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ABSTRACT

GEOFRAC is a three-dimensional, geology-based, geometric-mechanical, hierarchical,

stochastic model of natural rock fracture systems. The main characteristic of GEOFRAC is that it

is based on statistical input representing fracture patterns in the field in form of the fracture

intensity P32 (fracture area per volume) and the best estimate fracture size E[A]. Recent

developments in GEOFRAC allow the user to calculate the flow in a fractured medium. For this

purpose the fractures are modeled as parallel plates and the flow rate can be calculated using the

Poisseuille equation. This thesis explores the possibility of the application of GEOFRAC to

model a geothermal reservoir. After modeling the fracture flow system of the reservoir, it is

possible to obtain the production flow rate. A parametric study was conducted in order to check

the sensitivity of the output of the model. An attempt to explain how aperture, width and rotation

(orientation distribution) of the fractures influence the resulting flow rate in the production well

is presented. GEOFRAC is a structured MATLAB code composed of more than 100 functions. A

GUI was created in order to make GEOFRAC more accessible to the users. Future improvements

are the keys for a powerful tool that will let GEOFRAC to be used to optimize the location of the

injection and production wells in a geothermal system.
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CHAPTER 1

INTRODUCTION

In deep geothermal energy projects naturally and artificially induced fractures in rock are

used to circulate a fluid (usually water) to extract heat; this heat is then either used

directly or converted to electric energy. MIT has developed a stochastic fracture pattern

model GEOFRAC (Ivanova, 1995; Ivanova et al., 2012). This is based on statistical input

on fracture patterns from the field. The statistical input is in form of the fracture intensity

P32 (fracture area per volume) and the best estimate fracture size. P32 can be obtained

from borehole spacing information on observations and outcrops and the approach by

Dershowitz and Herda (1992). Best estimate fracture size can be obtained from fracture

trace lengths on outcrops with suitable bias corrections as developed by Zhang et al.

(2002). Distribution and estimates of fracture size can also be obtained subjectively.

GEOFRAC has been applied and tested by estimating the fracture intensity and estimated

fracture size from tunnel records and from borehole logs. In the research case here

presented, GEOFRAC predictions were satisfactorily applied for geothermal basin

characterization. Since its original development, GEOFRAC has been made more

effective by basing it on Matlab and it has been expanded by including an intersection

algorithm and, most recently, a flow model. GEOFRAC belongs to the category of
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Discrete-Fracture Network models. In this type of model the porous medium is not

represented and all flow is restricted to the fractures. Fractures are represented by

polygons in three dimensions. Both the fracture - and flow model have been tested and a

parametric study was conducted in order to check the sensitivity of the output results to

the inputs.

In Chapter 2 I briefly describe the existing theoretical models of geothermal reservoir

simulation with emphasis on hydro-mechanical models. I also introduce the available

commercial software tools and their application on large scale. Chapter 3 describes the

basic concepts of GEOFRAC, a three-dimensional discrete fracture pattern model. In

Chapter 4 the parametric analysis used to capture the sensitivity of the input parameter of

GEOFRAC is presented and discussed. Chapter 5 introduces a new algorithm in

GEOFRAC that can be used to model intersections between fractures and injection and

production wells. In Chapter 6 the use of the GUI to run GEOFRAC is introduced and

explained. The conclusions in Chapter 7 are intended to explain the overall results and to

briefly discuss future research.
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CHAPTER 2

A REVIEW OF PREVIOUS

MODELING OF GEOTHERMAL

RESERVOIR

The development of simulation model for enhanced geothermal reservoirs requires

predicting the capacity of hydraulically induced reservoirs. Geothermal reservoir

modeling in turn requires an adequate mathematical representation of the physical and

chemical processes during the long-term heat extraction period. During the last 20 years

the use of computer modeling of geothermal areas has become standard practice.

The intent of this chapter is to describe available models on the basis of the geological,

geometric, mechanical (both solid and fluid) and thermal conditions.

2.1 FRACTURE SYSTEM MODELS

Modeling is an essential phase in studying the fundamental processes occurring in rocks

and for rock engineering design. Modeling rock masses represents, however, a very

21



complex challenge; the most important reason is that the rock is a natural geological

material. A rock mass is a discontinuous, anisotropic, inhomogeneous and non-elastic

medium; it is subjected to stresses often by tectonic movements, uplift, subsidence,

glaciation and tidal cycles. A rock mass is also a fractured and porous medium containing

fluids in either liquid or gas phases, for example, water, oil, natural gas and air, under

different in situ conditions of temperature and fluid pressures. The combination of all

these factors makes rock masses a difficult material for mathematical representation via

numerical modeling. The difficulty increases when coupled thermal, hydraulic and

mechanical processes need to be considered simultaneously.

Uncertainties are one of the main characteristics of rock mechanics. It is important to

understand the uncertainties and assess them-so that it is possible to run models

managing risks without being conservative.

The aim of this section is to present numerical methods that are currently used to model

rock fractures. It will introduce each model with a brief description followed by

application cases. After this section, some of the models used to simulate particular

characteristics of a rock mass such as the aperture of fractures and the intensity of the

fractures are presented.
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2.1.1 Numerical methods

The most commonly applied numerical methods in rock mechanics are:

Continuum methods

* Finite Difference Method (FDM)

e Finite Element Method (FEM)

e Boundary Element Method (BEM)

Discontinuum methods

* Discrete Element Method (DEM)

e Discrete Fracture Network (DFN) methods

Hybrid continuum/discontinuum models

* Hybrid FEM/BEM

* Hybrid DEM/DEM

e Hybrid FEM/DEM

* Other hybrid models

I will briefly describe these methods and their application in rock mechanisms.

The first category of numerical models consists of the continuum methods. Continuity is

a macroscopic concept. The continuum assumption implies that, the material cannot be

split or broken into pieces. All material points originally in the neighborhood of a certain

point in the problem domain remain in the same neighborhood throughout the

23



deformation or transport process. Of course, at the microscopic scale, all materials are

discrete systems. However, representing the microscopic components individually is

mathematically complicated and often unnecessary in practice (Jing, 2003).

Figure 2.1 shows how to model a fractured rock mass (Figure 2.1 a) using a continuum

method such as FDM or FEM (Figure 2.1 b), the BEM (Figure 2.1 c) (Jing, 2003). The

description of these methods will be given in the next sections.

joints faults

joint
element

(a) b)

region 1

block

region 4 region 2
block

region 3

element of Regularized
displacement discontinuity

(C) discontinuity (d)

Figure 2.1 - Representation of a fractured rock mass shown in (a), by FDM or FEM shown

in (b), BEM shown in (c), and DEM shown in (d). (Jing, 2003)
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Discrete element methods are numerical procedures for simulating the complete behavior

of systems of discrete, interacting bodies. Discrete Element Methods (DEM) and Discrete

Fracture Networks (DFN) will be described after the continuum method.

The combination of the continuum and discrete models produces a very interesting group

of so-called hybrid models. Hybrid models are frequently used in rock engineering, for

flow and stress/deformation problems of fractured rocks. The main types of hybrid

models are the hybrid BEM/FEM, DEM/BEM models.

Finite Difference Methods

The FDM approximates the governing PDEs by replacing partial derivatives with

differences in regular (Figure 2.2 a) or irregular grids (Figure 2.2 b) imposed over the

problem domain. The original PDEs are transformed into a system of algebraic equations

in terms of unknowns at grid points. After imposing the necessary initial and boundary

conditions the solution of the system equations is obtained.
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AY

(b)

Figure 2.2 - (a) Regular quadrilateral grid for the FDM and (b) irregular quadrilateral grid
for the FDM (Jing, 2003)

Coates and Schoenberg (1995) use the Finite Difference Method in order to model faults

and fractures. What they try to do is to use the seismic propagation to detect slip surfaces.

Figure 2.3 shows how they use the staggered grid and the locations at which the different

components, for example, of the stress and velocity, are defined. The use of the FDM was

successful and all equations used are well presented in their paper. The issue that they

also reported in the conclusion is that it is not so easy to assess whether a slip surface is a

realistic model of a fault.
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Figure 2.3 - Staggered grid used for the 2-D finite-difference scheme (Coates et al. 1995)

One of the best known commercially available FD codes is FLAC. FLAC is an advanced

two-dimensional continuum model for geotechnical analysis of rock, soil, and structural

support. Many researchers have used FLAC for studies such as stability of a slope and of

a rock mass. (Shen et al., 2012; Apuani et al., 2005).

Finite Element Method

Finite element modeling is a well-established numerical technique that allows one to

address the influence of the complexities that arise from non-linear behavior in geological

27



deformations. Finite element models are used in addressing a broad variety of geological

problems ranging from folding and fracturing of rocks (e.g., Zhang Y. et al., 2000) to

tectonics (Kwon, 2004; Kwon et al., 2007).

The FEM requires the division of the problem domain into sub-domains; i.e. elements of

smaller sizes and standard shapes such as triangles, quadrilaterals, tetrahedrals, etc. with a

fixed number of nodes at the vertices and/or on the sides (Figure 2.1 b). Polynomials are

used to approximate the behavior of the PDEs at the element level and generate the local

algebraic equations representing the behavior of the elements.

Zhang Y. et al. (2000) compare the results of a numerical modeling of single-layer

folding using the Finite Element FLAC and Finite- Element MARC (Zhang Y. et al.,

1996; Mancktelow, 1999). Numerical models of single-layer folds obtained using FLAC

are consistent with those using the MARC for the same material properties and boundary

conditions. The differences in the results reported by Zhang et al. (1996) and Mancktelow

(1999) were not due to the different computer codes used in the two studies. The

explanation lies in the different strain rates employed.

Boundary Element Method

The BEM solves linear partial differential equations that have been formulated as integral

equations (i.e., in boundary integral form) (Figure 2.1 c). The BEM requires

discretization at the boundary of the solution domains, reducing the problem dimensions

by one and greatly simplifying the input requirements. The information required in the

solution domain is separately calculated from the information on the boundary, which is
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obtained by solution of a boundary integral equation, instead of direct solution of the

PDEs, as in the FDM and FEM (Jing, 2003). The BEM, as FDM and FEM, can be used

to solve both dynamic and static problems.

In order to use this method for fracture analysis, the fractures must be assumed to have

two opposite surfaces. Denote Fc as the path of the fractures in the domain n with its two

opposite surfaces represented by Fcj and F- (Figure 2.4). Two techniques were proposed

to model the domain. The first is to divide the problem domain into multiple sub-domains

with fractures along their interfaces, (Figure 2.4 a). The stiffness matrix contributed by

opposite surfaces of the same fracture will belong to different sub-domain stiffness

matrices, in this way the singularity of the global matrix is avoided (Jing, 2003). The

second is to apply displacement boundary equations at one surface of a fracture element

and traction boundary equations at its opposite surface, although the two opposing

surfaces occupy practically the same space in the model (Figure 2.4 b).
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(a) (b)

Figure 2.4 - Illustrative meshes for fracture analysis with BEM: (a) sub-domain, direct
BEM; (b) single domain, dual BEM (Jing, 2003)

Discrete Element Method (DEM)

One of the original fields of DEM is rock mechanics. The first studies were conducted by

Cundall (1971). The method has seen a wide variety of applications in rock mechanics,

soil mechanics, granular materials, material processing, and fluid mechanics. This

method can be used to represent block geometry and internal deformation of blocks

(Figure 2.1 d).

Deng et al. (2011) state in their paper that DEMs can directly mimic rock and thus exhibit

a rich set of emergent behaviors that correspond very well to real rock. Deng et al. (2011)

implemented the DEM to handle rock deformation and fracturing processes. Rock is

viewed, for instance, as a circular/spherical particle cluster with finite mass, and its

mechanical performance is represented by the stiffness and strength of particles or bonds
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between particles (Figure 2.5). The solid rock is treated as a cemented granular material

of complex-shaped grains.

F" = K"U"

AF = -K'AU'

Incremental normal force: A ="A AU"

Incremental shear force: A' = -K'A 'AU'

Incremental tortional moment: Mf =-'Je AG"
Incremental bending moment : AQ' -- "I * Af'

Figure 2.5 - Physical model of implemented DEM (Deng et al., 2011)

Discrete Fracture Network (DFN) methods

Among the methods for modeling fracture flow systems, the DFN approach is one of the

most accurate, but also the most difficult to implement, as stated by many researchers.

The DFN method is a special discrete model that can consider fluid flow and transport

processes in fractured rock masses through a system of connected fractures (Jing, 2003).

Like the DEM, this method was created from a need to represent more realistic fracture

system geometries in 2-D and 3-D. Up to now they are widely used in applications to

problems of fractured rocks, and they are an irreplaceable tool for modeling fluid flow
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and transport phenomena. Table 2.1 shows a summary of the main fracture models based

on DFN (Staub, 2002), and Figures 2.6 through 2.10 show some of the models presented

in the table.

Due to its computational complexity these methods restrict fluid flow to the fractures and

consider the surrounding rock as impermeable. With the progress in numerical techniques

researchers are trying to model very complex systems of fractures and also take into

account the fact that fractures can exchange fluid with the surrounding rock matrix

(Reichenberg et al., 2006).
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Figure 2.6 - Three-dimensional orthogonal model (Dershowitz and Einstein, 1988)

(a) (b)

Figure 2.7 - Comparison of (a) the general Baecher model with (b) the Enhanced Baecher
(Staub, 2002)
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Figure 2.8 - "Generation of Veneziano joint system model" (Einstein, 1993)

Generation Region
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Figure 2.9 - (a) 3-D fractal Box algorithm, and (b) 3-D geometric model (Dershowitz et al,
1998)
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Figure 2.10 - 3D geometric Levy-Lee fractal model (Dershowitz et al, 1998)

Hybrid methods

Dershowitz (2006) describes the development of a hybrid model using DFN and EPM.

The EPM (Equivalent Porous Media) volume elements are integrated with the DFN

triangular elements. In the case presented in the paper the hybrid model was used to

model shaft sinking at an underground laboratory. The schematic representation is shown

in Figure 2.11.
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Figure 2.11 - Hybrid DFN/EPM Model Framework (Dershowitz, 2006)

The hybrid DFN/EPM model first implements the sedimentary strata using EPM

volumetric elements (wire frame in Figure 2.11), with properties derived from well

testing. Then the EPM volumetric elements are linked to DFN elements and the identified

major faults are implemented using tessellated surfaces (green in Figure 2.11). Finally

water conducting fractures are stochastically generated are implemented as DFN

elements, with geometry and properties, based on interpretation of hydro-physical flow

logs, packer tests, and borehole image logs (Figure 2.12) (Dershowitz,2006).
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Figure 2.12 - Stochastically Generated Water Conducting Fracture Population (WCF)
Throughout Model Region (Dershowitz, 2006)

2.1.2 Interpretation of fracture intensity

Dershowitz and Herda (1992) introduce in their paper a class of fracture intensity

measures in 1 -D, 2-D and 3-D. In three dimensions fracture intensity can be defined in

terms of P31, the number of fractures in a volume; P32, the surface area of discontinuities

per unit volume or P33; the volume of fractures in a volume (Figure 2.13).
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Wui vVjLunV P32 Fracture
Area per

P33 Fracture Volume Unit Volume

per Unit Volume

Figure 2.13 - Three dimensional fracture intensity measures (Dershowitz and Herda, 1992)

The most useful measure of intensity for three-dimensional fracture modeling is P32,

since it does not reflect any orientation effect. The size distribution and the number of

discontinuities are needed for calculating intensity. Zhang and Einstein (2000) present in

their paper methods for estimating the size distribution and the number of discontinuities.

The discontinuity size distribution can be inferred from the trace data sampled in circular

windows by using the stereological relationship between the true trace length distribution

and the discontinuity diameter distribution for area (or window) sampling (Warburton,

1980). Zhang and Einstein (2000) present a method for estimating the true trace length

distribution which is affected by bias when measured. Several types of bias occur during

sampling: e.g., orientation bias, size bias, truncation bias, censoring bias. They analyze

the biases using statistical tools for lognormal, negative exponential and gamma

distributions of discontinuity diameters. In order to estimate the total number of

discontinuities the approach of Mauldon and Mauldon (1997) is used. This approach
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estimates the probability that a discontinuity with its centroid in the objective volume will

intersect the wall of a borehole (Figure 2.14).

Objective
/'Volume

Borehole

L Discontintifties

Figure 2.14 - Vertical borehole in an objective volume (Zhang, Einstein, 2000)

In order to describe both the intensity and the orientation distribution several tensor

methods have been described. Those described by Oda (1982) and Kawamoto (1988)

seems to take advantage of the concept of P32 and has a clear physical meaning.

P32 is one of the principal inputs in GEOFRAC, so its correct estimation is very

important. P32 is used as intensity of Poisson planes in the Controlled Volume in the
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primary stochastic process in GEOFRAC. More information about the generation of

planes in GEOFRAC is presented in the next chapter.

2.1.3 Models for the aperture of the fractures

Fluid flow in fractures is strongly dependent on the fracture aperture. For this reason it is

very important, especially for geothermal applications, to have a model that well

represents the geometric characteristics of the fractures. The relation between aperture

and flow is commonly expressed in terms of the parallel plate laminar flow solution

(Poisseuille equation) through a cubic law (Equation 2.1):

h3 AP
q = 12pAL Equation 2.1

where

h: aperture of the fractures (m)

AP: pressure drop (Pa)

g: fluid dynamic viscosity (Pa s)

AL: length of flow (m)

using a hydraulic aperture related to the mean mechanical fracture aperture. The

hydraulic aperture is a non-linear function of effective normal stress, the fracture

morphology, material properties and its history.
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It is important to emphasize that the terminology used by different authors can be

confusing. In fact, some authors refer to the aperture as the "width" or "opening". In this

thesis I will always use "aperture" for the distance between two separate fractures

surfaces.

Many researchers such as Stone (1984), Vermilye et al. (1995) and Johnston and

Mccaffrey (1996), through observation of fracture properties from field mapping, have

proposed a power-law correlation between aperture h and fracture length / (Equation 2.2).

/ = ahb Equation 2.2

where b varies between 0.6 and 1 and a varies between 20 and 2000. Length and aperture

are in mm.

Tezuka and Watanabe (2000) used the Vermilye and Scholz (1995) equation to model the

fracture network of the Hijiori hot dry rock reservoir. The aperture (in meters) is defined

as shown in Equation 2.3:

a = a * VT Equation 2.3

where a is the fracture aperture, r is the fracture radius, and a is the factor that controls

the relationship between the aperture and the radius. They conducted a sensitivity

analysis for both the parameter a and rrnax in order to find the most appropriate values.

After comparison between a simulated flow and field observations, the values that they

chose for the two parameters were:

a = 4.0*10-3
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rmax = 200 m

Ivanova et al. (2012) assume that fracture aperture (in meters) can be related with fracture

length by a power-law function (Equation 2.4):

h = a(2Re )f Equation 2.4

where Re (in meters) is the equivalent radius of the sphere that circumscribes the fracture

(polygon), h is the aperture, and a and b are coefficients that depend on the site geology

and that can be found in the literature (Vermilye and Scholz, 1995; Stone, 1984;

Vermilye et al.,1995; Johnston and Mccaffrey, 1996).

Other researchers, such as Dverstop and Andersson, 1989; Cacas, et al., 1990 assume that

the hydraulic aperture of fractures, h (in meters), follows a lognormal distribution, which

can be written as:

-(In h-,p)2

f(h) e 2a ,0 <-h < oo Equation 2.5

wheref(h) is the lognormal distribution of the aperture, h, with parameters p and -.

Ivanova et al. (2012) referring to these studies, implemented in their model this

probabilistic approach but assuming that it as a truncated lognormal distribution that

follows these relation:

fTRI/ h_ _ h. < h <hm Equation2.6
j_"' f(h)d(h)
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Where hmin and hmax (in meters) are the minimum and the maximum aperture values. This

relation is presented in Figure 2.15.

minimum percentile

Figure 2.15 - Truncated lognormal distribution (Ivanova et al. 2012)

2.2 FLOW SYSTEM MODELS

This section summarizes the numerical models describing fluid flow in fractured porous

media. As reported by Diodato, 1994, four conceptual models have dominated the

research:

1)

2)

3)

4)

Explicit discrete fractures

Dual continuum

Discrete fracture networks

Single equivalent continuum
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The Explicit Discrete Fracture model allows one to explicitly represent fluid potential

gradients and fluxes between fractures and porous media with minimal non-physical

parameterization. As Diodato (1994) explains the data acquisition with this model can

become onerous where large numbers of fractures need to be represented.

Travis (1984) represents fractures with orthogonal orientation. An implicit finite

difference formulation is used and solved iteratively. The region of interest is represented

by a computational mesh of rectangular cells as shown in Figure 2.16. The rows,

columns, and layers of the cells are not equally spaced. Some variables such pressure,

density, concentration, and saturation are evaluated at the cell centers; others (velocity

components) are evaluated at cell interfaces.

p, a I ak. *Avm

V. L row

Figure 2.16 - Typical computational mesh (Travis, 1984)
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Travis implemented an algorithm based on finite difference to create the TRACR3D code

that was used to model time-dependent mass flow and chemical species transport in a

three-dimensional, deformable, heterogeneous, reactive porous/fractured medium (Travis,

1984).

The Dual-continuum approaches are based on an idealized flow medium consisting of a

primary porosity created by deposition and lithification and a secondary porosity created

by fracturing, jointing, or dissolution (Warren and Root 1963). The first studies were

introduced by Barenblatt et al. (1960) and later extended by Warren and Root (1963). The

porous medium and the fractures are envisioned as two separate but overlapping

continua. Fluid mass transfer between porous media and fractures occurs at the fracture-

porous medium interfaces (Diodato, 1994).

More recent studies such as that by Illman et al. (2004) used a dual continuum two phase

flow simulator called METRA to represent the matrix and the fractures as dual

overlapping continua; liquid flux between continua are restricted by a uniform factor.

Figure 2.17 shows an example of the steady state distribution of fracture saturation

(Figure 2.17a), matrix saturation (Figure 2.17 b), fracture water flux (Figure 2.17 c), and

matrix water flux (Figure 2.17 d) for a single realization of fracture permeability with

qa=42.5 mm/yr, where qa is the water flux. In Figure 2.17 the materials, used in the test,

are defined with the acronyms: Tiva Canyon Tuff (TCw), non-welded Paintbrush Tuff

(PTn), and welded Topopah Spring Tuff (TSw). Illman et al., 2004 state: "The

distribution of saturation in the fracture continuum is highly variable in the nonwelded

46



and welded units. The saturation is highest locally, where permeability in the fracture

continuum is low and at the TCw/PTn boundary in the fracture continuum, where the

contrast in permeability causes a permeability barrier. As water moves progressively

from the fracture to the matrix continuum in the PTn unit, the variability in saturation

decreases with depth in the PTn fracture continuum ".
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Figure 2.17 - Steady state distribution of: (a) fracture saturation; (b) matrix saturation; (c)
fracture water flux; and (d) matrix water flux qa=42.5 mm/yr (Illman et al., 2005)
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In Discrete-fracture-networks all flow is restricted to the fractures. This idealization

reduces computational resource requirements. Fractures are often represented as lines or

planes in two or three dimensions. For contaminant transport, some network models

allow for diffusion between the fracture and porous medium (Diodato, 1994).

The model developed at MIT that will be introduced in Chapter 3 belongs to this

category. Fractures are represented by polygons in three-dimensions, the porous medium

is not represented and all flow is restricted to the fractures.

The Single Equivalent Continuum Formulation assumes that the volume of interest is

considered to be large enough that, on average, permeability is a sum of fracture and

porous media permeability. Pruess et al. (1990) demonstrated that where the scales of

integration are sufficiently large, the single equivalent continuum approximation will

model well the conserving fluid mass. It may, however, be a poor predictor of spatial and

temporal distributions of contaminant fluxes (Diodato, 1994).

2.3 SOFTWARE TOOLS IN USE AND THEIR

APPLICATION

Thermal-hydrological-mechanical processes are, conventionally, solved by coupling a

fracture system model with a subsurface flow and heat transfer model. The term

'coupling' implies that one process affects the initiation and progress of another. It is

possible to use coupling processes using the same software, as the Rock Mechanics
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Group at MIT is trying to create with GEOFRAC or using different software that model

different part of the thermo-hydro-mechanical processes; for example, Rutquist et al.

(2002) used FLAC, a rock mechanics simulator and TOUGH2, a widely used flow and

heat transfer simulator, for their simulation. The two simulators run sequentially with the

output from one code serving as input to the other one (Podgorney et al., 2010).

2.3.1 TOUGH2

TOUGH ("Transport Of Unsaturated Groundwater and Heat") was developed at the

Lawrence Berkeley National Laboratory (LBNL) in the early 1980s primarily for

geothermal reservoir engineering. Now it is widely used for many other applications for

instance nuclear waste disposal, environmental assessment and remediation.

TOUGH2 is the basic simulator for non-isothermal multiphase flow in fractured porous

media. The TOUGH2 simulator was developed for problems involving strongly heat-

driven flow. It takes into account the fluid flow in both liquid and gaseous phases

occurring under pressure, as well as viscous, and gravity forces according to Darcy's law.

Interference between the phases is represented by means of relative permeability

functions. The code includes Klinkenberg effects and binary diffusion in the gas phase

and capillary and phase adsorption effects for the liquid phase. Heat transport occurs by

means of conduction (with thermal conductivity dependent on water saturation),

convection, and binary diffusion, which includes both sensible and latent heat.
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2.3.2 FALCON

FALCON (Fracturing And Liquid CONvection) is a finite element based simulator

solving fully coupled multiphase fluid flow, heat transport, rock deformation, and

fracturing using a global implicit approach (Podgorney et al. 2012). It was developed and

now improved by the Idaho National Laboratory group.

Podgorney et al. (2010) describe the initial code. The approach is to develop a physics

based rock deformation and fracture propagation simulator by coupling a discrete

element model (DEM) for fracturing with a continuum multiphase flow and heat

transport model. In this approach, the continuum flow and heat transport equations are

solved in an underlying finite element mesh with evolving porosity and permeability for

each element that depends on the local structure of the discrete element network. As a

first step in the development of the code, governing equations for single-phase flow and

transport of heat are being coupled with linear elastic equations. The basic architecture of

the code allows one to conveniently couple different processes and incorporate new

physics, such as stress dependent permeability-porosity, phase change, implicit

fracturing. The code in FALCON is developed using a parallel computational framework

called MOOSE (Multiphysics Object Oriented Simulation Environment) developed at

the Idaho National Laboratory (INL).

Podgorney et al. (2012) present some results. Figure 2.18 shows the simplest problem

geometries, a small fracture network consisting of two horizontal and one vertical

fracture.
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Figure 2.18 - Three-dimensional mesh for the simplest fracture flow problems under
consideration (Podgorney et al., 2012)

Figure 2.19 shows the simulated temperature and pressure for two examples after several

years of injection and production. Cold fluid is injected on the right side of the fracture

domain, while production is on the left side. At early times, small changes are observed

in the temperature field in the proximity of the production location.
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Figure 2.19 - Temperature (in fracture domain) and pressure along the center of the
reservoir matrix domain for tow simulations. (Podgorney et al., 2012)

2.3.3 LEAPFROG

Leapfrog Geothermal is a 3D modeling tool that can be used in every stage of a project,

from initial proof-of-concept to reservoir development and production. In 2010 ARANZ

Geo together with the University of Auckland, Department of Engineering Science
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Geothermal Group and Contact Energy Ltd used the core technology to develop a

geothermal "product".

Leapfrog Geothermal can be used for integration with Tough2 for flow modeling,

regional geothermal resource evaluation, geothermal model review and maintenance,

borehole planning for exploration, development and reservoir management, 3D fault.

2.3.4 FRACMAN

FracMan generates fractures in three dimensions within a given rock volume. Dershowitz

et al, (1998) explain the definition of the input parameters and the theoretical background

of Discrete Fracture Network introduced the DFN models into the FracMan. To take into

account the variability of the input parameters, the DFN model is generated several times

by means of Monte Carlo simulations, and the fracture population statistics analyzed for

each simulation model (Staub I. et al., 2002). FracMan generates 3-D fracture network

models to describe the pattern of faults, fractures, solution features and stratigraphic

contacts in fractured rock.
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2.3.5 CONCLUSIONS

The software tools presented above are very useful tools to be used in the field of

geothermal energy. The disadvantage is that they need to be combined in order to obtain

a complete fracture flow model simulation.

The program GEOFRAC, developed by the MIT Rock Mechanics Group and presented

in Chapter 3, aims to model a geothermal reservoir as a complete and optimized tool.

Particularly the well location optimization study that will be implemented as a next step,

is quite innovative.
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CHAPTER 3

GEOFRAC: 3-D HYDRO-

MECHANICAL MODEL

3.1 INTRODUCTION

GEOFRAC is a three-dimensional, geology-based, geometric-mechanical, hierarchical,

stochastic model of natural rock fracture systems (Ivanova, 1998). Fractures are

represented as a network of interconnected polygons and are generated by the model

through a sequence of stochastic processes (Ivanova et al., 2012). This is based on

statistical input representing fracture patterns in the field in form of the fracture intensity

P32 (fracture area per volume) and the best estimate fracture size E[A]. P32 can be obtained

from spacing information in boreholes or from observations on outcrops using the

approach by Dershowitz and Herda (1992). Best estimate fracture size E[A] can be

obtained from fracture trace lengths on outcrops with suitable bias corrections as

developed by Zhang et al. (2002). Distributions of fracture size can also be obtained

subjectively. GEOFRAC has been applied and tested by estimating the fracture intensity

and estimated fracture size from tunnel records and from borehole logs (Ivanova et al.

2004, Einstein and Locsin 2012). Since its original development, GEOFRAC has been

made more effective by basing it on Matlab, and it has been expanded by including an
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intersection algorithm and, most recently, a flow model. Focus of my research was to apply

GEOFRAC in the EGS (Enhanced Geothermal System) modeling field. In this chapter I

will present the basic concept of GEOFRAC and I will introduce the applicability in the

geothermal field. The algorithms developed to apply GEOFRAC for the geothermal area

are explained in more details in the next chapters.

A parametric study was conducted in order to test the efficiency of this model and to

analyze the sensitivity of the output flow rate to the parameters used as input in the model.

Chapter 4 will present the results of the parametric study.

3.2 BASIC CONCEPT

3.2.1 Fracture system model

The fracture system model in GEOFRAC was developed by Ivanova (1998). The concept

is a three-dimensional geometric-mechanical model that represents rock fracture systems.

The model has the characteristics to be hierarchical, so that fractures are grouped into

hierarchically related fracture sets; and it is stochastic, using statistical methods to generate

the fracture system from available geologic information. Fractures in GEOFRAC are

represented as polygons (Figure 3.1). As shown in the figure each polygon is characterized

by a pole and a radius Re that represent the radius of the equivalent circle that

circumscribes the polygon.
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Figure 3.1- Fracture represented as a polygon with a pole and a radius (Ivanova, 1995)

The desired mean fracture size E[A] and fracture intensity P32 in a region V are given as

input. GEOFRAC uses these inputs to generate the fracture system following a sequence of

stochastic processes (for details on GEOFRAC and on the flow model see Ivanova et al.

2012, Sousa et al. 2012 and Sousa, 2013):

Primary Process: Fractures planes are generated in the volume V with a Poisson plane

process of intensity p where 9= P32. The orientation of the planes can be specified with the

Fisher distribution. Recall that this is a single parameter distribution. Low values of the

parameter K simulate randomly generated planes; large K will generate planes mostly

parallel to each other.
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Secondary Process: A Poisson point process with intensity X is generated on the planes and

the fractures are created with a Delaunay-Voronoi tessellation. It represents fracture

intensity variation by size and location.

Tertiary Process: Random translation and rotation of the fractures (polygons) are

conducted to represent the local variation of fracture position and orientation of individual

fractures. In the tertiary process a new algorithm was recently added to the model to allow

the user to model fractures with or without random rotation. The parametric study

presented in the Chapter 4 will compare results with rotation and no rotation of the

fractures.

The generation process of the fractures is visualized in Figure 3.2.

a) Primary Process: Generation of Planes

60



Division ofplanes into polygons

c) Tertiary Process: Random translation and rotation

Figure 3.2 - Generation of a fracture set with the GEOFRAC model. Primary process (a),
secondary process (b), tertiary process (c) (Ivanova et al., 2012)
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A parametric study was conducted in order to study the relationship between fractures

intensity, size, and connectivity (Ivanova et al., 2012). Monte Carlo simulation was used in

order to determine the mean fracture connectivity C, with the variation of P32 and E[A].

The results of the simulations are graphically presented in Figure 3.3. The plot shows the

results for xi=O (solid line) and for x =10 (dotted line). The results suggest that the fracture

connectivity C is a non-linear function of both the fracture size, measured by the expected

mean area E[A], and the fracture intensity, measured as cumulative fracture area per unit

rock volume, P32 .

1.4

.6

1

9.

E[A]

Figure 3.3 - Expected fracture connectivity, C, for given E[A] and P32 (Ivanova et al., 2012)
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3.2.2 Flow system model

In section 2.1.2 I described the 4 methods that can be used to represents fracture flow. The

circulation model in GEOFRAC belongs to the category of Discrete-Fracture Networks. In

this type of model the porous medium is not represented and all flow is restricted to the

fractures. Fractures are often represented as lines or planes in two or three dimensions. In

this specific case the fractures are represented by polygons in three dimensions. The flow

model in GEOFRAC was developed by Sousa (Sousa, 2012).

The flow equations used to model the flow through the fractures are those of linear flow

between parallel plates. The water flows only in the x direction between two parallel plates

with the no-slip condition for viscous fluids forming the velocity profile in the y direction

(Figure 3.4).

4Y
46 AN. y=hk

u 1k
x y7o

Figure 3.4- Schematic representation of linear flow between parallel plates

The water flow in fracture is assumed to be governed by the Poisseuille cubic law

(Zimmerman and Bodvarsson, 1996) represented by the following equation:

q = h 3Ap Equation 3.1
12puAL
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Where:

q is the volumetric flow rate (m2/sec) per unit width;

h is the aperture of the fracture in m;

g is the fluid dynamic viscosity in PA s;

AP is the pore pressure change in Pa after the flow travels through distance AL.

Considering the fracture width, w(s) (see Figure 3.5) (in m, variable with length) the

equation for flow between parallel plates is:

w(s)h'AP
12pAL

Equation 3. 2

The schematic representation of the fracture width is shown in Figure 3.5.

Figure 3.5 - Mean fracture width between fractures intersection
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The fracture aperture in GEOFRAC can be modeled in three different ways:

- Deterministic approach using a power law relation between fracture length and

aperture.

- A probabilistic approach based on the truncated lognormal distribution.

- A fixed value. This was used to perform the parametric study that will be presented in

the Chapter 4.

These methods are explained in more detail in Chapter 6.

In order to calculate the geometric flow paths and the flow rate GEOFRAC follows seven

steps:

1) Determination of the fractures that intersect the left boundary;

2) Determination of the fractures that intersect the right boundary;

3) Determination of the score of each fracture;

4) Determination of the highest score paths amongst all initial fractures (that intersect the

left boundary) and all end fractures (that intersect the right boundary);

5) Determination of the intersections between the paths;

6) Determination of the flow thought each path;

7) Determination of the total flow through the reservoir;

I will briefly describe the above steps that are more thoroughly explained in Sousa (2012).
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Step 1 & 2 - Select and store the fractures that intersect the injection and the production

boundaries

A function called buildNodesList.m was created. This function creates an Nx2 matrix

containing a list of edge connections.

Figure 3.6 shows an example of how the connections are considered and stored in the matrix

9

2

1

8

3 5
6

7

Figure 3.6 - Representation of the fracture intersections (Sousa, 2013)

The matrix containing the list of edge connections in this case would be as follows:

E

12
23
34
38
48
45
89
56
67-
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Step 3 - Scoring system:

The model at this point assigns a score to each fracture. The scoring system is based on the

wh3
concept that for the same drop of pressure the flow rate is proportional to --

AL

The score for each fracture is calculated as:

SC = Wh3  Equation 3.3
AL

where:

w is the mean width of the fracture in m;

h is the aperture of the fracture in m;

AL is the distance between fractures (See Figure 3.7).

The fractures with greater aperture and greater mean width will have a greater volumetric

flow for the same drop of pressure.

Figure 3.8 illustrates the different geometric components of the scoring formula. The

length of a "fracture path" corresponds to the distance between the middle points of the

intersections between fractures. For example in Figure 3.7 the length AL of fracture 1 is

the distance between the middle point of the intersection of fracture 1 and 3 and the middle

point of the intersection of fracture 1 and 2. Figure 3.8 shows the score components when a

fracture intersects more than one fracture.
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Figure 3.7 - Score components between two fracture intersections

W13 ' (s)

Fracture 1

Figure 3.8 - Score components: fracture intersects more than one fracture
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Step 4 - Highest score path

The model then finds the paths that have the highest score based of the score of the

fractures. The highest score path(s) is calculated using the Dijkstra's algorithm (Dijkstra,

1959).

In GEOFRAC, the Dijkstra's algorithm is used to calculate the "highest score paths" (or

most likely path) between all the fractures that intersect the injection boundary and all the

fractures that intersect the production boundary. Figure 3.11 shows an example of a most

likely overall path, i.e. the path with the highest score in a specific reservoir. Figure 3.12

shows three different highest score paths between initial fractures and different final

fractures.

Step 5 - Intersection between paths

At this point the model generates a list of several branches, each one composed of

numerous fractures and nodes that are the intersection between branches or the intersection

between branches and one of the boundaries, as illustrated in Figure 3.9. Branches are then

joined to form paths. Each path is composed of several fractures that can be represented

schematically as shown in Figure 3.10. The path can be represented by an equivalent

fracture width and equivalent aperture and a length that is equal to the sum of the lengths

of all fractures.

The equivalent aperture can be calculated with Equation 3.4.
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heq= Equation 3.4

where, li and hi are the length and aperture of the ith fracture;

1 is the total length of the series of fractures, i.e. the sum of all the fractures in the series.

The equivalent length of a path is the sum of the lengths of all fractures that constitute the

path (Equation 3.5)

'eq = i Equation 3.5

Where, li is the length of the ith fracture

The equivalent width can be computed by a weighted average of all the fractures that are

part of the path. This is represented by Equation 3.6.

eq 
wili

wE =
Equation 3.6

Where

w is the width of the ith fracture

i is the length of the ith fracture
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Figure 3.9 - Intersection of two paths; representation of branches and nodes.
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Figure 3.10 - Series of fractures modeled as parallel plates
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Figure 3.11 - Highest score path between two fractures that intersect the two boundaries
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Figure 3.12 - Highest score path between different pairs of fractures
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After finding the best geometric solution (fracture system) to create the system of the

branches the model calculates the output flow (equation 3.2) as the sum of the output flow

from each path.
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CHAPTER 4

PARAMETRIC STUDY

4.1 Introduction

The parametric analysis was conducted in order to check the consistency of the

model and determine which parameters have the greatest effects on the final results.

The parametric analysis considers simplified conditions:

- A synthetic 20x20x10 m volume

- Injection and production wells are the left and right boundaries of the volume

- The water temperature is assumed to be 20'C, i.e. the dynamic viscosity is

1.002x10-3 Pa s.

These simplifications are both justified and necessary since the parametric study

intends to verify the intrinsic correctness of GEOFRAC flow model.

The results of this analysis are presented in the next paragraphs and are sub-divided

into the following sections:

- output analysis when varying the aperture parameter;
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- output analysis when varying the Fisher parameter that affects the orientation of

the planes during the primary process;

- output analysis when varying the rotation the fractures during the tertiary process.

Each section will conclude with a brief summary of the results obtained.

The following code will be used to identify the simulations done using the follow

abbreviated indicators, in the charts as well as in some comments:

E[A] - P32 - x - R - h

Where:

E[A] = Expected area of the fracture (m2)

P32 = Fracture intensity (fracture area/volume)

K = Fisher parameter

R= 0 'no rotation' of the fractures in the tertiary process

R=1 'random rotation' of the fractures in the tertiary process

h = Aperture of the fracture (m)

For example: the code 2-3-1-0-0.005 means:.

E[A]=2 M2 , P32=3, r-1I, R=0 (no rotation), aperture=0.005 m
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4.2 Parametric study results

4.2.1 Output analysis when varying the aperture parameter

GEOFRAC allows the user to generate the aperture (h) of the fractures using three

models: a deterministic approach, in which the aperture is a function of the radius

of the sphere that circumscribes the fracture (polygon); a probabilistic approach,

which follows a truncated lognormal distribution, and a fixed value approach in

which the users can fix the value of the aperture. This last approach was used for

this analysis, in order to establish the sensitivity of the results and to confirm the

direct relation between the aperture of the fractures and Qout (m3/s). Two cases are

analyzed: h = 0.005 m and h = 0.01 m. Most of the other parameters are kept fixed

in this particular sensitivity analysis:

E[A]= 2

P 32 = 3

K1

R = 1 (rotation) or 0 (no rotation)

For both cases shown in Figure 4.1 (h = 0.005 m) and Figure 4.2 (h = 0.01 m), the

results for no rotation and random rotation of the polygons are reported in the same

chart. Just 40 simulations were run; a number considered representative since the

aim of this analysis is to study the trend of the results and not to evaluate the exact
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value of Qout. A detailed study of sample analysis is presented in Vecchiarelli and

Li (2013).

40 h= 0.005 m
3.5

3.0

2.5 -

2.0 * 2-3-1-0-0.005

1.5 N 2-3-1-1-0.005

1.0

0.5 -

0.0 G
0 10 20 30 40 50

simulation

Figure 4.1 - Flow rate for h=0.005 m for no rotation and random rotation of the
fractures
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4 h.= 0.01 m

3.5

3 *
2.5-

2 2-3-1-0-0.01

1.5 2-3-1-1-0.01

1-

0.5

0-
0 10 20 30 40 50

simulation

Figure 4.2 -Flow rate for h=0.01 m for no rotation and random rotation of the
fractures

In Tables 4.1 and 4.2 the mean, the standard deviation and the coefficient of

variation of the simulations are summarized.

Table 4.1- Values of Qout (m3/s) for h = 0.005 m

Mean Standard Coefficient of

Qout (m3/s) Deviation variation

Qout (m3/s) Qout (m 3/s)

no 0.16 0.09 0.54

rotation

rotation 0.05 0.02 0.40
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Table 4.2 - Values of Qout (m3/s) for h

The results correspond well to the theory. The ratio of the cubic values of the

aperture parameters chosen for this analysis is 0.01^3/0.005^3=8. Qout for the

rotation case for example is Qout= 5.16 m3/s for h=0.005 m and Qout=47.94 m3/s

for h=0.01 m and producing a ratio of about 9 which is very close to 8. A similar

ratio is obtained for the no rotation case. (The differences in absolute values for

rotation and no rotation will be discussed later). The variability as expressed by the

coefficient of variation is apparently not affected by the absolute value of h.

4.2.2 Output analysis when varying the Fisher parameter

In order to check the variability of the results of Qout, using different Fisher

parameters, two values were selected for the analysis presented in this section: K =1

and x-40. These two values represent the extreme conditions with K=1 representing
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Mean Standard Coefficient of

Qout (m3/s) Deviation variation
Qout (m3/s) Qout (m3/s)

no 1.64 0.85 0.52
rotation

rotation 0.48 0.19 0.38

= 0.01 M



randomly generated planes (Figure 4.3) and K=40 mostly parallel planes (Figure

4.4). The resulting Qout are plotted in Figures 4.5 and 4.6.

0.5

-0.5-

-0.5 -0.5

Figure 4.3 - Fracture set poles. Orientation distribution Univariate Fisher K =1

0.5

0

1- -

-0.55-0.

-1 -

Figure 4.4 - Fracture set poles. Orientation distribution: Univariate Fisher K =40

81



Figure 4.5 - Flow rate (Qout) values for K =1

Figure 4.6 - Flow rate (Qout) for K =40
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For K =1 (Figure 4.5) the largest values are obtained for h=0.01 m and no rotation.

For K =40 this is different (Figure 4.6). In fact, for K =40 and h=0.01 the highest

values of Qout occur for random rotation. A possible explanation is as follows: the

rotation of the fractures starting from almost parallel planes (K=40) adds some

randomness that increases the intersections between fractures generating more

flow. On the other hand starting from random orientation of the planes (xI=1) the

fractures intersect because of the orientations of the planes with no rotation. The

rotation appears to remove some of these intersections. In order to better

understand this behavior the number of paths and their physical location in the

control volume are shown in the following figures (Figures 4.7 to 4.14) in which

the variation of all parameters is investigated (K=1, K =40; h=0.01 m, h=0.005 m;

rotation, no rotation).
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- Plots of the paths for K=J

Figure 4.7 - Fracture paths system for simulation with K=1, h=0.005 rotation
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Figure 4.8 - Fracture paths system for simulation with xc=1, h=0.01 rotation
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Figure 4.9 - Fracture paths system for simulation with Kc=1, h=0.005 no rotation
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Figure 4.10 - Fracture paths system for simulation with K =1, h=0.01 no rotation
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Plots of the paths K=40

Figure 4.11- Fracture paths system for simulation with ic=40, h=0.005 rotation
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Figure 4.12 - Fracture paths system for simulation with K =40, h=0.01 rotation
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Figure 4.13- Fracture paths system for simulation with K =40, h=0.005 no rotation
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Figure 4.14 - Fracture paths system for simulation with K =40, h=0.01 no rotation
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The following interpretation can be offered: for K = 1 (Figures 4.7 to 4.10) the

number of paths in general is high. There are many fractures that intersect the two

boundaries (green and red dots in the figures). Figure 4.7 (h=0.005, rotation) shows

a somewhat odd behavior in that the number of paths decreases then increases

again. This influences the flow, which in effect is smaller in this particular case.

The h=0.01 m no rotation case (Figure 4.10) shows a higher number of paths and

more branches compared to the other figures. This confirms the hypothesis made

earlier that, with K=1 the planes in the volume are randomly oriented, and this

produces a large number of intersections between fractures.

The results for K =40 paths are very consistent and clear. More branches occur in

the rotation case (Figures 4.11 and 4.12) than in the no rotation case, (Figures 4.13

and 4.14) and as a consequence the number of paths is higher in the rotation case.

As mentioned before the primary process for K=40 generates planes almost parallel

to each other and the rotation of the fractures in the tertiary process increases the

probability of intersections.

4.2.3 Effect of fracture translation

In the tertiary process fractures are translated and can be rotated or not rotated. The

effect of rotation was discussed above. It is worthwhile to investigate what effect

translation may have. Figure 4.15 shows the possible overlaps of apertures if the

fractures are translated and not rotated. Such an overlap can produce a fracture
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path. However, when we investigated Qout as a function of translation and rotation

as shown in Figure 4.16 one can see that translation has no effect both in the

rotation- and the no rotation case and that the Qout for no rotation is higher (for

reasons explained earlier). A possible explanation for the lacking effect of

translation can be found with the numbers shown in Table 4.3. The minimum value

of the translation is 0.016 m; so only few fractures with aperture h=0.01 m will

overlap as shown in Figure 4.15.

1FRACTUR E

h: fracture Z
FRACTURE t: translation of the fracture

aperture W I

Figure 4.15 - Schematic representation of the translation between fractures

93



4

3.5

3

2.5

2#2-3-1-0-0.01

1.5 * *2-3-1-1-0.01

0.5 -

0 nI

0 0.5 1 1.5 2 2.5

translation (m)

Figure 4.16 - Translation of the fractures vs Qout

Table 4.3 - Max and min values of the translation of the fractures
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translation min max

(m)

no 0.016 1.659
rotation

rdm 0.057 1.955
rotation



4.3 Conclusion

The parametric study demonstrates how aperture, the Fisher parameter and rotation

of the fractures influence the production flow rate. As to be expected greater

aperture produces greater flow. The effects of orientation are more complex as the

effect of fracture plane orientation (Fisher parameter) and of rotation of individual

fractures interact. For planes randomly generated the case with no rotation of the

fractures and an aperture of 0.01 m generates greater flow than with rotation, while

for parallel planes greater flow occurs in case of rotation of the fracture and

aperture equal to 0.01 m.

This study of a simple synthetic case shows that the model is consistent but also

that are some unexpected complexities affected by fracture orientation.
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CHAPTER 5

BOREHOLE INTERSECTION

5.1 INTRODUCTION

Up to now the fracture and flow system was created and modeled starting from plane

boundaries of the controlled volume (Figure 5.1). In order to apply GEOFRAC to model

a geothermal reservoir, borehole' boundary conditions have to be implemented in the

model. With this GEOFRAC allows the user to evaluate the flow just through the

fractures that intersect the injection - and production wells. After the fracture system is

modeled with plane boundaries, the model checks if fractures intersect the injection and

the production wells (Figure 5.1).

The term borehole will be used in this Chapter to represent geothermal wells
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Injection well

<- Plane boundary in injection

Plane boundary
in injection

Production well

Figure 5.1 - Fracture systems intercepted by the two wells

5.2 INTERSECTION ALGORITHM

5.2.1 The MATLAB function intersectBorehole

In order to have the possibility to choose if the model considers the fractures system in

the entire controlled volume or just the fractures that intersect the boreholes, a new

function intersectBorehole was created.

function [frac, inter]=intersectBorehole(PO, d, rb, fractureSet)

This function takes the fracture set generated in the controlled volume, checks which

fractures intersect the borehole (cylinder) and returns the intersections and the fractures

that intersect the cylinder.
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In more detail the inputs are:

PO: [XO, YO, ZO], i.e. is the center of the borehole at the surface

d: depth of the borehole (m)

rb: radius of the borehole (m)

FRACTURESET: MATLAB structure folder containing all fractures and geometric

characteristics. (Polygon vertex coordinates)

PO (xo,yo, zO)

Figure 5.2 Schematic representation of geometric inputs for the Intersect Borehole
function

The outputs are:

FRAC: array of fractures that intersect the borehole

INTER: array of intersections of the fractures with the borehole
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From this point on GEOFRAC will take as input just the FRAC array in which fractures

that intersect the borehole are stored.

In the Matlab file this intersection is done in three steps:

STEP 1: Clear polygons outside the interest volume (below the borehole zone)

From the computational point of view it is better to eliminate fractures that are below the

borehole depth because one is certain that they will not intersect the borehole. This

allows one to reduce the quantity of fractures that the code needs to check. The function

that it is run at this point is clearPolygonsBelowVolume

[polygon, cs, rs]=clearPolygonsBelowVolume(polygon,center, PO,d);

Where

polygon=fractureSet.polygonall; this is the list of the fractures generated in the

controlled volume

center=f ractureset .call; it is the center of all fractures in the controlled volume

cs, rs are respectively the center and the radius of the spheres that enclose the

polygons

See the end of this chapter for the code of the function clearPolygonsBelowVolume.
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STEP2: Check which spheres that enclose polygons, resulting from step 1, intersect the

borehole

In this step the intersections between the borehole and the spheres that enclose the

polygons is checked and stored in C.

C = intersectBoreholeSphere(cb,cs,rb,rs);

See the end of this chapter for the function intersectBoreholeSphere

Figure 5.3 gives a visual representation in Matlab of an intersection between a cylinder

and spheres.

Figure 5.3- Matlab representation of intersection between a cylinder and spheres
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STEP 3: Calculate if polygons (whose spheres intersect the borehole) actually intersect

the well

In this step just the polygons, whose spheres intersect the borehole and that were stored in

the preceding step are analyzed.

m=find(C==1);

c==1 means that there is intersection and this information is stored in m.

The intersection between a sphere and a cylinder can be a circle, a point, the empty set, or

a special type of curve. In order to ensure any possible intersection between polygon and

cylinder, the following cases are taken into account:

CASE 1- General case If at least one vertex is inside the cylinder, the polygon intersects

the borehole (Figure 5.4)

Figure 5.4 - Schematic representation of intersection between the borehole and
one vertex of the fracture (polygon)
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- CASE 2- Polygon inscribed into the cylinder. The way of modeling case 1 solves also the

case of polygon inscribed into the borehole (Figure 5.5).

Figure 5.5 - Schematic representation of a fracture (polygon)
inscribed into the borehole

- CASE 3 - All vertices outside the cylinder but a line between 2 vertices (i.g. v_1 and v_2

in Figure 5.6) intersects the cylinder.

At this point of the code just the vertexes coordinates are stored in FRACTURESET, so

lines between vertices are created in the code, and then the intersections between lines

and the cylinder are calculated.
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v_1 Li v_-2

Figure 5.6- Schematic representation of an intersection
between one side of a fracture and the cylinder

CASE 4 - All vertices outside the cylinder, no line between vertices intersect the cylinder

(Figure 5.7).

Figure 5.7- Schematic representation of intersection
between a fracture (plane) and a borehole (cylinder)
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MATLAB CODE - intersectBorehole

function [frac, inter]=intersectBorehole(PO, d,rb, fractureSet)

%INTERSECTBOREHOLE Return intersection between fracture and borehole

% [FRAC, INTER]=intersectBorehole(PO,D,RC, FRACTURESET)

% Takes a fracture set, checks which fractures intersect the borehole

% (cylinder) returns the intersections and the fractures that

intersect.

% PO: [XO,YO,ZO]

% D: depth of the borehole

% RB: radius of the borehole

% FRACTURESET: structure containing all fractures and geometric

% characteristics

% FRAC: array of fractures that intersect the borehole

% INTER: array of intersections of the fractures with the borehole

%STEP 1: Clear polygons outside the interest volume

center=fractureSet.Call;

polygon=fractureSet.polygonall;

[polygon, cs, rs]=clearPolygonsBelowVolume(polygon,center,PO,d);
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%STEP2: check which spheres that enclose polygons resulting from step 1

% intersect the borehole

C = intersectBoreholeSphere(PO,cs,rb,rs);

% STEP 3: Calculate if polygons (which spheres intersect the borehole)

% actually intersect the borehole

m=find(C==1);

%calculate P1: end point of the borehole, i.e. PO(z)-depth

P1(1:2)=P0(1:2);

P1(3) =PO (3) -d;

L = createLine3d(PO, P1);

% PO = XOYOZO

% P1 = X0,YO,ZO+depth;

%assign inter

inter=zeros(m,3);

if -isempty(m)

for i=1:length(m)

[inter(i,:)]= intersectLinePolygon3d(L, polygon(m(i)});

end

n=find(-isnan(inter(:,1)));

frac=m(n);

inter (isnan (inter (:, 1)),:)=[]
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else

frac=[I;

inter=[];

end

end
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MATLAB CODE - clearPolygonsBelowVolume

function [polygon, center, rs] = clearPolygonsBelowVolume (polygon,

center, PO, depth)

This function returns the polygons, their center and radius, which are above a calculated

depth.

Step 1- Determine the maximum Radius of all the spheres that enclose the polygons

ds=getDmax(polygon,center);

Dmax=max(ds);

rs=ds/2;

rs=rs';

Step 2- A limit in depth is fixed in order to eliminate part of the volume in which sphere

not intersect the borehole. All the spheres below this depth are not considerate.

lim=PO(3)-depth-Dmax;

m=find(center(:,3)<lim);

center (m, :) =[;

polygon (m)=[]

rs(m)=[];

end
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MATLAB CODE - intersectBoreholeSphere

function C = intersectBoreholeSphere(cb,cs,rb,rs)

INTERSECTBOREHOLESPHERE True if the borehole and spheres intersect

C=INTERSECTBOREHOLESPHERE(CB,CS,RB,RS) returns a matrix containing 1

if

boreholes defined in array 1

intersect and 0 otherwise.

CB is an array that contains

CS is an array that contains

RB is an array that contains

RS is an array that contains

and spheres defined in array 2

the centers of spheres in array 1

the centers of spheres in array 2

the radius of spheres in array 1

the radius of spheres in array 2

%computes the distances between vectors in cB and cS

D=dist(cb(1:2)',cs(:,1:2)');

%computes the sums of the radius of rB and rS

sumR=(ones(length(rs),1)*rbl)'+(ones(length(rb),1)*rs');

C = (D<sumR);

end
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CHAPTER 6

GEOFRAC GRAPHICAL USER

INTERFACE

6.1 INTRODUCTION

Geofrac is a program written in the MATLAB computational environment, so one needs to

run MATLAB in order to use GEOFRAC. GEOFRAC has been made accessible throught

the Graphical User Interface (GUI). The GUI allows the user to perform the complicated

simulations of a geothermal basin without the need to understand the details of how the

tasks are performed.

After starting MATLAB, one can use the GUI to enter input parameters, as described in

more detail in section 6.2, and determine the computed fracture system and the output flow

rate. The outputs that can be obtained and how they are represented are explained in

section 6.3.
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6.2 INPUT PARAMETERS

In the GEOFRAC folder a file called RunGeofrac.m opens the window shown in Figure

6.1. The GUI is organized in sections:

- Geometric inputs

- Stochastic inputs

- Simulation

- Flow input

Figure 6.1 - GEOFRAC GUI (user's interface)
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6.2.1 Geometric inputs

The geometric inputs (Figure 6.2 ) defines the reservoir dimensions.

Geometric inputs
coor a ofthe vOerm

Figure 6.2 - Geometric dimensions of the reservoir to be
modeled

Figure 6.3 shows how the coordinates are placed in the space. The coordinates of the

controlled volume in GEOFRAC are defined in the following way:

Xm: half of the length of the area of interest (m)

Ym: half of the width of the area of interest (m)

Ztop: depth of the area of interest (m)

Z

Ztop

F 63 x

YY

Figure 6.3 - Coordinates of the controlled volume according to GEOFRAC
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At this stage of GEOFRAC coding, it is recommended not to use a large volume for the

simulation in order to not encounter problems of insufficient computer memory. In fact

instead of simulating the entire reservoir it is possible to concentrate the calculation in the

zone defined by the injection and production wells and their depth.

The left and right sides are taken in GEOFRAC as the boundaries from and to which the

flow is respectively generated and collected.

6.2.2 Stochastic inputs

GEOFRAC uses stochastic models to represent natural fracture systems based on available

geological information. Figure 6.4 shows the stochastic parameters that need to be set in

order to generate the fracture system. P32 and E(A) define the intensity and the mean area

of the fractures. The orientation distribution parameters define the orientation of the main

planes generated in the controlled volume and the aperture model parameters define the

type of model that one wants to use in order to set the aperture of the fractures. The

stochastic parameters are explained in more detail below.

Once a distribution is chosen, one needs to insert just the parameter necessary to run that

type of distribution.
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Figure 6.4 - Section of the stochastic inputs in the GUI.

P32, E(A) and Rot

The two most important stochastic parameters in GEOFRAC are:

> P32 : fracture intensity (cumulative fracture area per rock volume), that can be

calculated from:

N

LAf

32 v

> E(A): desired mean area of fractures

> Rot: rotation of the polygons in the tertiary process
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P32, as described in Dershowitz and Herda (1992) and used in Ivanova (1995), is the most

appropriate description of the fracture intensity in 3D space. P32 is not scale dependent

because it incorporates the fracture size. P32 can be obtained from borehole spacing

information or observations on outcrops using the approach by Dershowitz and Herda

(1992). E(A) can be obtained from fracture trace lengths on outcrops with suitable bias

corrections as developed by Zhang et al. (2002).

Rot is a parameter that allows the user to rotate the polygons (fractures) or not rotate them.

The values in Rot that can be inserted are:

Rot = 1: rotation of the polygons

Rot = 0: no rotation of the polygons

Types of orientation distribution

The orientation of the planes in the so-called primary process of GEOFRAC can be

modeled choosing between 4 types of orientation distribution as explained in Ivanova,

1995, depending of the information available or the type of distributions that the user is

most confident in. These four distributions and the parameters that need to be set are

shown in Table 6.1.
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Table 6.1- Types of orientation distributions in GEOFRAC and parameters that needs to be
set

ORIENTATION DISTRIBUTION PARAMETER

Bivariate Fisher i1, and K 2

Uniform Max Phi max q>

Uniform K

Uniform Fisher x

Fracture apertures models

As explained in Chapter 2, there are numerous models to simulate the apertures of

fractures. In GEOFRAC the user can decide between two methods: deterministic and

probabilistic method.

The deterministic method is the one proposed by Ivanova et al. (2012) and assumes that

fracture aperture may be correlated with fracture length by a power-law function (Equation

6.1):

h = a(2Re)f Equation 6.1

where Re is the equivalent radius of the fracture polygon, h is the aperture, and a and p are

coefficients that depend on the site geology and that are measured on site or are possible to

find in the literature.
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The probabilistic model defined in Ivanova et al. (2012) assumes that the distribution of

the fracture aperture can be represented by a truncated lognormal distribution (Equation

6.2):

fTR(h) = f(h) ,h : h ! h
J "ma f(h)d(h)a

Equation 6.2

where hmin and hmax are the minimum and the maximum aperture values.

The methods for the aperture model and the parameter are shown in Table 6.2.

Table 6.2 - Types of methods for the fracture aperture and parameters that needs to be set

FRACTURE APERTURE METHODS PARAMETER

Deterministic a and pl

Probabilistic mode, hmin and hmax

6.2.3 Simulation

In GEOFRAC, and as shown in Figure 6.5, it is possible to specify the number of

simulations in order to improve the accuracy of the results. The program will produce the

mean results of all the simulations.
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Simulation

Figure 6.5 - Simulation parameter: number of simulations and type of simulation

The GUI allows one to run Geofrac obtaining the fracture pattern only (select NO FLOW),

or it is possible to run Geofrac obtaining flow outputs (select FLOW). This choice allows

the user to be able to use GEOFRAC just for the fracture system generation in order to use

it for other applications, for example for slope stability analysis.

6.2.4 Flow inputs

If the flow simulation is chosen, some other parameters need to be fixed (Figure 6.6).

Figure 6.6 - Flow parameters in GEOFRAC
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These parameters are:

Pi: injection pressure (kPa) of the fluid in the injection well

Pout: production pressure (kPa) of the fluid in the production well

Qout: output flow rate (1/s)

The user can provide the injection pressure and/or the production pressure, or the user can

set the flow rate target. Inserting the value -1 will set an unknown value, and the program

will calculate it.

6.3 RESULTS

After pressing the RUN GEOFRAC button, GEOFRAC will display the fractures path as

shown in Figure 6.7 and the pressure and the flow rate in the production well in the

MATLAB workspace.
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Figure 6.7 - Flow system in the controlled volume

GEOFRAC generates also an excel file called Results (Table 6.3) with the results of some

of the parameters. The values in bold (last cells) are the mean values.
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Table 6.3- Excel file with the summary of some important results

Number

s of Numbers Aperture Qout Re mean

Polygon of paths P32mean EAmean Average (us) (i)
(m)

1 2109 1295 3.11474 1.47688 0.005 7.4877 0.6259

2 2009 910 2.831532 1.409423 0.005 5.7135 0.6084

3 1278 400 1.828845 1.431021 0.005 5.6685 0.6137

4 1833 1216 2.633562 1.43675 0.005 5.6866 0.6180

5 2086 868 2.961028 1.419476 0.005 6.2722 0.6128

6 2093 1760 2.996395 1.431627 0.005 9.7479 0.6131

7 1659 608 2.430787 1.465212 0.005 4.6046 0.6224

8 2120 875 3.084176 1.4548 0.005 6.6706 0.6225

9 2229 1404 3.179268 1.42632 0.005 7.7514 0.6170

1
2189 1188 3.146575 1.437449 0.005 7.5592 0.6198

0

Av. 1784 821 2.566034 1.437124 0.005 6.2396 0.6172

The values of Qout can be plotted using excel as shown in Figure 6.8.
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Figure 6.8- Example of representation of the Qout results
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Appendix 1 - GEOFRAC: GUI - File list

RunGeofrac .m

GeofracCallback .m

GeofracGUI .m

Main file of the GUI. When running this file the GUI opens and

it is possible to set the inputs before running Geofrac. It allows

generating the fracture pattern and the flow pattern.

It contains the link formula between the GUI and Geofrac

function.

File generated automatically by MATLAB when one creates a

new GUI
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Appendix 2 - GEOFRAC: GUI - Source code

function RunGeofrac

% Creator: Alessandra Vecchiarelli.

% RunGeofrac opens a GUI for hydro-mechanics simulation of a geothermal area.

% Faculty: Prof. Herbert H. Einstein, Civil & Environmental Engineering.

figl = openfig( 'GeofracGUI.fig', 'reuse');

figure(figl)

set(fig1, 'DoubleBuffer',

set(figl, 'HandleVisibility',

'on')

'on')

Xmgui = findobj( figl,

Ymgui

Ztopgui

P32_gui

EA~gui

Rot-gui

orientdistribradiobutton =

'orientdistribradiobutton');

bivFisherradiobutton =

UniMaxPhiradiobutton =

Uniformradiobutton =

UnifFisherradiobutton =

'UnifFisherradiobutton');

klgui

k2_gui

phimax-gui

k_gui

findobj(

findobj(

findobj(

findobj(

findobj(

findobj(

findobj(

findobj(

findobj(

findobj(

findobj(

findobj(

findobj(

findobj(

fig1,

fig1,

figl,

figl,

figl,

figl,

figl,

figl,

figl,

fig1,

fig1,

figl,

figl,

figl,

Tag', 'Xmgui');

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Ym-gui');

'Ztopgui');

'P32_gui');

'EA-gui');

'Rotgui');

'bivFisherradiobutton');

'UniMaxPhiradiobutton');

'Uniformradiobutton');

'kl-gui');

'k2_gui');

'phimax-gui');

'k-gui');
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nSimulation-gui = findobj

flow-popup = findobj

Deterministicradiobutton = findobj

'Deterministicradiobutton');

Stocasticradiobutton = findobj

alpha-gui = findobj

beta-gui = findobj

mod-gui = findobj

hmaxgui = findobj

hmin-gui = findobj

pi-gui = findobj

pf-gui = findobj

Qout-gui = findobj

RunGeofracbutton = findobj

set

set

flow-popup,

flow-popup,

figl,

fig1,

figl,

figl,

figl,

figl,

figl,

fig1,

fig1,

fig1,

figl,

figl,

figI,

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'nSimulation-gui');

'flow-popup');

'Stocasticradiobutton');

'alpha-gui');

'betagui');

'mod-gui');

'hmaxgui');

'hmingui');

'pi gui');

'pf-gui');

'Qoutgui');

'RunGeofracbutton');

'String', ('flow', 'no flow'));

'Value' , 1);

%set( orientdistribradiobutton 'String', {'bivFisherradiobutton',

'UniMaxPhiradiobutton', 'Uniformradiobutton' , 'UnifFisherradiobutton'));

%set( orientdistribradiobutton 'Tag');

set( nSimulationgui, 'String', '1');

set( Xmgui, 'String', '5');

set( Ymgui, 'String', '5');

set( Ztopgui, 'String', '10');

set( P32_gui, 'String', '2');

set( EA-gui, 'String', '3');

set( Rotgui, 'String', '0');

set( klgui, 'String', '0.2');

set( k2_gui, 'String', '0.15');

set( phimax-gui, 'String', '3');

set( k-gui, 'String', '20');

set( alpha-gui, 'String', '0.01');

set( beta-gui, 'String', '1');

set( modgui, 'String', '0.1');

set( hmax-gui, 'String', '0.15');

set( hmingui, 'String', '0.002');

set( pigui, 'String', '4000');

set( pf-gui, 'String', '-1');
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'String', '300');

set (RunGeofracbutton, 'Callback', 'GeofracCallback');

return
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function GeofracCallback

fig1 = openfig('GeofracGUI.fig', 'reuse');

figure(figl)

Xm_gui

Ymgui

Ztopgui

P32_gui

EAgui

Rot-gui

orientdistribradiobutton

'orientdistribradiobutton')

bivFisherradiobutton

UniMaxPhiradiobutton

Uniformradiobutton

UnifFisherradiobutton

'UnifFisherradiobutton');

k1_gui

k2_gui

phimax-gui

k-gui

nSimulationgui

flow-popup

Deterministicradiobutton

'Deterministicradiobutton')

Stocasticradiobutton

alpha-gui

beta-gui

modgui

hmax-gui

hmin-gui

pi-gui

pf-gui

Qoutgui

RunGeofracbutton

= findobj(

= findobj(

= findobj(

= findobj(

= findobj(

= findobj(

= findobj(

= f indobj

= findobj(

= findobj(

= findobj(

= findobj(

= findobj(

= findobj(

= findobj(

= findobj(

= findobj(

= findobj(

= findobj(

= findob

= findobj(

= findobj(

= findobj(

= findobj(

= findobj(

= findobj(

= findobj(

= findobj(

fig1,

fig1,

fig1,

figl,

figl,

fig1,

fig1,

fig1,

figl,

fig1,

fig1,

figl,

figl,

fig1,

fig1,

fig1,

figl,

fig1,

figl,

figl,

fig1,

figl,

fig1,

figl,

fig1,

fig1,

fig1,

fig1,

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Tag',

'Xmgui');

'Ymgui');

'Ztopgui');

'P32_gui');

'EA-gui');

'Rotgui');

'bivFisherradiobutton');

'UniMaxPhiradiobutton');

'Uniformradiobutton');

'klgui');

'k2_gui');

'phimax-gui');

'k-gui');

'nSimulation-gui');

'flow-popup');

'Stocasticradiobutton');

'alpha-gui');

'betagui');

'modgui');

'hmax-gui');

'hmingui');

'pi-gui');

'pf-gui');

'Qoutgui');

'RunGeofracbutton');
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% get the values of the inputs

Xmgui = get(

Ym-gui = get(

Ztop-gui = get(

P32_gui = get(

EAgui = get(

Rot-gui = get(

klgui = get(

k2_gui = get(

phimax-gui = get(

kgui = get(

nSimulation-gui = get(

alpha-gui = get(

betagui = get(

mod-gui = get(

hmaxgui = get(

hmingui = get(

pi-gui = get(

pf-gui = get(

Qoutgui = get(

% convert the values (string) into

global Xm Ym Ztop mu P32 EA Rot k1

hmax hmin pi pf Qout

Xm = str2

Ym = str2

Ztop = str2

P32 = str2

EA = str2

Rot = str2

k1 = str2

k2 = str2

phimax = str2

k = str2

nSimulation = str2

alpha = str2

beta = str2

Xmgui, 'String');

Ymgui, 'String');

Ztopgui, 'String');

P32_gui, 'String');

EA-gui, 'String');

Rotgui, 'String');

klgui, 'String');

k2_gui, 'String');

phimax-gui, 'String');

k_gui, 'String');

nSimulationgui, 'String');

alpha-gui, 'String');

beta-gui, 'String');

mod-gui, 'String');

hmax-gui, 'String');

hmin-gui, 'String');

pigui, 'String');

pf-gui, 'String');

Qout-gui, 'String');

numbers

k2 phimax k nSimulation alpha beta mod

num(

num

num(

num(

num(

num(

num(
nIum(

num(

num(

num(

Xmgui);

Ym~gui);

Ztop-gui);

P32_gui);

EAgui);

Rot-gui);

k1_gui);

k2_gui);

phimax-gui);

k-gui);

nSimulation-gui);

alpha-gui);

beta-gui);
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mod = str2num( mod-gui);

hmax = str2num( hmaxgui);

hmin = str2num( hmin-gui);

pi = str2num( pigui);

pf = str2num( pf-gui);

Qout = str2num( Qout-gui);

% radio button type of distribution

orientdistribradiobutton = get( orientdistribradiobutton, 'Tag');

bivFisherradiobutton = get( bivFisher radiobutton, 'Tag');

UniMaxPhiradiobutton = get( UniMaxPhiradiobutton, 'Tag');

Uniformradiobutton = get( Uniformradiobutton, 'Tag');

UnifFisherradiobutton = get( UnifFisherradiobutton, 'Tag');

global m;

if orientdistribradiobutton==bivFisherradiobutton

m=1;

elseif orientdistribradiobutton==UniMaxPhiradiobutton

m=2;

elseif orientdistrib radiobutton==Uniform radiobutton

m=3;

else

m=4;

end

% radio button aperture

Deterministicradiobutton

Stocasticradiobutton

= get( Deterministicradiobutton, 'value');

= get( Stocasticradiobutton, 'Value');

%other inputs
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mu=P32;

r1=1;

for n=1:nSimulation

[Qout]=geofrac(mu,EA,k,m,mod,hmin,hmax,pf,pi);

% da aggiungere un file excel per lo storage dei risultati

r2=horzcat(Qout);

r1=vertcat(r1,r2);

end

header= 'Simulation';

colname={'Qout'};

xlswrite(rl,header, colname, 'Qout.xls');

return

% function orientdistribradiobuttonSelectionChangeFcn(hObject, eventdata,

handles)

% global m;

% if orientdistribradiobutton==handles.bivFisherradiobutton

% m=1;

% elseif orientdistribradiobutton==handles.UniMaxPhiradiobutton

% m=2;

% elseif orientdistrib radiobutton==handles.Uniform radiobutton

% m=3;

% else

% m=4;

% end

% % popup

% flow get (flow-popup, 'Value');

% if flow==1

% run geofrac;

% elseif flow ==2

% run flowmodule;

% end
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%% GEOFRAC:Primary, Secondary and Tertiary Processes

clear all;

tic

%function Qout=geofrac()

%user input data

EA=100; %expected fracture area

mu=1; %mu= intensity of the poisson plane network

m=4; % m=1: bivariate fisher , m=2: uniform maxphi;

% m=3: uniform orientation, m=4: univariate fisher

% bivariate fisher k=[kl k2]

% uniform maxphi k=maxphi

% uniform orientation k=[]

% univariate fisher k=k

k=1;

% create volume

% for test use cube

global Xm Ym Zinf Ztop

Xm=25;

Ym=25;

Zinf=O;

Ztop=50;

% rotation of the polygons

% rot=1 (for random); rot=O (for no rotation)

global rot

rot=O;

% PRIMARY PROCESS: Generate planes and respective initial polygons

132



[fractureSet.plane, fractureSet.NJ=...

createFirstPolygon(mu,k,m);

% Calculate Equivalente Radius of the Planes

hpolygon=cell(1,length(fractureSet.plane));

for j=1:length(fractureSet.plane)

[hpolygon{j},T, d]=rotatePolygHoriz(fractureSet.plane{j},

fractureSet.N(j,:));

end

area= polygonArea(hpolygon);

Re=getRe(hpolygon);

Re=num2cell(Re);

lambda=l/EA; % intensity of the homogeneous Poisson point process that will

%induce the voronoi tesselllation

% SECONDARY and TERTIARY PROCESSES: tessellation, random translation and

% random rotation

[fractureSet.polygon, fractureSet.Re, fractureSet.C, fractureSet.N1, ...

fractureSet.area]= SplitFractureSetPPP (fractureSet.plane,lambda,...

fractureSet.N, Re);

%clean cells that are empty

fractureSet.polygon(cellfun(@isempty,fractureSet.polygon))=[];

fractureSet.Nl(cellfun(@isempty,fractureSet.Nl))=[];

fractureSet.C(cellfun(@isempty,fractureSet.C))=[];

fractureSet.Re(cellfun(@isempty,fractureSet.Re))=[];

fractureSet.area(cellfun(@isempty,fractureSet.area))=[];

%fractureSet.drand(cellfun(@isempty,fractureSet.drand))=[];

load drand;
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%% INTERSECTION MODULE

[frac, inter1,frac_int,inter no,inter, fractureSet,count]=...

intersectionModule(fractureSet);

%calculates how many fractures, on average, each fracture intersects

b=cellfun(@(x) size(x,2), fracint, 'UniformOutput',false);

b(cellfun(@(x) x==O, b))=[];

meanInt=mean(cell2mat(b))

%% CLEANING FRACTURES MODULE

g=fracjint;

%inter is COMPLETE

[g,interno,inter, polyB, polyE]=cleanModule(g,inter no, inter,...

fractureSet.polygonall);

%% APERTURE GENERATION

%user input data

%Re=fractureSet.Reall;

nPolygons=length(fractureSet.polygonall);

% alfa=0.01;

% beta=1;

% mod=0.05;

% hmax=0.1;

% hmin=0.002;

%varargin=[nPolygons,mod,hmax,hmin];

%varargin=[alfa; beta; Re];
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%options: Deterministic, Probabilistic, Fixed value

fvalue=0.0005;

varargin=[nPolygons fvalue];

optionName='value';

fractureSet.h = generateAperture(optionName, varargin);

%% build list of edge connections:

clear temp;

% if no nodes intersect either the initial boundary or/and the final

% boundary, return Qout=0

if isempty(polyB) || isempty(polyE)

disp('No fractures intersect at least one of the boundaries')

return

end

[E,interl, nodesB, nodesE]=buildNodesList(...

fractureSet,inter no,interl,count,polyB,polyE);

% if no nodes intersect either the initial boundary or/and the final

% boundary, return Qout=0

% if isempty(nodesB) || isempty(nodesE)

% disp('no fractures intersect at least one of the boundaries')

% return

% end

%% FLOW MODULE (l.determining geometric paths)

%%%%A. Find paths%%%
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%Al. calculate mid point of intersections between fractures

midP=(interl(:,1:3)+interl(:,4:6))/2;

%A2. calculate score

[SC,W]=pathScore(E, inter1,frac,polyE,polyB,fractureSet,midP);

%A2. calculate the paths

E3=[E SC];

[costs,paths] = dijkstra(midP,E3,nodesB,nodesE);

%[costsl,pathsl] = dijkstra(midP,E,nodesB,nodesE);

minPath=min(min(costs));

[m n]=find(costs==minPath);

minPath=paths{m,n};

if -isnan(minPath)

minPath(l)=[];

minPath(end)=[];

minPath=frac(minPath',:);

minPath=minPath(:);

else

disp('no paths')

return %Qout=O;

end
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%shortest distance

% minPathl=min(min

% [ml nl]=find(cos

% minPathl=paths{m

% if -isempty(minP

% minPathl(l)=[];

% minPath1 (end)=[]

% minPathl=frac(mi

% minPathl=minPath

% end

% toc

(costsl));

ts1==minPath1);

1,nl};

athl)

nPathl',:)

1 (:) ;

%plotting path

figure(2)

for i=1:length(minPath)

hold on

fillPolygon3d(fractureSet.polygonall{minPath(i)},'r')

end

hold on;

for i=1:length(minPath1)

hold on

fillPolygon3d(fractureSet.polygonall{minPathl(i),I'c')

end

paths = cellfun(@(x) x(isnan(x)==O), paths, 'UniformOutput',false);

paths(cellfun(@isempty,paths))=[];

paths=paths(:)';

%% INTERSECTION OF BRANCHES: CREATION OF FLOW NETWORK
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maxLength=max(cellfun(@(x)numel(x),paths));

p=cell2mat(cellfun(@(x)cat(2,x,NaN*ones(1,maxLength-

length(x))),paths,'UniformOutput',false));

p=reshape(pmaxLength,length(paths));

for i=l:size(p,2)

paths{i}=p(:,i);

paths{i}(isnan(paths{i}))=[];

end

%determining adjacent nodes

tic

disp('FLOW MODULE...')

[nodes,branches, startNodes, endNodes]=FlowModule(paths);

toc

%sorting nodes

[S,I]=sort(nodes(:,3));

nodes=nodes(I,:);

%nodes=resolveBifurcation(nodes,branches);

[branches,nodes]=findEndNodes(nodes,branches);

%Find equivalent width, length and aperture of branches

[Weg, Leq,Heq]=findEq(branches,W,midP,fractureSet.h,frac, ...

[nodesB polyB], [nodesE polyE]);

%creating network

[N,nodeEq]=createNetwork(nodes,startNodes(:,1),endNodes(:,1));

%% CALCULATING FLOW

% % branches geometrical characteristics (for testing only: randomly

assigned)

% % branEq(:,l) = thickness (h)
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% % branEq (: , 2) = width (w)

% % branEq(:,3) = lenght (1)

% %equivalent branches

branEq=[Heq' Weq' Leq'];

% %% Calculate Flow

% %INPUT:

global r f miu gamma

%roughness

r=O;

%friction factor

f=1+3.1.*(r./Heq).^1.5;

%water dynamic viscosity (T=20C): KN.s/m2

miu=0.4658*10^-6;

%water unit weight (T=20C): KN/m3

gamma=9.810;

pi=10e5; % injection pressure

pf=0; % out pressure; if =-1 it means not assigned (unknown)

disp('Calculating flow...')

[Qout,Q,P]=calculateFlow(startNodes,endNodes,branches,branEq,...

N,nodes,midP,nodeEq,pi,pf);

str =['Qtotal=',num2str(Qout), ' m3/s'];

disp(str)

%% PLOTTING FLOW NETWORK

figure(1)

temp=nodes(:,1:2);
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ee=midP(endNodes(:,1),:);

scatter3(ee(:,1),ee(:,2),ee(:,3),'filled','r');

% [-,loc]=ismember(nodeEq,endNodes(:,1));

% la=loc(loc-=O)';

% la=[find(loc-=O)' la];

% [-,I]=sort(la(:,2));

% la=la(I,:);

% la=la(:,1);

% %b=num2str(endNodes(:,1));

% la=num2str(la);

% la=strcat('(',la,')');

% dx=0.1; dy=0.1; dz=0.1;

% text(ee(:,l)+dx,ee(:,2)+dy,ee(:,3)+dz,la)

dx=0.1; dy=0.1; dz=0.1;

hold on;

bb=midP(startNodes(:,1),:);

scatter3(bb(:,l),bb(:,2),bb(:,3),'filled','g');

% [-,loc]=ismember(nodeEq,startNodes(:,l));

% la=loc(loc-=O)';

% la=[find(loc-=O)' la];

% [-,I]=sort(la(:,2));

% la=la(I,:);

% la=la(:,l);

% %b=num2str(startNodes(:,1));

% la=num2str(la);

% la=strcat('(',la,')');

% text(bb(:,l)+dx,bb(:,2)+dy,bb(:,3)+dz,la);

hold on;

for j=l:length(temp)

d=midP(temp(j,:),:);

dt=sum(d,1)/2;

nbr=num2str(j);

text(dt(l)+dx,dt(2)+dy,dt(3)+dz,nbr, 'color', 'r')

%hold on;
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plot3(d(:,l),d(:,2),d(:,3))

end

% intNodes=setdiff(temp(:),endNodes(:,l));

% intNodes=setdiff(intNodes,startNodes(:,1));

% iNodes=midP(intNodes,:);

% scatter3(iNodes(:,l),iNodes(:,2),iNodes(:,3), 'filled', 'c');

% [-,loc]=ismember(nodeEq,intNodes);

% la=loc(loc-=O)';

% la=[find(loc-=O)' la];

% [-,I]=sort(la(:,2));

% la=la(I,:);

% la=la(:,l);

% %b=num2str(intNodes);

% la=num2str(la);

% la=strcat('(',la,')');

% text(iNodes(:,1)+dx,iNodes(:,2)+dy,iNodes(:,3)+dz,1a);

% figure(2)

% for i=l:length(paths)

% ddd=midP(paths{i},:);

% hold on;

% plot3(ddd(:,l),ddd(:,2),ddd(:,3),'--')

% scatter3(ddd(:,l),ddd(:,2),ddd(:,3));

% end

% iNodes=midP(intNodes,:);

% scatter3(iNodes(:,1),iNodes(:,2),iNodes(:,3), 'filled', 'c');

%end

% %%create an excel file to store data

n=[O 0 0 0 0 0 0 0 0];
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P32mean= sum(fractureSet.Aall)/((Xm*2)*(Ym*2)*Ztop);

%EAn=pi*fractureSet.Reall.A2;

Reallmean= mean(fractureSet.Reall);

EAmean=mean(fractureSet.Aall);

ApertureAverage= mean (fractureSet.h);

%drandAverage= mean (fractureSet.drand);

nl=horzcat(nPolygons,size(paths,2),P32mean,EAmean,ApertureAverage,Qout,meanIn

t,drand,Reallmean);

n=vertcat(n,nl);

header{l}= 'Simulation Fisher';

colname={'nPolygons','paths', 'P32mean','EAmean','ApertureAverage', 'Qout', 'mea

nInt','drand', 'Reallmean'};

xlswrite(n,header, colname, 'QoutTesting.xls');

toc

function varargout = GeofracGUI(varargin)

%GEOFRACGUI M-file for GeofracGUI.fig

% GEOFRACGUI, by itself, creates a new GEOFRACGUI or raises the existing

% singleton*.

% H = GEOFRACGUI returns the handle to a new GEOFRACGUI or the handle to

% the existing singleton*.

% GEOFRACGUI('Property','Value',...) creates a new GEOFRACGUI using the

% given property value pairs. Unrecognized properties are passed via

% varargin to GeofracGUIOpeningFcn. This calling syntax produces a

% warning when there is an existing singleton*.

% GEOFRACGUI ('CALLBACK') and GEOFRACGUI ('CALLBACK' , hObj ect,...) call the

% local function named CALLBACK in GEOFRACGUI.M with the given input

% arguments.

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".
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% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help GeofracGUI

% Last Modified by GUIDE v2.5 17-May-2013 12:19:20

% Begin initialization code - DO NOT EDIT

guiSingleton = 1;

guiState = struct('gui_Name', mfilename, ..

'guiSingleton', guiSingleton

'guiOpeningFcn', @GeofracGUIC

'guiOutputFcn', @GeofracGUIC

'guiLayoutFcn', [],

'guiCallback', []);

if nargin && ischar(varargin{l})

guiState.guiCallback = str2func(varargin{l});

peningFcn, ...

utputFcn, ...

end

if nargout

[varargout{1:nargout}] = gui-mainfcn(guiState, varargin{:});

else

guimainfcn(guiState, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before GeofracGUI is made visible.

function GeofracGUI_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin unrecognized PropertyName/PropertyValue pairs from the

% command line (see VARARGIN)

% Choose default command line output for GeofracGUI
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handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes GeofracGUI wait for user response (see UIRESUME)

% uiwait(handles.figurel);

% --- Outputs from this function are returned to the command line.

function varargout = GeofracGUI_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{l} = handles.output;

function Xm-guiCallback(hObject, eventdata, handles)

% hObject handle to Xm-gui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of Xmgui as text

% str2double(get(hObject,'String')) returns contents of Xmgui as a

double

% --- Executes during object creation, after setting all properties.

function Xm-guiCreateFcn(hObject, eventdata, handles)

% hObject handle to Xm-gui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called
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% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white');

end

function Ztop-guiCallback(hObject, eventdata, handles)

% hObject handle to Ztopgui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of Ztop-gui as text

% str2double(get(hObject,'String')) returns contents of Ztop-gui as a

double

% --- Executes during object creation, after setting all properties.

function Ztop-guiCreateFcn(hObject, eventdata, handles)

% hObject handle to Ztopgui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white');

end

function Ym-guiCallback(hObject, eventdata, handles)
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% hObject handle to Ymgui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of Ymgui as text

% str2double(get(hObject,'String')) returns contents of Ymgui as a

double

% --- Executes during object creation, after setting all properties.

function Ym-guiCreateFcn(hObject, eventdata, handles)

% hObject handle to Ymgui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject, 'BackgroundColor'),

get(0, 'defaultUicontrolBackgroundColor'))

set(hObject, 'BackgroundColor', 'white');

end

function P32_guiCallback(hObject, eventdata, handles)

% hObject handle to P32_gui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of P32_gui as text

% str2double(get(hObject,'String')) returns contents of P32_gui as a

double

% --- Executes during object creation, after setting all properties.

function P32_guiCreateFcn(hObject, eventdata, handles)
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% hObject handle to P32_gui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white');

end

function EA-guiCallback(hObject, eventdata, handles)

% hObject handle to EA-gui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles strudture with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of EA-gui as text

% str2double(get(hObject,'String')) returns contents of EA-gui as a

double

% --- Executes during object creation, after setting all properties.

function EA-guiCreateFcn(hObject, eventdata, handles)

% hObject handle to EA-gui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set(hObject, 'BackgroundColor', 'white');

end
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function nSimulationguiCallback(hObject, eventdata, handles)

% hObject handle to nSimulationgui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of nSimulation-gui as text

% str2double(get(hObject,'String')) returns contents of

nSimulation-gui as a double

% --- Executes during object creation, after setting all properties.

function nSimulation-guiCreateFcn(hObject, eventdata, handles)

% hObject handle to nSimulationgui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject, 'BackgroundColor'),

get(0, 'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function hmin-guiCallback(hObject, eventdata, handles)

% hObject handle to hmin-gui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of hmin-gui as text

% str2double(get(hObject, 'String')) returns contents of hmin-gui as a

double
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% --- Executes during object creation, after setting all properties.

function hminguiCreateFcn(hObject, eventdata, handles)

% hObject handle to hmin_gui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white');

end

function beta-gui_Callback(hObject, eventdata, handles)

% hObject handle to beta_gui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of beta-gui as text

% str2double(get(hObject, 'String')) returns contents of betagui as a

double

% --- Executes during object creation, after setting all properties.

function betaguiCreateFcn(hObject, eventdata, handles)

% hObject handle to beta_gui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))
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set(hObject,'BackgroundColor','white');

end

function hmax-guiCallback(hObject, eventdata, handles)

% hObject handle to hmax-gui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of hmaxgui as text

% str2double(get(hObject,'String')) returns contents of hmax-gui as a

double

% --- Executes during object creation, after setting all properties.

function hmaxguiCreateFcn(hObject, eventdata, handles)

% hObject handle to hmax-gui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject, 'BackgroundColor'),

get(O, 'defaultUicontrolBackgroundColor'))

set(hObject, 'BackgroundColor', 'white');

end

function mod-guiCallback(hObject, eventdata, handles)

% hObject handle to modgui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of mod-gui as text

150



% str2double(get(hObject,'String')) returns contents of modgui as a

double

% --- Executes during object creation, after setting all properties.

function mod_guiCreateFcn(hObject, eventdata, handles)

% hObject handle to mod-gui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set(hObject, 'BackgroundColor', 'white');

end

function alpha-guiCallback(hObject, eventdata, handles)

% hObject handle to alphagui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of alpha-gui as text

% str2double(get(hObject,'String')) returns contents of alpha-gui as a

double

% --- Executes during object creation, after setting all properties.

function alpha-guiCreateFcn(hObject, eventdata, handles)

% hObject handle to alphagui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
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% See ISPC and COMPUTER.

if ispc && isequal(get(hObject, 'BackgroundColor'),

get(O, 'defaultUicontrolBackgroundColor'))

set(hObject, 'BackgroundColor', 'white');

end

% --- Executes on button press in bivFisherradiobutton.

function bivFisherradiobuttonCallback(hObject, eventdata, handles)

% hObject handle to bivFisherradiobutton (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of bivFisherradiobutton

% --- Executes on button press in UnifFisherradiobutton.

function UnifFisherradiobuttonCallback(hObject, eventdata, handles)

% hObject handle to UnifFisherradiobutton (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject, 'Value') returns toggle state of UnifFisherradiobutton

% --- Executes on button press in Uniformradiobutton.

function UniformradiobuttonCallback(hObject, eventdata, handles)

% hObject handle to Uniformradiobutton (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject, 'Value') returns toggle state of Uniformradiobutton

% --- Executes on button press in UnifMaxPhiradiobutton.

function UnifMaxPhiradiobuttonCallback(hObject, eventdata, handles)
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% hObject handle to UnifMaxPhiradiobutton (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of UnifMaxPhiradiobutton

function k-guiCallback(hObject, eventdata, handles)

% hObject handle to k-gui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of kgui as text

% str2double(get(hObject,'String')) returns contents of k-gui as a

double

% --- Executes during object creation, after setting all properties.

function k-guiCreateFcn(hObject, eventdata, handles)

% hObject handle to k-gui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject, 'BackgroundColor'),

get(0, 'defaultUicontrolBackgroundColor'))

set(hObject, 'BackgroundColor', 'white');

end

function k2_guiCallback(hObject, eventdata, handles)

% hObject handle to k2_gui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
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structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of k2_gui as text

% str2double(get(hObject,'String')) returns contents of k2_gui as a

double

% --- Executes during object creation, after setting all properties.

function k2_guiCreateFcn(hObject, eventdata, handles)

% hObject handle to k2_gui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject, 'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor', 'white');

end

function klguiCallback(hObject, eventdata, handles)

% hObject handle to klgui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hobject,'String') returns contents of kl-gui as text

% str2double(get(hObject,'String')) returns contents of kl_gui as a

double

% --- Executes during object creation, after setting all properties.

function klguiCreateFcn(hObject, eventdata, handles)

% hObject handle to klgui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
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empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject, 'BackgroundColor'),

get(0, 'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor', 'white');

end

function phimax-guiCallback(hObject, eventdata, handles)

% hObject handle to phimax-gui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of phimax-gui as text

% str2double(get(hObject, 'String')) returns contents of phimax-gui as

a double

% --- Executes during object creation, after setting all properties.

function phimaxguiCreateFcn(hObject, eventdata, handles)

% hObject handle to phimaxgui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject, 'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor', 'white');

end

% --- Executes on button press in Stocasticradiobutton.
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function StocasticradiobuttonCallback(hObject, eventdata, handles)

% hObject handle to Stocasticradiobutton (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject, 'Value') returns toggle state of Stocasticradiobutton

% --- Executes on button press in Deterministicradiobutton.

function DeterministicradiobuttonCallback(hObject, eventdata, handles)

% hObject handle to Deterministicradiobutton (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of

Deterministicradiobutton

% --- Executes on button press in RunGeofracbutton.

function RunGeofracbuttonCallback(hObject, eventdata, handles)

% hObject handle to RunGeofracbutton (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- Executes on selection change in flowpopup.

function flow-popupCallback(hObject, eventdata, handles)

% hObject handle to flow-popup (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,'String')) returns flowpopup

contents as cell array

% contents{get(hObject,'Value')} returns selected item from flow-popup
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% --- Executes during object creation, after setting all properties.

function flow-popupCreateFcn(hObject, eventdata, handles)

% hObject handle to flow-popup (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject, 'BackgroundColor'),

get(0, 'defaultUicontrolBackgroundColor'))

set(hObject, 'BackgroundColor', 'white');

end

function pi-gui_Callback(hObject, eventdata, handles)

% hObject handle to pigui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of pi-gui as text

% str2double(get(hObject,'String')) returns contents of pigui as a

double

% --- Executes during object creation, after setting all properties.

function pi-guiCreateFcn(hObject, eventdata, handles)

% hObject handle to pi-gui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject, 'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor', 'white');
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end

function Qout-guiCallback(hObject, eventdata, handles)

% hObject handle to Qout-gui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of Qout-gui as text

% str2double(get(hObject,'String')) returns contents of Qoutgui as a

double

% --- Executes during object creation, after setting all properties.

function QoutguiCreateFcn(hObject, eventdata, handles)

% hObject handle to Qoutgui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject, 'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function pfguiCallback(hObject, eventdata, handles)

% hObject handle to pfgui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject, 'String') returns contents of pf-gui as text
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% str2double(get(hObject,'String')) returns contents of pf-gui as a

double

% --- Executes during object creation, after setting all properties.

function pf-guiCreateFcn(hObject, eventdata, handles)

% hObject handle to pfgui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject, 'BackgroundColor'),

get(O, 'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor', 'white');

end

% --- Executes during object creation, after setting all properties.

function orientationdistributionCreateFcn(hObject, eventdata, handles)

% hObject handle to orientationdistribution (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% --- Executes when selected object is changed in orientdistribradiobutton.

function orientdistribradiobuttonSelectionChangeFcn(hObject, eventdata,

handles)

% hObject handle to the selected object in orientdistribradiobutton

% eventdata structure with the following fields (see UIBUTTONGROUP)

% EventName: string 'SelectionChanged' (read only)

% OldValue: handle of the previously selected object or empty if none was

selected

% NewValue: handle of the currently selected object

% handles structure with handles and user data (see GUIDATA)
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function Rot-guiCallback(hObject, eventdata, handles)

% hObject handle to Rot_gui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of Rot-gui as text

% str2double(get(hObject,'String')) returns contents of Rotgui as a

double

% --- Executes during object creation, after setting all properties.

function Rot-guiCreateFcn(hObject, eventdata, handles)

% hObject handle to Rot_gui (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject, 'BackgroundColor'),

get(0, 'defaultUicontrolBackgroundColor'))

set(hObject, 'BackgroundColor','white');

end
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Summary and conclusions

GEOFRAC is a discrete fracture pattern model combined with a fracture flow model that

can represent the fracture-flow system in a geothermal reservoir. Recent developments

have made GEOFRAC more efficient by basing it on Matlab, and it has been expanded

by including an intersection algorithm and a flow model.

In Chapter 2 models and the software tools used to model fracture flow systems are

presented. Each of them has some properties that make it difficult to model and to

optimize a geothermal basin.

Chapter 3 describes the algorithm and the basic concept of GEOFRAC.

In Chapter 4 the results obtained from a parametric study with the fracture flow model

GEOFRAC are analyzed and discussed. Specifically the influence of fracture aperture

and orientation on flow was investigated. The parametric study demonstrates how

aperture, the Fisher parameter for fracture orientation and rotation of the individual

fractures influence flow rate. As to be expected greater apertures produce greater flow.

163



The effects of orientation are more complex as the effect of fracture plane orientation

(Fisher parameter) and of rotation of individual fractures interact. For planes randomly

generated the case with no rotation of the fractures and an aperture of 0.01 m generates

greater flow than with rotation, while for parallel planes greater flow occurs in the case of

rotation of the fracture and aperture equal to 0.01 m. This study of a simple synthetic case

shows that the model produces consistent results but also that there are some unexpected

complexities affected by fracture orientation.

Chapter 5 presents the extension of GEOFRAC with an algorithm that allows the

modeling of wells intersecting the fractured region.

In Chapter 6 a GUI that was created in order to simplify the work to the user is presented.

In conclusion, GEOFRAC seems to accurately model the fracture flow system for a

geothermal reservoir. The values of flow rates obtained in the parametric study are

reasonably comparable to the ones found in the literature. The well intersection algorithm

adds the possibility to properly include injection and production wells. (This feature can

eventually be used to improve the location of the wells in order to obtain higher flow rate

and pressure from the wells). The GUI presented in this thesis will allow any user to

easily use GEOFRAC.
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7.2 Future research

Further improvements of GEOFRAC are possible:

e Implementation of an algorithm to obtain the optimum position of the injection

and production wells. The borehole intersection algorithm presented in Chapter 5

can be used to evaluate the fractures that intersect the wells for a given position.

One of the most important improvements in the code would be to implement an

algorithm to select the optimum position of the borehole after the fracture flow

system is generated; the optimization should be done considering the most

fractured area, and the fractures zone with the greatest aperture. This will increase

the flow rate in the production well and may reduce the cost associated to

exploration and construction of the wells.

e Test GEOFRAC with data obtained from a power plant in operation. The Rock

Mechanics Group recently obtained data from a geothermal power plant in

Iceland. These data will be used as input in GEOFRAC to further validate the

code.

" Improve the GUI; add the thermal inputs of the algorithm implemented at this

moment.

" Analysis of the change in porosity and permeability due to the cold fluid injection.

The initial injection of water at 20' C may create a state of stress in the rock that

induces more fractures in the system.
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* Fluid physical conditions (change of density, change of phase liquid to vapor).

The assumption made up to now is a single phase fluid in its liquid state.

* Analysis of the temperature of the basin over a long period. Some studies show a

reduction of the temperature over the long term. It would be useful to analyze this

phenomenon and, if necessary, create an algorithm that will simulate the flow rate

and temperature over time, and simulate this decrease in temperature.

* Geochemistry and reactive transport model.

* Matrix domain model (Double porous model). Fluid flow through a geothermal

system is dominated by flow through the fractures while heat transfer is controlled

by the interaction between matrix and fracture. The amount of flow from the

matrix to the fracture affects heat transfer.
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