a .e Rank minimization with
Gaussian (correlated) Ellhpsoid semidefinite constraints

Exponential Polyhedron Binary mixed linear
optimization problem

Uniform Polyhedron Binary mixed linear
optimization problem
Binary optimization

Binary symmetric noise Polyhedron problem

Table 4.1: Dependence of the nature of the optimization problem with noise distri-
bution.

4.5 Channels with Exponential Noise

Our goal in this section is to shed light on how the optimization problem we solve

is linked to the specific probabilistic assumptions we make on the noise of the chan-

nel. In previous sections, we have seen that if the noise is Gaussian, the underlying

optimization problem becomes a rank minimization problem with semidefinite con-

straints. In this section, we show that when the noise is exponentially distributed,

then the underlying problem is a binary mixed linear optimization problem for which

there are successful commercial solvers that can solve problem instances of very high

dimensions. To amplify this point, we present in Table 1 the nature of the underlying

optimization problem as the noise distribution varies.

4.5.1 Single User Exponential Channel - Capacity Charac-

terization and Optimal Coding

Recall that the typical set for an exponential distribution with parameter A is given

by

( .Exp n [Exp
UExp - (z-,zn) n~iT fln + x }

j=1

where If*P is chosen such that P [z E UfxP] = 1 - E when each component of z is

distributed exponentially with parameter A. We next obtain the maximum likelihood
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decoder for the exponential channel.

Proposition 41. The maximum likelihood decoder for the exponential channel is

given by
n

go (y) = arg min (yj - zig)
iEB(y) _

where (y)= i E B yj 2 xix , Vj= 1,...,n .

Proof. Suppose a vector y is received. Since exponential noise is non-negative, any

candidate codeword xi that we consider must satisfy

y.7 - xi > 0, Vj = 1, ... ,n.

Among all such codewords, the maximum likelihood decoder is given by

n

go P (y) = arg max J7JA exp (-A (yj - zij))
EB(y)j=1

= arg min (y, - zig)
iEB(y)

Motivated by this, we next present a robust optimization problem (see Eqs. (4.94)-

(4.99)) that allows us to characterize the capacity region of a single user exponential

channel. In particular, given inputs n, R, A, P, e, v, we calculate the "derivative" quan-

tities "ExP, TExP and MExp as follows:

(a) The parameter 7y7P, which we choose so that

P ij< >1-6, (4.92)

where z ~ Exponential (A);
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(b) The parameter TExp given by

(1+ 2v yExp'\ E
T = with (Exp -(4.93)

(ExpV V/

where T (-) is the cdf of the exponential distribution;

(c) The parameter MExp .( + 2v) - -ExP.

In addition, generate a Voronoi tesselation z Exp .z . . , ZE } of the simplex

n Vn rFXP1

Pe (z1,...,zn) z = + A
j=1)

We next use the decision variables xi, Vi = 1, . . . , 2 nR and vit, Vi = 1, ... , 2 nRI V _

1, ... , T, where

1. The variables xi represent the codewords.

2. The variables vit represent binary decision variables that are chosen in a way to

constrain the probability of error. When vit = 1, the set of decoding constraints

(4.96) are satisfied for codeword xi with noise vector zt

We construct the following mixed-integer optimization problem:

max ZVikt (4.94)
i,k,t

n

Zxj 5 nP, Vi = 1, ... , 2 nR, (4.95)
j=1

n n%

Zx~ + 2 - - ~kt M0  Xkj, VtVi, k $4 i, (4.96)
j=1 j=1

xjj + zt 2 zj -MO (1 -Vikt) , Vi, k, j, t, (4.97)
T

Evit (1 - e) T, Vi, (4.98)
t=1

Vit, Vikt E {O, 1}, Vi, k, t, (4.99)

Constraints (4.95) impose power constraints on the codewords. Constraints (4.96),
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(4.98) ensure that each codeword xi is decoded correctly for at least (1 - c) T of the

noise vectors.

We next present Algorithm 5, without proof, that characterizes the capacity region

of this channel.

Algorithm 5 Capacity Characterization and Optimal Coding for the Single User

Exponential Channel.
Input : R, P, A, n, v, c.

2 nR
Output : Codewords{xj} 1 , and auxiliary binary variables {vit, Vitj}.

Algorithm:

1. Solve the binary mixed linear optimization problem (4.94) to compute the

2nR
codewords{xi _1 , and auxiliary binary variables {vit, vikt}.

2. If the problem is feasible, then R E R xp [P, A, 2e] , that is, R can be achieved on

an exponential channel using the codewords {xi}_ 1 and the decoding function

gox (-), with a decoding error probability of at most e.

3. If the problem is infeasible, then R V RXp P, , 6 .
S n 1 1+ 2v

4.5.2 Two-User Exponential Interference Channel - Capacity

Characterization and Optimal Coding

In this section, we present an algorithmic way to characterize the capacity region of a

two-user exponential channel. We borrow notation from Section 4.4, and present the

algorithms that characterize the capacity region. Just as in the case of a Gaussian

channel, we first identify a decoding function that will suffice to construct optimal

codes. In this case, the optimal decoder is given by

n

i*(y) = arg max max (x)j + hi 2X ), (4.100)
iEB' kEB? (y)
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where Bj(y) = {k E g32 y ;> x! + h1 x,, Vj = 1,... ,n}. Motivated by this, we

next present the optimization problem that characterizes the capacity region of an

exponential interference channel in Algorithm 6.

Just as in the case of the Gaussian channel, it can be shown that Algorithm 6,

correctly characterizes the capacity of the exponential interference channel.

4.6 The Multi-access Channel and the Multi-cast

Channel

Multi-access and multi-cast channels special cases of the interference channel where

either the receivers cooperate or the senders cooperate, respectively.

4.6.1 Capacity Region of a Gaussian Multi-access channel

(MAC)

This is a channel in which two (or more) senders send information to a common

receiver. A common example of this channel is a satellite receiver with many inde-

pendent ground stations, or a set of cell phones communicating with a base station.

As in interference channels, we see that the senders must contend not only with the

receiver noise but with interference from each other as well. Sender k chooses a

message mk = ik E Bk and transmits x over the channel while satisfying

Other senders do likewise. The receiver receives the combined signal

K

y = ZXk + ,
k=1

where z is the Gaussian noise. The receiver is required to decode all the K messages

from the senders. In this section, for the sake of convenience, we let mk = i denote
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Algorithm 6 Encoding algorithm for two-user exponential interference channel.

Input: n, R 1 , R 2 , A, P1 , P2 , c, v.
Output: Codewords x1 , x2 , and binary variables vit, v1 9 Ik ik ik oikkt
Algorithm:

1. Solve the binary mixed linear optimization problem:

(v , + 2v,,iikt+ ZV ikilklt
i,k,t i,k,t

n

Z nPi,
i1

j=1
n n

,j_ + h12Zj,
j=1 j=1

X2 Exp
xi. + h12xk. + z >

xij + l2Xk,- - M'X (1 - Vlaks,,t)

T

Evikt (1 -c)T,
t=1

n

x < nP 2 ,
j=1

n

+ h2 xkj + (2 - v - V,? ,,) Mxp

j=1
n

(4.101)

(4.102)Vi,

Vt, i- i k, k1,(4.103)

Vi, k, j, t, (4.104)

Vi, (4.105)

(4.106)

(4.107)Vi,

n

> _xij + h21 Exj,

A + h21Xi- + z 9 2>

o/j + h21X,--M (1 - vikilkt)
T

ovi 2 (1 -,E) T,
t=1

o 1t, ,1 it , V ,2 2 {2 1}

Vt i', i,k, k', (4.108)

Vi, k,j,t, (4.109)

Vi, (4.110)

2. If the problem defined by constraints (4.101)-(4.111) is feasible, then (R 1 , R 2 )
is achievable and the resulting codewords can be used to transmit messages.
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that sender k transmits message i E Bk.

In what follows, we consider the special case of a two-user multi-access channel.

The channel coding problem for such a channel refers to the problem of constructing

a code CMAC I- with inputs n, R1, R 2 , U, Pi, P2 , 6.

The outputs of CMAC In, P, P2 , U, R1, R 2 , c] are:

(a) The codebooks B1 = , B2 
= {x k k2

(b) The decoding function h : R" - B 1 x B2 that map each received codeword y

to a pair of codewords in B' and B2 , so that the average probability of error

satisfies

P [h (y) $ (i, k) i = i, m 2 = k] < e, (4.112)

In addition, we define the capacity region of a two-user multi-cast channel

7?MAC [pP 2 , ,]

as the set of all rates (R1, R 2 ) such that there exists a code CMAC In, P, P2 , o, R1, R 2 , 6l-

Capacity Characterization and Optimal Coding

In this section, we present the algorithm (Algorithm 4) which we use to characterize

the capacity region while simultaneously constructing the optimal code. The algo-

rithm consists of two parts: (a) the Encoding Algorithm (Algorithm 7), and (b) the

Decoding Algorithm (Algorithm 8). A key ingredient in our construction of this algo-

rithm is that the maximum likelihood decoder is the minimum distance decoder for

this problem. In particular, we use the following decoder

(i*, k*) = arg minmin |y - (XI + X2)||,7 (4.113)
iEB1 kE82

Algorithm 4 is based on a feasibility problem with the following decision variables:
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Algorithm 7 Encoding Algorithm for two-user Multi-access Channel

Input: n, R 1, R 2 , 0-, P1 , P2 , E, v.
Output : Codewords x , x2, and binary variables Vik, {vikt} i.

Algorithm:

1. Calculate the quantities T, M0 , and the set of equidistant vectors Z = {zt}ti.

2. Check the feasibility of the constraints

Ijx II2 < nP Vi = 1, ... 2nR 1 , (4.114)

Ix 211
2 < nP 2  Vk = 1, ... , 2 nR 2 , (4.115)

(x + x2) - (xI, + x2,) + zt||

+ (1 - Vikt) M > |zt||, Vzt E {Zi, ... ZT}(,4.116)

|(xj + xi) - (xi, + xk,)|| 2oaD- 1 (I - 1 , Vi, k, (4.117)
T

ZVikt ! (I - E2T, Vi, k, (4.118)
t= 1

Vikt E {0, 1}, Vi, kt, (4.119)

3. If feasible,then (R 1, R 2 ) is achievable and the resulting codewords can be used
to transmit messages.

(a) Variables {xi} n , {x2}2_R that represent the codewords for Users 1 and 2,

respectively;

(b) Binary variables {Vikt I 1 are auxiliary variables which allow us to constrain the

probability of incorrect decoding for codewords identified by Vik. In particular,

for codewords i, k with Vik = 1

= if |(x i x) - (x, + x,)+zt|| |Izt||, Vi', k',
Vikt=

0, otherwise.

As before, we use Proposition 27 to reformulate the feasibility problem into an

equivalent rank-constrained semidefinite optimization problem. We then use the re-

sulting rank-constrained optimization problem in the following algorithm that, as we

show in Theorem 42, correctly characterizes the capacity region:
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Algorithm 8 Decoding Algorithm for two-user Multi-access Channel

Input : Received codeword y.
Output : Messages i*, i*.

Algorithm

1. Solve

(i*, k*) = gMAC (y) = arg minmin Iy - (xI + X) 1, (4.120)
iEB kEL32

Algorithm 9 Capacity Characterization and Optimal Coding for the Two-User

Multi-access Channel
Input : R 1, R 2 , P1 , P2 , o-, n, E, v.

Output : Rank r*, codewords{x!} 2R , {x } , and auxiliary binary variables

{ Vkt}t~l.

Algorithm

1. Solve the rank minimization semidefinite optimization problem to compute r*.

2 nR12. If r* = 1, then (R 1 , R 2 ) is achievable using the codebooks B 1 ={x_1.,

B2 = {x2 }2n2 and the decoding functions (4.113), achieving a decoding error

probability of e. That is,

If r* = 1, then (R 1 , R 2 ) E lMAC ( P1, 2 e]-

3. If r* > 2, then we can conclude using Theorem 42 that, (R 1 , R 2 ) cannot be

achieved on a Gaussian multi-access channel with noise standard deviation (1+

2v)u with probability of error less than or equal to e. That is,

If r* > 2, then (R1, R 2 ) n R.MAG [P1, p 2 , (1 + 2v) o, e] .

1 2nl 2 2 nR 2

Theorem 42. Let r*, xi} 1  , {xk }l be an optimal solution of the rank-constrained

SDP formulation of (4.114-4.119).

(a) I2nRf(a) If r* 1, then (R1, R2) is achievable using the codebooks B1 = {x}=1,
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B2 = {X,}k and the decoding functions (4.113), achieving a decoding error proba-

bility of e. That is,

If r* = 1, then (Ri, R 2 ) E RMAC [Pi, P 2 , o,,e -

(b) If r* > 2, then (R 1 , R 2 ) cannot be achieved on a Gaussian multi-access channel

with noise standard deviation (1 + 2v)o- with probability of error less than or equal to

e. That is,

If r* > 2, then (R1, R 2 ) 1 RfAc [Pi, P2, (±+ 2v) o, e].

Proof. The proof follows from the fact that a multi-access channel is a special case of

an interference channel. 0.-

We also provide an alternate proof of the following well known result on multi-

access channels.

Theorem 43. Consider a multi-access channel with K transmitters and one receiver.

The achievable rate region R AC [P1 , P2 ,... , PK, o-, e] is given by

RMAC[P1 P2, ... , PK, -,E =

1~ PRi :5 - log 1 + - ,
2 o.2

1Pi + Pj
Ri + R3 < - log 1+ 22 _2 J

1 (Pi+Ps+Pk
g + R + Rk 5 - log 1 + i 2

2 K-

Ri + R2 +... + RK :5 ~10o 1 + 2i+---+P

where R1 [P, a, e] is the capacity region of user with power constraint P

user Gaussian channel with noise standard deviation a.

Vi,

Vi j,

Vi7 jjk

on a single

Proof. Suppose (R 1,..., RK) E MAC P1 P2 , ... PK, o, e], then there exist code-
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books

that satisfy the constraints (4.114)-(4.119). Using these codewords we construct con-

struct 2 n(R1+...,RK) distinct codewords for a single user Gaussian channel by simply

adding up individual codewords of the MAC. In particular a codeword is obtained as

follows
K

iii2...= X .
k=1

It is easy to see that the power constraints are satisfied

K

Xili2...iK = Z k

k=1
K

k=1

SP1+ .+ PK-

The decoding constraints are also trivially satisfied, and in fact the decoding con-

straints in (4.116) and (4.96) are identical to each other. Thus we construct a code

for the single user Gaussian Channel from the code of a MAC, and thus the constraint

R1 + R2 + . .. + RK E Rn [Pi -+ P - - .+ i Pk, 0-, 6]

holds true. The fact that the remaining constraints also hold is proved exactly in the

same way. This concludes the proof. 0

4.6.2 Multi-cast Channel

The multi-cast channel is a communication channel in which there is one sender

and two or more receivers. The basic problem is to find the set of simultaneously

achievable rates for communication in a broadcast channel. Here we consider the

case of two receivers. Assume that we have a sender of power P and two distant

receivers. To encode the messages, the transmitter first picks a parameter a E [0, 1]
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to generate two codebooks, one with power aP at rate R1, and another with power

(1 - a) P at rate R 2 , where {R1, R 2 } lie in the capacity region of the channel. The

transmitter, then chooses a message i E (1, 2, ... , 2 "R 1 I and k E {1, 2, ... , 2 nR2 ) and

transmits codewords x! and x2 on the channel. Each receiver receives y' and y 2 given

by

1 = x + x +i

2 = +2 2,

where zV and z2 are Gaussian noise vectors with common standard deviation 0.

The channel coding problem for a two-user Gaussian multi-access channel refers

to the problem of constructing a code CMCC [n, R1, R 2 , a, P, a, c], where a E [0, 1] is a

fraction which determines the fraction of power allocated to receiver 1. The outputs

of CMCC [n, R1, R2 , 9, P, a, e] are:

(a) The codebooks B' = x1} j , B2 
= 212, satisfying

k k=1
x 112 < a~P,

x12 (1 - a) P.

(b) The decoding functions h' : R"n -+ B', h 2 : Rn -+ B2 that map each received

codeword y', y 2 to one of the codewords in B' and B 2 , respectively, so that the

average probability of error satisfies

2n21

2 RS IP [h' (y') $ ilm' = i] < (4.121)

12 nR 2

2 nR 2  IP [h 2 (y 2) / kim 2 = k] < c. (4.122)
k=1

As before, the capacity region RZmcc [P, a, E] is defined as the set of all rate pairs

(R1, R 2 ) such that there exists a code Cic [P, a, a, R1, R 2 , 6] for some a E [0, 1].
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Capacity Characterization and Optimal Coding

In this section, we begin by obtaining a relationship between the capacity regions

of a multi-cast channel and an interference channel, respectively. In particular, we

show that the capacity characterization of a multi-cast channel is a special case of an

interference channel.

Proposition 44. Let Rcc [P, a, c] be the finite capacity region of a multi-cast chan-

nel, and R1c [Pi, P2 , a, e] be the finite capacity region of a two-user interference chan-

nel. Then

RMCC [p, a, c {(R, R 2 ) 13a E [0, 1] such that (Ri, R2) E RIC [aP, (1 - a) P, ], ]}

Proof. Let (R1, R2 ) be a rate pair such that for some a E [0, 1] and

(R1, R 2) E Rc [aP, (1 - a) P, a, E] .

Then there exists codebooks B1, B2 and decoding functions hl(.), h2 (.) such that

xl2 < aP, Vx1 E B1,

x2||2 < (1 - a) P, VX2 E B1,

2 nRj

2nRS P [h' (y') $ im' = i] c,
i=1

2 nR2

2n1R2  P [h2 (Y2) kim 2  ]
k=1

Therefore, the codebooks B, B2 and decoding functions h'(.), h2 (.) satisfy the prop-

erties for a two user multi-access channel when the transmitter chooses a as the

fraction to distribute power among the receivers.

Now suppose that (R1, R2) E Mcc [P, o, e], then ]a E [0, 1], 1, Bg2 and decoding
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functions h'(.), h 2 (.) such that

1xl2 < aP, Vx' E 13,

x2||2 < (1 - a) P, Vx2 E B',

2nR 1

2 n>R1 P [h' (y') # ilm = i] E,
i= 1

2 nR2

2 nR 2  P [h 2 (y 2 ) # kim 2  < i
k=1

Therefore, (R 1 , R 2 ) E R" [aP, (1 - a) P, a, E]. This concludes the proof. L

Proposition 44 allows us to transform the problem of characterizing the capacity

region of a multi-cast channel into the problem of characterizing the capacity region

of an interference channel. In what follows, we present the algorithm (Algorithm 4)

which we use to characterize the capacity region while simultaneously constructing

the optimal code. The algorithm consists of two parts: (a) the Encoding Algorithm

(Algorithm 10), and (b) the Decoding Algorithm (Algorithm 11).

Algorithm 10 is based on the feasibility problem with decision variables:

(a) The fraction a E [0, 1] that determines the distribution of power among the

receivers;

(b) Variables {x} , {,X}2,n that represent the codewords for Users 1 and 2,

respectively;

(c) Binary variables vi v, v, that are used to identify the subset of codewords

which will be decoded correctly with probability at least 1 - E4. In particular:

(1) v = 1, if for codeword i of User 1, the average probability of error is at

most e, that is,

2nR 2

1Z [gl (y1) MI ur' i 2 
=k] < E4

k=1
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and v! = 0, otherwise, where g' (-) is defined in (4.66). The binary vari-

ables v, Vk = 1,.., 2 nR 2 are defined in a similar fashion.

(2) v = 1, if whenever ml = i and m 2 = k, User 1 is

with probability at least 1 - c, that is,

able to correctly decode

P [g, (y1 ) # ilm 1 = i, m2 = k] <e

and v1 = 0 otherwise. The variables V2, Vi = 1,..

are defined in a similar fashion.

., 2nR2, Vk = 1, ... 1,2nR1

(d) Binary variables {2vi!,,, VkT, are auxiliary variables which allow us to con-

strain the probability of incorrect decoding for codewords identified by vi, o, o o1 *

In particular, for codewords i, i', k, k' with vi = 1 and v],k, = 1,

1, if ||(x + h12x)-(xi, + h12 xi,)+zt||;>||zt||
Viki'k't

0, otherwise.

We next present the algorithm that allows us to correctly characterize the capacity

region.
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Algorithm 10 Encoding Algorithm for two-user Multi-cast Channel

Input : n, R 1, R 2, o-, P, E, V.

Output : Fraction a, codewords x!, x2 , and binary variables v, Vk, Vik, V 1 ,

Algorithm:

1. Calculate the quantities T, M0 , and the set of equidistant vectors Z = {Zt} 1 .

2. Check the feasibility of the constraints

t1x 112 < naP

|xk212 < n (1 - a) P
|jx - x , + h 12 (x2 - x2,) + zt||

+ (1 - Vokik t) MO 2 ||zt|,

Viki k't - ik
1 < ' '

Vikilkit -ilk/

k't i- .VkVilkI

V1 < V!ik -

4 2 nR 2 - Vj

(1-4). (1

Vi,
Vk,

Vi, i',I k, k', t,

Vii,k,

Vi,

- 2e0) 2nR 1

x - x , + h2 (x! - xi,) + zt||

+ (1 - o k~k/) Ad' ||zt||,
+ 2

Viki/kit - ik
2 < v 2

Viki'k't - i'k'

k't i T-ok 'lk' 1

V
2 

< V?
o ik - z

(1-64)- (1

Vi, i, k, k', t,

Vi, i', k, k', t,

Vi, k,

Vi,

- 2 nR 2

(4.123)

(4.124)

(4.125)

(4.126)
(4.127)

(4.128)

(4.129)

(4.130)

(4.131)

(4.132)

(4.133)

(4.134)

(4.135)

(4.136)

(4.137)

(4.138)

(4.139)

(4.140)

3. If feasible,then (R 1 , R 2 ) is achievable and the resulting codewords can be used
to transmit messages.
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Algorithm 11 Decoding Algorithm for two-user Multi-cast Channel

Input : Received codewords y', y2

Output : Messages i*, i.
Algorithm

1. Solve

S(y) arg min min 11y - (x + h 2 x)
iE{1,.., Mi}:vj=1 kE{1,...,M2}:vk1

i (2) arg min min ||y' - (x + h2ix)|

kE{1,...,M 2 }:o=1 [iE{1.M i}:vik
(4.141)

Algorithm 12 Capacity Characterization and Optimal Coding for the Two-User

Multi-cast Channel
Input : R 1 , R 2 , P, a, n, e, v.

Output : Rank r*, fraction a E [0,1], codewords{x }_1 , {x } 2 , and auxiliary

binary variables vf, v , V , V,?, {I!k,,, V , , IT1.

Algorithm :

1. Solve the rank minimization semidefinite optimization problem that is equiva-

lent to the feasibility check problem of constraints (4.123)-(4.140) to compute

r*.

2. If r* = 1, then (R 1 , R 2 ) is achievable using the fraction a, codebooks B1

{x}n , 32 2 _ and the decoding functions (4.66), achieving an average

decoding error probability of 0 (E4). That is,

If r* = 1, then (R 1 , fR2) E RMCC p pa E4

3. If r* > 2, then we can conclude using Theorem 45 that, (R 1 , R 2 ) cannot be

achieved on a multi-cast channel with noise standard deviation (1 + 2v)a with

probability of error less than or equal to e. That is,

Ifr* >2 then (R1,R 2) 1Zc [Pi, P2, (1 + 2v) o,cE] .
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We next present Theorem 45 that shows the correctness of Algorithm 12.

Theorem 45. Let r*, a*, {xj} 1 ' , {xl}$2  be an optimal solution of the rank-

constrained SDP formulation of (4.123-4.140).

(a) If r* = 1, then (R 1, R2 ) is achievable using the fraction a*, codebooks B1 -

{x }', B 2 ={x}k.. and the decoding functions (4.141), achieving a decoding

error probability of e. That is,

If r* = 1, then (R 1, R 2) E ?mcc [p Ip 2 ,,E]

(b) If r* > 2, then (R 1 , R 2 ) cannot be achieved on a Gaussian multi-cast channel

with noise standard deviation (1 + 2v)o- with probability of error less than or equal to

e. That is,

If r* > 2, then (R1, R 2 ) V Rucc [Pi, P2, (1I + 2v) o-, e] .

Proof. The proof follows from the reduction of a multi-cast channel to an interference

channel based on Proposition 44. E

4.7 Implementation and Computational Results

4.7.1 Computational Experiments Gaussian Interference

Channel

In each of the Gaussian channels, we are required to solve a rank-constrained semidef-

inite optimization problem. We use the iterative algorithm (Algorithm 3), which was

developed by Fazell et al. [2003], to solve these problems.
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Algorithm 13 Solving Rank Constrained SDPs

Input: A, 6.

Output: A rank one PSD matrix XK.

* Step 1 : Solve the convex optimization problem

minTr (X)

s.t.A e X < 0,

X >- 0,

and let X 0 denote the optimal solution.

* Step 2 : For each iteration k = 1, . . . , K, solve the optimization problem

minTr ((Xk-1 + )'x)

s.t.A e X < 0,

X > 0.

Using this algorithm, we perform the experiments to characterize the rate regions

of interference channels. To do this, we choose a rate pair and check whether it is

feasible to the optimization problem (4.67). In particular, we do the following

1. Choose a rate pair {R1, R 2 } using inner and outer bounds from the literature

(see Verdu and McLaughlin [1998]).

2. Input M, 2 R1, M 2 - 2nR 2 and U" to the optimization problem and check

whether n is feasible, for n = 20, 25, 30, 35,40.
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Achieving Carleial's rate pairs

We consider the rate region proposed by Carleial [1975]. He showed that the rate

pairs

{(Di, D2 ) , (C1, min (D2,T 2)) , (min (D1 , T1 ) , C2) , (min (C1, T1) , min (C2, T2 ))}

where

1 1 1+P1
C1= - log (1 + Pi) , C2 = 1 log (1I + P2 ) , 1 9= - 1+ P ,

2 2 lo 1 + h1 2 P 2 J

D2 = - log I 2 Ti = -log , 2P T2 =I log -12P

2 (1 + h21Pi 2 (1 +P2 )2 I+P Pi

We verify that these rates are indeed achievable and also show, in some cases, that

we can do better. For example, when we use the parameters Pi = 1.5, P2 = 2, h 12 =

0.3, h2 1 = 0.3, we obtain C1 = 0.66096, C2 = 0.7924, Di = 0.3219, and D2 =

0.5244. the rate region obtained by the optimization approach is compared against

this Carleial's rate region in Figure 4-1.

Achieving the rate regions of Han and Kobayashi Han and Kobayashi

[1981]

We next consider the rate regions of Han and Kobayashi [1981]. The Han-Kobayashi

rate region is given by

1
R 1 < - log (1 + P1 )

7+R mn) = R2 1( (1 + P2)

11 1i~I1~R1 + R2 :5 min 12log (1 + Pi + h12P2) , 2 log (1 + P2 + h21P1)]

We present results for a choice of parameters P1 = P2 = 2, h12 = h21 = 1.5 in Figure

4-2.
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Comparison with existing bounds

In the next experiment, we compare the rate region obtained in our framework with

that obtained by others. In particular, we compare with the Han-Kobayashi region,

Tse's region and the Broadcast channel bound. The results are presented in Figure

4-3.

1.6 Outer bound of Etkin et al. (2008 -
Outer bound of Kramer [2004 &

Our Approach - -
1.4 Inner bound of Han and Kobayashi [1981] I
1.2 -..--- A.-

(,
ii
:3 1

0.8

0.6

0.4 -

0.2 -

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

$R1$ in bits per channel use

Figure 4-3: Two-user Gaussian interference channel - P

0.2, 21 = 0.25

= 10, P 2 =

4.7.2 Computational Experiments : Exponential Channel

In case of the exponential channels, the channel coding optimization problem is a

mixed-integer linear optimization problem. We use the commercially available solver

CPLEX to solve these problems. We note that the computational times for verifying

whether a rate pair is achievable for the exponential channel, are very encouraging

and we were able to solve instances of the order 200,000 codewords using CPLEX.
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4.8 Conclusion

In this chapter, we proposed an uncertainty set based approach to model the noise in

a communication channel. This approach was motivated by the concept of "typical

sequences". When such an approach is used, the channel coding problems can be

reduced to instances of Robust Optimization problems. We also showed how these

optimization problems can be used to characterize the capacity regions of Interference

Channel, and Multi-cast Channel. Towards the end, we showed the practicality of

this approach by showing that moderately sized instances can be solved to optimality.

This approach clearly opens up new directions and it remains to be seen how this

approach can be used to compute the capacity region of Relay Channels and Channels

with Memory.
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Chapter 5

Conclusion

In this thesis, we revisited some of the major successes in the 2 0 th century for stochas-

tic analysis. In all these examples, together with considerable success, came challenges

when researchers and practitioners desired to generalize the problems studied to mut-

liple dimensions. It is our contention that stochastic analysis, based on the primitives

of the Kolmogorov axioms and the concept of random variables was not intended to

provide a tool for efficient computation. Rather it was intended to put the theory on a

firm ground and give insights on the modeling of stochastic phenomena. In retrospect,

given the historical developments and intentions of the originators, the computational

challenges that stochastic analysis has faced, when attempting to solve problems in

multiple dimensions, should have been anticipated.

Possibly because the development of modern optimization happened at about the

same time as the development of the digital computer, optimization had from its very

beginning efficient computation as its intention. Correspondingly, optimization has

succeeded remarkably to solve problems in multiple dimensions. Given its success, it

seems natural to us to apply optimization to solve problems of stochastic analysis in

multiple dimensions.

In all three examples we addressed we have implemented the proposed approach

and have included in the thesis tables and figures with computational evidence in

concrete examples in order to show that the approach of stochastic analysis based on

optimization is capable of solving problems numerically in ways that, in our opinion,
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go beyond the current state of the art of stochastic analysis. The types of optimization

problems that were required to be solved ranged from linear and semidefinite to

discrete, bilinear and rank optimization problems. We anticipate that this research

program, in addition to advancing stochastic analysis, will also advance optimization

as it will reveal new optimization problems that need to be addressed.
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