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Abstract

Growing environmental concerns encourage the cement industry to improve its
environmental performance, which in turn renews the interest in clinker grinding
efficiency. Current knowledge on clinker grinding was built over the past decades, but
contributions from fracture mechanics remained limited. This research aimed to contribute
to this field by investigating industrial clinkers with innovative techniques such as multi-
scale microscratching and statistical electron-probe microanalysis (EPMA). Microstructure
investigations were first performed with scanning electron microscopy (SEM), and three
characteristic length scales were defined for clinkers: the nodules at the macroscale, the
clinker matrix and porosity at the intermediate scale, and the clinker phases at the
microscale. A statistical EPMA method was developed to allow simultaneous determination
of the clinker bulk chemistry, the chemistry of the clinker phases, and their abundance. The
microscratch test method was downscaled to measure the fracture properties at each
characteristic scale of clinkers. Measurements on single silicate grains provided access to
the intrinsic fracture toughness, which was three to four time lower than the macroscale
fracture toughness. A combination of microstructure effects and toughening mechanisms
(crack deflection, crack tip shielding by microcracks, crack trapping, and crack pinning)
explained this behavior. Comparison of industrial clinkers showed that higher macroscale
toughness (i.e., poor coarse grindability) was associated with oversized alite crystals, which
was explained by the increase of microcracks toughening with larger grain size. In contrast,
lower macroscale fracture toughness (i.e., better coarse grindability) was associated with
either poorly burned clinkers showing excessive porosity or well burned clinkers having a
good repartition of small silicates. However, difficulties in fine grinding were expected for
the poorly burned clinkers because of the increased amounts of clustered belite. Overall,
this thesis presents new experimental methods to investigate clinkers, as well as links
between clinkers properties and grindability, both of which hold interest to the scientific
community and the cement industry.
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Chapter 1

Introduction

1.1 Industrial Context

In modern societies, concrete has become an essential construction material because of its

unique properties such as workability, strength and durability. Thus, Portland cement, the

main reactive ingredient of concrete, has been produced at an increasingly fast rate over the

past century, as shown in Fig. 1.1. In addition, estimates indicate that world cement

production will continue to grow until at least 2050, because of rapid economic growth in

Asia and expected growth of other emerging countries [56].

1940 1960 1980 2000

Year
2020 2040

Fig. 1.1. History of world cement production [127] and future estimates scenarios [56]. The
impressive growth observed in the last century is expected to continue until at least 2050.

At the same time, the cement industry is facing the challenge of reducing its environmental

footprint, as cement production accounts each year for approximately 5% of global man-

made C02 emissions [56]. As part of a global approach to address this issue, a topic of

interest is the optimization of energy efficiency in the process of clinker grinding.
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To obtain reactive cement, hard cement clinkers produced in cement kilns must be ground

from nodules of several centimeters into a fine powder. Standard specification for Portland

cements (types I to V) requires the fineness to be higher than 280 m2/kg, as measured with

the Blaine air permeability apparatus [10]. A recent survey [14] showed that U.S. producers

are grinding most cements even finer to approximately 380 m2 /kg (and up to 550 m2 /kg for

high early strength type III cements), which corresponds to 95% of particles being smaller

than 45 [tm (up to 98% for type III cements).

This intensive grinding process accounts for roughly one third of the approximately

100 kWh electrical energy required for the production of each ton of cement [107]. In

addition, it has been shown that overall efficiency of grinding is between 1% and 5%: almost

all energy is lost in heat, and only a very small percentage is directly used for particle size

reduction [107]. Thus, improvement in clinker grinding and reduction in energy

consumption is of high interest for the cement industry.

1.2 Research Objectives

Over the past decades, several publications were devoted to clinker grinding

[52,51,107,119,53,91,74,130,112,92,77,42,123], and this resulted in efficiency improvements

at the industrial cement plants. The vast majority of these studies aimed at establishing

relationships between clinker characteristics and grinding energy. Some studies were

dedicated to new grinding technologies, and a few were focused on fracture mechanisms of

clinkers. In a recent publication on sustainable cement production, Schneider et al. [107]

indicate that "certainly, fracture mechanics has not given sufficient understanding with

respect to clinker and other cement constituents."

Thus, this current study aims to improve the understanding of the multi-scale fracture

behavior of clinkers. In addition, the goal of this study is to develop experimental inference

of the link between fracture properties of cement clinker and its chemo-physical properties.

The following research question will therefore be addressed: How are chemistry, mineralogy

and microstructure of cement clinkers related to fracture properties at the different

characteristic scales?

This question is answered by pursuing the following objectives: (1) characterize the

microstructure of industrial clinkers with respect to the characteristic scales and
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particularities of the constituting crystals, (2) investigate average chemistry and mineralogy

of industrial clinkers, as well as chemistry of the constituting phases, and (3) adapt the

microscratch test method for investigation of fracture properties of heterogeneous industrial

clinkers at their different characteristic scales.

1.3 Approach

To fulfill the research objectives, the methodology schematized in Fig. 1.2 is implemented.

Four different types of industrial Portland cement clinkers are compared throughout the

study. Before testing, specimens are carefully prepared for each type of experiment.

Experiments on bulk powders are first performed to investigate the average chemistry (X-

ray fluorescence) and mineralogy (X-ray diffraction) of the studied clinkers. Polished

surfaces are then prepared to analyze the microstructure (scanning electron microscopy

with backscattered electron imaging), with respect to porosity and phase particularities.

These polished surfaces are also used for chemical analyses of the clinker phases (statistical

electron probe microanalyses) and a method is developed to extract bulk chemistry and

mineralogy from the same measurements. In addition, fracture properties are measured at

different scales on polished surfaces (multi-scale microscratch test). Finally, the results

from these complementary methods are compared and assembled to answer the research

question.

Fig. 1.2. Schematic representation of the methodology implemented in this project.
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1.4 Outline

Following the general presentation (Part I), which includes the introduction (Chapter 1) and

a review of the existing knowledge (Chapter 2), this document is separated into three parts

focusing on materials and methods (Part II), results and discussion (Part III) and

conclusions (Part IV).

In Part II, the materials are first presented (Chapter 3), followed by a description of the

experimental methods commonly used for clinker characterization (Chapter 4), i.e.,

scanning electron microscopy, X-ray diffraction and X-ray fluorescence. Experimental

details of an alternative clinker analysis method (statistical electron probe microanalyses)

are then described in Chapter 5. The microscratching method is presented in Chapter 6,

along with the work performed to minimize the experimental errors and to adapt the

method for use at smaller scales.

Part III first presents the results regarding the characteristic scales and the microstructure

of the studied clinkers (Chapter 7), and the qualitative and quantitative mineralogy

(Chapter 8), along with the assessment of the non-quantified content (amorphous +

residuals). In addition, bulk chemistry is measured and used to complement the mineralogy

results, in order to distinguish the particularities of each studied clinker. An innovative

clinker analysis method is also presented (Chapter 9). The method uses a single

measurement (statistical EPMA) to extract simultaneously the chemistry of single phases,

their abundance and the bulk chemistry. Chapter 10 focuses on the fracture toughness

results measured on the four industrial clinkers at their characteristic scales, as previously

defined. To complete Part III, Chapter 11 presents a discussion linking the measured

characteristics to the clinker-grinding problem.

Finally, Chapter 12 concludes with a summary of the results and the contributions of this

project, along with the industrial benefits and the perspectives for further developments.
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Chapter 2

Existing Knowledge

Clinker grinding has been in the focus of the cement industry for several decades, which led

to great improvements in grinding methods and efficiency. This chapter proposes a review of

the literature published on the subject. The basics of clinker grinding are first presented to

introduce the clinker phases, their mechanical properties, the successive stages in clinker

grinding and the grinding technologies. Qualitative and quantitative correlations between

clinker characteristics and their grindability are then described.

2.1 Basics of Clinker Grinding

Portland cement clinker is produced by burning a proportioned mix of ground limestone,

clay, quartz and scrap metal. When the kiln temperatures reach 1450'C, these elements

recombine and the four major clinker phases are formed: alite and belite, impure

polymorphs of C3S and C2S (as abbreviated in cement chemistry and corresponding to

chemical compositions [CaO]3.SiO2 and [CaO]2.SiO2, respectively); aluminate, C3A; and

ferrite, C4AF ([CaO]3.Al203 and [CaO]4.Al203.Fe2O3, respectively). The hot clinker is then air

quenched to preserve reactive polymorphs at room temperature, and nodules of up to

several centimeters are formed. These nodules are co-grinded with gypsum into a cement

powder with -95% of particles passing the 45 im sieve. Cement grinding depends mainly on

the clinker properties, as gypsum requires less energy to grind.

2.1.1 Mechanical Properties of the Clinker Phases

In clinker nodules, relatively large crystals of silicates (i.e., alite and belite) form the matrix

which is filled with an interstitial phase composed of aluminate and ferrite. Velez et al.

[130] measured hardness, H, and elastic modulus, E, for each clinker phase by

nanoindentation with a Berkovich probe. It was found that CsA is the hardest phase,

30



(H = 10.8 GPa; E = 145 Gpa), compared to the other three phases (H = [8.8, 9.5] GPa;

E = [125, 135] GPa). Slightly different results were obtained by de Souza et al. [112], who

measured higher hardness for C4AF than CsA with a Vickers probe. These authors also

measured lower elastic moduli in silicate phases (E ~ 125 GPa) compared to aluminate and

ferrite phases (E ~ 140 GPa).

The influence of impurities embedded in silicates on mechanical properties has been

studied, but there is no agreement on the results from different authors. Velez et al. [130]

experiments showed no significant effect of impurities on mechanical properties of silicates.

Atomistic simulations performed by Manzano et al. [77] agreed with these results regarding

alite, however these authors suggested a 20% reduction of the elastic modulus when

comparing pure C2S to belite with 3% Mg 2 +, Al3 + or Fe 3
+ ions. Phenomenological

relationships based on average composition of clinkers have been proposed. De Souza et al.

[113] mesured that the microhardness of silicates was proportional to the barium and iron

contents, and inversely proportional to transition metals, aluminium and alkali contents.

Opoczky and Gavel [92] observed an improved grindability for all trace elements they

studied (Cr, Zn, Ba, Ti, P).

2.1.2 Fracture Properties of Clinker

In addition to hardness and elasticity, fracture toughness (or fracture energy) is an

important characteristic to consider with respect to clinker grinding. Clinker is a brittle

material to which the concepts of Linear-Elastic Fracture Mechanics (LEFM) may be

applied. Initially proposed by Griffith [47], and further refined others authors such as Irwin

[57], the framework of LEFM recognizes the pre-existence of flaws in materials and the

failure is associated with the propagation of cracks from these defects. The energy release

rate G is defined as the potential energy stored in the system, which is released when the

crack propagates by de. Griffith initially defined the following crack propagation criterion:

G 2y <-+ de 0; G < 2y <-> de = 0; (2.1)

where 2y is the surface energy of the two free surfaces created by the crack. To extend the

theory to ductile materials, Irwin and coworkers introduced the concept of plastic zone

developing at the crack tip. This led to the definition of a new crack propagation threshold,
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the fracture energy Gf = 2y + Gy, which accounts for the plastic dissipation G, in addition to

the energy of surface creation.

A complementary local approach focuses on the stress concentration at the crack tip, which

is described by the stress intensity factor K. The crack propagates if K reaches a critical

threshold, the fracture toughness Kc. In fact, both approaches share the same threshold, as

the application of Irwin's formula establish a direct link between the fracture toughness and

the fracture energy:

Gf (K/E)Kc (2.2)

where E is the Young's modulus, K = 1 for plane stress and K = 1 - v 2 for plane strain (v is

the Poisson's ratio).

Hornain and Regourd [53] measured the specific fracture energy y on notched samples made

of sintered clinker. Their results indicate that y is an order of magnitude higher for the

polycrystalline clinker (12 to 22 J/m 2 ) compared to single crystals of C3S (-1.0 J/m 2) and CsA

(-1.4 J/m 2 ). This higher resistance to fracture of a polycrystalline material, compared to its

constituting crystals, is relatively common. It is associated with the presence of

discontinuities, at the grain boundaries and in the pores [53].

In addition, Hornain and Regourd [53] determined the fracture toughness of the main

clinker phases by measurements of radiating cracks from microindentations with a Vickers

indenter probe. Their results show that the alite phase has the lowest fracture toughness of

Kc = 1.7 MPa.mA, in comparison to Kc = 3.1 MPa.m/ for the aluminate phase and

Kc = 3.7 MPa.mA for the belite phase (radiating cracks were not observed for ferrite in their

experiments). These results are supported by the analysis of fractured clinkers surfaces.

Cracks were observed to propagate mainly in the alite crystals and at the boundaries

between phases. The cracks were usually stopped or deviated when reaching phases with

higher toughness (belite crystals or interstitial phases). In addition, the authors explain the

weakness of the alite crystals with the preferential cleavage planes and the anisotropic

thermal dilation. Alite thermal dilation differs in magnitude from that of the crystallized

liquid phase. Tensile stresses are thus created during quenching of clinkers, which results

in microcracking. Following this work by Hornain and Regourd [53], the analysis of the
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clinker-grinding problem based on fracture mechanics has not been further developed by

other authors. This lack of scientific knowledge motivates much of this study.

2.1.3 Stages in Grinding

Tavares et al. [119] suggested a separation of grinding in three stages and correlated

governing factors to each stage. Coarse grinding from nodules down to 1 mm particles is

mainly governed by porosity and consists of breaking aggregates of crystals. Fine grinding

down to cement particle size depends on properties of the individual phases and seems to be

mainly influenced by aluminate and ferrite contents. An intermediate phase may also exist

in between where alite content has the largest influence. Other authors have proposed

different governing factors detailed in section 2.2.2.

2.1.4 Industrial Grinding

Industrial clinker grinding has evolved over the past decades in order to improve the energy

efficiency, but equipment wear and final product quality have been limiting factors for the

adoption of new technologies. Ball mills are still used for cement grinding, even if the

energy use is far from optimal with this technology [111]. However, these mills are slowly

being replaced by efficient technologies such as high pressure grinding rolls (HPGR),

horizontal roller mill and vertical roller mill.

2.1.4.1 Collision Mills

The ball mill is the simplest type of collision mill and it has been widely used for clinker

grinding because the maintenance is relatively easy. Steel balls (the grinding media) are

placed in a rotating tube mill with a rippled profile to optimize lifting. The speed of the mill

is adjusted so balls are lifted to a certain point before falling, as shown in Fig. 2. la.

Two mechanisms are responsible for particle size reduction (Fig. 2.1b): the collision forces

imposed to clinker particles fracture the grains, and the friction between particles creates

attrition of softer particles. This combination of mechanisms is useful for cement grinding

as the particle size distribution of the final product is wide, thus void ratio is low and water

demand during the mixing of concrete is minimal. However, this kind of mill is not energy

efficient because of the multiple impacts and the cushioning effects [20].
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compressive forces (friction)

e ..

Fig. 2.1. (a) Schematic of the operation of a ball mill [55] and (b) representation of the forces

acting on particles during grinding.

2.1.4.2 Compressive Mills

The concept behind compressive mills is the breakage of each crystal or aggregate of

crystals separately by simple cleavage [20]. Different technologies, such as HPGR and roller

mills, have been adapted to apply this concept to clinker grinding and they share these

common characteristics.

First, the efficiency is greatly increased compared to ball milling because greater stress is

directly applied with single-particle breakage. Unsuccessful impacts characteristic of ball

mills are minimized, and the energy lost as heat is thus reduced [117]. The wear of the

equipment and the complexity of maintenance were issues that needed to be addressed

before large-scale adoption of these technologies, as clinker particles are very hard and

abrasive. Another concern regarding the compressive mills is that cements may have

different properties, when compared to those produced with ball mills. These cements

usually have a narrower particle size distribution, as shown in Fig. 2.2. This leads to higher

strength for the same fineness because the average particle size is lower. At the same time,

the water demand is higher, which is not desirable [107]. In addition, particles of gypsum

are coarser and less dehydrated because of lower grinding temperatures with these types of

mills. Initial setting time can be significantly reduced if this behavior is not considered in

gypsum proportioning [20].
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Fig. 2.2. Effect of mill type on the particle size distribution of cement with a Blaine surface
area of 280 m 2/kg, plotted on a Rosin-Rammler-Sperling-Bennett grid [20].

High pressure grinding rolls

High pressure grinding rolls (HPGR) consist of two counter-rotating rollers delivering high

pressure (more than 50 MPa) on particles, see Fig. 2.3a. A rotating motion brings material

between rollers where compressive forces cause size reduction and extensive micro

fracturing of the grains. Compacted "cakes" exit the HPGR and they can either be

disagglomerated or further grinded. To prevent narrow particle size distributions, HPGRs

are often used in the cement industry for pre-grinding and intermediate grinding. Fine

grinding is then performed with conventional ball mills. However, the technology can also

be used as a single-stage process up to fine grinding [111].

Microscopic observations performed by Celik [23] on fractured surfaces showed that higher

loads applied by HPGRs result in a rougher surface texture, preferential fracturing along

grain boundaries and fissures on the surface of particles. This leads to greater specific

surface areas in comparison to similarly sized ball mill particles, which are formed by

repeated collisions and transgranular fracture.

Horizontal roller mills

Horizontal roller mills are a hybrid solution between tube mill and HPGR fracturing. As

shown in Fig. 2.3b, particles are pressed between a cylindrical roller and the surface of a
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tube mill. Particles stay in the mill for multiple cycles of pressing until sufficient fineness is

achieved. This kind of mill can be used for a single-stage grinding process, with energy

savings up to 50% compared to ball milling [111].

(a) (b) Sc,,,,,, Material seed control System Extracton (C)

- Scrapers
Outlet

and 4-6 gMdig

Fig. 2.3. Schematized grinding mechanisms of (a) HPGR [20], (b) horizontal roller mill [35]
and (c) vertical roller mill [109].

Vertical roller mills

Vertical roller mills also take advantage of a concentration of compressive forces over a thin

layer of material. Particles are ground on a rotating table by rollers applying compressive

forces (see Fig. 2.3c). Centrifugal forces bring material under the rollers and then out of the

table, where airstreams bring the particles to a classifier above grinding table. Particles of

adequate sizes are collected as final product and coarser particles are returned on the table

for further grinding. This kind of mill can be used for a single-stage grinding, with energy

savings up to 40% compared to ball milling [111].

2.2 Empirical Correlations Based on Clinker Characteristics

Several experimental studies performed over the last decades focused on the impact of

clinker characteristics on its grindability. Extensive literature reviews were published in

1995 and 2007 by the Portland Cement Association [52,51]. The general trends described in

the following paragraphs are derived from these studies. The term "grindability" is defined

such as clinkers with higher grindability requires less grinding energy.

2.2.1 Laboratory Techniques for Grindability Measurement

The most common way of measuring grindability is the use of small laboratory mills. The

grinding energy can then be related to the fineness measured by air permeability with the

Blaine apparatus [12]. Zeisel's method [139], a variation of Hardgroove test used in the
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cement industry, defines specific grindability as the consumed grinding energy per unit

mass of sample required to obtain a specific Blaine fineness (usually around 300 m 2/kg). The

Bond's ball mill grindability test [15] is another widely used method that simulates closed

circuit dry milling. Cycles of grinding and sieving are performed with a miniature ball mill,

until equilibrium state is reached. Bond's work index can be calculated from sieve opening

and percentage passing at equilibrium. A higher work index corresponds to a lower

grindability.

Miniature laboratory mills and the methods described above are very useful to measure fine

grindability. The drop weight test is more adequate to determine coarse grindability

[42,112]. In this test, the resistance to impact breakage is determined from data obtained in

single particle breakage tests for a range of particle sizes. Other laboratory measurements

such as optical microscopy, mineralogical and chemical analyses can be used to estimate

clinker grindability with the help of empirical correlations, as detailed in section 2.2.3.

2.2.2 Effects of Clinker Characteristics on Grindability

Influence of Silicate Phases

Published experimental results generally agree on the importance of the proportions of

silicate phases, higher alite and lower belite contents result in a clinker that is easier to

grind. This behavior can be explained by crystal toughness. Alite crystals contain micro-

cracks and are prone to crack propagation, whereas belite crystals are rounder and more

ductile [132,118].

In addition, it was found that small silicate crystals result in improved grindability. As

suggested by Viggh [132], larger crystals not only require more energy to fracture, but the

resulting fractured particles are charged and may have a higher tendency to agglomerate

than similarly sized small alite crystals. Another possible explanation is that large silicate

crystals may encourage dust formation, which has a negative impact on grinding [80].

Agglomeration and adhesion to grinding media is also a source of decreased grindability.

The tendency to agglomerate is lower for alite than belite (the # belite polymorph has the

highest tendency).
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Another important parameter is the distribution of belite. Clusters, or nests, can be formed

because of larger quartz particles in raw mix. These clusters are harder to grind than

individual belite grains, and they increase the energy required for fine grinding [74].

Influence of Interstitial Phase

The interstitial phase is composed of CsA and C4AF, which are the hardest compounds of

clinker and may thus be responsible for reduced fine grindability [119]. However, other

authors suggest that an increased interstitial phase content is favorable to grinding [132].

Overall, there is no agreement in the literature regarding the effect of the interstitial phase

[52].

Nevertheless, it was found that crystallized interstitial phases were easier to grind than

vitreous liquid phases resulting from excessively rapid cooling of clinker [46]. In addition,

large volume shrinkage occurs from the crystallization of the interstitial phase, which

exerts tensile stresses on alite crystals and enhances its microcracking [74]. This indirectly

improves grindability, by weakening of the alite crystals.

Influence of Other Parameters

General agreement exists regarding the possible improvement of coarse grinding with

increased porosity. Smaller and well distributed pores seem to be preferable to large pores

[93,40], but the reasons behind this observed trend are not explained. The influence of MgO

content is also not clearly understood. Some authors suggest that periclase has a negative

effect on grindability because of its hardness is higher than that of alite and belite [13].

However, other authors have measured an improvement in fine grindability with the

increase in periclase content [112]. In contrast, good agreement exists on the positive effect

of free lime particles. They do not bond firmly to the surrounding materials and this creates

weakness in clinker mass [97]. Dusty clinkers and clinkers with large nodules were also

found to be harder to grind [95,80].

2.2.3 Empirical Correlations for Estimation of Grinding Energy

Over the years, authors have proposed different correlations, fitted from a large number of

data, to link clinker characteristics to grindability. Ono [90] established an empirical

relation between grindability and analyses of silicates under an optical microscope.
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Grindability is measured with Blaine fineness, B1, obtained after 45 minutes of grinding in

a prescribed laboratory mill. A correlation is drawn with alite size AS, alite birefringence

AB, belite size BS and belite color BC:

B1 = 1251 + 218AS + 239AB + 287BS + 2.1BC (2.3)

This relation was also used by Kawamura [63], who obtained good fits of his data with some

adjustment of the empirical coefficients.

Other authors [105,132] prefer a correlation between the Zeisel grindability, P', at

3200 cm 2 /g and the belite corrected specific alite content, Ak (a function of silicates contents

and sizes):

P'(KWh/t) = -20.7 * InAk + 57.9
(2.4)

Ak = C3 S%/C 3 Ssize - C2S% * C2Ssize/1000

Venkateswaran and Gore [131] proposed the same relations for belite-rich clinkers with

Bond's mill test. For such types of clinkers, a revision for Ak was formulated:

Ak = C3 S%/C 3 Ssize (2.5)
C2 S% * C2Ssize/1000

Theisen [123] developed relations by adopting a different methodological approach. Alite

intersections, NC3S, and porosity, p, were measured by microscopic point count over random

lines. Empirical relations were then fitted with silicate contents and power consumption,

P35o, required to reach a fineness of 350 m2 /kg. One of the relations they fitted reads as:

P3 50 = 30.2 + 0.34 * C3 SN + 0.38 * C2S% - 11.5 * TEA
(2.6)

C3 SN = C3 S% * 20 * (1 p)/Nc3s

where TEA is a grinding aid. In a recent study, Genc and Benzer [42] proposed relations

between single particle impact breakage parameters and silicate contents. Specific

comminution energy, Ec8 (kWh/t), of the drop weight test was related to tio (amount of

material passing 1/10th of the original size) in order to calculate breakage parameters A and

b. The resistance to impact breakage was reported as A*b (higher values indicate lower

resistances), and correlated with silicates contents:
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tio = A * (1 - e-b*Ecs) (2.7)

A * b = 333 - 5.8 * (C2S%) - 3.4 * (C3 S%)

Similar tests were performed by Tavares et al. [119] who established a relationship of

proportionality between breakage parameters A*b and the percentage of porosity. The

Bond's workability index, Wi, was measured for different sieve sizes (75, 150 and 300tm).

They obtained the following correlations which suggest different governing factors for

different grinding stages:

Wi(300pm) = 76.4 - 0.50 * Porosity - 0.74 * C3 S%

Wi(150pm) = 55.6 - 0.46 * C3 S% - 1.39 * C3A% - 0.54 * C4 AF% (2.8)

Wi(75pm) = 42.8 - 2.79 * C3A% - 1.36 * C4 AF%

All these empirical correlations can be useful to estimate the grindability of clinker, but

may not be applicable to clinkers produced in different contexts without adjustment of the

empirical coefficients. However, these relations add quantitative evidence to the role of alite

and belite contents and sizes as important clinker characteristics with respect to

grindability.

2.3 Chapter Summary

This chapter presented a review of existing technology and literature on Portland cement

clinker. The problem was discussed from different perspectives including characterization of

clinker phases, grinding technologies, and fracture mechanisms.

Authors generally agree that coarse fracture of clinker nodules originates mainly in

microcracks and weak cleavage planes of brittle alite crystals. Cracks would then propagate

in porosity and at grains boundaries, contour the rounded belite crystals and sometimes

terminate in the harder interstitial phase. On the other hand, fine grinding is controlled by

characteristics of individual phases, as they have already been separated. Experimental

observations and empirical correlations showed strong evidence that grindability was

improved with an increase in alite content and a decrease in belite content. Other

characteristics such as large crystal sizes, agglomeration tendency or an amorphous state of

the interstitial phase were also found to reduce grindability.
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Clinker grinding is usually performed at the industrial scale either by impact breakage (and

attrition) in ball mills, or more efficiently, by pressure fracturing in different types of

compressive mills. To date, clinker-grinding optimization was mostly based on

phenomenological studies. To advance this research, a deeper knowledge of clinkers from a

fracture mechanics perspective is required. This motivates the following investigation,

which aims at providing a better understanding of clinker fracture, by using multi-scale

experimental methods applied to industrial clinkers.
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Part II

Materials and Methods
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Chapter 3

Materials

The aim of this study is to characterize normal cement clinkers from new perspectives.

Investigations are performed on clinkers samples provided by our industrial partners.

Thanks to this partnership, we are able to work with clinkers sampled directly from the

production line of different cement plants. Two different types of sample preparation are

performed to produce powdered samples and polished surfaces, respectively.

3.1 Studied Clinkers

Four industrial cement clinkers are investigated in this work. These were obtained from

four distinct cement plants and labeled as C1, C2, C3 and C4. The samples were received in

the form of nodules with diameters generally below 50 mm. In order to ensure integrity, the

samples were stored in doubled plastic bags and placed in an environment with controlled

temperature and humidity.

No information was provided regarding material properties and manufacturing conditions.

However, significant difference in nodules shape, size, color and resistance to handling,

suggested that the four clinkers were produced in significantly different manufacturing

conditions. Further description is presented in the microstructure investigations (Chapter 7.

3.2 Sample Preparation

3.2.1 Powdered Samples

Powdered samples were prepared for X-ray diffraction (XRD) analyses by manual grinding

of the studied clinkers. A representative sample of 30 grams was randomly selected for each

clinker after homogenization. The samples were coarsely ground in an agate mortar for 10

minutes per 5 grams, then dried for 12 hours at 110*C, and finally cooled in desiccator for
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30 minutes. After homogenization, 4 subsamples of 2 grams were finely ground for each

clinker in the agate mortar for 3 minutes per 0.4 grams. The coarsely ground and finely

ground powders were dried, and then stored in hermetic bottles placed in a desiccator.

3.2.2 Epoxy-Embedded Polished Surfaces

One of the requirements for scanning electron microscopy (SEM) and electron probe

microanalyses (EPMA) is a flat polish (< 1 pim) of the specimen surface [45]. To fulfill this

condition and minimize the influence of surface geometry on the measurements, clinkers

samples were impregnated in epoxy and polished with a semi-automatic procedure

optimized for hard and porous clinker samples. This preparation procedure was also applied

to the samples used for microscratching.

The bulk samples (B series) were prepared with clinker nodules of 20-30 mm in diameter. A

low speed diamond saw (IsoMet, Buehler, USA) was used to cut slices of 12 mm thickness,

which was found to be adequate for complete epoxy impregnation of the pores. Each slice

was placed in a cylindrical mold inside a vacuum impregnation device, as shown in Fig. 3.1.

A vacuum of 26" Hg was created in the chamber and the mold was filled with epoxy

(EpoThin, Buehler, USA). To allow complete impregnation of the pores, 5 pressure cycles

were performed, each cycle consisting in 1 minute under vacuum followed by 1 min at

atmospheric pressure, as suggested in [18].

valve
Vacuum

seal
E

Mold

Sample

Fig. 3.1. Epoxy impregnation setup. The sample is placed in a mold inside a hermetic
chamber, a vacuum of 26" Hg is created and the epoxy is poured into the mold by suction.
Pressure cycles are then performed to remove the air from porosity.
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After hardening, slices of -12 mm in diameter by 4 mm in height were cut with the slow

speed saw, and then mounted with cyanoacrylate glue on standard AFM bases of 15 mm

diameter (Ted Pella, USA). Mounted samples were automatically leveled and ground with a

specially designed jig and post system, as described elsewhere [81] and schematized in Fig.

3.2. This system was used on a turntable with a hard perforated cloth (TexMetP, Buehler,

USA) and a 9 pm oil-based diamond suspension (MetaDi, Buehler, USA). Leveling of

samples was usually achieved within 20 min.

Fig. 3.2. Schematic of the leveling setup by Abuhaikal and Ulm [1]: (a) cross section of the
jig and post system, (b) top view of the system used with a turntable and a circular holder
allowing oscillation of the jig.

Leveled samples were polished in 2 steps with dry abrasive discs (FibrMet, Buehler, USA):

1 min polishing on a 3 pim diamond pad was followed by 1 min on a 1 pim alumina oxide pad.

After each polishing step, 3 min of ultrasonic cleaning in n-Decane (TCI, Japan) was

performed. The final surfaces obtained are characterized by rare occurrence of surface

irregularities visible under 20x and 50x objectives of the optical microscope, and by a high

mirror-like reflectivity of the surface, as illustrated in Fig. 3.3. After final ultrasonic

cleaning, samples were dried in an oven at 40*C for 12 hours, and then stored in a

desiccator. Finally, polished samples were coated with a 25 nm carbon layer prior to the

electron microscopy investigations.

46



Fig. 3.3. Typical polished clinker sample. After epoxy impregnation and cutting, samples are
glued on AFM disks, automatically leveled and manually polished to a mirror-like surface.

In addition to bulk samples (B- Series), two series of epoxy impregnated samples were

prepared with the powdered samples initially prepared for XRD analyses: a first series with

the coarsely ground clinkers (C- Series) and a second series with the finely ground clinkers

(F- Series). For each sample, 2 grams were compacted with a post in a cylindrical mold of 12

mm in diameter. Epoxy impregnation and sample polishing were performed similarly as for

bulk samples, with the difference that the dry abrasive disks used were alumina oxide pads

of sizes 9 pm, 3 ptm and 1 pm (FibrMet, Buehler, USA). Diamond polishing pads were found

to be too aggressive, leading to removal of surface grains and generating irregularities on

the surface.

3.3 Chapter Summary

Four industrial cement clinkers provided by industrial partners were first presented.

Powdered samples were then prepared in an agate mortar for use in X-ray diffraction. In

addition, polished surfaces of clinkers (bulk and powders) embedded in epoxy were prepared

by automatic leveling and manual fine polishing. The polishing procedure was optimized for

preparation of samples for use with SEM, EPMA and the microscratch test.
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Chapter 4

Clinker Characterization

As previously discussed in Chapter 2, cement grinding is closely related to clinker

properties such as microstructure, mineral composition and chemical composition. A

complete characterization of the studied clinkers is thus of prime importance for this study.

Based on techniques used in the cement industry, this chapter presents the methodology

used to investigate (1) the microstructure with scanning electron microscopy, (2) the

mineralogical composition with X-ray diffraction and the Rietveld method, and (3) the

chemical and mineralogical compositions with X-ray fluorescence and the Bogue calculation.

4.1 Scanning Electron Microscopy

Optical microscopy and scanning electron microscopy (SEM) is extensively used for clinker

characterization, as observation of microstructure is of great importance to improve the

general understanding of clinkers. Thanks to Dr. Campbell who regrouped findings from

hundreds of publications [22], microstructure observations can be linked to particular

grinding behaviors, cement reactivity, and kiln operation conditions. In this study, SEM

analyses are used to characterize the particularities of clinker phases (e.g., size, repartition,

microcracking), as well as the porosity and the apparent size distributions of the powdered

samples embedded in epoxy.

4.1.1 Experimental Protocol

Epoxy-embedded polished surfaces were analyzed with a JEOL 5910 scanning electron

microscope (SEM). Backscattered electron (BSE) imaging mode was chosen to provide

contrast between the crystal phases, and for easy identification of pores and grain

boundaries. Analyses were performed with different magnifications (10OX, 250X, 500X,

1000X and 2000X) and an accelerating voltage of 15 kV.
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4.1.2 Identification of Clinker Phases Particularities

As illustrated in Fig. 4.1, SEM-BSE imaging of a clinker surface results in a grayscale

image with clear distinction between the main clinker phases. The measured gray level

depends on the backscatter coefficient, t7, which is a direct function of the mean atomic

number, Z, of the probed phase [45]. As presented in Table 4.1, backscatter coefficients for

the major clinker phases are sufficiently different to allow phase identification with an

adequate adjustment of brightness and contrast of the instrument. The backscattered

coefficients of belite and aluminate are too similar for distinction. This limit is overcome

with the use of the characteristic shapes associated with these phases. The belite crystals

are usually rounded whereas aluminate crystals are generally of smaller dimension and

intermixed with ferrite crystals.

Fig. 4.1. BSE image of a clinker sample by Abuhaikal and Ulm [1] with clear distinction
between the phases: alite (-C 3 S), belite (-C 2 S), aluminate (C3A) and ferrite (C4AF).

Phase p (g/cm 3) Z7
Alite (C3S) 3.15 15.057 0.174
Belite (C2S) 3.28 14.562 0.166

Aluminate (C3A) 3.03 14.339 0.164
Ferrite (C4AF) 3.80 16.651 0.186

Free Lime (CaO) 3.32 - -

Table 4.1. Physical properties of the main clinker phases: usual values for density p [22,20],
mean atomic number f and backscatter coefficient t7 calculated with Monte Carlo
simulations by Wong and Buenfeld [136].
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After identification, the characteristic crystal size of each phase can be determined by direct

measurement. In addition, the presence of microcracks (created by differential thermal

volumetric changes upon quenching of clinker) is identified by visual observation of the

crystals and their boundaries.

4.1.3 Image Analysis and Apparent Size Distributions

Quantitative analyses of the surface were carried out to investigate porosity domains and

particle size distributions of the powdered samples. In both cases, parameters of the SEM

were adjusted to maximize contrast between the gray bulk surfaces and the black porosity

filled with epoxy. Typical images used in the analyses are presented in Fig. 4.2.

(a) (b)

Fig. 4.2. BSE imaging of polished surfaces with brightness and contrast adjusted for optimal
separation between porosity and matrix/particles. (a) Bulk sample of clinker C1 and (b)
coarsely powdered sample of clinker C1. Magnification is set to 1OOX and each image
represents an area of -1.3 mm by -1 mm.

With the aim to characterize the surfaces (and not the 3D microstructure), apparent size

distributions were extracted from 2D cross-sections without any application of stereology to

estimate the 3D pore/particles size distributions. Nevertheless, total porosity/particle

volume was approximated based on the Delesse principle [84] which stipulates, that the

volume fraction, fvi, of a phase i is equal to its area fraction, fAi:

V. A -
fyi = = = fAi (4.1)

Vtotai Atotai

ImageJ, a non-commercial image analysis package [19], was used for processing of the

micrographs (smoothing, flat-field subtraction, manual binary thresholding) and for
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determination of the particles boundaries and surface areas, A. Equivalent particle

diameters were calculated assuming circular particles, deq = 2 * (A/w)", and apparent

pore/particle size distributions were compiled. To avoid sampling effects, the analyses were

performed on several randomly selected images to investigate surfaces much larger (by at

least one order of magnitude) than the largest heterogeneities.

4.2 X-Ray Diffraction and Rietveld Analyses

Mineralogical composition of the studied clinkers was assessed with X-ray diffraction (XRD)

measurements performed on finely powdered samples. Qualitative analyses allowed the

identification of the crystalline phases, and the Rietveld method provided a quantitative

estimation of their relative abundance. In addition, the internal and external standards

methods were used to determine the amorphous content for each sample. The methodology

presented in the following paragraphs was developed in collaboration with Nicolas

Venkovic, using insightful advices from Dr. Scott Speakman, research specialist at the X-

ray Diffraction Facility of the Center for Materials Science and Engineering, at MIT.

4.2.1 Experimental Protocol

XRD analyses were performed with a PANalytical X'Pert Pro Multipurpose Diffractometer

equipped with a copper source, an open Eularian cradle and high-speed Bragg-Brentano

optics, as illustrated in Fig. 4.3. The incident beam was focused with a 0.04 radian soller

slit, a 0.50 fixed divergence slit, a 1* anti-scatter slit, and a 15 mm limiting beam mask. The

diffracted beam was focused with a 0.02 radian soller slit and a 0.50 anti-scatter slit. The

detector was a X'Celerator with an acquisition time set to 50 seconds per step of 2.122020,

for angles ranging from 10020 to 70'20. The total duration of each scan was around 25

minutes. This was determined to be adequate to obtain sufficient intensities over

background for the smallest peaks [114,94].

Before each XRD scan, the subsample to be tested was homogenized, and then a 27 mm

circular sample holder was backfilled and compacted in three layers with the set of tools

shown in Fig. 4.4. Such a procedure was found to be optimal to meet the XRD surface

requirement which is a homogeneous, densely packed and smooth flat surface with

randomly oriented grains [94].
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(a)

I~

Fig. 4.3. (a) PANalytical X'Pert Pro Multipurpose Diffractometer showing the sample, the X-
ray tube, the detector, the slits, the mask and the filter. (b) Bragg-Brentano geometry: the
X-ray tube and the detector move symmetrically to ensure equality between incident and
divergent 0 angles.

Fig. 4.4. (a) Perfectly leveled surface of a powdered sample backfilled in a 27 mm circular
sample holder. (b) Set of tools used for backfilling of the sample holder.

4.2.2 Qualitative Analyses

The qualitative phase identification was performed with the help of the software High Score

Plus. Best matches were identified between the experimental spectra and the patterns from

the Powder Diffraction File (PDF) database published by the International Centre for

Diffraction Data (ICDD). All experimental peaks were identified and validated against

results presented by Taylor [121]. Fig. 4.5 shows the phase identification for a XRD scan of

the NIST reference clinker SRM 2688. The peaks for the four major clinker phases are

labeled in the figure, i.e., alite, A, belite, B, aluminate, C, and ferrite, F. In addition, typical

angles for periclase, P, and free lime, L, are identified, even if the intensity for these phases

is negligible in this reference clinker.
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Fig. 4.5. (a) Qualitative phase identification for the X-ray diffraction scan of the NIST
reference clinker SRM 2688. Major phases identified are alite, A, belite, B, aluminate, C,
ferrite, F, with possible trace amounts of periclase, P, and free lime, L. (b) Container of the
reference clinker SRM 2688 provided by NIST.

4.2.3 Quantitative Rietveld Analyses

The full profile refinement was performed with the Rietveld method to quantify the relative

amounts of the main clinker phases. The clinker components identified in qualitative

analyses were used for the Rietveld fitting. As different crystal structures were available in

literature for each clinker phase, two different sets were investigated in order to determine

the most appropriate structures. A first set, S1, was inspired from structure choices by Le

Sao it [103] and a second set, S2, from a combination of other publications [59,116]. Both

sets of crystal structures are presented in Table 4.2.

The refinement procedure was iteratively developed and a 5 steps process was defined.

Special care was given as not to favor any crystal structure and to limit the refined

parameters [94,43,103]. The first step consists of refining the global shift with the specimen

displacement parameter, the background with a Chebyshev II polynomial (refining flat

background + 9 coefficients) and the scale factor for each crystal structure. Then, lattice

parameters for all structures are added to a second step of refinement. In the third step,

lattice parameters are turned off and preferred orientation is refined for alite structures, to

account for distortions in alite peaks relative intensities. Steps 4 and 5 consists of refining

peak shapes for phases occurring in amounts higher than 10% (peak shape should not be

refined for minor phases because fitting may results in erroneous modeling of background
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with these phases [114,138]). The peak width W parameter and one peak shape parameter

are successively turned on and off during the two last steps.

Formula Crystal system
Ca3SiO5 Monoclinic/M3

Monoclinic/<Mi>
C 2SiO4 Monoclinic/p

Aluminate Ca3A206
Ca8.5NaAl6O18

Ferrite Ca2AlFeO5

Free Lime CaO
Periclase MgO

Orthorhombic/a'
Cubic

Orthorhombic
Orthorhombic

Cubic
Cubic

Set
Sl
S2

Si, S2
S1
S2

S1, S2
S1, S2
S1, S2

S1
S2

S1, S2

PDF Code
01-070-8632
04-009-5560

01-083-0460
04-008-8073
04-012-6734
04-008-8069
04-012-8663
04-006-8923
04-011-5939
01-082-1691

S1, S2 04-004-8990

Reference
De la Torre et al. [69]

Nishi et al. [88]
Noirfontaine et al. [89]

Tsurumi et al. [126]
Jost et al. [61]

Mumme et al. [85]
Mondal & Jeffrey [83]
Nishi & Takeuchi [87]
Colville & Geller [25]

Jupe et al. [62]
Huang et al. [54]

Taylor [120]

Table 4.2. Sets of crystal structures investigated for optimal Rietveld refinements of
clinkers. The set S1 is inspired by Le Sao it [103] and the set S2 is a combination of crystal
structures used in other publications [59,116].

The quality of each refinement is determined both by visual and quantitative assessment of

the residuals. Careful visual inspection of the calculated profile, along with the

experimental profile and their difference (the residual profile), is essential to validate

adequate modeling of all experimental peaks. The weighted residual profile, RwP, is used for

quantitative evaluation of the fit. This figure of merit is calculated with Eq. (4.2), in which

YEi is the experimental intensity of the ith data point on 20, yci is the calculated intensity and

wi the weight for this same point (usually wi = 1/yEi) [94]. Although there is no universal

critical value for Rwp, a reasonable criterion is Rwp < 10%, considering the experimental

parameters used in this study [114].

(4.2)R = XWi Ei -- Yc 2

W1i(YE1 )

The choice of crystal structures and the refinement procedure were validated according to

ASTM standard C1365-06 [11], with the NIST reference clinker SRM 2688. Three XRD

spectra of the reference were recorded and analyzed with the procedure defined above to

measure repeatability. Accuracy was determined with comparison to known values provided

with the reference clinker.
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As presented in Table 4.3, the repeatability criterion was met with both sets of crystals,

since the variation between two tests executed by the same operator, d2s, was below the

limiting value d2siim for all phases. Accuracy was insufficient when the set S1 was used. The

difference Ax- between the measured mean value x7 and the know certified value x-i was

superior to the limit AX-im imposed in the ASTM standard for tests performed on three

replicates. On the other hand, the good accuracy obtained with the set S2 validated the use

of the proposed refinement procedure with these crystal structures.

Phase NIST ASTM C1365-06 Set S1 Set S2
xo d2suim Axim x1 d2si Ax1 x2 d2s2 Ax2

Alite (wt%) 65.0 2.0 4.9 69.5 1.1 4.6 65.6 0.6 0.6
Belite (wt%) 17.5 1.8 2.7 13.4 0.7 4 19.3 1.7 1.9
Aluminate (wt%) 5.0 1.3 1.6 2.5 0.9 2.5 3.7 0.6 1.3
Ferrite (wt%) 12.2 1.4 1.8 14.2 1.1 2 11.4 0.6 0.8
Lime (wt%) 0.0 - - 0.3 0 0.3 0 0 0
Periclase (wt%) 0.0 0.6 0.6 0 0 0 0 0 0
Rw, (%) (7.2 < 10) (5.8 < 10)

Table 4.3. Validation of the refinement procedure and selection of the optimal set of crystal
structures. NIST certified composition of reference clinker SRM 2688 [86] is presented along
with the ASTM C1365-06 [11] criteria for repeatability, d2sim, and accuracy, Axiim. Rietveld
refinement results obtained for three replicates with the two set of crystal structures are
presented and confronted to the ASTM criteria.

Quantitative Rietveld refinements results are expressed in weight fractions, rt, for each

j=1... n crystalline phase. To allow further comparison with other methods, results are also

be converted into volumetric fractions, r.0, with the use of Eq. (4.3) and the typical density

of the clinker phases, pj, presented in Table 4.1.

7Rwt/p;
Ijo = (4.3)

4.2.4 Assessment of Non-Quantified Content

Quantitative Rietveld analyses are normalized to the crystalline phases identified and

considered in the refinement. The results do not account for contributions of non-quantified

content such as amorphous material, non-detected crystalline phases and residuals from

fitting. To determine this non-quantified content and the absolute quantitative phase
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composition, the internal standard and the external standard methods were investigated

using the SRM 674 a-alumina corundum standard from NIST.

Internal Standard Method

As previously used for clinkers by different authors [82,133,116], the internal standard

method consists of mixing prescribed proportions of the tested sample with a standard of

known crystalline content. Rietveld refinement of the mixture is performed and calibrated

with the known quantity of crystalline standard. The absolute content of each crystalline

phase is then determined, and the non-quantified content is finally calculated as the

difference between 100% and the sum of the crystalline phases.

Preliminary trials with this method resulted in unexpectedly high levels of non-quantified

contents, which were explained by microabsorption effects. Probing a mixture of phases

having strong differences in their linear attenuation coefficients, p, can lead to an

underestimation of the phases with high p coefficients, due to absorption of the X-ray [71].

As described by Brindley [17], microabsorption effects occur only if a critical particle size is

exceeded and it can be mitigated with a correction method incorporating p coefficients and

particle sizes. However, investigation of this correction method by other authors [135] lead

to the conclusion that additional error may easily be introduced, because of the high

sensitivity to the estimated particle size. To avoid this correction, on can perform an ultra-

fine grinding of the sample.

In the current study, the chosen corundum standard has a smaller linear attenuation

coefficient than those of the clinker phases, as shown in Table 4.4.

Phase p (g/cm 3) Y* (cm 2/g) p (cm-1)
Corundum 3.98 30.9 123
Alite, M3 3.17 97.9 311

Alite, <Mi> 3.14 97.9 310
Belite, P 3.31 90.6 302
Belite, a' 3.29 90.6 298
Alumcubic 3.04 86.7 264
Alumortho 3.06 83.1 255
Ferrite 3.74 134.6 504

Free Lime 3.35 120.5 403
Periclase 3.58 27.9 100

Table 4.4. Physical properties of clinker phases determined from the crystal structures used
in this study (set S2): density p, mass attenuation coefficient p*, and linear attenuation
coefficient p = pp*.
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The high measured levels of non-quantified contents can be explained by an

underestimation of the absolute content of clinker phases (having higher p coefficients).

Because of controversy regarding the Brindley correction and the technical limitations with

respect to grinding, the internal standard method was not further pursued in this study.

External Standard Method

The external standard method consists of separately measuring the diffraction profile of the

studied sample and the standard, in the same machine conditions. Conventional Rietveld

refinements are then performed on both scans and the results are post-processed, as

described by Jansen et al. [59]. The diffractometer constant, G, is first calculated with Eq.

(4.4) using the refinement results obtained for the standard, i.e., the scale factor Sst, the

density pst of the unit cell, the volume Vt of the unit cell, the mass attenuation coefficient pst,

and the known weight fraction of the crystalline phase in the standard ;rst (sometimes

assumed to be 100%).

G = SstPstVstt (4.4)
7Tst

The absolute weight fraction, xj, is then calculated for each j=1... n crystalline phase of the

sample with Eq. (4.5) along with the refinement results (Sj, pj and V) used as inputs. The

mass attenuation coefficient of the sample, pnfx, is either calculated from chemical

composition measured with X-ray fluorescence, or estimated with a weighted average over

the crystalline phases, ymix ~27 1T 1tj [108].

_ SiP j Mmix (4.5)
G

After determination of absolute proportions for all crystalline phases, ;rj, the non-quantified

content .rnc is determined by difference, as shown in Eq. (4.6).

n
Tnc = 1 - . Kj (4.6)

In this study, the standard is the NIST a-alumina corundum (SRM 674, further distributed

as SRM 676). Crystalline content of this standard was not initially included in its

certificate, and values ranging between -91.8% and -98.2% are found in different
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publications [135,133,24,82]. In light of this variability, lower and upper bounds were

calculated for non-quantified contents measured in this study, along with an average value.

As presented in Table 4.5, results for the reference clinker SRM 2688 indicate an average

non-quantified content of 10.7%±1.8%. This result is in general agreement with the

literature where amorphous contents for clinkers usually range between 3.3% and 25%

[72,116,133,82,68,60,65]. More precisely, values of 7.3%±2.1% [116] and 8.0%±0.5% [68]

were published for the NIST RM-8488, a discontinued reference clinker superseded by the

SRM 2688. These values point toward the lower bound measured in this study, which is

consistent as the authors do not specify the amorphous content of their a-alumina standard

(thus probably assuming it to be null). This comparison thus supports our procedure for

estimation of the non-quantified content.

Parameter Bound Average Bpn

rst (%) 98.2 95.0 91.8
Jnrc (% ± 95 CI) 7.6 ± 1.8 10.7 ± 1.8 13.7 ± 1.7

Table 4.5. Non-quantified content determined for reference clinker SRM 2688 with the
external method. Disagreement in literature about exact crystalline content of the NIST a-
alumina corundum is responsible for lower and upper bounds. Confidence interval, CI, of
95% is obtained with combinations of three scans for the reference clinker and three scans
for the standard.

4.3 X-Ray Fluorescence and the Bogue Calculation

X-ray fluorescence (XRF) analyses were performed to measure bulk chemical composition of

the studied clinkers and to attempt to derive their mineralogical composition with the

Bogue calculation. As no XRF instrument was directly available, samples were sent at two

external laboratories: a laboratory providing general analytical services, lab L1, and an

associated laboratory at commercial cement plant, lab L2.

4.3.1 Bulk Chemistry

In order to validate the measurements of the external laboratory, the NIST reference

clinker SRM 2688 was sent for analysis along with the studied samples. The oxide

composition provided by the two laboratories, xLJ and XL2, are presented in Table 4.6 along
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with the information values published in the NIST certificate, xo [86]. The relative error, 6x,

is calculated for each phase and laboratory, considering xovalues as the true values.

Oxides (wt%) NIST Lab Li Lab L2
Xo xL XL1 (M) XL2 6 XL2 (%)

CaO 66.50 70.26 6 66.77 0
SiO2 22.68 19.63 -13 21.71 -4
A1203 4.90 3.80 -22 4.64 -5
Fe203 4.07 4.37 7 3.98 -2
MgO 0.98 0.69 -30 0.90 -9
S03 0.31 0.24 -23 0.33 6
Na20 0.11 0.11 0 0.22 104
K20 0.35 0.40 14 0.41 16
TiO2 0.24 0.25 4 0.21 -12
P205 0.08 0.07 -13 0.08 1
Mn2O3 0.03 - - 0.02 -32
SrO 0.13 0.17 31 0.17 27
LOI 0.21 - - 0.52 148
Na20eq 0.34 0.37 10 0.49 44

Table 4.6. Oxides weight percent measured by XRF and loss on ignition, LOI, for the NIST
reference clinker SRM 2688. Information values provided in the NIST certificate, xo, [86] are
compared with the results provided by to external laboratories, xLJ and XL2. The relative
error, 6x, is calculated considering the NIST values as the true values and equivalent alkalis
are calculated according to ASTM C150-04 [10]: Na2Oeq= Na2O + 0.658K20.

As expected, the cement plant laboratory L2 provided results with good accuracy. The

relative error is 5% or less on the main four clinker oxides. On the other hand, the

laboratory L2 performed poorly with errors reaching more than 20% for the same phases. In

light of these results, only measurements from the lab L2 are further considered in this

study. However, it is worth noting that the error on minor and trace elements may be

elevated, particularly for Na20 and loss on ignition, LOI, which are overestimated by more

than 100%.

4.3.2 Clinker Composition Parameters and The Bogue Calculation

Clinker bulk compositions measured by XRF are commonly interpreted in the cement

industry with composition parameters and the Bogue calculation. As defined in Taylor

[121], the composition parameters are also used for reverse calculation of the raw materials

proportions required to obtain predetermined clinker compositions.

A first important parameter is the lime saturation factor LSF as detailed in Eq. (4.7), in

which the chemical formulas also represent the weight percentages of the given phases.
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Typical LSF values for clinkers are between 0.92 and 0.98 (up to 1.02 is considered

acceptable for modern clinkers). This parameter governs the alite to belite ratio and values

over 1.0 indicate that free lime is likely to be present in the clinker. However, the LSF is

only an approximation, in part because it neglects minors constituent and do not account for

ionic substitutions. The modified LSF* is a variation which accounts for Mg substitution in

alite, as detailed in Eq. (4.8).

CaO
LSF = (4.7)

2.8SiO2 + 1.2A12 03 + 0.65Fe2O3

C aO + 0.75MgO
LSF * for MgO < 2%

LSF* = CaO (4.8)

OLSF * 1.5OMgO for MgO > 2%
CaO

The other two composition parameters are the silica ratio SR and the alumina ratio AR, as

described in Eq. (4.9) and Eq. (4.10) [121]. The SR characterizes the proportion of silicates

in the clinker and values between 2.0 and 3.0 are obtained for normal types of clinkers.

Higher values indicate low amount of liquid phases in the kiln, which makes the clinker

harder to burn. On the other hand, the AR governs the ratio of aluminate to ferrite phases

in the clinker, and values between 1.0 and 4.0 are typical of conventional clinkers.

SR = 2 (4.9)
Al 2 03 + Fe2 03

AR = Al 2 03 /Fe 2O3  (4.10)

In addition to composition parameters, the Bogue calculation is used to determine the

potential phase composition of clinkers from their bulk chemistry. Different variants exist

for this calculation and the version used in this study is described in the ASTM standard

C150-04 [10]. In this version, the ideal chemistry is assumed for the four major phases (C3 S,

C2S, C3A and C 4AF) and free lime is not subtracted from the CaO content.

Table 4.7 presents results for the reference clinker SRM 2688 calculated from the bulk

chemistries provided by NIST and by the external laboratory L2. If the experimental

composition parameters are in good agreement with the reference values (error 6XL2: 5%), it

is not the case with the phase composition determined with the Bogue calculation.
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Parameter NIST Lab L2
x0 XL2 6XL2 (%)

Composition Parameters
LSF 0.91 0.95 5
LSF* 0.92 0.96 5
SR 2.53 2.52 0
AF 1.20 1.17 -3
The Bogue Calculation (wt%)
C3S 58.7 69.0 17
C2S 20.7 10.2 -51
C3A 6.1 5.6 -9
C4AF 12.4 12.1 -2

Table 4.7. Composition parameters and results of the Bogue calculation for the NIST
reference clinker SRM 2688. The composition parameters, as described by Taylor [121],
include the lime saturation factor LSF, the modified LSF* which allow for Mg substitution
in alite, the silica ratio SR and the alumina ratio AR. The Bogue calculation is performed
according to ASTM C150-04 [10].

The results indicate that the Bogue method is very sensitive to the error in the input values:

propagation of errors smaller than 5% for bulk composition resulted in errors reaching 50%

in the phase composition. Following this observation, the Bogue calculation was not further

investigated nor used for comparison in this study. Also, it was not considered worth

investigating variants of method (e.g., the modified Bogue calculation [122]) to improve the

accuracy of the calculation itself, as the propagation of errors would be similar with these

variants.

4.4 Chapter Summary

In this chapter, experimental methods typically used in the cement industry for clinker

characterization were described. First, scanning electron microscope imaging was detailed

for investigation of clinker microstructure (i.e., phases particularities, porosity, particles

sizes). Automated image analysis was also implemented to measure apparent size

distributions. Second, X-ray diffraction and the Rietveld refinement method were described

to identify and quantify the mineralogical phases. The reference clinker material NIST SRM

2688 was used to validate both the refinement procedure and the external standard method

used to assess the non-quantified content. Third, X-ray fluorescence was performed at

external laboratories to measure the bulk chemistry. Accuracy was investigated with the

NIST reference clinker SRM 2688 and relatively low error (< 5%) was found for the four
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main clinker oxides. However, estimation of potential phase composition with the Bogue

calculation was found to be inadequate. The propagation of errors resulted in errors up to

50% for the four main phases. Overall, the methods presented in this chapter are those

generally used in the characterization of cement clinkers.
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Chapter 5

Statistical Electron Micro-Probe Analyses

Quality control of clinkers at cement plants is usually limited to the assessment of the bulk

chemistry and the abundance of the main phases (i.e., alite, belite, aluminate, and ferrite).

However, new developments in clinker engineering have shown that cements with lower

grinding energy and higher reactivity can be obtained by chemical substitutions in the

clinker main phases [70,77]. Monitoring of the chemistry of the clinker phases may thus

become part of the quality control. In this context, a new method is proposed to assess in a

single experiment the chemistry of clinker phases, their relative abundance and the bulk

chemistry of the clinker. As presented in the following chapter, the method is based on

statistical interpretations of electron microprobe spot analyses performed over a

representative sample surface. This chapter focuses on the identification of the phases

based on their chemistry. Additional analyses regarding the abundance of the phases and

the bulk chemistry are further detailed with clinker results in Chapter 9.

5.1 Experimental Protocol

Chemical analyses were performed on the polished samples with a JEOL JXA-8200

Superprobe electron probe microanalyzer coupled with a wavelength dispersive X-ray

spectrometer. The accelerating voltage was set to 15 kV and the beam current to 10 nA. The

beam diameter was 1 pm and the counting time was 10 s per element. The following

elements were measured for each spot analysis on the polished surface, after background

correction: Ca, Si, Al, Fe, S, Mg, Na, K, and 0. The calibration of the instrument was

performed with the following standards: synthetic diopside for Al, Na, Si, Ca and Mg; high

purity hematite for Fe and 0; nickel sulfide for S; and synthetic orthoclase for K.

The raw data was corrected for matrix effects with the CITZAF package implemented in the

probe software [8], using the j(pz)-method: stopping power, back-scatter corrections and *(0)
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from Love and Scott; mean ionization potential from Berger and Seltzer; Heinrich's

tabulation of mass absorption coefficients; and Armstrong's modified equations for

absorption and fluorescence corrections [49,45]. Preliminary testing revealed large

deviations in the quantitative determination of the oxygen content, which appeared to be

very sensitive to local surface defects, such as grain boundaries or cracks. The oxygen was

alternatively determined from stoichiometry, which was possible because of the anhydrous

nature of the probed material.

5.2 Application to Heterogeneous Materials

5.2.1 Interaction Volume

Each EPMA spot analysis is assumed to be representative of an interaction volume, which

corresponds to the extent of the energy distribution exciting the X-rays inside the bulk of

the sample. This interaction volume is a function of the accelerating voltage and the

composition and density of the probed material [45]. Monte Carlo simulations were

performed with the non-commercial program CASINO [30] to determine the interaction

volume for cement clinker with an accelerating voltage of 15 kV. As illustrated in Fig. 5.1a,

the interaction volume is characterized by trajectories of scattered electrons. The density of

these electrons decreases as the distance from the electron beam increases. There is no

unique definition for the size of the interaction volume, but the measurements are usually

less sensitive to the last 10% of electron trajectories, as stated by Goldstein [45]. The

interaction radius is defined in this study as the radius including 90% to 95% of emitted X-

rays for all elements measured, as illustrated in Fig. 5.lb for pure C3S.

The interaction volume radii simulated for the main pure clinker phases are presented in

Table 5.1. Thus, the interaction radius for clinker range between 0.5 and 0.75 [m, when

probing a polished surface with a 15kV electron beam.

Phase C3S C2S C3A C4AF
Reo% (tm) 0.57 0.53 0.55 0.49
R95% (km) 0.73 0.69 0.71 0.64

Table 5.1. Interaction volume radii for the pure main clinker phases. The bounds for radii
are associated to interaction volumes including 90% and 95% of the emitted X-rays for all
elements of the probed phase.
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Fig. 5.1. (a) Trajectories of 500 electrons simulated with CASINO for a 15kV electron beam
probing pure CsS. (b) Cumulative intensity of electron trajectories as a function of radial
distance from the electron beam (simulation with CASINO for 105 electrons with a 15kV
beam probing pure C3S). The gray bands on both figures represent the bounds including
90% to 95% of the emitted characteristic X-rays for silicon, the element with the largest
interaction volume.

5.2.2 Statistical Grid Measurements

In heterogeneous materials such as clinkers, a mixture of phases is measured when the

interaction volume is not entirely inscribed in the domain of a single phase. If the scale of

the heterogeneities is much larger than that of the interaction volume, imaging can be used

to focus spot measurements on a single phase within acceptable error. In the case of similar

scaling, an alternative method is the random probing at discrete locations on a grid lxxly

that spans a specific region on a material surface LxxLy (e.g., Fig. 5.2). This method results

in probing both pure phases and mixtures of phases. The estimation of statistically distinct

chemical species and their properties can then be performed with advanced statistical tools.

In this work, the total number of grid points, N, was set to 1024 to obtain a statistically

adequate number of measurements. The grid spacing, L, was adjusted to ensure that each

grid covers a representative surface defined by the criterion d «LvW, in which d is the

characteristic size of largest heterogeneities in the sample. Therefore, a 60 tm spacing was

used for bulk and coarsely powdered samples, and a 30 im spacing for finely powdered

samples, covering surfaces of ~2x2 mm2 and ~lx 1 mm 2 , respectively. As illustrated in Fig.

5.2 for bulk sample B-C3, the sampling grid covers a surface much greater than the largest

heterogeneities, i.e., pores. Finally, replicate analyses are performed at random locations on
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each sample. The replicate grids are identified with lowercase letters following sample name

(e.g., grid C-C2b is the second grid done on coarsely ground sample of clinker C2).

Fig. 5.2. Schematic of the EPMA grid superposed on a BSE image of bulk sample B-C3. The
white dots represent the sampling grid, which covers a clinker surface composed of the
clinker matrix in gray and the porosity in black.

5.3 Statistical Data Analyses

After measurement of chemical composition for each grid, the data is sieved to remove noise

and a clustering algorithm is used to identify the different phases probed.

5.3.1 Data Sieving: "Signal" and "Noise" Separation

Each i=1. .. No data point is validated with a criterion applied to its analytical total, Ti,

defined as T = Ca cik, where Cik is the weight fraction of the k=1...p measured element. If

all the elements are measured (and adequately calibrated), the analytical total for valid

probes should be Ti e [100 ± 2]% [45]. A perfectly flat surface as well as a homogenous

material within the interaction volume are required to meet this range of analytical totals,

which is likely not to be the case of our heterogeneous epoxy-impregnated specimens.

Measurements on epoxy are expected to give lower analytical totals because epoxy contains

carbon, which is not measured in the EPMA analyses. In addition, deviations in analytical

totals may be associated with surface irregularities generated during polishing at the

interfaces between clinker and epoxy.
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A different approach is developed to sieve the "signal" (valid probes of the clinker matrix)

from the "noise" (probes with significant deviation of the analytical total). The distribution

of Ti is assumed to follow a Gaussian mixture model [124,78] of two components. As

illustrated in Fig. 5.3a, the first component is the "signal", which consists of a number of

points associated with a sharp peak having low deviation. On the contrary, the "noise"

component is assumed to represent the fraction of the measurements contributing to the

wide spread in the analytical totals. Then, clustering is performed to determine the bounds

separating the N valid points of the "signal" from the No-N epoxy related "noise" points (see

Fig. 5.3b).

Raw Data
16- - Fitted Noise 100 + +t +a

14 Fitted Signal

12 80 ++,~~

2 2 + + + + + +
++ ** + + Noise

12 -~ + + ++ ~ +
-1) 6 ++4 40 +* +- + +

0 20 40 60 80 100 120 0 200 400 600 800 1000

Analytical Total, Ti Data Point,i

Fig. 5.3. (a) Histogram of analytical totals for the No data points probed on the coarsely
ground sample C-C2a, with an overlay of the fitted two components Gaussian mixture
distribution. (b) Results of the clustering applied to sieve the "signal" from the "noise"

5.3.2 Phases Clustering

Following data sieving, each i=1. ..N data point is expressed in atomic percent with its

chemical composition vector xi=[Cai; Sit; Alt; Fei; Si; Mgi; Nat; Ki; O0]. In addition, each of

these data points may belong to one j=1. ..n chemical phase having the average composition

vector pj Hence, statistical analysis is carried out on the grid dataset with the aim to

estimate the number of statistically significant phases, as well as their vector of mean

composition pj, their covariance matrix I;, and their associated fraction xrj. Recent literature

reports a variety of deconvolution strategies applied to achieve similar clustering

[26,128,129]. We employ here multivariate mixture modeling supported with the Bayesian

Information Criterion (BId) [38]. Based on Finite Gaussians Mixture Model, FGMM (see

Eq. (5.1) and (5.2)), the estimation of the parameters is carried out according to the
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Maximum Likelihood (ML) function, via the Expectation Maximization (EM) algorithm [29],

with the aid of the publicly available R package called MCLUST [37,361. The clustering is

carried out with respect to the four main elements of cement clinkers: Ca, Si, Al and Fe.

f(x; ) = I y wf;(x; y;, Y) (5.1)

n; =1,w ; > 0 (5.2)
j=i

5.4 Chapter Summary

This chapter describes a method to assess the chemical composition of clinker phases with

the combined use of electron probe microanalyzes (EPMA) and advanced statistical tools.

Experimental details were first presented followed by the implications of probing

heterogeneous materials. The interaction volume radius was simulated to be between 0.5

and 0.75 pm when probing clinker phases. Randomly located probes can therefore represent

either a single phase or a mixture of phases. To identify the number of pure phases and

their properties, a statistically relevant number of probes need to be performed over a

representative surface of each sample. The datasets can then be deconvoluted with the

MCLUST algorithm. An intermediate data-sieving step was also proposed based on

Gaussian mixture clustering. This sieving is applied to the analytical totals in order to

separate the "signal" from the "noise" (associated with significant deviation of the analytical

totals). Finally, this chapter consisted of a general presentation of the method, which will be

further extended based on the results for clinkers in Chapter 9.
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Chapter 6

The Microscratch Test

The fracture toughness, Kc, is a material property that quantifies the ability to resist

fracture propagation from existing cracks (or defects). This property is of prime importance

for all problems related to linear-elastic fracture, whether fracture is considered desirable

(e.g., grinding) or not (e.g., airplane integrity). If conventional fracture testing methods are

available (e.g., the three-point bending test or the Vickers indentation test), their use for

multi-scale investigations of materials like cement clinkers is limited. A potential

alternative method is the use of the microscratch test, as developed for homogeneous

materials by Akono et al. [5,7,4,6]. This method has the potential to be extended to a large

range of scales, with variations of the experimental protocol. Different variants are

investigated in this study with the objective to adapt the method for measuring fracture

properties of heterogeneous clinkers at their different characteristic scales.

6.1 Microscratching Basics

The theoretical basics of microscratching are presented in this section, based on the

developments by Akono et al. [5,7,4,6]. The schematic in Fig. 6.1 shows the microscratch test

performed with an axisymmetric indenter probe forced at a fixed velocity over a surface in

the x direction to create a scratch path. A progressively increasing vertical force, Fv, is

prescribed and the resulting horizontal force, FT, is recorded along with the penetration

depth of the indenter tip, d. The following sections describe the method employed to

calculate the fracture toughness from the measured quantities (d and FT) and the tip

geometry, using the linear elastic fracture mechanics (LEFM).
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Fig. 6.1. Three dimensional schematic of the microscratch test [4]. An indenter tip is forced
into a surface in the x direction with prescribed velocity and vertical force Fv. The resulting
horizontal force FT and the penetration depth d are recorded during the experiment.
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Fig. 6.2. Schematics of the microscratch test with an axisymmetric probe [6]: (a) side view
and (b) front view. A semi-circular horizontal crack plane is assumed at the probe tip, which
is forced into the surface at a penetration depth d.

6.1.1 General Axisymmetric Probe

The scratch test model is developed considering an axisymmetric probe. A single variable

monomial function describes the probe shape in a coordinate system having origin at the

probe tip:

z = Br' (6.1)

where B is the height at unit radius and e is the degree of the homogeneous function. The

application is focused on the conical (e = 1; B = cot 6) and the spherical (e = 2; B = 0.5/R)

probes. To determine geometric quantities useful in further development, the outward unit

normal n is developed:

eBr-'cos 4 1
n"-= - cf-co r+ ez (6.2)

1 +(cBr-'-)2  1 +(OBr'-) 2  -

for r E [0, (d/B)/E] and <p E [- r/2, w/2], along with the differential line element, ds, and

the surface element, dS:
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ds = 1+(cBr') 2 dr

dS = r dp ds (6.4)

These geometric relations are then combined to define the contact area, ALB, and the

perimeter p of the probe, both projected in the scratch direction (n, = n - ex). These two

quantities are shown in Fig. 6.2b.

ALB(d) = -J x dS = B( 1 (6.5)

p(d)= Jds= ) # (6.6)

with the dimensionless parameter fl:

#=2j 1+(cd)2 2- 2 dx (6.7)

6.1.2 Contour Integral Method

The contour integral method, initially proposed by Rice [99], is extended for determination

of the energy release rate, G, associated with the fracture process occurring during the

scratch test. The following section recalls these developments by Akono et al. [5,4].

As illustrated in Fig. 6.2, the existence of fracture planes surrounding the scratch probe,

F = pf, is hypothesized, with p the perimeter of the probe and e the crack length in the x

direction. The dissipation rate is then calculated based on the spontaneous change of

potential energy, dEpot, due to the creation of the surface r:

D= dEpot =Gp d; G=- (6.8)
dt Nt 017

The change in potential energy is then estimated from the perspective of an observer

attached to the propagating crack. Two sources of potential energy changes are considered:

the variation in free energy density lp in a material volume V enclosing the crack tip, and
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the energy release that is convectively transported at a speed V -n = -en, passed the (fixed)

observer.

dEpOt dV- Oenx dA (6.9)

where A is the closed boundary of V. For a linear elastic material (4' = Ujui, with aU; the

symmetric stress tensor, ui,1 the displacement gradient), using the divergence theorem

allows a change of the volume integral into a surface integral:

dV = aiU dV = ti a dA (6.10)
V at a Aa

where ti = uijn; are surface tractions, and considering that the displacement rate seen by

the moving observer is equal to ut,t = Puj,, in a displacement-controlled fracture test. The

combination of equations (6.8) to (6.10) yields the following expression of the energy release

rate:

G= -j (inxti jidA (6.11)

According to the classical form of the J-integral [99], in planar cracks the fracture perimeter

coincides with the fracture width, dA = p ds. The difference between these lengths is rather

chosen to apply this technique to different scratch geometries. For the scratch problem, a

closed volume is chosen that includes the probe-material interface, the stress-free surface at

the top (n, = 0; t1 = 0), the stress-free fracture surfaces in prolongation of the scratch probe

surface (n, = 0; ti = 0), and the closing material surfaces far from the probe-material

interface (0 = 0; ui,x = 0); so that the only contribution to the surface integral comes from

the probe-material interface S:

G nx-ti dS (6.12)

Physically speaking, the energy release so defined can be associated with the energy stored

in a material domain in front of the scratch probe.
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6.1.3 Fracture Criterion

The stress field in front of the scratch probe is estimated to be uniaxial in the x direction:

FT = (S) xnd (6.13)

The shear stresses were also investigated by Akono and Ulm [6], but experimental

validation proved the uniaxial stress field to be adequate [4]. In this case, the free energy is

V = (1/2)KUX2/E and the work of the stress vector along aux/ax = XX is axxnxExx U = nx/

E, where E is the Young's modulus, K = 1 for plane stress and K = 1 - v 2 for plane strain (v

is the Poisson's ratio). Thus, the energy release rate (Eq. (6.12)) is simplified into the

following form:

K
G = fJ)xnXdS (6.14)

2pE (S)

Assuming a constant stress field over the projected contact area, ALB, the combination of

equations (6.5), (6.13) and (6.14) results in:

K
G = - FT (6.15)2 pALBE

The energy release rate is bounded by the fracture energy, Gj, as described in (6.16). Crack

propagation occurs when this critical value is reached. In addition, the fracture energy is

also related to the fracture toughness, Kc, (within the limits of LEFM):

K
G ! Gf = -Kc (6.16)

The fracture propagation criterion for the scratch test then reads:

FT ! Fc = Kc-2fpALB (6.17)

where Fc is the critical horizontal force for crack propagation. Finally, both the perimeter p

and the projected contact area ALB are dependent on the penetration depth d. The probe

shape function, f, is thus defined:

f(d) = 2p(d)ALB(d) (6.18)
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6.1.4 Scaling Relations for Conical and Spherical Probes

Any type of axisymmetric probe could potentially be used, but we focus here on conical and

spherical probes, as these probe shapes will be used in the experimental application. Based

on equations (6.5) to (6.7), the shape functions are determined both for the conical probe

(e = 1; B = cot 0) and for the spherical probe (E = 2; B = 0.5/R):

Conical probe: f(d) = 4 (cnO d 3 (6.19)

Spherical probe: f (d) = I d 2 R, 8 (x = )= 1 +2x + arcsinh ({T) (6.20)
3 'R) \R -2-

In the case of the conical probe, the following self-similar scaling relation is obtained

between the scratch penetration depth and the horizontal force:

Fc(Ad) = (d) (6.21)

On the other hand, the self-similar scaling for the spherical probe is limited by the fl

coefficient. Nevertheless, # 2 for small values of dIR << 1, which results in the linear

scaling:

Fc(Ad) ~ AFc(d) (6.22)

For these types of axisymmetric probes, the self-similar scaling of the scratch force

associated with fracture propagation indicates that the measured fracture properties are

independent of the probe size and the probed depth, for homogeneous materials.

6.1.5 Experimental Applications

In practice, microscratch tests are performed with a Rockwell diamond indenter probe,

which has a geometry consisting of a conical range with a half-apex angle 0 of 600 and a

spherical tip of radius R. The transition between these two ranges occurs at dIR = 0.134,

which means that the tip can be approximated by a cone for tests performed at sufficient

penetration depths, i.e., dIR >> 0.134.

The presence of fracture processes during a microscratch test is verified by determination of

the scaling relation between the horizontal force and the penetration depth. The model

function y = a(x - c)" is fitted to the experimental curve FT(d/R), as illustrated in Fig. 6.3.
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As shown in equations (6.21) and (6.22), the theoretical b coefficient is 1 for the spherical

range and 1.5 for the conical range. The results presented by Akono et al. [4] are generally

in agreement with the theory for experiments performed on different materials: the b

coefficient varies from 1.11 to 1.20 for the spherical range, and from 1.49 to 1.51 for the

conical range. When the maximal penetration depth is close to the transition between the

spherical and conical ranges, b has intermediate values between 1.30 and 1.39. Unexpected

values are also measured for some materials, such as the Delrin polymer probed in the

conical range (b=1.19) and the AISI-1045 metal probed in the transition range (b=1.74).

Nevertheless, fracture toughness measured for these two materials is in good agreement

with literature values, which suggests that unexpected b coefficients may not be sufficient

to invalidate the measurements.

(a) (b) 6
0.4 5

Z 0.3- 4

Et0.2, c3
2

0.1 FT Fr 1FPT
-power law fit power law fit

0O 0.01 0.02 0.03 0 0.5 1 1.5 2
dIR dIR

Fig. 6.3. Experimental curves of the horizontal force vs. the penetration depth, with fitted
power law functions [4] for (a) fused silica, b=1.11, and (b) paraffin wax, b=1.49

The variability in tip geometries and the possible tip wearing prevents the use of the

theoretical tip shape functions. The solution proposed by Akono et al. [4] is to calibrate the

tip shape function with a reference material of known Kc. The order of this function depends

on the activated range of the tip and a polynomial fitting is performed according to

equations (6.23) and (6.24):

Conical range: f =R a +8 +y ,, 0. (6.23)

Spherical range: f(I = R3[ &)+] , 'o, y ato (6.24)
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According to Akono et al. [4], the coefficient a captures the conical shape of the tip,

6 captures the spherical part and y accounts for the blunting of the tip. Fig. 6.4 illustrates

the tip shape function fitting procedure applied for a tip of 200 ptm radius. The spherical

range is calibrated on fused silica and the conical range on paraffin wax.

(a) (b) 200-

150
0.06

S1000.04

0.02 L 50

0 0L.
0 0.01 002 003 0 0.5 1 1.5 2

d/R d/R

Fig. 6.4. Probe shape function calibration [4] for (a) spherical range with fused silica,
f(dIR) = 54.51(d/R)2, and (b) conical range with paraffin wax, f(dIR) = 13.02(d/R)3

Results are in agreement with the theoretical tip shape function for the conical range. The

measured a coefficient of 13.02 is similar to the theoretical value of 13.86 calculated with

Eq. (6.19) and a half-apex angle of 0 = 60*. However, in the spherical range, the

experimental data results in 3 = 54.51, and the theoretical value is 6th ~ 10.7, based on Eq.

(6.20) with pz 2 for dIR < 0.1. This difference is not further explained by the authors [4],

but the calibration function is used with success to assess fracture toughness of ceramics.

Once the tip shape function f is calibrated, the fracture toughness Ke of other materials may

be calculated using Eq. (6.17). As illustrated in Fig. 6.5 for Pyrex and soda lime glass [4],

the calculated FTI2p are plotted as a function of the relative penetration depth, d/R.

After initial deviation attributed to local plastic deformation [4], the fracture process

becomes dominant and the data points converge. The load-independent fracture toughness,

Kc, is then calculated by taking the average and standard deviation of FT/Jp~ for

d > dmax/2, as described by Eq. (6.25).

(c Fr2A~ (6.25)
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Fig. 6.5. Fracture toughness as a function of the relative penetration depth for (a) Pyrex and
(b) soda lime glass. After initial local plastic deformation [4], the convergence of data points
indicates a fracture-dominated process. The fracture toughness is averaged from the second
half of the curve.

6.2 Reference Materials

In order to calibrate tip shape functions and to validate the scaling of the microscratching

method, several reference materials were investigated. These materials are presented in

Table 6.1, which also includes the manufacturer of the specimen tested and the literature

values for the fracture toughness determined by the conventional three point bending tests.

For each material, a range of reference values is provided, along with the literature values

used by Akono [4].

Material Manufacturer Literature Kc (MPa.m) References
Range Akono [4]

Lexan Sabic 2.69 2.69 [50]
Fused silica McMaster Carr 0.58 - 0.7 0.58 [48,137]

Soda lime glass - 0.7-0.8 0.7 [48,21]
Macor Accuratus 1.53 - 1.9 - [2,73]

Alumina Accuratus 3 - 5 - [2,44,39,21]

Table 6.1. Reference materials used for calibration and validation of the micro-scratch test
at different scales. The literature values for Kc are provided along with their references.

6.3 Experimental Protocol

The microscratch tests were performed with a Micro-Combi Tester, MCT, distributed by

CSM Instruments. This instrument shown in Fig. 6.6 is equipped with a sample holder on a
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3 axis stage, an indenter, a set of three optical microscope lenses (5X, 20X and 50X), and

sensors to measure forces, displacements and acoustic emissions.

Fig. 6.6. Micro-Combi Tester by CSM Instruments: (a) global view showing the automatic

stage (3 axis) and the horizontal support for the instrumentation, and (b) close-up showing

the sample, the indenter and the three optical microscope lenses.

The default experimental protocol was defined for the conical and spherical ranges based on

previous testing that assessed the validity of these protocols for specific applications.

Additional variants will also be investigated in subsequent sections of this study, for

probing at the characteristic length scales of cement clinkers.

Conical Range

The default protocol for the conical range is presented in Table 6.2, and it corresponds to the

protocol used for polymers by Akono et al. [4]. As suggested by Akono [3], the Lexan polymer

is used for calibration in replacement of the paraffin wax initially used.

Probe Type: Rockwell End Load (N): 30
Material: Diamond Loading Rate (N/min): 60

Radius (tim): 200 Scanning load (N) 0.03
Speed (mm/min): 6

Linear Scratch Type: Progressive Length (mm): 3
Begin Load (N): 0.03 Approach speed (%/s): 0.7

Table 6.2. Default experimental protocol for microscratching in the conical range with a tip

of 200 pm radius, based on the protocol used for polymers [4].
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Spherical Range

The default protocol for the spherical range was previously developed for ceramics [4]. Most

parameters are the same as those used for the conical range, with the exception that the

vertical force is limited to 7N and the loading rate is set to 14 N/min. In addition, fused

silica is used as the reference material for calibration with a fracture toughness value of

Kc = 0.58 MPa.mA, according to Akono et al. [4].

6.4 Improvements in Experimental Methods

To obtain precise and accurate results, measurements must be performed in strictly

controlled conditions. Possible improvements in the experimental methods were identified

during this project, and specific investigations were performed regarding the method used

to hold the sample in the instrument and the moisture control of Lexan.

6.4.1 Holding the Sample: Circular vs. Rectangular Substrate

As shown in Fig. 6.7a and Fig. 6.9, two types of sample holders jaws may be used with the

MCT instrument to accommodate circular and rectangular samples. Before running a

microscratch test, the jaws are first tightened around the sample, which is then assumed to

be perfectly held in place. Since the depth of the scratch path is measured by the

penetration of the indenter tip (relative to a pre-scan of the surface), uncontrolled vertical

displacement of the sample during the test would erroneously increase the measured

penetration depth.

A reference fused silica specimen was used for calibration in the spherical range. The

specimen had a disk shape and the circular holder jaws were initially used, as shown in Fig.

6.7a. However, it was found that the sample did not sit completely on the horizontal

surfaces of the holder. The sample was rather held by two contact points as schematized in

Fig. 6.7b-c and rotation was possible around the axis crossing these contact points.

As illustrated in Fig. 6.8, measurements performed in these conditions showed high level of

variability with respect to the measured penetration depths and horizontal forces. This

large variability of the raw data also affected the fitted tip shape functions, which were

significantly different for successive series of measurements, as shown in Fig. 6.8c. In this

case, only the series Circ#1 had similar magnitude as the reference by Akono et al. [4].
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(a) (b) (c)

O <- CONTACT POINTS

Fig. 6.7. (a) Disk shaped fused silica sample fixed with the circular jaws. Schematic (b) side
view and (c) top view of the holder with identification of the two contact points. Rotation of
the sample was possible around the axis crossing these contact points.
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Fig. 6.8. Spherical range calibration on a fused silica sample held with the circular jaws: (a)
penetration depth vs. distance, (b) horizontal force vs. penetration depth, and (c) tip shape
function fitting.

To avoid any movement of the disk shaped reference sample, a rectangular aluminum plate

was machined to have perfectly parallel edges. The sample was fixed with cyanoacrylate

glue to the aluminum substrate, which was then firmly held in the rectangular jaws of the

instrument, as shown in Fig. 6.9.
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Fig. 6.9. Sample holder clamping a rectangular aluminum base on which a disk sample of
fused silica has been glued.

As illustrated in Fig. 6.10, the results obtained with this revised holding method showed

very good repeatability. In addition, scaling of the horizontal force and penetration depth

was validated with an average fitted value of b=1.01, which was consistent with theoretical

value of 1 for the spherical range.
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Fig. 6.10. Spherical range calibration on a fused silica sample glued to a rectangular
aluminum substrate: (a) penetration depth vs. distance, (b) horizontal force vs. penetration
depth, and (c) tip shape function fitting.
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However, better sample holding also resulted in a decreased maximal penetration depth,

which was reflected by an increased value of the a coefficient for the fitted tip shape

functions. With an average value of 86, this coefficient is far from the theoretical value of

10.7 (see section 6.1) and above the published value of 54.5 used as reference in Fig. 6.8c

and Fig. 6.9c. Nevertheless, these results were obtained with a rigorous and repeatable

method, and a coefficient value of 86 appears to be a sound experimental result.

Overall, this investigation led to the recommendation that the circular jaws should not be

used to hold the sample. Instead, disk shaped samples should be glued to a rectangular base

to obtain high quality results. Based on these conclusions, all the samples investigated in

this study are glued to an aluminum substrate held in place with the rectangular jaws.

6.4.2 Lexan Reference Material: Moisture Control

The calibration of the experimental method is a critical step to obtain reliable results.

Calibration materials, such as Lexan, must be well understood and should exhibit

consistent properties. Two significantly different trends were observed in the measurements

on Lexan, during an investigation aiming to reduce experimental variability in the

microscratch test. Several experimental details were investigated without success, until the

moisture content of Lexan was found to be of importance [3,102,96,58]. Fig. 6.11 shows

measurements on a Lexan specimen before and after isopropanol cleaning. The surface

treatment resulted in a shift in the measured horizontal force, FT, from a maximum value of

-10N up to -19N. This was accompanied by a reduction of the penetration depth, d.

20.00 -40.00

10.00 40.00

5.00- 80.00

0 120.00

Ft [N - Pd [pm]
-5.00 160.00

0 Pos [mm] 0.6 1.2 1.8 2.4 8.0

Fig. 6.11. Microscratching raw results for a Lexan specimen showing the influence of
isopropanol cleaning. The horizontal force Ft shifts from the lower trend to the higher trend,
while penetration depth d is reduced.
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An additional study was performed to understand this unexpected behavior, with the aim to

determine (1) the effect of moisture content on the properties of Lexan, (2) the rate of Lexan

moisture absorption and (3) the optimal Lexan specimen conditioning method.

6.4.2.1 Experimental Program

A series of Lexan specimens were prepared with different conditioning methods and were

tested at different time intervals. Each conditioning step is described in the following

paragraphs and the characteristics of all tested specimens are presented in Table 6.3. The

preparation procedures are inspired from a new procedure released by Akono [3].

The specimens were first cut with a table saw from a single 12 mm thick sheet of Lexan

polycarbonate resin thermoplastic produced by SABIC Innovative Plastics (see Fig. 6.12a).

Alconox and water cleaning were performed in the following way: (1) removal of plastic

covers; (2) ultrasonication in a 1% Alconox solution for 5 min; (3) ultrasonication in water

for 5 min; (4) rinsing under running water; and (5) removing surface water with moisture-

free compressed air. On the other hand, isopropanol cleaning consisted in gently wiping the

Lexan surface with soft cloth soaked with isopropanol; this wiping was performed 10 times

at intervals of 30s to allow for evaporation.

Cleaned samples were dried in an oven set at 125*C for the prescribed period [102,58]. After

drying, the specimens were cooled either in a desiccator or in a glass jar with a tight plastic

lid. Finally, the specimens were mounted on machined aluminum bases with cyanoacrylate

glue (Fig. 6.1 1b) before testing.

Specimen Size Cleaning Drying Cooling Scratching
(cm2) (hr) (# @ t[hr])

Wati 3.2x4.2 Alconox + Water No No -8 @ -0,1,2,4,8,24,168
Isol 3.2x4.2 Isopropanol No No -8 @ -0,1,2,4,8,24,192
Dryl 3.2x4.2 Alconox + Water 24 Dessicator (20min) -8 @ -0,1,2,4,8,24,168
Dry2 3.2x4.2 Alconox + Water 24 Dessicator (24hr) 24 @ -24
Dry3 3.2x4.2 Alconox + Water 24 Glass jar (24hr) 24 @ -24
Dry4 3.2x4.2 Alconox + Water 96 Dessicator (20min) -8 @ -0,2,120
Akol 2.5x2.5 Alconox + Water 24 Glass jar (24hr) 24 @ -24

Table 6.3. Preparation details for the Lexan specimens investigated in this study. All the
samples were prepared by the author, with the exception of sample Akol which was
prepared and tested by Akono.
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For comparison reasons, the specimen Akol was prepared and tested by Akono following her

new procedure: alconox and water cleaning, 24 hr drying at 125*C, 24 hr cooling in glass jar

before performing a matrix of 24 scratches.

Fig. 6.12. (a) Specimen cut with the table saw (3.2x4.2cm 2), before removal of the protective
plastic covers. (b) Conditioned sample mounted on the machined aluminum base and placed

in the Micro Combi Tester rectangular holder.

After sample conditioning, testing was performed with the default parameters for the

conical range as previously described. A single 200 pm Rockwell diamond indenter, tip

number E269, was used for all the tests in this study. The number of scratches per series

varied between 8 and 24, and the scratches were performed with a 7 mm offset (in x and y

directions) from the corners to avoid edge effects. After the first series of scratches, the

samples were stored in the laboratory environment, where the ambient relative humidity

was approximately 20-25%.

6.4.2.2 Results

The comparison of the raw results is achieved with the maximal horizontal force, FTmax, and

the maximal penetration depth, dmax, at the end of the scratch path (see the red circles in

Fig. 6.11). The time t is recorded for each scratch, considering t = 0 at the end of sample

conditioning.

As shown in Fig. 6.13, the maximal horizontal force Frmax is dependent on the conditioning

method used. For the moist specimen Wati (not dried after water cleaning), the measured

FTrmax is low with values around 10N. Drying the specimens in an oven increases the

measured Frmax up to 12-18N. On the other extreme, horizontal forces reach 20N for the

specimen Isol treated with isopropanol, which is 100% higher than for the moist samples.
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Fig. 6.13. Maximal horizontal force, Frmax, as a function of time, t, for different conditioning
methods. The moist specimen shows a low FTmax, whereas oven-drying results in a middle
range FTmax and the highest values are obtained for the specimen wiped with isopropanol.

The measured maximal penetration depths, dmax, are presented in Fig. 6.14 for the same set

of samples. The observations made for FTmax also generally apply for dmax, with the

difference dmax is increased with moisture. However, the moisture effect is less severe for

dmax with relative variations are below 10% (compared to 100% for Fmax).
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Fig. 6.14. Maximum penetration depth, dmax, as a
conditioning methods. The moist specimen exhibit lower

function of time, t, for different
dmax than the dried specimens.

To link these results to the calibration function (i.e., Eq. (6.23)), the a coefficients are plotted

in Fig. 6.15. Calibrating on moist Lexan results in a ~ 5, whereas using dryed samples

generally results in a ~ [7.5, 18] and isopropanol treatment raises a up to -22.
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Fig. 6.15. Alpha coefficient, a, as a function of time, t, for different conditioning methods.
The a coefficient is higher, up to a factor four, for the specimen treated with isopropanol
compared to the moist specimen.

6.4.2.3 Discussion

Effect of Moisture on Properties

It is known from the plastic industry that "the majority of thermoplastic resins, including

sheet products, are hygroscopic, which means that they absorb moisture. Moisture builds up

in the polymer sheet during manufacturing, transportation and storage. In the 'as extruded'

condition it presents no problem" [102]. However, the measured properties change

significantly as a function of the moisture content, as shown in Fig. 6.13 and Fig. 6.14.

Higher horizontal force and lower penetration depth are measured for the dried specimens

(e.g., Dry4) compared to the moist specimen (i.e., Wat4), which indicates that Lexan

resistance to scratching reduces with moisture absorption. In addition, the Fm 0 x values may

be used to qualitatively describe the moisture of the tested Lexan specimens, as all other

experimental details were kept constant.

Lexan Drying

The drying method as performed by Akono [3] (2.5x2.5 cm 2 specimens dried at 125*C for 24

hr, then cooled for 24 hr in a sealed glass jar) was found to be successful, as the Lexan

specimen Akol showed elevated and repeatable resistance to scratching.

Similar drying performed on larger 3.2x4.2 cm 2 specimens Dry1, Dry2 and Dry3 was found

to be incomplete, resulting in middle-range resistance to scratching and lower repeatability.
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A more stringent drying regime may be required as suggested in the Lexan Sheet Processing

Guide by SABIC [102]. The recommended drying for 12 mm thick Lexan sheets is 48 hr at

125*C ± 3*C in a hot-air circulating oven changing the oven air volume 6 times per hour.

Other authors are even more conservative [58], preparing Lexan samples of 2 mm thickness

and drying for 48 hr at 125*C with temperature ramping resulting in a total process of

82 hr. In an attempt to mitigate the absence of air circulation and ramping options for the

oven used in this study, the specimen Dry4 was dried for 4 days at 125*C. As illustrated in

Fig. 6.13, higher FTmax values were obtained, but the full resistance of Lexan was not

reached. Therefore, it is advised to limit the size of the Lexan pieces, as for specimen Akol.

An alternative approach consists of drying the surface with isopropanol. In this case,

isopropanol replaces the water in the porosity of Lexan because of its lower surface tension

[64]. After evaporation of both liquids, the Lexan surface is drier and exhibits higher

resistance to scratch, as shown with specimen Isol in Fig. 6.13.

Moisture Variations with Time

Lexan is known to absorb moisture as stated by Port Plastics: "A note of caution -

polycarbonate sheet begins absorbing moisture immediately upon removal from the

predrying oven" [96]. Ambient moisture absorption was observed for the specimen Dryl

tested 20 minutes after removal from the oven. In contrast, the opposite is observed for

specimen Isol, as the isopropanol and moisture progressively evaporate in the first hour.

Ambient moisture seems to be absorbed very slowly over a long period of time by the

specimens Dryl and Dry4 in comparison to the specimen Isol, which mechanical properties

decrease rapidly. This suggests that isopropanol drying is only effective on a shallow layer

of material, in comparison to deeper oven drying.

Surface Cleanness

To reduce variability in the measurements, the surface should be kept clean and

undamaged, as suggested by Akono [3] and illustrated in Fig. 6.16a for a water-cleaned

specimen. Fig. 6.16b illustrates the surface of specimen Isol where scratches of small

dimensions were introduced by the cloth used during the isopropanol treatment. Even if this

surface was lightly damaged, repeatable and stable results were obtained between 0.5 and 3

hours after surface conditioning.
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Fig. 6.16. Lexan surfaces and scratch paths of specimens (a) Dryl and (b) Iso1. Water
cleaning procedure allows removal of most of the surface impurities, whereas the cloth used
in the isopropanol treatment introduces small scratches on the surface.

Isopropanol Surface Treatment

Moisture removal with isopropanol was envisaged further based on the results for specimen

Iso1, and considering that Lexan is generally compatible with alcohols [102]. To validate

this conditioning procedure, the exact same protocol used for sample Isol was repeated for

additional specimens (Iso2, Iso3, Iso4, Iso5). However, the moisture removal was not

systematically achieved for this series of tests, as shown in Fig. 6.17. Following such a

discrepancy in the measured values, isopropanol treatment is not recommended.

0
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.4
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10*
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0
0.0 0.5 1.0

Time, t (hr)
1.5

Fig. 6.17. Evolution of coefficient a over time t for five different samples conditioned with
the exact same isopropanol cleaning procedure.
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6.4.2.4 Conclusions

In conclusion, better understanding of the effect of moisture on Lexan properties has been

acquired through this investigation and the findings are summarized below.

Lexan resistance to scratching is strongly dependent on moisture content. The measured

horizontal force (i.e., FTmax) exhibits a reduction up to 50% between moisture free specimens

and moist specimens. Thus, very precise control of Lexan moisture is required before using

this material for calibration, or for investigations of other possible experimental variability.

After initial conditioning and stabilization in the first hour, the rate of moisture absorption

is dependent on the conditioning method. The dried samples seem relatively stable for

several days, whereas a faster decay in mechanical performances is observed for specimens

cleaned with isopropanol. In addition, uneven moisture absorption may be responsible for

increased variability.

Sample conditioning according to Akono's new procedure [3] with small-sized specimens is

found to limit the decrease of Lexan scratch resistance associated with moisture. On the

other hand, isopropanol cleaning is not recommended, as the same procedure applied to

different specimen may lead to drastically different results. Following these observations,

Akono's new procedure [3] is used in this project to perform conical calibration with Lexan.

Finally, the use of an alternative material with lower sensitivity the environment could be

envisaged in further investigations.

6.5 Downscaling of the Method

An interesting advantage of the microscratch test over conventional fracture toughness

measurement methods resides in the possible scaling for investigations at any characteristic

scale of complex materials. In this project, the millimeter scale is tested with an indenter

probe of 200 pm radius used in the conical range [4]. In addition, downscaling is

investigated with the spherical range of the same 200 tm probe and with smaller probes

(R = 50 and 20 pim) used both in the spherical and the conical ranges. These investigations

at smaller scales focus on the measurement of ceramics properties and Table 6.4 summarize

the experimental protocols tested.
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Tip Radius (stm) 200 50 50 20 20
Range Spherical Conical Spherical Conical Spherical
Max d (pm) 6 15 2.2 9 0.8
Max dIR 0.025 0.3 0.045 0.45 0.04
Max Fv (N) 7 15 4 4 1
Length (mm) 3 1.5 0.4 0.1 0.04
Load rate (N/min) 14 60 60 24 15
Velocity (mm/min) 6 6 6 0.6 0.6

Table 6.4. Experimental protocols used to investigate downscaling of the microscratch test
with 200, 50 and 20 pm probes. The choice of parameters is partly based on the expected
applications at the characteristic scales of clinkers.

6.5.1 Spherical Range of the 200 stm Probe

As demonstrated for ceramics by Akono et al. [4], the microscratch test can be used in the

spherical range of a 200 pm tip to characterize hard brittle materials. These materials are

not suited for microscratching in the conical range, because large chipping occurring in front

of the tip invalidates the measurements. Before using the method with materials of

unknown properties, the tip was calibrated with fused silica and tests were performed on

soda lime glass (SLG), Macor and aluminum oxide ceramic (alumina). The fracture

toughness of these ceramics range from 0.58-0.8 to 3-5 MPa.m" (see section 6.2).

The fracture toughness convergence plots are presented in Fig. 6.18 and the results are

compared in Table 6.5 with those published by Akono et al. [4]. For the materials tested, the

fitted b coefficients were generally consistent with the expected values for fracture processes

performed with a spherical probe (b ~ 1), except for Macor. As discussed in section 6.4.1, the

rectangular jaws were used in this study and this led to a different tip shape parameter a =

86, compared to 54.5 in [4]. Nevertheless, accurate Kc results were obtained for soda lime

glass (as in [4]) which validates the proposed use of the rectangular jaws to hold the sample.

Material Max d/R Fitted b Tip shape function or Literature Kc
coefficient predicted Kc (MPa.mM) (MPa.mMA)

Fused silica 0.025 1.01 f= 86x 2  0.58 -0.7
Soda lime glass 0.02 1.21 Kc= 0.71 ± 0.03 0.7 - 0.8
Macor 0.03 1.31 Kc= 0.84 ± 0.04 1.53- 1.9
Alumina 0.012 1.18 Kc = 1.93 + 0.16 3 - 5
Fused silica * 0.04 1.11 f = 54x2  0.58
Pyrex glass * 0.03 1.16 Ke= 0.68 ± 0.02 0.63
Soda lime glass * 0.04 1.20 Kc= 0.71 ± 0.03 0.70

Table 6.5. Measured and literature values of Kc for the tested ceramics. Results with a star
(*) are the results published by Akono et al. [4]
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(a) FS (s200) (b) SLG (s200)
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Fig. 6.18. Fracture toughness measured in the spherical range of the 200 pm probe
(identified as s200) on (a) fused silica, (b) soda lime glass, SLG, (c) Macor, and (d) alumina.

The results for Macor and alumina exemplify the limits of applicability of the spherical

range microscratching with the 200 gm probe. The method seems adequate for materials

with fracture toughness similar to that of the calibration material (e.g., soda lime glass or

pyrex), but the accuracy is limited for the other tested ceramics. This may be attributed to

microtexture, as further investigated in the following sections.

6.5.2 Spherical Range for Probes of Radius from 200 to 20 pm

The fused silica, soda lime glass, Macor and alumina samples were tested with probes of

decreasing radius, i.e., 50 and 20 pm. Fig. 6.19 illustrates that homogeneity of the reference

fused silica is preserved over the probed scales, and the microscratching results are thus

expected to be consistent over the scales. Similar homogeneity was also identified for soda

lime glass up to the smallest tested scale, which is shown in Fig. 6.20a. However, porosity

was observed in the alumina specimens. This microtexture was expected to affect mainly

the larger scales, as scratching with the 20 pm tip was performed between the pores (see

Fig. 6.20c). No homogeneity was found in Macor at the smaller scales, and Fig. 6.20b shows

the large chipping occurring during scratching because of the material microstructure. For

this reason, Macor was not considered in the tests with the 50 and 20 pim probes.
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In addition, downscaling of the microscratching method was correlated with a reduction in

the signal-to-noise ratio, as illustrated for soda lime glass in Fig. 6.18b and Fig. 6.21. This

could be explained by the increased effect of surface irregularities at small scale. Thus, the

precision of the results at the smaller scales was expected to be lower.

Fig. 6.19. Scratch imprint for spherical range microscratching performed on fused silica
with (a) the 200 ptm probe, (b) the 50 pm probe, and (c) the 20 pm probe.

Fig. 6.20. Scratch imprint for spherical range microscratching
probe on (a) soda lime glass, (b) Macor, and (c) alumina.

performed with a 20 pm

(b) SLG (s20)
Kc = 0.95 ± 0.20MPav/ii

~LjijiiA
--------------------~ wIr'w~WV9 ~

o o.0os 0.01 0.016 0.02 0.025 0.03 0.035 0.04 0.045 0 .006 0.01 0.015 0.02 O.025 0.03 O.o3 0.04 0.045
dIR dIR

Fig. 6.21. Fracture toughness measured on soda lime glass in the spherical range of (a) the
50 ptm probe, s50, and (b) the 20 ptm probe, s20.
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Fig. 6.22 presents the measured fracture toughness plotted as a function of the literature

reference values for the three probed scales (the results also figure in Table 6.6). In this

figure, the error bars on the reference Kc describe the range of published values (see section

6.2) and the error bars on the measured Kc represent the standard deviations, as defined in

section 6.1.5. The fracture toughness measured for soda lime glass is in agreement with the

literature values for the three tested scales. In contrast, Kc for the alumina ceramic tends to

converge toward the literature value as the probing scale is reduced. The lower values

obtained with the 200 and 50 pm probes may be due to microsctructural defects (e.g., pores),

whose influence was avoided by probing the bulk between the pores with the 20 pm probe.

Overall, consistent results were obtained between fused silica and soda lime glass in the

spherical range of the 200, 50 and 20 pm probes. Therefore, scaling of the spherical

microscratching method, along with fused silica calibration, is adequate for materials in

which homogeneity is maintained over the probed scales. In addition, results for Macor and

alumina stress the importance of the microtexture, which may be responsible for differences

in fracture toughness over the probed scales.

5 5 5

(a) (b) (c)
EJ!

0 0 0

S 5

0 01
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Reference K, (MWa.mll) Reference K,, (MWa.m9) Reference K, (MWa.mll)

Fig. 6.22. Fracture toughness of ceramics measured in the spherical range, with probes of
radius (a) 200 pgm, (b) 50 pgm, and (c). 50 pgm, as a function of the reference values from
literature. The vertical error bars present the standard deviation on the measurements, and
the horizontal error bars show the range of the published values (see Table 6.1).

MateialSpherical 50 Ftm Spherical 20 pim
Max dIR Fitted b Ke (MPa.mA) Max dlIR Fitted b Ke (MPa.mA)

Fused silica 0.045 1.17 0.58-d 0.10 0.045 1.00 0.53 ± 0.19
Soda lime glass 0.045 1.49 0.84 ± 0.09 0.045 1.13 0.95 ± 0.20
Alumina 0.045 1.35 2.29 ± 0.40 0.040 1.47 3.56 ± 0.50

Table 6.6. Scratching results for reference ceramics (spherical range, 50 and 20 pgm probes).
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6.5.3 Conical Range for 50 and 20 pm Probes

The conical range of the 50 and 20 pm probes was investigated with fused silica, soda lime

glass and alumina ceramic. Macor was not included in this series of tests because of the

large chipping observed in the spherical range. Fig. 6.23 presents the scratch results for

alumina, which do not exhibit the convergence typical of a fracture process (see section

6.1.5). Thus, downscaling of the conical range is investigated with fused silica as calibration

material and soda lime glass. As presented in Table 6.7, the measured Kc of the soda lime

glass is slightly overestimated with 0.98-1.09 ± 0.08 MPa.m" as compared to the reference

values of 0.7-0.8 MPa.mA.

(a) Alumina (c50) (b) Alumina (c20)

S 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 0.25 0.3
d/R d/R

Fig. 6.23. Fracture toughness measured on alumina in the conical range of (a) the 50 pm

probe, c50, and (b) the 20 pm probe, c20. The convergence typical of a fracture process is not

achieved with this material at those scales.

Conical 50 pm Conical 20 pm
Material

Max d/R Fitted b Kc (MPa.m%) Max dIR Fitted b Kc (MPa.m/A)
Fused silica 0.30 1.74 0.57 ± 0.06 0.45 1.99 0.57 ± 0.06
Soda lime glass 0.35 1.31 0.98 ± 0.08 0.35 1.54 1.09 ± 0.07
Alumina 0.30 1.06 n/a 0.25 0.99 n/a

Table 6.7. Measured fracture toughness for the ceramics tested in the conical range of the

50 pm and 20 pm probes.

6.6 Chapter Summary

This chapter first described the microscratch test method used in this project to predict the

fracture toughness of brittle materials according to the model developed by Akono and Ulm

[5,6,4]. In this method, a microscratch is performed with a Rockwell diamond probe forced

over a surface under constant horizontal displacement and increasing vertical force. The

fracture toughness is then extracted from the measured penetration depth and horizontal
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force with a model based on the linear-elastic fracture mechanics. The model was calibrated

with reference polymers and ceramics, which were presented in this chapter along with the

experimental protocols. In addition, improvements of the experimental methods were

proposed based on the experience gained in this project. A first suggestion was to avoid

holding the sample with the circular jaws, since they were found to allow vertical movement

of the sample. A better alternative would be to glue circular samples on rectangular

aluminum bases and use the rectangular jaws. Another interesting observation was the

sensitivity of the Lexan polymer to moisture, which needs to be controlled in order to obtain

good quality calibration. In addition, downscaling of the microscratch test was investigated

with probes of decreasing radius (200, 50 and 20 tm) and with reference ceramic materials.

It was found that the microscratching model could be downscaled in the spherical range

with good accuracy, given the homogeneity of the materials over the tested scale (e.g., fused

silica and soda lime glass). Furthermore, the influence of the microtexture was emphasized

with the results obtained for Macor and alumina ceramics at the different scales.
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Part III

Results and Discussion
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Chapter 7

Microstructure and Characteristic Scales

In order to perform investigations on heterogeneous materials like clinkers, knowledge of

the characteristic length scales is required. As illustrated in Fig. 7.1, clinker is a multi-scale

material consisting of nodules at the macroscale (10-1, 10-2 M), characterized by a porous

texture at the intermediate scale (104, 10- m) and composed of different crystalline phases

at the microscale (10-, 10.6 in). A detailed description of these characteristic scales is

presented in this chapter, along with microstructure analyses of the investigated clinkers.

Macroscale Intermediate Scale Microcale
(10- P 10-2 M) (10-310-4 M) (10-5,10-6 M)

dm cm mm pm

Fig. 7.1. Characteristic scales of clinkers: clinker nodules at the macroscale are

characterized by a porous texture at the intermediate scale and they are composed of
different crystalline phases at the microscale (alite, belite, aluminate, ferrite).

7.1 Macroscale: Nodules

Clinker nodules are produced during air quenching of the melt at the exit of the cement

kiln. Their size and properties depend on firing and quenching conditions. Clinkers in this

study generally exhibit a gradation in nodule size from fine micron-sized powder up to

nodules of 30-40 mm in diameter, with the exception of clinker C4 which contains nodules

up to 150 mm in diameter. For each clinker type, representative sub-samples of nodules

with diameters of 20-30 mm were extracted to perform bulk analyses, as illustrated in Fig.
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7.2. It is worth noting that nodules of clinker C2 are very fragile compared to those of other

clinkers. Special care is required during handling and cutting prior to epoxy impregnation,

as nodules would otherwise split or disintegrate.

Fig. 7.2. Typical clinker nodules of 20-30 mm diameter selected for
of clinkers (a) C2, (b) C3 and (c) C4.

bulk analyses, examples

7.2 Intermediate Scale: Porosity and Bulk Surfaces

At the intermediate scale, clinkers are generally very porous materials with available bulk

surfaces limited by porosity. As illustrated in Fig. 7.3, total porosity and pore size

distribution may vary significantly between different clinker types. As fracture properties at

the macroscale are likely to be influenced by porosity at the intermediate scale, apparent

size distribution of the pores is determined with image analysis for the studied clinkers.

Fig. 7.3. Typical intermediate scale imaging of clinkers (a) C2, (b) C3 and (c) C4. The SEM
micrographs are optimized for image analysis of porosity: gray clinker matrix contrasts
strongly with black porous regions.

Porosity is investigated with low magnification back-scattered SEM images (e.g., Fig. 7.3).

The pore areas are extracted with the image analysis software ImageJ [106] after manual

thresholding. To obtain representative porosity measurements, 16 images of 1 mm by
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1.3 mm are analyzed for every clinker. The number of images is chosen to analyze a surface

much larger than the largest heterogeneities (i.e., largest pores). As presented in Fig. 7.4a,

the total porosity is significantly lower for clinker C4 with 12%, and higher for clinker C3

with 33%, in comparison to the other two clinkers (-25%). According to the Delesse principle

[84], these surface porosities may be considered representative of the volumetric porosities.

Based on Ono's work [91], the porosity for ordinary clinker should be between 13 and 16%,

in contrast to poorly burned clinkers for which porosity can reach 25 to 35%. Thus, the

porosity of the studied clinkers is above the average, except for clinker C4.

Apparent size distributions presented in Fig. 7.4b indicate that average equivalent pore

diameters are consistent with total porosity: 65 pm for clinker C4, 250 pm for clinker C2,

and 150 pm for clinkers C1 and C3. Because of the interconnections between pores, these

values are overestimations compared to the measurable dimensions of single pores. The

equivalent pore diameters are calculated assuming circular pores, and the analysis method

thus considers connected pores as a single pore with larger radius.

c1 : : : : : : ::
30 - - - C2 :: ---- : --:--- ---- -- - - C2-
-C3 -80 - C3-

25 C4 C4-

0 60
20 ..20

15 . .
0

0
C 0

5~~ ~~ 20...................

00 0
1 10 100 1000 Z 1 10 100

Equivalent Pore Diameter [um] Equivalent Pore Diameter [um]

Fig. 7.4. Results of clinker surface image analyses showing, (a) apparent pore size
distributions and (b) normalized apparent pore size distributions. Porosity of 33% is
measured for clinker C2, 12% for clinker C4 and -25% for clinkers C1 and C3.

In addition to porosity, surfaces available between pores are of interest for microscratching

of the bulk at the intermediate scale. Surfaces without any pores being very scarce, bulk

surfaces adequate for intermediate scale testing are defined as surfaces exempt of pores

larger than 5-10 pm. Although total porosity varies between the studied clinkers, the

distribution of pores smaller than 100 pm tends to be random and of similar magnitude for

all clinkers, as illustrated in Fig. 7.4a. Thus, similarly sized surfaces may be expected for
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testing on the different clinkers. Observation of several clinker surfaces (e.g., Fig. 7.5)

showed that intermediate scale microscratching of the bulk should be limited to surfaces of

200 x 200 pm2 , as larger surfaces are not available in sufficient quantities.

Fig. 7.5. Examples of available bulk surfaces for samples (a) C2, (b) C3 and (c) C4. Bulk
surfaces adequate for intermediate scale testing (exempt of pores larger than 5-10 pm) are
limited to 200 x 200 pm 2, as larger areas are not available.

If microscratching benefits from large bulk surfaces, chemistry analyses require clinker

representativeness on relatively small surfaces, which is only possible with the use of epoxy

embedded powdered samples. As illustrated in Fig. 7.6a, the polished surfaces of this type of

samples are composed of packed particles. To characterize these surfaces, apparent particle

size distributions are measured with image analyses (particles are assumed to be circular,

mean distributions are based on the analysis of 6 independent images).

(b)_

_0
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1 10 100

Equivalent Particle Diameter [um]
1000

Fig. 7.6. (a) Typical SEM micrograph of coarsely ground sample C-C4 (1280x960 pixels,
1[tm/pixel) and (b) apparent particle size distributions for both coarsely ground and finely
ground samples of clinker C4. The average is presented along with bounds based on the
analysis of 6 independent images.
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As illustrated with clinker C4 in Fig. 7.6b, the difference in particle diameters between the

coarsely ground and the finely ground samples is significantly higher than the variability in

the measurement (shown by the bounds for each curve based on the analysis of 6

independent images). Fig. 7.7 shows the distributions for all the clinker samples. The

median equivalent particle diameter ranges between 35 and 45 [Lm for the coarsely ground

samples and between 15 and 20 [tm for the finely ground samples.

100

Cd

80 -- -

60 ---

40 - -

20 ...

10 100
Equivalent Particle Diameter [um]

1000

Fig. 7.7. Comparison
apparent particle size

of coarsely ground and finely ground samples
distribution, for the four studied clinkers.

with respect to their

Fig. 7.8 presents additional SEM imaging of the powdered samples

magnifications to identify the surface characteristics.

performed at higher

Fig. 7.8. SEM micrographs of coarsely ground sample C-C4. (a) The 50OX magnification
illustrates the defects introduced by grinding on the boundaries of large particles, whereas
(b) the 2000X magnification illustrates the pronounced microcracking of smaller particles.
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As illustrated with clinker C4 in Fig. 7.8a, the coarsely ground samples are composed of a

large range of particle sizes. Larger particles, in which the main clinker phases are

distinguishable, coexist with smaller particles, i.e., fragments of single crystals. However,

the grinding necessary to prepare the powdered samples introduces defects and micro-

cracking of the particles. This is usually observed near the exterior boundaries for large

particles (e.g., Fig. 7.8a) and sometimes over the whole surface for smaller particles (e.g.,

Fig. 7.8b).

7.3 Microscale: Crystalline Phases

At the microscale, clinkers are composed of four main crystalline phases: alite, belite,

aluminate and ferrite. Each phase has characteristic crystal shapes and sizes, which are

dependent on manufacturing conditions. Alite crystals exhibit angular edges with normal

crystal size of 25-65 ptm [22]. In addition, the crystals are often micro-cracked as a result of

the volume shrinkage occurring during the crystallization of the interstitial phases [74]. The

studied clinkers generally follow these trends (e.g., Fig. 7.9b), with the exceptions that

micro-cracking was not observed in clinker C4 (see Fig. 7.9d), and that crystals with larger

diameters were found in clinker C2 (~100 im) and clinker C3 (>150 pim). In addition,

clinker C4 contains smaller alite crystals (10-20 ptm) and a greater separation between

adjacent crystals. Interstitial material surrounds almost all perimeters of crystals (e.g., Fig.

7.9d), whereas cannibalistic alites (i.e., adjacent alites crystals fused together) are observed

for the other clinkers (e.g., Fig. 7.9bc).

Belite crystals are normally rounded (e.g., Fig. 7.9c), with a multi-directional lamellar

structure (e.g., Fig. 7.9d). They are usually slightly smaller than alite crystals, with sizes of

20-40 ptm [22]. The studied clinkers contain belite crystals of typical sizes that are usually

found in clusters (e.g., Fig. 7.9c), except for clinker C4 in which silicates are well distributed

(e.g., Fig. 7.9d). In addition, clinker C1 exhibits closely packed ragged belite crystals with

extension of "fingers" into the matrix (e.g., Fig. 7.9a). If the majority of belite content is

concentrated in well-defined belite crystals, belite inclusions are also present into alite

crystals for all clinkers (e.g., Fig. 7.9c).

Observation of the interstitial phase indicates a concentration of ferrite between crystals in

belite nests, as illustrated in Fig. 7.9a-c. The spacing between alite crystals is usually filled
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with lath-form crystals of ferrite intermixed with the aluminate phase [22], as shown in Fig.

7.9b-d. The size of these intermixed crystals is generally of a few microns (2-3 pm), with rare

occurrence of larger single-phase regions (e.g., Fig. 7.9b).

A uminat

Belte

Alite Interngixed Interstitial Phases

Fig. 7.9. SEM imaging of phases details for the fours studied clinkers: (a) C1 showing

dendritic belite; (b) C2 showing the four clinker phases and micro-cracked alites; (c) C3
illustrating belite nesting and inclusion of belites into alite crystals; and (d) C4 showing
distributed belites and alites crystals free of micro-cracking.

Thus, investigations of alite and belite phases at the microscale are limited by crystal sizes

of approximately 20-30 pm. In addition, the characteristic size of the interstitial phases (2-3

pm) should be considered during analyses aiming to probe all the clinker phases.

7.4 Chapter Summary

In this chapter, the microstructure of the studied clinkers was investigated with respect to

the characteristic clinkers scales. At the macroscale (10-1, 10-2 M), clinkers are nodules
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graded from dust up to diameters of 30-40 mm (and up to 150 mm for clinker C4). The

intermediate scale (10-3, 104 m) is characterized by a combination of porosity and clinker

matrix. Image analysis applied to SEM micrographs was used to quantify porosity. Clinker

C2 showed highest porosity with 33%, compared to 12% for clinker C4, and around 25% for

clinkers C1 and C3. Bulk surfaces between the pores were also investigated and it was

found that bulk testing should be limited to surfaces of 200 x 200 pim 2 , as larger surfaces

were very scarce. At the microscale (10-, 10-6 M), clinkers are composed of the four main

clinker phases (alite, belite, aluminate and ferrite). Microcracking and fusion of adjacent

alite crystals was observed for all clinkers except C4. In addition, clinker C3 contained

oversized alite crystals larger than 150 pim, in comparison to the usual 25-65 pim. Typical

sizes (20-40 pim) of belite crystals were observed and these crystals were usually found in

clusters, except in clinker C4. Interstitial phases (aluminate and ferrite) filled the space

between alites and belites and were generally composed of intermixed crystals of a few

microns (2-3 jim), with rare occurrence of larger single-phase regions. Finally, the

description of clinker characteristic scales performed in this chapter, along with the

identification of particularities of the studied clinkers, will be used in further chapters to

design experiments and to support the interpretation of the results.
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Chapter 8

Mineralogy and Bulk Chemistry

Mineralogy and chemistry of clinkers are of great importance, since they have influence on

both the grindability and the reactivity of clinkers. This chapter investigates the studied

clinkers with the characterization methods used by industry: X-ray diffraction (XRD) with

qualitative phase identification and quantitative Rietveld analyses, as well as X-ray

fluorescence spectroscopy (XRF). In addition, the external standard method is applied with

the XRD measurements to assess the non-crystalline content.

8.1 Qualitative Mineralogy and Polymorphism (XRD)

XRD spectra measured for the four clinker samples are presented in Fig. 8.1 together with

phase identification. Monoclinic alite, A, orthorhombic belite, B, orthorhombic aluminate, C,

and orthorhombic ferrite, F, patterns are fitted to the XRD spectra. The identified peaks are

in good agreement with Taylor's XRD patterns of typical Portland cement [121].

In addition to the above principal clinker phases, two other secondary phases are identified:

free lime, L (CaO/cubic) and periclase, P (MgO/cubic). Peak intensities for these phases are

relatively small and vary with clinker type, probably as a consequence of the raw mix

composition and burning conditions of each clinker. Calcium oxide may persist as free lime

in clinker if the lime saturation factor is above one (see section 4.3.2). Also, magnesium

oxide may be introduced in clinker raw mixes as an impurity to reduce melting temperature

and to stabilize reactive polymorphs at room temperature. After substitution in clinker

phases, additional magnesium in Portland cement clinker tends to crystallize as periclase

[121].
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Fig. 8.1. Qualitative phase identification for the X-ray diffraction patterns of the four
studied clinkers. The major phases identified are alite, A, belite, B, aluminate, C, ferrite, F,
with minor (/trace) amounts of free lime, L, and periclase, P.

Alite polymorphism is determined by closer observation of the XRD spectra intensities

between 51 and 52.5 020, as shown in Fig. 8.2a. According to Taylor [121], two peaks of

similar intensities correspond to the monoclinic polymorph M3, whereas higher intensity of

the first peak indicates the presence of the monoclinic polymorph Mi, as illustrated in Fig.

8.2b.

(a)

51 51.5 52
Bragg Angle, 20 (*)

(b)

51* 520
DEGREES

510 52*
20 Ku Kax)

510 520

Fig. 8.2. (a) Specific window of the XRD patterns which presents characteristic peaks for
alite polymorphism identification. (b) Reference spectra for alite polymorphism as presented
by Taylor [121]. The relative height of the peaks around 52 020 indicates the presence of
polymorph M 3, polymorph Mi or a combination of both polymorphs.
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Alite polymorphism is related to the supersaturation of the melt. High supersaturation,

induced by sufficient amounts of MgO and/or high firing temperature, results in high

intensity of nucleation leading to the stabilization of the polymorph M3, as described by

Maki et al. [76,75]. On the contrary, low supersaturation of the melt and lower viscosity,

triggered by the presence of S03, results in lower intensity of nucleation leading to unstable

growth of larger crystals of the polymorph Mi [76,75]. Stanek [115] found that this

polymorphism had influence on the strength of cements. He measured strengths 10% higher

with the polymorph Mi compared to the polymorph M3. Clinkers studied in this project

generally exhibits the alite polymorph M3 except for clinker C3 whose alite crystals seem to

be a combination of both polymorphs M3 and Mi. These results are in agreement with

previous observations of the microstructure in section 7.3 where larger alite crystals typical

of the polymorph Mi were observed in clinker C3.

8.2 Quantitative Mineralogy (Rietveld Analyses)

As illustrated in Fig. 8.3 for a single scan performed on clinker C2, the Rietveld method is

used to fit the experimental profile with a calculated profile. The quality of the fit is

validated both by visual inspection and with the weighted residual parameter, Rwp. For this

scan, Rw = 6.15% which satisfies the quality criterion fixed in this work to Rwp < 10% (see

section 4.2.3). Similar quality of refinement is achieved for all scans with Rwp < 8%, as

shown in Table 8.1.

10
Experimental Profile

8 - -Calculated Profile
Residual Profile

02

0

-2 III
10 20 30 40 50 60 70

Bragg Angle, 20 (0)

Fig. 8.3. Comparison of the experimental profile, the calculated profile and their difference
(the residual profile) for a typical Rietveld refinement of clinker C2. The quality of the fit is
assessed both qualitatively by visual inspection (peaks are adequately modeled and highest
residuals are associated with highest intensities) and quantitatively with the weighted
residual profile: Rwp= 6.15% < 10%.
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As presented in Table 8.1, the refined weight percent show good repeatability with

variations lower than 2 wt%. The results indicate higher belite and periclase contents for

clinker C2, higher alumina to ferrite ratio for clinker C4, highest alite content for clinker

C3, and average weight fractions for clinker C1. The measured free lime content is found to

be negligible.

Clinker C1 C2 C3 C4
x± 95% CI x 95% CI x + 95% CI x± 95% CI

Weight fractions (wt%) for all the crystal structures
Alite - M3 50 13 34 11 24.6 7.6 45.3 4.8
Alite - Mi 16 13 24 13 45.9 6.8 19.0 4.7
Belite - P 11.9 + 1.1 15.0 ± 0.9 10.5 ± 0.8 12.0 + 0.4
Belite - a' 1.7 ± 1.3 5.0 ± 1.0 0.3 + 0.5 1.0 + 0.4
Alum. - Cubic 3.7 ± 0.2 2.2 + 0.4 2.3 ± 0.2 8.0 + 0.8
Alum. - Ortho. 2.0 ± 0.5 3.1 ± 1.1 0.0 + 0.0 1.6 1.0
Ferrite 13.0 + 1.1 13.2 ± 0.5 15.0 ± 0.6 11.6 ± 0.8
Lime 0.0 + 0.0 0.3 ± 0.5 0.0 + 0.0 0.0 + 0.0
Periclase 1.9 0.3 3.6+ 0.1 1.5 0.2 1.3+ 0.1
Quantitative evaluation of refinements
Rwp 7.3 1.6 6.6 0.9 7.1 0.2 6.3 0.6
Weight fractions (wt%) for the identified clinker phases
Alite 65.9 + 0.8 57.6 + 1.9 70.4 + 0.9 64.4 1.0
Belite 13.6 0.4 20.1 + 1.1 10.8 1.2 13.0 + 0.5
Aluminate 5.6 + 0.5 5.3 + 0.8 2.3 ± 0.2 9.7 + 0.6
Ferrite 13.0 + 1.1 13.2 + 0.5 15.0 + 0.6 11.6 0.8
Periclase 1.9 0.3 3.6 0.1 1.5+ 0.2 1.3 0.1

Table 8.1. Results of the quantitative Rietveld refinements for the four studied clinkers.
Weight fractions are first presented for all crystal structures included in the refinement,
and then only for the identified clinker phases. The quantitative evaluation of the
refinement is also presented with the weighted residual profile R.p. Four replicates on two
different samples are performed for each clinker. The mean value is presented along with
95% confidence interval.

In addition to weight fractions, Rietveld results give an indication on the relative

distribution of polymorphs for alite, belite and aluminate. However, error on alite

polymorphism is very high, and the distribution of these polymorphs should not be

considered quantitatively because of strong overlapping of the characteristic peaks, as

suggested by other authors [103]. Nevertheless, trends for alite polymorphs are in

agreement with qualitative observations, since clinker C3 shows a stronger contribution of

polymorph M 1 . Observation of belite polymorphism illustrates the predominance of P belite,

and clinker C2 exhibits the largest contribution of the polymorph a'.
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8.3 Assessment of Non-Quantified Content (Ext. Standard Method)

In the quantitative Rietveld analyses, the measured weight fractions are normalized to the

total amount of crystalline phases. To have a better description of the composition of the

studied clinkers, non-quantified content was investigated with the external standard

method. As shown in Table 8.2, average non-quantified contents range between 13% and

18%, with confidence intervals (95%) obtained from combinations of four scans for each

clinker and three scans for the standard. In addition, lower and upper bounds are presented

to reflect the disagreement in literature regarding the crystalline content of the NIST a-

alumina corundum used as standard in this study. Overall, the results are in good

agreement with literature. Non-quantified/amorphous contents for clinkers usually range

between 3.3% and 25% [72,116,133,82,68,60,65]. Although the non-quantified content is

often considered to be only amorphous material, it is defined here as the sum of the

amorphous content, the non-detected crystalline phases and the residuals from fitting, as

suggested by Jansen et al. [60].

Non-quantified Lower Bound Average Upper Bound
content (wt%) x 95% CI x 95% CI x± 95% CI
Clinker C1 13 2 16 ±2 19 ±2
Clinker C2 12 ±2 15±2 18 ±2
Clinker C3 10 ±1 13 ±1 16 ±1
Clinker C4 15±2 18±2 21±2

Table 8.2. Non-quantified content determined for the four studied clinkers. Disagreement in
literature about exact crystalline content of the NIST a-alumina corundum is responsible for
lower and upper bounds. Confidence intervals, CI, of 95% are obtained with combinations of
four scans for the clinkers and three scans for the standard.

The combination of the quantitative Rielveld results with the non-quantified contents is

presented in Fig. 8.4. The non-quantified contents represent a significant proportion of the

studied clinkers, with weight fractions of the same magnitude as major clinker phases such

as belite and ferrite. Thus, this fraction of clinkers should be considered with respect to

grinding and reactivity. In this study, the non-quantified contents are of the same

magnitude for all studied clinkers and the only statistically significant difference is the

higher weight fraction for clinker C4 (18%), when compared to clinker C3 (13%).
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Fig. 8.4. Combined results of the quantitative Rietveld analyses and the assessment of non-
quantified content performed with the external standard method. The error bars represent
95% confidence intervals based on 4 repetitions.

8.4 Bulk Chemistry (XRF) and Composition Parameters

Bulk oxide compositions measured by X-ray fluorescence spectroscopy are presented in

Table 8.3 for the studied clinkers. To facilitate the interpretation of these results, the

composition parameters are calculated (see section 4.3.2) and presented in Table 8.4.

The results for the lime saturation factor LSF are in good agreement with literature values,

which range between 0.92 and 0.98 [121]. Clinker C3 has a higher but acceptable LSF

value, as modern clinkers may reach up to 1.02 [121]. Higher LSF values implies increased

availability of CaO which favor the alite phase and may result in residual free lime

precipitation. These results are in agreement with quantitative mineralogy (section 8.2)

where clinker C3 exhibits higher alite content than the other clinkers.

Furthermore, the modified LSF*, which accounts for possible Mg substitution in alite, is

higher than 100 for all clinker. This indicates that in the case of perfectly homogeneous raw

mix with ideal burning conditions, all the belite would be transformed into alite and there

would be precipitation of both residual CaO and MgO. Observation of the mineralogy results

(section 8.2) illustrates that these ideal conditions cannot be met in industrial cement kilns.

Local variations in temperatures and in concentrations of CaO and MgO prevent complete

transformation of belite into alite. Nevertheless, precipitation of the periclase phase is

observed for all clinkers and specifically for clinker C2, which is in agreement with the

higher MgO content measured with XRF for this clinker. In contrast, the free lime phase is
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not identified with the XRD analyses, which does not mean it is absent in all samples. Free

lime is known to be a soft clinker phase (Mohs' hardness of 3-4 compared to 4-6 for the other

major clinker phases [22]) and sample preparation may result in overgrinding of lime which

then prevents its experimental identification.

Oxides C1 C2 C3 C4
(wt%)
CaO 65.54 64.22 64.58 64.08
SiO2  20.57 20.72 19.59 20.20
A1203 5.04 4.86 4.73 6.29
Fe203 3.02 3.11 3.63 2.85
MgO 2.92 4.34 2.53 2.56
So 3  0.49 0.47 1.56 1.19
Na20 0.25 0.25 0.26 0.30
K20 0.54 0.71 0.91 1.07
TiO2 0.22 0.22 0.22 0.24
P205 0.12 0.09 0.18 0.28
Mn203 0.17 0.08 0.10 0.08
SrO 0.10 0.09 0.23 0.29
LOI 0.96 0.82 1.46 0.52
Na20eq 0.61 0.72 0.86 1.00

Table 8.3. Bulk chemistry weight fractions measured by XRF and loss on ignition, LOI, for
the four studied clinker samples (i.e., C1, C2, C3 and C4). Equivalent alkalis are calculated
according to ASTM C150-04 [10]: Na2Oeq = Na2O + 0.658K20.

Parameter C1 C2 C3 C4
LSF 0.98 0.96 1.01 0.96
LSF* 1.05 1.06 1.07 1.02
SR 2.55 2.60 2.35 2.21
AF 1.67 1.56 1.30 2.20

Table 8.4. Composition parameters calculated for the four studied clinkers. The composition
parameters include the lime saturation factor LSF, the modified LSF* which allow for Mg
substitution in alite, the silica ratio SR and the alumina ratio AR.

In addition, the calculated alumina ratios, AF, are also in good agreement with the

mineralogy results: the aluminate phase is present in lower concentration for clinker C3

and in higher concentration for clinker C4. These results for clinker C4 also correlate with

previous observations of the microstructure (section 7.3). An intermix of aluminate and

ferrite is observed between the well-separated silicate crystals of clinker C4, whereas the

other clinkers contain clusters of belite crystals usually filled with the ferrite phase.
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In addition to the composition parameters, the bulk chemistry may be used to support the

assessment of polymorphism of the alite phase (section 8.1). In this study, clinker C3

contains the alite polymorph Mi and the highest S03 content, both of which are associated

with slow alite grow rates [76,75]. Finally, the oxide composition of clinkers may be used to

validate the conformity with the requirements of standards such as ASTM 150 [10]. An

example is the equivalent alkalis content which must be kept below 0.6% for low-alkali

cements (only clinker C1 meets this requirement).

8.5 Chapter Summary

In this chapter, the mineralogy of the clinkers was assessed with XRD analyses focused on

the alite polymorphism and the abundance of constituting phases (including both crystalline

phases and non-quantified content). In addition, bulk chemistry was investigated with XRF

and the composition parameters were calculated. Based on these measurements,

particularities were identified for each clinker. Clinker C1 showed low alkali content, and it

is therefore the only clinker usable in low alkali cements. Clinker C2 had the highest belite

content, with 20% of the crystalline phases. Its MgO content was also significantly higher

than for other clinkers, as measured both with XRD and XRF. Clinker C3 was the only

clinker containing significant amount of the alite polymorph Mi, as determined in the XRD

analyses. This observation was also supported by the high S03 concentration measured with

XRF and the oversized alite crystals (>150 pim) previously observed in the SEM analyses. In

addition, clinker C3 had the highest alite content and the lowest aluminate content, which

is in agreement with its high lime saturation factor LSF and low alumina ratio AR. Clinker

C4 was characterized by the highest content of interstitial phases and a relatively high

amount of aluminate phase, as measured by quantitative XRD. In addition, the non-

quantified content of clinker C4 was higher (18%) than that of clinker C3 (13%), whereas

the other two clinkers contained average quantities. Finally, the comprehensive

characterization presented in this chapter will be use for further comparison with the

alternative statistical EPMA analysis method presented in Chapter 9 and for correlation

with the mechanical properties investigated in Chapter 10.
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Chapter 9

Alternative Comprehensive Characterization

Recent experimental and simulation works proposed new possibilities for engineering

clinkers with lower grinding energy and higher reactivity, based on chemical substitutions

in the clinker main phases [70,77]. This led to an increased interest in monitoring the

phases' chemistry, which may be quantitatively measured either with an electron-probe

microanalyzer (EPMA) equipped with wavelength dispersive spectrometers [67,104] or with

an SEM equipped with an energy dispersive spectrometer (SEM-EDS) [28].

This chapter proposes an alternative characterization method to provide, from a single

EPMA experiment, simultaneously the chemistry of individual phases, their relative

abundance and the chemistry of the bulk material. The method consists of performing a grid

of EPMA spot analyses over a representative sample surface and using advanced statistical

tools to extract the desired quantities. This method is applied to the four industrial clinkers

of this study with three different variants in sample preparation: bulk samples, coarsely

ground samples and finely ground samples. The accuracy of the method is assessed by

comparison with results from the previous chapter.

9.1 Data Sieving

The first step of analysis consists of sieving the data to isolate the "signal" from the "noise",

using Gaussian mixture clustering of the analytical totals (see section 5.3.1). As presented

in Table 9.1, the bounds on analytical totals are determined for each dataset, along with the

sieving ratio of N valid "signal" points over No raw points.

The bounds for bulk samples are in excellent agreement with the expected values of 100 ± 2

[45], which indicates a good calibration of the instrument and the quality of the probed

surface. On the other hand, lower totals are measured for powdered samples. This
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systematic error may be attributed to particles defects and microcracking imposed during

grinding, as shown in Fig. 7.8.

Clinker Bounds for Totals of Signal (wt %) Sieving Ratio, N/No (%)
Bulk Coarse Fine Bulk Coarse Fine

Grid a Grid b Grid a Grid b i Grid a Grid b Grid a Grid b
C1 [97,103] [87,97] [86,97] [84,99] [86,99] 63 43 47 45 38
C2 [96,104] [93,100] [92,100] [88,99] [86,100] 64 45 45 40 46
C3 [97,102] [90,101] [88,100] [89,102] [85,97] 78 52 47 39 42
C4 [96,102] [88,98] [87,98] [89,98] [89,99] 57 47 46 30 31

Table 9.1. Data sieving results for each probed grid, including the bounds for the analytical
totals of the "signal" and the sieving ratio.

All these microtexture effects may significantly alter the scattering of electrons and the

generation of characteristic X-rays, in comparison to polished homogeneous standard

materials [9]. Such a deviation of analytical conditions tends to affect the measured

intensities as well as the calculated k ratios resulting in abnormal analytical totals. As

expected, finer grinding introduces more defects which amplifies this phenomenon that is

generally observed for finely ground samples when compared to coarsely ground ones.

Nevertheless, further analysis of the measured chemistry (see section 9.2.2) indicates that

all elements seem to be affected similarly by surface irregularities, because ratios between

elements are preserved. The results with lower totals may thus be considered valid. The

sieving ratio is also found to decrease with increasing grinding fineness and this is further

investigated in the discussion.

9.2 Chemistry of the Clinker Phases

9.2.1 Analysis of Bulk Samples

Following the sieving of "signal", each dataset is deconvoluted with respect to the main four

elements (Ca, Si, Fe and Al) into statistically different clusters. Several combinations of the

dimensions may be used for representation of the clustering results, but the Ca vs. Si

representation is of particular interest for clinker analyses. Fig. 9.1 illustrates this

representation for bulk samples B-C2 and B-C4, along with the typical compositions of the

main clinker phases, as published by Taylor [121].
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Fig. 9.1. Ca vs. Si representation for bulk samples (a) B-C2 focused on the entire range of
Ca values, and (b) B-C4 focused on the main clinker phases. The deconvoluted clusters are
presented along with the typical compositions of the clinker phases, as published by Taylor
[121] for: alite, A; belite, B; aluminate, C; aluminate orthorhombic, C'; aluminate low-Fe, C-;
ferrite, F; ferrite low-Al, F-; free lime, L; and periclase, P.

Each cluster is then associated either to a pure clinker phase or to a mixture of different

phases. As presented in Table 9.2, four pure phases are identified: alite, A; belite, B;

interstitial phase, I; and free lime, L. The remaining clusters are different mixtures, Mix, of

the identified pure phases. In addition, a phase rich in Mg, phase M, is identified as a

mixture of periclase (expected to be present in cement clinkers) with the other phases.

The average chemical compositions are presented in Table 9.2 for each cluster of both

samples B-C2 and B-C4. The measured compositions for alite and belite are found to be in

good agreement with the typical compositions published by Taylor [121] and presented in

Table 9.3. The major elements agree within 2-4%, and the minor elements indicate the

chemical signature of each clinker type. In this first step of analysis, the two interstitial

phases are not clearly distinguishable and the combined response of these two phases is

explained by their microtexture. As shown in Fig. 7.9b, the elongated intermixed crystals of

the two phases have relatively small lateral dimensions (-2-3 [tm). As the interaction

diameter of the EPMA probe is around 1.5 [tm, probing of pure aluminate or pure ferrite is

thus unlikely to occur.
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Cluster
Phase

0
Ca
Si
Al
Fe
Mg
S
Na
K
Vol. %

01
Mix

55.6
31.7
10.7
0.7
0.3
0.9
0.0
0.1
0.1
15.8

Cluster
Phase

0
Ca
Si
Al
Fe
Mg
S
Na
K
Vol. %

02
I

55.8
21.5
1.9

11.0
5.6
3.4
0.5
0.3
1.3
2.5

01
B

57.1
27.9
12.5
1.0
0.4
0.5
0.5
0.3
0.3
4.8

03
A

55.5
32.2
10.7
0.5
0.2
0.9
0.0
0.1
0.1
37.5

02
Mix

55.7
31.4
10.4
0.9
0.4
0.9
0.2
0.1
0.2
9.7

Table 9.2. Chemical composition
clusters for the bulk samples (a)

04
I

55.3
24.2
2.6
11.6
4.6
1.3
0.0
0.4
0.4
9.1

03
A

55.5
32.1
10.5
0.6
0.2
0.9
0.1
0.1
0.0

64.7

05
Mix

55.2
24.4
6.9
5.3
1.7
6.2
0.0
0.3
0.4
2.7

04
I

55.4
23.8
2.6
11.3
4.2
2.5
0.2
0.1
0.2
4.1

06
L

50.1
48.4
0.0
0.1
0.1
1.2
0.0
0.1
0.1
1.1

05
M

53.1
10.2
1.5
3.0
1.1

29.6
1.2
0.2
1.0
1.2

07
Mix

55.5
30.4
9.8
1.4
0.5
2.2
0.1
0.1
0.3
4.0

06
L

50.1
48.0
0.1
0.2
0.2
1.4
0.0
0.1
0.0
1.7

08
M

51.7
10.3
1.7
2.6
0.8
32.7
0.0
0.2
0.2
1.8

07
Mix

55.6
27.9
7.0
5.0
2.7
1.4
0.2
0.1
0.1
5.9

09
Mix

56.0
28.2
9.0
4.1
1.7
0.8
0.0
0.2
0.3
10.3

08
I

55.5
22.8
2.0
10.1
7.5
1.9
0.1
0.1
0.1
5.8

10
Mix

57.0
27.4
12.5
1.7
0.5
0.5
0.1
0.2
0.6
4.4

11
B

57.0
28.1
13.3
0.7
0.3
0.3
0.0
0.2
0.4
10.7

09
Mix

57.5
26.7
9.6
1.6
0.5
1.8
1.9
0.5
1.5
2.1

expressed in atomic percent for the statistically distinct
B-C2 and (b) B-C4. Based on the chemical composition,

each cluster is identified either as a mixture, Mix, of several phases or as one of the clinker
phases: alite, A; belite, B; interstitial phase, I; free lime, L; or magnesium-rich phase, M.

Phase Alite Belite Aluminate Ferrite
Phase Cubic Ortho. Low Fe Typical Low Al

Symbol A B C C' C- F F-
0 55.4 56.7 54.8 54.4 55.0 55.5 55.7
Ca 32.2 28.0 24.8 24.0 25.3 22.0 21.9
Si 10.6 13.0 1.6 1.8 1.8 1.6 2.2
Al 0.4 1.0 15.2 14.2 16.1 11.1 8.4
Fe 0.2 0.3 1.6 2.1 0.3 6.9 8.4
Mg 0.7 0.3 0.8 0.7 0.6 1.9 2.4
S 0.1 0.1 0.0 0.0 0.0 0.0 0.0
Na 0.1 0.1 0.8 0.5 0.3 0.1 0.3
K 0.1 0.4 0.4 2.1 0.3 0.1 0.1

Table 9.3. Typical composition expressed in
as published by Taylor [121].

atomic percent for clinker mineralogical phases,

The interstitial phases are further analyzed with additional representations of the clustered

datasets (including Al and Fe contents), as shown in Fig. 9.2ab. According to the results, the
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interstitial phase of clinker C2 seems to be a combination of ferrite, aluminate and

aluminate orthorhombic, without significant contributions of low-Fe aluminate and low-Al

ferrite. Similar observations are made for the other clinkers of this study, except for clinker

C4, which may contain low-Fe aluminate as shown in Fig. 9.2cd.
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Fig. 9.2. Additional representations of the clustered results for bulk samples: Fe vs. Si
representation for samples (a) B-C2 and (c) B-C4; Al vs. Si representation for samples (b) B-
C2 and (d) B-C4. The reference phases are the following: alite, A; belite, B; aluminate, C;
aluminate orthorhombic, C'; aluminate low-Fe, C-; ferrite, F; ferrite low-Al, F-; free lime, L;
and periclase, P.

9.2.2 Analysis of Ground Samples

As illustrated for clinkers C2 and C4 in Fig. 9.3, the results obtained for coarsely ground

and finely ground samples are similar to those of the bulk samples. Pure alite and belite

phases are identified for most samples, except for sample F-C4b in which the number of

probes corresponding to belite is too low to be clustered as an independent phase (see Fig.

9.3d). In addition, pure free lime is not measured for ground samples. Free lime is known to

be a soft clinker phase, with Mohs' hardness of 3 to 4 compared to 4 to 6 for the other main
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clinker phases [22], and clinker grinding may result in overgrinding of lime which prevents

its experimental identification.

(a)

-S

(C)

0

0 5 10
Si (Atomic %)

(b)

0

35
Clust.01
Clust.02
Clust.03

30 .-----.....---- . - - - Clust.04

- - .Clust.05

CIUStO6
- Clust.06

. ... . .* .- . Clust.08
25-- Clust09

* .* eRef.

20 *
0 5 10 15 2

Si (Atomic %)

35
Clust.01
Clust.02

- Clust.03
30 ... ... .. ... .30 --- -- .-- ..-- ..-- ..--..--. - Clust.04

- Clust.05

- Clust.06

- Clust.07
25 -- - Clust.08

. -. Ref.

20
15 20

35
: Clust.01

0A Clust.02

- Clust.04

* Clust.05
. .. ' Clust.06

25 -. Clust.07

** * Ref.

20
0 5 10 15 2

Si (Atomic %)

35

- Clust.01
A

Clust.02

30 .---------.... . .-. - - - - .. * Clust.03

S. - Clust.04

- Clust.05

25 -- .... -- ------ - . . ..... . - Clust.06

. . *Ref.

201
0 5 10

Si (Atomic %)
15 20

Fig. 9.3. Si vs. Ca representation for coarsely ground samples (a) C-C2a and (b) C-C4b and
finely ground samples (c) F-C2a and (d) F-C4b. The reference phases are the following:
alite, A; belite, B; aluminate, C; aluminate orthorhombic, C'; aluminate low-Fe, C-; ferrite, F;
and ferrite low-Al, F-.

The influence of sample preparation is further analyzed with the comparison of alite and

belite phase compositions, as presented in Table 9.4. These results validate that the use of

ground samples does not significantly affect the measured composition of the pure phases,

as the relative error compared to bulk samples is lower than 2-5% for major elements. In

addition, these results also illustrate the repeatability of the measurements, as very similar

values are obtained with two grids (a and b) performed on the same sample.
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Phase Alite Belite

Sample B-C2 C-C2a C-C2b F-C2a F-C2b B-C2 C-C2a C-C2b F-C2a F-C2b
0 55.5 55.5 55.5 55.6 55.5 57.0 56.9 57.0 57.1 57.0

Ca 32.2 31.8 31.6 32.1 32.3 28.1 27.9 27.8 28.2 28.2

Si 10.7 10.5 10.6 10.7 10.6 13.3 13.1 13.3 13.2 13.2

Al 0.5 0.6 0.6 0.5 0.5 0.7 0.8 0.7 0.8 0.8

Fe 0.2 0.3 0.3 0.3 0.2 0.3 0.4 0.3 0.4 0.4

Mg 0.9 1.1 1.1 0.8 0.9 0.3 0.5 0.5 0.3 0.3

S 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1

Na 0.1 0.2 0.2 0.0 0.0 0.2 0.4 0.3 0.0 0.1

K 0.1 0.1 0.1 0.1 0.1 0.4 0.4 0.4 0.4 0.4

Table 9.4. Comparison of alite and belite compositions in atomic percent, for clinker C2 with
different types of sample preparation: bulk sample (B-C2), coarsely ground sample (C-C2
with grids a and b) and finely ground sample (F-C2 with grids a and b).

9.3 Abundance of the Clinker Phases

9.3.1 Processing of EPMA Results

Following chemistry analyses, the grid EPMA datasets are used to determine the

abundance of the identified main clinker phases. Based on the Ca vs. Si representation

expressed in weight fractions (see Fig. 9.4), the method consists of considering each single

probe i either as a pure phase or as a combination of j=1.. .n pure phases. The relative

weight fractions, Tnmji, are determined for each probe i by a linear system of equations based

on the previously determined chemical composition of the n constituting phases (the n

clustering poles). Densities of main clinker phases, pi, are used to convert relative weight

fractions, nigji, into relative volumetric fractions, ijoji, as shown in Eq. (9.1). Then, volume

fractions of clinker phases are obtained by averaging the relative volumetric fractions for

the N probes of a sample, as defined with Eq. (9.2).

llm,ji/Pj
7v,ji = (9.1)

=i(imji/Pj)

y = N=1 7"'i (9.2)
N

As illustrated in Fig. 9.4a, data processing is performed in a three step process to treat

successively (1) impurities, (2) free lime and (3) major clinker phases. In the first step,
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probes not associated with the clinker main phases and having low Ca contents are removed

and considered as impurities (impurity threshold is set to Ca content below 30 wt%).

In the second step, probes with Ca content above the alite pole, which are almost exclusively

located on the free lime-alite-belite line, are assumed be a mixture of free lime and alite.

This is a reasonable assumption considering that neighboring free lime and belite crystals is

unlikely to occur [20], as these phases are expected to combine into alite under adequate

clinkering conditions (i.e., no excess alkali, sufficient burning temperature) [22]. The

relative fraction for each phase is determined according to the system of equations (9.3)

based on the calcium content, Ca, of the investigated probe, Ca, the alite pole, CaA, and the

free lime pole, CaL.

Ca = CaA * rlAi + CaL * rlLi (93)

1 = r7Ai + rlLi

The remaining data points are considered as mixtures of the main clinker phases and are

treated in a third step. The system of equations (9.4) based on Ca and Si contents is used to

determine, for each data point i, the relative contributions of alite, rjAi, belite, rJBi, and

interstitial phases, 7yi.

Ca = CaA * 1U i + CaB * r7Bi + Ca, * r1;i

Si =SiA * U + SiB *Bi + Si * r;i (9.4)

1 = 71Ai + 7Bi + r17H

All data points associated with the three main clinker phases should theoretically be located

inside the compositional simplex formed by the three poles. As shown in Fig. 9.4a, this is not

the case because of inherent error on the measurements. Thus, mixtures of two phases are

not precisely located on a line between the two poles, but distributed around this line. Such

distribution leads to unrealistic solutions with negative relative weight fractions. To avoid

this situation, the points outside of the defined simplex are projected on the boundaries and

summits, as illustrated in Fig. 9.4b.

The results obtained with this procedure are presented in Table 9.5. A decrease in free lime

content from bulk samples to ground samples is generally observed, which is in agreement

with previous qualitative observations. Cement clinkers typically contain about 1% of free
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lime, which can easily ground too finely to be detected [22]. The quantitative results for

coarse samples therefore indicate an underestimation of free lime with the proposed

methodology. In addition, high variability between samples is observed for the amount of

impurities, which indicates that the results for minor phases may be used qualitatively but

that the quantitative values need to be considered with care. Smaller variability is

measured on the abundance of the clinker main phases and these results are further

analyzed in the following sections.

(a) (
sep 2:A

60

Stop 3:A.4

~30 *J

1s . - Exenmental'"Sga* Projected S 'W

Poles from Clusteing Poles from Clustering

iS 00wOr!0 5 10 15 20 0 5 10 15 20

Si (wt%) si(wt%)

Fig. 9.4. (a) Experimental "signal" of sample B-C2 with illustration of the data processing

steps: (1) the impurities are removed; (2) the points above the alite pole are considered as

mixtures of free lime, L, and alite, A; (3) the remaining points are distributed between the

three main clinker phases (alite A, belite B and interstitial 1). (b) Projection of the points

outside of the alite-belite-interstitial compositional simplex.

9.3.2 Comparison with XRD Results

As presented in Table 9.5, the results obtained both with the EPMA and XRD investigations

are compared in volumetric percent for the clinker main phases (see section 8.2 for complete

XRD results). The results are first normalized to the total content of the main clinker

phases (alite, belite and interstitial) and the relative errors on the EPMA results are then

determined using the XRD results as reference values. The three types of sample

preparation are compared with single grids (a or b) or combination of two grids (a+b): the

bulk samples (B-), coarsely ground (C-) and finely ground (F-) samples. Further analysis of

these results is presented in the discussion.
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Sample Method Minor Phases (v%) Norm. Fractions (v%) Relative Error (%)
Lime Impurities Alite Belite Interst. Alite Belite Interst.

C1 XRD 69 14 18
B-Cl Bulk 2.1 0.9 76 12 13 10 13 28
C-Cl (a) Coarse 0.6 0.0 68 15 17 1 9 3
C-Cl (b) Coarse 0.8 0.0 71 12 16 4 9 8
C-Cl (a+b) Coarse 0.8 0.0 71 13 16 3 4 10
F-C1 (a+b) Fine 0.4 1.9 69 12 19 1 14 8
C2 XRD 62 20 18
B-C2 Bulk 1.3 2.3 61 22 17 2 8 3
C-C2 (a) Coarse 0.3 1.3 63 23 15 1 12 17
C-C2 (b) Coarse 0.3 2.0 60 24 16 3 16 7
C-C2 (a+b) Coarse 0.3 1.7 61 24 15 2 16 12
F-C2 (a+b) Fine 0.4 2.0 57 25 18 8 21 5
C3 XRD 74 11 16
B-C3 Bulk 0.2 0.9 72 8 20 3 22 27
C-C3 (a) Coarse 0.6 1.3 71 10 19 3 3 18
C-C3 (b) Coarse 0.4 2.3 73 11 16 0 3 3
C-C3 (a+b) Coarse 0.8 1.7 71 12 17 4 9 11
F-C3 (a+b) Fine 0.8 1.9 69 10 20 6 4 29
C4 XRD 66 13 21
B-C4 Bulk 1.9 1.0 78 8 13 18 35 36
C-C4 (a) Coarse 0.4 1.5 68 10 22 3 22 6
C-C4 (b) Coarse 0.5 0.4 67 12 21 1 9 4
C-C4 (a+b) Coarse 0.5 0.8 67 11 22 1 15 5
F-C4 (a+b) Fine 0.4 1.8 69 11 20 4 18 1

Table 9.5. Abundance of clinker minor phases (v%) and clinker main phases (normalized
v%), with relative error compared to XRD results (normalized v%). B = Bulk samples; C =

Coarsely ground sample; F = Finely ground sample; a = First grid; b = Second grid.

9.4 Bulk Chemistry

9.4.1 EPMA Average Chemistry

Under the assumption that the "signal" of the EPMA datasets is representative of the whole

clinker, a good approximation for the bulk chemistry is expected from averaging the

chemistry over all the data points. To facilitate the comparison with X-ray fluorescence

(XRF) measurements, the average chemistry obtained from the elemental atomic fractions

is converted into oxides weight fractions. The EPMA average chemistry of each clinker is

presented Table 9.6, as calculated with the results obtained for coarsely ground samples

with two experimental grids (a+b).
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9.4.2 XRF Results and Comparison

The oxide compositions (wt%) measured by XRF are also reproduced in Table 9.6 (see

section 8.4 for more details). These compositions are considered as the reference values for

validation of the EPMA averaging method. However, it is worth reminding that the relative

error on the XRF method itself ranges from <5% for the four major oxides up to 100% for the

trace oxides.

As shown in Table 9.6, similar error is obtained when comparing the two methods (below 5-

10% for the main four oxides and up to 75% for trace oxides), which indicates a good

agreement given the accuracy of the XRF measurements. In addition, it is observed that the

main oxides tend to be slightly overestimated by the EPMA method while the trace oxides

are generally underestimated. This may be attributed to the limits of the statistical

representativeness of the sieved "signal". Trace elements may be either substitutions in the

major phases or localized concentrations in the clinker matrix. The error on the latter is

expected to be larger in the discrete EPMA probing, as the overall concentrations of trace

elements are generally less than a percent. Nevertheless, it is interesting to note that the

relative trends between clinkers are relatively consistent for the two methods (e.g., S03

content). In addition, other trace oxides measured with XRF (i.e., TiO2, P205, Mn203 and

SrO) were not included in the EPMA measurements.

Method EPMA Average Chemistry XRF Bulk Chemistry
Sample C-Cl C-C2 C-C3 C-C4 C1 C2 C3 C4
CaO 67.6 64.9 65.7 65.8 65.5 64.2 64.6 64.1
SiO2 22.3 22.8 20.9 21.1 20.6 20.7 19.6 20.2
A120 3  4.9 4.5 4.7 6.7 5.0 4.9 4.7 6.3
Fe2O3 3.0 3.0 3.6 3.1 3.0 3.1 3.6 2.9
MgO 0.7 3.0 2.4 1.9 2.9 4.3 2.5 2.6
S03 0.2 0.2 0.7 0.4 0.5 0.5 1.6 1.2
Na20 0.1 0.4 0.2 0.2 0.3 0.3 0.3 0.3
K20 0.3 0.4 0.4 0.3 0.5 0.7 0.9 1.1
Others - - - 06 0.5 0.7 0.9
LOI 1.0 0.8 1.5 0.5 1.0 0.8 1.5 0.5

Table 9.6. Oxide weight percent measured by averaging EPMA results for all the valid data
points obtained for the coarse samples (grids a+b). The results from XRF are presented for
comparison. The EPMA results are in agreement for the major oxides (relative error < 5-
10%), with a tendency for underestimation of the minor oxides. Note that the loss of
ignition, LOI, is measured with a complementary method and is thus the same for both sets
of results.
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9.5 Discussion

9.5.1 Optimal Experimental Protocol

9.5.1.1 Representativeness of the Probed Surface

An important consideration regarding the experimental protocol is the choice of sample

preparation. Although bulk samples are simpler to prepare, the quality of the quantitative

phase abundance was found not to be constant from clinker to clinker with this method. The

relative error ranges from less than 10% to more than 30%, as presented in Table 9.5. To

investigate this behavior, additional grid measurements were performed on two bulk

samples of clinker C3, prepared from two different clinker nodules (samples B-C3-1 and B-

C3-2). As shown in Table 9.7, variations in the phase abundance are measured from one

nodule to the other (B-C3-1 vs. B-C3-2), indicating non-uniformity in clinker composition. In

addition, the belite content is found to vary from grid to grid probed on the same sample B-

C3-2 (a vs. b vs. c). These variations are explained by the nested distribution of the belite

crystals, as illustrated in Fig. 7.9c. Thus, limited accuracy on the average abundance of the

phases is obtained from bulk samples. Testing of larger representative surfaces on several

nodules would be required to improve this accuracy.

Sample Method Norm. Fractions (vol.%)
Alite Belite Int.

C3 XRD 74 11 16
B-C3-1 (a) WDS-Bulk 72 8 20
B-C3-1 (b) WDS-Bulk 72 8 20
B-C3-1 (c) WDS-Bulk 73 10 18
B-C3-2 (a) WDS-Bulk 70 15 15
B-C3-2 (b) WDS-Bulk 78 8 13
B-C3-2 (c) WDS-Bulk 72 12 15

Table 9.7. Abundance of the clinker main phases calculated for two samples of clinker C3
(B-C3-a and B-C3-2) with three independent grids (a,b,c) on each sample.

To ensure representativeness of the probed surfaces, an alternative approach is the use of

epoxy-embedded ground samples. With this approach, a sufficiently large grid located

randomly on a single sample is expected to be representative of the average clinker

properties. However, optimal particle size of the clinker powder needs to be determined.

This is done to optimize the compromise between increased representativeness and lower
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"noise" in the measurements. On the one hand, finer grinding eliminates uneven

distribution of phases, such as belite nests. On the other hand, increasing the surface-to-

volume ratio of the probed particles increases both the particle-effect and the surface

roughness, which affects the quality of the quantitative chemistry measured with the EPMA

[45,9]. This loss of quality is observed with the raw data sieving, as presented in Table 9.1.

The "signal" represents 30-45% of total probes for finely ground samples, compared to 45-

50% for coarsely ground samples.

9.5.1.2 Validation of the Sieving Method

Geometrical Model

To support the sieving method proposed in this study, a geometrical model is developed to

determine the probability of having the whole EPMA interaction volume landing on a single

particle, as schematized in Fig. 9.5. This probability is modeled based on the surface

distribution of particles, with Eq. (9.5) and Eq. (9.6). In order to apply the model, the areas

of the j=1... n particles, AP , are extracted from the SEM image analyses (see section 7.2)

along with the total surface of the analyzed image, S. The radius of each particle, R,), is

calculated assuming circular particles and the probe interaction radius, RN, is retrieved

from previous simulations (section 5.2.1).

Pr (RU) - RIV ) 2  U) (9.5)P[valid ] = , R, > RIy

RW = JAp) (1) (9.6)

S Epoxy

Probe
Intection
Volume,IVw

Fig. 9.5. Schematic representation of the geometrical model used to validate the data

sieving method. The model estimates the probability of having the whole EPMA interaction

volume landing on clinker particles, based on SEM image analyses of the probed samples.
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Comparison of the Modeled Probability and the Sieving Ratios

For each clinker, the probability of a valid measurement, P[valid], is determined as a range

with upper and lower bounds calculated from the variability in the inputs, i.e., the

interaction radius ranging between 0.5 and 0.75 [tm, and the six SEM micrographs

independently analyzed for each clinker. As presented in Table 9.8, the experimental

sieving ratios are in general agreement with the modeled probability of valid probing,

considering the simplifying assumptions of the model and the additional factors influencing

the analytical totals (e.g., surface roughness, defects, pores, and cracks).

Clinker Coarsely ground Finely ground
P[valid] Grid a Grid b P[valid] Grid a Grid b

C1 [47%, 53%] 43% 47% [32%, 39%] 45% 38%
C2 [46%, 52%] 45% 45% [34%, 39%] 40% 46%
C3 [45%, 51%] 52% 47% [32%, 41%] 39% 42%
C4 [45%, 51%] 47% 46% [30%, 35%] 30% 31%

Table 9.8. Modeled probability of a valid probe for coarsely and finely ground samples of
each clinker. "Signal" sieving ratios are also provided for each experimental grid (a and b).

9.5.1.3 Grid Characteristics and Expected Accuracy

The modeling results indicates that the maximum proportion of expected valid probes is 45-

50% for coarsely ground samples, compared to 30-40% for finely ground samples. This

relatively low level of valid probes has an influence on the statistical representativeness of

each single grid, as less than half of the 1024 acquired points are used in the analyses.

The effect of this reduction is demonstrated with coarsely ground samples in Table 9.5. The

relative error in phase abundance calculated from single grids (a or b) reaches 20%. The

combined analysis of the two grids (a+b) results in relative errors lower than 5% for the

alite content and lower than 15% for the belite and the interstitial contents. However, the

results for finely ground samples lack accuracy regarding phase abundance even with the

combination of two grids.

The prescribed spacing between the EPMA spot analyses (section 5.2.2) is validated by the

median equivalent particle diameters, which range between 35 and 45 im for coarsely

ground samples. The majority of the particles are unlikely to be probed twice with the
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prescribed 60 [tm spacing, which ensures representativeness of the average clinker

properties.

Finally, as chemistry analyses were found to be equivalent for the different types of sample

preparation (section 9.2.2), the recommended experimental protocol consists of probing grids

of 2048 points spaced by 60 [tm on coarsely ground samples having median equivalent

particle size ranging from 35 to 45 [tm.

9.5.2 Polymorphism of the Alite Phase

Different polymorphs of the main clinker phases may be found in industrial clinkers.

Polymorph identification is of interest because of the potential effects on the grinding and

hydraulic properties-of cement. In particular, two polymorphs of the alite phase (Mi and M3)

may be present in industrial clinkers.

As described in section 8.1, the alite polymorphism is related to the supersaturation of the

melt. High supersaturation, favored by sufficient amounts of MgO and/or high firing

temperature, results in high intensity of nucleation which leads to the stabilization of the

polymorph M3, as described by Maki et al. [76,75]. On the contrary, low supersaturation of

the melt and lower viscosity, favored by the presence of S03, results in lower intensity of

nucleation leading to unstable growth of larger crystals of the polymorph Mi [76,75].

If alite polymorphism may be determined with XRD spectra, polymorph identification may

also be performed by analysis of the clinker chemical signature. The polymorph M3 is

associated with higher magnesium content and the polymorph Mi with higher sulfur

content. According to the bulk chemistry presented in Table 9.6, the clinker C3 has higher

S03 content and is thus susceptible to contain the polymorph Mi. This is the case as

previously determined with XRD. On the other hand, lower MgO content of clinker C1 may

not be directly correlated with lower content of the polymorph M3. High kiln temperatures

may also contribute to the stabilization of this polymorph, and it seems to be the case for

clinker C1 in which the polymorph Mi is not observed.

Finally, the chemical analyses performed with the EPMA method also allow identification of

polymorphs for the interstitial phases which include three types of aluminates (cubic,

orthorhombic and low-Fe) and two types for ferrite (normal and low-Al), as presented in

section 9.2.

128



9.5.3 Limitations

This method is intended for application to conventional industrial clinkers. Testing of other

types of clinker or cements with additional phases is not considered in this study, but

extensions of the model may be developed.

The combined analysis of aluminate and ferrite into a single phase may be considered as a

limitation of this method. The distinction between these two phases is not simple because of

their microstructure characterized by intermixed crystals of small size (-2-3[tm), as

illustrated in Fig. 7.9b. The probing of pure aluminate or ferrite is less likely to occur than

the probing of the interstitial mixture, since the interaction volume of the EPMA probe was

simulated to be -1.5 [tm in diameter. This mixture is then considered in statistical

clustering as a single phase and the chemistry of each phase is limited to qualitative

observations (see section 9.2). A perspective solution to calculate aluminate and ferrite

abundances is to extend the mixture model with a third dimension (Fe or Al), using typical

reference chemistry for these poles.

Another limitation of the method is related to the particle-effects and the surface roughness.

The quantitative chemistry of each data point is obtained from EPMA, after application of

the corrections to account for the matrix effects. However, this procedure works under the

condition that the probed surface is flat and homogenous, which is not respected for every

spot analysis. The data sieving procedure is useful to remove majority of the data points

associated with clinker-epoxy transitions, but the probes associated with mixtures of clinker

phases are conserved.

The experimental acquisition time of the EPMA is also a limitation of the method, as each

single measurement point requires about a minute. To apply the proposed method at the

industrial scale in cement plants, the use of tabletop SEM equipped with fast EDS detectors

could be an interesting alternative. If this equipment was historically used for qualitative

analyses, modern instruments calibrated with quality standards allow accurate

quantitative analyses. Thus, this variant of the proposed method is of interest for clinker

quality control at cement plants.
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9.6 Chapter Summary

In this chapter, a new method using grid electron probe microanalyses (EPMA) was

presented to simultaneously measure the chemistry of the clinker phases, their relative

abundance, and the bulk clinker chemistry. Testing of the method was performed with four

industrial clinkers and three sample preparation methods. The chemistry of alite and belite

phases was determined quantitatively with relative error lower than 2-4% for the major

elements, in comparison to typical clinker compositions. This quantification also showed

excellent repeatability and was not significantly affected by the sample preparation method.

In addition, the qualitative analysis of the chemistry of the interstitial phases allowed

identification of polymorphs for aluminate (cubic, orthorhombic, low Fe) and ferrite (normal,

low Al). A model based on the law of mixtures was proposed to determine the abundance of

the clinker phases. The highest accuracy was obtained for relatively large grids (2048

points) performed on epoxy-embedded coarsely ground samples. The comparison with

quantitative XRD analyses resulted in relative errors lower than 5% for alite content and

lower than 15% for belite and interstitial phase contents. The bulk chemistry was obtained

by averaging the measured chemistry for all the valid EPMA data points. Comparison with

XRF measurements showed that the accuracy of the EPMA average chemistry was similar

to that of the XRF method. A data sieving method was also proposed to extract the "signal"

from the raw measurements. Based on Gaussian clustering of the analytical totals, the

sieving aims to remove the "noise" (the invalid EPMA measurements caused by probing of

epoxy, particle-effects, surface roughness, etc.). The sieving method was further validated

with a geometrical model developed to predict the expected "signal"-to-"noise" ratio based on

apparent particle size distributions measured with SEM micrographs. Finally, this new

method for clinker analysis was developed with EPMA measurements, but the same method

could be applied to quantitative SEM-EDS measurements (provided adequate calibration

with quality standards). The use of fast and inexpensive SEM-EDS equipment would be of

interest for quality control applications at cement plants, considering the future need for

monitoring the chemistry of the clinker phases.
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Chapter 10

Multi-scale Fracture Toughness

As discussed in Chapter 7, three principal characteristic scales may be defined for clinkers.

The separation between these scales is based on the heterogeneities, which consist of the

pores and the grains of the clinker phases. This chapter first focuses on the macroscale

fracture toughness to investigate the effects of microstructure. Microscratching is then

performed between the pores at the intermediate scale to measure the fracture properties of

alite and belite clusters. Finally, the testing is further downscaled to measure fracture

toughness of single alite and belite grains at the microscale.

10.1 Macroscale: Effects of Microstructure

Microscratching in the Conical Range of the 200 um Probe

Microscratching was performed in the conical range

default protocol presented in Table 6.2. Fig. 10.1a

clinker, which illustrates the variations caused by the
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Fig. 10.1. Typical measurements of microscratch tests performed on (a) cement clinker and
(b) hydrated cement paste. The prescribed vertical force, Fv, is identical for both samples,
while the penetration depth, d, and the horizontal force, FT, are affected by the porosity.
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For comparison, Fig. 10. lb illustrates the same measurement performed on a porous

hydrated cement paste. Even though the pores are smaller than those of clinker, the

porosity still conflicts with the microscratch method assumption of probing a homogeneous

material. However, similarly as in nanoindentation analyses [27], this assumption can

possibly be relaxed by ensuring the micromechanics scale separability condition:

do <<L <<(d, w, D) (10.1)

where L is the characteristic size of the representative elementary volume, REV, which

must be larger than the characteristic size of the largest heterogeneity do contained in the

REV. Also, the characteristic size D of the heterogeneities at a higher scale and the size of

the mechanical solicitation must be larger than the REV. In the case of the scratch test, the

mechanical solicitation relates to the penetration depth d and the width w of the scratch

imprint, since the method assumes a succession of horizontal fracture events occurring in

front of the perimeter of the probe (see section 6.1.2). In addition, the scratch length must be

sufficient to allow these fracture events to reach the load-independent steady state, as

required by the microscratch method (see section 6.1.5).

Intrinsic properties of single phases can be measured when the volume of material solicited

is small enough not to be influenced by heterogeneities at a higher scale, e.g. (d, w) « D. In

contrast, composite properties are associated with mechanical solicitation larger than the

heterogeneities, e.g. (d, w) >> D. The 1/10 or Buckle's rule-of-thumb is generally accepted in

the case of nanoindentation [26,66] to define the separation between thescales. In this

study, the hypothesis is made that scale separability and the Buckle's rule-of-thumb are

valid for the microscratch method. The validation of this assumption is left for future work.

For the measurement presented in Fig. 10.1a, the size of the largest heterogeneities (i.e.,

pores of -65-250 pim) was of the same magnitude as the maximum penetration depth

dnax~ 75 ptm, and the scale separability condition was therefore not satisfied. In an attempt

to reach this condition, the maximum vertical force was increased to 180N (the limit of the

available instruments). The penetration depths increased up to 200-250 pim, but it was still

insufficient to measure the composite response including porosity. Fig. 10.2 illustrates the

fracture toughness convergence plots for clinker C1 measured with maximum vertical loads

of 30N and 180N, respectively. Measurements at higher maximum force resulted in an
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uncontrolled scatter of the data associated with large chipping in front of the indenter tip.

This approach was abandoned, as no convergence could be obtained with loads up to 180N.

0 0.05 0.1 0.15
dIR

0.2 0.25 0.3
dIR

Fig. 10.2. Fracture toughness as a function of the relative penetration depth for clinker C1.
The tests are performed in the conical range of the 200 pm probe, c200, with maximum
vertical load reaching (a) 30N and (b) 180N. High levels of chipping occurring at higher
forces up to 180N prevent adequate measurement of fracture toughness.

15

10

5

0 0.05 0.1 0.15
dIR

0.2 0.25 0.3

0 0.05 0.1 0.15
d/R

15

10

.... 5

0.2 0.25 0.3 0 0.05 0.1 0.15
d/R

0.2 0.25 0.3

Fig. 10.3. Fracture toughness measured in the conical range of a 200 pm probe (c200) for
clinkers (a) C2, (b) C3, and (c) C4. Clinker C3 seems to exhibit higher fracture toughness.

These results indicate that the microstructural constrains of clinkers (i.e., relatively large

pores and limited available surfaces) limit the separation of scales. Therefore, the

macroscale fracture toughness is considered as a local fracture response rather than a

composite material property. Nevertheless, this toughness is representative of the clinker

microstructure, since each scratch of 3 mm in length consists of a succession of fracture
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events occurring over hundreds of grains, boundaries, and pores. In addition, the toughness

converges for increasing penetration depths as shown in Fig. 10.2a and Fig. 10.3, which

indicates that the steady state of fracture required by the method is obtained. Also, the

results were on average reproducible within the experimental error, as shown with 5

independent measurements overlaid for each clinker.

Finally, comparison of the results indicates that clinker C2 and C4 tend to exhibit lower

macroscale fracture toughness then clinkers C1 and C3. Possible explanations for these

differences are discussed further in Chapter 11.

10.2 Intermediate Scale: Alite and Belite Clusters

Microscratch testing at the intermediate scale of clinkers aimed to measure the fracture

toughness of the combined clinker phases without the effects of porosity. The bulk surfaces

available for testing were limited to 200 [im x 200 pim, since larger surfaces without pores

were not available in the polished clinker specimens (see section 7.2). The use of the 200 pim

probe was not possible on these limited surfaces, and microscratching was thus performed

in the conical range of the 50 and 20 jim probes.

Microscratching in the Conical Range of the 50 pm Probe

Microscratching was performed on the clinkers with a 50 jim tip, and the protocol was

adjusted to fit the scratches on bulk surfaces between pores. Pre-testing showed that

microscratching could be achieved on 200 jim x 200 jim surfaces only if the scratch length

was reduced to 100 jim and the maximum vertical load to 5N, as illustrated in Fig. 10.4a. To

accommodate these constrains, the loading rate was adjusted to 60N/min and the scratch

velocity to 1.2 mm/min.

A higher maximum vertical load of 1ON was also tested, but was found not to be applicable.

First, large chipping along scratch path was observed and this prevented the acquisition of

reliable measurements (see Fig. 10.4b). Second, the ratio of scratch velocity over loading

rate was found to be insufficient. Fig. 10.4c shows the imprint of a scratch with maximum

vertical force of 1ON over a length of 0.1 mm. This is more characteristic of an indentation

with small horizontal displacement, and it does not represent a scratch path with low

vertical displacement.
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Fig. 10.4. Microscratch imprints of tests performed on clinker C3 with a 50 pm indenter
used in the conical range. The maximum vertical forces ranges from (a) 5N to (b,c) ION.

Microscratching was performed on the four studied clinkers, but the constrained

experimental parameters resulted in relatively shallow scratches. The maximum scratch

penetration depths did not fully reach the conical range, with maximum d/R ~ 0.14-0.16, in

comparison to the conical range criterion dIR >> 0.134. The non-negligible contribution of

both the conical and the spherical ranges prevented the quantitative evaluation of the

fracture toughness for this series of tests.

Nevertheless, optical imaging of scratch paths allowed interesting observations regarding

the propagation of cracks in the clinker matrix. The microscratch model by Akono and Ulm

[6,4] assumes multiple fracture events occurring along the scratch path. The succession of

semi-circular cracks in the scratch imprint shown in Fig. 10.5b suggests that this assumed

behavior is correct.

In addition, radical cracks surrounding scratch paths illustrate preferential failure regions

of the clinker matrix, as illustrated in Fig. 10.5 and Fig. 10.6. To quantify the relative

occurrence of different crack propagation behaviors, crack sections were counted on a total of

16 scratched surfaces, half for alite-rich zones (eg. Fig. 10.5a and Fig. 10.6a) and half for

belite-rich zones (eg. Fig. 10.5b and Fig. 10.6b). Clinker C4 was not considered in this

analysis because of its different microtexture (absence of both alite micro-cracking and

belite nests). A crack section is defined as a strait crack segment located on a single phase or

interface. In addition, crack sections are grouped in four different types based on the phase

in which they propagate: alite grains, belite grains, interstitial phases or grains interfaces.
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A distinction is also made for fractures following pre-cracks, identified with images taken

before scratching.

(a) (d)

Fig. 10.5. Bulk surfaces of clinker C2: alite-rich region (a) before and (b) after
microscratching; belite-rich region (c) before and (d) after microscratching. The tests are
performed at the intermediate scale with the 50 pm tip used in the conical range.

Table 10.1 shows that the relative propagation of cracks trough the different grains and

interfaces of clinkers is different for alite-rich and belite-rich zones. In the quasi-absence of

belite grains, cracks propagate almost equally inside alite grains and between these grains,

either in the interstitial phase or at the interfaces. In addition, cracks are more likely to

follow interfaces along alite crystals than to propagate into the interstitial phases. This

behavior is even stronger with belite grains, as radial cracks mostly contour these grains.

Propagation of cracks trough belite crystals is also found in belite-rich clinker zones (23% of

crack sections), but these are usually located near the scratch imprint, where the indenter

probed directly contacts the crystals.
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Fig. 10.6. Bulk surfaces of clinker C3: alite-rich region (a) before and (b) after
microscratching; belite-rich region (c) before and (d) after microscratching. The tests are
performed at the intermediate scale with the 50 pm tip used in the conical range.

Clinker Zone Crack Sections per Grain Type
Alite Belite Interstitial Interface

Alite-Rich (#) 134 7 34 89
(%) 51% 3% 13% 34%
(#) 41 47 14 100

Belite-Rich (%) 20% 23% 7% 50%

Table 10.1. Crack sections per grain type for alite-rich and belite-rich clinker zones. The
crack sections were counted around the scratch imprint for a total of 16 different scratches.

These results agree with the observations of Hornain and Regourd [53] who stated that the

development of cracks in clinkers occurs mainly in pre-cracked alite crystals and at the

interfaces between phases. They also suggest that cracks are stopped or deviated by the

interstitial phase which is less brittle, and they contour belite crystals which can sustain
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more plastic deformations. In this study, the presence of cracks before scratching is

observed for all grain types (not just alites) and at interfaces. It was measured that 13% of

post-scratch crack sections followed these existing cracks, and significant proportion of

cracks were initiated at the scratch imprint boundary.

Microscratching in the Conical Range of the 20 pm Probe

Additional testing was performed with an indenter tip of smaller radius to measure fracture

properties at the intermediate scale. The conical range (max dIR ~ 0.3 - 0.35) was reached

with a 20 pm probe in the limited available surfaces between the pores. Preliminary testing

was performed to determine the experimental protocol for this series of tests (scratch length

= 0.1 mm, maximum vertical force = 4N, loading rate = 24N/min, horizontal tip velocity

= 0.6 mm/min). Fig. 10.7 illustrates scratch paths performed with this protocol over several

grains of clinker alite and belite. In this case, the scratch width (wmax ~ 30Pm) was of the

same magnitude as the grain size (D ~ 20 to 65pm). The intermediate scale fracture

toughness is therefore considered as a local fracture response, similarly to the macroscale

fracture toughness.

Fig. 10.7. Microscratch imprints from intermediate scale scratching of clinker C1 over (a) an
alite-rich region and (b) a belite-rich region. The tests are performed with the 20 ptm tip
used in the conical range.

Microscratching was performed for each clinker both on alite-rich and belite-rich regions,

and the results are presented in Fig. 10.8 and Fig. 10.9. It was not possible to scratch on

belite-rich regions on for clinker C4, as the silicates of this clinker were well distributed

(i.e., not clustered).

138



C3 - Ali (c20)
K= 0.99 ± 0.30MPaV ii

(b) C2 -Ali (c20)
Kc = 1.00 i0.17M Pa /fi

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
dIR

3

zzI'in=5
0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

dIR

Fig. 10.8. Fracture toughness measured in the conical range of the 20
alite-rich regions of clinkers (a) C1, (b) C2, (c) C3, and (d) C4. Results
clinkers, considering the standard deviations.
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Fig. 10.9. Fracture toughness measured in the conical range of a 20 pm probe (c20) for
belite-rich regions of clinkers (a) C1, (b) C2, (c) C3, and (d) C4. Clinker C4 is absent from
this figure, as belite grains are not clustered.
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The toughness measured on alite-rich regions was very similar from clinker to clinker,

which suggests that the differences in clinker grindability may not be related to this scale.

In addition, the average response of belite-rich regions was higher than that of alite-rich

regions, which is in agreement with the grinding literature. Alite crystals are known to be

more brittle and micro-cracked, in comparison with rounder and more plastic belite crystals

[132,118,53]. The belite crystals also increase significantly the fine grinding energy when

they are clustered [74].

10.3 Microscale: Single Alite and Belite Crystals

The microscale of clinkers is characterized by the different clinker phases with grain sizes

generally ranging from a few ptm up to -65 Rm. At this scale, the objective was to measure

the intrinsic fracture properties of alite and belite crystals. By downscaling the microscratch

test sufficiently, the testing was performed on surfaces of single grains. Investigation of the

interstitial phases was not possible at this scale because of the small crystal sizes and the

limitations of the equipment.

Microscratching in the Spherical Range of the 20 im Probe

To fit scratches on single grains of both alite and belite, the scratch length was limited to

20 ptm and the experimental protocol was adapted accordingly (maximum vertical force

= 0.5N, loading rate = 15 N/min, horizontal tip velocity = 0.6 mm/min). Fig. 10.10 illustrates

the scratch imprints located on single grains of diameters D > 40Pm. The penetration depth

into the material reached dmax = 0 .9 pm at the end of the scratch path, which corresponds to

a scratch width of Wmax ~ 12pm. Working under the hypothesis that scale separability and

the Buckle's rule-of-thumb are valid for the microscratch method (see section 10.1), the scale

separability condition is met for the penetration depth but not for the scratch width.

However, the microscratch method assumes successive horizontal fracture events occurring

in front of the perimeter of the probe. It follows that the fracture volume is limited to the

scratch imprint, even if the stress field covers a larger volume. Therefore, it is assumed that

the fracture process occurs entirely on each probed grain and that the neighboring grains do

not affect significantly the stress field surrounding the scratch. This is a reasonable

assumption considering that the elasticity and hardness of the four main clinker phases are

not different by more than 10% (see section 2.1.1). Therefore, the microscale scratching
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results are considered as the intrinsic fracture toughness of alite and belite crystals. The

results for the four industrial clinkers are presented in Fig. 10.11 and Fig. 10.12.

Fig. 10.10. Microscratch imprints from microscale scratching of (a) an alite grain of clinker
C2, (b) an oversized alite grain of clinker C3, and (c) a belite grain of clinker C3. The tests
were performed with the 20 ptm probe used in the spherical range.
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Fig. 10.11. Fracture toughness of alite grains measured with the spherical range of the 20
pim probe, s20, on clinkers (a) C1, (b) C2, (c) C3, and (d) C4.

The fracture toughness did not vary significantly from clinker to clinker for each phase. The

average measured fracture toughness for alite crystals was -1.2 + 0.2 MPa.m", which is of

the same magnitude as the results by Hornain and Regourd [53]. These authors performed

Vickers indentation fracture tests and found a toughness of 1.7 MPa.mA for alite crystals.
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The values measured in the current study for belite crystals were on average higher than

those obtained for alite crystals. This qualitative trend agrees with previous results [53].
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Fig. 10.12. Fracture toughness of belite grains measured with the spherical range of the
20 pm probe, s20, on clinkers (a) C1, (b) C2, and (c) C3.

10.4 Chapter Summary

In this chapter, the fracture properties of the studied clinkers were determined. Three

characteristic scales were investigated and the results are summarized in Fig. 10.13.
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Fig. 10.13. Summary of the multi-scale investigation of fracture toughness for the four

studied clinkers (Cl, C2, C3 and C4). Alite and belite were investigated separately at the
intermediate and micro scales, but jointly at the macroscale.
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The macroscale fracture toughness measured for clinker C2 and C4 were lower than those of

clinkers C1 and C4. At the intermediate scale, the alite-rich regions for all the clinkers had

similar toughness, with an average value slightly lower than that of the belite-rich regions.

Scratch imprints at the intermediate scale were analyzed to investigate crack propagation

patterns. Cracks were found to occur mainly in alite grains and at the interfaces, whereas

belite grains and interstitial phases were much less affected. At the microscale, probing of

single grains allowed determination the intrinsic fracture toughness. The measured

toughness for alite crystals was ~1.2 t 0.2 MPa.m , which is in agreement with previously

published values. The difference in magnitude observed between the results at the

macroscale and at smaller scales are further discussed in the next chapter.
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Chapter 11

Discussion

In the previous chapters, a comprehensive characterization of the studied clinkers has been

presented with respect to microstructure, bulk mineralogy, bulk chemistry, phase chemistry

and fracture properties. This chapter combines and further explores these results. The

grinding energy is first estimated from the macroscale fracture toughness. Then, the

variations on fracture results over the probed scales are explored with respect to toughening

mechanisms. Finally, the particularities of each clinker are highlighted to establish links

between fracture properties and chemo-microstructural characteristics.

11.1 From Fracture Toughness to Grinding Energy

The macroscale fracture toughness measured on clinkers is used to provide a rough

approximation of the grinding energy, EG, as a function of the Blaine specific surface, S. The

fracture energy, Gj, is considered the energy required to create surfaces, with some energy

dissipated as heat. A first order approach based on LEFM is used to predict the grinding

energy employed to create these surfaces:

Gf = KlE(11.1)

EG = S * G= S * Kj/ E (11.2)

where the Young modulus of clinker, E = 100 GPa [9]. Fig. 11.1 presents the results of this

first order approximation for the four studied clinkers, along with experimental grinding

energies measured in laboratory by other authors [125,123]. A comparison of these results

illustrates the magnitude of the losses in the grinding process. According to the above

calculations, the energy required to create the surfaces of the cement particles ranges

between one-fourth and one-half of the energy provided experimentally during grinding (for
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the Blaine specific surface typical of normal industrial cement, i.e., below 380 m 2 /kg [14]).

Thus, the majority of the grinding energy is lost as heat and inefficiency. The losses are

also accentuated in the fine grinding (for higher Blaine values), as shown by the exponential

increase of the experimental grinding energy. The agglomeration tendency of the smaller

particles can explain this behavior. A reduction in energy efficiency also occurs for small

particles which are less prone to cracking and exhibit a more plastic behavior [98].
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Fig. 11.1. Grinding energy as a function of the Blaine specific surface. The figure presents
the LEFM first order approximation obtained for the studied clinkers, along with
experimental reference data from Tokyay [125] (results from 15 types of clinkers) and from
Theisen [123] (average, minimum and maximum grinding energy measured on 23 types of
clinkers).

11.2 Fracture Toughness over the Scales

As presented in Chapter 10, the fracture toughness measured at the microscale was slightly

higher for belite crystals than alite crystals. The measurements were performed on single

grains, and the results were considered as the intrinsic Kc for each phase. The microscale

toughness for each phase did not vary significantly from a clinker type to the other, and

very similar results were obtained when probing a few grains at the intermediate scale.

This suggests that the grindability of different clinkers is not characterized by the intrinsic

fracture toughness of crystals, but rather by the microstructural particularities of the

combined phases. The macroscale measurements account for these particularities, and show

larger variations in the results.
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In addition, the macroscale fracture toughness was higher than the toughness of single

crystals by a factor of four. This toughening effect of the microstructure is not uncommon,

particularly in the ceramics science. As an example, composite materials reaching

~20 MPa.mA were obtained by a combination of glass-ceramics (-1 MPa.m/A) and

polycrystalline SiC (~2 MPa.m") [134]. In fact, the need for high-toughness ceramics

triggered the investigation of different toughening mechanisms such as crack deflection,

crack front roughening, crack trapping, crack bridging, particle pull out and microcracking.

Since several mechanisms may occur simultaneously, single toughening mechanisms are

generally investigated based on theoretical developments and idealized systems. The

following sections present the mechanisms likely to occur in clinker.

11.2.1 Crack Tip Deflection

In polycrystalline brittle materials, crack propagation planes are deviated by the presence of

heterogeneities such as grain boundaries or particles of a second phase, as illustrated in Fig.

11.2a. These deflections of the crack planes reduce the stress at the crack tip, when the new

orientation is unfavorable to the external stress field. In order for the fracture to propagate,

higher external stress must then be applied and this increases the effective fracture

toughness, K".

(a) ~(b)(c

Fig. 11.2 (a) Schematic of a crack tilt upon contact with a second phase particle.
(b) Schematic of a crack twist around randomly oriented rods. (c) Crack deflection following
weak interfaces around the belite grains, as observed in clinker C3.

Faber and Evans [33,34] investigated this toughening phenomenon for systems composed of

a matrix incorporating randomly located heterogeneities (rods, discs and spheres), as

schematized in Fig. 11.2b. A toughening of K" z 2Ke was obtained for rods with high aspect

ratio, and it was found that the toughening was dependent on the shape and density of the

heterogeneities, but not on their size. Weiderhorn [134] suggested that similar toughening
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must apply to normal equiaxed polycrystalline ceramic material, as is the case for

aluminum oxide with polycrystalline K' of 4-5 MPa.m" compared to single-crystal Kc of

2.2 MPa.m" on the (1010) plane.

At the macroscale, clinker is a complex brittle material composed of large alite and belite

crystals, and filled with much smaller crystals of the interstitial phases. Upon fracture,

cracks tend to propagate in alite crystals and at the boundaries between the different

phases (see section 10.2), which results in deflected crack planes as illustrated in Fig. 11.2c.

Therefore, crack deflection is likely to contribute to the increased effective toughness

observed for clinkers at the macroscale.

11.2.2 Crack Tip Shielding by Microcracks

Crack tip shielding occurs when compressive forces develop between the cracks' surfaces

through the boundary of a process zone, as illustrated in Fig. 11.3a. Different mechanisms

can be responsible for this process zone, such as plastic deformation, polymeric

transformation or microcracking. In the latter case, microcracks nucleate around the

principal crack because of the thermoelastic anisotropy of the surrounding material

[101,31]. During the stress build-up in front of the crack tip, microcracks propagate in zones

of localized residual tensile stress and stop in zones of residual compression. As suggested

by Evans and Faber [31], the toughening associated with microcracking is mainly caused by

the volumetric dilatation of the microfractured zone, with a small contribution from the

reduction of the elastic modulus.
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Fig. 11.3 (a) Crack tip shielding by a process zone surrounding the crack [79]. (b) Fracture
energy as a function of grain size for aluminum oxide ceramics, by Rice and Freiman [100].
The model developed by the authors is fitted to experimental literature data.
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Rice and Freiman [101,100] developed a model based on microcracking to explain the

variation of fracture toughness as a function of the grain size. Fig. 11.3b presents their

results for aluminate oxide ceramics. According to the authors, the increase of the

toughening is due to the proportional increase of thermoelastic stresses with the grain size,

up to a critical size where the residual stresses exceed the local strength of the material. For

larger grains, the microcracking occurs during the production process, which limits the

toughening phenomenon.

A different approach was pursued by Shum and Hutchinson [110], who considered the

stress redistribution occurring directly from the interaction of the main crack with the

nearest one or two microcracks. The authors determined the optimal configurations for the

microcracks (Fig. 11.4a) and calculated a maximal theoretical toughening of

K' ~ (1.4 to 1.7)Kc. The representativeness of this local solution over a crack front with

several microcracks is left as an open issue by the authors.

(a)(b

Fig. 11.4. (a) Optimal configuration for maximum toughening with two microcracks, as
determined by Shum and Hutchinson [110]. (b) SEM micrograph of clinker C1 showing the
presence of microcracks around a principal crack.

In the case of clinkers, quenching and crystallization of the interstitial phase (see section

2.1.2) introduces residual stresses into the multiphase microstructure. In addition,

propagation of cracks in clinkers is associated with the creation of microcracks along the

main crack paths, as illustrated in Fig. 11.4b. Thus, shielding by microcracks is a potential

mechanism contributing to the toughening measured for clinkers at the macroscale.

11.2.3 Crack Trapping and Crack Pinning

Crack trapping occurs when the crack propagation front is deformed by the presence of

heterogeneities with higher toughness. As shown in Fig. 11.5a, a semi-infinite crack
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propagates uniformly until part of the crack reaches the particle of higher toughness. As the

load is increased, the crack bows around the tough particle to satisfy the propagation

criterion K ; Kc simultaneously for the matrix and the tough particle. Gao and Rice [41]

investigated this behavior with a linear perturbation scheme and they determined a first-

order solution for the crack front shape and the toughening ratio J = K*/Kc (Kc is the

intrinsic toughness of the matrix and K' is the effective toughness). Different

configurations of tough particles were tried, and the example shown in Fig. 11.5b was found

to increase toughness by 1.87 (the tough particles have twice the toughness of the matrix).

(a) (b) [a() -d/L 1,/K= 2

-14A0 o a/L 0 .

Fig. 11.5. (a) Schematic of crack bowing around a particle with higher toughness, courtesy
of Laurent Brochard and inspired from [16]. (b) Crack front shape and toughening ratio 6
for a specific configuration investigated by Gao and Rice [41].

Bower and Ortiz [16] further refined the method in a three-dimensional analysis that also

included crack pinning. Crack pinning takes place in continuation of crack trapping, when

the toughness of the particles exceeds a critical value. In this case, the particles are not

penetrated by the crack front, which bows further until the crack joins up on itself, leaving

pinned particles behind. A strong bond between the matrix and the particles reduces the

stress on the crack front because the bridging particles carry part of the load (until the

crack eventually penetrates the particle). In contrast, an interface weaker than the bridging

particles causes particles pullout, which is associated with the development of frictional

forces between the particles and the matrix.

Bower and Ortiz [16] investigated these toughening mechanisms by idealizing a reinforced

material with an elastically homogeneous solid containing a regular distribution of tough

circular particles. As presented in Fig. 11.6a, their results for perfectly bonded particles

indicate that a combination of crack trapping and pinning increases the effective toughness

up to K* ;> 5 Kc (depending on the particles toughness and their relative size). The

149



maximum contribution of crack trapping (without any bridging particle) is around K' = 2Kc

in the case of unstable crack penetration of the tough particles. The authors also

investigated the pullout case, and they found that the frictional bridging toughening was

limited to 20-30%.

These analyses were also validated with experimental results. The combination of crack

trapping and pinning is thus a plausible explanation for the toughening observed in

polycrystalline materials. However, in the case of single-phase ceramics, the origin of the

tough regions assumed in the previous analysis is not clear. However, the thermal and

elastic anisotropy of the grains creates compressive residual stresses in some of the grains.

Evans et al. [32] suggested that these pre-stressed grains are less likely to be fractured and

they can act as bridging particles.

(a) '''''''''''''' (b)
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Fig. 11.6. (a) Results by Bower and Ortiz [16] for crack trapping and pinning with perfectly
bonded particles. The effective toughness is plotted as a function of the pinning particle

toughness and its volume fraction (parameterized with the ratio of the particle radius R
over the particle spacing L). (b) Schematic of potential crack trapping and pinning in

clinkers. The crack front propagates in the alite crystals (dark gray regions), bowing around

the interstitial phases (light gray regions) and leaving pinning regions behind.

Clinkers are obviously more complex than the idealized model previously presented.

However, the occurrence of the same mechanisms may be hypothesized, as conceptually

schematized in Fig. 11.6b. In the case of clinkers, the alite crystals are considered as the

matrix and the interstitial phases (aluminate + ferrite) as the tough particles. This is a

reasonable assumption, considering that the toughness of the aluminate phase is roughly
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twice that of alite, and the ferrite phase is estimated to be tougher, according to

measurements by Hornain and Regourd [53] (see section 2.1.2).

Overall, the toughening observed for clinkers from the microscale to the macroscale was

explained by the combination of crack deflection, crack tip shielding by microcracks, crack

trapping and crack pinning. The quantitative evaluation of these toughening mechanisms

applied to the fracture of clinkers is not pursued in this study, but this would be an

interesting research direction.

11.3 Linking Fracture Properties to Clinker Characteristics

This section recalls the principal particularities of each clinker in order to interpret the

differences in macroscale fracture toughness observed between the studied clinkers. The

links between microstructure and fracture behavior are determined based on the existing

knowledge (Chapter 2) and the toughening mechanisms previously presented. In addition,

possible manufacturing conditions responsible for the given particularities are presented

based on the published observations compiled by Campbell [22].

11.3.1 Clinker C1

Clinker C1 generally showed average characteristics, in comparison with the other studied

clinkers. Nevertheless, it was the only clinker containing ragged belite crystals with

extension of "fingers" into the matrix, as illustrated in Fig. 11.7.

Fig. 11.7. Optical micrograph of clinker C1 showing a cluster of ragged belite crystals with
extension of "fingers" into the matrix.
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This type of belite is characteristic of the extension of the burning zone farther back in the

kiln, which results in a slower cooling allowing the growth of these "fingers", as described by

Ono, Krumer, Gilles et al., cited in [22]. In addition, the macroscale fracture toughness is

relatively high for clinker C1. A potential explanation is that the belite "fingers" increase

the toughness of the interfaces between belite grains and the interstitial phases.

11.3.2 Clinker C2

Clinker C2 exhibits low macroscale fracture toughness (i.e., low coarse grinding energy),

which was attributed to its elevated porosity. Porosity reaches 33% for this clinker, in

comparison to 12-25% for the other clinkers (see section 7.2). The crack propagation in a

porous medium occurs by connection of the pores, resulting in a reduced effective toughness.

The elevated porosity of clinker C2 is characteristic of poorly burned clinkers, as observed

by Ono, Gilles et al., Tornebohm and Hofmanner, cited in [22]. Belite content is also the

highest of the studied clinkers, with 20% of the crystalline phases. This increased presence

of belite is not due to the raw mix proportioning (the modified lime saturation factor LSF* is

sufficient with 1.06), but is rather another consequence of the insufficient burning. In

addition, belite crystals are agglomerated in clusters which are harder to grind than

individual belite grains, and play an important role in fine grinding [74]. Thus, even if the

high porosity improves the coarse grindability, the overall grindability is expected to be low

because of the belite nests [22].

11.3.3 Clinker C3

Clinker C3 is characterized by the highest macroscale fracture toughness, which was

attributed to an increased contribution of the microcracking toughening. As previously

described, the intensity of this toughening mechanism increases with grain size (up to a

certain extent) and clinker C3 exhibits oversized alite crystals of the polymorphic type Mi,

as illustrated in Fig. 11.8. Other authors, such as Tachihata et al. cited in [22], also

observed elevated grinding energy for clinkers with large crystals.

The oversized crystals are associated with an elevated SO 3 content (1.6 wt% for this

clinker). This SO 3 favor low supersaturation of the melt and lower viscosity, which then

results in lower intensity of nucleation leading to unstable growth of larger alite crystals of

the polymorph Mi [108,109]. As cited in [22], Strunge et al. observed an increase by a factor
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three in the alite crystal size associated with a change in S03 content from 0% to 2.6%. In

the case of clinker C3, the oversized alite crystals are larger than 150 pm.

Another particularity of clinker C3 is the elevated alite-to-belite ratio. Thus, even if the

coarse grinding energy is increased because of the crystal size, the fine grinding may

require less energy than for clinkers C1 and C2, which exhibits higher contents of belite

clusters.

Fig. 11.8. Optical micrograph of clinker C3 showing the oversized alite crystals and the
ferrite-dominated interstitial phase.

11.3.4 Clinker C4

Clinker C4 is the only clinker with low porosity (12%) and homogeneous repartition of the

silicates, as illustrated in Fig. 11.9. This is an ideal clinker structure, generally associated

with good production conditions, as described by Campbell [22]. Clinker C4 is also the

clinker with the lowest macroscale fracture toughness. In contrast to clinker C3, the alite

crystals of clinker C4 are small. Thus, a potential explanation for the inferior toughness is

the reduced contribution of crack tip shielding by microcracks because of small crystal size.

Fig. 11.9. SEM micrograph of clinker C4 showing the good repartition of the belite grains
into the alite-dominated clinker matrix.
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In addition, the absence of belite clusters certainly contributes to improving both the coarse

and fine grindability. Also, it is interesting to note that clinker C4 comes in the form of large

nodules and that the alite crystals are not microcracked. These two characteristics are

usually expected to reduce grindability [22], but this was not dominant for clinker C4 at the

macroscale.

11.4 Chapter Summary

This chapter began with a first order approximation of the grinding energy based on LEFM

and the macroscale fracture toughness. The comparison with experimental results showed

that the energy required to create surfaces was between one-fourth and one-half of the

energy employed in grinding of typical cement.

The second part of this chapter focused on toughening mechanisms, in order to explain the

difference between the macroscale fracture toughness and the intrinsic fracture toughness

(measured at the microscale). Crack deflection is a first mechanism, which could occur in

clinker because of weak interfaces. These weak paths can redirect the cracks in orientations

less favorable to fracture and this reduces the stress field at the crack tip. Theoretical

studies of this mechanism proposed potential toughening up to Km - 2Kc [33,34]. Crack tip

shielding by microcracks can also be applied to clinkers, as quenching creates the residual

tensile stresses necessary to generate a dilatational process zone around the crack tip.

Microcracking was found to be dependent on the grain size [100], and discrete modeling of

microcracks suggested possible toughening of K* ~ [1.4,1.7]Kc [110]. Crack trapping occurs

when a crack front bows around particles of higher toughness. Crack pinning follows

trapping when the particle has sufficient toughness to be completely contoured by the crack

front. Analytical modeling [16] showed maximum toughening on the order of K" ~ 2Kc for

trapping only, and up to K* > 5Kc for the combination of trapping and pinning. In clinkers,

the interstitial phases could hypothetically form the tough particles as the crack front

propagates in the alite matrix. The combination of these four toughening mechanisms was

suggested to explanation the higher toughness values obtained for clinkers at the

macroscale compared to the microscale.

The last section of this chapter recalled the microstructural particularities of the studied

clinkers and linked them with the fracture properties and potential manufacturing
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conditions. The lower macroscale fracture toughness measured for clinkers C2 and C4 was

associated with microstructural characteristics obtained with opposite burning conditions:

(1) excessive porosity of clinker C2 caused by poor burning, or (2) good repartition of small-

sized silicates of clinker C4 associated with good burning conditions. In addition, the

oversize of alite crystals in clinker C3 was linked to the highest macroscale toughness of

this clinker. An explanation for this behavior was the increased microcracking toughening

occurring with larger grain size.

The macroscale toughness was associated with coarse grindability and the fine grindability

was linked to properties of single crystals. The microscratch test measurements at the

intermediate and micro scales showed that belite clusters and belite crystals had higher

fracture toughness than their alite counterparts. Thus, the fine grinding energy of clinker

C4 was expected to be the lowest because it was the only clinker generally free of belite

clusters. In contrast, clinker C2 was expected to require the highest fine grinding energy

because of its highest belite content and the presence of belite clusters.
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Part IV

Conclusions
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Chapter 12

Summary of Results and Perspectives

At the onset of this investigation, the following research question was formulated: how are

chemistry, mineralogy and microstructure of cement clinkers related to fracture properties

at the different characteristic scales? This research progressively developed the answer by

achieving the objectives, which were (1) to characterize the microstructure of industrial

clinkers with respect to the characteristic scales and particularities of the constituting

crystals; (2) to investigate average chemistry and mineralogy of industrial clinkers, as well

as chemistry of the constituting phases; and (3) to adapt the microscratch test method for

the investigation of fracture properties of heterogeneous industrial clinkers at their

different characteristic scales. This final chapter summarizes the work performed

emphasizing the main findings and the research contributions, along with the future

directions and the benefits for the industry.

12.1 Summary of Main Findings

In this study, the following findings emerged from the comprehensive characterization

performed on the four studied industrial clinkers:

- Three characteristic scales describe cement clinkers: at the macroscale (101, 102 m)

clinkers are constituted of nodules; at the intermediate scale (10.3, 104 m) the

nodules are separated into porosity and matrix; and at the microscale (10-5, 10-6 M)

the clinker matrix is composed by the clinker phases.

* The non-quantified content can represent a significant proportion of cement clinkers.

In addition to the crystalline phases quantified by X-ray diffraction, around 10-20%

of the studied clinker was measured to be amorphous content (and possible error of

the method). This is of the same magnitude as the belite and ferrite contents.
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- Belite clusters and belite crystals tend to have higher fracture toughness than their

alite counterparts, as measured with the microscratch tests performed at the

intermediate scale and microscale. In addition, investigations of crack propagation

patterns around scratch paths showed that cracks propagate generally in alite grains

and at the interfaces, whereas belite grains and interstitial phases are more

frequently contoured.

- Significant losses in heat and inefficiency occur in the grinding process. The energy

required to create the surfaces of the cement particles was determined with a first

order approximation using LEFM and the measured macroscale fracture toughness.

The results were two to four times lower than experimental grinding energies.

- The grindability of clinkers depends on the microstructural arrangement of the

phases. Similar results were observed for the studied clinkers regarding the intrinsic

toughness of each phase, both for alite and belite. In contrast, results at the

macroscale showed larger differences between clinkers. In addition, the toughness at

the macroscale was three to four times higher than the intrinsic toughness, which

was explained by a combination of toughening mechanisms, i.e., crack deflection,

crack tip shielding by microcracks, crack trapping, and crack pinning.

- Lower macroscale fracture toughness (i.e., lower coarse grinding energy) was

associated with either poorly burned clinkers showing excessive porosity or well

burned clinkers having a good repartition of small-sized silicates. However,

difficulties in fine grinding were expected for the poorly burned clinkers because of

the increased amounts of clustered belite. In contrast, higher macroscale toughness

(i.e., higher coarse grinding energy) was associated with oversized alite crystals

dominated by the polymorph Mi (formed in presence of high SO3 content). A possible

explanation for the elevated toughness is that the microcracks toughening increases

with the grain size (up to a certain extend).

12.2 Technical Contributions

In the process of clinker characterization, several experimental methods were implemented,

adapted, and improved. The two major contributions to these methods follow:
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* The extension of the statistical electron-probe microanalysis (EPMA) method for

complete chemical and mineralogical characterization of clinkers. In addition to the

multivariate clustering previously developed for identification of the distinct phases

and their average composition, the implementation of the law of mixtures on each

data point enabled the retrieval of the relative abundance of the identified phases.

The validity of this approach was validated for industrial clinkers with quantitative

X-ray diffraction and X-ray fluorescence.

* The scaling of the microscratching method to reduce the scratch length from the

initial 3 mm down to 20 um. The multi-scale fracture toughness investigation of

clinkers triggered this downscaling, which required adjustment of the experimental

protocol and validation with reference materials. In addition, improvements of the

microscratching experimental procedure are proposed with respect to adequate

sample holding and moisture control of the Lexan reference material.

12.3 Industrial Benefits

This work employed industrial clinkers to represent the industrial reality and to facilitate

technology transfer. Thus, the statistical EPMA method has a potential for transfer to the

cement industry, since it could be used for quality control at cement plants to provide

simultaneously the bulk chemistry, the chemistry of the phases and their abundance. The

characterization resulting from this single experiment would be equivalent to the

information obtained from three independent tests.

At the same time, the cement industry is looking for ways to increase the efficiency of its

clinker grinding processes. Thus, the industry can potentially use the microscratching

method and the findings of this study to optimize clinker production for efficient grinding.

12.4 Limitations and Perspectives

The work performed in this research recognizes some limitations, which are also directions

for further investigations. The statistical EPMA testing required with the proposed method

is a relatively long process. However, the energy dispersive spectrometry (SEM-EDS)

provides a rapid alternative to obtain equivalent measurements, which can be treated with

the exact same method. In addition, the phase quantification does not yet distinguish
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between the interstitial phases, and this limitation could be solved by extension of the phase

repartition model, developed in this study, to an additional dimension.

The implementation of the microscratching method to clinkers is limited by their complex

microstructure (i.e., large pores and limited available bulk surfaces). Scale separability

could not be met for the macro and intermediate scales, and the results are thus considered

as local fracture responses. Also, the hypothesis was made that scale separability and the

Buckle's rule-of-thumb are valid for the microscratch method. Verification of this hypothesis

is of interest for future research.

Finally, the relations established in this study, between clinker particularities and fracture

toughness at the different scales, provide valuable information which further work could

strengthen. This work includes the investigation of additional clinkers types and the use of

conventional grindability measurements (e.g., Bond workability), both of which were not

possible in this study. In addition, the proposed toughening mechanisms qualitatively

explain the difference in magnitude between the macroscale fracture toughness and the

intrinsic toughness of single crystals. Additional work is needed to obtain quantitative

understanding of these toughening mechanisms applied to clinker.

12.5 Conclusion

In conclusion, this study proposes alternative approaches for clinker analysis with respect

to characterization and grinding. Even though the proposed methods may need additional

refinement before field implementation, there is good potential for applications as part of

quality control in cements plants. Such an eventuality would be of great interest, as a fast

growing database could be used to establish further links between the microstructure,

chemistry, mineralogy and fracture properties of cement clinkers.
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