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Abstract

One of the main challenges of making strategic decisions in transportation is that we always face

a set of possible future states due to deep uncertainty in traffic demand. This thesis focuses on

exploring the application of model-based decision support techniques which characterize a set of

future states that represent the vulnerabilities of the proposed policy. Vulnerabilities here are

interpreted as states of the world where the proposed policy fails its performance goal or deviates

significantly from the optimum policy due to deep uncertainty in the future.

Based on existing literature and data mining techniques, a computational model-based approach

known as scenario discovery is described and applied in an empirical problem. We investigated

the application of this new approach in a case study based on a proposed transit policy

implemented in Marina Bay district of Singapore. Our results showed that the scenario discovery

approach performs well in finding the combinations of uncertain input variables that will result

in policy failure.
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Chapter 1

Introduction

One of the main challenges of making strategic decisions in transportation is that we

always face a set of possible future states due to deep uncertainty in traffic demand. This thesis

focuses on exploring the application of model-based decision support techniques which

characterize a set of future states that represent the vulnerabilities of the proposed policy.

Vulnerabilities here are interpreted as states of the world where the proposed policy fails its

performance goal or deviates significantly from the optimum policy due to deep uncertainty in

the future. Based on existing literature and data mining techniques, a computational model-based

approach known as scenario discovery is described and applied in an empirical problem. We use

the Marina Bay district, which is a bay district near Central Area of Singapore, as our empirical

setting, and test a proposed transit-oriented policy in this district. This chapter describes the

motivation for this thesis and presents the thesis outline.

1.1 Motivation

The performance of proposed policy or strategy is largely impacted by numerous

exogenous driving forces. If we let some variables indicate these driving forces, these variables

usually do not stay constant, in other words, we can usually find a set of future states with

different combinations of these variables.

Traditional planning decisions are usually based on the assumptions that these variables

are stable. Thus under deep uncertainty from these varying variables, the performance of the

proposed policy may probably deviate significantly from the original optimum state.

In addition, the number of driving forces is not small especially when we deal with the

problems in transportation. Large urban transportation network with multiple origin and

destination pair demands always forms large complex system and we have to face the challenge

of high dimensionality from these complex systems.

The challenge of high dimensionality results in two sub-problems. First, high

dimensionality requires computational techniques that can efficiently incorporate all the possible
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combinations of variables. Second, we need statistical algorithms that can identify the policy-

relevant regions (combinations of variable ranges) of interest which is easy-to-interpret.

With the growing power of information technology, especially emerging algorithms in data

mining or machine learning fields and availability of micro-simulation model of these large

complex systems, some innovative approaches that can address these challenges to some extent

are created.

In sum, there is urgent need to understand and evaluate those innovative computational

approaches that can address the robust planning problems efficiently and quantitatively.

Complete evaluation requires thorough review of the methods and previous studies and some

empirical validation as well. We will go through them in the thesis.

1.2 Thesis Outline

The outline of this thesis is as follows.

Chapter 2 provides an introduction to robust decision making problems. The background

of these problems will be shown. In addition, we reviewed previous studies of robust decision

making problems, the existing techniques and some of its applications from literature.

Chapter 3 provides a review of techniques and algorithms that can be used in a model-

based approach known as scenario discovery. There are two main components of this approach:

data "farming" - "farm" a range of possible alternative futures by futures exploration techniques

and data mining - identifying vulnerable regions of interest by data mining algorithms. Several

exploration techniques and data mining algorithms that can be used in the scenario discovery are

reviewed in this chapter.

In Chapter 4, we illustrate the analytical procedure of scenario discovery approach. The

methodology of this approach is shown step by step. In first step, we sample from a set of future

states by Latin-hypercube-sampling technique and generate output from these samples using a

simulation model. Then the candidate scenarios that represent the vulnerabilities of the proposed

policy in the future would be identified by patient rule induction method. In the third step, we

evaluate the candidate scenarios with some diagnostics and at last we choose a scenario based on

the result of the third step.
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In Chapter 5, we focus on the application of scenario discovery approach. An empirical

case study of a proposed transit-oriented policy in an urban transportation network of a district

known as Marina Bay of Singapore will be given. A micro-simulation model of the Marina Bay

transportation network will be used to simulate the performance of this system with and without

the proposed policy. The relationship between the uncertainty of input model parameters and the

failure of the proposed policy will be identified. Conclusions about the policy will be given after

the computational results and discussion about them.

In Chapter 6, we finally discuss the overall contributions of my thesis. In addition, we

propose ideas for future work including the use of alternative machine learning techniques in

scenario discovery and add some dynamic features in the study.

14
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Chapter 2

Introduction to Robust Decision Making Problems

Information technology's growing power offers many new tools and methods to improve

human decision-making.

As illustrated in section 1.1, there exists strong motivation to do robust decision making

analysis for planning problems especially in transportation. In this chapter, we will first illustrate

the background of robust decision making problems including introducing their sources of

uncertainty and what kind of uncertainty we will be focusing on in section 2.1. Then we will

briefly talk about robust decision making and some of its general features. Finally we will review

the existing techniques and applications that used for robust decision making problems from

previous literatures.

2.1 Background

Decision making is predicated upon understanding the future. In this context, the field has

continuing concerns about uncertainty [1, 2] and deriving robust strategies under the uncertainty.

Robust decision making (RDM) is a widely-used iterative decision analytic framework that helps

researchers and analysts to identify potential robust strategies, characterize the vulnerabilities of

those strategies, and evaluate the tradeoffs among those strategies. RDM always focuses on cases

when there is deep uncertainty and is designed and employed as a method for decision support.

We focus on uncertainty in large-scale models, which comes from at least the following

sources:

- imperfect data [3].

- imperfect behavioral representations of individuals, markets, etc. [4].

- imperfect knowledge about the future state of exogenous forces impacting an urban area

(e.g., national and global-level economic conditions, oil prices) [2].

In this thesis, our interest is in the third source of uncertainty - forecasting exogenous

factors. The importance and relevance of this particular source of uncertainty are evidenced by

the increasing use of scenario-planning techniques in urban transportation planning. Scenario
16



planning, famously adapted from military applications to the private sector by Shell in the early

1970s, was being adapted to urban- and transportation-related planning applications by the early

1980s and is increasingly used today [5]. For example, Bartholomew [6] reviews 80 recent

applications in over 50 USA metropolitan areas. Bartholomew's review reveals, however, that

much of the focus has been on "visioning" - i.e., identifying the future "we want" - rather than

identifying uncertain exogenous forces and developing plans that prove to be robust across

uncertainty.

Planning for the future inevitably involves accounting for the effects of exogenous driving

forces. In the urban context, these forces are generally categorized as economics, social

dynamics, politics, technology, and the environment [6]. Thus planners have to define ways to

intervene in the urban system in order to achieve certain objectives. This pursuit is considered as

constrained optimization- trying to do the best (however "best" is defined) subject to various

constraints (legal, financial, technological, etc.).

Optimization and robustness are two main objectives in decision making that are not

mutually exclusive. Optimality is a good method for choosing between the two equally robust

strategies. However, in cases with highly uncertain probability distributions, robustness provides

a good method for choice of strategies. Constrained on some variables like time, strategies can

be repeatedly analyzed, with robust strategies selected and improved. Then Choices can be made

between similarly performing strategies with weaknesses to different variations in inputs [7].

When confronting high uncertainty, planners should concern themselves with robustness -

identifying strategies that perform well across a range of possible future conditions [8]. This

thesis focuses upon discovering the areas of the futures space in which a strategy does not

perform well as stated in chapter 1.

2.2 Literature Review

2.2.1 Robust Decision Making Overview

Information technology's growing power offers many new tools and methods to improve

human decision-making. Robust decision making is a widely-used iterative decision analytic

framework that helps researchers and analysts to identify potential robust strategies, characterize

the vulnerabilities of those strategies, and evaluate the tradeoffs among those strategies. RDM
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always focuses on cases when there is deep uncertainty and is designed and employed as a

method for decision support.

Traditionally, policy makers employ expected utility decision framework. The differences

between RDM and the traditional expected utility analysis mainly lies in three aspects.

First, RDM characterizes uncertainty with multiple future states. Since there is deep

uncertainty when planning for the future, RDM uses sets of plausible probability distributions to

describe deep uncertainty.

Second, instead of using optimality, it employs robustness as a criterion in assessing the

different policies. It has employed several different definitions of robustness including: trading a

small amount of optimum performance for less sensitivity to broken assumptions, good

performance compared to the alternatives over a wide range of plausible scenarios, and keeping

options open [9].

Third, RDM uses a vulnerability-and-response-option analysis to characterize uncertainty

and then evaluate the robust strategies, while the traditional decision analytic approach follows

what has been called a predict-then-act approach that first characterizes uncertainty about the

future, and then rank the desirability of alternative decision options using this characterization

[10].

Scenario discovery [11, 12] is one kind of RDM analysis which assists to identify the

vulnerabilities of proposed strategies. There are some other RDM analyses such as exploratory

modeling.

2.2.2 Existing Techniques and Applications Overview
As stated in previous section, there are several methods in robust decision making analysis

focusing on different aspects of the problem. A new computer-assisted scenario development

approach we call scenario discovery helps policy-makers and researchers in identifying groups of

data we call scenarios by applying data- mining algorithms to large databases generated by

simulation model.
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Traditional scenarios provide an appealing means to communicate and characterize

uncertainty in supporting robust decision making applications, but can fall short of their potential,

especially when used in public sector applications with diverse audiences [13, 14].

Initial applications of scenario discovery, in particular in two high-impact public policy

studies, suggest the approach may help overcome some limitations of the purely qualitative

approaches to choosing scenarios.

Benjamin Bryant and Robert Lempert first provides a complete description of scenario

discovery approach, introduces diagnostic tools to evaluate the statistical significance of the

scenarios suggested by the algorithms, and suggests how the approach can address several

outstanding challenges faced by traditional scenario approaches when applied in contentious

public debates [15].

There are numerous definitions for scenarios and numerous methods that are used to create

them [16, 17]. Key approaches derive from the school La Prospective developed in France by

Gaston Berger and Michel Godet, the Probabilistic Modified Trends school originally developed

at Ted Gordon and Olaf Helmer at RAND, and the intuitive logics or Anglo-American school

that originated at RAND in the 1960s now often associated with the scenario groups at Shell Oil

and the Global Business Network [18].

One intuitive definition describes scenarios as "internally consistent and challenging

descriptions of possible futures" [19]. A small evaluative literature provides empirical evidence

that while scenarios and the process of developing them can in some cases produce these claimed

benefits, they often fail to do so, particularly when applied for groups with diverse interests and

worldviews [14].

In many cases observers see the choice of scenarios as arbitrary or highly subject to the

particular interests and values of those choosing them [16]. Observing an exercise by a

government agency in the Netherlands, Van 't Klooster and van Asselt noted three distinct and

conflicting interpretations of the scenario axes developed by the group. The authors conclude

that the diffuse and heterogeneous nature of public agencies' objectives and interests may make it

impossible for them to come to consensus about the meaning of scenario axes [20].
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Comparative analyses also suggest that many scenario processes systematically exclude

surprising or paradoxical developments as inconsistent or logically impossible [21]. Van Notten

et al. [22] compare twenty-two scenario studies, some using simulation models and others

entirely qualitative, and find that none of the model-based exercises included discontinuities in

system behavior. Finally, it often proves difficult to include probabilistic information in a

traditional scenario analysis without contaminating the simplicity and sense of possibility, as

opposed to prediction, that makes the scenarios useful in the first place [23].

The main challenge is to choose a small number of scenarios to summarize the full breadth

of uncertainty about the future. A set of scenarios cannot contain more than a handful of

members and remain clear to decision makers, who may face a set of potentially plausible and

important futures. Schwartz provides the classic exposition of how the intuitive logics (also

called scenario axis) approach aims to reduce many futures to a manageable few [24].

Scenario discovery aims to address this challenge by employing the concept of scenarios

and some statistical tools to implementing the concept. The concept defines scenarios as a set of

future states of the world that represent vulnerabilities of proposed policies. Vulnerability refers

to the states of the world where a proposed policy may fail to meet its performance goals. It can

also refer the states where policy's performance deviates significantly from the optimum

outcome.

Scenario discovery uses statistical or data-mining algorithms to find those scenarios

(policy-relevant regions) in the space of uncertain input parameters to computer simulation

models. Since the combination of all uncertain input parameters would be large, simulation

models are often run many times over a space defined by the input parameters. Some policy-

relevant criterion such as total cost of the project is used to distinguish a subset of the cases. A

threshold for the criterion will be applied to the model's outputs in the classification. Statistical

or data-mining algorithms applied to the generated database by the simulation model and then

find easy-interpret regions of input space that best predict these cases of interest. These regions

of input space are considered as scenarios, and the uncertain input parameters used to define

these regions are the key driving forces for the proposed policies. Scenario discovery offers a

quantitative approach that addresses these difficulties. Particularly, this robust decision making

approach improves the efficacy of scenarios for diverse audiences in public sectors [15].
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Three practical examples applied scenario discovery and showed its potential benefits. A

study in 2007 evaluated alternative policies considered by the United States Congress while

debating reauthorization of the Terrorism Risk Insurance Act (TRIA) [25].

Using scenarios made it easier to consider a wide range of assumptions about difficult-to-

predict events - in particular any post-attack compensative decisions of a future Congress -

thereby enabling this study to reach different conclusions than those of the Congressional Budget

Office and Treasury Department [15].

A second scenario discovery analysis helped Southern California's Inland Empire Utilities

Agency (IEUA) reduce the vulnerability of its long-range water management plans to potential

climate change [26, 27]. Similarly to the TRIA example, this scenario and resulting analysis

provided benefits difficult to achieve with other approaches, allowing IEUA's managers,

constituents, and elected officials, who did not all agree on the likelihood of climate impacts, to

understand in detail vulnerabilities to their plan and discuss ways to ameliorate those

vulnerabilities [15].

A third scenario discovery analysis helped in the policy option of a subsidy for low-income

households in downtown Lisbon [28]. The study showed different methods in the literature

exploring the possible future under vulnerabilities and compared those methods. Scenario

discovery is applied to identify the robust urban development strategies. Using the UrbanSim

model, it offers the first known example of applying computational scenario-discovery

techniques to the urban realm [28]. Data of the input variables including population growth rate,

employment growth rate, gas prices and construction costs are sampled by Latin Hypercube

Sampling (LHS) experiment design. A data-mining algorithm PRIM (Patient Rule Induction

Method) is applied to identify scenarios where the subsidy strategy fails to satisfy the designed

objective.

As widely noted, the process of developing scenarios often proves at least as important to

decision-makers as the scenarios themselves. Scenario discovery represents a participatory,

computer-assisted process that supports Robust Decision Making (RDM), a quantitative decision

analytic method that uses available information (such as that contained in computer simulation

models), not to improve predictions of a deeply uncertain future, but rather to help decision-
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makers craft strategies that can more effectively achieve their goals in the face of these

uncertainties [15].

2.3 Conclusion

In the planning field, especially in the urban context, different exogenous driving forces

result in deep uncertainty which requires decision makers consider both optimality and

robustness when making strategic decisions.

By using the increasing power of information technology especially computer simulation

models and data mining techniques, robust decision making especially scenario discovery offers

a tool to assist policy makers and analysts. In next chapter, we will illustrate how scenario

discovery approach could be performed analytically to assist in the robust decision making

process.
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Chapter 3

Introduction to Scenario Discovery Analysis

3.1 Introduction

In this chapter, we provide a brief introduction to scenario discovery, a type of robust

decision making analysis approach and presents a review of literature for the techniques and

algorithms that are used as two main components of this approach.

Scenario discovery aims to identify sets of future states of the world that shows the

vulnerabilities in proposed policies and to describe these scenarios for decision makers and other

stakeholders. There are four steps when implementing scenario discovery approach, which is

shown in Figure 3.1.

Simulation Algorithms help Users Users
data identify candidate assess select

generation scenarios scenarios scenarios

Figure 3.1 Procedure of Scenario Discovery

In the first step, users specify one type of sampling experimental design for the simulation

model and also specify the criterion to distinguish policy-relevant regions of interest in the

output. Efficient exploration techniques would have less number of samples to represent the

uncertainty across all the input parameters. After running the model with the samples, we have a

database consists of a number of outputs and their corresponding input combinations. Several

exploration techniques will be reviewed.

In the second step, one or more statistical or data-mining algorithms are applied to the

resulting database generated from simulation and to identify candidate scenarios that provide a

good description of these regions of interest. There are numerous classification and bump

hunting algorithms that may fit the requirement of scenario discovery approach. Thus we will

give a review of existing algorithms that can be applied in the second step.
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In the third step, some statistical diagnostics proposed by Bryant and Lempert [15] are

used to evaluate these scenarios. As discussed before, the scenario discovery is an iterative and

participatory approach. User can also go from the third step to the first or second step. Different

options are given to users showing the tradeoffs among them. By evaluating the proposed

scenarios, users can select scenarios.

In section 3.2, various future exploration techniques incorporating uncertain input

parameters of the model will be illustrated and discussed. In section 3.3, different data mining

algorithms that match the requirement of scenario discovery analysis are presented and compared.

In section 3.4, we will summarize this chapter.

3.2 Futures Exploration Techniques

In the first step, one exploration technique or experimental design should be applied to the

high dimensional future space of uncertain model input parameters. In this section, we will

review the existing exploration techniques.

First, we need one or more built computer simulation models from the existing data. The

model could be written in a form as follows.

y= f (s, x) (3.1)

In the above model, y is the simulation output of interest which is contingent on a vector of

input data x representing a particular point in an M-dimensional space of uncertain model input

parameters, s is the policy makers' action, which can be a subsidy policy or a transit-oriented

policy based on the study.

For instance, in the urban development in Lisbon example in the previous section, the

output of interest is the difference of numbers of low-income households with or without subsidy.

The simulation model is built on UrbanSim. The vector of input data includes population growth

rate, employment growth rate, gas prices and construction costs. The action is to subsidize the

urban area in Lisbon.
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Using some policy-relevant criteria, we choose some threshold performance level YI that

defines a set of cases of interest Is = {xIf(s,x') Y} or x'Ilf(s,x') 5 Yj, contingent on that

strategy [15].

For instance, in the TRIA example, Is is the set of cases where the legislation imposes net

costs on taxpayers and for IEUA Is is the set of cases where the agency's costs exceed 20% or

more of those assumed in the current plan [25, 26, 27].

To explore those scenarios of interest, numerous known exploration techniques could be

applied and Swartz and Zegras [28] compared and evaluated four different exploration

techniques for the use in the scenario discovery analysis. Four exploration techniques are

discussed in their paper including experience/intuiton-based exploration, orthogonal exploration,

Latin-hypercube-sample exploration, and pseudo-full-factorial exploration. The computation

intensity increases from the prior to the last one [28].

For experience/intuition-based exploration techniques, they derive from the Shell scenario

planning tradition [29], in which experts and/or stakeholders identify combinations of a system's

fundamental external driving forces and their likely effects on a particular concern. The idea is to

construct scenarios that bound the possible and increase awareness of possible futures.

Zegras et al [6] reviewed several attempts since the early 1980s to apply scenario planning

methodology in urban transportation-related applications, including in Sydney, Baltimore, and

Seattle.

Orthogonal exploration computes the elasticities of output response to variations in inputs.

In order to calibrate an equation based upon these elasticities, model runs that are orthogonal to

each other are carried out and the elasticities are derived from these runs.

Bowman et al [30] provide one example of this approach that has been applied to

transportation models. Elasticities are estimated based upon reference deviations and effectively

predict the local output of more complex models and it saves in computational time obviously.

Latin-hypercube-sample (LHS) experimental design is carried out in the household subsidy

example. The experiment design distributes model simulation points across the futures space in a

manner that decreases variability of results [31]. The cumulative distribution function for each
26



input variable is divided into intervals of equal probability. Thus it enables the scenario

discovery approach on the range of all possible or even improbable input values. LHS can also

be considered as a special type of non-orthogonal sampling, which can be learned from Figure

3.2.

C0
V_:

0o

C4I

CI

CD

0i

0.0 0.2 0.4 0.6 0.8 1.0

x1

Figure 3.2 LHS for 2 Variables [32]

Figure 3.2 shows an LHS for 2 variables (in 2 dimensions) with ranges of 0 to 1. The range

of 0 to 1 are stratified into five stratum with equal probability. The grey represents the area from

which each sampled point would be sampled, and the points represent the actual values sampled.

Outputs from the experimental design, characterized into binary failure and success cases,

can then be data-mined through classification algorithms such as Patient Rule Induction Method

(PRIM) [33] and Classification and Regression Tree (CART) [34]. The classification algorithm
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thus identifies the range of input variables for which result in the values of interest (failure or

success).

The most computationally intensive of the four approaches is the Pseudo-full-factorial

(PFF) exploration, which is similar to an LHS experimental design but samples a greater number

of points from the futures space. Construction of the PFF divides the overall hyperspace defined

by the range of the parameters that make up into constituent boxes then samples randomly within

each box. The "pseudo" qualifier is applied to reflect that the futures space is generally

continuous, while the simulations conducted are discrete points.

Different from LHS, considering the cases in Figure 3.2, a PFF would sample one point

from all 25 boxes, while an LHS would sample only the points shown. Simulations then are

conducted for each point.

A PFF thus gives a much more detailed view of the futures surface than that given by the

LHS, but at high computational cost. As the number of parameters increases, any significant

stratification of the variable values becomes infeasible for all but the simplest models.

In conclusion, considering the tradeoffs of exhaustive exploration and exploration costs,

LHS is often used in the scenario discovery. We also applied it in our study since LHS matched

our computational resources while avoiding the pitfalls presented by intuition- and orthogonal-

based futures exploration. LHS efficiently explores a futures space [15], economically using

computational resources to discover a model's reaction to different input parameters [35].

3.3 Data Mining Algorithms

3.3.1 Existing Algorithms Overview
In the second step, scenario discovery uses statistical or data-mining algorithms to classify

the combinations of values of uncertain model input parameters that best predict the set of

interesting cases. There is no existing algorithm that exactly fit the requirement of the scenario

discovery approach. Thus we will review and compare the existing classification and bump

hunting algorithms in this section.

As described previously, in the second step of the scenario discovery approach, a statistical

or data-mining algorithm is needed to identify the scenarios. Since classification and bump
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hunting algorithm may fit the requirement well, we will explore the some of the existing

algorithms that can help identify the scenarios.

There are numerous classification techniques that have been widely employed for

identifying different subgroups in the datasets. In the machine learning terminology, there are

linear and nonlinear methods to implement it. In addition, there are two different groups of

classification methods in machine learning: unsupervised learning and supervised learning.

Next we will explore possible existing techniques and evaluate and select one algorithm

for the use of our study. Basically, we will have an overview of most learning algorithms and

three common techniques will be introduced and compared: logistic regression, CART

(classification and regression tree), and PRIM (patient rule induction method). The first one is

linear method and the latter two can be employed in nonlinear cases.

In machine learning, classification is to identify a sub-population or sub-group that a new

observation or instance belongs. When we have a training dataset, which contains observations

whose sub-group membership is known. Each individual observation belongs and only belongs

to one category (sub-group). The individual observations consist of a set of properties called

explanatory variables. These explanatory properties can be categorical, ordinal, integer-valued,

or real-valued. For example, an email will be assigned to class "spam" or class "non-spam", or a

given patient will be characterized into different types of patient by the known characteristics of

the patient (gender, temperature, blood pressure, etc).

In machine learning, classification is considered to be a kind of supervised learning, which

means in the training data set, the correct category membership of individual observation is

known. While in the unsupervised learning domain, there is another procedure known as cluster

analysis where observations are grouped into different categories based on the measure of the

similarity of the observations (e.g. the distance between instances).

In the statistical terminology, classification is often done by logistics regression or other

similar regression techniques, and the properties of observations are known as explanatory

variables or independent variables, and the categories are known as outcomes or dependent

variables. In machine learning terminology, we also call observation as instances and

explanatory variables as features, and the categories as classes.
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The classification problem is quite similar to the problem of pattern recognition, which

assigns some output values to a given input value, and is recognized as its more general problem.

In the classification problems, the common techniques we used usually fall into two groups:

linear and nonlinear methods. In the following sections, we will introduce one linear

classification method and two nonlinear (tree-based) methods.

3.3.2 Logistic Regression

In this section, we will introduce three classification or bump hunting algorithms which are

widely used in categorizing different subgroups. Most of the materials about algorithms in this

section are adapted from the book by Hastie, Tibshirani and Friedman [36].

First, we focus on linear methods for classification. One of most commonly used methods

in linear classification is logistic regression.

The logistic regression model arises from the desire to model the posterior probabilities of

the K classes via linear functions in x, while at the same time ensuring that they sum to one and

remain in [0,1]. The model has the form

Pr(G = 1|X = x) =fl+flT (3.2.1)
Pr(G = K|X = x)

Pr(G = 21X = x) +

log Pr(G = K|X = x) = f2 0 +

Pr(G = K - 1|X = x) + f (3.2. K-i)
Pr(G = KIX = x) K

The model is specified in terms of K - 1 log-odds or logit transformations (reflecting the

constraint that the probabilities sum to one). Although the model uses the last class as the

denominator in the odds-ratios, the choice of denominator is arbitrary in that the estimates are

equivariant under this choice. A simple calculation shows that

Pr(G = k|X = x) = x~fk , k = 1, ... K - 1 (3.3)
1 + exp(fl#o + flT x)
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Pr(G = KIX = x) =
1

1 + X- exp(f#io + flx)

and they clearly sum to one. To emphasize the dependence on the

10, --- ,#(K-1)0, KT_1, we denote the probabilities Pr(G = KIX =

When K = 2, this model is especially simple, since there is only

is widely used in bio-statistical applications where binary responses

frequently. For example, patients survive or die, have heart disease

present or absent.

entire parameter set 6 =

x) = pk(x; 6).

a single linear function. It

(two classes) occur quite

or not, or a condition is

The regression coefficients are usually estimated using maximum likelihood estimation.

Unlike linear regression with normally distributed residuals, it is not possible to find a closed-

form expression for the coefficient values that maximizes the likelihood function, so an iterative

process must be used instead, for example Newton's method.

Conditional likelihood of G given X is used. Since Pr(GIX) completely specifies the

conditional distribution, the multinomial distribution is appropriate. The log-likelihood for N

observations is

N

1(6) = log pgi (xi; 6)
t=1

(3.5)

where Pk(Xi; 6) = Pr(G = kIX = xi; 6).

We discuss in detail the two-class case in the following, since the algorithms simplify

considerably. To maximize the log-likelihood, we set its derivatives to zero. These score

equations are

N

=Zxi(Yi - p(xi; 6)) = 0 (3.6)

which are p + 1 equations nonlinear in fl.

To solve the equation 3.6, we usually use Newton-Raphson algorithm, which requires the

second derivatives of the left hand side of equation 3.6.
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It is convenient to write the score and Hessian in matrix notation. Let y denote the vector

of yi values, X the N x (p + 1) matrix of xi values, p the vector of fitted probabilities with ith

element p(xi; 6), z as adjusted response and W a N xN diagonal matrix of weights with ith

diagonal element p(xi; 0)(1 - p(xj; 6)). Then we can have

new <- arg min(z - Xf)TW(z - X)

It seems that f = 0 is a good starting value for the iterative procedure, although

convergence is never guaranteed. Typically the algorithm does converge, since the log-likelihood

is concave, but overshooting can occur. In the rare cases that the log-likelihood decreases, step

size halving will guarantee convergence.

For the multiclass case (K I- 3) the Newton algorithm can also be expressed as an

iteratively reweighted least squares algorithm, but with a vector of K-1 responses and a non-

diagonal weight matrix per observation. The latter precludes any simplified algorithms, and in

this case it is numerically more convenient to work with the expanded vector 0 directly.

Alternatively coordinate-descent methods can be used to maximize the log-likelihood efficiently.

Logistic regression models are used mostly as a data analysis and inference tool, where the

goal is to understand the role of the input variables in explaining the outcome. Typically many

models are fit in a search for a parsimonious model involving a subset of the variables, possibly

with some interactions terms.

3.3.3 Classification and Regression Tree
In the following two subsections, we begin to discuss two specific methods for supervised

learning. These techniques each assume a different structured form for the unknown regression

function, and by doing so they finesse the curse of dimensionality.

Regression models play a very important role in many data analyses, providing prediction

and classification rules, and data analytic tools for understanding the importance of different

inputs.

Although attractively simple, the traditional linear model often fails in these situations: in

real life, effects are often not linear. In earlier subsection, we described classification methods
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with linear form, which is logistic regression. This section describes more automatic flexible

statistical methods that may be used to identify and characterize nonlinear regression effects.

These methods are called "generalized additive models."

Tree-based methods partition the feature space into a set of rectangles, and then fit a simple

model in each one. They are conceptually simple yet powerful. We first describe a popular

method for tree-based regression and classification called CART.

Let's consider a regression problem with continuous response Y and inputs X1 and X2 ,
each taking values in the unit interval. The top left panel of Figure 3.1 shows a partition of the

feature space by lines that are parallel to the coordinate axes. In each partition element we can

model Y with a different constant. However, there is a problem: although each partitioning line

has a simple description like X1 = c, some of the resulting regions are complicated to describe.

R G
R2 t4
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t2 R4

x 1 <t1
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Figure 3.3 Partition and CART [29]

To simplify matters, we restrict attention to recursive binary partitions like that in the top

right panel of Figure 3.3. We first split the space into two regions, and model the response by the

mean of Y in each region. We choose the variable and split-point to achieve the best fit. Then

one or both of these regions are split into two more regions, and this process is continued, until

some stopping rule is applied. For example, in the top right panel of Figure 3.1, we first split at

X1 = t1 . Then the region X1 5 ti is split at X2 = t 2and the region X1 > ti is split at X1 = t1 3 -

Finally, the region X1 > t 3 is split at X2 = t4 . The result of this process is a partition into the five

regions R1, R 2 , ..., R5 shown in the figure. The corresponding regression model predicts Y with a

constant cm in region Rm, that is,

5

f(X) = cmI{(X1, X 2 ) E Rm} (3.7)

This same model can be represented by the binary tree in the bottom left panel of Figure

3.3. The full dataset sits at the top of the tree. Observations satisfying the condition at each

junction are assigned to the left branch, and the others to the right branch. The terminal nodes or

leaves of the tree correspond to the regions R1, R2 , ..., R5 . The bottom right panel of Figure 3.3 is

a perspective plot of the regression surface from this model. For illustration, we chose the node

means ci = -5, c2 = -7, c3 = 0, c4 = 2, cs = 4 to make this plot.

A key advantage of the recursive binary tree is its interpretability, which fits well for the

scenario discovery analysis requirement. The feature space partition is fully described by a single

tree. With more than two inputs, partitions like that in the top right panel of Figure 3.3 are

difficult to draw, but the binary tree representation works in the same way. This representation is

also popular among medical scientists, perhaps because it mimics the way that a doctor thinks.

The tree stratifies the population into strata of high and low outcome, on the basis of patient

characteristics.

Since regression tree and classification tree are similar. We now go to the question of how

to grow a regression tree. Our data consists of p inputs and a response, for each of N

observations: that is, (xi, yi) for i = 1,2,...,N, with xi = (xti, xi2 , ... , xp). The algorithm needs to

automatically decide on the splitting variables and split points, and also what topology (shape)
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the tree should have. Suppose first that we have a partition into M regions R1, R2 , ..., RM, and we

model the response as a constant cm in each region:

M
f(x) = cmItx E Rml (3.8)

If we adopt as our criterion minimization of the sum of squares E(y, - f(x,))2, it is easy

to see that the best Cm is just the average of y in region Rm:

cm = ave (yjIxi E Rm) (3.9)

Now finding the best binary partition in terms of minimum sum of squares is generally

computationally infeasible. Hence we proceed with a greedy algorithm. Starting with all of the

data, consider a splitting variable j and split point s, and define the pair of half-planes

R1(j, s) = {X IX s; and R2 (j, s) = {X|AXj > S} (3.10)

For each splitting variable, the determination of the split point s can be done very quickly

and hence by scanning through all of the inputs, determination of the best pair (j, s) is feasible.

Having found the best split, we partition the data into the two resulting regions and repeat

the splitting process on each of the two regions. Then this process is repeated on all of the

resulting regions.

How large should we grow the tree? Clearly a very large tree might overfit the data, while

a small tree might not capture the important structure.

Tree size is a tuning parameter governing the model's complexity, and the optimal tree size

should be adaptively chosen from the data. One approach would be to split tree nodes only if the

decrease in sum-of-squares due to the split exceeds some threshold. This strategy is too short-

sighted, however, since a seemingly worthless split might lead to a very good split below it.

The preferred strategy is to grow a large tree To, stopping the splitting process only when

some minimum node size (say 5) is reached. Then this large tree is pruned using cost-complexity

pruning, which we now describe.
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We define a sub-tree T c To to be any tree that can be obtained by pruning To, that is,

collapsing any number of its internal (non-terminal) nodes. We index terminal nodes by m, with

node m representing region Rm- Let IT I denote the number of terminal nodes in T. Letting

Nm = #xi E Rml (3.11.1)

CM Yi (3.11.2)

Qm(T) = (yi - Cm) 2  (3.11.3)
x ERm

We define the cost complexity criterion.

T

Ca (T) = NmQm(T) + aITI (3.12)
m=1

The idea is to find, for each a, the subtree Ta c To to minimize Ca (T). The tuning

parameter a > 0 governs the tradeoff between tree size and its goodness of fit to the data. Large

values of a result in smaller trees Ta, and conversely for smaller values of a. As the notation

suggests, with a = 0 the solution is the full tree To. We discuss how to adaptively choose a

below.

For each a one can show that there is a unique smallest sub-tree Ta that minimizes Ca(T).

To find Ta we use weakest link pruning: we successively collapse the internal node that produces

the smallest per-node increase in Em NmQm(T), and continue until we produce the single-node

(root) tree. This gives a (finite) sequence of sub-trees, and one can show this sequence must

contain Ta. Estimation of a is achieved by five- or tenfold cross-validation: we choose the value

a to minimize the cross-validated sum of squares. Our final tree is Ta.

For classification tree, it is very similar to the regression tree. If the target is a classification

outcome taking values 1, 2, ..., K, the only changes needed in the tree algorithm pertain to the

criteria for splitting nodes and pruning the tree. For regression we used the squared-error node

impurity measure Qm(T) defined in Equation 3.11, but this is not suitable for classification. In a

node m, representing a region Rm with Nm observations, let
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Pmk .yi = k), (3.13)
xiERm

the proportion of class k observations in node m. We classify the observations in node m to class

k(m) = arg maxk Pink, the majority class in node m. Different measures Qm(T) of node

impurity include misclassification error, Gini index, and cross-entropy or deviance. Details of

these different measures can be found in the book by Hastie, Tibshirani and Friedman [36].

Tree-based methods (for regression) partition the feature space into box-shaped regions, to

try to make the response averages in each box as different as possible. The splitting rules

defining the boxes are related to each through a binary tree, facilitating their interpretation.

3.3.4 Bump Hunting Algorithm

The patient rule induction method (PRIM) also finds boxes in the feature space, but seeks

boxes in which the response average is high. Hence it looks for maxima in the target function, an

exercise known as bump hunting. (If minima rather than maxima are desired, one simply works

with the negative response values.)

PRIM also differs from tree-based partitioning methods in that the box definitions are not

described by a binary tree. This makes interpretation of the collection of rules more difficult;

however, by removing the binary tree constraint, the individual rules are often simpler.

The main box construction method in PRIM works from the top down, starting with a box

containing all of the data. The box is compressed along one face by a small amount, and the

observations then falling outside the box are peeled off. The face chosen for compression is the

one resulting in the largest box mean, after the compression is performed. Then the process is

repeated, stopping when the current box contains some minimum number of data points.
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Figure 3.4 Sequence of operations by the PRIM algorithm [15]

As shown in Figure 3.4, PRIM finds each new box by removing a thin low density slice

from whichever face of the current box will most increase the mean inside the new (remaining)

box. PRIM's developers call the resulting series of boxes a "peeling trajectory."

An advantage of PRIM over CART is its patience. Because of its binary splits, CART

fragments the data quite quickly. Assuming splits of equal size, with N observations it can only

make log 2 (N) - 1 splits before running out of data. If PRIM peels off a proportion a of training

points at each stage, it can perform approximately - log(N) / log(1 - a) peeling steps before

running out of data. For example, if N = 128 and a = 0.010, then log 2 (N) - 1 =6 while

- log(N) / log(1 - a) ~ 46. Taking into account that there must be an integer number of

observations at each stage, PRIM in fact can peel only 29 times. In any case, the ability of PRIM

to be more patient should help the top-down greedy algorithm find a better solution.

Among existing algorithms, the scenario-discovery task appears most similar to

classification approaches. As mentioned in this chapter previously, there are some classification
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algorithms that can be applied in the scenario discovery analysis. While to date, there is no

existing algorithm performs tasks identical to that required for scenario-discovery [15].

Thus we have provided brief overview of classification algorithms. Three commonly used

methods for classification and bump hunting problems are given: logistic regression, CART

(classification and regression tree), and PRIM (patient rule induction method).

Each method has its own advantage and disadvantages. In general, logistic regression is

often applied in the linear problems (although it can also be applied nonlinearly). For high

dimensional cases with mixed data points, logistic regression is not as flexible as CART and

PRIM.

For the problems with binary output, CART partition the input space into different regions

in which one output class dominantly exists. Bump-hunting algorithms search for regions of

input space that has a relatively high mean output value.

PRIM has several advantages over CART. First, it gives a box with relatively high density

and high coverage rather than a decision boundary dividing the high dimensional space into two

parts. In other words, we have some concentrated states of future from PRIM while we can only

get the boundary of policy failure and non-failure. Obviously PRIM gives more flexible and

useful results than CART.

In addition, PRIM has better performance in interpretation. The visualization shown in the

next chapter will illustrate its highly interactive for the users' scenario choice decision. It also

helps users see the tradeoffs between the measures of quality mentioned in section 3.4.1

coverage and density. The interpretability measure poses requirements distinct from most other

applications. In addition, while many algorithms seek to maximize coverage, which is equivalent

to the success-oriented quantification of the Type II error rate, few consider density, which is

related to but does not neatly correspond to the Type I error rate because the denominator in

Equation 3.3 refers to the set of scenarios rather than the overall dataset.

In the study by Bryant and Lempert [15], PRIM is applied because it is highly interactive,

presents multiple options for the choice of scenarios, and provides visualizations that help users
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balance among the three measures of scenario quality: coverage, density, and interpretability. In

addition, a toolbox in R known as sdtoolkit was also developed for the use of scenario discovery.

Lempert, Bryant, and Bankes [37] also tested the ability of the classification algorithm

CART (Classification and Regression Tree) to perform scenario discovery. CART appears to

generate similar results as PRIM, but with less user interactivity and more work required by the

analyst to create box sets with high interpretability [15]. CART generates similar results as

PRIM, but comparing with user interactivity and concentrated identification results, we choose to

use PRIM in our study.

3.4 Summary

In this chapter, we introduced basic steps of scenario discovery analysis. Besides the last

step that evaluates the identified scenarios, there are two main steps of the analysis: data

"farming" and data mining. Data "farming" incorporates the vulnerabilities of the proposed

policy in the future by efficiently sampling from a set of combinations of uncertain input

parameters; data mining identifies the policy-relevant regions that represent the vulnerabilities of

the future.

Furthermore, we reviewed and discussed some existing exploration techniques and data

mining algorithms that fit the requirement of scenario discovery. There are numerous

computational tools for exploring the future states and Latin-Hypercube experimental design

appears to be feasible and efficient for scenario discovery analysis. Among a number of

classification algorithms, PRIM tends to be the best choice for now based on previous discussion.

In the next chapter, we will go through the whole analytical procedure of scenario discovery

analysis that will be applied in the empirical study in chapter 5.
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Chapter 4

Analytical Procedure of Scenario Discovery

4.1 Overview

In this chapter, we will illustrate the procedure of conducting scenario discovery. Recall

Figure 3.1, there are four steps in implementing scenario discovery analysis.

In section 4.2, we will first show the model we used for scenario discovery analysis and

specify the criterions that distinguish policy-relevant regions of interest in the output. Then we

will introduce how to use Latin-hypercube-sampling technique that incorporates the uncertainty

of the model input parameters. In section 4.3, we will introduce how to use patient rule induction

method to identify the policy relevant regions of interest. Some measures of merits are used to

assist in identifying these regions of interest or scenarios. In section 4.4, some statistical

diagnostics are illustrated to evaluate the identified scenarios. Summary of scenario discovery

will be provided in section 4.5.

4.2 Model and Data Generation

4.2.1 Model

First, we recall the equation (3.1) y = f(s, x). In this model, y is the simulation output of

interest which is contingent on a vector of input data x representing a particular point in an M-

dimensional space of uncertain model input parameters, s is the policy makers' action, which can

be a subsidy policy or a transit-oriented policy based on the study.

In this study, we use a microscopic traffic simulation platform known as MITSIMLab. The

model used is a traffic simulation model built and calibrated on the traffic sensor data from

Marina Bay network Singapore. The input data are the uncertain traffic demand and other data

like the network and driving parameters. The details will be shown in the Chapter 5. The action

or policy is to convert one lane in the network into bus lane. The output of interest is the

difference of travel times with and without bus lane.

To test the robustness of the proposed policy or action of policy makers, s is held in

constant while x varies across all the future spaces.
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Using some policy-relevant criteria, we choose some threshold performance level Y' that

defines a set of cases of interest Is = {xIf(s, x1) Y'} or {xlIf(s, x') Y'}, contingent on that

strategy [15]. Y' is the outcome threshold for the proposed policy. The set of interest consists of

vectors of input parameter which will result into outcome of interest, where we distinguish the

cases of interest by the inequality f(s, x') : Y' or f(s, x1) 5 Y'. In general, the direction of

inequality is chosen so that the minor parts of the total set are of interest or say are scenarios.

Usually these regions of input parameters in high dimensional space are called scenarios

(or boxes). Specifically, the algorithm will search for the scenarios that containing outcomes of

interest Is = txlIf(s, x') - Y} or {xlIf(s,x1) 5 Y'}.These scenarios are often one or more sets of

limiting constraints Bk = fa xj bj,j E Lk} on the ranges of a subset of input parameters

Lk 9 {1, ..., M}. Input parameters that are not in Lk is not constrained for Bk. We call each set of

simultaneous constraints Bk a box and a set of boxes B a box set.

Although we focus on the states that are in the box, we cannot ignore the all those states

not in any box and sometimes they are considered as a scenario [15]. For instance, a single box

might represent a scenario where a policy has high costs. All the other states might represent the

scenario where the policy has reasonable costs. In addition, the scenario discovery algorithms

will in some cases yield boxes that overlap. The situation of scenarios may go much complicated

than we illustrated here. It is convenient and intuitively simple to consider such box as distinct

scenarios although they might be more usefully viewed as a single scenario with a shape poorly

described by a box. Some improvements can be applied to address such situations [15].

4.2.2 Data Generation

LHS is a form of stratified sampling that can be applied to multiple variables. The method

is commonly used to reduce the number of runs necessary for a Monte Carlo simulation to

achieve a reasonably accurate random distribution. LHS can be incorporated into an existing

Monte Carlo model fairly easily, and work with variables following any analytical probability

distribution.

With LHS, variables are sampled independently, and then randomly combined sets of

those variables are used for one calculation of the target function. LHS construction requires

specifying the number of desired model runs and the number of input parameters to be varied
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during these runs. For a function with independent inputs, an LHS is created by dividing the

cumulative distribution function for each model input Xk into intervals of equal probability. The

number of intervals (ns) is equal to the number of runs to be carried out. Within each interval, a

value for the input is drawn based on its cumulative distribution function (CDF 1 , CDFx2 ,

CDFXk). The model runs are generated by randomly drawing one value for each input x; and

matching these inputs to create one run. Building additional runs repeats this procedure without

replacing previously selected input values. Table 4.1 provides an example of an LHS for a 10 run

series with 3 inputs uniformly distributed between 0 and 10.

Sample Run Variable 1 Variable 2 Variable 3

1 0.9 3.4 4.1

2 2.3 5.7 5.3

3 9.5 2.9 9.4

4 4.5 6.4 2.0

5 7.3 7.1 3.1

6 3.2 9.9 6.3

7 5.1 0.2 8.4

8 6.9 1.7 7.7

9 1.4 8.4 0.5

10 8.8 4.7 1.1
Table 4.1 Sample LHS

4.3 Scenario Identification

4.3.1 Measures of Merit for Scenarios

Choosing among box sets requires measures of the quality of any box and box set. The

traditional scenario planning literature emphasizes the need to employ a small number of

scenarios, each explained by a small number of "key driving forces," lest the scenario users

become confused or overwhelmed by complexity [24]. In addition to this desired simplicity, the

quantitative algorithms employed here seek to maximize the explanatory power of the boxes, that

is, their ability to accurately differentiate among the cases of interest and the other cases in the

database. These characteristics suggest three useful measures of merit for scenario discovery [15].

To serve as a useful aid in decision-making, a box set should capture a high proportion of

the total number of policy-relevant cases (high coverage), capture primarily policy- relevant
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cases (high density), and prove easy to understand (high interpretability). We define and justify

these criteria as follows:

Coverage measures how completely the scenarios defined by box set B capture the cases of

interest (Is) and is analogous to the "sensitivity" or "recall" in the classification and information

retrieval fields. With binary output, coverage is simply the ratio of the total number of cases of

interest in the set of scenarios B to the total number of cases of interest, that is,

Coverage = Y y'i / I y' (4.1)
Xi EB XiEX'

Where y', = 1 if xi E Is and y'i = 0 otherwise.

Density measures the purity of the scenarios and has analogues with "precision" or
"positive predictive value" in other fields. With binary output, density can be expressed as the

ratio of the total cases of interest in a scenario to the number of cases in that scenario, that is,

Density = y' / Y1 (4.2)
xiEB xieB

Decision makers should find this coverage measure important because they would like the

scenarios to explain as many of the cases of interest as possible.

Interpetability measures the ease with which decision makers can understand a box set and

use it to gain insight about their decision analytic application. This measure is thus highly

subjective, but we can nonetheless approximate it quantitatively by reporting the number of

boxes in a box set and the maximum number of model input parameters constrained by any box,
equivalent to the size of the set L above. Based on the experience reported by the traditional

scenario planning literature [24], a highly interpretable box set should consist of on the order of

three or four boxes, each with on the order of two or three constrained parameters.

An ideal set of scenarios would combine high density, coverage, and interpretability.

Unfortunately, these measures generally compete, so that increasing one typically comes at the

expense of another. There are often tradeoffs between different measures. For instance,

increasing coverage often means decreasing the density. Increasing interpretability by
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constraining fewer parameters can increase coverage but typically decreases density. For a given

dataset, these three measures define a multi-dimensional efficiency frontier. The scenario

discovery analysis takes all of these measures into account. The procedure illustrated in Figure

3.1 also envisions that users interactively employ a scenario-discovery algorithm to generate

alternative box sets at different points along this frontier and then choose that set most useful for

the decision analytic application.

4.3.2 Patient Rule Induction Method

In this section, we will introduce PRIM algorithm and how it works in the scenario

discovery analysis. By the three measures of merits, we can apply PRIM to identify a set of

scenarios that represent policy-relevant regions of interest.

The main box construction method in PRIM works from the top down, starting with a box

containing all of the data. The box is compressed along one face by a small amount, and the

observations then falling outside the box are peeled off. The face chosen for compression is the

one resulting in the largest box mean, after the compression is performed. Then the process is

repeated, stopping when the current box contains some minimum number of data points.

This process is illustrated in Figure 4.1. There are two classes in the figure, indicated by

the blue (class 0) and red (class 1) points. The procedure starts with a rectangle (broken black

lines) surrounding all of the data, and then peels away points along one edge by a pre-specified

amount in order to maximize the mean of the points remaining in the box. Starting at the top left

panel, the sequence of peelings is shown, until a pure red region is isolated in the bottom right

panel. The iteration number is indicated at the top of each panel. There are 200 data points

uniformly distributed over the unit square. The color-coded plot indicates the response Y taking

the value 1 (red) when 0.5 < X1 < 0.8 and 0.4 < X2 < 0.6 and zero (blue) otherwise. The

panels shows the successive boxes found by the top-down peeling procedure, peeling off a

proportion a = 0.1 of the remaining data points at each stage.

Figure 4.2 shows the mean of the response values in the box, as the box is compressed.

After the top-down sequence is computed, PRIM reverses the process, expanding along

any edge, if such an expansion increases the box mean. This is called pasting. Since the top-

down procedure is greedy at each step, such an expansion is often possible.
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Figure 4.1 Illustration of PRIM Algorithm [36]

The result of these steps is a sequence of boxes, with different numbers of observation in

each box. Cross-validation, combined with the judgment of the data analyst, is used to choose the

optimal box size.

Denote by B1 the indices of the observations in the box found in step 1. The PRIM

procedure then removes the observations in B1 from the training set, and the two-step process-

top down peeling, followed by bottom-up pasting-is repeated on the remaining dataset. This

entire process is repeated several times, producing a sequence of boxes B1, B2 , ... , Bk. Each box

is defined by a set of rules involving a subset of predictors like

(a, X1 5 bi) and (b, X 3 5 b2 )-
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Figure 4.2 Box Mean as a Function of Number of Observations in the Box [36]

A summary of the PRIM procedure is given below.

Step 1. Start with all of the training data, and a maximal box containing all of the data.

Step 2. Consider shrinking the box by compressing one face, so as to peel off the

proportion a of observations having either the highest values of a predictor Xi, or the lowest.

Choose the peeling that produces the highest response mean in the remaining box. (Typically a

=0.05 or 0.10.)

Step 3. Repeat step 2 until some minimal number of observations (say 10) remain in the

box.

Step 4. Expand the box along any face, as long as the resulting box mean increases.

Step 5. Steps 1-4 give a sequence of boxes, with different numbers of observations in each

box. Use cross-validation to choose a member of the sequence. Call the box B1 .

Step 6. Remove the data in box B1 from the dataset and repeat steps 2-5 to obtain a second

box, and continue to get as many boxes as desired.
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4.4 Scenario Evaluation with Diagnostics
As stated in the section 3.3, researchers applied PRIM and CART to datasets with regions

of known shape to test the algorithms' strengths and weaknesses for scenario discovery. These

tests suggest that both algorithms can perform the scenario discovery task even for relatively

complex shapes, but that under some conditions they make several types of errors.

In particular, PRIM may needlessly slice off the end of a parameter's range, incorrectly

suggesting that a proposed policy may prove sensitive to even a small variation in some

parameter. The potential for such errors is troubling because a policy can be truly sensitive to

small variations, as was the case, for instance, with IEUA where scenario discovery properly

revealed that the agency's plan was very sensitive to any change in the amount of rain captured

as groundwater. In addition, when applied to low-dimensional shapes in high-dimensional data

PRIM may erroneously constrain extraneous parameters that do not in fact predict the cases of

interest [15].

Such potential errors highlight the importance of using diagnostic tools to evaluate the

statistical significance of the parameter constraints proposed by the scenario discovery algorithm.

In the work by Swartz and Zegras [28], they didn't use any diagnostics to assess the

scenarios that are data-mined from the simulation results. While some other researchers proposed

some simple statistical diagnostics to assess these scenarios, they proposed that users employ a

quasi p-value test and resampling test for this purpose [15]. These techniques, commonly

employed in the field of statistical learning to diagnose the quality of models fit to data, prove

appropriate because the PRIM errors result from the finite and stochastic sampling of the LHS

experimental design. Given this stochasticity, the scenario definitions can be considered

statistical models with potentially nonzero bias and variance about the true model.

These two tests help detect the errors described above by estimating the probability that

any particular parameter constraint is due to chance and by examining the extent to which the

scenario definition varies over multiple samples of the original data [15].

The details of both tests are given as follows. We basically follow the same test procedure

developed by Bryant and Lempert [15].
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4.4.1 Resampling Test

This diagnostic tool evaluates a scenario definition by assessing how frequently the same

definition arises from different samples of the same database. The resampling test runs the

algorithm on multiple subsamples of the original dataset and notes which of the parameter

constraints consistently emerge as important in the resulting scenario definitions.

PRIM complicates automation of this technique because the algorithm is fundamentally

interactive, requiring the user to select from a large number of options with different

combinations of coverage and density. We thus generate two sets of "reproducibility statistics" -

one in which the algorithm generates a scenario matching as closely as possible the coverage of

the original box, and one in which it matches the density.

These two criteria will often but not always generate identical results. Ideally for both

criteria the parameters constrained in the initial scenario definition will also be constrained in

100 percent of the samples, while the unconstrained parameters will remain so in all the samples.

4.4.2 Quasi-p-value Test

This diagnostic tool uses what is essentially a p-value test to estimate the likelihood that

PRIM constrains some parameter purely by chance. Consider a single box fl within box set B,

defined by limiting constraints on parameters in the set Lp, and which contains H high- value

(y' = 1) cases out of a total of T cases. To compute this quasi-p-value consider the box fl

defined by constraints on all parameters in L# except parameter xj E Lp. This box contains Tj

total cases and Hj cases of interest, with Tj T and Hj > H. We then consider the null

hypothesis that the cases of interest within f#_ are distributed among all cases in fl_ according

to a binomial distribution with p(1) = H_1/T 1 . The "qp-value" test thus answers the question:

what is the probability that T points drawn from the above binomial distribution would have H or

more high valued points? When the ratio Hj/T_ is close to HIT this number is high, the

additional contribution of parameter rj is low, and thus possibly due to chance. The opposite is

the case when HIT is much larger than Hj/T_.

Bryan and Lempert [15] call this a quasi-p-value test, because contingent on sampling, it is

not an entirely accurate model of the system, since it does not take into account spatial proximity
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and its interaction with whatever algorithm is defining the box. Nevertheless, the relative

magnitudes of the quasi-p-values provide useful information for comparing parameter relevance.

Due to the limitation of data samples we have, we only employed quasi p-value test in our

study.

These diagnostic techniques, combined with the measures of coverage, density and

interpretability, help users achieve a more complete understanding of the scenarios and their

ability to characterize the cases of interest in the database.

4.5 Summary

Scenario discovery aims to identify sets of future states of the world that shows the

vulnerabilities in proposed policies and to describe these scenarios for decision makers and other

stakeholders.

There are four steps when implementing scenario discovery approach. In the first step, we

specifies a simulation model whose output are based on the proposed policy and a set of input

parameters that may bring uncertain. Criterion is chosen to distinguish the policy-relevant

regions of interest in the output. We then introduced how to use Latin-hypercube sampling

technique to incorporate the uncertainty from the input parameters.

In the second step, patient rule induction method algorithm is applied to the resulting

database generated from simulation described in the first step and to identify candidate scenarios

that provide a good description of these regions of interest. Several measures of merits are

described and present us the tradeoff among coverage, density and interpretability that users may

face in choosing scenarios.

In the third step, two simple statistical diagnostics are proposed to evaluate the scenarios

from the second step. They are resampling test and quasi-p-value test. By these diagnostics, we

can evaluate the selected scenarios and decide which scenario will eventually be chosen.

As previously stated, the whole procedure is adaptive. User can also go from the third step

to the first or second step, which means that if use could reselect other scenarios based on the

diagnostics in the evaluation step. Different options are given to users showing the tradeoffs

among them. By evaluating the proposed scenarios, users can select scenarios.
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Chapter 5

Application: New Transit-orient Policy Performance Evaluation

5.1 Background

The city state of Singapore is the second most densely populated country in the world [38].

Since Singapore is a small island with a high population density, the number of private cars on

the road is restricted so as to curb pollution and congestion. Car buyers must pay for duties one-

and-a-half times the vehicle's market value and bid for a Singaporean Certificate of Entitlement

(COE), which allows the car to run on the road for a decade. Car prices are generally

significantly higher in Singapore than in other English-speaking countries and thus only one in

10 residents owns a car [39].

Most Singaporean residents travel by foot, bicycles, bus, taxis and train (MRT or Light

Rail Transit). Two companies run the public bus and train transport system - SBS Transit and

SMRT Corporation. There are almost a dozen taxi companies, who together put out 25,000 taxis

on the road. Taxis are a popular form of public transport as the fares are relatively cheap

compared to many other developed countries [39].

The policies of the Land Transport Authority are meant to encourage the use of public

transport in Singapore. The key aims are to provide an incentive to reside away from the Central

district, as well as to reduce air pollution. Singapore has a Mass Rapid Transit (MRT) and Light

Rail Transit (LRT) rail system consisting of five lines. There is also a system of bus routes

throughout the island, most of which have air conditioning units installed due to Singapore's

tropical climate. A contactless smartcard called the EZ-link card is used to pay bus and MRT

fares. The public transportation system is the most important means of transportation to work

and to school for Singaporeans. According to the Singapore 2000 Census, 52% of Singaporean

residents (excluding foreigners) use public transportation for their work commute, 42% use

private transportation modes. 42% of school-going residents use public transportation to go to

school. 25% use private transportation modes [38].

The Land Transport Authority (LTA) in Singapore reports that roads take up 12% of its

total land area [40]. LTA also estimates that demands for land travel will increase by 60%, from

the current 8.9 million daily trips to 14.3 million by 2020 [40]. To avoid severe congestion, LTA
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plans that much of the future growth in travel demand will be served by public transportation, so

that by 2020, 70% of all morning peak hour trips use public transportation [40].

5.2 Problem Statement

Marina Bay is a bay near Central Area in the southern part of Singapore, and lies to the

east of the Downtown Core. Marina Bay is set to be a 24/7 destination with endless opportunities

for people to "explore new living and lifestyle options, exchange new ideas and information for

business, and be entertained by rich leisure and cultural experiences" [41]. It is here where the

most innovative facilities and infrastructure such as the underground "Common Services Tunnel"

are built and where mega activities take place [41].

There are currently 7 rail stations: City Hall, Raffles Place, Marina Bay, Bayfront,

Downtown, Esplanade and Promenade serving Marina Bay. By 2020, the 360 hectares Marina

Bay will boast a comprehensive transport network as Singapore's most rail-connected district

[41]. By 2018, the Marina Bay district will more than six MRT stations, all no more than five

minutes of each other [41]. A comprehensive pedestrian network including shady sidewalks,

covered walkways, underground and second-story links will ensure all-weather protection and

seamless connectivity between developments and MRT stations [41]. Within greater Marina Bay,

water taxis will even double up as an alternative mode of transportation [41].

As a big tourism attraction, there are always needs to improve its public transit system.

Although Singapore plans to expand its bus and rail rapid transit networks, future infrastructure

funding is uncertain. The government must make the best possible use of existing transit

facilities. Marina Bay district is shown in Figure 5.1. It is an area of reclaimed land in the

southern part of Singapore. It lies to the east of the Downtown Core. It has mixed residential and

business land use. At the center of the area there is a large convention and exhibition center with

adjacent hotels and related facilities. The areas close to the coast on the east and especially the

south end are leisure destinations with several tourist attractions, such as the Esplanade, floating

stadium and Singapore Flyer. The western part of the Marina Bay, adjacent to downtown, has

mostly commerce and shopping uses. The area has plans for considerable growth in the next

decade.
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Figure 5.1 Map of Marina Bay [42]

One of the policies that can help improve the quality of service of public transportation,
and attract ridership, is to develop transit priority measures including implementation of bus

lanes and providing bus-priority at signalized intersections.

Transit signal priority and bus lanes can play an important role as a foundation for future

rapid transit corridors, building corridor-level ridership by improving service until the City can

afford (or justify) a major investment in new infrastructure. The city needs to propose a plan that

dedicates a section to transit priority and includes other supporting policies.
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From Figure 5.1, there is one highway called Nicoll Highway. One lane of this highway

would be converted into a bus lane. No other vehicles could drive on this lane except for buses.

In general, the traffic demands in the Marina Bay district are not stable and always

fluctuate over time. It is difficult for traditional policy analysis to consider the uncertain traffic

demands in this urban network. Our objective is to determine the policy performance under the

condition of deep uncertainty of traffic demand.

Scenario discovery described in Chapter 4 will support this decision making process and

gives us the relationship between the uncertain traffic demand and the policy performance. The

potential impact of this proposed policy will be illustrated in our study.

In the following sections, we will give detailed introduction of how we employ the

scenario discovery analysis under the current problem statement. In section 5.4, we will describe

the simulation software and model we used in the study. In addition, we will introduce how the

input data are prepared. In section 5.5, the whole applications of scenario discovery are

illustrated including data generation from simulation model, identifying candidate scenarios, and

assessing the scenarios with statistical diagnostics. In section 5.6, the results are summarized and

conclusions of this study are shown.

5.3 Framework of Scenario Discovery Application

In this section, we will talk about how the scenario discovery approach will be

implemented in this empirical study.

First, we need a built computer simulation models from the existing data of Marina Bay

district. Recall equation 3.1 y = f(s, x). In this model, x is a vector of input parameters. In this

case study, these varying parameters are mainly the traffic demands of different origin and

destination pairs. y is the simulation output of interest which is contingent on a vector of input

data x representing a particular point in a M-dimensional space of uncertain model input

parameters, s is the policy makers' action, which is to implement transit-oriented policy or not.

Recalling what we have illustrated in chapter 3, there are mainly four steps in this approach.

Given a simulation model of Marina Bay district and existing data, first we use Latin Hypercube

Sampling (LHS) to sample in the space of all combination of input variable distributions. We use
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the LHS samples as input rather than using the total combinations of input variables which might

be impossible in high dimensional cases. Second, after running simulation model y = f(s, x)

with and without transit policy numerous times, we have corresponding output of the input

variables and by some criterions; we classify different outputs as failure or non-failure. Then we

use PRIM algorithm to identify a set of regions of combinations of input variables that result in

failure policy. These regions are scenarios in scenario discovery context. Finally we will assess

the identified scenarios by some statistical diagnostics proposed in chapter 4.

5.4 Description of Simulation

A microscopic simulation-based laboratory known as MITSIMLab [43] is used for the

simulation. The input data including the traffic demand in Marina Bay network and other input

parameters such as transportation network are from Future Urban Mobility program. Since the

original input and output data are not exactly designed for scenario discovery analysis, some data

processing work has been done. In section 5.3.1, we will briefly introduce the MITSIMLab and

in section 5.3.2, we will describe briefly about how we prepare the simulation input and process

the raw data from the simulation. More detailed descriptions can be found in Appendix B and C.

5.4.1 MITSIMLab

In this section, we will introduce briefly about MITSIMLab. Most of the materials in this

section are adapted from the user manual and the website of Intelligent Transportation Systems

Program [43].

MITSIMLab is a simulation-based laboratory that was developed for evaluating the

impacts of alternative traffic management system designs at the operational level and assisting in

subsequent design refinement. Examples of systems that can be evaluated with MITSIMLab

include advanced traffic management systems (ATMS) and route guidance systems.

MITSIMLab was developed at the MIT Intelligent Transportation Systems (ITS) Program.

Professor Moshe Ben-Akiva, Director of the ITS Program at MIT, and Dr. Haris Koutsopoulos,

from the Volpe Center, were co-principal investigators in MITSIMLab's development. Dr. Qi

Yang, of MIT and Caliper Corporation, was the principal developer.

MITSMLab is a synthesis of a number of different models and has the following

characteristics: represents a wide range of traffic management system designs; models the
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response of drivers to real-time traffic information and controls; and incorporates the dynamic

interaction between the traffic management system and the drivers on the network.

The various components of MITSIMLab are organized in three modules:

1. Microscopic Traffic Simulator (MITSIM)

2. Traffic Management Simulator (TMS)

3. Graphical User Interface (GUI)

A microscopic simulation approach, in which movements of individual vehicles are

represented, is adopted for modeling traffic flow in the traffic flow simulator (MITSIM). This

level of detail is necessary for an evaluation at the operational level. The Traffic Management

Simulator (TMS) represents the candidate traffic control and routing logic under evaluation. The

control and routing strategies generated by the traffic management module determine the status

of the traffic control and route guidance devices. Drivers respond to the various traffic controls

and guidance while interacting with each other.

The role of MITSIM is to represent "the world." Traffic and network elements are

represented in detail in order to capture the sensitivity of traffic flows to the control and routing

strategies. The main elements of MITSIM are:

1. Network Components: The road network, along with the traffic controls and

surveillance devices, are represented at the microscopic level. The road network consists of

nodes, links, segments (links are divided into segments with uniform geometric characteristics),

and lanes.

2. Travel Demand and Route Choice: The traffic simulator accepts as input time-dependent

origin to destination (OD) trip tables. These OD tables represent either expected conditions, or

are defined as part of a scenario for evaluation. A probabilistic route choice model is used to

capture drivers' route choice decisions.

3. Driving Behavior: The origin/destination flows are translated into individual vehicles

wishing to enter the network at a specific time. Behavior parameters (such as desired speed,

aggressiveness, etc.) and vehicle characteristics are assigned to each vehicle/driver combination.
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MITSIM moves vehicles according to car-following and lane-changing models. The car-

following model captures the response of a driver to conditions ahead as a function of relative

speed, headway and other traffic measures. The lane changing model distinguishes between

mandatory and discretionary lane changes. Merging, drivers' responses to traffic signals, speed

limits, incidents, and toll booths are also captured. Rigorous econometric methods have been

developed for the calibration of the various parameters and driving behavior models.

The traffic management simulator mimics the traffic control system under evaluation. A

wide range of traffic control and route guidance systems can be evaluated, such as:

1. Ramp control

2. Freeway mainline control

2.1 lane control signs (LCS)

2.2 variable speed limit signs (VSLS)

2.3 portal signals at tunnel entrances (PS)

3. Intersection control

4. Variable Message Signs (VMS)

5. In-vehicle route guidance

TMS has a generic structure that can represent different designs of such systems with logic

at varying levels of sophistication (from pre-timed to responsive).

The simulation laboratory has an extensive graphical user interface that is used for both,

debugging purposes and demonstration of traffic impacts through vehicle animation.

MITSIMLab has been applied in the city of Stockholm, Sweden, for research funded by

the City of Stockholm Real Estate and Traffic Administration (GFK), which is responsible for

traffic planning and operations within the city. Initially, MITSIMLab was evaluated for its

applicability in Stockholm. As part of the project, MIT enhanced the simulation models and
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calibrated the model parameters to match the observed conditions in Stockholm. Validation of

the simulation model was performed by the Royal Institute of Technology (KTH) in Stockholm.

The network chosen for the evaluation was a ring network around Brunnsviken, north of

Stockholm. The network has both freeway and urban sections, and it operates under heavy

congestion during the peak periods. MITSIMLab was calibrated by MIT based on traffic data

from observations in 1999. The calibrated MITSIMLab was then used to simulate the network

conditions in 2000, and validation was performed by KTH using queue lengths and point-to-

point travel times within the network. The validation showed that MITSIMLab was able to

replicate the actual measurements quite well, and it was concluded that MITSIMLab should be

recommended for use in Swedish cities.

Figure 5.2 GUI of MITSIMLab with Marian Bay Network Loaded
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We will use MITSIMLab as simulation platform to implement scenario discovery analysis

and show how the uncertainty in traffic demands will impact the performance of the proposed

policy. Figure 5.2 shows the GUI (graphical user interface) of MITSIMLab with the Marina Bay

network loaded. In Figure 5.2, different colors mean different traffic density in that region.

5.4.2 Data Preparation and Processing

In this section, we will describe the preparation of input files and some assumptions we

made under which we prepare the input files.

Figure 5.3 Marina Bay Network under BL in MITSIMLab

There are mainly five types of input files in MITSIMLab including master files, parameter

files, network file, demand file, and transit input files if there is public transit system in the

loaded network. In general, master files are mostly fixed. For each lane in the real network, the

network file includes all the lane information and there is some numbers associated with each

lane denoting its functionality (whether it is a bus lane or not). In order to convert one lane into
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bus lane, we rewrite the network file and convert the specified lane into bus lane. Thus, we have

two cases with or without bus lanes. We denotes them as BL (with bus lane converted) and NBL

(without bus lane converted) in the following part of the thesis. Figure 5.3 shows the Marina Bay

network under BL.

In addition, we made some transit input files according to the proposed policy and real

network. In the demand file, there are numbers associated with each OD (origin and destination)

pairs denoting the traffic demand at this time. Figure 5.4 shows the OD nodes in Marina Bay

network in MITSIMLab.

Figure 5.4 OD Nodes in Marina Bay Network in MITSIMLab

The study period of simulation runs are AM peak period (8:00-9:00 AM) in Singapore.

With the original demand data of each OD pair, we treat the distribution of demand of each OD
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as uniform distribution with original demand value as its mean. The maximum of demand goes

up to 60% higher than the original demand and the minimum goes 60% less. By certain

experimental design which we will describe in next section, we sample from these demand

distributions.

In addition, we treat demand as the only variables that are uncertain, which may not be true

in real case. But since demand will be the dominant factor impacting the average travel time or

other output variables we use for performance evaluation, this assumption may not hurt our

analysis result badly.

For each sample, we run the simulation model only once. Due to the long computational

time for each run, only 100 runs are made for BL and NBL case each. In next section, we will

describe the output data processing.

Since the simulation model MITSIMLab is a stochastic model, we need to run each model

with the same model input many times to control the randomness of output generation. The

discussion about this issue will be made in section 5.6

After we run the simulation model in MITSIMLab for designed cases, some output files

are generated. Since our goal is to evaluate the performance of proposed policy, some variables

are computed from the raw output data. The Table 5.1 shows the descriptions of these variables.

The detailed output result tables are attached in Appendix C.
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Variable Descriptions
Names

Input X1 Proportion of total expected demands whose destination are in the

Variables south-west of the Marina Bay area

X2 Proportion of total expected demands whose destination are in the
north of the Marina Bay area

X3 Proportion of total expected demands whose destination are in the
south-east of the Marina Bay area

BCT Total car travel time with policy implemented

NCT Total car travel time without policy implemented

BBT Total bus travel time with policy implemented

NBT Total bus travel time without policy implemented

BVT Total vehicle (car + bus) travel time with policy implemented

Output NVT Total vehicle (car + bus) travel time without policy implemented

Variables BCPT Total car passenger travel time with policy implemented
(seconds) NCPT Total car passenger travel time without policy implemented

BBPT Total bus passenger travel time with policy implemented

NBPT Total bus passenger travel time without policy implemented

BVPT Total vehicle (car + bus) passenger travel time with policy implemented

NVPT Total vehicle (car + bus) passenger travel time without policy
implemented

YTEST Binary variables (0,1) denote cases of interest: 1 means output of
interest, 0 means not of interest; used for illustrating how the algorithm
works in Appendix 3

Table 5.1 Descriptions of Output Variables Processed from MITSIMLab

Some thresholds are made to distinguish failure regions (scenarios) and details are

illustrated in section 5.4.

Some assumptions are made when dealing with output data and preparing input data. Some

may be loosed in the future study. Since the MITSIMlab is not designed exactly for the use of

scenario discovery, we did some preliminary work before what we stated in previous sections.

Several computer programs are written in Java to handle the raw input data and output data.

Some of the codes are attached in Appendix B. After some computation in Excel, we have
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transformed the raw data into clear data tables. The main input and output data are attached in

Appendix C.

5.5 Application of Scenario Discovery

5.5.1 Data Generation from Simulation

Based on the discussion in chapter 3, Latin-Hypercube-Sampling experimental design is

employed to sample data from the demand distribution.

To deal with dimensionality, since we have around forty numbers of OD demands, we

categorized these OD demands into three groups by different destinations, which are southwest,

southeast and northeast. Figure 5.5 shows the OD groups in Marina Bay network.

b
-44 f,
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Figure 5.5 OD Groups in Marina Bay Network

X1, X2, and X3 showed the sum of demands with destinations in its region. Clearly, these

three variables may be closely related to the performance of the transit-oriented policy. We also

assume the distributions of them to be uniform distribution for simplicity.

We use a Latin Hypercube sample (LHS) to create an experimental design over the space

defined by these three uncertain model input parameters. Running this sample through the

simulation creates a database that explores the implications all combinations of the full range of

expert opinion about the values of the three uncertain parameters.

Assuming X1, X2 and X3 are independent, we now have X1, X2, and X3 as input

variables and adding bus lane as action s and a simulation model f. In the current study, we use

the difference of BVPT and NVPT as output y. Zero is the threshold to classify policy failure,

which means if in BL the total passenger travel times go higher than that in NBL, the policy fails.

By model y = f(x, s) in Chapter 3, we run the simulation and get the output data for

identifying failure scenarios. We denote this as model 1.

The model 1 assumes that there is no interaction among the input parameters. But in reality,

it can hardly be true. Thus, to better capture the property of the travel time, we introduced

interaction terms into the model. We denote X12, X13, X23 as the product of X1 and X2, Xl and

X3, X2 and X3. This new model with interaction terms is called model 2.

5.5.2 Scenarios Identification

We next characterize the output values in this database, differentiating between the cases

of interest with unacceptably high passenger travel time. We then use the PRIM algorithm to

concisely summarize the combinations of uncertain model input parameter values that best

predict these high travel time cases.

Figure 5.6 displays several coverage-density tradeoff curves generated by the scenario

discovery toolkit from the database described in previous section. The red points mean with

constraints of three input variables, the purple ones with constraints of two input variables, the

blue ones with constraints of only one parameter. For two or one constraints, they thus do not
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represent a complete or optimal search, but do serve to illuminate tradeoffs between the scenario

quality measures of coverage, density and interpretability.

The algorithm starts from the 100% coverage and 30% density. A box representing a

perfect scenario would be defined by constraints on only one or two parameters and would lie in

the upper right-hand corner with 100% coverage and 100% density, and thus capturing all the

cases of interest and excluding all the other cases. Since such a box is not available, users must

choose one with the combination of coverage, density, and interpretability that best supports

their decision application. In general, dimensionality increases with density and decreases with

coverage, and both decrease with interpretability. For the purposes of this example, we initially

consider Scenario 14, which uses four parameters to achieve 66% coverage and 73% density.

After evaluating this scenario, one could still modify this choice, possibly improving

interpretability by dropping parameters deemed less important or choosing another scenario

entirely.
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Figure 5.6 Peeling Trajectory for Model 1
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Dimension Constraints for input variables Density Coverage
1 Xl >128.0 30% 100%
2 X3 >205.0 52% 87%
3 X2> 250.5 67% 73%
4 X2< 483.0 NA NA

Table 5.2 Combination of Parameters Values in Scenario 14

The scenario includes potential future states of the world where Xl and X3 are at the upper

half of their ranges, X2 is almost over all range of its lowest value to highest. Overall, 67% of the

cases in the dataset that meet these three constraints have high costs (i.e., 67% density). Of all

the high-cost cases in the dataset, 73% meet these three constraints (i.e. 73% coverage).

As shown in Table 5.2, PRIM also reports each parameter's marginal contribution to

explaining the high travel time cases. With no parameters constraints the box would have 30%

density and 100% coverage, since we have defined 30% of the cases in the database to have high

travel time. After three input variables constraints are introduced, the density goes up and

coverage goes down and it's a trade-off.
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Figures 5.7 Visualization Results of PRIM in Model 1

Figure 5.7 illustrate cases in database plotted as function of a) first two parameters and b)

first and second parameters and c) second and third parameters shown in Table 5.2.

Black and open dots show high travel time and lower travel time cases, respectively. Red

lines show parameters values corresponding to the boundaries of Scenario 14. Figure 5.7a also
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suggests that Scenario 14's lack of 100% coverage owes to a small number of high travel time

cases with high X1 and low X3 or low X1 and high X3.

By normalizing all three parameters to one, we can have Table 5.3 and Figure 5.8 showing

the failure regions in the space of input variables. We call scenarios failure clusters in Figure 5.8.

X1 X2 X3

Total Space -60% ~60% -50% ~40% -40% ~60%

Scenario 1 -2% ~60% 21% -40% -60% -26%

Scenario 2 -50% -30% -7% -40% 27% -60%

Table 5.3 Scenarios in the Space of Input Variables in Model 1

-- I

- -- I I -

-60%

Figure 5.8 Failure Clusters in the Space of Input Variables

In model 2, we employed same methods and results are showed as follows. Figure 5.9a and

5.9b show the peeling trajectory of model 2.
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Figure 5.9a Peeling Trajectory of Model 2
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Dimension Constraints for input variables Density Coverage
1 X12 >38173 30% 100%
2 X13 >29183 54% 93%
3 X23 >67130 67% 87%
4 X2 < 483.0 72% 87%

Table 5.4 Scenarios in the Space of Input Variables in Model 2

Figure 5.10 illustrate cases in database plotted as function of different pairs of parameters

shown in Table 5.4. Black and open dots show high travel time and lower travel time cases,

respectively. Red lines show parameters values corresponding to the boundaries of selected

scenarios.
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Figure 5.10 Visualization Results of PRIM in Model 2

Input Variables Coverage Density Quasi-p-value
X12 0.9 0.9 0.017
X13 0.7 0.7 0.28
X23 0.9 1.0 0.28
X2 0.6 0.6 0.36
Xl 0.2 0.3
X3 0.2 0.2 _________

Table 5.5 Coverage, Density and Quasi-p-value of Associated Variables in Model 2

Since the interactions are too big, we do some normalization to these terms and get new

model specification. Figure 5.11, 5.12 and Table 5.6, Table 5.7 showed the PRIM results.

Figure 5.11 illustrate the peeling trajectory of the normalized model. Figure 5.12 illustrate

cases in database plotted as function of different pairs of parameters shown in Table 5.6. Black

and open dots show high travel time and lower travel time cases, respectively. Red lines show

parameters values corresponding to the boundaries of selected scenarios.
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Figure 5.11 Peeling Trajectory of Normalized Model 2

76

0)

e0

e . .

0
e

00

00
00

00

0

e o
e0

0

0
0

* 1-

*
1-

.4-

1-
+ 11

-4-

'\ --.- .10
4- '*~+

-I- -I
4

+ -~~1- *
-'- ~ 1 0

I'
.4~~4



Dimension Constraints for input variables Density Coverage
1 X12 >180 30% 100%
2 X13 >165 54% 93%
3 X23 >219.5 67% 87%
4 X2 < 483.0 72% 87%

Table 5.6 Scenarios in the Space of Input Variables in Normalized Model 2
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Table 5.7 Coverage, Density and Quasi-p-value of Associated Variables in Normalized
Model 2

5.5.3 Evaluating and Choosing Scenarios
Based on the information from Section 5.5, scenario 14 appears to provide a useful

description of the vulnerabilities of the transit-oriented policy for model 1.

The Table 5.8 shows the frequency with which PRIM uses each model input parameter

when run on ten different N/2 sized resampling's of the dataset.

Input variables Coverage Density Quasi-p-value
X1 0.9 0.9 0.002
X2 0.8 0.9 0.23
X3 0.7 0.7 0.01

Table 5.8 Coverage and Density associated with Input Variables in Model 1

Table 5.8 also shows the quasi-p-values associated with each of the three parameters used

to define Scenario 14. Note that each additional parameter is orders of magnitude less significant

than its predecessor, though all but the last would qualify as highly significant. A standard

threshold for significance would reject using X3 in the scenario definition because it has a

significance level of only 0.23.

Together, these reproducibility statistics and quasi-p-values provide high confidence that

the first two parameters in Figure 5.7 each play an important role in defining the high travel time

scenario. While the resampling statistics also support the importance of the parameter X3, the

quasi-p-value test suggests the inclusion of this parameter may be due to chance.
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Input Variables Coverage Density Quasi-p-value
X12 1.0 1.0 0.017
X13 0.8 0.8 0.28
X23 0.8 0.8 0.28
X2 0.7 0.7 0.36
Xl 0.1 0.1
X3 0.2 0.2



The quasi-p-values in model 2 didn't show very good coverage and density comparing

with those in model 1. In addition, the visualization also implied the same thing. Thus, we didn't

select scenarios in model 2.

From the above discussion, one could have chosen an initial scenario with less than 100%

coverage, and one could identify a second scenario to characterize some or all of the remaining

points. In this example however, we judged Scenario 14 has sufficiently high coverage to render

a second scenario unnecessary.

From Section 5.5.1, we selected scenario 14. From Table 5.3, we can know that when X1

and X2 go higher than expected average, the policy goes to failure; when X2 and X3 go higher

than expected, the policy fails too. The bad bump hunting result of model 2 may imply that there

is no or little interaction between proposed input variables.

5.6 Discussions and Conclusions

We demonstrate scenario discovery approach, using LHS experimental design and a micro

traffic simulation model to "farm" alternative futures and applying PRIM to "data mine" those

futures, with the goal of evaluating strategically robust policy.

We investigate the general influence of exogenous forces, varying traffic demands in this

case, in determining regions of failure and identify strategy-performance regions of high

interpretability, with high density of scenarios of interest and moderate-to-high purity.

Under deep uncertainty of traffic demand in the studied district, the performance of

proposed policy under some scenarios is not better than the situation when there is no bus lane.

In other words, the study shows that the proposed policy may deviate significantly from the

optimum performance or even fail to meet its performance goal.

There are still a number of issues remain for investigation. First, the input parameters used

in this analysis did not fully capture the exogenous forces that may influence the proposed policy

performance. Instead of using all the OD demands as input variables, we simplified the input

parameter by grouping these demands by destinations and use the sum within the group. Due to

the curse of dimensionality, taking all the OD pairs into account may result in big simulation

samples and in turn requires much longer simulation time. Second, in MITSIMLab, there is
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limited number of driving forces we can consider while there are more that may impact the

policy especially some social and economic factors. More complex simulation models are

needed to fully consider the different sources of uncertainty.

Furthermore, in terms of scenario identification, the simple criterion of policy performance

(e.g, average passenger travel time) may be unrealistic and inappropriate for actually policy

making which requires satisfying a number of objectives environmentally and economically. A

multi-criteria analysis combined with current approach may be more realistic.

Stochasticity, which is often inevitable for most simulation models, has been neglected

here. As stated in this chapter, MITSIMLab is a stochastic simulation platform. To better capture

the performance in reality, we have to perform same simulation run with same input parameter

sample many times to reduce the impact of randomness. This will also largely increase the

simulation time.

Despite the problems stated previously, we believe that this quantitative approach of

scenario discovery would be promising in identifying strategically robust futures and would be

increasingly applied in the transportation planning realm.
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Chapter 6

Contributions and Future Work

6.1 Thesis contribution

In this thesis, we demonstrate a method that combines the power of emerging data mining

algorithms and exploration techniques with the simulation models of large and complex

transportation systems in determining robust strategic regions.

A robust decision making analysis approach which has been implemented in some other

planning realms like energy is first implemented in transportation planning realm. The previous

studies on robust decision making and applications are reviewed.

The approach consists of data farming that incorporate the impact from a number of

exogenous driving forces and data mining the future states that represent the vulnerability of the

proposed policy. The thesis compared different exploration techniques and data mining

algorithms that can be used in the approach. The benefits and limitations of alternative

techniques are illustrated.

Thesis implements an empirical study based on a micro traffic simulation platform

calibrated from Singapore urban network. In the empirical study, we showed how scenario

discovery can help evaluating policy performance and representing vulnerabilities of proposed

policies and showed how the new statistical tools can generate easy-to-interpret results visually.

These together can be used to better understand the proposed policies and the tradeoffs between

them.

Finally, we evaluate the limitations of our approach and empirical study and we will

propose some future work directions in next section.

6.2 Future work

As stated in section, there are some limitations of current methods. So focusing on

overcoming these limitations of our empirical study, we propose some future work as follows.
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First, we may propose a better way to deal with the high dimensional input parameters that

influence the performance of the policy. By factor analysis or some other techniques, we can use

fewer variables to capture all the varying input parameters for the simulation models.

Second, the criterion of the study may be revised to be more realistic. Instead of simple

travel time metric, we would combine some other environmental and economic criterions into

the study.

Third, due to the limitation of simulation model, more appropriate simulation platform

may be used in the empirical study. Since building simulation model is often costly, some

methods incorporating the influence of other driving forces without inputting into the simulation

models may be proposed to address this challenge. To better deal with stochasticity, we may

need more simulation runs to reduce the randomness.

In addition, we also proposed some future work from technical perspectives. Alternative

machine learning algorithms could be implemented to identify the vulnerabilities of proposed

policies. In the view of some literature, PRIM would additionally peel away more data at the last

step. So more accurate algorithms need to be tested and compared with PRIM.

Finally, from the policy making perspective, there will be some model input variables that

cannot easily be quantified. So how to incorporate qualitative information into this quantitative

approach will be another challenge to implement this approach widely. Some of the future work

may focus on solving this problem.
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Appendix A - Glossary of Acronyms

ATMS Advanced Traffic Management Systems

BL Bus Lane

BBT Bus-lane Bus Travel-time

BBPT Bus-lane Bus Passenger Travel-time

BCPT Bus-lane Car Passenger Travel-time

BCT Bus-lane Car Travel-time

BVPT Bus-lane Vehicle Passenger Travel-time

BVT Bus-lane Vehicle Travel-time

CART Classification and Regression Tree

GUI Graphical User Interface

LHS Latin Hypercube Sampling

MITSIM Microscopic Traffic Simulator

NBL No Bus Lane

NBT Non-bus-lane Bus Travel-time

NBPT Non-bus-lane Bus Passenger Travel-time

NCPT Non-bus-lane Car Passenger Travel-time

NCT Non-bus-lane Car Travel-time

NVPT Non-bus-lane Vehicle Passenger Travel-time

NVT Non-bus-lane Vehicle Travel-time
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Origin and DestinationOD

PFF

88

Pseudo Full Factorial

Patient Rule Induction Method

Robust Decision Making

Traffic Management Simulator

PRIM

RDM

TMS
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Appendix B - Simulation Output

ID X1 X2 X3 BCT NCT BBT NBT

1 0.584 0.68 0.572 761626 1161215 31345 32307

2 0.496 1.163 0.8 1290356 1362027 32676 39121

3 0.48 1.037 0.696 1305748 1660751 33242 33310

4 1.424 1.377 0.82 1669153 1588228 34850 37959

5 1.024 0.834 1.24 1303150 1417164 34616 35819

6 0.864 0.923 0.768 1428739 1648504 31693 38617

7 0.536 1.229 1.568 1840158 1774830 34666 35612

8 0.464 0.814 1.328 1040149 1423327 30418 32601

9 0.616 1.297 0.836 1481411 1473530 31409 39948

10 1.488 0.609 1.548 1260461 1423487 41498 42934

11 0.656 0.88 0.884 1150149 1363990 31928 32864

12 1.52 0.589 0.644 925078 1684628 41531 31010

13 0.688 0.851 1.504 1511103 1900795 36492 32970

14 1.328 1.22 0.672 1391327 1465345 34765 31844

15 0.912 0.98 1.124 1165278 1474670 38063 31912

16 0.888 1.394 1.156 1815335 1809131 32904 37150

17 0.808 1.011 1.492 859053 1129591 40335 42452

18 1.6 0.783 0.98 1249986 1554537 38630 33685

19 0.96 1.309 1.272 1585352 1467558 34612 44688

20 1.344 0.586 0.556 736906 1182727 37130 33160

21 0.552 0.917 1.588 1606699 1705088 34986 36894

22 1.192 1.363 0.916 1296882 1350894 42262 42620

23 0.576 1.429 1.172 1726279 1591077 31874 42038

24 1.6 1.266 0.44 1159339 1191794 43550 44422
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25 1.072 1.389 0.864 1661932 1713605 37695 43245

26 0.504 1.414 0.488 1022916 1231794 32083 33175

27 1.552 0.897 0.428 1165341 1395402 36260 33158

28 0.528 0.794 0.416 773909 1051506 31461 34217

29 1.512 1.143 1.32 1768641 1647590 39841 52252

30 0.776 0.703 1.48 753144 1287784 39439 34109

31 1.552 1.349 0.616 1717335 1700514 40031 44005

32 1.04 1.383 1.28 1350148 1418301 32215 39444

33 1.536 1.214 0.68 1071760 1018190 42356 47455

34 0.76 1.097 1.044 989014 1132305 35412 49714

35 0.744 1.129 0.728 1377919 1324925 32094 40667

36 0.72 1.237 1.392 1667792 1531219 36216 50667

37 1.432 0.717 0.784 982485 1459083 40650 33457

38 0.424 1.186 1.14 1536487 1623835 34220 39467

39 1.104 0.663 1.288 1117328 1371401 39301 32390

40 1.288 0.651 0.712 881435 1133021 37136 33144

41 0.416 1.254 0.96 1570298 1657974 30006 39015

42 0.832 0.637 1.428 1298399 1627533 32046 32998

43 1.16 0.829 0.588 880984 1234581 39282 33130

44 1.384 1.023 0.848 799544 1024364 36611 43881

45 1.112 1.054 0.5 1080294 1396052 40502 32798

46 0.992 0.966 0.876 862458 1232844 34872 34782

47 0.856 0.963 0.46 966844 1181956 32535 35687

48 1.568 0.869 0.528 1601996 1793047 33717 33482

49 0.92 1.277 1.6 1698296 1175264 37599 50788

50 1.128 0.751 0.968 1298241 1541870 32832 31230
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51 1.496 1.131 0.82 988537 1289408 37252 35484

52 1.08 1.331 0.936 1581546 1720491 33980 38311

53 1.008 1.114 1.452 1647245 1574367 34201 41685

54 1.32 1.431 0.54 1259374 1068788 37221 49495

55 1.184 0.931 1.528 1421694 1282725 38503 38082

56 0.872 0.674 1.468 1681296 1851232 31964 32888

57 0.632 0.809 1.248 1400372 1670859 33345 33882

58 1.144 1.174 0.948 1576662 1635691 33220 41034

59 1.4 0.949 1.336 1491334 1392473 36810 44978

60 1.376 0.737 1.228 1396259 1824203 42084 34180

61 0.664 1.049 1.016 1266886 1690000 32759 32996

62 0.768 1 1.196 1573941 1702151 34035 32050

63 0.512 0.774 0.992 1330939 1391895 28852 32518

64 1.216 1.026 1.372 1154284 1509615 43229 40164

65 1.176 0.646 0.896 1435077 1601814 33342 31441

66 0.624 0.749 0.776 984955 1330943 31556 33380

67 1.224 1.189 1.4 2017596 1761364 38845 45031

68 0.968 0.603 0.752 1102664 1493844 33512 31504

69 1.272 1.409 0.564 1205473 1413371 41298 39656

70 1.36 1.36 1.088 1458600 1556851 44387 41198

71 0.784 1.006 0.472 1169108 1364958 31500 35779

72 1.416 1.24 1.112 1649264 1349159 38266 52570

73 1.088 1.086 1.308 1564627 1767685 39581 33517

74 0.56 1.326 0.464 1250350 1535591 32465 36266

75 1.256 1.071 1.432 1760382 1496138 38458 44674

76 0.84 0.697 0.604 904868 1406986 29907 31218
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77 1.24 1.266 1.004 1122332 1460465 37665 39284

78 0.984 0.8 1.416 1043545 1531635 42392 36060

79 0.688 0.617 1.496 1218788 1714646 35798 32022

80 0.808 0.983 1.076 1545637 1757389 32505 32988

81 1.464 0.729 1.212 877036 1276212 40828 34265

82 0.6 0.623 1.36 800367 1190122 29987 32690

83 0.952 0.766 1.1 1679504 1759912 32857 35040

84 0.896 1.146 0.62 1045410 1225548 32417 37583

85 1.024 1.3 1.26 1351085 670334 43027 68099

86 0.928 0.686 1.532 1350877 1563798 36004 36899

87 0.728 1.157 1.552 1143565 1476631 37155 34737

88 1.28 1.34 0.928 1075298 1538937 39778 33334

89 0.648 0.957 1.604 924262 1875479 37026 34936

90 1.448 1.203 1.032 1063835 1333820 38714 37615

91 0.448 0.883 0.66 866647 1268170 30513 32245

92 0.712 0.903 0.516 1243361 1686389 32908 35033

93 0.456 0.837 1.352 1447891 1662588 33683 34268

94 1.136 0.914 0.708 1033325 1077606 32773 43860

95 1.472 1.286 1.056 1528678 1339935 46155 45935

96 1.056 1.109 1.184 1578774 1794927 34820 36622

97 1.304 0.86 1.068 1537108 1857755 35520 32486

98 1.232 1.091 0.74 1385876 1540546 39770 42454

99 1.368 1.069 1.16 1376071 1619651 39812 41770

100 1.576 0.714 0.64 1467113 1715527 34440 35411
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ID BVT NVT BCPT NCPT BBPT NBPT BVPT NVPT

1 792972 1193522 1148484 1741822 940356 969216 2088840 2711038

2 1323032 1401148 1926414 2043040 980268 1173624 2906682 3216664

3 1338989 1694061 1960266 2491126 997248 999300 2957514 3490426

4 1704003 1626187 2504471 2382341 1045488 1138776 3549959 3521117

5 1337766 1452983 1968717 2125746 1038480 1074564 3007197 3200310

6 1460432 1687121 2157687 2472756 950784 1158516 3108471 3631272

7 1874824 1810442 2765484 2662245 1039980 1068360 3805464 3730605

8 1070567 1455928 1556337 2134990 912540 978024 2468877 3113014

9 1512820 1513478 2227250 2210295 942264 1198428 3169514 3408723

10 1301960 1466421 1890341 2135231 1244952 1288008 3135293 3423239

11 1182077 1396854 1732707 2045985 957828 985908 2690535 3031893

12 966609 1715639 1394496 2526942 1245936 930312 2640432 3457254

13 1547595 1933765 2279829 2851193 1094772 989088 3374601 3840281

14 1426092 1497189 2084679 2198018 1042956 955320 3127635 3153338

15 1203341 1506582 1740113 2212005 1141884 957372 2881997 3169377

16 1848239 1846281 2711374 2713696 987108 1114512 3698482 3828208

17 899389 1172043 1300079 1694387 1210056 1273560 2510135 2967947

18 1288616 1588222 1860265 2331806 1158900 1010544 3019165 3342350

19 1619963 1512246 2379587 2201337 1038348 1340628 3417935 3541965

20 774036 1215887 1114582 1774090 1113888 994800 2228470 2768890

21 1641686 1741982 2411812 2557632 1049592 1106820 3461404 3664452

22 1339145 1393514 1936333 2026341 1267872 1278600 3204205 3304941

23 1758153 1633115 2576975 2386616 956232 1261140 3533207 3647756

24 1202889 1236216 1747870 1787690 1306500 1332672 3054370 3120362

25 1699627 1756850 2505619 2570407 1130844 1297356 3636463 3867763
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26 1054999 1264969 1529370 1847691 962484 995256 2491854 2842947

27 1201601 1428560 1753282 2093103 1087812 994740 2841094 3087843

28 805370 1085722 1159866 1577258 943836 1026504 2103702 2603762

29 1808482 1699842 2650780 2471385 1195224 1567572 3846004 4038957

30 792583 1321893 1137925 1931676 1183176 1023264 2321101 2954940

31 1757366 1744519 2580090 2550771 1200924 1320156 3781014 3870927

32 1382363 1457745 2026972 2127452 966444 1183308 2993416 3310760

33 1114115 1065645 1596248 1527285 1270668 1423644 2866916 2950929

34 1024426 1182018 1475650 1698457 1062372 1491408 2538022 3189865

35 1410013 1365592 2081005 1987388 962808 1220004 3043813 3207392

36 1704007 1581887 2490020 2296829 1086468 1520016 3576488 3816845

37 1023136 1492540 1473553 2188624 1219512 1003704 2693065 3192328

38 1570707 1663302 2296350 2435753 1026612 1184004 3322962 3619757

39 1156629 1403792 1683322 2057102 1179036 971712 2862358 3028814

40 918571 1166164 1315456 1699531 1114092 994308 2429548 2693839

41 1600304 1696989 2349598 2486962 900180 1170444 3249778 3657406

42 1330445 1660531 1962295 2441300 961380 989940 2923675 3431240

43 920266 1267711 1311420 1851872 1178460 993900 2489880 2845772

44 836155 1068245 1197447 1536546 1098324 1316436 2295771 2852982

45 1120797 1428851 1606634 2094078 1215072 983952 2821706 3078030

46 897330 1267627 1280767 1849267 1046172 1043472 2326939 2892739

47 999379 1217644 1435631 1772935 976044 1070616 2411675 2843551

48 1635713 1826529 2414127 2689571 1011504 1004460 3425631 3694031

49 1735895 1226052 2561987 1762897 1127976 1523628 3689963 3286525

50 1331073 1573099 1935625 2312804 984972 936888 2920597 3249692

51 1025789 1324892 1473382 1934113 1117572 1064520 2590954 2998633
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52 1615526 1758802 2386836 2580737 1019400 1149336 3406236 3730073

53 1681446 1616051 2478117 2361550 1026036 1250544 3504153 3612094

54 1296595 1118283 1881044 1603182 1116636 1484844 2997680 3088026

55 1460198 1320807 2130051 1924088 1155096 1142472 3285147 3066560

56 1713260 1884121 2535211 2776848 958920 986652 3494131 3763500

57 1433717 1704742 2108869 2506289 1000356 1016472 3109225 3522761

58 1609882 1676725 2363084 2453537 996600 1231020 3359684 3684557

59 1528144 1437451 2224292 2088710 1104300 1349328 3328592 3438038

60 1438344 1858383 2083358 2736305 1262532 1025400 3345890 3761705

61 1299645 1722996 1904569 2534999 982764 989892 2887333 3524891

62 1607976 1734201 2348460 2553226 1021056 961512 3369516 3514738

63 1359791 1424413 1993551 2087843 865548 975540 2859099 3063383

64 1197513 1549779 1731410 2264422 1296864 1204932 3028274 3469354

65 1468418 1633255 2152081 2402721 1000248 943224 3152329 3345945

66 1016511 1364324 1467722 1996415 946668 1001412 2414390 2997827

67 2056441 1806395 3025732 2642046 1165356 1350924 4191088 3992970

68 1136176 1525348 1643464 2240766 1005348 945132 2648812 3185898

69 1246771 1453028 1811104 2120057 1238940 1189692 3050044 3309749

70 1502987 1598049 2180372 2335277 1331616 1235928 3511988 3571205

71 1200608 1400737 1752511 2047436 945000 1073376 2697511 3120812

72 1687530 1401729 2484161 2023739 1147980 1577088 3632141 3600827

73 1604208 1801202 2346570 2651528 1187424 1005516 3533994 3657044

74 1282815 1571857 1875955 2303386 973956 1087980 2849911 3391366

75 1798840 1540812 2652841 2244208 1153728 1340220 3806569 3584428

76 934775 1438204 1364213 2110480 897216 936540 2261429 3047020

77 1159997 1499749 1684513 2190698 1129956 1178508 2814469 3369206
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78 1085937 1567696 1552904 2297453 1271760 1081812 2824664 3379265

79 1254585 1746669 1818010 2571969 1073928 960672 2891938 3532641

80 1578143 1790377 2332360 2636084 975156 989640 3307516 3625724

81 917864 1310477 1301961 1914318 1224840 1027944 2526801 2942262

82 830354 1222812 1201968 1785182 899604 980700 2101572 2765882

83 1712360 1794952 2531710 2639869 985704 1051188 3517414 3691057

84 1077827 1263132 1582007 1838323 972516 1127496 2554523 2965819

85 1394113 738433 2018285 1005501 1290816 2042964 3309101 3048465

86 1386880 1600697 2038838 2345697 1080108 1106976 3118946 3452673

87 1180720 1511368 1718616 2214946 1114644 1042116 2833260 3257062

88 1115076 1572271 1613442 2308405 1193328 1000020 2806770 3308425

89 961288 1910416 1399469 2813219 1110792 1048092 2510261 3861311

90 1102549 1371435 1591429 2000729 1161420 1128456 2752849 3129185

91 897159 1300415 1286858 1902254 915384 967356 2202242 2869610

92 1276269 1721423 1851491 2529584 987252 1050996 2838743 3580580

93 1481574 1696856 2179479 2493882 1010484 1028052 3189963 3521934

94 1066098 1121465 1560333 1616409 983196 1315788 2543529 2932197

95 1574833 1385870 2282032 2009902 1384656 1378044 3666688 3387946

96 1613594 1831549 2366371 2692390 1044600 1098672 3410971 3791062

97 1572628 1890241 2319237 2786632 1065600 974580 3384837 3761212

98 1425645 1583000 2082001 2310819 1193088 1273632 3275089 3584451

99 1415883 1661420 2053103 2429476 1194372 1253088 3247475 3682564

100 1501553 1750939 2202824 2573291 1033200 1062336 3236024 3635627
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