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Abstract

In this thesis, the effect of the lower hybrid current drive on ion toroidal rotation in
a tokamak is investigated theoretically. Lower hybrid frequency waves are utilized
to drive non-inductive current for steady state tokamaks and ion toroidal rotation
is used to control disruptions and improve confinement. It has been observed in
many tokamaks that lower hybrid waves can change the ion toroidal rotation. These
measurements indicate that it may be possible to control rotation with lower hy-
brid waves, but to do it, it is necessary to understand the mechanisms underlying
the rotation change. The toroidal angular momentum injected by the lower hybrid
waves initiates acceleration in the the counter-current direction. The parallel and per-
pendicular components of the toroidal angular momentum are transferred from the
waves to ions through electrons via two different channels, and the ions obtain the full
toroidal angular momentum injected by the lower hybrid waves after several ion col-
lision times. The momentum transferred to the ions is transported out by turbulent
radial transport. The radial transport of toroidal angular momentum is evaluated
using gyrokinetics corrected to the higher order in poloidal rhostar. The higher order
corrections lead to momentum redistribution even in the absence of rotation, which
is called intrinsic momentum transport. The intrinsic momentum transport due to
diamagnetic effects is an important piece of the radial momentum transport. The
change in the steady state rotation due to lower hybrid waves is estimated theoreti-
cally by evaluating the momentum source, the momentum pinch and diffusion, and
the intrinsic momentum transport. The effect of the current profile on the intrinsic
momentum transport, which is modified by the lower hybrid wave, may explain the
reversal of the rotation change from counter-current direction to co-current direction
observed in low plasma current discharges in Alcator C-Mod.

Thesis Supervisor: Prof. Felix I. Parra
Title: Assistant Professor of Nuclear Science and Engineering
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Nomenclature

Miscellaneous

(. .. )

(. )s

(. )

Greek letters

a in Chapter 2 and 3

a in Chapter 4

6

(p, ^:

Pe, Pi

P*,e

P*,9

Qe, Qj

vii Vie, Vee, Vei

~bg40

Gyroaverage holding R, E, p and t fixed.

Flux surface average.

Bounce average.

Phase of gyromotion.

Coordinate perpendicular to the magnetic field, satisfying B = Va x VV@

Poloidal magnetic flux, radial coordinate.

Poloidal magnetic flux at the last closed flux surface

Poloidal angle

Toroidal angle and unit vector in the toroidal direction.

Inverse aspect ratio r/R.

Electron and ion Larmor radii, mecve/eB and mjcvi/ZjeB.

Small ratios of electron Larmor radii over the radial scale length, pela.

Small ratios of ion Larmor radii over the radial scale length, pi/a.

Small ratios of poloidal ion Larmor radii over the radial scale length

(Poloidal rhostar), (B/Bo)pj/a.

Electron and ion gyrofrequencies, eB/mec and ZieB/mic.

Ion-ion, ion-electron, electron-electron and electron-ion Braginskii colli-

sion frequencies.

Electrostatic potential.

Lowest order long wavelength background electrostatic potential.
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416 Short wavelength turbulent electrostatic potential, O(p,(Te/e)).

#b Higher order turbulent electrostatic potential, 0((B/Be)p#4b).

(4) Electrostatic potential averaged over a gyromotion.

P Gyrokinetic magnetic moment defined to be an adiabatic invariant to

higher order, vI/2B

If Radial transport of toroidal angular momentum.

1 1 1, 1 2  Turbulent radial fluxes of toroidal angular momentum to lowest order and

to higher order in (B/BO)p,.

flint Intrinsic radial transport of toroidal angular momentum.

W Frequency of the lower hybrid wave.

WLH Lower hybrid resonant frequency.

OIP Toroidal angular frequency.

O Q,E, Q,d Toroidal angular frequencies for ExB flow and diamagnetic flow.

X O Ion toroidal momentum diffusivity.

Xp,E, XV,d Ion toroidal momentum diffusivities for ExB flow and diamagnetic flow.

Xi Ion heat diffusivity.

Roman letters

a Minor radius in a tokamak.

A Area of the flux surface, V'(@o/a).

B, B, b Magnetic field, magnetic field magnitude, and unit vector parallel to the

magnetic field.

BO Magnitude of the poloidal component of the magnetic field.

B P Magnitude of the toroidal component of the magnetic field.

c Speed of light.

DgB,s Gyro-Bohm diffusion coefficient for a species, s

e Electron charge magnitude.

E Kinetic energy of the particle v2 /2.

E Electric field.

fe Electron distribution function, dependent on r, E, y and o.
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fo,e, fi,e Lowest order electron and ion distribution function, usually dependent

on gyrokinetic variables R, E, t

fA Ion distribution function, usually dependent on the gyrokinetic variables

R, E and i.

foee Lowest order electron and ion background distribution functions, assumed

to be non-fluctuating.

bg bg Higher order electron and ion background distribution functions,1i,e' bcgon
o ((B/B)P*,efM,e) and 0 ((B/B)p*fm,j)

ff1, fij'b Short wavelength turbulent electron and ion distribution functions,

O(P*fM,e) and O(p*fM,i).

f2 ", fjt Higher order turbulent electron and ion distribution functions,

O((B/Bo )p*fflb) and O((B/Bo)p f ).

ff e Perturbed background electron distribution function due to lower hybrid

waves.

f Gyrophase dependent piece of ffj.
(f[H) Gyrophase independent piece of f .

fM,e, fM,i Electron and ion Maxwellian distribution functions.

Foe, FO,i Lowest order electron and ion distribution functions at the outer-

midplane.

I Function RB,,; it only depends on 0 to lowest order.

J Current density.

k11, kI Wavenumbers parallel and perpendicular to the magnetic field.

L Characteristic length in the problem.

m, n Poloidal and toroidal mode number of a wave.

me, mi Electron and ion masses.

ne, ni Electron and ion densities.

nj, n, Parallel and toroidal refractive index of a wave.

Pe, p Electron and ion pressures.

PW Ion toroidal momentum pinch coefficient.

P,,E, P,,d Ion toroidal momentum pinch coefficients for ExB flow and diamagnetic

flow.
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q

r

r

R

R

Te, Ti

TO

ATE + ATc

U

U11, U1

V

o11, v 1

Vte, Vti

v tbyE

VM

VC
V'/

Ve, Vi

VP

x, y

x, yk
z

zi

Zi

Safety factor.

Magnetic shear, (r/q)(&q/Dr).

Position of the particle.

Radial coordinate, (0/0o)a

The distance between the axis of symmetry and the position of the par-

ticle, also used as major radius in a tokamak.

Position of the gyrocenter.

Electron and ion temperatures.

External torque due to lower hybrid waves in the toroidal direction.

Parallel component of the toroidal direction external torque.

Perpendicular component of the toroidal direction external torque.

Magnitude of relativistic velocity

Relativistic velocity component parallel and perpendicular to the mag-

netic field.

Pitch angle in the relativistic velocity space, tan-1 (u/u 11 )

Velocity of the particle.

Velocity component parallel and perpendicular to the magnetic field.

Electron and ion thermal velocities, 22Te/m and 22T/M.

Gyrokinetic ExB drift due to short wavelength turbulent potential.

VB and curvature drift.

Drift due to the Coriolis force.

Flux surface volume element BV/o.

Electron and ion average velocities.

Ion toroidal average velocity.

Coordinate perpendicular to the magnetic field.

Unit vectors perpendicular to the magnetic field.

Coordinate parallel to the magnetic field.

Unit vector parallel to the magnetic field, b.

Ion charge number.
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Chapter 1

Introduction

Controlled nuclear fusion will be one of the most important milestones in human progress.

The most promising way to achieve nuclear fusion is to use magnetic confinement. The

tokamak is the best candidate among the nuclear fusion reactor concepts based on magnetic

confinement.

However, the tokamak has also several limitations. One is steady state operation which

is difficult to achieve because of the need to drive a substantial toroidal current in the

plasma [1, 2, 3]. Unexpected disruptions due to magnetohydrodynamic (MHD) instabilities

are also a problem [4, 5]. Another problem is the reduced confinement due to turbulence [6].

To solve these critical problems, radio frequency waves (specifically lower hybrid waves) are

utilized to drive toroidal current [7, 8], and ion rotation can be used to control disruptions

[9, 10] and improve confinement [11, 12, 13]. This thesis investigates the relation between

the two solutions: how the lower hybrid waves affect the ion rotation.

Tokamaks have a strong toroidal magnetic field (- 10 Tesla), and a poloidal magnetic

field (< 1 Tesla) generated by either inductive currents due to the central solenoid or

radio frequency current drive. Both magnetic fields are necessary to ensure confinement

of single particles. The lower hybrid waves are injected from a phased waveguide array or

launcher with toroidal wave momentum that drives non-inductive currents to replace the

inductive currents. In addition to the original purpose, current drive, it has been observed

in many tokamaks that lower hybrid waves can change the ion toroidal rotation [14]. These

measurements indicate that it may be possible to control rotation with lower hybrid waves,

but to do it, it is necessary to understand the mechanisms underlying the rotation change.
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In this thesis, the rotation change due to lower hybrid waves is studied. I show that

the momentum input from lower hybrid waves needs to be taken into account. I also

demonstrate that the momentum redistribution due to turbulence is important to explain

the observations.

The rest of the chapter is organized as follows. In Sec. 1.1, I will review the theory

of lower hybrid waves and its use for current drive in experiments. In Sec. 1.2, the cur-

rent understanding of turbulence in a tokamak is explained, and the interactive relation

between the rotation and the turbulence is briefly discussed. In Sec. 1.3, the experimental

observations of toroidal rotation changes due to lower hybrid wave injection are given as a

motivation for this study.

1.1 Lower hybrid waves in tokamaks

The frequency of the lower hybrid wave (w = 0(1) GHz) is selected to be above the lower

hybrid resonance frequency (i.e. w > 2WLH) to drive current instead of heating, and to

avoid significant parametric decay of the wave due to nonlinear coupling with ion sound

quasi modes and ion cyclotron quasi modes [15, 16]. Here, the lower hybrid resonance

frequency is w2 H ~+/ne' where Wpe, Wpi and Qe are the electron and ion plasma

frequency and the electron gyrofrequency, respectively. The lower hybrid wave propagation

in a tokamak is described by the slow wave branch of the electrostatic plasma dispersion

relation [17, 18, 19],

D(w) = SkI + Pk = 0, (1.1)

where S ~ 1 + j e/Q2 - ,2/2 0 O(1) and P ~W -oe/w2 > 0(100) are the components

of the dielectric tensors in this range of frequency, and k1 and kii are the wavevectors

perpendicular and parallel to the static magnetic field, respectively. Consequently, the slow

wave has a perpendicular wavelength (0(1) mm) much shorter than the parallel wavelength

(0(10) mm) (the slow wave is called "slow" due to the low perpendicular phase velocity).

The direction of the wave energy flux is determined by the group velocity, given by

Vgr| _ &D(w)/k 1  Pk _1 ksL
Vg,> O(10), (1.2)

VL o9D(w)/8kx Sk1 kl
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where Vgri and Vg are the perpendicular and parallel group velocity of the lower hybrid

waves, respectively. The fact that the parallel group velocity is larger than the perpendicular

group velocity results in propagation that follows the magnetic field line and takes several

toroidal circulations to penetrate radially (see Fig. 1-1). The waves propagate until they

are damped by significant electron Landau damping [20]. The propagation of the lower

hybrid waves will be explained more quantitatively in Sec. 2.2.1

The electron Landau damping transfers the wave energy and momentum to electrons

when the parallel phase velocity of the wave is the same as the electron parallel velocity

[7, 21]. Because most of the electron distribution function is Maxwell-Boltzmann, waves with

a lower parallel phase velocity interact with a larger population of electrons and Landau

damp faster. Consequently, to have strong damping in the core, the lower hybrid wave

must have a parallel wavevector that is sufficiently small to penetrate into the core without

strong damping at the edge but large enough to have strong damping when it reaches to the

core. The parallel wave vector is proportional to the parallel refractive index of the wave

(n- l E) where c is the speed of light. The parallel refractive index is determined by

the toroidal refractive index (n.), fixed by the launcher due to the toroidal axisymmetry,

and the poloidal refractive index (no), which changes due to the plasma dispersion. The

toroidal refractive index of the wave is given by the asymmetric antenna spectrum at the

lower hybrid wave launcher.

Additionally, to ensure accessibility, the toroidal refractive index should be larger than

a critical value at which the slow wave mode converts to the fast wave mode [22]. As a

result, in many experiments, the toroidal refractive index is carefully chosen (e.g. n, ~ -2

in Alcator C-Mod), and the wave energy and momentum are transferred to the non-thermal

fast electrons (vil ~ 2 .5 vte - 10vte). Here, the negative sign of the toroidal refractive index

implies a counter-current direction wavevector, and og and vte are the parallel electron

velocity and electron thermal velocity, respectively.

Because the wave momentum is transferred to electrons, additional current is driven

by lower hybrid waves. The wave momentum given by the toroidal refractive index at the

launcher is in the counter-current direction (i.e. n, < 0) to push electrons in the counter-

current direction and increase the current. Strong diffusion in velocity space in the parallel

direction occurs due to the resonant momentum transfer, and it is balanced by the electron

pitch angle scattering and the electron-ion friction. As a result, a long or plateau tail is
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generated along the parallel velocity in the steady state distribution function (see Fig. 5 in

[7]).

The driven current can be evaluated using Maxwell's equations to calculate the electric

fields and a Fokker-Planck equation to calculate the electron distribution function by bal-

ancing collisions and the velocity quasilinear diffusion due to the lower hybrid waves. The

detailed evaluation of the wave electric field and the electron distribution function will be

explained in Sec. 2.2.1 and Sec. 2.2.2. For a given lower hybrid wave power, a higher current

drive efficiency results in more driven current. The simplest estimation of the driven current

is given by the increased electron velocity due to the energy transfer from the lower hybrid

(Av11 (nemv avoiAt) in an electron collision time (At - ve--1), resulting in the current

drive efficiency, 'LH ,eneAv 1 AA 1 cx er
drivefic y L ~ mev11ve . Here, PLH is the lower hybrid wave

power, ILH is the lower hybrid wave driven current, R is the major radius of a tokamak,

ne, me, and e are the electron density, mass, and charge, and AVol and AA are the volume

and the area where the energy is transferred, respectively. The dependence of the electron

collision frequency ve on the density and the parallel velocity is used (i.e. ve oc nev 3 ).

Considering that the wave energy transfers to electrons due to Landau damping when

the electron parallel velocity is the same as the parallel phase velocity of the wave, the

current drive efficiency is decreased for a large parallel refractive index (i.e. If oc -- ).

This implies another constraint on the selection of the toroidal refractive index at the

launcher. Note that the efficiency also decreases for larger tokamaks with a higher density.

An elaborate analytical calculation of current drive efficiency can be done using Langevin

equations [7], but more accurate values of efficiency can only be obtained numerically using

a two dimensional collision operator in velocity space as is done in Sec. 2.2.2. Many of the

observations (e.g. motional Stark effect diagnostics and hard X-ray diagnostics) in lower

hybrid current drive experiments are well-reproduced by theory and simulation [23, 24, 25].

The current drive efficiency for momentum transfer by electron Landau damping is

approximately 4/3 times larger than the efficiency for cyclotron damping (see Fig. 9 in [7]).

The cyclotron damping current drive is caused by an increased collision time due to increased

perpendicular energy. The current drive efficiency of electron cyclotron current drive is

smaller than that of lower hybrid wave current because the latter accelerates electrons

directly in the parallel direction [7]. It is a significant advantage of the lower hybrid waves

for current drive.
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Another advantage of the lower hybrid wave is the availability of off-axis current drive

which is beneficial to control the safety factor profile. The radial location of the current

drive is determined by the location of the wave damping, which can be controlled using

the toroidal refractive index at the launcher. Although the radial location of the electron

cyclotron damping is controllable by tuning the wave frequency to take advantage of the

inhomogeneity of the magnetic field, the off-axis damping of electron cyclotron waves results

in a significant increase in the number of trapped electrons, which cannot drive current. As

a result, the current drive efficiency of electron cyclotron off-axis current drive is reduced

substantially.

A significant problem has been found recently for lower hybrid current drive at reactor-

relevant densities. Recently, for high plasma densities and diverted plasmas (e.g. line

averaged density > 1020 m-3 in Alcator C-Mod), it has been observed that penetration of

LH waves into the plasma core becomes problematic (e.g. Alcator C-Mod [26], FTU [27]

and JET [28]). This density limit for the wave propagation is still not well understood,

but modifiying the edge electron temperature [27] and changing the poloidal location of the

lower hybrid wave launcher have been proposed as solutions to overcome the density limit.

In this thesis, I investigate only how the lower hybrid waves affect the ion toroidal

rotation when the wave couples well and penetrates into the core. Because the injected

wave momentum is transferred to ions when electrons reach steady state, the lower hybrid

waves accelerate ions as well as electrons.
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Figure 1-1: Simulated lower hybrid wave propagation in a tokamak. A tokamak is a
donut shaped volume of plasma confined by toroidal and poloidal magnetic fields. It
is axisymmetric. In the two-dimensional cross section (in dashed lines), the poloidal
direction (0) and the radial direction (@) are shown. The resonance cone of lower
hybrid waves is indicated by the color contours that give the electric field strength.
The electric fields were calculated with TORLH [24] and CQL3D [29]. The wave
momentum is transferred to push electrons (AVe) in the counter-current direction
(towards -J) for current drive.
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1.2 Turbulence and ion toroidal rotation

The plasma confinement in a tokamak is limited by the radial transport of particles and

energy. Due to the toroidal geometry, there is inherent collisional transport of particles

and energy, called neoclassical transport. Neoclassical theory considers Coulomb collisions

between particles and finite width particle orbits in tokamak geometry [30, 31]. However,

the measured size of the transport in many tokamaks is of gyro-Bohm size which is much

larger than the neoclassical transport. It is believed that the gyro-Bohm scale transport is

due to micro-turbulence [32, 33]. The gyro-Bohm diffusion coefficient for a species is defined

by

D9B,s = psets = cT (1.3)
'5' -. Pvts LV)ZseB'1

where Lp is the radial scale length of the tokamak, B is the magnetic field strength, and ps,

otS, Ze and T, are the gyro-radius, the thermal velocity, the charge and the temperature

of the species, respectively.

Micro-turbulence in a tokamak is caused by drift-wave instabilities driven by tempera-

ture and density gradients [34, 35]. A small initial electromagnetic perturbation is amplified

by the instability, but it becomes self-regulated and the amplified perturbation is saturated

in a short time by nonlinear coupling with other spectral modes, causing turbulence. During

the coupling process, the energy injected into the long wavelength modes by the instability

cascades to small wavelengths where the energy is dissipated [36, 37]. As a result of the non-

linear saturation, the size, the wavelength and the frequency of the fluctuating turbulence

are determined. The typical size of the fluctuations is around 1% of the non-fluctuating

background quantity. The nonlinear beating between two small fluctuating quantities re-

sults in the gyro-Bohm scale transport. For example, the radial E x B drift due to the

fluctuating electrostatic potential beats with the temperature fluctuations to give non-zero

radial transport of energy. The transport time and length scales are much longer than the

turbulent fluctuation time period and wavelength, respectively.

In a low # tokamak (e.g. Alcator C-Mod), the turbulence that contributes most to

the transport is electrostatic, driven by modes such as the ion temperature gradient driven

mode (ITG) [38, 39] and the trapped electron mode (TEM) [40, 41]. For this reason,

I only consider electrostatic turbulence modes. Here, # is the ratio of plasma pressure

23



to magnetic field pressure. Turbulence driven by ITG and TEM modes has relatively long

radial correlation length, extending several ion Larmor radii (3-10pi). Generally, turbulence

with large radial correlation lengths contributes more to the radial transport than small

scale turbulence. Based on this consideration, I do not treat small electron scale turbulence

driven by the electron temperature gradient (ETG) [42, 43] in this thesis. ETG driven

turbulence may be important for electron energy transport, but it is unlikely to produce

much momentum transport, the main focus of this thesis, because ETG only drives electron

transport and electrons do not carry much directed momentum compared to ions. The

evaluation of the small wavelength turbulence is challenging in terms of computational

resources and time. Also, I neglect electromagnetic modes which are important only in

high # tokamaks (e.g. # > 1%) where the parallel Alfven wave dynamics may be more

important than the ion sound wave dynamics [44, 45].

There has been remarkable progress in the understanding of ITG turbulence using linear

[46, 47, 48] and nonlinear analysis [49, 50, 51, 52, 53]. From linear analysis, the ballooning

structure in the parallel direction for a given perpendicular wavelength is obtained [46].

Streamers with long radial wavelengths have the largest growth [48]. In the nonlinear anal-

ysis, zonal modes obtain energy from the other linearly growing modes. Because zonal

modes have negligible parallel variation, they are not Landau damped, and they can grow

fast via nonlinear coupling with other modes. These zonal modes have short radial wave-

lengths and no poloidal variation, resulting in strongly sheared poloidal and toroidal E x B

flow (zonal flow) [54, 55]. Zonal flow plays a role in the regulation of linearly growing modes

because its velocity shear contributes to the turbulence decorrelation [56, 57, 58, 59]. The

turbulence reaches a statistical equilibrium state in which zonal modes and other spectral

modes interact nonlinearly exchanging energy. The resulting drift wave turbulence can be

described by gyrokinetics [60, 61] and the equilibrium state can be obtained using nonlinear

gyrokinetic codes [45, 52, 62].

The toroidal ion rotation considered in this thesis is also known to be important for

turbulence [11, 12]. The perpendicular flow shear suppresses the linear instabilities, while a

sufficiently large parallel flow shear can destabilize a parallel velocity gradient mode (PVG)

[11, 63]. In experiments, flow shear can suppress turbulence and generate transport barriers

[6, 13].

The turbulence determines the toroidal rotation profile because it causes radial transport
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of toroidal angular momentum [64], which will be studied in Chapter 4. The self-consistent

radial electric field for low flow (much slower than the ion thermal speed) is obtained by

evaluating the radial transport of toroidal angular momentum using higher order gyrokinet-

ics. Figure 1-2 shows the relations between turbulence and the ion toroidal rotation in the

presence of the lower hybrid waves. In this thesis, I will evaluate each effect of lower hybrid

waves on the toroidal rotation separately, because the effects can be described in separate

time scales, as will be explained in Sec. 3.5.2 and Sec. 5.3.3. However, to predict the effect

of the lower hybrid waves on the rotation in a given scenario, all the effects in the diagram

need to be evaluated self-consistently.
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Chapter 2 and 3

Dispersion, Current, Viscosity Velocity
Damping Energy Chapter 5 shear
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ITG,TEM

:) Turbulence

Transport

Figure 1-2: A diagram of the relations between lower hybrid waves, background
plasma, turbulence, and ion toroidal rotation. The lower hybrid waves give mo-
mentum but also change the density, temperature, and safety factor profiles. The
changed plasma profiles can modify the turbulence, and the turbulent radial trans-
port of particles and temperature can change the plasma density and temperature
profiles, modifying the lower hybrid wave propagation and damping. The turbulent
transport of momentum can change the ion rotation profiles, and at the same time
the new rotation profile can modify the turbulence through its velocity shear.
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1.3 Measurements of rotation changes due to lower

hybrid waves

Significant toroidal rotation changes due to the injection of LH waves have been observed

in many tokamaks. In Alcator C-Mod, the toroidal rotation of the main ions is estimated

by the Doppler shift of the line emission from impurities using a high resolution imaging

X-ray crystal spectrometer. It is assumed that the rotation is the same for both the main

ions and the impurities in the core [14].

For a discharge with high plasma current (, ;> 500kA), the ion toroidal rotation in

the core is accelerated in the counter-current direction right after the lower hybrid wave

injection, and the acceleration is slowed down and almost saturated in 0(100) msec. After

the lower hybrid wave is turned off, the ion rotation approximately returns to the state

prior to the lower hybrid wave injection (see the red curve in Fig. 1-3). The change in the

steady state rotation after the wave injection is in the counter-current direction, which is

same direction as the wave momentum, and the size of the change is well correlated with

the size of the internal inductance drop, which is a measure of the size of the lower hybrid

wave power absorption off-axis (see Fig. 3 in [14]).

For a discharge with low plasma current (I, ;< 500kA), the change in the steady state

rotation after the wave injection is in the co-current direction, which is opposite to the wave

momentum input [65, 66]. As shown in the blue curve in Fig. 1-3, the initial acceleration

after lower hybrid injection is in the counter-current direction, but it changes direction to

co-current at about 150 msec after the wave injection. Eventually, the rotation change is

saturated in another several hundred milliseconds, and it is in the co-current direction.

This reversal of the rotation change due to lower hybrid waves shows strong correlation

with the total plasma current (or the safety factor at the edge) and a relatively weaker

correlation with the plasma density in Alcator C-Mod [66]. According to [66], a high safety

factor at the edge and low plasma density are likely to give a co-current direction change.

In other tokamaks (Tore Supra, JET, JT60U, and EAST), only co-current rotation changes

due to the lower hybrid injection are found [66]. Although there is little data to verify

the correlations, the co-current direction change in other tokamaks is consistent with the

correlations in Alcator C-Mod, because it occurs when the plasma density is much below

the density in Alcator C-Mod.
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To explain the experimental observations of ion toroidal rotation change, the lower

hybrid wave momentum source is evaluated in Chapter 2, the mechanisms to transfer mo-

mentum from the waves to ions are investigated in Chapter 3, and the radial turbulent

transport of momentum is studied in Chapter 4. Theoretical estimates of the effect of lower

hybrid waves on the change of the steady state rotation are compared with the measure-

ments in Chapter 5. I selected two Alcator C-Mod discharges shown in Fig. 1-3, and I used

the experimental parameters of these two discharges to evaluate the wave momentum input

and the turbulent momentum flux. I will distinguish the two discharges by calling one of

them "the high plasma current case" (I, = 700kA) and the other "the low plasma current

case" (I, = 350kA) in this thesis.
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Figure 1-3: Time history of the ion toroidal rotation at the magnetic axis for two
Alcator C-Mod discharges. Co-current direction rotation is positive in this graph, and
counter-current direction is negative. The red curve is for the high plasma current
case (I, = 700kA) and the blue curve is for the low plasma current case (I, = 350kA).
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Chapter 2

Lower hybrid wave propagation

and damping

The propagation path of lower hybrid waves in a tokamak is primarily determined by the

wave dispersion due to the plasma, and the propagation length is determined by the wave

damping due to the energy transfer to electrons. Lower hybrid waves transfer their energy

and momentum by electron Landau damping (ELD) [20] that occurs when the phase velocity

of the waves is same as the electron parallel velocity. To find the effect of the lower hybrid

waves on the ion torodal rotation, it is necessary to evaluate the toroidal momentum transfer

from the waves to electrons. In existing tokamaks, the resonant interaction between the

waves and electrons is well described by quasilinear diffusion in velocity space.

In this chapter, I investigate the validity of the widely used Kennel-Engelmann (K-E)

quasilinear diffusion operator [211 that assumes a constant magnetic field along the electron

orbit. To understand the impact of generalizing this assumption to a tokamak where the

magnitude of the magnetic field varies on a flux surface, I introduce a broad bandwidth

wave spectrum which has been used in the past to validate the fast decorrelation process

between resonances. Some acceptable errors are identified for the use of the K-E quasilinear

diffusion operator [67].

Using the K-E quasilinear operator, the energy and parallel momentum transfer are

evaluated in a full wave simulation with the self-consistent wave electric field and the self-

consistent electron distribution function modification due to lower hybrid waves.

The rest of the chapter is organized as follows. In Sec. 2.1, the quasilinear diffusion
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coefficient is evaluated including the broad-band wave effect. In Sec. 2.2, I explain the way

to evaluate the energy transfer by iterating a full wave simulation code and a relativistic

bounce averaged Fokker-Planck code together for self-consistency. In Sec. 2.3, I suggest

two equivalent methods to find the parallel momentum transfer. Finally, an example of the

evaluation of the energy and momentum transfer is given in the discussion in Sec. 2.4.

2.1 Validity of quasilinear velocity diffusion

The Kennel-Engelmann quasilinear diffusion operator is derived from kinetic theory with the

zero-order particle trajectory having a constant velocity along the magnetic field [21]. The

Kennel-Engelmann operator is widely used to evaluate electron Landau damping. Since the

first experimental evidence of Landau damping [68], many researchers have investigated the

validity of the quasilinear diffusion operator experimentally [69, 70, 71, 72] and theoretically

[73, 74, 75, 76, 77, 78]. Recently, the statistical analysis of wave-particle interactions using

a finite number of particles was introduced to describe more realistic diffusion coefficients

including mode coupling of different waves and nonlinear effects [79, 80, 81].

The coefficient for the one-dimensional quasilinear diffusion operator that models elec-

tron Landau damping can be simply given by

AvAo) 7re 2E 2

Dk = 2At - k 6(ko - w), (2.1)

where v, me, e are the velocity, mass, and charge of an electron, respectively, W is the wave

frequency, k is the wave vector, Ek is the intensity of the wave, (...)t is the time average

and 6 is the Dirac-delta function. The original quasilinear diffusion coefficient in Eq. (2.1)

was obtained under the assumption of constant zero order velocity.

However, if the perturbation of the velocity due to the wave is considered, a resonant

particle in a wave spectral mode is trapped in a potential well rather than diffused in phase

space [73]. The trapping width in velocity space is Avtrap = V (see Fig. 2 in [73]).

Diffusion in velocity space requires decorrelation between the phase of the wave and the

perturbation of the particle velocity. For collisionless particles, multiple spectral modes of

the wave can give sufficient decorrelation. The spectral interval in k-space within the wave

packet (dk) determines the interval of resonances in velocity space (Avdk = w/k - w/(k +
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dk) ~ (w/k)(dk/k)). If the spacing of the resonances is smaller than the trapping width

in velocity space, the resonances overlap and the particle can be diffused. This is the first

condition for validity of the quasilinear diffusion coefficient [74],

AVdk < AVtrap (2.2)

This condition determines a lower limit of the electric field intensity in a given spectrum for

quasilinear diffusion, which corresponds to the Chirikov threshold in the standard mapping

for random kicks [74, 76, 82] (see Fig. 2 in [76] and Fig. 9 in [82]). This condition was also

investigated in several experiments [71, 72].

The typical electric field intensity of lower hybrid waves in front of the launcher (about

10 - 100 [kV/m]) satisfies the quasilinear diffusion condition. It is far beyond the Chirikov

threshold [74] given in Eq. (2.2), but it is still below the nonlinear limit. The nonlinearity

of the diffusion due to the strong electric field was studied theoretically [75, 77, 78, 83], and

it was also investigated in an experiment [70], in which the saturation of wave growth was

measured. I can assume that the lower hybrid waves in a tokamak are in the quasilinear

regime due to their moderate electric field intensity.

To find additional errors due to the toroidal geometry, I consider the effect of the vari-

ation of the parallel velocity on the perturbed orbit integration carried out in the kinetic

theory with a broad-band wave. That is, in a tokamak which has a helical static magnetic

field that varies in magnitude with major radius, the electron velocity parallel to the mag-

netic field changes to conserve the magnetic moment. I reconsider the quasilinear theory in

a tokamak with velocity perturbation, not only from the electric field but also from the extra

force, -pVBo, where p is the magnetic moment and VBo is the gradient of the static mag-

netic field [17, 84, 85]. In this section, I demonstrate that the broad-band spectrum of the

wave makes the quasilinear theory valid even for tokamak geometry by proper decorrelation

processes.

The modified diffusion operator taking into account the velocity perturbation in a toka-

mak was given by T.H. Stix in [17] in the form of a phase integral. He also demonstrated

that in the presence of an effective collision frequency the phase integral recovers a similar

result to the original Kennel-Engelmann quasilinear diffusion coefficient in [21]. However,

for a high phase velocity wave such as lower hybrid wave in a high temperature tokamak,
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the electron collision frequency is about 105 [s-1], which is much smaller than the elec-

tron bounce frequency, about 107 [s~']. Thus, collisions are not intense enough to satisfy

the decorrelation condition for quasilinear diffusion. In this case, a plausible decorrelation

mechanism in a tokamak is the interaction between multiple spectral modes of the electric

field with similar magnitudes, which I call the broad-band wave effect.

I have concluded that the bounce averaged diffusion operator in (2.24) is equal to the

standard bounce averaged quasi-linear diffusion coefficient in (2.11) within acceptable errors

[67]. There is an error due to the imperfect decorrelation of the phase in the current orbit

period with the previous orbit history [76, 821. I found that there is another error due to

the correlation between the different resonances in an orbit period, and it is found to be

small after averaging. Considering the enormous resources and effort required to calculate

all phase integrals for the exact diffusion coefficient, the errors considered in this section are

likely to be sufficiently small so as to justify use of the standard bounce averaged quasi-linear

diffusion coefficient which is currently used in many numerical codes.

The analysis of the broad-band effect is carried out in the following subsections. In sub-

section 2.1.1, the physical mechanism of the broad-band spectrum giving the decorrelation

between temporal periodic kicks is explained. In subsection 2.1.2, the typical bounce-

averaged quasilinear diffusion operator with constant zero order velocity is reviewed, and

in subsection 2.1.3 the perturbed velocity due to the tokamak geometry is considered to

correct the bounce-averaged quasilinear diffusion operator, and the decorrelation due to

the broad-band wave is applied to the correction to find the errors made by assuming the

Kennel-Engelmann quasilinear diffusion operator.

2.1.1 Broad-band wave effect

In this subsection, the broad-band wave effect on quasilinear diffusion is explained with

a simple picture. When the electron Larmor radius is much smaller than the perpendic-

ular wavelength, the quasilinear diffusion is associated almost entirely with the parallel

wavenumber, which is obtained by a combination of toroidal and poloidal spectral modes.

The interval between the parallel spectral modes of a wave (dkl1 ) is determined by the pe-

riodicity in the toroidal direction (27rR) and the poloidal direction (about 27rr), where R

and r are the major and minor radii of the tokamak, respectively.
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When a large enough number of spectral modes exists, the acceleration of a resonant

electron can be described as a linear summation of the modes as represented in Eq. (2.3),

J=s rt pj=s P
lim E I dt' ei(w(ki+jdk)I)t' = lim Z NI dt' e-ijddl'vIt', (2.3)

j=-s 3--

where the resonance condition w - kijvlo = 0 is used. Here, vg is the parallel velocity, k1l

is the central parallel wave vector in the wave packet, and dk1 is the interval between two

contiguous parallel wavevectors. A time period is defined as tp = 27r , and N = t/t, is the

number of t, in the interval t. There are 2s + 1 number of wavevectors, from (kj1 - sdkgj) to

(kil + sdkjj), in the bandwidth of the wave, and the broad-band assumption means a large

number of wavevectors with similar intensity.

In a typical resonance model used for quasilinear diffusion, only the spectral modes

with phase velocity exactly equal to the electron parallel velocity contribute to the integral,

whereas the contribution of other modes is temporally averaged out. It can be interpreted

as a spectral Dirac delta function for many spectral modes. That is, Eq. (2.3) becomes

j=S tpj

lim ( N dt' e-iilvikt' - ( Ntp6jo, (2.4)
s oj=-s f j--o

where 6ij stands for the Kronecker delta. This corresponds to the resonance by fast decor-

relation with an unperturbed velocity.

Alternatively, if the spectral mode summation is done before the time integral, it results

in temporal periodic kicks due to the phase mixing between the different spectral modes

described in Eq. (2.5), that is, Eq. (2.3) for many spectral modes becomes

t j=St isdkj vjt' - isdkjvjt'

f dt' lim E e-ijiit' I dt' lim
JO t S + 00 Jj=-sO S 00 eidkiit'

/t sin((2s + 1)(dkjivt'/2)) t d 0
dt' lim = dt' E 27r6 (dkilovj t' + 27rn)

0 s oo sin(dk jvjt'|2) fo =o

J t 
00

0 _oo

where 6(t) is the Dirac delta function and lim5 soo i"((2 s1) (x/2) = Z 6(x + 2rj) is used.

These two pictures of a spectral delta function in Eq. (2.4) and a temporal delta function in
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Eq. (2.5) are equivalent and integrate to the same value. Fig. 2-1 shows the equivalence of

these two pictures by phase diagrams. The summation along the time coordinate (vertical)

gives a spectral delta function, and the summation along the spectral coordinate (horizontal)

gives a temporal delta function. The final result is the same independent of the integral

that is taken first.

Using the temporal kick interpretation of the broad-band wave has several significant

benefits for the validation of the quasilinear diffusion. First, the velocity does not need to

be updated during the very short kicks provided that the electric field is not too strong.

Also, for a broad-band wave, the unperturbed velocity need not decorrelate fast during the

whole time period, because the velocity evolution becomes diffusive due to overlap between

the different resonant modes in the broad band spectrum, if the electric field intensity is

beyond the Chirikov threshold [74].
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Figure 2-1: A diagram in time-spectral space showing the equivalence of the diffusion
by a single spectral mode with a temporally constant kick, and by a broad-band
spectral model with temporal periodic kicks. The bars in the circles indicate the
phase direction of the acceleration terms in Eq. (2.3), and t, is the time period of
the kicks in Eq. (2.5). The circle outside the double lines is the result of summing
a sinusoidal function having the phases in a row or a column inside the double lines.
Notice the total acceleration by the summation in time and spectral space is the same,
even though the representations of the delta functions are different. No bar in the
circle stands for the summation over the sinusoidal functions being equal to zero.
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2.1.2 Bounce averaged quasilinear diffusion in a tokamak

The Fokker-Planck equation for a given species is

aft ZSe ( x
+ Vs+ E-+-VIf- Cf) (2.6)

where f,(r, v, t) is the distribution function, Ze and m, are the charge and mass of the

species, and E and B are the electric and magnetic field, respectively. Here C is the Fokker-

Planck collision operator. For magnetized plasmas with a strong static magnetic field, the

lowest order distribution function does not depend on the gyrophase angle because of the

fast gyration. For the lower hybrid wave that has a resonant interaction with electrons, the

Fokker-Planck equation for electrons to lowest order is

at ' + v11b -Vfo,e (C(fo,e)) + (Q(fo,e)), (2.7)

where fo,e (, p, @, 0, t) is the lowest order electron distribution function in terms of the

kinetic energy E = !L and the magnetic moment y = N, vI is the perpendicular velocity

and B is the magnitude of the magnetic field. The magnetic drift for electrons is small,

so it is neglected in Eq. (2.7). Here, (...) = f da/27r(...) is the gyroaverage, oz is the

gyrophase, b is the unit vector for the magnetic field, 6 is the poloidal angle, and ?P is

the poloidal magnetic flux and works as radial coordinate in tokamaks. In Eq. (2.7), a

toroidal average is used to eliminate the toroidal dependence of fo,e. The effect of the

lower hybrid wave on the background electrons is expressed by the quasilinear operator,

Q(fS) = -, (V - [(E + vxB) fs])W, where (...)w indicates the average over a number of

wave periods in time and space (see Appendix A for the derivation of Q(fo,e)). The standard

K-E quasilinear diffusion operator is derived in Appendix A, but the bounce averaged

quasilinear diffusion operator is described in this subsection for the tokamak geometry.

The static magnetic field (the equilibrium magnetic field) in a tokamak is defined as

B = IVp + VW x V@, where o is the toroidal angle, # is the unit vector in the toroidal

direction, R is the major radius and Vp = '/R. The toroidal magnetic field B, = I/R is

determined by a function I(0) that is only a function of the poloidal magnetic flux to the

lowest order.

Taking the bounce average of Eq. (2.7) eliminates the parallel streaming term on the
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left hand side, resulting in

OfO,e - 1 df [(C(fo,e)) + (Q(fO,e))] = ((C(fO,e)))b + ((Q(fO,e)))b. (2.8)
it Tb J VII

Here, (...)b = f is the bounce average along the orbit distance f, and Tb( 5 , p) =

f is the bounce time. Here, fo,e does not depend on 6 to lowest order because

we assume that vb - Vfo,e is much larger than (C(fo,e)) and (Q(fo,e)). Since the bounce

averaged integral f A can be also described in terms of poloidal angle as f O' the

bounce averaged quasilinear operator [17, 86] is

S(fo _f_((Qfoe))a= (DeK'~'~a 'i + (De) ,g J
+ a (Dte) ± ' + (V K )b . (2.9)

Using the poloidal mode number m, the toroidal mode number n, and the frequency W of

the wave, the parallel component of the wave electric field is El = Zm,n) E 'e mO+n1wt).

The phase of the oscillation along the static magnetic field is approximately obtained by

mO + n ~ (m + qn)O + noo where q is the safety factor, and Wo is the toroidal position of

the magnetic field at a poloidal angle. For simplicity, I use the phase (m + qn)9 + npo in

this section, which corresponds to the phase using straight line coordinates with B'j = q.

Then, the averaged diffusion coefficient for the case of electron Landau damping is

- e2  1 1 2rdO / tt-/
(De,)b = 2 dwo J Re v -E*(r) dt'ei (tt')v' E(r')

2m2 217r o vilb-V6 1
e 2  27T e lf)VO

~ --- Re - doeuin2-nW
2m2 Ir 27 0

(ni,mi),(n2,M2)

dO i((M2+qn2)-(m1+qni))o Jo (kLv) Emin)
ob--6 G E m

x tdtl'((M2 +qn2) (0'- 0) -W(t'-t) k2 J E M,2(2.10)

where (t', r', v') is a point of phase space along the particle trajectory, whose end point

corresponds to (t, r, v). Here, Dee is averaged over the toroidal angle po, and Jo is the zero

order Bessel function of the first kind with argument kivi/Qe, with perpendicular wave

vector k 1 , perpendicular velocity v 1 and electron gyrofrequency Qe. Expressions similar to
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Eq. (2.10) are found for (De,,)b, (Dp,)b and (Dy,)b in [86).

If a particle is assumed to move with constant parallel velocity (unperturbed velocity),

the resonance condition is obtained by f ei((m2+qn2)(0'-0)-(t'-t))dt = ir6(kjjv1o - w).

Using no coupling between the different toroidal modes, f 27 dpoei(n2-ni)<po - 27ron2-n,

then the quasilinear diffusion coefficient [86] can be summarized as

7re2 1df
(Ds)a = 2 - Re[ / W(Eyp)6(w - kigv 1(e))2me T-n1bf=n2 (mi,m2) -

ire 2 1 W(E y, Pir)~Re W (2.11)
2f r fnl=n2 (ml,m2) resonance V11 (r) K'(er))LI

where K' = e , W-k) (=)vj and the resonance occurs at = r. Here, electric fields
V11

at the resonances are included in

W(E, y, J) = i((m2+qn2)-(m1+qn1))O ki n * E o II k2 v I E2,n2

(2.12)

Eq. (2.11) counts all resonances for both passing and trapped particles except the resonances

at the tips of banana orbit that are not important for Landau damping due to almost zero

parallel velocity. The parallel wave vector is given by

k 2,n2(t) = m 2 (b - VO) + n 2(h -V O). (2.13)

At the resonance, kp2,n2 (r) = -. In Sec. 2.1.3, the standard quasilinear diffusion coef-

ficient in Eq. (2.11) is modified to allow the parallel velocity to change along the particle

orbit.
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2.1.3 Modified diffusion in phase space with a broad-band

wave

To take into consideration the parallel velocity perturbation, I need to reconsider the eval-

uation of the phase integral in Eq. (2.10). The bounce averaged quasilinear diffusion

coefficient in Eq. (2.10) is rewritten as

e2 e2  L d
(DsF)b = 2m (I(e, A, )) 2m T 1 I(S,,e), (2.14)

2m 2m Tb o oV()

where L is a distance for a poloidal bounce orbit. Here, I follow the notation in [17]. The

function I(E, y, f) that includes the phase history in a broad-band wave is

I(S, p, f) = dr f d W(, y, e(r))ei f( d'(w-(kl1 +mdki)vol)

n M=-s
It(T=oo) dW m=s i dl

E W(E, y, ')e-ixV')eimdkI(e'-), (2.15)
a i o m=-s

dX'where T = -v 1 . The range of the double integral in Eq. (2.14) in terms of f for the bounce

averaging and f' for the phase memory is depicted in Fig. 18-1 in [17]. In this section, I

assume broad-band spectra only in the poloidal modes, resulting in 2s + 1 spectral modes

in the range -s < m < s in Eq. (2.15) and dkil = > - VO in Eq. (2.13). Other possibilities,

such as the wave having broad-band spectra in toroidal mode number, are explained in [67].

Note that I have used the approximation of f dC"dk 1 (e") ~- dk (l' - f) in Eq. (2.15) to

simplify the derivation. It is trivial to use the more accurate expression with the integral

j dt"dk (f") once the derivation is done. The phase in Eq. (2.15) is

x(, ') = J [ - k ( )vI (f/")]. (2.16)

Because the phase around the resonance location contributes significantly to the diffusion

coefficient, the phase is expanded in terms of f' around the resonance at £' = f, by a Taylor

series up to the second order. The first order term in the series vanishes (i.e. axe'~, =

ek11('~)v 11
ex) = 0), giving

r
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where r is the index for all possible resonances.

Eq. (2.15) can be divided into a summation of integrals in which each integral is only

over one period,

I(,,1) =- zd'zI,(fl're)( -L
nrT1

+ - df' In,2(f,,r) + ...}, (2.18)

where rTi is used to label the resonances only in the ith period, f - iL < ' £ - (i - 1)L.

The integrand in the ith period of Eq. (2.18) is approximately

In1 1i efri e~~)T7& P, frTi)me i'~eet i)

sin[(s + 1/2)dkll(e' - ()]
sin[dkgj/2(f' - f)] '

where the phase is expanded around each resonance using Eq. (2.17), and (W(E, y1, er T)))m

is averaged over the poloidal modes at the resonance.

To obtain Eq. (2.19), the variation in vj (f) is assumed to be usually much smaller than

the variance in e-X(',e) around the resonance. This assumption implies that the change of

vj (i) by the external force, -ptVBo, is not explicitly shown in the integral. The summation

in the poloidal modes gives the sinusoidal term in Eq. (2.19) which plays the role of periodic

kicks for large s (because lims_+o sin((2s+1)(x/2) = 6(x + 27rj)).27rsin(x/2)

The integrand In,j in Eq (2.19) with many poloidal modes (large s) is approximately

Zn~ 2iE-( e-ix(f'frTd)(Wv(Se, IITi))mei2(tTi

x6(f' - f + Lkj), (2.20)

where Lk = 27r/dkl1 is the distance between the periodic kicks due to the broad-band wave.

If the spectrum is broad-band in both poloidal and toroidal mode number, which results

in Lk > L, the kick due to the resonance rTi cannot happen in every poloidal orbit. In this

case, the condition for the non-zero value of the periodic Dirac-delta function in Eq. (2.20),

f' - f + Lkj = 0, will not generally coincide with the conditions for the resonance, f' = frT

and f = frTi + (i - 1)L. Thus, the consecutive resonances at the same poloidal location are
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separated by a long distance which is the least common multiple of Lk and L, resulting in a

negligible correlation between the resonances if this long distance is comparable to or longer

than the collisional mean-free path. The decorrelation between resonances in the different

orbit periods makes the contribution of the phase memory from the previous orbits small,

resulting in

f) d' in,1 (2.21)
ff n rT'1

Taking the bounce average of 1(., y, f) in Eq. (2.14) using Eq. (2.21), the diffusion coeffi-

cient is approximately the same as the original one with unperturbed velocity in Eq. (2.11)

(see Appendix C for the derivation)

However, for the wave whose spectrum is broad-band only in poloidal mode number,

both Lk and L are the length of a poloidal orbit. If Lk is the same as L, the resonances at

the same poloidal location happen in every poloidal orbit. In this case, the periodic Dirac-

delta function in Eq. (2.20) for every ith period is the same due to the same periodicity,

giving the relation of the integrands between two consecutive periods

In,i+1 ~ e In i, (2.22)

where xo = X(ernT, rTi - L) is the constant phase change between the two periods. Here,

(W(S, p,e'))m and vil (f') are assumed to be periodic and the resonances in different periods

happen in the same poloidal locations. Using Eq. (2.22), the summation of the integral

I(E, y, e) in Eq. (2.18) is

1 z ~e-d zI
I(S, y, f) ~ - dE In,1 .(2.23)

n rT1

It is possible to neglect the factor 1/(1 - e2 Xo) in Eq. (2.23) if the particles decorrelate

after a few kicks due to the broad-band effect. However, it is known that the decorrelation

due to broad-band waves is not perfect [76, 82]. For the electric field range of our interest,

the actual diffusion coefficient of a single particle is generally more or less 10 percent larger

than the quasilinear diffusion coefficient from mode coupling. The reason is the correlation

between the current velocity change and that of he two prior periods.

Another possible error comes from the correlation between the different resonances in a
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period. Taking the bounce average of I(E, I, £) in Eq. (2.14) results in

(I(V, y, 0))s = r W(6,P r (2s +1) + Hsfi r), (2.24)TbIV2 (42 ) Wc(42 )I rlr2Hn(erl 14 2 ) 1

where fri and fr2 are the resonance positions in the f and f' integral paths respectively, and

H (fri, 42) is the additional contribution to the diffusion coefficient from phase correlation

between different resonances in a period, as derived in Appendix C.

For example, consider a passing particle that has an outer mid-plane parallel velocity

=o = 1.12 x 108m/s and perpendicular velocity v_L0 - 108m/s on the q = 2.001 flux surface

in a tokamak with major radius R = 0.6 and minor radius r = 0.2, and a wave with a

peak poloidal wavenumber of mo = 30 in a broad-band and ten toroidal wave modes in

a narrow-band n = 26 - 35. In this case, the second term in Eq. (2.24) is 7.7% of the

first term. Even for trapped electrons, the real part of H (fri, fr2) still averages to a small

value. Consequently, I conclude that the phase integral of the diffusion coefficient due to a

broad-band wave in Eq. (2.24) reduces to the original value Eq. (2.11), because (2s + 1)

times the average value of (W(E, y, fr2))m gives the original summation over the poloidal

mode number m.

The factor, (2s + 1) in Eq. (2.24) which is the number of poloidal modes, can be

understood as "a kick on a kick" (or "the square of the Dirac delta function"), where

the first kick represents the resonance for electron Landau damping in the phase integral,

and the second kick corresponds to the periodic random kick due to the broad-band wave.

The diffusion coefficient in Eq. (2.24) is approximately the same as the original one with

unperturbed velocity in Eq. (2.11). One can think of the two different derivations of the

quasilinear diffusion coefficient as being the two different representations shown in Fig. 2-1.

I will use the Kennel-Engelmann quasilinear diffusion coefficient to describe the damping of

the lower hybrid wave energy in Sec. 2.2, because the waves have a broad-band spectrum

that gives the sufficient decorrelation for quasilinear diffusion.
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2.2 Wave power transfer to electrons

The propagation path of the lower hybrid waves has been evaluated by geometric optics

because the wavelength of the wave over most of the tokamak radius is small enough to

satisfy the assumption of the Wentzel-Kramers-Brillouin (WKB) expansions [18, 291. The

ray-tracing technique is based on geometric optics and gives the spatial change of the wave

vector of the ray that is defined as the vector normal to the constant phase surface of the

wave. The group velocity and the phase velocity of the ray are determined by the local

dispersion relation of the wave and a fixed wave frequency. The simplified dispersion relation

for an electrostatic slow mode is given in Eq. (1.1).

However, in the case of a lower hybrid wave that is weakly damped and reflects from the

low density cutoff boundary at the plasma edge, the wavelength is comparable to the char-

acteristic scale length of the plasma parameters, and the WKB expansion is not applicable

(see Fig. 2-2). To describe the diffraction and focusing of the wave in the caustic, full wave

solvers in the lower hybrid frequency range have been used [24, 25, 87, 88]. I have compared

a full wave code (TORLH) [24] with a ray-tracying code (GENRAY) [29]. Their results

agree well for the strongly damped waves (i.e. a single-pass damping), but non-negligible

differences are found for weakly damped waves (i.e. multi-pass damping). In this chapter,

the full-wave code TORLH is described extensively because I need it to model the lower

hybrid waves in the discharges of interest shown in Fig. 1-3. The waves are weakly damped

in this case.

The full wave solver (TORLH) is based on a full wave solver for electromagnetic waves

in the ion cyclotron frequency range (TORIC) [89] that solve Maxwell's equations with self-

consistent plasma currents. The constitutive relations between the non-local plasma current

and the electric fields are given kinetically using the zero-order particle trajectory. The ion

cyclotron wave solver TORIC retains the thermal wave modes for small wavelength (e.g.

ion Bernstein mode and ion cyclotron mode) [90] by using a finite Larmor radius (FLR)

expansion of the conductivity operator, retaining up to the second order in the ion Larmor

radius pi relative to the perpendicular wavelength A_ [91]. However, for the frequency

of the lower hybrid wave in most experiments, w > 2 WLH, the ion plasma wave branch

associated with the hot plasma correction is inaccessible. Hence, the slow wave mode and

the fast wave mode given by cold plasma dispersion are sufficient to describe the typical
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propagation of the lower hybrid wave [19]. Accordingly, for TORLH, only zeroth order

FLR terms are retained for ions. The power absorption due to the transit time magnetic

pumping (TTMP) associated with the terms (~ (kipe) 2 ) is very weak in TORLH, although

it is retained along with the cross-term between TTMP and electron Landau damping.

The lower hybrid wave injected from the launcher propagates only as the slow wave mode

before mode converting to the fast wave mode. The slow wave is electrostatic, and it is

damped by electron Landau damping that causes velocity space diffusion of the non-thermal

fast electrons. The non-Maxwellian electron distribution function evolves consistently with

a balance between the energy transfer from the wave and the electron collisions, resulting

in a plateau in the distribution function with a much lower gradient than the gradient of

the Maxwellian in the parallel velocity direction.

The evolution of the distribution function is calculated with a bounced averaged Fokker-

Planck code (CQL3D) that solves Eq. (2.8). In the Fokker-Planck equation, the quasilinear

diffusion coefficient is proportional to the wave energy density (or the square of the electric

field magnitude) as shown in the previous section. Conversely, the modified distribution

function also affects the electric field magnitude by changing the degree of damping through

the imaginary part of the susceptibility in Maxwell equations. In steady state, the distribu-

tion function and the electric field are self-consistent, if the solutions from the electromag-

netic field solver (TORLH) and the Fokker-Planck equation (CQL3D) have been iterated

to convergence.

The propagation path of the wave determined by the real part of the susceptibility is not

significantly modified by the non-Maxwellian distribution function obtained in this iteration

process. Because only a small fraction of the electron density (< 1%) in the high parallel

velocity tail is resonant with the high phase velocity wave via electron Landau damping, the

small deviation from the Maxwellian distribution does not contribute significantly to the

dispersion of the wave. Thus, in TORLH, the real part of the susceptibility is approximated

by the real part of the plasma dispersion function, that is obtained using a Maxwellian

distribution function.
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2.2.1 Maxwell equation solver

The full wave solver, TORLH, is written in MPI-Fortran9O, and it uses a combined fi-

nite element method (FEM) and spectral decomposition to solve Maxwell's equations in a

Galerkin weak variational form [92],

dr3F*.[ V x V x E- E + i(JP + JA)}= 0, (2.25)

where jA is the applied antenna current and F is an arbitrary vector function satisfying the

same boundary condition as the electric field. Here, JP is the plasma current generated by

the electric field. Because the toroidal spectral mode of the wave is conserved, the electric

field is solved in terms of the poloidal mode m and the radial coordinate 4. While the

toroidal modes are decoupled each due to the toroidal axis-symmetry, the poloidal modes

are coupled because of the dependence of the static magnetic field on the poloidal angle.

The constitutive relation between the plasma current and the electric field for each poloidal

mode at a radius 0 is

JPm()4rX (k,) Em(0) (2.26)

where X (kr, 4') is the susceptibility tensor, and it is approximated using the dielectric

tensor 7 from the cold plasma dispersion,

e Em = (7+ x- Em ~ C(Em+)e+ + R(Em-)e- + P(Emll)> (2.27)

where Em±= Emxi±iEmy = 2 and x and y are the orthogonal coordinates in the

plane perpendicular to the magnetic field. Here, Stix notation [17] is used. For instance,

the operator P(E 1 ) is

P(Ell) = Ell - doirv, j ev I iw dt'e(kI ' (
S W2 fo J-00 evte II V11 fe " 0

where the zero order particle trajectory is considered, and the perpendicular motion is

ignored in the zero-order Larmor radius expansion. For the real part of the susceptibility,
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a Maxwellian distribution function is assumed, resulting in

2 2

Re{fP(EII)} Ell 1- W Z/ (2.29)
.W 2 (k lvtS )k vis )

W2e
~ El for the lower hybrid frequency range, (2.30)

where wps is the plasma frequency of the species s.

The damping of the electric field by electron Landau damping is evaluated using the

imaginary part of a component of the susceptibility in Eq. (2.27), Im{X 11 } = Im{b- X

-b} = Re{P(El1 )}. Because the wave is resonant with fast electrons having parallel

velocities of about 10% of the speed of light, it is necessary to include the relativistic

corrections in the velocity space integration for Im{XII }. Then, the imaginary part of the

susceptibility is defined by [92, 93

Im{XIIH} = -22 1 ( e d 1J 2 kiv1  Bf,e , (2.31)
neote kg I 0 Q,,e ai Oullvlwkau1

where Qr,e = Qe/-Y is the relativistic electron gyrofrequency, u = yv and u are the relativistic

velocity and its magnitude, respectively, & = -yc2 is the relativistic energy and -y = (1 +

(u/c) 2) 1/ 2 = (1 - (v/c) 2 )- 1/ 2 . Here, the distribution function fo,e is non-Maxwellian, and

it is obtained from the bounce averaged Fokker-Planck equation in (2.8).

To find the electric field in Eq. (2.25) in TORLH, the electric field and the test function

are radially discretized by finite elements using the cubic Hermite polynomial basis. For

a fixed toroidal spectral mode, it results in a block tri-diagonal matrix system due to the

adjacent radial mesh interactions of the basis. The master matrix in the system has a radial

dimension of ni block rows, and each row has three massive blocks, Li Di and Ri (Here,

the matrices Li and Ri are different from the operators L and 7 in (2.27)). Each block is a

dense matrix whose size is n 2 x n2 due to the poloidal spectral mode coupling. Here, n 2 is

equal to six times the poloidal spectral mode number, where the factor of six is due to the

three components of the electric field and their radial derivatives. The radial derivatives

are explicitly calculated to satisfy the continuity of the radial derivative across the elements

by using the cubic Hermite polynomial basis. Then, the matrix equation for each radial
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element is

Li -xi1+ Di -xi+ R -xi+1 = yi for i=1, ... ni, (2.32)

where xi and yj are complex vectors whose size is n2, and yi is given by the boundary

conditions at the wall, the antenna, and the magnetic axis of a tokamak. Then, the total

master matrix size is (nin2 ) x (nin2). Typical values of ni and n 2 are about 1000 and

6000, respectively, to resolve a lower hybrid wave with a small perpendicular wavevector

A ~ 1mm.

I developed a three-dimensional (3-D) processor configuration for a parallel solver to

solve this massive block-tridiagonal matrix system [94]. Previously, the solver employed

a parallel matrix computation algorithm using LU decomposition (ScaLAPACK) for each

block operation in a two-dimensional (2-D) processor grid, while keeping the serial Thomas

algorithm as a tri-diagonal matrix solver. The purpose of the added parallelization dimen-

sion is to retard the saturation of scaling with processor number due to communication

overhead and inefficient cache use. As the most suitable algorithm, I implemented the

combined method of "Partitioned Thomas method" and "Cyclic Odd-Even Reduction" in

TORLH. The 3-D parallel solver using thousands of processors shows more than 5 times

improved computational speed with the optimized 3-D grid compared to the 2-D parallel

solver for the same problem size.

Once the electric field is obtained for every poloidal mode and radius, the flux surface

averaged energy transfer is evaluated. The power absorption in a flux surface from the LH

wave [17, 92, 93] is defined as

Pas($) =E Re {ei(m'-m)oJm',n* . Em n

n M m/ /S

~ Re {ei(m'-m)oEm'n*Em,n} I{xIIII }. (2.33)

The radial profile for power absorption that will be shown later in Fig. 2-4 (b) is obtained

from Eq. (2.33) based on the electric field in Fig. 2-2.
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Figure 2-2: The poloidal cross section of the parallel electric field intensity obtained
with TORLH for the high current case in Alcator C-Mod shown in Fig. 1-3. B, =
5.3T, Ip = 700kA, Te(i//o = 0) = 3.5keV, ne(4/4o = 0) = 1.2 x 1020 , nl = -1.6
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2.2.2 Evolution of non-Maxwellian distribution function

The non-Maxwellian distribution function is evolved through a balance between collisions

and the quasilinear diffusion in velocity space due to the lower hybrid waves, using the

bounce averaged Fokker-Planck code (CQL3D) [291. CQL3D is a finite difference time

advance code with two relativistic velocity variables (a magnitude u and a pitch angle

V= tan-( ) and a radial variable (,0), where uI and ull are the relativistic veloc-
U1"

ities perpendicular and parallel to the static magnetic field, respectively. It describes

the distribution function for a species in terms of the variables at the outer-midplane

Fo,s(uo, 9O(,9, 0), ,, t) = fo,s(u, , 6, 0, t). The magnitude u is conserved but the pitch angle

varies along the orbit keeping the relativistic magnetic moment constant, 1 = 0 (i.e.

sin V2 - sin, io 2 ). Here, the subscript 0 for the velocity and the magnetic field denotes the
B - BO

values at the outer midplane of the tokamak.

The collision term and quasilinear diffusion term in the electron Fokker-Planck equation

can be expressed as the divergence of the flux in 2-D relativistic velocity space (u and i0)

[95, 851,

(C(fo,e)) + (Q(fo,e)) = - = A + B + C fo,e

+ D + E + F- fo,e. (2.34)
u2 sin'O O 8?u 80

Using Eq. (2.34), the bounce averaged equation equivalent to Eq. (2.8) in terms of the

relativistic velocity is

d(AF,e) -V o I= -- - Ao+ Bo + Co FO,e]
dt u0luo uuo ao

+ 2Do + Eo + FO FO,e] (2.35)
uO sin oo 197-90uo Boa3O

where A = vIlorb, and the properties of the bounce average in Appendix B are used. The

coefficients are composed of the collisional contribution and quasilinear diffusion contribu-

tion (e.g. BO = Boc + Boqi). For the mildly relativistic Fokker-Planck collision operator, the

coefficients for AOo,..., Foc are given in [96, 951. For electron Landau damping, the quasi-

linear diffusion coefficient in the energy direction taking relativistic effects into account [92]
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is

Bo ( = A (B) 2 vioRe (m2m)OB~I Bb =2m2 b-V Y2(wk1(~ 2

x Jo k v En (Jo (k 2 1 v E M2)6(w - kiivi1). (2.36)

The resonance condition is applied to the non-relativistic parallel velocity even for the

realistic velocity space diffusion (compare the above with Eq. (2.11) and (2.12)). The

dominant parallel direction diffusion results in non-zero values for Coqi, Eoq and Fogq that

are given by their relations with Boqi in the Appendix D.

Once the steady state non-Maxwellian distribution function is achieved in sub-milliseconds

by the balance between collisions and the quasilinear diffusion in Eq. (2.35), the flux surface

averaged value of the energy transferred from the wave to electrons is evaluated in CQL3D

as

Pabs(9) K d3u(_Y 1)mec2Q(fo) Bos d3 uoA ((7- 1)mec 2 Q(foe))b

mec 2 87O B-~I d3uo7 B0 1  , (2.37)
Bors au NuO

where Eq. (B.6) and integration by parts are used. Here u =. For the high plasma

current case given in Fig. 1-3, the radial profile of power absorption obtained using Eq.

(2.37) is shown in Fig. 2-4 (b).

52



2.2.3 Self-consistent full wave simulation

Self-consistency between the electric field and the electron distribution function is obtained

by iterating the two codes TORLH and CQL3D. The following nonlinear equations sum-

marize the iteration,

E"(0) = STORLH (x(F"(@, u, O)))

Fn+1 (, tU, ) = SCQL3D (Dqe(E"(@))), (2.38)

where STORLH and SCQL3D represent the operations performed by TORLH that solves Eq.

(2.25), and by CQL3D that solves Eq. (2.35). The nonlinear operator STORLH applied on

the electron distribution function gives the electric field, and the nonlinear operator SCQL3D

applied on the electric field results in the steady state bounce averaged electron distribution.

The superscripts in the electric field and distribution function indicate the iteration number.

Fig 2-3 gives a typical iteration between TORLH and CQL3D. To explain the observed

convergence of the iteration, I use a simplified model based on the relation between the

Poynting energy flux and the power absorption in Eq. (2.39) to evaluate the electric field

energy density, CE* - Ej. For simplicity, I only consider the parallel electric field

and a distribution function that only depends on the parallel velocity, and I ignore the

poloidal dependence,

V =1Pabs = (E )Im {X(F"(V, v11))} , (2.39)

Fn+1(0, ol) = CF exp 1 v" dv 1+(Vo/V )Del((E )n)/(vee 2 (2+Z)) (.

where Vg is the group velocity of the wave packet in the radial direction, and e1 is

the parallel diagonal component of the dielectric tensor 7. The steady state distribu-

tion in (2.40) is obtained from the balance between the 1-D model collision operator

Ce = VeeV e(2 + Zj) a (3 a + , and the 1-D quasilinear diffusion coefficient in the

parallel direction Q = av Dq- [71. Here, CF is the integration constant needed to satisfyVI av1
the electron density conservation, ne = f_ dv 1F. By neglecting the contribution from the

perpendicular electric field on the left hand side of Eq. (2.39), one misses an important

factor in the energy density. Also, the oversimplified 1-D model collision operator for the

pitch angle scattering underestimates the LH wave current drive efficiency by about a factor
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of two [97] and does not conserve momentum. However, I assume that these assumptions

will not affect significantly this convergence analysis.

In the radial region of interest, where there is strong damping, I assume that the wavevec-

tors of the waves do not change radially, and the parallel electric field intensity is non-zero

only in the range of wavevector k112 < kg < kyll, where Ak = ky - k112 < kill. Also, the

electric field is assumed to result in a constant quasilinear diffusion coefficient,

Deq~U l (2.41)
me kil kil k112

where E = Em En(E'")2 for all m and n in the parallel spectral range and l(Va, Vb)

is an approximation of the Dirac delta function given by a rectangular function with the

height of 1 in the range of va < V < Vb.

Using the quasilinear diffusion coefficient in Eq. (2.40), the susceptibility in Eq. (2.31)

is approximated by

Im x} = - "Im d o - F(V )

~ w fX dv ll1+ 0(v/v-k)v/(v (v2.42)

22r2 2 1 \ (E )
ai F.for «1

I (Ev) 1 (2.43)

27r2 Wjveeve(2 ± Z) (me (kg (w fo )
W~eeeteIn F for >1

new eEll k112 kyl a2

where the different solutions in Eq. (2.43) are obtained in two different limits. The two

limits are characterized by the relative size of the two terms of the denominator in Eq.

(2.42), and they are determined by 3 veevw( +z) being smaller or larger(242~ kl = (k / VeV(2+Z)

than 1. Here, &2 ~ veeve(2 + Z)Ak( ()2, where I use the quasilinear diffusion

coefficient in Eq. (2.41).

For < 1, the electron distribution is almost Maxwellian with a weak plateau. In

this case, to calculate Im{X}, F(v = w/k 2 ) < F(vg = w/kyl) is used, making ai =
2 2

(V7/4)(erf(v2)-erf(vi)) -(v 2 e -v2 vie )/2 , where erf(v) =1 f dxex , vi = and

V2 = On the other hand, for > 1, a strong plateau is established by strong

velocity diffusion. In this case, F(v 1 = W/kJ1 2) ~ F(v = w/kgll) is used. For both the weak
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and the strong plateau, F(vil = w/kj11 ) ~ CF exp(-(w/(kjj1 vte)) 2 ).

Substituting Eq. (2.43) into Eq. (2.39) for the next iteration, I obtain the spatial

damping of the wave energy when the wave propagates into the core plasma (in the negative

direction),

(E2)n+1 -1CE(E )n+1 for « 1
~ 111a (2.44)

B(-@/@o) (E2)n+1  (E ) ' (2.44
-a2CE f)n >>r

(E )" a2

where CE CF MkeOWe 
2  * .kvt) Here, 4o is the poloidal flux at the last

nevte 4Vgopvte j1 k1 k1

flux surface used to normalize @. For the weak plateau case, a 1 is determined by the

exponential decay of the distribution function within the range " < og < ' in velocity

space. If F(vjj = w/kJ1 2 ) < F(o1 = w/k,1 1 ), ai is less than 0.5. In the equation for the weak

plateau (i.e. for < 1), the spatial decay rate of the energy density is determined by

a1CE (alCE > 1 for strong damping and a1CE < 1 for weak damping).

The different steps in the iteration to find the self-consistent solution in Fig. 2-3 for

the high current case can be interpreted as several transitions between the weak plateau

regime (i.e. (E )n/a 2 < 1) and the strong plateau regime (i.e. (Ej)" /a2 >> 1). In the

initial iteration, the distribution function is assumed to be Maxwellian, so the electric field

solution is in the weak plateau regime. The right hand side of Eq. (2.44) shows that the

electric field in the current iteration ((E )n+1 ) has little relation with the previous iteration

((E2)") if the electric field is in the weak plateau regime. However, after the strong plateau

is established, the wave damping is amplified for a weaker electric field because the electric

field of the previous iteration is in the denominator in Eq. (2.44). If I assume that the

waves propagate only inward, they have a weaker electric field at the inner radii than at

outer radii due to damping. As a result, the power absorption is stronger at inner radii

than outer radii (see the change of the blue lines from iteration 1 to iteration 2 for inner

radii O/@o < 0.4 and outer radii 0/Vo > 0.4 in Fig. 2-3).

The damped electric field gives rise to stronger damping, resulting in a peak in the

damping profile (see the peak of blue lines at O/Oo ~ 0.3 in iteration 3 of Fig 2-3), until the

damping is so strong that it weakens the electric field inducing the weak plateau. Then, it

becomes under-damped due to the small ai for the weak plateau. The difference between
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under-damping and over-damping is large, when the broadening of the wave spectrum is

large because a 1 is smaller for larger Ak. In Fig. 2-3, the power absorption changes

significantly over iterations around 0/@o = 0.2, because the spectral broadening at that

radius is the biggest as shown in the plot of effective refractive index in Fig. 2-4 (c).

Eventually, the difference between the under-damping and over-damping disappears and

the self-consistent power absorption profile is obtained (see the iteration 12 in Fig. 2-3).

However, the convergence in the last iterations is slow.
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Figure 2-3: The convergence process of the power absorption profile by iterating
TORLH and CQL3D for the high current case shown in Fig. 2-2.
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2.3 Parallel momentum transfer to electrons

When the lower hybrid waves are damped by electron Landau damping, the wave transfers

its toroidal angular momentum to electrons. The toroidal angular momentum is composed of

the toroidal projections of the parallel angular momentum and the perpendicular angular

momentum. The parallel momentum can be evaluated using the gyro-averaged Kennel-

Engelmann quasilinear diffusion coefficient explained in Sec. 2.1. In this section, I suggest

two equivalent methods to evaluate the parallel momentum source term: one is to use the

wave dielectric constant in the full-wave code to solve Maxwell equations and the other is to

use the modified bounce averaged constant in the Fokker-plank equation. The two methods

result in the same value of the momentum source separately if a converged solution is given

by the coupled nonlinear process explained in Sec. 2.2.3. The perpendicular component of

the momentum will be calculated and explained in Sec. 3.2.

2.3.1 Evaluation of the parallel momentum transfer using the

full wave code

To evaluate the flux surface averaged parallel momentum source, I have introduced a new

variable 71 in (2.45) which is defined in a similar manner as the susceptibility x used for the

bounce averaged power absorption (2.33). The toroidal projection of the parallel angular

momentum transfer (torque) by lower hybrid waves is,

TK () = d3u(meRu) ((Dqi) 'f) )

K du3(-meR> )De. ) (g

A Re {e(m'-m)oE *Emn} Im{f}., (2.45)
n m m'

where (Dql) is the gyroaveraged quasilinear diffusion coefficient for electron Landau damp-

ing. Comparing this momentum transfer to the energy transfer in Pabs = (f du 3 'ymec 2 Q(fOe))s

Kf du3(-meug/. ) (Dql) %foe) , we can see that there is a difference of a factor u /-y in the

velocity space integration. Using the properties of the Dirac-delta function in the quasilinear

diffusion coefficient for the electron Landau damping, the non-relativistic parallel velocity

vi = uil /Y is not a variable but a constant w/k1 in the velocity space integration. Then, a
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simple relation between q and x in (2.33) is obtained,

ki nIIIm{} = R(b - )Im{XIIJ} = -1 Rcos EIm{x1 1 }, (2.46)

where ng is the parallel refractive index and E is the angle between toroidal direction and

the magnetic field vector. For the high current case in Fig. 1-3, the toroidal projection of

the parallel angular momentum transfer is evaluated using Eq. (2.45), and its radial profile

is shown in Fig. 2-4 (a).

2.3.2 Evaluation of the parallel momentum transfer using the

Fokker-Planck code

The evaluation of the flux surface averaged parallel angular momentum transfer using the

bounced-averaged operator is more complicated than calculating the power absorption,

because the parallel angular momentum of a particle changes along the particle orbit in the

inhomogeneous magnetic field. Consequently, the bounce averaged parallel torque density

cannot be evaluated using the previous bounce averaged coefficients in Eq. (2.35). For

example, the coefficients Eoqi and Foqi in Appendix D should be modified, because the

differential operator - does not commute with the parallel momentum that depends on

,0o. In CQL3D, I have defined new bounce averaged coefficients for the parallel momentum

transfer, using integration by parts to remove the non-commuting operator.

Using the gyro-averaged quasilinear term (Q(fo,e)) in Eq. (2.34), the toroidal projection

of the parallel momentum transfer is

Kf d3 u(meuR)(Q(foe))) = ( -) f dudo(U2 sin d)(meu R) [{B + C } fo,el

+2 [ E- + F9 I} fo,e] =-(6 - ) f d3U[ (me cos VR)

x -{B- + C j}fo,e + a,[(e o R + F } fo,e](.7
71 a[(~ oO)fD, (2.47)

To perform the velocity space integration in the flux surface averaged expression in Eq.

(2.47), I used the property in Eq. (B.6), similar to what was done in going from Eq. (2.34)
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to Eq. (2.35),

f d3 uoA ((meuVR)Q(fe))b - - f d3 uoA (b. ) [-(mecosP9R) { B- + C-} fo,e

+ [ (meu cos ) E, + Fa} fo,e] = f duoddo(-me sin 9o)

x BoM oM fo,e + {Eom4 + Fom } + F . (2.48)

The new coefficients for the momentum change calculation are defined as,

BoM = A(b - cos'dR)B)b (2.49)

EoM = -AK(6-buR)E) (2.50)

= A K i - I R) B , (2.51)

and the relation CoM/BoM = Fom/Eom = Coqi/Boq in Appendix D holds. The corrections

to the coefficients BOM and EOM for the evaluation of the parallel momentum are odd around

the pitch angle do = ir/2. Conservation of the magnetic moment (i.e. 0 = cos9"e ) isaV sinVc 9o

used in Eq. (2.51). Then, the angular momentum transfer can be simplified as

TO( ) = d3uoA ((meR)(Q(foe)))b

I' ~(0 sinoo '
duodo(-me sin zoo) (BoM + EoM) u - s VO Fo,ee, (2.52)

o9UO VO Cos o0 a79o

where the new coefficients BoM and EoM are evaluated in CQL3D using the electric field

calculated by TORLH. Eq. (2.52) is verified by comparing the radial profile of the parallel

momentum transfer with that evaluated in TORLH using Eq. (2.45) as shown in Fig. 2-4

(a).

2.4 Discussion

The self-consistent distribution function and electric fields are obtained by nonlinear iter-

ations between the wave code TORLH (Maxwell equation solver) [92] and the relativistic

3-D bounce averaged Fokker-Planck code CQL3D [29]. Before using the quasilinear diffu-

sion coefficient in the codes, I considered the limitation of the quasilinear diffusion model,
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and I concluded that the quasilinear approximation is acceptable for the realistic condition

of a broad-band wave in Sec. 2.1. Using the distribution function and electric fields, the

toroidal projection of the parallel momentum transfer is evaluated by two equivalent meth-

ods in TORLH and CQL3D. The momentum source evaluation is important to determine

the effect on ion toroidal rotation of the LH wave injection, as will be discussed in the next

chapter.

As an example, the energy and momentum transfer are calculated in TORLH and

CQL3D for the high current case in Alcator C-Mod. The curves in Fig. 2-4 (b) show good

agreement between the power absorption profiles evaluated by TORLH using Eq. (2.33)

and by CQL3D using Eq. (2.37), respectively, indicating self-consistency between the two

codes. The parameters for the simulation are B. = 5.3T, Ip = 700kA, Te(0) = 3.5keV,

ne(0) = 1.2 x 1020, and ng = -1.6 with Alcator C-Mod lower single null magnetic field

equilibrium. The relatively low parallel refractive index of the antenna results in multi-pass

propagation of the wave fronts until the parallel index is up-shifted enough (n|| ~ -3) by

the variation in the poloidal mode number to have strong Landau damping in a population

of tail electrons. The multiple peaks in the radial profile of power absorption are associated

with multi-pass damping. The toroidal projection of the parallel momentum transfer is

evaluated by TORLH using Eq. (2.45) and by CQL3D using Eq. (2.52) as shown in Fig.

2-4 (a).

The size of the wave parallel momentum density is the parallel refractive index times the

energy density [98]. Using this fact, I can define the effective flux surface averaged parallel

refractive index as the ratio of momentum transfer to energy transfer in Fig. 2-4 (c). This is

an additional advantage of the evaluation of the momentum transfer in the full-wave code,

because the parallel refractive index is not given explicitly in the full wave code unlike in

the ray-tracing code. The magnitude of parallel refractive index is important to quantify,

as it determines the broadening and the upshift of the wave spectrum, which are important

to explain the power absorption and the current drive of lower hybrid waves.
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(a) Torque density

-TORLH

0.2 0.4 0.6 0.8

(b) Power density
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index

0.0 0.2 0.4 0. 6
V0
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Figure 2-4: Comparison of radial profile of (a) torque density, (b) power density,
and (c) the effective parallel refractive index of the wave, obtained by two codes, a
full-wave Maxwell equation solver (TORLH) and a Fokker-Planck code (CQL3D).
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Chapter 3

Momentum transfer from lower

hybrid waves to ions

The toroidal momentum transfer between the lower hybrid (LH) waves and electrons by

Landau resonance is widely accepted. However, the main mechanism of the momentum

transfer from electrons to ions was not clear. In this chapter, I describe two different

channels for the transfer of perpendicular and parallel momentum from the waves to ions

through electrons. Both channels are important for toroidal momentum transfer of lower

hybrid waves because the size of the projections in the toroidal direction of the parallel

and perpendicular momentum are comparable. These two channels usually contribute in

opposite directions to the ion toroidal momentum and have different time scales.

The channel for the parallel momentum transfer has been considered in previous work

[99, 100, 101]. The parallel momentum is transferred from waves to electrons when the

energy is transferred due to the resonance of the wave with the parallel motion of electrons,

as shown in Sec. 2.3. The collisions between electrons and ions transfer the parallel mo-

mentum from electrons to ions. However, the channel for perpendicular momentum transfer

was not self-evident. It was first found in [1021. If the perpendicular momentum transfer

via electron Landau damping is ignored, the transfer of toroidal angular momentum to the

plasma will be larger than the injected toroidal angular momentum, as previous work found

incorrectly [99, 100, 101]. A proper quasilinear treatment that takes the electron gyromo-

tion into account proves that both perpendicular and parallel momentum are transferred to

the electrons. As a result, the total toroidal angular momentum of the wave at the launcher
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is transferred to the electrons.

The perpendicular momentum is transferred to ions through an outward radial electron

drift. Typically, this outward drift is about 100 times larger than the inward radial drift of

the trapped electrons proposed to explain the ion toroidal rotation change in the counter-

current direction due to the lower hybrid waves [103, 104, 105]. Ions follow the electron

radial drift with the same speed to satisfy ambipolarity, but there are several transient

phenomena before reaching this condition. Transiently, the radial electric field is changed

due to charge separation, and it affects both toroidal and poloidal rotation. After an ion-ion

collision time, the poloidal rotation decays, the radial electric field is determined only by

the toroidal rotation, and the ambipolarity condition is satisfied.

The rest of this chapter is organized as follows. In Sec. 3.1, I investigate the change of

the lower hybrid wave momentum as the waves propagates into a tokamak. In Sec. 3.2, I

show that one needs to include the flux in the gyrophase angle direction in the quasilinear

diffusion operator to evaluate the perpendicular momentum transfer. In Sec. 3.3, the

outward radial electron drift due to the perpendicular momentum transfer is investigated

and it is compared with two other radial drifts due to the parallel momentum transfer

proposed by previous work. In Sec. 3.4, the momentum transfer from electrons to ions

is investigated. The evolution of the ambipolar ion radial drift that appears due to the

perpendicular momentum transfer is explained. In Sec. 3.5, the various time scales of

the momentum transfer are reviewed and the theoretical estimate of the rotation change is

compared with experimental results.

3.1 Momentum of lower hybrid waves

The wave momentum density is defined as k/w times the energy density, where k is the

wave vector and w is the wave frequency [98]. When lower hybrid waves have non-resonant

interactions with the particles over a long propagation distance, the wave energy density

does not change but the poloidal wave vector changes due to the dispersion relation of the

lower hybrid wave, and consequently the poloidal wave momentum varies. On the other

hand, when the wave has resonant interactions with the particles over a short propagation

distance, the wave energy density is reduced and the wave vector remains unchanged.

Figure 3-1 shows the typical behavior of a LH wave in an inhomogeneous tokamak. As
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the wave propagates from the low field side launcher, it develops a very high poloidal wave

vector (about 10 times larger than the toroidal wave vector) due to the plasma dispersion

relation in Eq. (1.1) [106]. The large poloidal wave vector contributes to the parallel wave

number k1l as much as the toroidal wave vector does, even overcoming the small ratio of

the poloidal magnetic field over the toroidal magnetic field, B - 0.1 (k1 = - k, + BO k, in

a circular tokamak, where B., BO, B are toroidal, poloidal, and total magnetic field, and

kv, ko are toroidal and poloidal wave numbers, respectively). That results in the parallel

refractive index nl = k ~ -3 of the damped wave, significantly larger than the toroidal

index nz = k ~ -1.6 at the launcher, as shown in Fig. 3-1 (the negative sign means that

the wave propagates in the counter-current direction of the tokamak). The electron Landau

damping of the wave becomes stronger where the phase velocity of the wave becomes lower

(in other words, where the refractive index becomes higher), since a lower phase velocity

resonates with more electrons.

As shown in Fig. 3-1, until the wave reaches the region where the parallel phase velocity

of the wave is sufficiently reduced by the poloidal mode coupling (e.g. nl - -3) to interact

with less energetic electrons, the resonant interaction is negligible. Nevertheless, the poloidal

momentum of the wave changes due to the inhomogeneity of the magnetic field and the

plasma density and temperature. There is a significant gain of poloidal wave momentum

according to the change of the poloidal mode number.

In the eikonal limit, the poloidal mode number of the LH wave (m ~_ kor in a circular

tokamak) is determined by the poloidal variation of the dispersion relation, D in Eq. (1.1),

along a ray path [106],

dm _ oD(w, m, ne, Te, BW) &D(w, m, ne, Te, B,) (3.1)

dt 86 / 4w(31

The increase in m can be as large as nq at the resonance position. Here, n ~ kR and

q ~ B are the toroidal mode number and the safety factor, respectively.R B9

The origin of the increased poloidal momentum is the external force required to keep the

density ne, the temperatures Te and T, and the static magnetic field Bp constant in time in

the dispersion relation. These parameters are assumed to be fixed in the dispersion relation

because the transport and the resistive time scale are much longer than the propagation

time of the wave. The wave exerts a non-resonant force that can affect the evolution of the
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background profile. The non-resonant interaction can be studied as a combination of the

Reynolds stress and the Lorentz force in both fluid models [107, 108] and kinetic models

[109, 110, 111, 112], and it has no effect on the toroidal flow [112, 113]. In general, this non-

resonant force is smaller than the resonant one by a factor of vg/(_yLHL) < 1, where L is the

characteristic length of variation of the background, vg is the group velocity of the wave,

and -yLH is the wave damping rate at the resonance region. However, the accumulated

momentum transfer by the non-resonant force along the ray path is not negligible. The

wave gains poloidal momentum slowly from the plasma in the non-resonant region, and

then transfers it back to the plasma over a short distance where it resonates. Consequently,

the lower hybrid wave has redistributed the poloidal momentum of the plasma in a tokamak.

The effect that this has on the poloidal rotation is small due to the strong poloidal collisional

damping in a tokamak [114].

On the other hand, the toroidal mode number does not change due to the toroidal

symmetry of a tokamak, and the original amount of wave toroidal angular momentum is

fully transferred to the plasma in the resonance region (see the constancy of the green line

in Fig. 3-1).

When the wave energy is transferred to the plasma due to a resonance, the correspond-

ing wave momentum is also transferred to the plasma. This relation has been verified by

evaluating the Lorentz force in fluid models [107, 115] and kinetic models [116, 117, 118].

However, the toroidal momentum transfer by resonance has been calculated incorrectly for

the LH wave [99, 100, 101] resulting in an incorrect radial electric field. These calculations

have ignored an important contribution to the Kennel-Engelmann quasilinear diffusion co-

efficient. The Kennel-Engelmann quasilinear diffusion coefficient [21] describes the resonant

interaction of the plasma with the wave. The gyroaverage of this quasilinear operator is used

to model the diffusion of the distribution function in velocity space. However, since some

components of the momentum, such as the toroidal direction, depend on the gyrophase,

the diffusion in gyrophase must be taken into account for momentum transfer calculations,

and the gyroaveraged quasilinear operator is not sufficient to explain the total toroidal mo-

mentum transfer. I reexamine the amount of momentum transfer from LH wave to the

plasma by resonant interaction in the next section. The new contribution to momentum

transfer that I find is important because the poloidal wave number is large in the resonance

region, giving k1l > k, as discussed above. Using the gyroaveraged quasilinear operator only
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transfers the parallel wave momentum, leading to an incorrect evaluation of the toroidal

angular momentum transferred by the wave.

3.2 Perpendicular momentum transfer to electrons

In this section, I study the quasilinear diffusion in velocity space including the gyrophase.

From the quasilinear diffusion operator derived in Appendix A, the momentum deposited

by the wave is evaluated by applying the resonance condition. This proof can be applied to

any type of resonance (cyclotron or Landau damping) and any direction of momentum. For

convenience and without loss of generality, I discuss toroidal angular momentum which has

both perpendicular and parallel components. Let z be the direction parallel to the static

magnetic field (i.e. i = b), and x, y the orthogonal coordinates (see Figure 3-2 (a)). Then,

using the gyrophase angle a, the velocity is v = v1 cos aR + vi sin ay + v 2 = vfi + oj i,

and its toroidal component is v = v1 cos a(R -) + vi sin a(y - ) + v (2 - ), where

= v/v 1 and is the unit vector in the toroidal direction. The wavenumber vector is

defined as k = k1 cos/#k + k1 sin/3 + k112 = k1 cos (a - #)p - k1 sin (a - #)& + k1ji, and

the electric field is E = ExR+Eyy+E2 = E-ip+Ea&+E 11 2, where 6 = 2 x p is the unit

vector perpendicular to both v1 and the magnetic field. Here, E 1 = Ex cos a + Ey sin a =

(E++ E-) cos (a - #) - i(E+ - E_) sin (a - 0), and E, = -Ex sin a + Ey cos a = -i(E+ -

E_) cos (a - #) - (E+ + E_) sin (a - #), where E+ = 1(Ex ± iEy)eT8.

Using the velocity space flux in the perpendicular velocity direction (F 1 ) in Eq. (A.4),

the flux in the gyrophase direction (Pa) in Eq. (A.5), and the flux in the parallel direction

(F,,) in Eq. (A.6), the quasilinear diffusion operator for species s is defined as,

Q fS) = -- ---- a (vif) + -- + . (3.2)
MS .v-L Boj vj_ Ba BoVI _

For the energy transfer, the contribution of the flux in the gyrophase direction vanishes

due to the integral over a, as shown in Eq. (A.9). However, the gyroaveraged quasilinear

operator used for the energy transfer is not sufficient to calculate the toroidal momentum

transfer, which has gyrophase dependent components. The total toroidal angular momen-
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Figure 3-1: Evolution of the toroidal angular momentum of a LH wave in terms of
the propagation toroidal angle from the launcher. The solid line is the toroidal pro-
jection of the parallel refractive index multiplied by the major radius (n (B,/B)R),
which is an important parameter for Landau damping. The color of the solid line
is the normalized Poynting flux of a ray. The power of the LH wave is absorbed by
electron Landau damping beyond toroidal angle 3.57r, where the color of the solid line
changes from red to blue. In this power absorption region, nil(B,/B)R is around -
2.3, much higher than original toroidal refractive index multiplied by the major radius
(n1,R ~ -1.4). This graph corresponds to one of the LH wave rays for the high cur-
rent case (I, = 700kA) in Alcator C-Mod with B, = 5.3T, major radius Ro = 0.67m,
minor radius a = 0.22m., core electron temperature Te = 3.5KeV, core electron den-
sity ne = 1.2 x 102 0 m 3 , initial n = -1.6 and Pabs = 0.8MW. These profiles are
calculated using the ray tracing technique in Genray-CQL3D [29]. Ray tracing can
be problematic at the reflection point (toroidal angle=2.27r) where the characteristic
length of the change of the plasma parameters is shorter than the wavelength. How-
ever, the upshift in n1 for strong damping (as shown beyond toroidal angle 3.5ir) is
widely seen in both ray tracing codes [106] and full wave codes [24, 25] for typical LH
wave experimental parameters.
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turn deposited by the wave on the electrons (torque) is

TW = 27r dvij dviv1(me Rv Q( fe)) T 1 + + AT- , (3.3)

where

T =eR j dvj dvivj j da(i. @)Fjj (3.4)

is the component of momentum transfer that one obtains when using the gyroaveraged

quasilinear operator, whereas

AT = -eR dvj dvv_ da(- cos a(k -) - sin ay - I))F' , (3.5)

L Tg -eR j dvjgj dviv1 j da(sin a(R -) - cos a(y @))Fa (3.6)

are the contributions that appear when the complete dependence on the gyrophase is re-

tained.

Using the perturbed distribution function and the expansion in Bessel functions de-

scribed in Appendix A, the toroidal momentum transfer term in the parallel direction, T,

becomes

2 R 0 00
T1=1 -e I dv] dv 1 27rv I 6(w - - nI)(. - )

Mk ~on

k vXkn 2 L(fo,e) = P(bs,kR(!2
k

S Pabs,kR(2.)},
k

where Xk,n = Ek,IJflI + Ek,+Jn-1 + Ek,_Jn+l is the effective electric field, Pabs,k is the

wave power absorption in Eq. (A.11) and Jn(A) are the Bessel functions of the first kind

with integer order n. The operator L(fo) = (1 - -Li 1fo +kI ± L is introduced

in [17, 21]. See Appendix E for the detailed derivation of Eq. (3.7). The piece of the

momentum transfer T" is directly related to the gyroaveraged quasilinear diffusion operator

used to calculate the power absorption (compare Eq. (3.7) with Eq. (A.11)). The direction

of diffusion is determined by the characteristics of the operator L(fo) (i.e. the tangents to
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the contours vi + (o - ) =constant), and the magnitude of the diffusion is determined

by the projection of the distribution function gradient onto these characteristics [17, 21]

(see Figure 3-3).

In particular, for electron Landau damping of the LH wave (i.e. w = k 1vII), this piece of

the toroidal momentum transfer can be simplified to the following equation within a small

error ofO kv )2Q

p,ELD - kV E2 2f

Me k C' 0avi 1

dv1 ] dvi27rvimeRv (DLD (3.8)

where the gyroaveraged quasilinear diffusion coefficient for electron Landau damping is

(D LD) 2k3( - k11v11)J Eki i2J02(A) and it is the same as the coefficient given in Eq.

(2.1). The factor of two difference between the above diffusion coefficient and Eq. (2.1)

arises because the summation in k-space picks up contributions from Re(wk) and Re(w-k).

For Landau damping, the quasilinear diffusion happens only in the parallel direction (see

Figure 3-3).

Equation (3.8) exemplifies the problems that appear if the gyroaveraged quasilinear

diffusion operator is employed to evaluate toroidal angular momentum transfer. Using the

typical gyroaveraged quasilinear diffusion coefficient, one can only evaluate the parallel

momentum transfer T" instead of the full momentum transfer T.. For the rest of the

toroidal momentum transfer, I need the quasilinear diffusion operator before the gyrophase

averaging,

AT+ T = -eR j dv11 o dv 1 2irv1 j 7r E,, k

x (cos3(R -)+sinO(yk -))+ i - kfL (E i - 3+ E,y - )

+i kjv_)(E - E,_ -)(sin a(. - ) - cos a(y - @)) fk. (3.9)
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Using Appendix E, I can simplify this equation to

AT-' + ATc = re 2 R kf0 dvjl f* dv12,rvPO me E -0 f

x E, 6(w - kiivii - nQ)(cos3(k- ) + sin#(y - I)Xk,nI 2 L(fO,e)

Pas,k R) =k { Pabs,,kR(cos #(k - ) + sin 0(yk. ))}. (3.10)

However, the perpendicular momentum transfer, AT, + AT,, cannot change the gy-

roaveraged distribution function as shown in Fig. 3-3. As a result, it cannot drive a parallel

current, while a perpendicular energy transfer (e.g. in the electron cyclotron current drive

(ECCD) [7]) can drive parallel current through collisions because it can change the gyroav-

eraged distribution function in the perpendicular direction.

In conclusion, for any resonance (e.g. cyclotron, Landau damping), the total toroidal

angular momentum transfer according to Eq. (3.7) and Eq. (3.10) is

T= + AT= A E T (k - Pabs,k R) (3.11)
k

as expected [98, 107, 115, 116, 117, 118]. The toroidal angular momentum absorbed in the

plasma is equal to the launched momentum only when both the parallel and the perpen-

dicular momentum are taken into account correctly, as shown in Fig. 3-2 (b).
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Figure 3-2: (a) Sketch of a wave vector k = (m/r)$- + (n/R)(p k-L + kgl in a
parallel (z) -perpendicular (x, y) coordinate system and in a toroidal (<p)-poloidal (0)
coordinate system. Here, n and m are the toroidal and poloidal wave number, respec-
tively, and the radial wave vector is not represented, because it cannot contribute to
the toroidal momentum. For the LH wave, the component kII has a bigger toroidal
projection than the initial toroidal component n/R at the launcher due to poloidal
coupling. (b) Sketch of the toroidal momentum conservation. The sum of the toroidal
projection of kII and k 1 is equal to the launched toroidal wave vector n/R.
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Figure 3-3: Sketch of the quasilinear diffusion direction and magnitude in vii - v
space (i.e. a parallel (z)-perpendicular (x, y) coordinate system). The black contours
in the x - z plane and the y - z plane are the contours of the gyroaveraged distribution
function and the brown contours are the characteristics of the operator L(fo). The

diffusion direction is tangential to the characteristics, vi + vii- =constant.

For Landau damping, the intensity of the diffusion is determined by the projection of
Vfo onto the characteristics of the operator L(fO) = 0 at vil = w/kII. The diffusion
in velocity space results in an average increase of the parallel velocity, v11. The
perpendicular momentum transfer 6 Vk has the direction of k1 , but its effect on the
distribution function vanishes due to the fast gyromotion (the averaged perpendicular
acceleration represented by the pink arrows in the yellow circle in the x-y plane
vanishes).
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3.3 Electron radial drift due to waves

In this section, I investigate different types of electron radial drifts that can be induced

by the resonant momentum transfer from the LH wave. These electron radial drifts will

be related to the momentum transfer mechanisms from electrons to ions in the next sec-

tion. The dominant radial electron drift comes from toroidal momentum transfer in the

perpendicular plane (Sec. 3.3.1). The Lorentz force in the toroidal direction due to the

radial drift is comparable (0(100%)) to the LH wave momentum source, giving a sizeable

radial drift (O(lmm/sec)) that has an outward direction in tokamaks. Other radial drifts

induced by the wave parallel momentum transfer are relatively small. The passing electron

radial drift caused by the resonance gives a Lorentz force which is 0(10%) of the LH wave

momentum (Sec. 3.3.2), and the Ware-like LH wave induced pinch by trapped electrons

[103] is associated with only 0(1%) of the LH wave momentum transfer (Sec. 3.3.3).

3.3.1 Outward electron radial drift due to perpendicular wave

momentum

The quasilinear term due to the LH wave in the Fokker-Plank equation gives rise to a

correction to the electron distribution function, fjH = f, - fe, where f, and fe are the

electron distribution function with and without the LH wave respectively. For convenience,

I write feLH as a function of kinetic energy £ = 1 V2 , magnetic moment y = _, and2 2B'

the gyrophase angle ce. Note that the electron distribution function fo,e in Chapter 2 is

gyroaveraged, but the gyrophase dependence is included in this chapter to consider the

perpendicular momentum transfer. The equation for ffH in these variables is

of LH Le af H gHLH
me (v b+vd)-V# + vI-VfLH +Vd LVJH+e

= Ce(fLHe_(fLH') + Q Yfe), (3.12)

where # is the background potential, Ce(fe) is the linearized collision operator to the order

of interest (i.e. Ce(feLH) LCee(feLH, fe)+Cee(fej feLH)+Zi CeiyeLH, fr)), and vd is the VB

and curvature drift. In Eq. (3.12) I only consider the long wavelength and slowly evolving

piece of the distribution function because the quasilinear term affects mainly the background

distribution function. The size of the first term is small after the plateau is established in the
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electron distribution function due to the balance between quasilinear diffusion and collisions

as explained in Chapter 2. The temporal changes are eventually determined by the gyro-

Bohm transport time scale, 0/8t ~ D9 B,i/a 2 ~p2ti/a ~ m/me p2,vte/a, making it

much smaller than other terms in (3.12). Here, DgB,i is the gyro-Bohm diffusion coefficient

for ions defined in Eq. (1.3), a is the minor radius, vti and vte are the ion and electron

thermal velocity, respectively, and p* = pi/a < 1, p*,e = pe/a ~ V/me/mip* are the small

ratios of ion and electron Larmor radius over the radial scale length, respectively. The

third term in Eq. (3.12) is of order vtefLH/(qR), where q is the safety factor and R is the

major radius. The second and fourth terms in Eq. (3.12) are smaller than the third term

by (B/Bo)p,,. The gyromotion term Qe fH- is much larger than any of the other terms

(i.e. VIIfeLH/ (Qe afjH) ap*,e/(qR) «1I and C(f/jH)/ (QeaLH) ve/Q, « 1). Then
( iHe vV a n fh e He x L HrHeL

the lowest order equation is trivial, Qe a!ff = 0 (i.e. fLH = (feH)), and the next order

equation is

(9f LH
o HV f Q j±e H C ej LH (3.13)

VIII~f~e 9 C e +QWe').

Here, I have neglected the time derivative term, the perpendicular drift term, and the term

due to the background potential. The gyrophase independent part can be obtained by

taking the gyroaverage of Eq. (3.13),

V H fH) + Q(f))(14)

where Ce(fjj) = (C (fj )) is used for the gyrophase independent distribution function.

The above equation gives the steady state solution to Eq. (2.7). The quasilinear term bal-

ances with the collision operator and the parallel streaming term. The gyrophase dependent

part, fH = ff'f - (ff'), is obtained from the gyrophase dependent contribution to Eq.

(3.13), giving

Of LH

a
e [10 10F 0 1
me aIvi(Fi - (Fi)) I + + (F - (1)) . (3.15)

Me vL av1 vL aa 89V
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Its solution is

e 1 9 19 a 1
f1,e - mee I I_ v v(i- i ) a Bo + (F11 -

~l T~- + T fMe. (3.16)
nemevtefRQe

Thus, the collisional toroidal friction due to the gyrophase dependent piece of the distribu-

tion function is much smaller than the corresponding RF force,

dv3(meRv)C(fCL') (') (AT± + A (3.17)

and most of the perpendicular momentum transfer is balanced by the Lorentz force f dv3 (meRvw)Qe e

from Eq. (3.15).

The radial particle flux can be obtained from

(re - VO), ~ fdv3f Hvd - V< + Hdvf 1Av O , (3.18)

where re is the electron particle flux due to the correction fH. From the steady state

Fokker-Planck equation given in Eq. (3.13), taking the moment (meVPR) and a flux-surface

average of the resulting moment equation, I can relate the radial pinch (Fe - VV)), to the

correction ffH by

e no - ng~z-
- (r', - V'O), RPabs
c c

+ (2 - )R d3vmevi [C(f L) ± (Q(f)] (3.19)

To obtain Eq. (3.19), I use the fact that the first and second term on the left hand side of

Eq. (3.13) give the first and second term on the right hand side of Eq. (3.18), respectively.

The right hand side of Eq. (3.19) is obtained by decomposing the right hand side of Eq.

(3.13) into the gyrophase dependent and gyrophase independent pieces,

Ce(feH) Q(fe) [Q(fe) - (Q(fe))] + [Ce fH) + KQyft))] (3.20)

The second term on the right hand side of Eq. (3.19) is the parallel force balance obtained
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from the second term on the right hand side of Eq. (3.20), which will be discussed in the

next subsection. The first term on the right hand side of Eq. (3.19) is the toroidal projection

of the perpendicular wave momentum transfer, (AT' + AT), which comes from the first

term on the right hand side of Eq. (3.20). In Eq. (3.20) I have already neglected the

perpendicular collisional friction (see Eq. (3.17)).

Collisions transfer most of the parallel wave momentum to the ions, but the rest of

the toroidal angular momentum (e.g. nR - nl(B/B)R ~ 0.9 in Fig. 3-1) remains and

it has the opposite toroidal direction to the original toroidal angular wave momentum,

giving an electron outward pinch that is opposite to the inward pinch predicted in previous

work [14, 103, 105]. Physically, the outward radial pinch comes from the effect of the

perpendicular wave momentum transfer AT-L + AT' on the gyromotion (see Fig. 3-4 (a)).

This electron pinch is still very small compared to the Ware pinch [119]. For example,

if 1MW of LH wave power is locally absorbed in a volume of 0.1 m 3 where the plasma

density is 1020 m- 3 , the poloidal magnetic field is BO = 0.5T, and the refractive index is

n, - nil (B,/B) = 1, then the electron outward radial pinch is about 4 mm/s which is a

hundred times smaller than the Ware pinch for a DC toroidal electric field of 0.2 V/m.

The new outward radial particle pinch in this section does not cause a significant radial

transport of the toroidal angular momentum because it is typically smaller than the turbu-

lent particle pinch. Instead, the outward radial electron pinch only transfers the toroidal

momentum from the electrons to the ions because the ions follow the radial motion of the

electrons due to the ambipolarity condition, as will be discussed in Sec. 3.4.

3.3.2 Passing electron radial drift due to parallel wave mo-

mentum

To solve for the gyrophase independent perturbation (fLH) due to the LH wave in Eq.

(3.14), I use a subsidiary expansion of fLH LH,1 + info~e J O~ ' f ' I± ... , inthe small ratio of

the collision frequency over the transit frequency in the banana regime. The lowest order

equation is V1 fe H"' = 0, implying that fo, 0 is a flux function. The next order equation is

-Cf )o Qfe)). (3.21)
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Taking a bounce average of (3.21), the left hand side of (3.21) vanishes,

Ce(fO ' ' ) + (Q(fe)) b 0. (3.22)

Again, the above equation gives the steady state solution to Eq. (2.8). According to Eq.

(B.3), for passing particles this equation is equivalent to

(Cef H,Ce + (Q (3.23)

In gnerl, he oluionLH0

In general, the solution f'' to equation (3.23) does not make the second term on the right

hand side of Eq. (3.19) vanish, giving a non-zero radial drift due to the passing electrons.

This imbalance comes from the variation of v11, B and R along the orbit, which is of the

order of the local aspect ratio, O(r/R). Here, r is the radius of a flux surface from the

magnetic axis. For the electrons resonant with the LH wave, the effect of the change of

vj along the orbit is negligible because most resonant electrons have much larger parallel

velocity than perpendicular velocity (i.e. small magnetic moment, p ~ 0) due to the high

phase velocity of the wave in the parallel direction. The non-vanishing contribution to the

radial pinch is due to the competition between the localized wave power absorption within

a flux surface and the collisions that occur over the whole flux surface.

Physically, this pinch can be explained by how the passing orbit of a single electron

is changed by the resonance. The canonical angular momentum of the electron 4@* =

4+ Iv /Ae determines the radial deviation of the electron orbit from the flux surface 4' due

to the curvature and VB drifts. Here I = RB, is a flux function to lowest order. After the

resonance with the negative k11 of the LH wave, the absolute value of the negative velocity of

the resonant electrons is increased by IAv I due to the absorbed wave power. Accordingly,

the change of the canonical momentum is A4,* = IAv /Q, < 0, where the gyrofrequency

Qe is evaluated at the resonance point within the flux surface. Assuming the low frequency

collisions cause the resonant electron to lose its momentum only after many transits, I can

use the temporally averaged radial location to describe its radial motion. The increase in
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the bounce averaged radial position of the particle is

=') (0,2 ) (0P14b= A? - { (:)X K(_' ib} (3.24)
IAvj\ mecI (f2 dl/B f_ dl/B (3.25)

Qe e \Tb2 Tb

~IAvIII . (3.26)
(Qe QeO

Here, the values with the subscripts 1 and 2 are before and after the resonance, respectively,

and Tb is the bounce time. From Eq. (3.24) to Eq. (3.25), Eq. (B.3) is used. From Eq.

(3.25) to Eq. (3.26), I neglect the radial displacement due to the poloidal variation of the

parallel velocity because of the small magnetic moment (p y 0). The average of vg /B in Eq.

(3.24) and Eq. (3.25) is approximated by the value of v11 /B obtained using the magnetic field

at the magnetic axis. This approximation can be justified by a small inverse aspect ratio

expansion. The frequency Qeo is the gyrofrequency at the magnetic axis. Equation (3.26)

means that the temporally averaged particle radial flux due to the resonance is negative for

a low field side resonance (inward radial pinch) and positive for a high field side resonance

(outward radial pinch), as shown in Fig. 3-4 (b). The increase in the curvature drift due

to the increase in the parallel velocity after the resonance results in the different passing

orbits depending on the resonance location on the flux surface. This radial drift is included

in the second term on the right hand side of Eq. (3.19) as the competition between the

localized wave power absorption within a flux surface and the collisions that occur over the

whole flux surface. For a typical small inverse aspect ratio tokamak, this imbalance is small,

about 10% (O(r/R)) of the total momentum transfer.

3.3.3 Trapped electron radial drift due to parallel wave mo-

mentum

For trapped electrons, since odd functions in o vanish under the bounce average according

to Eq. (B.4), Eq. (3.22) becomes

e ( eH b - )even )b* (3.27)
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The trapped particle contribution to the distribution function f f is an even function of og

because the bounce averaged quasilinear term is even. Two trapped electrons at the outer-

midplane that have opposite parallel velocities have the same electron Landau damping

resonance at the same point in their banana orbits due to the small electron banana width

(see Fig. 3-4 (c)). The non-zero fo' due to the LH wave can be understood as follows:

a trapped electron is accelerated only when it resonates with the wave, that is, when its

velocity is the same as the wave phase velocity, and this acceleration continues every transit

until it collides. As a result, it has an open trajectory that moves inward every bounce.

There is no net gain of toroidal angular momentum for the trapped electron because fjfj
is an even function, but there is a gain of canonical angular momentum that leads to a

Ware-like LH induced pinch. This pinch is the contribution of the trapped electrons to the

second term on the right hand side of Eq. (3.19). The LH wave trapped electron pinch is

tiny, because the power absorption by trapped electron is less than 1% of total wave power

due to the small size of the population of trapped electrons resonant with the LH wave

phase velocity (w/kl ~ 3vth - 10vth) - It results in a very small contribution to the radial

pinch (approximately less than .1mm/s).

The mechanism behind the radial pinch by trapped electrons is similar to the mechanism

of the outward radial pinch due to the gyromotion described in section 3.3.1. Instead of

considering the effect of the acceleration on the gyromotion, one needs to consider its effect

on the banana orbit (compare Fig. 3-4 (a) and Fig. 3-4 (c)).
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Figure 3-4: (a) Sketch of the outward radial drift during the gyromotion due to
the perpendicular momentum transfer, (AT' + A Tg). The direction of the toroidal
component of the perpendicular force is the same as the direction of the plasma
current J.. (b) Sketch of the poloidal cross section of the trajectories for two passing
electrons that receive wave parallel momentum at the inner-midplane (blue) and
the outer-midplane (red), respectively. The dashed black line is the transit orbit
before the resonances. Due to the increased curvature drift (upward direction) after
the resonance, the passing electron orbits are different depending on the resonance
location. The temporally averaged radial flux is outward for a resonance at R < RO
and inward for a resonance at R > Ro. (c) Sketch of the poloidal cross section of the
trajectories for trapped electrons that receive wave parallel momentum. The dashed
black line is a flux surface. For both signs of vI at the outer-midplane on the flux
surface, the orbits move inward and increase their width with every bounce.
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3.4 Momentum transfer from electrons to ions

Once the toroidal momentum of the LH wave is transferred to the electrons by resonance,

most of the parallel momentum is transferred to the ions by electron-ion collisions, but

the perpendicular momentum is balanced not by collisions but by the Lorentz force due to

the outward electron radial drift as shown in Sec. 3.3. In this section, I describe how the

perpendicular momentum is transferred from electrons to ions because the mechanism is

not as evident as the collisional transfer of the parallel momentum.

The electron radial drifts due to LH waves cause charge separation. The radial non-

ambipolar electron pinch has been proposed as an explanation for the ion rotation induced

by LH waves in references [14, 103, 1051. These references argued that the counter-current

direction momentum transfer from the LH wave to the trapped electrons induces a radially

inward pinch, and it results in an additional inward radial electric field to ensure ambipo-

larity. The excess radial electric field is presumed to lead to ion toroidal rotation in the

counter-current direction due to the radial force balance for ions [103, 104],

1
AEr + - (BOAV - BOAV,) ~ 0, (3.28)

c

where AEr, AV, and AV, are the change in the radial electric field, the ion poloidal

velocity, and the ion toroidal velocity due to the lower hybrid wave injection, respectively.

The change in the ion radial pressure is neglected.

However, this argument based on the excess radial electric field given in [103, 104] is

misleading and does not describe the main mechanism behind the change in the ion torodial

rotation due to lower hybrid waves. This argument ignores many important aspects of the

problems. First, the outward electron radial drift due to the perpendicular force is much

larger than the inward trapped electron pinch as shown in Sec. 3.3. Second, the excess

radial electric field due to the non-ambipolar radial drift cannot determine the toroidal

rotation directly, because the excess electric field changes its value to satisfy Eq. (3.28)

as the poloidal rotation decays in an ion-ion collision time while AV, remains constant

[55, 120, 121], finally giving

1
AE ~ -BoAVW. (3.29)

C
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Here, AE. is the change in the radial electric field after the poloidal rotation decays, giving

AE,. # AEr. Last but not least, the toroidal rotation is controlled primarily by turbulent

radial transport of torodial angular momentum [64].

The temporal evolution of the radial electric field due to the non-ambipolar radial drift

affects both poloidal and toroidal rotation in times shorter than the ion-ion collision time.

The poloidal and toroidal rotation are affected by different viscosities in a tokamak. After

the poloidal flow decays due to strong collisional viscosity in an ion-ion collision time scale

[55, 120, 121], the ambipolarity condition is satisfied and the excess electric field due to

the non-ambipolar radial drift changes to satisfy Eq. (3.29). Finally, the toroidal rotation

obtained by balancing the external torque and the turbulent radial momentum transport

in Eq. (3.33) can be used to calculate the radial electric field using radial force balance and

neoclassical theory.

Until the ions follow electrons with same speed to satisfy ambipolarity, the temporal

evolution of the radial electric field follows the sequence below:

First, in a very short time period longer than an ion gyration period and electron bounce

time, but shorter than electron collision time (L /7vte ~ - ;Q < t < v; 1 , e.g. 10~ 9 sec <

t < 10-6 sec for Alcator C-Mod), the depletion of electrons due to the electron radial drift

changes the electrostatic potential #(@.), which varies only radially if a poloidally uniform

radial drift is assumed. In the time scale of the electron bounce period, the poloidally

uniform potential couples with the spectral modes having finite poloidal mode number

through the curvature and VB radial drifts. These modes with non-zero poloidal mode

number due to the electron bounce motion are similar to the geodesic acoustic modes

(GAM) due to the ion bounce motion [122, 123]. However, in this case, the ion motion only

contributes through the classical polarization due to the ion gyration, because the time

scale is too short to affect the ion bounce motion. The modes with non-zero poloidal mode

number are strongly damped due to electron Landau damping, and only the mode of the

potential with zero poloidal mode number remains.

Second, after an electron collision time and an ion bounce time but before an ion col-

lisional time (v- 1 ~ L 1 /vt < t < u-', e.g. 10-6 sec < t < 10~ 4 sec for Alcator C-Mod),

the electron collisions result in the decay of the electron poloidal flow that occurs due to

the potential #(0). Ions start to shield the potential by neoclassical polarization due to ion

bounce motion which is much stronger than the shielding by the classical polarization [54].
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Lastly, after ion-ion collision time (v 1i < t, e.g. 10-4 sec < t for Alcator C-Mod),

the ion poloidal rotation decays due to the strong ion collisional viscosity and only the

ion toroidal flow remains [55]. In this time scale, the electron polarization due to the

radial electric field is negligible compared to the ion polarization, because they have the

same polarization mechanisms but the electron Larmor radius is much smaller than the

ion Larmor radius. Then, the quasineutrality condition obtained by including the ion

polarization is equivalent to the ion toroidal force balance in Eq. (3.33) without the radial

current. Thus, ambipolarity is satisfied and the radial electric field is self-consistently

determined by Eq. (3.33) for the evolution of the toroidal angular momentum.

After ambipolarity is satisfied, the ion radial drifts, which have the same speed as the

electron radial drifts, generate a Lorentz force in the toroidal direction. The size of the

toroidal angular momentum transfer due to the Lorentz force is the same as the momentum

transfer due to the electron radial drift in Eq. (3.19). Because the electron radial pinch

is dominantly driven by the perpendicular momentum piece of the lower hybrid waves, the

Lorentz force caused by the ion radial drifts acting on the ion toroidal motion is the main

transfer mechanism of perpendicular wave momentum to ions.

3.5 Review of momentum transfer

In Sec. 3.1, 3.2, 3.3 and 3.4, I proved that the toroidal angular momentum of the lower

hybrid wave at the launcher is fully transferred to the ions. This transfer occurs after

electron-ion collisions transfer the parallel momentum, and after the radial electric field due

to the electron non-ambipolar radial flux settles into steady state in an ion-ion collision

time. In this section, the different time scales are summarized, and the momentum transfer

in each channel is compared with measurements. In addition, I derive an ion momentum

transport equation that also proves that the full toroidal momentum is transferred from

lower hybrid waves to ions.
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3.5.1 Ion momentum equation

The Fokker-Planck equation for electrons with a quasilinear diffusion term due to the lower

hybrid waves is,

± +v- Vfe + e - evx - Vfe Cee(fe) + Cei(fe, fi) + Q(fe), (3.30)

and the Fokker-Planck equation for ions is

+v -Vfi+ ZieV+ Qv i) Vvf = Ci{fi} +Cie{fife}. (3.31)
at m_ )

Here, fe and fi are the distribution functions of electrons and ions, respectively, Qe and Qi

are the gyrofrequency of electrons and ions, respectively, and 4 is the electrostatic potential.

On the right hand side, Cee, Cei, Cii, and Cie are the collision operators for electron-electron,

electron-ion, ion-ion, and ion-electron collisions, respectively, and Q is the quasilinear dif-

fusion operator due to the lower hybrid wave described in Appendix A.

The momentum equations for electrons and ions are obtained by taking the moments

mev of Eq. (3.30) and miv of (3.31). Summing the two species momentum equations, the

total momentum change in the two species due to the electric field and collisions vanishes

since the collision operators conserve momentum and the electric field terms cancel out due

to quasineutrality. The change of the ion rotation is determined by the total momentum

conservation equation,

t(nimiVi) =V - +p - + J x B + d3vmevQ(fe), (3.32)

where Vi is the ion fluid velocity, I is the identity tensor, pi is the ion pressure tensor,

PeL and Pell are the electron perpendicular and parallel pressure, respectively, and J is the

current density. Here, the small electron inertial term and the small electron viscosity terms

are neglected. Multiplying the toroidal component of Eq. (3.32) by major radius and flux

surface averaging result in the equation,

S(nimiRV), - (V'/) + (J -V()J + davmeRvQ(fe) (3.33)

where V' = f d6dep(B-V6)- 1 is the flux surface volume and H = mi (f d3vfiR(v - )(v - V ))
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is the radial transport of ion toroidal angular momentum. Here, I have used B = IVp +

V x VO and the property of the flux surface average (V - X) = 1 a.v The ra-

dial current in the second term on the right hand side vanishes due to quasineutrality, so

the change of ion toroidal angular momentum is determined by two remaining terms on

the right hand side, the radial momentum transport and the original toroidal momentum

transfer from the lower hybrid waves to electrons. Equation (3.33) gives the evolution of

the toroidal rotation on the transport time scale (> 10 msec) during which the ambipolarity

condition is satisfied. The transient momentum transfer between electrons and ions due to

the electron radial drifts and collisions cannot explain the ion rotation change on this time

scale.

3.5.2 Different time scales

Two channels of momentum transfer from the waves to the ions via electrons are described

in Fig. 3-5, and each transfer mechanism has a different characteristic time scale. The lower

hybrid waves are injected with a frequency of several GHz (- WLH), which is between the

electron gyrofrequency (Qe) and the ion gyrofrequency (Qi). The plasma current oscillating

with the lower hybrid wave frequency disperses the wave. After the wave path is determined,

electrons receive toroidal momentum by Landau resonance. After an electron collision time,

the electron distribution function almost reaches steady state (electron plateau build-up

time TLH-*e ,< 0(1) msec), and the amount of momentum transfer from the wave to the

electrons in each flux surface is determined.

After electrons reach steady state, the parallel momentum is transferred to ions by

electron-ion collisions in a time scale that is determined by the inverse of the electron-

ion collision frequency v- 1 . The perpendicular momentum is transferred to ions in r-e-* in

which ions follow the electron outward radial drift for ambipolarity. The ambipolarity is

established by modifiying the radial electric field first through the neoclassical polarization

in an ion transit time scale Lll/vu, and later via collisional decay of the poloidal rotation in

an ion-ion collision time v-1 [55).

The initial direction of toroidal momentum that the ions gain from the LH wave is

determined by the transfer mechanism having the shorter time scale among r11  and r-ri.

The comparison between these time scales determines the initial direction because the
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toroidal projection of the parallel and perpendicular momentum transfers typically have

opposite sign, as shown in Fig. 3-4 (b).

However, as soon as both parallel and perpendicular momentum are transferred to the

ions, the ion momentum change achieves the original size and direction of the launched LH

wave toroidal angular momentum input. Then, in the ion transport time scale rtUrb (0(1

msec)-0(100 msec)), due to the turbulent radial transport of ion toroidal angular momen-

tum (turbulent viscosity), the momentum is radially transferred out as will be discussed in

the next chapter. Eventually, the change of ion toroidal rotation by LH wave is saturated

and the system (a tokamak) can reach steady state: the momentum input from the LH wave

balances the outflow of toroidal angular momentum due to the ion momentum turbulent

transport.

Because the momentum transport time scale is more or less of the order of the time

resolution for the measurements of ion rotation in a tokamak " re = 0(10 msec), the

very initial change in the measured rotation after the lower hybrid wave injection may be

affected by both the radial transport due to turbulence as well as the momentum source

from the lower hybrid wave. Also, it is difficult to differentiate each momentum transfer

mechanism in Fig. 3-5 with measurements because they occur in times shorter than the

resolution time. To explain the saturation of the measured rotation in 0rnea~ure = 0(100

msec), the turbulent radial transport of toroidal angular momentum must be balanced with

the momentum source on the right hand side of Eq. (3.33)
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Figure 3-5: (a) A diagram of the toroidal momentum transfer mechanisms from lower
hybrid waves to ions through electrons. The upper channel is for the parallel mo-
mentum transfer and the lower channel is for the perpendicular momentum transfer.
The symbols in the channels are the time scale of each transfer mechanism. (b) Time
scales related to the momentum transfer in a time line.
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3.5.3 Comparison of the momentum source with the mea-

sured rotation change

In this section, I compare the initial change of the measured toroidal rotation after the lower

hybrid injection with the simulation results for the parallel and perpendicular momentum

transferred to ions.

The parallel momentum contribution to the toroidal momentum transfer, T in Eq.

(3.4), was evaluated using coupled simulations of TORLH and CQL3D. The result is shown

in Fig. 2-4 (a). Because the toroidal mode number of the lower hybrid wave is conserved

in a tokamak, the radial profile of the toroidal momentum transfer is the same as the

radial profile of the energy transfer in Fig. 2-4 (b) multiplied by n,,R/c, where n, is the

toroidal refractive index. Consequently, the radial profile of the perpendicular momentum

contribution to the toroidal momentum transfer, ATJ +AT' in Eq. (3.10), is evaluated by

subtracting the parallel momentum contribution in Fig. 2-4 (a) from the the radial profile

of the toroidal momentum transfer based on the curve in Fig. 2-4 (b).

Figure 3-6 shows the initial change in the measured toroidal rotation for the high current

case given in Fig. 2-4. The yellow dashed curve shows the time-averaged acceleration of

the rotation after 20 msec (from t=0.79 sec to t=0.81 sec). The time interval that I use

is limited by the resolution of the X-ray diagnostics in Alcator C-Mod. The lower hybrid

waves transfer their momentum constantly from t=0.80 sec to t=1.30 sec. The calculated

torque is the summation of the blue solid curve (T$) and the red solid curve (AT- + AT').

The discrepancy between the simulated torque and the measured rotation change is

probably due to the experimental errors and significant turbulent momentum transport.

Considering the large experimental noise in the rotation measurement, the uncertainty is

probably larger than the error bars indicate. Also, the transport time scale -turb is likely

to be less than 10 msec. For this reason, the radial transport of momentum (e.g. diffusion

or pinch) is probably important for this rotation making it difficult to quantify the relation

of the momentum source with the measurement.

The green dashed curve in Fig. 3-6 shows the time-averaged acceleration of the rotation

after 40 msec (from t=0.79 sec to t=0.83 sec). In this longer time interval, the momentum

pinch is evidently shown by comparing the green dashed curve with the yellow dashed curve.

Although the radial profiles of the acceleration are deviated from the radial profiles of the
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momentum transfer due to the radial transport of momentum, the size of the time-averaged

acceleration is comparable to the total toroidal momentum transfer.
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Figure 3-6: Comparison of radial profiles of the measured ion toroidal angular rotation
change with the simulation results for the toroidal angular momentum torque from
lower hybrid waves. The parallel momentum transfer contribution to the torque (blue
solid), T1J in Eq. (3.4), and the perpendicular momentum transfer contribution to the
torque (red solid), AT' + AT' in Eq. (3.10), are shown. In the graphs, positive
means counter-current direction. Two experimental curves (yellow dashed and green
dashed) show the acceleration of the rotation averaged over time intervals of 20 msec
and 40 msec, respectively. The lower hybrid wave injection starts at t=0.80 sec and
the constant momentum transfer from the wave to the plasma continues until t=1.30
sec.
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Chapter 4

Turbulent momentum transport

The radial transport of ion toroidal angular momentum redistributes the momentum in-

jected by lower hybrid waves. The time scale of the momentum transport measured in

tokamaks is of the order of the gyro-Bohm diffusion scale, and the transport is expected to

be dominated by drift-wave microturbulence. The turbulence is well described by gyroki-

netics [60, 61, 64].

The ion toroidal rotation observed in tokamaks without external momentum source or

with a sufficiently small momentum source (e.g. lower hybrid waves in Alcator C-Mod) is

much smaller than the ion thermal velocity, resulting in a low Mach number (Ma - V/vti ~

0.1 - 0.2) [124]. For low flow plasmas, the momentum transport can be decomposed into

three terms: diffusion, advection and intrinsic momentum transport. The radial profile of

toroidal rotation is determined by balancing all the components of the momentum transport

with the momentum source (e.g. the source evaluated in Chapter 3). In this chapter, I

investigate the radial transport of momentum by turbulence using low flow gyrokinetics.

The effect of the lower hybrid wave on the momentum transport will be treated in Chapter

5.

Among the many possible effects that cause momentum transport, this chapter focuses

on the intrinsic momentum transport due to diamagnetic flows. In Sec. 4.1, gyrokinetics is

introduced and the symmetry of the lowest order gyrokinetic equations that results in no

net momentum transport is explained. In Sec. 4.2, I list and explain the several mechanisms

that break the symmetry and cause momentum transport. I focus on the contribution of the

diamagnetic flow to symmetry breaking. In Sec. 4.3, I narrow the scope of the investigation
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to a new mechanism of intrinsic momentum transport due to different momentum pinches for

the diamagnetic flow and the E x B flow. The intrinsic momentum transport is numerically

evaluated using gyrokinetic equations that are higher order in poloidal rhostar. In Sec. 4.4,

the impact of the intrinsic momentum transport on the rotation profile is discussed.

4.1 Gyrokinetics and symmetry

In this section, I explain how to evaluate the radial momentum transport by drift-wave

turbulence using gyrokinetics. Gyrokinetics is a kinetic description of electromagnetic (or

electrostatic) turbulence that averages the gyromotion while keeping finite Larmor radius

effect [61]. The frequency of the drift-wave microturbulence is much smaller than the

gyrofrequency, permitting the separation of the gyromotion from the parallel streaming

and the perpendicular drift motion. Then, particle motion can be described by the position

of the gyration center, and only two velocity space variables (for example, the kinetic

energy E = v2 /2 and magnetic moment y = vi/2B). Here, v1 = v- and og are

the velocities perpendicular and parallel to the static magnetic field, B, respectively, and

B is the magnitude of the static magnetic field. Gyrokinetics also assumes pi/li ~1 and

li/lu ~ pi/a p* < 1. Here, III and I are the turbulence length scales parallel and

perpendicular to a static magnetic field, respectively, a is the minor radius and pi is the

ion Larmor radius. For simplicity, I will only use gyrokinetic equations for electrostatic

turbulence which is the most relevant in low # tokamaks (e.g. Alcator C-Mod).

The radial flux of ion toroidal angular momentum in Eq. (3.33) is dominantly due to

the fluctuating radial E x B drift carrying the toroidal angular momentum, and it can be

evaluated using

S Utb .- Kmi d3 v ftb(v - R)(vi. V. ) , (4.1)

where mi is the ion mass, R is the major radius, v - VO is the radial drift due to the

electrostatic turbulence and ftb is the turbulent piece of the ion distribution function. The

fluctuating radial drift and distribution function are given by the gyrokinetic equations.

The radial momentum transport can be expanded in the small parameters p* and

(B/Bo)p*, i.e. ltb = 1U1 + U12 + .... Here, BO is the magnitude of the poloidal magnetic
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field. The lowest order radial flux (H 1) corresponds to the size of the gyro-Bohm diffusion

of thermal velocity, H1 ~ DgB,inimvtiR - p2nmv 2 R, where I have used the gyro-Bohm

diffusion coefficient in Eq. (1.3) and the minor radius (a) as the radial scale length of a

tokamak. The lowest order gyrokinetic equations described in this section can be used to

evaluate the gyro-Bohm scale transport of particles and energy, but the lowest order radial

flux of momentum (U1 ) can only be calculated if the plasma flow is sonic, otherwise Hi = 0

as I will prove. The higher order radial flux (H 2 ~ (B/Bo)p*H1 ) is given by higher order

gyrokinetics described in section 4.2.1. The lowest order gyrokinetic equation for species s

without any background flow is

a f~ -F b. V F VM's - wV(b) x bi) Vfb

= 1V(# b) x b . VfO m + z[viim+vM,,] - V(#)1 < + (C()), (4.2)

where b is the unit vector parallel to the magnetic field, c is the speed of the light, C is the

ion collision operator and vM,s = (p/Qs)b x VB + ((v1) 2 /Q)b x (b - Vb) is the VB and

curvature drift. Here, m. is the mass and Zse is the charge of the species, Qs = ZeB/ms is

the gyrofrequency, and K...) is the average over the gyromotion. The distribution function

of a species is assumed to have a non-fluctuating background piece fsb" and a fluctuating

piece due to turbulence ftb (i.e. f = f g ftb). For the gyrokinetic equation in Eq.

(4.2), the distribution function is approximately f~ fb + f tb to lowest order in p,. The

subscript denotes the order in p,. The background piece is f1 ', = fM,,, where fM,s is the

lowest order distribution function, which is a Maxwellian. The size of the fluctuating piece

is much smaller than the background piece, ffl' ~ psfM,s. Also, #1 is the short wavelength

turbulent potential whose size is O(p,(Te/e)), where Te is the electron temperature.

The gyrokinetic equation can be derived for every species and they are coupled by

imposing the quasineutrality condition,

Z~e dov f _ Zs e1#b _Kb)) fMS) } 0, (4.3)

where the second term in the parentheses on the left hand side is the polarization density

due to the gyromotion.

Because the turbulence parallel length scales are much larger than the perpendicular
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length scales (li/I ~ p,), it is convenient to use the coordinates ?P and a to solve Eq. (4.2).

The coordinates @ and a are perpendicular to the magnetic field. Here, a is not the gyro

phase as in Chapter 2 and 3, but it is

/I() d ' (4.4)
fo B -V6' R2(qp, 0/),

where B = IVWo + Vy9 x VO, I = BR and B. is the toroidal magnetic field. The static

magnetic field satisfies B = Va x V0. Using the poloidal angle (0) as the coordinate that

follows the magnetic field, the slow variation in the parallel coordinate (0) and the fast

variation in the perpendicular coordinates (0 and a) of the turbulence are well described

by solutions of the form

ft( 40 a, ; E, , a; t) = i b(kO, ka, 6; E, y, o-; t)ei(kvkb+kaa), (4.5)
kg ,k,

40, a, 6; t) =j (kp, ka, 6; t)ei(keP+kaa), (4.6)
ko,ka,

where kp and k. are the wavevectors in 0 and a coordinates by the Fourier decomposition,

respectively, and a is the sign of the parallel velocity (vg = o2(E - pB)). The form in

Eq. (4.5) and (4.6) is clearly an eikonal approximation with a phase factor e's in which

S = kgP + kaa. (4.7)

The parallel variation of turbulence in Eq. (4.2) is represented by the poloidal angle depen-

dence (i.e. b - V = b - V6(8/a6)).

For a poloidally up-down symmetric tokamak, the lowest order gyrokinetic equations of

Eq. (4.2) and (4.3) satisfy the symmetry [125, 126]

fl (0, V11, k) = -ff0(-6, -o1 , -kV), (4.8)

N ob( , k ) = -_ 6( -8 k ), (4.9)

because the operators in the gyrokinetic equation have the following symmetry proper-

ties: (vII /00) (0, VI) = (vII /06) (-0, -vI), (vM,8 -VS)(0, kg) = (vM,s . VS)(-0, -kp) and

(VS' x . VS") (kl, k) = - (vs' x _ vs") (-kb, -kV), where the three wave coupling
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is satisfied by kp = kp' + kl and ka = ka' + k".

To see the effect of this symmetry on the momentum transport, the turbulent radial

flux of toroidal angular momentum in Eq. (4.1) is written as an integral and a summation,

dtb=dog 7rtb(6, og , kp), (4.10)

where 7rtb = 27rmiB 00 dKtb (v - OR)(v V ). The integrand 7rtb is also expanded in

p, and (B/Bo)p*, as litb (i.e. 7r = 71 + 72 + ...). Accordingly, I1 = E, f_ d6dv17r1 is

the lowest order radial flux and H2 = EZk, f_", dOdvllir 2 is the higher order flux in poloidal

rhostar P*,p BO p.

Because there are contributions of parallel and perpendicular momentum to the toroidal

angular momentum, the radial flux of the toroidal angular momentum can be also decom-

posed into Utb = Up + EL. The parallel contribution to 1H in Eq. (4.1) is

g = (V X V s d3v , (4.11)

and it dominates over the perpendicular contribution Hi. The perpendicular contribution

is due to the gyro-phase dependent piece of the distribution function,

Hi = (V# x b)- V@ d3vtbg x - Vd ~ (4.12)

B2 B

where (R = b - -p x V@ is used.

From the symmetry properties in Eq. (4.8) and Eq. (4.9), the momentum transport is

antisymmetric under the inversion of the poloidal angle, the parallel velocity, and the radial

wave vector,

7ri(0, o11, k4g) = -7r 1 (-0, -vIl, -kO), (4.13)

where 7ri = 7rg,1+7ri,1 has the parallel momentum contribution 7ri oc Ekk Re[ikaffi, (#4)*Vill

and the perpendicular momentum contribution irI,1 oc E, Re[ikaffi(#1)*(i(k|VjP2 +

kaVO -Va)v )]. As a result, the total sum of turbulent momentum transport vanishes (i.e.

Hi = 0) due to the symmetry property of the gyrokinetic solutions unless there is symmetry

breaking mechanism.
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In Fig. 4-1, I give a physical picture of the reason for the vanishing momentum transport.

The turbulent fluctuations in the parallel velocity are odd around the outer midplane,

resulting in no net momentum transport when they are carried by the radial E x B flow due

to the fluctuating potential. However, if there are mechanisms that break the symmetry,

non-zero momentum transport occurs and toroidal angular momentum is redistributed in

a tokamak. For example, the diamagnetic effect shown in Fig. 4-2 results in symmetry

breaking of higher order gyrokinetics, as will be explained in the next section (i.e. 12 # 0).
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Figure 4-1: Sketch of the ion temperature gradient driven turbulence showing bal-
loning structure along the parallel coordinate (9). The radial component of the fluc-
tuating E x B drift 6 VE1,,p = V@, the fluctuating density 6n 1 and the fluctuating
temperature 6T1 have a peaked amplitude at the outer-midplane (9 = 0). The high
pressure at 0 = 0 pushes ions to each side, resulting in the antisymmetry of the
fluctuating velocity 6vi with respect to 9 = 0 and no net radial transport of parallel
angular momentum.

BOB(

Rv,

-RvI,

Figure 4-2: Sketch of the origin of the diamagnetic particle flow. The poloidal cross
section of a flux surface is represented by the black solid circle. The particles with
positive parallel velocity drift radially inward (blue circle), while the particles with the
negative parallel velocity drift radially outward (red circle). Because the plasma at
inner radii is denser and hotter than the plasma at outer radii, the total parallel flux
at the outer mid plane is positive and the ion diamagnetic flow is l/,d '- AO!fve ~

B ViP* BOi
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4.2 Symmetry breaking mechanisms

There are several effects that break the symmetry of the lowest order gyrokinetic equations

described in the previous section. Each symmetry breaking mechanism has a certain regime

in the parameter space where it is more important than other mechanisms. Hence one can

self-consistently evaluate each mechanism separately in its corresponding regime.

The symmetry in 0 is broken in up-down asymmetric tokamaks [127]. However, it is

unclear how significant the effect of up-down asymmetry is. The change in the measured

ion rotation due to up-down asymmetry was only about 3 % of the ion thermal speed in

the experiments in the TCV tokamak [127]. Also, typically the up-down asymmetry is

significant only around the edge.

The slow variation of plasma parameters in the radial direction breaks the symmetry

in kp [128, 129, 130]. The effect on the turbulence of the change of temperature gradient

and density gradient across the radial dimension of plasma eddies has been investigated

in gyrokinetic global codes, but this effect is still not well understood. For a sufficiently

small radial correlation length of the turbulence, the effect of the slow radial variation of

the gradients is assumed to be too small to break the symmetry significantly.

The higher order correction to the gyrokinetic equation due to the slow poloidal variation

of the turbulence can break the symmetry in the poloidal angle 0 [131]. The terms in the

first line on the right hand side of the higher order gyrokinetic equation in Eq. (F.1) include

the slow poloidal variation effect.

In this thesis, I focus on the effect of the diamagnetic flow that introduces a preferential

direction in the system [132, 133, 134]. For the marginally unstable turbulence in a tokamak,

the size of each symmetry breaking mechanism is estimated in Appendix F, and most

mechanisms are smaller than or comparable to the momentum flux due to the diamagnetic

flow. The toroidal flow in a tokamak is composed of two different types of flow: the E x B

flow and the diamagnetic flow. The toroidal flow depends on the radial electric field through

the radial force equation. A radial electric field is generated to balance the Lorentz force

due to the toroidal flow and the poloidal flow as well as the radial pressure gradient. In

other words, the toroidal flow has a piece of the toroidal ExB drift due to the radial electric

field. This will be discussed in Sec 4.3. The diamagnetic flow due to the radial pressure

gradient always exists in a tokamak regardless of the size and the sign of the radial electric
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field. This implies that there is an inherent preferential direction that breaks the symmetry.

These flows are called diamagnetic flows because the flow is the result of particle motion

trying to generate a magnetic field whose direction is opposite to the external magnetic

field. As shown in Fig. 4-2, the ion diamagnetic flow is due to finite drift orbit size effects.

The higher flux for the ions with positive parallel velocity is due to the radial magnetic

drift to inner radii where the plasma has a higher temperature and density than at outer

radii. Consequently, the amount of diamagnetic flow is determined by the width of the

deviation of the poloidal orbit from the flux surface (-s 3pi) and the pressure gradient

(i.e. O R ~ B pvti, where QGd is the toroidal angular frequency for diamagnetic flow).

To take into account the diamagnetic flow in gyrokinetics, one needs to correct the lowest

order gyrokinetic equation in Eq (4.2) with the poloidal rhostar higher order terms as will

be explained in Sec. 4.2.1.

4.2.1 Higher order gyrokinetic equations

If the toroidal flow is in the high flow level (Mach number - 1), the symmetry is broken even

to lowest order (i.e. Eq. (4.13) is not valid in the presence of high flow, and 1U1 , 0). In this

case, the E x B flow dominates over the diamagnetic flow and the lowest order gyrokinetic

equation in Eq. (4.2) should be corrected with the ExB flow. The flow and flow shear

can change the main properties of the turbulence (e.g. turbulent eddy size, fluctuation

amplitude and frequency), and energy and particle fluxes change significantly as a result.

However, this effect is not in the scope of this thesis because the intrinsic toroidal flow or

the toroidal flow in the presence of the lower hybrid wave is typically small (Mach number

0.1).

For low flow level, the symmetry is broken by the effect of higher order terms in poloidal

rhostar P*,p = Bp. Then, one needs the higher order gyrokinetic equations to evaluate the

momentum transport (i.e. HI = 0 and U 2 # 0). In this case, the ExB flow is comparable to

the diamagnetic flow, and there is only a small effect of the flow on the main properties of

the turbulence, except for the momentum transport. The correction to the gyro-Bohm scale

turbulence is as small as the ratio of the low flow to the ion thermal speed. For diamagnetic

flow, the correction is in the poloidal rhostar -p* scale which is more or less 10 % of the

existing turbulence without the flow.
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The higher order gyrokinetic equation is described in Appendix F. The left hand side

in Eq. (F.1) is the lowest order gyrokinetic equation, and the right hand side is the cor-

rection to yp, higher order. On the right hand side, besides the terms with fb related

to the diamagnetic flow, there are terms related to the higher order corrections due to the

slow poloidal variation of the fluctuating potential and distribution function, the parallel

nonlinearity, and the neoclassical potential.

There are several regimes in which one term or a group of terms on the right hand side

in Eq. (F.1) dominate over the others (see Appendix F). Consequently, the effect of them

on the intrinsic rotation can be investigated independently in a self-consistent way. I only

focus on the symmetry breaking due to the diamagnetic flow. In the gyrokinetic equations

in this section, I only keep the corrections in the third line on the right hand side of Eq.

(F.1) related to the diamagnetic flow for simplicity.

Then, the higher order ion gyrokinetic equation with both the diamagnetic flow and the

ExB flow in the lab frame is

b+ V + VM - O + (#tb)) X Vfb - Ze VM . 0L

= V(# b) x -Vf_ + ±[VII$ + VM] . V(#1b) LL + (C(f,)), (4.14)

where fob t o + fib f _ b b fbd t b - o t b + 4. Here, fbg = fMi is the

lowest order background piece that is a Maxwellian distribution function as in Eq. (4.2),

and f,,E and f l'd are the small deviations from the Maxwellian due to the E x B flow and

the diamagnetic flow, respectively. I assume that the ExB flow is of the same order as the
fbg, E gd B bgdiamagnetic flow (i.e. f fi 'd p*f;). For the ExB flow, the correction to the

background distribution function simply results in a shift of the background Maxwellian by

the ExB flow (i.e. f0. + fib.E = fM,i(V - QV,ER(')) making f E m IQE fM,i, where

Rp,E is the toroidal angular frequency of the ExB flow. The small deviation due to the

diamagnetic flow is the neoclassical distribution function [30, 311, which will be explained

in the next section.

The long wavelength background potential #0g determines the radial electric field and

the E x B flow (i.e. OV,E = -c7 ). Because the radial electric field affects the energy and

orbit of the particles, there are two additional terms on the left hand side related to # b

(compare to Eq. (4.2)). The term (-iVo x 6) - Vfib is the effect of the background
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E x B drift and it results in the Doppler shift of the turbulent frequency. The other term,

- 1
-vM - V# b9a, , is the acceleration of the particles in the radial electric field when the

particles change their radial positions due to the curvature and VB drift. The diamagnetic

flow does not have terms like these on the left hand side because it cannot change the orbits

and energy of the particles. In Sec. 4.3 I will show that the background ExB drift term

and the acceleration term are very important because they make the momentum transport

due to the E x B flow and the momentum transport due to the diamagnetic flow different.

From the size of the correction to the background piece, I obtain the size of the cor-

responding correction to the fluctuating piece fi ~ Ap~fO and # ' - . For the

transformations vg -+ -vj, 0 -+ -6 and kp -+ -kp, all additional higher order terms in the

gyrokinetic equation have the parity opposite to the lowest order terms in Eq. (4.2). The

parity of the higher order corrections to the distribution function and potential is obtained

by linearizing the effect of small corrections in B p* (compare the following with Eq. (4.8)

and (4.9)),

fb (6,vi, k) = f (-_, -v1, -kp) (4.15)

b( 6 , kV,) = St2(-8, -kg). (4.16)

The different symmetry of f and tb results in non-vanishing higher order momentum

transport,

7r2(0, o11, kO) = 72 (-8, -o1, -kO). (4.17)

Here, 7r2 = r11, 2 + 71,2 has parallel and perpendicular contributions, wi,2 cx Re[ika(f ( 1

f (#tb)*)VII] and ri,2 Oc Ek, Re[ika(ft (#b)* + f tb#( t b)*)(i(kg|V@I 2 + kaV4) -Va)v2)].
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4.2.2 Neoclassical correction to Maxwellian equilibria

The correction f' d to the Maxwellian distribution function in Eq. (4.14) is derived from

the drift kinetic equation for species s [30, 31],

vj b - VHi,s + VM,s ' Vfo Cs. [Hi,s], (4.18)

where H1 ,, = f'd + z 6 ,. Here, the lowest order background potential which

results in the ExB flow is not included in Eq. (4.18), but the higher order background

potential # g due to the neoclassical correction is included. Using VM,s - Vf b = Iv 1 b

()v11 ,the drift kinetic equation is simplified to

o 6 -V (H1 ,s - fM) = Cs[His], (4.19)

where f,=T" + a la s Depending on collisionality, different

solutions for Hi,s are obtained. By employing the quasineutrality condition,

ZZ d3v H1,S - Se# j )b =0, (4.20)
S TS /Z

we can also obtain bg

To study the symmetry breaking mechanisms in the higher order background distribu-

tion function, the solution of the ion drift kinetic equation is decomposed into

fb9' = fog,v1 bg,q+ bgo ther ~ -B fg (4.21)

w e e bg, V1 g~
where f ' is the piece resulting in the diamagnetic parallel particle flow, f ' is the piece

giving the diamagnetic parallel heat flow, and f 'jother accounts for all other contributions.

In other words,

bg,VII mvI| I,d b (4.22)
f1,< Ti fe"(.2

where Lj , & , u.. . is the diamagnetic parallel particle flow that depends on the

pressure gradient, temperature gradient and collisionality. Here, the collisionality is the

ratio of effective collision frequency for pitch angle scattering to the bounce frequency,
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v = 3/ Vi where E is the inverse of the aspect ratio and q is the safety factor. To lowest

order, the diamagnetic parallel flow is given by

Vj(,d M),d(/) + B7 (4.23)
B ni #

where £Yd = - and K(O) oc . For example, the diamagnetic parallel particle

flow in the banana regime v* < 1 for concentric circular flux surfaces and large aspect ratio

is

VT I [ 1npi - 1.17fch ,nT1 (4.24)
' mIAO 1h a@ 8@ .

where h = B, Bo and Qjo are the magnetic field magnitude and ion gyrofrequency at the

magnetic axis, respectively, and fc is the effective fraction of trapped particles [31].

Combining the parallel diamagnetic flow with the parallel flow due to the radial electric

field and the perpendicular flow, the total neoclassical flow in a tokamak is obtained [135],

Vi = (iI,d + 11,E)b + Vi
K(#

= Q,$')R + (B (4.25)

nC(4')

where V = - is the parallel flow due to the radial electric field and V 1 =

B 2 is the perpendicular flow due to the E x B and the diamagnetic drift. Here,

P= C c c-a-, and b x VO = lb - BRc is used. Notice that the poloidal flow is

determined only by the term proportional to K(O), while the toroidal flow is given by both

the term related to Q,() and the term proportional to K(O).

The diamagnetic parallel heat flow is due to the terms proportional to vgv 2 /2 in the

distribution function, fj,'d. The parallel heat flow breaks the symmetry even in the absence

of rotation because it corresponds to a distribution function that is odd in vil,

fbgq - 2 mvj1qji mV2  5 f9 (4.26)
5 p2T 2T 2 '

where pi is the ion pressure and the heat flow q v ... ) is also a function of the tem-

bgother bek h ymtyoperature gradient and collisionality. Similarly, the piece fit breaks the symmetry of

the turbulence, because it satisfies fb,other(0 V11) bother ( _v).

105



4.2.3 Diffusive and convective momentum transport

There are terms of the gyrokinetic equation in Eq. (4.14) that depend on the toroidal flow

and the radial gradient of the toroidal flow. They break the symmetry of the turbulence

and thus contribute to the momentum transport. The ion toroidal angular momentum

transport can be linearized in the low flow regime, giving an advective term and a diffusive

term that are proportional to the flow and the flow shear, respectively,

1 = Hint - Penimi(R2)sG, - xvnimi(R 2) 4 , (4.27)
0r (

where R. is the ion toroidal angular frequency, and r = a(0/0o) is the radial coordinate

that labels flux surfaces. Here, a and 4'o are the minor radius and the poloidal flux that

label the last closed flux surface, and they are used to normalize @. The advective term

has the coefficient P, which is called momentum pinch coefficient, and the diffusive term

is proportional to the momentum diffusivity x,. Here, Hint is the intrinsic momentum

transport, which is the momentum flux generated even for zero flow and flow shear (i.e.

RP = 0 and &Q,/Dr = 0). In steady state, the total toroidal angular momentum transport

should be zero if there is no external source (i.e. H = 0), and the balance between non-zero

pieces in H determines the radial profiles of the toroidal flow, Q,(r).

The momentum diffusion and advection have been theoretically investigated in previous

work [136, 137, 138], and the theory has been compared with the experimental observations

in NSTX and DIIID of strong ExB flow (Mach number ~ 1) driven by the strong neutral

beams [139].

The momentum diffusion is closely related to the ion thermal energy diffusion. The

flow shear is diffused out by the same mechanism as the ion thermal energy is diffused out.

Consequently, the diffusion rates for the momentum and the ion thermal energy are similar,

and the Prandtl number (the ratio of the momentum diffusivity to the ion heat diffusivity)

is found to be 0.5-0.8 in many gyrokinetic simulations [136].

The momentum advection is not just due to the momentum carried out by the particle

transport, but also due to inherent momentum inward transport (momentum pinch). The

momentum pinch is driven by the drift due to the Coriolis force in the rotating frame [137].

The Coriolis drift breaks the symmetry and generates inward momentum transport that is

independent of the particle transport. However, in previous work, the difference between
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the pinch of the ExB flow and the pinch of the diamagnetic flow explained in Sec. 4.3 was

not recognized.

The intrinsic momentum transport for zero flow and flow shear has been also called

residual stress, and it accounts for all other momentum transport mechanisms that are

not the pinch or diffusion. The intrinsic momentum transport, or residual stress, must

be driven by the symmetry breaking mechanisms mentioned in the introduction to Sec.

4.2. This intrinsic momentum transport is important to determine the sign of the intrinsic

rotation. Also, many experimental radial profiles of rotation (e.g. the sign change of the

rotation at mid-radius in some discharges) cannot be explained by only momentum pinch

and diffusion, and so require intrinsic momentum redistribution. A new mechanism for the

intrinsic momentum transport is found in Sec. 4.3. It is generated in a non-rotating state

in which the diamagnetic flow and the ExB flow cancel each other.

4.3 Intrinsic momentum transport due to different

rotation type

In this section, I evaluate the intrinsic momentum transport in a non-rotating state in which

the diamagnetic particle flow cancels the E x B flow. For this purpose, I simplify the higher

order distribution function in Eq. (4.21) so that it only includes the diamagnetic particle

flow piece f bgd .b9,V* Also, I assume that the diamagnetic particle velocity is only due

to pressure gradient by neglecting the temperature gradient contribution proportional to

K(O) in Eq. (4.23), resulting in ff9 ~ f iId fM,i in Eq. (4.14) and V =()RO in

Eq. (4.25) . Then, I can directly compare the effect of the ExB flow and the diamagnetic

particle flow on the momentum transport. Different momentum pinch coefficients for the

different types of flows are obtained with gyrokinetic simulations. The effects due to other

pieces of the neoclassical distribution function (e.g. parallel heat flow in Eq. (4.21) and

the temperature gradient piece in Eq. (4.23)), which are ignored here, will be included in

Chapter 5 to evaluate the intrinsic momentum transport using the experimental plasma

parameters in Alcator C-Mod.
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4.3.1 Diamagnetic flow and ExB flow

With the assumptions explained above, the toroidal angular frequency of the ion rotation

has two pieces,

c pi 8#bg
Z C', 4p a0 Q Q d + QWE (4.28)Zieni a@ ap

where the piece driven by a pressure gradient Qpd =-(c/Zienj)(apj/8a) corresponds to

the diamagnetic particle flow, and the other piece driven by a radial electric field p,E =

-c(84bg/8@) corresponds to ExB flow.

The two types of toroidal rotation (QO,d and QvE) have different origins and charac-

teristics. The radial electric field is determined by the Lorentz force due to the toroidal

rotation, and as a result the radial electric field changes in the momentum confinement

time scale [140]. The electric field changes the energy and orbits of each single particle.

Conversely, the pressure gradient is determined by the turbulent anomalous transport of

particles and energy, changing on the energy confinement time scale. The pressure cannot

change the energy and orbits of individual particles.

Because the pressure driven flow, Q ,AR - (B/Bo)pvti, is always subsonic in a tokamak,

sonic toroidal flow can only be given by the radial electric field. For example, toroidally

oriented neutral beams can result in a sonic flow level of toroidal flow that corresponds to

a strong radial electric field, and the pressure driven flow can be neglected. However, the

intrinsic toroidal flow without any external momentum input is small, O(0.1vtj - 0.2vti), in

many experiments [124]. In this low flow regime, the contributions of the radial pressure gra-

dient and the radial electric field to the toroidal rotation are comparable, and the pressure

driven diamagnetic flow should be taken into account. Due to their different characteris-

tics, the effects of the two flows Qw,E and Qp,d on the turbulent momentum transport are

different. Then, in the low flow regime, it is convenient to write the ion toroidal momentum

transport as

U =H Uint - nirmi(R 2 )s [PW,dQp,d + P,ERO,E

where 2)8 isX th iE m e muf] (4.29)

where II' is the intrinsic momentum flux for QW,d =0, Qcp,E =0, aQVd/Dr =0 and
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8 ,,E Or = 0. By using Q,, = ,, + Q,,E and the average of the pinch and diffusion

coefficients, the original model in Eq. (4.27) is recovered

11= Hint - nimi (R 2)s (Ppd +I PCE) (gp,d + QWE)]

- [rii(R 2)s X, d±PE ( 0,d + XVE,+ (4.30)
2 o9r or _

Then, Eq. (4.29) and Eq. (4.30) result in the relation between Hint and Ht

1
Hint = int - -nimi(R 2)sAp (Q,d - QW,E)

2

1nimi(R2 SAXj~ ,d _QWE) (4.31)
2 B r ar)

where AP, = P,,d - Pw,E and AXp = XW,d - Xw,E. The relation implies that the difference

between the pinch and diffusive coefficients of the two types of rotation can result in intrinsic

momentum transport Hint in the absence of the total flow and flow shear in Eq. (4.27).

In a non-rotating tokamak, Q£,d = -Qw,E and Eq. (4.31) can be simplified to

flint = 11't - nm(2) APw0pd - nimi(R 2 ,d . (4.32)Hint - -jj a (4.32)

Thus, the intrinsic momentum transport for zero flow and zero flow shear is a function of

Q,, and BaQ7. In general, the diamagnetic flow depends on the pressure gradient, the

temperature gradient, and collisionality, so the intrinsic momentum transport is

flint = Hint (p, ,OTi a, 0 2Ti >v I int , (4.33)

where H'n includes the effect of f i and ffj'" in Eq. (4.21). In this chapter, I focus on

the effect of the pressure gradient a on Hint by evaluating the different momentum pinch

coefficients due to the diamagnetic flow and the E x B flow.

4.3.2 A rotating frame transformation

As I explained in Sec. 4.2.3, the mechanism for the momentum pinch for a toroidal flow

is clearer in a frame moving with the plasma flow. In particular, the Coriolis drift in the

rotating frame is useful to understand the momentum pinch. In this section, I apply the
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rotating frame transformation to the gyrokinetic equation in the lab frame, Eq. (4.14),

to study the different momentum pinches for the diamagnetic flow and the E x B flow.

To evaluate only the effect of the diamagnetic particle flow, the diamagnetic piece of the

background distribution function is approximated by f'd ~ f -E'af , resulting in
fbg = fo,. + ' + fbj 'E = fM,i (v - QR) M fM,i(v) [1 + (mvj1 /Ti)(IG,/B)] in Eq.

(4.14), where the total toroidal angular frequency is due to both the radial electric field and

the pressure gradient (i.e. Q. = Q,, + QV,E).

Applying a Lorentz transformation from the lab frame velocity v to the rotating frame

velocity v' using the relation v' v - RQ,0, the parallel velocity becomes v'= v -I[,/B

and the kinetic energy becomes S' = S - IQGvI/B in the rotating frame [140]. Then, the

velocity of the guiding center in the rotating frame is derived for p, < Bo/B < 1 [140],

dR' - IQ 7 - + B 2
dt = Vb+ b + v' + vc - V(#) x b + O *Vti

v 1 + - x V@+ V + v'c - cV(#') x (4.34)

where # = 0 and v' = (p/Qj)b x VB + ((vf) 2 /Q)E x ( - Vb) is the VB and the

curvature drift in the rotating frame. The drift due to the Coriolis force in the rotating

frame comes from the curvature drift in the lab frame, v' = (2v,Q/Qi) x [(VR x <p) x b].

The time derivative of E' in terms of the new variables [140] is

' = 1 - - -(4.35)
Bv' B 8@) B

Z( - 1) 8p . Vftb
~ _ -b + v+ V'c]) - -Vb + V ( )mi b M C Zienj op0

+ B1 8I [v' - C V(# b) xb- VV). (4.36)

Using Eq. (4.34) and (4.36), the ion gyrokinetic equation in the rotation frame is

(i+ Q,R 3- V) f b(R) + ,dE x+1 di VPV +v C tl X9 tb ) tb(R)

rnafdM tb(R) C(R) B"1 aQ bgR+-M , - [vb V I d V+ V (() X (f- + a4.

+g [v1 M +v +'C] -V(# b) a + (Cyfi)). (4.37)
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Here, the lowest order non-fluctuating piece is related to that in the lab frame by f1 "(R) (o')=

fM,i(Vj) = fjb(L)(vii) fMi(vii) [1+ (mvi 1/Tj)(IQ ,/B)], and the first order fluctuat-

ing piece is given by ftb(R) -- ftb(L)I(I), because the solutions to the equation are

not changed after the transformation of variables. The superscript (L) is used to de-

note the functions in the lab frame in Eq. (4.14). Alternatively, I can also prove that

Eq. (4.14) and (4.37) are equivalent by using the linear approximation of the solution,

t ( V ) I f (v ) + (IQW/B) (f /o) instead of using the time derivative of the

variables in real space and velocity space in Eq. (4.34) and (4.36) (see Appendix G).

In the frame of the rotation driven only by the radial electric field (QW,E # 0 and Qd =

0), the gyrokinetic equation is modified only by the additional Coriolis terms [137], without

any energy derivative of the turbulent distribution function. Conversely, the rotation driven

by the pressure gradient (QW,E = 0 and QV,d # 0) does not lead to the energy derivative

terms in the lab frame, but the energy derivative terms appear in the rotating frame.

This additional acceleration term that depends on the type of the rotation, nc ,EVM

tb(L tb( R)

in Eq. (4.14) or- in Eq. (4.37), results in different

momentum pinches for the two rotations either in the lab frame or in the rotating frame.

The acceleration term breaks the symmetry of the turbulence because it is odd in the

poloidal coordinate (0). For example, for a circular tokamak, the term is proportional to

sin 9.

The other rotation type dependent term, -Q,,EV X - Vf b(L) in Eq. (4.14) or

QdViO) x b- Vf 'b() in Eq. (4.37), can result in the different momentum diffusivities

for the diamagnetic flow and the ExB flow. Generally, the radial shear of the rotation

reduces the radial correlation length of the turbulent eddies because an eddy radially aligned

at an initial time becomes misaligned in time due to the radial gradient of the toroidal

flows [11, 63]. The rotation type dependent term contributes to the radial misalignment

differently, because the particle orbits are modified not by the pressure gradient but the

radial electric field. If there is no rotation shear, the term only gives a Doppler shift of the

fluctuations that cannot change the radial transport.
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4.3.3 Numerical results

I used the gyrokinetic code GS2 [62] to evaluate the pinch coefficients for the different types

of rotation. For numerical reason, the gyrokinetic equation is solved in the frame rotating

with QW,E, thereby avoiding the energy derivative terms in Eq. (4.14) and Eq. (4.37),

fRb(R))
t, + (vI f + v' + v'on - iV01 X b( R) tby' W b . Vfg( R

+ [vj' + v'/ + v&aE) - k#') ' ± (C(f)), (4.38)

where 7i= a + QcOp,ERP - V is the time derivative with the doppler shift, vCQ,E
2v'l1QW, EgR
2 b x [(VR x (p) x 6] is the Coriolis drift due to only the E x B flow, and fbg =

fM,i(v) + is the perturbed Maxwellian distribution function due to the pres-

sure gradient driven diamagnetic flow. Then, I compare the two momentum pinches in the

frame rotating with Q. = QWd + Op,E by subtracting the convective momentum transport

carried by the particles flux using the relation,

Itb(R) - 1 Itb(L) -- miQ,d (FR2 )s, (4.39)

where F is the particle flux. The relation is proven in Appendix G.

For the gyrokinetic simulations in this chapter, I used plasma parameters that model

the conditions around the plasma edge with two species (deuteron and kinetic electrons).

Accordingly, the temperature gradient, the density gradient, and the safety factor are larger

than the parameters of the Cyclone case: RO/LT = 9.0, Ro/L, = 9.0, q = 2.5, r/a = 0.8,

Ro/a = 3.0 and . = 0.8, where LT = -Ti(dTidr) = -Te/(dTe/dr) and Ln = -n/(dn/dr)

are the characteristic lengths of temperature and density, respectively, Ro ~ (R) 8 , q is the

safety factor, and s is the magnetic shear.

The simulations use 32 grid points in the parallel coordinate 0, 16 grid points in kinetic

energy, and 8 grid points in pitch angle. The box size of the simulation in both radial and

binomial direction is approximately 125 pi by using 128 and 22 Fourier modes in the radial

and binormal coordinates (kg and ka), respectively.

To study the different effects of the diamagnetic flow and the E x B flow on the momen-

tum transport, I have performed three types of simulations: (i) only with diamagnetic flow

(Op,E = 0), (ii) only with ExB flow (Qp,d = 0), and (iii) with both diamagnetic flow and
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ExB flow that cancel each other (Q,,E = -Q0,d)-

I found that the difference in the momentum diffusivities for the E x B flow and the

diamagnetic flow is small for the preceding parameters. The momentum diffusivities, X,,E

and X,,d, are estimated by running GS2 in the presence of radial gradients of ExB flow and

diamagnetic flow. The radial gradients for both flows result in momentum transport due to

the radial gradient of the background distribution function shifted by the parallel flows on
af~A)jj) [i~ R N bg(R) )

the right hand side of Eq. (4.37) (i.e.- 2 -Q-- ~ + B±,E) + ).
09,0 T, B ~ )fQ,d1

There is a contribution of the gradient of the perpendicular flow to the time dependent

eikonal in GS2 due to the radial shearing rate, but it is included only in the case with a

radial gradient of ExB flow. In spite of this difference, the gradients of the two flows give

similar Prandtl numbers in the simulations using the above parameters: PrE Xi

aR a ! ' = 0.517 and Prd X g = aR-- a 'a - 0.510, where Qt is the ion heat
Qi LT ar Xi Qj LT Dr

flux. Consequently, I assume that the effect of the different momentum diffusivities on the

intrinsic momentum transport in Eq. (4.32) is small for this case (i.e. X,,d ~ Xw,E).

On the other hand, I found a significant difference between the momentum pinches for

the two types of flows, as shown in Fig. 4-3. The figure shows the normalized momentum

transport in terms of the Mach number for the E x B flow (blue curve) and the diamagnetic

flow (green curve). The normalization of the momentum transport using the ion heat flux

makes the results independent of the turbulence amplitude. The linearity of the graphs

confirms that the momentum pinches are proportional to size of the flow, and the slope of

the graphs is the pinch coefficient.

The ratio of the pinch coefficient to the momentum diffusivity is important physically

because it determines the radial profile of intrinsic toroidal rotation if only pinch and dif-

fusion are considered. The radial slope of the rotation is obtained by balancing the pinch

term and the diffusion term in Eq. (4.27) (i.e. P,/Xc, = -Q7-1 (BG/Br) for II = 0 and

Hint = 0). Instead of calculating momentum diffusivities for every case requiring many extra

expensive simulations, I assume the same Prandtl numbers (Pr = 0.517) for the different

size and types of flows. This is usually a good assumption [11, 63].

With this assumption, I can obtain the ratio of the pinch coefficient to the momentum

diffusivities from the slope of the graphs in Fig. 4-3. It shows that Pw,E/X, 2.9/fo for

the ExB flow, and P,d/Xw ~ 3.5/Ro for the diamagnetic flow. The difference is about

22% of the pinch. For reference, simple quasilinear estimations of the ratio, in which the
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parallel dynamics and the kinetic electrons are neglected, give PW/x, = 4/Ro for Ro/L, = 0

[138, 141].

Interestingly, the difference in the pinches results in negative momentum flux even for

zero rotation (Q. = QW,E + p,,d = 0, and R,,d > 0 because the pressure decreases with

radius), as shown in the red graph in Fig. 4-3. The inward intrinsic momentum flux in

the absence of rotation (Hint < 0) results in peaking of the rotation. The toroidal rotation

peaking factor can be defined as,

a 8,011,, a Hint (4.40)G,,a or Ca x nimi R2

Pp,,0 - P,,E
= a , (4.41)

Xcp

where the radial slope of the rotation is estimated by balancing the intrinsic momentum

transport term and the diffusion term (i.e. 1 = 0 and QW = 0 in Eq. (4.27)). If the linearity

between the different pinches holds in Eq. (4.32), the intrinsic momentum transport Hint is

determined by the difference between the pinch coefficients as given in Eq. (4.41). Based on

the simulation results, I found that the linearity holds for low flows with sufficiently small

Mach number Q Ro/vt < 0.1. However, for the flows with Q Ro/vti > 0.1, the intrinsic

momentum transport is more than 50% larger than the difference between the momentum

pinches for the two types of flow, due to nonlinearities (note that the slope of the red graph

is larger than the difference of the slopes of the green graph and the blue graph in Fig.

4-3). Fig. 4-4 shows the toroidal rotation peaking factor in terms of the different plasma

parameters with QG,dRo/vi = 0.3 and QW,ERo/vti = -0-3.
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Figure 4-3: Time averaged ratio of ion toroidal angular momentum flux (II) to ion
heat flux (Qj) as a function of rotation (Q ,Ro/uvt) for zero rotation shear and the
different types of rotation: radial electric field driven rotation (blue-star), pressure
gradient driven rotation (green-circle) and opposite rotations of the two types (red-
diamond). The error bars show the standard deviation of the fluxes from the time
average values due to the typical turbulent fluctuations.
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Figure 4-4: The normalized rotation peaking factor generated by the intrinsic momen-
tum flux in terms of (a) the density gradient (R/L,), (b) the temperature gradient
(RILT), and (c) the safety factor (q). The parameters, except for the scanned vari-
able, are the same as the default parameters in the text.
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4.3.4 Result analysis

The different pinch coefficients evaluated in Sec. 4.3.3 are due to the difference between the

terms in the gyrokinetic equation that depend on the ExB flow and those that depend on

the diamagnetic flow. For the gyrokinetic equation in the rotating frame with a total flow

Q = Rp,d + ,E in Eq. (4.37), the different parity of the distribution function fb and

the potential O/b in Eq. (4.15) and Eq. (4.16) are caused by the Coriolis terms breaking
~tb(R)

the symmetry in v' and the additional acceleration term, - G,, V , in Eq.

(4.37), breaking the symmetry in 0. Notice that the Coriolis term does not depend on the

type of flow, while the additional acceleration term depends on the diamagnetic flow in the

rotating frame or the E x B flow in the lab frame. It implies that the symmetry breaking

due to the Coriolis term is the same for both types of flow, so the acceleration term is the

source of the difference between the momentum pinches for the different types of flows.

Consequently, in the non-rotating state in which the diamagnetic flow and the E x B

flow cancel each other (R,,d + Q,,E = 0), the intrinsic momentum transport is due to the

acceleration term. Using a balance between the acceleration term, ZQ,,v' - fb V .

and the time derivative of fj. (8fib/8t ~ fin/rmi, where rnl the nonlinear decorrelation

time), I obtain

Zi e B2 B0  &f
f, nt rn (o1 +VT /2),d sinO , (4.42)

where the magnetic drift of concentric circular flux surfaces is used to make the dependence

on 0 more transparent. The even parity of the momentum flux 7r2 in Eq. (4.17) is due to

f b and qOb. Accordingly, the intrinsic momentum flux for the same size of diamagnetic

flow decreases when the safety factor increases as shown in Fig. 4-4, because (Bo/B) ~

(r/R)(1/q) in Eq. (4.42). The nonlinear decorrelation time is observed to be barely modified

by the change of the safety factor in the simulations (the average perpendicular wavelength

of the turbulence eddies decreases only 5% and the ion heat flux decreases 10% when

the safety factor q is doubled). More analysis is needed to completely understand the

dependence on R/Ln and R/LT in Fig. 4-4.

To study further the effect on the turbulence of the acceleration term, - , L ,dv'
ftb(R)

V' ,-, I use the integrand Z irbtb(0, v, kg) that gives the momentum flux (see Eq.

(4.10)). I divide it into a symmetric piece, 7rS(O, v) (i.e. rS(9, v) = 7rS(-, -v ))
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that gives momentum transport, and an antisymmetric piece, rA(6, V) (i.e. rA(0, 7) =

-rA(-, -v' )) that does not give momentum transport. I found that 7rA > 7rS because

T r, r(, v', kp) and rs E k, r2(0, v', kV,) as explained Sec. 4.1 and 4.2.1.

Fig. 4-5 shows 7rs(6, v I ) for two different cases: one with zero rotation in which Op,E and

W,, cancel, and the other with pure E xB rotation in which the only symmetry breaking

term is the Coriolis drift. The contours in 9 and v'1 for the intrinsic momentum transport

in Fig. 4-5 (a) are different from the simple pattern for the Coriolis momentum pinch in

Fig. 4-5 (b). Both show the ballooning structure in 0. The difference between Fig. 4-5 (a)

and (b) is due to the different symmetry breaking mechanisms.

By integrating the momentum fluxes in Fig. 4-5 in 9 and in v', respectively, the graphs

in Fig. 4-6 (a) and (b) are obtained. The profile in terms of v'I in Fig. 4-6 (a) shows that

the intrinsic momentum transport (red curve) has a larger contribution from particles with

large parallel velocity because the particles with large parallel velocity have wider orbits

than slow particles and they exchange more energy with the radial electric field, and this

energy exchange is the main mechanism behind the intrinsic momentum transport. The

asymmetric 9-profile in Fig. 4-6 (b) can be explained by the factor sin 9 in Eq. (4.42),

which is odd in 9.
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4.4 Discussion

When the low confinement mode (L-mode) changes to the high confinement mode (H-mode)

in a tokamak, peaking of the intrinsic rotation in the core has been observed [1241. The

intrinsic momentum flux due to the different response of the turbulence to the two different

types of flows that I found in this chapter can be one of the origins for the rotation peaking

in H-mode. In H-mode, a strong radial pressure drop in the pedestal is established, result-

ing in strong diamagnetic flow, but the measured ion toroidal rotation is not as fast as the

diamagnetic flow because a negative radial electric field is generated to balance the diamag-

netic flow (Q~o,E ~ ~op,d < 0). In this case, a substantial amount of intrinsic momentum

transport occurs because of the different momentum pinches due to the diamagnetic flow

and the E x B flow. The main difference is the acceleration of the particles in the radial

electric field that breaks the symmetry of the turbulence only for the E x B flow.

The change of the measured rotation in the core at the transition from L-mode to H-

mode shows a scaling of AV, ~ CvAW/I, in many tokamaks, where I, is the plasma

current and AW is the stored energy change. The constant for Alcator C-Mod is Cv ~

7 x 105(m/s)(A/J) based on Fig. 1 in [124]. The peaking of the rotation due to the inward

intrinsic momentum flux in the pedestal can be estimated using

ar1P~_ H int (PW,d - P~,,E)A R(43
AV , ~ Arp 5Ro ~_ Arp - P' E ArpQW,dRo, (4-43)

Or x pnimi& RxO

where Arp is the pedestal width and Eq. (4.40) is used. Assuming that the pressure drop at

the pedestal is proportional to the stored energy AW - 27r2 a2Roopi and using BO ~ 2Ip/ca

and Opj/8/ - (1/RBo)(Apj/Arp), the diamagnetic flow in the pedestal is

Q o dRo~r)2 (4.44)
', 47r 2eneaRodrp I '4

where a low aspect ratio circular tokamak is assumed to estimate the plasma volume and

plasma current. Using Eq. (4.43) and Eq. (4.44), the scaling of the rotation change at the

top of the pedestal due to the intrinsic momentum flux considered in this chapter is AV,(r =

a - Arp) ~ CVd,aAW/Ip, where CVd,a = d 4-P,, E) 2 . The constant for Alcator

C-Mod is CVd,a ~ 2.1 x 105 (m/s)(A/J) for ne = 1020 M- 3 , a = 0.2m, Ro = 0.67m and

(Pw,d - Pp,E)/Xp = 1.2/Ro, which is obtained from the red curve in Fig. 4-3. If the inward
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momentum pinch in the core is considered, a change in the intrinsic rotation at the pedestal

gives a change of the intrinsic rotation in the core that is 2-3 times larger (see the exponential

factor exp (f dr"j) in Eq. (5.3)). This factor makes the change in the rotation at the

magnetic axis AV,(r = 0) ~ Cvd,oAW/Ip with CVd,O -- 4 - 6 x 105 (m/s)(A/J). Then, the

intrinsic momentum transport mechanism found in this chapter results in rotation that is

comparable to observed rotation peaking, and it has the same scaling AV, oc AW/Ip.
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Chapter 5

Rotation change due to lower

hybrid waves

The saturation level of the ion toroidal rotation after lower hybrid waves are injected is

determined by the balance between the momentum source evaluated in Chapter 3 and the

radial transport of momentum by turbulence. The radial momentum transport is deter-

mined by the momentum diffusion, the momentum pinch, and the intrinsic momentum

transport, as explained in Chapter 4. In this chapter, a preliminary comparison between

theory and experiment is performed. I consider two Alcator C-Mod cases: one with high

plasma current, 700 kA, and another with low plasma current, 350 kA.

A simple estimation based only on the momentum pinch and the momentum diffusion

may explain the rotation observed in the high current case, although the intrinsic momen-

tum flux will probably play a role. The intrinsic momentum transport is definitely needed

to explain the change of the rotation observed in the low current plasma discharge, which is

in the direction opposite to the wave momentum. In this chapter, the intrinsic momentum

transport due to diamagnetic flows is investigated employing the measured plasma param-

eters in Alcator C-Mod. The change in the plasma current profile due to the lower hybrid

waves may partially explain the reversal of the rotation change.

In this chapter, there are three main findings. First, the external momentum injected

by the lower hybrid waves is important to explain the rotation saturation in the counter-

current direction. Second, the intrinsic momentum transport is required to explain the

radial variation of the rotation and the rotation change in the co-current direction. Last,
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the diamagnetic effect on the intrinsic momentum transport gives rotation changes of the

same order as the changes observed in experiments.

The rest of this chapter is organized as follows. In Sec. 5.1, a formula to reconstruct

the steady state ion toroidal rotation is obtained by balancing the momentum source with

the turbulent radial transport. In Sec. 5.2, the rotation predicted using only momentum

pinch and diffusion is compared with the measured rotation. In Sec. 5.3, the size of the

intrinsic momentum transport required to explain the measured intrinsic rotation profile is

estimated. As an important source of intrinsic momentum transport, the diamagnetic flow

effect is evaluated numerically and the change in the intrinsic momentum transport due to

the lower hybrid waves is investigated. I consider the changes in the safety factor profile

and the temperature profiles due to lower hybrid wave injection. Finally, I give a summary

of possible theoretical explanations for the change in the ion toroidal rotation due to lower

hybrid waves in Sec. 5.4.

5.1 Saturation of ion rotation change

To attain steady-state ion toroidal rotation in the presence of lower hybrid waves, the

toroidal angular momentum injected by lower hybrid waves should be transported out to

the wall. Consequently, the momentum source term and the radial transport term on the

right hand side of Eq. (3.33) balance,

1a8
V 8@ V'II) + TO = 0, (5.1)

where T, - Kf d3 vmeRvQ(fe)), is the external torque due to lower hybrid waves.

In Alcator C-Mod, the saturation of the ion rotation is obtained about 100 msec after

the lower hybrid wave injection. In Fig. 1-3, for the high plasma current case I, = 700kA,

the acceleration of the core rotation in the counter-current direction is slowed down and the

rotation reaches almost steady state about 400 msec after the wave injection. However, for

the low plasma current case, Ip = 350kA, the initial acceleration of the core rotation is in the

counter-current direction, probably due to the external torque, but the acceleration reverses

direction after 150 msec, and the rotation change in the co-current direction saturates after

200 msec.
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This time scale for the rotation saturation, 0(100) msec, is of the order of the turbulent

momentum transport time scale, 0(10) msec in Alcator C-Mod, and is comparable to the

resistive current relaxation time (0(100) msec). The radial current profile is related to the

rotation change reversal for the low current case as will be explained in Sec. 5.3.3.

The saturation time is much longer than an ion-ion collision time which is the charac-

teristic time for the perpendicular momentum transfer from the wave to the ions, and much

larger than an ion-electron collision time that is the typical time for the parallel momentum

transfer from the wave to the ions (see Chapter 3). Hence, the full wave momentum is

transferred to the ions, and the external torque in Eq. (5.1) should be the same as the

original toroidal angular momentum of the wave injected by the wave launcher.

Because the core rotation change in Fig. 1-3 does not represent the change of the rotation

over all radii, the radial profiles of the rotation are given in Fig. 5-1 for the high current

case and Fig. 5-2 for the low current case. As shown in Fig. 3-6, the initial acceleration for

both discharges is larger at mid-radius, around 0/@o = 0.4, where the momentum source

of lower hybrid waves is more intense (see also the difference between the measured profiles

before lower hybrid injection (t=0.75 sec) and after lower hybrid wave injection (t=0.85 sec)

in Fig. 5-1 and Fig. 5-2). As a result of the turbulent momentum redistribution, the core

rotation starts to accelerate in the counter-current direction for both cases. Interestingly,

about 150 msec after the lower hybrid injection, the rotation in the core (0/'o < 0.3) has

changed significantly, while there is little change in the rotation at mid-radius ( >/o 2 0.3)

for both discharges in Fig. 5-1 and Fig. 5-2.

The radial rotation profiles in Fig. 5-1 and 5-2 are estimated using an X-ray spectrome-

ter to measure radiation from impurities [14]. The measurements give line integrated flows

and the data needs to be mapped to the reconstructed magnetic field equilibrium. This is

done by assuming that the flow is due to a rigid rotation of the flux surface. Due to the weak

radiation signal, there are many uncertainties, and the calculation of the radial profiles is

not precise enough to believe the spatial oscillation in rotation at outer radii (4/4o > 0.5).
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Figure 5-1: Radial profiles of the ion toroidal rotation measured at different times of
the high current discharge (I, = 700kA). The lower hybrid waves are injected at t=0.8
sec. Positive toroidal rotation means co-current, and negative means counter-current.
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<Low current case (I, = 350kA)>
(a) from t=0.75 to t=0.95 sec

t=0.75s
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(b) from t=0.95 to t=1.25 sec
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Figure 5-2: Radial profiles of the ion toroidal rotation measured at different times
of the low current discharge (I, = 350kA). The lower hybrid waves are injected at
t=0.8 sec. (a) Until t=0.95 sec, the core rotation changes in the same direction as the
momentum source (counter-current direction). (b) After t=0.95 sec, the direction of
the core rotation change is reversed (in the co-current direction)
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Recalling Eq. (4.27) that shows contributions of the intrinsic momentum transport, the

momentum diffusion, and the momentum pinch to the radial momentum transport, Eq.

(5.1) can be rewritten as

8(AL1int) _ 8(APeni(R 2)8 ~ 2 Qo(Ar___ _ mi o_____r ~ - mr- A -ni( R ). V = (AT,), (5.2)Or ar Or or}

where r = a(O/$0o) is the radial coordinate, A = V'(@o/a) is an estimate for the area of the

flux surface, and a and @0 are the minor radius and the poloidal flux at the last closed flux

surface, respectively. Here, Hint = Hint/(@o/a), Po = Pp/(@o/a), and 5-- = xo/(@o/a) are

the rescaled values of the intrinsic momentum flux, the pinch coefficient, and the momentum

diffusivity, respectively. The radial rotation profile can be obtained analytically from Eq.

(5.2), giving

Q. (r)= Q (a) exp a dr'PW

- dr exp frdr/
r Xwnimi ( R2)s r xO

+ a / dr" A(r"r)T/(r") '+ dr' _ ( r exp dr , (5.3)
rAx,njmj ( R2), rxO

where the toroidal velocity at the last closed flux surface Q,(a) is given as a boundary

condition, and zero momentum flux at the magnetic axis fl(r = 0) = 0 is used as the other

boundary condition.

If there is no intrinsic momentum transport and no momentum source (Hint = 0 and

T, = 0), the rotation profile is determined by the first term on the right hand side of

Eq. (5.3) due to momentum diffusion and pinch. Then, the sign of the rotation is given

by the velocity at the boundary. However, the intrinsic momentum transport (the second

term on the right hand side of Eq. (5.3)) can change the sign. Inward intrinsic momentum

transport (Ulint < 0) results in a rotation in the co-current direction, and outward intrinsic

momentum transport (Hint > 0) results in a rotation in the counter-current direction.

Additionally, notice that Hint at outer radii contributes more to the rotation than Hint at

inner radii because of the exponential factor exp (f dr" in the integral in the second

term on the right hand side of Eq. (5.3). The exponential factor arises due to the inward

momentum pinch (Pw/x, > 0). The last term on the right hand side in Eq. (5.3) is the
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contribution of the external torque to the rotation. In the next two sections, I will examine

the contribution of each term to the rotation.

5.2 Diffusion and pinch of the momentum injected

by lower hybrid waves

In this section, I reconstruct the radial rotation profile using Eq. (5.3) and dropping the

intrinsic momentum transport contribution (i.e. flint = 0). For the reconstruction shown

in Fig. 5-3, I evaluate the momentum diffusion and pinch coefficients using the gyrokinetic

code (GS2) and the experimental parameters in Alcator C-Mod. The pinch and diffusion

coefficients at three different radii for the high current case are evaluated and shown in

Table 5.1. A transport code, TRANSP [1421, is used to prepare the input parameters for

the GS2 simulations and analyze the experimental data. The results from GS2 show that

P,/x, decreases towards the core, which is consistent with the fact that the momentum

pinch has to go to zero at the magnetic axis. The Prandtl numbers (Pr = X,/Xi) are similar

(0.6-0.8) at the three radii, as expected (see Sec. 4.2.3), and the ion heat diffusivities Xi

calculated using GS2 agree well with the estimation in TRANSP based on experimental

parameters inside mid-radius. However, there is a non-negligible difference between GS2

and TRANSP for the ion heat flux at outer radii. The difference are not surprising since

turbulence is very sensitive to the temperature and density gradients, and the experimental

uncertainties on the gradients are large.

In Fig. 5-3, the rotation profiles are estimated using the Prandtl number and the

momentum pinch coefficients in Table 5.1. For the ion heat diffusivity, I used the values

calculated by TRANSP. The momentum diffusivity is then given by XITRANSPPrGS2. This

calculation is done without the lower hybrid wave momentum source (black dashed curve)

and with the lower hybrid wave momentum source (red dashed curve). Fig. 5-3 (a) shows

the results for the high plasma current case, and Fig. 5-3 (b) shows the results for the low

current case. The toroidal velocity at the boundary is chosen to match the core rotation

before the lower hybrid wave injection (V,($ = 4'o) = -10km/s in Fig. 5-3 (a) and

V,( =_ Oo) = -25km/s in Fig. 5-3 (b)).

The measured radial profile change due to the lower hybrid waves in the core agrees
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relatively well with the change of the reconstructed profiles near the magnetic axis (see the

red solid curve and the red dashed curve in Fig. 5-3 (a) and (b)). For the low current case

(b), the reconstructed profile with the momentum source is similar to the the radial profile

at t=0.95 sec in which the direction of the rotation change reverses from the counter-current

direction to the co-current direction.

The radial profiles obtained with only diffusion and pinch terms (black dashed curve)

cannot explain the measured intrinsic rotation (black solid curve) that has rapid spatial

oscillations for 0/0o > 0.4. It requires intrinsic momentum transport to be explained,

although some rapid spatial oscillations are probably an artifact of the mapping between

the line integrated measurements and the radial profile of the toroidal rotation. The required

size of the intrinsic momentum transport will be estimated in Sec. 5.3.1. Previous studies

have found that the rotation in the high flow regime (Ma ~ 1) due to the strong neutral beam

injection is well described by only diffusion and pinch [139], but the intrinsic momentum

contribution is necessary to explain rotation in the low flow regime (Ma ~ 0.1).

There is a more important disagreement between the measurement and the reconstruc-

tion only by diffusion, pinch and momentum source in the low plasma current case in Fig.

5-3 (b). The reconstructed profile (red dashed curve) cannot explain the saturated rotation

profile (blue solid curve) that shows a change of core rotation in the co-current direction.

Although the saturated radial profile (blue solid curve) may look like the profile before

the injection (black solid curve) with stronger diffusion, the time history of the rotation in

Fig. 5-2 cannot be explained with an increased momentum diffusivity. There is a significant

acceleration due to the wave momentum deposition at 0/7po ~ 0.3 right after the lower

hybrid wave injection as shown in the red solid curve. The difference in 4'//o ~ 0.3

between the black solid curve and the blue solid curve is probably due to the momentum

source rather than stronger momentum diffusion.

The profile change which cannot be understood with only diffusion and pinch is the

change after t=0.95 sec in Fig 5-2 (b). In fact, the momentum diffusivity, inferred from the

ion heat diffusivity, is unlikely to have changed significantly after the lower hybrid injection,

because the ion temperature does not change significantly after. It is more likely due to a

change in the intrinsic momentum transport, which will be explored in the next section.
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Table 5.1: Evaluation of turbulent momentum diffusions and pinches using GS2 for
the high current case shown in Fig. 1-3. The experimental parameters are shown in
the upper table and the GS2 results are shown in the lower table. TRANSP is used
to obtain the experimental ion heat diffusivity -7.

Inputs
r/a q s v, a/ Le a|LTe a|L, pila vt|a(16-

(1) inner radius 0.37 0.88 0.81 0.65 1.58 2.21 0.79 0.0056 1.33
(2) mid-radius 0.54 1.32 1.42 0.93 2.51 3.39 1.21 0.0052 1.18

(3) outer radius 0.79 2.71 2.55 2.31 3.13 4.70 2.20 0.0058 1.16

GS2 TRANSP
Pr= xw/xi ( Pwxp) Ro yw-[m2s Xi2s]gm

(1) inner radius 0.77 1.15 0.43 0.59 0.46
(2) mid-radius 0.60 2.06 0.57 0.95 0.85
(3) outer radius 0.85 2.73 0.23 0.27 1.68
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(a) High current case (I, = 700kA)
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(b) Low current case (I, = 350kA)
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Figure 5-3: Radial profiles of rotation based on measurements (solid lines) and the
reconstruction using only the momentum pinch, diffusion and source in Eq. (5.3)
(dashed lines). The black curves are the profiles before the lower hybrid wave injection
(t=0.75 sec) and the red curves are the profiles after the lower hybrid wave injection
(t=1.25 sec for (a) and t=0.95 sec for (b)).
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5.3 Change of intrinsic momentum transport due

to lower hybrid waves

In this section, the intrinsic momentum transport in the presence of lower hybrid waves

is investigated with the experimental parameters of Alcator C-Mod. First, the required

amount of the intrinsic momentum transport is estimated using the measured radial profiles

of rotation and ion temperature in the absence of lower hybrid waves. Then, the intrinsic

momentum transport due to diamagnetic effects is numerically evaluated, and the change

of the intrinsic momentum transport due to the lower hybrid waves is estimated.

5.3.1 Required intrinsic momentum transport

Without any external momentum input, the three different contributions to the momentum

transport on the right hand side in Eq. (4.27) (diffusion, pinch, and intrinsic momentum

transport) must balance (i.e. H = 0). Then, the intrinsic momentum flux divided by the

ion heat flux is

Hint Pnjm(R2 )sQ, xwnimi(R 2), (8,/r)
Qi Qi ±1i Qi

= fpinch 1diff (5.4)
Qi Q

where the normalized diffusion and pinches are calculated approximately using GS2 and

the experimentally measured profiles for rotation and temperature,

Hdiff (&Q,/r)m(R 2)=Pr miR),(5.5)
Qi (B9T/Br)

Upinch _ Idiff QO P. (5.6)
Qi Qi (aQ '/Br) X,'

Here, I assume that the ion heat flux is mostly caused by the ion temperature gradient

and there is no thermal pinch (i.e. Qj = -XiniT). In Fig. 5-4, the intrinsic momentum

transport required to explain the experimentally observed intrinsic rotation is obtained

using the average Prandtl number and the radially varying values of P,/Xw given in Table

5.1. Compared to the significant momentum diffusion, the momentum pinch is small for

intrinsic rotation in steady state at most radii because the pinch coefficient is small at inner
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radii, and the rotation size is small at the outer radii.

The accuracy of the estimated momentum transport is reduced by non-negligible errors

in the measurements of the ion temperature and the ion rotation. To estimate more physical

intrinsic momentum transport, I need to eliminate the unphysical radial fluctuation in the

measured rotation profiles shown in the black curves in Fig. 5-3. Fig. 5-4 (a) and (c) are

obtained using the full rotation profiles, while Fig. 5-4 (b) and (d) are obtained using only

two rotation values, at the center and the edge, to estimate the value of 8Q,/Br. Since

most of the intrinsic momentum flux given in Fig. 5-4 is balancing the diffusive flux, the

smoother rotation profile with smaller BQ,/Br gives a much smaller IHint

The real values of the normalized intrinsic momentum transport for the high current

case (I, 700kA) is between the values obtained using the full rotation profile in Fig.

5-4 (a) and the values obtained using the extremely smoothed rotation profile in Fig. 5-

4 (b). Fig. 5-4 (a) gives -0.2 < i i < 0.3 at most radii, and Fig. 5-4 (b) gives

0.05 < < 0.1 at most radii. The overall positive (outward) intrinsic momentum

transport results in counter-current rotation in the core.

For the low current case (I, =350 kA), Fig. 5-4 (c) gives -0.6 < $ ! < 0.7, and

Fig. 5-4 (d) gives 0.1 < ' $ < 0.2. The normalized intrinsic momentum transport for

the low current case is much larger than that for the high current case. The larger intrinsic

momentum transport may be caused by a larger diamagnetic flow, whose size scales with

B/Bo.

Consequently, I can conclude from this analysis that the overall size of the required

intrinsic momentum transport in Alcator C-Mod is smaller than H Vti 0.7 and probablyQj Ro

closer to 0.1, since the volume average values and the values from the smoothed profiles

are i ' ~ 0.1, which is comparable to the intrinsic momentum transport due to theQi &~

diamagnetic flow in gyrokinetic simulations in Sec. 5.3.3.

Among the many symmetry breaking mechanisms described in Sec. 4.2 that can ex-

plain the required intrinsic momentum transport, I focus only on the contribution of the

diamagnetic effects to the intrinsic momentum transport, as done in Chapter 4.
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Figure 5-4: Estimation of normalized momentum transport in the absence of any
external momentum input using experimental radial profiles of rotation and temper-
ature. Figures (a) and (b) correspond to the high current case (I, =700 kA), and (c)
and (d) to the low current case (I, =350 kA). The full profiles of measured rotation
in Fig. 5-3 (black curves) are used to calculate (a) and (c), while the rotation values
at only two radii (0 = 0 and 4 = ?Po) are used to estimate Bffl,/&r for (b) and (d).
Momentum diffusion (green), momentum pinch (yellow), and intrinsic momentum
transport (red) are obtained using Eq. (5.5), (5.6) and (5.4), and the results in Table
5.1.

133



5.3.2 Change of the diamagnetic effect due to lower hybrid

waves

The diamagnetic effect on the intrinsic momentum transport is significant when the toroidal

rotation is in the low flow regime (Ma ~ 0.1), as explained in Sec. 4.2. In Fig. 5-5, the

size of the parallel diamagnetic flow is compared with the measured toroidal rotation. The

parallel diamagnetic flow is evaluated by solving the drift kinetic equation in Eq. (4.23)

using the neoclassical code NEO [143]. Because the parallel diamagnetic flow increases

with pressure gradient, the diamagnetic flow increases towards the edge. Consequently,

the size of the diamagnetic flow at outer radii (0/o > 0.5) in Fig. 5-5 is comparable to

the measured rotation, while the diamagnetic flow in the core is only about 20% of the

measured toroidal flow. The gap between the diamagnetic flow size and the measured flow

size is compensated by ExB flow due to the radial electric field (i.e. QO = Q0,d + o,E)-

As I investigated in Sec. 4.3, the different momentum fluxes for the different types of flow

(the diamagnetic flow and ExB flow) result in intrinsic momentum transport. The fact

that the diamagnetic flow is stronger at outer radii than at inner radii implies that the

contribution of the diamagnetic effect to the intrinsic momentum transport at outer radii is

more important. Due to the exponential factor of exp dr" in Eq. (5.3), we expect

Ilint at outer radii to be more important for the rotation at the magnetic axis than flint at

inner radii.

In this section, I numerically evaluate the effect of lower hybrid waves on the intrinsic

momentum transport due to diamagnetic effects only at a local radius for simplicity. I

choose the outermost radius (4'/o - 0.5) within the range where the lower hybrid waves

are strongly damped because the diamagnetic effect is more significant at outer radii and

because the intrinsic momentum transport at the outer radii is more important to determine

the intrinsic rotation in the core than the intrinsic momentum transport at inner radii.

The intrinsic momentum transport for a non-rotating plasma in which the E x B flow and

the diamagnetic flow cancel each other is evaluated by solving the higher order gyrokinetic

equation in Eq. (4.14) implemented in GS2, as was done in Chapter 4. However, in this

chapter, I include the full neoclassical distribution correction to the background distribution

function, f , which is calculated with NEO, to describe the experimental situation more

realistically.
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In Chapter 4, the correction was just a shift to the Maxwellian due to the diamagnetic

particle flow (see Eq. (4.37)). In this chapter, the intrinsic momentum fluxes in Table

5.2 and 5.3 include all contributions to f b'd, that is, all the terms on the right hand

side of Eq. (4.31). These contributions to momentum flux include the intrinsic momentum

transport (first term) due to the pieces other than the diamagnetic particle flow contribution

(i.e. due to f6'I and fiother in Eq. (4.21)), the intrinsic momentum transport due to

the different momentum pinches for the canceling E x B flow and the diamagnetic particle

flow (second term) and the intrinsic momentum transport due to the different momentum

diffusivities for the canceling radial gradients of the E x B flow and the diamagnetic particle

flow (third term). Here the diamagnetic particle flow retains the additional parallel velocity

contribution from K(O) in Eq. (4.23), which is proportional to the temperature gradient,

whereas the diamagnetic particle flow used in Chapter 4 is only due to the pressure gradient.

The evaluation of the intrinsic momentum transport due to the diamagnetic effect in

this chapter follows the procedure in [1341, but the measured parameters in Alcator C-Mod

are used instead of the Cyclone base plasma parameters used in [134].

The intrinsic momentum fluxes are evaluated in GS2 for four different cases: (a) the

high plasma current case before lower hybrid wave injection, (b) the high plasma current

case after lower hybrid wave injection, (c) the low plasma current case before lower hybrid

wave injection, and (d) the low plasma current case after lower hybrid wave injection (see

Table 5.2).

For the high current case, the plasma parameters in Table 5.2 (a) and (b) are almost

identical and the effect of the lower hybrid waves on the diamagnetic flow and the intrinsic

momentum transport are small. In this case, the radial shear of the diamagnetic flow

(8Q0,d/Br) at the selected radius is almost zero because the increase in the safety factor

s > 0 and the increase in the temperature gradient (a/LTi)/Br > 0 toward outer radii

compensate for the decrease in the thermal velocity toward outer radii (remember the scaling

of the diamagnetic flow, QRO ~ (rR Vt)(r/R) LT

For the low current case in Table 5.2 (c) and (d), the diamagnetic plasma flows are

larger than in the high current case because of the increased safety factor and increased

collisionality. Also, the increased gradient of the safety factor and the temperature gradient

are not enough to compensate for the decreased gradient in the thermal velocity, giving a

negative diamagnetic flow shear. The lower hybrid wave changes the plasma current profiles
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and results in a larger safety factor and a decreased magnetic shear at the selected radius

(see Fig. 5-6 and Fig. 5-7). As a result, the radial shear of the flow has a larger negative

value after the lower hybrid injection than before the injection (compare Table 5.2 (c) and

(d)).

As demonstrated by the different ion heat flux Qi and electron heat flux Qe in Table

5.2, different turbulence characteristics are observed in each case. For the high plasma

current discharge, a strong ITG (ion temperature gradient) instability drives the drift wave

turbulence, while trapped electron driven turbulence dominates over the ion temperature

gradient driven turbulence for the low plasma current discharge. The different size of the

turbulent fluctuations is not critical for the toroidal rotation caused by the intrinsic mo-

mentum transport because the rotation term due to the intrinsic momentum transport

in Eq. (5.3) is divided by the momentum diffusion that scales with the energy diffusion

(i~~~~e.i fit - l~ (aTi /ar) 1 )(i.e. rOniR2), ~i (/r) mi- Q). Consequently, the normalized intrinsic momentum

transport ('nt i) in the table is the critical parameter that determines the size and the

direction of the ion rotation. The heat fluxes are very sensitive to the gradients of temper-

ature and density, while the normalized intrinsic momentum fluxes are not as sensitive to

the gradients as the heat fluxes are, as will be explained in the next section 5.3.3.

As shown in Table 5.2, the normalized intrinsic momentum transport due to diamagnetic

effects ( g.) is substantially affected by the size of the diamagnetic flow (" dRo) and

the flow shear (ad R"), as expected (see Eq. (4.32)). Because the diamagnetic flow

for the high current case is smaller than the flow for the low current case, the normalized

intrinsic momentum transport for the high current case is also smaller than the flow for

the low current case. The fact that the intrinsic momentum transport is larger for the low

plasma current case may explain why the reversal of the acceleration direction due to the

lower hybrid wave is observed only in the low plasma current discharge. The small intrinsic

momentum transport in the high plasma current case does not cause sufficient momentum

redistribution to reverse the acceleration direction.

The positive momentum fluxes in Table 5.2 (c) and (d) give total counter current rotation

in the core because the plasma tends to expel co-current momentum. However, to explain

the reduced counter-current rotation after the lower hybrid wave injection, a significant

reduction of the positive momentum flux is necessary. I will show in the next section that a

significant reduction of the intrinsic momentum flux can happen for a reduced value of the
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magnetic shear.
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(a) High current case (I, = 700kA)
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Figure 5-5: Parallel diamagnetic flow in Eq. (4.23) evaluated using NEO (blue) and
the measured rotation before the lower hybrid wave injection (t=0.75 sec).
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Table 5.2: Simulation results for intrinsic momentum transport in a non-rotating
plasma in which ExB flow and diamagnetic flow cancel (i.e. Qp,E = -QO,d and

Or - - ). The measured plasma parameters at r/a=0.54 and R/a=3.0 for the

high current discharge (I, =700 kA) and the low current discharge (I, =350 kA) in

Alcator C-Mod are used. Here, QGB = P*iTiva is used to normalize the heat fluxes.

Inputs

q 8 v* a/LTj aILTe

(a) I, =700 kA at t=0.75 see 1.32 1.42 0.93 2.51 3.39
(b) Ip =700 kA at t=1.25 see 1.32 1.48 0.89 2.45 3.63
(c) I, =350 kA at t=0.75 see 2.14 2.34 2.80 2.55 4.93
(d) I, =350 kA at t=1.25 see 2.63 2.11 4.40 2.63 4.09

Inputs

a(O(a/LTi)/8r) a/La pj/a vt/a[106 s-1]
(a) I, =700 kA at t=0.75 see 3.44 1.21 0.0037 1.18
(b) 4, =700 kA at t=1.25 see 3.57 1.42 0.0037 1.13
(c) 4, =350 kA at t=0.75 see 2.99 1.60 0.0046 1.39
(d) I, =350 kA at t=1.25 sec -1.17 1.39 0.0043 1.31

NEO GS2
QWdRO Ld ~dfp 1 Qi/QGB Qe/QGB

(a) 4, =700 kA at t=0.75 sec 0.058 -0.028 0.005 7.48 5.12
(b) I, =700 kA at t=1.25 sec 0.054 -0.001 0.008 5.18 4.31
(c) I, =350 kA at t=0.75 sec 0.140 -0.151 0.040 1.11 0.70
(d) I, =350 kA at t=1.25 see 0.171 -0.391 0.067 6.04 4.45
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5.3.3 Change of the intrinsic momentum transport by mod-

ification of plasma parameters

There are many plasma parameters that determine the intrinsic momentum transport due

to diamagnetic effects as shown in Eq. (4.33). These parameters can be obtained by

experimental measurements as given in Table 5.3. However, there are many sources of errors.

In Alcator C-Mod, the safety factor radial profile is inferred from the measurements of the

pitch angle of the magnetic field obtained with motional Stark effect (MSE) diagnostics [23,

144]. The radial profiles of temperature and density are measured by Thomson scattering

diagnostics [145] and X-ray spectroscopy [65]. The resolution in the diagnostics is not

sufficient to give precise radial profiles which are important to evaluate the magnetic shear

= ) and the first and second radial derivatives of density and temperature. In this

subsection, I investigate the effect of the safety factor, the collisionality, the temperature

gradient, and their radial derivatives on the momentum transport by modifying the given

plasma parameters within the error bars to explain the reversal of the rotation change due

to the lower hybrid waves.

First, the uncertainty in the ion temperature gradient is considered. As shown in Table

5.3 (b) and (c), 20% increase or decrease of the ion temperature gradient gives significantly

different turbulence characteristics (see the ion heat flux and the electron heat flux). The

diamagnetic flow depends on the temperature gradient, and consequently the normalized

momentum flux Hint '" depends on the temperature gradient as well. Even though the heatQi R

fluxes depend sensitively on the temperature gradient, the normalized momentum flux does

not show the same sensitivity. In particular, the sign of the momentum flux, and hence the

intrinsic rotation direction, do not seem to depend on the ion temperature gradient.

Second, the second radial derivative of the temperature profile is adjusted in Table 5.3

(d) to see the effect of radial shear of the diamagnetic flow. It does not change the turbulence

characteristics as expected. The momentum flux is reduced about 30% by making the radial

shear of the diamagnetic flow zero.

Last, I modify the magnetic shear to see the effect of the lower hybrid waves on the

momentum transport. The most significant impact of the lower hybrid waves on the plasma

parameters is the change in the radial profile of the plasma current, as driving current is

the purpose of the lower hybrid wave injection.
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In the experiments in Alcator C-Mod, the total current is given by the sum of Ohmic

current induced by the central solenoid coils, and the non-inductive current driven by lower

hybrid waves. The bootstrap current in Alcator C-Mod is negligible due to the relatively

low #3 = 8 e compared to ITER [23]. The total amount of current is controlled to be the
B0

same as before the lower hybrid injection. As a result, the increase in LH driven current

is compensated by a decrease in the Ohmic current. While the Ohmic current density is

peaked in the core due to the high electrical conductivity there, the lower hybrid wave

driven current depends on the profile of the lower hybrid wave damping. Thus, the total

radial profile is changed after the lower hybrid wave injection. Typically, the total current

density is reduced in the core and it is increased where the lower hybrid is strongly damped.

Accordingly, the safety factor in the core is increased, while the safety factor at the last

closed flux surface is not changed much because there is the same amount of total current

inside the last closed flux surface (see Fig. 5-6).

The change in the radial profile of the safety factor is more significant for the low

current case than for the high current case if the lower hybrid wave driven current is the

same for a given wave power absorption. The efficiency of the lower hybrid current drive in

Alcator C-Mod is " _ROIL ~ 2.3 x 1019 AW m 2 [231, and it results in about 130 kA LH
PLn

wave driven current for 850 kW of LH wave power absorption. For the high current case

with I, = 700kA, the lower hybrid driven current is only about 18% of the total current.

However, for the low current case with I, = 350kA, the lower hybrid driven current is about

36% of the total current, resulting in a significant change in the radial profile of the plasma

current.

Fig. 5-6 and Fig. 5-7 show the significant change in the safety factor and the magnetic

shear profiles due to the lower hybrid waves for the low current case. The increase in the

safety factor due to the LH wave driven current is about 30% at most mid radii and it is

reflected in the input parameters in Table 5.2 (d). However, the magnetic shear is more

sensitive to the LH driven current profile, and as a result it has a bigger uncertainty.

In Table 5.3 (e), a 50% reduced magnetic shear results in a significant reduction of the

intrinsic momentum flux from that in Table 5.3 (a), (A ~t -0.07). This reduced

momentum flux would correspond to a decrease of the absolute value of the counter-current

rotation, as observed in the low current case.

The amount of the reduction in the momentum flux is large enough to compensate for
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the external torque in the counter-current direction. Using Eq. (5.3), the contribution to the

rotation of the intrinsic momentum flux is estimated by Hitr') in the second term on

the right hand side, and is compared with the contribution of the external torque estimated
Sdr" A(r" )Tw(r" )by fr Ax r"nim(R2),) in the third term on the right hand side. For the reduced momentum flux

A (~li!t L '- -0.07 at the radius r/a = 0.54, a n ~ aA I tdvti/Or = 46kHz\QiRo/ Xnimi(R2),' - Qi Ru1) RoPr

is comparable to the contribution of the external torque a fr dr"A(r")TI(r") = -52kHz. InAxni m (R2) k.
fact, a larger amount of reduction in the intrinsic momentum flux is needed to overcome the

external torque and explain the observed reduction of the counter-current rotation compared

to the rotation before the lower hybrid wave injection shown in Fig. 5-2.

The reduction of the momentum flux is caused by the significant increase in the negative

radial shear of the flow due to the reduced magnetic shear. The change of magnetic shear

after the LH wave injection is sensitive to the location of the LH wave driven current. If the

safety factor profiles in Fig. 5-6 are precise enough to give a reliable magnetic shear profile,

Fig. 5-7, the magnetic shear . decreases due to the LH wave injection for 4O/'bo > 0.5, but it

remains almost constant at V)/0o 0.5, the reference point that I chose. Outer radii must

be considered for a better comparison. The intrinsic momentum flux Hint at outer radii is

more important than 11int at inner radii to determine the rotation according to Eq. (5.3),

and at outer radii, the decrease in s may mean that Hint decreases.
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Table 5.3: Simulation results for intrinsic momentum transport in a non-rotating
plasma in which the ExB flow and the diamagnetic flow cancel (i.e. QO,E = -Qp,d

and dq
2
pE =- 9QWod). The plasma parameters for the base case in the low current

Or 09r
case after the LH wave injection (I, =350 kA at t=1.25 sec) given in Table 5.2 (d)
are modified within error bars.

Change in inputs NEO GS2
Qw dRo LO2 ,d RpQa flint Vti 1

G
Vti a VtiQi/QGB QeIQGB

(a) Base case same as (4)
in Table 5.2 0.171 -0.391 0.067 6.04 4.45

(b) 20% increase in
ion temp. gradient a/LTi =3.15 0.194 -0.556 0.045 8.29 5.31
(c) 20% decrease in
ion temp. gradient a/LTi =2.10 0.149 -0.251 0.048 2.59 2.40
(d) A change in second
radial derivative of a(8(a/LTi)/Br)

ion temperature =8.48 0.171 0.039 0.050 7.02 5.13
(e) 50% decrease in
magnetic shear s=1.05 0.171 -0.614 0.001 5.30 8.58
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Figure 5-6: Radial profile of the safety factor for the low current case (I, = 350kA)
obtained using the equilibrium magnetic field code, EFIT, constrained by MSE mea-
surements. The blue curve is the profile before the lower hybrid wave injection (t=0.75
sec), and the red curve is the profile after the injection (t=1.25 sec).
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Figure 5-7: Radial profile of magnetic shear A =19 based on the safety factor profile
in Fig. 5-6. The blue curve is the profile before the lower hybrid wave injection
(t=0.75 sec), and the red curve is the profile after the injection (t=1.25 sec).
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5.4 Discussion

In this chapter, the radial transport of the toroidal angular momentum is calculated and

used to give a preliminary explanation for the change of the rotation that follows the lower

hybrid injection in Alcator C-Mod. Because the wave has toroidal angular momentum in

the counter-current direction, it accelerates the ion toroidal rotation in the counter-current

direction after the lower hybrid wave is injected as shown in Fig. 5-1 and in Fig. 5-2 (a).

However, the change of rotation is saturated after several momentum transport times. The

estimated values of the momentum pinch and diffusivity are balanced with the momentum

source to reconstruct the rotation radial profile in Fig. 5-3. However, intrinsic momentum

transport, which redistributes momentum even for zero rotation and zero rotation shear,

is required to explain the measured intrinsic rotation profile, as shown in Fig 5-4. The

required size is of the order of 'int g = 0(0.1). For the low plasma current case, at about

150 msec after the lower hybrid wave injection, the change of the rotation is reversed to the

direction opposite to the wave momentum direction, which requires a significant change in

the intrinsic momentum transport.

To investigate the reasons for the reversal of the rotation change, I evaluate the intrinsic

momentum transport due to diamagnetic effects. Because the lower hybrid wave injection

changes the diamagnetic flow in a tokamak, it results in a change of the intrinsic momentum

transport. Significant changes in the radial profile of the safety factor due to the increased

lower hybrid driven current and the decreased Ohmic plasma current can increase the inward

momentum transport (z ~ -0.07), resulting in a co-current direction change

of the counter-current rotation (see Table 5.3). The effect of the plasma current on the

momentum transport is also consistent with the observed time scale for the reversal of the

rotation change. Changes in the safety factor profile take a resistive current relaxation time.

In experiments, it takes around a resistive time scale (0(100) msec) for the rotation change

to reverse.

The simulations done with the experimental parameters (Table 5.2) could not explain the

observations. The magnetic shear obtained using the equilibrium magnetic field code, EFIT,

constrained by MSE measurements is not small enough to result in a smaller momentum

flux at the reference radius @/4o ~ 0.5 that would explain the reversal of the rotation

change. A large reduction of the magnetic shear due to the LH wave injection may occur
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at outer radii @/Oo > 0.5. In addition, not all the intrinsic rotation mechanisms listed in

Sec. 4.2 have been studied, and their effects may be important.

The results in this chapter are, however, encouraging. One of the features that the

theory can explain well is the dependence of the reversal of the rotation change on the

plasma current. The size of the intrinsic momentum transport increases as the diamagnetic

flow increases. Because the diamagnetic flow increases with an increase in the safety factor

(i.e. with a decrease in the plasma current), the impact of the intrinsic momentum transport

on the rotation profiles is more significant for the low plasma current case than for the

high plasma current case, and after the lower hybrid wave injection than before the wave

injection, as proven by the experimental observations in Alcator C-Mod. Additionally, all

the higher order corrections in the gyrokinetic equation (F.1), which result in the intrinsic

momentum transport (HIint), scale with the inverse of the plasma current (1/Ip). Therefore,

if there is a reversal of rotation change in the model, it can only happen at low plasma

current.

146



Chapter 6

Conclusion

In this thesis, the effect of the lower hybrid current drive on ion toroidal rotation is investi-

gated theoretically. The toroidal angular momentum injected by the lower hybrid waves is

evaluated in Chapter 2 and Chapter 3. The external torque due to the waves is comparable

to the initial change in the ion toroidal rotation observed in Alcator C-Mod. The parallel

and perpendicular components of the toroidal angular momentum are transferred from the

waves to ions through electrons via two different channels. The perpendicular momentum

is transferred to ions through an outward radial electron pinch, while the parallel momen-

tum is transferred through collisions. After several ion collision times, ions obtain the full

toroidal angular momentum injected by the lower hybrid waves.

The momentum transferred to the ions is transported out by turbulent radial transport,

which is well described by gyrokinetics (see Chapter 4). As an important piece of the tur-

bulent radial transport of toroidal angular momentum, intrinsic momentum redistribution

due to the diamagnetic effects is investigated. Finally, in Chapter 5 the change in the steady

state rotation due to the lower hybrid waves is estimated theoretically by evaluating the

momentum source, the momentum pinch and diffusion, and the intrinsic momentum trans-

port. The estimated rotation is compared with the experimental observations in Alcator

C-Mod. The effect on the intrinsic momentum transport of the current profile, which is

modified by the lower hybrid wave, may explain the observed reversal of the rotation change

from counter-current direction to co-current direction. More theoretical work is needed to

confirm this hypothesis. The current theory can explain why discharges with low current

display different rotation than discharges with high current, but did not reproduce the
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direction of the acceleration in the experimental observations using the measured plasma

parameters. For a better comparison between theory and experiment, the precision and the

analysis of the experimental radial profiles of several plasma parameters (e.g. ion toroidal

rotation, ion temperature, and safety factor), which currently have non-negligible errors in

Alcator C-Mod, must also be improved.

In a steady state operation scenario for a reactor size advanced tokamak (e.g. ITER),

lower hybrid waves are expected to drive non-inductive off-axis current (e.g. localized at

0.7 < 0/0o < 0.8) to supplement the bootstrap current [146]. To drive 10% of the total

current by lower hybrid waves, significant lower hybrid wave power (e.g. -20-40 MW for

ITER) is injected and damped off-axis. Then, a significant amount of the toroidal angular

momentum is transferred from the waves to ions through two channels, as explained in

Chapter 3. If the absorbed power density in an off-axis flux surface is about 2 MW/m 3,

the expected external torque density is about 0.1 N/m 2 for a toroidal refractive index of

the wave of n, = 2. The power density, the torque density, and the plasma density in

ITER are comparable to the values in Alcator C-Mod as shown in Fig. 2-4, giving similar

acceleration of the toroidal angular momentum. However, in ITER the acceleration will be

more localized to 0.7 < V@/4'o < 0.8 due to strong damping of the wave for high current

drive efficiency and accessibility. The change in the plasma current driven by the lower

hybrid wave is also localized, which affects the momentum redistribution, as explained in

Sec. 5.3.3. Consequently, the localized momentum source and redistribution may result in

a stronger toroidal velocity shear.

To predict the toroidal rotation change due to lower hybrid waves when designing a new

tokamak, the estimates of the momentum source, the momentum diffusion, the momentum

pinch and the intrinsic momentum transport are required. The relation between the lower

hybrid waves and the ion toroidal rotation is complex, as shown in Fig. 1-2, and the

evaluation must be performed self-consistently.
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Appendix A

Energy transfer using the

quasilinear diffusion operator

The quasilinear diffusion operator for species s is obtained from

_ Zse /v x__B

Q(fS) = Vv (E + Vfs (A.1)
mS cw

Zoe k~v - + kv- Ve - I ( - v ± -Ekfkl, (A.2)

where (...)w in (A.1) indicates the average over a number of wave periods in time and space.

Here, m. and Zse are the mass and the charge of the species of interest, respectively, e is

the charge of the proton, and I is the unit tensor. We have used the Fourier analyzed

fluctuating electric field, E = Ek Ek exp(ik - r - iWkt), the fluctuating magnetic field B =

Ek Bk exp(ik - r - iWkt), and the fluctuating distribution function, fS = Ek fk exp(ik-

r - iWkt). The functions Ek = E(Ok, k), Bk = B(Wk, k), and fk f(Wk, k) satisfy the

relation f k f (w-k, -k) = f*(Wk, k) where * denotes complex conjugate and Wk = -fW-.

Faraday's law has been used in going from (A.1) to (A.2) to write Bk = (c/w)k x E .

'In typical tokamak geometry, the toroidal and poloidal spectra are discrete due to periodicity,
but the radial spectrum is continuous. Although using integrals in Fourier space would be more
appropriate, I use the notation Ek for simplicity. The summation in the discrete toroidal and

poloidal spectrum space is also closer to the numerical evaluation in a code [86, 92].
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The quasilinear operator can be written as

Zse F 1 a 1 Ba Br11IQfs) -E - --- (v 1F +) + . (A.3)rmn [v 1 av 1  vi Da yV y _

The flux in the perpendicular direction is

F1 = - E (1 - kf + Ev k)v cos (a - #) (A.4)

Here, the velocity is defined as v = vI cos ak + vi sin ay + og b, where a is the gyro phase

angle, and x and y are the orthogonal coordinates in the perpendicular plane to the static

magnetic field. The wavenumber vector is defined as k = ki cos3 + k1 sin 3S + kiib. The

flux in the gyro-phase direction is

Fa = 7 E ,a 1 - k Iv cos (a -#)-k oi
k

- E,_ k v sin (a - #) - E* k-v sin (a - #) fk (A.5)

and the flux in the parallel direction is

- = 1{E I - kv 1 cos (a - 3)) + E, kvL}fk. (A-6)

Here, the perturbed fluctuating distribution function consistent with a single mode wave is

fA = exp(ik - r + iwt) dt'exp(ik - r' - iwt')

xEk - I - )+ -- VV fo,8 , (A.7)

where (t', r', v') is a point of phase space along the zero-order particle trajectory. The trajec-

tory end point corresponds to (t, r, v). The background distribution, fo,s = fo,s(t, r, v1 , V11),

is gyro-phase independent because of the fast gyro-motion. As a result,

Z'e 00
k = dT exp(iy) cos(1+QT)((Ek,++Ek,_)U-Ek11 V)

-i sin (z + QT)(Ek,+ - Ek,)U + Ek,il Df . (A.8)
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Here, T = t - t', and y = (P - k 1vI) - A(sin (7 + Qr) - sin (q)), where A = kvj , 7 -- 3,

Q = ZseBo/mc is the gyrofrequency and BO is the magnitude of the background magnetic

field. Also, U = + so - 8  ,fo and V =-L (vi 'f - vI Doy . We follow

Stix' notation in [17).

For the energy transfer, the contribution of the flux in the gyro-phase direction vanishes

due to the integral over a,

Pabs = dvi j dv1 2,rv1 K m v

/2 ZSev 2 [(
dvou d2 2r v (v L ( 2)) + , (A.9)

with (...) = 2 f " da(...) the gyroaverage. For this reason, the typical Kennel-Engelmann

quasilinear diffusion operator [21], which is gyroaveraged, does not retain the flux in the

gyro-phase direction. Then, the power absorption Pabs,k can be evaluated [17, 211 using

Pabs - Pabs,= j dvi 0 dv_1 2,rv1  mSv2

k -_Oo 10

(A.10)

with

Pabs,k = Z 2 e2 jdo o dv 21v1Z L v 6(W -k - nQ)|xk,n2 L(fo,s)

-7r e2  dvoj I dv127rv Imvi6(w - kov1 - n2)|W1,n2 L(fo,s),(A.11)

where Xk,n = EkIJll +Ek,+Jn-1+Ek,_Jn+1 is the effective electric field, and the operator

L(fo,) (I - kf) ± + k11v 1  a is introduced in [21, 17]. To evaluate the wave

power absorption in Eq. (A.11), we utilize the Bessel function expansion for the sinusoid

phase,

eiAsin 77 - Ze~ Jn(A), (A. 12)
n

sin qe Asi =7 - I e > " ilJ'(A), (A.13)
n

cos 7e isinq = e " Jn (A), (A.14)
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and the sifting property of the phase average

dre-iA(sin (r+Qr) -sin ()) _ il(r+T) n E e J(A) (A.15)
0 0o

= 27r e -inQTJ 2(A). (A.16)
n
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Appendix B

Bounce average and velocity space

integral in a relativistic velocity

space

The bounce average is defined as

(X)b= - =X - I , (B.1)
Tb vil 7b b Vj- VO,

where b is the unit vector in the direction of static magnetic field, vil is the non-relativistic

parallel velocity, 9 is the poloidal angle and Tb(E, p) =f l is the bounce time. Here,

E is the relativistic energy and y = u2/B is the relativistic magnetic moment. Also, the

flux surface average is defined as

(X) 8  I I fdtX (B.2)
T, B -6 TO-r B

where the Jacobian J = = 1 is used, and the normalization is T8 = f d.

There is a relation between the flux surface average and the bounce average for circulating

particles,

(X)bTb K-X Ts. (B.3)

For trapped particles, assuming that the flux surface average can be defined only between
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the turning points of the orbit, the bounce average is defined as

(X)b -= X , (B.4)
2 2

where T and Tb stand for the integration and the bounce time from one turning point
2 2

to the other turning point, and o- = v / o is the sign of parallel velocity. The symbol &

indicates that we have to sum the contributions with a = 1 and a = -1. Then the bounce

average annihilates the parallel streaming operator vlb - V for both passing and trapped

particles.

The integration of a gyro-averaged function in the relativistic velocity space (ul, uI) is

transformed to the integration in terms of the invariant variables (E, P) or the velocity fixed

at a position such as the outer mid plane (ulo, u1 o) by the following relation,

2U au2 BnUll 89U 2 au,
du = rdu2dull = rdu20 duio

49Uo aullo Iglo IqUo0u01  u10

= d no B u ,l (B.5)
B o u||

where uil 2 
- apB and the constancy of u and y along the orbit are applied. Then, a

flux surface averaged quantity integrated over the relativistic velocity space is

d3UX = Iduo un1o B vH X Tb = i Udo U (X) b (6b\ i Bo ull B / rS I yBo

= da noA (X)b (B.6)w sBo

where A = viwrb.
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Appendix C

Correction of the quasilinear

diffusion due to the phase

correlation between different

resonances

The electron quasilinear diffusion coefficient after bounce averaging and averaging over the

toroidal angle is

(DS,~b==e22JS,/J~b-(C. )
e

The correction to the value of I(1, yt, f) in Eq. (C.1) is evaluated using the phase integral

in Eq. (2.19) and (2.23), giving

(I(E, y,, £))~- 1 1 (W(E, y, er 2)) m di /(eri2
Tb 1 - e~ Xo n ri,r2 Vl(fr1 r2) 0

df 2 e 1  r2 )2 jsin[(s + 1/2)dk ((f 2 - f1) + (Eri -r2))] (C2)J fea dkj ((62 - f1) + (Eri - 4r2))/2 'C2

where f1 = - Eri, f2 f' - r2, and Eri and 42 are the resonance positions in the f

and f' integral paths, respectively (see Fig. 18-1 in [17]). Here, W'(Eri) and I'(r2) are the

function '(E) evaluated at fr and r2, respectively. By separating the contribution to the

summation from Eri = fr2 and the piece coming from 4ri # 4r2, the bounce averaged value
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is

(IE, y, O))b

_ (W(Eqt,lr 2 ))m 1+ e4X 0 db da e-i'('2)ab sin[(s + 1/2)dki iVa]

Tb _ =2 Er2 ( 2 ) 2(1 - e - oo -oo,, de da/2

+E Ha, (411r2) , (C.3)
ri:Ar2

where a = L2 L, b = £2 +L1 and Hn(fLr, fr2) is the contribution to the diffusion coefficient

from the phase correlation between different resonances within a period. Here, the integrals

in a period 0 < f1 < L of Eq. (C.2) is not affected by letting L -* oc for IK'L 2 /2 > 1

except for the the additional phase factor (1 + e-iXo)/2 because half of the distance around

the resonance is counted using periodicity between 0 < Li < E and L < 1i < L + E. If the

fast decorrelation between the periods makes the contribution of the phase memory eXO

negligible, Eq (C.3) is

(I(E, y, ))b

1 { (E W(E 2 yti ))m J db 27r R Kl+ ,, Hn(fLr 4 2 )
Tb n 1r1=r2 2v 1 (4r2) f-oo0 dkllv-2 (v-(2s lk l ird =Ar2

Tb E { 2 tV(r2)Kr 2 )Im(
2
s + 1) + E Hn (frif) , (C.4)

where the Fourier transform of "in(7rx) results in a function R(x) that is 1 for -1 < x < 17rX

and otherwise 0. The first term on the right hand side of Eq. (C.4) recovers the original

quasilinear diffusion coefficient in Eq. (2.11) because (2s + 1) times the average value of

(W(&, i, fr 2 ))m gives the original summation over the poloidal mode number m.

For r1 $ r 2 , the piece for the phase correlation between different resonances in a period

is

(W(E, p, fr2))m G(fr, fr 2 ) [' 2 _ K'("2f2HVVi(r)Vjj(4 2 ) 1 - dfle 2  j d 2 e 2 2

sin[(s + 1/2)dk ((f2 - fi) - (42 - fn ))]
ldk ((f 2 - fi) - (42 -rj))/2 '

where the additional factor G(fr, 42) is due to the phase change between the different
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resonances within a period [17], which is defined as

G(frj, 42) = eix(fri )'r 2 ) when f4i > Er2

= eix(fri ,r 2 _L) when f4r < 42. (C.6)

For the two resonances of a passing particle in an orbit of an up-down symmetric tokamak

satisfying ' = W'(42) = -K'(ri), VI(fri) = Vg(fr 2 ) and A, = (42 - fri), Eq. (C.5) is

Hn(Eri, 42)

(W(&, y1, 42))m G(fri1,4 2 )

v(r 2 ) 1 - e XO
I dbei'b 2  

0 d iae 2sin[(s + 1/2)dkjjV'2(a - Afr/V')]
-oo -oo edkl v'2(a - Aer/v'2)/2

(W(E y, 42))m G(ri, 42)2

1 (4r2)1 - e

(W (E P, r2))m G(tr, 1 r2) -

VI (4r2) 1-e IX

dp - T p2-2ir/d 
p

oo C

i27r

dk K
C (2s + 1)dk1

2V :

V'_dkli (s + 1/2)/'dkiI)

_ Afr V
2

(2s + 1)dk1

2 - ( s k

(2s + 1)dk l

Afr

2 }
(2s + 1)dkjj

2V%

2 
' I )

where I have used f_ 0 db e-'b 2 = V27r/iK' and the power theorem in Fourier analysis to

write f dae-4a 2 sin[(s+1/2)dk (a-arr/v)] oo dp e()p2-(27ritr/r)p 27T R "r
-0 dk 11 (a-Ar / V2)/ 2 -, e-Vdk 1  (s+1/2)Vddkj/

Here, C(x) and S(x) are the Fresnel functions.
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Appendix D

Bounce averaged quasilinear

diffusion operator

For the bounce averaged Fokker-Planck equation in Eq. (2.35), the coefficients are defined

by the relation with the coefficients of the original Fokker-Planck equation in Eq. (2.34),

Ao A (A)b

Bo = A (B)b

Co = A C A 'i9cosi b
80d ) b \/ cos 60/

Do A sino 800o D A cos i D
\sinO & b \hcosoo lb

E = A(/ sin09 80 E =A |cos V E
\sinod o / b \hcosoo0 ) b

Fo = A sindo oo 2 F = A cos2 F (D.1)
sind ( W0 ) hs/2 cos2,00 I b

where h(O) = B(O)/Bo is the ratio of the local magnetic field to that at the outer-midplane,

and 79 = tan--(L) is the local pitch angle whereas do is the pitch angle at the outer-
U"1

midplane. Here, the relation between the flux surface average and the bounce averag in

Eq. (B.6) is used. For quasilinear diffusion due to the RF wave, (Q(Fo,e))b, the convection

terms vanish (A = 0 and D = 0), and there are relations between the bounce-averaged
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constants due to the resonance condition [85],

Coqi
1 ~ k1~ 0

= Boqi vsin'd cosi - k 1  " 0

sin 9
0  cos 2 Z9 w - mQ

BOqi vo cos 0 [sin2 9  w sin 2  - res

Boqi (mCo/w) - sin 2 to9

vo cos 6o sin d0

(D.2)

(D.3)

(D.4)

From Eq. (D.2) to (D.3), we use conservation of the magnetic moment (a0 CSd Sinn)

and the resonance condition (w = kv cos t + mQ). In Eq. (D.4), the definition of gyrofre-

quency in the outer-midplane (QO = Q sin 2 ido/ sin 2 79 ) is used. Notice that the final relation

in Eq. (D.4) does not depend on the wavevector kl and the resonance poloidal location.

The remaining coefficients can be written as

Eoq = Boqi 1 [cos 9 - kl 1 C 0
ovvh . WI _ e
(mQo/w) - sin 2 ,i%

= Boqi VO cos P = Coqi sin io,

1 k ,V]2 ,,0 2
Foqi = Boqi cos 9 - _

v2 8W09 res

(mQo/w) - sin2 do
Eoq v0 cosd 0 sin V0

Notice that Coqi/Boqi = Foq/Eoqi, and that Coqi and EOqi are odd around the pitch angle

d0o = 7r/2, whereas Boqi and Eoqi are even.
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Appendix E

Wave momentum transfer by

resonance

The toroidal momentum transfer in the parallel direction in Eq. (3.4) can be obtained by

inserting the flux I,| in Eq. (A.6) and the perturbed fluctuating distribution function fA in

Eq. (A.8):

0 JO 27r

T =-e R ( -0 dv o dviLvif dae(!2 .

x E 1-k Cos(a- + Ek, k

e2 R 0 Jdvt GkjjT27r
= I2R dv do27rv1 dTei"kilvil)T 2(r
me k -o 0 0 0

x e" 1( - JnE E 11 + nifl k vi (E*,+ + E _ ) + JjI (Ek,+ - E,)

x e-(n ) (Ek J, + +((Ek,+ + Ek,_)U - E1iV) + (Ek,+ - Ek,_)UJI'.

The phase i(w-kjjvjj -nQ)-r is averaged out in the T integration except where W-kr i -Q =

0. Using the Dirac-delta function to express this resonance condition, the momentum
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transfer becomes

T1 -f dvj f dv2,rv1  ( -kv - nQ)(2 -

x ((1 - ") JnEI + Ln k9v1 (E, + E*) + j.,k vw (E ,+ - E,))

X (Ek,i aJfA + n ((Ek,+ + Ek,_)U - Ek,1i V) + (Ek,+ - Ek,_)UJn) (E.1)

-re Ek f_ dv| fo* dv1 2,rv 1

X En 6(W - kiivil - nQ)(2 .) kIXk,n 2L(fo) (E.2)

Zk IZT Pabs,kR(Z -i P)
PE 9 Pabs,kR(.) (E.3)

where the resonance condition w - kiivii - nQ = 0, the Bessel function identities nJn/A =

(Jn+1 + Jn- 1 )/2 and Jn' = (J- - Jn+1 )/2, and Xk,n = Ek,IIJn li + Ek,+Jn-1 + Ek,_Jn+l

are used from (E.1) to (E.2).

The rest of the toroidal momentum transfer in Eq. (3.9) can be obtained by inserting

the perturbed fluctuating distribution function fk in Eq. (A.8). Before doing so, I rewrite

Eq. (3.9) as

AT~ ± O = -eR Ek f_ dvj\ fOO dvj2,rv1 JLss
x E* k-v1(cos #(R - ) +sin #(y - ))

- v) (E ,+ + Ek,_) cos,3 - i(Ek,+

+(Ek,+ + Ek,_) sin # + i(EE, - E)

x (sinq cos # + cosq sin #)(R - ) -

- E ) sin # (R -q

) +kE,+ ~Ek,_)

(cos? 7cos/3 - sin 7 sin #)(y - )}I fk.
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Using Eq. (A.8) for fk and the Dirac-delta function for the resonance condition gives

A T- + A T1

- Ek ff dvg f dv1 2irvi6(w - k1vil - nQ) [(cos /(k

kLl JE*+w k,11

x (1

(1- ) Jn(Ej*+ + Ek_) + Jl k-vL (E,+

-i(sin #(-k - cos #(y )

- k nQ)J(E+ - E } XknLL(fo)

d1

- Ek f_*0 d 1 f dv 1 2,rv1 En 6(w - - ni)

x (cos/#(x4) + sin # -Y v) LXk,n I|2 L(fo)

E k kWLPabs,kR =k Pas,kR (cost#(k. 4) + sin #(y 4k)).

(E.6)

(E.7)

From Eq. (E.5) to Eq. (E.6), the resonance condition and the Bessel function identities

nJn/A = (Jn+1 + J,- 1)/2 and J 2 = (Jn_1 - Jn+1)/2 are used.
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- Ek)

(E.5)
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Appendix F

Higher order corrections to the

gyrokinetic equations

The gyrokinetic equation with higher order corrections of order p, for a species s in a

frame rotating with the ExB toroidal flow is

d +vb . V69fs + (v + v' + (v'/)) Vif
dt' ao 00C

+(v's) Vfo + -(v's O(Ob) + v) . V 1 (#tb)) fbg - (C (f,))

= -v'M fV - (').V9 af- (v'E2) ' if, - (V2) VfOS

Z e (V V. a(" + V/f~

- v)- Vfg + g (v -6 + v'%- V1 (tb)) 0f

-v, - Vif' + * - vf"6Es 1' 1n ao

+global effect terms, (F.1)

where d + Qp,ERb - V and vc are the time derivative and the Coriolis drift in the

rotating frame, respectively, and Q,,E = -ca/bg/8@ is the toroidal angular frequency of

the background ExB toroidal flow. Here, (v'I) = (b x V1 (tb)) is the dominant piece

of the ExB drift due to the fluctuating potential, and (v' 2 ) - _ (b x VO) is the

correction to the fluctuating E x B drift due to the slow variation along the magnetic field

line of the potential. The gradient in the perpendicular direction (0 and a) is defined as

Vi = VV + Va, and v" =-L(b x VO b9) is ExB drift due to the neoclassical higher
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order potential given by Eq. (4.20).

The left hand side of Eq. (F.1) is the lowest order gyrokinetic equation, and the right

hand side includes the corrections to order Bp. Besides the terms related to the neoclas-

sical distribution function f16,g that contains the diamagnetic flow in the third line on the

right hand side of Eq. (F.1), there are correction terms due to the slow poloidal variation of

the fluctuating potential and distribution function in the first line, the parallel nonlinearity

in the second line, and the neoclassical potential # 9 in the fourth line.

Assuming low collisionality and marginal instability for ion temperature gradient driven

turbulence, some higher order corrections in the ion gyrokinetic equation are dominant over

others. Low collisionality results in small neoclassical potentials, so the fourth line on the

right hand side of Eq. (F.1) can be neglected.

To estimate the parallel correlation length, needed to estimate the contributions due

to the slow poloidal variation and the parallel nonlinearity, the critical balance between

the nonlinear decorrelation time (rel) and the characteristic time for the particle parallel

streaming is used [37] (i.e. k ~ rT1, where kg is the turbulence parallel wavevector and

vtu is the ion thermal velocity). At the length scale at which the energy is injected into

the turbulence by linear instabilities, the nonlinear correlation time is determined by the

time associated with the linear drive due to background temperature and density gradients

(i.e. - ~ k,opig where k_,o is the turbulence perpendicular wavevector). In some cases,'n 1 LT

the eddies with the largest perpendicular extent reach the longest parallel wavelength in

the system (connection length) giving k11,0 ~ where q is the safety factor and R is the

major radius. In these cases, the parallel length is related to the perpendicular length by
kj,opi _ 1 estigt

k1,o ~ LT ~ I resulting the terms in the first and second lines on the right hand sides

of Eq. (F.1) being comparable to the terms in the third line.

However, for turbulence near marginal stability, the perpendicular correlation length is

limited by the perpendicular wavelength of the marginally stable spectral mode, resulting

in turbulence parallel wavelengths that are shorter than the connection length in the system

[147],

k1, ~ k 1,opi 1 , (F.2)
LT qR

where k',o is the smallest wavelength that is marginally unstable. Then, using the long
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wavelength limit of ITG turbulence,

e(tb) f p 1 pi qR
Te fM,i LT k1 ,0 pi LT LT

B p

Bo LT
(F.3)

Accordingly, the scale of each term on the right hand side of Eq. (F.1) can be estimated.

These scalings give (vE1) - vti. The term with the diamagnetic flow is

(F.4)(vE1) ' fig -~ pi Vti- B pi f ,i,
LT LT BO LT

where the characteristic length for the velocity gradient change is assumed to be same as

the temperature gradient length scale LT. The scale of other terms is compared to the

diamagnetic flow term in {1},

{2} Zie v1
mi

* ao(#tb) af tb

00 as,
e(0tb) f t b

~I_ vt k " fui
11 T fM,i

< pi vtj B pi fm,i~
LT LT Bo LT

LT k1,0 pi LT LT k1 ,0 pi

{1}, (F.5)

VM -Vg
00

~ vti i I k- qR I f,i~
R a ks,0p LT

< p vtj B pi fu ~
LT LT BO LT

pi qR pi vtj fM,i
R a LT LT

(F.6)

KvE2) VLftb vtq-I k11 qR Pi fM,i
LT a k1,Opi LT

p~ v tj B p~i

LT LT Bo LT

{5p: (vE2 1 0 Vti pM,iLT a kx,opi LT

p~ vtj B pi

LT LT Bo LT '
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{4}: (vE1) ' VO 40
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(F.7)

(F.8)
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Appendix G

Transformation of the gyrokinetic

equation to a rotating frame

The distribution function in the lab frame (L) and the rotating frame (R) must describe

the same physical state of the plasma. Thus, there are relations between the distribution

functions in the two frame,

fi ( = (L)o() = f ( ( o )

ni exp (v - RQM 2 ) , f (i 1+ T 73i)B (G.1)

ftb (L)) = f tb(R) (V)

~ f! ") (vj') + Q Dftb(L) (G.2)

where vg and v are the parallel velocity in the lab frame and the rotating frame, respectively,

and v' = vii - IQ,/B is used for the first order approximation of the distribution function in

Eq. (G.1) and (G.2). In this Appendix, I transform the gyrokinetic equation in Eq. (4.37)

in the frame rotating with the ExB toroidal flow to the lab frame, finding Eq. (4.14). In

this Appendix, I proceed differently than in Sec. 4.3.2. For simplicity, I assume that the

diamagnetic flow is zero and there is no velocity shear (i.e. Q. = Qp,E = -e0O( bg

Q,,d= 0 and 8Q0/8$ = 0). With these assumptions, the ion gyrokinetic equation in the
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rotating frame is

'fb(R) + ( V, + VI - cV qOt b) x

= jV(# tb) x (R Vf + + [V(I+ v + v' - V(/ b) a

Applying the relation between the two turbulent pieces of the distribution function in (G.2),

a fib(L) (v )+ IOW

1 -B I1+ (vI + V' + v'C - cV ( t b) x

y V(#b) x b- Vf + [vb+v' + V'C] - V(q tb) + (C(fy)).

Q~ af b(L)

B v'GI

(G.4)

Changing the dummy variable v for v1 and S' for £, and using the definition of the Doppler

shifted time derivative a = + - V, Eq. (G.4) becomes

+ (VI+ - + +(4b) x . vb(L)(v

bg aftb(L)
_ V tb)B

X+ F ± ivii IQ
[MTz TB J]

Ze V tb) ff ( i B
-[vjj b + vm] -)

Ba 1 1 )L RQ - Vf b(L)

- (C(fi))

VM - 0V (#tb) x

(G.5)

/ tb(L)

V B ay11

{1}

- f-Vbg X Vftb(L)( - vu - bg f b(L)
B(~II) - V 7

{4} 15}

+Zie -'j + M
± [Mli~

{3}

-VC V b (ft(L)(V) ±

16}

a (mtI 1
.Vqtb) T, Bas

17}

(Laf' '
X Zi e (0) 1fj 'j + -[vllb + vm]. V

Tni

Tmivll IQ
\T B})

{8}

+v- a)

{9}
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Vfb(R)

+ (C(f)). (G.3)

g ftb(L)

at
ZieVM

Sa

[ V (tb)B

B ay1 L

B

(G.6)

(Vlf +

{2}

x MiI . W

(ftb( L) (



Here, the left hand side in Eq. (G.6) is the same as the gyro kinetic equation in the lab

frame corresponding to Eq. (4.14), but there are additional terms on the right hand side in

Eq. (G.6). I will show that all the terms on the right hand side vanish.

For {3} and {5}, a piece of {3} is

(Iv) tb(L)
o E-V"B) Q8

Zje bg aftb(L)
vu-V~e ={5}

Iftb(L)
V BAB7,

where I used o , AoVa - and vI I V I)= v - VB.

The nonlinear acceleration term V(#tb) x bV ( is neglected because it is

small. Then,

{3} +{5}V= (v( xv (t V ( ) ( (G.8)

For {7}, some pieces are canceled out, because

V (#t) x b - Vvi x VB- V(#t)\0 (G.9)

$V(# tb) x b -V 1) m)vIP) - b x (b -Vb) . V b) T B .(G.1)

Using = g, V(I/B)/(I/B) = -b* Vb + O(BP) and Eq. (G.10), the term {7} is

fl 2(4tb . a nT L z tb a f (L)

yi ~\(/X JVP T, B (- T) fX, ± vjb aE fMi

X (fKitb - !. vQ) (_ 21EL + Zii e~ + . V (Ot)) (Mw L) 
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Finally, the term {8} is

{8} [ V(# b) xb Vf(L) + -[v i + vy] -V(#

as (#va) X (L- ) + e [v(L + v]x fM,Z + M;i M

+ (oll 10),x- a vn Tif(L)+ (B V(ot) X VV) T B &'ab M, i

+Z e ([v;;b + VM)
-F- 49

~ - I

V(tb) (i V )

+ (vII + M _ V tb )

*Vqtb)M
ta m

(L

(G.11)

rQ)

± c. (vKtb) x v) movll IQ,, Iln Tif(L)
B jB ft' ~

+ Z e I
m vI-

2
Q (

.Vb)] V( tb)

-({1}+{3}+f{5}) + - -(V;;b ) VfM

+ V(tb) x 1E - z mv; I n (L)
(BB&'4'BMai

B

(#b) f( + evC
fT B(L)I Mi V(#tb) 9

-({1}+{3}+{5}) + Vf b + vC - Vffb(L) - ({7}+{9})

-({1}+{2}+{3} +{4}+{5}+{6}+{7}+{9}).

From Eq. (G.11) to Eq. (G.12), the gyrokinetic equation in Eq. (G.3) is used and the second

order terms proportional to (QR/vt) 2 are ignored. From Eq. (G.12) to Eq.

the approximation vc - x (b 2 Vb)) 2v x [(VR x (') x b] is applied

and the terms small in (Bo/B) are neglected.

{2}+{4} = -1 Vf j.

From Eq. (G.14) to Eq. (G.15), I used

Thus, all the terms on the right hand side of Eq. (G.6) vanish and the gyrokinetic

equation in the lab frame on the left hand side remains. In other words, the relation

between the two turbulent functions in Eq. (G.2) holds for the solutions of the gyrokinetic

equations in the two frames given in Eq. (4.14) and Eq. (4.37)

The transformation of the parallel contribution to the radial flux of toroidal angular
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(G.12)

b(L) (V IB,

Zie

)

(G.13)
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momentum in Eq. (4.11) to the rotating frame is

H (R) tb /v3 Imitb(R) (

( ) dv'3 (ivII 2
-nV,) ftb(L)()

n (L) / p,,,(r(L) (G.16)
- I2 m i W B 2  ,.

where r(L) is the turbulent particle flux in the lab frame, and the relation o = vil - yQ
is applied. Alternatively, Eq. (G.16) can be obtained from the relation in Eq. (G.2)

U () -LO V V) v f dvf3 VI tb(R) VB

-V (#t) X 6 - VV) /3 do'ftb(L)VI +Q t(L

LV (#Ot) x 6 - V2/) f dV3 {ImiI b(L) + a
- kB~V / B fi ~V 0 + B Ovi Jj

= 1,M UP - ILm) (G. 17)

where integration by parts is used.

The transformation of the perpendicular contribution to the radial flux of toroidal an-

gular momentum in Eq. (4.12) to the rotating frame is

r = K V(#tb) x -i V J dv/3 ftb(R)(v x b) . VO/

- MiCV(#tb) X 6- VO dv's tib(L) (V X VV - QV/ - 0 1?/)

- U(L) - mGQE K I V2 12), (G.18)

where v' =v - Q R and R( = I - I x V@ are used.

By summing the contributions in Eq. (G.16) and (G.18), the transformation of the

radial flux of toroidal angular momentum is

U(R) - 11 (R) (R)

I I I L)

- 11 (L) _ M, KF(L)R 2)'0 (G. 19)
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where B 2R 2 = 12 + V0| 2 is used.
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